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Overview of SAS/ETS Software
SAS/ETS software, a component of the SAS System, provides SAS procedures for the following:

� econometric analysis

� time series analysis

� time series forecasting

� panel data analysis, including dynamic panels

� spatial econometric linear models

� systems modeling and simulation

� discrete choice analysis

� analysis of qualitative and limited dependent variable models

� seasonal adjustment of time series data

� financial analysis and reporting
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� access to economic and financial databases

� access to global weather databases

� time series data management

� high-performance econometric analysis in symmetric multiprocessing (SMP) mode

In addition to SAS procedures, SAS/ETS software also includes seamless access to economic, financial, and
weather databases and interactive environments for time series forecasting and investment analysis.

Uses of SAS/ETS Software
SAS/ETS software provides tools for a wide variety of applications in business, government, and academia.
Major uses of SAS/ETS procedures are economic analysis, forecasting, economic and financial modeling,
time series analysis, financial reporting, and manipulation of time series data.

The common theme relating the many applications of the software is time series data: SAS/ETS software is
useful whenever it is necessary to analyze or predict processes that take place over time or to analyze models
that involve simultaneous relationships.

Although SAS/ETS software is most closely associated with business, finance, and economics, time series
data also arise in many other fields. SAS/ETS software is useful whenever time dependencies, simultaneous
relationships, or dynamic processes complicate data analysis. For example, an environmental quality
study might use SAS/ETS software’s time series analysis tools to analyze pollution emissions data. A
pharmacokinetic study might use SAS/ETS software’s features for nonlinear systems to model the dynamics
of drug metabolism in different tissues.

The diversity of problems for which econometrics and time series analysis tools are needed is reflected in the
applications reported by SAS users. The following listed items are some applications of SAS/ETS software
presented by SAS users at past annual conferences of the SAS Users Groups (SUGI and SAS Global Forum):

� analyzing heart rate variability of a sleep apnea and cardiovascular patient (Wongdhamma 2016)

� seasonality and interdependence of parking meter transactions (Milhøj 2015)

� modeling operational risk in banking (Rozo, Crook, and Moreira 2015)

� estimating volatility of financial assets (LaBarr 2014)

� analyzing levels, seasonality, and trends in e-commerce (Milhøj 2012)

� early detection of epidemic outbreaks (Shtatland and Shtatland 2008)

� modeling long-run water quality trends (Ragavan and Fernandez 2006)

� neural networks and genetic algorithms for forecasting automobile demand (McNelis and Nickelsburg
2002)

� forecasting college enrollment (Calise and Earley 1997)

� fitting a pharmacokinetic model (Morelock et al. 1995)
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� testing interaction effects in reducing sudden infant death syndrome (Fleming, Gibson, and Fleming
1996)

� forecasting operational indices to measure productivity changes (McCarty 1994)

� spectral decomposition and reconstruction of nuclear plant signals (Hoyer and Gross 1993)

� estimating parameters for the constant-elasticity-of-substitution translog model (Hisnanick 1993)

� applying econometric analysis for mass appraisal of real property (Amal and Weselowski 1993)

� forecasting telephone usage data (Fischetti, Heathcote, and Perry 1993)

� forecasting demand and utilization of inpatient hospital services (Hisnanick 1992)

� using conditional demand estimation to determine electricity demand (Keshani and Taylor 1992)

� estimating tree biomass for measurement of forestry yields (Parresol and Thomas 1991)

� evaluating the theory of input separability in the production function of U.S. manufacturing (Hisnanick
1991)

� forecasting dairy milk yields and composition (Benseman 1990)

� predicting the gloss of coated aluminum products subject to weathering (Khan 1990)

� learning curve analysis for predicting manufacturing costs of aircraft (LeBouton 1989)

� analyzing Dow Jones stock index trends (Earley, Sweeney, and Zekavat 1989)

� analyzing the usefulness of the composite index of leading economic indicators for forecasting the
economy (Lin and Myers 1988)

Contents of SAS/ETS Software

Procedures

SAS/ETS software includes the following SAS procedures:

ARIMA ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) modeling and forecasting

AUTOREG regression analysis with autocorrelated or heteroscedastic errors and ARCH and GARCH
modeling

COMPUTAB spreadsheet calculations and financial report generation

COPULA fitting and simulating multivariate distributions by using copula methods

COUNTREG regression modeling for dependent variables that represent counts

DATASOURCE access to financial and economic databases

ENTROPY maximum entropy-based regression

ESM forecasting by using exponential smoothing models with optimized smoothing weights
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EXPAND time series interpolation, frequency conversion, and transformation of time series

LOAN loan analysis and comparison

MDC multinomial discrete choice analysis

MODEL nonlinear simultaneous equations regression and nonlinear systems modeling and simula-
tion

PANEL panel data modeling

PDLREG polynomial distributed lag regression

QLIM qualitative and limited dependent variable analysis

SEVERITY modeling the statistical distribution of the severity of losses and other events

SIMILARITY similarity analysis of time series data for time series data mining

SIMLIN linear systems simulation

SPATIALREG spatial econometric models for cross-sectional data

SPECTRA spectral and cross-spectral analysis

SSM state space modeling of time series

STATESPACE state space modeling and automated forecasting of multivariate time series

SYSLIN linear simultaneous equations models

TIMEDATA analyzes time-stamped transactional data with respect to time and accumulates the data
into a time series format

TIMEID identifying the time frequency for data sets that contain time series data

TIMESERIES analysis of time-stamped transactional data

TSCSREG time series cross-sectional regression analysis

UCM unobserved components analysis of time series

VARMAX vector autoregressive and moving average with modeling and forecasting

X11 seasonal adjustment (Census X-11 and X-11 ARIMA)

X12 seasonal adjustment (Census X-12 ARIMA)

X13 seasonal adjustment (Census X-13 ARIMA-SEATS)

High-Performance (HP) Procedures

High-performance (HP) procedures are adapted to perform optimally in symmetric multiprocessing (SMP)
mode, providing faster performance by making multiple CPUs available to complete individual processes
simultaneously.

SAS/ETS software includes the following high-performance procedures:

HPCDM high-performance compound distribution models

HPCOPULA high-performance fitting and simulation of multivariate distributions by using copula
methods

HPCOUNTREG high-performance regression modeling for count dependent variables
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HPPANEL high-performance panel data modeling

HPQLIM high-performance qualitative and limited dependent variable analysis

HPSEVERITY high-performance modeling of the severity of losses and other events

Access Interfaces to Economic and Financial Databases

SAS/ETS software includes the following LIBNAME statement engines to provide access to financial and
economic databases:

SASECRSP LIBNAME engine for accessing time series and event data that reside in a CRSPAccess
database

SASEFAME LIBNAME engine for accessing time series or case series data that reside in a FAME
database

SASEFRED LIBNAME engine to retrieve economic data from the FRED website, which is hosted by
the Economic Research Division of the Federal Reserve Bank of St. Louis

SASEHAVR LIBNAME engine for accessing time series that reside in a Haver Analytics Data Link
Express (DLX) database

SASEOECD LIBNAME engine for accessing time series to retrieve statistical data from the Organi-
sation for Economic Cooperation and Development (OECD) website on topics such as
agriculture and fisheries, economy, education, employment, energy, environment, finance,
health, industry and entrepreneurship, innovation, insurance and pensions, international
migration, internet economy, investment, OECD.Stat data warehouse, regional, rural and
urban development, science and technology, social and welfare issues, tax, trade, and
transport

SASEQUAN LIBNAME engine to retrieve economic data from the Quandl website, which offers access
to 8 million time series data sets from 400 sources in finance, economics, society, health,
energy, demography, and more

SASEXCCM LIBNAME engine for accessing data items that reside in the CRSP US Stock (STK)
Database, the CRSP US Stock and Indices (IND) Database, the CRSP US Treasury (TRS)
Database, or the CRSP/Compustat Merged (CCM) Database, which is created from data
delivered via Standard & Poor’s Compustat Xpressfeed product

SASEXFSD LIBNAME engine for accessing both FactSet data and FactSet-sourced data that are
provided by the FactSet OnDemand service

SASEWBGO LIBNAME engine for accessing time series to retrieve statistical data from the World
Bank Group Open (WBGO) data website, hosted by the World Bank Group. The most
popular is the World Development Indicators (WDI) database, which presents the most
current and accurate global development data available, including national, regional, and
global estimates. The SASEWBGO interface engine supports access to the WDI database,
but it also provides access to time series in other WBGO databases, such as the Global
Economic Monitor (GEM) and the Special Data Dissemination Standard (SDDS)
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Access Interfaces to Global Weather and NOAA Severe Weather Data Inventory Databases

SAS/ETS software includes the following LIBNAME statement engines to provide access to global weather
and severe weather databases:

SASENOAA LIBNAME engine to retrieve severe weather data such as tornado vortex signatures; meso-
cyclone signatures; digital mesocyclone detection algorithm; hail, storm cell structure,
and preliminary local storm reports; and severe thunderstorm, tornado, flash flood, and
special marine warnings from the NOAA Severe Weather Data Inventory (SWDI) web
service

SASERAIN LIBNAME engine to retrieve global weather data such as temperature, precipitation
(rainfall), weather description, weather icon, and wind speed from the World Weather
Online website

Macros

SAS/ETS software includes the following SAS macros:

%AR generates statements to define autoregressive error models for the MODEL procedure

%EQAR defines autoregressive error models that are specified using general form equations for the
MODEL procedure

%BOXCOXAR investigates Box-Cox transformations useful for modeling and forecasting a time series

%DFPVALUE computes probabilities for Dickey-Fuller test statistics

%DFTEST performs Dickey-Fuller tests for unit roots in a time series process

%LOGTEST tests to determine whether a log transformation is appropriate for modeling and forecasting
a time series

%MA generates statements to define moving-average error models for the MODEL procedure

%EQMA defines moving-average error models that are specified using general form equations for
the MODEL procedure

%PDL generates statements to define polynomial distributed lag models for the MODEL proce-
dure

These macros are part of the SAS AUTOCALL facility and are automatically available for use in your SAS
program. For information about the SAS macro facility, see SAS Macro Language: Reference.

The Time Series Forecasting System

SAS/ETS software includes an interactive forecasting system, described in Part IV. This graphical user
interface to SAS/ETS forecasting features was developed with SAS/AF software and uses PROC ARIMA and
other internal routines to perform time series forecasting. The Time Series Forecasting System makes it easy
to forecast time series and provides many features for graphical data exploration and graphical comparisons
of forecasting models and forecasts. (You must have SAS/GRAPH installed to use the graphical features of
the system.)

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=mcrolref&docsetTarget=titlepage.htm
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SAS/ETS High-Performance Procedures
SAS/ETS high-performance procedures provide econometric modeling tools that have been specially devel-
oped to take advantage of parallel processing in both multithreaded single-machine mode and distributed
multiple-machine mode. You can run all these procedures in single-machine mode without licensing SAS
High-Performance Econometrics. However, to run these procedures in distributed mode, you must license
SAS High-Performance Econometrics.

Econometric modeling methods available in high-performance environment include regression for count
data, models for the severity of losses or other events, compound distribution modeling, regression models
for qualitative and limited dependent variables, copula simulation, and panel data modeling. In addition to
the high-performance econometric procedures described in this book, SAS/ETS includes high-performance
utility procedures, which are described in Base SAS Procedures Guide: High-Performance Procedures.

Experimental Software
Experimental software is sometimes included as part of a production-release product. It is provided to
customers in order to obtain feedback. All experimental features are marked Experimental in this document.
Whenever an experimental procedure, statement, or option is used, a message is displayed in the SAS log to
indicate that it is experimental. The design and syntax of experimental software might change before any
production release. Experimental software has been tested prior to release, but it has not necessarily been
tested to production-quality standards, so it should be used with care.

About This Book
This book is a user’s guide to SAS/ETS software. Since SAS/ETS software is a part of the SAS System, this
book assumes that you are familiar with Base SAS software and have the books SAS Programmers Guide:
Essentials and Base SAS Procedures Guide available for reference. It also assumes that you are familiar with
SAS data sets, the SAS DATA step, and with basic SAS procedures such as PROC PRINT and PROC SORT.
Chapter 4, “Working with Time Series Data,” in this book summarizes the aspects of Base SAS software that
are most relevant to the use of SAS/ETS software.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=prochp&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Chapter Organization
Following a brief What’s New, this book is divided into five major parts. Part I contains general information
to aid you in working with SAS/ETS Software. Part II explains the SAS procedures of SAS/ETS software.
Part III describes the available data access interfaces for economic, financial and weather databases. Finally,
Part IV is the reference for the Time Series Forecasting System, an interactive forecasting menu system that
uses PROC ARIMA and other routines to perform time series forecasting.

The new features added to SAS/ETS software since the publication of SAS/ETS Software: Changes and
Enhancements for Release 13.2 are summarized in Chapter 1, “What’s New in SAS/ETS 15.3.” If you have
used SAS/ETS software in the past, you may want to skim this chapter to see what’s new.

Part I contains the following chapters.

Chapter 2, the current chapter, provides an overview of SAS/ETS software and summarizes related SAS
publications, products, and services.

Chapter 4, “Working with Time Series Data,” discusses the use of SAS data management and programming
features for time series data.

Chapter 5, “Date Intervals, Formats, and Functions,” summarizes the time intervals, date and datetime
informats, date and datetime formats, and date and datetime functions available in the SAS System.

Chapter 6, “SAS Macros and Functions,” documents SAS macros and DATA step financial functions provided
with SAS/ETS software. The macros use SAS/ETS procedures to perform Dickey-Fuller tests, test for the
need for log transformations, or select optimal Box-Cox transformation parameters for time series data.

Chapter 7, “Nonlinear Optimization Methods,” documents the NonLinear Optimization subsystem used by
some ETS procedures to perform nonlinear optimization tasks.

Part II contains chapters that explain the SAS procedures that make up SAS/ETS software. These chapters
appear in alphabetical order by procedure name.

Part III contains chapters that document the ETS access interfaces to economic, financial and weather
databases.

Each of the chapters that document the SAS/ETS procedures (Part II) and the SAS/ETS access interfaces
(Part III) is organized as follows:

1. The “Overview” section gives a brief description of the procedure.

2. The “Getting Started” section provides a tutorial introduction on how to use the procedure.

3. The “Syntax” section is a reference to the SAS statements and options that control the procedure.

4. The “Details” section discusses various technical details.

5. The “Examples” section contains examples of the use of the procedure.

6. The “References” section contains technical references on methodology.

Part IV contains the chapters that document the features of the Time Series Forecasting System.
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Syntax Conventions
Each procedure’s “Syntax” section follows the conventions that are described in this section. Consider the
following statements:

CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

RANGE FROM from TO to ;

<label:> TEST <'string'> equation1 < , equation2. . . > / test-options ;

These statements demonstrate the syntax conventions that are described in the following list:

UPPERCASE BOLD is used for keywords in lists of SAS statements and options in “Syntax” sections.
When you type a keyword in SAS code, you type it as shown (although any mix
of uppercase and lowercase is valid). In the preceding examples, the statement
names (CLASS, RANGE, and TEST) are keywords. In addition, the FROM and
TO are required keywords in the RANGE statement. Note that keywords are
displayed only in uppercase (not bold) when they are used in text.

oblique is used in syntax definitions and in text to represent arguments for which you
supply a value. The preceding CLASS statement indicates that variable, options,
and global-options are arguments for which you can supply values. The values
that you can supply are defined later in the description of the CLASS statement.

< > (angle brackets) identify optional arguments. Arguments that are not enclosed in
angle brackets are required. In the preceding CLASS statement, you must supply
a value for one variable because the first variable is not enclosed in angle brackets.
However, supplying values for additional variables, options, and global-options
is optional.

. . . (ellipsis dots) indicate that the preceding argument can be repeated. In the
preceding CLASS statement, the “. . . ” indicates that you can supply additional
variables, (along with optional options). Sometimes the argument is shown again
after the “. . . ” to emphasize that it can be repeated.

'value' (straight quotes around a value) indicate that the value must be enclosed in
quotation marks (which can be single or double quotes). In the preceding TEST
statement, straight quotes around string indicate that you must use quotation
marks when you specify a string.

( ) (parentheses) indicate arguments that must be grouped together. In the preceding
CLASS statement, you must type parentheses around the options in order to
indicate which syntax elements are options and which are variables. Statements
that do not require parentheses to indicate association sometimes allow you to
omit the parentheses when you specify only one option; these cases are indicated
in the statement description.

| (vertical bar) indicates that you can choose one value from a group of values.
Values that are separated by a vertical bar are mutually exclusive. A vertical bar
indicates mutually exclusive values for an option or indicates aliases for an option
name.

; (semicolon) indicates the end of a statement.



Typographical Conventions F 15

Other special characters—such as an equal sign (=), tilde (�), colon (:), and slash (/)—indicate where in the
syntax you must type those characters.

Typographical Conventions
This book uses several type styles for presenting information. The following list explains the meaning of the
typographical conventions used in this book:

UPPERCASE ROMAN is used for SAS statements, options, and other SAS language elements when
they appear in the text. However, you can enter these elements in your own SAS
programs in lowercase, uppercase, or a mixture of the two.

VariableName is used for the names of variables and data sets when they appear in the text.

bold is used to refer to matrices and vectors.

italic is used for terms that are defined in the text, for emphasis, and for references to
publications.

monospace is used for example code. In most cases, this book uses lowercase type for SAS
code.

Options Used in Examples
The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documen-
tation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template
controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template
in an ODS destination statement as follows:

ods html style=HTMLBlue;
. . .
ods html close;

ods pdf style=PearlJ;
. . .
ods pdf close;

Most of the PDF tables are produced by using the following SAS System option:

options papersize=(6.5in 9in);

If you run the examples, you might get slightly different output. This is a function of the SAS System options
that are used and the precision that your computer uses for floating-point calculations.
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Where to Turn for More Information
This section describes other sources of information about SAS/ETS software.

Accessing the SAS/ETS Sample Library
The SAS/ETS Sample Library includes many examples that illustrate the use of SAS/ETS software, including
the examples used in this documentation. To access these sample programs, select Help from the menu
and then select SAS Help and Documentation. From the Contents list, select the section Sample SAS
Programs under Learning to Use SAS.

SAS Short Courses
The SAS Education Division offers a number of training courses that might be of interest to SAS/ETS users.
Please check the SAS web site for the current list of available training courses.

SAS Technical Support Services
As with all SAS products, the SAS Technical Support staff is available to respond to problems and answer
technical questions regarding the use of SAS/ETS software.

Major Features of SAS/ETS Software
The following sections summarize major features of SAS/ETS software. For more information, see the
chapters on individual procedures.

ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) Modeling and Forecasting
The ARIMA procedure provides the identification, parameter estimation, and forecasting of autoregressive
integrated moving-average (Box-Jenkins) models, seasonal ARIMA models, transfer function models, and
intervention models. The ARIMA procedure includes the following features:

� complete ARIMA (Box-Jenkins) modeling with no limits on the order of autoregressive or moving-
average processes

� model identification diagnostics, including the following:

– autocorrelation function

– partial autocorrelation function
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– inverse autocorrelation function

– cross-correlation function

– extended sample autocorrelation function

– minimum information criterion for model identification

– squared canonical correlations

� stationarity tests

� outlier detection

� intervention analysis

� regression with ARMA errors

� transfer function modeling with fully general rational transfer functions

� seasonal ARIMA models

� ARIMA model-based interpolation of missing values

� several parameter estimation methods, including the following:

– exact maximum likelihood

– conditional least squares

– exact nonlinear unconditional least squares (ELS or ULS)

� prewhitening transformations

� forecasts and confidence limits for all models

� forecasting tied to parameter estimation methods: finite memory forecasts for models estimated by
maximum likelihood or exact nonlinear least squares methods and infinite memory forecasts for models
estimated by conditional least squares

� diagnostic statistics to help judge the adequacy of the model, including the following:

– Akaike’s information criterion (AIC)

– Schwarz’s Bayesian criterion (SBC or BIC)

– Box-Ljung chi-square test statistics for white-noise residuals

– autocorrelation function of residuals

– partial autocorrelation function of residuals

– inverse autocorrelation function of residuals

– automatic outlier detection
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Structural Time Series Modeling and Forecasting
The UCM procedure provides a flexible environment for analyzing time series data using structural time series
models, also called unobserved components models (UCM). These models represent the observed series as a
sum of suitably chosen components such as trend, seasonal, cyclical, and regression effects. You can use the
UCM procedure to formulate comprehensive models that bring out all the salient features of the series under
consideration. Structural models are applicable in the same situations where Box-Jenkins ARIMA models
are applicable; however, the structural models tend to be more informative about the underlying stochastic
structure of the series. The UCM procedure includes the following features:

� general unobserved components modeling where the models can include trend, multiple seasons and
cycles, and regression effects

� maximum-likelihood estimation of the model parameters

� model diagnostics that include a variety of goodness-of-fit statistics, and extensive graphical diagnosis
of the model residuals

� forecasts and confidence limits for the series and all the model components

� Model-based seasonal decomposition

� extensive plotting capability that includes the following:

– forecast and confidence interval plots for the series and model components such as trend, cycles,
and seasons

– diagnostic plots such as residual plot, residual autocorrelation plots, and so on

– seasonal decomposition plots such as trend, trend plus cycles, trend plus cycles plus seasons, and
so on

� model-based interpolation of series missing values

� full sample (also called smoothed) estimates of the model components

Regression with Autocorrelated and Heteroscedastic Errors
The AUTOREG procedure provides regression analysis and forecasting of linear models with autocorrelated
or heteroscedastic errors. The AUTOREG procedure includes the following features:

� estimation and prediction of linear regression models with autoregressive errors

� autoregressive or subset autoregressive processes of any order

� optional stepwise selection of autoregressive parameters

� choice of the following estimation methods:

– exact maximum likelihood
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– exact nonlinear least squares

– Yule-Walker

– iterated Yule-Walker

� tests for any linear hypothesis that involves the structural coefficients

� restrictions for any linear combination of the structural coefficients

� forecasts with confidence limits

� estimation and forecasting for A of ARCH (autoregressive conditional heteroscedasticity), and the
following variations:

– GARCH (generalized autoregressive conditional heteroscedasticity)

– IGARCH (integrated GARCH)

– EGARCH (exponential GARCH)

– QGARCH (quadratic GARCH)

– TGARCH (threshold GARCH)

– PGARCH (power GARCH)

– GARCH-M (GARCH-in-mean)

� combination of ARCH and GARCH models with autoregressive models, with or without regressors

� estimation and testing of general heteroscedasticity models

� variety of model diagnostic information, including the following:

– autocorrelation plots

– partial autocorrelation plots

– Durbin-Watson test statistic and generalized Durbin-Watson tests of any order

– Durbin h and Durbin t statistics

– Godfrey LM test

– Ramsey’s RESET test

– McLeod-Li portmanteau Q test for ARCH disturbances

– Engle’s LM test for ARCH disturbances

– Lee and King’s for ARCH disturbances

– Wong and Li’s test for ARCH disturbances

– Chow test

– Bai-Perron supF, UDmaxF, WDmaxF, and supF(l C 1jl) tests

– Akaike’s information criterion

– Schwarz information criterion

– Phillips-Perron stationarity test

– Phillips-Ouliaris cointegration test
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– Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

– Shin cointegration test

– augmented Dickey-Fuller test

– Engle-Granger cointegration test

– Elliot, Rothenberg, and Stock test

– Ng and Perron test

– tests for statistical independence

– Jarque-Bera test for normality

– CUSUM and CUMSUMSQ statistics

� exact significance levels (p-values) for the Durbin-Watson statistic

� embedded missing values

Count Data Models
The COUNTREG procedure provides regression models in which the dependent variable takes nonnegative
integer count values. The COUNTREG procedure supports the following features:

� Poisson regression

� Conway-Maxwell-Poisson regression

� negative binomial regression with quadratic and linear variance functions

� zero-inflated Poisson (ZIP) regression

� zero-inflated Conway-Maxwell-Poisson regression

� zero-inflated negative binomial (ZINB) regression

� fixed- and random-effects Poisson panel data models

� fixed- and random-effects NB (negative binomial) panel data models

� variable selection

� Bayesian estimation and inference, including diagnostic plots
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Multinomial Discrete Choice Analysis
The MDC procedure provides maximum likelihood (ML) or simulated maximum likelihood estimates of
multinomial discrete choice models in which the choice set consists of unordered multiple alternatives. The
decision makers can be people, households, firms, or any other decision-making units, and the alternatives
are a set of competing options. Unordered multiple choices are observed in many settings, including choices
of housing location, occupation, political party affiliation, and mode of transportation.

The MDC procedure supports the following models and features:

� intuitive

� conditional logit

� nested logit

� heteroscedastic extreme value

� multinomial probit

� mixed logit

� pseudorandom or quasi-random numbers for simulated maximum likelihood estimation

� bounds imposed on the parameter estimates

� linear restrictions imposed on the parameter estimates

� SAS data set containing predicted probabilities and linear predictor (x0ˇ) values

� decision tree and nested logit

� model fit and goodness-of-fit measures, including the following:

– likelihood ratio

– Aldrich-Nelson

– Cragg-Uhler 1

– Cragg-Uhler 2

– Estrella

– adjusted Estrella

– McFadden’s LRI

– Veall-Zimmermann

– Akaike’s information criterion (AIC)

– Schwarz criterion or Bayesian information criterion (BIC)
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Panel Data Linear Models
The PANEL procedure deals with panel data sets that consist of time series observations on each of several
cross-sectional units. The PANEL procedure includes the following features:

� one-way and two-way fixed effects

� one-way and two-way random effects

� variance component estimation by the following methods:

– Fuller and Battese method (variance component model)

– Wansbeek and Kapteyn method

– Wallace and Hussain method

– Nerlove method

� Parks method (autoregressive model)

� Da Silva method (mixed variance component moving-average model)

� Hausman-Taylor and Amemiya-MaCurdy estimation

� dynamic-panel estimation one-step, two-step, or iterative generalized method of moments (GMM)

� support for unbalanced panel data for all methods

� model specification tests

� panel data unit-root tests

� automatic generation of lagged variables

� model comparison tables

� model specification tests

� variety of estimates and statistics, including the following:

– underlying error components estimates

– regression parameter estimates

– standard errors of estimates

– t tests

– R-square statistic

– correlation matrix of estimates

– covariance matrix of estimates

– autoregressive parameter estimate

– cross-sectional components estimates

– autocovariance estimates

– F tests of linear hypotheses about the regression parameters

– specification tests, including the Hausman test
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Qualitative and Limited Dependent Variable Analysis
The QLIM procedure analyzes univariate and multivariate limited dependent variable models where dependent
variables take discrete values or dependent variables are observed only in a limited range of values. This
procedure includes logit, probit, Tobit, and general simultaneous equations models. The QLIM procedure
includes the following features:

� linear regression with heteroscedasticity

� probit models with heteroscedasticity

� logit models with heteroscedasticity

� Tobit models (censored and truncated) with heteroscedasticity

� Box-Cox regression with heteroscedasticity

� bivariate probit models

� bivariate Tobit models

� ordered logit and ordered probit models

� sample selection models, including the Heckman model

� multivariate limited dependent models

� stochastic frontier models

� random effects and random coefficients

� Bayesian estimation and inference, including diagnostic plots

� residual plots, predictive plots, marginal-effects plots, and so on

Spatial Econometric Models
The SPATIALREG procedure analyzes spatial econometric models for cross-sectional data where observations
are spatially referenced or georeferenced. The SPATIALREG procedure includes the following features:

� linear models with spatial log of X (SLX) effects

� spatial autoregressive (SAR) model

� spatial Durbin model (SDM)

� spatial error model (SEM)

� spatial Durbin error model (SDEM)
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� spatial moving average (SMA) model

� spatial Durbin moving average (SDMA) model

� spatial autoregressive moving average (SARMA) model

� spatial Durbin autoregressive moving average (SDARMA) model

� spatial autoregressive confused (SAC) model

� spatial Durbin autoregressive confused (SDAC) model

� k-order binary contiguity spatial weight matrices

� k-order nearest neighbor spatial weight matrices

� compact representations of spatial weight matrices

� Taylor and Chebyshev approximations for large data sets

Vector Time Series Analysis
The VARMAX procedure enables you to model the dynamic relationship both between the dependent
variables and between the dependent and independent variables. The VARMAX procedure includes the
following features:

� several modeling features:

– vector autoregressive model (VAR)

– vector autoregressive model with exogenous variables (VARX)

– vector autoregressive and moving-average model (VARMA)

– vector autoregressive and moving-average model with exogenous variables (VARMAX)

– vector autoregressive fractionally integrated moving-average model (VARFIMA)

– vector autoregressive fractionally integrated moving-average model with exogenous variables
(VARFIMAX)

– Bayesian vector autoregressive model (BVAR)

– vector error correction model (VECM)

– Bayesian vector error correction model (BVECM)

– GARCH-type multivariate conditional heteroscedasticity models (BEKK, CCC, DCC)

– vector error correction model in ARMA-GARCH form

� criteria for automatically determining AR and MA orders:

– Akaike’s information criterion (AIC)

– corrected AIC (AICC)

– Hannan-Quinn (HQ) criterion
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– final prediction error (FPE)

– Schwarz Bayesian criterion (SBC), also known as Bayesian information criterion (BIC)

� AR order identification aids:

– partial cross-correlations

– Yule-Walker estimates

– partial autoregressive coefficients

– partial canonical correlations

� testing the presence of unit roots and cointegration:

– Dickey-Fuller tests

– Johansen cointegration test for nonstationary vector processes of integrated order one

– Stock-Watson common trends test for the possibility of cointegration among nonstationary vector
processes of integrated order one

– Johansen cointegration test for nonstationary vector processes of integrated order two

� model parameter estimation methods:

– least squares (LS)

– maximum likelihood (ML)

– conditional maximum likelihood (CML)

� model checks and residual analysis using the following tests:

– Durbin-Watson (DW) statistics

– F test for autoregressive conditional heteroscedastic (ARCH) disturbance

– F test for AR disturbances

– Jarque-Bera normality test

– portmanteau test

� seasonal deterministic terms

� subset models

� multiple regression with distributed lags

� dead-start model that does not have present values of the exogenous variables

� Granger-causal relationships between two distinct groups of variables

� infinite order AR representation

� impulse response function (or infinite order MA representation)

� decomposition of the predicted error covariances

� roots of the characteristic functions for both the AR and MA parts to evaluate the proximity of the
roots to the unit circle
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� contemporaneous relationships among the components of the vector time series

� forecasts

� conditional covariances for GARCH models

� log-likelihood output

� specification of initial parameter values for optimization

� constraints and bounds on parameters for optimization

� Wald tests

Simultaneous Systems Linear Regression
The SYSLIN and ENTROPY procedures provide regression analysis of a simultaneous system of linear
equations.

The SYSLIN procedure includes the following features:

� estimation of parameters in simultaneous systems of linear equations

� full range of estimation methods including the following:

– ordinary least squares (OLS)

– two-stage least squares (2SLS)

– three-stage least squares (3SLS)

– iterated 3SLS (IT3SLS)

– seemingly unrelated regression (SUR)

– iterated SUR (ITSUR)

– limited-information maximum likelihood (LIML)

– full-information maximum likelihood (FIML)

– minimum expected loss (MELO)

– general K-class estimators

� weighted regression

� any number of restrictions for any linear combination of coefficients, within a single model or across
equations

� tests for any linear hypothesis, for the parameters of a single model or across equations

� wide range of model diagnostics and statistics including the following:

– usual ANOVA tables and R-square statistics

– Durbin-Watson statistics
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– standardized coefficients

– test for overidentifying restrictions

– residual plots

– standard errors and t tests

– covariance and correlation matrices of parameter estimates and equation errors

� predicted values, residuals, parameter estimates, and variance-covariance matrices saved in output SAS
data sets

� other features of the SYSLIN procedure that enable you to do the following:

– impose linear restrictions on the parameter estimates

– test linear hypotheses about the parameters

– write predicted and residual values to an output SAS data set

– write parameter estimates to an output SAS data set

– write the crossproducts matrix (SSCP) to an output SAS data set

– use raw data, correlations, covariances, or cross products as input

The ENTROPY procedure supports the following models and features:

� generalized maximum entropy (GME) estimation

� generalized cross entropy (GCE) estimation

� normed moment generalized maximum entropy

� maximum entropy-based seemingly unrelated regression (MESUR) estimation

� pure inverse estimation

� estimation of parameters in simultaneous systems of linear equations

� Markov models

� unordered multinomial choice problems

� weighted regression

� any number of restrictions for any linear combination of coefficients, within a single model or across
equations

� tests for any linear hypothesis, for the parameters of a single model or across equations
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Linear Systems Simulation
The SIMLIN procedure performs simulation and multiplier analysis for simultaneous systems of linear
regression models. The SIMLIN procedure includes the following features:

� reduced form coefficients

� interim multipliers

� total multipliers

� dynamic multipliers

� multipliers for higher-order lags

� dynamic forecasts and simulations

� goodness-of-fit statistics

� acceptance of the equation system coefficients estimated by the SYSLIN procedure as input

Polynomial Distributed Lag Regression
The PDLREG procedure provides regression analysis for linear models with polynomial distributed (Almon)
lags. The PDLREG procedure includes the following features:

� entry of any number of regressors as a polynomial lag distribution and the use of any number of
covariates

� use of any order lag length and degree polynomial for lag distribution

� optional upper and lower endpoint restrictions

� specification of any number of linear restrictions on covariates

� option to repeat analysis over a range of degrees for the lag distribution polynomials

� support for autoregressive errors to any lag

� forecasts with confidence limits
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Nonlinear Systems Regression and Simulation
The MODEL procedure provides parameter estimation, simulation, and forecasting of dynamic nonlinear
simultaneous equation models. The MODEL procedure includes the following features:

� nonlinear regression analysis for systems of simultaneous equations, including weighted nonlinear
regression

� full range of parameter estimation methods including the following:

– nonlinear ordinary least squares (OLS)

– nonlinear seemingly unrelated regression (SUR)

– nonlinear two-stage least squares (2SLS)

– nonlinear three-stage least squares (3SLS)

– iterated SUR

– iterated 3SLS

– generalized method of moments (GMM)

– nonlinear full-information maximum likelihood (FIML)

– simulated method of moments (SMM)

� supports dynamic multi-equation nonlinear models of any size or complexity

� uses the full power of the SAS programming language for model definition, including left-hand-side
expressions

� hypothesis tests of nonlinear functions of the parameter estimates

� linear and nonlinear restrictions of the parameter estimates

� bounds imposed on the parameter estimates

� computation of estimates and standard errors of nonlinear functions of the parameter estimates

� estimation and simulation of ordinary differential equations (ODEs), and differential algebraic equa-
tions (DAEs)

� vector autoregressive error processes and polynomial lag distributions easily specified for the nonlinear
equations

� variance modeling (ARCH, GARCH, and others)

� computation of goal-seeking solutions of nonlinear systems to find input values needed to produce
target outputs

� dynamic, static, or n-period-ahead forecast simulation modes

� simultaneous solution or single equation solution modes

� Monte Carlo simulation using parameter estimate covariance and across-equation residuals covariance
matrices or user-specified random functions
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� Monte Carlo simulation of multidimensional systems using copulas

� a variety of diagnostic statistics including the following

– model R-square statistics
– general Durbin-Watson statistics and exact p-values
– asymptotic standard errors and t tests
– first-stage R-square statistics
– covariance estimates
– collinearity diagnostics
– simulation goodness-of-fit statistics
– Theil inequality coefficient decompositions
– Theil relative change forecast error measures
– heteroscedasticity tests
– Godfrey test for serial correlation
– Hausman specification test
– Chow tests

� block structure and dependency structure analysis for the nonlinear system

� listing and cross-reference of fitted model

� automatic calculation of needed derivatives by using exact analytic formula

� efficient sparse matrix methods used for model solution; choice of other solution methods

Model definition, parameter estimation, simulation, and forecasting can be performed interactively in a single
SAS session, or models can be stored in files and reused and combined in later runs.

State Space Modeling and Forecasting
The SSM procedure provides state space modeling of univariate and multivariate time series and longitudinal
data. State space models encompass an alternative general formulation of multivariate ARIMA models. The
SSM procedure includes the following features:

� general linear state space models (SMMs)

� expressive language to specify an SSM, including flexible and intuitive specification of transition and
covariance matrices

� easy specification of commonly used SSMs by using only a few keywords

� restricted maximum likelihood estimation computed using the (diffuse) Kalman filter algorithm

� forecasts, residuals, and full-sample estimations of any linear combination of state variables

� residual diagnostics plots

� plots for detecting structural breaks
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Spectral Analysis
The SPECTRA procedure provides spectral analysis and cross-spectral analysis of time series. The SPECTRA
procedure includes the following features:

� efficient calculation of periodogram and smoothed periodogram using fast finite Fourier transform and
Chirp-Z algorithms

� multiple spectral analysis, including raw and smoothed spectral and cross-spectral function estimates,
with user-specified window weights

� choice of kernel for smoothing

� output of the following spectral estimates to a SAS data set:

– Fourier sine and cosine coefficients

– periodogram

– smoothed periodogram

– cospectrum

– quadrature spectrum

– amplitude

– phase spectrum

– squared coherency

� Fisher’s Kappa and Bartlett’s Kolmogorov-Smirnov test statistic for testing a null hypothesis of white
noise

Distribution of the Severity
The SEVERITY procedure estimates parameters of any probability distribution that is used to model the
magnitude (severity) of a continuous-valued event of interest. The SEVERITY procedure includes the
following features:

� parameter estimation of predefined distribution models, including the following:

– Burr distribution

– exponential distribution

– gamma distribution

– generalized Pareto distribution

– inverse Gaussian (Wald) distribution

– lognormal distribution

– Pareto distribution
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– Tweedie distribution

– Weibull distribution

� parameter estimation of arbitrarily defined parametric distribution models

� fitting distributions to data by either truncation or censoring

� group estimation

� several fit statistics, including the following:

– log likelihood

– Akaike’s information criterion (AIC)

– corrected Akaike’s information criterion (AICC)

– Schwarz Bayesian information criterion (BIC)

– Kolmogorov-Smirnov statistic (KS)

– Anderson-Darling statistic (AD)

– Cramér–von Mises statistic (CvM)

� regression effects

� scoring functions

� multithreaded computation

� ability to specify the objective function for optimization

� plots of the estimated cumulative distribution function (CDF), the estimated empirical distribution
function (EDF), and the estimated probability density function (PDF)

Compound Distribution Models
The HPCDM procedure computes an estimate of the compound distribution model, given the distributions of
the parameters. For example, PROC HPCDM can estimate the distribution of the aggregate loss during a
time period of interest, given the distribution models of the frequency (count) and of the severity of loss.

The HPCDM procedure includes the following features:

� accepts severity models estimated by the SEVERITY procedure and frequency models estimated by
the COUNTREG procedure

� scenario analysis with regression effects

� group scenario analysis with classification and interaction effects

� support for externally simulated counts

� parameter perturbation analysis that assesses the effect of parameter uncertainty associated with
frequency and severity models

� ability to compute the distribution of aggregate adjusted loss
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Similarity Analysis
The SIMILARITY procedure computes similarity measures associated with time-stamped data, time series,
and other sequentially ordered numeric data. The SIMILARITY procedure includes the following features:

� ability to accumulate time-stamped data into a time series

� missing value interpretation

� zero value interpretation

� functional transformations of time series, including the following:

– log (LOG)

– square-root (SQRT)

– logistic (LOGISTIC)

– Box-Cox (BOXCOX)

– user-defined transformations

� simple differencing and seasonal differencing

� time series missing value trimming

� time warping by compressing or expanding the input sequence with respect to the target sequence

� sequence normalizations, including the following:

– standard (STANDARD)

– absolute (ABSOLUTE)

– user-defined normalizations

� sequence scaling, including the following:

– standard (STANDARD)

– absolute (ABSOLUTE)

– user-defined scaling

� ability to compute similarity measures, including the following:

– squared deviation (SQRDEV)

– absolute deviation (ABSDEV)

– mean square deviation (MSQRDEV)

– mean absolute deviation (MABSDEV)

– user-defined similarity measures

� sliding similarity measures analysis with three types of sequence sliding:

– no sliding
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– slide by time index

– slide by season index

� support for large data sets

Seasonal Adjustment
The X13 procedure provides seasonal adjustment of time series by using the US Bureau of the Census
X-13ARIMA-SEATS seasonal adjustment program. The X-13ARIMA-SEATS program was developed by
the Time Series Staff of the Statistical Research Division, US Census Bureau, by incorporating the SEATS
method into the X-12-ARIMA seasonal adjustment program.

The X13 procedure generalizes the older X11 and X12 procedures and includes the following features:

� US Bureau of the Census X-13ARIMA-SEATS seasonal adjustment program

� support for the X-12 ARIMA method

� support for the X-11 ARIMA method

� all the features of the Census Bureau program

� processing of any number of variables at once with no maximum length for a series

� decomposition of monthly or quarterly series into seasonal, trend, trading day, and irregular components

� multiplicative, additive, pseudo-additive, and log additive forms of the decomposition

� support for regARIMA modeling

� automatic identification of outliers

� support for TRAMO-based automatic model selection

� support for sliding spans analysis

� use of regressors to process missing values within the span of the series

� computation of tests for stable, moving, and combined seasonality

� spectral analysis of original, seasonally adjusted, and irregular series

� ability to project seasonal component one year ahead, which enables reintroduction of seasonal factors
for an extrapolated series

� full control over what is printed or output
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Automatic Time Series Forecasting
The ESM procedure provides a quick way to generate forecasts for many time series or transactional data in
one step by using exponential smoothing methods. All parameters associated with the forecasting model are
optimized based on the data.

You can use the following smoothing models:

� simple

� double

� linear

� damped trend

� seasonal

� Winters method (additive and multiplicative)

Additionally, PROC ESM can transform the data before applying the smoothing methods using any of these
transformations:

� log

� square root

� logistic

� Box-Cox

In addition to forecasting, the ESM procedure can also produce graphic output.

The ESM procedure can forecast both time series data, whose observations are equally spaced at a specific
time interval (for example, monthly, weekly), or transactional data, whose observations are not spaced with
respect to any particular time interval. (Internet, inventory, sales, and similar data are typical examples of
transactional data. For transactional data, the data are accumulated based on a specified time interval to form
a time series.)
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Time Series Interpolation and Frequency Conversion
The EXPAND procedure provides time interval conversion and missing value interpolation for time series.
The EXPAND procedure includes the following features:

� conversion of time series frequency; for example, constructing quarterly estimates from annual series
or aggregating quarterly values to annual values

� conversion of irregular observations to periodic observations

� interpolation of missing values in time series

� conversion of observation types; for example, estimate stocks from flows and vice versa. All possible
conversions are supported between any of the following:

– beginning of period

– end of period

– period midpoint

– period total

– period average

� conversion of time series phase shift; for example, conversion between fiscal years and calendar years

� identifying observations including the following:

– identification of the time interval of the input values

– validation of the input data set observations

– computation of the ID values for the observations in the output data set

� choice of four interpolation methods:

– cubic splines

– linear splines

– step functions

– simple aggregation

� ability to perform extrapolation by a linear projection of the trend of the cubic spline curve fit to the
input data

� ability to transform series before and after interpolation (or without interpolation) by using any of the
following:

– constant shift or scale

– sign change or absolute value

– logarithm, exponential, square root, square, logistic, inverse logistic

– lags, leads, differences

– classical decomposition
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– bounds, trims, reverse series

– centered moving, cumulative, or backward moving average

– centered moving, cumulative, or backward moving range

– centered moving, cumulative, or backward moving geometric mean

– centered moving, cumulative, or backward moving maximum

– centered moving, cumulative, or backward moving median

– centered moving, cumulative, or backward moving minimum

– centered moving, cumulative, or backward moving product

– centered moving, cumulative, or backward moving corrected sum of squares

– centered moving, cumulative, or backward moving uncorrected sum of squares

– centered moving, cumulative, or backward moving rank

– centered moving, cumulative, or backward moving standard deviation

– centered moving, cumulative, or backward moving sum

– centered moving, cumulative, or backward moving median

– centered moving, cumulative, or backward moving t-value

– centered moving, cumulative, or backward moving variance

� support for a wide range of time series frequencies:

– YEAR

– SEMIYEAR

– QUARTER

– MONTH

– SEMIMONTH

– TENDAY

– WEEK

– WEEKDAY

– DAY

– HOUR

– MINUTE

– SECOND

� support for repeating of shifting the basic interval types to define a great variety of different frequencies,
such as fiscal years, biennial periods, work shifts, and so forth

For more information about time series data transformations, see Chapter 4, “Working with Time Series
Data,” and Chapter 5, “Date Intervals, Formats, and Functions.”
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Trend and Seasonal Analysis on Transaction Databases
The TIMESERIES procedure can accumulate transactional data to time series and perform trend and seasonal
analysis on the accumulated time series.

Time series analyses performed by the TIMESERIES procedure include the follows:

� descriptive statistics relevant for time series data

� seasonal decomposition and seasonal adjustment analysis

� correlation analysis

� cross-correlation analysis

The TIMESERIES procedure includes the following features:

� ability to process large amounts of time-stamped transactional data

� statistical methods useful for large-scale time series analysis or (temporal) data mining

� output data sets stored in either a time series format (default) or a coordinate format (transposed)

The TIMESERIES procedure is normally used to prepare data for subsequent analysis that uses other
SAS/ETS procedures or other parts of the SAS system. The time series format is most useful when the data
are to be analyzed with SAS/ETS procedures. The coordinate format is most useful when the data are to
be analyzed with SAS/STAT procedures or SAS Enterprise Miner. (For example, clustering time-stamped
transactional data can be achieved by using the results of TIMESERIES procedure with the clustering
procedures of SAS/STAT and the nodes of SAS Enterprise Miner.)

Endogeneity and Instrumental Variables
SAS/ETS software provides several procedures that estimate models that have endogeneity. Endogeneity
usually occurs for three reasons: omitted variables, measurement error in regressors, and simultaneity. In
dynamic models, endogeneity is even more relevant, because regressors might be correlated with the error
term not only from the current time period but from preceding periods as well. The following procedures
support models that have endogeneity.

The MODEL procedure includes the following features related to endogeneity:

� nonlinear regression analysis of single equations

� nonlinear regression analysis of systems of simultaneous equations

� support for general-form models that have endogeneity

� a variety of estimation methods to handle endogeneity, including the following:

– (nonlinear) two-stage least squares (2SLS)
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– iterated two-stage least squares (IT2SLS)

– (nonlinear) three-stage least squares (3SLS)

– iterated three-stage least squares (IT3SLS)

– generalized method of moments (GMM)

– iterated generalized method of moments (ITGMM)

– full-information maximum likelihood (FIML)

The SYSLIN procedure includes the following features related to endogeneity:

� linear regression analysis of single equations

� linear regression analysis of systems of simultaneous equations

� a variety of estimation methods to handle endogeneity, including the following:

– (nonlinear) two-stage least squares (2SLS)

– (nonlinear) three-stage least squares (3SLS)

– iterated three-stage least squares (IT3SLS)

– limited-information maximum likelihood (LIML)

– minimum expected loss (MELO)

– general K-class estimators

– full-information maximum likelihood (FIML)

The SIMLIN procedure performs simulation and multiplier analysis of simultaneous systems of linear
regression models that have endogeneity.

The QLIM procedure includes the following features related to endogeneity:

� test of endogeneity for a list of regressors in the model

� overidentification test for the validity of instrumental variables

� ability to estimate models that have endogeneity by adding regressions of endogenous regressors on
exogenous regressors and instrumental variables

� ability to estimate structural models that contain one endogenous variable by using full-information
maximum likelihood (FIML)

� ability to estimate structural models that contain multiple endogenous variables by using simulated
maximum likelihood

The PANEL procedure uses instrumental variable regressions to estimate both static and dynamic panel
models that have endogeneity:

� Hausman-Taylor and Amemiya-MaCurdy estimation for static panel models

� One-step, two-step, or iterative generalized method of moments (GMM) for dynamic panel models
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Access to Financial and Economic Databases
The DATASOURCE procedure and the SAS/ETS data access interface LIBNAME engines (SASECRSP,
SASEFAME, SASEFRED, SASEHAVR, SASEOECD, SASEQUAN, SASEWBGO, SASEXCCM and
SASEXFSD) provide seamless, efficient access to time series data from data files supplied by a variety of
commercial and governmental data vendors.

The DATASOURCE procedure includes the following features:

� support for data files distributed by the following data vendors:

– DRI/McGraw-Hill

– FAME Information Services

– Haver Analytics

– Standard & Poor’s Compustat Service

– Center for Research in Security Prices (CRSP)

– International Monetary Fund

– US Bureau of Labor Statistics

– US Bureau of Economic Analysis

– Organization for Economic Cooperation and Development (OECD)

� ability to select the series, frequency, time range, and cross sections of extracted data

� ability to create an output data set containing descriptive information about the series available in the
data file

� ability to read EBCDIC data on ASCII systems and vice versa

The SASECRSP interface LIBNAME engine includes the following features:

� enables random access to time series data residing in CRSPAccess databases

� provides a seamless interface between CRSP and SAS data processing

� uses the LIBNAME statement to enable you to specify which time series you want to read from the
CRSPAccess database and how you want to perform selection

� enables you access to CRSP Stock, CRSP/COMPUSTAT Merged (CCM), or CRSP Indices Data

� provides convenient formats, informats, and functions for CRSP and SAS datetime conversions

The SASEFAME interface LIBNAME engine includes the following features:

� provides SAS and FAME users with flexibility in accessing and processing time series data, case series,
and formulas that reside in either a FAME database or a SAS data set
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� uses the LIBNAME statement to enable you to specify which time series you want to read from the
FAME database

� enables you to convert the selected time series to the same time scale

� works with the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set

� performs more analysis if desired in either the same SAS session or a later session

� supports the FAME CROSSLIST function for subsetting via BY groups

� supports the use of FAME in a client/server environment

� enables access to your FAME remote data when you specify the port number of the TCP/IP service
that is defined for your FAME Master server and the node name of your FAME master server in your
SASEFAME libref’s physical path

The SASEFRED interface LIBNAME engine includes the following features:

� enables SAS users to retrieve economic data from the FRED website, which is hosted by the Economic
Research Division of the Federal Reserve Bank of St. Louis

� provides access to various sources of FRED data, including those from Dow Jones & Company and
the Federal Reserve System

� provides query options that allow you to request information by date, series, source, release, tag, or
category

� enables selection of time series variables that you want to read into SAS based on a list of IDs that
name the index or series

� defines the range of observations based on a specified date range or a specified offset and limit (cutoff)

� aggregates the selected time series to a specified aggregation frequency and specified aggregation
method

� supports TLS connectivity by obtaining a secure connection using the CONNECT method (if necessary)
and a PROXY

� creates an XML map of the data for dynamic, flexible association of SAS formats and informats for all
variables

� supports various data transformations, including rates of change

� enables you to select the vintage dates you want to use when accessing archival (ALFRED) time series

The SASEHAVR interface LIBNAME engine includes the following features:

� gives Windows users random access to economic and financial data residing in a Haver Analytics Data
Link Express (DLX) database
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� provides the following types of Haver data sets:

– US Economic Indicators

– Specialized Databases

– Financial Indicators

– Industry

– Industrial Countries

– Emerging Markets

– International Organizations

– Forecasts and As Reported Data

– United States Regional

� enables you to limit the range of data that is read from the time series

� enables you to specify a desired conversion frequency. Start dates are recommended in the LIBNAME
statement to help you save resources when processing large databases or when processing a large
number of observations.

� enables you to use the WHERE, KEEP, or DROP statement in your DATA step to further subset your
data

� supports use of the SQL procedure to create a view of your resulting SAS data set

The SASEOECD interface LIBNAME engine includes the following features:

� enables SAS users to retrieve time series data from the Organization for Economic Cooperation and
Development (OECD) web site which offers access to statistical data on topics such as agriculture
and fisheries, economy, education, employment, energy, environment, finance, health, industry and
entrepreneurship, innovation, insurance and pensions, international migration, internet economy,
investment, OECD.Stat data warehouse, regional, rural and urban development, science and technology,
social and welfare issues, tax, trade, and transport

� uses the LIBNAME statement to enable you to specify which time series you want to retrieve based on
the data set id and the key sets that you specify

� enables you to limit the time range of data that is retrieved by specifying a start date and an end date

� reads the JSON data into a SAS data set, and automatically maps the JSON data for dynamic, flexible
association of SAS formats and informats for all variables

� works with the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set

The SASEQUAN interface LIBNAME engine includes the following features:

� enables SAS users to retrieve economic and other time series data from the Quandl website, which
offers access to over 8 million time series data sets from 400 sources in finance, economics, society,
health, energy, demography, and more
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� provides various sources of QUANDL data, including those from NASDAQ, Merrill Lynch, Nikkei
Group, the Wall Street Journal, Google Finance, Yahoo Finance, and various foreign and domestic
stock and commodity exchanges

� uses the LIBNAME statement to enable you to specify which time series you want to read from
QUANDL

� enables selection of time series variables that you want to read into SAS based on a list of QUANDL
codes that name the index or series

� defines the range of observations based on a specified date range

� sorts the order of observation in either ascending or descending time order

� enables you to collapse the selected time series to the same frequency

� supports various data transformations, including those that accumulate or difference the series

� works with the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set

� supports TLS connectivity by obtaining a secure connection using the CONNECT method (if necessary)
and a PROXY

� creates an XML map of the data for dynamic, flexible association of SAS formats and informats for all
variables

The SASEWBGO interface LIBNAME engine includes the following features:

� enables SAS programmers to retrieve time series data from the World Bank Group Open (WBGO)
data website, hosted by the World Bank Group

� uses the LIBNAME statement to enable you to specify how to retrieve your WBGO data

� enables selection of time series data that you want to read into SAS based on a list of country codes
that name the countries whose data you want to read

� enables selection of time series variables that you want to read into SAS based on a list of time series
indicator codes that name the series

� defines the range of observations based on a range of years, and an optional page number and number
of observations per page to report

� sorts the order of observations in ascending or descending time order

� provides a utility data set, XWBGOTPU, containing useful information (downloaded from a specified
URL) about countries based on income level, time series indicators based on source ID, or time series
indicators based on topic ID

� works with the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set
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� creates an XML map of the data for dynamic, flexible association of SAS formats and informats for all
variables

The SASEXCCM interface LIBNAME engine includes the following features:

� enables random access to time series data residing in CRSPAccess databases

� provides a seamless interface between CRSP, Compustat XpressFeed, and SAS data processing

� uses the LIBNAME statement to enable you to specify which data items, data groups, and time series
you want to read from the CRSPAccess database and how you want to perform selection

� supports data-item-handling access methods to CRSP Stock (STK), CRSP/COMPUSTAT Merged
(CCM), CRSP Indices (IND), or CRSP Treasury (TRS) DData

� provides selection based on keys such as GVKEY, PERMNO, INDNO, TREASNO, and TCUSIP for
efficient access to data items

The SASEXFSD interface LIBNAME engine includes the following features:

� enables SAS users to access both FactSet data and FactSet-sourced data that are provided by the
FactSet OnDemand service (formerly known as FASTFetch)

� uses the LIBNAME statement to specify which factlet (provided by FactSet) to use to open a FactSet
database and to select the desired access method for subsetting and selecting data

� provides updated access to various sources of FactSet OnDemand offerings for financial data, including
commodity benchmarks, banking data, and broker research

� works with the SAS DATA step to write the selected FactSet data to a SAS data set

� enables you to specify a range of dates for time series selection by either relative or absolute dates

� enables you to specify a FactSet frequency for displaying the data by using any of over 20 available
codes

� provides TLS connectivity by obtaining a secure connection using the CONNECT method (if necessary)
and a PROXY

� allows for ECON_EXPR_DATA and FQL (FactSet Query Language) syntax for function returns from
FactSet

� allows for SPEC_ID_DATA and FQL economic download syntax

� creates an XML map of the data for dynamic, flexible association of SAS formats and informats for all
variables
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Access to World Weather and NOAA Severe Weather Inventory Databases
The SAS/ETS data access interface LIBNAME engines (SASERAIN and SASENOAA) provide seamless,
efficient access to weather events and weather time series data supplied by World Weather Online and the
NOAA Severe Weather Data Inventory web services.

The SASENOAA interface LIBNAME engine includes the following features:

� enables SAS users to access severe weather data sets, such as those for tornado vortex signatures
(NX3TVS), storm cell structure (NX3STRUCTURE), and preliminary local storm reports (PLSR)

� works with the SAS DATA step to write the selected NOAA data to a SAS data set

� selects data based on geospatial limits, such as by a bounding box or a centerpoint-radius combination

� selects data based on a date range

� returns data in these formats:

– XML; data are returned in XML format

– KMZ; data are returned in zipped KML format for Google My Maps (plot data on a map)

– SHP; mapping data are returned in zipped Esri format (four files returned inside ZIP file)

� works with the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set

� supports TLS connectivity by obtaining a secure connection using the CONNECT method (if necessary)
and a PROXY

� creates an XML map of the data for dynamic, flexible association of SAS formats and informats for all
variables

The SASERAIN interface LIBNAME engine includes the following features:

� enables SAS users to retrieve weather data from the World Weather Online website

� uses the LIBNAME statement to enable you to download World Weather Online data and to specify
which weather data time series you want to retrieve based on up to nine locations

� works with the SAS DATA step to write the selected weather data to a SAS data set

� selects past weather data based on a date range that starts no earlier than July 1, 2008

� selects local forecast data based on a range defined by number of days (starts today), returns up to 15
days of premium local weather forecast data.

� enables you to select the frequency of data, whether daily, hourly, every three hours, or otherwise

� maintains the sort order, so the locations (q-codes) are sorted in the resulting SAS data set by the order
specified in the QUERY= option, by date (time ID), and by variable (time series item name)
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� works with the SAS DATA step to perform further subsetting and to store weather data in a SAS data
set

� supports TLS connectivity by obtaining a secure connection using the CONNECT method (if necessary)
and a PROXY

� creates an XML map of the data for dynamic, flexible association of SAS formats and informats for all
variables

Spreadsheet Calculations and Financial Report Generation
The COMPUTAB procedure generates tabular reports using a programmable data table.

The COMPUTAB procedure is especially useful when you need both the power of a programmable spread-
sheet and a report-generation system and you want to set up a program to run in batch mode and generate
routine reports. The COMPUTAB procedure includes the following features:

� report generation facility for creating tabular reports such as income statements, balance sheets, and
other row and column reports for analyzing business or time series data

� ability to tailor report format to almost any desired specification

� use of the SAS programming language to provide complete control of the calculation and format of
each item of the report

� ability to report definition in terms of a data table on which programming statements operate

� ability for a single reference to a row or column to bring the entire row or column into a calculation

� ability to create new rows and columns (such as totals, subtotals, and ratios) with a single programming
statement

� access to individual table values when needed

� built-in features to provide consolidation reports over summarization variables
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Loan Analysis, Comparison, and Amortization
The LOAN procedure provides analysis and comparison of mortgages and other installment loans; it includes
the following features:

� ability to specify contract terms for any number of different loans and ability to analyze and compare
various financing alternatives

� analysis of four different types of loan contracts including the following:

– fixed rate

– adjustable rate

– buy-down rate

– balloon payment

� full control over adjustment terms for adjustable rate loans: life caps, adjustment frequency, and
maximum and minimum rates

� support for a wide variety of payment and compounding intervals

� ability to incorporate initialization costs, discount points, down payments, and prepayments (uniform
or lump-sum) in loan calculations

� analysis of different rate adjustment scenarios for variable rate loans including the following:

– worst case

– best case

– fixed rate case

– estimated case

� ability to make loan comparisons at different points in time

� ability to make loan comparisons at each analysis date on the basis of five different economic criteria:

– present worth of cost (net present value of all payments to date)

– true interest rate (internal rate of return to date)

– current periodic payment

– total interest paid to date

– outstanding balance

� ability to base loan comparisons on either after-tax or before-tax analysis

� report of the best alternative when loans of equal amount are compared

� amortization schedules for each loan contract

� output that shows payment dates, rather than just payment sequence numbers, when starting date is
specified
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� optional printing or output of the amortization schedules, loan summaries, and loan comparison
information to SAS data sets

� ability to specify rounding of payments to any number of decimal places

Time Series Forecasting System
SAS/ETS software includes the Time Series Forecasting System, a point-and-click application for exploring
and analyzing univariate time series data. You can use the automatic model selection facility to select the
best-fitting model for each time series, or you can use the system’s diagnostic features and time series
modeling tools interactively to develop forecasting models customized to best predict your time series. The
system provides both graphical and statistical features to help you choose the best forecasting method for
each series.

The system can be invoked by selecting AnalysisISolutions, by the FORECAST command, and by clicking
the Forecasting icon in the Data Analysis folder of the SAS Desktop.

The following is a brief summary of the features of the Time Series Forecasting system. With the system you
can:

� use a wide variety of forecasting methods, including several kinds of exponential smoothing models,
Winters method, and ARIMA (Box-Jenkins) models. You can also produce forecasts by combining the
forecasts from several models.

� use predictor variables in forecasting models. Forecasting models can include time trend curves,
regressors, intervention effects (dummy variables), adjustments you specify, and dynamic regression
(transfer function) models.

� view plots of the data, predicted versus actual values, prediction errors, and forecasts with confidence
limits. You can plot changes or transformations of series, zoom in on parts of the graphs, or plot
autocorrelations.

� use hold-out samples to select the best forecasting method

� compare goodness-of-fit measures for any two forecasting models side-by-side or list all models sorted
by a particular fit statistic

� view the predictions and errors for each model in a spreadsheet or view and compare the forecasts
from any two models in a spreadsheet

� examine the fitted parameters of each forecasting model and their statistical significance

� control the automatic model selection process: the set of forecasting models considered, the goodness-
of-fit measure used to select the best model, and the time period used to fit and evaluate models

� customize the system by adding forecasting models for the automatic model selection process and for
point-and-click manual selection

� save your work in a project catalog
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� print an audit trail of the forecasting process

� save and print system output including spreadsheets and graphs

ODS Graphics
Many SAS/ETS procedures produce graphical output using the SAS Output Delivery System (ODS). The
ODS Graphics system provides several advantages:

� Plots and graphs are output objects in the Output Delivery System (ODS) and can be manipulated with
ODS commands.

� There is no need to write SAS/GRAPH statements or use special plotting macros.

� There are multiple formats to choose from: html, gif, and rtf.

� Templates control the appearance of plots.

� Styles control the color scheme.

� You can edit or create templates and styles for all graphs.

To enable graphical output from SAS/ETS procedures, you must use the following statement in your SAS
program.

ods graphics on;

The graphical output produced by many SAS/ETS procedures can be controlled using the PLOTS= option in
the PROC statement.

For more information about the features of the ODS Graphics system, including the many ways that you
can control or customize the plots produced by SAS procedures, see Chapter 24, “Statistical Graphics Using
ODS” (SAS/STAT User’s Guide). For more information about the SAS Output Delivery system, see the SAS
Output Delivery System: User’s Guide.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=odsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=odsug&docsetTarget=titlepage.htm
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Related SAS Software
Many features not found in SAS/ETS software are available in other parts of the SAS System, such as Base
SAS, SAS Forecast Server, SAS/STAT software, SAS/OR software, SAS/QC software, SAS Stat Studio, and
SAS/IML software.

If you do not find something you need in SAS/ETS software, you might be able to find it in SAS/STAT
software and in Base SAS software. If you still do not find it, look in other SAS software products or contact
SAS Technical Support staff.

The following subsections summarize the features of other SAS products that might be of interest to users of
SAS/ETS software.

Base SAS Software
The features provided by SAS/ETS software are extensions to the features provided by Base SAS software.
Many data management and reporting capabilities you need are part of Base SAS software. For documentation
of Base SAS software, see SAS Programmers Guide: Essentials and Base SAS Procedures Guide. In particular,
for information about statistical analysis features included with Base SAS, see Base SAS Procedures Guide:
Statistical Procedures.

The following sections summarize Base SAS software features of interest to users of SAS/ETS software.
For further discussion of some of these topics as they relate to time series data and SAS/ETS software, see
Chapter 4, “Working with Time Series Data.”

SAS DATA Step

The DATA step is your primary tool for reading and processing data in the SAS System. The DATA step
provides a powerful general purpose programming language that enables you to perform all kinds of data
processing tasks. The DATA step is documented in Base SAS Procedures Guide.

Base SAS Procedures

Base SAS software includes many useful SAS procedures, which are documented in Base SAS Procedures
Guide and Base SAS Procedures Guide: Statistical Procedures. The following is a list of Base SAS procedures
you might find useful:

CATALOG for managing SAS catalogs

CHART for printing charts and histograms

COMPARE for comparing SAS data sets

CONTENTS for displaying the contents of SAS data sets

COPY for copying SAS data sets

CORR for computing correlations

CPORT for moving SAS data libraries between computer systems

DATASETS for deleting or renaming SAS data sets

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=procstat&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=procstat&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=procstat&docsetTarget=titlepage.htm
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FCMP for compiling functions for use in SAS programs. The SAS Function Compiler Procedure
(FCMP) enables you to create, test, and store SAS functions and subroutines before you
use them in other SAS procedures. PROC FCMP accepts slight variations of DATA step
statements, and most features of the SAS programing language can be used in functions
and subroutines that are processed by PROC FCMP.

FREQ for computing frequency crosstabulations

MEANS for computing descriptive statistics and summarizing or collapsing data over cross sections

PLOT for printing scatter plots

PRINT for printing SAS data sets

PROTO for accessing external functions from the SAS system. The PROTO procedure enables
you to register external functions that are written in the C or C++ programming languages.
You can use these functions in SAS as well as in C-language structures and types. After
the C-language functions are registered in PROC PROTO, they can be called from any
SAS function or subroutine that is declared in the FCMP procedure, as well as from any
SAS function, subroutine, or method block that is declared in the COMPILE procedure.

RANK for computing rankings or order statistics

SORT for sorting SAS data sets

SQL for processing SAS data sets with Structured Query Language

STANDARD for standardizing variables to a fixed mean and variance

TABULATE for printing descriptive statistics in tabular format

TIMEPLOT for plotting variables over time

TRANSPOSE for transposing SAS data sets

UNIVARIATE for computing descriptive statistics

Global Statements

Global statements can be specified anywhere in your SAS program, and they remain in effect until changed.
Global statements are documented in Base SAS Procedures Guide. You may find the following SAS global
statements useful:

FILENAME for accessing data files

FOOTNOTE for printing footnote lines at the bottom of each page

%INCLUDE for including files of SAS statements

LIBNAME for accessing SAS data libraries

OPTIONS for setting various SAS system options

QUIT for ending an interactive procedure step

RUN for executing the preceding SAS statements

TITLE for printing title lines at the top of each page

X for issuing host operating system commands from within your SAS session

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Some Base SAS statements can be used with any SAS procedure, including SAS/ETS procedures. These
statements are not global, and they affect only the SAS procedure they are used with. These statements are
documented in Base SAS Procedures Guide.

The following Base SAS statements are useful with SAS/ETS procedures:

BY for computing separate analyses for groups of observations

FORMAT for assigning formats to variables

LABEL for assigning descriptive labels to variables

WHERE for subsetting data to restrict the range of data processed or to select or exclude observa-
tions from the analysis

SAS Functions

SAS functions can be used in DATA step programs and in the COMPUTAB and MODEL procedures. The
following kinds of functions are available:

� character functions for manipulating character strings

� date and time functions for performing date and calendar calculations

� financial functions for performing financial calculations such as depreciation, net present value, periodic
savings, and internal rate of return

� lagging and differencing functions for computing lags and differences

� mathematical functions for computing data transformations and other mathematical calculations

� probability functions for computing quantiles of statistical distributions and the significance of test
statistics

� random number functions for simulation experiments

� sample statistics functions for computing means, standard deviations, kurtosis, and so forth

SAS functions are documented in Base SAS Procedures Guide. Chapter 4, “Working with Time Series Data,”
discusses the use of date, time, lagging, and differencing functions. Chapter 5, “Date Intervals, Formats, and
Functions,” contains a reference list of date and time functions.

Formats, Informats, and Time Intervals

Base SAS software provides formats to control the printing of data values, informats to read data values, and
time intervals to define the frequency of time series. For more information, see Chapter 5, “Date Intervals,
Formats, and Functions.”

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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SAS Forecast Studio
SAS Forecast Studio is part of the SAS Forecast Server product. It provides an interactive environment for
modeling and forecasting very large collections of hierarchically organized time series, such as SKUs in
product lines and sales regions of a retail business. SAS Forecast Studio greatly extends the capabilities
provided by the Time Series Forecasting System included with SAS/ETS and described in Part IV.

SAS Forecast Studio is documented in SAS Forecast Studio: User’s Guide.

SAS/STAT Software
SAS/STAT software is of interest to users of SAS/ETS software because many econometric and other
statistical methods not included in SAS/ETS software are provided in SAS/STAT software.

SAS/STAT software includes procedures for a wide range of statistical methodologies including the following:

� logistic regression

� censored regression

� principal component analysis

� structural equation models using covariance structure analysis

� factor analysis

� survival analysis

� discriminant analysis

� cluster analysis

� categorical data analysis; log-linear and conditional logistic models

� general linear models

� mixed linear and nonlinear models

� generalized linear models

� response surface analysis

� kernel density estimation

� LOESS regression

� spline regression

� two-dimensional kriging

� multiple imputation for missing values

� survey data analysis
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SAS/IML Software
SAS/IML software gives you access to a powerful and flexible programming language (Interactive Matrix
Language) in a dynamic, interactive environment. The fundamental object of the language is a data matrix.
You can use SAS/IML software interactively (at the statement level) to see results immediately, or you
can store statements in a module and execute them later. The programming is dynamic because necessary
activities such as memory allocation and dimensioning of matrices are done automatically.

You can access built-in operators and call routines to perform complex tasks such as matrix inversion or
eigenvector generation. You can define your own functions and subroutines using SAS/IML modules. You
can perform operations on an entire data matrix. You have access to a wide choice of data management
commands. You can read, create, and update SAS data sets from inside SAS/IML software without ever
using the DATA step.

SAS/IML software is of interest to users of SAS/ETS software because it enables you to program your own
econometric and time series methods in the SAS System. It contains subroutines for time series operators
and for general function optimization. If you need to perform a statistical calculation not provided as an
automated feature by SAS/ETS or other SAS software, you can use SAS/IML software to program the matrix
equations for the calculation.

Kalman Filtering and Time Series Analysis in SAS/IML

SAS/IML software includes CALL routines and functions for Kalman filtering and time series analysis,
which perform the following:

� generate univariate, multivariate, and fractional time series

� compute likelihood function of ARMA, VARMA, and ARFIMA models

� compute an autocovariance function of ARMA, VARMA, and ARFIMA models

� check the stationarity of ARMA and VARMA models

� filter and smooth time series models using Kalman method

� fit AR, periodic AR, time-varying coefficient AR, VAR, and ARFIMA models

� handle Bayesian seasonal adjustment models
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SAS/OR Software
SAS/OR software provides SAS procedures for operations research and project planning and includes a menu
driven system for project management. SAS/OR software has features for the following:

� solving transportation problems

� linear, integer, and mixed-integer programming

� nonlinear programming and optimization

� scheduling projects

� plotting Gantt charts

� drawing network diagrams

� solving optimal assignment problems

� network flow programming

SAS/OR software might be of interest to users of SAS/ETS software for its mathematical programming
features. In particular, the NLP and OPTMODEL procedures in SAS/OR software solve nonlinear program-
ming problems and can be used for constrained and unconstrained maximization of user-defined likelihood
functions.

For more information, see SAS/OR User’s Guide: Mathematical Programming.

SAS/QC Software
SAS/QC software provides a variety of procedures for statistical quality control and quality improvement.
SAS/QC software includes procedures for the following:

� Shewhart control charts

� cumulative sum control charts

� moving average control charts

� process capability analysis

� Ishikawa diagrams

� Pareto charts

� experimental design

SAS/QC software also includes the SQC menu system for interactive application of statistical quality control
methods and the ADX Interface for experimental design.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
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MLE for User-Defined Likelihood Functions
There are several SAS procedures that enable you to do maximum likelihood estimation of parameters in an
arbitrary model with a likelihood function that you define: PROC MODEL, PROC NLP, PROC OPTMODEL
and PROC IML.

The MODEL procedure in SAS/ETS software enables you to minimize general log-likelihood functions for
the error term of a model.

The NLP and OPTMODEL procedures in SAS/OR software are general nonlinear programming procedures
that can maximize a general function subject to linear equality or inequality constraints. You can use PROC
NLP or OPTMODEL to maximize a user-defined nonlinear likelihood function.

You can use the IML procedure in SAS/IML software for maximum likelihood problems. The optimization
routines used by PROC NLP are available through IML subroutines. You can write the likelihood function in
the SAS/IML matrix language and call the constrained and unconstrained nonlinear programming subroutines
to maximize the likelihood function with respect to the parameter vector.

JMP Software
JMP software uses a flexible graphical interface to display and analyze data. JMP dynamically links statistics
and graphics so you can easily explore data, make discoveries, and gain the knowledge you need to make
better decisions. JMP provides a comprehensive set of statistical tools as well as design of experiments
(DOE) and advanced quality control (QC and SPC) tools for Six Sigma in a single package. JMP is software
for interactive statistical graphics and includes the following:

� a data table window for editing, entering, and manipulating data

� a broad range of graphical and statistical methods for data analysis

� a facility for grouping data and computing summary statistics

� JMP scripting language (JSL)—a scripting language for saving and creating frequently used routines

� JMP automation

� Formula Editor—a formula editor for each table column to compute values as needed

� linear models, correlations, and multivariate

� design of experiments module

� options to highlight and display subsets of data

� statistical quality control and variability charts—special plots, charts, and communication capability
for quality-improvement techniques

� survival analysis

� time series analysis, which includes the following:
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– Box-Jenkins ARIMA forecasting

– seasonal ARIMA forecasting

– transfer function modeling

– smoothing models: Winters method, single, double, linear, damped trend linear, and seasonal
exponential smoothing

– diagnostic charts (autocorrelation, partial autocorrelation, and variogram) and statistics of fit

– a model comparison table to compare all forecasts generated

– spectral density plots and white noise tests

� tools for printing and for moving analyses results between applications

SAS Enterprise Guide
SAS Enterprise Guide has the following features:

� integration with the SAS9 platform:

– open metadata repository (OMR) integration

– SAS report integration

� create report interface
� ODS support
� Web report studio integration

– access to information maps

– ETL studio impact analysis

– ESRI integration within the OLAP analyzer

– data mining scoring task

� the user interface and workflow

– process flow

– ability to create stored processes from process flows

– SAS folders window

– project parameters

– query builder interface

– code node

– OLAP analyzer

� ESRI integration
� tree-diagram-based OLAP explorer
� SAS report snapshots
� SAS Web OLAP viewer for .NET ability to create EG projects
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– workspace maximization

With SAS Enterprise Guide, you can perform time series analysis with the following procedures:

� prepare time series data—the Prepare Time Series Data task can be used to make data more suitable
for analysis by other time series tasks.

� create time series data—the Create Time Series Data wizard helps you convert transactional data into
fixed-interval time series. Transactional data are time-stamped data collected over time with irregular
or varied frequency.

� ARIMA Modeling and Forecasting task

� Basic Forecasting task

� Regression Analysis with Autoregressive Errors

� Regression Analysis of Panel Data

SAS Add-In for Microsoft Office
The main time series tasks in SAS Add-In for Microsoft Office (AMO) are as follows:

� Prepare Time Series Data

� Basic Forecasting

� ARIMA Modeling and Forecasting

� Regression Analysis with Autoregressive Errors

� Regression Analysis of Panel Data

� Create Time Series Data

� Forecast Studio Create Project

� Forecast Studio Open Project

� Forecast Studio Submit Overrides
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SAS Enterprise Miner—Time Series Node
SAS Enterprise Miner is the SAS solution for data mining, streamlining the data mining process to create
highly accurate predictive and descriptive models. SAS Enterprise Miner’s process flow diagram eliminates
the need for manual coding and reduces the model development time for both business analysts and statisti-
cians. The system is customizable and extensible; users can integrate their code and build new nodes for
redistribution.

The Time Series node is a method of investigating time series data. It belongs to the Modify category of the
SAS SEMMA (sample, explore, modify, model, assess) data mining process. The Time Series node enables
you to understand trends and seasonal variation in large amounts of time series and transactional data.

The Time Series node in SAS Enterprise Miner enables you to do the following:

� perform time series analysis

� perform forecasting

� work with transactional data
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Overview
This chapter describes common concepts that are used by SAS/ETS high-performance procedures. It also
provides the syntax for the PERFORMANCE statement, which is common to all high-performance analytical
procedures.

Single-Machine Mode
Single-machine mode is a computing model in which multiple processors or multiple cores are controlled
by a single operating system and can access shared resources, such as disks and memory. In this book,
single-machine mode refers to an application running multiple concurrent threads on a multicore machine
in order to take advantage of parallel execution on multiple processing units. More simply, single-machine
mode for high-performance analytical procedures means multithreading on the client machine.

All high-performance analytical procedures run in single-machine mode. The procedure uses the number of
CPUs (cores) on the machine to determine the number of concurrent threads. High-performance analytical
procedures use different methods to map core count to the number of concurrent threads, depending on the
analytic task. Using one thread per core is not uncommon for the procedures that implement data-parallel
algorithms.
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Single-Machine Data Access Mode
When high-performance analytical procedures run in single-machine mode, they access data in the same way
as traditional SAS procedures. They use Base SAS to access input and output SAS data sets.

Output Data Sets
Many procedures in SAS software add the variables from the input data set when an observationwise output
data set is created. The assumption of high-performance analytical procedures is that the input data sets can
be large and contain many variables. For performance reasons, the output data set contains the following:

� variables that are explicitly created by the statement

� variables that are listed in the ID statement, as described in Chapter 22, “Shared Concepts and Topics
in High-Performance Statistical Procedures” (SAS/STAT User’s Guide)

� distribution keys or hash keys that are transferred from the input data set

Including this information enables you to add to the output data set information necessary for subsequent
SQL joins without copying the entire input data set to the output data set.

Working with Formats
You can use SAS formats and user-defined formats with high-performance analytical procedures as you can
with other procedures in the SAS System.

High-performance analytical procedures examine the variables that are used in an analysis for association
with user-defined formats. If you are running multiple high-performance analytical procedures in a SAS
session and the analysis variables depend on user-defined formats, you can preprocess the formats. This step
involves generating an XML stream (a file) of the formats and passing the stream to the high-performance
analytical procedures.

Suppose that the following formats are defined in your SAS program:

proc format;
value YesNo 1='Yes' 0='No';
value checkThis 1='ThisisOne' 2='ThisisTwo';
value $cityChar 1='Portage' 2='Kinston';

run;

The next group of SAS statements create the XML stream for the formats in the file Myfmt.xml, associate that
file with the file reference myxml, and pass the file reference with the FMTLIBXML= option in the PROC
HPLOGISTIC statement:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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filename myxml 'Myfmt.xml';
libname myxml XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
proc format cntlout=myxml.allfmts;
run;

proc hplogistic data=six fmtlibxml=myxml;
class wheeze cit age;
format wheeze best4. cit $cityChar.;
model wheeze = cit age;

run;

Generation and destruction of the stream can be wrapped in convenience macros:

%macro Make_XMLStream(name=tempxml);
filename &name 'fmt.xml';
libname &name XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
proc format cntlout=&name..allfmts;
run;

%mend;

%macro Delete_XMLStream(fref);
%let rc=%sysfunc(fdelete(&fref));

%mend;

If you do not pass an XML stream to a high-performance analytical procedure that supports the
FMTLIBXML= option, the procedure generates an XML stream as needed when it is invoked.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement defines performance parameters for multithreaded computing, and requests
detailed results about the performance characteristics of a high-performance analytical procedure.

You can specify the following performance-options in the PERFORMANCE statement:

BPC=n
specifies the number of bytes per character that is used in processing character strings in multibyte
encodings. The default is the bytes per character of the encoding. The number of characters in a string
is calculated as the byte length of the string divided by the bytes per character of the encoding. This
will be incorrect when the strings in the multibyte encoding contain one or more single byte characters.
In such cases, setting BPC=1 enables appropriate byte lengths to be used in processing such strings.
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DETAILS
requests a table that shows a timing breakdown of the procedure steps.

NTHREADS=n

THREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, the number of threads is
determined based on the number of CPUs on the host on which the analytic computations execute. The
algorithm by which a CPU count is converted to a thread count is specific to the high-performance
analytical procedure. Most procedures create one thread per CPU for the analytic computations.

By default, high-performance analytical procedures run in multiple concurrent threads unless mul-
tithreading has been turned off by the NOTHREADS system option or you force single-threaded
execution by specifying NTHREADS=1. The largest number that can be specified for n is 256. In-
dividual high-performance analytical procedures can impose more stringent limits if called for by
algorithmic considerations.
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Overview
This chapter discusses working with time series data in the SAS System. The following topics are included:

� dating time series and working with SAS date and datetime values

� subsetting data and selecting observations

� storing time series data in SAS data sets

� specifying time series periodicity and time intervals

� plotting time series

� using calendar and time interval functions

� computing lags and other functions across time

� transforming time series

� transposing time series data sets

� interpolating time series

� reading time series data recorded in different ways

In general, this chapter focuses on using features of the SAS programming language and not on features of
SAS/ETS software. However, since SAS/ETS procedures are used to analyze time series, understanding how
to use the SAS programming language to work with time series data is important for the effective use of
SAS/ETS software.

You do not need to read this chapter to use SAS/ETS procedures. If you are already familiar with SAS
programming you might want to skip this chapter, or you can refer to sections of this chapter for help on
specific time series data processing questions.
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Time Series and SAS Data Sets

Introduction
To analyze data with the SAS System, data values must be stored in a SAS data set. A SAS data set is a
matrix (or table) of data values organized into variables and observations.

The variables in a SAS data set label the columns of the data matrix, and the observations in a SAS data set
are the rows of the data matrix. You can also think of a SAS data set as a kind of file, with the observations
representing records in the file and the variables representing fields in the records. (For more information
about SAS data sets, see SAS Programmers Guide: Essentials.)

Usually, each observation represents the measurement of one or more variables for the individual subject or
item observed. Often, the values of some of the variables in the data set are used to identify the individual
subjects or items that the observations measure. These identifying variables are referred to as ID variables.

For many kinds of statistical analysis, only relationships among the variables are of interest, and the identity
of the observations does not matter. ID variables might not be relevant in such a case.

However, for time series data the identity and order of the observations are crucial. A time series is a set of
observations made at a succession of equally spaced points in time.

For example, if the data are monthly sales of a company’s product, the variable measured is sales of the
product and the unit observed is the operation of the company during each month. These observations can
be identified by year and month. If the data are quarterly gross national product, the variable measured is
final goods production and the unit observed is the economy during each quarter. These observations can be
identified by year and quarter.

For time series data, the observations are identified and related to each other by their position in time. Since
SAS does not assume any particular structure to the observations in a SAS data set, there are some special
considerations needed when storing time series in a SAS data set.

The main considerations are how to associate dates with the observations and how to structure the data set so
that SAS/ETS procedures and other SAS procedures recognize the observations of the data set as constituting
time series. These issues are discussed in the following sections.

Reading a Simple Time Series
Time series data can be recorded in many different ways. The section “Reading Time Series Data” on
page 120 discusses some of the possibilities. The example that follows shows a simple case.

The following SAS statements read monthly values of the U.S. Consumer Price Index (CPI) for June 1990
through July 1991. The data set USCPI is shown in Figure 4.1.

data uscpi;
input year month cpi;

datalines;
1990 6 129.9
1990 7 130.4

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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1990 8 131.6

... more lines ...

proc print data=uscpi;
run;

Figure 4.1 Time Series Data

Obs year month cpi

1 1990 6 129.9

2 1990 7 130.4

3 1990 8 131.6

4 1990 9 132.7

5 1990 10 133.5

6 1990 11 133.8

7 1990 12 133.8

8 1991 1 134.6

9 1991 2 134.8

10 1991 3 135.0

11 1991 4 135.2

12 1991 5 135.6

13 1991 6 136.0

14 1991 7 136.2

When a time series is stored in the manner shown by this example, the terms series and variable can be used
interchangeably. There is one observation per row and one series/variable per column.

Dating Observations
The SAS System supports special date, datetime, and time values, which make it easy to represent dates,
perform calendar calculations, and identify the time period of observations in a data set.

The preceding example uses the ID variables YEAR and MONTH to identify the time periods of the observa-
tions. For a quarterly data set, you might use YEAR and QTR as ID variables. A daily data set might have the
ID variables YEAR, MONTH, and DAY. Clearly, it would be more convenient to have a single ID variable that
could be used to identify the time period of observations, regardless of their frequency.

The following section, “SAS Date, Datetime, and Time Values” on page 72, discusses how the SAS System
represents dates and times internally and how to specify date, datetime, and time values in a SAS program.
The section “Reading Date and Datetime Values with Informats” on page 73 discusses how to read in date and
time values from data records and how to control the display of date and datetime values in SAS output. Later
sections discuss other issues concerning date and datetime values, specifying time intervals, data periodicity,
and calendar calculations.

SAS date and datetime values and the other features discussed in the following sections are also described
in SAS Programmers Guide: Essentials. Reference documentation on these features is also provided in
Chapter 5, “Date Intervals, Formats, and Functions.”

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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SAS Date, Datetime, and Time Values

SAS Date Values

SAS software represents dates as the number of days since a reference date. The reference date, or date zero,
used for SAS date values is 1 January 1960. For example, 3 February 1960 is represented by SAS as 33. The
SAS date for 17 October 1991 is 11612.

SAS software correctly represents dates from the year 1582 to the year 20,000.

Dates represented in this way are called SAS date values. Any numeric variable in a SAS data set whose
values represent dates in this way is called a SAS date variable.

Representing dates as the number of days from a reference date makes it easy for the computer to store them
and perform calendar calculations, but these numbers are not meaningful to users. However, you never have
to use SAS date values directly, since SAS automatically converts between this internal representation and
ordinary ways of expressing dates, provided that you indicate the format with which you want the date values
to be displayed. (Formatting of date values is explained in the section “Formatting Date and Datetime Values”
on page 74.)

Century of Dates Represented with Two-Digit Year Values

SAS software informats, functions, and formats can process dates that are represented with two-digit year
values. The century assumed for a two-digit year value can be controlled with the YEARCUTOFF= option in
the OPTIONS statement. The YEARCUTOFF= system option controls how dates with two-digit year values
are interpreted by specifying the first year of a 100-year span. The default value for the YEARCUTOFF=
option is 1920. Thus by default the year ‘17’ is interpreted as 2017, while the year ‘25’ is interpreted as 1925.
(For more information about the YEARCUTOFF= option, see SAS Programmers Guide: Essentials.)

SAS Date Constants

SAS date values are written in a SAS program by placing the dates in single quotes followed by a D. The
date is represented by the day of the month, the three letter abbreviation of the month name, and the year.

For example, SAS reads the value ‘17OCT1991’D the same as 11612, the SAS date value for 17 October
1991. Thus, the following SAS statements print DATE=11612:

data _null_;
date = '17oct1991'd;
put date=;

run;

The year value can be given with two or four digits, so ‘17OCT91’D is the same as ‘17OCT1991’D.

SAS Datetime Values and Datetime Constants

To represent both the time of day and the date, SAS uses datetime values. SAS datetime values represent the
date and time as the number of seconds the time is from a reference time. The reference time, or time zero,
used for SAS datetime values is midnight, 1 January 1960. Thus, for example, the SAS datetime value for 17
October 1991 at 2:45 in the afternoon is 1003329900.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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To specify datetime constants in a SAS program, write the date and time in single quotes followed by DT.
To write the date and time in a SAS datetime constant, write the date part using the same syntax as for date
constants, and follow the date part with the hours, the minutes, and the seconds, separating the parts with
colons. The seconds are optional.

For example, in a SAS program you would write 17 October 1991 at 2:45 in the afternoon as
‘17OCT91:14:45’DT. SAS reads this as 1003329900. Table 4.1 shows some other examples of datetime
constants.

Table 4.1 Examples of Datetime Constants

Datetime Constant Time

‘17OCT1991:14:45:32’DT 32 seconds past 2:45 p.m., 17 October 1991
‘17OCT1991:12:5’DT 12:05 p.m., 17 October 1991
‘17OCT1991:2:0’DT 2:00 a.m., 17 October 1991
‘17OCT1991:0:0’DT Midnight, 17 October 1991

SAS Time Values

The SAS System also supports time values. SAS time values are just like datetime values, except that the date
part is not given. To write a time value in a SAS program, write the time the same as for a datetime constant,
but use T instead of DT. For example, 2:45:32 p.m. is written ‘14:45:32’T. Time values are represented by a
number of seconds since midnight, so SAS reads ‘14:45:32’T as 53132.

SAS time values are not very useful for identifying time series, since usually both the date and the time of
day are needed. Time values are not discussed further in this book.

Reading Date and Datetime Values with Informats
SAS provides a selection of informats for reading SAS date and datetime values from date and time values
recorded in ordinary notations.

A SAS informat is an instruction that converts the values from a character-string representation into the
internal numerical value of a SAS variable. Date informats convert dates from ordinary notations used to
enter them to SAS date values; datetime informats convert date and time from ordinary notation to SAS
datetime values.

For example, the following SAS statements read monthly values of the U.S. Consumer Price Index. Since
the data are monthly, you could identify the date with the variables YEAR and MONTH, as in the previous
example. Instead, in this example the time periods are coded as a three-letter month abbreviation followed by
the year. The informat MONYY. is used to read month-year dates coded this way and to express them as
SAS date values for the first day of the month, as follows:

data uscpi;
input date : monyy7. cpi;
format date monyy7.;
label cpi = "US Consumer Price Index";

datalines;



74 F Chapter 4: Working with Time Series Data

jun1990 129.9
jul1990 130.4
aug1990 131.6

... more lines ...

The SAS System provides informats for most common notations for dates and times. For more information
about the date and datetime informats available, see Chapter 5.

Formatting Date and Datetime Values
SAS provides formats to convert the internal representation of date and datetime values used by SAS to
ordinary notations for dates and times. Several different formats are available for displaying dates and
datetime values in most of the commonly used notations.

A SAS format is an instruction that converts the internal numerical value of a SAS variable to a character
string that can be printed or displayed. Date formats convert SAS date values to a readable form; datetime
formats convert SAS datetime values to a readable form.

In the preceding example, the variable DATE was set to the SAS date value for the first day of the month for
each observation. If the data set USCPI were printed or otherwise displayed, the values shown for DATE
would be the number of days since 1 January 1960. (See the “DATE with no format” column in Figure 4.2.)
To display date values appropriately, use the FORMAT statement.

The following example processes the data set USCPI to make several copies of the variable DATE and uses a
FORMAT statement to give different formats to these copies. The format cases shown are the MONYY7.
format (for the DATE variable), the DATE9. format (for the DATE1 variable), and no format (for the DATE0
variable). The PROC PRINT output in Figure 4.2 shows the effect of the different formats on how the date
values are printed.

data fmttest;
set uscpi;
date0 = date;
date1 = date;
label date = "DATE with MONYY7. format"

date1 = "DATE with DATE9. format"
date0 = "DATE with no format";

format date monyy7. date1 date9.;
run;

proc print data=fmttest label;
run;
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Figure 4.2 SAS Date Values Printed with Different Formats

Obs

DATE
with

MONYY7.
format

US
Consumer

Price
Index

DATE
with

no
format

DATE with
DATE9.
format

1 JUN1990 129.9 11109 01JUN1990

2 JUL1990 130.4 11139 01JUL1990

3 AUG1990 131.6 11170 01AUG1990

4 SEP1990 132.7 11201 01SEP1990

5 OCT1990 133.5 11231 01OCT1990

6 NOV1990 133.8 11262 01NOV1990

7 DEC1990 133.8 11292 01DEC1990

8 JAN1991 134.6 11323 01JAN1991

9 FEB1991 134.8 11354 01FEB1991

10 MAR1991 135.0 11382 01MAR1991

11 APR1991 135.2 11413 01APR1991

12 MAY1991 135.6 11443 01MAY1991

13 JUN1991 136.0 11474 01JUN1991

14 JUL1991 136.2 11504 01JUL1991

The appropriate format to use for SAS date or datetime valued ID variables depends on the sampling
frequency or periodicity of the time series. Table 4.2 shows recommended formats for common data sampling
frequencies and shows how the date ’17OCT1991’D or the datetime value ’17OCT1991:14:45:32’DT is
displayed by these formats.

Table 4.2 Formats for Different Sampling Frequencies

ID Values Periodicity FORMAT Example

SAS date Annual YEAR4. 1991
Quarterly YYQC6. 1991:4
Monthly MONYY7. OCT1991
Weekly WEEKDATX23. Thursday, 17 Oct 1991
Daily DATE9. 17OCT1991

SAS datetime Hourly DATETIME10. 17OCT91:14
Minutes DATETIME13. 17OCT91:14:45
Seconds DATETIME16. 17OCT91:14:45:32

For more information about the date and datetime formats available, see Chapter 5, “Date Intervals, Formats,
and Functions.”
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The Variables DATE and DATETIME
SAS/ETS procedures enable you to identify time series observations in many different ways to suit your
needs. As discussed in preceding sections, you can use a combination of several ID variables, such as YEAR
and MONTH for monthly data.

However, using a single SAS date or datetime ID variable is more convenient and enables you to take
advantage of some features SAS/ETS procedures provide for processing ID variables. One such feature is
automatic extrapolation of the ID variable to identify forecast observations. These features are discussed in
the following sections.

Thus, it is a good practice to include a SAS date or datetime ID variable in all the time series SAS data sets
you create. It is also a good practice to always give the date or datetime ID variable a format appropriate
for the data periodicity. (For information about creating SAS date and datetime values from multiple ID
variables, see the section “Computing Dates from Calendar Variables” on page 93.)

You can assign a SAS date- or datetime-valued ID variable any name that conforms to SAS variable name
requirements. However, you might find working with time series data in SAS easier and less confusing if you
adopt the practice of always using the same name for the SAS date or datetime ID variable.

This book always names the date- or datetime-values ID variable DATE if it contains SAS date values or
DATETIME if it contains SAS datetime values. This makes it easy to recognize the ID variable and also
makes it easy to recognize whether this ID variable uses SAS date or datetime values.

Sorting by Time
Many SAS/ETS procedures assume the data are in chronological order. If the data are not in time order, you
can use the SORT procedure to sort the data set. For example:

proc sort data=a;
by date;

run;

There are many ways of coding the time ID variable or variables, and some ways do not sort correctly. If you
use SAS date or datetime ID values as suggested in the preceding section, you do not need to be concerned
with this issue. But if you encode date values in nonstandard ways, you need to consider whether your ID
variables will sort.

SAS date and datetime values always sort correctly, as do combinations of numeric variables such as YEAR,
MONTH, and DAY used together. Julian dates also sort correctly. (Julian dates are numbers of the form yyddd,
where yy is the year and ddd is the day of the year. For example, 17 October 1991 has the Julian date value
91290.)

Calendar dates such as numeric values coded as mmddyy or ddmmyy do not sort correctly. Character variables
that contain display values of dates, such as dates in the notation produced by SAS date formats, generally do
not sort correctly.
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Subsetting Data and Selecting Observations
It is often necessary to subset data for analysis. You might need to subset data to do the following:

� restrict the time range. For example, you want to perform a time series analysis using only recent data
and ignoring observations from the distant past.

� select cross sections of the data. (See the section “Cross-Sectional Dimensions and BY Groups” on
page 83.) For example, you have a data set with observations over time for each of several states, and
you want to analyze the data for a single state.

� select particular kinds of time series from an interleaved-form data set. (See the section “Interleaved
Time Series” on page 84.)

� exclude particular observations. For example, you have an outlier in your time series, and you want to
exclude this observation from the analysis.

You can subset data either by using the DATA step to create a subset data set or by using a WHERE statement
with the SAS procedure that analyzes the data.

A typical WHERE statement used in a procedure has the following form:

proc arima data=full;
where '31dec1993'd < date < '26mar1994'd;
identify var=close;

run;

For complete reference documentation on the WHERE statement, see SAS DATA Step Statements: Reference.

Subsetting SAS Data Sets
To create a subset data set, specify the name of the subset data set in the DATA statement, bring in the full
data set with a SET statement, and specify the subsetting criteria with either subsetting IF statements or
WHERE statements.

For example, suppose you have a data set that contains time series observations for each of several states.
The following DATA step uses a WHERE statement to exclude observations with dates before 1970 and uses
a subsetting IF statement to select observations for North Carolina (NC):

data subset;
set full;
where date >= '1jan1970'd;
if state = 'NC';

run;

In this case, it makes no difference logically whether the WHERE statement or the IF statement is used, and
you can combine several conditions in one subsetting statement. The following statements produce the same
results as the previous example:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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data subset;
set full;
if date >= '1jan1970'd & state = 'NC';

run;

The WHERE statement acts on the input data sets specified in the SET statement before observations are
processed by the DATA step program, whereas the IF statement is executed as part of the DATA step program.
If the input data set is indexed, using the WHERE statement can be more efficient than using the IF statement.
However, the WHERE statement can refer only to variables in the input data set, not to variables computed
by the DATA step program.

To subset the variables of a data set, use KEEP or DROP statements or use KEEP= or DROP= data set
options. For more information about KEEP and DROP statements and SAS data set options, see SAS DATA
Step Statements: Reference.

For example, suppose you want to subset the data set as in the preceding example, but you want to include in
the subset data set only the variables DATE, X, and Y. You could use the following statements:

data subset;
set full;
if date >= '1jan1970'd & state = 'NC';
keep date x y;

run;

Using the WHERE Statement with SAS Procedures
Use the WHERE statement with SAS procedures to process only a subset of the input data set. For example,
suppose you have a data set that contains monthly observations for each of several states, and you want to use
the AUTOREG procedure to analyze data since 1970 for North Carolina (NC). You could use the following
statements:

proc autoreg data=full;
where date >= '1jan1970'd & state = 'NC';
... additional statements ...

run;

You can specify any number of conditions in the WHERE statement. For example, suppose that a strike
created an outlier in May 1975, and you want to exclude that observation. You could use the following
statements:

proc autoreg data=full;
where date >= '1jan1970'd & state = 'NC'

& date ^= '1may1975'd;
... additional statements ...

run;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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Using SAS Data Set Options
You can use the OBS= and FIRSTOBS= data set options to subset the input data set.

For example, the following statements print observations 20 through 25 of the data set FULL:

proc print data=full(firstobs=20 obs=25);
run;

Figure 4.3 Partial Listing of Data Set FULL

Obs date state i x y close

20 21OCT1993 NC 20 0.44803 0.35302 0.44803

21 22OCT1993 NC 21 0.03186 1.67414 0.03186

22 23OCT1993 NC 22 -0.25232 -1.61289 -0.25232

23 24OCT1993 NC 23 0.42524 0.73112 0.42524

24 25OCT1993 NC 24 0.05494 -0.88664 0.05494

25 26OCT1993 NC 25 -0.29096 -1.17275 -0.29096

You can use KEEP= and DROP= data set options to exclude variables from the input data set. For information
about SAS data set options, see SAS DATA Step Statements: Reference.

Storing Time Series in a SAS Data Set
This section discusses aspects of storing time series in SAS data sets. The topics discussed are the standard
form of a time series data set, storing several series with different time ranges in the same data set, omitted
observations, cross-sectional dimensions and BY groups, and interleaved time series.

Any number of time series can be stored in a SAS data set. Normally, each time series is stored in a separate
variable. For example, the following statements augment the USCPI data set read in the previous example
with values for the producer price index (PPI):

data usprice;
input date : monyy7. cpi ppi;
format date monyy7.;
label cpi = "Consumer Price Index"

ppi = "Producer Price Index";
datalines;
jun1990 129.9 114.3
jul1990 130.4 114.5
aug1990 131.6 116.5

... more lines ...

proc print data=usprice;
run;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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Figure 4.4 Time Series Data Set Containing Two Series

Obs date cpi ppi

1 JUN1990 129.9 114.3

2 JUL1990 130.4 114.5

3 AUG1990 131.6 116.5

4 SEP1990 132.7 118.4

5 OCT1990 133.5 120.8

6 NOV1990 133.8 120.1

7 DEC1990 133.8 118.7

8 JAN1991 134.6 119.0

9 FEB1991 134.8 117.2

10 MAR1991 135.0 116.2

11 APR1991 135.2 116.0

12 MAY1991 135.6 116.5

13 JUN1991 136.0 116.3

14 JUL1991 136.2 116.0

Standard Form of a Time Series Data Set
The simple way the CPI and PPI time series are stored in the USPRICE data set in the preceding example is
termed the standard form of a time series data set. A time series data set in standard form has the following
characteristics:

� The data set contains one variable for each time series.

� The data set contains exactly one observation for each time period.

� The data set contains an ID variable or variables that identify the time period of each observation.

� The data set is sorted by the ID variables associated with date time values, so the observations are in
time sequence.

� The data are equally spaced in time. That is, successive observations are a fixed time interval apart, so
the data set can be described by a single sampling interval such as hourly, daily, monthly, quarterly,
yearly, and so forth. This means that time series with different sampling frequencies are not mixed in
the same SAS data set.

Most SAS/ETS procedures that process time series expect the input data set to contain time series in this
standard form, and this is the simplest way to store time series in SAS data sets. (The EXPAND and
TIMESERIES procedures can be helpful in converting your data to this standard form.) There are more
complex ways to represent time series in SAS data sets.

You can incorporate cross-sectional dimensions with BY groups, so that each BY group is like a standard
form time series data set. This method is discussed in the section “Cross-Sectional Dimensions and BY
Groups” on page 83.

You can interleave time series, with several observations for each time period identified by another ID variable.
Interleaved time series data sets are used to store several series in the same SAS variable. Interleaved time
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series data sets can be used to store series of actual values, predicted values, and residuals, or series of
forecast values and confidence limits for the forecasts. This is discussed in the section “Interleaved Time
Series” on page 84.

Several Series with Different Ranges
Different time series can have values recorded over different time ranges. Since a SAS data set must have the
same observations for all variables, when time series with different ranges are stored in the same data set,
missing values must be used for the periods in which a series is not available.

Suppose that in the previous example you did not record values for CPI before August 1990 and did not
record values for PPI after June 1991. The USPRICE data set could be read with the following statements:

data usprice;
input date : monyy7. cpi ppi;
format date monyy7.;

datalines;
jun1990 . 114.3
jul1990 . 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990 133.8 120.1
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0 116.2
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2 .
;

The decimal points with no digits in the data records represent missing data and are read by SAS as missing
value codes.

In this example, the time range of the USPRICE data set is June 1990 through July 1991, but the time range
of the CPI variable is August 1990 through July 1991, and the time range of the PPI variable is June 1990
through June 1991.

SAS/ETS procedures ignore missing values at the beginning or end of a series. That is, the series is considered
to begin with the first nonmissing value and end with the last nonmissing value.
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Missing Values and Omitted Observations
Missing data can also occur within a series. Missing values that appear after the beginning of a time series
and before the end of the time series are called embedded missing values.

Suppose that in the preceding example you did not record values for CPI for November 1990 and did not
record values for PPI for both November 1990 and March 1991. The USPRICE data set could be read with
the following statements:

data usprice;
input date : monyy. cpi ppi;
format date monyy.;

datalines;
jun1990 . 114.3
jul1990 . 114.5
aug1990 131.6 116.5
sep1990 132.7 118.4
oct1990 133.5 120.8
nov1990 . .
dec1990 133.8 118.7
jan1991 134.6 119.0
feb1991 134.8 117.2
mar1991 135.0 .
apr1991 135.2 116.0
may1991 135.6 116.5
jun1991 136.0 116.3
jul1991 136.2 .
;

In this example, the series CPI has one embedded missing value, and the series PPI has two embedded
missing values. The ranges of the two series are the same as before.

Note that the observation for November 1990 has missing values for both CPI and PPI; there are no data for
this period. This is an example of a missing observation.

You might ask why the data record for this period is included in the example at all, since the data record
contains no data. However, deleting the data record for November 1990 from the example would cause
an omitted observation in the USPRICE data set. SAS/ETS procedures expect input data sets to contain
observations for a contiguous time sequence. If you omit observations from a time series data set and then
try to analyze the data set with SAS/ETS procedures, the omitted observations will cause errors. When all
data are missing for a period, a missing observation should be included in the data set to preserve the time
sequence of the series.

If observations are omitted from the data set, the EXPAND procedure can be used to fill in the gaps with
missing values (or to interpolate nonmissing values) for the time series variables and with the appropriate
date or datetime values for the ID variable.
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Cross-Sectional Dimensions and BY Groups
Often, time series in a collection are related by a cross sectional dimension. For example, the national average
U.S. consumer price index data shown in the previous example can be disaggregated to show price indexes
for major cities. In this case, there are several related time series: CPI for New York, CPI for Chicago, CPI
for Los Angeles, and so forth. When these time series are considered as one data set, the city whose price
level is measured is a cross sectional dimension of the data.

There are two basic ways to store such related time series in a SAS data set. The first way is to use a standard
form time series data set with a different variable for each series.

For example, the following statements read CPI series for three major U.S. cities:

data citycpi;
input date : monyy7. cpiny cpichi cpila;
format date monyy7.;

datalines;
nov1989 133.200 126.700 130.000
dec1989 133.300 126.500 130.600
jan1990 135.100 128.100 132.100

... more lines ...

The second way is to store the data in a time series cross-sectional form. In this form, the series for all cross
sections are stored in one variable and a cross section ID variable is used to identify observations for the
different series. The observations are sorted by the cross section ID variable and by time within each cross
section.

The following statements indicate how to read the CPI series for U.S. cities in time series cross-sectional
form:

data cpicity;
length city $11;
input city $11. date : monyy. cpi;
format date monyy.;

datalines;
New York JAN1990 135.100
New York FEB1990 135.300
New York MAR1990 136.600

... more lines ...

proc sort data=cpicity;
by city date;

run;

When processing a time series cross sectional form data set with most SAS/ETS procedures, use the cross
section ID variable in a BY statement to process the time series separately. The data set must be sorted by
the cross section ID variable and sorted by date within each cross section. The PROC SORT step in the
preceding example ensures that the CPICITY data set is correctly sorted.
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When the cross section ID variable is used in a BY statement, each BY group in the data set is like a standard
form time series data set. Thus, SAS/ETS procedures that expect a standard form time series data set can
process time series cross sectional data sets when a BY statement is used, producing an independent analysis
for each cross section.

It is also possible to analyze time series cross-sectional data jointly. The PANEL procedure (and the older
TSCSREG procedure) expects the input data to be in the time series cross-sectional form described here. For
more information, see Chapter 26, “The PANEL Procedure.”

Interleaved Time Series
Normally, a time series data set has only one observation for each time period, or one observation for each
time period within a cross section for a time series cross-sectional-form data set. However, it is sometimes
useful to store several related time series in the same variable when the different series do not correspond to
levels of a cross-sectional dimension of the data.

In this case, the different time series can be interleaved. An interleaved time series data set is similar to a
time series cross-sectional data set, except that the observations are sorted differently, and the ID variable
that distinguishes the different time series does not represent a cross-sectional dimension.

The interleaved time series form is a convenient way to store data when the results consist of several different
kinds of time series for each of numerous independent variables. For example, the MODEL procedure, which
can fit and simulate dynamic systems of equations, in which many inter-related endogenous variables evolve
over time, produces an interleaved time series output data set. For each time period, the MODEL procedure
output includes observations for the actual, predicted, and residual values for each of the endogenous variables.
These observations are identified by values of the variable _TYPE_. The observations are interleaved in the
output data set with observations for the same date grouped together.

Using Interleaved Data Sets as Input to SAS/ETS Procedures

Interleaved time series data sets are not directly accepted as input by SAS/ETS procedures. However, it is
easy to use a WHERE statement with a DATA step or with any procedure to subset the input data and select
one of the interleaved time series as the input. For example, to analyze the residual series contained in a
PROC MODEL output data set using another SAS/ETS procedure, include a WHERE _TYPE_=’RESIDUAL’
statement. The following statements show how to extract the residuals from an output data set produced by
PROC MODEL.

data residuals_only;
set output_dataset;
where _type_='RESIDUAL';

run;

Combined Cross Sections and Interleaved Time Series Data Sets

Interleaved time series output data sets produced from BY-group processing of time series cross-sectional
input data sets have a complex structure that combines a cross-sectional dimension, a time dimension, and
the values of the _TYPE_ variable.
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Output Data Sets of SAS/ETS Procedures
Most SAS/ETS procedures produce standard form time series output data sets, which contain variables for
the predicted, actual, residual, and other values. In some cases variables names for the output variables are
constructed automatically. In other cases you must specify names for the output variables in an OUTPUT
statement. The MODEL procedure is an exception: it produces and interleaved output data sets, in which the
different output values for each endogenous variable in the model is identified by the variable _TYPE_, and
multiple observations with different _TYPE_ values are output for each time period.

For example, the ARIMA procedure can output actual series, forecast series, residual series, and confidence
limit series. The following statements show the use of the ARIMA procedure to produce a forecast of the
USCPI data set. Figure 4.5 shows part of the output data set that is produced by the ARIMA procedure’s
FORECAST statement. (The printed output from PROC ARIMA is not shown.)

title "PROC ARIMA Output Data Set";

proc arima data=uscpi;
identify var=cpi(1);
estimate q=1;
forecast id=date interval=month

lead=12 out=arimaout;
run;

proc print data=arimaout(obs=6);
run;

Figure 4.5 Partial Listing of Output Data Set Produced by PROC ARIMA

PROC ARIMA Output Data Set

Obs date cpi FORECAST STD L95 U95 RESIDUAL

1 JUN1990 129.9 . . . . .

2 JUL1990 130.4 130.368 0.36160 129.660 131.077 0.03168

3 AUG1990 131.6 130.881 0.36160 130.172 131.590 0.71909

4 SEP1990 132.7 132.354 0.36160 131.645 133.063 0.34584

5 OCT1990 133.5 133.306 0.36160 132.597 134.015 0.19421

6 NOV1990 133.8 134.046 0.36160 133.337 134.754 -0.24552

The output data set produced by the ARIMA procedure’s FORECAST statement stores the actual values in a
variable with the same name as the response series, stores the forecast series in a variable named FORECAST,
stores the residuals in a variable named RESIDUAL, stores the 95% confidence limits in variables named L95
and U95, and stores the standard error of the forecast in the variable STD.

This method of storing several different result series as a standard form time series data set is simple and
convenient. However, it works well only for a single input series. The forecast of a single series can be stored
in the variable FORECAST. But if two series are forecast, two different FORECAST variables are needed.

The STATESPACE procedure handles this problem by generating forecast variable names FOR1, FOR2, and
so forth. The SPECTRA procedure uses a similar method. Names such as FOR1, FOR2, RES1, RES2, and
so forth require you to remember the order in which the input series are listed.
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Other SAS/ETS procedures store output time series in standard form (as PROC ARIMA does) but require an
OUTPUT statement to give names to the result series.

Time Series Periodicity and Time Intervals
A fundamental characteristic of time series data is how frequently the observations are spaced in time. How
often the observations of a time series occur is called the sampling frequency or the periodicity of the series.
For example, a time series with one observation each month has a monthly sampling frequency or monthly
periodicity and so is called a monthly time series.

In SAS, data periodicity is described by specifying periodic time intervals into which the dates of the
observations fall. For example, the SAS time interval MONTH divides time into calendar months.

Many SAS/ETS procedures enable you to specify the periodicity of the input data set with the INTERVAL=
option. For example, specifying INTERVAL=MONTH indicates that the procedure should expect the ID
variable to contain SAS date values, and that the date value for each observation should fall in a separate
calendar month. The EXPAND procedure uses interval name values with the FROM= and TO= options to
control the interpolation of time series from one periodicity to another.

SAS also uses time intervals in several other ways. In addition to indicating the periodicity of time series
data sets, time intervals are used with the interval functions INTNX and INTCK and for controlling the plot
axis and reference lines for plots of data over time.

Specifying Time Intervals
Intervals are specified in SAS by using interval names such as YEAR, QTR, MONTH, DAY, and so forth.
Table 4.3 summarizes the basic types of intervals.

Table 4.3 Basic Interval Types

Name Periodicity

YEAR Yearly
SEMIYEAR Semiannual
QTR Quarterly
MONTH Monthly
SEMIMONTH 1st and 16th of each month
TENDAY 1st, 11th, and 21st of each month
WEEK Weekly
WEEKDAY Daily, ignoring weekend days
DAY Daily
HOUR Hourly
MINUTE Every minute
SECOND Every second
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Interval names can be abbreviated in various ways. For example, you could specify monthly intervals as
MONTH, MONTHS, MONTHLY, or just MON. SAS accepts all these forms as equivalent.

Interval names can also be qualified with a multiplier to indicate multiperiod intervals. For example, biennial
intervals are specified as YEAR2.

Interval names can also be qualified with a shift index to indicate intervals with different starting points. For
example, fiscal years starting in July are specified as YEAR.7.

Intervals are classified as either date or datetime intervals. Date intervals are used with SAS date values,
while datetime intervals are used with SAS datetime values. The interval types YEAR, SEMIYEAR, QTR,
MONTH, SEMIMONTH, TENDAY, WEEK, WEEKDAY, and DAY are date intervals. HOUR, MINUTE,
and SECOND are datetime intervals. Date intervals can be turned into datetime intervals for use with datetime
values by prefixing the interval name with ‘DT’. Thus DTMONTH intervals are like MONTH intervals but
are used with datetime ID values instead of date ID values.

For more information about specifying time intervals and for a detailed reference to the different kinds of
intervals available, see Chapter 5, “Date Intervals, Formats, and Functions.”

Using Intervals with SAS/ETS Procedures
SAS/ETS procedures use the date or datetime interval and the ID variable in the following ways:

� to validate the data periodicity. The ID variable is used to check the data and verify that successive
observations have valid ID values that correspond to successive time intervals.

� to check for gaps in the input observations. For example, if INTERVAL=MONTH and an input
observation for January 1990 is followed by an observation for April 1990, there is a gap in the input
data with two omitted observations.

� to label forecast observations in the output data set. The values of the ID variable for the forecast
observations after the end of the input data set are extrapolated according to the frequency specifications
of the INTERVAL= option.

Time Intervals, the Time Series Forecasting System, and the Time Series
Viewer
Time intervals are used in the Time Series Forecasting System and Time Series Viewer to identify the number
of seasonal cycles or seasonality associated with a DATE, DATETIME, or TIME ID variable. For example,
monthly time series have a seasonality of 12 because there are 12 months in a year; quarterly time series
have a seasonality of 4 because there are four quarters in a year. The seasonality is used to analyze seasonal
properties of time series data and to estimate seasonal forecasting methods.
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Plotting Time Series
This section discusses SAS procedures that are available for plotting time series data, but it covers only
certain aspects of the use of these procedures with time series data.

The Time Series Viewer displays and analyzes time series plots for time series data sets that do not contain
cross sections. See Chapter 59, “Getting Started with Time Series Forecasting.”

The SGPLOT procedure produces high resolution color graphics plots. For more information, see SAS ODS
Graphics: Procedures Guide.

Using the Time Series Viewer
The following command starts the Time Series Viewer to display the plot of CPI in the USCPI data set
against DATE. (The USCPI data set was shown in the previous example; the time series used in the following
example contains more observations than previously shown.)

tsview data=uscpi var=cpi timeid=date

The TSVIEW DATA= option specifies the data set to be viewed; the VAR= option specifies the variable that
contains the time series observations; the TIMEID= option specifies the time series ID variable.

The Time Series Viewer can also be invoked by selecting SolutionsIAnalyzeITime Series Viewer from
the menu in the SAS Display Manager.

Using PROC SGPLOT
The following statements use the SGPLOT procedure to plot CPI in the USCPI data set against DATE. (The
USCPI data set was shown in a previous example; the data set plotted in the following example contains
more observations than shown previously.)

title "Plot of USCPI Data";
proc sgplot data=uscpi;

series x=date y=cpi / markers;
run;

The plot is shown in Figure 4.6.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=grstatproc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=grstatproc&docsetTarget=titlepage.htm
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Figure 4.6 Plot of Monthly CPI over Time

Controlling the Time Axis: Tick Marks and Reference Lines

It is possible to control the spacing of the tick marks on the time axis. The following statements use the
XAXIS statement to tell PROC SGPLOT to mark the axis at the start of each quarter:

proc sgplot data=uscpi;
series x=date y=cpi / markers;
format date yyqc.;
xaxis values=('1jan90'd to '1jul91'd by qtr);

run;

The plot is shown in Figure 4.7.
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Figure 4.7 Plot of Monthly CPI over Time

Overlay Plots of Different Variables

You can plot two or more series stored in different variables on the same graph by specifying multiple plot
requests in one SGPLOT statement.

For example, the following statements plot the CPI, FORECAST, L95, and U95 variables produced by PROC
ARIMA in a previous example. A reference line is drawn to mark the start of the forecast period. Quarterly
tick marks with YYQC format date values are used.

title "ARIMA Forecasts of CPI";

proc arima data=uscpi;
identify var=cpi(1);
estimate q=1;
forecast id=date interval=month lead=12 out=arimaout;

run;

title "ARIMA forecasts of CPI";
proc sgplot data=arimaout noautolegend;

scatter x=date y=cpi;
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scatter x=date y=forecast / markerattrs=(symbol=asterisk);
scatter x=date y=l95 / markerattrs=(symbol=asterisk color=green);
scatter x=date y=u95 / markerattrs=(symbol=asterisk color=green);
format date yyqc4.;
xaxis values=('1jan90'd to '1jul92'd by qtr);
refline '15jul91'd / axis=x;

run;

The plot is shown in Figure 4.8.

Figure 4.8 Plot of ARIMA Forecast

Overlay Plots of Interleaved Series

You can also plot several series on the same graph when the different series are stored in the same variable
in interleaved form. Plot interleaved time series by specifying the series identifying variable (_TYPE_, for
example) in the GROUP= option on the SCATTER statement of the SGPLOT procedure to distinguish the
different series.
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Residual Plots

The following example plots the residuals series from the forecast data set used in the previous example. The
NEEDLE statement specifies a needle plot, so that each residual point is plotted as a vertical line showing
deviation from zero.

title "Plot of Residuals for USCPI Data";
proc sgplot data=arimaout;

needle x=date y=residual / markers;
format date yyqc4.;
xaxis values=('1jan90'd to '1jul91'd by qtr);

run;

The plot is shown in Figure 4.9.

Figure 4.9 Plot of Residuals
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Calendar and Time Functions
Calendar and time functions convert calendar and time variables such as YEAR, MONTH, DAY, and HOUR,
MINUTE, SECOND into SAS date or datetime values, and vice versa.

The SAS calendar and time functions are DATEJUL, DATEPART, DAY, DHMS, HMS, HOUR, JULDATE,
MDY, MINUTE, MONTH, QTR, SECOND, TIMEPART, WEEKDAY, YEAR, and YYQ. For more informa-
tion about these functions, see SAS Functions and CALL Routines: Reference.

Computing Dates from Calendar Variables
The MDY function converts MONTH, DAY, and YEAR values to a SAS date value. For example,
MDY(2010,17,91) returns the SAS date value ’17OCT2010’D.

The YYQ function computes the SAS date for the first day of a quarter. For example, YYQ(2010,4) returns
the SAS date value ’1OCT2010’D.

The DATEJUL function computes the SAS date for a Julian date. For example, DATEJUL(91290) returns the
SAS date ’17OCT2010’D.

The YYQ and MDY functions are useful for creating SAS date variables when the ID values recorded in the
data are year and quarter; year and month; or year, month, and day.

For example, the following statements read quarterly data from records in which dates are coded as separate
year and quarter values. The YYQ function is used to compute the variable DATE.

data usecon;
input year qtr gnp;
date = yyq( year, qtr );
format date yyqc.;

datalines;
1990 1 5375.4
1990 2 5443.3
1990 3 5514.6

... more lines ...

The monthly USCPI data shown in a previous example contained time ID values represented in the MONYY
format. If the data records instead contain separate year and month values, the data can be read in and the
DATE variable computed with the following statements:

data uscpi;
input month year cpi;
date = mdy( month, 1, year );
format date monyy.;

datalines;
6 90 129.9
7 90 130.4
8 90 131.6

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
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... more lines ...

Computing Calendar Variables from Dates
The functions YEAR, MONTH, DAY, WEEKDAY, and JULDATE compute calendar variables from SAS
date values.

Returning to the example of reading the USCPI data from records that contain date values represented in the
MONYY format, you can find the month and year of each observation from the SAS dates of the observations
by using the following statements:

data uscpi;
input date monyy7. cpi;
format date monyy7.;
year = year( date );
month = month( date );

datalines;
jun1990 129.9
jul1990 130.4
aug1990 131.6

... more lines ...

Converting between Date, Datetime, and Time Values
The DATEPART function computes the SAS date value for the date part of a SAS datetime value. The
TIMEPART function computes the SAS time value for the time part of a SAS datetime value.

The HMS function computes SAS time values from HOUR, MINUTE, and SECOND time variables. The
DHMS function computes a SAS datetime value from a SAS date value and HOUR, MINUTE, and SECOND
time variables.

For more information about these functions, see the section “SAS Date, Time, and Datetime Functions” on
page 142.
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Computing Datetime Values
To compute datetime ID values from calendar and time variables, first compute the date and then compute
the datetime with DHMS.

For example, suppose you read tri-hourly temperature data with time recorded as YEAR, MONTH, DAY, and
HOUR. The following statements show how to compute the ID variable DATETIME:

data weather;
input year month day hour temp;
datetime = dhms( mdy( month, day, year ), hour, 0, 0 );
format datetime datetime10.;

datalines;
91 10 16 21 61
91 10 17 0 56
91 10 17 3 53
91 10 17 6 54

... more lines ...

Computing Calendar and Time Variables
The functions HOUR, MINUTE, and SECOND compute time variables from SAS datetime values. The
DATEPART function and the date-to-calendar variables functions can be combined to compute calendar
variables from datetime values.

For example, suppose the date and time of the tri-hourly temperature data in the preceding example were
recorded as datetime values in the datetime format. The following statements show how to compute the
YEAR, MONTH, DAY, and HOUR of each observation and include these variables in the SAS data set:

data weather;
input datetime : datetime13. temp;
format datetime datetime10.;
hour = hour( datetime );
date = datepart( datetime );
year = year( date );
month = month( date );
day = day( date );

datalines;
16oct91:21:00 61
17oct91:00:00 56
17oct91:03:00 53
17oct91:06:00 54

... more lines ...
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Interval Functions INTNX and INTCK
The SAS interval functions INTNX and INTCK perform calculations with date values, datetime values, and
time intervals. They can be used for calendar calculations with SAS date values to increment date values or
datetime values by intervals and to count time intervals between dates.

The INTNX function increments dates by intervals. INTNX computes the date or datetime of the start of the
interval a specified number of intervals from the interval that contains a given date or datetime value.

The form of the INTNX function is

INTNX ( interval, from, n < , alignment > ) ;

The arguments to the INTNX function are as follows:

interval
is a character constant or variable that contains an interval name

from
is a SAS date value (for date intervals) or datetime value (for datetime intervals)

n
is the number of intervals to increment from the interval that contains the from value

alignment
controls the alignment of SAS dates, within the interval, used to identify output observations. Allowed
values are BEGINNING, MIDDLE, END, and SAMEDAY.

The number of intervals to increment, n, can be positive, negative, or zero.

For example, the statement NEXTMON=INTNX(’MONTH’,DATE,1) assigns to the variable NEXTMON
the date of the first day of the month following the month that contains the value of DATE. Thus
INTNX(’MONTH’,’21OCT2007’D,1) returns the date 1 November 2007.

The INTCK function counts the number of interval boundaries between two date values or between two
datetime values.

The form of the INTCK function is

INTCK ( interval, from, to ) ;

The arguments of the INTCK function are as follows:

interval
is a character constant or variable that contains an interval name.

from
is the starting date value (for date intervals) or datetime value (for datetime intervals).
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to
is the ending date value (for date intervals) or datetime value (for datetime intervals).

For example, the statement NEWYEARS=INTCK(’YEAR’,DATE1,DATE2) assigns to the variable
NEWYEARS the number of New Year’s Days between the two dates.

Incrementing Dates by Intervals
Use the INTNX function to increment dates by intervals. For example, suppose you want to know
the date of the start of the week that is six weeks from the week of 17 October 1991. The function
INTNX(’WEEK’,’17OCT91’D,6) returns the SAS date value ’24NOV1991’D.

One practical use of the INTNX function is to generate periodic date values. For example, suppose the
monthly U.S. Consumer Price Index data in a previous example were recorded without any time identifier on
the data records. Given that you know the first observation is for June 1990, the following statements use the
INTNX function to compute the ID variable DATE for each observation:

data uscpi;
input cpi;
date = intnx( 'month', '1jun1990'd, _n_-1 );
format date monyy7.;

datalines;
129.9
130.4
131.6

... more lines ...

The automatic variable _N_ counts the number of times the DATA step program has executed; in this case
_N_ contains the observation number. Thus _N_–1 is the increment needed from the first observation date.
Alternatively, you could increment from the month before the first observation, in which case the INTNX
function in this example would be written INTNX(’MONTH’,’1MAY1990’D,_N_).

Alignment of SAS Dates
Any date within the time interval that corresponds to an observation of a periodic time series can serve as an
ID value for the observation. For example, the USCPI data in a previous example might have been recorded
with dates at the 15th of each month. The person recording the data might reason that since the CPI values
are monthly averages, midpoints of the months might be the appropriate ID values.

However, as far as SAS/ETS procedures are concerned, what is important about monthly data is the month
of each observation, not the exact date of the ID value. If you indicate that the data are monthly (with
an INTERVAL=MONTH) option, SAS/ETS procedures ignore the day of the month in processing the ID
variable. The MONYY format also ignores the day of the month.

Thus, you could read in the monthly USCPI data with mid-month DATE values by using the following
statements:
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data uscpi;
input date : date9. cpi;
format date monyy7.;

datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6

... more lines ...

The results of using this version of the USCPI data set for analysis with SAS/ETS procedures would be the
same as with first-of-month values for DATE. Although you can use any date within the interval as an ID
value for the interval, you might find working with time series in SAS less confusing if you always use date
ID values normalized to the start of the interval.

For some applications it might be preferable to use end of period dates, such as 31Jan1994, 28Feb1994,
31Mar1994, . . . , 31Dec1994. For other applications, such as plotting time series, it might be more convenient
to use interval midpoint dates to identify the observations.

(Some SAS/ETS procedures provide an ALIGN= option to control the alignment of dates for output time
series observations. In addition, the INTNX library function supports an optional argument to specify the
alignment of the returned date value.)

To normalize date values to the start of intervals, use the INTNX function with a 0 increment. The INTNX
function with an increment of 0 computes the date of the first day of the interval (or the first second of the
interval for datetime values).

For example, INTNX(’MONTH’,’17OCT1991’D,0,’BEG’) returns the date ’1OCT1991’D.

The following statements show how the preceding example can be changed to normalize the mid-month DATE
values to first-of-month and end-of-month values. For exposition, the first-of-month value is transformed
back into a middle-of-month value.

data uscpi;
input date : date9. cpi;
format date monyy7.;
monthbeg = intnx( 'month', date, 0, 'beg' );
midmonth = intnx( 'month', monthbeg, 0, 'mid' );
monthend = intnx( 'month', date, 0, 'end' );

datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6

... more lines ...

If you want to compute the date of a particular day within an interval, you can use calendar functions, or you
can increment the starting date of the interval by a number of days. The following example shows three ways
to compute the seventh day of the month:
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data test;
set uscpi;
mon07_1 = mdy( month(date), 7, year(date) );
mon07_2 = intnx( 'month', date, 0, 'beg' ) + 6;
mon07_3 = intnx( 'day', date, 6 );

run;

Computing the Width of a Time Interval
To compute the width of a time interval, subtract the ID value of the start of the next interval from the ID
value of the start of the current interval. If the ID values are SAS dates, the width is in days. If the ID values
are SAS datetime values, the width is in seconds.

For example, the following statements show how to add a variable WIDTH to the USCPI data set that contains
the number of days in the month for each observation:

data uscpi;
input date : date9. cpi;
format date monyy7.;
width = intnx( 'month', date, 1 ) - intnx( 'month', date, 0 );

datalines;
15jun1990 129.9
15jul1990 130.4
15aug1990 131.6
15sep1990 132.7

... more lines ...

Computing the Ceiling of an Interval
To shift a date to the start of the next interval if it is not already at the start of an interval, subtract 1 from the
date and use INTNX to increment the date by 1 interval.

For example, the following statements add the variable NEWYEAR to the monthly USCPI data set. The
variable NEWYEAR contains the date of the next New Year’s Day. NEWYEAR contains the same value as
DATE when the DATE value is the start of year and otherwise contains the date of the start of the next year.

data test;
set uscpi;
newyear = intnx( 'year', date - 1, 1 );
format newyear date.;

run;
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Counting Time Intervals
Use the INTCK function to count the number of interval boundaries between two dates.

Note that the INTCK function counts the number of times the beginning of an interval is reached in moving
from the first date to the second. It does not count the number of complete intervals between two dates.
Following are two examples:

� The function INTCK(’MONTH’,’1JAN1991’D,’31JAN1991’D) returns 0, since the two dates are
within the same month.

� The function INTCK(’MONTH’,’31JAN1991’D,’1FEB1991’D) returns 1, since the two dates lie in
different months that are one month apart.

When the first date is later than the second date, INTCK returns a negative count. For example, the function
INTCK(’MONTH’,’1FEB1991’D,’31JAN1991’D) returns –1.

The following example shows how to use the INTCK function with shifted interval specifications to count the
number of Sundays, Mondays, Tuesdays, and so forth, in each month. The variables NSUNDAY, NMONDAY,
NTUESDAY, and so forth, are added to the USCPI data set.

data uscpi;
set uscpi;
d0 = intnx( 'month', date, 0 ) - 1;
d1 = intnx( 'month', date, 1 ) - 1;
nSunday = intck( 'week.1', d0, d1 );
nMonday = intck( 'week.2', d0, d1 );
nTuesday = intck( 'week.3', d0, d1 );
nWednesday = intck( 'week.4', d0, d1 );
nThursday = intck( 'week.5', d0, d1 );
nFriday = intck( 'week.6', d0, d1 );
nSaturday = intck( 'week.7', d0, d1 );
drop d0 d1;

run;

Since the INTCK function counts the number of interval beginning dates between two dates, the number of
Sundays is computed by counting the number of week boundaries between the last day of the previous month
and the last day of the current month. To count Mondays, Tuesdays, and so forth, shifted week intervals are
used. The interval type WEEK.2 specifies weekly intervals starting on Mondays, WEEK.3 specifies weeks
starting on Tuesdays, and so forth.
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Checking Data Periodicity
Suppose you have a time series data set and you want to verify that the data periodicity is correct, the
observations are dated correctly, and the data set is sorted by date. You can use the INTCK function to
compare the date of the current observation with the date of the previous observation and verify that the dates
fall into consecutive time intervals.

For example, the following statements verify that the data set USCPI is a correctly dated monthly data set.
The RETAIN statement is used to hold the date of the previous observation, and the automatic variable _N_
is used to start the verification process with the second observation.

data _null_;
set uscpi;
retain prevdate;
if _n_ > 1 then

if intck( 'month', prevdate, date ) ^= 1 then
put "Bad date sequence at observation number " _n_;

prevdate = date;
run;

Filling In Omitted Observations in a Time Series Data Set
Most SAS/ETS procedures expect input data to be in the standard form, with no omitted observations in the
sequence of time periods. When data are missing for a time period, the data set should contain a missing
observation, in which all variables except the ID variables have missing values.

You can replace omitted observations in a time series data set with missing observations with the EXPAND
procedure.

The following statements create a monthly data set, OMITTED, from data lines that contain records for an
intermittent sample of months. (Data values are not shown.) The OMITTED data set is sorted to make sure it
is in time order.

data omitted;
input date : monyy7. x y z;
format date monyy7.;

datalines;
jan1991 ...
mar1991 ...
apr1991 ...
jun1991 ...
... etc. ...

;

proc sort data=omitted;
by date;

run;

This data set is converted to a standard form time series data set by the following PROC EXPAND step. The
TO= option specifies that monthly data is to be output, while the METHOD=NONE option specifies that no
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interpolation is to be performed, so that the variables X, Y, and Z in the output data set STANDARD will have
missing values for the omitted time periods that are filled in by the EXPAND procedure.

proc expand data=omitted
out=standard
to=month
method=none;

id date;
run;

Using Interval Functions for Calendar Calculations
With a little thought, you can come up with a formula that involves INTNX and INTCK functions and
different interval types to perform almost any calendar calculation.

For example, suppose you want to know the date of the third Wednesday in the month of October 1991. The
answer can be computed as

intnx( 'week.4', '1oct91'd - 1, 3 )

which returns the SAS date value ’16OCT91’D.

Consider this more complex example: how many weekdays are there between 17 October 1991 and the second
Friday in November 1991, inclusive? The following formula computes the number of weekdays between
the date value contained in the variable DATE and the second Friday of the following month (including the
ending dates of this period):

n = intck( 'weekday', date - 1,
intnx( 'week.6', intnx( 'month', date, 1 ) - 1, 2 ) + 1 );

Setting DATE to ’17OCT91’D and applying this formula produces the answer, N=17.

Lags, Leads, Differences, and Summations
When working with time series data, you sometimes need to refer to the values of a series in previous or
future periods. For example, the usual interest in the consumer price index series shown in previous examples
is how fast the index is changing, rather than the actual level of the index. To compute a percent change, you
need both the current and the previous values of the series. When you model a time series, you might want to
use the previous values of other series as explanatory variables.

This section discusses how to use the DATA step to perform operations over time: lags, differences, leads,
summations over time, and percent changes.

The EXPAND procedure can also be used to perform many of these operations; for more information, see
Chapter 16, “The EXPAND Procedure.” See also the section “Transforming Time Series” on page 111.
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The LAG and DIF Functions
The DATA step provides two functions, LAG and DIF, for accessing previous values of a variable or
expression. These functions are useful for computing lags and differences of series.

For example, the following statements add the variables CPI_LAG and CPI_DIF to the USCPI data set. The
variable CPI_LAG contains lagged values of the CPI series. The variable CPI_DIF contains the changes of
the CPI series from the previous period; that is, CPI_DIF is CPI minus CPI_LAG. The new data set is shown
in part in Figure 4.10.

data uscpi;
set uscpi;
cpi_lag = lag( cpi );
cpi_dif = dif( cpi );

run;

proc print data=uscpi;
run;

Figure 4.10 USCPI Data Set with Lagged and Differenced Series

Plot of Residuals for USCPI Data

Obs date cpi cpi_lag cpi_dif

1 JUN1990 129.9 . .

2 JUL1990 130.4 129.9 0.5

3 AUG1990 131.6 130.4 1.2

4 SEP1990 132.7 131.6 1.1

5 OCT1990 133.5 132.7 0.8

6 NOV1990 133.8 133.5 0.3

7 DEC1990 133.8 133.8 0.0

8 JAN1991 134.6 133.8 0.8

9 FEB1991 134.8 134.6 0.2

10 MAR1991 135.0 134.8 0.2

11 APR1991 135.2 135.0 0.2

12 MAY1991 135.6 135.2 0.4

13 JUN1991 136.0 135.6 0.4

14 JUL1991 136.2 136.0 0.2

Understanding the DATA Step LAG and DIF Functions

When used in this simple way, LAG and DIF act as lag and difference functions. However, it is important to
keep in mind that, despite their names, the LAG and DIF functions available in the DATA step are not true
lag and difference functions.

Rather, LAG and DIF are queuing functions that remember and return argument values from previous calls.
The LAG function remembers the value you pass to it and returns as its result the value you passed to it on the
previous call. The DIF function works the same way but returns the difference between the current argument
and the remembered value. (LAG and DIF return a missing value the first time the function is called.)



104 F Chapter 4: Working with Time Series Data

A true lag function does not return the value of the argument for the “previous call,” as do the DATA step
LAG and DIF functions. Instead, a true lag function returns the value of its argument for the “previous
observation,” regardless of the sequence of previous calls to the function. Thus, for a true lag function to be
possible, it must be clear what the “previous observation” is.

If the data are sorted chronologically, then LAG and DIF act as true lag and difference functions. If in doubt,
use PROC SORT to sort your data before using the LAG and DIF functions. Beware of missing observations,
which can cause LAG and DIF to return values that are not the actual lag and difference values.

The DATA step is a powerful tool that can read any number of observations from any number of input files or
data sets, can create any number of output data sets, and can write any number of output observations to any
of the output data sets, all in the same program. Thus, in general, it is not clear what “previous observation”
means in a DATA step program. In a DATA step program, the “previous observation” exists only if you write
the program in a simple way that makes this concept meaningful.

Since, in general, the previous observation is not clearly defined, it is not possible to make true lag or
difference functions for the DATA step. Instead, the DATA step provides queuing functions that make it easy
to compute lags and differences.

Pitfalls of DATA Step LAG and DIF Functions

The LAG and DIF functions compute lags and differences provided that the sequence of calls to the function
corresponds to the sequence of observations in the output data set. However, any complexity in the DATA
step that breaks this correspondence causes the LAG and DIF functions to produce unexpected results.

For example, suppose you want to add the variable CPI_LAG to the USCPI data set, as in the previous
example, and you also want to subset the series to 1991 and later years. You might use the following
statements:

data subset;
set uscpi;
if date >= '1jan1991'd;
cpi_lag = lag( cpi ); /* WRONG PLACEMENT! */

run;

If the subsetting IF statement comes before the LAG function call, the value of CPI_LAG will be missing for
January 1991, even though a value for December 1990 is available in the USCPI data set. To avoid losing
this value, you must rearrange the statements to ensure that the LAG function is actually executed for the
December 1990 observation.

data subset;
set uscpi;
cpi_lag = lag( cpi );
if date >= '1jan1991'd;

run;

In other cases, the subsetting statement should come before the LAG and DIF functions. For example,
suppose you have a data set STATECPI which contains consumer price index data over time for each state
in the United States, in which the data for each state is identified by the values of the BY variable STATE.
You want to extract the data for a single state, North Carolina, which has the STATE code "NC", and also
compute the lagged cpi values. The following statements subset the STATECPI data set to select only the
North Carolina observations, and also to compute the variable CPI_LAG:
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set statecpi;
by state;
if state= "NC";
cpi_lag = lag( cpi );

Another pitfall of LAG and DIF functions arises when they are used to process time series cross-sectional
data sets. For example, suppose you want to add the variable CPI_LAG to the CPICITY data set shown in a
previous example. You might use the following statements:

data cpicity;
set cpicity;
cpi_lag = lag( cpi );

run;

However, these statements do not yield the desired result. In the data set produced by these statements,
the value of CPI_LAG for the first observation for the first city is missing (as it should be), but in the first
observation for all later cities, CPI_LAG contains the last value for the previous city. To correct this, set the
lagged variable to missing at the start of each cross section, as follows:

data cpicity;
set cpicity;
by city date;
cpi_lag = lag( cpi );
if first.city then cpi_lag = .;

run;

Alternatives to LAG and DIF Functions

You can also use the EXPAND procedure to compute lags and differences. For example, the following
statements compute lag and difference variables for CPI:

proc expand data=uscpi out=uscpi method=none;
id date;
convert cpi=cpi_lag / transform=( lag 1 );
convert cpi=cpi_dif / transform=( dif 1 );

run;

You can also calculate lags and differences in the DATA step without using LAG and DIF functions. For
example, the following statements add the variables CPI_LAG and CPI_DIF to the USCPI data set:

data uscpi;
set uscpi;
retain cpi_lag;
cpi_dif = cpi - cpi_lag;
output;
cpi_lag = cpi;

run;

The RETAIN statement prevents the DATA step from reinitializing CPI_LAG to a missing value at the start
of each iteration and thus allows CPI_LAG to retain the value of CPI assigned to it in the last statement.
The OUTPUT statement causes the output observation to contain values of the variables before CPI_LAG is
reassigned the current value of CPI in the last statement. This is the approach that must be used if you want
to build a variable that is a function of its previous lags.
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LAG and DIF Functions in PROC MODEL

The preceding discussion of LAG and DIF functions applies to LAG and DIF functions available in the DATA
step. However, LAG and DIF functions are also used in the MODEL procedure.

The MODEL procedure LAG and DIF functions do not work like the DATA step LAG and DIF functions.
The LAG and DIF functions supported by PROC MODEL are true lag and difference functions, not queuing
functions.

Unlike the DATA step, the MODEL procedure processes observations from a single input data set, so the
“previous observation” is always clearly defined in a PROC MODEL program. Therefore, PROC MODEL is
able to define LAG and DIF as true lagging functions that operate on values from the previous observation.
For more information about LAG and DIF functions in the MODEL procedure, see Chapter 25, “The MODEL
Procedure.”

Multiperiod Lags and Higher-Order Differencing
To compute lags at a lagging period greater than 1, add the lag length to the end of the LAG keyword to
specify the lagging function needed. For example, the LAG2 function returns the value of its argument two
calls ago, the LAG3 function returns the value of its argument three calls ago, and so forth.

To compute differences at a lagging period greater than 1, add the lag length to the end of the DIF keyword.
For example, the DIF2 function computes the differences between the value of its argument and the value of
its argument two calls ago. (The maximum lagging period is 100.)

The following statements add the variables CPI_LAG12 and CPI_DIF12 to the USCPI data set. CPI_LAG12
contains the value of CPI from the same month one year ago. CPI_DIF12 contains the change in CPI from
the same month one year ago. (In this case, the first 12 values of CPI_LAG12 and CPI_DIF12 are missing.)

data uscpi;
set uscpi;
cpi_lag12 = lag12( cpi );
cpi_dif12 = dif12( cpi );

run;

To compute second differences, take the difference of the difference. To compute higher-order differences,
nest DIF functions to the order needed. For example, the following statements compute the second difference
of CPI:

data uscpi;
set uscpi;
cpi_2dif = dif( dif( cpi ) );

run;

Multiperiod lags and higher-order differencing can be combined. For example, the following statements
compute monthly changes in the inflation rate, with inflation rate computed as percent change in CPI from
the same month one year ago:

data uscpi;
set uscpi;
infchng = dif( 100 * dif12( cpi ) / lag12( cpi ) );

run;
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Percent Change Calculations
There are several common ways to compute the percent change in a time series. This section illustrates the
use of LAG and DIF functions by showing SAS statements for various kinds of percent change calculations.

Computing Period-to-Period Change

To compute percent change from the previous period, divide the difference of the series by the lagged value
of the series and multiply by 100.

data uscpi;
set uscpi;
pctchng = dif( cpi ) / lag( cpi ) * 100;
label pctchng = "Monthly Percent Change, At Monthly Rates";

run;

Often, changes from the previous period are expressed at annual rates. This is done by exponentiation of
the current-to-previous period ratio to the number of periods in a year and expressing the result as a percent
change. For example, the following statements compute the month-over-month change in CPI as a percent
change at annual rates:

data uscpi;
set uscpi;
pctchng = ( ( cpi / lag( cpi ) ) ** 12 - 1 ) * 100;
label pctchng = "Monthly Percent Change, At Annual Rates";

run;

Computing Year-over-Year Change

To compute percent change from the same period in the previous year, use LAG and DIF functions with
a lagging period equal to the number of periods in a year. (For quarterly data, use LAG4 and DIF4. For
monthly data, use LAG12 and DIF12.)

For example, the following statements compute monthly percent change in CPI from the same month one
year ago:

data uscpi;
set uscpi;
pctchng = dif12( cpi ) / lag12( cpi ) * 100;
label pctchng = "Percent Change from One Year Ago";

run;

To compute year-over-year percent change measured at a given period within the year, subset the series of
percent changes from the same period in the previous year to form a yearly data set. Use an IF or WHERE
statement to select observations for the period within each year on which the year-over-year changes are
based.

For example, the following statements compute year-over-year percent change in CPI from December of the
previous year to December of the current year:
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data annual;
set uscpi;
pctchng = dif12( cpi ) / lag12( cpi ) * 100;
label pctchng = "Percent Change: December to December";
if month( date ) = 12;
format date year4.;

run;

Computing Percent Change in Yearly Averages

To compute changes in yearly averages, first aggregate the series to an annual series by using the EXPAND
procedure, and then compute the percent change of the annual series. (For more information about PROC
EXPAND, see Chapter 16, “The EXPAND Procedure.”)

For example, the following statements compute percent changes in the annual averages of CPI:

proc expand data=uscpi out=annual from=month to=year;
convert cpi / observed=average method=aggregate;

run;

data annual;
set annual;
pctchng = dif( cpi ) / lag( cpi ) * 100;
label pctchng = "Percent Change in Yearly Averages";

run;

It is also possible to compute percent change in the average over the most recent yearly span. For example,
the following statements compute monthly percent change in the average of CPI over the most recent 12
months from the average over the previous 12 months:

data uscpi;
retain sum12 0;
drop sum12 ave12 cpi_lag12;
set uscpi;
sum12 = sum12 + cpi;
cpi_lag12 = lag12( cpi );
if cpi_lag12 ^= . then sum12 = sum12 - cpi_lag12;
if lag11( cpi ) ^= . then ave12 = sum12 / 12;
pctchng = dif12( ave12 ) / lag12( ave12 ) * 100;
label pctchng = "Percent Change in 12 Month Moving Ave.";

run;

This example is a complex use of LAG and DIF functions that requires care in handling the initialization of
the moving-window averaging process. The LAG12 of CPI is checked for missing values to determine when
more than 12 values have been accumulated, and older values must be removed from the moving sum. The
LAG11 of CPI is checked for missing values to determine when at least 12 values have been accumulated;
AVE12 will be missing when LAG11 of CPI is missing. The DROP statement prevents temporary variables
from being added to the data set.

Note that the DIF and LAG functions must execute for every observation, or the queues of remembered
values will not operate correctly. The CPI_LAG12 calculation must be separate from the IF statement. The
PCTCHNG calculation must not be conditional on the IF statement.

The EXPAND procedure provides an alternative way to compute moving averages.
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Leading Series
Although the SAS System does not provide a function to look ahead at the “next” value of a series, there are
a couple of ways to perform this task.

The most direct way to compute leads is to use the EXPAND procedure. For example:

proc expand data=uscpi out=uscpi method=none;
id date;
convert cpi=cpi_lead1 / transform=( lead 1 );
convert cpi=cpi_lead2 / transform=( lead 2 );

run;

Another way to compute lead series in SAS software is by lagging the time ID variable, renaming the series,
and merging the result data set back with the original data set.

For example, the following statements add the variable CPI_LEAD to the USCPI data set. The variable
CPI_LEAD contains the value of CPI in the following month. (The value of CPI_LEAD is missing for the last
observation, of course.)

data temp;
set uscpi;
keep date cpi;
rename cpi = cpi_lead;
date = lag( date );
if date ^= .;

run;

data uscpi;
merge uscpi temp;
by date;

run;

To compute leads at different lead lengths, you must create one temporary data set for each lead length. For
example, the following statements compute CPI_LEAD1 and CPI_LEAD2, which contain leads of CPI for 1
and 2 periods, respectively:

data temp1(rename=(cpi=cpi_lead1))
temp2(rename=(cpi=cpi_lead2));

set uscpi;
keep date cpi;
date = lag( date );
if date ^= . then output temp1;
date = lag( date );
if date ^= . then output temp2;

run;

data uscpi;
merge uscpi temp1 temp2;
by date;

run;
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Summing Series
Simple cumulative sums are easy to compute using SAS sum statements. The following statements show
how to compute the running sum of variable X in data set A, adding XSUM to the data set:

data a;
set a;
xsum + x;

run;

The SAS sum statement automatically retains the variable XSUM and initializes it to 0, and the sum statement
treats missing values as 0. The sum statement is equivalent to using a RETAIN statement and the SUM
function. The previous example could also be written as follows:

data a;
set a;
retain xsum;
xsum = sum( xsum, x );

run;

You can also use the EXPAND procedure to compute summations. For example:

proc expand data=a out=a method=none;
convert x=xsum / transform=( sum );

run;

Like differencing, summation can be done at different lags and can be repeated to produce higher-order
sums. To compute sums over observations separated by lags greater than 1, use the LAG and SUM functions
together, and use a RETAIN statement that initializes the summation variable to zero.

For example, the following statements add the variable XSUM2 to data set A. XSUM2 contains the sum of
every other observation, with even-numbered observations containing a cumulative sum of values of X from
even observations, and odd-numbered observations containing a cumulative sum of values of X from odd
observations.

data a;
set a;
retain xsum2 0;
xsum2 = sum( lag( xsum2 ), x );

run;

Assuming that A is a quarterly data set, the following statements compute running sums of X for each quarter.
XSUM4 contains the cumulative sum of X for all observations for the same quarter as the current quarter.
Thus, for a first-quarter observation, XSUM4 contains a cumulative sum of current and past first-quarter
values.

data a;
set a;
retain xsum4 0;
xsum4 = sum( lag3( xsum4 ), x );

run;

To compute higher-order sums, repeat the preceding process and sum the summation variable. For example,
the following statements compute the first and second summations of X:
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data a;
set a;
xsum + x;
x2sum + xsum;

run;

The following statements compute the second order four-period sum of X:

data a;
set a;
retain xsum4 x2sum4 0;
xsum4 = sum( lag3( xsum4 ), x );
x2sum4 = sum( lag3( x2sum4 ), xsum4 );

run;

You can also use PROC EXPAND to compute cumulative statistics and moving window statistics. For more
information, see Chapter 16, “The EXPAND Procedure.”

Transforming Time Series
It is often useful to transform time series for analysis or forecasting. Many time series analysis and forecasting
methods are most appropriate for time series with an unrestricted range, a linear trend, and a constant variance.
Series that do not conform to these assumptions can often be transformed to series for which the methods are
appropriate.

Transformations can be useful for the following:

� range restrictions. Many time series cannot have negative values or can be limited to a maximum
possible value. You can often create a transformed series with an unbounded range.

� nonlinear trends. Many economic time series grow exponentially. Exponential growth corresponds to
linear growth in the logarithms of the series.

� series variability that changes over time. Various transformations can be used to stabilize the variance.

� nonstationarity. The %DFTEST macro can be used to test a series for nonstationarity which can then
be removed by differencing.
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Log Transformation
The logarithmic transformation is often useful for series that must be greater than zero and that grow
exponentially. For example, Figure 4.11 shows a plot of an airline passenger miles series. Notice that the
series has exponential growth and the variability of the series increases over time. Airline passenger miles
must also be zero or greater.

Figure 4.11 Airline Series

The following statements compute the logarithms of the airline series:

data lair;
set sashelp.air;
logair = log( air );

run;

Figure 4.12 shows a plot of the log-transformed airline series. Notice that the log series has a linear trend and
constant variance.
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Figure 4.12 Log Airline Series

The %LOGTEST macro can help you decide if a log transformation is appropriate for a series. For more
information about the %LOGTEST macro, see Chapter 6, “SAS Macros and Functions.”

Other Transformations
The Box-Cox transformation is a general class of transformations that includes the logarithm as a special
case. The %BOXCOXAR macro can be used to find an optimal Box-Cox transformation for a time series.
For more information about the %BOXCOXAR macro, see Chapter 6.

The logistic transformation is useful for variables with both an upper and a lower bound, such as market shares.
The logistic transformation is useful for proportions, percent values, relative frequencies, or probabilities.
The logistic function transforms values between 0 and 1 to values that can range from –1 to +1.

For example, the following statements transform the variable SHARE from percent values to an unbounded
range:
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data a;
set a;
lshare = log( share / ( 100 - share ) );

run;

Many other data transformation can be used. You can create virtually any desired data transformation using
DATA step statements.

The EXPAND Procedure and Data Transformations
The EXPAND procedure provides a convenient way to transform series. For example, the following
statements add variables for the logarithm of AIR and the logistic of SHARE to data set A:

proc expand data=a out=a method=none;
convert air=logair / transform=( log );
convert share=lshare / transform=( / 100 logit );

run;

For a complete list of transformations supported by PROC EXPAND, see Table 16.2 in Chapter 16, “The
EXPAND Procedure.”

Manipulating Time Series Data Sets
This section discusses merging, splitting, and transposing time series data sets and interpolating time series
data to a higher or lower sampling frequency.

Splitting and Merging Data Sets
In some cases, you might want to separate several time series that are contained in one data set into different
data sets. In other cases, you might want to combine time series from different data sets into one data set.

To split a time series data set into two or more data sets that contain subsets of the series, use a DATA step to
create the new data sets and use the KEEP= data set option to control which series are included in each new
data set. The following statements split the USPRICE data set shown in a previous example into two data
sets, USCPI and USPPI:

data uscpi(keep=date cpi)
usppi(keep=date ppi);
set usprice;

run;

If the series have different time ranges, you can subset the time ranges of the output data sets accordingly.
For example, if you know that CPI in USPRICE has the range August 1990 through the end of the data set,
while PPI has the range from the beginning of the data set through June 1991, you could write the previous
example as follows:
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data uscpi(keep=date cpi)
usppi(keep=date ppi);
set usprice;
if date >= '1aug1990'd then output uscpi;
if date <= '1jun1991'd then output usppi;

run;

To combine time series from different data sets into one data set, list the data sets to be combined in a
MERGE statement and specify the dating variable in a BY statement. The following statements show how to
combine the USCPI and USPPI data sets to produce the USPRICE data set. It is important to use the BY
DATE statement so that observations are matched by time before merging.

data usprice;
merge uscpi usppi;
by date;

run;

Transposing Data Sets
The TRANSPOSE procedure is used to transpose data sets from one form to another. The TRANSPOSE
procedure can transpose variables and observations, or transpose variables and observations within BY
groups. This section discusses some applications of the TRANSPOSE procedure relevant to time series data
sets. For more information about PROC TRANSPOSE, see Base SAS Procedures Guide.

Transposing Cross-Sectional Dimensions

The following statements transpose the variable CPI in the CPICITY data set shown in a previous example
from time series cross-sectional form to a standard form time series data set. (Only a subset of the data shown
in the previous example is used here.) Note that the method shown in this example works only for a single
variable.

title "Original Data Set";
proc print data=cpicity;
run;

proc sort data=cpicity out=temp;
by date city;

run;

proc transpose data=temp out=citycpi(drop=_name_);
var cpi;
id city;
by date;

run;

title "Transposed Data Set";
proc print data=citycpi;
run;

The names of the variables in the transposed data sets are taken from the city names in the ID variable CITY.
The original and the transposed data sets are shown in Figure 4.13 and Figure 4.14.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Figure 4.13 Original Data Sets

Original Data Set

Obs city date cpi cpi_lag

1 Chicago JAN90 128.1 .

2 Chicago FEB90 129.2 128.1

3 Chicago MAR90 129.5 129.2

4 Chicago APR90 130.4 129.5

5 Chicago MAY90 130.4 130.4

6 Chicago JUN90 131.7 130.4

7 Chicago JUL90 132.0 131.7

8 Los Angeles JAN90 132.1 .

9 Los Angeles FEB90 133.6 132.1

10 Los Angeles MAR90 134.5 133.6

11 Los Angeles APR90 134.2 134.5

12 Los Angeles MAY90 134.6 134.2

13 Los Angeles JUN90 135.0 134.6

14 Los Angeles JUL90 135.6 135.0

15 New York JAN90 135.1 .

16 New York FEB90 135.3 135.1

17 New York MAR90 136.6 135.3

18 New York APR90 137.3 136.6

19 New York MAY90 137.2 137.3

20 New York JUN90 137.1 137.2

21 New York JUL90 138.4 137.1

Figure 4.14 Transposed Data Sets

Transposed Data Set

Obs date Chicago Los_Angeles New_York

1 JAN90 128.1 132.1 135.1

2 FEB90 129.2 133.6 135.3

3 MAR90 129.5 134.5 136.6

4 APR90 130.4 134.2 137.3

5 MAY90 130.4 134.6 137.2

6 JUN90 131.7 135.0 137.1

7 JUL90 132.0 135.6 138.4

The following statements transpose the CITYCPI data set back to the original form of the CPICITY data
set. The variable _NAME_ is added to the data set to tell PROC TRANSPOSE the name of the variable in
which to store the observations in the transposed data set. (If the (DROP=_NAME_ _LABEL_) option were
omitted from the first PROC TRANSPOSE step, this would not be necessary. PROC TRANSPOSE assumes
ID _NAME_ by default.)

The NAME=CITY option in the PROC TRANSPOSE statement causes PROC TRANSPOSE to store the
names of the transposed variables in the variable CITY. Because PROC TRANSPOSE recodes the values of
the CITY variable to create valid SAS variable names in the transposed data set, the values of the variable
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CITY in the retransposed data set are not the same as in the original. The retransposed data set is shown in
Figure 4.15.

data temp;
set citycpi;
_name_ = 'CPI';

run;

proc transpose data=temp out=retrans name=city;
by date;

run;

proc sort data=retrans;
by city date;

run;

title "Retransposed Data Set";
proc print data=retrans;
run;

Figure 4.15 Data Set Transposed Back to Original Form

Retransposed Data Set

Obs date city CPI

1 JAN90 Chicago 128.1

2 FEB90 Chicago 129.2

3 MAR90 Chicago 129.5

4 APR90 Chicago 130.4

5 MAY90 Chicago 130.4

6 JUN90 Chicago 131.7

7 JUL90 Chicago 132.0

8 JAN90 Los_Angeles 132.1

9 FEB90 Los_Angeles 133.6

10 MAR90 Los_Angeles 134.5

11 APR90 Los_Angeles 134.2

12 MAY90 Los_Angeles 134.6

13 JUN90 Los_Angeles 135.0

14 JUL90 Los_Angeles 135.6

15 JAN90 New_York 135.1

16 FEB90 New_York 135.3

17 MAR90 New_York 136.6

18 APR90 New_York 137.3

19 MAY90 New_York 137.2

20 JUN90 New_York 137.1

21 JUL90 New_York 138.4
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Time Series Interpolation
The EXPAND procedure interpolates time series. This section provides a brief summary of the use of PROC
EXPAND for different kinds of time series interpolation problems. Most of the issues discussed in this
section are explained in greater detail in Chapter 16.

By default, the EXPAND procedure performs interpolation by first fitting cubic spline curves to the available
data and then computing needed interpolating values from the fitted spline curves. Other interpolation
methods can be requested.

Note that interpolating values of a time series does not add any real information to the data because the
interpolation process is not the same process that generated the other (nonmissing) values in the series. While
time series interpolation can sometimes be useful, great care is needed in analyzing time series that contain
interpolated values.

Interpolating Missing Values
To use the EXPAND procedure to interpolate missing values in a time series, specify the input and output data
sets in the PROC EXPAND statement, and specify the time ID variable in an ID statement. For example, the
following statements cause PROC EXPAND to interpolate values for missing values of all numeric variables
in the data set USPRICE:

proc expand data=usprice out=interpl;
id date;

run;

Interpolated values are computed only for embedded missing values in the input time series. Missing values
before or after the range of a series are ignored by the EXPAND procedure.

In the preceding example, PROC EXPAND assumes that all series are measured at points in time given
by the value of the ID variable. In fact, the series in the USPRICE data set are monthly averages. PROC
EXPAND can produce a better interpolation if this is taken into account. The following example uses the
FROM=MONTH option to tell PROC EXPAND that the series is monthly and uses the CONVERT statement
with the OBSERVED=AVERAGE to specify that the series values are averages over each month:

proc expand data=usprice out=interpl
from=month;

id date;
convert cpi ppi / observed=average;

run;
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Interpolating to a Higher or Lower Frequency
You can use PROC EXPAND to interpolate values of time series at a higher or lower sampling frequency
than the input time series. To change the periodicity of time series, specify the time interval of the input data
set with the FROM= option, and specify the time interval for the desired output frequency with the TO=
option. For example, the following statements compute interpolated weekly values of the monthly CPI and
PPI series:

proc expand data=usprice out=interpl
from=month to=week;

id date;
convert cpi ppi / observed=average;

run;

Interpolating between Stocks and Flows, Levels and Rates
A distinction is made between variables that are measured at points in time and variables that represent totals
or averages over an interval. Point-in-time values are often called stocks or levels. Variables that represent
totals or averages over an interval are often called flows or rates.

For example, the annual series Gross National Product represents the final goods production of over the year
and also the yearly average rate of that production. However, the monthly variable Inventory represents the
cost of a stock of goods at the end of the month.

The EXPAND procedure can convert between point-in-time values and period average or total values. To
convert observation characteristics, specify the input and output characteristics with the OBSERVED= option
in the CONVERT statement. For example, the following statements use the monthly average price index
values in USPRICE to compute interpolated estimates of the price index levels at the midpoint of each month:

proc expand data=usprice out=midpoint
from=month;

id date;
convert cpi ppi / observed=(average,middle);

run;



120 F Chapter 4: Working with Time Series Data

Reading Time Series Data
Time series data can be coded in many different ways. The SAS System can read time series data recorded
in almost any form. Earlier sections of this chapter show how to read time series data coded in several
commonly used ways. This section shows how to read time series data from data records coded in two other
commonly used ways not previously introduced.

Several time series databases distributed by major data vendors can be read into SAS data sets by the
DATASOURCE procedure. For more information, see Chapter 13, “The DATASOURCE Procedure.”

The SASECRSP, SASEFAME, and SASEHAVR interface engines enable SAS users to access and process
time series data in CRSPAccess data files, FAME databases, and Haver Analytics Data Link Express
(DLX) databases, respectively. For more information, see Chapter 47, “The SASECRSP Interface Engine,”
Chapter 48, “The SASEFAME Interface Engine,” and Chapter 50, “The SASEHAVR Interface Engine.”

Reading a Simple List of Values
Time series data can be coded as a simple list of values without dating information and with an arbitrary
number of observations on each data record. In this case, the INPUT statement must use the trailing “@@”
option to retain the current data record after reading the values for each observation, and the time ID variable
must be generated with programming statements.

For example, the following statements read the USPRICE data set from data records that contain pairs of
values for CPI and PPI. This example assumes you know that the first pair of values is for June 1990.

data usprice;
input cpi ppi @@;
date = intnx( 'month', '1jun1990'd, _n_-1 );
format date monyy7.;

datalines;
129.9 114.3 130.4 114.5 131.6 116.5
132.7 118.4 133.5 120.8 133.8 120.1 133.8 118.7
134.6 119.0 134.8 117.2 135.0 116.2 135.2 116.0
135.6 116.5 136.0 116.3 136.2 116.0
;

Reading Fully Described Time Series in Transposed Form
Data for several time series can be coded with separate groups of records for each time series. Data files
coded this way are transposed from the form required by SAS procedures. Time series data can also be coded
with descriptive information about the series included with the data records.

The following example reads time series data for the USPRICE data set coded with separate groups of records
for each series. The data records for each series consist of a series description record and one or more value
records. The series description record gives the series name, starting month and year of the series, number of
values in the series, and a series label. The value records contain the observations of the time series.

The data are first read into a temporary data set that contains one observation for each value of each series.
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data temp;
length _name_ $8 _label_ $40;
keep _name_ _label_ date value;
format date monyy.;
input _name_ month year nval _label_ &;
date = mdy( month, 1, year );
do i = 1 to nval;

input value @;
output;
date = intnx( 'month', date, 1 );

end;
datalines;
cpi 8 90 12 Consumer Price Index
131.6 132.7 133.5 133.8 133.8 134.6 134.8 135.0
135.2 135.6 136.0 136.2
ppi 6 90 13 Producer Price Index
114.3 114.5 116.5 118.4 120.8 120.1 118.7 119.0
117.2 116.2 116.0 116.5 116.3
;

The following statements sort the data set by date and series name, and the TRANSPOSE procedure is used
to transpose the data into a standard form time series data set:

proc sort data=temp;
by date _name_;

run;

proc transpose data=temp out=usprice(drop=_name_);
by date;
var value;

run;

proc contents data=usprice;
run;

proc print data=usprice;
run;

The final data set is shown in Figure 4.17.

Figure 4.16 Contents of USPRICE Data Set

Retransposed Data Set

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

3 cpi Num 8 Consumer Price Index

1 date Num 8 MONYY.

2 ppi Num 8 Producer Price Index
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Figure 4.17 Listing of USPRICE Data Set

Retransposed Data Set

Obs date ppi cpi

1 JUN90 114.3 .

2 JUL90 114.5 .

3 AUG90 116.5 131.6

4 SEP90 118.4 132.7

5 OCT90 120.8 133.5

6 NOV90 120.1 133.8

7 DEC90 118.7 133.8

8 JAN91 119.0 134.6

9 FEB91 117.2 134.8

10 MAR91 116.2 135.0

11 APR91 116.0 135.2

12 MAY91 116.5 135.6

13 JUN91 116.3 136.0

14 JUL91 . 136.2
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Overview
This chapter summarizes the time intervals, date and datetime informats, date and datetime formats, and date,
time, and datetime functions available in SAS software. The use of these features is explained in Chapter 4,
“Working with Time Series Data.” The material in this chapter is also contained in SAS Programmers Guide:
Essentials and Base SAS Procedures Guide. Because these features are useful for work with time series data,
documentation of these features is consolidated and repeated here for easy reference.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Time Intervals
This section provides a reference for the different kinds of time intervals supported by SAS software, but it
does not cover how they are used. For an introduction to the use of time intervals, see Chapter 4, “Working
with Time Series Data.”

Some interval names are used with SAS date values, while other interval names are used with SAS date-
time values. The interval names used with SAS date values are YEAR, SEMIYEAR, QTR, MONTH,
SEMIMONTH, TENDAY, WEEK, WEEKDAY, DAY, YEARV, R445YR, R454YR, R544YR, R445QTR,
R454QTR, R544QTR, R445MON, R454MON, R544MON, and WEEKV. The interval names used with
SAS datetime or time values are HOUR, MINUTE, and SECOND. Various abbreviations of these names are
also allowed, as described in the section “Summary of Interval Types” on page 127.

Interval names for use with SAS date values can be prefixed with 'DT' to construct interval names for
use with SAS datetime values. The interval names DTYEAR, DTSEMIYEAR, DTQTR, DTMONTH,
DTSEMIMONTH, DTTENDAY, DTWEEK, DTWEEKDAY, DTDAY, DTYEARV, DTR445YR, DTR454YR,
DTR544YR, DTR445QTR, DTR454QTR, DTR544QTR, DTR445MON, DTR454MON, DTR544MON,
and DTWEEKV are used with SAS datetime values.

Constructing Interval Names
Multipliers and shift indexes can be used with the basic interval names to construct more complex interval
specifications. The general form of an interval name is as follows:

NAMEn.s

The three parts of the interval name are as follows:

NAME the name of the basic interval type. For example, YEAR specifies yearly intervals.

n an optional multiplier that specifies that the interval is a multiple of the period of the
basic interval type. For example, the interval YEAR2 consists of two-year (biennial)
periods.

s an optional starting subperiod index that specifies that the intervals are shifted to
later starting points. For example, YEAR.3 specifies yearly periods shifted to start
on the first of March of each calendar year and to end in February of the following
year.

Both the multiplier n and the shift index s are optional and default to 1. For example, YEAR, YEAR1,
YEAR.1, and YEAR1.1 are all equivalent ways of specifying ordinary calendar years.

To test for a valid interval specification, use the INTTEST function:

interval = 'MONTH3.2';
valid = INTTEST( interval );
valid = INTTEST( 'YEAR4');
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INTTEST returns a value of 0 if the argument is not a valid interval specification and 1 if the argument is a
valid interval specification. The INTTEST function can also be used in a DATA step to test an interval before
calling an interval function:

valid = INTTEST( interval );
if ( valid = 1 ) then do;

end_date = INTNX( interval, date, 0, 'E' );
Status = 'Success';

end;
if ( valid = 0 ) then Status = 'Failure';

For more information about the INTTEST function, see the SAS Functions and CALL Routines: Reference.

Shifted Intervals
Different kinds of intervals are shifted by different subperiods:

� YEAR, SEMIYEAR, QTR, and MONTH intervals are shifted by calendar months.

� WEEK and DAY intervals are shifted by days.

� SEMIMONTH intervals are shifted by semimonthly periods.

� TENDAY intervals are shifted by 10-day periods.

� YEARV intervals are shifted by WEEKV intervals.

� R445YR, R445QTR, and R445MON intervals are shifted by R445MON intervals.

� R454YR, R454QTR, and R454MON intervals are shifted by R454MON intervals.

� R544YR, R544QTR, and R544MON intervals are shifted by R544MON intervals.

� WEEKV intervals are shifted by days.

� WEEKDAY intervals are shifted by weekdays.

� HOUR intervals are shifted by hours.

� MINUTE intervals are shifted by minutes.

� SECOND intervals are shifted by seconds.

The INTSHIFT function returns the shift interval:

interval = 'MONTH3.2';
shift_interval = INTSHIFT( interval );

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
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In this example, the value of shift_interval is 'MONTH'. For more information about the INTSHIFT function,
see the SAS Functions and CALL Routines: Reference.

If a subperiod is specified, the shift index cannot be greater than the number of subperiods in the whole
interval. For example, you can use YEAR2.24, but YEAR2.25 is an error because there is no 25th month in a
two-year interval.

For interval types that shift by subperiods that are the same as the basic interval type, only multiperiod
intervals can be shifted. For example, MONTH type intervals shift by MONTH subintervals; thus, monthly
intervals cannot be shifted because there is only one month in MONTH. However, bimonthly intervals can be
shifted because there are two MONTH intervals in each MONTH2 interval. The interval name MONTH2.2
specifies bimonthly periods that start on the first day of even-numbered months.

Beginning Dates and Datetimes of Intervals
Intervals that represent divisions of a year begin with the start of the year (1 January). YEARV, R445YR,
R454YR, and R544YR intervals begin with the first week of the International Organization for Standardization
(ISO) year, the Monday on or immediately preceding January 4th. R445QTR, R454QTR, and R544QTR
intervals begin with the 1st, 14th, 27th, and 40th weeks of the ISO year. MONTH2 periods begin with
odd-numbered months (January, March, May, and so on).

Likewise, intervals that represent divisions of a day begin with the start of the day (midnight). Thus, HOUR8.7
intervals divide the day into the periods 06:00 to 14:00, 14:00 to 22:00, and 22:00 to 06:00.

Intervals that do not nest within years or days begin relative to the SAS date or datetime value 0. The arbitrary
reference time of midnight on January 1, 1960, is used as the origin for nonshifted intervals, and shifted
intervals are defined relative to that reference point. For example, MONTH13 defines the intervals that begin
January 1, 1960, February 1, 1961, March 1, 1962, and so on, in addition to the intervals that begin December
1, 1958, November 1, 1957, and so on before the base date January 1, 1960.

Similarly, the WEEK2 interval begins relative to the Sunday of the week of January 1, 1960. The interval
specification WEEK6.13 defines six-week periods that start on second Fridays, and the convention of counting
relative to the period that contains January 1, 1960, indicates the starting date or datetime of the interval
closest to January 1, 1960, that corresponds to the second Fridays of six-week intervals.

Intervals always begin on the date or datetime defined by the base interval name, the multiplier, and the shift
value. The end of the interval immediately precedes the beginning of the next interval. However, an interval
can be identified by any date or datetime value between its starting and ending values, inclusive. For more
information about generating identifying dates for intervals, see the section “Alignment of SAS Dates” on
page 142.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
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Summary of Interval Types
The interval types are summarized as follows:

YEAR
specifies yearly intervals. Abbreviations are YEAR, YEARS, YEARLY, YR, ANNUAL, ANNUALLY,
and ANNUALS. The starting subperiod s is in months (MONTH).

YEARV
specifies ISO 8601 yearly intervals. The ISO 8601 year starts on the Monday on or immediately
preceding January 4th. Note that it is possible for the ISO 8601 year to start in December of the
preceding year. Also, some ISO 8601 years contain a leap week. For further discussion of ISO weeks,
see Technical Committee ISO/TC 154 (Processes, Data Elements, and Documents in Commerce,
Industry, and Administration) (2004). The starting subperiod s is in ISO 8601 weeks (WEEKV).

R445YR
is the same as YEARV except that the starting subperiod s is in retail 4-4-5 months (R445MON).

R454YR
is the same as YEARV except that the starting subperiod s is in retail 4-5-4 months (R454MON). For a
discussion of the retail 4-5-4 calendar, see National Retail Federation (2007).

R544YR
is the same as YEARV except that the starting subperiod s is in retail 5-4-4 months (R544MON).

SEMIYEAR
specifies semiannual intervals (every six months). Abbreviations are SEMIYEAR, SEMIYEARS,
SEMIYEARLY, SEMIYR, SEMIANNUAL, and SEMIANN.

The starting subperiod s is in months (MONTH). For example, SEMIYEAR.3 intervals are March–
August and September–February.

QTR
specifies quarterly intervals (every three months). Abbreviations are QTR, QUARTER, QUARTERS,
QUARTERLY, QTRLY, and QTRS. The starting subperiod s is in months (MONTH).

R445QTR
specifies retail 4-4-5 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters contain a
leap week. The starting subperiod s is in retail 4-4-5 months (R445MON).

R454QTR
specifies retail 4-5-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters contain a
leap week. For a discussion of the retail 4-5-4 calendar, see National Retail Federation (2007). The
starting subperiod s is in retail 4-5-4 months (R454MON).

R544QTR
specifies retail 5-4-4 quarterly intervals (every 13 ISO 8601 weeks). Some fourth quarters contain a
leap week. The starting subperiod s is in retail 5-4-4 months (R544MON).
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MONTH
specifies monthly intervals. Abbreviations are MONTH, MONTHS, MONTHLY, and MON. The
starting subperiod s is in months (MONTH). For example, MONTH2.2 intervals are February–March,
April–May, June–July, August–September, October–November, and December–January of the follow-
ing year.

R445MON
specifies retail 4-4-5 monthly intervals. The 3rd, 6th, 9th, and 12th months are five ISO 8601 weeks
long with the exception that some 12th months contain leap weeks. All other months are four ISO 8601
weeks long. R445MON intervals begin with the 1st, 5th, 9th, 14th, 18th, 22nd, 27th, 31st, 35th, 40th,
44th, and 48th weeks of the ISO year. The starting subperiod s is in retail 4-4-5 months (R445MON).

R454MON
specifies retail 4-5-4 monthly intervals. The 2nd, 5th, 8th, and 11th months are five ISO 8601 weeks
long. All other months are four ISO 8601 weeks long with the exception that some 12th months contain
leap weeks. R454MON intervals begin with the 1st, 5th, 10th, 14th, 18th, 23rd, 27th, 31st, 36th, 40th,
44th, and 49th weeks of the ISO year. For a discussion of the retail 4-5-4 calendar, see National Retail
Federation (2007). The starting subperiod s is in retail 4-5-4 months (R454MON).

R544MON
specifies retail 5-4-4 monthly intervals. The 1st, 4th, 7th, and 10th months are five ISO 8601 weeks
long. All other months are four ISO 8601 weeks long with the exception that some 12th months contain
leap weeks. R544MON intervals begin with the 1st, 6th, 10th, 14th, 19th, 23rd, 27th, 32nd, 36th, 40th,
45th, and 49th weeks of the ISO year. The starting subperiod s is in retail 5-4-4 months (R544MON).

SEMIMONTH
specifies semimonthly intervals. SEMIMONTH breaks each month into two periods, starting on
the 1st and 16th days. Abbreviations are SEMIMONTH, SEMIMONTHS, SEMIMONTHLY, and
SEMIMON. The starting subperiod s is in SEMIMONTH periods. For example, SEMIMONTH2.2
specifies intervals from the 16th of one month through the 15th of the next month.

TENDAY
specifies 10-day intervals. TENDAY breaks the month into three periods, the 1st through the 10th day
of the month, the 11th through the 20th day of the month, and the remainder of the month. (TENDAY
is a special interval typically used for reporting automobile sales data.) The starting subperiod s is in
TENDAY periods. For example, TENDAY4.2 defines 40-day periods that start at the second TENDAY
period.

WEEK
specifies weekly intervals of seven days. Abbreviations are WEEK, WEEKS, and WEEKLY. The
starting subperiod s is in days (DAY), with the days of the week numbered as 1=Sunday, 2=Monday,
3=Tuesday, 4=Wednesday, 5=Thursday, 6=Friday, and 7=Saturday. For example, WEEK.7 means
weekly with Saturday as the first day of the week.

WEEKV
specifies ISO 8601 weekly intervals of seven days. Each week starts on Monday. The starting
subperiod s is in days (DAY). Note that WEEKV differs from WEEK in that WEEKV.1 starts on
Monday, WEEKV.2 starts on Tuesday, and so forth.
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WEEKDAY

WEEKDAYdW

WEEKDAYddW

WEEKDAYdddW
specifies daily intervals with weekend days included in the preceding weekday. Note that for a five-day
work week that starts on Monday, the appropriate interval is WEEKDAY5.2. Abbreviations are
WEEKDAY and WEEKDAYS. The starting subperiod s is in weekdays (WEEKDAY).

The WEEKDAY interval is the same as DAY except that weekend days are absorbed into the preceding
weekday. Thus, there are five WEEKDAY intervals in a calendar week: Monday, Tuesday, Wednesday,
Thursday, and the three-day period Friday-Saturday-Sunday.

The default weekend days are Saturday and Sunday, but any one to six weekend days can be listed
after the WEEKDAY string and followed by a W. Weekend days are specified as '1' for Sunday,
'2' for Monday, and so forth. For example, WEEKDAY67W specifies a Friday-Saturday weekend.
WEEKDAY1W specifies a six-day work week with a Sunday weekend. WEEKDAY17W is the same
as WEEKDAY.

DAY
specifies daily intervals. Abbreviations are DAY, DAYS, and DAILY. The starting subperiod s is in
days (DAY).

HOUR
specifies hourly intervals. Aliases are HOUR, DTHOUR, HOURS, DTHOURS, HOURLY,
DTHOURLY, HR, and DTHR. The starting subperiod s is in hours (HOUR).

MINUTE
specifies minute intervals. Aliases are MINUTE, DTMINUTE, MINUTES, DTMINUTES, MIN, and
DTMIN. The starting subperiod s is in minutes (MINUTE).

SECOND
specifies second intervals. Aliases are SECOND, DTSECOND, SECONDS, DTSECONDS, SEC and
DTSEC. The starting subperiod s is in seconds (SECOND).

Examples of Interval Specifications
Table 5.1 shows examples of different kinds of interval specifications.

Table 5.1 Examples of Intervals

Name Description of Interval

YEAR Years that start in January
YEAR.10 Years that start in October
YEAR2.7 Biennial intervals that start in July of even years
YEAR2.19 Biennial intervals that start in July of odd years
YEAR4.11 Four-year intervals that start in November of leap years (frequency

of U.S. presidential elections)
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Table 5.1 continued

Name Description of Interval

YEAR4.35 Four-year intervals that start in November of even years between
leap years (frequency of U.S. midterm elections)

YEARV Years that start on the Monday on or immediately preceding
January 4th

YEARV.2 Years that start on the Monday immediately following January 4th
R445MON Months that start on the 1st, 5th, 9th, 14th, 18th, 22nd, 27th, 31st,

35th, 40th, 44th, and 48th Monday of the year. The 1st Monday is
the Monday on or immediately preceding January 4th

R445MON3 Three-month intervals that start on the 1st, 14th, 27th, and 40th
Monday of the year. This is equivalent to R445QTR

R445MON3.2 Three-month intervals that start on the 5th, 18th, 31th, and 44th
Monday of the year. This is equivalent to R445QTR.2

WEEK Weekly intervals that start on Sundays
WEEK2 Biweekly intervals that start on first Sundays
WEEK1.1 Same as WEEK
WEEK.2 Weekly intervals that start on Mondays
WEEK6.3 Six-week intervals that start on first Tuesdays
WEEK6.11 Six-week intervals that start on second Wednesdays
WEEKDAY Daily with Friday-Saturday-Sunday counted as the same day

(five-day work week with a Saturday-Sunday weekend)
WEEKDAY17W Same as WEEKDAY
WEEKDAY5.2 Five weekdays that start on Monday. If WEEKDAY data are

accumulated into weekly data, the interval of the accumulated data
is WEEKDAY5.2

WEEKDAY67W Daily with Thursday-Friday-Saturday counted as the same day
(five-day work week with a Friday-Saturday weekend)

WEEKDAY1W Daily with Saturday-Sunday counted as the same day (six-day
work week with a Sunday weekend)

WEEKDAY3.2 Three-weekday intervals (with Friday-Saturday-Sunday counted as
one weekday) with the cycle three-weekday periods aligned to
Monday, January 4, 1960

HOUR8.7 Eight-hour intervals that start at 6 a.m., 2 p.m., and 10 p.m. (might
be used for work shifts)
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Custom Time Intervals
The standard time intervals described in the previous sections do not always fit the data. For example, you
might want to use fiscal months that begin on the 10th of each month, but the MONTH interval begins on
the 1st of each month. Or you might collect data hourly for a business that is closed at night, but using the
DTHOUR interval results in gaps in the data that can cause problems in standard time series analysis. In
another case, you might wish to calculate the number of business days between dates, excluding holidays and
weekends, but holidays are counted when you use the INTCK function with the WEEKDAY interval. For
more information about the INTCK function, see “Interval Functions INTNX and INTCK” on page 96.

Time series can be analyzed using observation numbers as the identifying reference. However, it is often
desirable to maintain the time stamp for other types of modeling such as regression variables based on time
or reconciliation.

To address these issues, you can define custom intervals within a given SAS program. The use of custom
intervals requires the following two steps for each interval:

1 Associate a data set name with a custom interval name by using the INTERVALDS= system option. For
more information about the INTERVALDS= option, see the SAS System Options: Reference. The following
example associates the data set StoreHoursDS with the custom interval StoreHours:

options intervalds=(StoreHours=StoreHoursDS);

2 Create a data set that describes the custom interval. The data set must contain a BEGIN variable. It can
also contain an END and a SEASON variable. It should contain a FORMAT statement for the BEGIN
variable that specifies a SAS date, SAS datetime, or numeric format that matches the BEGIN variable data.
If the END variable is present, it should also be included in the FORMAT statement. A numeric format
that is not a SAS date or SAS datetime format indicates that the values are observation numbers. If the
END variable is not present, then the implied value of END at each observation is one less than the value
of BEGIN at the next observation.

The span of the custom interval data set should include any dates or times that are necessary for performing
calculations on the time series, including backcasting, forecasting, and other operations that might extend
beyond the series (such as filters).

After the two preceding steps have been completed, the custom interval can be specified in SAS procedures
and functions where a standard time interval can be specified.

The following DATA step creates the StoreHoursDS data set, which is appropriate for a business that is open
9 a.m. to 6 p.m. Monday through Friday and 9 a.m. to 1 p.m. Saturday:

options intervalds=(StoreHours=StoreHoursDS);
data StoreHoursDS(keep=BEGIN END);

start = '01JAN2009'D;
stop = '31DEC2009'D;
do date = start to stop;

dow = WEEKDAY(date);
datetime=dhms(date,0,0,0);

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lesysoptsref&docsetTarget=titlepage.htm
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if dow not in (1,7) then
do hour = 9 to 17;

begin=intnx('hour',datetime,hour,'b');
end=intnx('hour',datetime,hour,'e');
output;

end;
else if dow = 7 then

do hour = 9 to 12;
begin=intnx('hour',datetime,hour,'b');
end=intnx('hour',datetime,hour,'e');
output;

end;
end;
format BEGIN END DATETIME.;

run;

title 'Store Hours Custom Interval';
proc print data=StoreHoursDS(obs=18);
run;

The first 18 observations of the custom interval data set are shown in Figure 5.1.

Figure 5.1 Store Hours Custom Interval

Store Hours Custom Interval

Obs begin end

1 01JAN09:09:00:00 01JAN09:09:59:59

2 01JAN09:10:00:00 01JAN09:10:59:59

3 01JAN09:11:00:00 01JAN09:11:59:59

4 01JAN09:12:00:00 01JAN09:12:59:59

5 01JAN09:13:00:00 01JAN09:13:59:59

6 01JAN09:14:00:00 01JAN09:14:59:59

7 01JAN09:15:00:00 01JAN09:15:59:59

8 01JAN09:16:00:00 01JAN09:16:59:59

9 01JAN09:17:00:00 01JAN09:17:59:59

10 02JAN09:09:00:00 02JAN09:09:59:59

11 02JAN09:10:00:00 02JAN09:10:59:59

12 02JAN09:11:00:00 02JAN09:11:59:59

13 02JAN09:12:00:00 02JAN09:12:59:59

14 02JAN09:13:00:00 02JAN09:13:59:59

15 02JAN09:14:00:00 02JAN09:14:59:59

16 02JAN09:15:00:00 02JAN09:15:59:59

17 02JAN09:16:00:00 02JAN09:16:59:59

18 02JAN09:17:00:00 02JAN09:17:59:59

The following DATA step creates the FMDS data set to define a custom interval FiscalMonth, which is
appropriate for a business that uses fiscal months that start on the 10th of each month. The SAME alignment
option of the INTNX function specifies that the dates generated by the INTNX function are the same day
of the month as the date in the start variable. For more information about the INTNX function, see “SAS
Date, Time, and Datetime Functions” on page 142. The MONTH function assigns the month of the BEGIN
variable to the SEASON variable. This specifies monthly seasonality.
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options intervalds=(FiscalMonth=FMDS);
data FMDS(keep=BEGIN SEASON);

start = '10JAN1999'D;
stop = '10JAN2001'D;
nmonths = INTCK('MONTH',start,stop);
do i=0 to nmonths;

BEGIN = INTNX('MONTH',start,i,'S');
SEASON = MONTH(BEGIN);
output;

end;
format BEGIN DATE.;

run;

The difference between the custom FiscalMonth interval and a standard interval can be seen in the following
example. The output shown in Figure 5.2 compares how the data are accumulated. For the FiscalMonth
interval, values in the first nine days of the month are accumulated with the interval that begins in the previous
month. For the standard MONTH interval, values in the first nine days of the month are accumulated with
the calendar month.

data sales(keep=DATE sales);
do date = '01JAN2000'D to '31DEC2000'D;

month = MONTH(date);
dayofmonth = DAY(date);
sales = 0;
if ( dayofmonth lt 10 ) then sales = month/9;
output;

end;
format date monyy.;

run;

proc timeseries data=sales out=dataInFiscalMonths;
id DATE interval=FiscalMonth accumulate=total;
var sales;

run;

proc timeseries data=sales out=dataInStdMonths;
id DATE interval=Month accumulate=total;
var sales;

run;

data compare;
merge dataInFiscalMonths(rename=(sales=FM_sales))

dataInStdMonths(rename=(sales=SM_sales));
by DATE;

run;

title 'Standard Monthly Data vs. Fiscal Month Data';
proc print data=compare;
run;
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Figure 5.2 Fiscal Months Custom Interval

Standard Monthly Data vs. Fiscal Month Data

Obs date FM_sales SM_sales

1 10-DEC-1999 1 .

2 01-JAN-2000 . 1

3 10-JAN-2000 2 .

4 01-FEB-2000 . 2

5 10-FEB-2000 3 .

6 01-MAR-2000 . 3

7 10-MAR-2000 4 .

8 01-APR-2000 . 4

9 10-APR-2000 5 .

10 01-MAY-2000 . 5

11 10-MAY-2000 6 .

12 01-JUN-2000 . 6

13 10-JUN-2000 7 .

14 01-JUL-2000 . 7

15 10-JUL-2000 8 .

16 01-AUG-2000 . 8

17 10-AUG-2000 9 .

18 01-SEP-2000 . 9

19 10-SEP-2000 10 .

20 01-OCT-2000 . 10

21 10-OCT-2000 11 .

22 01-NOV-2000 . 11

23 10-NOV-2000 12 .

24 01-DEC-2000 . 12

25 10-DEC-2000 0 .

The next example uses custom intervals in the time function INTCK to omit holidays when counting business
days. The result is shown in Figure 5.3.

options intervalds=(BankingDays=BankDayDS);
data BankDayDS(keep=BEGIN);

start = '15DEC1998'D;
stop = '15JAN2002'D;
nwkdays = INTCK('WEEKDAY',start,stop);
do i = 0 to nwkdays;

BEGIN = INTNX('WEEKDAY',start,i);
year = YEAR(BEGIN);
if BEGIN ne HOLIDAY("NEWYEAR",year) and

BEGIN ne HOLIDAY("MLK",year) and
BEGIN ne HOLIDAY("USPRESIDENTS",year) and
BEGIN ne HOLIDAY("MEMORIAL",year) and
BEGIN ne HOLIDAY("USINDEPENDENCE",year) and
BEGIN ne HOLIDAY("LABOR",year) and
BEGIN ne HOLIDAY("COLUMBUS",year) and
BEGIN ne HOLIDAY("VETERANS",year) and
BEGIN ne HOLIDAY("THANKSGIVING",year) and
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BEGIN ne HOLIDAY("CHRISTMAS",year) then
output;

end;
format BEGIN DATE.;

run;

data CountDays;
start = '01JAN1999'D;
stop = '31DEC2001'D;
ActualDays = INTCK('DAYS',start,stop);
Weekdays = INTCK('WEEKDAYS',start,stop);
BankDays = INTCK('BankingDays',start,stop);
format start stop DATE.;

run;

title 'Methods of Counting Days';
proc print data=CountDays;
run;

Figure 5.3 Bank Days Custom Interval

Methods of Counting Days

Obs start stop ActualDays Weekdays BankDays

1 01JAN99 31DEC01 1095 781 757

Date and Datetime Informats
Table 5.2 lists some of the SAS date and datetime informats available to read date, time, and datetime values.
For a discussion of the use of date and datetime informats, see Chapter 4, “Working with Time Series Data.”
For a complete description of these informats, see SAS Programmers Guide: Essentials.

For each informat, Table 5.2 shows an example of a date or datetime value written in the style that the
informat is designed to read. You can specify the width of each informat by adding w. For informats that
include second values, you can specify the number of decimal digits for seconds by adding d. Table 5.2
shows the width range allowed by the informat and the default width. The date 17 October 1991 and the time
2:25:32 p.m. are used for the example in all cases.

Table 5.2 Frequently Used SAS Date and Datetime Informats

Informat Example Description Width
Range

Default
Width

ANYDTDTEw. Reads and extracts the date value from any 5–32 9
of the following: DATE, DATETIME, DDMMYY,
JULIAN, MDYAMPM, MMDDYY, MMxYY*,
MONYY, TIME, YMDDTTM, YYMMDD,
YYQ, YYxMM*, month-day-year

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Table 5.2 continued

Informat Example Description Width
Range

Default
Width

ANYDTDTMw. Reads and extracts the datetime value from any 1–32 19
of the following: DATE, DATETIME, DDMMYY,
JULIAN, MMDDYY, MMxYY*, MONYY,
TIME, YYMMDD, YYQ, YYxMM*,
month-day-year

ANYDTTMEw. Reads and extracts the time value from any 1–32 8
of the following: DATE, DATETIME, DDMMYY,
JULIAN, MMDDYY, MONYY, TIME,
YYMMDD, YYQ, month-day-year

DATEw. 17oct91 Day, month abbreviation, and year: 7–32 7
ddmonyy

DATETIMEw.d 17oct91:14:45:32 Date and time: ddmonyy:hh:mm:ss 13–40 18

DDMMYYw. 17/10/91 Day, month, year: ddmmyy, dd/mm/yy, 6–32 6
dd-mm-yy, or dd mm yy

JULIANw. 91290 Year and day of year (Julian dates): yyddd 5–32 5

MMDDYYw. 10/17/91 Month, day, year: mmddyy, mm/dd/yy, 6–32 6
mm-dd-yy, or mm dd yy

MONYYw. Oct91 Month abbreviation and year: monyy 5–32 5

NENGOw. H.03/10/17 Japanese Nengo notation 7–32 10

TIMEw.d 14:45:32 Hours, minutes, seconds: hh:mm:ss 5–32 8
or hours, minutes: hh:mm

WEEKVw. 1991-W42-04 ISO 8601 year, week, day of week: yyyy-Www-dd 3–200 11

YYMMDDw. 91/10/17 Year, month, day: yymmdd, yy/mm/dd, 6–32 6
yy-mm-dd, or yy mm dd

YYQw. 91Q4 Year and quarter of year: yyQq 4–32 4
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Date, Time, and Datetime Formats
Some of the commonly used SAS date and datetime formats are listed in Table 5.3 and Table 5.4. You can
specify the width value for each format by adding w. The tables list the range of width values allowed and
the default width value for each format.

The notation used by a format is abbreviated in different ways depending on the width option used. For
example, the format MMDDYY8. writes the date 17 October 1991 as 10/17/91, while the format MMDDYY6.
writes this date as 101791. In particular, formats that display the year show two-digit or four-digit year values
depending on the width option. The examples shown in the tables use the default width.

The interval function INTFMT returns a recommended format for time ID values based on the interval that
describes the frequency of the values. The following example uses INTFMT to select a format to display the
quarterly time ID variable qtrDate. In this example, INTFMT returns the format YYQC6., which displays
the year in four digits and the quarter in a single digit. This selected format is stored in a macro variable that
is created by the CALL SYMPUT statement. The second argument to INTFMT controls the width of the
year for date formats; it can take the value 'long' or 'l' to indicate 4 for the year width or the value 'short' or
's' to indicate 2 for the year width. For more information about the INTFMT function, see the . For more
information about the CALL SYMPUT statement, see the SAS DATA Step Statements: Reference.

The macro variable &FMT is then used in the FORMAT statement in the PROC PRINT step as follows:

data b(keep=qtrDate);
interval = 'QTR';
form = INTFMT( interval, 'long' );
call symput('fmt',form);
do i=1 to 4;

qtrDate = INTNX( interval, '01jan00'd, i-1 );
output;

end;
run;

proc print;
format qtrDate &fmt;

run;

It is also possible to display date and datetime values as strings by using the format that is identified by
INTFMT. In the following example, INTFIT is used to identify the intervals of the sashelp.citiwk and
sashelp.air data sets. Then INTFMT is used to identify formats that are based on the intervals. The formats
are then used to convert the first SAS date value of each data set to a string. The START variable displays the
date of the first observation of each data set. This method assumes that the interval of the data set can be
identified by examining the first two observations. This is often the case for output data sets and data sets
that have been properly prepared for input by using a procedure such as the TIMESERIES procedure. More
than two observations might be required to identify the difference between a DAY interval and a WEEKDAY
interval. This example would need to be modified if the DATE variable contained SAS datetime values.

data a(keep=DATE0 DATE INTERVAL FMT START);
length START INTERVAL FMT $32;
format date0 date DATE.;
set sashelp.citiwk(obs=2) sashelp.air(obs=2);
DATE0 = lag(date);

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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if ( mod(_n_,2) eq 1 ) then delete;
if ( mod(_n_,2) eq 0 ) then INTERVAL = intfit( DATE0, date, 'D' );
if ( mod(_n_,2) eq 0 ) then FMT = INTFMT( interval, 'l' );
START = putn( DATE0, FMT );

run;

proc print;
run;

For a complete description of these formats, including the variations of the formats produced by different
width options, see SAS Programmers Guide: Essentials. For a discussion of the use of date and datetime
formats, see Chapter 4, “Working with Time Series Data,”.

Date Formats
Table 5.3 lists some of the available SAS date formats. For each format, an example is shown of a date value
in the notation produced by the format. The date '17OCT91'D is used as the example.

Table 5.3 Frequently Used SAS Date Formats

Format Example Description Width
Range

Default
Width

DATEw. 17OCT91 Day, month abbreviation, year: 5–9 7
ddmonyy

DAYw. 17 Day of month 2–32 2

DDMMYYw. 17/10/91 Day, month, year: dd/mm/yy 2–8 8

DOWNAMEw. Thursday Name of day of the week 1–32 9

JULDAYw. 290 Day of year 3–32 3

JULIANw. 91290 Year and day of year: yyddd 5–7 5

MMDDYYw. 10/17/91 Month, day, year: mm/dd/yy 2–8 8

MMYYw. 10M1991 Month and year: mmMyyyy 5–32 7

MMYYCw. 10:1991 Month and year: mm:yyyy 5–32 7

MMYYDw. 10-1991 Month and year: mm-yyyy 5–32 7

MMYYPw. 10.1991 Month and year: mm.yyyy 5–32 7

MMYYSw. 10/1991 Month and year: mm/yyyy 5–32 7

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Table 5.3 continued

Format Example Description Width
Range

Default
Width

MMYYNw. 101991 Month and year: mmyyyy 5–32 6

MONNAMEw. October Name of month 1–32 9

MONTHw. 10 Month of year 1–32 2

MONYYw. OCT91 Month abbreviation and year: 5–7 5
monyy

QTRw. 4 Quarter of year 1–32 1

QTRRw. IV Quarter in roman numerals 3–32 3

NENGOw. H.03/10/17 Japanese Nengo notation 2–10 10

WEEKDATEw. Thursday, October 17, 1991 day-of-week, month-name dd, yyyy 3–37 29

WEEKDATXw. Thursday, 17 October 1991 day-of-week, dd month-name yyyy 3–37 29

WEEKDAYw. 5 Day of week 1–32 1

WEEKVw. 1991-W42-04 ISO 8601 year, week, day of week: 3–200 11
yyyy-Www-dd

WORDDATEw. October 17, 1991 month-name dd, yyyy 3–32 18

WORDDATXw. 17 October 1991 dd month-name yyyy 3–32 18

YEARw. 1991 Year: yyyy 2–32 4

YYMMw. 1991M10 Year and month: yyyyMmm 5–32 7

YYMMCw. 1991:10 Year and month: yyyy:mm 5–32 7

YYMMDw. 1991-10 Year and month: yyyy-mm 5–32 7

YYMMPw. 1991.10 Year and month: yyyy.mm 5–32 7

YYMMSw. 1991/10 Year and month: yyyy/mm 5–32 7

YYMMNw. 199110 Year and month: yyyymm 5–32 7
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Table 5.3 continued

Format Example Description Width
Range

Default
Width

YYMONw. 1991OCT Year and month abbreviation: 5–32 7
yyyymon

YYMMDDw. 91/10/17 Year, month, day: yy/mm/dd 2–8 8

YYQw. 1991Q4 Year and quarter: yyyyQq 4–6 6

YYQCw. 1991:4 Year and quarter: yyyy:q 4–32 6

YYQDw. 1991-4 Year and quarter: yyyy-q 4–32 6

YYQPw. 1991.4 Year and quarter: yyyy.q 4–32 6

YYQSw. 1991/4 Year and quarter: yyyy/q 4–32 6

YYQNw. 19914 Year and quarter: yyyyq 3–32 5

YYQRw. 1991QIV Year and quarter in roman 6–32 8
numerals: yyyyQrr

YYQRCw. 1991:IV Year and quarter in roman 6–32 8
numerals: yyyy:rr

YYQRDw. 1991-IV Year and quarter in roman 6–32 8
numerals: yyyy-rr

YYQRPw. 1991.IV Year and quarter in roman 6–32 8
numerals: yyyy.rr

YYQRSw. 1991/IV Year and quarter in roman 6–32 8
numerals: yyyy/rr

YYQRNw. 1991IV Year and quarter in roman 6–32 8
numerals: yyyyrr
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Datetime and Time Formats
Table 5.4 lists some of the available SAS datetime and time formats. For each format, the example shows the
formatted value. The value of the variable dt is '17OCT91:14:25:32'DT. You can specify the width of each
format by adding w. For formats that allow a decimal value, you can specify the number of decimal digits by
adding d.

Table 5.4 Frequently Used SAS Datetime and Time Formats

Format Value Example Description Width
Range

Default
Width

DATETIMEw.d dt 17OCT91:14:25:32 ddmonyy: 7–40 16
hh:mm:ss.ss

DTWKDATXw. dt Thursday, 17 October day-of-week, 3–37 29
1991 dd month

yyyy

HHMMw.d TIMEPART(dt) 14:26 Hour and 2–20 5
minute:
hh:mm.mm

HOURw.d TIMEPART(dt) 14 Hour: hh.hh 2–20 2

MMSSw.d HMS(0, 25:32 Minutes and 2–20 5
MINUTE(dt), seconds:
SECOND(dt)) mm:ss.ss

TIMEw.d TIMEPART(dt) 14:25:32 Time of day: 2–20 8
hh:mm:ss.ss

TODw.d dt 14:25:32 Time of day: 2–20 8
hh:mm:ss.ss
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Alignment of SAS Dates
SAS date values that are used to identify time series observations produced by SAS/ETS and SAS High-
Performance Forecasting procedures are normally aligned with the beginning of the time intervals that
correspond to the observations. For example, for monthly data for 1994, the date values that identify the
observations are 1Jan94, 1Feb94, 1Mar94, . . . , 1Dec94.

However, for some applications it might be preferable to use end-of-period dates, such as 31Jan94, 28Feb94,
31Mar94, . . . , 31Dec94. For other applications, such as plotting time series, it might be more convenient to
use interval midpoint dates to identify the observations.

Many SAS/ETS and SAS High-Performance Forecasting procedures provide an ALIGN= option to control
the alignment of dates for outputting time series observations. SAS/ETS procedures that support the ALIGN=
option are ARIMA, DATASOURCE, ESM, EXPAND, SIMILARITY, TIMESERIES, UCM, and VARMAX.
SAS High-Performance Forecasting procedures that support the ALIGN= option are HPFRECONCILE, HPF,
HPFDIAGNOSE, HPFENGINE, and HPFEVENTS.

ALIGN=
The ALIGN= option can have the following values:

BEGINNING specifies that dates be aligned to the start of the interval. This is the default. BEGINNING
can be abbreviated as BEGIN, BEG, or B.

MIDDLE specifies that dates be aligned to the interval midpoint, the average of the beginning and
ending values. MIDDLE can be abbreviated as MID or M.

ENDING specifies that dates be aligned to the end of the interval. ENDING can be abbreviated as
END or E.

For information about the calculation of the beginning and ending values of intervals, see the section
“Beginning Dates and Datetimes of Intervals” on page 126.

SAS Date, Time, and Datetime Functions
SAS date, time, and datetime functions are used to perform the following tasks:

� compute date, time, and datetime values from calendar and time-of-day values

� compute calendar and time-of-day values from date and datetime values

� convert between date, time, and datetime values

� perform calculations that involve time intervals

� provide information about time intervals

� provide information about seasonality
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For all interval functions, you can supply the intervals and other character arguments either directly as a
quoted string or as a SAS character variable. When you use a character variable, you should set the length of
the character variable to at least the length of the longest string for that variable that is used in the DATA step.

Also, to ensure correct results when using interval functions, use date intervals with date values and datetime
intervals with datetime values.

For a complete description of these functions, see SAS Functions and CALL Routines: Reference.

The following list shows SAS date, time, and datetime functions in alphabetical order:

DATE()
returns today’s date as a SAS date value.

DATEJUL( yyddd )
returns the SAS date value when given the Julian date in yyddd or yyyyddd format. For exam-
ple, DATE = DATEJUL(99001); assigns the SAS date value '01JAN99'D to DATE, and DATE =

DATEJUL(1999365); assigns the SAS date value '31DEC1999'D to DATE.

DATEPART( datetime )
returns the date part of a SAS datetime value as a date value.

DATETIME()
returns the current date and time of day as a SAS datetime value.

DAY( date )
returns the day of the month from a SAS date value.

DHMS( date, hour, minute, second )
returns a SAS datetime value for date, hour, minute, and second values.

FMTINFO( 'format-name', 'information-type' )
returns the information specified by information-type for format-name. This function is useful for
determining the category of a variable if the variable has a format. Specifying the information-type as
'cat' returns the category of the format. Examples of categories are date, datetime, time, and num. For
example, FMTINFO('MMDDYY','cat') returns 'date'.

HMS( hour, minute, second )
returns a SAS time value for hour, minute, and second values.

HOLIDAY( 'holiday ', year )
returns a SAS date value for the holiday and year specified. Valid values for holiday are 'BOXING',
'CANADA', 'CANADAOBSERVED', 'CHRISTMAS', 'COLUMBUS', 'EASTER', 'FATHERS',
'HALLOWEEN', 'JUNETEENTH', 'JUNETEENTHUSG', 'JUNETEENTHUSPS', 'LABOR', 'MLK',
'MEMORIAL', 'MOTHERS', 'NEWYEAR','THANKSGIVING', 'THANKSGIVINGCANADA',
'USINDEPENDENCE', 'USPRESIDENTS', 'VALENTINES', 'VETERANS', 'VETERANSUSG',
'VETERANSUSPS', and 'VICTORIA'. For example: EASTER2000 = HOLIDAY('EASTER', 2000);

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
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HOUR( datetime )
returns the hour from a SAS datetime or time value.

INTCINDEX( 'date-interval ', date )

INTCINDEX( 'datetime-interval ', datetime )
returns the index of the seasonal cycle when given an interval and an appropriate SAS date,
datetime, or time value. For example, the seasonal cycle for INTERVAL='DAY' is 'WEEK', so
INTCINDEX('DAY','01SEP78'D); returns 35 because September 1, 1978, is the sixth day of the
35th week of the year. For correct results, date intervals should be used with date values, and datetime
intervals should be used with datetime values.

INTCK( 'date-interval ', date1, date2 < , 'method ' > )

INTCK( 'datetime-interval ', datetime1, datetime2 < , 'method ' > )
returns the number of boundaries of intervals of the given kind that lie between the two date or datetime
values. The optional method argument specifies that the intervals are counted using either a discrete or
a continuous method. The default DISCRETE (or DISC or D) method uses discrete time intervals. For
the DISCRETE method, the distance in MONTHS between January 31, 2000, and February 1, 2000,
is one month. The CONTINUOUS (or CONT or C) method uses continuous time intervals. For the
CONTINUOUS method, the distance in MONTHS between January 15, 2000, and February 14, 2000,
is zero, but the distance in MONTHS between January 15, 2000, and February 15, 2000, is one month.

INTCYCLE( 'interval ' < , seasonality > )
returns the interval of the seasonal cycle, given a date, time, or datetime interval. For example, INTCY-
CLE('MONTH') returns 'YEAR' because the months January, February, . . . , December constitute a
yearly cycle. INTCYCLE('DAY') returns 'WEEK' because Sunday, Monday, . . . , Saturday constitute a
weekly cycle.

You can specify the optional seasonality argument to construct a cycle other than the default seasonal
cycle. For example, INTCYCLE('MONTH', 3) returns 'QTR'. The optional second argument is the
seasonal frequency.

INTFIT( date1, date2, 'D' )

INTFIT( datetime1, datetime2, 'DT ' )

INTFIT( obs1, obs2, 'OBS' )
returns an interval that fits exactly between two SAS date, datetime, or observation values. That is,
if the interval result of the INTFIT function is used with date1, 1, and SAMEDAY alignment in the
INTNX function, then the result is date2. This concept is illustrated in the following example, where
result1 is the same as date1 and result2 is the same as date2:

FitInterval = INTFIT( date1, date2, 'D' );
result1 = INTNX( FitInterval, date1, 0, 'SAMEDAY');
result2 = INTNX( FitInterval, date1, 1, 'SAMEDAY');

More than one interval can fit the preceding definition. For example, two SAS date values that are
seven days apart could be fit with either 'DAY7' or 'WEEK'. The INTFIT function chooses the more
common interval, so 'WEEK' is the result when the dates are seven days apart. The INTFIT function
can be used to detect the possible frequency of the time series or to analyze frequencies of other events
in a time series, such as outliers or missing values.
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INTFMT('interval ' ,'size')
returns a recommended format when given a date, time, or datetime interval for displaying the time ID
values associated with a time series of the given interval. The second argument to INTFMT controls
the width of the year for date formats; it can take the value 'long' or 'l' to specify that the returned
format display a four-digit year or the value 'short' or 's' to specify that the returned format display a
two-digit year.

INTGET( date1, date2, date3 )

INTGET( datetime1, datetime2, datetime3 )
returns an interval that fits three consecutive SAS date or datetime values. The INTGET function
examines two intervals: the first interval between date1 and date2, and the second interval between
date2 and date3. In order for an interval to be detected, either the two intervals must be the same or one
interval must be an integer multiple of the other interval. That is, INTGET assumes that at least two of
the dates are consecutive points in the time series, and that the other two dates are also consecutive
or represent the points before and after missing observations. The INTGET function assumes that
large values are SAS datetime values, which are measured in seconds, and that smaller values are SAS
date values, which are measured in days. The INTGET function can be used to detect the possible
frequency of the time series or to analyze frequencies of other events in a time series, such as outliers
or missing values.

INTINDEX( 'date-interval ', date < , seasonality > )

INTINDEX( 'datetime-interval ', datetime < , seasonality > )
returns the seasonal index for the specified date or datetime interval and an appropriate date or datetime
value. The seasonal index is a number that represents the position of the date or datetime value in
the seasonal cycle of the specified interval. For example, INTINDEX('MONTH','01DEC2000'D);
returns 12 because monthly data is yearly periodic and DECEMBER is the 12th month of the
year. However, INTINDEX('DAY','01DEC2000'D); returns 6 because daily data is weekly peri-
odic and December 01, 2000, is a Friday, the sixth day of the week. To correctly identify the
seasonal index, the interval specification should agree with the date or datetime value. For example,
INTINDEX('DTMONTH','01DEC2000'D); and INTINDEX('MONTH','01DEC2000:00:00:00'DT);

do not return the expected value of 12. However, both INTINDEX('MONTH','01DEC2000'D); and
INTINDEX('DTMONTH','01DEC2000:00:00:00'DT); return the expected value of 12.

You can specify the optional seasonality argument to use a seasonal cycle other than the de-
fault seasonal cycle. For example, INTINDEX('MONTH','01APR2000'D); returns the value 4, to
indicate the fourth month of the year. However, INTINDEX('MONTH','01APR2000'D,3); and
INTINDEX('MONTH','01APR2000'D,'QTR'); return the value 1 to indicate the first month of the
quarter. Specifying either 3 or 'QTR' for the third argument uses a quarterly seasonal cycle instead of
the default yearly seasonal cycle.

INTNEST( 'interval ', 'interval ' )
An interval is said to nest within another interval if a whole number of the first interval spans the same
time period as the second interval for all time periods. For example, DAY is nested within WEEK
because there are exactly seven DAY periods within each WEEK for every span of time. However,
WEEK is not nested in MONTH because a MONTH period is not consistently a multiple of 7 days. In
order to nest, the two intervals must also generate beginning and ending dates that align. For example,
WEEK.2 will not nest within WEEK because WEEK begins on Sundays and WEEK.2 begins on
Mondays.
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The INTNEST function calculates the number of whole periods of the smaller interval that will fit
into the period of the larger interval. If the first interval specified spans a larger time period than the
second interval specified, then the number returned is positive. If the second interval specified spans
a larger period than the first interval specified, then the number returned is negative. For example,
INTNEST('WEEK','DAY') returns 7, and INTNEST('DAY','WEEK') returns –7. A missing value is
returned if neither interval nests into the other. Table 5.5 lists the types of results returned by INTNEST
and describes how to interpret each result.

Table 5.5 Results Returned by the INTNEST Function

Result Description Explanation
Example

0 Same The two input intervals define the same time periods for all time
periods.
INTNEST('MONTH12','YEAR')

1 Variable number The first interval contains a whole number of periods of the second
interval, but the number varies over time.
INTNEST('MONTH','DAY')

-1 Variable number The second interval contains a whole number of periods of periods
of the first interval, but the number varies over time.
INTNEST('DAY','YEAR')

n > 1 Fixed number The first interval contains a whole number n periods of the second
interval, and that is fixed for all time.
INTNEST('WEEK', 'DAY')

n < �1 Fixed number The second interval contains a whole number –n periods of the first
interval, and that is fixed for all time.
INTNEST('DTHOUR', 'DAY')

Missing value
of M

Multiple mismatch Neither interval will nest into other interval. However, intervals of
these types can nest for some multiple values.
INTNEST('SEMIMONTH3', 'MONTH')

Missing value
of S

Shift mismatch Neither interval will nest into other interval. However, if a shift
value were changed, then the intervals would be the same or one
would nest into the other.
INTNEST('SEMIMONTH2.2', 'MONTH')

Missing value
of B

Base mismatch The interval bases define time periods that are so different that
nesting is not possible for any multiple or shift. For example,
YEAR always begins on January 1st of each year, and is shifted
by months. However, YEARV always begins on the Monday on
or immediately preceding January 4th, and YEARV is shifted by
ISO 8601 weeks that begin on Monday. Since January 1st is only
a Monday for some years, the intervals will not consistently start
on the same day. The same problem exists if the YEAR interval is
shifted by months, since the first of a month would not be a Monday
for all years.
INTNEST('YEAR', 'YEARV')
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The result returned by the INTNEST function is of interest when performing the following tasks related
to time series:

accumulation when one interval nests into another interval, even with a variable
number, accumulation from the smaller time periods into the larger
time periods can be accomplished with a simple rule. If the intervals
do not nest, you should consider transforming a time series from
one frequency to another with a more complex rule, for example an
interpolation.

seasonality many seasonal models require the higher frequency interval nest into
the lower frequency seasonal interval with a fixed number of periods.

time reconciliation time reconciliation requires that the higher frequency interval nest into
the lower frequency interval.

The following example illustrates the relationship between two intervals that nest and both intervals
are either date intervals or both intervals are datetime intervals. In this example, for each observation,
the value calculated for begin1 is the same as begin2 and the value calculated for end1 is the same as
end2:

/* interval1 and interval2 are any 2 valid intervals */
nest=INTNEST(interval1,interval2);
/* If interval1 and interval2 are date intervals, then start and end are any

SAS date values. If interval1 and interval2 are datetime intervals,
then start and end are SAS datetime values.
This algorithm would need to be modified if a SAS date interval is
compared to a SAS datetime interval. */

do date=start to end;
if ( ( nest = .B ) or

( nest = .M ) or
( nest = .S ) ) then do;

/* skip this case as the rule does not apply */
end;

else if ( nest = 0 ) then do;
begin1=INTNX(interval1,date,0);
begin2=INTNX(interval2,date,0);
end1=INTNX(interval1,date,nest,'E');
end2=INTNX(interval2,date,nest,'E');
end;

else if ( nest = 1 ) then do;
begin1=INTNX(interval1,date,0);
end1=INTNX(interval1,date,0,'E');
n=INTCK(interval2,begin1,end1);
begin2=INTNX(interval2,begin1,0);
end2=INTNX(interval2,begin2,n,'E');
end;

else if ( nest = -1 ) then do;
begin2=INTNX(interval2,date,0);
end2=INTNX(interval2,date,0,'E');
n=INTCK(interval1,begin2,end2);
begin1=INTNX(interval1,begin2,0);
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end1=INTNX(interval1,begin1,n,'E');
end;

else if ( nest > 1 ) then do;
begin1=INTNX(interval1,date,0);
begin2=INTNX(interval2,begin1,0);
end1=INTNX(interval1,date,0,'E');
end2=INTNX(interval2,begin2,nest-1,'E');
end;

else if ( nest < 1 ) then do;
begin2=INTNX(interval2,date,0);
begin1=INTNX(interval1,begin2,0);
end1=INTNX(interval1,begin1,(-nest)-1,'E');
end2=INTNX(interval2,date,0,'E');
end;

output;
end;

INTNX( 'date-interval ', date, n < , 'alignment ' > )

INTNX( 'datetime-interval ', datetime, n < , 'alignment ' > )
returns the date or datetime value of the beginning of the interval that is n intervals from the interval
that contains the given date or datetime value. The optional alignment argument specifies that the
returned date is aligned to the beginning, middle, or end of the interval. Beginning is the default. In
addition, you can specify SAME (S) alignment. The SAME alignment bases the alignment of the
calculated date or datetime value on the alignment of the input date or datetime value. As illustrated in
the following example, the SAME alignment can be used to calculate the meaning of “same day next
year” or “same day two weeks from now”:

nextYear = INTNX( 'YEAR', '15Apr2007'D, 1, 'S' );
TwoWeeks = INTNX( 'WEEK', '15Apr2007'D, 2, 'S' );

The preceding example returns '15Apr2008'D for nextYear and '29Apr2007'D for TwoWeeks.

For all values of alignment, the number of discrete intervals n between the input date and the resulting
date agrees with the input value. In the following example, the result is always that n2 = n1:

date2 = INTNX( interval, date1, n1, align );
n2 = INTCK( interval, date1, date2 );

The preceding example uses the DISCRETE method of the INTCK function by default. The result n2
= n1 does not always apply when the CONTINUOUS method of the INTCK function is specified.

INTSEAS( 'interval ' < , seasonality > )
returns the length of the seasonal cycle for the specified date or datetime interval. The length of a
seasonal cycle is the number of intervals in a seasonal cycle. For example, when the interval for a time
series is described as monthly, many procedures use the option INTERVAL=MONTH to indicate that
each observation in the data corresponds to a particular month. Monthly data are considered to be
periodic for a one-year seasonal cycle. There are 12 months in one year, so the number of intervals
(months) in a seasonal cycle (year) is 12. For quarterly data, there are 4 quarters in one year, so the
number of intervals in a seasonal cycle is 4. The periodicity is not always one year. For example,
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INTERVAL=DAY is considered to have a seasonal cycle of one week, and because there are 7 days in
a week, the number of intervals in a seasonal cycle is 7.

You can specify the optional seasonality argument to use a seasonal cycle other than the default
seasonal cycle. For example, INTSEAS('MONTH', 3) and INTSEAS('MONTH', 'QTR') both specify a
quarterly seasonal cycle and return the value 3. If the optional seasonality argument is numeric, it is
the seasonal frequency. If the optional seasonality argument is character, it is the seasonal cycle.

INTSHIFT( 'interval ' )
returns the shift interval that applies to the shift index if a subperiod is specified. For example, YEAR
intervals are shifted by MONTH, so INTSHIFT('YEAR') returns 'MONTH'.

INTTEST( 'interval ' )
returns 1 if the interval name is valid, 0 otherwise. For example, VALID = INTTEST('MONTH');

should set VALID to 1, while VALID = INTTEST('NOTANINTERVAL'); should set VALID to 0. The
INTTEST function can be useful in verifying which values of multiplier n and the shift index s are
valid in constructing an interval name.

JULDATE( date )
returns the Julian date from a SAS date value. The format of the Julian date is either yyddd or
yyyyddd depending on the value of the system option YEARCUTOFF=. For example, using the default
system option values, JULDATE('31DEC1999'D ); returns 99365, while JULDATE('31DEC1899'D);
returns 1899365.

MDY( month, day, year )
returns a SAS date value for month, day, and year values.

MINUTE( datetime )
returns the minute from a SAS time or datetime value.

MONTH( date )
returns the numerical value for the month of the year from a SAS date value. For example,
MONTH=MONTH('01JAN2000'D); returns 1, the numerical value for January.

NWKDOM( n, weekday, month, year )
returns a SAS date value for the nth weekday of the month and year specified. For example, Thanksgiv-
ing is always the fourth (n=4) Thursday (weekday=5) in November (month=11). Thus THANKS2000
= NWKDOM( 4, 5, 11, 2000); returns the SAS date value for Thanksgiving in the year 2000. The
last weekday of a month can be specified by using n=5. Memorial Day in the United States is the
last (n=5) Monday (weekday=2) in May (month=5), and so MEMORIAL2002 = NWKDOM( 5, 2, 5,

2002); returns the SAS date value for Memorial Day in 2002. Because n=5 always specifies the last
occurrence of the month and most months have only 4 instances of each day, the result for n=5 is often
the same as the result for n=4. NWKDOM is useful for calculating the SAS date values of holidays
that are defined in this manner.

QTR( date )
returns the quarter of the year from a SAS date value.
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SECOND( date )
returns the second from a SAS time or datetime value.

TIME()
returns the current time of day.

TIMEPART( datetime )
returns the time part of a SAS datetime value.

TODAY()
returns the current date as a SAS date value. (TODAY is another name for the DATE function.)

WEEK( date < , 'descriptor ' > )
returns the week of year from a SAS date value. The algorithm used to calculate the week depends on
the descriptor , which can take the value 'U', 'V', or 'W'.

If the descriptor is 'U,' weeks start on Sunday and the range is 0 to 53. If weeks 0 and 53 exist, they are
only partial weeks. Week 52 can be a partial week.

If the descriptor is 'V', the result is equivalent to the ISO 8601 week of year definition. The range is 1
to 53. Week 53 is a leap week. The first week of the year, Week 1, and the last week of the year, Week
52 or 53, can include days in another Gregorian calendar year.

If the descriptor is 'W', weeks start on Monday and the range is 0 to 53. If weeks 0 and 53 exist, they
are only partial weeks. Week 52 can be a partial week.

WEEKDAY( date )
returns the day of the week from a SAS date value. The WEEKDAY function produces an integer
that represents the day of the week, where 1=Sunday, 2=Monday, . . . , 7=Saturday. For example
WEEKDAY=WEEKDAY('17OCT1991'D); returns 5, the numerical value for Thursday.

YEAR( date )
returns the year from a SAS date value.

YYQ( year, quarter )
returns a SAS date value for year and quarter values.

References
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SAS Macros
This chapter describes several SAS macros and the SAS function PROBDF that are provided with SAS/ETS
software. A SAS macro is a program that generates SAS statements. Macros make it easy to produce and
execute complex SAS programs that would be time-consuming to write yourself.

SAS/ETS software includes the following macros:

%AR generates statements to define autoregressive error models for the MODEL procedure.

%BOXCOXAR investigates Box-Cox transformations useful for modeling and forecasting a time series.

%DFPVALUE computes probabilities for Dickey-Fuller test statistics.

%DFTEST performs Dickey-Fuller tests for unit roots in a time series process.

%LOGTEST tests to see if a log transformation is appropriate for modeling and forecasting a time
series.

%MA generates statements to define moving-average error models for the MODEL procedure.

%PDL generates statements to define polynomial-distributed lag models for the MODEL proce-
dure.

These macros are part of the SAS AUTOCALL facility and are automatically available for use in your SAS
program. For information about the SAS macro facility, see SAS Macro Language: Reference.

Since the %AR, %MA, and %PDL macros are used only with PROC MODEL, they are documented with the
MODEL procedure. For more information about these macros, see the sections about the %AR, %MA, and
%PDL macros in Chapter 25, “The MODEL Procedure.” The %BOXCOXAR, %DFPVALUE, %DFTEST,
and %LOGTEST macros are described in the following sections.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=mcrolref&docsetTarget=titlepage.htm
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BOXCOXAR Macro
The %BOXCOXAR macro finds the optimal Box-Cox transformation for a time series.

Transformations of the dependent variable are a useful way of dealing with nonlinear relationships or
heteroscedasticity. For example, the logarithmic transformation is often used for modeling and forecasting
time series that show exponential growth or that show variability proportional to the level of the series.

The Box-Cox transformation is a general class of power transformations that include the log transformation
and no transformation as special cases. The Box-Cox transformation is

Yt D

(
.XtCc/

��1
�

for � ¤ 0
ln.Xt C c/ for � D 0

The parameter � controls the shape of the transformation. For example, �=0 produces a log transformation,
while �=0.5 results in a square root transformation. When �=1, the transformed series differs from the
original series by c � 1.

The constant c is optional. It can be used when some Xt values are negative or 0. You choose c so that the
series Xt is always greater than �c.

The %BOXCOXAR macro tries a range of � values and reports which of the values tried produces the optimal
Box-Cox transformation. To evaluate different � values, the %BOXCOXAR macro transforms the series with
each � value and fits an autoregressive model to the transformed series. It is assumed that this autoregressive
model is a reasonably good approximation to the true time series model appropriate for the transformed series.
The likelihood of the data under each autoregressive model is computed, and the � value that produces the
maximum likelihood over the values tried is reported as the optimal Box-Cox transformation for the series.

The %BOXCOXAR macro prints and optionally writes to a SAS data set all of the � values tried, the
corresponding log-likelihood value, and related statistics for the autoregressive model.

You can control the range and number of � values tried. You can also control the order of the autoregressive
models fit to the transformed series. You can difference the transformed series before the autoregressive
model is fit.

Note that the Box-Cox transformation might be appropriate when the data have a common distribution (apart
from heteroscedasticity) but not when groups of observations for the variable are quite different. Thus the
%BOXCOXAR macro is more often appropriate for time series data than for cross-sectional data.

Syntax

The form of the %BOXCOXAR macro is

%BOXCOXAR ( SAS-data-set, variable < , options > ) ;

The first argument, SAS-data-set , specifies the name of the SAS data set that contains the time series to be
analyzed. The second argument, variable, specifies the time series variable name to be analyzed. The first
two arguments are required.

The following options can be used with the %BOXCOXAR macro. Options must follow the required
arguments and are separated by commas.
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AR=n
specifies the order of the autoregressive model fit to the transformed series. The default is AR=5.

CONST=value
specifies a constant c to be added to the series before transformation. Use the CONST= option when
some values of the series are 0 or negative. The default is CONST=0.

DIF=( differencing-list )
specifies the degrees of differencing to apply to the transformed series before the autoregressive model
is fit. The differencing-list is a list of positive integers separated by commas and enclosed in parentheses.
For example, DIF=(1,12) specifies that the transformed series be differenced once at lag 1 and once at
lag 12. For more information, see the section “IDENTIFY Statement” on page 225 in Chapter 8, “The
ARIMA Procedure.”

LAMBDAHI=value
specifies the maximum value of lambda for the grid search. The default is LAMBDAHI=1. A large (in
magnitude) LAMBDAHI= value can result in problems with floating point arithmetic.

LAMBDALO=value
specifies the minimum value of lambda for the grid search. The default is LAMBDALO=0. A large (in
magnitude) LAMBDALO= value can result in problems with floating point arithmetic.

NLAMBDA=value
specifies the number of lambda values considered, including the LAMBDALO= and LAMBDAHI=
option values. The default is NLAMBDA=2.

OUT=SAS-data-set
writes the results to an output data set. The output data set includes the lambda values tried (LAMBDA),
and for each lambda value, the log likelihood (LOGLIK), the residual mean squared error (RMSE),
Akaike’s information criterion (AIC), and Schwarz’s Bayesian criterion (SBC).

PRINT=YES | NO
specifies whether results are printed. The default is PRINT=YES. The printed output contains the
lambda values, log likelihoods, residual mean square errors, Akaike’s information criterion (AIC), and
Schwarz’s Bayesian criterion (SBC).

Results

The value of � that produces the maximum log likelihood is returned in the macro variable &BOXCOXAR. The
value of the variable &BOXCOXAR is “ERROR” if the %BOXCOXAR macro is unable to compute the best
transformation due to errors. This might be the result of large lambda values. The Box-Cox transformation
parameter involves exponentiation of the data, so that large lambda values can cause floating-point overflow.

Results are printed unless the PRINT=NO option is specified. Results are also stored in SAS data sets when
the OUT= option is specified.
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Details

Assume that the transformed series Yt is a stationary pth-order autoregressive process generated by indepen-
dent normally distributed innovations.

.1 �‚.B//.Yt � �/ D �t

�t � i idN.0; �2/

Given these assumptions, the log-likelihood function of the transformed data Yt is
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In this equation, n is the number of observations, � is the mean of Yt , 1 is the n-dimensional column vector
of 1s, �2 is the innovation variance, Y D .Y1; : : : ; Yn/0, and † is the covariance matrix of Y.

The log-likelihood function of the original data X1; : : : ; Xn is

lX .�/ D lY .�/C .� � 1/

nX
tD1

ln.Xt C c/

where c is the value of the CONST= option.

For each value of �, the maximum log-likelihood of the original data is obtained from the maximum
log-likelihood of the transformed data given the maximum likelihood estimate of the autoregressive model.

The maximum log-likelihood values are used to compute Akaike’s information criterion (AIC) and Schwarz’s
Bayesian criterion (SBC) for each � value. The residual mean squared error based on the maximum likelihood
estimator is also produced. To compute the mean squared error, the predicted values from the model are
transformed again to the original scale (Pankratz 1983, pp. 256–258; Taylor 1986).

After differencing as specified by the DIF= option, the process is assumed to be a stationary autoregressive
process. You can check for stationarity of the series with the %DFTEST macro. If the process is not stationary,
differencing with the DIF= option is recommended. For a process with moving-average terms, a large value
for the AR= option might be appropriate.
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DFPVALUE Macro
The %DFPVALUE macro computes the significance of the Dickey-Fuller test. The %DFPVALUE macro
evaluates the p-value for the Dickey-Fuller test statistic � for the test of H0: “The time series has a unit root”
versus Ha: “The time series is stationary” using tables published by Dickey (1976); Dickey, Hasza, and
Fuller (1984).

The %DFPVALUE macro can compute p-values for tests of a simple unit root with lag 1 or for seasonal unit
roots at lags 2, 4, or 12. The %DFPVALUE macro takes into account whether an intercept or deterministic
time trend is assumed for the series.

The %DFPVALUE macro is used by the %DFTEST macro described later in this chapter.

Note that the %DFPVALUE macro has been superseded by the PROBDF function described later in this
chapter. It remains for compatibility with past releases of SAS/ETS.

Syntax

The %DFPVALUE macro has the following form:

%DFPVALUE ( tau, nobs < , options > ) ;

The first argument, tau, specifies the value of the Dickey-Fuller test statistic.

The second argument, nobs, specifies the number of observations on which the test statistic is based.

The first two arguments are required. The following options can be used with the %DFPVALUE macro.
Options must follow the required arguments and are separated by commas.

DLAG=1 | 2 | 4 | 12
specifies the lag period of the unit root to be tested. DLAG=1 specifies a one-period unit root test.
DLAG=2 specifies a test for a seasonal unit root with lag 2. DLAG=4 specifies a test for a seasonal unit
root with lag 4. DLAG=12 specifies a test for a seasonal unit root with lag 12. The default is DLAG=1.

TREND=0 | 1 | 2
specifies the degree of deterministic time trend included in the model. TREND=0 specifies no trend
and assumes the series has a zero mean. TREND=1 includes an intercept term. TREND=2 specifies
both an intercept and a deterministic linear time trend term. The default is TREND=1. TREND=2 is
not allowed with DLAG=2, 4, or 12.

Results

The computed p-value is returned in the macro variable &DFPVALUE. If the p-value is less than 0.01 or larger
than 0.99, the macro variable &DFPVALUE is set to 0.01 or 0.99, respectively.
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Minimum Observations

The minimum number of observations required by the %DFPVALUE macro depends on the value of the
DLAG= option. The minimum observations are as follows:

DLAG= Minimum Observations

1 9
2 6
4 4

12 12

DFTEST Macro
The %DFTEST macro performs the Dickey-Fuller unit root test. You can use the %DFTEST macro to decide
whether a time series is stationary and to determine the order of differencing required for the time series
analysis of a nonstationary series.

Most time series analysis methods require that the series to be analyzed is stationary. However, many
economic time series are nonstationary processes. The usual approach to this problem is to difference the
series. A time series that can be made stationary by differencing is said to have a unit root. For more
information, see the discussion of this issue in the section “Getting Started: ARIMA Procedure” on page 191
of Chapter 8, “The ARIMA Procedure.”

The Dickey-Fuller test is a method for testing whether a time series has a unit root. The %DFTEST macro
tests the hypothesis H0: “The time series has a unit root” versus Ha: “The time series is stationary” based on
tables provided in Dickey (1976); Dickey, Hasza, and Fuller (1984). The test can be applied for a simple unit
root with lag 1, or for seasonal unit roots at lag 2, 4, or 12.

Note that the %DFTEST macro has been superseded by the PROC ARIMA stationarity tests. For more
information, see Chapter 8, “The ARIMA Procedure.”

Syntax

The %DFTEST macro has the following form:

%DFTEST ( SAS-data-set, variable < , options > ) ;

The first argument, SAS-data-set, specifies the name of the SAS data set that contains the time series variable
to be analyzed.

The second argument, variable, specifies the time series variable name to be analyzed.

The first two arguments are required. The following options can be used with the %DFTEST macro. Options
must follow the required arguments and are separated by commas.
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AR=n
specifies the order of autoregressive model fit after any differencing specified by the DIF= and DLAG=
options. The default is AR=3.

DIF=( differencing-list )
specifies the degrees of differencing to be applied to the series. The differencing list is a list of positive
integers separated by commas and enclosed in parentheses. For example, DIF=(1,12) specifies that
the series be differenced once at lag 1 and once at lag 12. For more information, see the section
“IDENTIFY Statement” on page 225 in Chapter 8, “The ARIMA Procedure.”

If the option DIF=(d1; : : : ; dk) is specified, the series analyzed is .1 � Bd1/ � � � .1 � Bdk /Yt , where
Yt is the variable specified, and B is the backshift operator defined by BYt D Yt�1.

DLAG=1 | 2 | 4 | 12
specifies the lag to be tested for a unit root. The default is DLAG=1.

OUT=SAS-data-set
writes residuals to an output data set.

OUTSTAT=SAS-data-set
writes the test statistic, parameter estimates, and other statistics to an output data set.

TREND=0 | 1 | 2
specifies the degree of deterministic time trend included in the model. TREND=0 includes no
deterministic term and assumes the series has a zero mean. TREND=1 includes an intercept term.
TREND=2 specifies an intercept and a linear time trend term. The default is TREND=1. TREND=2 is
not allowed with DLAG=2, 4, or 12.

Results

The computed p-value is returned in the macro variable &DFTEST. If the p-value is less than 0.01 or larger
than 0.99, the macro variable &DFTEST is set to 0.01 or 0.99, respectively. (The same value is given in the
macro variable &DFPVALUE returned by the %DFPVALUE macro, which is used by the %DFTEST macro
to compute the p-value.)

Results can be stored in SAS data sets with the OUT= and OUTSTAT= options.

Minimum Observations

The minimum number of observations required by the %DFTEST macro depends on the value of the DLAG=
option. Let s be the sum of the differencing orders specified by the DIF= option, let t be the value of the
TREND= option, and let p be the value of the AR= option. The minimum number of observations required is
as follows:

DLAG= Minimum Observations

1 1C p C s Cmax.9; p C t C 2/
2 2C p C s Cmax.6; p C t C 2/
4 4C p C s Cmax.4; p C t C 2/
12 12C p C s Cmax.12; p C t C 2/
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Observations are not used if they have missing values for the series or for any lag or difference used in the
autoregressive model.

LOGTEST Macro
The %LOGTEST macro tests whether a logarithmic transformation is appropriate for modeling and forecast-
ing a time series. The logarithmic transformation is often used for time series that show exponential growth
or variability proportional to the level of the series.

The %LOGTEST macro fits an autoregressive model to a series and fits the same model to the log of the
series. Both models are estimated by the maximum-likelihood method, and the maximum log-likelihood
values for both autoregressive models are computed. These log-likelihood values are then expressed in terms
of the original data and compared.

You can control the order of the autoregressive models. You can also difference the series and the log-
transformed series before the autoregressive model is fit.

You can print the log-likelihood values and related statistics (AIC, SBC, and MSE) for the autoregressive
models for the series and the log-transformed series. You can also output these statistics to a SAS data set.

Syntax

The %LOGTEST macro has the following form:

%LOGTEST ( SAS-data-set, variable, < options > ) ;

The first argument, SAS-data-set, specifies the name of the SAS data set that contains the time series variable
to be analyzed. The second argument, variable, specifies the time series variable name to be analyzed.

The first two arguments are required. The following options can be used with the %LOGTEST macro.
Options must follow the required arguments and are separated by commas.

AR=n
specifies the order of the autoregressive model fit to the series and the log-transformed series. The
default is AR=5.

CONST=value
specifies a constant to be added to the series before transformation. Use the CONST= option when
some values of the series are 0 or negative. The series analyzed must be greater than the negative of
the CONST= value. The default is CONST=0.

DIF=( differencing-list )
specifies the degrees of differencing applied to the original and log-transformed series before fitting
the autoregressive model. The differencing-list is a list of positive integers separated by commas and
enclosed in parentheses. For example, DIF=(1,12) specifies that the transformed series be differenced
once at lag 1 and once at lag 12. For more information, see the section “IDENTIFY Statement” on
page 225 in Chapter 8, “The ARIMA Procedure.”
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OUT=SAS-data-set
writes the results to an output data set. The output data set includes a variable TRANS that identifies
the transformation (LOG or NONE), the log-likelihood value (LOGLIK), the residual mean squared
error (RMSE), Akaike’s information criterion (AIC), and Schwarz’s Bayesian criterion (SBC) for the
log-transformed and untransformed cases.

PRINT=YES | NO
specifies whether the results are printed. The default is PRINT=NO. The printed output shows the
log-likelihood value, the residual mean squared error, Akaike’s information criterion (AIC), and
Schwarz’s Bayesian criterion (SBC) for the log-transformed and untransformed cases.

Results

The result of the test is returned in the macro variable &LOGTEST. The value of the &LOGTEST variable
is ‘LOG’ if the model fit to the log-transformed data has a larger log likelihood than the model fit to the
untransformed series. The value of the &LOGTEST variable is ‘NONE’ if the model fit to the untransformed
data has a larger log likelihood. The variable &LOGTEST is set to ‘ERROR’ if the %LOGTEST macro is
unable to compute the test due to errors.

Results are printed when the PRINT=YES option is specified. Results are stored in SAS data sets when the
OUT= option is specified.

Details

Assume that a time series Xt is a stationary pth-order autoregressive process with normally distributed white
noise innovations. That is,

.1 �‚.B//.Xt � �x/ D �t

where �x is the mean of Xt .

The log likelihood function of Xt is

l1.�/ D�
n

2
ln.2�/ �

1

2
ln.j†xxj/ �

n

2
ln.�2e /

�
1

2�2e
.X � 1�x/

0†�1xx .X � 1�x/

where n is the number of observations, 1 is the n-dimensional column vector of 1s, �2e is the variance of the
white noise, X D .X1; : : : ; Xn/0, and †xx is the covariance matrix of X.

On the other hand, if the log-transformed time series Yt D ln.Xt C c/ is a stationary pth-order autoregressive
process, the log-likelihood function of Xt is

l0.�/ D�
n

2
ln.2�/ �

1

2
ln.j†yyj/ �

n

2
ln.�2e /

�
1

2�2e
.Y � 1�y/

0†�1yy .Y � 1�y/ �

nX
tD1

ln.Xt C c/

where �y is the mean of Yt , Y D .Y1; : : : ; Yn/0, and †yy is the covariance matrix of Y.

The %LOGTEST macro compares the maximum values of l1.�/ and l0.�/ and determines which is larger.
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The %LOGTEST macro also computes Akaike’s information criterion (AIC), Schwarz’s Bayesian criterion
(SBC), and the residual mean squared error based on the maximum likelihood estimator for the autoregressive
model. For the mean squared error, retransformation of forecasts is based on Pankratz (1983, pp. 256–258).

After differencing as specified by the DIF= option, the process is assumed to be a stationary autoregressive
process. You might want to check for stationarity of the series using the %DFTEST macro. If the process is
not stationary, differencing with the DIF= option is recommended. For a process with moving average terms,
a large value for the AR= option might be appropriate.

Functions

PROBDF Function for Dickey-Fuller Tests
The PROBDF function calculates significance probabilities for Dickey-Fuller tests for unit roots in time
series. The PROBDF function can be used wherever SAS library functions can be used, including DATA step
programs, SCL programs, and PROC MODEL programs.

Syntax

PROBDF( x, n < , d < , type > > )

x is the test statistic.

n is the sample size. The minimum value of n allowed depends on the value specified for the
third argument, d . For d in the set (1,2,4,6,12), n must be an integer greater than or equal to
max.2d; 5/; for other values of d the minimum value of n is 24.

d is an optional integer giving the degree of the unit root tested for. Specify d=1 for tests
of a simple unit root .1 � B/. Specify d equal to the seasonal cycle length for tests for a
seasonal unit root .1 � Bd /. The default value of d is 1; that is, a test for a simple unit root
.1 � B/ is assumed if d is not specified. The maximum value of d allowed is 12.

type is an optional character argument that specifies the type of test statistic used. The values of
type are the following:

SZM studentized test statistic for the zero mean (no intercept) case

RZM regression test statistic for the zero mean (no intercept) case

SSM studentized test statistic for the single mean (intercept) case

RSM regression test statistic for the single mean (intercept) case

STR studentized test statistic for the deterministic time trend case

RTR regression test statistic for the deterministic time trend case

The values STR and RTR are allowed only when d=1. The default value of type is SZM.



PROBDF Function for Dickey-Fuller Tests F 161

Details

Theoretical Background
When a time series has a unit root, the series is nonstationary and the ordinary least squares (OLS) estimator
is not normally distributed. The limiting distribution of the OLS estimator of autoregressive models for
time series with a simple unit root was studied by Dickey (1976); Dickey and Fuller (1979). Dickey, Hasza,
and Fuller (1984) obtained the limiting distribution for time series with seasonal unit roots. We will mainly
introduce the nonseasonal tests in the following and list references for the nonseasonal tests.

Consider the Dickey-Fuller regression first. The null hypothesis is that there is an autoregressive unit root
H0 W ˛ D 1, and the alternative is Ha W j˛j < 1, where ˛ is the autoregressive coefficient of the time series

yt D ˛yt�1 C �t

This is referred to as the zero mean (ZM) model. The standard Dickey-Fuller (DF) test assumes that errors �t
are white noise. There are two other types of regression models that include a constant or a time trend as
follows:

yt D �C ˛yt�1 C �t

yt D �C ˇt C ˛yt�1 C �t

These two models are referred to as the constant mean model (SM) and the trend model (TR), respectively.
The constant mean model includes a constant mean � of the time series. However, the interpretation of �
depends on the stationarity in the following sense: the mean in the stationary case when ˛ < 1 is the trend in
the integrated case when ˛ D 1. Therefore, the null hypothesis should be the joint hypothesis that ˛ D 1 and
� D 0. However for the unit root tests, the test statistics are concerned with the null hypothesis of ˛ D 1.
The joint null hypothesis is not commonly used. This issue is address in Bhargava (1986) with a different
nesting model.

Under the null of I(1) of the Dickey-Fuller test, the differenced process is not serially correlated. There is a
great need for the generalization of this specification. The augmented Dickey-Fuller (ADF) test, originally
proposed in Dickey and Fuller (1979), adjusts for the serial correlation in the time series by adding lagged
first differences to the autoregressive model as follows. Consider the (p C 1)th-order autoregressive time
series

yt D ˛1yt�1 C ˛2yt�2 C � � � C ˛pC1yt�p�1 C et

and its characteristic equation

mpC1 � ˛1m
p
� ˛2m

p�1
� � � � � ˛pC1 D 0

If all the characteristic roots are less than 1 in absolute value, yt is stationary. yt is nonstationary if there is a
unit root. If there is a unit root, the sum of the autoregressive parameters is 1, and hence you can test for a
unit root by testing whether the sum of the autoregressive parameters is 1 or not. The no-intercept model is
parameterized as

ryt D ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

where ryt D yt � yt�1 and

ı D ˛1 C � � � C ˛pC1 � 1
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�k D �˛kC1 � � � � � ˛pC1

The estimators are obtained by regressing ryt on yt�1;ryt�1; : : : ;ryt�p. The t statistic of the ordinary
least squares estimator of ı is the test statistic for the unit root test.

If the type argument value specifies a test for a nonzero mean (intercept case), the autoregressive model
includes a mean term ˛0. If the type argument value specifies a test for a time trend, the model also includes
a time trend term and the model is as follows:

ryt D ˛0 C  t C ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

For testing for a seasonal unit root, consider the multiplicative model

.1 � ˛dB
d /.1 � �1B � � � � � �pB

p/yt D et

Let rdyt�yt � yt�d . The test statistic is calculated in the following steps:

1. Regress rdyt on rdyt�1 � � � rdyt�p to obtain the initial estimators O�i and compute residuals Oet .
Under the null hypothesis that ˛d D 1, O�i are consistent estimators of �i .

2. Regress Oet on .1 � O�1B � � � � � O�pBp/yt�d ;rdyt�1; : : : ;rdyt�p to obtain estimates of ı D ˛d � 1
and �i � O�i .

The t ratio for the estimate of ı produced by the second step is used as a test statistic for testing for a seasonal
unit root. The estimates of �i are obtained by adding the estimates of �i � O�i from the second step to O�i from
the first step.

The series .1 � Bd /yt is assumed to be stationary, where d is the value of the third argument to the PROBDF
function.

If the series is an ARMA process, a large value of p might be desirable in order to obtain a reliable test
statistic. To determine an appropriate value for p, see Said and Dickey (1984).

Test Statistics
The Dickey-Fuller test is used to test the null hypothesis that the time series exhibits a lag d unit root against
the alternative of stationarity. The PROBDF function computes the probability of observing a test statistic
more extreme than x under the assumption that the null hypothesis is true. You should reject the unit root
hypothesis when PROBDF returns a small (significant) probability value.

Consider the Dickey-Fuller regression first. There are several different versions of the Dickey-Fuller test.
The PROBDF function supports six versions, as selected by the type argument. Specify the type value that
corresponds to the way that you calculated the test statistic x.

The last two characters of the type value specify the kind of regression model used to compute the Dickey-
Fuller test statistic. The meaning of the last two characters of the type value are as follows:

ZM zero mean or no-intercept case. The test statistic x is assumed to be computed from the regression
model

yt D ˛yt�1 C et
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SM single mean or intercept case. The test statistic x is assumed to be computed from the regression model

yt D �C ˛yt�1 C et

TR intercept and deterministic time trend case. The test statistic x is assumed to be computed from the
regression model

yt D �C  t C ˛yt�1 C et

The first character of the type value specifies whether the regression test statistic or the studentized test
statistic is used. Let Ǫ be the estimated regression coefficient for the lag of the series, and let se Ǫ be the
standard error of Ǫ . The meaning of the first character of the type value is as follows:

R the regression-coefficient-based test statistic. The test statistic is

� D n. Ǫ � 1/

S the studentized test statistic. The test statistic is

DF� D
. Ǫ � 1/

se Ǫ

The first one is also called �-test and the second is called �-test. For the zero mean model, the asymptotic
distributions of the Dickey-Fuller test statistics are

n. Ǫ � 1/)

�Z 1

0

W.r/dW.r/

��Z 1

0

W.r/2dr

��1
DF� )

�Z 1

0

W.r/dW.r/

��Z 1

0

W.r/2dr

��1=2
For the constant mean model, the asymptotic distributions are

n. Ǫ � 1/)

�
ŒW.1/2 � 1�=2 �W.1/

Z 1

0

W.r/dr

� Z 1

0

W.r/2dr �

�Z 1

0

W.r/dr

�2!�1

DF� )

�
ŒW.1/2 � 1�=2 �W.1/

Z 1

0

W.r/dr

� Z 1

0

W.r/2dr �

�Z 1

0

W.r/dr

�2!�1=2
For the trend model, the asymptotic distributions are

n. Ǫ � 1/)

�
W.r/dW C 12

�Z 1

0

rW.r/dr �
1

2

Z 1

0

W.r/dr

��Z 1

0

W.r/dr �
1

2
W.1/

�
�W.1/

Z 1

0

W.r/dr

�
D�1

DF� )

�
W.r/dW C 12

�Z 1

0

rW.r/dr �
1

2

Z 1

0

W.r/dr

��Z 1

0

W.r/dr �
1

2
W.1/

�
�W.1/

Z 1

0

W.r/dr

�
D1=2
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where

D D

Z 1

0

W.r/2dr � 12

�Z 1

0

r.W.r/dr

�2
C 12

Z 1

0

W.r/dr

Z 1

0

rW.r/dr � 4

�Z 1

0

W.r/dr

�2
For more information about the Dickey-Fuller test null distribution see: Dickey and Fuller (1979); Dickey,
Hasza, and Fuller (1984); Hamilton (1994). The preceding formulas are for the basic Dickey-Fuller test.
The PROBDF function can also be used for the augmented Dickey-Fuller test, in which the error term et is
modeled as an autoregressive process; however, the test statistic is computed somewhat differently for the
augmented Dickey-Fuller test. For the nonseasonal augmented Dickey-Fuller test, the test statistics can take
one of the two forms similar to Dickey-Fuller test. One is the OLS t value

Ǫ � 1

sd. Ǫ /

and the other is given by

n. Ǫ � 1/

1 � Ǫ1 � � � � � Ǫp

The asymptotic distributions of the test statistics are the same as those of the standard Dickey-Fuller test
statistics. For information about seasonal and nonseasonal augmented Dickey-Fuller tests see Dickey, Hasza,
and Fuller (1984); Hamilton (1994).

The PROBDF function is calculated from approximating functions fit to empirical quantiles that are produced
by a Monte Carlo simulation that employs 108 replications for each simulation. Separate simulations
were performed for selected values of n and for d D 1; 2; 4; 6; 12 (where n and d are the second and third
arguments to the PROBDF function).

The maximum error of the PROBDF function is approximately˙10�3 for d in the set (1,2,4,6,12) and can
be slightly larger for other d values. Because the number of simulation replications used to produce the
PROBDF function is much greater than the 60,000 replications used by Dickey and colleagues (Dickey and
Fuller 1979; Dickey, Hasza, and Fuller 1984), the PROBDF function can be expected to produce results that
are substantially more accurate than the critical values reported in those papers.

Examples

Suppose the data set TEST contains 104 observations of the time series variable Y, and you want to test the
null hypothesis that there exists a lag 4 seasonal unit root in the Y series. The following statements illustrate
how to perform the single-mean Dickey-Fuller regression coefficient test using PROC REG and PROBDF:

data test1;
set test;
y4 = lag4(y);

run;

proc reg data=test1 outest=alpha;
model y = y4 / noprint;

run;

data _null_;
set alpha;
x = 100 * ( y4 - 1 );
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p = probdf( x, 100, 4, "RSM" );
put p= pvalue5.3;

run;

To perform the augmented Dickey-Fuller test, regress the differences of the series on lagged differences
and on the lagged value of the series, and compute the test statistic from the regression coefficient for the
lagged series. The following statements illustrate how to perform the single-mean augmented Dickey-Fuller
studentized test for a simple unit root using PROC REG and PROBDF:

data test1;
set test;
yl = lag(y);
yd = dif(y);
yd1 = lag1(yd); yd2 = lag2(yd);
yd3 = lag3(yd); yd4 = lag4(yd);

run;

proc reg data=test1 outest=alpha covout;
model yd = yl yd1-yd4 / noprint;

run;

data _null_;
set alpha;
retain a;
if _type_ = 'PARMS' then a = yl ;
if _type_ = 'COV' & _NAME_ = 'Y1' then do;

x = a / sqrt(yl);
p = probdf( x, 99, 1, "SSM" );
put p= pvalue5.3;
end;

run;

The %DFTEST macro provides an easier way to perform Dickey-Fuller tests. The following statements
perform the same tests as the preceding example:

%dftest( test, y, ar=4 );
%put p=&dftest;
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Overview
Several SAS/ETS procedures (COUNTREG, ENTROPY, MDC, QLIM, UCM, and VARMAX) use the
nonlinear optimization (NLO) subsystem to perform nonlinear optimization. This chapter describes the
options of the NLO system and some technical details of the available optimization methods. Note that not
all options have been implemented for all procedures that use the NLO subsystem. You should check each
procedure chapter for more information about which options are available.

Options
Table 7.1 summarizes the options available in the NLO system.

Table 7.1 NLO Options

Option Description

Optimization Specifications
TECHNIQUE= Minimization technique
UPDATE= Update technique
LINESEARCH= Line-search method
LSPRECISION= Line-search precision
HESCAL= Type of Hessian scaling
INHESSIAN= Start for approximated Hessian
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Table 7.1 continued

Option Description

RESTART= Iteration number for update restart

Termination Criteria Specifications
MAXFUNC= Maximum number of function calls
MAXITER= Maximum number of iterations
MINITER= Minimum number of iterations
MAXTIME= Upper limit seconds of CPU time
ABSCONV= Absolute function convergence criterion
ABSFCONV= Absolute function convergence criterion
ABSGCONV= Absolute gradient convergence criterion
ABSXCONV= Absolute parameter convergence criterion
FCONV= Relative function convergence criterion
FCONV2= Relative function convergence criterion
GCONV= Relative gradient convergence criterion
XCONV= Relative parameter convergence criterion
FSIZE= Used in FCONV, GCONV criterion
XSIZE= Used in XCONV criterion

Step Length Options
DAMPSTEP= Damped steps in line search
MAXSTEP= Maximum trust region radius
INSTEP= Initial trust region radius

Printed Output Options
PALL Display (almost) all printed optimization-related output
PHISTORY Display optimization history
PHISTPARMS Display parameter estimates in each iteration
PSHORT Reduce some default optimization-related output
PSUMMARY Reduce most default optimization-related output
NOPRINT Suppress all printed optimization-related output

Remote Monitoring Option
SOCKET= Specify the fileref for remote monitoring

These options are described in alphabetical order.

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion. For minimization, termination requires f .� .k// �
r . The default value of r is the negative square root of the largest double-precision value, which serves
only as a protection against overflows.
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ABSFCONV=r [n]

ABSFTOL=r [n]
specifies an absolute function convergence criterion. For all techniques except NMSIMP, termination
requires a small change of the function value in successive iterations:

jf .� .k�1// � f .� .k//j � r

The same formula is used for the NMSIMP technique, but � .k/ is defined as the vertex with the lowest
function value, and � .k�1/ is defined as the vertex with the highest function value in the simplex. The
default value is r=0. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r [n]

ABSGTOL=r [n]
specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small:

max
j
jgj .�

.k//j � r

This criterion is not used by the NMSIMP technique. The default value is r D 1E � 5. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated.

ABSXCONV=r [n]

ABSXTOL=r [n]
specifies an absolute parameter convergence criterion. For all techniques except NMSIMP, termination
requires a small Euclidean distance between successive parameter vectors,

k � .k/ � � .k�1/ k2� r

For the NMSIMP technique, termination requires either a small length ˛.k/ of the vertices of a restart
simplex,

˛.k/ � r

or a small simplex size,

ı.k/ � r

where the simplex size ı.k/ is defined as the L1 distance from the simplex vertex �.k/ with the smallest
function value to the other n simplex points � .k/

l
¤ �.k/:

ı.k/ D
X
�l¤y

k �
.k/

l
� �.k/ k1

The default is r D 1E � 8 for the NMSIMP technique and r=0 otherwise. The optional integer value n
specifies the number of successive iterations for which the criterion must be satisfied before the process
can terminate.
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DAMPSTEP[=r ]
specifies that the initial step length value ˛.0/ for each line search (used by the QUANEW, HYQUAN,
CONGRA, or NEWRAP technique) cannot be larger than r times the step length value used in the
former iteration. If the DAMPSTEP option is specified but r is not specified, the default is r=2. The
DAMPSTEP=r option can prevent the line-search algorithm from repeatedly stepping into regions
where some objective functions are difficult to compute or where they could lead to floating point
overflows during the computation of objective functions and their derivatives. The DAMPSTEP=r
option can save time-costly function calls during the line searches of objective functions that result in
very small steps.

FCONV=r [n]
FTOL=r [n]

specifies a relative function convergence criterion. For all techniques except NMSIMP, termination
requires a small relative change of the function value in successive iterations,

jf .� .k// � f .� .k�1//j

max.jf .� .k�1//j;FSIZE/
� r

where FSIZE is defined by the FSIZE= option. The same formula is used for the NMSIMP technique,
but � .k/ is defined as the vertex with the lowest function value, and � .k�1/ is defined as the vertex with
the highest function value in the simplex. The default value may depend on the procedure. In most
cases, you can use the PALL option to find it.

FCONV2=r [n]
FTOL2=r [n]

specifies another function convergence criterion.

For all techniques except NMSIMP, termination requires a small predicted reduction

df .k/ � f .� .k// � f .� .k/ C s.k//

of the objective function. The predicted reduction

df .k/ D �g.k/T s.k/ �
1

2
s.k/TH .k/s.k/

D �
1

2
s.k/T g.k/

� r

is computed by approximating the objective function f by the first two terms of the Taylor series and
substituting the Newton step

s.k/ D �ŒH .k/��1g.k/

For the NMSIMP technique, termination requires a small standard deviation of the function values

of the n C 1 simplex vertices � .k/
l

, l D 0; : : : ; n,

r
1
nC1

P
l

h
f .�

.k/

l
/ � f .� .k//

i2
� r , where

f .� .k// D 1
nC1

P
l f .�

.k/

l
/. If there are nact boundary constraints active at � .k/, the mean and

standard deviation are computed only for the nC 1 � nact unconstrained vertices.

The default value is r D 1E � 6 for the NMSIMP technique and r=0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before the
process can terminate.
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FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The
default value is r=0. For more information, see the FCONV= and GCONV= options.

GCONV=r [n]
GTOL=r [n]

specifies a relative gradient convergence criterion. For all techniques except CONGRA and NMSIMP,
termination requires that the normalized predicted function reduction be small,

g.� .k//T ŒH .k/��1g.� .k//

max.jf .� .k//j;FSIZE/
� r

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian
estimate H is not available), the following criterion is used:

k g.� .k// k22 k s.� .k// k2

k g.� .k// � g.� .k�1// k2 max.jf .� .k//j;FSIZE/
� r

This criterion is not used by the NMSIMP technique. The default value is r D 1E � 8. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can terminate.

HESCAL=0j1j2j3
HS=0j1j2j3

specifies the scaling version of the Hessian matrix used in NRRIDG, TRUREG, NEWRAP, or
DBLDOG optimization.

If HS is not equal to 0, the first iteration and each restart iteration sets the diagonal scaling matrix
D.0/ D diag.d .0/i /,

d
.0/
i D

q
max.jH .0/

i;i j; �/

where H .0/
i;i are the diagonal elements of the Hessian. In every other iteration, the diagonal scaling

matrix D.0/ D diag.d .0/i / is updated depending on the HS option:

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:

d
.kC1/
i D max

�
d
.k/
i ;

q
max.jH .k/

i;i j; �/

�
HS=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

d
.kC1/
i D max

�
0:6 � d

.k/
i ;

q
max.jH .k/

i;i j; �/

�
HS=3 specifies that di is reset in each iteration:

d
.kC1/
i D

q
max.jH .k/

i;i j; �/

In each scaling update, � is the relative machine precision. The default value is HS=0. Scaling of the
Hessian can be time-consuming in the case where general linear constraints are active.
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INHESSIAN[=r ]

INHESS[=r ]
specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton techniques
QUANEW and DBLDOG. There are two alternatives:

� If you do not use the r specification, the initial estimate of the approximate Hessian is set to the
Hessian at � .0/.

� If you do use the r specification, the initial estimate of the approximate Hessian is set to the
multiple of the identity matrix rI .

By default, if you do not specify the option INHESSIAN=r , the initial estimate of the approximate
Hessian is set to the multiple of the identity matrix rI , where the scalar r is computed from the
magnitude of the initial gradient.

INSTEP=r
reduces the length of the first trial step during the line search of the first iterations. For highly nonlinear
objective functions, such as the EXP function, the default initial radius of the trust-region algorithm
TRUREG or DBLDOG or the default step length of the line-search algorithms can result in arithmetic
overflows. If this occurs, you should specify decreasing values of 0 < r < 1 such as INSTEP=1E–1,
INSTEP=1E–2, INSTEP=1E–4, and so on, until the iteration starts successfully.

� For trust-region algorithms (TRUREG, DBLDOG), the INSTEP= option specifies a factor r > 0
for the initial radius �.0/ of the trust region. The default initial trust-region radius is the length of
the scaled gradient. This step corresponds to the default radius factor of r D 1.

� For line-search algorithms (NEWRAP, CONGRA, QUANEW), the INSTEP= option specifies
an upper bound for the initial step length for the line search during the first five iterations. The
default initial step length is r D 1.

� For the Nelder-Mead simplex algorithm, using TECH=NMSIMP, the INSTEP=r option defines
the size of the start simplex.

LINESEARCH=i

LIS=i
specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization techniques.
For an introduction to line-search techniques, see Fletcher (1987). The value of i can be 1; : : : ; 8. For
CONGRA, QUANEW and NEWRAP, the default value is i D 2.

LIS=1 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is similar to one
used by the Harwell subroutine library.

LIS=2 specifies a line-search method that needs more function than gradient calls for
quadratic and cubic interpolation and cubic extrapolation; this method is imple-
mented as shown in Fletcher (1987) and can be modified to an exact line search by
using the LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is implemented as
shown in Fletcher (1987) and can be modified to an exact line search by using the
LSPRECISION= option.
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LIS=4 specifies a line-search method that needs the same number of function and gradient
calls for stepwise extrapolation and cubic interpolation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only function values
for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only function values for
linear approximation.

LIS=8 specifies the Armijo line-search technique (Polak 1971), which uses only function
values for linear approximation.

LSPRECISION=r

LSP=r
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and
LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization
problems, a more precise and expensive line search may be necessary (Fletcher 1987). The second
line-search method (which is the default for the NEWRAP, QUANEW, and CONGRA techniques) and
the third line-search method approach exact line search for small LSPRECISION= values. If you have
numerical problems, you should try to decrease the LSPRECISION= value to obtain a more precise
line search. The default values are shown in Table 7.2.

Table 7.2 Line Search Precision Defaults

TECH= UPDATE= LSP Default

QUANEW DBFGS, BFGS r = 0.4
QUANEW DDFP, DFP r = 0.06
CONGRA All r = 0.1
NEWRAP No update r = 0.9

For more information, see Fletcher (1987).

MAXFUNC=i

MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are

� TRUREG, NRRIDG, NEWRAP: 125

� QUANEW, DBLDOG: 500

� CONGRA: 1000

� NMSIMP: 3000

Note that the optimization can terminate only after completing a full iteration. Therefore, the number
of function calls that is actually performed can exceed the number that is specified by the MAXFUNC=
option.
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MAXITER=i

MAXIT=i
specifies the maximum number i of iterations in the optimization process. The default values are

� TRUREG, NRRIDG, NEWRAP: 50

� QUANEW, DBLDOG: 200

� CONGRA: 400

� NMSIMP: 1000

These default values are also valid when i is specified as a missing value.

MAXSTEP=r [n]
specifies an upper bound for the step length of the line-search algorithms during the first n iterations.
By default, r is the largest double-precision value and n is the largest integer available. Setting this
option can improve the speed of convergence for the CONGRA, QUANEW, and NEWRAP techniques.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is
the largest floating-point double representation of your computer. Note that the time specified by the
MAXTIME= option is checked only once at the end of each iteration. Therefore, the actual running
time can be much longer than that specified by the MAXTIME= option. The actual running time
includes the rest of the time needed to finish the iteration and the time needed to generate the output of
the results.

MINITER=i

MINIT=i
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can behave
strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the
required number of iterations.

NOPRINT
suppresses the output. (See procedure documentation for availability of this option.)

PALL
displays all optional output for optimization. (See procedure documentation for availability of this
option.)

PHISTORY
displays the optimization history. (See procedure documentation for availability of this option.)

PHISTPARMS
display parameter estimates in each iteration. (See procedure documentation for availability of this
option.)
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PINIT
displays the initial values and derivatives (if available). (See procedure documentation for availability
of this option.)

PSHORT
restricts the amount of default output. (See procedure documentation for availability of this option.)

PSUMMARY
restricts the amount of default displayed output to a short form of iteration history and notes, warnings,
and errors. (See procedure documentation for availability of this option.)

RESTART=i > 0

REST=i > 0
specifies that the QUANEW or CONGRA algorithm is restarted with a steepest descent/ascent search
direction after, at most, i iterations. Default values are as follows:

� CONGRA
UPDATE=PB: restart is performed automatically, i is not used.

� CONGRA
UPDATE¤PB: i D min.10n; 80/, where n is the number of parameters.

� QUANEW
i is the largest integer available.

SOCKET=fileref
specifies the fileref that contains the information needed for remote monitoring. For more information,
see the section “Remote Monitoring” on page 182.

TECHNIQUE=value

TECH=value
specifies the optimization technique. Valid values are as follows:

CONGRA performs a conjugate-gradient optimization, which can be more precisely specified
with the UPDATE= option and modified with the LINESEARCH= option. When
you specify this option, UPDATE=PB by default.

DBLDOG performs a version of double-dogleg optimization, which can be more pre-
cisely specified with the UPDATE= option. When you specify this option,
UPDATE=DBFGS by default.

NMSIMP performs a Nelder-Mead simplex optimization.

NONE does not perform any optimization. This option can be used as follows:

� to perform a grid search without optimization
� to compute estimates and predictions that cannot be obtained efficiently with

any of the optimization techniques

NEWRAP performs a Newton-Raphson optimization that combines a line-search algorithm
with ridging. The line-search algorithm LIS=2 is the default method.

NRRIDG performs a Newton-Raphson optimization with ridging.
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QUANEW performs a quasi-Newton optimization, which can be defined more precisely with
the UPDATE= option and modified with the LINESEARCH= option. This is the
default estimation method.

TRUREG performs a trust region optimization.

UPDATE=method

UPD=method
specifies the update method for the QUANEW, DBLDOG, or CONGRA optimization technique. Not
every update method can be used with each optimizer.

Valid methods are as follows:

BFGS performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of
the inverse Hessian matrix.

DBFGS performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This
is the default update method.

DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky
factor of the Hessian matrix.

DFP performs the original DFP update of the inverse Hessian matrix.

PB performs the automatic restart update method of Powell (1977); Beale (1972).

FR performs the Fletcher-Reeves update (Fletcher 1987).

PR performs the Polak-Ribiere update (Fletcher 1987).

CD performs a conjugate-descent update of Fletcher (1987).

XCONV=r [n]

XTOL=r [n]
specifies the relative parameter convergence criterion. For all techniques except NMSIMP, termination
requires a small relative parameter change in subsequent iterations.

maxj j�
.k/
j � �

.k�1/
j j

max.j� .k/j j; j�
.k�1/
j j;XSIZE/

� r

For the NMSIMP technique, the same formula is used, but � .k/j is defined as the vertex with the lowest

function value and � .k�1/j is defined as the vertex with the highest function value in the simplex. The
default value is r D 1E � 8 for the NMSIMP technique and r D 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before the
process can be terminated.

XSIZE=r > 0
specifies the XSIZE parameter of the relative parameter termination criterion. The default value is
r D 0. For more information, see the XCONV= option.
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Details of Optimization Algorithms

Overview
There are several optimization techniques available, as shown in Table 7.3. You can choose a particular
optimizer with the TECH=name option in the PROC statement or NLOPTIONS statement.

Table 7.3 Optimization Techniques

Algorithm TECH=

Trust region method TRUREG
Newton-Raphson method with line search NEWRAP
Newton-Raphson method with ridging NRRIDG
Quasi-Newton methods (DBFGS, DDFP, BFGS, DFP) QUANEW
Double-dogleg method (DBFGS, DDFP) DBLDOG
Conjugate gradient methods (PB, FR, PR, CD) CONGRA
Nelder-Mead simplex method NMSIMP

No algorithm for optimizing general nonlinear functions exists that always finds the global optimum for
a general nonlinear minimization problem in a reasonable amount of time. Since no single optimization
technique is invariably superior to others, NLO provides a variety of optimization techniques that work well
in various circumstances. However, you can devise problems for which none of the techniques in NLO can
find the correct solution. Moreover, nonlinear optimization can be computationally expensive in terms of
time and memory, so you must be careful when matching an algorithm to a problem.

All optimization techniques in NLO use O.n2/ memory except the conjugate gradient methods, which
use only O.n/ of memory and are designed to optimize problems with many parameters. These iterative
techniques require repeated computation of the following:

� the function value (optimization criterion)

� the gradient vector (first-order partial derivatives)

� for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)

However, since each of the optimizers requires different derivatives, some computational efficiencies can be
gained. Table 7.4 shows, for each optimization technique, which derivatives are required. (FOD means that
first-order derivatives or the gradient is computed; SOD means that second-order derivatives or the Hessian is
computed.)

Table 7.4 Optimization Computations

Algorithm FOD SOD

TRUREG x x
NEWRAP x x
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Table 7.4 continued

Algorithm FOD SOD

NRRIDG x x
QUANEW x -
DBLDOG x -
CONGRA x -
NMSIMP - -

Each optimization method employs one or more convergence criteria that determine when it has converged.
The various termination criteria are listed and described in the previous section. An algorithm is considered
to have converged when any one of the convergence criterion is satisfied. For example, under the default
settings, the QUANEW algorithm will converge if ABSGCONV < 1E � 5, FCONV < 10�FDIGITS, or
GCONV < 1E � 8.

Choosing an Optimization Algorithm
The factors that go into choosing a particular optimization technique for a particular problem are complex
and might involve trial and error.

For many optimization problems, computing the gradient takes more computer time than computing the
function value, and computing the Hessian sometimes takes much more computer time and memory than
computing the gradient, especially when there are many decision variables. Unfortunately, optimization
techniques that do not use some kind of Hessian approximation usually require many more iterations than
techniques that do use a Hessian matrix, and as a result the total run time of these techniques is often longer.
Techniques that do not use the Hessian also tend to be less reliable. For example, they can more easily
terminate at stationary points rather than at global optima.

A few general remarks about the various optimization techniques follow.

� The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best for small problems where
the Hessian matrix is not expensive to compute. Sometimes the NRRIDG algorithm can be faster than
the TRUREG algorithm, but TRUREG can be more stable. The NRRIDG algorithm requires only one
matrix with n.nC 1/=2 double words; TRUREG and NEWRAP require two such matrices.

� The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the
objective function and the gradient are much faster to evaluate than the Hessian. The QUANEW and
DBLDOG algorithms, in general, require more iterations than TRUREG, NRRIDG, and NEWRAP, but
each iteration can be much faster. The QUANEW and DBLDOG algorithms require only the gradient
to update an approximate Hessian, and they require slightly less memory than TRUREG or NEWRAP
(essentially one matrix with n.nC 1/=2 double words). QUANEW is the default optimization method.

� The first-derivative method CONGRA is best for large problems where the objective function and the
gradient can be computed much faster than the Hessian and where too much memory is required to
store the (approximate) Hessian. The CONGRA algorithm, in general, requires more iterations than
QUANEW or DBLDOG, but each iteration can be much faster. Since CONGRA requires only a factor
of n double-word memory, many large applications can be solved only by CONGRA.
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� The no-derivative method NMSIMP is best for small problems where derivatives are not continuous or
are very difficult to compute.

Algorithm Descriptions
Some details about the optimization techniques are as follows.

Trust Region Optimization (TRUREG)
The trust region method uses the gradient g.�.k// and the Hessian matrix H.�.k//; thus, it requires that the
objective function f .�/ have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function
within a hyperelliptic trust region with radius � that constrains the step size that corresponds to the quality of
the quadratic approximation. The trust region method is implemented using Dennis, Gay, and Welsch (1981);
Gay (1983); Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it does not need many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms may be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)
The NEWRAP technique uses the gradient g.�.k// and the Hessian matrix H.�.k//; thus, it requires that
the objective function have continuous first- and second-order derivatives inside the feasible region. If
second-order derivatives are computed efficiently and precisely, the NEWRAP method can perform well for
medium-sized to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search
is performed to compute successful steps. If the Hessian is not positive definite, a multiple of the identity
matrix is added to the Hessian matrix to make it positive definite.

In each iteration, a line search is performed along the search direction to find an approximate optimum of
the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation
(LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)
The NRRIDG technique uses the gradient g.�.k// and the Hessian matrix H.�.k//; thus, it requires that the
objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied,
a multiple of the identity matrix is added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it does not require many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Since the NRRIDG technique uses an orthogonal decomposition of the approximate Hessian, each iteration
of NRRIDG can be slower than that of the NEWRAP technique, which works with Cholesky decomposition.
Usually, however, NRRIDG requires fewer iterations than NEWRAP.
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Quasi-Newton Optimization (QUANEW)
The (dual) quasi-Newton method uses the gradient g.�.k//, and it does not need to compute second-order
derivatives since they are approximated. It works well for medium to moderately large optimization problems
where the objective function and the gradient are much faster to compute than the Hessian; but, in general, it
requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which compute second-
order derivatives. QUANEW is the default optimization algorithm because it provides an appropriate balance
between the speed and stability required for most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending upon the value of the UPDATE= option:

� the original quasi-Newton algorithm, which updates an approximation of the inverse Hessian

� the dual quasi-Newton algorithm, which updates the Cholesky factor of an approximate Hessian
(default)

You can specify four update formulas with the UPDATE= option:

� DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky
factor of the Hessian matrix. This is the default.

� DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

� BFGS performs the original BFGS update of the inverse Hessian matrix.

� DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an approximate optimum.
The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size ˛
satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region
defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive
definiteness of the quasi-Newton update. In that case, either the update is skipped or the iterations are
restarted with an identity matrix, resulting in the steepest descent or ascent search direction. You can specify
line-search algorithms other than the default with the LIS= option.

The QUANEW algorithm performs its own line-search technique. All options and parameters (except the
INSTEP= option) that control the line search in the other algorithms do not apply here. In several applications,
large steps in the first iterations are troublesome. You can use the INSTEP= option to impose an upper
bound for the step size ˛ during the first five iterations. You can also use the INHESSIAN[=r ] option to
specify a different starting approximation for the Hessian. If you specify only the INHESSIAN option, the
Cholesky factor of a (possibly ridged) finite difference approximation of the Hessian is used to initialize
the quasi-Newton update process. The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT=
options, which control the processing of linear and boundary constraints, are valid only for the quadratic
programming subroutine used in each iteration of the QUANEW algorithm.

Double-Dogleg Optimization (DBLDOG)
The double-dogleg optimization method combines the ideas of the quasi-Newton and trust region methods. In
each iteration, the double-dogleg algorithm computes the step s.k/ as the linear combination of the steepest
descent or ascent search direction s.k/1 and a quasi-Newton search direction s.k/2 .

s.k/ D ˛1s
.k/
1 C ˛2s

.k/
2
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The step is requested to remain within a prespecified trust region radius; see Fletcher (1987, p. 107). Thus,
the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. You can
specify two update formulas with the UPDATE= option:

� DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of the Cholesky factor of
the Hessian matrix. This is the default.

� DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky factor of the Hessian
matrix.

The double-dogleg optimization technique works well for medium to moderately large optimization problems
where the objective function and the gradient are much faster to compute than the Hessian. The implemen-
tation is based on Dennis and Mei (1979); Gay (1983). However, this implementation is extended to deal
with boundary and linear constraints. The DBLDOG technique generally requires more iterations than the
TRUREG, NEWRAP, or NRRIDG technique, which requires second-order derivatives; however, each of the
DBLDOG iterations is computationally cheap. Furthermore, the DBLDOG technique requires only gradient
calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)
Second-order derivatives are not required by the CONGRA algorithm and are not even approximated. The
CONGRA algorithm can be expensive in function and gradient calls, but it requires only O.n/ memory for
unconstrained optimization. In general, many iterations are required to obtain a precise solution, but each
of the CONGRA iterations is computationally cheap. You can specify four different update formulas for
generating the conjugate directions by using the UPDATE= option:

� PB performs the automatic restart update method of Powell (1977); Beale (1972). This is the default.

� FR performs the Fletcher-Reeves update (Fletcher 1987).

� PR performs the Polak-Ribiere update (Fletcher 1987).

� CD performs a conjugate-descent update of Fletcher (1987).

The default, UPDATE=PB, behaved best in most test examples. You are advised to avoid the option
UPDATE=CD, which behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with large n. For the unconstrained
or boundary constrained case, CONGRA requires only O.n/ bytes of working memory, whereas all other
optimization methods require order O.n2/ bytes of working memory. During n successive iterations,
uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle
of n conjugate search directions. In each iteration, a line search is performed along the search direction
to find an approximate optimum of the objective function. The default line-search method uses quadratic
interpolation and cubic extrapolation to obtain a step size ˛ satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. Other
line-search algorithms can be specified with the LIS= option.
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Nelder-Mead Simplex Optimization (NMSIMP)
The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective
function has continuous derivatives. The objective function itself needs to be continuous. This technique is
quite expensive in the number of function calls, and it might be unable to generate precise results for n much
greater than 40.

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This
algorithm does not compute the objective for infeasible points, but it changes the shape of the simplex
by adapting to the nonlinearities of the objective function, which contributes to an increased speed of
convergence. It uses a special termination criteria.

Remote Monitoring
The SAS/EmMonitor is an application for Windows that enables you to monitor and stop from your PC a
CPU-intensive application performed by the NLO subsystem that runs on a remote server.

On the server side, a FILENAME statement assigns a fileref to a SOCKET-type device that defines the IP
address of the client and the port number for listening. The fileref is then specified in the SOCKET= option in
the PROC statement to control the EmMonitor. The following statements show an example of server-side
statements for PROC ENTROPY:

data one;
do t = 1 to 10;

x1 = 5 * ranuni(456);
x2 = 10 * ranuni( 456);
x3 = 2 * rannor(1456);
e1 = rannor(1456);
e2 = rannor(4560);
tmp1 = 0.5 * e1 - 0.1 * e2;
tmp2 = -0.1 * e1 - 0.3 * e2;
y1 = 7 + 8.5*x1 + 2*x2 + tmp1;
y2 = -3 + -2*x1 + x2 + 3*x3 + tmp2;
output;

end;
run;

filename sock socket 'your.pc.address.com:6943';

proc entropy data=one tech=tr gmenm gconv=2.e-5 socket=sock;
model y1 = x1 x2 x3;

run;

On the client side, the EmMonitor application is started with the following syntax:

EmMonitor options

The options are as follows:

-p port_number defines the port number

-t title defines the title of the EmMonitor window
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-k keeps the monitor alive when the iteration is completed

The default port number is 6943.

The server does not need to be running when you start the EmMonitor, and you can start or dismiss the server
at any time during the iteration process. You only need to remember the port number.

Starting the PC client, or closing it prematurely, does not have any effect on the server side. In other words,
the iteration process continues until one of the criteria for termination is met.

Figure 7.1 through Figure 7.4 show screenshots of the application on the client side.

Figure 7.1 Graph Tab Group 0

Figure 7.2 Graph Tab Group 1
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Figure 7.3 Status Tab

Figure 7.4 Options Tab
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ODS Table Names
The NLO subsystem assigns a name to each table it creates. You can use these names when using the Output
Delivery System (ODS) to select tables and create output data sets. Not all tables are created by all SAS/ETS
procedures that use the NLO subsystem. You should check the procedure chapter for more information. The
names are listed in Table 7.5.

Table 7.5 ODS Tables Produced by the NLO Subsystem

ODS Table Name Description

ConvergenceStatus Convergence status
InputOptions Input options
IterHist Iteration history
IterStart Iteration start
IterStop Iteration stop
Lagrange Lagrange multipliers at the solution
LinCon Linear constraints
LinConDel Deleted linear constraints
LinConSol Linear constraints at the solution
ParameterEstimatesResults Estimates at the results
ParameterEstimatesStart Estimates at the start of the iterations
ProblemDescription Problem description
ProjGrad Projected gradients
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Overview: ARIMA Procedure
The ARIMA procedure analyzes and forecasts equally spaced univariate time series data, transfer function
data, and intervention data by using the autoregressive integrated moving-average (ARIMA) or autoregressive
moving-average (ARMA) model. An ARIMA model predicts a value in a response time series as a linear
combination of its own past values, past errors (also called shocks or innovations), and current and past
values of other time series.

The ARIMA approach was first popularized by Box and Jenkins, and ARIMA models are often referred to as
Box-Jenkins models. The general transfer function model employed by the ARIMA procedure was discussed
by Box and Tiao (1975). When an ARIMA model includes other time series as input variables, the model is
sometimes referred to as an ARIMAX model. Pankratz (1991) refers to the ARIMAX model as dynamic
regression.

The ARIMA procedure provides a comprehensive set of tools for univariate time series model identification,
parameter estimation, and forecasting, and it offers great flexibility in the kinds of ARIMA or ARIMAX
models that can be analyzed. The ARIMA procedure supports seasonal, subset, and factored ARIMA models;
intervention or interrupted time series models; multiple regression analysis with ARMA errors; and rational
transfer function models of any complexity.

The design of PROC ARIMA closely follows the Box-Jenkins strategy for time series modeling with features
for the identification, estimation and diagnostic checking, and forecasting steps of the Box-Jenkins method.

Before you use PROC ARIMA, you should be familiar with Box-Jenkins methods, and you should exercise
care and judgment when you use the ARIMA procedure. The ARIMA class of time series models is complex
and powerful, and some degree of expertise is needed to use them correctly.

Getting Started: ARIMA Procedure
This section outlines the use of the ARIMA procedure and gives a cursory description of the ARIMA
modeling process for readers who are less familiar with these methods.

The Three Stages of ARIMA Modeling
The analysis performed by PROC ARIMA is divided into three stages, corresponding to the stages described
by Box and Jenkins (1976):

1. In the identification stage, you use the IDENTIFY statement to specify the response series and identify
candidate ARIMA models for it. The IDENTIFY statement reads time series that are to be used in
later statements, possibly differencing them, and computes autocorrelations, inverse autocorrelations,
partial autocorrelations, and cross-correlations. Stationarity tests can be performed to determine if
differencing is necessary. The analysis of the IDENTIFY statement output usually suggests one or
more ARIMA models that could be fit. Options enable you to test for stationarity and tentative ARMA
order identification.
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2. In the estimation and diagnostic checking stage, you use the ESTIMATE statement to specify the
ARIMA model to fit to the variable specified in the previous IDENTIFY statement and to estimate the
parameters of that model. The ESTIMATE statement also produces diagnostic statistics to help you
judge the adequacy of the model.

Significance tests for parameter estimates indicate whether some terms in the model might be unneces-
sary. Goodness-of-fit statistics aid in comparing this model to others. Tests for white noise residuals
indicate whether the residual series contains additional information that might be used by a more
complex model. The OUTLIER statement provides another useful tool to check whether the currently
estimated model accounts for all the variation in the series. If the diagnostic tests indicate problems
with the model, you try another model and then repeat the estimation and diagnostic checking stage.

3. In the forecasting stage, you use the FORECAST statement to forecast future values of the time series
and to generate confidence intervals for these forecasts from the ARIMA model produced by the
preceding ESTIMATE statement.

These three steps are explained further and illustrated through an extended example in the following sections.

Identification Stage
Suppose you have a variable called SALES that you want to forecast. The following example illustrates
ARIMA modeling and forecasting by using a simulated data set TEST that contains a time series SALES
generated by an ARIMA(1,1,1) model. The output produced by this example is explained in the following
sections. The simulated SALES series is shown in Figure 8.1.

proc sgplot data=test;
scatter y=sales x=date;

run;
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Figure 8.1 Simulated ARIMA(1,1,1) Series SALES

Using the IDENTIFY Statement

You first specify the input data set in the PROC ARIMA statement. Then, you use an IDENTIFY statement to
read in the SALES series and analyze its correlation properties. You do this by using the following statements:

proc arima data=test ;
identify var=sales nlag=24;

run;

Descriptive Statistics
The IDENTIFY statement first prints descriptive statistics for the SALES series. This part of the IDENTIFY
statement output is shown in Figure 8.2.
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Figure 8.2 IDENTIFY Statement Descriptive Statistics Output

The ARIMA Procedure

Name of Variable = sales

Mean of Working Series 137.3662

Standard Deviation 17.36385

Number of Observations 100

Autocorrelation Function Plots
The IDENTIFY statement next produces a panel of plots used for its autocorrelation and trend analysis. The
panel contains the following plots:

� the time series plot of the series

� the sample autocorrelation function plot (ACF)

� the sample inverse autocorrelation function plot (IACF)

� the sample partial autocorrelation function plot (PACF)

This correlation analysis panel is shown in Figure 8.3.
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Figure 8.3 Correlation Analysis of SALES

These autocorrelation function plots show the degree of correlation with past values of the series as a function
of the number of periods in the past (that is, the lag) at which the correlation is computed.

The NLAG= option controls the number of lags for which the autocorrelations are shown. By default, the
autocorrelation functions are plotted to lag 24.

Most books on time series analysis explain how to interpret the autocorrelation and the partial autocorrelation
plots. For information about the inverse autocorrelation plots, see the section “The Inverse Autocorrelation
Function” on page 236.

By examining these plots, you can judge whether the series is stationary or nonstationary. In this case, a
visual inspection of the autocorrelation function plot indicates that the SALES series is nonstationary, since
the ACF decays very slowly. For more formal stationarity tests, use the STATIONARITY= option. (See the
section “Stationarity” on page 209.)

White Noise Test
The last part of the default IDENTIFY statement output is the check for white noise. This is an approximate
statistical test of the hypothesis that none of the autocorrelations of the series up to a given lag are significantly
different from 0. If this is true for all lags, then there is no information in the series to model, and no ARIMA
model is needed for the series.
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The autocorrelations are checked in groups of six, and the number of lags checked depends on the NLAG=
option. The check for white noise output is shown in Figure 8.4.

Figure 8.4 IDENTIFY Statement Check for White Noise

Autocorrelation Check for White Noise

To
Lag Chi-Square DF Pr > ChiSq Autocorrelations

6 426.44 6 <.0001 0.957 0.907 0.852 0.791 0.726 0.659

12 547.82 12 <.0001 0.588 0.514 0.440 0.370 0.303 0.238

18 554.70 18 <.0001 0.174 0.112 0.052 -0.004 -0.054 -0.098

24 585.73 24 <.0001 -0.135 -0.167 -0.192 -0.211 -0.227 -0.240

In this case, the white noise hypothesis is rejected very strongly, which is expected since the series is
nonstationary. The p-value for the test of the first six autocorrelations is printed as <0.0001, which means the
p-value is less than 0.0001.

Identification of the Differenced Series

Since the series is nonstationary, the next step is to transform it to a stationary series by differencing. That is,
instead of modeling the SALES series itself, you model the change in SALES from one period to the next. To
difference the SALES series, use another IDENTIFY statement and specify that the first difference of SALES
be analyzed, as shown in the following statements:

proc arima data=test;
identify var=sales(1);

run;

The second IDENTIFY statement produces the same information as the first, but for the change in SALES
from one period to the next rather than for the total SALES in each period. The summary statistics output
from this IDENTIFY statement is shown in Figure 8.5. Note that the period of differencing is given as 1, and
one observation was lost through the differencing operation.

Figure 8.5 IDENTIFY Statement Output for Differenced Series

The ARIMA Procedure

Name of Variable = sales

Period(s) of Differencing 1

Mean of Working Series 0.660589

Standard Deviation 2.011543

Number of Observations 99

Observation(s) eliminated by differencing 1

The autocorrelation plots for the differenced series are shown in Figure 8.6.
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Figure 8.6 Correlation Analysis of the Change in SALES

The autocorrelations decrease rapidly in this plot, indicating that the change in SALES is a stationary time
series.

The next step in the Box-Jenkins methodology is to examine the patterns in the autocorrelation plot to choose
candidate ARMA models to the series. The partial and inverse autocorrelation function plots are also useful
aids in identifying appropriate ARMA models for the series.

In the usual Box-Jenkins approach to ARIMA modeling, the sample autocorrelation function, inverse
autocorrelation function, and partial autocorrelation function are compared with the theoretical correlation
functions expected from different kinds of ARMA models. This matching of theoretical autocorrelation
functions of different ARMA models to the sample autocorrelation functions computed from the response
series is the heart of the identification stage of Box-Jenkins modeling. Most textbooks on time series analysis,
such as Pankratz (1983), discuss the theoretical autocorrelation functions for different kinds of ARMA
models.

Since the input data are only a limited sample of the series, the sample autocorrelation functions computed
from the input series only approximate the true autocorrelation function of the process that generates the series.
This means that the sample autocorrelation functions do not exactly match the theoretical autocorrelation
functions for any ARMA model and can have a pattern similar to that of several different ARMA models.
If the series is white noise (a purely random process), then there is no need to fit a model. The check for
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white noise, shown in Figure 8.7, indicates that the change in SALES is highly autocorrelated. Thus, an
autocorrelation model, for example an AR(1) model, might be a good candidate model to fit to this process.

Figure 8.7 IDENTIFY Statement Check for White Noise

Autocorrelation Check for White Noise

To
Lag Chi-Square DF Pr > ChiSq Autocorrelations

6 154.44 6 <.0001 0.828 0.591 0.454 0.369 0.281 0.198

12 173.66 12 <.0001 0.151 0.081 -0.039 -0.141 -0.210 -0.274

18 209.64 18 <.0001 -0.305 -0.271 -0.218 -0.183 -0.174 -0.161

24 218.04 24 <.0001 -0.144 -0.141 -0.125 -0.085 -0.040 -0.032

Estimation and Diagnostic Checking Stage
The autocorrelation plots for this series, as shown in the previous section, suggest an AR(1) model for the
change in SALES. You should check the diagnostic statistics to see if the AR(1) model is adequate. Other
candidate models include an MA(1) model and low-order mixed ARMA models. In this example, the AR(1)
model is tried first.

Estimating an AR(1) Model

The following statements fit an AR(1) model (an autoregressive model of order 1), which predicts the change
in SALES as an average change, plus some fraction of the previous change, plus a random error. To estimate
an AR model, you specify the order of the autoregressive model with the P= option in an ESTIMATE
statement:

estimate p=1;
run;

The ESTIMATE statement fits the model to the data and prints parameter estimates and various diagnostic
statistics that indicate how well the model fits the data. The first part of the ESTIMATE statement output, the
table of parameter estimates, is shown in Figure 8.8.

Figure 8.8 Parameter Estimates for AR(1) Model

The ARIMA Procedure

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag

MU 0.90280 0.65984 1.37 0.1744 0

AR1,1 0.86847 0.05485 15.83 <.0001 1

The table of parameter estimates is titled “Conditional Least Squares Estimation,” which indicates the
estimation method used. You can request different estimation methods with the METHOD= option.

The table of parameter estimates lists the parameters in the model; for each parameter, the table shows the
estimated value and the standard error and t value for the estimate. The table also indicates the lag at which
the parameter appears in the model.
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In this case, there are two parameters in the model. The mean term is labeled MU; its estimated value is
0.90280. The autoregressive parameter is labeled AR1,1; this is the coefficient of the lagged value of the
change in SALES, and its estimate is 0.86847.

The t values provide significance tests for the parameter estimates and indicate whether some terms in the
model might be unnecessary. In this case, the t value for the autoregressive parameter is 15.83, so this term is
highly significant. The t value for MU indicates that the mean term adds little to the model.

The standard error estimates are based on large sample theory. Thus, the standard errors are labeled as
approximate, and the standard errors and t values might not be reliable in small samples.

The next part of the ESTIMATE statement output is a table of goodness-of-fit statistics, which aid in
comparing this model to other models. This output is shown in Figure 8.9.

Figure 8.9 Goodness-of-Fit Statistics for AR(1) Model

Constant Estimate 0.118749

Variance Estimate 1.15794

Std Error Estimate 1.076076

AIC 297.4469

SBC 302.6372

Number of Residuals 99

The “Constant Estimate” is a function of the mean term MU and the autoregressive parameters. This estimate
is computed only for AR or ARMA models, but not for strictly MA models. For an explanation of the
constant estimate, see the section “General Notation for ARIMA Models” on page 207.

The “Variance Estimate” is the variance of the residual series, which estimates the innovation variance. The
item labeled “Std Error Estimate” is the square root of the variance estimate. In general, when you are
comparing candidate models, smaller AIC and SBC statistics indicate the better fitting model. The section
“Estimation Details” on page 246 explains the AIC and SBC statistics.

The ESTIMATE statement next prints a table of correlations of the parameter estimates, as shown in
Figure 8.10. This table can help you assess the extent to which collinearity might have influenced the results.
If two parameter estimates are very highly correlated, you might consider dropping one of them from the
model.

Figure 8.10 Correlations of the Estimates for AR(1) Model

Correlations of
Parameter Estimates

Parameter MU AR1,1

MU 1.000 0.114

AR1,1 0.114 1.000

The next part of the ESTIMATE statement output is a check of the autocorrelations of the residuals. This
output has the same form as the autocorrelation check for white noise that the IDENTIFY statement prints
for the response series. The autocorrelation check of residuals is shown in Figure 8.11.
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Figure 8.11 Check for White Noise Residuals for AR(1) Model

Autocorrelation Check of Residuals

To
Lag Chi-Square DF Pr > ChiSq Autocorrelations

6 19.09 5 0.0019 0.327 -0.220 -0.128 0.068 -0.002 -0.096

12 22.90 11 0.0183 0.072 0.116 -0.042 -0.066 0.031 -0.091

18 31.63 17 0.0167 -0.233 -0.129 -0.024 0.056 -0.014 -0.008

24 32.83 23 0.0841 0.009 -0.057 -0.057 -0.001 0.049 -0.015

The �2 test statistics for the residuals series indicate whether the residuals are uncorrelated (white noise) or
contain additional information that might be used by a more complex model. In this case, the test statistics
reject the no-autocorrelation hypothesis at a high level of significance (p = 0.0019 for the first six lags.) This
means that the residuals are not white noise, and so the AR(1) model is not a fully adequate model for this
series. The ESTIMATE statement output also includes graphical analysis of the residuals. It is not shown
here. The graphical analysis also reveals the inadequacy of the AR(1) model.

The final part of the ESTIMATE statement output is a listing of the estimated model, using the backshift
notation. This output is shown in Figure 8.12.

Figure 8.12 Estimated ARIMA(1, 1, 0) Model for SALES

Model for variable sales

Estimated Mean 0.902799

Period(s) of Differencing 1

Autoregressive Factors

Factor 1: 1 - 0.86847 B**(1)

This listing combines the differencing specification given in the IDENTIFY statement with the parameter
estimates of the model for the change in SALES. Since the AR(1) model is for the change in SALES, the
final model for SALES is an ARIMA(1,1,0) model. Using B, the backshift operator, the mathematical form
of the estimated model shown in this output is as follows:

.1 � B/salest D 0:902799C
1

.1 � 0:86847B/
at

For further explanation of this notation, see the section “General Notation for ARIMA Models” on page 207.

Estimating an ARMA(1,1) Model

The IDENTIFY statement plots suggest a mixed autoregressive and moving-average model, and the previous
ESTIMATE statement check of residuals indicates that an AR(1) model is not sufficient. You now try
estimating an ARMA(1,1) model for the change in SALES.

An ARMA(1,1) model predicts the change in SALES as an average change, plus some fraction of the previous
change, plus a random error, plus some fraction of the random error in the preceding period. An ARMA(1,1)
model for the change in SALES is the same as an ARIMA(1,1,1) model for the level of SALES.

To estimate a mixed autoregressive moving-average model, you specify the order of the moving-average
part of the model with the Q= option in an ESTIMATE statement in addition to specifying the order of the



Estimation and Diagnostic Checking Stage F 201

autoregressive part with the P= option. The following statements fit an ARMA(1,1) model to the differenced
SALES series:

estimate p=1 q=1;
run;

The parameter estimates table and goodness-of-fit statistics for this model are shown in Figure 8.13.

Figure 8.13 Estimated ARMA(1, 1) Model for Change in SALES

The ARIMA Procedure

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag

MU 0.89288 0.49391 1.81 0.0738 0

MA1,1 -0.58935 0.08988 -6.56 <.0001 1

AR1,1 0.74755 0.07785 9.60 <.0001 1

Constant Estimate 0.225409

Variance Estimate 0.904034

Std Error Estimate 0.950807

AIC 273.9155

SBC 281.7009

Number of Residuals 99

The moving-average parameter estimate, labeled “MA1,1”, is –0.58935. Both the moving-average and the
autoregressive parameters have significant t values. Note that the variance estimate, AIC, and SBC are all
smaller than they were for the AR(1) model, indicating that the ARMA(1,1) model fits the data better without
over-parameterizing.

The graphical check of the residuals from this model is shown in Figure 8.14 and Figure 8.15. The residual
correlation and white noise test plots show that you cannot reject the hypothesis that the residuals are
uncorrelated. The normality plots also show no departure from normality. Thus, you conclude that the
ARMA(1,1) model is adequate for the change in SALES series, and there is no point in trying more complex
models.
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Figure 8.14 White Noise Check of Residuals for the ARMA(1,1) Model
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Figure 8.15 Normality Check of Residuals for the ARMA(1,1) Model

The form of the estimated ARIMA(1,1,1) model for SALES is shown in Figure 8.16.

Figure 8.16 Estimated ARIMA(1,1,1) Model for SALES

Model for variable sales

Estimated Mean 0.892875

Period(s) of Differencing 1

Autoregressive Factors

Factor 1: 1 - 0.74755 B**(1)

Moving Average Factors

Factor 1: 1 + 0.58935 B**(1)

The estimated model shown in this output is

.1 � B/salest D 0:892875C
.1C 0:58935B/

.1 � 0:74755B/
at

In addition to the residual analysis of a model, it is often useful to check whether there are any changes in the
time series that are not accounted for by the currently estimated model. The OUTLIER statement enables
you to detect such changes. For a long series, this task can be computationally burdensome. Therefore, in
general, it is better done after a model that fits the data reasonably well has been found. Figure 8.17 shows
the output of the simplest form of the OUTLIER statement:
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outlier;
run;

Two possible outliers have been found for the model in question. For more information about modeling in
the presence of outliers, see the section “Detecting Outliers” on page 257 and Example 8.6 and Example 8.7.
In this illustration these outliers are not discussed any further.

Figure 8.17 Outliers for the ARIMA(1,1,1) Model for SALES

The ARIMA Procedure

Outlier Detection Summary

Maximum number searched 2

Number found 2

Significance used 0.05

Outlier Details

Obs Type Estimate Chi-Square
Approx

Prob>ChiSq

10 Additive 0.56879 4.20 0.0403

67 Additive 0.55698 4.42 0.0355

Since the model diagnostic tests show that all the parameter estimates are significant and the residual series is
white noise, the estimation and diagnostic checking stage is complete. You can now proceed to forecasting
the SALES series with this ARIMA(1,1,1) model.

Forecasting Stage
To produce the forecast, use a FORECAST statement after the ESTIMATE statement for the model you
decide is best. If the last model fit is not the best, then repeat the ESTIMATE statement for the best model
before you use the FORECAST statement.

Suppose that the SALES series is monthly, that you want to forecast one year ahead from the most recently
available SALES figure, and that the dates for the observations are given by a variable DATE in the input data
set TEST. You use the following FORECAST statement:

forecast lead=12 interval=month id=date out=results;
run;

The LEAD= option specifies how many periods ahead to forecast (12 months, in this case). The ID=
option specifies the ID variable, which is typically a SAS date, time, or datetime variable, used to date the
observations of the SALES time series. The INTERVAL= option indicates that data are monthly and enables
PROC ARIMA to extrapolate DATE values for forecast periods. The OUT= option writes the forecasts to the
output data set RESULTS. For information about the contents of the output data set, see the section “OUT=
Data Set” on page 259.

By default, the FORECAST statement also prints and plots the forecast values, as shown in Figure 8.18
and Figure 8.19. The forecast table shows for each forecast period the observation number, forecast value,
standard error estimate for the forecast value, and lower and upper limits for a 95% confidence interval for
the forecast.
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Figure 8.18 Forecasts for ARIMA(1,1,1) Model for SALES

The ARIMA Procedure

Forecasts for variable sales

Obs Forecast Std Error
95%

Confidence Limits

101 171.0320 0.9508 169.1684 172.8955

102 174.7534 2.4168 170.0165 179.4903

103 177.7608 3.9879 169.9445 185.5770

104 180.2343 5.5658 169.3256 191.1430

105 182.3088 7.1033 168.3866 196.2310

106 184.0850 8.5789 167.2707 200.8993

107 185.6382 9.9841 166.0698 205.2066

108 187.0247 11.3173 164.8433 209.2061

109 188.2866 12.5807 163.6289 212.9443

110 189.4553 13.7784 162.4501 216.4605

111 190.5544 14.9153 161.3209 219.7879

112 191.6014 15.9964 160.2491 222.9538

Figure 8.19 Forecasts for the ARMA(1,1,1) Model
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Normally, you want the forecast values stored in an output data set, and you are not interested in seeing this
printed list of the forecast. You can use the NOPRINT option in the FORECAST statement to suppress this
output.

Using ARIMA Procedure Statements
The IDENTIFY, ESTIMATE, and FORECAST statements are related in a hierarchy. An IDENTIFY statement
brings in a time series to be modeled; several ESTIMATE statements can follow to estimate different ARIMA
models for the series; for each model estimated, several FORECAST statements can be used. Thus, a
FORECAST statement must be preceded at some point by an ESTIMATE statement, and an ESTIMATE
statement must be preceded at some point by an IDENTIFY statement. Additional IDENTIFY statements
can be used to switch to modeling a different response series or to change the degree of differencing used.

The ARIMA procedure can be used interactively in the sense that all ARIMA procedure statements can
be executed any number of times without reinvoking PROC ARIMA. You can execute ARIMA procedure
statements singly or in groups by following the single statement or group of statements with a RUN statement.
The output for each statement or group of statements is produced when the RUN statement is entered.

A RUN statement does not terminate the PROC ARIMA step but tells the procedure to execute the statements
given so far. You can end PROC ARIMA by submitting a QUIT statement, a DATA step, another PROC step,
or an ENDSAS statement.

The example in the preceding section illustrates the interactive use of ARIMA procedure statements. The
complete PROC ARIMA program for that example is as follows:

proc arima data=test;
identify var=sales nlag=24;
run;
identify var=sales(1);
run;
estimate p=1;
run;
estimate p=1 q=1;
run;
outlier;
run;
forecast lead=12 interval=month id=date out=results;
run;

quit;
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General Notation for ARIMA Models
The order of an ARIMA (autoregressive integrated moving-average) model is usually denoted by the notation
ARIMA(p,d,q ), where

p is the order of the autoregressive part

d is the order of the differencing

q is the order of the moving-average process

If no differencing is done .d D 0), the models are usually referred to as ARMA(p; q/ models. The final
model in the preceding example is an ARIMA(1,1,1) model since the IDENTIFY statement specified d D 1,
and the final ESTIMATE statement specified p D 1 and q D 1.

Notation for Pure ARIMA Models

Mathematically the pure ARIMA model is written as

Wt D �C
�.B/

�.B/
at

where

t indexes time

Wt is the response series Yt or a difference of the response series

� is the mean term

B is the backshift operator; that is, BXt D Xt�1

�.B/ is the autoregressive operator, represented as a polynomial in the backshift operator:
�.B/ D 1 � �1B � � � � � �pB

p

�.B/ is the moving-average operator, represented as a polynomial in the backshift operator:
�.B/ D 1 � �1B � � � � � �qB

q

at is the independent disturbance, also called the random error

The series Wt is computed by the IDENTIFY statement and is the series processed by the ESTIMATE
statement. Thus, Wt is either the response series Yt or a difference of Yt specified by the differencing
operators in the IDENTIFY statement.

For simple (nonseasonal) differencing,Wt D .1 � B/dYt . For seasonal differencingWt D .1 � B/d .1 � Bs/DYt ,
where d is the degree of nonseasonal differencing, D is the degree of seasonal differencing, and s is the length
of the seasonal cycle.

For example, the mathematical form of the ARIMA(1,1,1) model estimated in the preceding example is

.1 � B/Yt D �C
.1 � �1B/

.1 � �1B/
at
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Model Constant Term

The ARIMA model can also be written as

�.B/.Wt � �/ D �.B/at

or

�.B/Wt D const C �.B/at

where

const D �.B/� D � � �1� � �2� � � � � � �p�

Thus, when an autoregressive operator and a mean term are both included in the model, the constant term
for the model can be represented as �.B/�. This value is printed with the label “Constant Estimate” in the
ESTIMATE statement output.

Notation for Transfer Function Models

The general ARIMA model with input series, also called the ARIMAX model, is written as

Wt D �C
X
i

!i .B/

ıi .B/
BkiXi;t C

�.B/

�.B/
at

where

Xi;t is the ith input time series or a difference of the ith input series at time t

ki is the pure time delay for the effect of the ith input series

!i .B/ is the numerator polynomial of the transfer function for the ith input series

ıi .B/ is the denominator polynomial of the transfer function for the ith input series

The model can also be written more compactly as

Wt D �C
X
i

‰i .B/Xi;t C nt

where

‰i .B/ is the transfer function for the ith input series modeled as a ratio of the! and ı polynomials:
‰i .B/ D .!i .B/=ıi .B//B

ki

nt is the noise series: nt D .�.B/=�.B//at

This model expresses the response series as a combination of past values of the random shocks and past
values of other input series. The response series is also called the dependent series or output series. An input
time series is also referred to as an independent series or a predictor series. Response variable, dependent
variable, independent variable, or predictor variable are other terms often used.



Stationarity F 209

Notation for Factored Models

ARIMA models are sometimes expressed in a factored form. This means that the �, � , !, or ı polynomials
are expressed as products of simpler polynomials. For example, you could express the pure ARIMA model as

Wt D �C
�1.B/�2.B/

�1.B/�2.B/
at

where �1.B/�2.B/ D �.B/ and �1.B/�2.B/ D �.B/.

When an ARIMA model is expressed in factored form, the order of the model is usually expressed by using a
factored notation also. The order of an ARIMA model expressed as the product of two factors is denoted as
ARIMA(p,d,q)�(P,D,Q).

Notation for Seasonal Models

ARIMA models for time series with regular seasonal fluctuations often use differencing operators and
autoregressive and moving-average parameters at lags that are multiples of the length of the seasonal cycle.
When all the terms in an ARIMA model factor refer to lags that are a multiple of a constant s, the constant is
factored out and suffixed to the ARIMA(p,d,q ) notation.

Thus, the general notation for the order of a seasonal ARIMA model with both seasonal and nonseasonal
factors is ARIMA(p,d,q)�(P,D,Q)s . The term (p,d,q) gives the order of the nonseasonal part of the ARIMA
model; the term (P,D,Q)s gives the order of the seasonal part. The value of s is the number of observations in
a seasonal cycle: 12 for monthly series, 4 for quarterly series, 7 for daily series with day-of-week effects, and
so forth.

For example, the notation ARIMA(0,1,2)�(0,1,1)12 describes a seasonal ARIMA model for monthly data
with the following mathematical form:

.1 � B/.1 � B12/Yt D �C .1 � �1;1B � �1;2B
2/.1 � �2;1B

12/at

Stationarity
The noise (or residual) series for an ARMA model must be stationary, which means that both the expected
values of the series and its autocovariance function are independent of time.

The standard way to check for nonstationarity is to plot the series and its autocorrelation function. You can
visually examine a graph of the series over time to see if it has a visible trend or if its variability changes
noticeably over time. If the series is nonstationary, its autocorrelation function will usually decay slowly.

Another way of checking for stationarity is to use the stationarity tests described in the section “Stationarity
Tests” on page 242.

Most time series are nonstationary and must be transformed to a stationary series before the ARIMA modeling
process can proceed. If the series has a nonstationary variance, taking the log of the series can help. You can
compute the log values in a DATA step and then analyze the log values with PROC ARIMA.

If the series has a trend over time, seasonality, or some other nonstationary pattern, the usual solution is
to take the difference of the series from one period to the next and then analyze this differenced series.
Sometimes a series might need to be differenced more than once or differenced at lags greater than one
period. (If the trend or seasonal effects are very regular, the introduction of explanatory variables can be an
appropriate alternative to differencing.)
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Differencing
Differencing of the response series is specified with the VAR= option of the IDENTIFY statement by placing
a list of differencing periods in parentheses after the variable name. For example, to take a simple first
difference of the series SALES, use the statement

identify var=sales(1);

In this example, the change in SALES from one period to the next is analyzed.

A deterministic seasonal pattern also causes the series to be nonstationary, since the expected value of the
series is not the same for all time periods but is higher or lower depending on the season. When the series
has a seasonal pattern, you might want to difference the series at a lag that corresponds to the length of the
seasonal cycle. For example, if SALES is a monthly series, the statement

identify var=sales(12);

takes a seasonal difference of SALES, so that the series analyzed is the change in SALES from its value in
the same month one year ago.

To take a second difference, add another differencing period to the list. For example, the following statement
takes the second difference of SALES:

identify var=sales(1,1);

That is, SALES is differenced once at lag 1 and then differenced again, also at lag 1. The statement

identify var=sales(2);

creates a 2-span difference—that is, current period SALES minus SALES from two periods ago. The
statement

identify var=sales(1,12);

takes a second-order difference of SALES, so that the series analyzed is the difference between the current
period-to-period change in SALES and the change 12 periods ago. You might want to do this if the series had
both a trend over time and a seasonal pattern.

There is no limit to the order of differencing and the degree of lagging for each difference.

Differencing not only affects the series used for the IDENTIFY statement output but also applies to any
following ESTIMATE and FORECAST statements. ESTIMATE statements fit ARMA models to the
differenced series. FORECAST statements forecast the differences and automatically sum these differences
back to undo the differencing operation specified by the IDENTIFY statement, thus producing the final
forecast result.

Differencing of input series is specified by the CROSSCORR= option and works just like differencing of the
response series. For example, the statement

identify var=y(1) crosscorr=(x1(1) x2(1));

takes the first difference of Y, the first difference of X1, and the first difference of X2. Whenever X1 and X2
are used in INPUT= options in following ESTIMATE statements, these names refer to the differenced series.
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Subset, Seasonal, and Factored ARMA Models
The simplest way to specify an ARMA model is to give the order of the AR and MA parts with the P= and
Q= options. When you do this, the model has parameters for the AR and MA parts for all lags through the
order specified. However, you can control the form of the ARIMA model exactly as shown in the following
section.

Subset Models

You can control which lags have parameters by specifying the P= or Q= option as a list of lags in parentheses.
A model that includes parameters for only some lags is sometimes called a subset or additive model. For
example, consider the following two ESTIMATE statements:

identify var=sales;
estimate p=4;
estimate p=(1 4);

Both specify AR(4) models, but the first has parameters for lags 1, 2, 3, and 4, while the second has
parameters for lags 1 and 4, with the coefficients for lags 2 and 3 constrained to 0. The mathematical form of
the autoregressive models produced by these two specifications is shown in Table 8.1.

Table 8.1 Saturated versus Subset Models

Option Autoregressive Operator

P=4 .1 � �1B � �2B
2 � �3B

3 � �4B
4/

P=(1 4) .1 � �1B � �4B
4/

Seasonal Models

One particularly useful kind of subset model is a seasonal model. When the response series has a seasonal
pattern, the values of the series at the same time of year in previous years can be important for modeling the
series. For example, if the series SALES is observed monthly, the statements

identify var=sales;
estimate p=(12);

model SALES as an average value plus some fraction of its deviation from this average value a year ago, plus
a random error. Although this is an AR(12) model, it has only one autoregressive parameter.

Factored Models

A factored model (also referred to as a multiplicative model) represents the ARIMA model as a product of
simpler ARIMA models. For example, you might model SALES as a combination of an AR(1) process that
reflects short term dependencies and an AR(12) model that reflects the seasonal pattern.

It might seem that the way to do this is with the option P=(1 12), but the AR(1) process also operates in
past years; you really need autoregressive parameters at lags 1, 12, and 13. You can specify a subset model
with separate parameters at these lags, or you can specify a factored model that represents the model as the
product of an AR(1) model and an AR(12) model. Consider the following two ESTIMATE statements:
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identify var=sales;
estimate p=(1 12 13);
estimate p=(1)(12);

The mathematical form of the autoregressive models produced by these two specifications are shown in
Table 8.2.

Table 8.2 Subset versus Factored Models

Option Autoregressive Operator

P=(1 12 13) .1 � �1B � �12B
12 � �13B

13/

P=(1)(12) .1 � �1B/.1 � �12B
12/

Both models fit by these two ESTIMATE statements predict SALES from its values 1, 12, and 13 periods
ago, but they use different parameterizations. The first model has three parameters, whose meanings may be
hard to interpret.

The factored specification P=(1)(12) represents the model as the product of two different AR models. It has
only two parameters: one that corresponds to recent effects and one that represents seasonal effects. Thus the
factored model is more parsimonious, and its parameter estimates are more clearly interpretable.

Input Variables and Regression with ARMA Errors
In addition to past values of the response series and past errors, you can also model the response series using
the current and past values of other series, called input series.

Several different names are used to describe ARIMA models with input series. Transfer function model,
intervention model, interrupted time series model, regression model with ARMA errors, Box-Tiao model, and
ARIMAX model are all different names for ARIMA models with input series. Pankratz (1991) refers to these
models as dynamic regression models.

Using Input Series

To use input series, list the input series in a CROSSCORR= option on the IDENTIFY statement and specify
how they enter the model with an INPUT= option on the ESTIMATE statement. For example, you might use
a series called PRICE to help model SALES, as shown in the following statements:

proc arima data=a;
identify var=sales crosscorr=price;
estimate input=price;

run;

This example performs a simple linear regression of SALES on PRICE; it produces the same results as
PROC REG or another SAS regression procedure. The mathematical form of the model estimated by these
statements is

Yt D �C !0Xt C at
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The parameter estimates table for this example (using simulated data) is shown in Figure 8.20. The intercept
parameter is labeled MU. The regression coefficient for PRICE is labeled NUM1. (For information about
how parameters for input series are named, see the section “Naming of Model Parameters” on page 253.)

Figure 8.20 Parameter Estimates Table for Regression Model

The ARIMA Procedure

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag Variable Shift

MU 199.83602 2.99463 66.73 <.0001 0 sales 0

NUM1 -9.99299 0.02885 -346.38 <.0001 0 price 0

Any number of input variables can be used in a model. For example, the following statements fit a multiple
regression of SALES on PRICE and INCOME:

proc arima data=a;
identify var=sales crosscorr=(price income);
estimate input=(price income);

run;

The mathematical form of the regression model estimated by these statements is

Yt D �C !1X1;t C !2X2;t C at

Lagging and Differencing Input Series

You can also difference and lag the input series. For example, the following statements regress the change
in SALES on the change in PRICE lagged by one period. The difference of PRICE is specified with the
CROSSCORR= option and the lag of the change in PRICE is specified by the 1 $ in the INPUT= option.

proc arima data=a;
identify var=sales(1) crosscorr=price(1);
estimate input=( 1 $ price );

run;

These statements estimate the model

.1 � B/Yt D �C !0.1 � B/Xt�1 C at

Regression with ARMA Errors

You can combine input series with ARMA models for the errors. For example, the following statements
regress SALES on INCOME and PRICE but with the error term of the regression model (called the noise
series in ARIMA modeling terminology) assumed to be an ARMA(1,1) process:

proc arima data=a;
identify var=sales crosscorr=(price income);
estimate p=1 q=1 input=(price income);

run;
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These statements estimate the model

Yt D �C !1X1;t C !2X2;t C
.1 � �1B/

.1 � �1B/
at

Stationarity and Input Series

Note that the requirement of stationarity applies to the noise series. If there are no input variables, the
response series (after differencing and minus the mean term) and the noise series are the same. However, if
there are inputs, the noise series is the residual after the effect of the inputs is removed.

There is no requirement that the input series be stationary. If the inputs are nonstationary, the response series
will be nonstationary, even though the noise process might be stationary.

When nonstationary input series are used, you can fit the input variables first with no ARMA model for the
errors and then consider the stationarity of the residuals before identifying an ARMA model for the noise
part.

Identifying Regression Models with ARMA Errors

Previous sections described the ARIMA modeling identification process that uses the autocorrelation function
plots produced by the IDENTIFY statement. This identification process does not apply when the response
series depends on input variables. This is because it is the noise process for which you need to identify an
ARIMA model, and when input series are involved the response series adjusted for the mean is no longer an
estimate of the noise series.

However, if the input series are independent of the noise series, you can use the residuals from the regression
model as an estimate of the noise series, then apply the ARIMA modeling identification process to this
residual series. This assumes that the noise process is stationary.

The PLOT option in the ESTIMATE statement produces similar plots for the model residuals as the IDENTIFY
statement produces for the response series. The PLOT option prints an autocorrelation function plot, an
inverse autocorrelation function plot, and a partial autocorrelation function plot for the residual series. Note
that these residual correlation plots are produced by default.

The following statements show how the PLOT option is used to identify the ARMA(1,1) model for the noise
process used in the preceding example of regression with ARMA errors:

proc arima data=a;
identify var=sales crosscorr=(price income) noprint;
estimate input=(price income) plot;
run;
estimate p=1 q=1 input=(price income);

run;

In this example, the IDENTIFY statement includes the NOPRINT option since the autocorrelation plots for
the response series are not useful when you know that the response series depends on input series.

The first ESTIMATE statement fits the regression model with no model for the noise process. The PLOT
option produces plots of the autocorrelation function, inverse autocorrelation function, and partial autocorre-
lation function for the residual series of the regression on PRICE and INCOME.

By examining the PLOT option output for the residual series, you verify that the residual series is stationary
and identify an ARMA(1,1) model for the noise process. The second ESTIMATE statement fits the final
model.
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Although this discussion addresses regression models, the same remarks apply to identifying an ARIMA
model for the noise process in models that include input series with complex transfer functions.

Intervention Models and Interrupted Time Series
One special kind of ARIMA model with input series is called an intervention model or interrupted time series
model. In an intervention model, the input series is an indicator variable that contains discrete values that flag
the occurrence of an event affecting the response series. This event is an intervention in or an interruption of
the normal evolution of the response time series, which, in the absence of the intervention, is usually assumed
to be a pure ARIMA process.

Intervention models can be used both to model and forecast the response series and also to analyze the impact
of the intervention. When the focus is on estimating the effect of the intervention, the process is often called
intervention analysis or interrupted time series analysis.

Impulse Interventions

The intervention can be a one-time event. For example, you might want to study the effect of a short-term
advertising campaign on the sales of a product. In this case, the input variable has the value of 1 for the
period during which the advertising campaign took place and the value 0 for all other periods. Intervention
variables of this kind are sometimes called impulse functions or pulse functions.

Suppose that SALES is a monthly series, and a special advertising effort was made during the month of
March 1992. The following statements estimate the effect of this intervention by assuming an ARMA(1,1)
model for SALES. The model is specified just like the regression model, but the intervention variable AD is
constructed in the DATA step as a zero-one indicator for the month of the advertising effort.

data a;
set a;
ad = (date = '1mar1992'd);

run;

proc arima data=a;
identify var=sales crosscorr=ad;
estimate p=1 q=1 input=ad;

run;

Continuing Interventions

Other interventions can be continuing, in which case the input variable flags periods before and after the
intervention. For example, you might want to study the effect of a change in tax rates on some economic
measure. Another example is a study of the effect of a change in speed limits on the rate of traffic fatalities.
In this case, the input variable has the value 1 after the new speed limit went into effect and the value 0 before.
Intervention variables of this kind are called step functions.

Another example is the effect of news on product demand. Suppose it was reported in July 1996 that
consumption of the product prevents heart disease (or causes cancer), and SALES is consistently higher (or
lower) thereafter. The following statements model the effect of this news intervention:
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data a;
set a;
news = (date >= '1jul1996'd);

run;

proc arima data=a;
identify var=sales crosscorr=news;
estimate p=1 q=1 input=news;

run;

Interaction Effects

You can include any number of intervention variables in the model. Intervention variables can have any
pattern—impulse and continuing interventions are just two possible cases. You can mix discrete valued
intervention variables and continuous regressor variables in the same model.

You can also form interaction effects by multiplying input variables and including the product variable as
another input. Indeed, as long as the dependent measure is continuous and forms a regular time series, you
can use PROC ARIMA to fit any general linear model in conjunction with an ARMA model for the error
process by using input variables that correspond to the columns of the design matrix of the linear model.

Rational Transfer Functions and Distributed Lag Models
How an input series enters the model is called its transfer function. Thus, ARIMA models with input series
are sometimes referred to as transfer function models.

In the preceding regression and intervention model examples, the transfer function is a single scale parameter.
However, you can also specify complex transfer functions composed of numerator and denominator polyno-
mials in the backshift operator. These transfer functions operate on the input series in the same way that the
ARMA specification operates on the error term.

Numerator Factors

For example, suppose you want to model the effect of PRICE on SALES as taking place gradually with the
impact distributed over several past lags of PRICE. This is illustrated by the following statements:

proc arima data=a;
identify var=sales crosscorr=price;
estimate input=( (1 2 3) price );

run;

These statements estimate the model

Yt D �C .!0 � !1B � !2B
2
� !3B

3/Xt C at

This example models the effect of PRICE on SALES as a linear function of the current and three most
recent values of PRICE. It is equivalent to a multiple linear regression of SALES on PRICE, LAG(PRICE),
LAG2(PRICE), and LAG3(PRICE).

This is an example of a transfer function with one numerator factor. The numerator factors for a transfer
function for an input series are like the MA part of the ARMA model for the noise series.
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Denominator Factors

You can also use transfer functions with denominator factors. The denominator factors for a transfer function
for an input series are like the AR part of the ARMA model for the noise series. Denominator factors
introduce exponentially weighted, infinite distributed lags into the transfer function.

To specify transfer functions with denominator factors, place the denominator factors after a slash (/) in the
INPUT= option. For example, the following statements estimate the PRICE effect as an infinite distributed
lag model with exponentially declining weights:

proc arima data=a;
identify var=sales crosscorr=price;
estimate input=( / (1) price );

run;

The transfer function specified by these statements is as follows:
!0

.1 � ı1B/
Xt

This transfer function also can be written in the following equivalent form:
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This transfer function can be used with intervention inputs. When it is used with a pulse function input, the
result is an intervention effect that dies out gradually over time. When it is used with a step function input,
the result is an intervention effect that increases gradually to a limiting value.

Rational Transfer Functions

By combining various numerator and denominator factors in the INPUT= option, you can specify rational
transfer functions of any complexity. To specify an input with a general rational transfer function of the form

!.B/

ı.B/
BkXt

use an INPUT= option in the ESTIMATE statement of the form

input=(k $ (!-lags ) / ( ı-lags) x)

For more information, see the section “Specifying Inputs and Transfer Functions” on page 250.

Identifying Transfer Function Models

The CROSSCORR= option of the IDENTIFY statement prints sample cross-correlation functions that show
the correlation between the response series and the input series at different lags. The sample cross-correlation
function can be used to help identify the form of the transfer function appropriate for an input series. For
information about using cross-correlation functions to identify transfer function models, see textbooks on
time series analysis.

For the cross-correlation function to be meaningful, the input and response series must be filtered with a
prewhitening model for the input series. For more information about this issue, see the section “Prewhitening”
on page 244.
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Forecasting with Input Variables
To forecast a response series by using an ARIMA model with inputs, you need values of the input series for
the forecast periods. You can supply values for the input variables for the forecast periods in the DATA= data
set, or you can have PROC ARIMA forecast the input variables.

If you do not have future values of the input variables in the input data set used by the FORECAST statement,
the input series must be forecast before the ARIMA procedure can forecast the response series. If you fit
an ARIMA model to each of the input series for which you need forecasts before fitting the model for the
response series, the FORECAST statement automatically uses the ARIMA models for the input series to
generate the needed forecasts of the inputs.

For example, suppose you want to forecast SALES for the next 12 months. In this example, the change in
SALES is predicted as a function of the change in PRICE, plus an ARMA(1,1) noise process. To forecast
SALES by using PRICE as an input, you also need to fit an ARIMA model for PRICE.

The following statements fit an AR(2) model to the change in PRICE before fitting and forecasting the model
for SALES. The FORECAST statement automatically forecasts PRICE using this AR(2) model to get the
future inputs needed to produce the forecast of SALES.

proc arima data=a;
identify var=price(1);
estimate p=2;
identify var=sales(1) crosscorr=price(1);
estimate p=1 q=1 input=price;
forecast lead=12 interval=month id=date out=results;

run;

Fitting a model to the input series is also important for identifying transfer functions. (For more information,
see the section “Prewhitening” on page 244.)

Input values from the DATA= data set and input values forecast by PROC ARIMA can be combined. For
example, a model for SALES might have three input series: PRICE, INCOME, and TAXRATE. For the forecast,
you assume that the tax rate will be unchanged. You have a forecast for INCOME from another source but
only for the first few periods of the SALES forecast you want to make. You have no future values for PRICE,
which needs to be forecast as in the preceding example.

In this situation, you include observations in the input data set for all forecast periods, with SALES and
PRICE set to a missing value, with TAXRATE set to its last actual value, and with INCOME set to forecast
values for the periods you have forecasts for and set to missing values for later periods. In the PROC ARIMA
step, you estimate ARIMA models for PRICE and INCOME before you estimate the model for SALES, as
shown in the following statements:

proc arima data=a;
identify var=price(1);
estimate p=2;
identify var=income(1);
estimate p=2;
identify var=sales(1) crosscorr=( price(1) income(1) taxrate );
estimate p=1 q=1 input=( price income taxrate );
forecast lead=12 interval=month id=date out=results;

run;



Data Requirements F 219

In forecasting SALES, the ARIMA procedure uses as inputs the value of PRICE forecast by its ARIMA
model, the value of TAXRATE found in the DATA= data set, and the value of INCOME found in the DATA=
data set, or, when the INCOME variable is missing, the value of INCOME forecast by its ARIMA model.
(Because SALES is missing for future time periods, the estimation of model parameters is not affected by the
forecast values for PRICE, INCOME, or TAXRATE.)

Data Requirements
PROC ARIMA can handle time series of moderate size; there should be at least 30 observations. With fewer
than 30 observations, the parameter estimates might be poor. With thousands of observations, the method
requires considerable computer time and memory.

Syntax: ARIMA Procedure
The ARIMA procedure uses the following statements:

PROC ARIMA options ;
BY variables ;
IDENTIFY VAR=variable < options > ;
ESTIMATE options ;
OUTLIER options ;
FORECAST options ;

The PROC ARIMA and IDENTIFY statements are required.

Functional Summary
The statements and options that control the ARIMA procedure are summarized in Table 8.3.

Table 8.3 Functional Summary

Description Statement Option

Data Set Options
Specify the input data set PROC ARIMA DATA=

IDENTIFY DATA=
Specify the output data set PROC ARIMA OUT=

FORECAST OUT=
Include only forecasts in the output data set FORECAST NOOUTALL
Write autocovariances to output data set IDENTIFY OUTCOV=
Write parameter estimates to an output data set ESTIMATE OUTEST=
Write correlation of parameter estimates ESTIMATE OUTCORR
Write covariance of parameter estimates ESTIMATE OUTCOV
Write estimated model to an output data set ESTIMATE OUTMODEL=
Write statistics of fit to an output data set ESTIMATE OUTSTAT=
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Table 8.3 continued

Description Statement Option

Options for Identifying the Series
Difference time series and plot
autocorrelations

IDENTIFY

Specify response series and differencing IDENTIFY VAR=
Specify and cross-correlate input series IDENTIFY CROSSCORR=
Center data by subtracting the mean IDENTIFY CENTER
Exclude missing values IDENTIFY NOMISS
Delete previous models and start IDENTIFY CLEAR
Specify the significance level for tests IDENTIFY ALPHA=
Perform tentative ARMA order identification
by using the ESACF method

IDENTIFY ESACF

Perform tentative ARMA order identification
by using the MINIC method

IDENTIFY MINIC

Perform tentative ARMA order identification
by using the SCAN method

IDENTIFY SCAN

Specify the range of autoregressive model
orders for estimating the error series for the
MINIC method

IDENTIFY PERROR=

Determine the AR dimension of the SCAN,
ESACF, and MINIC tables

IDENTIFY P=

Determine the MA dimension of the SCAN,
ESACF, and MINIC tables

IDENTIFY Q=

Perform stationarity tests IDENTIFY STATIONARITY=
Selection of white noise test statistic in the
presence of missing values

IDENTIFY WHITENOISE=

Options for Defining and Estimating the Model
Specify and estimate ARIMA models ESTIMATE
Specify autoregressive part of model ESTIMATE P=
Specify moving-average part of model ESTIMATE Q=
Specify input variables and transfer functions ESTIMATE INPUT=
Drop mean term from the model ESTIMATE NOINT
Specify the estimation method ESTIMATE METHOD=
Use alternative form for transfer functions ESTIMATE ALTPARM
Suppress degrees-of-freedom correction in
variance estimates

ESTIMATE NODF

Selection of white noise test statistic in the
presence of missing values

ESTIMATE WHITENOISE=

Options for Outlier Detection
Specify the significance level for tests OUTLIER ALPHA=
Identify detected outliers with variable OUTLIER ID=
Limit the number of outliers OUTLIER MAXNUM=
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Table 8.3 continued

Description Statement Option

Limit the number of outliers to a percentage of
the series

OUTLIER MAXPCT=

Specify the variance estimator used for testing OUTLIER SIGMA=
Specify the type of level shifts OUTLIER TYPE=

Printing Control Options
Limit number of lags shown in correlation
plots

IDENTIFY NLAG=

Suppress printed output for identification IDENTIFY NOPRINT
Plot autocorrelation functions of the residuals ESTIMATE PLOT
Print log likelihood around the estimates ESTIMATE GRID
Control spacing for GRID option ESTIMATE GRIDVAL=
Print details of the iterative estimation process ESTIMATE PRINTALL
Suppress printed output for estimation ESTIMATE NOPRINT
Suppress printing of the forecast values FORECAST NOPRINT
Print the one-step forecasts and residuals FORECAST PRINTALL

Plotting Control Options
Request plots associated with model
identification, residual analysis, and
forecasting

PROC ARIMA PLOTS=

Options to Specify Parameter Values
Specify autoregressive starting values ESTIMATE AR=
Specify moving-average starting values ESTIMATE MA=
Specify a starting value for the mean parameter ESTIMATE MU=
Specify starting values for transfer functions ESTIMATE INITVAL=

Options to Control the Iterative Estimation Process
Specify convergence criterion ESTIMATE CONVERGE=
Specify the maximum number of iterations ESTIMATE MAXITER=
Specify criterion for checking for singularity ESTIMATE SINGULAR=
Suppress the iterative estimation process ESTIMATE NOEST
Omit initial observations from objective ESTIMATE BACKLIM=
Specify perturbation for numerical derivatives ESTIMATE DELTA=
Omit stationarity and invertibility checks ESTIMATE NOSTABLE
Use preliminary estimates as starting values
for ML and ULS

ESTIMATE NOLS

Options for Forecasting
Forecast the response series FORECAST
Specify how many periods to forecast FORECAST LEAD=
Specify the ID variable FORECAST ID=
Specify the periodicity of the series FORECAST INTERVAL=
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Table 8.3 continued

Description Statement Option

Specify size of forecast confidence limits FORECAST ALPHA=
Start forecasting before end of the input data FORECAST BACK=
Specify the variance term used to compute
forecast standard errors and confidence limits

FORECAST SIGSQ=

Control the alignment of SAS date values FORECAST ALIGN=

BY Groups
Specify BY-group processing BY

PROC ARIMA Statement
PROC ARIMA options ;

The following options can be used in the PROC ARIMA statement.

DATA=SAS-data-set
specifies the name of the SAS data set that contains the time series. If different DATA= specifications
appear in the PROC ARIMA and IDENTIFY statements, the one in the IDENTIFY statement is used.
If the DATA= option is not specified in either the PROC ARIMA or IDENTIFY statement, the most
recently created SAS data set is used.

PLOTS< (global-plot-options) > < = plot-request < (options) > >

PLOTS< (global-plot-options) > < = (plot-request < (options) > < . . . plot-request < (options) > >) >
controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around it.

Here are some examples:

plots=none
plots=all
plots(unpack)=series(corr crosscorr)
plots(only)=(series(corr crosscorr) residual(normal smooth))

Global Plot Options

The global-plot-options apply to all relevant plots generated by the ARIMA procedure. The following
global-plot-options are supported:

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACK displays each graph separately. (By default, some graphs can appear together in a
single panel.)

Specific Plot Options

The following list describes the specific plots and their options.
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ALL produces all plots appropriate for the particular analysis.

NONE suppresses all plots.

SERIES(< series-plot-options > )
produces plots associated with the identification stage of the modeling. The panel plots corresponding
to the CORR and CROSSCORR options are produced by default. The following series-plot-options
are available:

ACF produces the plot of autocorrelations.

ALL produces all the plots associated with the identification stage.

CORR produces a panel of plots that are useful in the trend and correlation analysis of the
series. The panel consists of the following:

� the time series plot
� the series-autocorrelation plot
� the series-partial-autocorrelation plot
� the series-inverse-autocorrelation plot

CROSSCORR produces panels of cross-correlation plots.

IACF produces the plot of inverse-autocorrelations.

PACF produces the plot of partial-autocorrelations.

RESIDUAL(< residual-plot-options > )
produces the residuals plots. The residual correlation and normality diagnostic panels are produced by
default. The following residual-plot-options are available:

ACF produces the plot of residual autocorrelations.

ALL produces all the residual diagnostics plots appropriate for the particular analysis.

CORR produces a summary panel of the residual correlation diagnostics that consists of
the following:

� the residual-autocorrelation plot
� the residual-partial-autocorrelation plot
� the residual-inverse-autocorrelation plot
� a plot of Ljung-Box white-noise test p-values at different lags

HIST produces the histogram of the residuals.

IACF produces the plot of residual inverse-autocorrelations.

NORMAL produces a summary panel of the residual normality diagnostics that consists of the
following:

� histogram of the residuals
� normal quantile plot of the residuals

PACF produces the plot of residual partial-autocorrelations.

QQ produces the normal quantile plot of the residuals.
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SMOOTH produces a scatter plot of the residuals against time, which has an overlaid smooth
fit.

WN produces the plot of Ljung-Box white-noise test p-values at different lags.

FORECAST(< forecast-plot-options > )
produces the forecast plots in the forecasting stage. The forecast-only plot that shows the multistep
forecasts in the forecast region is produced by default.

The following forecast-plot-options are available:

ALL produces the forecast-only plot as well as the forecast plot.

FORECAST produces a plot that shows the one-step-ahead forecasts as well as the multistep-
ahead forecasts.

FORECASTONLY produces a plot that shows only the multistep-ahead forecasts in the forecast
region.

OUT=SAS-data-set
specifies a SAS data set to which the forecasts are output. If different OUT= specifications appear in
the PROC ARIMA and FORECAST statements, the one in the FORECAST statement is used.

BY Statement
BY variables ;

A BY statement can be used in the ARIMA procedure to process a data set in groups of observations defined
by the BY variables. Note that all IDENTIFY, ESTIMATE, and FORECAST statements specified are applied
to all BY groups.

Because of the need to make data-based model selections, BY-group processing is not usually done with
PROC ARIMA. You usually want to use different models for the different series contained in different BY
groups, and the PROC ARIMA BY statement does not let you do this.

Using a BY statement imposes certain restrictions. The BY statement must appear before the first RUN
statement. If a BY statement is used, the input data must come from the data set specified in the PROC
statement; that is, no input data sets can be specified in IDENTIFY statements.

When a BY statement is used with PROC ARIMA, interactive processing applies only to the first BY group.
Once the end of the PROC ARIMA step is reached, all ARIMA statements specified are executed again for
each of the remaining BY groups in the input data set.
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IDENTIFY Statement
IDENTIFY VAR=variable < options > ;

The IDENTIFY statement specifies the time series to be modeled, differences the series if desired, and
computes statistics to help identify models to fit. Use an IDENTIFY statement for each time series that you
want to model.

If other time series are to be used as inputs in a subsequent ESTIMATE statement, they must be listed in a
CROSSCORR= list in the IDENTIFY statement.

You must specify the following argument:

VAR=variable

VAR= variable ( d1, d2, . . . , dk )
names the variable that contains the time series to analyze. The VAR= option is required.

A list of differencing lags can be placed in parentheses after the variable name to request that the series
be differenced at these lags. For example, VAR=X(1) takes the first differences of X. VAR=X(1,1)
requests that X be differenced twice, both times with lag 1, producing a second difference series, which
is .Xt �Xt�1/ � .Xt�1 �Xt�2/ D Xt � 2Xt�1 CXt�2.

VAR=X(2) differences X once at lag two .Xt �Xt�2/.

If differencing is specified, it is the differenced series that is processed by any subsequent ESTIMATE
statement.

You can also specify the following options.

ALPHA=significance-level
specifies the significance level for tests in the IDENTIFY statement. The default is 0.05.

CENTER
centers each time series by subtracting its sample mean. The analysis is done on the centered data.
Later, when forecasts are generated, the mean is added back. Note that centering is done after
differencing. The CENTER option is normally used in conjunction with the NOCONSTANT option of
the ESTIMATE statement.

CLEAR
deletes all old models. This option is useful when you want to delete old models so that the input
variables are not prewhitened. (For more information, see the section “Prewhitening” on page 244.)

CROSSCORR=variable (d11, d12, . . . , d1k )

CROSSCORR= (variable (d11, d12, . . . , d1k ). . . variable (d21, d22, . . . , d2k ))
names the variables cross-correlated with the response variable given by the VAR= specification.

Each variable name can be followed by a list of differencing lags in parentheses, the same as for the
VAR= specification. If differencing is specified for a variable in the CROSSCORR= list, the differenced
series is cross-correlated with the VAR= option series, and the differenced series is used when the
ESTIMATE statement INPUT= option refers to the variable.
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DATA=SAS-data-set
specifies the input SAS data set that contains the time series. If the DATA= option is omitted, the
DATA= data set specified in the PROC ARIMA statement is used; if the DATA= option is omitted
from the PROC ARIMA statement as well, the most recently created data set is used.

ESACF
computes the extended sample autocorrelation function and uses these estimates to tentatively identify
the autoregressive and moving-average orders of mixed models.

The ESACF option generates two tables. The first table displays extended sample autocorrelation
estimates, and the second table displays probability values that can be used to test the significance of
these estimates. The P=.pmin W pmax/ and Q=.qmin W qmax/ options determine the size of the table.

The autoregressive and moving-average orders are tentatively identified by finding a triangular pattern in
which all values are insignificant. The ARIMA procedure finds these patterns based on the IDENTIFY
statement ALPHA= option and displays possible recommendations for the orders.

The following code generates an ESACF table with dimensions of p = (0:7) and q = (0:8).

proc arima data=test;
identify var=x esacf p=(0:7) q=(0:8);

run;

For more information, see the section “The ESACF Method” on page 238.

MINIC
uses information criteria or penalty functions to provide tentative ARMA order identification. The
MINIC option generates a table that contains the computed information criterion associated with various
ARMA model orders. The PERROR=.p�;min W p�;max/ option determines the range of the autore-
gressive model orders used to estimate the error series. The P=.pmin W pmax/ and Q=.qmin W qmax/
options determine the size of the table. The ARMA orders are tentatively identified by those orders
that minimize the information criterion.

The following statements generate a MINIC table with default dimensions of p = (0:5) and q = (0:5)
and with the error series estimated by an autoregressive model with an order, p�, that minimizes the
AIC in the range from 8 to 11:

proc arima data=test;
identify var=x minic perror=(8:11);

run;

For more information, see the section “The MINIC Method” on page 239.

NLAG=number
indicates the number of lags to consider in computing the autocorrelations and cross-correlations. To
obtain preliminary estimates of an ARIMA(p, d, q ) model, the NLAG= value must be at least p +q +d.
The number of observations must be greater than or equal to the NLAG= value. The default value for
NLAG= is 24 or one-fourth the number of observations, whichever is less. Even though the NLAG=
value is specified, the NLAG= value can be changed according to the data set.
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NOMISS
uses only the first continuous sequence of data with no missing values. By default, all observations are
used.

NOPRINT
suppresses the normal printout (including the correlation plots) generated by the IDENTIFY statement.

OUTCOV=SAS-data-set
writes the autocovariances, autocorrelations, inverse autocorrelations, partial autocorrelations, and
cross covariances to an output SAS data set. If the OUTCOV= option is not specified, no covariance
output data set is created. For more information, see the section “OUTCOV= Data Set” on page 260.

P=(pmin W pmax)
see the ESACF, MINIC, and SCAN options for more information.

PERROR=(p�;min W p�;max)
determines the range of the autoregressive model orders used to estimate the error series in MINIC,
a tentative ARMA order identification method. For more information, see the section “The MINIC
Method” on page 239. By default p�;min is set to pmax and p�;max is set to pmax C qmax , where
pmax and qmax are the maximum settings of the P= and Q= options in the IDENTIFY statement.

Q=(qmin W qmax)
see the ESACF, MINIC, and SCAN options for more information.

SCAN
computes estimates of the squared canonical correlations and uses these estimates to tentatively identify
the autoregressive and moving-average orders of mixed models.

The SCAN option generates two tables. The first table displays squared canonical correlation estimates,
and the second table displays probability values that can be used to test the significance of these
estimates. The P=.pmin W pmax/ and Q=.qmin W qmax/ options determine the size of each table.

The autoregressive and moving-average orders are tentatively identified by finding a rectangular
pattern in which all values are insignificant. The ARIMA procedure finds these patterns based on the
IDENTIFY statement ALPHA= option and displays possible recommendations for the orders.

The following code generates a SCAN table with default dimensions of p = (0:5) and q = (0:5). The
recommended orders are based on a significance level of 0.1.

proc arima data=test;
identify var=x scan alpha=0.1;

run;

For more information, see the section “The SCAN Method” on page 241.

STATIONARITY=
performs stationarity tests. Stationarity tests can be used to determine whether differencing terms
should be included in the model specification. In each stationarity test, the autoregressive orders can
be specified by a range, test= armax , or as a list of values, test= .ar1; ::; arn/, where test is ADF, PP,
or RW. The default is (0,1,2).

For more information, see the section “Stationarity Tests” on page 242.
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STATIONARITY=(ADF=AR-orders DLAG=s )

STATIONARITY=(DICKEY=AR-orders DLAG=s )
performs augmented Dickey-Fuller tests. If the DLAG=s option is specified with s greater than one,
seasonal Dickey-Fuller tests are performed. The maximum allowable value of s is 12. The default
value of s is 1. The following code performs augmented Dickey-Fuller tests with autoregressive orders
2 and 5:

proc arima data=test;
identify var=x stationarity=(adf=(2,5));

run;

STATIONARITY=(PP=AR-orders )

STATIONARITY=(PHILLIPS=AR-orders )
performs Phillips-Perron tests. The following statements perform augmented Phillips-Perron tests with
autoregressive orders ranging from 0 to 6:

proc arima data=test;
identify var=x stationarity=(pp=6);

run;

STATIONARITY=(RW=AR-orders )

STATIONARITY=(RANDOMWALK=AR-orders )
performs random-walk-with-drift tests. The following statements perform random-walk-with-drift
tests with autoregressive orders ranging from 0 to 2:

proc arima data=test;
identify var=x stationarity=(rw);

run;

WHITENOISE=ST | IGNOREMISS
specifies the type of test statistic that is used in the white noise test of the series when the series
contains missing values. You can specify the following values:

IGNOREMISS uses the standard Ljung-Box test statistic.

ST uses a modification of this statistic suggested by Stoffer and Toloi (1992).

By default, WHITENOISE=ST.
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ESTIMATE Statement
< label: >ESTIMATE options ;

The ESTIMATE statement specifies an ARMA model or transfer function model for the response variable that
is specified in the previous IDENTIFY statement, and produces estimates of its parameters. The ESTIMATE
statement also prints diagnostic information by which to check the model. The label in the ESTIMATE
statement is optional. Include an ESTIMATE statement for each model that you want to estimate.

Options used in the ESTIMATE statement are described in the following sections.

Options for Defining the Model and Controlling Diagnostic Statistics

The following options are used to define the model to be estimated and to control the output that is printed.

ALTPARM
specifies the alternative parameterization of the overall scale of transfer functions in the model. For
more information, see the section “Alternative Model Parameterization” on page 251.

INPUT=variable

INPUT=( transfer-function variable . . . )
specifies input variables and their transfer functions.

The variables in the INPUT= option must be included in the CROSSCORR= list in the previous
IDENTIFY statement. If any differencing is specified in the CROSSCORR= list, then the differenced
series is used as the input to the transfer function.

The transfer function specification for an input variable is optional. If no transfer function is specified,
the input variable enters the model as a simple regressor. If specified, the transfer function specification
has the following syntax:

S$.L1;1; L1;2; : : :/.L2;1; : : :/ : : : =.Lj;1; : : :/ : : :

Here, S is a shift or lag of the input variable, the terms before the slash (/) are numerator factors, and
the terms after the slash (/) are denominator factors of the transfer function. All three parts are optional.
For more information, see the section “Specifying Inputs and Transfer Functions” on page 250.

METHOD=CLS | ML | ULS
specifies the estimation method to use. You can specify the following values:

CLS specifies the conditional least squares method.

ML specifies the maximum likelihood method.

ULS specifies the unconditional least squares method.

For more information, see the section “Estimation Details” on page 246. By default, METHOD=CLS.
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NOCONSTANT

NOINT
suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the parameter � is
omitted.)

NODF
estimates the variance by dividing the error sum of squares (SSE) by the number of residuals. The
default is to divide the SSE by the number of residuals minus the number of free parameters in the
model.

NOPRINT
suppresses the normal printout generated by the ESTIMATE statement. If the NOPRINT option is
specified for the ESTIMATE statement, then any error and warning messages are printed to the SAS
log.

P=order

P=(lag, . . . , lag ) . . . (lag, . . . , lag )
specifies the autoregressive part of the model. By default, no autoregressive parameters are fit.

P=(l 1, l 2, . . . , l k ) defines a model with autoregressive parameters at the specified lags. P=order is
equivalent to P=(1, 2, . . . , order ).

A concatenation of parenthesized lists specifies a factored model. For example, P=(1,2,5)(6,12)
specifies the autoregressive model

.1 � �1;1B � �1;2B
2
� �1;3B

5/.1 � �2;1B
6
� �2;2B

12/

PLOT
plots the residual autocorrelation functions. The sample autocorrelation, the sample inverse autocorre-
lation, and the sample partial autocorrelation functions of the model residuals are plotted.

Q=order

Q=(lag, . . . , lag ) . . . (lag, . . . , lag )
specifies the moving-average part of the model. By default, no moving-average part is included in the
model.

Q=(l 1, l 2, . . . , l k) defines a model with moving-average parameters at the specified lags. Q=order is
equivalent to Q=(1, 2, . . . , order ). A concatenation of parenthesized lists specifies a factored model.
The interpretation of factors and lags is the same as for the P= option.

WHITENOISE=ST | IGNOREMISS
specifies the type of test statistic that is used in the white noise test of the series when the series
contains missing values. You can specify the following values:

IGNOREMISS uses the standard Ljung-Box test statistic.

ST uses a modification of this statistic suggested by Stoffer and Toloi (1992).

By default, WHITENOISE=ST.
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Options for Output Data Sets

The following options are used to store results in SAS data sets:

OUTEST=SAS-data-set
writes the parameter estimates to an output data set. If the OUTCORR or OUTCOV option is used, the
correlations or covariances of the estimates are also written to the OUTEST= data set. For a description
of the OUTEST= output data set, see the section “OUTEST= Data Set” on page 261.

OUTCORR
writes the correlations of the parameter estimates to the OUTEST= data set.

OUTCOV
writes the covariances of the parameter estimates to the OUTEST= data set.

OUTMODEL=SAS-data-set
writes the model and parameter estimates to an output data set. If OUTMODEL= is not specified, no
model output data set is created. For a description of the OUTMODEL= output data set, see the section
“OUTMODEL= SAS Data Set” on page 264.

OUTSTAT=SAS-data-set
writes the model diagnostic statistics to an output data set. If OUTSTAT= is not specified, no statistics
output data set is created. For a description of the OUTSTAT= output data set, see the section
“OUTSTAT= Data Set” on page 265.

Options to Specify Parameter Values

The following options enable you to specify values for the model parameters. These options can provide
starting values for the estimation process, or you can specify fixed parameters for use in the FORECAST
stage and suppress the estimation process with the NOEST option. By default, the ARIMA procedure finds
initial parameter estimates and uses these estimates as starting values in the iterative estimation process.

If values for any parameters are specified, values for all parameters should be given. The number of values
given must agree with the model specifications.

AR=value . . .
lists starting values for the autoregressive parameters. For more information, see the section “Initial
Values” on page 252.

INITVAL=(initializer-spec variable . . . )
specifies starting values for the parameters in the transfer function parts of the model. For more
information, see the section “Initial Values” on page 252.

MA=value . . .
lists starting values for the moving-average parameters. For more information, see the section “Initial
Values” on page 252.
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MU=value
specifies the MU parameter.

NOEST
uses the values specified with the AR=, MA=, INITVAL=, and MU= options as final parameter values.
The estimation process is suppressed except for estimation of the residual variance. The specified
parameter values are used directly by the next FORECAST statement. When NOEST is specified,
standard errors, t values, and the correlations between estimates are displayed as 0 or missing. (The
NOEST option is useful, for example, when you want to generate forecasts that correspond to a
published model.)

Options to Control the Iterative Estimation Process

The following options can be used to control the iterative process of minimizing the error sum of squares or
maximizing the log-likelihood function. These tuning options are not usually needed but can be useful if
convergence problems arise.

BACKLIM=–n
omits the specified number of initial residuals from the sum of squares or likelihood function. Omitting
values can be useful for suppressing transients in transfer function models that are sensitive to start-up
values.

CONVERGE=value
specifies the convergence criterion. Convergence is assumed when the largest change in the estimate
for any parameter is less that the CONVERGE= option value. If the absolute value of the parameter
estimate is greater than 0.01, the relative change is used; otherwise, the absolute change in the estimate
is used. The default is CONVERGE=0.001.

DELTA=value
specifies the perturbation value for computing numerical derivatives. The default is DELTA=0.001.

GRID
prints the error sum of squares (SSE) or concentrated log-likelihood surface in a small grid of the
parameter space around the final estimates. For each pair of parameters, the SSE is printed for the nine
parameter-value combinations formed by the grid, with a center at the final estimates and with spacing
given by the GRIDVAL= specification. The GRID option can help you judge whether the estimates are
truly at the optimum, since the estimation process does not always converge. For models with a large
number of parameters, the GRID option produces voluminous output.

GRIDVAL=number
controls the spacing in the grid printed by the GRID option. The default is GRIDVAL=0.005.

MAXITER=n

MAXIT=n
specifies the maximum number of iterations allowed. The default is MAXITER=50.
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NOLS
begins the maximum likelihood or unconditional least squares iterations from the preliminary estimates
rather than from the conditional least squares estimates that are produced after four iterations. For
more information, see the section “Estimation Details” on page 246.

NOSTABLE
specifies that the autoregressive and moving-average parameter estimates for the noise part of the
model not be restricted to the stationary and invertible regions, respectively. For more information, see
the section “Stationarity and Invertibility” on page 253.

PRINTALL
prints preliminary estimation results and the iterations in the final estimation process.

NOTFSTABLE
specifies that the parameter estimates for the denominator polynomial of the transfer function part of
the model not be restricted to the stability region. For more information, see the section “Stationarity
and Invertibility” on page 253.

SINGULAR=value
specifies the criterion for checking singularity. If a pivot of a sweep operation is less than the
SINGULAR= value, the matrix is deemed singular. Sweep operations are performed on the Jacobian
matrix during final estimation and on the covariance matrix when preliminary estimates are obtained.
The default is SINGULAR=1E–7.

OUTLIER Statement
OUTLIER options ;

The OUTLIER statement can be used to detect shifts in the level of the response series that are not accounted
for by the previously estimated model. An ESTIMATE statement must precede the OUTLIER statement.
The following options are used in the OUTLIER statement:

TYPE=ADDITIVE

TYPE=SHIFT

TYPE=TEMP (d1; : : : ; dk )

TYPE=(< ADDITIVE > < SHIFT > ) < TEMP (d1; : : : ; dk ) >
specifies the types of level shifts to search for. The default is TYPE=(ADDITIVE SHIFT), which
requests searching for additive outliers and permanent level shifts. The option TEMP( d1; : : : ; dk)
requests searching for temporary changes in the level of durations d1; : : : ; dk . These options can also
be abbreviated as AO, LS, and TC.

ALPHA=significance-level
specifies the significance level for tests in the OUTLIER statement. The default is 0.05.
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SIGMA=ROBUST | MSE
specifies the type of error variance estimate to use in the statistical tests performed during the
outlier detection. SIGMA=MSE corresponds to the usual mean squared error (MSE) estimate,
and SIGMA=ROBUST corresponds to a robust estimate of the error variance. The default is
SIGMA=ROBUST.

MAXNUM=number
limits the number of outliers to search. The default is MAXNUM=5.

MAXPCT=number
limits the number of outliers to search for according to a percentage of the series length. The default is
MAXPCT=2. When both the MAXNUM= and MAXPCT= options are specified, the minimum of the
two search numbers is used.

ID=date-time-ID-variable
specifies a SAS date, time, or datetime identification variable to label the detected outliers. This
variable must be present in the input data set.

The following examples illustrate a few possibilities for the OUTLIER statement.

The most basic usage, shown as follows, sets all the options to their default values:

outlier;

That is, it is equivalent to

outlier type=(ao ls) alpha=0.05 sigma=robust maxnum=5 maxpct=2;

The following statement requests a search for permanent level shifts and for temporary level changes of
durations 6 and 12. The search is limited to at most three changes and the significance level of the underlying
tests is 0.001. MSE is used as the estimate of error variance. It also requests labeling of the detected shifts
using an ID variable date.

outlier type=(ls tc(6 12)) alpha=0.001 sigma=mse maxnum=3 ID=date;

FORECAST Statement
FORECAST options ;

The FORECAST statement generates forecast values for a time series by using the parameter estimates
produced by the previous ESTIMATE statement. For more information about calculating forecasts, see the
section “Forecasting Details” on page 254.

The following options can be used in the FORECAST statement:

ALIGN=option
controls the alignment of SAS dates used to identify output observations. The ALIGN= option
allows the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.
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ALPHA=n
sets the size of the forecast confidence limits. The ALPHA= value must be between 0 and 1. When
you specify ALPHA=˛, the upper and lower confidence limits have a 1 � ˛ confidence level. The
default is ALPHA=0.05, which produces 95% confidence intervals. ALPHA values are rounded to the
nearest hundredth.

BACK=n
specifies the number of observations before the end of the data where the multistep forecasts are to
begin. The BACK= option value must be less than or equal to the number of observations minus the
number of parameters.

The default is BACK=0, which means that the forecast starts at the end of the available data. The end
of the data is the last observation for which a noise value can be calculated. If there are no input series,
the end of the data is the last nonmissing value of the response time series. If there are input series, this
observation can precede the last nonmissing value of the response variable, since there may be missing
values for some of the input series.

ID=variable
names a variable in the input data set that identifies the time periods associated with the observations.
The ID= variable is used in conjunction with the INTERVAL= option to extrapolate ID values from the
end of the input data to identify forecast periods in the OUT= data set.

If the INTERVAL= option specifies an interval type, the ID variable must be a SAS date or datetime
variable with the spacing between observations indicated by the INTERVAL= value. If the INTERVAL=
option is not used, the last input value of the ID= variable is incremented by one for each forecast
period to extrapolate the ID values for forecast observations.

INTERVAL=interval

INTERVAL=n
specifies the time interval between observations. For information about valid INTERVAL= values, see
Chapter 5, “Date Intervals, Formats, and Functions.”

The value of the INTERVAL= option is used by PROC ARIMA to extrapolate the ID values for
forecast observations and to check that the input data are in order with no missing periods. For more
information, see the section “Specifying Series Periodicity” on page 256.

LEAD=n
specifies the number of multistep forecast values to compute. For example, if LEAD=10, PROC
ARIMA forecasts for ten periods beginning with the end of the input series (or earlier if BACK= is
specified). It is possible to obtain fewer than the requested number of forecasts if a transfer function
model is specified and insufficient data are available to compute the forecast. The default is LEAD=24.

NOOUTALL
includes only the final forecast observations in the OUT= output data set, not the one-step forecasts for
the data before the forecast period.
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NOPRINT
suppresses the normal printout of the forecast and associated values.

OUT=SAS-data-set
writes the forecast (and other values) to an output data set. If OUT= is not specified, the OUT= data set
specified in the PROC ARIMA statement is used. If OUT= is also not specified in the PROC ARIMA
statement, no output data set is created. For more information, see the section “OUT= Data Set” on
page 259.

PRINTALL
prints the FORECAST computation throughout the whole data set. The forecast values for the data
before the forecast period (specified by the BACK= option) are one-step forecasts.

SIGSQ=value
specifies the variance term used in the formula for computing forecast standard errors and confidence
limits. The default value is the variance estimate computed by the preceding ESTIMATE statement.
This option is useful when you wish to generate forecast standard errors and confidence limits based
on a published model. It would often be used in conjunction with the NOEST option in the preceding
ESTIMATE statement.

Details: ARIMA Procedure

The Inverse Autocorrelation Function
The sample inverse autocorrelation function (SIACF) plays much the same role in ARIMA modeling as the
sample partial autocorrelation function (SPACF), but it generally indicates subset and seasonal autoregressive
models better than the SPACF.

Additionally, the SIACF can be useful for detecting over-differencing. If the data come from a nonstationary
or nearly nonstationary model, the SIACF has the characteristics of a noninvertible moving-average. Likewise,
if the data come from a model with a noninvertible moving average, then the SIACF has nonstationary
characteristics and therefore decays slowly. In particular, if the data have been over-differenced, the SIACF
looks like a SACF from a nonstationary process.

The inverse autocorrelation function is not often discussed in textbooks, so a brief description is given here.
For more complete discussions, see Cleveland (1972); Chatfield (1980); Priestley (1981).

Let Wt be generated by the ARMA(p, q ) process

�.B/Wt D �.B/at

where at is a white noise sequence. If � (B) is invertible (that is, if � considered as a polynomial in B has no
roots less than or equal to 1 in magnitude), then the model

�.B/Zt D �.B/at

is also a valid ARMA(q,p ) model. This model is sometimes referred to as the dual model. The autocorrelation
function (ACF) of this dual model is called the inverse autocorrelation function (IACF) of the original model.
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Notice that if the original model is a pure autoregressive model, then the IACF is an ACF that corresponds to
a pure moving-average model. Thus, it cuts off sharply when the lag is greater than p; this behavior is similar
to the behavior of the partial autocorrelation function (PACF).

The sample inverse autocorrelation function (SIACF) is estimated in the ARIMA procedure by the following
steps. A high-order autoregressive model is fit to the data by means of the Yule-Walker equations. The order
of the autoregressive model used to calculate the SIACF is the minimum of the NLAG= value and one-half
the number of observations after differencing. The SIACF is then calculated as the autocorrelation function
that corresponds to this autoregressive operator when treated as a moving-average operator. That is, the
autoregressive coefficients are convolved with themselves and treated as autocovariances.

Under certain conditions, the sampling distribution of the SIACF can be approximated by the sampling
distribution of the SACF of the dual model (Bhansali 1980). In the plots generated by ARIMA, the confidence
limit marks (.) are located at˙2=

p
n. These limits bound an approximate 95% confidence interval for the

hypothesis that the data are from a white noise process.

The Partial Autocorrelation Function
The approximation for a standard error for the estimated partial autocorrelation function at lag k is based on a
null hypothesis that a pure autoregressive Gaussian process of order k � 1 generated the time series. This
standard error is 1=

p
n and is used to produce the approximate 95% confidence intervals depicted by the dots

in the plot.

The Cross-Correlation Function
The autocorrelation and partial and inverse autocorrelation functions described in the preceding sections help
when you want to model a series as a function of its past values and past random errors. When you want to
include the effects of past and current values of other series in the model, the correlations of the response
series and the other series must be considered.

The CROSSCORR= option in the IDENTIFY statement computes cross-correlations of the VAR= series
with other series and makes these series available for use as inputs in models specified by later ESTIMATE
statements.

When the CROSSCORR= option is used, PROC ARIMA prints a plot of the cross-correlation function for
each variable in the CROSSCORR= list. This plot is similar in format to the other correlation plots, but it
shows the correlation between the two series at both lags and leads. For example,

identify var=y crosscorr=x ...;

plots the cross-correlation function of Y and X, Cor.yt ; xt�s/, for s D �L to L, where L is the value of the
NLAG= option. Study of the cross-correlation functions can indicate the transfer functions through which
the input series should enter the model for the response series.

The cross-correlation function is computed after any specified differencing has been done. If differencing is
specified for the VAR= variable or for a variable in the CROSSCORR= list, it is the differenced series that is
cross-correlated (and the differenced series is processed by any following ESTIMATE statement).

For example,
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identify var=y(1) crosscorr=x(1);

computes the cross-correlations of the changes in Y with the changes in X. When differencing is specified,
the subsequent ESTIMATE statement models changes in the variables rather than the variables themselves.

The ESACF Method
The extended sample autocorrelation function (ESACF) method can tentatively identify the orders of a
stationary or nonstationary ARMA process based on iterated least squares estimates of the autoregressive
parameters. Tsay and Tiao (1984) proposed the technique, and Choi (1992) provides useful descriptions of
the algorithm.

Given a stationary or nonstationary time series fzt W 1 � t � ng with mean corrected form Qzt D zt � �z
with a true autoregressive order of p C d and with a true moving-average order of q, you can use the ESACF
method to estimate the unknown orders p C d and q by analyzing the autocorrelation functions associated
with filtered series of the form

w
.m;j /
t D Ô .m;j /.B/ Qzt D Qzt �

mX
iD1

O�
.m;j /
i Qzt�i

where B represents the backshift operator, where m D pmin; : : : ; pmax are the autoregressive test orders,
where j D qmin C 1; : : : ; qmax C 1 are the moving-average test orders, and where O�.m;j /i are the autore-
gressive parameter estimates under the assumption that the series is an ARMA(m; j ) process.

For purely autoregressive models (j D 0), ordinary least squares (OLS) is used to consistently estimate
O�
.m;0/
i . For ARMA models, consistent estimates are obtained by the iterated least squares recursion formula,

which is initiated by the pure autoregressive estimates:

O�
.m;j /
i D O�

.mC1;j�1/
i � O�

.m;j�1/
i�1

O�
.mC1;j�1/
mC1

O�
.m;j�1/
m

The j th lag of the sample autocorrelation function of the filtered series w.m;j /t is the extended sample
autocorrelation function, and it is denoted as rj.m/ D rj .w.m;j //.

The standard errors of rj.m/ are computed in the usual way by using Bartlett’s approximation of the variance
of the sample autocorrelation function, var.rj.m// � .1C

Pj�1
tD1r

2
j .w

.m;j ///.

If the true model is an ARMA (p C d; q) process, the filtered series w.m;j /t follows an MA(q) model for
j�q so that

rj.pCd/ � 0 j > q

rj.pCd/ ¤ 0 j D q

Additionally, Tsay and Tiao (1984) show that the extended sample autocorrelation satisfies

rj.m/ � 0 j � q > m � p � d � 0

rj.m/ ¤ c.m � p � d; j � q/ 0 � j � q � m � p � d
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where c.m � p � d; j � q/ is a nonzero constant or a continuous random variable bounded by –1 and 1.

An ESACF table is then constructed by using the rj.m/ form D pmin; : : : ; pmax and j D qmin C 1; : : : ; qmax C 1
to identify the ARMA orders (see Table 8.4). The orders are tentatively identified by finding a right (maximal)
triangular pattern with vertices located at .p C d; q/ and .p C d; qmax/ and in which all elements are
insignificant (based on asymptotic normality of the autocorrelation function). The vertex .p C d; q/ identifies
the order. Table 8.5 depicts the theoretical pattern associated with an ARMA(1,2) series.

Table 8.4 ESACF Table

MA
AR 0 1 2 3 � �

0 r1.0/ r2.0/ r3.0/ r4.0/ � �

1 r1.1/ r2.1/ r3.1/ r4.1/ � �

2 r1.2/ r2.2/ r3.2/ r4.2/ � �

3 r1.3/ r2.3/ r3.3/ r4.3/ � �

� � � � � � �

� � � � � � �

Table 8.5 Theoretical ESACF Table for an ARMA(1,2) Series

MA
AR 0 1 2 3 4 5 6 7
0 * X X X X X X X
1 * X 0 0 0 0 0 0
2 * X X 0 0 0 0 0
3 * X X X 0 0 0 0
4 * X X X X 0 0 0

X = significant terms
0 = insignificant terms
* = no pattern

The MINIC Method
The minimum information criterion (MINIC) method can tentatively identify the order of a stationary
and invertible ARMA process. Note that Hannan and Rissanen (1982) proposed this method; for useful
descriptions of the algorithm, see Box, Jenkins, and Reinsel (1994); Choi (1992).

Given a stationary and invertible time series fzt W 1 � t � ng with mean corrected form Qzt D zt � �z with a
true autoregressive order of p and with a true moving-average order of q, you can use the MINIC method to
compute information criteria (or penalty functions) for various autoregressive and moving average orders.
The following paragraphs provide a brief description of the algorithm.

If the series is a stationary and invertible ARMA(p, q ) process of the form

ˆ.p;q/.B/ Qzt D ‚.p;q/.B/�t
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the error series can be approximated by a high-order AR process

O�t D Ô .p�;q/.B/ Qzt � �t

where the parameter estimates Ô .p�;q/ are obtained from the Yule-Walker estimates. The choice of the
autoregressive order p� is determined by the order that minimizes Akaike’s information criterion (AIC) in
the range p�;min � p� � p�;max ,

AIC.p�; 0/ D ln. Q�2.p�;0//C 2.p� C 0/=n

where

Q�2.p�;0/ D
1

n

nX
tDp�C1

O�2t

Note that Hannan and Rissanen (1982) use the Bayesian information criterion (BIC) to determine the
autoregressive order used to estimate the error series while others recommend the AIC (Box, Jenkins, and
Reinsel 1994; Choi 1992).

Once the error series has been estimated for autoregressive test order m D pmin; : : : ; pmax and for moving-
average test order j D qmin; : : : ; qmax , the OLS estimates Ô .m;j / and O‚.m;j / are computed from the
regression model

Qzt D

mX
iD1

�
.m;j /
i Qzt�i C

jX
kD1

�
.m;j /

k
O�t�k C error

From the preceding parameter estimates, the BIC is then computed

BIC.m; j / D ln. Q�2.m;j //C 2.mC j /ln.n/=n

where

Q�2.m;j / D
1

n

nX
tDt0

0@ Qzt � mX
iD1

�
.m;j /
i Qzt�i C

jX
kD1

�
.m;j /

k
O�t�k

1A
where t0 D p� Cmax.m; j /.

A MINIC table is then constructed using BIC.m; j /; see Table 8.6. If pmax > p�;min, the preceding
regression might fail due to linear dependence on the estimated error series and the mean-corrected series.
Values of BIC.m; j / that cannot be computed are set to missing. For large autoregressive and moving-average
test orders with relatively few observations, a nearly perfect fit can result. This condition can be identified by
a large negative BIC.m; j / value.

Table 8.6 MINIC Table

MA
AR 0 1 2 3 � �

0 BIC.0; 0/ BIC.0; 1/ BIC.0; 2/ BIC.0; 3/ � �

1 BIC.1; 0/ BIC.1; 1/ BIC.1; 2/ BIC.1; 3/ � �

2 BIC.2; 0/ BIC.2; 1/ BIC.2; 2/ BIC.2; 3/ � �

3 BIC.3; 0/ BIC.3; 1/ BIC.3; 2/ BIC.3; 3/ � �

� � � � � � �

� � � � � � �
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The SCAN Method
The smallest canonical (SCAN) correlation method can tentatively identify the orders of a stationary or
nonstationary ARMA process. Tsay and Tiao (1985) proposed the technique, and for useful descriptions of
the algorithm, see Box, Jenkins, and Reinsel (1994); Choi (1992).

Given a stationary or nonstationary time series fzt W 1 � t � ng with mean corrected form Qzt D zt � �z
with a true autoregressive order of p C d and with a true moving-average order of q, you can use the SCAN
method to analyze eigenvalues of the correlation matrix of the ARMA process. The following paragraphs
provide a brief description of the algorithm.

For autoregressive test order m D pmin; : : : ; pmax and for moving-average test order j D qmin; : : : ; qmax ,
perform the following steps:

1. Let Ym;t D . Qzt ; Qzt�1; : : : ; Qzt�m/0. Compute the following .mC 1/ � .mC 1/ matrix,

Ǒ.m; j C 1/ D

 X
t

Ym;t�j�1Y
0
m;t�j�1

!�1  X
t

Ym;t�j�1Y
0
m;t

!

Ǒ�.m; j C 1/ D

 X
t

Ym;tY
0
m;t

!�1  X
t

Ym;tY
0
m;t�j�1

!
OA�.m; j / D Ǒ�.m; j C 1/ Ǒ.m; j C 1/

where t ranges from j CmC 2 to n.

2. Find the smallest eigenvalue, O��.m; j /, of OA�.m; j / and its corresponding normalized eigenvector,
ˆm;j D .1;��

.m;j /
1 ;��

.m;j /
2 ; : : : ;��

.m;j /
m /. The squared canonical correlation estimate is O��.m; j /.

3. Using the ˆm;j as AR(m) coefficients, obtain the residuals for t D j CmC 1 to n, by following the
formula: w.m;j /t D Qzt � �

.m;j /
1 Qzt�1 � �

.m;j /
2 Qzt�2 � � � � � �

.m;j /
m Qzt�m.

4. From the sample autocorrelations of the residuals, rk.w/, approximate the standard error of the squared
canonical correlation estimate by

var. O��.m; j /1=2/ � d.m; j /=.n �m � j /

where d.m; j / D .1C 2
Pj�1
iD1 rk.w

.m;j ///.

The test statistic to be used as an identification criterion is

c.m; j / D �.n �m � j /ln.1 � O��.m; j /=d.m; j //

which is asymptotically �21 if m D p C d and j � q or if m � p C d and j D q. For m > p and j < q,
there is more than one theoretical zero canonical correlation between Ym;t and Ym;t�j�1. Since the O��.m; j /
are the smallest canonical correlations for each .m; j /, the percentiles of c.m; j / are less than those of a �21;
therefore, Tsay and Tiao (1985) state that it is safe to assume a �21. For m < p and j < q, no conclusions
about the distribution of c.m; j / are made.
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A SCAN table is then constructed using c.m; j / to determine which of the O��.m; j / are significantly different
from zero (see Table 8.7). The ARMA orders are tentatively identified by finding a (maximal) rectangular
pattern in which the O��.m; j / are insignificant for all test orders m � p C d and j � q. There might be
more than one pair of values (p C d; q) that permit such a rectangular pattern. In this case, parsimony and
the number of insignificant items in the rectangular pattern should help determine the model order. Table 8.8
depicts the theoretical pattern associated with an ARMA(2,2) series.

Table 8.7 SCAN Table

MA
AR 0 1 2 3 � �

0 c.0; 0/ c.0; 1/ c.0; 2/ c.0; 3/ � �

1 c.1; 0/ c.1; 1/ c.1; 2/ c.1; 3/ � �

2 c.2; 0/ c.2; 1/ c.2; 2/ c.2; 3/ � �

3 c.3; 0/ c.3; 1/ c.3; 2/ c.3; 3/ � �

� � � � � � �

� � � � � � �

Table 8.8 Theoretical SCAN Table for an ARMA(2,2) Series

MA
AR 0 1 2 3 4 5 6 7
0 * X X X X X X X
1 * X X X X X X X
2 * X 0 0 0 0 0 0
3 * X 0 0 0 0 0 0
4 * X 0 0 0 0 0 0

X = significant terms
0 = insignificant terms
* = no pattern

Stationarity Tests
When a time series has a unit root, the series is nonstationary and the ordinary least squares (OLS) estimator
is not normally distributed. Dickey and Fuller studied the limiting distribution of the OLS estimator of
autoregressive models for time series that have a simple unit root (Dickey 1976; Dickey and Fuller 1979).
Dickey, Hasza, and Fuller (1984) obtained the limiting distribution for time series that have seasonal unit
roots. Hamilton (1994) discusses the various types of unit root testing.

The augmented Dickey-Fuller (ADF) test (Dickey and Fuller 1979) and the Phillips-Perron (PP) test (Phillips
and Perron 1988) are usually used to test stationarity. Both tests can be used to test three types of data
generation models: when the series is zero-mean stationary (zero mean), nonzero-mean stationary (single
mean), and linear time trend stationary (trend). The following sections discuss these three models of order
p C 1.
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Zero Mean

A zero-mean, stationary autoregressive process of order p C 1, AR(p C 1), can be described as follows:

yt D ˛1yt�1 C ˛2yt�2 C � � � C ˛pC1yt�p�1 C et

It could also be written as

ryt D ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

where ryt D yt � yt�1, ı D ˛1 C � � � C ˛pC1 � 1, and �k D �˛kC1 � � � � � ˛pC1.

In this alternate form, yt is difference stationary if ı D 0. The zero-mean form of the ADF and PP tests is
useful for testing whether yt is difference stationary (null) or zero-mean stationary (alternative).

Single Mean

A stationary autoregressive process of order p C 1, AR(p C 1), with mean � can be described as follows:

yt � � D ˛1.yt�1 � �/C ˛2.yt�2 � �/C � � � C ˛pC1.yt�p�1 � �/C et

It could also be written as

ryt D �ı�C ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

In this alternate form, yt is difference stationary if ı D 0. The single-mean form of the ADF and PP tests is
useful for testing whether yt is difference stationary (null) or zero-mean stationary (alternative).

Trend

A stationary autoregressive process of order pC1, AR(pC1), with linear time trend �Cˇt can be described
as follows:

yt���ˇt D ˛1.yt�1���ˇ.t�1//C˛2.yt�2���ˇ.t�2//C� � �C˛pC1.yt�p�1���ˇ.t�p�1//Cet

It could also be written as

ryt D �ı� � ıˇt C �ˇ C ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

where � D ˛1 C 2˛2 C � � � C .p C 1/˛pC1.

In this alternate form, yt is difference stationary (with nonzero mean) if ı D 0. The trend form of the
ADF and PP tests is useful for testing whether yt is difference stationary with nonzero mean (null) or trend
stationary (alternative).

When there is a unit root (that is, the series is nonstationary), the sum of the autoregressive parameters is 1
and hence ı D 0. The ADF tests and the PP tests both build on ı. There are three kinds of tests under the
ADF tests: rho (�) test, tau (�) test, and F test. The rho test is the regression coefficient test, which is also
called the normalized bias test. The tau test is the studentized test. The F test is a joint test for unit root. For
more information about test statistics under the ADF tests, see Dickey (2005), the section “Stationarity Tests”
on page 242, and Hamilton (1994). There are two kinds of test statistics under the PP tests: rho test and tau
test statistics. For more information about test statistics under the PP tests, see Chapter 9, “The AUTOREG
Procedure.” The following table presents null hypotheses and decision rules for the three test statistics under
the three different model types:
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Rho Test Tau Test F Test
Types H0 p-value H0 p-value H0 p-value
Zero mean ı D 0 Stationary if low ı D 0 Stationary if low N/A N/A
Single mean ı D 0 Stationary if low ı D 0 Stationary if low ı D ˛0 D 0 Stationary if low
Trend ı D 0 Stationary if low ı D 0 Stationary if low ı D  D 0 Stationary if low

In this table, ˛0 is the intercept in the test regression for the single-mean model,

ryt D ˛0 C ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

and  is the parameter of t in the test regression for the trend model,

ryt D ˛0 C  t C ıyt�1 C �1ryt�1 C � � � C �pryt�p C et

As shown in the regression for single-mean model, when ı D 0 (that is, there is a unit root), the intercept
˛0 D �ı� D 0. The F test with a joint hypothesis of zero intercept and zero slope can therefore be used as a
unit root test for the single-mean model. The F test for the trend model follows a similar logic. When ı D 0,
 D �ıˇ D 0. The F statistic for the trend model therefore tests the joint null hypothesis: ı D  D 0. When
you are testing for unit root, the tau (� ) test is more powerful than the F test.

For a more detailed description of the Dickey-Fuller tests, see the section “PROBDF Function for Dickey-
Fuller Tests” on page 160 in Chapter 6. For a description of Phillips-Perron tests, see Chapter 9, “The
AUTOREG Procedure.” The random-walk-with-drift test suggests whether or not an integrated times series
has a drift term. Hamilton (1994) discusses this test.

Prewhitening
If, as is usually the case, an input series is autocorrelated, the direct cross-correlation function between the
input and response series gives a misleading indication of the relation between the input and response series.

One solution to this problem is called prewhitening. You first fit an ARIMA model for the input series
sufficient to reduce the residuals to white noise; then, filter the input series with this model to get the white
noise residual series. You then filter the response series with the same model and cross-correlate the filtered
response with the filtered input series.

The ARIMA procedure performs this prewhitening process automatically when you precede the IDENTIFY
statement for the response series with IDENTIFY and ESTIMATE statements to fit a model for the input
series. If a model with no inputs was previously fit to a variable specified by the CROSSCORR= option, then
that model is used to prewhiten both the input series and the response series before the cross-correlations are
computed for the input series.

For example:

proc arima data=in;
identify var=x;
estimate p=1 q=1;
identify var=y crosscorr=x;

run;
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Both X and Y are filtered by the ARMA(1,1) model fit to X before the cross-correlations are computed.

Note that prewhitening is done to estimate the cross-correlation function; the unfiltered series are used in
any subsequent ESTIMATE or FORECAST statements, and the correlation functions of Y with its own
lags are computed from the unfiltered Y series. But initial values in the ESTIMATE statement are obtained
with prewhitened data; therefore, the result with prewhitening can be different from the result without
prewhitening.

To suppress prewhitening for all input variables, use the CLEAR option in the IDENTIFY statement to make
PROC ARIMA disregard all previous models.

Prewhitening and Differencing

If the VAR= and CROSSCORR= options specify differencing, the series are differenced before the prewhiten-
ing filter is applied. When the differencing lists specified in the VAR= option for an input and in the
CROSSCORR= option for that input are not the same, PROC ARIMA combines the two lists so that the
differencing operators used for prewhitening include all differences in either list (in the least common multiple
sense).

Identifying Transfer Function Models
When identifying a transfer function model with multiple input variables, the cross-correlation functions can
be misleading if the input series are correlated with each other. Any dependencies among two or more input
series will confound their cross-correlations with the response series.

The prewhitening technique assumes that the input variables do not depend on past values of the response
variable. If there is feedback from the response variable to an input variable, as evidenced by significant
cross-correlation at negative lags, both the input and the response variables need to be prewhitened before
meaningful cross-correlations can be computed.

PROC ARIMA cannot handle feedback models. The STATESPACE and VARMAX procedures are more
appropriate for models with feedback.

Missing Values and Autocorrelations
To compute the sample autocorrelation function when missing values are present, PROC ARIMA uses only
crossproducts that do not involve missing values and employs divisors that reflect the number of crossproducts
used rather than the total length of the series. Sample partial autocorrelations and inverse autocorrelations are
then computed by using the sample autocorrelation function. If necessary, a taper is employed to transform
the sample autocorrelations into a positive definite sequence before calculating the partial autocorrelation and
inverse correlation functions. The confidence intervals produced for these functions might not be valid when
there are missing values. The distributional properties for sample correlation functions are not clear for finite
samples. For some asymptotic properties of the sample correlation functions, see Dunsmuir (1984).
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Estimation Details
The ARIMA procedure primarily uses the computational methods outlined by Box and Jenkins. Marquardt’s
method is used for the nonlinear least squares iterations. Numerical approximations of the derivatives of the
sum-of-squares function are taken by using a fixed delta (controlled by the DELTA= option).

The methods do not always converge successfully for a given set of data, particularly if the starting values for
the parameters are not close to the least squares estimates.

Back-Forecasting

The unconditional sum of squares is computed exactly; thus, back-forecasting is not performed. Early
versions of SAS/ETS software used the back-forecasting approximation and allowed a positive value of the
BACKLIM= option to control the extent of the back-forecasting. In the current version, requesting a positive
number of back-forecasting steps with the BACKLIM= option has no effect.

Preliminary Estimation

If an autoregressive or moving-average operator is specified with no missing lags, preliminary estimates of
the parameters are computed by using the autocorrelations computed in the IDENTIFY stage. Otherwise, the
preliminary estimates are arbitrarily set to values that produce stable polynomials.

When preliminary estimation is not performed by PROC ARIMA, then initial values of the coefficients for
any given autoregressive or moving-average factor are set to 0.1 if the degree of the polynomial associated
with the factor is 9 or less. Otherwise, the coefficients are determined by expanding the polynomial (1�0:1B)
to an appropriate power by using a recursive algorithm.

These preliminary estimates are the starting values in an iterative algorithm to compute estimates of the
parameters.

Estimation Methods

Maximum Likelihood
The METHOD= ML option produces maximum likelihood estimates. The likelihood function is maximized
via nonlinear least squares using Marquardt’s method. Maximum likelihood estimates are more expensive to
compute than the conditional least squares estimates; however, they may be preferable in some cases (Ansley
and Newbold 1980; Davidson 1981).

The maximum likelihood estimates are computed as follows. Let the univariate ARMA model be

�.B/.Wt � �t / D �.B/at

where at is an independent sequence of normally distributed innovations with mean 0 and variance �2. Here
�t is the mean parameter � plus the transfer function inputs. The log-likelihood function can be written as
follows:

�
1

2�2
x0��1x �

1

2
ln.j�j/ �

n

2
ln.�2/

In this equation, n is the number of observations, �2� is the variance of x as a function of the � and �
parameters, and j�j denotes the determinant. The vector x is the time series Wt minus the structural part of
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the model �t , written as a column vector, as follows:

x D

26664
W1
W2
:::

Wn

37775 �
26664
�1
�2
:::

�n

37775
The maximum likelihood estimate (MLE) of �2 is

s2 D
1

n
x0��1x

Note that the default estimator of the variance divides by n � r , where r is the number of parameters in the
model, instead of by n. Specifying the NODF option causes a divisor of n to be used.

The log likelihood concentrated with respect to �2 can be taken up to additive constants as

�
n

2
ln.x0��1x/ �

1

2
ln.j�j/

Let H be the lower triangular matrix with positive elements on the diagonal such that HH0 D �. Let e be the
vector H�1x. The concentrated log likelihood with respect to �2 can now be written as

�
n

2
ln.e0e/ � ln.jHj/

or

�
n

2
ln.jHj1=ne0ejHj1=n/

The MLE is produced by using a Marquardt algorithm to minimize the following sum of squares:

jHj1=ne0ejHj1=n

The subsequent analysis of the residuals is done by using e as the vector of residuals.

Unconditional Least Squares
The METHOD=ULS option produces unconditional least squares estimates. The ULS method is also referred
to as the exact least squares (ELS) method. For METHOD=ULS, the estimates minimize

nX
tD1

Qa2t D

nX
tD1

.xt � CtV�1t .x1; : : : ; xt�1/
0/2

where Ct is the covariance matrix of xt and .x1; : : : ; xt�1/, and Vt is the variance matrix of .x1; : : : ; xt�1/.
In fact,

Pn
tD1 Qa

2
t is the same as x0��1x, and hence e0e. Therefore, the unconditional least squares estimates

are obtained by minimizing the sum of squared residuals rather than using the log likelihood as the criterion
function.
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Conditional Least Squares
The METHOD=CLS option produces conditional least squares estimates. The CLS estimates are conditional
on the assumption that the past unobserved errors are equal to 0. The series xt can be represented in terms of
the previous observations, as follows:

xt D at C

1X
iD1

�ixt�i

The � weights are computed from the ratio of the � and � polynomials, as follows:

�.B/

�.B/
D 1 �

1X
iD1

�iB
i

The CLS method produces estimates minimizing

nX
tD1

Oa2t D

nX
tD1

.xt �

1X
iD1

O�ixt�i /
2

where the unobserved past values of xt are set to 0 and O�i are computed from the estimates of � and � at
each iteration.

For METHOD=ULS and METHOD=ML, initial estimates are computed using the METHOD=CLS algorithm.

Start-Up for Transfer Functions

When computing the noise series for transfer function and intervention models, the start-up for the transferred
variable is done by assuming that past values of the input series are equal to the first value of the series. The
estimates are then obtained by applying least squares or maximum likelihood to the noise series. Thus, for
transfer function models, the ML option does not generate the full (multivariate ARMA) maximum likelihood
estimates, but it uses only the univariate likelihood function applied to the noise series.

Because PROC ARIMA uses all of the available data for the input series to generate the noise series, other
start-up options for the transferred series can be implemented by prefixing an observation to the beginning of
the real data. For example, if you fit a transfer function model to the variable Y with the single input X, then
you can employ a start-up using 0 for the past values by prefixing to the actual data an observation with a
missing value for Y and a value of 0 for X.

Information Criteria

PROC ARIMA computes and prints two information criteria, Akaike’s information criterion (AIC) (Akaike
1974; Harvey 1981) and Schwarz’s Bayesian criterion (SBC) (Schwarz 1978). The AIC and SBC are used to
compare competing models fit to the same series. The model with the smaller information criteria is said to
fit the data better. The AIC is computed as

�2ln.L/C 2k

where L is the likelihood function and k is the number of free parameters. The SBC is computed as

�2ln.L/C ln.n/k
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where n is the number of residuals that can be computed for the time series. Sometimes Schwarz’s Bayesian
criterion is called the Bayesian information criterion (BIC).

If METHOD=CLS is used to do the estimation, an approximation value of L is used, where L is based on the
conditional sum of squares instead of the exact sum of squares, and a Jacobian factor is left out.

Tests of Residuals

A table of test statistics for the hypothesis that the model residuals are white noise is printed as part of the
ESTIMATE statement output. The chi-square statistics used in the test for lack of fit are computed using the
Ljung-Box formula

�2m D n.nC 2/

mX
kD1

r2
k

.n � k/

where

rk D

Pn�k
tD1 atatCkPn
tD1 a

2
t

and at is the residual series.

This formula has been suggested by Ljung and Box (1978) as yielding a better fit to the asymptotic chi-square
distribution than the Box-Pierce Q statistic. Some simulation studies of the finite sample properties of this
statistic are given by Davies, Triggs, and Newbold (1977); Ljung and Box (1978). When the time series
has missing values, Stoffer and Toloi (1992) suggest a modification of this test statistic that has improved
distributional properties over the standard Ljung-Box formula given above. When the series contains missing
values, this modified test statistic is used by default.

Each chi-square statistic is computed for all lags up to the indicated lag value and is not independent of the
preceding chi-square values. The null hypothesis tested is that the current set of autocorrelations is white
noise.

t-Values

The t values reported in the table of parameter estimates are approximations whose accuracy depends on the
validity of the model, the nature of the model, and the length of the observed series. When the length of the
observed series is short and the number of estimated parameters is large with respect to the series length, the
t approximation is usually poor. Probability values that correspond to a t distribution should be interpreted
carefully because they may be misleading.

Cautions during Estimation

The ARIMA procedure uses a general nonlinear least squares estimation method that can yield problematic
results if your data do not fit the model. Output should be examined carefully. The GRID option can be used
to ensure the validity and quality of the results. Problems you might encounter include the following:

� Preliminary moving-average estimates might not converge. If this occurs, preliminary estimates are
derived as described previously in the section “Preliminary Estimation” on page 246. You can supply
your own preliminary estimates with the ESTIMATE statement options.
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� The estimates can lead to an unstable time series process, which can cause extreme forecast values or
overflows in the forecast.

� The Jacobian matrix of partial derivatives might be singular; usually, this happens because not all the
parameters are identifiable. Removing some of the parameters or using a longer time series might help.

� The iterative process might not converge. PROC ARIMA’s estimation method stops after n iterations,
where n is the value of the MAXITER= option. If an iteration does not improve the SSE, the Marquardt
parameter is increased by a factor of ten until parameters that have a smaller SSE are obtained or until
the limit value of the Marquardt parameter is exceeded.

� For METHOD=CLS, the estimates might converge but not to least squares estimates. The estimates
might converge to a local minimum, the numerical calculations might be distorted by data whose
sum-of-squares surface is not smooth, or the minimum might lie outside the region of invertibility or
stationarity.

� If the data are differenced and a moving-average model is fit, the parameter estimates might try to
converge exactly on the invertibility boundary. In this case, the standard error estimates that are based
on derivatives might be inaccurate.

Specifying Inputs and Transfer Functions
Input variables and transfer functions for them can be specified using the INPUT= option in the ESTIMATE
statement. The variables used in the INPUT= option must be included in the CROSSCORR= list in the
previous IDENTIFY statement. If any differencing is specified in the CROSSCORR= list, then the differenced
variable is used as the input to the transfer function.

General Syntax of the INPUT= Option

The general syntax of the INPUT= option is

ESTIMATE . . . INPUT=( transfer-function variable . . . )

The transfer function for an input variable is optional. The name of a variable by itself can be used to specify
a pure regression term for the variable.

If specified, the syntax of the transfer function is

S $ .L1;1; L1;2; : : :/.L2;1; : : :/ : : : =.Li;1; Li;2; : : :/.LiC1;1; : : :/ : : :

S is the number of periods of time delay (lag) for this input series. Each term in parentheses specifies a
polynomial factor with parameters at the lags specified by the Li;j values. The terms before the slash (/) are
numerator factors. The terms after the slash (/) are denominator factors. All three parts are optional.

Commas can optionally be used between input specifications to make the INPUT= option more readable.
The $ sign after the shift is also optional.

Except for the first numerator factor, each of the terms Li;1; Li;2; : : : ; Li;k indicates a factor of the form

.1 � !i;1B
Li;1 � !i;2B

Li;2 � � � � � !i;kB
Li;k /

The form of the first numerator factor depends on the ALTPARM option. By default, the constant 1 in the
first numerator factor is replaced with a free parameter !0.
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Alternative Model Parameterization

When the ALTPARM option is specified, the !0 parameter is factored out so that it multiplies the entire
transfer function, and the first numerator factor has the same form as the other factors.

The ALTPARM option does not materially affect the results; it just presents the results differently. Some
people prefer to see the model written one way, while others prefer the alternative representation. Table 8.9
illustrates the effect of the ALTPARM option.

Table 8.9 The ALTPARM Option

INPUT= Option ALTPARM Model

INPUT=((1 2)(12)/(1)X); No .!0 � !1B � !2B
2/.1 � !3B

12/=.1 � ı1B/Xt
Yes !0.1 � !1B � !2B

2/.1 � !3B
12/=.1 � ı1B/Xt

Differencing and Input Variables

If you difference the response series and use input variables, take care that the differencing operations do not
change the meaning of the model. For example, if you want to fit the model

Yt D
!0

.1 � ı1B/
Xt C

.1 � �1B/

.1 � B/.1 � B12/
at

then the IDENTIFY statement must read

identify var=y(1,12) crosscorr=x(1,12);
estimate q=1 input=(/(1)x) noconstant;

If instead you specify the differencing as

identify var=y(1,12) crosscorr=x;
estimate q=1 input=(/(1)x) noconstant;

then the model being requested is

Yt D
!0

.1 � ı1B/.1 � B/.1 � B12/
Xt C

.1 � �1B/

.1 � B/.1 � B12/
at

which is a very different model.

The point to remember is that a differencing operation requested for the response variable specified by the
VAR= option is applied only to that variable and not to the noise term of the model.
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Initial Values
The syntax for giving initial values to transfer function parameters in the INITVAL= option parallels the
syntax of the INPUT= option. For each transfer function in the INPUT= option, the INITVAL= option should
give an initialization specification followed by the input series name. The initialization specification for each
transfer function has the form

C $ .V1;1; V1;2; : : :/.V2;1; : : :/ : : : =.Vi;1; : : :/ : : :

where C is the lag 0 term in the first numerator factor of the transfer function (or the overall scale factor if the
ALTPARM option is specified) and Vi;j is the coefficient of the Li;j element in the transfer function.

To illustrate, suppose you want to fit the model

Yt D �C
.!0 � !1B � !2B

2/

.1 � ı1B � ı2B2 � ı3B3/
Xt�3 C

1

.1 � �1B � �2B3/
at

and start the estimation process with the initial values �=10, !0=1, !1=0.5, !2=0.03, ı1=0.8,
ı2=–0.1, ı3=0.002, �1=0.1, �2=0.01. (These are arbitrary values for illustration only.) You would use the
following statements:

identify var=y crosscorr=x;
estimate p=(1,3) input=(3$(1,2)/(1,2,3)x)

mu=10 ar=.1 .01
initval=(1$(.5,.03)/(.8,-.1,.002)x);

Note that the lags specified for a particular factor are sorted, so initial values should be given in sorted order.
For example, if the P= option had been entered as P=(3,1) instead of P=(1,3), the model would be the same
and so would the AR= option. Sorting is done within all factors, including transfer function factors, so initial
values should always be given in order of increasing lags.

Here is another illustration, showing initialization for a factored model with multiple inputs. The model is

Yt D � C
!1;0

.1 � ı1;1B/
Wt C .!2;0 � !2;1B/Xt�3

C
1

.1 � �1B/.1 � �2B6 � �3B12/
at

and the initial values are �=10, !1;0=5, ı1;1=0.8, !2;0=1, !2;1=0.5, �1=0.1, �2=0.05, and �3=0.01. You
would use the following statements:

identify var=y crosscorr=(w x);
estimate p=(1)(6,12) input=(/(1)w, 3$(1)x)

mu=10 ar=.1 .05 .01
initval=(5$/(.8)w 1$(.5)x);
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Stationarity and Invertibility
By default, PROC ARIMA requires that the parameter estimates for the AR and MA parts of the model
always remain in the stationary and invertible regions, respectively. The NOSTABLE option removes this
restriction and for high-order models can save some computer time. Note that using the NOSTABLE option
does not necessarily result in an unstable model being fit, since the estimates can leave the stable region for
some iterations but still ultimately converge to stable values. Similarly, by default, the parameter estimates
for the denominator polynomial of the transfer function part of the model are also restricted to be stable. The
NOTFSTABLE option can be used to remove this restriction.

Naming of Model Parameters
In the table of parameter estimates produced by the ESTIMATE statement, model parameters are referred to
by using the naming convention described in this section.

The parameters in the noise part of the model are named as ARi,j or MAi,j, where AR refers to autoregressive
parameters and MA to moving-average parameters. The subscript i refers to the particular polynomial factor,
and the subscript j refers to the jth term within the ith factor. These terms are sorted in order of increasing lag
within factors, so the subscript j refers to the jth term after sorting.

When inputs are used in the model, the parameters of each transfer function are named NUMi,j and DENi,j.
The jth term in the ith factor of a numerator polynomial is named NUMi,j. The jth term in the ith factor of a
denominator polynomial is named DENi,j.

This naming process is repeated for each input variable, so if there are multiple inputs, parameters in transfer
functions for different input series have the same name. The table of parameter estimates shows in the
“Variable” column the input with which each parameter is associated. The parameter name shown in the
“Parameter” column and the input variable name shown in the “Variable” column must be combined to fully
identify transfer function parameters.

The lag 0 parameter in the first numerator factor for the first input variable is named NUM1. For subsequent
input variables, the lag 0 parameter in the first numerator factor is named NUMk, where k is the position of
the input variable in the INPUT= option list. If the ALTPARM option is specified, the NUMk parameter is
replaced by an overall scale parameter named SCALEk.

For the mean and noise process parameters, the response series name is shown in the “Variable” column. The
lag and shift for each parameter are also shown in the table of parameter estimates when inputs are used.
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Missing Values and Estimation and Forecasting
Estimation and forecasting are carried out in the presence of missing values by forecasting the missing values
with the current set of parameter estimates. The maximum likelihood algorithm employed was suggested
by Jones (1980) and is used for both unconditional least squares (ULS) and maximum likelihood (ML)
estimation.

The CLS algorithm simply fills in missing values with infinite memory forecast values, computed by
forecasting ahead from the nonmissing past values as far as required by the structure of the missing values.
These artificial values are then employed in the nonmissing value CLS algorithm. Artificial values are
updated at each iteration along with parameter estimates.

For models with input variables, embedded missing values (that is, missing values other than at the beginning
or end of the series) are not generally supported. Embedded missing values in input variables are supported
for the special case of a multiple regression model that has ARIMA errors. A multiple regression model
is specified by an INPUT= option that simply lists the input variables (possibly with lag shifts) without
any numerator or denominator transfer function factors. One-step-ahead forecasts are not available for the
response variable when one or more of the input variables have missing values.

When embedded missing values are present for a model with complex transfer functions, PROC ARIMA
uses the first continuous nonmissing piece of each series to do the analysis. That is, PROC ARIMA skips
observations at the beginning of each series until it encounters a nonmissing value and then uses the data from
there until it encounters another missing value or until the end of the data is reached. This makes the current
version of PROC ARIMA compatible with earlier releases that did not allow embedded missing values.

Forecasting Details
If the model has input variables, a forecast beyond the end of the data for the input variables is possible only
if univariate ARIMA models have previously been fit to the input variables or future values for the input
variables are included in the DATA= data set.

If input variables are used, the forecast standard errors and confidence limits of the response depend on the
estimated forecast error variance of the predicted inputs. If several input series are used, the forecast errors
for the inputs should be independent; otherwise, the standard errors and confidence limits for the response
series will not be accurate. If future values for the input variables are included in the DATA= data set, the
standard errors of the forecasts will be underestimated since these values are assumed to be known with
certainty.

The forecasts are generated using forecasting equations consistent with the method used to estimate the
model parameters. Thus, the estimation method specified in the ESTIMATE statement also controls the way
forecasts are produced by the FORECAST statement. If METHOD=CLS is used, the forecasts are infinite
memory forecasts, also called conditional forecasts. If METHOD=ULS or METHOD=ML, the forecasts are
finite memory forecasts, also called unconditional forecasts. A complete description of the steps to produce
the series forecasts and their standard errors by using either of these methods is quite involved, and only a
brief explanation of the algorithm is given in the next two sections. Additional information about the finite
and infinite memory forecasts can be found in Brockwell and Davis (1991). The prediction of stationary
ARMA processes is explained in Chapter 5, and the prediction of nonstationary ARMA processes is given in
Chapter 9 of Brockwell and Davis (1991).
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Infinite Memory Forecasts

If METHOD=CLS is used, the forecasts are infinite memory forecasts, also called conditional forecasts.
The term conditional is used because the forecasts are computed by assuming that the unknown values of
the response series before the start of the data are equal to the mean of the series. Thus, the forecasts are
conditional on this assumption.

The series xt can be represented as

xt D at C

1X
iD1

�ixt�i

where �.B/=�.B/ D 1 �
P1
iD1 �iB

i .

The k-step forecast of xtCk is computed as

OxtCk D

k�1X
iD1

O�i OxtCk�i C

1X
iDk

O�ixtCk�i

where unobserved past values of xt are set to zero and O�i is obtained from the estimated parameters O� and O� .

Finite Memory Forecasts

For METHOD=ULS or METHOD=ML, the forecasts are finite memory forecasts, also called unconditional
forecasts. For finite memory forecasts, the covariance function of the ARMA model is used to derive the best
linear prediction equation.

That is, the k-step forecast of xtCk , given .x1; : : : ; xt�1/, is

QxtCk D Ck;tV�1t .x1; : : : ; xt�1/
0

where Ck;t is the covariance of xtCk and .x1; : : : ; xt�1/ and Vt is the covariance matrix of the vector
.x1; : : : ; xt�1/. Ck;t and Vt are derived from the estimated parameters.

Finite memory forecasts minimize the mean squared error of prediction if the parameters of the ARMA
model are known exactly. (In most cases, the parameters of the ARMA model are estimated, so the predictors
are not true best linear forecasts.)

If the response series is differenced, the final forecast is produced by summing the forecast of the differenced
series. This summation and the forecast are conditional on the initial values of the series. Thus, when the
response series is differenced, the final forecasts are not true finite memory forecasts because they are derived
by assuming that the differenced series begins in a steady-state condition. Thus, they fall somewhere between
finite memory and infinite memory forecasts. In practice, there is seldom any practical difference between
these forecasts and true finite memory forecasts.
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Forecasting Log Transformed Data
The log transformation is often used to convert time series that are nonstationary with respect to the innovation
variance into stationary time series. The usual approach is to take the log of the series in a DATA step and
then apply PROC ARIMA to the transformed data. A DATA step is then used to transform the forecasts of
the logs back to the original units of measurement. The confidence limits are also transformed by using the
exponential function.

As one alternative, you can simply exponentiate the forecast series. This procedure gives a forecast for the
median of the series, but the antilog of the forecast log series underpredicts the mean of the original series. If
you want to predict the expected value of the series, you need to take into account the standard error of the
forecast, as shown in the following example, which uses an AR(2) model to forecast the log of a series Y:

data in;
set in;
ylog = log( y );

run;

proc arima data=in;
identify var=ylog;
estimate p=2;
forecast lead=10 out=out;

run;

data out;
set out;
y = exp( ylog );
l95 = exp( l95 );
u95 = exp( u95 );
forecast = exp( forecast + std*std/2 );

run;

Specifying Series Periodicity
The INTERVAL= option is used together with the ID= variable to describe the observations that make up the
time series. For example, INTERVAL=MONTH specifies a monthly time series in which each observation
represents one month. For more information about the interval values supported, see Chapter 5, “Date
Intervals, Formats, and Functions.”

The variable specified by the ID= option in the PROC ARIMA statement identifies the time periods associated
with the observations. Usually, SAS date, time, or datetime values are used for this variable. PROC ARIMA
uses the ID= variable in the following ways:

� to validate the data periodicity. When the INTERVAL= option is specified, PROC ARIMA uses the ID
variable to check the data and verify that successive observations have valid ID values that correspond
to successive time intervals. When the INTERVAL= option is not used, PROC ARIMA verifies that
the ID values are nonmissing and in ascending order.
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� to check for gaps in the input observations. For example, if INTERVAL=MONTH and an input
observation for April 1970 follows an observation for January 1970, there is a gap in the input data
with two omitted observations (namely February and March 1970). A warning message is printed
when a gap in the input data is found.

� to label the forecast observations in the output data set. PROC ARIMA extrapolates the values of the
ID variable for the forecast observations from the ID value at the end of the input data according to the
frequency specifications of the INTERVAL= option. If the INTERVAL= option is not specified, PROC
ARIMA extrapolates the ID variable by incrementing the ID variable value for the last observation in
the input data by 1 for each forecast period. Values of the ID variable over the range of the input data
are copied to the output data set.

The ALIGN= option is used to align the ID variable to the beginning, middle, or end of the time ID interval
specified by the INTERVAL= option.

Detecting Outliers
You can use the OUTLIER statement to detect changes in the level of the response series that are not
accounted for by the estimated model. The types of changes considered are additive outliers (AO), level
shifts (LS), and temporary changes (TC).

Let �t be a regression variable that describes some type of change in the mean response. In time series
literature �t is called a shock signature. An additive outlier at some time point s corresponds to a shock
signature �t such that �s D 1:0 and �t is 0.0 at all other points. Similarly a permanent level shift that
originates at time s has a shock signature such that �t is 0.0 for t < s and 1.0 for t � s. A temporary level
shift of duration d that originates at time s has �t equal to 1.0 between s and s C d and 0.0 otherwise.

Suppose that you are estimating the ARIMA model

D.B/Yt D �t C
�.B/

�.B/
at

where Yt is the response series, D.B/ is the differencing polynomial in the backward shift operator B
(possibly identity), �t is the transfer function input, �.B/ and �.B/ are the AR and MA polynomials,
respectively, and at is the Gaussian white noise series.

The problem of detection of level shifts in the OUTLIER statement is formulated as a problem of sequential
selection of shock signatures that improve the model in the ESTIMATE statement. This is similar to the
forward selection process in the stepwise regression procedure. The selection process starts with considering
shock signatures of the type specified in the TYPE= option, originating at each nonmissing measurement.
This involves testing H0Wˇ D 0 versus HaWˇ ¤ 0 in the model

D.B/.Yt � ˇ�t / D �t C
�.B/

�.B/
at

for each of these shock signatures. The most significant shock signature, if it also satisfies the significance
criterion in ALPHA= option, is included in the model. If no significant shock signature is found, then the
outlier detection process stops; otherwise this augmented model, which incorporates the selected shock
signature in its transfer function input, becomes the null model for the subsequent selection process. This
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iterative process stops if at any stage no more significant shock signatures are found or if the number of
iterations exceeds the maximum search number that results due to the MAXNUM= and MAXPCT= settings.
In all these iterations, the parameters of the ARIMA model in the ESTIMATE statement are held fixed.

The precise details of the testing procedure for a given shock signature �t are as follows:

The preceding testing problem is equivalent to testing H0Wˇ D 0 versus HaWˇ ¤ 0 in the following
“regression with ARMA errors” model,

Nt D ˇ�t C
�.B/

�.B/
at

where Nt D .D.B/Yt � �t / is the “noise” process and �t D D.B/�t is the “effective” shock signature.

In this setting, under H0; N D .N1; N2; : : : ; Nn/T is a mean zero Gaussian vector with variance covariance
matrix �2�. Here �2 is the variance of the white noise process at and � is the variance-covariance
matrix associated with the ARMA model. Moreover, under Ha, N has ˇ� as the mean vector where
� D .�1; �2; : : : ; �n/

T . Additionally, the generalized least squares estimate of ˇ and its variance is given by

Ǒ D ı=�

Var. Ǒ/ D �2=�

where ı D �T��1N and � D �T��1�. The test statistic �2 D ı2=.�2�/ is used to test the significance
of ˇ, which has an approximate chi-squared distribution with 1 degree of freedom under H0. The type of
estimate of �2 used in the calculation of �2 can be specified by the SIGMA= option. The default setting is
SIGMA=ROBUST, which corresponds to a robust estimate suggested in an outlier detection procedure in
X-12-ARIMA, the Census Bureau’s time series analysis program; see Findley et al. (1998) for additional
information. The robust estimate of �2 is computed by the formula

O�2 D .1:49 �Median.j Oat j//2

where Oat are the standardized residuals of the null ARIMA model. The setting SIGMA=MSE corresponds to
the usual mean squared error estimate (MSE) computed the same way as in the ESTIMATE statement with
the NODF option.

The quantities ı and � are efficiently computed by a method described in De Jong and Penzer (1998); see
also Kohn and Ansley (1985).

Modeling in the Presence of Outliers

In practice, modeling and forecasting time series data in the presence of outliers is a difficult problem for
several reasons. The presence of outliers can adversely affect the model identification and estimation steps.
Their presence close to the end of the observation period can have a serious impact on the forecasting
performance of the model. In some cases, level shifts are associated with changes in the mechanism that
drives the observation process, and separate models might be appropriate to different sections of the data. In
view of all these difficulties, diagnostic tools such as outlier detection and residual analysis are essential in
any modeling process.

The following modeling strategy, which incorporates level shift detection in the familiar Box-Jenkins
modeling methodology, seems to work in many cases:
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1. Proceed with model identification and estimation as usual. Suppose this results in a tentative ARIMA
model, say M.

2. Check for additive and permanent level shifts unaccounted for by the model M by using the OUTLIER
statement. In this step, unless there is evidence to justify it, the number of level shifts searched should
be kept small.

3. Augment the original data set with the regression variables that correspond to the detected outliers.

4. Include the first few of these regression variables in M, and call this model M1. Reestimate all the
parameters of M1. It is important not to include too many of these outlier variables in the model in
order to avoid the danger of over-fitting.

5. Check the adequacy of M1 by examining the parameter estimates, residual analysis, and outlier
detection. Refine it more if necessary.

OUT= Data Set
The output data set produced by the OUT= option of the PROC ARIMA or FORECAST statements contains
the following:

� the BY variables

� the ID variable

� the variable specified by the VAR= option in the IDENTIFY statement, which contains the actual
values of the response series

� FORECAST, a numeric variable that contains the one-step-ahead predicted values and the multistep
forecasts

� STD, a numeric variable that contains the standard errors of the forecasts

� a numeric variable that contains the lower confidence limits of the forecast. This variable is named L95
by default but has a different name if the ALPHA= option specifies a different size for the confidence
limits.

� RESIDUAL, a numeric variable that contains the differences between actual and forecast values

� a numeric variable that contains the upper confidence limits of the forecast. This variable is named U95
by default but has a different name if the ALPHA= option specifies a different size for the confidence
limits.

The ID variable, the BY variables, and the response variable are the only ones copied from the input to the
output data set. In particular, the input variables are not copied to the OUT= data set.

Unless the NOOUTALL option is specified, the data set contains the whole time series. The FORECAST
variable has the one-step forecasts (predicted values) for the input periods, followed by n forecast values,
where n is the LEAD= value. The actual and RESIDUAL values are missing beyond the end of the series.
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If you specify the same OUT= data set in different FORECAST statements, the latter FORECAST statements
overwrite the output from the previous FORECAST statements. If you want to combine the forecasts from
different FORECAST statements in the same output data set, specify the OUT= option once in the PROC
ARIMA statement and omit the OUT= option in the FORECAST statements.

When a global output data set is created by the OUT= option in the PROC ARIMA statement, the variables in
the OUT= data set are defined by the first FORECAST statement that is executed. The results of subsequent
FORECAST statements are vertically concatenated onto the OUT= data set. Thus, if no ID variable is
specified in the first FORECAST statement that is executed, no ID variable appears in the output data set,
even if one is specified in a later FORECAST statement. If an ID variable is specified in the first FORECAST
statement that is executed but not in a later FORECAST statement, the value of the ID variable is the same as
the last value processed for the ID variable for all observations created by the later FORECAST statement.
Furthermore, even if the response variable changes in subsequent FORECAST statements, the response
variable name in the output data set is that of the first response variable analyzed.

OUTCOV= Data Set
The output data set produced by the OUTCOV= option of the IDENTIFY statement contains the following
variables:

� LAG, a numeric variable that contains the lags that correspond to the values of the covariance variables.
The values of LAG range from 0 to N for covariance functions and from –N to N for cross-covariance
functions, where N is the value of the NLAG= option.

� VAR, a character variable that contains the name of the variable specified by the VAR= option.

� CROSSVAR, a character variable that contains the name of the variable specified in the CROSSCORR=
option, which labels the different cross-covariance functions. The CROSSVAR variable is blank for
the autocovariance observations. When there is no CROSSCORR= option, this variable is not created.

� N, a numeric variable that contains the number of observations used to calculate the current value of
the covariance or cross-covariance function.

� COV, a numeric variable that contains the autocovariance or cross-covariance function values. COV
contains the autocovariances of the VAR= variable when the value of the CROSSVAR variable is blank.
Otherwise COV contains the cross covariances between the VAR= variable and the variable named by
the CROSSVAR variable.

� CORR, a numeric variable that contains the autocorrelation or cross-correlation function values. CORR
contains the autocorrelations of the VAR= variable when the value of the CROSSVAR variable is blank.
Otherwise CORR contains the cross-correlations between the VAR= variable and the variable named
by the CROSSVAR variable.

� STDERR, a numeric variable that contains the standard errors of the autocorrelations. The standard
error estimate is based on the hypothesis that the process that generates the time series is a pure
moving-average process of order LAG–1. For the cross-correlations, STDERR contains the value
1=
p
n, which approximates the standard error under the hypothesis that the two series are uncorrelated.
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� INVCORR, a numeric variable that contains the inverse autocorrelation function values of the VAR=
variable. For cross-correlation observations (that is, when the value of the CROSSVAR variable is not
blank), INVCORR contains missing values.

� PARTCORR, a numeric variable that contains the partial autocorrelation function values of the VAR=
variable. For cross-correlation observations (that is, when the value of the CROSSVAR variable is not
blank), PARTCORR contains missing values.

OUTEST= Data Set
PROC ARIMA writes the parameter estimates for a model to an output data set when the OUTEST= option
is specified in the ESTIMATE statement. The OUTEST= data set contains the following:

� the BY variables

� _MODLABEL_, a character variable that contains the model label, if it is provided by using the label
option in the ESTIMATE statement (otherwise this variable is not created).

� _NAME_, a character variable that contains the name of the parameter for the covariance or correlation
observations or is blank for the observations that contain the parameter estimates. (This variable is not
created if neither OUTCOV nor OUTCORR is specified.)

� _TYPE_, a character variable that identifies the type of observation. A description of the _TYPE_
variable values is given below.

� variables for model parameters

The variables for the model parameters are named as follows:

ERRORVAR This numeric variable contains the variance estimate. The _TYPE_=EST observation for
this variable contains the estimated error variance, and the remaining observations are
missing.

MU This numeric variable contains values for the mean parameter for the model. (This variable
is not created if NOCONSTANT is specified.)

MAj _k These numeric variables contain values for the moving-average parameters. The variables
for moving-average parameters are named MAj _k, where j is the factor-number and k is
the index of the parameter within a factor.

ARj _k These numeric variables contain values for the autoregressive parameters. The variables
for autoregressive parameters are named ARj _k, where j is the factor number and k is the
index of the parameter within a factor.

Ij _k These variables contain values for the transfer function parameters. Variables for transfer
function parameters are named Ij _k, where j is the number of the INPUT variable
associated with the transfer function component and k is the number of the parameter for
the particular INPUT variable. INPUT variables are numbered according to the order in
which they appear in the INPUT= list.
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_STATUS_ This variable describes the convergence status of the model. A value of 0_CONVERGED
indicates that the model converged.

The value of the _TYPE_ variable for each observation indicates the kind of value contained in the variables
for model parameters for the observation. The OUTEST= data set contains observations with the following
_TYPE_ values:

EST The observation contains parameter estimates.

STD The observation contains approximate standard errors of the estimates.

CORR The observation contains correlations of the estimates. OUTCORR must be specified to
get these observations.

COV The observation contains covariances of the estimates. OUTCOV must be specified to get
these observations.

FACTOR The observation contains values that identify for each parameter the factor that contains it.
Negative values indicate denominator factors in transfer function models.

LAG The observation contains values that identify the lag associated with each parameter.

SHIFT The observation contains values that identify the shift associated with the input series for
the parameter.

The values given for _TYPE_=FACTOR, _TYPE_=LAG, or _TYPE_=SHIFT observations enable you to
reconstruct the model employed when provided with only the OUTEST= data set.

OUTEST= Examples

This section clarifies how model parameters are stored in the OUTEST= data set with two examples.

Consider the following example:

proc arima data=input;
identify var=y cross=(x1 x2);
estimate p=(1)(6) q=(1,3)(12) input=(x1 x2) outest=est;

run;

proc print data=est;
run;

The model specified by these statements is

Yt D �C !1;0X1;t C !2;0X2;t C
.1 � �11B � �12B

3/.1 � �21B
12/

.1 � �11B/.1 � �21B6/
at

The OUTEST= data set contains the values shown in Table 8.10.
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Table 8.10 OUTEST= Data Set for First Example

Obs _TYPE_ Y MU MA1_1 MA1_2 MA2_1 AR1_1 AR2_1 I1_1 I2_1

1 EST �2 � �11 �12 �21 �11 �21 !1;0 !2;0
2 STD . se � se �11 se �12 se �21 se �11 se �21 se !1;0 se !2;0
3 FACTOR . 0 1 1 2 1 2 1 1
4 LAG . 0 1 3 12 1 6 0 0
5 SHIFT . 0 0 0 0 0 0 0 0

Note that the symbols in the rows for _TYPE_=EST and _TYPE_=STD in Table 8.10 would be numeric
values in a real data set.

Next, consider the following example:

proc arima data=input;
identify var=y cross=(x1 x2);
estimate p=1 q=1 input=(2 $ (1)/(1,2)x1 1 $ /(1)x2) outest=est;

run;

proc print data=est;
run;

The model specified by these statements is

Yt D �C
!10 � !11B

1 � ı11B � ı12B2
X1;t�2 C

!20

1 � ı21B
X2;t�1 C

.1 � �1B/

.1 � �1B/
at

The OUTEST= data set contains the values shown in Table 8.11.

Table 8.11 OUTEST= Data Set for Second Example

Obs _TYPE_ Y MU MA1_1 AR1_1 I1_1 I1_2 I1_3 I1_4 I2_1 I2_2

1 EST �2 � �1 �1 !10 !11 ı11 ı12 !20 ı21
2 STD . se � se �1 se �1 se !10 se !11 se ı11 se ı12 se !20 se ı21
3 FACTOR . 0 1 1 1 1 –1 –1 1 –1
4 LAG . 0 1 1 0 1 1 2 0 1
5 SHIFT . 0 0 0 2 2 2 2 1 1
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OUTMODEL= SAS Data Set
The OUTMODEL= option in the ESTIMATE statement writes an output data set that enables you to
reconstruct the model. The OUTMODEL= data set contains much the same information as the OUTEST=
data set but in a transposed form that might be more useful for some purposes. In addition, the OUTMODEL=
data set includes the differencing operators.

The OUTMODEL data set contains the following:

� the BY variables

� _MODLABEL_, a character variable that contains the model label, if it is provided by using the label
option in the ESTIMATE statement (otherwise this variable is not created).

� _NAME_, a character variable that contains the name of the response or input variable for the
observation.

� _TYPE_, a character variable that contains the estimation method that was employed. The value of
_TYPE_ can be CLS, ULS, or ML.

� _STATUS_, a character variable that describes the convergence status of the model. A value of
0_CONVERGED indicates that the model converged.

� _PARM_, a character variable that contains the name of the parameter given by the observation.
_PARM_ takes on the values ERRORVAR, MU, AR, MA, NUM, DEN, and DIF.

� _VALUE_, a numeric variable that contains the value of the estimate defined by the _PARM_ variable.

� _STD_, a numeric variable that contains the standard error of the estimate.

� _FACTOR_, a numeric variable that indicates the number of the factor to which the parameter belongs.

� _LAG_, a numeric variable that contains the number of the term within the factor that contains the
parameter.

� _SHIFT_, a numeric variable that contains the shift value for the input variable associated with the
current parameter.

The values of _FACTOR_ and _LAG_ identify which particular MA, AR, NUM, or DEN parameter estimate
is given by the _VALUE_ variable. The _NAME_ variable contains the response variable name for the MU,
AR, or MA parameters. Otherwise, _NAME_ contains the input variable name associated with NUM or
DEN parameter estimates. The _NAME_ variable contains the appropriate variable name associated with
the current DIF observation as well. The _VALUE_ variable is 1 for all DIF observations, and the _LAG_
variable indicates the degree of differencing employed.

The observations contained in the OUTMODEL= data set are identified by the _PARM_ variable. A
description of the values of the _PARM_ variable follows:

NUMRESID _VALUE_ contains the number of residuals.

NPARMS _VALUE_ contains the number of parameters in the model.
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NDIFS _VALUE_ contains the sum of the differencing lags employed for the response variable.

ERRORVAR _VALUE_ contains the estimate of the innovation variance.

MU _VALUE_ contains the estimate of the mean term.

AR _VALUE_ contains the estimate of the autoregressive parameter indexed by the _FAC-
TOR_ and _LAG_ variable values.

MA _VALUE_ contains the estimate of a moving-average parameter indexed by the _FAC-
TOR_ and _LAG_ variable values.

NUM _VALUE_ contains the estimate of the parameter in the numerator factor of the transfer
function of the input variable indexed by the _FACTOR_, _LAG_, and _SHIFT_ variable
values.

DEN _VALUE_ contains the estimate of the parameter in the denominator factor of the transfer
function of the input variable indexed by the _FACTOR_, _LAG_, and _SHIFT_ variable
values.

DIF _VALUE_ contains the difference operator defined by the difference lag given by the
value in the _LAG_ variable.

OUTSTAT= Data Set
PROC ARIMA writes the diagnostic statistics for a model to an output data set when the OUTSTAT= option
is specified in the ESTIMATE statement. The OUTSTAT data set contains the following:

� the BY variables.

� _MODLABEL_, a character variable that contains the model label, if it is provided by using the label
option in the ESTIMATE statement (otherwise this variable is not created).

� _TYPE_, a character variable that contains the estimation method used. _TYPE_ can have the value
CLS, ULS, or ML.

� _STAT_, a character variable that contains the name of the statistic given by the _VALUE_ variable
in this observation. _STAT_ takes on the values AIC, SBC, LOGLIK, SSE, NUMRESID, NPARMS,
NDIFS, ERRORVAR, MU, CONV, and NITER.

� _VALUE_, a numeric variable that contains the value of the statistic named by the _STAT_ variable.

The observations contained in the OUTSTAT= data set are identified by the _STAT_ variable. A description
of the values of the _STAT_ variable follows:

AIC Akaike’s information criterion

SBC Schwarz’s Bayesian criterion

LOGLIK the log likelihood, if METHOD=ML or METHOD=ULS is specified

SSE the sum of the squared residuals

NUMRESID the number of residuals
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NPARMS the number of parameters in the model

NDIFS the sum of the differencing lags employed for the response variable

ERRORVAR the estimate of the innovation variance

MU the estimate of the mean term

CONV tells if the estimation converged. The value of 0 signifies that estimation converged.
Nonzero values reflect convergence problems.

NITER the number of iterations

Remark. CONV takes an integer value that corresponds to the error condition of the parameter estimation
process. The value of 0 signifies that estimation process has converged. The higher values signify convergence
problems of increasing severity. Specifically:

� CONV= 0 indicates that the estimation process has converged.

� CONV= 1 or 2 indicates that the estimation process has run into numerical problems (such as encoun-
tering an unstable model or a ridge) during the iterations.

� CONV= 3 or greater indicates that the estimation process has failed to converge.

Printed Output
The ARIMA procedure produces printed output for each of the IDENTIFY, ESTIMATE, and FORECAST
statements. The output produced by each ARIMA statement is described in the following sections.

IDENTIFY Statement Printed Output

The printed output of the IDENTIFY statement consists of the following:

� a table of summary statistics, including the name of the response variable, any specified periods of
differencing, the mean and standard deviation of the response series after differencing, and the number
of observations after differencing

� a plot of the sample autocorrelation function for lags up to and including the NLAG= option value.
Standard errors of the autocorrelations also appear to the right of the autocorrelation plot if the
value of LINESIZE= option is sufficiently large. The standard errors are derived using Bartlett’s
approximation (Box and Jenkins 1976, p. 177). The approximation for a standard error for the
estimated autocorrelation function at lag k is based on a null hypothesis that a pure moving-average
Gaussian process of order k � 1 generated the time series. The relative position of an approximate 95%
confidence interval under this null hypothesis is indicated by the dots in the plot, while the asterisks
represent the relative magnitude of the autocorrelation value.

� a plot of the sample inverse autocorrelation function. For more information about the inverse autocor-
relation function, see the section “The Inverse Autocorrelation Function” on page 236.

� a plot of the sample partial autocorrelation function
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� a table of test statistics for the hypothesis that the series is white noise. These test statistics are the
same as the tests for white noise residuals produced by the ESTIMATE statement and are described in
the section “Estimation Details” on page 246.

� a plot of the sample cross-correlation function for each series specified in the CROSSCORR= option.
If a model was previously estimated for a variable in the CROSSCORR= list, the cross-correlations for
that series are computed for the prewhitened input and response series. For each input variable with a
prewhitening filter, the cross-correlation report for the input series includes the following:

– a table of test statistics for the hypothesis of no cross-correlation between the input and response
series

– the prewhitening filter used for the prewhitening transformation of the predictor and response
variables

� ESACF tables if the ESACF option is used

� MINIC table if the MINIC option is used

� SCAN table if the SCAN option is used

� STATIONARITY test results if the STATIONARITY option is used

ESTIMATE Statement Printed Output

The printed output of the ESTIMATE statement consists of the following:

� if the PRINTALL option is specified, the preliminary parameter estimates and an iteration history that
shows the sequence of parameter estimates tried during the fitting process

� a table of parameter estimates that show the following for each parameter: the parameter name, the
parameter estimate, the approximate standard error, t value, approximate probability (P r > jt j), the
lag for the parameter, the input variable name for the parameter, and the lag or “Shift” for the input
variable

� the estimates of the constant term, the innovation variance (variance estimate), the innovation standard
deviation (Std Error Estimate), Akaike’s information criterion (AIC), Schwarz’s Bayesian criterion
(SBC), and the number of residuals

� the correlation matrix of the parameter estimates

� a table of test statistics for hypothesis that the residuals of the model are white noise. The table is titled
“Autocorrelation Check of Residuals.”

� if the PLOT option is specified, autocorrelation, inverse autocorrelation, and partial autocorrelation
function plots of the residuals

� if an INPUT variable has been modeled in such a way that prewhitening is performed in the IDENTIFY
step, a table of test statistics titled “Cross-correlation Check of Residuals.” The test statistic is based on
the chi-square approximation suggested by Box and Jenkins (1976, pp. 395–396). The cross-correlation
function is computed by using the residuals from the model as one series and the prewhitened input
variable as the other series.
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� if the GRID option is specified, the sum-of-squares or likelihood surface over a grid of parameter
values near the final estimates

� a summary of the estimated model that shows the autoregressive factors, moving-average factors, and
transfer function factors in backshift notation with the estimated parameter values.

OUTLIER Statement Printed Output

The printed output of the OUTLIER statement consists of the following:

� a summary that contains the information about the maximum number of outliers searched, the number
of outliers actually detected, and the significance level used in the outlier detection.

� a table that contains the results of the outlier detection process. The outliers are listed in the order in
which they are found. This table contains the following columns:

– The Obs column contains the observation number of the start of the level shift.

– If an ID= option is specified, then the Time ID column contains the time identification labels of
the start of the outlier.

– The Type column lists the type of the outlier.

– The Estimate column contains Ǒ, the estimate of the regression coefficient of the shock signature.

– The Chi-Square column lists the value of the test statistic �2.

– The Approx Prob > ChiSq column lists the approximate p-value of the test statistic.

FORECAST Statement Printed Output

The printed output of the FORECAST statement consists of the following:

� a summary of the estimated model

� a table of forecasts with following columns:

– The Obs column contains the observation number.

– The Forecast column contains the forecast values.

– The Std Error column contains the forecast standard errors.

– The Lower and Uppers columns contain the approximate 95% confidence limits. The ALPHA=
option can be used to change the confidence interval for forecasts.

– If the PRINTALL option is specified, the forecast table also includes columns for the actual
values of the response series (Actual) and the residual values (Residual).
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ODS Table Names
PROC ARIMA assigns a name to each table it creates. You can use these names to reference the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 8.12.

Table 8.12 ODS Tables Produced by PROC ARIMA

ODS Table Name Description Statement Option

ChiSqAuto Chi-square statistics table for
autocorrelation

IDENTIFY

ChiSqCross Chi-square statistics table for
cross-correlations

IDENTIFY CROSSCORR

AutoCorrGraph Correlations graph IDENTIFY
CrossCorrGraph Cross-correlations graph IDENTIFY
DescStats Descriptive statistics IDENTIFY
ESACF Extended sample

autocorrelation function
IDENTIFY ESACF

ESACFPValues ESACF probability values IDENTIFY ESACF
IACFGraph Inverse autocorrelations

graph
IDENTIFY

InputDescStats Input descriptive statistics IDENTIFY
MINIC Minimum information

criterion
IDENTIFY MINIC

PACFGraph Partial autocorrelations graph IDENTIFY
SCAN Squared canonical

correlation estimates
IDENTIFY SCAN

SCANPValues SCAN chi-square probability
values

IDENTIFY SCAN

StationarityTests Stationarity tests IDENTIFY STATIONARITY
TentativeOrders Tentative order selection IDENTIFY MINIC, ESACF, or SCAN
ARPolynomial Filter equations ESTIMATE
ChiSqAuto Chi-square statistics table for

autocorrelation
ESTIMATE

ChiSqCross Chi-square statistics table for
cross-correlations

ESTIMATE

CorrB Correlations of the estimates ESTIMATE
DenPolynomial Filter equations ESTIMATE
FitStatistics Fit statistics ESTIMATE
IterHistory Iteration history ESTIMATE PRINTALL
InitialAREstimates Initial autoregressive

parameter estimates
ESTIMATE

InitialMAEstimates Initial moving-average
parameter estimates

ESTIMATE

InputDescription Input description ESTIMATE
MAPolynomial Filter equations ESTIMATE
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Table 8.12 continued

ODS Table Name Description Statement Option

ModelDescription Model description ESTIMATE
NumPolynomial Filter equations ESTIMATE
ParameterEstimates Parameter estimates ESTIMATE
PrelimEstimates Preliminary estimates ESTIMATE
ObjectiveGrid Objective function grid

matrix
ESTIMATE GRID

OptSummary ARIMA estimation
optimization

ESTIMATE PRINTALL

OutlierDetails Detected outliers OUTLIER
Forecasts Forecast FORECAST

Statistical Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section provides information about the graphics produced by the ARIMA procedure. (For more
information about ODS statistical graphics, see Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT
User’s Guide).) The main types of plots available are as follows:

� plots useful in the trend and correlation analysis of the dependent and input series

� plots useful for the residual analysis of an estimated model

� forecast plots

You can obtain most plots relevant to the specified model by default. For finer control of the graphics, you
can use the PLOTS= option in the PROC ARIMA statement. The following example is a simple illustration
of how to use the PLOTS= option.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Airline Series: Illustration of ODS Graphics

The series in this example, the monthly airline passenger series, is also discussed later, in Example 8.2.

The following statements specify an ARIMA(0,1,1)�(0,1,1)12 model without a mean term to the logarithms
of the airline passengers series, xlog. Notice the use of the global plot option ONLY in the PLOTS= option
of the PROC ARIMA statement. It suppresses the production of default graphics and produces only the
plots specified by the subsequent RESIDUAL and FORECAST plot options. The RESIDUAL(SMOOTH)

plot specification produces a time series plot of residuals that has an overlaid loess fit; see Figure 8.21.
The FORECAST(FORECAST) option produces a plot that shows the one-step-ahead forecasts, as well as the
multistep-ahead forecasts; see Figure 8.22.

proc arima data=seriesg
plots(only)=(residual(smooth) forecast(forecasts));
identify var=xlog(1,12);
estimate q=(1)(12) noint method=ml;
forecast id=date interval=month;

run;

Figure 8.21 Residual Plot of the Airline Model
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Figure 8.22 Forecast Plot of the Airline Model

ODS Graph Names

PROC ARIMA assigns a name to each graph it creates by using ODS. You can use these names to reference
the graphs when you use ODS. The names are listed in Table 8.13.

Table 8.13 ODS Graphics Produced by PROC ARIMA

ODS Graph Name Plot Description Option

SeriesPlot Time series plot of the dependent series PLOTS(UNPACK)

SeriesACFPlot Autocorrelation plot of the dependent
series

PLOTS(UNPACK)

SeriesPACFPlot Partial-autocorrelation plot of the
dependent series

PLOTS(UNPACK)

SeriesIACFPlot Inverse-autocorrelation plot of the
dependent series

PLOTS(UNPACK)

SeriesCorrPanel Series trend and correlation analysis panel Default
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Table 8.13 continued

ODS Graph Name Plot Description Option

CrossCorrPanel Cross-correlation plots, either individual
or paneled. They are numbered 1, 2, and
so on as needed.

Default

ResidualACFPlot Residual-autocorrelation plot PLOTS(UNPACK)

ResidualPACFPlot Residual-partial-autocorrelation plot PLOTS(UNPACK)

ResidualIACFPlot Residual-inverse-autocorrelation plot PLOTS(UNPACK)

ResidualWNPlot Residual-white-noise-probability plot PLOTS(UNPACK)

ResidualHistogram Residual histogram PLOTS(UNPACK)

ResidualQQPlot Residual normal Q-Q plot PLOTS(UNPACK)

ResidualPlot Time series plot of residuals with a
superimposed smoother

PLOTS=RESIDUAL(SMOOTH)

ForecastsOnlyPlot Time series plot of multistep forecasts Default

ForecastsPlot Time series plot of one-step-ahead as well
as multistep forecasts

PLOTS=FORECAST(FORECAST)

Examples: ARIMA Procedure

Example 8.1: Simulated IMA Model
This example illustrates the ARIMA procedure results for a case where the true model is known. An integrated
moving-average model is used for this illustration.

The following DATA step generates a pseudo-random sample of 100 periods from the ARIMA(0,1,1) process
ut D ut�1 C at � 0:8at�1, at iid N.0; 1/:

title1 'Simulated IMA(1,1) Series';
data a;

u1 = 0.9; a1 = 0;
do i = -50 to 100;

a = rannor( 32565 );
u = u1 + a - .8 * a1;
if i > 0 then output;
a1 = a;
u1 = u;

end;
run;

The following ARIMA procedure statements identify and estimate the model:
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/*-- Simulated IMA Model --*/
proc arima data=a;

identify var=u;
run;
identify var=u(1);
run;
estimate q=1 ;
run;

quit;

The graphical series correlation analysis output of the first IDENTIFY statement is shown in Output 8.1.1.
The output shows the behavior of the sample autocorrelation function when the process is nonstationary.
Note that in this case the estimated autocorrelations are not very high, even at small lags. Nonstationarity is
reflected in a pattern of significant autocorrelations that do not decline quickly with increasing lag, not in the
size of the autocorrelations.

Output 8.1.1 Correlation Analysis from the First IDENTIFY Statement

The second IDENTIFY statement differences the series. The results of the second IDENTIFY statement are
shown in Output 8.1.2. This output shows autocorrelation, inverse autocorrelation, and partial autocorrelation
functions typical of MA(1) processes.
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Output 8.1.2 Correlation Analysis from the Second IDENTIFY Statement

The ESTIMATE statement fits an ARIMA(0,1,1) model to the simulated data. Note that in this
case the parameter estimates are reasonably close to the values used to generate the simulated data.
(� D 0; O� D 0:02I �1 D 0:8; O�1 D 0:79I �2 D 1; O�2 D 0:82:) Moreover, the graphical analysis of the
residuals shows no model inadequacies (see Output 8.1.4 and Output 8.1.5).

The ESTIMATE statement results are shown in Output 8.1.3.

Output 8.1.3 Output from Fitting ARIMA(0,1,1) Model

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag

MU 0.02056 0.01972 1.04 0.2997 0

MA1,1 0.79142 0.06474 12.22 <.0001 1
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Output 8.1.3 continued

Constant Estimate 0.020558

Variance Estimate 0.819807

Std Error Estimate 0.905432

AIC 263.2594

SBC 268.4497

Number of Residuals 99

Model for variable u

Estimated Mean 0.020558

Period(s) of Differencing 1

Moving Average Factors

Factor 1: 1 - 0.79142 B**(1)

Output 8.1.4 Residual Correlation Analysis of the ARIMA(0,1,1) Model
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Output 8.1.5 Residual Normality Analysis of the ARIMA(0,1,1) Model

Example 8.2: Seasonal Model for the Airline Series
The airline passenger data, given as Series G in Box and Jenkins (1976), have been used in time series
analysis literature as an example of a nonstationary seasonal time series. This example uses PROC ARIMA
to fit the airline model, ARIMA(0,1,1)�(0,1,1)12, to Box and Jenkins’ Series G. The following statements
read the data and log-transform the series:

title1 'International Airline Passengers';
title2 '(Box and Jenkins Series-G)';
data seriesg;

input x @@;
xlog = log( x );
date = intnx( 'month', '31dec1948'd, _n_ );
format date monyy.;

datalines;
112 118 132 129 121 135 148 148 136 119 104 118

... more lines ...

The following PROC TIMESERIES step plots the series, as shown in Output 8.2.1:

proc timeseries data=seriesg plot=series;
id date interval=month;
var x;

run;
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Output 8.2.1 Time Series Plot of the Airline Passenger Series

The following statements specify an ARIMA(0,1,1)�(0,1,1)12 model without a mean term to the logarithms
of the airline passengers series, xlog. The model is forecast, and the results are stored in the data set B.

/*-- Seasonal Model for the Airline Series --*/
proc arima data=seriesg;

identify var=xlog(1,12);
estimate q=(1)(12) noint method=ml;
forecast id=date interval=month printall out=b;

run;

The output from the IDENTIFY statement is shown in Output 8.2.2. The autocorrelation plots shown are
for the twice differenced series .1 � B/.1 � B12/XLOG. Note that the autocorrelation functions have the
pattern characteristic of a first-order moving-average process combined with a seasonal moving-average
process with lag 12.
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Output 8.2.2 IDENTIFY Statement Output

International Airline Passengers
(Box and Jenkins Series-G)

The ARIMA Procedure

Name of Variable = xlog

Period(s) of Differencing 1,12

Mean of Working Series 0.000291

Standard Deviation 0.045673

Number of Observations 131

Observation(s) eliminated by differencing 13

Output 8.2.3 Trend and Correlation Analysis for the Twice Differenced Series

The results of the ESTIMATE statement are shown in Output 8.2.4, Output 8.2.5, and Output 8.2.6. The
model appears to fit the data quite well.
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Output 8.2.4 ESTIMATE Statement Output

Maximum Likelihood Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag

MA1,1 0.40194 0.07988 5.03 <.0001 1

MA2,1 0.55686 0.08403 6.63 <.0001 12

Variance Estimate 0.001369

Std Error Estimate 0.037

AIC -485.393

SBC -479.643

Number of Residuals 131

Model for variable xlog

Period(s) of Differencing 1,12

Moving Average Factors

Factor 1: 1 - 0.40194 B**(1)

Factor 2: 1 - 0.55686 B**(12)
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Output 8.2.5 Residual Analysis of the Airline Model: Correlation
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Output 8.2.6 Residual Analysis of the Airline Model: Normality

The forecasts and their confidence limits for the transformed series are shown in Output 8.2.7.
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Output 8.2.7 Forecast Plot for the Transformed Series

The following statements retransform the forecast values to get forecasts in the original scales. For more
information, see the section “Forecasting Log Transformed Data” on page 256.

data c;
set b;
x = exp( xlog );
forecast = exp( forecast + std*std/2 );
l95 = exp( l95 );
u95 = exp( u95 );

run;

The forecasts and their confidence limits are plotted by using the following PROC SGPLOT step. The plot is
shown in Output 8.2.8.

proc sgplot data=c;
where date >= '1jan58'd;
band Upper=u95 Lower=l95 x=date

/ LegendLabel="95% Confidence Limits";
scatter x=date y=x;
series x=date y=forecast;

run;
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Output 8.2.8 Plot of the Forecast for the Original Series

Example 8.3: Model for Series J Data from Box and Jenkins
This example uses the Series J data from Box and Jenkins (1976). First, the input series X is modeled with
a univariate ARMA model. Next, the dependent series Y is cross-correlated with the input series. Since a
model has been fit to X, both Y and X are prewhitened by this model before the sample cross-correlations are
computed. Next, a transfer function model is fit with no structure on the noise term. The residuals from this
model are analyzed; then, the full model, transfer function and noise, is fit to the data.

The following statements read 'Input Gas Rate' and 'Output CO'2 from a gas furnace. (Data values
are not shown. The full example including data is in the SAS/ETS sample library.)

title1 'Gas Furnace Data';
title2 '(Box and Jenkins, Series J)';
data seriesj;

input x y @@;
label x = 'Input Gas Rate'

y = 'Output CO2';
datalines;
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-0.109 53.8 0.000 53.6 0.178 53.5 0.339 53.5

... more lines ...

The following statements produce Output 8.3.1 through Output 8.3.11:

proc arima data=seriesj;

/*--- Look at the input process ----------------------------*/
identify var=x;
run;

/*--- Fit a model for the input ----------------------------*/
estimate p=3 plot;
run;

/*--- Cross-correlation of prewhitened series ---------------*/
identify var=y crosscorr=(x) nlag=12;
run;

/*--- Fit a simple transfer function - look at residuals ---*/
estimate input=( 3 $ (1,2)/(1) x );
run;

/*--- Final Model - look at residuals ----------------------*/
estimate p=2 input=( 3 $ (1,2)/(1) x );
run;

quit;

The results of the first IDENTIFY statement for the input series X are shown in Output 8.3.1. The correlation
analysis suggests an AR(3) model.

Output 8.3.1 IDENTIFY Statement Results for X

Gas Furnace Data
(Box and Jenkins, Series J)

The ARIMA Procedure

Name of Variable = x

Mean of Working Series -0.05683

Standard Deviation 1.070952

Number of Observations 296
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Output 8.3.2 IDENTIFY Statement Results for X: Trend and Correlation

The ESTIMATE statement results for the AR(3) model for the input series X are shown in Output 8.3.3.

Output 8.3.3 Estimates of the AR(3) Model for X

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag

MU -0.12280 0.10902 -1.13 0.2609 0

AR1,1 1.97607 0.05499 35.94 <.0001 1

AR1,2 -1.37499 0.09967 -13.80 <.0001 2

AR1,3 0.34336 0.05502 6.24 <.0001 3

Constant Estimate -0.00682

Variance Estimate 0.035797

Std Error Estimate 0.1892

AIC -141.667

SBC -126.906

Number of Residuals 296



Example 8.3: Model for Series J Data from Box and Jenkins F 287

Output 8.3.3 continued

Model for variable x

Estimated Mean -0.1228

Autoregressive Factors

Factor 1: 1 - 1.97607 B**(1) + 1.37499 B**(2) - 0.34336 B**(3)

The IDENTIFY statement results for the dependent series Y cross-correlated with the input series X are
shown in Output 8.3.4, Output 8.3.5, Output 8.3.6, and Output 8.3.7. Since a model has been fit to X, both Y
and X are prewhitened by this model before the sample cross-correlations are computed.

Output 8.3.4 Summary Table: Y Cross-Correlated with X

Correlation of y and x

Number of Observations 296

Variance of transformed series y 0.131438

Variance of transformed series x 0.035357

Both series have been prewhitened.

Output 8.3.5 Prewhitening Filter

Autoregressive Factors

Factor 1: 1 - 1.97607 B**(1) + 1.37499 B**(2) - 0.34336 B**(3)
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Output 8.3.6 IDENTIFY Statement Results for Y: Trend and Correlation
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Output 8.3.7 IDENTIFY Statement for Y Cross-Correlated with X

The ESTIMATE statement results for the transfer function model with no structure on the noise term are
shown in Output 8.3.8, Output 8.3.9, and Output 8.3.10.

Output 8.3.8 Estimation Output of the First Transfer Function Model

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag Variable Shift

MU 53.32256 0.04926 1082.51 <.0001 0 y 0

NUM1 -0.56467 0.22405 -2.52 0.0123 0 x 3

NUM1,1 0.42623 0.46472 0.92 0.3598 1 x 3

NUM1,2 0.29914 0.35506 0.84 0.4002 2 x 3

DEN1,1 0.60073 0.04101 14.65 <.0001 1 x 3

Constant Estimate 53.32256

Variance Estimate 0.702625

Std Error Estimate 0.838227

AIC 728.0754

SBC 746.442

Number of Residuals 291
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Output 8.3.9 Model Summary: First Transfer Function Model

Model for variable y

Estimated Intercept 53.32256

Input Number 1

Input Variable x

Shift 3

Numerator Factors

Factor 1: -0.5647 - 0.42623 B**(1) - 0.29914 B**(2)

Denominator Factors

Factor 1: 1 - 0.60073 B**(1)

Output 8.3.10 Residual Analysis: First Transfer Function Model

The residual correlation analysis suggests an AR(2) model for the noise part of the model. The ESTIMATE
statement results for the final transfer function model with AR(2) noise are shown in Output 8.3.11.
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Output 8.3.11 Estimation Output of the Final Model

Conditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag Variable Shift

MU 53.26304 0.11929 446.48 <.0001 0 y 0

AR1,1 1.53291 0.04754 32.25 <.0001 1 y 0

AR1,2 -0.63297 0.05006 -12.64 <.0001 2 y 0

NUM1 -0.53522 0.07482 -7.15 <.0001 0 x 3

NUM1,1 0.37603 0.10287 3.66 0.0003 1 x 3

NUM1,2 0.51895 0.10783 4.81 <.0001 2 x 3

DEN1,1 0.54841 0.03822 14.35 <.0001 1 x 3

Constant Estimate 5.329425

Variance Estimate 0.058828

Std Error Estimate 0.242544

AIC 8.292809

SBC 34.00607

Number of Residuals 291

Output 8.3.12 Residual Analysis of the Final Model
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Output 8.3.13 Model Summary of the Final Model

Model for variable y

Estimated Intercept 53.26304

Autoregressive Factors

Factor 1: 1 - 1.53291 B**(1) + 0.63297 B**(2)

Input Number 1

Input Variable x

Shift 3

Numerator Factors

Factor 1: -0.5352 - 0.37603 B**(1) - 0.51895 B**(2)

Denominator Factors

Factor 1: 1 - 0.54841 B**(1)

Example 8.4: An Intervention Model for Ozone Data
This example fits an intervention model to ozone data as suggested by Box and Tiao (1975). Notice that
the response variable, OZONE, and the innovation, X1, are seasonally differenced. The final model for the
differenced data is a multiple regression model with a moving-average structure assumed for the residuals.

The model is fit by maximum likelihood. The seasonal moving-average parameter and its standard error
are fairly sensitive to which method is chosen to fit the model (Ansley and Newbold 1980; Davidson 1981);
thus, fitting the model by the unconditional or conditional least squares method produces somewhat different
estimates for these parameters.

Some missing values are appended to the end of the input data to generate additional values for the independent
variables. Since the independent variables are not modeled, values for them must be available for any times
at which predicted values are desired. In this case, predicted values are requested for 12 periods beyond the
end of the data. Thus, values for X1, WINTER, and SUMMER must be given for 12 periods ahead.

The following statements read in the data and compute dummy variables for use as intervention inputs:

title1 'Intervention Data for Ozone Concentration';
title2 '(Box and Tiao, JASA 1975 P.70)';
data air;

input ozone @@;
label ozone = 'Ozone Concentration'

x1 = 'Intervention for post 1960 period'
summer = 'Summer Months Intervention'
winter = 'Winter Months Intervention';

date = intnx( 'month', '31dec1954'd, _n_ );
format date monyy.;
month = month( date );
year = year( date );
x1 = year >= 1960;
summer = ( 5 < month < 11 ) * ( year > 1965 );
winter = ( year > 1965 ) - summer;
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datalines;
2.7 2.0 3.6 5.0 6.5 6.1 5.9 5.0 6.4 7.4 8.2 3.9
4.1 4.5 5.5 3.8 4.8 5.6 6.3 5.9 8.7 5.3 5.7 5.7
3.0 3.4 4.9 4.5 4.0 5.7 6.3 7.1 8.0 5.2 5.0 4.7
3.7 3.1 2.5 4.0 4.1 4.6 4.4 4.2 5.1 4.6 4.4 4.0

... more lines ...

The following statements produce Output 8.4.1 through Output 8.4.3:

proc arima data=air;

/* Identify and seasonally difference ozone series */
identify var=ozone(12)

crosscorr=( x1(12) summer winter ) noprint;

/* Fit a multiple regression with a seasonal MA model */
/* by the maximum likelihood method */
estimate q=(1)(12) input=( x1 summer winter )

noconstant method=ml;

/* Forecast */
forecast lead=12 id=date interval=month;

run;

The ESTIMATE statement results are shown in Output 8.4.1 and Output 8.4.2.

Output 8.4.1 Parameter Estimates

Intervention Data for Ozone Concentration
(Box and Tiao, JASA 1975 P.70)

The ARIMA Procedure

Maximum Likelihood Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag Variable Shift

MA1,1 -0.26684 0.06710 -3.98 <.0001 1 ozone 0

MA2,1 0.76665 0.05973 12.83 <.0001 12 ozone 0

NUM1 -1.33062 0.19236 -6.92 <.0001 0 x1 0

NUM2 -0.23936 0.05952 -4.02 <.0001 0 summer 0

NUM3 -0.08021 0.04978 -1.61 0.1071 0 winter 0

Variance Estimate 0.634506

Std Error Estimate 0.796559

AIC 501.7696

SBC 518.3602

Number of Residuals 204
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Output 8.4.2 Model Summary

Model for variable ozone

Period(s) of Differencing 12

Moving Average Factors

Factor 1: 1 + 0.26684 B**(1)

Factor 2: 1 - 0.76665 B**(12)

Input Number 1

Input Variable x1

Period(s) of Differencing 12

Overall Regression Factor -1.33062

The FORECAST statement results are shown in Output 8.4.3.

Output 8.4.3 Forecasts

Forecasts for variable ozone

Obs Forecast Std Error

95%
Confidence

Limits

217 1.4205 0.7966 -0.1407 2.9817

218 1.8446 0.8244 0.2287 3.4604

219 2.4567 0.8244 0.8408 4.0725

220 2.8590 0.8244 1.2431 4.4748

221 3.1501 0.8244 1.5342 4.7659

222 2.7211 0.8244 1.1053 4.3370

223 3.3147 0.8244 1.6989 4.9306

224 3.4787 0.8244 1.8629 5.0946

225 2.9405 0.8244 1.3247 4.5564

226 2.3587 0.8244 0.7429 3.9746

227 1.8588 0.8244 0.2429 3.4746

228 1.2898 0.8244 -0.3260 2.9057

Example 8.5: Using Diagnostics to Identify ARIMA Models
Fitting ARIMA models is as much an art as it is a science. The ARIMA procedure has diagnostic options to
help tentatively identify the orders of both stationary and nonstationary ARIMA processes.

Consider the Series A in Box, Jenkins, and Reinsel (1994), which consists of 197 concentration readings
taken every two hours from a chemical process. Let Series A be a data set that contains these readings in
a variable named X. The following SAS statements use the SCAN option of the IDENTIFY statement to
generate Output 8.5.1 and Output 8.5.2. For more information about the SCAN method, see the section “The
SCAN Method” on page 241.
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/*-- Order Identification Diagnostic with SCAN Method --*/
proc arima data=SeriesA;

identify var=x scan;
run;

Output 8.5.1 Example of SCAN Tables

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

Squared Canonical Correlation Estimates

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 0.3263 0.2479 0.1654 0.1387 0.1183 0.1417

AR 1 0.0643 0.0012 0.0028 <.0001 0.0051 0.0002

AR 2 0.0061 0.0027 0.0021 0.0011 0.0017 0.0079

AR 3 0.0072 <.0001 0.0007 0.0005 0.0019 0.0021

AR 4 0.0049 0.0010 0.0014 0.0014 0.0039 0.0145

AR 5 0.0202 0.0009 0.0016 <.0001 0.0126 0.0001

SCAN Chi-Square[1] Probability Values

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 <.0001 <.0001 <.0001 0.0007 0.0037 0.0024

AR 1 0.0003 0.6649 0.5194 0.9235 0.3993 0.8528

AR 2 0.2754 0.5106 0.5860 0.7346 0.6782 0.2766

AR 3 0.2349 0.9812 0.7667 0.7861 0.6810 0.6546

AR 4 0.3297 0.7154 0.7113 0.6995 0.5807 0.2205

AR 5 0.0477 0.7254 0.6652 0.9576 0.2660 0.9168

In Output 8.5.1, there is one (maximal) rectangular region in which all the elements are insignificant with 95%
confidence. This region has a vertex at (1,1). Output 8.5.2 gives recommendations based on the significance
level specified by the ALPHA=siglevel option.

Output 8.5.2 Example of SCAN Option Tentative Order Selection

ARMA(p+d,q)
Tentative
Order

Selection
Tests

SCAN

p+d q

1 1

(5% Significance Level)

Another order identification diagnostic is the extended sample autocorrelation function or ESACF method.
For more information about the ESACF method, see the section “The ESACF Method” on page 238.

The following statements generate Output 8.5.3 and Output 8.5.4:
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/*-- Order Identification Diagnostic with ESACF Method --*/
proc arima data=SeriesA;

identify var=x esacf;
run;

Output 8.5.3 Example of ESACF Tables

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

Extended Sample Autocorrelation Function

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 0.5702 0.4951 0.3980 0.3557 0.3269 0.3498

AR 1 -0.3907 0.0425 -0.0605 -0.0083 -0.0651 -0.0127

AR 2 -0.2859 -0.2699 -0.0449 0.0089 -0.0509 -0.0140

AR 3 -0.5030 -0.0106 0.0946 -0.0137 -0.0148 -0.0302

AR 4 -0.4785 -0.0176 0.0827 -0.0244 -0.0149 -0.0421

AR 5 -0.3878 -0.4101 -0.1651 0.0103 -0.1741 -0.0231

ESACF Probability Values

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 <.0001 <.0001 0.0001 0.0014 0.0053 0.0041

AR 1 <.0001 0.5974 0.4622 0.9198 0.4292 0.8768

AR 2 <.0001 0.0002 0.6106 0.9182 0.5683 0.8592

AR 3 <.0001 0.9022 0.2400 0.8713 0.8930 0.7372

AR 4 <.0001 0.8380 0.3180 0.7737 0.8913 0.6213

AR 5 <.0001 <.0001 0.0765 0.9142 0.1038 0.8103

In Output 8.5.3, there are three right-triangular regions in which all elements are insignificant at the 5% level.
The triangles have vertices (1,1), (3,1), and (4,1). Since the triangle at (1,1) covers more insignificant terms, it
is recommended first. Similarly, the remaining recommendations are ordered by the number of insignificant
terms contained in the triangle. Output 8.5.4 gives recommendations based on the significance level specified
by the ALPHA=siglevel option.

Output 8.5.4 Example of ESACF Option Tentative Order Selection

ARMA(p+d,q)
Tentative
Order

Selection
Tests

ESACF

p+d q

1 1

3 1

4 1

(5% Significance Level)

If you also specify the SCAN option in the same IDENTIFY statement, the two recommendations are printed
side by side:
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/*-- Combination of SCAN and ESACF Methods --*/
proc arima data=SeriesA;

identify var=x scan esacf;
run;

Output 8.5.5 shows the results.

Output 8.5.5 Example of SCAN and ESACF Option Combined

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

ARMA(p+d,q)
Tentative Order
Selection Tests

SCAN ESACF

p+d q p+d q

1 1 1 1

3 1

4 1

(5% Significance Level)

From Output 8.5.5, the autoregressive and moving-average orders are tentatively identified by both SCAN
and ESACF tables to be .p C d; q/ D (1,1). Because both the SCAN and ESACF indicate a p C d term
of 1, a unit root test should be used to determine whether this autoregressive term is a unit root. Since a
moving-average term appears to be present, a large autoregressive term is appropriate for the augmented
Dickey-Fuller test for a unit root.

Submitting the following statements generates Output 8.5.6:

/*-- Augmented Dickey-Fuller Unit Root Tests --*/
proc arima data=SeriesA;

identify var=x stationarity=(adf=(5,6,7,8));
run;



298 F Chapter 8: The ARIMA Procedure

Output 8.5.6 Example of STATIONARITY Option Output

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 5 0.0403 0.6913 0.42 0.8024

6 0.0479 0.6931 0.63 0.8508

7 0.0376 0.6907 0.49 0.8200

8 0.0354 0.6901 0.48 0.8175

Single Mean 5 -18.4550 0.0150 -2.67 0.0821 3.67 0.1367

6 -10.8939 0.1043 -2.02 0.2767 2.27 0.4931

7 -10.9224 0.1035 -1.93 0.3172 2.00 0.5605

8 -10.2992 0.1208 -1.83 0.3650 1.81 0.6108

Trend 5 -18.4360 0.0871 -2.66 0.2561 3.54 0.4703

6 -10.8436 0.3710 -2.01 0.5939 2.04 0.7694

7 -10.7427 0.3773 -1.90 0.6519 1.91 0.7956

8 -10.0370 0.4236 -1.79 0.7081 1.74 0.8293

The preceding test results show that a unit root is very likely given that none of the p-values are small enough
to cause you to reject the null hypothesis that the series has a unit root. Based on this test and the previous
results, the series should be differenced, and an ARIMA(0,1,1) would be a good choice for a tentative model
for Series A.

Using the recommendation that the series be differenced, the following statements generate Output 8.5.7:

/*-- Minimum Information Criterion --*/
proc arima data=SeriesA;

identify var=x(1) minic;
run;

Output 8.5.7 Example of MINIC Table

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

Minimum Information Criterion

Lags MA 0 MA 1 MA 2 MA 3 MA 4 MA 5

AR 0 -2.05761 -2.3497 -2.32358 -2.31298 -2.30967 -2.28528

AR 1 -2.23291 -2.32345 -2.29665 -2.28644 -2.28356 -2.26011

AR 2 -2.23947 -2.30313 -2.28084 -2.26065 -2.25685 -2.23458

AR 3 -2.25092 -2.28088 -2.25567 -2.23455 -2.22997 -2.20769

AR 4 -2.25934 -2.2778 -2.25363 -2.22983 -2.20312 -2.19531

AR 5 -2.2751 -2.26805 -2.24249 -2.21789 -2.19667 -2.17426

The error series is estimated by using an AR(7) model, and the minimum of this MINIC table is BIC.0; 1/.
This diagnostic confirms the previous result which indicates that an ARIMA(0,1,1) is a tentative model for
Series A.
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If you also specify the SCAN or MINIC option in the same IDENTIFY statement as follows, the BIC
associated with the SCAN table and ESACF table recommendations is listed. Output 8.5.8 shows the results.

/*-- Combination of MINIC, SCAN and ESACF Options --*/
proc arima data=SeriesA;

identify var=x(1) minic scan esacf;
run;

Output 8.5.8 Example of SCAN, ESACF, MINIC Options Combined

SERIES A: Chemical Process Concentration Readings

The ARIMA Procedure

ARMA(p+d,q)
Tentative Order Selection Tests

SCAN ESACF

p+d q BIC p+d q BIC

0 1 -2.3497 0 1 -2.3497

1 1 -2.32345

(5% Significance Level)

Example 8.6: Detection of Level Changes in the Nile River Data
This example shows how to use the OUTLIER statement to detect changes in the dynamics of the time series
being modeled. The time series used here is discussed in De Jong and Penzer (1998). The data consist of
readings of the annual flow volume of the Nile River at Aswan from 1871 to 1970. These data have also been
studied by Cobb (1978). These studies indicate that river flow levels in the years 1877 and 1913 are strong
candidates for additive outliers and that there was a shift in the flow levels starting from the year 1899. This
shift in 1899 is attributed partly to the weather changes and partly to the start of construction work for a new
dam at Aswan. The following DATA step statements create the input data set:

data nile;
input level @@;
year = intnx( 'year', '1jan1871'd, _n_-1 );
format year year4.;

datalines;
1120 1160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
1100 1210 1150 1250 1260 1220 1030 1100 774 840

... more lines ...

The following program fits an ARIMA model, ARIMA(0,1,1), similar to the structural model suggested in
De Jong and Penzer (1998). This model is also suggested by the usual correlation analysis of the series. By
default, the OUTLIER statement requests detection of additive outliers and level shifts, assuming that the
series follows the estimated model.
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/*-- ARIMA(0, 1, 1) Model --*/
proc arima data=nile;

identify var=level(1);
estimate q=1 noint method=ml;
outlier maxnum= 5 id=year;

run;

The outlier detection output is shown in Output 8.6.1.

Output 8.6.1 ARIMA(0, 1, 1) Model

The ARIMA Procedure

Outlier Detection Summary

Maximum number searched 5

Number found 5

Significance used 0.05

Outlier Details

Obs Time ID Type Estimate Chi-Square
Approx

Prob>ChiSq

29 1899 Shift -315.75346 13.13 0.0003

43 1913 Additive -403.97105 11.83 0.0006

7 1877 Additive -335.49351 7.69 0.0055

94 1964 Additive 305.03568 6.16 0.0131

18 1888 Additive -287.81484 6.00 0.0143

Note that the first three outliers detected are indeed the ones discussed earlier. You can include the shock
signatures that correspond to these three outliers in the Nile data set as follows:

data nile;
set nile;
AO1877 = ( year = '1jan1877'd );
AO1913 = ( year = '1jan1913'd );
LS1899 = ( year >= '1jan1899'd );

run;

Now you can refine the earlier model by including these outliers. After examining the parameter estimates
and residuals (not shown) of the ARIMA(0,1,1) model with these regressors, the following stationary MA1
model (with regressors) appears to fit the data well:

/*-- MA1 Model with Outliers --*/
proc arima data=nile;

identify var=level
crosscorr=( AO1877 AO1913 LS1899 );

estimate q=1
input=( AO1877 AO1913 LS1899 )
method=ml;

outlier maxnum=5 alpha=0.01 id=year;
run;

The relevant outlier detection process output is shown in Output 8.6.2. No outliers, at significance level 0.01,
were detected.
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Output 8.6.2 MA1 Model with Outliers

The ARIMA Procedure

Outlier Detection Summary

Maximum number searched 5

Number found 0

Significance used 0.01

Example 8.7: Iterative Outlier Detection
This example illustrates the iterative nature of the outlier detection process. This is done by using a simple
test example where an additive outlier at observation number 50 and a level shift at observation number 100
are artificially introduced in the international airline passenger data used in Example 8.2. The following
DATA step shows the modifications introduced in the data set:

data airline;
set sashelp.air;
logair = log(air);
if _n_ = 50 then logair = logair - 0.25;
if _n_ >= 100 then logair = logair + 0.5;

run;

In Example 8.2 the airline model, ARIMA.0; 1; 1/ � .0; 1; 1/12, was seen to be a good fit to the unmodified
log-transformed airline passenger series. The preliminary identification steps (not shown) again suggest the
airline model as a suitable initial model for the modified data. The following statements specify the airline
model and request an outlier search:

/*-- Outlier Detection --*/
proc arima data=airline;

identify var=logair( 1, 12 ) noprint;
estimate q= (1)(12) noint method= ml;
outlier maxnum=3 alpha=0.01;

run;

The outlier detection output is shown in Output 8.7.1.

Output 8.7.1 Initial Model

The ARIMA Procedure

Outlier Detection Summary

Maximum number searched 3

Number found 3

Significance used 0.01

Outlier Details

Obs Type Estimate Chi-Square
Approx

Prob>ChiSq

100 Shift 0.49325 199.36 <.0001

50 Additive -0.27508 104.78 <.0001

135 Additive -0.10488 13.08 0.0003
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Clearly the level shift at observation number 100 and the additive outlier at observation number 50 are the
dominant outliers. Moreover, the corresponding regression coefficients seem to correctly estimate the size
and sign of the change. You can augment the airline data with these two regressors, as follows:

data airline;
set airline;
if _n_ = 50 then AO = 1;
else AO = 0.0;
if _n_ >= 100 then LS = 1;
else LS = 0.0;

run;

You can now refine the previous model by including these regressors, as follows. Note that the differencing
order of the dependent series is matched to the differencing orders of the outlier regressors to get the correct
“effective” outlier signatures.

/*-- Airline Model with Outliers --*/
proc arima data=airline;

identify var=logair(1, 12)
crosscorr=( AO(1, 12) LS(1, 12) )
noprint;

estimate q= (1)(12) noint
input=( AO LS )
method=ml plot;

outlier maxnum=3 alpha=0.01;
run;

The outlier detection results are shown in Output 8.7.2.

Output 8.7.2 Airline Model with Outliers

The ARIMA Procedure

Outlier Detection Summary

Maximum number searched 3

Number found 3

Significance used 0.01

Outlier Details

Obs Type Estimate Chi-Square
Approx

Prob>ChiSq

135 Additive -0.10310 12.63 0.0004

62 Additive -0.08872 12.33 0.0004

29 Additive 0.08686 11.66 0.0006

The output shows that a few outliers still remain to be accounted for and that the model could be refined
further.
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Example 8.8: Test for Stationarity
As mentioned in the section “The Three Stages of ARIMA Modeling” on page 191, identification is the first
stage of time series modeling. Stationarity tests can help you decide whether to difference; this decision
is an important part of identification. If a series is nonstationary, it requires differencing. Dickey (2005)
demonstrates how to conduct stationarity tests and how to difference series by using PROC ARIMA. This
example follows a similar fashion with two different data generation models.

The following DATA step generates a sample of 100 periods from the ARIMA(1,1,0) process: rut D
0:6rut�1 C at , rut D ut � ut�1, and at iid N.0; 1/.

title1 'Simulated ARIMA(1,1,0)';
data a;

u1 = 0;
u2=0;
do i = -50 to 100;

a = rannor( 1234 );
du1 = u1 - u2;
du = 0.6 * du1 + a;
u = du + u1;
if i > 0 then output;
u2 = u1;
u1 = u;

end;
run;

First, you should check the observation and correlation analysis graphs. This not only helps you better
understand the data, but it is also needed in order to conduct the augmented Dickey-Fuller (ADF) tests. When
conducting the ADF tests, you need to specify how many lagged differences to include in the test regression
and which model (zero mean, single mean, or trend) to use. An inappropriate choice can lead to incorrect
results. The following statements identify the model and generate observation and correlation graphs:

proc arima data=a;
identify var=u;

run;

The results of the graphical series correlation analysis are shown in Output 8.8.1.
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Output 8.8.1 Correlation Analysis for the Nonstationary Series

As shown in Output 8.8.1, there is no obvious time trend in the data, and the mean is not close to zero. An
AR(1) model would suffice for the test, because the partial autocorrelation functions (PACFs) decline quickly
after the first lag, as shown in the PACF plot. The ADF= option in ADF tests should be set to 0 here, because
zero lagged differences are used in the test regression for the AR(1) model. However, to better illustrate how
the ADF= and PP= options work, they are set to 1 in this example. The following PROC ARIMA statements
conduct stationarity tests:

proc arima data=a;
identify var=u stationarity=(adf=1);
run;
identify var=u stationarity=(pp=1);
run;

quit;

The first IDENTIFY statement performs the ADF unit root tests for the original series, u. The descriptive
statistics and stationarity test results are shown in Output 8.8.2.
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Output 8.8.2 Descriptive Statistics and ADF Tests for the Nonstationary Series

Simulated ARIMA(1,1,0)

The ARIMA Procedure

Name of Variable = u

Mean of Working Series 7.033652

Standard Deviation 7.81187

Number of Observations 100

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 2.0617 0.9892 1.66 0.9758

1 -1.0989 0.4543 -0.39 0.5405

Single Mean 0 0.9908 0.9879 0.59 0.9889 1.83 0.6090

1 -4.0438 0.5273 -1.08 0.7209 0.80 0.8684

Trend 0 0.1327 0.9964 0.08 0.9967 1.32 0.9121

1 -5.3582 0.7871 -1.43 0.8471 1.50 0.8767

The three types of models are listed in the Type column in the “Augmented Dickey-Fuller Unit Root Tests”
table in Output 8.8.2. The single-mean model fits best in this case, because the mean is not zero, as shown in
Output 8.8.2, and there is no obvious time trend, as demonstrated in the observation plot in Output 8.8.1.

For each type of model, two rows of test statistics are reported: 0 lags and 1 lag. This is set by the ADF=1
option in the STATIONARITY= option. The row of 0 lags shows test statistics for an AR(1) model, where
zero lagged differences are used in the test regression. The row of 1 lag shows test statistics for the AR(2)
model, where one lagged differenced term is used in the test regression. As mentioned earlier, an AR(1)
model would suffice in this case.

All three kinds of test statistics are reported under the ADF tests, as presented in Output 8.8.2. Tau test
statistics are mostly used to decide whether to reject the null hypothesis. The p-values of the tau test statistics
in both the AR(1) and AR(2) models are greater than 0.1, and the null hypothesis (the series is nonstationary;
that is, there is a unit root) cannot be rejected at the 10% level.

The second IDENTIFY statement performs the Phillips-Perron (PP) tests for the original series, u. The
stationarity test results are shown in Output 8.8.3.

Output 8.8.3 PP Tests for the Nonstationary Series

Phillips-Perron Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau

Zero Mean 0 2.0617 0.9892 1.66 0.9758

1 1.5957 0.9715 1.01 0.9169

Single Mean 0 0.9908 0.9879 0.59 0.9889

1 0.1542 0.9632 0.07 0.9618

Trend 0 0.1327 0.9964 0.08 0.9967

1 -0.7639 0.9901 -0.35 0.9881

The output structure of the PP tests is similar to that of the ADF tests, except that there is no F test. The PP
tests also report the rho test statistic (shown in the Rho column) and the tau test statistic (shown in the Tau
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column), but they are calculated differently from the ADF tests. As shown in Output 8.8.3, the p-values of
the tau test statistics are greater than 0.1, and therefore the PP tests also fail to reject the null hypothesis that
the series is nonstationary.

The preceding results of the stationarity tests are consistent with the correlation analysis output. As shown
in Output 8.8.1, the ACFs are significant and decay very slowly with increasing lag. This also suggests
nonstationarity. Note that the estimated partial autocorrelation for the first lag is close to 1 and the PACFs
decline quickly after the first lag. This suggests that you should consider differencing the series. The
following statements identify the differenced series, ru:

proc arima data=a;
identify var=u(1);

run;

The results of the graphical series correlation analysis are shown in Output 8.8.4.

Output 8.8.4 Correlation Analysis for the Differenced Series

The series also presents no trend and moves around 0, as shown in Output 8.8.4. As in the original series, the
PACFs decline quickly after the first lag, suggesting an AR(1) model. Therefore, the stationarity tests are
conducted with zero lagged differences, as in the following statements:
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proc arima data=a;
identify var=u(1) stationarity=(adf=0);
run;
identify var=u(1) stationarity=(pp=0);
run;

quit;

The descriptive statistics and ADF test results are shown in Output 8.8.5. The PP test results are shown in
Output 8.8.6.

Output 8.8.5 Descriptive Statistics and ADF Tests for the Differenced Series

Simulated ARIMA(1,1,0)

The ARIMA Procedure

Name of Variable = u

Period(s) of Differencing 1

Mean of Working Series 0.235092

Standard Deviation 1.275033

Number of Observations 99

Observation(s) eliminated by differencing 1

Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -36.1794 <.0001 -4.75 <.0001

Single Mean 0 -37.1317 0.0009 -4.77 0.0002 11.42 0.0010

Trend 0 -38.5203 0.0005 -4.87 0.0007 11.87 0.0010

Output 8.8.6 PP Tests for the Differenced Series

Phillips-Perron Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau

Zero Mean 0 -36.1794 <.0001 -4.75 <.0001

Single Mean 0 -37.1317 0.0009 -4.77 0.0002

Trend 0 -38.5203 0.0005 -4.87 0.0007

As indicated in Output 8.8.5, the mean of the differenced series is very close to 0, as is also suggested by
Output 8.8.4. Therefore, you should look at the test statistics for the zero-mean model. You can also look at
the single-mean model if you are not sure about the mean. The first IDENTIFY statement performs the ADF
tests, and the second IDENTIFY statement performs the PP tests for the differenced series. Based on the
p-values of both tests, the null hypothesis is rejected at the 1% level, indicating that the differenced series is
stationary.

The preceding example demonstrates a nonstationary process that is stationary after first differencing. The
next example demonstrates the unit root tests of a trend series that is composed of a time trend and a stationary
part. The following DATA step generates a sample of 100 periods from the process: ut D 2t C 0:5ut C at ,
at iid N.0; 1/.
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title 'Simulated Trend Series with a Stationary AR(1) Process';
data b;

u1 = -20;
do i = -50 to 100;

a = rannor( 1234 );
u = 2*i + 0.5*u1 + a;
if i > 0 then output;
u1 = u;

end;
run;

As in the previous example, you first identify the model and check the observation and correlation graphs by
using the following statements:

proc arima data=b;
identify var=u;

run;

The results of the graphical series correlation analysis are shown in Output 8.8.7.

Output 8.8.7 Correlation Analysis for a Trend Series with a Stationary Part
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As shown in the observation plot in Output 8.8.7, the series has an obvious time trend. From the ACF and
PACF plots in Output 8.8.7, you could conclude that it should be an AR(1) process, because the ACF does
not decline as much as the lag increases and the PACF shows only one significant lag. The ADF=0 and PP=0
options should be specified in the stationarity tests, as in the following statements:

proc arima data=b;
identify var=u stationarity=(adf=0);
run;
identify var=u stationarity=(pp=0);
run;

quit;

The first IDENTIFY statement performs the ADF unit root tests for u. The stationarity test results are shown
in Output 8.8.8.

Output 8.8.8 ADF Tests for a Trend Series with a Stationary Part

Simulated Trend Series with a Stationary AR(1) Process

The ARIMA Procedure

Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 1.4988 0.9653 14.74 0.9999

Single Mean 0 -0.0036 0.9557 -0.04 0.9523 597.85 0.0010

Trend 0 -47.5985 0.0003 -5.52 <.0001 15.22 0.0010

As mentioned earlier, there is a trend in the data, and the “Trend” type in Output 8.8.8 should be the focus
here. As shown in Output 8.8.8, the p-value of the tau test statistic for AR(1) (that is, the LAG=0 case) is less
than 0.0001, indicating that the null hypothesis (nonstationarity) is rejected and the series is trend stationary.
The p-value of the F test statistic is 0.001. This means that the joint test of time trend and nonstationarity is
rejected at the 1% level. Note that a random walk process with a positive drift would have plots very similar to
those in this case, but both the tau test and the F test would fail to reject the null hypothesis (nonstationarity)
for a random-walk-with-drift process. The number of lagged differences in the test regression is important.
In this particular case, when the model includes more than 12 lags of differenced terms, the p-values of
the tau test statistics are greater than 0.15 and the null hypothesis cannot be rejected at the 10% level. To
conduct valid ADF tests, you need to select the autocorrelations first. The PP tests correct the statistics for
autocorrelations and do not require you to select the autocorrelations. The second IDENTIFY statement in
the preceding code performs the PP tests for u. The stationarity test results are shown in Output 8.8.9.

Output 8.8.9 PP Tests for a Trend Series with a Stationary Part

Phillips-Perron Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau

Zero Mean 0 1.4988 0.9653 14.74 0.9999

Single Mean 0 -0.0036 0.9557 -0.04 0.9523

Trend 0 -47.5985 0.0003 -5.52 <.0001

As shown in Output 8.8.9, the p-value of the tau test statistic under the trend type is less than 0.001. If you
include many lagged differences here, you will find that the p-values of the tau test statistic under the trend
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type are still less than 0.001. The PP tests reject the null hypothesis of nonstationarity with all the different
levels of autocorrelation. As a trade-off, the PP tests work well only in large samples.
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Overview: AUTOREG Procedure
The AUTOREG procedure estimates and forecasts linear regression models for time series data when
the errors are autocorrelated or heteroscedastic. The autoregressive error model is used to correct for
autocorrelation, and the generalized autoregressive conditional heteroscedasticity (GARCH) model and its
variants are used to model and correct for heteroscedasticity.

When time series data are used in regression analysis, often the error term is not independent through time.
Instead, the errors are serially correlated (autocorrelated). If the error term is autocorrelated, the efficiency
of ordinary least squares (OLS) parameter estimates is adversely affected and standard error estimates are
biased.

The autoregressive error model corrects for serial correlation. The AUTOREG procedure can fit autore-
gressive error models of any order and can fit subset autoregressive models. You can also specify stepwise
autoregression to select the autoregressive error model automatically.

To diagnose autocorrelation, the AUTOREG procedure produces generalized Durbin-Watson (DW) statistics
and their marginal probabilities. Exact p-values are reported for generalized DW tests to any specified order.
For models with lagged dependent regressors, PROC AUTOREG performs the Durbin t test and the Durbin h
test for first-order autocorrelation and reports their marginal significance levels.

Ordinary regression analysis assumes that the error variance is the same for all observations. When the error
variance is not constant, the data are said to be heteroscedastic, and ordinary least squares estimates are
inefficient. Heteroscedasticity also affects the accuracy of forecast confidence limits. More efficient use of
the data and more accurate prediction error estimates can be made by models that take the heteroscedasticity
into account.

To test for heteroscedasticity, the AUTOREG procedure uses the portmanteau Q test statistics (McLeod and
Li 1983), Engle’s Lagrange multiplier tests (Engle 1982), tests from Lee and King (1993), and tests from
Wong and Li (1995). Test statistics and significance p-values are reported for conditional heteroscedasticity
at lags 1 through 12. The Jarque-Bera normality test statistic and its significance level are also reported to
test for conditional nonnormality of residuals. The following tests for independence are also supported by the
AUTOREG procedure for residual analysis and diagnostic checking: Brock-Dechert-Scheinkman (BDS) test,
runs test, turning point test, and the rank version of the von Neumann ratio test.

The family of GARCH models provides a means of estimating and correcting for the changing variability of
the data. The GARCH process assumes that the errors, although uncorrelated, are not independent, and it
models the conditional error variance as a function of the past realizations of the series.

The AUTOREG procedure supports the following variations of the GARCH models:
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� generalized ARCH (GARCH)

� integrated GARCH (IGARCH)

� exponential GARCH (EGARCH)

� quadratic GARCH (QGARCH)

� threshold GARCH (TGARCH)

� power GARCH (PGARCH)

� GARCH-in-mean (GARCH-M)

For GARCH-type models, the AUTOREG procedure produces the conditional prediction error variances in
addition to parameter and covariance estimates.

The AUTOREG procedure can also analyze models that combine autoregressive errors and GARCH-type
heteroscedasticity. PROC AUTOREG can output predictions of the conditional mean and variance for models
with autocorrelated disturbances and changing conditional error variances over time.

Four estimation methods are supported for the autoregressive error model:

� Yule-Walker

� iterated Yule-Walker

� unconditional least squares

� exact maximum likelihood

The maximum likelihood method is used for GARCH models and for mixed AR-GARCH models.

The AUTOREG procedure produces forecasts and forecast confidence limits when future values of the
independent variables are included in the input data set. PROC AUTOREG is a useful tool for forecasting
because it uses the time series part of the model in addition to the systematic part in generating predicted
values. The autoregressive error model takes into account recent departures from the trend in producing
forecasts.

The AUTOREG procedure permits embedded missing values for the independent or dependent variables.
The procedure should be used only for ordered and equally spaced time series data.
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Getting Started: AUTOREG Procedure

Regression with Autocorrelated Errors
Ordinary regression analysis is based on several statistical assumptions. One key assumption is that the errors
are independent of each other. However, with time series data, the ordinary regression residuals usually are
correlated over time. It is not desirable to use ordinary regression analysis for time series data since the
assumptions on which the classical linear regression model is based will usually be violated.

Violation of the independent errors assumption has three important consequences for ordinary regression.
First, statistical tests of the significance of the parameters and the confidence limits for the predicted values
are not correct. Second, the estimates of the regression coefficients are not as efficient as they would be if the
autocorrelation were taken into account. Third, since the ordinary regression residuals are not independent,
they contain information that can be used to improve the prediction of future values.

The AUTOREG procedure solves this problem by augmenting the regression model with an autoregressive
model for the random error, thereby accounting for the autocorrelation of the errors. Instead of the usual
regression model, the following autoregressive error model is used:

yt D x0tˇ C �t
�t D �'1�t�1 � '2�t�2 � � � � � 'm�t�m C �t

�t � IN.0; �2/

The notation �t � IN.0; �2/ indicates that each �t is normally and independently distributed with mean 0
and variance �2.

By simultaneously estimating the regression coefficients ˇ and the autoregressive error model parameters 'i ,
the AUTOREG procedure corrects the regression estimates for autocorrelation. Thus, this kind of regression
analysis is often called autoregressive error correction or serial correlation correction.

Example of Autocorrelated Data

A simulated time series is used to introduce the AUTOREG procedure. The following statements generate a
simulated time series Y with second-order autocorrelation:

/* Regression with Autocorrelated Errors */
data a;

ul = 0; ull = 0;
do time = -10 to 36;

u = + 1.3 * ul - .5 * ull + 2*rannor(12346);
y = 10 + .5 * time + u;
if time > 0 then output;
ull = ul; ul = u;

end;
run;
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The series Y is a time trend plus a second-order autoregressive error. The model simulated is

yt D 10C 0:5t C �t

�t D 1:3�t�1 � 0:5�t�2 C �t

�t � IN.0; 4/

The following statements plot the simulated time series Y. A linear regression trend line is shown for
reference.

title 'Autocorrelated Time Series';
proc sgplot data=a noautolegend;

series x=time y=y / markers;
reg x=time y=y/ lineattrs=(color=black);

run;

The plot of series Y and the regression line are shown in Figure 9.1.

Figure 9.1 Autocorrelated Time Series

Note that when the series is above (or below) the OLS regression trend line, it tends to remain above (below)
the trend for several periods. This pattern is an example of positive autocorrelation.
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Time series regression usually involves independent variables other than a time trend. However, the simple
time trend model is convenient for illustrating regression with autocorrelated errors, and the series Y shown
in Figure 9.1 is used in the following introductory examples.

Ordinary Least Squares Regression

To use the AUTOREG procedure, specify the input data set in the PROC AUTOREG statement and specify
the regression model in a MODEL statement. Specify the model by first naming the dependent variable and
then listing the regressors after an equal sign, as is done in other SAS regression procedures. The following
statements regress Y on TIME by using ordinary least squares:

proc autoreg data=a;
model y = time;

run;

The AUTOREG procedure output is shown in Figure 9.2.

Figure 9.2 PROC AUTOREG Results for OLS Estimation

Autocorrelated Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34

MSE 6.32216 Root MSE 2.51439

SBC 173.659101 AIC 170.492063

MAE 2.01903356 AICC 170.855699

MAPE 12.5270666 HQC 171.597444

Durbin-Watson 0.4752 Total R-Square 0.8200

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001

time 1 0.5021 0.0403 12.45 <.0001

The output first shows statistics for the model residuals. The model root mean square error (Root MSE) is
2.51, and the model R2 (Total R-Square) is 0.82.

Other statistics shown are the sum of square errors (SSE), mean square error (MSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), error degrees of freedom (DFE, the number of observations
minus the number of parameters), the information criteria SBC, HQC, AIC, and AICC, and the Durbin-
Watson statistic. (Durbin-Watson statistics, MAE, MAPE, SBC, HQC, AIC, and AICC are discussed in the
section “Goodness-of-Fit Measures and Information Criteria” on page 384.)

The output then shows a table of regression coefficients, with standard errors and t tests. The estimated model
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is

yt D 8:23C 0:502t C �t

Est. Var.�t / D 6:32

The OLS parameter estimates are reasonably close to the true values, but the estimated error variance, 6.32,
is much larger than the true value, 4.

Autoregressive Error Model

The following statements regress Y on TIME with the errors assumed to follow a second-order autoregressive
process. The order of the autoregressive model is specified by the NLAG=2 option. The Yule-Walker
estimation method is used by default. The example uses the METHOD=ML option to specify the exact
maximum likelihood method instead.

ods graphics on;
proc autoreg data=a;

model y = time / nlag=2 method=ml;
run;

The first part of the results is shown in Figure 9.3. The initial OLS results are produced first, followed by
estimates of the autocorrelations computed from the OLS residuals. The autocorrelations are also displayed
graphically.

Figure 9.3 Preliminary Estimate for AR(2) Error Model

Autocorrelated Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34

MSE 6.32216 Root MSE 2.51439

SBC 173.659101 AIC 170.492063

MAE 2.01903356 AICC 170.855699

MAPE 12.5270666 HQC 171.597444

Durbin-Watson 0.4752 Total R-Square 0.8200

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001

time 1 0.5021 0.0403 12.45 <.0001

Preliminary MSE 1.7943
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Figure 9.4 Estimates of Autocorrelations

The maximum likelihood estimates are shown in Figure 9.5. This figure also shows the preliminary Yule-
Walker estimates that are used as starting values for the iterative computation of the maximum likelihood
estimates.

Figure 9.5 Maximum Likelihood Estimates of AR(2) Error Model

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -1.169057 0.148172 -7.89

2 0.545379 0.148172 3.68

Algorithm converged.

Maximum Likelihood Estimates

SSE 54.7493022 DFE 32

MSE 1.71092 Root MSE 1.30802

SBC 133.476508 AIC 127.142432

MAE 0.98307236 AICC 128.432755

MAPE 6.45517689 HQC 129.353194

Log Likelihood -59.571216 Transformed Regression R-Square 0.7280

Durbin-Watson 2.2761 Total R-Square 0.9542

Observations 36

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 7.8833 1.1693 6.74 <.0001

time 1 0.5096 0.0551 9.25 <.0001

AR1 1 -1.2464 0.1385 -9.00 <.0001

AR2 1 0.6283 0.1366 4.60 <.0001

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 7.8833 1.1678 6.75 <.0001

time 1 0.5096 0.0551 9.26 <.0001
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The diagnostic statistics and parameter estimates tables in Figure 9.5 have the same form as in the OLS
output, but the values shown are for the autoregressive error model. The MSE for the autoregressive model is
1.71, which is much smaller than the true value of 4. In small samples, the autoregressive error model tends
to underestimate �2, while the OLS MSE overestimates �2.

Notice that the total R2 statistic computed from the autoregressive model residuals is 0.954, reflecting the
improved fit from the use of past residuals to help predict the next Y value. The transformed regression R2

0.728 is the R2 statistic for a regression of transformed variables adjusted for the estimated autocorrelation.
(This is not the R2 for the estimated trend line. For more information, see the section “Goodness-of-Fit
Measures and Information Criteria” on page 384, later in this chapter.)

The parameter estimates table shows the ML estimates of the regression coefficients and includes two
additional rows for the estimates of the autoregressive parameters, labeled AR(1) and AR(2).

The estimated model is

yt D 7:88C 0:5096t C �t

�t D 1:25�t�1 � 0:628�t�2 C �t

Est. Var.�t / D 1:71

Note that the signs of the autoregressive parameters shown in this equation for �t are the reverse of the
estimates shown in the AUTOREG procedure output. Figure 9.5 also shows the estimates of the regression
coefficients with the standard errors recomputed on the assumption that the autoregressive parameter estimates
equal the true values.

Predicted Values and Residuals

The AUTOREG procedure can produce two kinds of predicted values and corresponding residuals and
confidence limits. The first kind of predicted value is obtained from only the structural part of the model,
x0tb. This is an estimate of the unconditional mean of the response variable at time t. For the time trend
model, these predicted values trace the estimated trend. The second kind of predicted value includes both
the structural part of the model and the predicted values of the autoregressive error process. The full model
(conditional) predictions are used to forecast future values.

Use the OUTPUT statement to store predicted values and residuals in a SAS data set and to output other
values such as confidence limits and variance estimates. The P= option specifies an output variable to contain
the full model predicted values. The PM= option names an output variable for the predicted mean. The R=
and RM= options specify output variables for the corresponding residuals, computed as the actual value
minus the predicted value.

The following statements store both kinds of predicted values in the output data set. (The printed output is
the same as previously shown in Figure 9.3 and Figure 9.5.)

proc autoreg data=a;
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=trendhat;

run;

The following statements plot the predicted values from the regression trend line and from the full model
together with the actual values:
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title 'Predictions for Autocorrelation Model';
proc sgplot data=p;

scatter x=time y=y / markerattrs=(color=blue);
series x=time y=yhat / lineattrs=(color=blue);
series x=time y=trendhat / lineattrs=(color=black);

run;

The plot of predicted values is shown in Figure 9.6.

Figure 9.6 PROC AUTOREG Predictions

In Figure 9.6 the straight line is the autocorrelation corrected regression line, traced out by the structural
predicted values TRENDHAT. The jagged line traces the full model prediction values. The actual values are
marked by asterisks. This plot graphically illustrates the improvement in fit provided by the autoregressive
error process for highly autocorrelated data.
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Forecasting Autoregressive Error Models
To produce forecasts for future periods, include observations for the forecast periods in the input data set.
The forecast observations must provide values for the independent variables and have missing values for the
response variable.

For the time trend model, the only regressor is time. The following statements add observations for time
periods 37 through 46 to the data set A to produce an augmented data set B:

data b;
y = .;
do time = 37 to 46; output; end;

run;

data b;
merge a b;
by time;

run;

To produce the forecast, use the augmented data set as input to PROC AUTOREG, and specify the appropriate
options in the OUTPUT statement. The following statements produce forecasts for the time trend with
autoregressive error model. The output data set includes all the variables in the input data set, the forecast
values (YHAT), the predicted trend (YTREND), and the upper (UCL) and lower (LCL) 95% confidence
limits.

proc autoreg data=b;
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=ytrend

lcl=lcl ucl=ucl;
run;

The following statements plot the predicted values and confidence limits, and they also plot the trend line for
reference. The actual observations are shown for periods 16 through 36, and a reference line is drawn at the
start of the out-of-sample forecasts.

title 'Forecasting Autocorrelated Time Series';
proc sgplot data=p;

band x=time upper=ucl lower=lcl;
scatter x=time y=y;
series x=time y=yhat;
series x=time y=ytrend / lineattrs=(color=black);

run;

The plot is shown in Figure 9.7. Notice that the forecasts take into account the recent departures from the
trend but converge back to the trend line for longer forecast horizons.
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Figure 9.7 PROC AUTOREG Forecasts

Testing for Autocorrelation
In the preceding section, it is assumed that the order of the autoregressive process is known. In practice, you
need to test for the presence of autocorrelation.

The Durbin-Watson test is a widely used method of testing for autocorrelation. The first-order Durbin-
Watson statistic is printed by default. This statistic can be used to test for first-order autocorrelation. Use
the DWPROB option to print the significance level (p-values) for the Durbin-Watson tests. (Since the
Durbin-Watson p-values are computationally expensive, they are not reported by default.)

You can use the DW= option to request higher-order Durbin-Watson statistics. Since the ordinary Durbin-
Watson statistic tests only for first-order autocorrelation, the Durbin-Watson statistics for higher-order
autocorrelation are called generalized Durbin-Watson statistics.

The following statements perform the Durbin-Watson test for autocorrelation in the OLS residuals for orders
1 through 4. The DWPROB option prints the marginal significance levels (p-values) for the Durbin-Watson
statistics.
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/*-- Durbin-Watson test for autocorrelation --*/
proc autoreg data=a;

model y = time / dw=4 dwprob;
run;

The AUTOREG procedure output is shown in Figure 9.8. In this case, the first-order Durbin-Watson test is
highly significant, with p < .0001 for the hypothesis of no first-order autocorrelation. Thus, autocorrelation
correction is needed.

Figure 9.8 Durbin-Watson Test Results for OLS Residuals

Forecasting Autocorrelated Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34

MSE 6.32216 Root MSE 2.51439

SBC 173.659101 AIC 170.492063

MAE 2.01903356 AICC 170.855699

MAPE 12.5270666 HQC 171.597444

Total R-Square 0.8200

Durbin-Watson Statistics

Order DW Pr < DW Pr > DW

1 0.4752 <.0001 1.0000

2 1.2935 0.0137 0.9863

3 2.0694 0.6545 0.3455

4 2.5544 0.9818 0.0182

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is the p-value for
testing negative autocorrelation.

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001

time 1 0.5021 0.0403 12.45 <.0001

Using the Durbin-Watson test, you can decide if autocorrelation correction is needed. However, generalized
Durbin-Watson tests should not be used to decide on the autoregressive order. The higher-order tests
assume the absence of lower-order autocorrelation. If the ordinary Durbin-Watson test indicates no first-
order autocorrelation, you can use the second-order test to check for second-order autocorrelation. Once
autocorrelation is detected, further tests at higher orders are not appropriate. In Figure 9.8, since the first-order
Durbin-Watson test is significant, the order 2, 3, and 4 tests can be ignored.

When using Durbin-Watson tests to check for autocorrelation, you should specify an order at least as large
as the order of any potential seasonality, since seasonality produces autocorrelation at the seasonal lag. For
example, for quarterly data use DW=4, and for monthly data use DW=12.
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Lagged Dependent Variables

The Durbin-Watson tests are not valid when the lagged dependent variable is used in the regression model. In
this case, the Durbin h test or Durbin t test can be used to test for first-order autocorrelation.

For the Durbin h test, specify the name of the lagged dependent variable in the LAGDEP= option. For the
Durbin t test, specify the LAGDEP option without giving the name of the lagged dependent variable.

For example, the following statements add the variable YLAG to the data set A and regress Y on YLAG instead
of TIME:

data b;
set a;
ylag = lag1( y );

run;

proc autoreg data=b;
model y = ylag / lagdep=ylag;

run;

The results are shown in Figure 9.9. The Durbin h statistic 2.78 is significant with a p-value of 0.0027,
indicating autocorrelation.

Figure 9.9 Durbin h Test with a Lagged Dependent Variable

Forecasting Autocorrelated Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 97.711226 DFE 33

MSE 2.96095 Root MSE 1.72074

SBC 142.369787 AIC 139.259091

MAE 1.29949385 AICC 139.634091

MAPE 8.1922836 HQC 140.332903

Total R-Square 0.9109

Miscellaneous Statistics

Statistic Value Prob Label

Durbin h 2.7814 0.0027 Pr > h

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.5742 0.9300 1.69 0.0999

ylag 1 0.9376 0.0510 18.37 <.0001
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Stepwise Autoregression
Once you determine that autocorrelation correction is needed, you must select the order of the autoregressive
error model to use. One way to select the order of the autoregressive error model is stepwise autoregression.
The stepwise autoregression method initially fits a high-order model with many autoregressive lags and then
sequentially removes autoregressive parameters until all remaining autoregressive parameters have significant
t tests.

To use stepwise autoregression, specify the BACKSTEP option, and specify a large order with the NLAG=
option. The following statements show the stepwise feature, using an initial order of 5:

/*-- stepwise autoregression --*/
proc autoreg data=a;

model y = time / method=ml nlag=5 backstep;
run;

The results are shown in Figure 9.10.

Figure 9.10 Stepwise Autoregression

Forecasting Autocorrelated Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 214.953429 DFE 34

MSE 6.32216 Root MSE 2.51439

SBC 173.659101 AIC 170.492063

MAE 2.01903356 AICC 170.855699

MAPE 12.5270666 HQC 171.597444

Durbin-Watson 0.4752 Total R-Square 0.8200

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 8.2308 0.8559 9.62 <.0001

time 1 0.5021 0.0403 12.45 <.0001

Backward Elimination of
Autoregressive Terms

Lag Estimate t Value Pr > |t|

4 -0.052908 -0.20 0.8442

3 0.115986 0.57 0.5698

5 0.131734 1.21 0.2340
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Figure 9.11 Estimates of Autocorrelations

The estimates of the autocorrelations are shown for five lags. The backward elimination of autoregressive
terms report shows that the autoregressive parameters at lags 3, 4, and 5 were insignificant and eliminated,
resulting in the second-order model shown previously in Figure 9.5. By default, retained autoregressive
parameters must be significant at the 0.05 level, but you can control this with the SLSTAY= option. The
remainder of the output from this example is the same as that in Figure 9.3 and Figure 9.5. It is not repeated
here.

The stepwise autoregressive process is performed using the Yule-Walker method. The maximum likelihood
estimates are produced after the order of the model is determined from the significance tests of the preliminary
Yule-Walker estimates.

When you use stepwise autoregression, it is a good idea to specify an NLAG= option value larger than the
order of any potential seasonality, because seasonality produces autocorrelation at the seasonal lag. For
example, for monthly data use NLAG=13, and for quarterly data use NLAG=5.

Subset and Factored Models

In the previous example, the BACKSTEP option dropped lags 3, 4, and 5, leaving a second-order model.
However, in other cases a parameter at a longer lag may be kept while some smaller lags are dropped. For
example, the stepwise autoregression method might drop lags 2, 3, and 5 but keep lags 1 and 4. This is called
a subset model, because the number of estimated autoregressive parameters is lower than the order of the
model.

Subset models are common for seasonal data and often correspond to factored autoregressive models. A
factored model is the product of simpler autoregressive models. For example, the best model for seasonal
monthly data might be the combination of a first-order model for recent effects with a 12th-order subset
model for the seasonality, with a single parameter at lag 12. This results in a 13th-order subset model with
nonzero parameters at lags 1, 12, and 13. For further discussion of subset and factored autoregressive models,
see Chapter 8, “The ARIMA Procedure.”

You can specify subset models by using the NLAG= option. List the lags to include in the autoregressive
model within parentheses. The following statements show an example of specifying the subset model that
results from the combination of a first-order process for recent effects with a fourth-order seasonal process:
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/*-- specifying the lags --*/
proc autoreg data=a;

model y = time / nlag=(1 4 5);
run;

The MODEL statement specifies the following fifth-order autoregressive error model:

yt D aC bt C �t

�t D �'1�t�1 � '4�t�4 � '5�t�5 C �t

Testing for Heteroscedasticity
One of the key assumptions of the ordinary regression model is that the errors have the same variance
throughout the sample. This is also called the homoscedasticity model. If the error variance is not constant,
the data are said to be heteroscedastic.

Since ordinary least squares regression assumes constant error variance, heteroscedasticity causes the OLS
estimates to be inefficient. Models that take into account the changing variance can make more efficient
use of the data. Also, heteroscedasticity can make the OLS forecast error variance inaccurate because the
predicted forecast variance is based on the average variance instead of on the variability at the end of the
series.

To illustrate heteroscedastic time series, the following statements create the simulated series Y. The variable
Y has an error variance that changes from 1 to 4 in the middle part of the series.

data a;
do time = -10 to 120;

s = 1 + (time >= 60 & time < 90);
u = s*rannor(12346);
y = 10 + .5 * time + u;
if time > 0 then output;
end;

run;

title 'Heteroscedastic Time Series';
proc sgplot data=a noautolegend;

series x=time y=y / markers;
reg x=time y=y / lineattrs=(color=black);

run;

The simulated series is plotted in Figure 9.12.
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Figure 9.12 Heteroscedastic and Autocorrelated Series

To test for heteroscedasticity with PROC AUTOREG, specify the ARCHTEST option. The following
statements regress Y on TIME and use the ARCHTEST= option to test for heteroscedastic OLS residuals:

/*-- test for heteroscedastic OLS residuals --*/
proc autoreg data=a;

model y = time / archtest;
output out=r r=yresid;

run;

The PROC AUTOREG output is shown in Figure 9.13. The Q statistics test for changes in variance across
time by using lag windows that range from 1 through 12. (For more information, see the section “Testing for
Nonlinear Dependence: Heteroscedasticity Tests” on page 405.) The p-values for the test statistics strongly
indicate heteroscedasticity, with p < 0.0001 for all lag windows.

The Lagrange multiplier (LM) tests also indicate heteroscedasticity. These tests can also help determine the
order of the ARCH model that is appropriate for modeling the heteroscedasticity, assuming that the changing
variance follows an autoregressive conditional heteroscedasticity model.
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Figure 9.13 Heteroscedasticity Tests

Heteroscedastic Time Series

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 223.645647 DFE 118

MSE 1.89530 Root MSE 1.37670

SBC 424.828766 AIC 419.253783

MAE 0.97683599 AICC 419.356347

MAPE 2.73888672 HQC 421.517809

Durbin-Watson 2.4444 Total R-Square 0.9938

Tests for ARCH Disturbances Based on
OLS Residuals

Order Q Pr > Q LM Pr > LM

1 19.4549 <.0001 19.1493 <.0001

2 21.3563 <.0001 19.3057 <.0001

3 28.7738 <.0001 25.7313 <.0001

4 38.1132 <.0001 26.9664 <.0001

5 52.3745 <.0001 32.5714 <.0001

6 54.4968 <.0001 34.2375 <.0001

7 55.3127 <.0001 34.4726 <.0001

8 58.3809 <.0001 34.4850 <.0001

9 68.3075 <.0001 38.7244 <.0001

10 73.2949 <.0001 38.9814 <.0001

11 74.9273 <.0001 39.9395 <.0001

12 76.0254 <.0001 40.8144 <.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 9.8684 0.2529 39.02 <.0001

time 1 0.5000 0.003628 137.82 <.0001

The tests of Lee and King (1993) and Wong and Li (1995) can also be applied to check the absence of ARCH
effects. The following example shows that Wong and Li’s test is robust to detect the presence of ARCH
effects with the existence of outliers:

/*-- data with outliers at observation 10 --*/
data b;

do time = -10 to 120;
s = 1 + (time >= 60 & time < 90);
u = s*rannor(12346);
y = 10 + .5 * time + u;
if time = 10 then

do; y = 200; end;
if time > 0 then output;

end;
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run;
/*-- test for heteroscedastic OLS residuals --*/
proc autoreg data=b;

model y = time / archtest=(qlm) ;
model y = time / archtest=(lk,wl) ;

run;

As shown in Figure 9.14, the p-values of Q or LM statistics for all lag windows are above 90%, which fails
to reject the null hypothesis of the absence of ARCH effects. Lee and King’s test, which rejects the null
hypothesis for lags more than 8 at 10% significance level, works better. Wong and Li’s test works best,
rejecting the null hypothesis and detecting the presence of ARCH effects for all lag windows.

Figure 9.14 Heteroscedasticity Tests

Heteroscedastic Time Series

The AUTOREG Procedure

Tests for ARCH Disturbances Based
on OLS Residuals

Order Q Pr > Q LM Pr > LM

1 0.0076 0.9304 0.0073 0.9319

2 0.0150 0.9925 0.0143 0.9929

3 0.0229 0.9991 0.0217 0.9992

4 0.0308 0.9999 0.0290 0.9999

5 0.0367 1.0000 0.0345 1.0000

6 0.0442 1.0000 0.0413 1.0000

7 0.0522 1.0000 0.0485 1.0000

8 0.0612 1.0000 0.0565 1.0000

9 0.0701 1.0000 0.0643 1.0000

10 0.0701 1.0000 0.0742 1.0000

11 0.0701 1.0000 0.0838 1.0000

12 0.0702 1.0000 0.0939 1.0000

Tests for ARCH Disturbances Based on
OLS Residuals

Order LK Pr > |LK| WL Pr > WL

1 -0.6377 0.5236 34.9984 <.0001

2 -0.8926 0.3721 72.9542 <.0001

3 -1.0979 0.2723 104.0322 <.0001

4 -1.2705 0.2039 139.9328 <.0001

5 -1.3824 0.1668 176.9830 <.0001

6 -1.5125 0.1304 200.3388 <.0001

7 -1.6385 0.1013 238.4844 <.0001

8 -1.7695 0.0768 267.8882 <.0001

9 -1.8881 0.0590 304.5706 <.0001

10 -2.2349 0.0254 326.3658 <.0001

11 -2.2380 0.0252 348.8036 <.0001

12 -2.2442 0.0248 371.9596 <.0001
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Heteroscedasticity and GARCH Models
There are several approaches to dealing with heteroscedasticity. If the error variance at different times is
known, weighted regression is a good method. If, as is usually the case, the error variance is unknown and
must be estimated from the data, you can model the changing error variance.

The generalized autoregressive conditional heteroscedasticity (GARCH) model is one approach to modeling
time series with heteroscedastic errors. The GARCH regression model with autoregressive errors is

yt D x0tˇ C �t

�t D �t � '1�t�1 � � � � � 'm�t�m

�t D
p
htet

ht D ! C

qX
iD1

˛i�
2
t�i C

pX
jD1

jht�j

et � IN.0; 1/

This model combines the mth-order autoregressive error model with the GARCH.p; q/ variance model. It is
denoted as the AR.m/-GARCH.p; q/ regression model.

The tests for the presence of ARCH effects (namely, Q and LM tests, tests from Lee and King (1993) and
tests from Wong and Li (1995)) can help determine the order of the ARCH model appropriate for the data.
For example, the Lagrange multiplier (LM) tests shown in Figure 9.13 are significant .p < 0:0001/ through
order 12, which indicates that a very high-order ARCH model is needed to model the heteroscedasticity.

The basic ARCH.q/model .p D 0/ is a short memory process in that only the most recent q squared residuals
are used to estimate the changing variance. The GARCH model .p > 0/ allows long memory processes,
which use all the past squared residuals to estimate the current variance. The LM tests in Figure 9.13 suggest
the use of the GARCH model .p > 0/ instead of the ARCH model.

The GARCH.p; q/ model is specified with the GARCH=(P=p, Q=q) option in the MODEL statement. The
basic ARCH.q/ model is the same as the GARCH.0; q/ model and is specified with the GARCH=(Q=q)
option.

The following statements fit an AR(2)-GARCH.1; 1/ model for the Y series that is regressed on TIME. The
GARCH=(P=1,Q=1) option specifies the GARCH.1; 1/ conditional variance model. The NLAG=2 option
specifies the AR(2) error process. Only the maximum likelihood method is supported for GARCH models;
therefore, the METHOD= option is not needed. The CEV= option in the OUTPUT statement stores the
estimated conditional error variance at each time period in the variable VHAT in an output data set named
OUT. The data set is the same as in the section “Testing for Heteroscedasticity” on page 329.

data c;
ul=0; ull=0;
do time = -10 to 120;

s = 1 + (time >= 60 & time < 90);
u = + 1.3 * ul - .5 * ull + s*rannor(12346);
y = 10 + .5 * time + u;
if time > 0 then output;
ull = ul; ul = u;
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end;
run;
title 'AR(2)-GARCH(1,1) model for the Y series regressed on TIME';
proc autoreg data=c;

model y = time / nlag=2 garch=(q=1,p=1) maxit=50;
output out=out cev=vhat;

run;

The results for the GARCH model are shown in Figure 9.15. (The preliminary estimates are not shown.)

Figure 9.15 AR(2)-GARCH.1; 1/ Model

AR(2)-GARCH(1,1) model for the Y series regressed on TIME

The AUTOREG Procedure

GARCH Estimates

SSE 218.861036 Observations 120

MSE 1.82384 Uncond Var 1.6299733

Log Likelihood -187.44013 Total R-Square 0.9941

SBC 408.392693 AIC 388.88025

MAE 0.97051406 AICC 389.88025

MAPE 2.75945337 HQC 396.804343

Normality Test 0.0838

Pr > ChiSq 0.9590

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 8.9301 0.7456 11.98 <.0001

time 1 0.5075 0.0111 45.90 <.0001

AR1 1 -1.2301 0.1111 -11.07 <.0001

AR2 1 0.5023 0.1090 4.61 <.0001

ARCH0 1 0.0850 0.0780 1.09 0.2758

ARCH1 1 0.2103 0.0873 2.41 0.0159

GARCH1 1 0.7375 0.0989 7.46 <.0001

The normality test is not significant (p = 0.959), which is consistent with the hypothesis that the residuals
from the GARCH model, �t=

p
ht , are normally distributed. The parameter estimates table includes rows for

the GARCH parameters. ARCH0 represents the estimate for the parameter !, ARCH1 represents ˛1, and
GARCH1 represents 1.

The following statements transform the estimated conditional error variance series VHAT to the estimated
standard deviation series SHAT. Then, they plot SHAT together with the true standard deviation S used to
generate the simulated data.

data out;
set out;
shat = sqrt( vhat );

run;

title 'Predicted and Actual Standard Deviations';
proc sgplot data=out noautolegend;
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scatter x=time y=s;
series x=time y=shat/ lineattrs=(color=black);

run;

The plot is shown in Figure 9.16.

Figure 9.16 Estimated and Actual Error Standard Deviation Series

In this example note that the form of heteroscedasticity used in generating the simulated series Y does not
fit the GARCH model. The GARCH model assumes conditional heteroscedasticity, with homoscedastic
unconditional error variance. That is, the GARCH model assumes that the changes in variance are a function
of the realizations of preceding errors and that these changes represent temporary and random departures
from a constant unconditional variance. The data-generating process used to simulate series Y, contrary to
the GARCH model, has exogenous unconditional heteroscedasticity that is independent of past errors.

Nonetheless, as shown in Figure 9.16, the GARCH model does a reasonably good job of approximating the
error variance in this example, and some improvement in the efficiency of the estimator of the regression
parameters can be expected.

The GARCH model might perform better in cases where theory suggests that the data-generating process
produces true autoregressive conditional heteroscedasticity. This is the case in some economic theories of
asset returns, and GARCH-type models are often used for analysis of financial market data.
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GARCH Models

The AUTOREG procedure supports several variations of GARCH models.

Using the TYPE= option along with the GARCH= option enables you to control the constraints placed
on the estimated GARCH parameters. You can specify unconstrained, nonnegativity-constrained (default),
stationarity-constrained, or integration-constrained models. The integration constraint produces the integrated
GARCH (IGARCH) model.

You can also use the TYPE= option to specify the exponential form of the GARCH model, called the
EGARCH model, or other types of GARCH models, namely the quadratic GARCH (QGARCH), threshold
GARCH (TGARCH), and power GARCH (PGARCH) models. The MEAN= option along with the GARCH=
option specifies the GARCH-in-mean (GARCH-M) model.

The following statements illustrate the use of the TYPE= option to fit an AR(2)-EGARCH.1; 1/ model to the
series Y. (Output is not shown.)

/*-- AR(2)-EGARCH(1,1) model --*/
proc autoreg data=a;

model y = time / nlag=2 garch=(p=1,q=1,type=exp);
run;

For more information, see the section “GARCH Models” on page 375.

Syntax: AUTOREG Procedure
The AUTOREG procedure is controlled by the following statements:

PROC AUTOREG options ;
BY variables ;
CLASS variables ;
MODEL dependent = regressors / options ;
HETERO variables / options ;
NLOPTIONS options ;
OUTPUT < OUT=SAS-data-set > < options > < keyword=name > ;
RESTRICT equation , . . . , equation ;
TEST equation , . . . , equation / option ;

At least one MODEL statement must be specified. One OUTPUT statement can follow each MODEL
statement. One HETERO statement can follow each MODEL statement.
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Functional Summary
The statements and options used with the AUTOREG procedure are summarized in Table 9.1.

Table 9.1 AUTOREG Functional Summary

Description Statement Option

Data Set Options
Specify the input data set AUTOREG DATA=
Write parameter estimates to an output data set AUTOREG OUTEST=
Include covariances in the OUTEST= data set AUTOREG COVOUT
Include errors and their derivatives in the
OUTEST= data set

AUTOREG JACOBOUT

Request that the procedure produce graphics via
the Output Delivery System

AUTOREG PLOTS=

Write predictions, residuals, and confidence limits
to an output data set

OUTPUT OUT=

Declaring the Role of Variables
Specify BY-group processing BY
Specify classification variables CLASS

Printing Control Options
Request all printing options MODEL ALL
Print transformed coefficients MODEL COEF
Print correlation matrix of the estimates MODEL CORRB
Print covariance matrix of the estimates MODEL COVB
Print DW statistics up to order j MODEL DW=j
Print marginal probability of the generalized
Durbin-Watson test statistics for large sample
sizes

MODEL DWPROB

Print the p-values for the Durbin-Watson test be
computed using a linearized approximation of the
design matrix

MODEL LDW

Print inverse of Toeplitz matrix MODEL GINV
Print the Godfrey LM serial correlation test MODEL GODFREY=
Print details at each iteration step MODEL ITPRINT
Print the Durbin t statistic MODEL LAGDEP
Print the Durbin h statistic MODEL LAGDEP=
Print the log-likelihood value of the regression
model

MODEL LOGLIKL

Print the Jarque-Bera normality test MODEL NORMAL
Print the tests for the absence of ARCH effects MODEL ARCHTEST=
Print BDS tests for independence MODEL BDS=
Print rank version of von Neumann ratio test for
independence

MODEL VNRRANK=
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Table 9.1 continued

Description Statement Option

Print runs test for independence MODEL RUNS=
Print the turning point test for independence MODEL TP=
Print the Lagrange multiplier test HETERO TEST=LM
Print Bai-Perron tests for multiple structural
changes

MODEL BP=

Print the Chow test for structural change MODEL CHOW=
Print the predictive Chow test for structural
change

MODEL PCHOW=

Suppress printed output MODEL NOPRINT
Print partial autocorrelations MODEL PARTIAL
Print Ramsey’s RESET test MODEL RESET
Print augmented Dickey-Fuller tests for
stationarity or unit roots

MODEL STATIONARITY=(ADF=)

Print ERS tests for stationarity or unit roots MODEL STATIONARITY=(ERS=)
Print KPSS tests or Shin tests for stationarity or
cointegration

MODEL STATIONARITY=(KPSS=)

Print Ng-Perron tests for stationarity or unit roots MODEL STATIONARITY=(NP=)
Print Phillips-Perron tests for stationarity or unit
roots

MODEL STATIONARITY=(PHILLIPS=)

Print tests of linear hypotheses TEST
Specify the test statistics to use TEST TYPE=
Print the uncentered regression R2 MODEL URSQ

Options to Control the Optimization Process
Specify the optimization options NLOPTIONS See Chapter 7, “Nonlinear

Optimization Methods.”

Model Estimation Options
Specify the order of autoregressive process MODEL NLAG=
Center the dependent variable MODEL CENTER
Suppress the intercept parameter MODEL NOINT
Remove nonsignificant AR parameters MODEL BACKSTEP
Specify significance level for BACKSTEP MODEL SLSTAY=
Specify the convergence criterion MODEL CONVERGE=
Specify the type of covariance matrix MODEL COVEST=
Set the initial values of parameters used by the
iterative optimization algorithm

MODEL INITIAL=

Specify iterative Yule-Walker method MODEL ITER
Specify maximum number of iterations MODEL MAXITER=
Specify the estimation method MODEL METHOD=
Use only first sequence of nonmissing data MODEL NOMISS
Specify the optimization technique MODEL OPTMETHOD=
Imposes restrictions on the regression estimates RESTRICT
Estimate and test heteroscedasticity models HETERO
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Table 9.1 continued

Description Statement Option

GARCH Related Options
Specify order of GARCH process MODEL GARCH=(Q=,P=)
Specify type of GARCH model MODEL GARCH=(. . . ,TYPE=)
Specify various forms of the GARCH-M model MODEL GARCH=(. . . ,MEAN=)
Suppress GARCH intercept parameter MODEL GARCH=(. . . ,NOINT)
Specify the trust region method MODEL GARCH=(. . . ,TR)
Estimate the GARCH model for the conditional t
distribution

MODEL GARCH=(. . . ) DIST=

Estimate the start-up values for the conditional
variance equation

MODEL GARCH=(. . . ,STARTUP=)

Specify the functional form of the
heteroscedasticity model

HETERO LINK=

Specify that the heteroscedasticity model does not
include the unit term

HETERO NOCONST

Impose constraints on the estimated parameters in
the heteroscedasticity model

HETERO COEF=

Impose constraints on the estimated standard
deviation of the heteroscedasticity model

HETERO STD=

Output conditional error variance OUTPUT CEV=
Output conditional prediction error variance OUTPUT CPEV=
Specify the flexible conditional variance form of
the GARCH model

HETERO

Output Control Options
Specify confidence limit size OUTPUT ALPHACLI=
Specify confidence limit size for structural
predicted values

OUTPUT ALPHACLM=

Specify the significance level for the upper and
lower bounds of the CUSUM and CUSUMSQ
statistics

OUTPUT ALPHACSM=

Specify the name of a variable to contain the
values of the Theil’s BLUS residuals

OUTPUT BLUS=

Output the value of the error variance �2t OUTPUT CEV=
Output transformed intercept variable OUTPUT CONSTANT=
Specify the name of a variable to contain the
CUSUM statistics

OUTPUT CUSUM=

Specify the name of a variable to contain the
CUSUMSQ statistics

OUTPUT CUSUMSQ=

Specify the name of a variable to contain the
upper confidence bound for the CUSUM statistic

OUTPUT CUSUMUB=

Specify the name of a variable to contain the
lower confidence bound for the CUSUM statistic

OUTPUT CUSUMLB=
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Table 9.1 continued

Description Statement Option

Specify the name of a variable to contain the
upper confidence bound for the CUSUMSQ
statistic

OUTPUT CUSUMSQUB=

Specify the name of a variable to contain the lower
confidence bound for the CUSUMSQ statistic

OUTPUT CUSUMSQLB=

Output lower confidence limit OUTPUT LCL=
Output lower confidence limit for structural
predicted values

OUTPUT LCLM=

Output predicted values OUTPUT P=
Output predicted values of structural part OUTPUT PM=
Output residuals OUTPUT R=
Output residuals from structural predictions OUTPUT RM=
Specify the name of a variable to contain the part
of the predictive error variance (vt )

OUTPUT RECPEV=

Specify the name of a variable to contain
recursive residuals

OUTPUT RECRES=

Output standard errors for predicted values OUTPUT SE=
Output standard errors for structural predicted
values

OUTPUT SEM=

Output transformed variables OUTPUT TRANSFORM=
Output upper confidence limit OUTPUT UCL=
Output upper confidence limit for structural
predicted values

OUTPUT UCLM=

PROC AUTOREG Statement
PROC AUTOREG options ;

The following options can be used in the PROC AUTOREG statement:

DATA=SAS-data-set
specifies the input SAS data set. If you do not specify this option, PROC AUTOREG uses the most
recently created SAS data set.

OUTEST=SAS-data-set
writes the parameter estimates to an output data set. For information about the contents of this data set,
see the section “OUTEST= Data Set” on page 415.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if you specify the OUTEST= option.
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JACOBOUT
writes the errors �t and their derivatives with respect to regression parameters to the data set that is
specified in the OUTEST= option. The JACOBOUT option is valid only if you specify the OUTEST=
option. The errors are written in a column labeled “Parameter Estimate for y”, and the derivatives with
respect to the coefficient of a regression variable x are written in a column labeled “Parameter Estimate
for x”. Note that both the errors and their derivatives appear in the gradient vector of the unconditional
least squares objective function S, and hence you can use them to compute the Jacobian matrix.

PLOTS<(global-plot-options)> < = (specific-plot-options)>
requests that the AUTOREG procedure produce statistical graphics via the Output Delivery System,
provided that the ODS GRAPHICS statement has been specified. For general information about ODS
Graphics, see Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide). The global-
plot-options apply to all relevant plots generated by the AUTOREG procedure. The global-plot-options
supported by the AUTOREG procedure follow.

Global Plot Options

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL | UNPACK displays each graph separately. (By default, some graphs can appear
together in a single panel.)

Specific Plot Options

ALL requests that all plots appropriate for the particular analysis be produced.

ACF produces the autocorrelation function plot.

IACF produces the inverse autocorrelation function plot of residuals.

PACF produces the partial autocorrelation function plot of residuals.

FITPLOT plots the predicted and actual values.

COOKSD produces the Cook’s D plot.

QQ Q-Q plot of residuals.

RESIDUAL | RES plots the residuals.

STUDENTRESIDUAL plots the studentized residuals. For the models with the NLAG= or GARCH=
options in the MODEL statement or with the HETERO statement, this option is
replaced by the STANDARDRESIDUAL option.

STANDARDRESIDUAL plots the standardized residuals.

WHITENOISE plots the white noise probabilities.

RESIDUALHISTOGRAM | RESIDHISTOGRAM plots the histogram of residuals.

NONE suppresses all plots.

In addition, any of the following MODEL statement options can be specified in the PROC AUTOREG
statement, which is equivalent to specifying the option for every MODEL statement: ALL, ARCHTEST,
BACKSTEP, CENTER, COEF, CONVERGE=, CORRB, COVB, DW=, DWPROB, GINV, ITER, ITPRINT,
MAXITER=, METHOD=, NOINT, NOMISS, NOPRINT, and PARTIAL.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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BY Statement
BY variables ;

A BY statement can be used with PROC AUTOREG to obtain separate analyses on observations in groups
defined by the BY variables.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

In PROC AUTOREG, the CLASS statement enables you to output classification variables to a data set that
contains a copy of the original data.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats to
group values into levels. For more information, see the discussion of the FORMAT procedure in Base SAS
Procedures Guide.

MODEL Statement
MODEL dependent = regressors / options ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. If no independent variables are specified in the MODEL statement, only the mean is fitted. (This is a
way to obtain autocorrelations of a series.)

Models can be given labels of up to eight characters. Model labels are used in the printed output to identify
the results for different models. The model label is specified as follows:

label : MODEL . . . ;

The following options can be used in the MODEL statement after a slash (/).

CENTER
centers the dependent variable by subtracting its mean and suppresses the intercept parameter from the
model. This option is valid only when the model does not have regressors (explanatory variables).

NOINT
suppresses the intercept parameter.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Autoregressive Error Options

NLAG=number

NLAG=(number-list)
specifies the order of the autoregressive error process or the subset of autoregressive error lags to be
fitted. Note that NLAG=3 is the same as NLAG=(1 2 3). If the NLAG= option is not specified, PROC
AUTOREG does not fit an autoregressive model.

GARCH Estimation Options

DIST=value
specifies the distribution assumed for the error term in GARCH-type estimation. If no GARCH=
option is specified, the option is ignored. If EGARCH is specified, the distribution is always the normal
distribution. The values of the DIST= option are as follows:

T specifies Student’s t distribution.

NORMAL specifies the standard normal distribution. The default is DIST=NORMAL.

GARCH=(option-list)
specifies a GARCH-type conditional heteroscedasticity model. The GARCH= option in the MODEL
statement specifies the family of ARCH models to be estimated. The GARCH.1; 1/ regression model
is specified in the following statement:

model y = x1 x2 / garch=(q=1,p=1);

When you want to estimate the subset of ARCH terms, such as ARCH.1; 3/, you can write the SAS
statement as follows:

model y = x1 x2 / garch=(q=(1 3));

With the TYPE= option, you can specify various GARCH models. The IGARCH.2; 1/ model without
trend in variance is estimated as follows:

model y = / garch=(q=2,p=1,type=integ,noint);

The following options can be used in the GARCH=( ) option. The options are listed within parentheses
and separated by commas.

Q=number

Q=(number-list)
specifies the order of the process or the subset of ARCH terms to be fitted.
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P=number

P=(number-list)
specifies the order of the process or the subset of GARCH terms to be fitted. If only the P= option is
specified, P= option is ignored and Q=1 is assumed.

TYPE=value
specifies the type of GARCH model. The values of the TYPE= option are as follows:

EXP | EGARCH specifies the exponential GARCH, or EGARCH, model.

INTEGRATED | IGARCH specifies the integrated GARCH, or IGARCH, model.

NELSON | NELSONCAO specifies the Nelson-Cao inequality constraints.

NOCONSTRAINT specifies the GARCH model with no constraints.

NONNEG specifies the GARCH model with nonnegativity constraints.

POWER | PGARCH specifies the power GARCH, or PGARCH, model.

QUADR | QUADRATIC | QGARCH specifies the quadratic GARCH, or QGARCH, model.

STATIONARY constrains the sum of GARCH coefficients to be less than 1.

THRES | THRESHOLD | TGARCH | GJR | GJRGARCH specifies the threshold GARCH, or
TGARCH, model.

The default is TYPE=NELSON.

MEAN=value
specifies the functional form of the GARCH-M model. You can specify the following values:

LINEAR specifies the linear function:

yt D x0tˇ C ıht C �t

LOG specifies the log function:

yt D x0tˇ C ı ln.ht /C �t

SQRT specifies the square root function:

yt D x0tˇ C ı
p
ht C �t

NOINT
suppresses the intercept parameter in the conditional variance model. This option is valid only when
you also specify the TYPE=INTEG option.

STARTUP=MSE | ESTIMATE
requests that the positive constant c for the start-up values of the GARCH conditional error variance
process be estimated. By default, or if you specify STARTUP=MSE, the value of the mean squared
error is used as the default constant.
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TR
uses the trust region method for GARCH estimation. This algorithm is numerically stable, although
computation is expensive. The double quasi-Newton method is the default.

Printing Options

ALL
requests all printing options.

ARCHTEST

ARCHTEST=(option-list)
specifies tests for the absence of ARCH effects. The following options can be used in the
ARCHTEST=( ) option. The options are listed within parentheses and separated by commas.

QLM | QLMARCH requests the Q and Engle’s LM tests.

LK | LKARCH requests Lee and King’s ARCH tests.

WL | WLARCH requests Wong and Li’s ARCH tests.

ALL requests all ARCH tests, namely Q and Engle’s LM tests, Lee and King’s tests,
and Wong and Li’s tests.

If ARCHTEST is defined without additional suboptions, it requests the Q and Engle’s LM tests. That
is, the statement

model return = x1 x2 / archtest;

is equivalent to the statement

model return = x1 x2 / archtest=(qlm);

The following statement requests Lee and King’s tests and Wong and Li’s tests:

model return = / archtest=(lk,wl);

BDS

BDS=(option-list)
specifies Brock-Dechert-Scheinkman (BDS) tests for independence. The following options can be
used in the BDS=( ) option. The options are listed within parentheses and separated by commas.

M=number
specifies the maximum number of the embedding dimension. The BDS tests with embedding
dimension from 2 to M are calculated. M must be an integer between 2 and 20. The default value
of the M= suboption is 20.
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D=number
specifies the parameter to determine the radius for BDS test. The BDS test sets up the radius as
r D D � � , where � is the standard deviation of the time series to be tested. By default, D=1.5.

PVALUE=DIST | SIM
specifies the way to calculate the p-values. By default or if PVALUE=DIST is specified, the
p-values are calculated according to the asymptotic distribution of BDS statistics (that is, the
standard normal distribution). Otherwise, for samples of size less than 500, the p-values are
obtained though Monte Carlo simulation.

Z=value
specifies the type of the time series (residuals) to be tested. You can specify the following values:

Y specifies the regressand.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals over the
square root of the conditional variance.

The default is Z=Y.

If BDS is defined without additional suboptions, all suboptions are set as default values. That is, the
following two statements are equivalent:

model return = x1 x2 / nlag=1 BDS;

model return = x1 x2 / nlag=1 BDS=(M=20, D=1.5, PVALUE=DIST, Z=Y);

To do the specification check of a GARCH(1,1) model, you can write the SAS statement as follows:

model return = / garch=(p=1,q=1) BDS=(Z=SR);

BP

BP=(option-list)
specifies Bai-Perron (BP) tests for multiple structural changes, introduced in Bai and Perron (1998).
You can specify the following options in parentheses and separated by commas.

EPS=number
specifies the minimum length of regime; that is, if EPS=", then for any i; i D 1; : : : ;M ,
Ti � Ti�1 � T", where T is the sample size; M is the number of breaks specified in the M=
option; .T1 : : : TM / are the break dates; and T0 D 0 and TMC1 D T . The restriction that
.M C 1/" � 1 is required. By default, EPS=0.05.
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ETA=number
specifies that the second method is to be used in the calculation of the supF.l C 1jl/ test, and
the minimum length of regime for the new additional break date is .Ti � Ti�1/� if ETA=� and
the new break date is in regime i for the given break dates .T1 : : : Tl/. The default value of the
ETA= suboption is the missing value; that is, the first method is to be used in the calculation
of the supF.l C 1jl/ test and, no matter which regime the new break date is in, the minimum
length of regime for the new additional break date is T" when EPS=".

HAC<(option-list)>
specifies that the heteroscedasticity- and autocorrelation-consistent estimator be applied in the
estimation of the variance covariance matrix and the confidence intervals of break dates. When
you specify this option, you can specify the following options within parentheses and separated
by commas:

KERNEL=value
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QUADRATICSPECTRAL | QS specifies the quadratic spectral kernel function.

TRUNCATED specifies the truncated kernel function.

TUKEYHANNING | TUKEY | TH specifies the Tukey-Hanning kernel function.

By default, KERNEL=QUADRATICSPECTRAL.

KERNELLB=number
specifies the lower bound of the kernel weight value. Any kernel weight less than this lower
bound is regarded as zero, which accelerates the calculation for big samples, especially for
the quadratic spectral kernel. By default, KERNELLB=0.

BANDWIDTH=value
specifies the fixed bandwidth value or bandwidth selection method to use in the kernel
function. You can specify the following values:

ANDREWS91 | ANDREWS
specifies the Andrews (1991) bandwidth selection method.

NEWEYWEST94 | NW94 <(C=number )>
specifies the Newey and West (1994) bandwidth selection method. You can specify the
C= option in parentheses to calculate the lag selection parameter; the default is C=12.

SAMPLESIZE | SS <(option-list)>
specifies that the bandwidth be calculated according to the following equation, based on
the sample size:

b D T r C c

where b is the bandwidth parameter and T is the sample size, and  , r, and c are values
specified by the following options within parentheses and separated by commas.
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GAMMA=number
specifies the coefficient  in the equation. The default is  D 0:75.

RATE=number
specifies the growth rate r in the equation. The default is r D 0:3333.

CONSTANT=number
specifies the constant c in the equation. The default is c D 0:5.

INT
specifies that the bandwidth parameter must be integer; that is, b D bT r C cc,
where bxc denotes the largest integer less than or equal to x.

number
specifies the fixed value of the bandwidth parameter.

The default is BANDWIDTH=ANDREWS91.

PREWHITENING
specifies that prewhitening is required in the calculation.

In the calculation of the HAC estimator, the adjustment for degrees of freedom is always
applied. For more information about the HAC estimator, see the section “Heteroscedasticity- and
Autocorrelation-Consistent Covariance Matrix Estimator” on page 381. For more information
about the HAC estimator, see the section “Heteroscedasticity- and Autocorrelation-Consistent
Covariance Matrix Estimator” on page 381.

HE
specifies that the errors are assumed to have heterogeneous distribution across regimes in the
estimation of covariance matrix.

HO
specifies that �is in the calculation of confidence intervals of break dates are different across
regimes.

HQ
specifies that Qis in the calculation of confidence intervals of break dates are different across
regimes.

HR
specifies that the regressors are assumed to have heterogeneous distribution across regimes in the
estimation of covariance matrix.

M=number
specifies the number of breaks. For a given M, the following tests are to be performed: (1) the
supF tests of no break versus the alternative hypothesis that there are i breaks, i D 1; : : : ;M ;
(2) the UDmaxF and WDmaxF double maximum tests of no break versus the alternative
hypothesis that there are unknown number of breaks up to M; and (3) the supF.l C 1jl/ tests of
l versus l C 1 breaks, l D 0; : : : ;M . The restriction that .M C 1/" � 1 is required, where " is
specified in the EPS= option. By default, M=5.
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NTHREADS=number
specifies the number of threads to be used for parallel computing. The default is the number of
CPUs available.

P=number
specifies the number of covariates whose coefficients are unchanged over time in the partial
structural change model. The first P=p independent variables that are specified in the MODEL
statement have unchanged coefficients; the rest of the independent variables have coefficients that
change across regimes. The default is P=0; that is, the pure structural change model is estimated.

PRINTEST=ALL | BIC | LWZ | NONE | SEQ<(number)> | number
specifies in which structural change models the parameter estimates are to be printed. You can
specify the following option values:

ALL specifies that the parameter estimates in all structural change models with m breaks,
m D 0; : : : ;M , be printed.

BIC specifies that the parameter estimates in the structural change model that minimizes
the BIC information criterion be printed.

LWZ specifies that the parameter estimates in the structural change model that minimizes
the LWZ information criterion be printed.

NONE specifies that none of the parameter estimates be printed.

SEQ specifies that the parameter estimates in the structural change model that is chosen by
sequentially applying supF.lC1jl/ tests, l from 0 to M, be printed. If you specify the
SEQ option, you can also specify the significance level in the parentheses, for example,
SEQ(0.10). The first l such that the p-value of supF.l C 1jl/ test is greater than the
significance level is selected as the number of breaks in the structural change model.
By default, the significance level 5% is used for the SEQ option; that is, specifying
SEQ is equivalent to specifying SEQ(0.05).

number specifies that the parameter estimates in the structural change model with the specified
number of breaks be printed. If the specified number is greater than the number
specified in the M= option, none of the parameter estimates are printed; that is, it is
equivalent to specifying the NONE option.

The default is PRINTEST=ALL.

If you define the BP option without additional suboptions, all suboptions are set as default values. That
is, the following two statements are equivalent:

model y = z1 z2 / BP;

model y = z1 z2 / BP=(M=5, P=0, EPS=0.05, PRINTEST=ALL);

To apply the HAC estimator with the Bartlett kernel function and print only the parameter estimates
in the structural change model selected by the LWZ information criterion, you can write the SAS
statement as follows:
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model y = z1 z2 / BP=(HAC(KERNEL=BARTLETT), PRINTEST=LWZ);

To specify a partial structural change model, you can write the SAS statement as follows:

model y = x1 x2 x3 z1 z2 / NOINT BP=(P=3);

CHOW=( obs1 . . . obsn )
computes Chow tests to evaluate the stability of the regression coefficient. The Chow test is also called
the analysis-of-variance test.

Each value obsi listed on the CHOW= option specifies a break point of the sample. The sample is
divided into parts at the specified break point, with observations before obsi in the first part and obsi
and later observations in the second part, and the fits of the model in the two parts are compared to
whether both parts of the sample are consistent with the same model.

The break points obsi refer to observations within the time range of the dependent variable, ignoring
missing values before the start of the dependent series. Thus, CHOW=20 specifies the 20th observation
after the first nonmissing observation for the dependent variable. For example, if the dependent variable
Y contains 10 missing values before the first observation with a nonmissing Y value, then CHOW=20
actually refers to the 30th observation in the data set.

When you specify the break point, you should note the number of presample missing values.

COEF
prints the transformation coefficients for the first p observations. These coefficients are formed from a
scalar multiplied by the inverse of the Cholesky root of the Toeplitz matrix of autocovariances.

CORRB
prints the estimated correlations of the parameter estimates.

COVB
prints the estimated covariances of the parameter estimates.

COVEST=OP | HESSIAN | QML | HC0 | HC1 | HC2 | HC3 | HC4 | HAC <(. . . )> | NEWEYWEST <(. . . )>
specifies the type of covariance matrix. You can specify the following values (by default,
COVEST=OP):

OP
uses the outer product matrix to compute the covariance matrix of the parameter estimates. When
the final model is an OLS or AR error model, this option is ignored; the method to calculate
the estimate of covariance matrix is illustrated in the section “Variance Estimates and Standard
Errors” on page 373.

HESSIAN
produces the covariance matrix by using the Hessian matrix. When the final model is an OLS or
AR error model, this option is ignored; the method to calculate the estimate of covariance matrix
is illustrated in the section “Variance Estimates and Standard Errors” on page 373.
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QML
computes the quasi–maximum likelihood estimates. This option is equivalent to COVEST=HC0.
When the final model is an OLS or AR error model, this option is ignored; the method to calculate
the estimate of covariance matrix is illustrated in the section “Variance Estimates and Standard
Errors” on page 373.

HCn
calculates the heteroscedasticity-consistent covariance matrix estimator (HCCME) that corre-
sponds to n, where n = 0, 1, 2, 3, 4.

HAC<(options)>
specifies the heteroscedasticity- and autocorrelation-consistent (HAC) covariance matrix esti-
mator. When you specify this option, you can specify the following options in parentheses and
separate them with commas:

KERNEL=value
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QUADRATICSPECTRAL | QS specifies the quadratic spectral kernel function.

TRUNCATED specifies the truncated kernel function.

TUKEYHANNING | TUKEY | TH specifies the Tukey-Hanning kernel function.

By default, KERNEL=QUADRATICSPECTRAL.

KERNELLB=number
specifies the lower bound of the kernel weight value. Any kernel weight less than number
is regarded as zero, which accelerates the calculation for big samples, especially for the
quadratic spectral kernel. By default, KERNELLB=0.

BANDWIDTH=value
specifies the fixed bandwidth value or bandwidth selection method to use in the kernel
function. You can specify the following values:

ANDREWS91 | ANDREWS specifies the Andrews (1991) bandwidth selection method.

NEWEYWEST94 | NW94 <(C=number )> specifies the Newey and West (1994) band-
width selection method. You can specify the C= option in the parentheses
to calculate the lag selection parameter; the default is C=12.

SAMPLESIZE | SS <(option-list)> calculates the bandwidth according to the following
equation, based on the sample size:

b D T r C c

where b is the bandwidth parameter; T is the sample size; and  , r, and
c are values specified by the following options within parentheses and
separated by commas.
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GAMMA=number
specifies the coefficient  in the equation. The default is  D 0:75.

RATE=number
specifies the growth rate r in the equation. The default is r D 0:3333.

CONSTANT=number
specifies the constant c in the equation. The default is c D 0:5.

INT
specifies that the bandwidth parameter must be integer; that is, b D
bT r C cc, where bxc denotes the largest integer less than or equal to
x.

number specifies the fixed value of the bandwidth parameter.

By default, BANDWIDTH=ANDREWS91.

PREWHITENING
specifies that prewhitening is required in the calculation.

ADJUSTDF
specifies that the adjustment for degrees of freedom be required in the calculation.

NEWEYWEST<(options)>
specifies the well-known Newey-West estimator, which is a special HAC estimator with (1) the
Bartlett kernel; (2) the bandwidth parameter determined by the equation based on the sample
size, b D bT r C cc; and (3) no adjustment for degrees of freedom and no prewhitening. By
default, the bandwidth parameter for the Newey-West estimator is

�
0:75T 0:3333 C 0:5

˘
, as

shown in equation (15.17) in Stock and Watson (2002). You can specify the following options in
parentheses and separate them with commas:

GAMMA=number
specifies the coefficient  in the equation. The default is  D 0:75.

RATE=number
specifies the growth rate r in the equation. The default is r D 0:3333.

CONSTANT=number
specifies the constant c in the equation. The default is c D 0:5.

The following two statements are equivalent:

model y = x / COVEST=NEWEYWEST;

model y = x / COVEST=HAC(KERNEL=BARTLETT,
BANDWIDTH=SAMPLESIZE(GAMMA=0.75,

RATE=0.3333,
CONSTANT=0.5,
INT));

Another popular sample-size-dependent bandwidth,
j
T 1=4 C 1:5

k
, as mentioned in Newey and

West (1987), can be specified by the following statement:
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model y = x / COVEST=NEWEYWEST(GAMMA=1,RATE=0.25,CONSTANT=1.5);

For more information about the HC0 to HC4, HAC, and Newey-West estimators, see the section
“Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrix Estimator” on page 381. By
default, COVEST=OP.

DW=n
prints Durbin-Watson statistics up to the order n. When the LAGDEP option is specified, the Durbin-
Watson statistic is not printed unless the DW= option is explicitly specified. By default, DW=1.

DWPROB
now produces p-values for the generalized Durbin-Watson test statistics for large sample sizes. Previ-
ously, the Durbin-Watson probabilities were calculated only for small sample sizes. The new method
of calculating Durbin-Watson probabilities is based on the algorithm of Ansley, Kohn, and Shively
(1992).

GINV
prints the inverse of the Toeplitz matrix of autocovariances for the Yule-Walker solution. For more
information, see the section “Computational Methods” on page 372.

GODFREY

GODFREY=r
produces Godfrey’s general Lagrange multiplier test against ARMA errors.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective function is the
full log-likelihood function for the maximum likelihood method, while the error sum of squares is
produced as the objective function of unconditional least squares. For the ML method, the ITPRINT
option prints the value of the full log-likelihood function, not the concentrated likelihood.

LAGDEP

LAGDV
prints the Durbin t statistic, which is used to detect residual autocorrelation in the presence of lagged
dependent variables. For more information, see the section “Generalized Durbin-Watson Tests” on
page 401.

LAGDEP=name

LAGDV=name
prints the Durbin h statistic for testing the presence of first-order autocorrelation when regressors
contain the lagged dependent variable whose name is specified as LAGDEP=name. If the Durbin
h statistic cannot be computed, the asymptotically equivalent t statistic is printed instead. For more
information, see the section “Generalized Durbin-Watson Tests” on page 401.

When the regression model contains several lags of the dependent variable, specify the lagged dependent
variable for the smallest lag in the LAGDEP= option. For example:

model y = x1 x2 ylag2 ylag3 / lagdep=ylag2;
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LOGLIKL
prints the log-likelihood value of the regression model, assuming normally distributed errors.

NOPRINT
suppresses all printed output.

NORMAL
specifies the Jarque-Bera’s normality test statistic for regression residuals.

PARTIAL
prints partial autocorrelations.

PCHOW=( obs1 . . . obsn )
computes the predictive Chow test. The form of the PCHOW= option is the same as the form of the
CHOW= option; see the discussion of the CHOW= option.

RESET
produces Ramsey’s RESET test statistics. The RESET option tests the null model

yt D xtˇ C ut

against the alternative

yt D xtˇ C
pX
jD2

�j Oy
j
t C ut

where Oyt is the predicted value from the OLS estimation of the null model. The RESET option
produces three RESET test statistics for p D 2, 3, and 4.

RUNS

RUNS=(Z=value)
specifies the runs test for independence. The Z= suboption specifies the type of the time series or
residuals to be tested. The values of the Z= suboption are as follows:

Y specifies the regressand. The default is Z=Y.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals over the square
root of the conditional variance.

STATIONARITY=(test< =(test-options) > < , test< =(test-options) > > . . . < , test< =(test-options) > >)
specifies tests of stationarity or unit roots. You can specify one of more of the following tests along
with their test-options. For example, the following statement tests the stationarity of a variable by
using the augmented Dickey-Fuller unit root test and the KPSS test in which the quadratic spectral
kernel is applied:
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model y= / stationarity = (adf, kpss=(kernel=qs));

STATIONARITY=(ADF)

STATIONARITY=(ADF=(value . . . value)
produces the augmented Dickey-Fuller unit root test (Dickey and Fuller 1979). As in the
Phillips-Perron test, three regression models can be specified for the null hypothesis for the
augmented Dickey-Fuller test (zero mean, single mean, and trend). These models assume that
the disturbances are distributed as white noise. The augmented Dickey-Fuller test can account
for the serial correlation between the disturbances in some way. The model, with the time trend
specification for example, is

yt D �C �yt�1 C ıt C 1�yt�1 C � � � C p�yt�p C ut

This formulation has the advantage that it can accommodate higher-order autoregressive processes
in ut . The test statistic follows the same distribution as the Dickey-Fuller test statistic. For more
information, see the section “PROBDF Function for Dickey-Fuller Tests” on page 160.

In the presence of regressors, the ADF option tests the cointegration relation between the
dependent variable and the regressors. Following Engle and Granger (1987), a two-step estimation
and testing procedure is carried out, in a fashion similar to the Phillips-Ouliaris test. The OLS
residuals of the regression in the MODEL statement are used to compute the t statistic of the
augmented Dickey-Fuller regression in a second step. Three cases arise based on which type of
deterministic terms are included in the first step of regression. Only the constant term and linear
trend cases are practically useful (Davidson and MacKinnon 1993, page 721), and therefore are
computed and reported. The test statistic, as shown in Phillips and Ouliaris (1990), follows the
same distribution as the OZt statistic in the Phillips-Ouliaris cointegration test. The asymptotic
distribution is tabulated in tables IIa–IIc of Phillips and Ouliaris (1990), and the finite sample
distribution is obtained in Table 2 and Table 3 in Engle and Yoo (1987) by Monte Carlo simulation.

STATIONARITY=(ERS)

STATIONARITY=(ERS=(value)

STATIONARITY=(NP)

STATIONARITY=(NP=(value)
provides a class of efficient unit root tests, because they reduce the size distortion and improve
the power compared with traditional unit root tests such as the augmented Dickey-Fuller and
Phillips-Perron tests. Two test statistics are reported with the ERS= suboption: the point optimal
test and the DF-GLS test, which are originally proposed in Elliott, Rothenberg, and Stock (1996).
Elliott, Rothenberg, and Stock suggest using the Schwarz Bayesian information criterion to select
the optimal lag length in the augmented Dickey-Fuller regression. The maximum lag length can
be specified by ERS=value. The minimum lag length is 3 and the default maximum lag length is
8.

Six tests, namely MZ˛, MSB , MZt , the modified point optimal test, the point optimal test,
and the DF-GLS test, which are discussed in Ng and Perron (2001), are reported with the NP=
suboption. Ng and Perron suggest using the modified AIC to select the optimal lag length in the
augmented Dickey-Fuller regression by using GLS detrended data. The maximum lag length can
be specified by NP=value. The default maximum lag length is 8. The maximum lag length in the
ERS tests and Ng-Perron tests cannot exceed T=2 � 2, where T is the sample size.
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STATIONARITY=(KPSS)

STATIONARITY=(KPSS=(KERNEL=(type))

STATIONARITY=(KPSS=(KERNEL=(type TRUNCPOINTMETHOD))
produce the Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS) unit root test or Shin (1994)
cointegration test.

Unlike the null hypothesis of the Dickey-Fuller and Phillips-Perron tests, the null hypothesis of
the KPSS states that the time series is stationary. As a result, it tends to reject a random walk
more often. If the model does not have an intercept, the KPSS option performs the KPSS test
for three null hypothesis cases: zero mean, single mean, and deterministic trend. Otherwise, it
reports the single mean and deterministic trend only. It computes a test statistic and provides
p-value (Hobijn, Franses, and Ooms 2004) for the hypothesis that the random walk component
of the time series is equal to zero in the following cases (for more information, see the section
“Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test and Shin Cointegration Test”
on page 396):

Zero mean computes the KPSS test statistic based on the zero mean autoregressive model.

yt D ut

Single mean computes the KPSS test statistic based on the autoregressive model with a
constant term.

yt D �C ut

Trend computes the KPSS test statistic based on the autoregressive model with
constant and time trend terms.

yt D �C ıt C ut

This test depends on the long-run variance of the series being defined as

�2T l D
1

T

TX
iD1

Ou2i C
2

T

lX
sD1

wsl

TX
tDsC1

Out Out�s

where wsl is a kernel, s is a maximum lag (truncation point), and Out are OLS residuals or original
data series. You can specify two types of the kernel:

KERNEL=NW | BART Newey-West (or Bartlett) kernel

w.s; l/ D 1 �
s

l C 1

KERNEL=QS Quadratic spectral kernel

w.s=l/ D w.x/ D
25

12�2x2

�
sin .6�x=5/
6�x=5

� cos .6�x=5/
�

You can set the truncation point l by using three different methods:
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SCHW=c Schwert maximum lag formula

l D max

(
1;floor

"
c

�
T

100

�1=4#)

LAG=l LAG=l manually defined number of lags.

AUTO Automatic bandwidth selection (Hobijn, Franses, and Ooms 2004) (for more
information, see the section “Kwiatkowski, Phillips, Schmidt, and Shin
(KPSS) Unit Root Test and Shin Cointegration Test” on page 396).

If STATIONARITY=KPSS is defined without additional parameters, the Newey-West kernel is
used. For the Newey-West kernel the default is the Schwert truncation point method with c D 12.
For the quadratic spectral kernel the default is AUTO.

The KPSS test can be used in general time series models because its limiting distribution is
derived in the context of a class of weakly dependent and heterogeneously distributed data. The
limiting probability for the KPSS test is computed assuming that error disturbances are normally
distributed. The p-values that are reported are based on the simulation of the limiting probability
for the KPSS test.

To test for stationarity of a variable, y, by using default KERNEL=NW and SCHW=12, you can
use the following statements:

/*-- test for stationarity of regression residuals --*/
proc autoreg data=a;

model y= / stationarity = (KPSS);
run;

To test for stationarity of a variable, y, by using quadratic spectral kernel and automatic bandwidth
selection, you can use the following statements:

/*-- test for stationarity using quadratic
spectral kernel and automatic bandwidth selection --*/

proc autoreg data=a;
model y= /
stationarity = (KPSS=(KERNEL=QS AUTO));

run;

If there are regressors in the MODEL statement except for the intercept, the Shin (1994) cointe-
gration test, an extension of the KPSS test, is carried out. The limiting distribution of the tests,
and then the reported p-values, are different from those in the KPSS tests. For more information,
see the section “Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test and Shin
Cointegration Test” on page 396.

STATIONARITY=(PHILLIPS)

STATIONARITY=(PHILLIPS=(value . . . value)
produces the Phillips-Perron unit root test when there are no regressors in the MODEL state-
ment. When the model includes regressors, the PHILLIPS option produces the Phillips-Ouliaris
cointegration test. The PHILLIPS option can be abbreviated as PP.
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The PHILLIPS option performs the Phillips-Perron test for three null hypothesis cases: zero
mean, single mean, and deterministic trend. For each case, the PHILLIPS option computes two
test statistics, OZ� and OZt—in the original paper, Phillips and Perron (1988), they are referred to as
OZ˛ and OZt )—and reports their p-values. These test statistics have the same limiting distributions
as the corresponding Dickey-Fuller tests.

The three types of the Phillips-Perron unit root test reported by the PHILLIPS option are as
follows:

Zero mean computes the Phillips-Perron test statistic based on the zero mean autoregres-
sive model:

yt D �yt�1 C ut

Single mean computes the Phillips-Perron test statistic based on the autoregressive model
with a constant term:

yt D �C �yt�1 C ut

Trend computes the Phillips-Perron test statistic based on the autoregressive model
with constant and time trend terms:

yt D �C �yt�1 C ıt C ut

You can specify several truncation points l for weighted variance estimators by using the
PHILLIPS=(l1 : : : ln) specification. The statistic for each truncation point l is computed as

�2T l D
1

T

TX
iD1

Ou2i C
2

T

lX
sD1

wsl

TX
tDsC1

Out Out�s

where wsl D 1 � s=.l C 1/ and Out are OLS residuals. If you specify the PHILLIPS option
without specifying truncation points, the default truncation point is max.1;

p
T =5/, where T is

the number of observations.

The Phillips-Perron test can be used in general time series models because its limiting distribution
is derived in the context of a class of weakly dependent and heterogeneously distributed data. The
marginal probability for the Phillips-Perron test is computed assuming that error disturbances are
normally distributed.

When there are regressors in the MODEL statement, the PHILLIPS option computes the Phillips-
Ouliaris cointegration test statistic by using the least squares residuals. The normalized cointe-
grating vector is estimated using OLS regression. Therefore, the cointegrating vector estimates
might vary with the regressand (normalized element) unless the regression R-square is 1. You can
define the truncation points in the calculation of weighted variance estimators, �2

T l
; l D l1 : : : ln,

in the same way as you define the truncation points for the Phillips-Perron test—by using the
PHILLIPS=(l1 : : : ln) option.

The marginal probabilities for cointegration testing are not produced. You can refer to Phillips and
Ouliaris (1990) tables Ia–Ic for the OZ˛ test and tables IIa–IIc for the OZt test. The standard residual-
based cointegration test can be obtained using the NOINT option in the MODEL statement, and
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the de-meaned test is computed by including the intercept term. To obtain the de-meaned and
detrended cointegration tests, you should include the time trend variable in the regressors. For
information about the Phillips-Ouliaris cointegration test, see Phillips and Ouliaris (1990) or
Hamilton (1994, Tbl. 19.1). Note that Hamilton (1994, Tbl. 19.1) uses Z� and Zt instead of the
original Phillips and Ouliaris (1990) notation. This chapter adopts the notation introduced in
Hamilton. To distinguish from Student’s t distribution, these two statistics are named accordingly
as � (rho) and � (tau).

TP

TP=(Z=value)
specifies the turning point test for independence. The Z= suboption specifies the type of the time series
or residuals to be tested. You can specify the following values:

Y specifies the regressand. The default is Z=Y.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals over the square
root of the conditional variance.

URSQ
prints the uncentered regression R2. The uncentered regression R2 is useful to compute Lagrange
multiplier test statistics, since most LM test statistics are computed as T *URSQ, where T is the
number of observations used in estimation.

VNRRANK

VNRRANK=(option-list)
specifies the rank version of the von Neumann ratio test for independence. You can specify the
following options in the VNRRANK=( ) option. The options are listed within parentheses and
separated by commas.

PVALUE=DIST | SIM
specifies how to calculate the p-value. You can specify the following values:

DIST calculates the p-value according to the asymptotic distribution of the statistic (that is,
the standard normal distribution).

SIM calculates the p-value as follows:

� If the sample size is less than or equal to 10, the p-value is calculated according to
the exact CDF of the statistic.

� If the sample size is between 11 and 100, the p-value is calculated according to
Monte Carlo simulation of the distribution of the statistic.

� If the sample size is more than 100, the p-value is calculated according to the
standard normal distribution because the simulated distribution of the statistic in
this case is almost the same as the standard normal distribution.

By default, PVALUE=DIST.
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Z=value
specifies the type of the time series or residuals to be tested. You can specify the following
values:

Y specifies the regressand.

RO specifies the OLS residuals.

R specifies the residuals of the final model.

RM specifies the structural residuals of the final model.

SR specifies the standardized residuals of the final model, defined by residuals over the
square root of the conditional variance.

By default, Z=Y.

Stepwise Selection Options

BACKSTEP
removes insignificant autoregressive parameters. The parameters are removed in order of least signif-
icance. This backward elimination is done only once on the Yule-Walker estimates computed after
the initial ordinary least squares estimation. You can use the BACKSTEP option with all estimation
methods because the initial parameter values for other estimation methods are estimated by using the
Yule-Walker method.

SLSTAY=value
specifies the significance level criterion to be used by the BACKSTEP option. By default, SLSTAY=.05.

Estimation Control Options

CONVERGE=value
specifies the convergence criterion. If the maximum absolute value of the change in the autoregressive
parameter estimates between iterations is less than this criterion, then convergence is assumed. By
default, CONVERGE=.001.

If you specify the GARCH= option or the HETERO statement, convergence is assumed when the
absolute maximum gradient is smaller than the value specified by the CONVERGE= option or when
the relative gradient is smaller than 1E–8. By default, CONVERGE=1E–5.

INITIAL=( initial-values )

START=( initial-values )
specifies initial values for some or all of the parameter estimates. This option is not applicable
when the Yule-Walker method or iterative Yule-Walker method is used. The specified values are
assigned to model parameters in the same order in which the parameter estimates are printed in the
AUTOREG procedure output. The order of values in the INITIAL= or START= option is as follows:
the intercept, the regressor coefficients, the autoregressive parameters, the ARCH parameters, the
GARCH parameters, the inverted degrees of freedom for Student’s t distribution, the start-up value
for conditional variance, and the heteroscedasticity model parameters � specified by the HETERO
statement.

The following is an example of specifying initial values for an AR(1)-GARCH.1; 1/ model with
regressors X1 and X2:
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/*-- specifying initial values --*/
model y = w x / nlag=1 garch=(p=1,q=1)

initial=(1 1 1 .5 .8 .1 .6);

The model that is specified by this MODEL statement is

yt D ˇ0 C ˇ1wt C ˇ2xt C �t

�t D �t � �1�t�1

�t D
p
htet

ht D ! C ˛1�
2
t�1 C 1ht�1

�t N.0; �2t /

The initial values for the regression parameters, INTERCEPT (ˇ0), X1 (ˇ1), and X2 (ˇ2), are specified
as 1. The initial value of the AR(1) coefficient (�1) is specified as 0.5. The initial value of ARCH0 (!)
is 0.8, the initial value of ARCH1 (˛1) is 0.1, and the initial value of GARCH1 (1) is 0.6.

When you use the RESTRICT statement, the initial values that you specify in the INITIAL= option
should satisfy the restrictions specified for the parameter estimates. If they do not, these initial values
are adjusted to satisfy the restrictions.

LDW
specifies that p-values for the Durbin-Watson test be computed by using a linearized approximation
of the design matrix when the model is nonlinear because an autoregressive error process is present.
(The Durbin-Watson tests of the OLS linear regression model residuals are not affected by the LDW
option.) For information about Durbin-Watson testing of nonlinear models, see White (1992).

MAXITER=number
sets the maximum number of iterations allowed. The default is MAXITER=50. When you specify
both the GARCH= option in the MODEL statement and the MAXITER= option in the NLOPTIONS
statement, the MAXITER= option in the MODEL statement is ignored. This option is not applicable
when the Yule-Walker method is used.

METHOD=value
requests the type of estimates to be computed. You can specify the following values:

ML specifies maximum likelihood estimates.

ULS specifies unconditional least squares estimates.

YW specifies Yule-Walker estimates.

ITYW specifies iterative Yule-Walker estimates.

The default is defined as follows:

� When the GARCH= option or the HETERO statement is specified, METHOD=ML by default.

� When the GARCH= option and the HETERO statement are not specified but the NLAG= option
and the LAGDEP option are specified, METHOD=ML by default.
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� When the GARCH= option, the LAGDEP option, and the HETERO statement are not specified,
but the NLAG= option is specified, METHOD=YW by default.

� When none of the NLAG= option, the GARCH= option, and the HETERO statement is specified
(that is, only the OLS model is to be estimated), then the estimates are calculated through the
OLS method and the METHOD= option is ignored.

NOMISS
requests the estimation to the first contiguous sequence of data with no missing values. Otherwise, all
complete observations are used.

OPTMETHOD=QN | TR
specifies the optimization technique when the GARCH or heteroscedasticity model is estimated.
The OPTMETHOD=QN option specifies the quasi-Newton method. The OPTMETHOD=TR option
specifies the trust region method. The default is OPTMETHOD=QN.

HETERO Statement
HETERO variables / options ;

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the
way these variables are used to model the error variance of the regression.

The heteroscedastic regression model supported by the HETERO statement is

yt D xtˇ C �t

�t � N.0; �2t /

�2t D �
2ht

ht D l.z0t�/

The HETERO statement specifies a model for the conditional variance ht . The vector zt is composed of the
variables listed in the HETERO statement, � is a parameter vector, and l.�/ is a link function that depends on
the value of the LINK= option. In the printed output, HET 0 represents the estimate of sigma, while HET1
- HETn are the estimates of parameters in the � vector.

The keyword XBETA can be used in the variables list to refer to the model predicted value x0tˇ. If XBETA is
specified in the variables list, other variables in the HETERO statement will be ignored. In addition, XBETA
cannot be specified in the GARCH process.

For heteroscedastic regression models without GARCH effects, the errors �t are assumed to be uncorrelated—
the heteroscedasticity models specified by the HETERO statement cannot be combined with an autoregressive
model for the errors. Thus, when a HETERO statement is used, the NLAG= option cannot be specified unless
the GARCH= option is also specified.

You can specify the following options in the HETERO statement.
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LINK=value
specifies the functional form of the heteroscedasticity model. By default, LINK=EXP. If you specify a
GARCH model with the HETERO statement, the model is estimated using LINK=LINEAR only. For
more information, see the section “Using the HETERO Statement with GARCH Models” on page 379.
Values of the LINK= option are as follows:

EXP specifies the exponential link function. The following model is estimated when you
specify LINK=EXP:

ht D exp.z0t�/

SQUARE specifies the square link function. The following model is estimated when you
specify LINK=SQUARE:

ht D .1C z0t�/2

LINEAR specifies the linear function; that is, the HETERO statement variables predict
the error variance linearly. The following model is estimated when you specify
LINK=LINEAR:

ht D .1C z0t�/

COEF=value
imposes constraints on the estimated parameters � of the heteroscedasticity model. You can specify
the following values:

NONNEG specifies that the estimated heteroscedasticity parameters � must be nonnegative.

UNIT constrains all heteroscedasticity parameters � to equal 1.

ZERO constrains all heteroscedasticity parameters � to equal 0.

UNREST specifies unrestricted estimation of �.

If you specify the GARCH= option in the MODEL statement, the default is COEF=NONNEG. If you
do not specify the GARCH= option in the MODEL statement, the default is COEF=UNREST.

STD=value
imposes constraints on the estimated standard deviation � of the heteroscedasticity model. You can
specify the following values:

NONNEG specifies that the estimated standard deviation parameter � must be nonnegative.

UNIT constrains the standard deviation parameter � to equal 1.

UNREST specifies unrestricted estimation of � .

The default is STD=UNREST.
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TEST=LM
produces a Lagrange multiplier test for heteroscedasticity. The null hypothesis is homoscedasticity;
the alternative hypothesis is heteroscedasticity of the form specified by the HETERO statement. The
power of the test depends on the variables specified in the HETERO statement.

The test may give different results depending on the functional form specified by the LINK= option.
However, in many cases the test does not depend on the LINK= option. The test is invariant to the
form of ht when ht .0/ D 1 and h0t .0/ ¤ 0. (The condition ht .0/ D 1 is satisfied except when the
NOCONST option is specified with LINK=SQUARE or LINK=LINEAR.)

NOCONST
specifies that the heteroscedasticity model does not include the unit term for the LINK=SQUARE and
LINK=LINEAR options. For example, the following model is estimated when you specify the options
LINK=SQUARE NOCONST:

ht D .z0t�/2

NLOPTIONS Statement
NLOPTIONS < options > ;

PROC AUTOREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks
when the GARCH= option is specified. If the GARCH= option is not specified, the NLOPTIONS statement
is ignored. For a list of all the options of the NLOPTIONS statement, see Chapter 7, “Nonlinear Optimization
Methods.”

For the TECHNIQUE= option in the NLOPTIONS statement, only the QUANEW and TRUREG methods
are supported, corresponding to the OPTMETHOD=QN and TR in the MODEL statement, respectively.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < options > < keyword=name > ;

The OUTPUT statement creates an output SAS data set as specified by the following options.

OUT=SAS-data-set
names the output SAS data set to contain the predicted and transformed values. If the OUT= option is
not specified, the new data set is named according to the DATAn convention.

You can specify any of the following options:

ALPHACLI=number
sets the confidence limit size for the estimates of future values of the response time series. The
ALPHACLI= value must be between 0 and 1. The resulting confidence interval has 1–number
confidence. The default is ALPHACLI=0.05, which corresponds to a 95% confidence interval.
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ALPHACLM=number
sets the confidence limit size for the estimates of the structural or regression part of the model. The
ALPHACLM= value must be between 0 and 1. The resulting confidence interval has 1–number
confidence. The default is ALPHACLM=0.05, which corresponds to a 95% confidence interval.

ALPHACSM=0.01 | 0.05 | 0.10
specifies the significance level for the upper and lower bounds of the CUSUM and CUSUMSQ
statistics output by the CUSUMLB=, CUSUMUB=, CUSUMSQLB=, and CUSUMSQUB= options.
The significance level specified by the ALPHACSM= option can be 0.01, 0.05, or 0.10. Other values
are not supported.

You can specify the following values for keyword=name, where keyword specifies the statistic to include in
the output data set and name gives the name of the variable in the OUT= data set to contain the statistic.

BLUS=variable
specifies the name of a variable to contain the values of the Theil’s BLUS residuals. For more
information about BLUS residuals, see Theil (1971).

CEV=variable

HT=variable
writes to the output data set the value of the error variance �2t from the heteroscedasticity model
specified by the HETERO statement or the value of the conditional error variance ht by the GARCH=
option in the MODEL statement.

CPEV=variable
writes the conditional prediction error variance to the output data set. The value of conditional predic-
tion error variance is equal to that of the conditional error variance when there are no autoregressive
parameters. For more information, see the section “Predicted Values” on page 410.

CONSTANT=variable
writes the transformed intercept to the output data set. For information about the transformation, see
the section “Computational Methods” on page 372.

CUSUM=variable
specifies the name of a variable to contain the CUSUM statistics.

CUSUMSQ=variable
specifies the name of a variable to contain the CUSUMSQ statistics.

CUSUMUB=variable
specifies the name of a variable to contain the upper confidence bound for the CUSUM statistic.

CUSUMLB=variable
specifies the name of a variable to contain the lower confidence bound for the CUSUM statistic.

CUSUMSQUB=variable
specifies the name of a variable to contain the upper confidence bound for the CUSUMSQ statistic.
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CUSUMSQLB=variable
specifies the name of a variable to contain the lower confidence bound for the CUSUMSQ statistic.

LCL=name
writes the lower confidence limit for the predicted value (specified in the PREDICTED= option) to
the output data set. The size of the confidence interval is set by the ALPHACLI= option. For more
information, see the section “Predicted Values” on page 410.

LCLM=name
writes the lower confidence limit for the structural predicted value (specified in the PREDICTEDM=
option) to the output data set under the name given. The size of the confidence interval is set by the
ALPHACLM= option.

PREDICTED=name

P=name
writes the predicted values to the output data set. These values are formed from both the structural
and autoregressive parts of the model. For more information, see the section “Predicted Values” on
page 410.

PREDICTEDM=name

PM=name
writes the structural predicted values to the output data set. These values are formed from only the
structural part of the model. For more information, see the section “Predicted Values” on page 410.

RECPEV=variable
specifies the name of a variable to contain the part of the predictive error variance (vt ) that is used to
compute the recursive residuals.

RECRES=variable
specifies the name of a variable to contain recursive residuals. The recursive residuals are used to
compute the CUSUM and CUSUMSQ statistics.

RESIDUAL=name

R=name
writes the residuals from the predicted values based on both the structural and time series parts of the
model to the output data set.

RESIDUALM=name

RM=name
writes the residuals from the structural prediction to the output data set.

STDERR=name

SE=name
writes the standard errors of the predicted values to the data set that is specified in the OUT= option.
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STDERRM=name

SEM=name
writes the standard errors of the structural predicted values to the data set that is specified in the OUT=
option.

TRANSFORM=variables
transforms the specified variables from the input data set by the autoregressive model and writes the
transformed variables to the output data set. For information about the transformation, see the section
“Computational Methods” on page 372. If you need to reproduce the data suitable for re-estimation,
you must also transform an intercept variable. To do this, transform a variable that is all 1s or use the
CONSTANT= option.

UCL=name
writes the upper confidence limit for the predicted value (specified in the PREDICTED= option) to
the output data set. The size of the confidence interval is set by the ALPHACLI= option. For more
information, see the section “Predicted Values” on page 410.

UCLM=name
writes the upper confidence limit for the structural predicted value (specified in the PREDICTEDM=
option) to the output data set. The size of the confidence interval is set by the ALPHACLM= option.

RESTRICT Statement
RESTRICT equation , . . . , equation ;

The RESTRICT statement provides constrained estimation and places restrictions on the parameter estimates
for covariates in the preceding MODEL statement. The AR, GARCH, and HETERO parameters are also
supported in the RESTRICT statement when you specify the GARCH= option. Any number of RESTRICT
statements can follow a MODEL statement. To specify more than one restriction in a single RESTRICT
statement, separate them with commas.

Each restriction is written as a linear equation composed of constants and parameter names. Refer to model
parameters by the name of the corresponding regressor variable. Each name that is used in the equation
must be a regressor in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the
intercept parameter in the model. For the names of these parameters, see the section “OUTEST= Data Set” on
page 415. Inequality constraints are supported only when you specify the GARCH= option. For non-GARCH
models, if inequality signs are specified, they are treated as equality signs.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified by the names Restrict1, Restrict2, and so on. The probabilities of these Lagrange multipliers
are computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect
on the estimation results and are not noted in the output.

The following is an example of a RESTRICT statement:

model y = a b c d;
restrict a+b=0, 2*d-c=0;

When restricting a linear combination of parameters to be 0, you can omit the equal sign. For example, the
following RESTRICT statement is equivalent to the preceding example:
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restrict a+b, 2*d-c;

The following RESTRICT statement constrains the parameters estimates for three regressors (X1, X2, and
X3) to be equal:

restrict x1 = x2, x2 = x3;

The preceding restriction can be abbreviated as follows:

restrict x1 = x2 = x3;

The following example shows how to specify AR, GARCH, and HETERO parameters in the RESTRICT
statement:

model y = a b / nlag=2 garch=(p=2,q=3,mean=sqrt);
hetero c d;
restrict _A_1=0,_AH_2=0.2,_HET_2=1,_DELTA_=0.1;

You can specify only simple linear combinations of parameters in RESTRICT statement expressions. You
cannot specify complex expressions that involve parentheses, division, functions, or complex products.

TEST Statement
The AUTOREG procedure supports a TEST statement for linear hypothesis tests. The syntax of the TEST
statement is

TEST equation , . . . , equation / option ;

The TEST statement tests hypotheses about the covariates in the model that are estimated by the preceding
MODEL statement. The AR, GARCH, and HETERO parameters are also supported in the TEST statement
when you specify the GARCH= option. Each equation specifies a linear hypothesis to be tested. If you
specify more than one equation, separate them with commas.

Each test is written as a linear equation composed of constants and parameter names. Refer to parameters by
the name of the corresponding regressor variable. Each name that is used in the equation must be a regressor
in the preceding MODEL statement. Use the keyword INTERCEPT to refer to the intercept parameter in the
model. For the names of these parameters, see the section “OUTEST= Data Set” on page 415.

You can specify the following options in the TEST statement:

TYPE=value
specifies the test statistics to use. The default is TYPE=F. The following values for the TYPE= option
are available:

F produces an F test. This option is supported for all models specified in the MODEL
statement.

WALD produces a Wald test. This option is supported for all models specified in the
MODEL statement.

LM produces a Lagrange multiplier test. This option is supported only when the
GARCH= option is specified (for example, when there is a statement like MODEL
Y = C D I / GARCH=(Q=2)).
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LR produces a likelihood ratio test. This option is supported only when the GARCH=
option is specified (for example, when there is a statement like MODEL Y = C D I
/ GARCH=(Q=2)).

ALL produces all tests applicable for a particular model. For non-GARCH-type models,
only F and Wald tests are output. For all other models, all four tests (LR, LM, F,
and Wald) are computed.

The following example of a TEST statement tests the hypothesis that the coefficients of two regressors A and
B are equal:

model y = a b c d;
test a = b;

To test separate null hypotheses, use separate TEST statements. To test a joint hypothesis, specify the
component hypotheses on the same TEST statement, separated by commas.

For example, consider the following linear model:

yt D ˇ0 C ˇ1x1t C ˇ2x2t C �t

The following statements test the two hypotheses H0 W ˇ0 D 1 and H0 W ˇ1 C ˇ2 D 0:

model y = x1 x2;
test intercept = 1;
test x1 + x2 = 0;

The following statements test the joint hypothesis H0 W ˇ0 D 1 and ˇ1 C ˇ2 D 0:

model y = x1 x2;
test intercept = 1, x1 + x2 = 0;

To illustrate the TYPE= option, consider the following examples:

model Y = C D I / garch=(q=2);
test C + D = 1;

The preceding statements produce only one default test, the F test.

model Y = C D I / garch=(q=2);
test C + D = 1 / type = LR;

The preceding statements produce one of four tests applicable for GARCH-type models, the likelihood ratio
test.

model Y = C D I / nlag = 2;
test C + D = 1 / type = LM;

The preceding statements produce the warning and do not output any test because the Lagrange multiplier
test is not applicable for non-GARCH models.

model Y = C D I / nlag=2;
test C + D = 1 / type = ALL;

The preceding statements produce all tests that are applicable for non-GARCH models (namely, the F and
Wald tests). The TYPE= prefix is optional. Thus the test statement in the previous example could also have
been written as
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test C + D = 1 / ALL;

The following example shows how to test AR, GARCH, and HETERO parameters:

model y = a b / nlag=2 garch=(p=2,q=3,mean=sqrt);
hetero c d;
test _A_1=0,_AH_2=0.2,_HET_2=1,_DELTA_=0.1;

Details: AUTOREG Procedure

Missing Values
PROC AUTOREG skips any missing values at the beginning of the data set. If the NOMISS option is
specified, the first contiguous set of data with no missing values is used; otherwise, all data with nonmissing
values for the independent and dependent variables are used. Note, however, that the observations containing
missing values are still needed to maintain the correct spacing in the time series. PROC AUTOREG can
generate predicted values when the dependent variable is missing.

Autoregressive Error Model
The regression model with autocorrelated disturbances is as follows:

yt D x0tˇ C �t

�t D �t � '1�t�1 � � � � � 'm�t�m

�t N.0; �2/

In these equations, yt are the dependent values, xt is a column vector of regressor variables, ˇ is a column
vector of structural parameters, and �t is normally and independently distributed with a mean of 0 and a
variance of �2. Note that in this parameterization, the signs of the autoregressive parameters are reversed
from the parameterization documented in most of the literature.

PROC AUTOREG offers four estimation methods for the autoregressive error model. The default method,
Yule-Walker (YW) estimation, is the fastest computationally. The Yule-Walker method used by PROC
AUTOREG is described in Gallant and Goebel (1976). Harvey (1981) calls this method the two-step full
transform method. The other methods are iterated YW, unconditional least squares (ULS), and maximum
likelihood (ML). The ULS method is also referred to as nonlinear least squares (NLS) or exact least squares
(ELS).

You can use all of the methods with data containing missing values, but you should use ML estimation if the
missing values are plentiful. For further discussion of the advantages of different methods, see the section
“Alternative Autocorrelation Correction Methods” on page 374, later in this chapter.
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The Yule-Walker Method

Let ' represent the vector of autoregressive parameters,

' D .'1; '2; : : : ; 'm/
0

and let the variance matrix of the error vector � D .�1; : : : ; �N /0 be †,

E.��0/ D † D �2V

If the vector of autoregressive parameters ' is known, the matrix V can be computed from the autoregressive
parameters. † is then �2V. Given †, the efficient estimates of regression parameters ˇ can be computed
using generalized least squares (GLS). The GLS estimates then yield the unbiased estimate of the variance
�2,

The Yule-Walker method alternates estimation of ˇ using generalized least squares with estimation of ' using
the Yule-Walker equations applied to the sample autocorrelation function. The YW method starts by forming
the OLS estimate of ˇ. Next, ' is estimated from the sample autocorrelation function of the OLS residuals
by using the Yule-Walker equations. Then V is estimated from the estimate of ', and † is estimated from V
and the OLS estimate of �2. The autocorrelation corrected estimates of the regression parameters ˇ are then
computed by GLS, using the estimated † matrix. These are the Yule-Walker estimates.

If the ITER option is specified, the Yule-Walker residuals are used to form a new sample autocorrelation
function, the new autocorrelation function is used to form a new estimate of ' and V, and the GLS estimates
are recomputed using the new variance matrix. This alternation of estimates continues until either the
maximum change in theb' estimate between iterations is less than the value specified by the CONVERGE=
option or the maximum number of allowed iterations is reached. This produces the iterated Yule-Walker
estimates. Iteration of the estimates may not yield much improvement.

The Yule-Walker equations, solved to obtainb' and a preliminary estimate of �2, are

R O' D �r

Here r D .r1; : : : ; rm/0, where ri is the lag i sample autocorrelation. The matrix R is the Toeplitz matrix
whose i,jth element is rji�j j. If you specify a subset model, then only the rows and columns of R and r
corresponding to the subset of lags specified are used.

If the BACKSTEP option is specified, for purposes of significance testing, the matrix ŒR r� is treated as a
sum-of-squares-and-crossproducts matrix arising from a simple regression with N � k observations, where k
is the number of estimated parameters.

The Unconditional Least Squares and Maximum Likelihood Methods

Define the transformed error, e D .�1; : : : ; �T /, as

e D L�1n

where n D y �Xˇ and L is the Cholesky root of V—that is, V D LL0 with L lower triangular..

The unconditional sum of squares for the model, S, is

S D n0V�1n D e0e
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The ULS estimates are computed by minimizing S with respect to the parameters ˇ and 'i .

The full log-likelihood function for the autoregressive error model is

l D �
N

2
ln.2�/ �

N

2
ln.�2/ �

1

2
ln.jVj/ �

S

2�2

where jVj denotes determinant of V. For the ML method, the likelihood function is maximized by minimizing
an equivalent sum-of-squares function.

Maximizing l with respect to �2 (and concentrating �2 out of the likelihood) and dropping the constant term
�
N
2
ln.2�/C 1 � ln.N / produces the concentrated log-likelihood function

lc D �
N

2
ln.S jVj1=N /

Rewriting the variable term within the logarithm gives

Sml D jLj
1=N e0ejLj1=N

PROC AUTOREG computes the ML estimates by minimizing the objective function Sml D jLj
1=N e0ejLj1=N .

The maximum likelihood estimates may not exist for some data sets (Anderson and Mentz 1980). This is the
case for very regular data sets, such as an exact linear trend.

Computational Methods

Sample Autocorrelation Function
The sample autocorrelation function is computed from the structural residuals or noise nt D yt � x0tb, where
b is the current estimate of ˇ. The sample autocorrelation function is the sum of all available lagged products
of nt of order j divided by `C j , where ` is the number of such products.

If there are no missing values, then `C j D N , the number of observations. In this case, the Toeplitz matrix
of autocorrelations, R, is at least positive semidefinite. If there are missing values, these autocorrelation
estimates of r can yield an R matrix that is not positive semidefinite. If such estimates occur, a warning
message is printed, and the estimates are tapered by exponentially declining weights until R is positive
definite.

Data Transformation and the Kalman Filter
The calculation of V from ' for the general AR.m/ model is complicated, and the size of V depends on the
number of observations. Instead of actually calculating V and performing GLS in the usual way, in practice
a Kalman filter algorithm is used to transform the data and compute the GLS results through a recursive
process.

In all of the estimation methods, the original data are transformed by the inverse of the Cholesky root of
V. Let L denote the Cholesky root of V—that is, V D LL0 with L lower triangular. For an AR.m/ model,
L�1 is a band diagonal matrix with m anomalous rows at the beginning and the autoregressive parameters
along the remaining rows. Thus, if there are no missing values, after the first m � 1 observations the data are
transformed as

zt D xt C O'1xt�1 C � � � C O'mxt�m
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The transformation is carried out using a Kalman filter, and the lower triangular matrix L is never directly
computed. The Kalman filter algorithm, as it applies here, is described in Harvey and Phillips (1979) and
Jones (1980). Although L is not computed explicitly, for ease of presentation the remaining discussion is
in terms of L. If there are missing values, then the submatrix of L consisting of the rows and columns with
nonmissing values is used to generate the transformations.

Gauss-Newton Algorithms
The ULS and ML estimates employ a Gauss-Newton algorithm to minimize the sum of squares and maximize
the log likelihood, respectively. The relevant optimization is performed simultaneously for both the regression
and AR parameters. The OLS estimates of ˇ and the Yule-Walker estimates of ' are used as starting values
for these methods.

The Gauss-Newton algorithm requires the derivatives of e or jLj1=N e with respect to the parameters. The
derivatives with respect to the parameter vector ˇ are

@e
@ˇ0
D �L�1X

@jLj1=N e
@ˇ0

D �jLj1=NL�1X

These derivatives are computed by the transformation described previously. The derivatives with respect to '
are computed by differentiating the Kalman filter recurrences and the equations for the initial conditions.

Variance Estimates and Standard Errors

For the Yule-Walker method, the estimate of the error variance, s2, is the error sum of squares from the last
application of GLS, divided by the error degrees of freedom (number of observations N minus the number of
free parameters).

The variance-covariance matrix for the components of b is taken as s2.X0V�1X/�1 for the Yule-Walker
method. For the ULS and ML methods, the variance-covariance matrix of the parameter estimates is computed
as s2.J0J/�1. For the ULS method, J is the matrix of derivatives of e with respect to the parameters. For
the ML method, J is the matrix of derivatives of jLj1=N e divided by jLj1=N . The estimate of the variance-
covariance matrix of b assuming that ' is known is s2.X0V�1X/�1. For OLS model, the estimate of the
variance-covariance matrix is s2.X0X/�1.

Park and Mitchell (1980) investigated the small sample performance of the standard error estimates obtained
from some of these methods. In particular, simulating an AR(1) model for the noise term, they found that the
standard errors calculated using GLS with an estimated autoregressive parameter underestimated the true
standard errors. These estimates of standard errors are the ones calculated by PROC AUTOREG with the
Yule-Walker method.

The estimates of the standard errors calculated with the ULS or ML method take into account the joint
estimation of the AR and the regression parameters and may give more accurate standard-error values than
the YW method. At the same values of the autoregressive parameters, the ULS and ML standard errors
will always be larger than those computed from Yule-Walker. However, simulations of the models used by
Park and Mitchell (1980) suggest that the ULS and ML standard error estimates can also be underestimates.
Caution is advised, especially when the estimated autocorrelation is high and the sample size is small.

High autocorrelation in the residuals is a symptom of lack of fit. An autoregressive error model should not be
used as a nostrum for models that simply do not fit. It is often the case that time series variables tend to move
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as a random walk. This means that an AR(1) process with a parameter near one absorbs a great deal of the
variation. See Example 9.3, which fits a linear trend to a sine wave.

For ULS or ML estimation, the joint variance-covariance matrix of all the regression and autoregression
parameters is computed. For the Yule-Walker method, the variance-covariance matrix is computed only for
the regression parameters.

Lagged Dependent Variables

The Yule-Walker estimation method is not directly appropriate for estimating models that include lagged
dependent variables among the regressors. Therefore, the maximum likelihood method is the default when
the LAGDEP or LAGDEP= option is specified in the MODEL statement. However, when lagged dependent
variables are used, the maximum likelihood estimator is not exact maximum likelihood but is conditional on
the first few values of the dependent variable.

Alternative Autocorrelation Correction Methods
Autocorrelation correction in regression analysis has a long history, and various approaches have been
suggested. Moreover, the same method may be referred to by different names.

Pioneering work in the field was done by Cochrane and Orcutt (1949). The Cochrane-Orcutt method refers
to a more primitive version of the Yule-Walker method that drops the first observation. The Cochrane-Orcutt
method is like the Yule-Walker method for first-order autoregression, except that the Yule-Walker method
retains information from the first observation. The iterative Cochrane-Orcutt method is also in use.

The Yule-Walker method used by PROC AUTOREG is also known by other names. Harvey (1981) refers to
the Yule-Walker method as the two-step full transform method. The Yule-Walker method can be considered
as generalized least squares using the OLS residuals to estimate the covariances across observations, and
Judge et al. (1985) use the term estimated generalized least squares (EGLS) for this method. For a first-order
AR process, the Yule-Walker estimates are often termed Prais-Winsten estimates (Prais and Winsten 1954).
There are variations to these methods that use different estimators of the autocorrelations or the autoregressive
parameters.

The unconditional least squares (ULS) method, which minimizes the error sum of squares for all observations,
is referred to as the nonlinear least squares (NLS) method by Spitzer (1979).

The Hildreth-Lu method (Hildreth and Lu 1960) uses nonlinear least squares to jointly estimate the parameters
with an AR(1) model, but it omits the first transformed residual from the sum of squares. Thus, the Hildreth-
Lu method is a more primitive version of the ULS method supported by PROC AUTOREG in the same way
Cochrane-Orcutt is a more primitive version of Yule-Walker.

The maximum likelihood method is also widely cited in the literature. Although the maximum likelihood
method is well defined, some early literature refers to estimators that are called maximum likelihood but are
not full unconditional maximum likelihood estimates. The AUTOREG procedure produces full unconditional
maximum likelihood estimates.

Harvey (1981) and Judge et al. (1985) summarize the literature on various estimators for the autoregressive
error model. Although asymptotically efficient, the various methods have different small sample properties.
Several Monte Carlo experiments have been conducted, although usually for the AR(1) model.
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Harvey and McAvinchey (1978) found that for a one-variable model, when the independent variable is
trending, methods similar to Cochrane-Orcutt are inefficient in estimating the structural parameter. This is not
surprising since a pure trend model is well modeled by an autoregressive process with a parameter close to 1.

Harvey and McAvinchey (1978) also made the following conclusions:

� The Yule-Walker method appears to be about as efficient as the maximum likelihood method. Although
Spitzer (1979) recommended ML and NLS, the Yule-Walker method (labeled Prais-Winsten) did as
well or better in estimating the structural parameter in Spitzer’s Monte Carlo study (table A2 in their
article) when the autoregressive parameter was not too large. Maximum likelihood tends to do better
when the autoregressive parameter is large.

� For small samples, it is important to use a full transformation (Yule-Walker) rather than the Cochrane-
Orcutt method, which loses the first observation. This was also demonstrated by Maeshiro (1976),
Chipman (1979), and Park and Mitchell (1980).

� For large samples (Harvey and McAvinchey used 100), losing the first few observations does not make
much difference.

GARCH Models
Consider the series yt , which follows the GARCH process. The conditional distribution of the series Y for
time t is written

yt j‰t�1�N.0; ht /

where ‰t�1 denotes all available information at time t � 1. The conditional variance ht is

ht D ! C

qX
iD1

˛iy
2
t�i C

pX
jD1

jht�j

where

p � 0; q > 0

! > 0; ˛i � 0; j � 0

The GARCH.p; q/ model reduces to the ARCH.q/ process when p D 0. At least one of the ARCH
parameters must be nonzero (q > 0). The GARCH regression model can be written

yt D x0tˇ C �t

�t D
p
htet

ht D ! C

qX
iD1

˛i�
2
t�i C

pX
jD1

jht�j

where �t�IN.0; 1/.
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In addition, you can consider the model with disturbances following an autoregressive process and with the
GARCH errors. The AR.m/-GARCH.p; q/ regression model is denoted

yt D x0tˇ C �t

�t D �t � '1�t�1 � � � � � 'm�t�m

�t D
p
htet

ht D ! C

qX
iD1

˛i�
2
t�i C

pX
jD1

jht�j

GARCH Estimation with Nelson-Cao Inequality Constraints

The GARCH.p; q/ model is written in ARCH(1) form as

ht D

0@1 � pX
jD1

jB
j

1A�1 "! C qX
iD1

˛i�
2
t�i

#

D !� C

1X
iD1

�i�
2
t�i

where B is a backshift operator. Therefore, ht � 0 if !� � 0 and �i � 0; 8i . Assume that the roots of the
following polynomial equation are inside the unit circle,

pX
jD0

�jZp�j

where 0 D �1 and Z is a complex scalar. �
Pp
jD0 jZ

p�j and
Pq
iD1 ˛iZ

q�i do not share common
factors. Under these conditions, j!�j <1, j�i j <1, and these coefficients of the ARCH(1) process are
well defined.

Define n D max.p; q/. The coefficient �i is written

�0 D ˛1

�1 D 1�0 C ˛2

� � �

�n�1 D 1�n�2 C 2�n�3 C � � � C n�1�0 C ˛n

�k D 1�k�1 C 2�k�2 C � � � C n�k�n for k � n

where ˛i D 0 for i > q and j D 0 for j > p.

Nelson and Cao (1992) proposed the finite inequality constraints for GARCH.1; q/ and GARCH.2; q/ cases.
However, it is not straightforward to derive the finite inequality constraints for the general GARCH.p; q/
model.
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For the GARCH.1; q/ model, the nonlinear inequality constraints are

! � 0

1 � 0

�k � 0 for k D 0; 1; : : : ; q � 1

For the GARCH.2; q/ model, the nonlinear inequality constraints are

�i 2 R for i D 1; 2

!� � 0

�1 > 0
q�1X
jD0

�
�j
1 ˛jC1 > 0

�k � 0 for k D 0; 1; : : : ; q

where �1 and �2 are the roots of .Z 2 � 1Z � 2/.

For the GARCH.p; q/ model with p > 2, only max.q � 1; p/C 1 nonlinear inequality constraints (�k � 0
for k D 0 to max(q � 1; p)) are imposed, together with the in-sample positivity constraints of the conditional
variance ht .

IGARCH and Stationary GARCH Model

The condition
Pq
iD1 ˛i C

Pp
jD1 j < 1 implies that the GARCH process is weakly stationary since the

mean, variance, and autocovariance are finite and constant over time. When the GARCH process is stationary,
the unconditional variance of �t is computed as

V.�t / D
!

.1 �
Pq
iD1 ˛i �

Pp
jD1 j /

where �t D
p
htet and ht is the GARCH.p; q/ conditional variance.

Sometimes the multistep forecasts of the variance do not approach the unconditional variance when the
model is integrated in variance; that is,

Pq
iD1 ˛i C

Pp
jD1 j D 1.

The unconditional variance for the IGARCH model does not exist. However, it is interesting that the IGARCH
model can be strongly stationary even though it is not weakly stationary. For more information, see Nelson
(1990).

EGARCH Model

The EGARCH model was proposed by Nelson (1991). Nelson and Cao (1992) argue that the nonnegativity
constraints in the linear GARCH model are too restrictive. The GARCH model imposes the nonnegative
constraints on the parameters, ˛i and j , while there are no restrictions on these parameters in the EGARCH
model. In the EGARCH model, the conditional variance, ht , is an asymmetric function of lagged disturbances
�t�i ,

ln.ht / D ! C
qX
iD1

˛ig.zt�i /C

pX
jD1

j ln.ht�j /
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where

g.zt / D �zt C Œjzt j �Ejzt j�

zt D �t=
p
ht

The coefficient of the second term in g.zt / is set to be 1 (=1) in our formulation. Note thatEjzt j D .2=�/1=2

if zt�N.0; 1/. The properties of the EGARCH model are summarized as follows:

� The function g.zt / is linear in zt with slope coefficient � C 1 if zt is positive while g.zt / is linear in
zt with slope coefficient � � 1 if zt is negative.

� Suppose that � D 0. Large innovations increase the conditional variance if jzt j �Ejzt j > 0 and
decrease the conditional variance if jzt j �Ejzt j < 0.

� Suppose that � < 1. The innovation in variance, g.zt /, is positive if the innovations zt are less than
.2=�/1=2=.� � 1/. Therefore, the negative innovations in returns, �t , cause the innovation to the
conditional variance to be positive if � is much less than 1.

QGARCH, TGARCH, and PGARCH Models

As shown in many empirical studies, positive and negative innovations have different impacts on future volatil-
ity. There is a long list of variations of GARCH models that consider the asymmetricity. Three typical varia-
tions are the quadratic GARCH (QGARCH) model (Engle and Ng 1993), the threshold GARCH (TGARCH)
model (Glosten, Jaganathan, and Runkle 1993; Zakoian 1994), and the power GARCH (PGARCH) model
(Ding, Granger, and Engle 1993). For more information about the asymmetric GARCH models, see Engle
and Ng (1993).

In the QGARCH model, the lagged errors’ centers are shifted from zero to some constant values:

ht D ! C

qX
iD1

˛i .�t�i �  i /
2
C

pX
jD1

jht�j

In the TGARCH model, there is an extra slope coefficient for each lagged squared error,

ht D ! C

qX
iD1

.˛i C 1�t�i<0 i /�
2
t�i C

pX
jD1

jht�j

where the indicator function 1�t<0 is one if �t < 0; otherwise, zero.

The PGARCH model not only considers the asymmetric effect, but also provides another way to model the
long memory property in the volatility,

h�t D ! C

qX
iD1

˛i .j�t�i j �  i�t�i /
2�
C

pX
jD1

jh
�
t�j

where � > 0 and j i j � 1; i D 1; : : : ; q.

Note that the implemented TGARCH model is also well known as GJR-GARCH (Glosten, Jaganathan, and
Runkle 1993), which is similar to the threshold GARCH model proposed by Zakoian (1994) but not exactly
the same. In Zakoian’s model, the conditional standard deviation is a linear function of the past values of the
white noise. Zakoian’s version can be regarded as a special case of the PGARCH model when � D 1=2.
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Using the HETERO Statement with GARCH Models

The HETERO statement can be combined with the GARCH= option in the MODEL statement to include
input variables in the GARCH conditional variance model. For example, the GARCH.1; 1/ variance model
with two dummy input variables, D1 and D2, is

�t D
p
htet

ht D ! C ˛1�
2
t�1 C 1ht�1 C �1D1t C �2D2t

The following statements estimate this GARCH model:

proc autoreg data=one;
model y = x z / garch=(p=1,q=1);
hetero d1 d2;

run;

The parameters for the variables D1 and D2 can be constrained using the COEF= option. For example, the
constraints �1 D �2 D 1 are imposed by the following statements:

proc autoreg data=one;
model y = x z / garch=(p=1,q=1);
hetero d1 d2 / coef=unit;

run;

For the EGARCH model, the input variables enter ln.ht /. For example, the EGARCH.1; 1/ model with two
dummy input variables, D1 and D2, is

ln.ht / D ! C ˛1g.zt�1/C 1ln.ht�1/C �1D1t C �2D2t

where

g.zt / D �zt C Œjzt j �Ejzt j�

zt D �t=
p
ht

The following statements estimate the EGARCH model:

proc autoreg data=one;
model y = x z / garch=(p=1,q=1,type=egarch);
hetero d1 d2;

run;

For the PGARCH model, the input variables enter h�t . For example, the PGARCH.1; 1/ model with two
dummy input variables, D1 and D2, is

h�t D ! C ˛1.j�t�1j �  1�t�1/
2�
C jh

�
t�j C �1D1t C �2D2t

The following statements estimate the PGARCH model:

proc autoreg data=one;
model y = x z / garch=(p=1,q=1,type=pgarch);
hetero d1 d2;

run;
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GARCH-in-Mean

The GARCH-M model has the added regressor that is the conditional standard deviation,

yt D x0tˇ C ı
p
ht C �t

�t D
p
htet

where ht follows the ARCH or GARCH process.

Maximum Likelihood Estimation

The family of GARCH models are estimated using the maximum likelihood method. The log-likelihood
function is computed from the product of all conditional densities of the prediction errors.

When et is assumed to have a standard normal distribution (et�N.0; 1/), the log-likelihood function is given
by

l D

NX
tD1

1

2

�
�ln.2�/ � ln.ht / �

�2t
ht

�
where �t D yt � x0tˇ and ht is the conditional variance. When the GARCH.p; q/-M model is estimated,
�t D yt � x0tˇ � ı

p
ht . When there are no regressors, the residuals �t are denoted as yt or yt � ı

p
ht .

If et has the standardized Student’s t distribution, the log-likelihood function for the conditional t distribution
is

` D

NX
tD1

"
ln
�
�

�
� C 1

2

��
� ln

�
�
��
2

��
�
1

2
ln..� � 2/�ht /

�
1

2
.� C 1/ln

�
1C

�2t
ht .� � 2/

�#
where �.�/ is the gamma function and � is the degree of freedom (� > 2). Under the conditional t distribution,
the additional parameter 1=� is estimated. The log-likelihood function for the conditional t distribution
converges to the log-likelihood function of the conditional normal GARCH model as 1=�! 0.

The likelihood function is maximized via either the dual quasi-Newton or the trust region algorithm. The
default is the dual quasi-Newton algorithm. The starting values for the regression parameters ˇ are obtained
from the OLS estimates. When there are autoregressive parameters in the model, the initial values are obtained
from the Yule-Walker estimates. The starting value 1:0�6 is used for the GARCH process parameters.

The variance-covariance matrix is computed using the Hessian matrix. The dual quasi-Newton method
approximates the Hessian matrix while the quasi-Newton method gets an approximation of the inverse of
Hessian. The trust region method uses the Hessian matrix obtained using numerical differentiation. When
there are active constraints, that is, q.�/ D 0, the variance-covariance matrix is given by

V. O�/ D H�1ŒI �Q0.QH�1Q0/�1QH�1�

where H D �@2l=@�@� 0 and Q D @q.�/=@� 0. Therefore, the variance-covariance matrix without active
constraints reduces to V. O�/ D H�1.
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Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrix
Estimator
The heteroscedasticity-consistent covariance matrix estimator (HCCME), also known as the sandwich (or
robust or empirical) covariance matrix estimator, has been popular in recent years because it gives the
consistent estimation of the covariance matrix of the parameter estimates even when the heteroscedasticity
structure might be unknown or misspecified. White (1980) proposes the concept of HCCME, known as HC0.
However, the small-sample performance of HC0 is not good in some cases. Davidson and MacKinnon (1993)
introduce more improvements to HC0, namely HC1, HC2 and HC3, with the degrees-of-freedom or leverage
adjustment. Cribari-Neto (2004) proposes HC4 for cases that have points of high leverage.

HCCME can be expressed in the following general “sandwich” form,

† D B�1MB�1

where B, which stands for “bread,” is the Hessian matrix and M, which stands for “meat,” is the outer product
of gradient (OPG) with or without adjustment. For HC0, M is the OPG without adjustment; that is,

MHC0 D

TX
tD1

gtg
0
t

where T is the sample size and gt is the gradient vector of tth observation. For HC1, M is the OPG with the
degrees-of-freedom correction; that is,

MHC1 D
T

T � k

TX
tD1

gtg
0
t

where k is the number of parameters. For HC2, HC3, and HC4, the adjustment is related to leverage, namely,

MHC2 D

TX
tD1

gtg
0
t

1 � ht t
MHC3 D

TX
tD1

gtg
0
t

.1 � ht t /2
MHC4 D

TX
tD1

gtg
0
t

.1 � ht t /min .4;T htt=k/

The leverage ht t is defined as ht t � j 0t .
PT
tD1 jtj

0
t /
�1jt , where jt is defined as follows:

� For an OLS model, jt is the tth observed regressors in column vector form.

� For an AR error model, jt is the derivative vector of the tth residual with respect to the parameters.

� For a GARCH or heteroscedasticity model, jt is the gradient of the tth observation (that is, gt ).

The heteroscedasticity- and autocorrelation-consistent (HAC) covariance matrix estimator can also be
expressed in “sandwich” form,

† D B�1MB�1

where B is still the Hessian matrix, but M is the kernel estimator in the following form:

MHAC D a

0@ TX
tD1

gtg
0
t C

T�1X
jD1

k

�
j

b

� T�jX
tD1

�
gtg
0
tCj C gtCjg

0
t

�1A
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where T is the sample size, gt is the gradient vector of tth observation, k.:/ is the real-valued kernel function,
b is the bandwidth parameter, and a is the adjustment factor of small-sample degrees of freedom (that is,
a D 1 if ADJUSTDF option is not specified and otherwise a D T=.T � k/, where k is the number of
parameters). The types of kernel functions are listed in Table 9.2.

Table 9.2 Kernel Functions

Kernel Name Equation

Bartlett k.x/ D

�
1 � jxj jxj � 1

0 otherwise

Parzen k.x/ D

8<:
1 � 6x2 C 6jxj3 0 � jxj � 1=2

2.1 � jxj/3 1=2 � jxj � 1

0 otherwise

Quadratic spectral k.x/ D 25
12�2x2

�
sin .6�x=5/
6�x=5

� cos .6�x=5/
�

Truncated k.x/ D

�
1 jxj � 1

0 otherwise

Tukey-Hanning k.x/ D

�
.1C cos .�x// =2 jxj � 1
0 otherwise

When you specify BANDWIDTH=ANDREWS91, according to Andrews (1991) the bandwidth parameter is
estimated as shown in Table 9.3.

Table 9.3 Bandwidth Parameter Estimation

Kernel Name Bandwidth Parameter

Bartlett b D 1:1447.˛.1/T /1=3

Parzen b D 2:6614.˛.2/T /1=5

Quadratic spectral b D 1:3221.˛.2/T /1=5

Truncated b D 0:6611.˛.2/T /1=5

Tukey-Hanning b D 1:7462.˛.2/T /1=5

Let fgatg denote each series in fgtg, and let .�a; �2a / denote the corresponding estimates of the autoregressive
and innovation variance parameters of the AR(1) model on fgatg, a D 1; : : : ; k, where the AR(1) model is
parameterized as gat D �gat�1 C �at with Var.�at / D �2a . The factors ˛.1/ and ˛.2/ are estimated with
the formulas

˛.1/ D

Pk
aD1

4�2a�
4
a

.1��a/6.1C�a/2Pk
aD1

�4a
.1��a/4

˛.2/ D

Pk
aD1

4�2a�
4
a

.1��a/8Pk
aD1

�4a
.1��a/4

When you specify BANDWIDTH=NEWEYWEST94, according to Newey and West (1994) the bandwidth
parameter is estimated as shown in Table 9.4.
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Table 9.4 Bandwidth Parameter Estimation

Kernel Name Bandwidth Parameter

Bartlett b D 1:1447.fs1=s0g
2T /1=3

Parzen b D 2:6614.fs1=s0g
2T /1=5

Quadratic spectral b D 1:3221.fs1=s0g
2T /1=5

Truncated b D 0:6611.fs1=s0g
2T /1=5

Tukey-Hanning b D 1:7462.fs1=s0g
2T /1=5

The factors s1 and s0 are estimated with the following formulas:

s1 D 2

nX
jD1

j�j s0 D �0 C 2

nX
jD1

�j

where n is the lag selection parameter and is determined by kernels, as listed in Table 9.5.

Table 9.5 Lag Selection Parameter Estimation

Kernel Name Lag Selection Parameter

Bartlett n D c.T=100/2=9

Parzen n D c.T=100/4=25

Quadratic spectral n D c.T=100/2=25

Truncated n D c.T=100/1=5

Tukey-Hanning n D c.T=100/1=5

The factor c in Table 9.5 is specified by the C= option; by default it is 12.

The factor �j is estimated with the equation

�j D T
�1

TX
tDjC1

0@ kX
aDi

gat

kX
aDi

gat�j

1A; j D 0; : : : ; n
where i is 1 if the NOINT option in the MODEL statement is specified (otherwise, it is 2), and gat is the
same as in the Andrews method.

If you specify BANDWIDTH=SAMPLESIZE, the bandwidth parameter is estimated with the equation

b D

�
bT r C cc if BANDWIDTH=SAMPLESIZE(INT) option is specified
T r C c otherwise

where T is the sample size; bxc is the largest integer less than or equal to x; and  , r, and c are values
specified by the BANDWIDTH=SAMPLESIZE(GAMMA=, RATE=, CONSTANT=) options, respectively.

If you specify the PREWHITENING option, gt is prewhitened by the VAR(1) model,

gt D Agt�1 C wt
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Then M is calculated by

MHAC D a.I � A/
�1

0@ TX
tD1

wtw
0
t C

T�1X
jD1

k

�
j

b

� T�jX
tD1

�
wtw

0
tCj C wtCjw

0
t

�1A�.I � A/�1�0
The bandwidth calculation is also based on the prewhitened series wt .

Goodness-of-Fit Measures and Information Criteria
This section discusses various goodness-of-fit statistics produced by the AUTOREG procedure.

Total R-Square Statistic

The total R-square statistic (Total Rsq) is computed as

R2tot D 1 �
SSE
SST

where SST is the sum of squares for the original response variable corrected for the mean and SSE is the
final error sum of squares. The Total Rsq is a measure of how well the next value can be predicted using the
structural part of the model and the past values of the residuals. If the NOINT option is specified, SST is the
uncorrected sum of squares.

Transformed Regression R-Square Statistic

The transformed regression R-square statistic is computed as

R2tr D 1 �
TSSE
TSST

where TSST is the total sum of squares of the transformed response variable corrected for the transformed
intercept, and TSSE is the error sum of squares for this transformed regression problem. If the NOINT
option is requested, no correction for the transformed intercept is made. The transformed regression R-square
statistic is a measure of the fit of the structural part of the model after transforming for the autocorrelation
and is the R-square for the transformed regression.

Mean Absolute Error and Mean Absolute Percentage Error

The mean absolute error (MAE) is computed as

MAE D
1

T

TX
tD1

jet j

where et are the estimated model residuals and T is the number of observations.

The mean absolute percentage error (MAPE) is computed as

MAPE D
1

T 0

TX
tD1

ıyt¤0
jet j

jyt j

where et are the estimated model residuals, yt are the original response variable observations, ıyt¤0 D 1 if
yt ¤ 0, ıyt¤0 jet=yt j D 0 if yt D 0, and T 0 is the number of nonzero original response variable observations.
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Calculation of Recursive Residuals and CUSUM Statistics

The recursive residuals wt are computed as

wt D
et
p
vt

et D yt � x
0
tˇ
.t/

ˇ.t/ D

"
t�1X
iD1

xix0i

#�1  t�1X
iD1

xiyi

!

vt D 1C x0t

"
t�1X
iD1

xix0i

#�1
xt

Note that the first ˇ.t/ can be computed for t D p C 1, where p is the number of regression coefficients. As
a result, first p recursive residuals are not defined. Note also that the forecast error variance of et is the scalar
multiple of vt such that V.et / D �2vt .

The CUSUM and CUSUMSQ statistics are computed using the preceding recursive residuals,

CUSUMt D

tX
iDkC1

wi

�w

CUSUMSQt D
Pt
iDkC1w

2
iPT

iDkC1w
2
i

where wi are the recursive residuals,

�w D

sPT
iDkC1 .wi � Ow/

2

.T � k � 1/

Ow D
1

T � k

TX
iDkC1

wi

and k is the number of regressors.

The CUSUM statistics can be used to test for misspecification of the model. The upper and lower critical
values for CUSUMt are

˙a

"
p

T � k C 2
.t � k/

.T � k/
1
2

#
where a = 1.143 for a significance level 0.01, 0.948 for 0.05, and 0.850 for 0.10. These critical values are
output by the CUSUMLB= and CUSUMUB= options for the significance level specified by the ALPHACSM=
option.

The upper and lower critical values of CUSUMSQt are given by

˙aC
.t � k/

T � k
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where the value of a is obtained from the table by Durbin (1969) if the 1
2
.T � k/ � 1 � 60. Edgerton and

Wells (1994) provided the method of obtaining the value of a for large samples.

These critical values are output by the CUSUMSQLB= and CUSUMSQUB= options for the significance
level specified by the ALPHACSM= option.

Information Criteria AIC, AICC, SBC, and HQC

Akaike’s information criterion (AIC), the corrected Akaike’s information criterion (AICC), Schwarz’s
Bayesian information criterion (SBC), and the Hannan-Quinn information criterion (HQC) are computed as
follows:

AIC D �2ln.L/C 2k

AICC D AICC 2
k.k C 1/

N � k � 1

SBC D �2ln.L/C ln.N /k
HQC D �2ln.L/C 2ln.ln.N //k

In these formulas, L is the value of the likelihood function evaluated at the parameter estimates, N is the
number of observations, and k is the number of estimated parameters. For more information, see Judge et al.
(1985), Hurvich and Tsai (1989), Schwarz (1978) and Hannan and Quinn (1979).

Testing
The modeling process consists of four stages: identification, specification, estimation, and diagnostic
checking (Cromwell, Labys, and Terraza 1994). The AUTOREG procedure supports tens of statistical tests
for identification and diagnostic checking. Figure 9.17 illustrates how to incorporate these statistical tests
into the modeling process.
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Figure 9.17 Statistical Tests in the AUTOREG Procedure

Testing for Stationarity

Most of the theories of time series require stationarity; therefore, it is critical to determine whether a time
series is stationary. Two nonstationary time series are fractionally integrated time series and autoregressive
series with random coefficients. However, more often some time series are nonstationary due to an upward
trend over time. The trend can be captured by either of the following two models.

� The difference stationary process

.1 � L/yt D ı C  .L/�t



388 F Chapter 9: The AUTOREG Procedure

where L is the lag operator,  .1/ ¤ 0, and �t is a white noise sequence with mean zero and variance
�2. Hamilton (1994) also refers to this model the unit root process.

� The trend stationary process

yt D ˛ C ıt C  .L/�t

When a process has a unit root, it is said to be integrated of order one or I(1). An I(1) process is stationary
after differencing once. The trend stationary process and difference stationary process require different
treatment to transform the process into stationary one for analysis. Therefore, it is important to distinguish
the two processes. Bhargava (1986) nested the two processes into the following general model:

yt D 0 C 1t C ˛.yt�1 � 0 � 1.t � 1//C  .L/�t

However, a difficulty is that the right-hand side is nonlinear in the parameters. Therefore, it is convenient to
use a different parameterization:

yt D ˇ0 C ˇ1t C ˛yt�1 C  .L/�t

The test of null hypothesis that ˛ D 1 against the one-sided alternative of ˛ < 1 is called a unit root test.

Dickey-Fuller unit root tests are based on regression models similar to the previous model,

yt D ˇ0 C ˇ1t C ˛yt�1 C �t

where �t is assumed to be white noise. The t statistic of the coefficient ˛ does not follow the normal
distribution asymptotically. Instead, its distribution can be derived using the functional central limit theorem.
Three types of regression models including the preceding one are considered by the Dickey-Fuller test. The
deterministic terms that are included in the other two types of regressions are either null or constant only.

An assumption in the Dickey-Fuller unit root test is that it requires the errors in the autoregressive model to
be white noise, which is often not true. There are two popular ways to account for general serial correlation
between the errors. One is the augmented Dickey-Fuller (ADF) test, which uses the lagged difference in the
regression model. This was originally proposed by Dickey and Fuller (1979) and later studied by Said and
Dickey (1984) and Phillips and Perron (1988). Another method is proposed by Phillips and Perron (1988);
it is called Phillips-Perron (PP) test. The tests adopt the original Dickey-Fuller regression with intercept,
but modify the test statistics to take account of the serial correlation and heteroscedasticity. It is called
nonparametric because no specific form of the serial correlation of the errors is assumed.

A problem of the augmented Dickey-Fuller and Phillips-Perron unit root tests is that they are subject to size
distortion and low power. It is reported in Schwert (1989) that the size distortion is significant when the
series contains a large moving average (MA) parameter. DeJong et al. (1992) find that the ADF has power
around one third and PP test has power less than 0.1 against the trend stationary alternative, in some common
settings. Among some more recent unit root tests that improve upon the size distortion and the low power are
the tests described by Elliott, Rothenberg, and Stock (1996) and Ng and Perron (2001). These tests involve
a step of detrending before constructing the test statistics and are demonstrated to perform better than the
traditional ADF and PP tests.

Most testing procedures specify the unit root processes as the null hypothesis. Tests of the null hypothesis of
stationarity have also been studied, among which Kwiatkowski et al. (1992) is very popular.

Economic theories often dictate that a group of economic time series are linked together by some long-run
equilibrium relationship. Statistically, this phenomenon can be modeled by cointegration. When several
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nonstationary processes zt D .z1t ; : : : ; zkt /0 are cointegrated, there exists a .k�1/ cointegrating vector c
such that c0zt is stationary and c is a nonzero vector. One way to test the relationship of cointegration is the
residual based cointegration test, which assumes the regression model

yt D ˇ1 C x0tˇ C ut

where yt D z1t , xt D .z2t ; : : : ; zkt /0, and ˇ D .ˇ2; : : : ; ˇk/0. The OLS residuals from the regression model
are used to test for the null hypothesis of no cointegration. Engle and Granger (1987) suggest using ADF on
the residuals while Phillips and Ouliaris (1990) study the tests using PP and other related test statistics.

Augmented Dickey-Fuller Unit Root and Engle-Granger Cointegration Testing
Common unit root tests have the null hypothesis that there is an autoregressive unit root H0 W ˛ D 1, and the
alternative is Ha W j˛j < 1, where ˛ is the autoregressive coefficient of the time series

yt D ˛yt�1 C �t

This is referred to as the zero mean model. The standard Dickey-Fuller (DF) test assumes that errors �t are
white noise. There are two other types of regression models that include a constant or a time trend as follows:

yt D �C ˛yt�1 C �t

yt D �C ˇt C ˛yt�1 C �t

These two models are referred to as the constant mean model and the trend model, respectively. The constant
mean model includes a constant mean � of the time series. However, the interpretation of � depends on the
stationarity in the following sense: the mean in the stationary case when ˛ < 1 is the trend in the integrated
case when ˛ D 1. Therefore, the null hypothesis should be the joint hypothesis that ˛ D 1 and � D 0.
However, for the unit root tests, the test statistics are concerned with the null hypothesis of ˛ D 1. The joint
null hypothesis is not commonly used. This issue is addressed in Bhargava (1986) with a different nesting
model.

There are two types of test statistics. The conventional t ratio is

DF� D
Ǫ � 1

sd. Ǫ /

and the second test statistic, called �-test, is

T . Ǫ � 1/

For the zero mean model, the asymptotic distributions of the Dickey-Fuller test statistics are

T . Ǫ � 1/)

�Z 1

0

W.r/dW.r/

��Z 1

0

W.r/2dr

��1
DF� )

�Z 1

0

W.r/dW.r/

��Z 1

0

W.r/2dr

��1=2
For the constant mean model, the asymptotic distributions are

T . Ǫ � 1/)

�
ŒW.1/2 � 1�=2 �W.1/

Z 1

0

W.r/dr

� Z 1

0

W.r/2dr �

�Z 1

0

W.r/dr

�2!�1

DF� )

�
ŒW.1/2 � 1�=2 �W.1/

Z 1

0

W.r/dr

� Z 1

0

W.r/2dr �

�Z 1

0

W.r/dr

�2!�1=2
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For the trend model, the asymptotic distributions are

T . Ǫ � 1/)

�
W.r/dW C 12

�Z 1

0

rW.r/dr �
1

2

Z 1

0

W.r/dr

��Z 1

0

W.r/dr �
1

2
W.1/

�
�W.1/

Z 1

0

W.r/dr

�
D�1

DF� )

�
W.r/dW C 12

�Z 1

0

rW.r/dr �
1

2

Z 1

0

W.r/dr

��Z 1

0

W.r/dr �
1

2
W.1/

�
�W.1/

Z 1

0

W.r/dr

�
D1=2

where

D D

Z 1

0

W.r/2dr � 12

�Z 1

0

r.W.r/dr

�2
C 12

Z 1

0

W.r/dr

Z 1

0

rW.r/dr � 4

�Z 1

0

W.r/dr

�2
One problem of the Dickey-Fuller and similar tests that employ three types of regressions is the difficulty in
the specification of the deterministic trends. Campbell and Perron (1991) claimed that “the proper handling
of deterministic trends is a vital prerequisite for dealing with unit roots.” However, the “proper handling”
is not obvious since the distribution theory of the relevant statistics about the deterministic trends is not
available. Hayashi (2000) suggests using the constant mean model when you think there is no trend, and
using the trend model when you think otherwise. However, no formal procedure is provided.

The null hypothesis of the Dickey-Fuller test is a random walk, possibly with drift. The differenced process is
not serially correlated under the null of I(1). There is a great need for the generalization of this specification.
The augmented Dickey-Fuller (ADF) test, originally proposed in Dickey and Fuller (1979), adjusts for the
serial correlation in the time series by adding lagged first differences to the autoregressive model,

�yt D �C ıt C ˛yt�1 C

pX
jD1

˛j�yt�j C �t

where the deterministic terms ıt and � can be absent for the models without drift or linear trend. As
previously, there are two types of test statistics. One is the OLS t value

Ǫ

sd. Ǫ /

and the other is given by

T Ǫ

1 � Ǫ1 � � � � � Ǫp

The asymptotic distributions of the test statistics are the same as those of the standard Dickey-Fuller test
statistics.

Nonstationary multivariate time series can be tested for cointegration, which means that a linear combination
of these time series is stationary. Formally, denote the series by zt D .z1t ; : : : ; zkt /0. The null hypothesis
of cointegration is that there exists a vector c such that c0zt is stationary. Residual-based cointegration tests
were studied in Engle and Granger (1987) and Phillips and Ouliaris (1990). The latter are described in the
next subsection. The first step regression is

yt D x0tˇ C ut
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where yt D z1t , xt D .z2t ; : : : ; zkt /0, and ˇ D .ˇ2; : : : ; ˇk/0. This regression can also include an intercept
or an intercept with a linear trend. The residuals are used to test for the existence of an autoregressive unit
root. Engle and Granger (1987) proposed augmented Dickey-Fuller type regression without an intercept
on the residuals to test the unit root. When the first step OLS does not include an intercept, the asymptotic
distribution of the ADF test statistic DF� is given by

DF� H)

Z 1

0

Q.r/

.
R 1
0 Q

2/1=2
dS

Q.r/ D W1.r/ �

Z 1

0

W1W
0
2

�Z 1

0

W2W
0
2

��1
W2.r/

S.r/ D
Q.r/

.�0�/1=2

�0 D

 
1;�

Z 1

0

W1W
0
2

�Z 1

0

W2W
0
2

��1!

where W.r/ is a k vector standard Brownian motion and

W.r/ D
�
W1.r/;W2.r/

�
is a partition such that W1.r/ is a scalar and W2.r/ is k � 1 dimensional. The asymptotic distributions of the
test statistics in the other two cases have the same form as the preceding formula. If the first step regression
includes an intercept, thenW.r/ is replaced by the de-meaned Brownian motionW .r/ D W.r/�

R 1
0 W.r/dr .

If the first step regression includes a time trend, thenW.r/ is replaced by the detrended Brownian motion. The
critical values of the asymptotic distributions are tabulated in Phillips and Ouliaris (1990) and MacKinnon
(1991).

The residual based cointegration tests have a major shortcoming. Different choices of the dependent variable
in the first step OLS might produce contradictory results. This can be explained theoretically. If the dependent
variable is in the cointegration relationship, then the test is consistent against the alternative that there is
cointegration. On the other hand, if the dependent variable is not in the cointegration system, the OLS
residual yt � x0tˇ do not converge to a stationary process. Changing the dependent variable is more likely to
produce conflicting results in finite samples.

Phillips-Perron Unit Root and Cointegration Testing
Besides the ADF test, there is another popular unit root test that is valid under general serial correlation and
heteroscedasticity, developed by Phillips (1987) and Phillips and Perron (1988). The tests are constructed
using the AR(1) type regressions, unlike ADF tests, with corrected estimation of the long run variance of
�yt . In the case without intercept, consider the driftless random walk process

yt D yt�1 C ut

where the disturbances might be serially correlated with possible heteroscedasticity. Phillips and Perron
(1988) proposed the unit root test of the OLS regression model,

yt D �yt�1 C ut
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Denote the OLS residual by Out . The asymptotic variance of 1
T
PT
tD1 Ou

2
t can be estimated by using the

truncation lag l,

O� D

lX
jD0

�j Œ1 � j=.l C 1/� Oj

where �0 D 1, �j D 2 for j > 0, and Oj D 1
T
PT
tDjC1 Out Out�j . This is a consistent estimator suggested by

Newey and West (1987).

The variance of ut can be estimated by s2 D 1
T�k

PT
tD1 Ou

2
t . Let O�2 be the variance estimate of the OLS

estimator O�. Then the Phillips-Perron OZ� test (zero mean case) is written

OZ� D T . O� � 1/ �
1

2
T 2
O�2. O� � O0/=s

2

The OZ� statistic is just the ordinary Dickey-Fuller OZ˛ statistic with a correction term that accounts for the
serial correlation. The correction term goes to zero asymptotically if there is no serial correlation.

Note that P. O� < 1/�0:68 as T!1, which shows that the limiting distribution is skewed to the left.

Let �� be the � statistic for O�. The Phillips-Perron OZt (defined here as OZ� ) test is written

OZ� D . O0= O�/1=2t O� �
1

2
T O�. O� � O0/=.s O�1=2/

To incorporate a constant intercept, the regression model yt D �C �yt�1 C ut is used (single mean case)
and null hypothesis the series is a driftless random walk with nonzero unconditional mean. To incorporate
a time trend, we used the regression model yt D �C ıt C �yt�1 C ut and under the null the series is a
random walk with drift.

The limiting distributions of the test statistics for the zero mean case are

OZ� )
1
2
fB.1/2 � 1gR 1
0 ŒB.s/�2ds

OZ� )
1
2
fŒB.1/�2 � 1g

f
R 1
0 ŒB.x/�2dxg1=2

where B(�) is a standard Brownian motion.

The limiting distributions of the test statistics for the intercept case are

OZ� )

1
2
fŒB.1/�2 � 1g � B.1/

R 1
0 B.x/dxR 1

0 ŒB.x/�2dx �
hR 1
0 B.x/dx

i2
OZ� )

1
2
fŒB.1/�2 � 1g � B.1/

R 1
0 B.x/dx

f
R 1
0 ŒB.x/�2dx �

hR 1
0 B.x/dx

i2
g1=2

Finally, the limiting distributions of the test statistics for the trend case are can be derived as

�
0 c 0

�
V �1

264 B.1/�
B.1/2 � 1

�
=2

B.1/ �
R 1
0 B.x/dx

375
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where c D 1 for OZ� and c D 1p
Q

for OZ� ,

V D

264 1
R 1
0 B.x/dx 1=2R 1

0 B.x/dx
R 1
0 B.x/2dx

R 1
0 xB.x/dx

1=2
R 1
0 xB.x/dx 1=3

375
Q D

�
0 c 0

�
V �1

�
0 c 0

�T
The finite sample performance of the PP test is not satisfactory (see Hayashi 2000).

When several variables zt D .z1t ; : : : ; zkt /0 are cointegrated, there exists a .k�1/ cointegrating vector c such
that c0zt is stationary and c is a nonzero vector. The residual based cointegration test assumes the following
regression model,

yt D ˇ1 C x0tˇ C ut

where yt D z1t , xt D .z2t ; : : : ; zkt /0, and ˇ D .ˇ2; : : : ; ˇk/0. You can estimate the consistent cointegrating
vector by using OLS if all variables are difference stationary—that is, I(1). The estimated cointegrating
vector is Oc D .1;� Ǒ2; : : : ;� Ǒk/0. The Phillips-Ouliaris test is computed using the OLS residuals from
the preceding regression model, and it uses the PP unit root tests OZ� and OZ� developed in Phillips (1987),
although in Phillips and Ouliaris (1990) the asymptotic distributions of some other leading unit root tests are
also derived. The null hypothesis is no cointegration.

You need to refer to the tables by Phillips and Ouliaris (1990) to obtain the p-value of the cointegration test.
Before you apply the cointegration test, you might want to perform the unit root test for each variable (see
the option STATIONARITY=).

As in the Engle-Granger cointegration tests, the Phillips-Ouliaris test can give conflicting results for different
choices of the regressand. There are other cointegration tests that are invariant to the order of the variables,
including Johansen (1988), Johansen (1991), Stock and Watson (1988).

ERS and Ng-Perron Unit Root Tests
As mentioned earlier, ADF and PP both suffer severe size distortion and low power. There is a class of newer
tests that improve both size and power. These are sometimes called efficient unit root tests, and among them
tests by Elliott, Rothenberg, and Stock (1996) and Ng and Perron (2001) are prominent.

Elliott, Rothenberg, and Stock (1996) consider the data generating process

yt D ˇ
0zt C ut

ut D ˛ut�1 C vt ; t D 1; : : : ; T

where fztg is either f1g or f.1; t/g and fvtg is an unobserved stationary zero-mean process with positive
spectral density at zero frequency. The null hypothesis is H0 W ˛ D 1, and the alternative is Ha W j˛j < 1.
The key idea of Elliott, Rothenberg, and Stock (1996) is to study the asymptotic power and asymptotic power
envelope of some new tests. Asymptotic power is defined with a sequence of local alternatives. For a fixed
alternative hypothesis, the power of a test usually goes to one when sample size goes to infinity; however,
this says nothing about the finite sample performance. On the other hand, when the data generating process
under the alternative moves closer to the null hypothesis as the sample size increases, the power does not
necessarily converge to one. The local-to-unity alternatives in ERS are

˛ D 1C
c

T
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and the power against the local alternatives has a limit as T goes to infinity, which is called asymptotic power.
This value is strictly between 0 and 1. Asymptotic power indicates the adequacy of a test to distinguish small
deviations from the null hypothesis.

Define

y˛ D .y1; .1 � ˛L/y2; : : : ; .1 � ˛L/yT /

z˛ D .z1; .1 � ˛L/z2; : : : ; .1 � ˛L/zT /

Let S.˛/ be the sum of squared residuals from a least squares regression of y˛ on z˛ . Then the point optimal
test against the local alternative N̨ D 1C Nc=T has the form

PGLST D
S. N̨ / � N̨S.1/

O!2

where O!2 is an estimator for !2 D
P1
kD�1Evtvt�k . The autoregressive (AR) estimator is used for O!2

(Elliott, Rothenberg, and Stock 1996, equations 13 and 14),

O!2 D
O�2�

.1 �
Pp
iD1 Oai /

2

where O�2� and Oai are OLS estimates from the regression

�yt D a0yt�1 C

pX
iD1

ai�yt�i C apC1 C �t

where p is selected according to the Schwarz Bayesian information criterion. The test rejects the null when
PT is small. The asymptotic power function for the point optimal test that is constructed with Nc under local
alternatives with c is denoted by �.c; Nc/. Then the power envelope is �.c; c/ because the test formed with Nc
is the most powerful against the alternative c D Nc. In other words, the asymptotic function �.c; Nc/ is always
below the power envelope �.c/ except that at one point, c D Nc, they are tangent. Elliott, Rothenberg, and
Stock (1996) show that choosing some specific values for Nc can cause the asymptotic power function �.c; Nc/
of the point optimal test to be very close to the power envelope. The optimal Nc is �7 when zt D 1, and �13:5
when zt D .1; t/0. This choice of Nc corresponds to the tangent point where � D 0:5. This is also true of the
DF-GLS test.

Elliott, Rothenberg, and Stock (1996) also propose the DF-GLS test, given by the t statistic for testing  0 D 0
in the regression

�ydt D  0y
d
t�1 C

pX
jD1

 j�y
d
t�j C �tp

where ydt is obtained in a first step detrending

ydt D yt �
Ǒ0
N̨ zt

and Ǒ N̨ is least squares regression coefficient of y˛ on z˛. Regarding the lag length selection, Elliott,
Rothenberg, and Stock (1996) favor the Schwarz Bayesian information criterion. The optimal selection of the
lag length p and the estimation of !2 is further discussed in Ng and Perron (2001). The lag length is selected
from the interval Œ0; pmax� for some fixed pmax by using the modified Akaike’s information criterion,

MAIC.p/ D log. O�2p/C
2.�T .p/C p/

T � pmax
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where �T .p/ D . O�2p/
�1 O 20

PT�1
tDpmaxC1

.ydt /
2 and O�2p D .T � pmax � 1/

�1
PT�1
tDpmaxC1

O�2tp . For fixed lag
length p, an estimate of !2 is given by

O!2 D
.T � 1 � p/�1

PT
tDpC2 O�

2
tp�

1 �
Pp
jD1
O j

�2
DF-GLS is indeed a superior unit root test, according to Stock (1994), Schwert (1989), and Elliott, Rothenberg,
and Stock (1996). In terms of the size of the test, DF-GLS is almost as good as the ADF t test DF� and better
than the PP OZ� and OZ� test. In addition, the power of the DF-GLS test is greater than that of both the ADF t
test and the �-test.

Ng and Perron (2001) also apply GLS detrending to obtain the following M-tests:

MZ˛ D ..T � 1/
�1.ydT /

2
� O!2/

 
2.T � 1/�2

T�1X
tD1

.ydt /
2

!�1

MSB D

 PT�1
tD1 .y

d
t /
2

.T � 1/2 O!2

!1=2
MZt DMZ˛ �MSB

The first one is a modified version of the Phillips-Perron Z� test,

MZ� D Z� C
T

2
. Ǫ � 1/2

where the detrended data fydt g is used. The second is a modified Bhargava (1986) R1 test statistic. The third
can be perceived as a modified Phillips-Perron Z� statistic because of the relationship Z� DMSB � Z�.

The modified point optimal tests that use the GLS detrended data are

MPGLST D
Nc2.T�1/�2

PT�1
tD1 .y

d
t /
2�Nc.T�1/�1.ydT /

2

O!2
for zt D 1

MPGLST D
Nc2.T�1/�2

PT�1
tD1 .y

d
t /
2C.1�Nc/.T�1/�1.ydT /

2

O!2
for zt D .1; t/

The DF-GLS test and the MZt test have the same limiting distribution:

DF-GLS �MZt ) 0:5 .Jc.1/
2�1/�R 1

0 Jc.r/
2dr

�1=2 for zt D 1

DF-GLS �MZt ) 0:5
.Vc; Nc.1/

2�1/�R 1
0 Vc; Nc.r/

2dr
�1=2 for zt D .1; t/

The point optimal test and the modified point optimal test have the same limiting distribution,

PGLST �MPGLST ) Nc2
R 1
0 Jc.r/

2dr � NcJc.1/
2 for zt D 1

PGLST �MPGLST ) Nc2
R 1
0 Vc; Nc.r/

2dr C .1 � Nc/Vc; Nc.1/
2 for zt D .1; t/

whereW.r/ is a standard Brownian motion and Jc.r/ is an Ornstein-Uhlenbeck process defined by dJc.r/ D
cJc.r/dr C dW.r/ with Jc.0/ D 0, Vc; Nc.r/ D Jc.r/ � r

h
�Jc.1/C 3.1 � �/

R 1
0 sJc.s/ds

i
, and � D

.1 � Nc/=.1 � Nc C Nc2=3/.

Overall, the M-tests have the smallest size distortion, with the ADF t test having the next smallest. The
ADF �-test, OZ�, and OZ� have the largest size distortion. In addition, the power of the DF-GLS and M-tests is
greater than that of the ADF t test and �-test. The ADF OZ� has more severe size distortion than the ADF OZ� ,
but it has more power for a fixed lag length.
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Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) Unit Root Test and Shin Cointegration Test
There are fewer tests available for the null hypothesis of trend stationarity I(0). The main reason is the
difficulty of theoretical development. The KPSS test was introduced in Kwiatkowski et al. (1992) to test
the null hypothesis that an observable series is stationary around a deterministic trend. For consistency, the
notation used here differs from the notation in the original paper. The setup of the problem is as follows: it is
assumed that the series is expressed as the sum of the deterministic trend, random walk rt , and stationary
error ut ; that is,

yt D �C ıt C rt C ut

rt D rt�1 C et

where et �iid .0; �2e /, and an intercept � (in the original paper, the authors use r0 instead of �; here we
assume r0 D 0.) The null hypothesis of trend stationarity is specified by H0 W �2e D 0, while the null of level
stationarity is the same as above with the model restriction ı D 0. Under the alternative that �2e ¤ 0, there is
a random walk component in the observed series yt .

Under stronger assumptions of normality and iid of ut and et , a one-sided LM test of the null that there is no
random walk (et D 0;8t ) can be constructed as follows:

bLM D
1

T 2

TX
tD1

S2t
s2.l/

s2.l/ D
1

T

TX
tD1

Ou2t C
2

T

lX
sD1

w.s; l/

TX
tDsC1

Out Out�s

St D

tX
�D1

Ou�

Under the null hypothesis, Out can be estimated by ordinary least squares regression of yt on an intercept
and the time trend. Following the original work of Kwiatkowski et al. (1992), under the null (�2e D 0), the
bLM statistic converges asymptotically to three different distributions depending on whether the model is
trend-stationary, level-stationary (ı D 0), or zero-mean stationary (ı D 0, � D 0). The trend-stationary
model is denoted by subscript � and the level-stationary model is denoted by subscript �. The case when there
is no trend and zero intercept is denoted as 0. The last case, although rarely used in practice, is considered in
Hobijn, Franses, and Ooms (2004),

yt D ut W bLM 0
D
�!

Z 1

0

B2.r/dr

yt D �C ut W bLM�
D
�!

Z 1

0

V 2.r/dr

yt D �C ıt C ut W bLM �
D
�!

Z 1

0

V 22 .r/dr

with

V.r/ D B.r/ � rB.1/

V2.r/ D B.r/C .2r � 3r
2/B.1/C .�6r C 6r2/

Z 1

0

B.s/ds
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where B.r/ is a Brownian motion (Wiener process) and
D
�! is convergence in distribution. V.r/ is a standard

Brownian bridge, and V2.r/ is a second-level Brownian bridge.

Using the notation of Kwiatkowski et al. (1992), the bLM statistic is named as O�. This test depends on the
computational method used to compute the long-run variance s.l/; that is, the window width l and the kernel
type w.�; �/. You can specify the kernel used in the test by using the KERNEL option:

� Newey-West/Bartlett (KERNEL=NW j BART) (this is the default)

w.s; l/ D 1 �
s

l C 1

� quadratic spectral (KERNEL=QS)

w.s; l/ D Qw
�s
l

�
D Qw.x/ D

25

12�2x2

�
sin .6�x=5/
6�x=5

� cos
�
6

5
�x

��
You can specify the number of lags, l, in three different ways:

� Schwert (SCHW = c) (default for NW, c=12)

l D max

(
1;floor

"
c

�
T

100

�1=4#)

� manual (LAG = l)

� automatic selection (AUTO) (default for QS), from Hobijn, Franses, and Ooms (2004). The number of
lags, l, is calculated as in the following table:

KERNEL=NW KERNEL=QS

l D min.T;floor. OT 1=3// l D min.T;floor. OT 1=5//

O D 1:1447

��
Os.1/

Os.0/

�2�1=3
O D 1:3221

��
Os.2/

Os.0/

�2�1=5
Os.j / D ı0;j O0 C 2

Pn
iD1 i

j Oi Os.j / D ı0;j O0 C 2
Pn
iD1 i

j Oi

n D floor.T 2=9/ n D floor.T 2=25/

where T is the number of observations, ı0;j D 1 if j D 0 and 0 otherwise, and Oi D 1
T

PT�i
tD1 ututCi .

Simulation evidence shows that the KPSS has size distortion in finite samples. For an example, see Caner
and Kilian (2001). The power is reduced when the sample size is large; this can be derived theoretically (see
Breitung 1995). Another problem of the KPSS test is that the power depends on the truncation lag used in
the Newey-West estimator of the long-run variance s2.l/.

Shin (1994) extends the KPSS test to incorporate the regressors to be a cointegration test. The cointegrating
regression becomes

yt D �C ıt CXt
0ˇ C rt C ut

rt D rt�1 C et
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where yt andXt are scalar and m-vector I.1/ variables. There are still three cases of cointegrating regressions:
without intercept and trend, with intercept only, and with intercept and trend. The null hypothesis of the
cointegration test is the same as that for the KPSS test, H0 W �2e D 0. The test statistics for cointegration in
the three cases of cointegrating regressions are exactly the same as those in the KPSS test; these test statistics
are then ignored here. Under the null hypothesis, the statistics converge asymptotically to three different
distributions,

yt D X
0
tˇ C ut W

bLM 0
D
�!

Z 1

0

Q21.r/dr

yt D �CX
0
tˇ C ut W

bLM�
D
�!

Z 1

0

Q22.r/dr

yt D �C ıt CX
0
tˇ C ut W

bLM �
D
�!

Z 1

0

Q23.r/dr

with

Q1.r/ D B.r/ �

�Z r

0

Bm.x/dx

��Z 1

0

Bm.x/Bm
0.x/dx

��1 �Z 1

0

Bm.x/dB.x/

�
Q2.r/ D V.r/ �

�Z r

0

NBm.x/dx

��Z 1

0

NBm.x/
NBm
0.x/dx

��1 �Z 1

0

NBm.x/dB.x/

�
Q3.r/ D V2.r/ �

�Z r

0

B�m.x/dx
��Z 1

0

B�m.x/B
�
m
0
.x/dx

��1 �Z 1

0

B�m.x/dB.x/
�

whereB.:/ and Bm.:/ are independent scalar and m-vector standard Brownian motion, and
D
�! is convergence

in distribution. V.r/ is a standard Brownian bridge, V2.r/ is a Brownian bridge of a second-level, NBm.r/ D

Bm.r/ �
R 1
0 Bm.x/dx is an m-vector standard de-meaned Brownian motion, and B�m.r/ D Bm.r/C .6r �

4/
R 1
0 Bm.x/dx C .�12r C 6/

R 1
0 xBm.x/dx is an m-vector standard de-meaned and detrended Brownian

motion.

The p-values that are reported for the KPSS test and Shin test are calculated via a Monte Carlo simulation of
the limiting distributions, using a sample size of 2,000 and 1,000,000 replications.

Testing for Statistical Independence

Independence tests are widely used in model selection, residual analysis, and model diagnostics because
models are usually based on the assumption of independently distributed errors. If a given time series (for
example, a series of residuals) is independent, then no deterministic model is necessary for this completely
random process; otherwise, there must exist some relationship in the series to be addressed. In the following
section, four independence tests are introduced: the BDS test, the runs test, the turning point test, and the
rank version of von Neumann ratio test.

BDS Test
Brock, Dechert, and Scheinkman (1987) propose a test (BDS test) of independence based on the correlation
dimension. Brock et al. (1996) show that the first-order asymptotic distribution of the test statistic is
independent of the estimation error provided that the parameters of the model under test can be estimated
p
n-consistently. Hence, the BDS test can be used as a model selection tool and as a specification test.
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Given the sample size T, the embedding dimension m, and the value of the radius r, the BDS statistic is

SBDS.T;m; r/ D
p
T �mC 1

cm;m;T .r/ � c
m
1;m;T .r/

�m;T .r/

where

cm;n;N .r/ D
2

.N � nC 1/.N � n/

NX
sDn

NX
tDsC1

m�1Y
jD0

Ir.zs�j ; zt�j /

Ir.zs; zt / D

�
1 if jzs � zt j < r
0 otherwise

�2m;T .r/ D 4

0@km C 2m�1X
jD1

km�j c2j C .m � 1/2c2m �m2kc2m�2

1A
c D c1;1;T .r/

k D kT .r/ D
6

T .T � 1/.T � 2/

TX
tD1

TX
sDtC1

TX
lDsC1

hr.zt ; zs; zl/

hr.zt ; zs; zl/ D
1

3
.Ir.zt ; zs/Ir.zs; zl/C Ir.zt ; zl/Ir.zl ; zs/C Ir.zs; zt /Ir.zt ; zl//

The statistic has a standard normal distribution if the sample size is large enough. For small sample size,
the distribution can be approximately obtained through simulation. Kanzler (1999) has a comprehensive
discussion on the implementation and empirical performance of BDS test.

Runs Test and Turning Point Test
The runs test and turning point test are two widely used tests for independence (Cromwell, Labys, and Terraza
1994).

The runs test needs several steps. First, convert the original time series into the sequence of signs, fCC ��
� � � C � � �g, that is, map fztg into fsign.zt � zM /g where zM is the sample mean of zt and sign.x/ is
“C” if x is nonnegative and “�” if x is negative. Second, count the number of runs, R, in the sequence. A run
of a sequence is a maximal non-empty segment of the sequence that consists of adjacent equal elements. For
example, the following sequence contains R D 8 runs:

CCC„ ƒ‚ …
1

� � �„ƒ‚…
1

CC„ƒ‚…
1

��„ƒ‚…
1

C„ƒ‚…
1

�„ƒ‚…
1

CCCCC„ ƒ‚ …
1

��„ƒ‚…
1

Third, count the number of pluses and minuses in the sequence and denote them as NC and N�, respectively.
In the preceding example sequence, NC D 11 and N� D 8. Note that the sample size T D NC C N�.
Finally, compute the statistic of runs test,

Sruns D
R � �

�

where

� D
2NCN�

T
C 1
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�2 D
.� � 1/.� � 2/

T � 1

The statistic of the turning point test is defined as

STP D

PT�1
tD2 TPt � 2.T � 2/=3p

.16T � 29/=90

where the indicator function of the turning point TPt is 1 if zt > zt˙1 or zt < zt˙1 (that is, both the previous
and next values are greater or less than the current value); otherwise, 0.

The statistics of both the runs test and the turning point test have the standard normal distribution under the
null hypothesis of independence.

Rank Version of the von Neumann Ratio Test
Because the runs test completely ignores the magnitudes of the observations, Bartels (1982) proposes a rank
version of the von Neumann ratio test for independence,

SRVN D

p
T

2

 PT�1
tD1 .RtC1 �Rt /

2

.T .T 2 � 1/=12/
� 2

!

where Rt is the rank of tth observation in the sequence of T observations. For large samples, the statistic
follows the standard normal distribution under the null hypothesis of independence. For small samples of size
between 11 and 100, the critical values that have been simulated would be more precise. For samples of size
less than or equal to 10, the exact CDF of the statistic is available. Hence, the VNRRANK=(PVALUE=SIM)
option is recommended for small samples whose size is no more than 100, although it might take longer to
obtain the p-value than if you use the VNRRANK=(PVALUE=DIST) option.

Testing for Normality

Based on skewness and kurtosis, Jarque and Bera (1980) calculated the test statistic

TN D

�
N

6
b21 C

N

24
.b2 � 3/

2

�
where

b1 D

p
N
PN
tD1 Ou

3
t�PN

tD1 Ou
2
t

� 3
2

b2 D
N
PN
tD1 Ou

4
t�PN

tD1 Ou
2
t

�2
The �2(2) distribution gives an approximation to the normality test TN .

When the GARCH model is estimated, the normality test is obtained using the standardized residuals
Out D O�t=

p
ht . The normality test can be used to detect misspecification of the family of ARCH models.
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Testing for Linear Dependence

Generalized Durbin-Watson Tests
Consider the linear regression model

Y D Xˇ C �

where X is an N � k data matrix, ˇ is a k � 1 coefficient vector, and � is an N � 1 disturbance vector. The
error term � is assumed to be generated by the jth-order autoregressive process �t D �t � 'j �t�j where
j'j j < 1, �t is a sequence of independent normal error terms with mean 0 and variance �2. Usually, the
Durbin-Watson statistic is used to test the null hypothesis H0 W '1 D 0 against H1 W �'1 > 0. Vinod (1973)
generalized the Durbin-Watson statistic,

dj D

PN
tDjC1 . O�t � O�t�j /

2PN
tD1 O�

2
t

where O� are OLS residuals. Using the matrix notation,

dj D
Y0MA0jAjMY

Y0MY

where M D IN �X.X0X/�1X0 and Aj is a .N � j / �N matrix,

Aj D

26664
�1 0 � � � 0 1 0 � � � 0

0 �1 0 � � � 0 1 0 � � �

:::
:::

:::
:::

:::
:::

:::
:::

0 � � � 0 �1 0 � � � 0 1

37775
and there are j � 1 zeros between �1 and 1 in each row of matrix Aj .

The QR factorization of the design matrix X yields an N �N orthogonal matrix Q,

X D QR

where R is an N � k upper triangular matrix. There exists an N � .N � k/ submatrix of Q such that
Q1Q01 DM and Q01Q1 D IN�k . Consequently, the generalized Durbin-Watson statistic is stated as a ratio of
two quadratic forms,

dj D

Pn
lD1 �jl�l

2Pn
lD1 �

2
l

where �j1 : : : �jn are upper n eigenvalues of MA0jAjM and �l is a standard normal variate, and
n D min.N � k;N � j /. These eigenvalues are obtained by a singular value decomposition of Q01A0j
(Golub and Van Loan 1989; Savin and White 1978).

The marginal probability (or p-value) for dj given c0 is

Prob.
Pn
lD1 �jl�

2
lPn

lD1 �
2
l

< c0/ D Prob.qj < 0/

where

qj D

nX
lD1

.�jl � c0/�
2
l
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When the null hypothesis H0 W 'j D 0 holds, the quadratic form qj has the characteristic function

�j .t/ D

nY
lD1

.1 � 2.�jl � c0/i t/
�1=2

The distribution function is uniquely determined by this characteristic function:

F.x/ D
1

2
C

1

2�

Z 1
0

eitx�j .�t / � e
�itx�j .t/

i t
dt

For example, to test H0 W '4 D 0 given '1 D '2 D '3 D 0 against H1 W �'4 > 0, the marginal probability
(p-value) can be used,

F.0/ D
1

2
C

1

2�

Z 1
0

.�4.�t / � �4.t//

i t
dt

where

�4.t/ D

nY
lD1

.1 � 2.�4l � Od4/i t/
�1=2

and Od4 is the calculated value of the fourth-order Durbin-Watson statistic.

In the Durbin-Watson test, the marginal probability indicates positive autocorrelation (�'j > 0) if it is less
than the level of significance (˛), while you can conclude that a negative autocorrelation (�'j < 0) exists if
the marginal probability based on the computed Durbin-Watson statistic is greater than 1 � ˛. Wallis (1972)
presented tables for bounds tests of fourth-order autocorrelation, and Vinod (1973) has given tables for a
5% significance level for orders two to four. Using the AUTOREG procedure, you can calculate the exact
p-values for the general order of Durbin-Watson test statistics. Tests for the absence of autocorrelation of
order p can be performed sequentially; at the jth step, test H0 W 'j D 0 given '1 D � � � D 'j�1 D 0 against
'j ¤ 0. However, the size of the sequential test is not known.

The Durbin-Watson statistic is computed from the OLS residuals, while that of the autoregressive error model
uses residuals that are the difference between the predicted values and the actual values. When you use the
Durbin-Watson test from the residuals of the autoregressive error model, you must be aware that this test
is only an approximation. See the section “Autoregressive Error Model” on page 370. If there are missing
values, the Durbin-Watson statistic is computed using all the nonmissing values and ignoring the gaps caused
by missing residuals. This does not affect the significance level of the resulting test, although the power of
the test against certain alternatives may be adversely affected. Savin and White (1978) have examined the
use of the Durbin-Watson statistic with missing values.

The Durbin-Watson probability calculations have been enhanced to compute the p-value of the generalized
Durbin-Watson statistic for large sample sizes. Previously, the Durbin-Watson probabilities were only
calculated for small sample sizes.

Consider the linear regression model

Y D Xˇ C u

ut C 'jut�j D �t ; t D 1; : : : ; N
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where X is an N � k data matrix, ˇ is a k � 1 coefficient vector, u is an N � 1 disturbance vector, and �t is a
sequence of independent normal error terms with mean 0 and variance �2.

The generalized Durbin-Watson statistic is written as

DWj D
Ou0A0jAj Ou

Ou0 Ou

where Ou is a vector of OLS residuals and Aj is a .T � j / � T matrix. The generalized Durbin-Watson
statistic DWj can be rewritten as

DWj D
Y0MA0jAjMY

Y0MY
D
�0.Q01A

0
jAjQ1/�

�0�

where Q01Q1 D IT�k; Q01X D 0; and � D Q01u.

The marginal probability for the Durbin-Watson statistic is

Pr.DWj < c/ D Pr.h < 0/

where h D �0.Q01A
0
jAjQ1 � cI/�.

The p-value or the marginal probability for the generalized Durbin-Watson statistic is computed by numerical
inversion of the characteristic function �.u/ of the quadratic form h D �0.Q01A

0
jAjQ1�cI/�. The trapezoidal

rule approximation to the marginal probability Pr.h < 0/ is

Pr.h < 0/ D
1

2
�

KX
kD0

Im
�
�..k C 1

2
/�/

�
�.k C 1

2
/

C EI .�/C ET .K/

where Im Œ�.�/� is the imaginary part of the characteristic function, EI .�/ and ET .K/ are integration and
truncation errors, respectively. For numerical inversion of the characteristic function, see Davies (1973).

Ansley, Kohn, and Shively (1992) proposed a numerically efficient algorithm that requires O(N) operations
for evaluation of the characteristic function �.u/. The characteristic function is denoted as

�.u/ D
ˇ̌̌
I � 2iu.Q01A

0
jAjQ1 � cIN�k/

ˇ̌̌�1=2
D jVj�1=2

ˇ̌
X0V�1X

ˇ̌�1=2 ˇ̌
X0X

ˇ̌1=2
where V D .1C2iuc/I�2iuA0jAj and i D

p
�1. By applying the Cholesky decomposition to the complex

matrix V, you can obtain the lower triangular matrix G that satisfies V D GG0. Therefore, the characteristic
function can be evaluated in O(N) operations by using the formula

�.u/ D jGj�1
ˇ̌
X�0X�

ˇ̌�1=2 ˇ̌X0Xˇ̌1=2
where X� D G�1X. For more information about evaluation of the characteristic function, see Ansley, Kohn,
and Shively (1992).



404 F Chapter 9: The AUTOREG Procedure

Tests for Serial Correlation with Lagged Dependent Variables
When regressors contain lagged dependent variables, the Durbin-Watson statistic (d1) for the first-order
autocorrelation is biased toward 2 and has reduced power. Wallis (1972) shows that the bias in the Durbin-
Watson statistic (d4) for the fourth-order autocorrelation is smaller than the bias in d1 in the presence of a
first-order lagged dependent variable. Durbin (1970) proposes two alternative statistics (Durbin h and t) that
are asymptotically equivalent. The h statistic is written as

h D O�

q
N=.1 �N OV /

where O� D
PN
tD2 O�t O�t�1=

PN
tD1 O�

2
t and OV is the least squares variance estimate for the coefficient of the

lagged dependent variable. Durbin’s t test consists of regressing the OLS residuals O�t on explanatory variables
and O�t�1 and testing the significance of the estimate for coefficient of O�t�1.

Inder (1984) shows that the Durbin-Watson test for the absence of first-order autocorrelation is generally
more powerful than the h test in finite samples. For information about the Durbin-Watson test in the presence
of lagged dependent variables, see Inder (1986) and King and Wu (1991).

Godfrey LM test
The GODFREY= option in the MODEL statement produces the Godfrey Lagrange multiplier test for serially
correlated residuals for each equation (Godfrey 1978b, a). r is the maximum autoregressive order, and
specifies that Godfrey’s tests be computed for lags 1 through r. The default number of lags is four.

Testing for Nonlinear Dependence: Ramsey’s Reset Test

Ramsey’s reset test is a misspecification test associated with the functional form of models to check whether
power transforms need to be added to a model. The original linear model, henceforth called the restricted
model, is

yt D xtˇ C ut

To test for misspecification in the functional form, the unrestricted model is

yt D xtˇ C

pX
jD2

�j Oy
j
t C ut

where Oyt is the predicted value from the linear model and p is the power of Oyt in the unrestricted model
equation starting from 2. The number of higher-ordered terms to be chosen depends on the discretion of the
analyst. The RESET option produces test results for p D 2, 3, and 4.

The reset test is an F statistic for testing H0 W �j D 0, for all j D 2; : : : ; p, against H1 W �j ¤ 0 for at least
one j D 2; : : : ; p in the unrestricted model and is computed as

F.p�1;n�k�pC1/ D
.SSER � SSEU /=.p � 1/
SSEU =.n � k � p C 1/

where SSER is the sum of squared errors due to the restricted model, SSEU is the sum of squared errors due
to the unrestricted model, n is the total number of observations, and k is the number of parameters in the
original linear model.

Ramsey’s test can be viewed as a linearity test that checks whether any nonlinear transformation of the
specified independent variables has been omitted, but it need not help in identifying a new relevant variable
other than those already specified in the current model.
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Testing for Nonlinear Dependence: Heteroscedasticity Tests

Portmanteau Q Test
For nonlinear time series models, the portmanteau test statistic based on squared residuals is used to test for
independence of the series (McLeod and Li 1983),

Q.q/ D N.N C 2/

qX
iD1

r.i I O�2t /

.N � i/

where

r.i I O�2t / D

PN
tDiC1 . O�

2
t � O�

2/. O�2t�i � O�
2/PN

tD1 . O�
2
t � O�

2/2

O�2 D
1

N

NX
tD1

O�2t

This Q statistic is used to test the nonlinear effects (for example, GARCH effects) present in the residuals. The
GARCH.p; q/ process can be considered as an ARMA.max.p; q/; p/ process. See the section “Predicting
the Conditional Variance” on page 412. Therefore, the Q statistic calculated from the squared residuals can
be used to identify the order of the GARCH process.

Engle’s Lagrange Multiplier Test for ARCH Disturbances
Engle (1982) proposed a Lagrange multiplier test for ARCH disturbances. The test statistic is asymptotically
equivalent to the test used by Breusch and Pagan (1979). Engle’s Lagrange multiplier test for the qth order
ARCH process is written

LM.q/ D
NW0Z.Z0Z/�1Z0W

W0W

where

W D

 
O�21
O�2
� 1; : : : ;

O�2N
O�2
� 1

!0
and

Z D

266664
1 O�20 � � � O�2

�qC1
:::

:::
:::

:::
:::

:::
:::

:::

1 O�2N�1 � � � O�
2
N�q

377775
The presample values ( �20 , . . . , �2

�qC1) have been set to 0. Note that the LM.q/ tests might have different
finite-sample properties depending on the presample values, though they are asymptotically equivalent
regardless of the presample values.
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Lee and King’s Test for ARCH Disturbances
Engle’s Lagrange multiplier test for ARCH disturbances is a two-sided test; that is, it ignores the inequality
constraints for the coefficients in ARCH models. Lee and King (1993) propose a one-sided test and prove
that the test is locally most mean powerful. Let "t ; t D 1; : : : ; T , denote the residuals to be tested. Lee and
King’s test checks

H0 W ˛i D 0; i D 1; : : : ; q

H1 W ˛i > 0; i D 1; : : : ; q

where ˛i ; i D 1; : : : ; q; are in the following ARCH(q) model:

"t D
p
htet ; et i id.0; 1/

ht D ˛0 C

qX
iD1

˛i"
2
t�i

The statistic is written as

S D

PT
tDqC1 .

"2t
h0
� 1/

Pq
iD1 "

2
t�i�

2
PT
tDqC1 .

Pq
iD1 "

2
t�i /

2 �
2.
PT
tDqC1

Pq
iD1

"2
t�i
/2

T�q

�1=2

Wong and Li’s Test for ARCH Disturbances
Wong and Li (1995) propose a rank portmanteau statistic to minimize the effect of the existence of outliers in
the test for ARCH disturbances. They first rank the squared residuals; that is, Rt D rank."2t /. Then they
calculate the rank portmanteau statistic

QR D

qX
iD1

.ri � �i /
2

�2i

where ri , �i , and �2i are defined as follows:

ri D

PT
tDiC1 .Rt � .T C 1/=2/.Rt�i � .T C 1/=2/

T .T 2 � 1/=12

�i D �
T � i

T .T � 1/

�2i D
5T 4 � .5i C 9/T 3 C 9.i � 2/T 2 C 2i.5i C 8/T C 16i2

5.T � 1/2T 2.T C 1/

The Q, Engle’s LM, Lee and King’s, and Wong and Li’s statistics are computed from the OLS residuals, or
residuals if the NLAG= option is specified, assuming that disturbances are white noise. The Q, Engle’s LM,
and Wong and Li’s statistics have an approximate �2

.q/
distribution under the white-noise null hypothesis,

while the Lee and King’s statistic has a standard normal distribution under the white-noise null hypothesis.
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Testing for Structural Change

Chow Test
Consider the linear regression model

y D Xˇ C u

where the parameter vector ˇ contains k elements.

Split the observations for this model into two subsets at the break point specified by the CHOW= option, so
that

y D .y01; y
0
2/
0

X D .X01;X02/0

u D .u01; u02/0

Now consider the two linear regressions for the two subsets of the data modeled separately,

y1 D X1ˇ1 C u1

y2 D X2ˇ2 C u2

where the number of observations from the first set is n1 and the number of observations from the second set
is n2.

The Chow test statistic is used to test the null hypothesisH0 W ˇ1 D ˇ2 conditional on the same error variance
V.u1/ D V.u2/. The Chow test is computed using three sums of square errors,

Fchow D
. Ou0 Ou � Ou01 Ou1 � Ou

0
2 Ou2/=k

. Ou01 Ou1 C Ou
0
2 Ou2/=.n1 C n2 � 2k/

where Ou is the regression residual vector from the full set model, Ou1 is the regression residual vector from the
first set model, and Ou2 is the regression residual vector from the second set model. Under the null hypothesis,
the Chow test statistic has an F distribution with k and .n1 C n2 � 2k/ degrees of freedom, where k is the
number of elements in ˇ.

Chow (1960) suggested another test statistic that tests the hypothesis that the mean of prediction errors is 0.
The predictive Chow test can also be used when n2 < k.

The PCHOW= option computes the predictive Chow test statistic

Fpchow D
. Ou0 Ou � Ou01 Ou1/=n2
Ou01 Ou1=.n1 � k/

The predictive Chow test has an F distribution with n2 and .n1 � k/ degrees of freedom.

Bai and Perron’s Multiple Structural Change Tests
Bai and Perron (1998) propose several kinds of multiple structural change tests: (1) the test of no break versus
a fixed number of breaks (supF test), (2) the equal and unequal weighted versions of double maximum tests
of no break versus an unknown number of breaks given some upper bound (UDmaxF test and WDmaxF
test), and (3) the test of l versus l C 1 breaks (supFlC1jl test). Bai and Perron (2003a, b, 2006) also show
how to implement these tests, the commonly used critical values, and the simulation analysis on these tests.
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Consider the following partial structural change model with m breaks (mC 1 regimes):

yt D x
0
tˇ C z

0
tıj C ut ; t D Tj�1 C 1; : : : ; Tj ; j D 1; : : : ; m

Here, yt is the dependent variable observed at time t, xt .p � 1/ is a vector of covariates with coefficients ˇ
unchanged over time, and zt .q � 1/ is a vector of covariates with coefficients ıj at regime j, j D 1; : : : ; m.
If p D 0 (that is, there are no x regressors), the regression model becomes the pure structural change
model. The indices .T1; : : : ; Tm/ (that is, the break dates or break points) are unknown, and the convenient
notation T0 D 0 and TmC1 D T applies. For any given m-partition .T1; : : : ; Tm/, the associated least squares
estimates of ˇ and ıj ; j D 1; : : : ; m; are obtained by minimizing the sum of squared residuals (SSR),

ST .T1; : : : ; Tm/ D

mC1X
iD1

TiX
tDTi�1C1

.yt � x
0
tˇ � z

0
tıi /

2

Let OST .T1; : : : ; Tm/ denote the minimized SSR for a given .T1; : : : ; Tm/. The estimated break dates
. OT1; : : : ; OTm/ are such that

. OT1; : : : ; OTm/ D arg min
T1;:::;Tm

OST .T1; : : : ; Tm/

where the minimization is taken over all partitions .T1; : : : ; Tm/ such that Ti � Ti�1 � T�. Bai and Perron
(2003a) propose an efficient algorithm, based on the principle of dynamic programming, to estimate the
preceding model.

In the case that the data are nontrending, as stated in Bai and Perron (1998), the limiting distribution of the
break dates is

.�0iQi�i /
2

.�0i�i�i /
. OTi � T

0
i /) argmax

s
V .i/.s/; i D 1; : : : ; m

where

V .i/.s/ D

(
W
.i/
1 .�s/ � jsj=2 if s � 0
p
�i .�i;2=�i;1/W

.i/
2 .s/ � �i jsj=2 if s > 0

and

�T 0i D T
0
i � T

0
i�1

�i D ı
0
iC1 � ı

0
i

Qi D lim .�T 0i /
�1

T 0
iX

tDT 0
i�1
C1

E.ztz
0
t /

�i D lim .�T 0i /
�1

T 0
iX

rDT 0
i�1
C1

T 0
iX

tDT 0
i�1
C1

E.zrz
0
turut /

�i D �
0
iQiC1�i=�

0
iQi�i

�2i;1 D �
0
i�i�i=�

0
iQi�i

�2i;2 D �
0
i�iC1�i=�

0
iQiC1�i
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Also, W .i/
1 .s/ and W .i/

2 .s/ are independent standard Weiner processes that are defined on Œ0;1/, starting at
the origin when s D 0; these processes are also independent across i. The cumulative distribution function of
argmaxs V .i/.s/ is shown in Bai (1997). Hence, with the estimates of �i , Qi , and �i , the relevant critical
values for confidence interval of break dates Ti can be calculated. The estimate of �i is OıiC1 � Oıi . The
estimate of Qi is either

OQi D .� OTi /
�1

OT 0
iX

tD OT 0
i�1
C1

ztz
0
t

if the regressors are assumed to have heterogeneous distributions across regimes (that is, the HQ option is
specified), or

OQi D OQ D .T /
�1

TX
tD1

ztz
0
t

if the regressors are assumed to have identical distributions across regimes (that is, the HQ option is not
specified). The estimate of �i can also be constructed with data over regime i only or the whole sample,
depending on whether the vectors zt Out are heterogeneously distributed across regimes (that is, the HO
option is specified). If the HAC option is specified, O�i is estimated through the heteroscedasticity- and
autocorrelation-consistent (HAC) covariance matrix estimator applied to vectors zt Out .

The supF test of no structural break .m D 0/ versus the alternative hypothesis that there are a fixed number,
m D k, of breaks is defined as

supF.k/ D
1

T

�
T � .k C 1/q � p

kq

�
.R O�/0.R OV . O�/R0/�1.R O�/

where

R.kq/�.pC.kC1/q/ D

0BBB@
0q�p Iq �Iq 0 0 � � � 0

0q�p 0 Iq �Iq 0 � � � 0
::: � � �

: : :
: : :

: : :
: : : � � �

0q�p 0 � � � � � � 0 Iq �Iq

1CCCA
and Iq is the q � q identity matrix; O� is the coefficient vector . Ǒ0 Oı01 : : : OıkC1/

0, which together with the
break dates . OT1 : : : OTk/ minimizes the global sum of squared residuals; and OV . O�/ is an estimate of the
variance-covariance matrix of O� , which could be estimated by using the HAC estimator or another way,
depending on how the HAC, HR, and HE options are specified. The output supF test statistics are scaled by
q, the number of regressors, to be consistent with the limiting distribution; Bai and Perron (2003b, 2006) take
the same action.

There are two versions of double maximum tests of no break against an unknown number of breaks given
some upper bound M: the UDmaxF test,

UDmaxF.M/ D max
1�m�M

supF.m/

and the WDmaxF test,

WDmaxF.M; ˛/ D max
1�m�M

c˛.1/

c˛.m/
supF.m/



410 F Chapter 9: The AUTOREG Procedure

where ˛ is the significance level and c˛.m/ is the critical value of supF.m/ test given the significance level
˛. Four kinds of WDmaxF tests that correspond to ˛ D 0:100; 0:050; 0:025, and 0.010 are implemented.

The supF.l C 1jl/ test of l versus l C 1 breaks is calculated in two ways that are asymptotically the same.
In the first calculation, the method amounts to the application of .l C 1/ tests of the null hypothesis of no
structural change versus the alternative hypothesis of a single change. The test is applied to each segment that
contains the observations OTi�1 to OTi .i D 1; : : : ; l C 1/. The supF.l C 1jl/ test statistics are the maximum
of these .l C 1/ supF test statistics. In the second calculation, for the given l breaks . OT1; : : : ; OTl/, the new
break OT .N/ is to minimize the global SSR:

OT .N/ D arg min
T .N/

SSR. OT1; : : : ; OTl IT
.N//

Then,

supF.l C 1jl/ D .T � .l C 1/q � p/
SSR. OT1; : : : ; OTl/ � SSR. OT1; : : : ; OTl I OT

.N//

SSR. OT1; : : : ; OTl/

The p-value of each test is based on the simulation of the limiting distribution of that test.

Predicted Values
The AUTOREG procedure can produce two kinds of predicted values for the response series and correspond-
ing residuals and confidence limits. The residuals in both cases are computed as the actual value minus the
predicted value. In addition, when GARCH models are estimated, the AUTOREG procedure can output
predictions of the conditional error variance.

Predicting the Unconditional Mean

The first type of predicted value is obtained from only the structural part of the model, x0tb. These are
useful in predicting values of new response time series, which are assumed to be described by the same
model as the current response time series. The predicted values, residuals, standard errors, and upper and
lower confidence limits for the structural predictions are requested by specifying the PREDICTEDM=,
RESIDUALM=, STDERRM=, UCLM=, or LCLM= option in the OUTPUT statement. The ALPHACLM=
option controls the confidence level for UCLM= and LCLM=. These confidence limits are for estimation
of the mean of the dependent variable, x0tb, where xt is the column vector of independent variables at
observation t.

The predicted values are computed as

Oyt D x0tb

and the upper and lower confidence limits as

Out D Oyt C t˛=2v

Olt D Oyt � t˛=2v

where v2 is an estimate of the variance of Oyt and t˛=2 is the upper ˛/2 percentage point of the t distribution.
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Prob.T > t˛=2/ D ˛=2

where T is an observation from a t distribution with q degrees of freedom. The value of ˛ can be set with the
ALPHACLM= option. The degrees of freedom parameter, q, is taken to be the number of observations minus
the number of free parameters in the final model. For the YW estimation method, the value of v is calculated
as

v D
q
s2x0t .X0V�1X/�1xt

where s2 is the error sum of squares divided by q. For the ULS and ML methods, it is calculated as

v D
q
s2x0tWxt

where W is the k � k submatrix of .J0J/�1 that corresponds to the regression parameters. For more
information, see the section “Computational Methods” on page 372.

Predicting Future Series Realizations

The other predicted values use both the structural part of the model and the predicted values of the error
process. These conditional mean values are useful in predicting future values of the current response time
series. The predicted values, residuals, standard errors, and upper and lower confidence limits for future
observations conditional on past values are requested by the PREDICTED=, RESIDUAL=, STDERR=,
UCL=, or LCL= option in the OUTPUT statement. The ALPHACLI= option controls the confidence level
for UCL= and LCL=. These confidence limits are for the predicted value,

Qyt D x0tbC �t jt�1

where xt is the vector of independent variables if all independent variables at time t are nonmissing, and
�t jt�1 is the minimum variance linear predictor of the error term, which is defined in the following recursive
way given the autoregressive model, AR(m) model, for �t ,

�sjt D

8<:
�
Pm
iD1 O'i�s�i jt s > t or observation s is missing

ys � x0sb 0 < s � t and observation s is nonmissing
0 s � 0

where O'i ; i D 1; : : : ; m, are the estimated AR parameters. Observation s is considered to be missing if the
dependent variable or at least one independent variable is missing. If some of the independent variables at
time t are missing, the predicted Qyt is also missing. With the same definition of �sjt , the prediction method
can be easily extended to the multistep forecast of QytCd ; d > 0:

QytCd D x0tCdbC �tCd jt�1

The prediction method is implemented through the Kalman filter.

If Qyt is not missing, the upper and lower confidence limits are computed as

Qut D Qyt C t˛=2v

Qlt D Qyt � t˛=2v
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where v, in this case, is computed as

v D
q
z0tVˇ zt C s2r

where Vˇ is the variance-covariance matrix of the estimation of regression parameter ˇ; zt is defined as

zt D xt C
mX
iD1

O'ixt�i jt�1

and xsjt is defined in a similar way as �sjt :

xsjt D

8<:
�
Pm
iD1 O'ixs�i jt s > t or observation s is missing

xs 0 < s � t and observation s is nonmissing
0 s � 0

The formula for computing the prediction variance v is deducted based on Baillie (1979).

The value s2r is the estimate of the conditional prediction error variance. At the start of the series, and after
missing values, r is usually greater than 1. For the computational details of r, see the section “Predicting the
Conditional Variance” on page 412. The plot of residuals and confidence limits in Example 9.4 illustrates
this behavior.

Except to adjust the degrees of freedom for the error sum of squares, the preceding formulas do not account
for the fact that the autoregressive parameters are estimated. In particular, the confidence limits are likely to
be somewhat too narrow. In large samples, this is probably not an important effect, but it might be appreciable
in small samples. For some discussion of this problem for AR(1) models, see Harvey (1981).

At the beginning of the series (the first m observations, where m is the value of the NLAG= option) and
after missing values, these residuals do not match the residuals obtained by using OLS on the transformed
variables. This is because, in these cases, the predicted noise values must be based on less than a complete set
of past noise values and, thus, have larger variance. The GLS transformation for these observations includes
a scale factor in addition to a linear combination of past values. Put another way, the L�1 matrix defined in
the section “Computational Methods” on page 372 has the value 1 along the diagonal, except for the first m
observations and after missing values.

Predicting the Conditional Variance

The GARCH process can be written as

�2t D ! C

nX
iD1

.˛i C i /�
2
t�i �

pX
jD1

j�t�j C �t

where �t D �2t � ht and n D max.p; q/. This representation shows that the squared residual �2t follows an
ARMA.n; p/ process. Then for any d > 0, the conditional expectations are as follows:

E.�2tCd j‰t / D ! C
nX
iD1

.˛i C i /E.�2tCd�i j‰t / �
pX
jD1

jE.�tCd�j j‰t /

The d-step-ahead prediction error, �tCd = ytCd � ytCd jt , has the conditional variance

V.�tCd j‰t / D
d�1X
jD0

g2j�
2
tCd�j jt
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where

�2tCd�j jt D E.�2tCd�j j‰t /

Coefficients in the conditional d-step prediction error variance are calculated recursively using the formula

gj D �'1gj�1 � � � � � 'mgj�m

where g0 D 1 and gj D 0 if j < 0; '1, . . . , 'm are autoregressive parameters. Since the parameters are not
known, the conditional variance is computed using the estimated autoregressive parameters. The d-step-ahead
prediction error variance is simplified when there are no autoregressive terms:

V.�tCd j‰t / D �2tCd jt

Therefore, the one-step-ahead prediction error variance is equivalent to the conditional error variance defined
in the GARCH process:

ht D E.�2t j‰t�1/ D �
2
t jt�1

The multistep forecast of conditional error variance of the EGARCH, QGARCH, TGARCH, PGARCH, and
GARCH-M models cannot be calculated using the preceding formula for the GARCH model. The following
formulas are recursively implemented to obtain the multistep forecast of conditional error variance of these
models:

� for the EGARCH(p, q) model:

ln.�2tCd jt / D ! C
qX
iDd

˛ig.ztCd�i /C

d�1X
jD1

j ln.�2tCd�j jt /C
pX
jDd

j ln.htCd�j /

where

g.zt / D �zt C jzt j �Ejzt j

zt D �t=
p
ht

� for the QGARCH(p, q) model:

�2tCd jt D ! C

d�1X
iD1

˛i .�
2
tCd�i jt C  

2
i /C

qX
iDd

˛i .�tCd�i �  i /
2

C

d�1X
jD1

j�
2
tCd�j jt C

pX
jDd

jhtCd�j

� for the TGARCH(p, q) model:

�2tCd jt D ! C

d�1X
iD1

.˛i C  i=2/�
2
tCd�i jt C

qX
iDd

.˛i C 1�tCd�i<0 i /�
2
tCd�i

C

d�1X
jD1

j�
2
tCd�j jt C

pX
jDd

jhtCd�j
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� for the PGARCH(p, q) model:

.�2tCd jt /
�
D ! C

d�1X
iD1

˛i ..1C  i /
2�
C .1 �  i /

2�/.�2tCd�i jt /
�=2

C

qX
iDd

˛i .j�tCd�i j �  i�tCd�i /
2�

C

d�1X
jD1

j .�
2
tCd�j jt /

�
C

pX
jDd

jh
�
tCd�j

� for the GARCH-M model: ignoring the mean effect and directly using the formula of the corresponding
GARCH model.

If the conditional error variance is homoscedastic, the conditional prediction error variance is identical to the
unconditional prediction error variance

V.�tCd j‰t / D V.�tCd / D �2
d�1X
jD0

g2j

since �2
tCd�j jt

D �2. You can compute s2r (which is the second term of the variance for the predicted
value Qyt explained in the section “Predicting Future Series Realizations” on page 411) by using the formula
�2
Pd�1
jD0 g

2
j , and r is estimated from

Pd�1
jD0 g

2
j by using the estimated autoregressive parameters.

Consider the following conditional prediction error variance:

V.�tCd j‰t / D �2
d�1X
jD0

g2j C

d�1X
jD0

g2j .�
2
tCd�j jt � �

2/

The second term in the preceding equation can be interpreted as the noise from using the homoscedastic
conditional variance when the errors follow the GARCH process. However, it is expected that if the GARCH
process is covariance stationary, the difference between the conditional prediction error variance and the
unconditional prediction error variance disappears as the forecast horizon d increases.

OUT= Data Set
The output SAS data set produced by the OUTPUT statement contains all the variables in the input data
set and the new variables specified by the OUTPUT statement options. For information about the output
variables that can be created, see the section “OUTPUT Statement” on page 364. The output data set contains
one observation for each observation in the input data set.
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OUTEST= Data Set
The OUTEST= data set contains all the variables used in any MODEL statement. Each regressor variable
contains the estimate for the corresponding regression parameter in the corresponding model. In addition, the
OUTEST= data set contains the following variables:

_A_i the ith order autoregressive parameter estimate. There are m such variables _A_1 through
_A_m, where is the value of the NLAG= option.

_AH_i the ith order ARCH parameter estimate, if the GARCH= option is specified. There are
q such variables _AH_1 through _AH_q, where q is the value of the Q= option. The
variable _AH_0 contains the estimate of !.

_AHP_i the estimate of the  i parameter in the PGARCH model, if a PGARCH model is specified.
There are q such variables _AHP_1 through _AHP_q, where q is the value of the Q=
option.

_AHQ_i the estimate of the i parameter in the QGARCH model, if a QGARCH model is specified.
There are q such variables _AHQ_1 through _AHQ_q, where q is the value of the Q=
option.

_AHT_i the estimate of the  i parameter in the TGARCH model, if a TGARCH model is specified.
There are q such variables _AHT_1 through _AHT_q, where q is the value of the Q=
option.

_DELTA_ the estimated mean parameter for the GARCH-M model if a GARCH-in-mean model is
specified

_DEPVAR_ the name of the dependent variable

_GH_i the ith order GARCH parameter estimate, if the GARCH= option is specified. There are p
such variables _GH_1 through _GH_p, where p is the value of the P= option.

_HET_i the ith heteroscedasticity model parameter specified by the HETERO statement

INTERCEPT the intercept estimate. INTERCEPT contains a missing value for models for which the
NOINT option is specified.

_METHOD_ the estimation method that is specified in the METHOD= option

_MODEL_ the label of the MODEL statement if one is given, or blank otherwise

_MSE_ the value of the mean square error for the model

_NAME_ the name of the row of covariance matrix for the parameter estimate, if the COVOUT
option is specified

_LAMBDA_ the estimate of the power parameter � in the PGARCH model, if a PGARCH model is
specified.

_LIKLHD_ the log-likelihood value of the GARCH model

_SSE_ the value of the error sum of squares

_START_ the estimated start-up value for the conditional variance when GARCH=
(STARTUP=ESTIMATE) option is specified
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_STATUS_ This variable indicates the optimization status. _STATUS_ D 0 indicates that there were
no errors during the optimization and the algorithm converged. _STATUS_ D 1 indicates
that the optimization could not improve the function value and means that the results
should be interpreted with caution. _STATUS_ D 2 indicates that the optimization failed
due to the number of iterations exceeding either the maximum default or the specified
number of iterations or the number of function calls allowed. _STATUS_ D 3 indicates
that an error occurred during the optimization process. For example, this error message
is obtained when a function or its derivatives cannot be calculated at the initial values or
during the iteration process, when an optimization step is outside of the feasible region or
when active constraints are linearly dependent.

_STDERR_ standard error of the parameter estimate, if the COVOUT option is specified.

_TDFI_ the estimate of the inverted degrees of freedom for Student’s t distribution, if DIST=T is
specified.

_THETA_ the estimate of the � parameter in the EGARCH model, if an EGARCH model is specified.

_TYPE_ PARM for observations containing parameter estimates, or COV for observations contain-
ing covariance matrix elements.

The OUTEST= data set contains one observation for each MODEL statement giving the parameter estimates
for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations
for each MODEL statement giving the rows of the covariance of parameter estimates matrix. For covariance
observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter
associated with that row of the covariance matrix.

Printed Output
The AUTOREG procedure prints the following items:

1. the name of the dependent variable

2. the ordinary least squares estimates

3. estimates of autocorrelations, which include the estimates of the autocovariances, the autocorrelations,
and (if there is sufficient space) a graph of the autocorrelation at each LAG

4. if the PARTIAL option is specified, the partial autocorrelations

5. the preliminary MSE, which results from solving the Yule-Walker equations. This is an estimate of the
final MSE.

6. the estimates of the autoregressive parameters (Coefficient), their standard errors (Standard Error), and
the ratio of estimate to standard error (t Value)

7. the statistics of fit for the final model. These include the error sum of squares (SSE), the degrees of
freedom for error (DFE), the mean square error (MSE), the mean absolute error (MAE), the mean
absolute percentage error (MAPE), the root mean square error (Root MSE), the Schwarz information
criterion (SBC), the Hannan-Quinn information criterion (HQC), Akaike’s information criterion (AIC),
the corrected Akaike’s information criterion (AICC), the Durbin-Watson statistic (Durbin-Watson), the
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transformed regression R2 (Transformed Regress R-Square), and the total R2 (Total R-Square). For
GARCH models, the following additional items are printed:

� the value of the log-likelihood function (Log Likelihood)

� the number of observations that are used in estimation (Observations)

� the unconditional variance (Uncond Var)

� the normality test statistic and its p-value (Normality Test and Pr > ChiSq)

8. the parameter estimates for the structural model (Estimate), a standard error estimate (Standard Error),
the ratio of estimate to standard error (t Value), and an approximation to the significance probability
for the parameter being 0 (Approx Pr > |t|)

9. If the NLAG= option is specified with METHOD=ULS or METHOD=ML, the regression parameter
estimates are printed again, assuming that the autoregressive parameter estimates are known. In this
case, the Standard Error and related statistics for the regression estimates will, in general, be different
from the case when they are estimated. Note that from a standpoint of estimation, Yule-Walker
and iterated Yule-Walker methods (NLAG= with METHOD=YW, ITYW) generate only one table,
assuming AR parameters are given.

10. If you specify the NORMAL option, the Jarque-Bera normality test statistics are printed. If you specify
the LAGDEP option, Durbin’s h or Durbin’s t is printed.

ODS Table Names
PROC AUTOREG assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in the Table 9.6.

Table 9.6 ODS Tables Produced in PROC AUTOREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ClassLevels Class levels Default
FitSummary Summary of regression Default
SummaryDepVarCen Summary of regression (centered

dependent var)
CENTER

SummaryNoIntercept Summary of regression (no intercept) NOINT
YWIterSSE Yule-Walker iteration sum of squared

error
METHOD=ITYW

PreMSE Preliminary MSE NLAG=
Dependent Dependent variable Default
DependenceEquations Linear dependence equation
ARCHTest Tests for ARCH disturbances based

on OLS residuals
ARCHTEST=

ARCHTestAR Tests for ARCH disturbances based
on residuals

ARCHTEST=
(with NLAG=)
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Table 9.6 continued

ODS Table Name Description Option

BDSTest BDS test for independence BDS<=()>
RunsTest Runs test for independence RUNS<=()>
TurningPointTest Turning point test for independence TP<=()>
VNRRankTest Rank version of von Neumann ratio

test for independence
VNRRANK<=()>

FitSummarySCBP Fit summary of Bai and Perron’s
multiple structural change models

BP=

BreakDatesSCBP Break dates of Bai and Perron’s
multiple structural change models

BP=

SupFSCBP supF tests of Bai and Perron’s
multiple structural change models

BP=

UDmaxFSCBP UDmaxF test of Bai and Perron’s
multiple structural change models

BP=

WDmaxFSCBP WDmaxF tests of Bai and Perron’s
multiple structural change models

BP=

SeqFSCBP supF(l+1|l) tests of Bai and Perron’s
multiple structural change models

BP=

ParameterEstimatesSCBP Parameter estimates of Bai and
Perron’s multiple structural change
models

BP=

ChowTest Chow test and predictive Chow test CHOW=
PCHOW=

Godfrey Godfrey’s serial correlation test GODFREY<=>
PhilPerron Phillips-Perron unit root test STATIONARITY=

(PHILIPS<=()>)
(no regressor)

PhilOul Phillips-Ouliaris cointegration test STATIONARITY=
(PHILIPS<=()>)
(has regressor)

ADF Augmented Dickey-Fuller unit root
test

STATIONARITY=
(ADF<=()>) (no
regressor)

EngleGranger Engle-Granger cointegration test STATIONARITY=
(ADF<=()>) (has
regressor)

ERS ERS unit root test STATIONARITY=
(ERS<=()>)

NgPerron Ng-Perron Unit root tests STATIONARITY=
(NP=<()> )

KPSS Kwiatkowski, Phillips, Schmidt, and
Shin (KPSS) test or Shin
cointegration test

STATIONARITY=
(KPSS<=()>)

ResetTest Ramsey’s RESET test RESET
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Table 9.6 continued

ODS Table Name Description Option

ARParameterEstimates Estimates of autoregressive
parameters

NLAG=

CorrGraph Estimates of autocorrelations NLAG=
BackStep Backward elimination of

autoregressive terms
BACKSTEP

ExpAutocorr Expected autocorrelations NLAG=
IterHistory Iteration history ITPRINT
ParameterEstimates Parameter estimates Default
ParameterEstimatesGivenAR Parameter estimates assuming AR

parameters are given
NLAG=,
METHOD= ULS |
ML

PartialAutoCorr Partial autocorrelation PARTIAL
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
CholeskyFactor Cholesky root of gamma ALL
Coefficients Coefficients for first NLAG

observations
COEF

GammaInverse Gamma inverse GINV
ConvergenceStatus Convergence status table Default
MiscStat Durbin t or Durbin h, Jarque-Bera

normality test
LAGDEP=;
NORMAL

DWTest Durbin-Watson statistics DW=

ODS Tables Created by the RESTRICT Statement
Restrict Restriction table Default

ODS Tables Created by the TEST Statement
FTest F test Default,

TYPE=ALL
TestResults Wald, LM, LR tests TYPE=WALD |

LM (only
supported with
GARCH= option) |
LR (only
supported with
GARCH= option)|
ALL
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the AUTOREG procedure.

To request these graphs, you must specify the ODS GRAPHICS statement. By default, only the residual,
predicted versus actual, and autocorrelation of residuals plots are produced. If, in addition to the ODS
GRAPHICS statement, you also specify the ALL option in either the PROC AUTOREG statement or
MODEL statement, all plots are created. For HETERO, GARCH, and AR models studentized residuals are
replaced by standardized residuals. For the autoregressive models, the conditional variance of the residuals is
computed as described in the section “Predicting Future Series Realizations” on page 411. For the GARCH
and HETERO models, residuals are assumed to have ht conditional variance invoked by the HT= option of
the OUTPUT statement. For all these cases, the Cook’s D plot is not produced.

ODS Graph Names

PROC AUTOREG assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 9.7.

Table 9.7 ODS Graphics Produced in PROC AUTOREG

ODS Table Name Description PLOTS= Option

DiagnosticsPanel All applicable plots
ACFPlot Autocorrelation of residuals ACF
AutoCorrPlot Estimates of autocorrelations AutoCorrPlot
FitPlot Predicted versus actual plot FITPLOT, default
CooksD Cook’s D plot COOKSD (no NLAG=)
IACFPlot Inverse autocorrelation of residuals IACF
QQPlot Q-Q plot of residuals QQ
PACFPlot Partial autocorrelation of residuals PACF
ResidualHistogram Histogram of the residuals RESIDUALHISTOGRAM

or RESIDHISTOGRAM
ResidualPlot Residual plot RESIDUAL or RES, default
StudentResidualPlot Studentized residual plot STUDENTRESIDUAL (no

NLAG=, GARCH=, or
HETERO)

StandardResidualPlot Standardized residual plot STANDARDRESIDUAL
WhiteNoiseLogProbPlot Tests for white noise residuals WHITENOISE

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Examples: AUTOREG Procedure

Example 9.1: Analysis of Real Output Series
In this example, the annual real output series is analyzed over the period 1901 to 1983 (Balke and Gordon
1986, pp. 581–583). With the following DATA step, the original data are transformed using the natural
logarithm, and the differenced series DY is created for further analysis. The log of real output is plotted in
Output 9.1.1.

title 'Analysis of Real GNP';
data gnp;

date = intnx( 'year', '01jan1901'd, _n_-1 );
format date year4.;
input x @@;
y = log(x);
dy = dif(y);
t = _n_;
label y = 'Real GNP'

dy = 'First Difference of Y'
t = 'Time Trend';

datalines;
137.87 139.13 146.10 144.21 155.04 172.97 175.61 161.22

... more lines ...

proc sgplot data=gnp noautolegend;
scatter x=date y=y;
xaxis grid values=('01jan1901'd '01jan1911'd '01jan1921'd '01jan1931'd

'01jan1941'd '01jan1951'd '01jan1961'd '01jan1971'd
'01jan1981'd '01jan1991'd);

run;
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Output 9.1.1 Real Output Series: 1901–1983

The (linear) trend-stationary process is estimated using the form

yt D ˇ0 C ˇ1t C �t

where

�t D �t � '1�t�1 � '2�t�2

�t�IN.0; ��/

The preceding trend-stationary model assumes that uncertainty over future horizons is bounded since the
error term, �t , has a finite variance. The maximum likelihood AR estimates from the statements that follow
are shown in Output 9.1.2:

proc autoreg data=gnp;
model y = t / nlag=2 method=ml;

run;
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Output 9.1.2 Estimating the Linear Trend Model

Analysis of Real GNP

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 0.23954331 DFE 79

MSE 0.00303 Root MSE 0.05507

SBC -230.39355 AIC -240.06891

MAE 0.04016596 AICC -239.55609

MAPE 0.69458594 HQC -236.18189

Log Likelihood 124.034454 Transformed Regression R-Square 0.8645

Durbin-Watson 1.9935 Total R-Square 0.9947

Observations 83

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Variable
Label

Intercept 1 4.8206 0.0661 72.88 <.0001

t 1 0.0302 0.001346 22.45 <.0001 Time Trend

AR1 1 -1.2041 0.1040 -11.58 <.0001

AR2 1 0.3748 0.1039 3.61 0.0005

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Variable
Label

Intercept 1 4.8206 0.0661 72.88 <.0001

t 1 0.0302 0.001346 22.45 <.0001 Time Trend

Nelson and Plosser (1982) failed to reject the hypothesis that macroeconomic time series are nonstationary
and have no tendency to return to a trend line. In this context, the simple random walk process can be used as
an alternative process,

yt D ˇ0 C yt�1 C �t

where �t D �t and y0 D 0. In general, the difference-stationary process is written as

�.L/.1 � L/yt D ˇ0�.1/C �.L/�t

where L is the lag operator. You can observe that the class of a difference-stationary process should have at
least one unit root in the AR polynomial �.L/.1 � L/.

The Dickey-Fuller procedure is used to test the null hypothesis that the series has a unit root in the AR
polynomial. Consider the following equation for the augmented Dickey-Fuller test,

�yt D ˇ0 C ıt C ˇ1yt�1 C

mX
iD1

i�yt�i C �t

where � D 1 � L. The test statistic �� is the usual t ratio for the parameter estimate Ǒ1, but the �� does not
follow a t distribution.

The following code performs the augmented Dickey-Fuller test with m D 3 and we are interesting in the test
results in the linear time trend case since the previous plot reveals there is a linear trend.
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proc autoreg data = gnp;
model y = / stationarity =(adf =3);

run;

The augmented Dickey-Fuller test indicates that the output series may have a difference-stationary process.
The statistic Tau with linear time trend has a value of -2.6190 and its p-value is 0.2732. The statistic Rho has
a p-value of 0.0817, which also indicates the null of unit root is accepted at the 5% level. (See Output 9.1.3.)

Output 9.1.3 Augmented Dickey-Fuller Test Results

Analysis of Real GNP

The AUTOREG Procedure

Augmented Dickey-Fuller Unit Root Tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 3 0.3827 0.7732 3.3342 0.9997

Single Mean 3 -0.1674 0.9465 -0.2046 0.9326 5.7521 0.0211

Trend 3 -18.0246 0.0817 -2.6190 0.2732 3.4472 0.4957

The AR(1) model for the differenced series DY is estimated using the maximum likelihood method for the
period 1902 to 1983. The difference-stationary process is written

�yt D ˇ0 C �t

�t D �t � '1�t�1

The estimated value of '1 is �0:297 and that of ˇ0 is 0.0293. All estimated values are statistically significant.
The PROC step follows:

proc autoreg data=gnp;
model dy = / nlag=1 method=ml;

run;

The printed output produced by the PROC step is shown in Output 9.1.4.

Output 9.1.4 Estimating the Differenced Series with AR(1) Error

Analysis of Real GNP

The AUTOREG Procedure

Maximum Likelihood Estimates

SSE 0.27107673 DFE 80

MSE 0.00339 Root MSE 0.05821

SBC -226.77848 AIC -231.59192

MAE 0.04333026 AICC -231.44002

MAPE 153.637587 HQC -229.65939

Log Likelihood 117.795958 Transformed Regression R-Square 0.0000

Durbin-Watson 1.9268 Total R-Square 0.0900

Observations 82
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Output 9.1.4 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.0293 0.009093 3.22 0.0018

AR1 1 -0.2967 0.1067 -2.78 0.0067

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.0293 0.009093 3.22 0.0018

Example 9.2: Comparing Estimates and Models
In this example, the Grunfeld series are estimated using different estimation methods. For information about
the Grunfeld investment data set, see Maddala (1977). For comparison, the Yule-Walker method, ULS
method, and maximum likelihood method estimates are shown. With the DWPROB option, the p-value of
the Durbin-Watson statistic is printed. The Durbin-Watson test indicates the positive autocorrelation of the
regression residuals. The DATA and PROC steps follow:

title 'Grunfeld''s Investment Models Fit with Autoregressive Errors';
data grunfeld;

input year gei gef gec;
label gei = 'Gross investment GE'

gec = 'Lagged Capital Stock GE'
gef = 'Lagged Value of GE shares';

datalines;
1935 33.1 1170.6 97.8

... more lines ...

proc autoreg data=grunfeld;
model gei = gef gec / nlag=1 dwprob;
model gei = gef gec / nlag=1 method=uls;
model gei = gef gec / nlag=1 method=ml;

run;

The printed output produced by each of the MODEL statements is shown in Output 9.2.1 through Output 9.2.4.

Output 9.2.1 OLS Analysis of Residuals

Grunfeld's Investment Models Fit with Autoregressive Errors

The AUTOREG Procedure

Dependent Variable gei

Gross investment GE
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Output 9.2.1 continued

Ordinary Least Squares Estimates

SSE 13216.5878 DFE 17

MSE 777.44634 Root MSE 27.88272

SBC 195.614652 AIC 192.627455

MAE 19.9433255 AICC 194.127455

MAPE 23.2047973 HQC 193.210587

Durbin-Watson 1.0721 Total R-Square 0.7053

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 -9.9563 31.3742 -0.32 0.7548

gef 1 0.0266 0.0156 1.71 0.1063 Lagged Value of GE shares

gec 1 0.1517 0.0257 5.90 <.0001 Lagged Capital Stock GE

Preliminary MSE 520.5

Output 9.2.2 Regression Results Using Default Yule-Walker Method

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -0.460867 0.221867 -2.08

Yule-Walker Estimates

SSE 10238.2951 DFE 16

MSE 639.89344 Root MSE 25.29612

SBC 193.742396 AIC 189.759467

MAE 18.0715195 AICC 192.426133

MAPE 21.0772644 HQC 190.536976

Durbin-Watson 1.3321 Transformed Regression R-Square 0.5717

Total R-Square 0.7717

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 -18.2318 33.2511 -0.55 0.5911

gef 1 0.0332 0.0158 2.10 0.0523 Lagged Value of GE shares

gec 1 0.1392 0.0383 3.63 0.0022 Lagged Capital Stock GE

Output 9.2.3 Regression Results Using Unconditional Least Squares Method

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -0.460867 0.221867 -2.08
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Output 9.2.3 continued

Algorithm converged.

Unconditional Least Squares Estimates

SSE 10220.8455 DFE 16

MSE 638.80284 Root MSE 25.27455

SBC 193.756692 AIC 189.773763

MAE 18.1317764 AICC 192.44043

MAPE 21.149176 HQC 190.551273

Durbin-Watson 1.3523 Transformed Regression R-Square 0.5511

Total R-Square 0.7721

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 -18.6582 34.8101 -0.54 0.5993

gef 1 0.0339 0.0179 1.89 0.0769 Lagged Value of GE shares

gec 1 0.1369 0.0449 3.05 0.0076 Lagged Capital Stock GE

AR1 1 -0.4996 0.2592 -1.93 0.0718

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 -18.6582 33.7567 -0.55 0.5881

gef 1 0.0339 0.0159 2.13 0.0486 Lagged Value of GE shares

gec 1 0.1369 0.0404 3.39 0.0037 Lagged Capital Stock GE

Output 9.2.4 Regression Results Using Maximum Likelihood Method

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -0.460867 0.221867 -2.08

Algorithm converged.

Maximum Likelihood Estimates

SSE 10229.2303 DFE 16

MSE 639.32689 Root MSE 25.28491

SBC 193.738877 AIC 189.755947

MAE 18.0892426 AICC 192.422614

MAPE 21.0978407 HQC 190.533457

Log Likelihood -90.877974 Transformed Regression R-Square 0.5656

Durbin-Watson 1.3385 Total R-Square 0.7719

Observations 20
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Output 9.2.4 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 -18.3751 34.5941 -0.53 0.6026

gef 1 0.0334 0.0179 1.87 0.0799 Lagged Value of GE shares

gec 1 0.1385 0.0428 3.23 0.0052 Lagged Capital Stock GE

AR1 1 -0.4728 0.2582 -1.83 0.0858

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 -18.3751 33.3931 -0.55 0.5897

gef 1 0.0334 0.0158 2.11 0.0512 Lagged Value of GE shares

gec 1 0.1385 0.0389 3.56 0.0026 Lagged Capital Stock GE

Output 9.2.5 Estimates of Autocorrelations

Example 9.3: Lack-of-Fit Study
Many time series exhibit high positive autocorrelation, having the smooth appearance of a random walk. This
behavior can be explained by the partial adjustment and adaptive expectation hypotheses.

Short-term forecasting applications often use autoregressive models because these models absorb the behavior
of this kind of data. In the case of a first-order AR process where the autoregressive parameter is exactly 1 (a
random walk ), the best prediction of the future is the immediate past.

PROC AUTOREG can often greatly improve the fit of models, not only by adding additional parameters but
also by capturing the random walk tendencies. Thus, PROC AUTOREG can be expected to provide good
short-term forecast predictions.

However, good forecasts do not necessarily mean that your structural model contributes anything worthwhile
to the fit. In the following example, random noise is fit to part of a sine wave. Notice that the structural model
does not fit at all, but the autoregressive process does quite well and is very nearly a first difference (AR(1) =
�:976). The DATA step, PROC AUTOREG step, and PROC SGPLOT step follow:
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title1 'Lack of Fit Study';
title2 'Fitting White Noise Plus Autoregressive Errors to a Sine Wave';

data a;
pi=3.14159;
do time = 1 to 75;

if time > 75 then y = .;
else y = sin( pi * ( time / 50 ) );
x = ranuni( 1234567 );
output;

end;
run;

proc autoreg data=a plots;
model y = x / nlag=1;
output out=b p=pred pm=xbeta;

run;

proc sgplot data=b;
scatter y=y x=time / markerattrs=(color=black);
series y=pred x=time / lineattrs=(color=blue);
series y=xbeta x=time / lineattrs=(color=red);

run;

The printed output produced by PROC AUTOREG is shown in Output 9.3.1 and Output 9.3.2. Plots of
observed and predicted values are shown in Output 9.3.3 and Output 9.3.4. Note: the plot Output 9.3.3 can
be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting ViewIResults.

Output 9.3.1 Results of OLS Analysis: No Autoregressive Model Fit

Lack of Fit Study
Fitting White Noise Plus Autoregressive Errors to a Sine Wave

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 34.8061005 DFE 73

MSE 0.47680 Root MSE 0.69050

SBC 163.898598 AIC 159.263622

MAE 0.59112447 AICC 159.430289

MAPE 117894.045 HQC 161.114317

Durbin-Watson 0.0057 Total R-Square 0.0008

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.2383 0.1584 1.50 0.1367

x 1 -0.0665 0.2771 -0.24 0.8109

Preliminary MSE 0.0217



430 F Chapter 9: The AUTOREG Procedure

Output 9.3.2 Regression Results with AR(1) Error Correction

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -0.976386 0.025460 -38.35

Yule-Walker Estimates

SSE 0.18304264 DFE 72

MSE 0.00254 Root MSE 0.05042

SBC -222.30643 AIC -229.2589

MAE 0.04551667 AICC -228.92087

MAPE 29145.3526 HQC -226.48285

Durbin-Watson 0.0942 Transformed Regression R-Square 0.0001

Total R-Square 0.9947

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -0.1473 0.1702 -0.87 0.3898

x 1 -0.001219 0.0141 -0.09 0.9315
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Output 9.3.3 Diagnostics Plots
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Output 9.3.4 Plot of Autoregressive Prediction

Output 9.3.5 Estimates of Autocorrelations
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Example 9.4: Missing Values
In this example, a pure autoregressive error model with no regressors is used to generate 50 values of a time
series. Approximately 15% of the values are randomly chosen and set to missing. The following statements
generate the data:

title 'Simulated Time Series with Roots:';
title2 ' (X-1.25)(X**4-1.25)';
title3 'With 15% Missing Values';
data ar;

do i=1 to 550;
e = rannor(12345);
n = sum( e, .8*n1, .8*n4, -.64*n5 ); /* ar process */
y = n;
if ranuni(12345) > .85 then y = .; /* 15% missing */
n5=n4; n4=n3; n3=n2; n2=n1; n1=n; /* set lags */
if i>500 then output;

end;
run;

The model is estimated using maximum likelihood, and the residuals are plotted with 99% confidence limits.
The PARTIAL option prints the partial autocorrelations. The following statements fit the model:

proc autoreg data=ar partial;
model y = / nlag=(1 4 5) method=ml;
output out=a predicted=p residual=r ucl=u lcl=l alphacli=.01;

run;

The printed output produced by the AUTOREG procedure is shown in Output 9.4.1 and Output 9.4.2.
Note: the plot Output 9.4.2 can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting
ViewIResults.

Output 9.4.1 Autocorrelation-Corrected Regression Results

Simulated Time Series with Roots:
(X-1.25)(X**4-1.25)

With 15% Missing Values

The AUTOREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 182.972379 DFE 40

MSE 4.57431 Root MSE 2.13876

SBC 181.39282 AIC 179.679248

MAE 1.80469152 AICC 179.781813

MAPE 270.104379 HQC 180.303237

Durbin-Watson 1.3962 Total R-Square 0.0000
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Output 9.4.1 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -2.2387 0.3340 -6.70 <.0001

Partial
Autocorrelations

1 0.319109

4 0.619288

5 -0.821179

Preliminary MSE 0.7609

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -0.733182 0.089966 -8.15

4 -0.803754 0.071849 -11.19

5 0.821179 0.093818 8.75

Expected
Autocorrelations

Lag Autocorr

0 1.0000

1 0.4204

2 0.2480

3 0.3160

4 0.6903

5 0.0228

Algorithm converged.

Maximum Likelihood Estimates

SSE 48.4396756 DFE 37

MSE 1.30918 Root MSE 1.14419

SBC 146.879013 AIC 140.024725

MAE 0.88786192 AICC 141.135836

MAPE 141.377721 HQC 142.520679

Log Likelihood -66.012362 Transformed Regression R-Square 0.0000

Durbin-Watson 2.9457 Total R-Square 0.7353

Observations 41
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Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -2.2370 0.5239 -4.27 0.0001

AR1 1 -0.6201 0.1129 -5.49 <.0001

AR4 1 -0.7237 0.0914 -7.92 <.0001

AR5 1 0.6550 0.1202 5.45 <.0001

Expected
Autocorrelations

Lag Autocorr

0 1.0000

1 0.4204

2 0.2423

3 0.2958

4 0.6318

5 0.0411

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -2.2370 0.5225 -4.28 0.0001
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Output 9.4.2 Diagnostic Plots

Output 9.4.3 Estimates of Autocorrelations

The following statements plot the residuals and confidence limits:
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data reshape1;
set a;
miss = .;
if r=. then do;

miss = p;
p = .;

end;
run;

title 'Predicted Values and Confidence Limits';

proc sgplot data=reshape1 NOAUTOLEGEND;
band x=i upper=u lower=l;
scatter y=miss x=i/ MARKERATTRS =(symbol=x color=red);
series y=p x=i/markers MARKERATTRS =(color=blue) lineattrs=(color=blue);

run;

The plot of the predicted values and the upper and lower confidence limits is shown in Output 9.4.4. Note
that the confidence interval is wider at the beginning of the series (when there are no past noise values to use
in the forecast equation) and after missing values where, again, there is an incomplete set of past residuals.

Output 9.4.4 Plot of Predicted Values and Confidence Interval
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Example 9.5: Money Demand Model
This example estimates the log-log money demand equation by using the maximum likelihood method. The
money demand model contains four explanatory variables. The lagged nominal money stock M1 is divided
by the current price level GDF to calculate a new variable M1CP since the money stock is assumed to follow
the partial adjustment process. The variable M1CP is then used to estimate the coefficient of adjustment. All
variables are transformed using the natural logarithm with a DATA step. For a data description, see Balke
and Gordon (1986).

The first eight observations are printed using the PRINT procedure and are shown in Output 9.5.1. Note that
the first observation of the variables M1CP and INFR are missing. Therefore, the money demand equation is
estimated for the period 1968:2 to 1983:4 since PROC AUTOREG ignores the first missing observation. The
DATA step that follows generates the transformed variables:

title 'Partial Adjustment Money Demand Equation';
title2 'Quarterly Data - 1968:2 to 1983:4';

data money;
date = intnx( 'qtr', '01jan1968'd, _n_-1 );
format date yyqc6.;
input m1 gnp gdf ycb @@;
m = log( 100 * m1 / gdf );
m1cp = log( 100 * lag(m1) / gdf );
y = log( gnp );
intr = log( ycb );
infr = 100 * log( gdf / lag(gdf) );
label m = 'Real Money Stock (M1)'

m1cp = 'Lagged M1/Current GDF'
y = 'Real GNP'
intr = 'Yield on Corporate Bonds'
infr = 'Rate of Prices Changes';

... more lines ...

Output 9.5.1 Money Demand Data Series – First 8 Observations

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

Obs date m1 gnp gdf ycb m m1cp y intr infr

1 1968:1 187.15 1036.22 81.18 6.84 5.44041 . 6.94333 1.92279 .

2 1968:2 190.63 1056.02 82.12 6.97 5.44732 5.42890 6.96226 1.94162 1.15127

3 1968:3 194.30 1068.72 82.80 6.98 5.45815 5.43908 6.97422 1.94305 0.82465

4 1968:4 198.55 1071.28 84.04 6.84 5.46492 5.44328 6.97661 1.92279 1.48648

5 1969:1 201.73 1084.15 84.97 7.32 5.46980 5.45391 6.98855 1.99061 1.10054

6 1969:2 203.18 1088.73 86.10 7.54 5.46375 5.45659 6.99277 2.02022 1.32112

7 1969:3 204.18 1091.90 87.49 7.70 5.45265 5.44774 6.99567 2.04122 1.60151

8 1969:4 206.10 1085.53 88.62 8.22 5.44917 5.43981 6.98982 2.10657 1.28331

The money demand equation is first estimated using OLS. The DW=4 option produces generalized Durbin-
Watson statistics up to the fourth order. Their exact marginal probabilities (p-values) are also calculated with
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the DWPROB option. The Durbin-Watson test indicates positive first-order autocorrelation at, say, the 10%
confidence level. You can use the Durbin-Watson table, which is available only for 1% and 5% significance
points. The relevant upper (dU ) and lower (dL) bounds are dU D 1:731 and dL D 1:471, respectively, at
5% significance level. However, the bounds test is inconvenient, since sometimes you may get the statistic in
the inconclusive region while the interval between the upper and lower bounds becomes smaller with the
increasing sample size. The PROC step follows:

proc autoreg data=money outest=est covout;
model m = m1cp y intr infr / dw=4 dwprob;

run;

Output 9.5.2 OLS Estimation of the Partial Adjustment Money Demand Equation

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

The AUTOREG Procedure

Dependent Variable m

Real Money Stock (M1)

Ordinary Least Squares Estimates

SSE 0.00271902 DFE 58

MSE 0.0000469 Root MSE 0.00685

SBC -433.68709 AIC -444.40276

MAE 0.00483389 AICC -443.35013

MAPE 0.08888324 HQC -440.18824

Total R-Square 0.9546

Durbin-Watson Statistics

Order DW Pr < DW Pr > DW

1 1.7355 0.0607 0.9393

2 2.1058 0.5519 0.4481

3 2.0286 0.5002 0.4998

4 2.2835 0.8880 0.1120

NOTE: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is the p-value for
testing negative autocorrelation.

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 0.3084 0.2359 1.31 0.1963

m1cp 1 0.8952 0.0439 20.38 <.0001 Lagged M1/Current GDF

y 1 0.0476 0.0122 3.89 0.0003 Real GNP

intr 1 -0.0238 0.007933 -3.00 0.0040 Yield on Corporate Bonds

infr 1 -0.005646 0.001584 -3.56 0.0007 Rate of Prices Changes

The autoregressive model is estimated using the maximum likelihood method. Though the Durbin-Watson
test statistic is calculated after correcting the autocorrelation, it should be used with care since the test based
on this statistic is not justified theoretically. The PROC step follows:
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proc autoreg data=money;
model m = m1cp y intr infr / nlag=1 method=ml maxit=50;
output out=a p=p pm=pm r=r rm=rm ucl=ucl lcl=lcl

uclm=uclm lclm=lclm;
run;

proc print data=a(obs=8);
var p pm r rm ucl lcl uclm lclm;

run;

A difference is shown between the OLS estimates in Output 9.5.2 and the AR(1)-ML estimates in Output 9.5.3.
The estimated autocorrelation coefficient is significantly negative .�0:88345/. Note that the negative
coefficient of AR(1) should be interpreted as a positive autocorrelation.

Two predicted values are produced: predicted values computed for the structural model and predicted values
computed for the full model. The full model includes both the structural and error-process parts. The
predicted values and residuals are stored in the output data set A, as are the upper and lower 95% confidence
limits for the predicted values. Part of the data set A is shown in Output 9.5.4. The first observation is missing
since the explanatory variables, M1CP and INFR, are missing for the corresponding observation.

Output 9.5.3 Estimated Partial Adjustment Money Demand Equation

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

The AUTOREG Procedure

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 -0.126273 0.131393 -0.96

Algorithm converged.

Maximum Likelihood Estimates

SSE 0.00226719 DFE 57

MSE 0.0000398 Root MSE 0.00631

SBC -439.47665 AIC -452.33545

MAE 0.00506044 AICC -450.83545

MAPE 0.09302277 HQC -447.27802

Log Likelihood 232.167727 Transformed Regression R-Square 0.6954

Durbin-Watson 2.1778 Total R-Square 0.9621

Observations 63
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Output 9.5.3 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 2.4121 0.4880 4.94 <.0001

m1cp 1 0.4086 0.0908 4.50 <.0001 Lagged M1/Current GDF

y 1 0.1509 0.0411 3.67 0.0005 Real GNP

intr 1 -0.1101 0.0159 -6.92 <.0001 Yield on Corporate Bonds

infr 1 -0.006348 0.001834 -3.46 0.0010 Rate of Prices Changes

AR1 1 -0.8835 0.0686 -12.89 <.0001

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t| Variable Label

Intercept 1 2.4121 0.4685 5.15 <.0001

m1cp 1 0.4086 0.0840 4.87 <.0001 Lagged M1/Current GDF

y 1 0.1509 0.0402 3.75 0.0004 Real GNP

intr 1 -0.1101 0.0155 -7.08 <.0001 Yield on Corporate Bonds

infr 1 -0.006348 0.001828 -3.47 0.0010 Rate of Prices Changes

Output 9.5.4 Partial List of the Predicted Values

Partial Adjustment Money Demand Equation
Quarterly Data - 1968:2 to 1983:4

Obs p pm r rm ucl lcl uclm lclm

1 . . . . . . . .

2 5.45962 5.45962 -.005763043 -0.012301 5.49319 5.42606 5.47962 5.43962

3 5.45663 5.46750 0.001511258 -0.009356 5.46954 5.44373 5.48700 5.44800

4 5.45934 5.46761 0.005574104 -0.002691 5.47243 5.44626 5.48723 5.44799

5 5.46636 5.46874 0.003442075 0.001064 5.47944 5.45328 5.48757 5.44991

6 5.46675 5.46581 -.002994443 -0.002054 5.47959 5.45390 5.48444 5.44718

7 5.45672 5.45854 -.004074196 -0.005889 5.46956 5.44388 5.47667 5.44040

8 5.44404 5.44924 0.005136019 -0.000066 5.45704 5.43103 5.46726 5.43122

Example 9.6: Estimation of ARCH(2) Process
Stock returns show a tendency for small changes to be followed by small changes while large changes are
followed by large changes. The plot of daily price changes of IBM common stock (Box and Jenkins 1976,
p. 527) is shown in Output 9.6.1. The time series look serially uncorrelated, but the plot makes us skeptical
of their independence.

With the following DATA step, the stock (capital) returns are computed from the closing prices. To forecast
the conditional variance, an additional 46 observations with missing values are generated.
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title 'IBM Stock Returns (daily)';
title2 '29jun1959 - 30jun1960';

data ibm;
infile datalines eof=last;
input x @@;
r = dif( log( x ) );
time = _n_-1;
output;
return;

last:
do i = 1 to 46;

r = .;
time + 1;
output;

end;
return;

datalines;
445 448 450 447 451 453 454 454 459 440 446 443 443 440

... more lines ...

proc sgplot data=ibm;
series y=r x=time/lineattrs=(color=blue);

refline 0/ axis = y LINEATTRS = (pattern=ShortDash);
run;
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Output 9.6.1 IBM Stock Returns: Daily

The simple ARCH(2) model is estimated using the AUTOREG procedure. The MODEL statement option
GARCH=(Q=2) specifies the ARCH(2) model. The OUTPUT statement with the CEV= option produces the
conditional variances V. The conditional variance and its forecast are calculated using parameter estimates,
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where d > 1: This model can be estimated as follows:

proc autoreg data=ibm maxit=50;
model r = / noint garch=(q=2);
output out=a cev=v;

run;

The parameter estimates for !; ˛1, and ˛2 are 0.00011, 0.04136, and 0.06976, respectively. The normality
test indicates that the conditional normal distribution may not fully explain the leptokurtosis in the stock
returns (Bollerslev 1987).

The ARCH model estimates are shown in Output 9.6.2, and conditional variances are also shown in Out-
put 9.6.3. The following code generates Output 9.6.3:
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data b; set a;
length type $ 8.;
if r ^= . then do;

type = 'ESTIMATE'; output; end;
else do;

type = 'FORECAST'; output; end;
run;
proc sgplot data=b;

series x=time y=v/group=type;
refline 254/ axis = x LINEATTRS = (pattern=ShortDash);

run;

Output 9.6.2 ARCH(2) Estimation Results

IBM Stock Returns (daily)
29jun1959 - 30jun1960

The AUTOREG Procedure

Dependent Variable r

Ordinary Least Squares Estimates

SSE 0.03214307 DFE 254

MSE 0.0001265 Root MSE 0.01125

SBC -1558.802 AIC -1558.802

MAE 0.00814086 AICC -1558.802

MAPE 100.378566 HQC -1558.802

Durbin-Watson 2.1377 Total R-Square 0.0000

NOTE: No intercept term is used.
R-squares are redefined.

Algorithm converged.

GARCH Estimates

SSE 0.03214307 Observations 254

MSE 0.0001265 Uncond Var 0.00012632

Log Likelihood 781.017441 Total R-Square 0.0000

SBC -1545.4229 AIC -1556.0349

MAE 0.00805675 AICC -1555.9389

MAPE 100 HQC -1551.7658

Normality Test 105.8587

Pr > ChiSq <.0001

NOTE: No intercept term is used.
R-squares are redefined.

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ARCH0 1 0.000112 7.6059E-6 14.76 <.0001

ARCH1 1 0.0414 0.0514 0.81 0.4208

ARCH2 1 0.0698 0.0434 1.61 0.1082
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Output 9.6.3 Conditional Variance for IBM Stock Prices

Example 9.7: Estimation of GARCH-Type Models
This example extends Example 9.6 to include more volatility models and to perform model selection and
diagnostics.

Following are the data of daily IBM stock prices for the long period from 1962 to 2009:

data ibm_long;
infile datalines;
format date MMDDYY10.;
input date:MMDDYY10. price_ibm;
r = 100*dif( log( price_ibm ) );

datalines;
01/02/1962 2.68
01/03/1962 2.7
01/04/1962 2.67
01/05/1962 2.62
01/08/1962 2.57
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... more lines ...

08/12/2009 119.29
;

The time series of IBM returns is depicted graphically in Output 9.7.1.

Output 9.7.1 IBM Stock Returns: Daily

The following statements perform estimation of different kinds of GARCH-type models. First, ODS listing
output that contains fit summary tables for each single model is captured by using an ODS OUTPUT statement
with the appropriate ODS table name assigned to a new SAS data set. Along with these new data sets, another
one that contains parameter estimates is created by using the OUTEST= option in the AUTOREG statement.

/* Capturing ODS tables into SAS data sets */
ods output Autoreg.ar_1.FinalModel.FitSummary

=fitsum_ar_1;
ods output Autoreg.arch_2.FinalModel.Results.FitSummary

=fitsum_arch_2;
ods output Autoreg.garch_1_1.FinalModel.Results.FitSummary

=fitsum_garch_1_1;
ods output Autoreg.st_garch_1_1.FinalModel.Results.FitSummary

=fitsum_st_garch_1_1;



Example 9.7: Estimation of GARCH-Type Models F 447

ods output Autoreg.ar_1_garch_1_1.FinalModel.Results.FitSummary
=fitsum_ar_1_garch_1_1;

ods output Autoreg.igarch_1_1.FinalModel.Results.FitSummary
=fitsum_igarch_1_1;

ods output Autoreg.garchm_1_1.FinalModel.Results.FitSummary
=fitsum_garchm_1_1;

ods output Autoreg.egarch_1_1.FinalModel.Results.FitSummary
=fitsum_egarch_1_1;

ods output Autoreg.qgarch_1_1.FinalModel.Results.FitSummary
=fitsum_qgarch_1_1;

ods output Autoreg.tgarch_1_1.FinalModel.Results.FitSummary
=fitsum_tgarch_1_1;

ods output Autoreg.pgarch_1_1.FinalModel.Results.FitSummary
=fitsum_pgarch_1_1;

/* Estimating multiple GARCH-type models */
title "GARCH family";
proc autoreg data=ibm_long outest=garch_family;

ar_1 : model r = / noint nlag=1 method=ml;
arch_2 : model r = / noint garch=(q=2);
garch_1_1 : model r = / noint garch=(p=1,q=1);
st_garch_1_1 : model r = / noint garch=(p=1,q=1,type=stationary);
ar_1_garch_1_1 : model r = / noint nlag=1 garch=(p=1,q=1);
igarch_1_1 : model r = / noint garch=(p=1,q=1,type=integ,noint);
egarch_1_1 : model r = / noint garch=(p=1,q=1,type=egarch);
garchm_1_1 : model r = / noint garch=(p=1,q=1,mean=log);
qgarch_1_1 : model r = / noint garch=(p=1,q=1,type=qgarch);
tgarch_1_1 : model r = / noint garch=(p=1,q=1,type=tgarch);
pgarch_1_1 : model r = / noint garch=(p=1,q=1,type=pgarch);

run;

The following statements print partial contents of the data set GARCH_FAMILY. The columns of interest are
explicitly specified in the VAR statement.

/* Printing summary table of parameter estimates */
title "Parameter Estimates for Different Models";
proc print data=garch_family;

var _MODEL_ _A_1 _AH_0 _AH_1 _AH_2
_GH_1 _AHQ_1 _AHT_1 _AHP_1 _THETA_ _LAMBDA_ _DELTA_;

run;

These statements produce the results shown in Output 9.7.2.
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Output 9.7.2 GARCH-Family Estimation Results

Parameter Estimates for Different Models

Obs _MODEL_ _A_1 _AH_0 _AH_1 _AH_2 _GH_1 _AHQ_1 _AHT_1 _AHP_1

1 ar_1 0.017112 . . . . . . .

2 arch_2 . 1.60288 0.23235 0.21407 . . . .

3 garch_1_1 . 0.02730 0.06984 . 0.92294 . . .

4 st_garch_1_1 . 0.02831 0.06913 . 0.92260 . . .

5 ar_1_garch_1_1 -0.005995 0.02734 0.06994 . 0.92282 . . .

6 igarch_1_1 . . 0.00000 . 1.00000 . . .

7 egarch_1_1 . 0.01541 0.12882 . 0.98914 . . .

8 garchm_1_1 . 0.02897 0.07139 . 0.92079 . . .

9 qgarch_1_1 . 0.00120 0.05792 . 0.93458 0.66461 . .

10 tgarch_1_1 . 0.02706 0.02966 . 0.92765 . 0.074815 .

11 pgarch_1_1 . 0.01623 0.06724 . 0.93952 . . 0.43445

Obs _THETA_ _LAMBDA_ _DELTA_

1 . . .

2 . . .

3 . . .

4 . . .

5 . . .

6 . . .

7 -0.41706 . .

8 . . 0.094773

9 . . .

10 . . .

11 . 0.53625 .

The table shown in Output 9.7.2 is convenient for reporting the estimation result of multiple models and their
comparison.

The following statements merge multiple tables that contain fit statistics for each estimated model, leaving
only columns of interest, and rename them:

/* Merging ODS output tables and extracting AIC and SBC measures */
data sbc_aic;

set fitsum_arch_2 fitsum_garch_1_1 fitsum_st_garch_1_1
fitsum_ar_1 fitsum_ar_1_garch_1_1 fitsum_igarch_1_1
fitsum_egarch_1_1 fitsum_garchm_1_1
fitsum_tgarch_1_1 fitsum_pgarch_1_1 fitsum_qgarch_1_1;

keep Model SBC AIC;
if Label1="SBC" then do; SBC=input(cValue1,BEST12.4); end;
if Label2="SBC" then do; SBC=input(cValue2,BEST12.4); end;
if Label1="AIC" then do; AIC=input(cValue1,BEST12.4); end;
if Label2="AIC" then do; AIC=input(cValue2,BEST12.4); end;
if not (SBC=.) then output;

run;

Next, sort the models by one of the criteria—for example, by AIC:
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/* Sorting data by AIC criterion */
proc sort data=sbc_aic;

by AIC;
run;

Finally, print the sorted data set:

title "Selection Criteria for Different Models";
proc print data=sbc_aic;

format _NUMERIC_ BEST12.4;
run;
title;

The result is given in Output 9.7.3.

Output 9.7.3 GARCH-Family Model Selection on the Basis of AIC and SBC

Selection Criteria for Different Models

Obs Model SBC AIC

1 pgarch_1_1 42907.7292 42870.7722

2 egarch_1_1 42905.9616 42876.3959

3 tgarch_1_1 42995.4893 42965.9236

4 qgarch_1_1 43023.106 42993.5404

5 garchm_1_1 43158.4139 43128.8483

6 garch_1_1 43176.5074 43154.3332

7 ar_1_garch_1_1 43185.5226 43155.957

8 st_garch_1_1 43178.2497 43156.0755

9 arch_2 44605.4332 44583.259

10 ar_1 45922.0721 45914.6807

11 igarch_1_1 45925.5828 45918.1914

According to the smaller-is-better rule for the information criteria, the PGARCH(1,1) model is the leader by
AIC while the EGARCH(1,1) is the model of choice according to SBC.

Next, check whether the power GARCH model is misspecified, especially, if dependence exists in the
standardized residuals that correspond to the assumed independently and identically distributed (iid) distur-
bance. The following statements reestimate the power GARCH model and use the BDS test to check the
independence of the standardized residuals:

proc autoreg data=ibm_long;
model r = / noint garch=(p=1,q=1,type=pgarch) BDS=(Z=SR,D=2.0);

run;

The partial results listing of the preceding statements is given in Output 9.7.4.
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Output 9.7.4 Diagnostic Checking of the PGARCH(1,1) Model

The AUTOREG Procedure

BDS Test for Independence

Distance
Embedding
Dimension BDS Pr > |BDS|

2.0000 2 2.9691 0.0030

3 3.3810 0.0007

4 3.1299 0.0017

5 3.3805 0.0007

6 3.3368 0.0008

7 3.1888 0.0014

8 2.9576 0.0031

9 2.7386 0.0062

10 2.5553 0.0106

11 2.3510 0.0187

12 2.1520 0.0314

13 1.9373 0.0527

14 1.7210 0.0852

15 1.4919 0.1357

16 1.2569 0.2088

17 1.0647 0.2870

18 0.9635 0.3353

19 0.8678 0.3855

20 0.7660 0.4437

The results in Output 9.7.4 indicate that when embedded size is greater than 9, you fail to reject the null
hypothesis of independence at 1% significance level, which is a good indicator that the PGARCH model is
not misspecified.

Example 9.8: Illustration of ODS Graphics
This example illustrates the use of ODS GRAPHICS. This is a continuation of the section “Forecasting
Autoregressive Error Models” on page 323.

These graphical displays are requested by specifying the ODS GRAPHICS statement. For information about
the graphs available in the AUTOREG procedure, see the section “ODS Graphics” on page 420.

The following statements show how to generate ODS GRAPHICS plots with the AUTOREG procedure. In
this case, all plots are requested using the ALL option in the PROC AUTOREG statement, in addition to the
ODS GRAPHICS statement. The plots are displayed in Output 9.8.1 through Output 9.8.8. Note: these plots
can be viewed in the Autoreg.Model.FitDiagnosticPlots category by selecting ViewIResults.

data a;
ul = 0; ull = 0;
do time = -10 to 36;

u = + 1.3 * ul - .5 * ull + 2*rannor(12346);
y = 10 + .5 * time + u;
if time > 0 then output;
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ull = ul; ul = u;
end;

run;

data b;
y = .;
do time = 37 to 46; output; end;

run;

data b;
merge a b;
by time;

run;

proc autoreg data=b all plots(unpack);
model y = time / nlag=2 method=ml;
output out=p p=yhat pm=ytrend

lcl=lcl ucl=ucl;
run;

Output 9.8.1 Residuals Plot
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Output 9.8.2 Predicted versus Actual Plot
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Output 9.8.3 Autocorrelation of Residuals Plot
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Output 9.8.4 Partial Autocorrelation of Residuals Plot
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Output 9.8.5 Inverse Autocorrelation of Residuals Plot
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Output 9.8.6 Tests for White Noise Residuals Plot
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Output 9.8.7 Q-Q Plot of Residuals
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Output 9.8.8 Histogram of Residuals
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Overview: COMPUTAB Procedure
The COMPUTAB (computing and tabular reporting) procedure produces tabular reports generated using a
programmable data table.

The COMPUTAB procedure is especially useful when you need both the power of a programmable spread-
sheet and a report generation system, but you want to set up a program to run in a batch mode and generate
routine reports.

With PROC COMPUTAB, you can select a subset of observations from the input data set, define the format
of a table, operate on its row and column values, and create new columns and rows. Access to individual
table values is available when needed.

The COMPUTAB procedure can tailor reports to almost any desired specification and provide consolidation
reports over summarization variables. The generated report values can be stored in an output data set. PROC
COMPUTAB is especially useful in creating tabular reports such as income statements, balance sheets, and
other row and column reports.

Getting Started: COMPUTAB Procedure
The following example shows the different types of reports that can be generated by PROC COMPUTAB.

Suppose a company has monthly expense data on three of its divisions and wants to produce the year-to-
date expense report shown in Figure 10.1. This section starts out with the default report produced by the
COMPUTAB procedure and modifies it until the desired report is achieved.

Figure 10.1 Year-to-Date Expense Report

Year to Date Expenses

                                 Division  Division  Division           All     
                                        A         B         C     Divisions     
   Travel Expenses within U.S.      18700    211000     12800      $242,500     
   Advertising                      18500    176000     34500      $229,000     
   Permanent Staff Salaries        186000   1270000    201000    $1,657,000     
   Benefits Including Insurance      3900     11100     17500       $32,500     
                                 ========  ========  ========    ==========     
   Total                           227100   1668100    265800    $2,161,000     
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Producing a Simple Report
Without any specifications, the COMPUTAB procedure transposes and prints the input data set. The variables
in the input data set become rows in the report, and the observations in the input data set become columns.
The variable names are used as the row titles. The column headings default to COL1 through COLn. For
example, the following input data set contains the monthly expenses reported by different divisions of the
company:

data report;
length compdiv $ 1;
input compdiv $ date:date7. salary travel insure advrtise;
format date date7.;
label travel = 'Travel Expenses within U.S.'

advrtise = 'Advertising'
salary = 'Permanent Staff Salaries'
insure = 'Benefits Including Insurance';

datalines;
A 31JAN1989 95000 10500 2000 6500
B 31JAN1989 668000 112000 5600 90000
C 31JAN1989 105000 6800 9000 18500
A 28FEB1989 91000 8200 1900 12000
B 28FEB1989 602000 99000 5500 86000
C 28FEB1989 96000 6000 8500 16000
;

You can get a listing of the data set by using the PRINT procedure, as follows:

title 'Listing of Monthly Divisional Expense Data';
proc print data=report;
run;

Figure 10.2 Listing of Data Set by PROC PRINT

Listing of Monthly Divisional Expense Data

Obs compdiv date salary travel insure advrtise

1 A 31JAN89 95000 10500 2000 6500

2 B 31JAN89 668000 112000 5600 90000

3 C 31JAN89 105000 6800 9000 18500

4 A 28FEB89 91000 8200 1900 12000

5 B 28FEB89 602000 99000 5500 86000

6 C 28FEB89 96000 6000 8500 16000

To get a simple, transposed report of the same data set, use the following PROC COMPUTAB statement:

title 'Monthly Divisional Expense Report';
proc computab data=report;
run;
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Figure 10.3 Listing of Data Set by PROC COMPUTAB

Monthly Divisional Expense Report

                 COL1       COL2       COL3       COL4       COL5       COL6    
                                                                                
  compdiv           A          B          C          A          B          C    
  date        31JAN89    31JAN89    31JAN89    28FEB89    28FEB89    28FEB89    
  salary     95000.00  668000.00  105000.00   91000.00  602000.00   96000.00    
  travel     10500.00  112000.00    6800.00    8200.00   99000.00    6000.00    
  insure      2000.00    5600.00    9000.00    1900.00    5500.00    8500.00    
  advrtise    6500.00   90000.00   18500.00   12000.00   86000.00   16000.00    

Using PROC COMPUTAB
The COMPUTAB procedure is best understood by examining the following features:

� definition of the report layout with ROWS and COLUMNS statements

� input block

� row blocks

� column blocks

PROC COMPUTAB builds a table according to the specifications in the ROWS and COLUMNS statements.
Row names and column names define the rows and columns of the table. Options in the ROWS and
COLUMNS statements control titles, spacing, and formatting.

The input block places input observations into the appropriate columns of the report. It consists of program-
ming statements used to select observations to be included in the report, to determine the column into which
the observation should be placed, and to calculate row and column values that are not in the input data set.

Row blocks and column blocks perform operations on the values of rows and columns of the report after
the input block has executed. Row blocks are a block of programming statements labeled ROWxxxxx: that
create or modify row values; column blocks are a block of programming statements labeled COLxxxxx: that
create or modify column values. Row and column blocks can make multiple passes through the report for
final calculations.

For most reports, these features are sufficient. More complicated applications might require knowledge of
the program data vector and the COMPUTAB data table. These topics are discussed in the section “Details:
COMPUTAB Procedure” on page 483.
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Defining Report Layout
ROWS and COLUMNS statements define the rows and columns of the report. The order of row and column
names in these statements determines the order of rows and columns in the report. Additional ROWS and
COLUMNS statements can be used to specify row and column formatting options.

The following statements select and order the variables from the input data set and produce the report in
Figure 10.4:

proc computab data=report;
rows travel advrtise salary;

run;

Figure 10.4 Report Produced Using a ROWS Statement

                 COL1       COL2       COL3       COL4       COL5       COL6    
                                                                                
  TRAVEL     10500.00  112000.00    6800.00    8200.00   99000.00    6000.00    
  ADVRTISE    6500.00   90000.00   18500.00   12000.00   86000.00   16000.00    
  SALARY     95000.00  668000.00  105000.00   91000.00  602000.00   96000.00    

When a COLUMNS statement is not specified, each observation becomes a new column. If you use a
COLUMNS statement, you must specify to which column each observation belongs by using program
statements for column selection. When more than one observation is selected for the same column, values
are summed.

The following statements produce Figure 10.5:

proc computab data= report;
rows travel advrtise salary insure;
columns a b c;

*----select column for company division,
based on value of compdiv----*;

a = compdiv = 'A';
b = compdiv = 'B';
c = compdiv = 'C';

run;

The statement A=COMPDIV=’A’; illustrates the use of logical operators as a selection technique. If
COMPDIV=’A’, then the current observation is added to the A column. For more information, see SAS
Language: Reference, Version 6, First Edition.

Figure 10.5 Report Produced Using ROWS and COLUMNS Statements

                                     A          B          C                    
                                                                                
                   TRAVEL     18700.00  211000.00   12800.00                    
                   ADVRTISE   18500.00  176000.00   34500.00                    
                   SALARY    186000.00  1270000.0  201000.00                    
                   INSURE      3900.00   11100.00   17500.00                    
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Adding Computed Rows and Columns
In addition to the variables and observations in the input data set, you can create additional rows or columns
by using SAS programming statements in PROC COMPUTAB. You can do the following:

� modify input data and select columns in the input block

� create or modify columns in column blocks

� create or modify rows in row blocks

The following statements add one computed row (SUM) and one computed column (TOTAL) to the report
in Figure 10.5. In the input block the logical operators indicate the observations that correspond to each
column of the report. After the input block reads in the values from the input data set, the column block
creates the column variable TOTAL by summing the columns A, B, and C. The additional row variable, SUM,
is calculated as the sum of the other rows. The result is shown in Figure 10.6.

proc computab data= report;
rows travel advrtise salary insure sum;
columns a b c total;
a = compdiv = 'A';
b = compdiv = 'B';
c = compdiv = 'C';
colblk: total = a + b + c;
rowblk: sum = travel + advrtise + salary + insure;

run;

Figure 10.6 Report Produced Using Row and Column Blocks

                               A          B          C      TOTAL               
                                                                                
             TRAVEL     18700.00  211000.00   12800.00  242500.00               
             ADVRTISE   18500.00  176000.00   34500.00  229000.00               
             SALARY    186000.00  1270000.0  201000.00  1657000.0               
             INSURE      3900.00   11100.00   17500.00   32500.00               
             SUM       227100.00  1668100.0  265800.00  2161000.0               

Enhancing the Report
To enhance the appearance of the final report, you can use the following:

� TITLE and LABEL statements

� column headings

� row titles

� row and column spacing control

� overlining and underlining
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� formats

The following example enhances the report in the previous example. The enhanced report is shown in
Figure 10.7.

The TITLE statement assigns the report title. The column headings in Figure 10.7 (Division A, Division B,
and Division C) are assigned in the first COLUMNS statement by “Division” _name_ specification. The
second COLUMNS statement assigns the column heading (“All” “Divisions”), sets the spacing (+4), and
formats the values in the TOTAL column.

Similarly, the first ROWS statement uses previously assigned variable labels for row labels by specifying the
_LABEL_ option. The DUL option in the second ROWS statement double-underlines the INSURE row. The
third ROWS statement assigns the row label TOTAL to the SUM row.

title 'Year to Date Expenses';

proc computab cwidth=8 cdec=0;

columns a b c / 'Division' _name_;
columns total / 'All' 'Divisions' +4 f=dollar10.0;

rows travel advrtise salary insure / _label_;
rows insure / dul;
rows sum / 'Total';

a = compdiv = 'A';
b = compdiv = 'B';
c = compdiv = 'C';

colblk: total = a + b + c;
rowblk: sum = travel + advrtise + salary + insure;

run;

Figure 10.7 Report Produced by PROC COMPUTAB Using Enhancements

Year to Date Expenses

                                 Division  Division  Division           All     
                                        A         B         C     Divisions     
   Travel Expenses within U.S.      18700    211000     12800      $242,500     
   Advertising                      18500    176000     34500      $229,000     
   Permanent Staff Salaries        186000   1270000    201000    $1,657,000     
   Benefits Including Insurance      3900     11100     17500       $32,500     
                                 ========  ========  ========    ==========     
   Total                           227100   1668100    265800    $2,161,000     
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Syntax: COMPUTAB Procedure
The following statements are used with the COMPUTAB procedure:

PROC COMPUTAB options ;
BY variables ;
COLUMNS column-list / options ;
ROWS row-list / options ;
CELL cell-names / FORMAT= format ;
INIT anchor-name locator-name values locator-name values ;
programming statements ;
SUMBY variables ;

The PROC COMPUTAB statement is the only required statement. The COLUMNS, ROWS, and CELL
statements define the COMPUTAB table. The INIT statement initializes the COMPUTAB table values.
Programming statements process COMPUTAB table values. The BY and SUMBY statements provide
BY-group processing and consolidation (roll up) tables.

Functional Summary
Table 10.1 summarizes the COMPUTAB procedure statements and options.

Table 10.1 COMPUTAB Functional Summary

Description Statement Option

Statements
Specify BY-group processing BY
Specify the format for printing a particular cell CELL
Define columns of the report COLUMNS
Initialize values in the COMPUTAB data table INIT
Define rows of the report ROWS
Produce consolidation tables SUMBY

Data Set Options
Specify the input data set COMPUTAB DATA=
Specify an output data set COMPUTAB OUT=

Input Options
Specify a value to use when testing for 0 COMPUTAB FUZZ=
Initialize the data table to missing COMPUTAB INITMISS
Prevent the transposition of the input data set COMPUTAB NOTRANS

Printing Control Options
Suppress printing of the listed columns COLUMNS NOPRINT
Suppress all printed output COMPUTAB NOPRINT
Suppress printing of the listed rows ROWS NOPRINT
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Table 10.1 continued

Description Statement Option

Suppress columns with all 0 or missing values COLUMNS NOZERO
Suppress rows with all 0 or missing values ROWS NOZERO
List option values COMPUTAB OPTIONS
Overprint titles, values, overlining, and underlining
associated with listed rows

ROWS OVERPRINT

Print only consolidation tables COMPUTAB SUMONLY

Report Formatting Options
Specify number of decimal places to print COMPUTAB CDEC=
Specify number of spaces between columns COMPUTAB CSPACE=
Specify column width for the report COMPUTAB CWIDTH=
Overline the listed rows with double lines ROWS DOL
Underline the listed rows with double lines ROWS DUL
Specify a format for printing the cell values CELL FORMAT=
Specify a format for printing column values COLUMNS FORMAT=
Specify a format for printing the row values ROWS FORMAT=
Left-align the column headings COLUMNS LJC
Left-justify character rows in each column ROWS LJC
Specify indention from the margin ROWS +n
Suppress printing of row titles on later pages COMPUTAB NORTR
Overline the listed rows with a single line ROWS OL
Start a new page before printing the listed rows ROWS _PAGE_
Specify number of spaces before row titles COMPUTAB RTS=
Print a blank row ROWS SKIP
Underline the listed rows with a single line ROWS UL
Specify text to print if column is 0 or missing COLUMNS ZERO=
Specify text to print if row is 0 or missing ROWS ZERO=

Row and Column Type Options
Specify that columns contain character data COLUMNS CHAR
Specify that rows contain character data ROWS CHAR

Options for Column Headings
Specify literal column headings COLUMNS ‘column heading’
Use variable labels in column headings COLUMNS _LABEL_
Specify a master title centered over columns COLUMNS MTITLE=
Use column names in column headings COLUMNS _NAME_

Options for Row Titling
Use labels in row titles ROWS _LABEL_
Use row names in row titles ROWS _NAME_
Specify literal row titles ROWS ‘row title’

The following sections describe the PROC COMPUTAB statement and then describe the other statements in
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alphabetical order.

PROC COMPUTAB Statement
PROC COMPUTAB options ;

The following options can be used in the PROC COMPUTAB statement.

Input Options

DATA=SAS-data-set
names the SAS data set that contains the input data. If this option is not specified, the last created data
set is used. If you are not reading a data set, use DATA=_NULL_.

FUZZ=value
specifies the criterion to use when testing for 0. If a number is within the FUZZ= value of 0, the
number is set to 0.

INITMISS
initializes the COMPUTAB data table to missing rather than to 0. The COMPUTAB data table is
discussed further in the section “Details: COMPUTAB Procedure” on page 483.

NOTRANSPOSE

NOTRANS
prevents the transposition of the input data set in building the COMPUTAB report tables. The
NOTRANS option causes input data set variables to appear among the columns of the report rather
than among the rows.

Report Formatting Options

The formatting options specify default values. Many of the formatting options can be modified for specific
columns in COLUMNS statements and for rows in ROWS statements.

CDEC=d
specifies the default number of decimal places for printing. The default is CDEC=2. See the FORMAT=
option in the sections on the COLUMN, ROWS, and CELL statements later in this chapter.

CSPACE=n
specifies the default number of spaces to insert between columns. The value of the CSPACE= option is
used as the default value for the +n option in the COLUMNS statement. The default is CSPACE=2.

CWIDTH=w
specifies a default column width for the report. The default is CWIDTH=9. The width must be in the
range of 1–32.
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NORTR
suppresses the printing of row titles on each page. The NORTR (no row-title repeat) option is useful to
suppress row titles when report pages are to be joined together in a larger report.

RTS=n
specifies the default number of spaces to be inserted before row titles when row titles appear after the
first printed column. The default row-title spacing is RTS=2.

Output Options

NOPRINT
suppresses all printed output. Use the NOPRINT option with the OUT= option to produce an output
data set but no printed reports.

OPTIONS
lists PROC COMPUTAB option values. The option values appear on a separate page preceding the
procedure’s normal output.

OUT=SAS-data-set
names the SAS data set to contain the output data. For a description of the structure of the output data
set, see the section “Details: COMPUTAB Procedure” on page 483.

SUMONLY
suppresses printing of detailed reports. When the SUMONLY option is used, PROC COMPUTAB
generates and prints only consolidation tables as specified in the SUMBY statement.

BY Statement
BY variables ;

A BY statement can be used with PROC COMPUTAB to obtain separate reports for observations in groups
defined by the BY variables. At the beginning of each BY group, before PROC COMPUTAB reads any
observations, all table values are set to 0 unless the INITMISS option or an INIT statement is specified.

CELL Statement
CELL cell-names / FORMAT=format ;

The CELL statement specifies the format for printing a particular cell in the COMPUTAB data table. Cell
variable names are compound SAS names of the form name1.name2, where name1 is the name of a row
variable and name2 is the name of a column variable. Formats specified with the FORMAT= option in CELL
statements override formats specified in ROWS and COLUMNS statements.
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COLUMNS Statement
COLUMNS column-list / options ;

COLUMNS statements define the columns of the report. The COLUMNS statement can be abbreviated
COLUMN, COLS, or COL.

The specified column names must be valid SAS names. Abbreviated lists, as described in SAS Language:
Reference, can also be used.

You can use as many COLUMNS statements as you need. A COLUMNS statement can describe more than
one column, and one column of the report can be described with several different COLUMNS statements. The
order of the columns on the report is determined by the order of appearance of column names in COLUMNS
statements. The first occurrence of the name determines where in the sequence of columns a particular
column is located.

The following options can be used in the COLUMNS statement.

Option for Column Type

CHAR
indicates that the columns contain character data.

Options for Column Headings

You can specify as many lines of column headings as needed. If no options are specified, the column names
from the COLUMNS statement are used as column headings. Any or all of the following options can be used
in a column heading:

“column heading”
specifies that the characters enclosed in quotes are to be used in the column heading for the variable
or variables listed in the COLUMNS statement. Each quoted string appears on a separate line of the
heading.

_LABEL_
uses labels, if provided, in the heading for the column or columns listed in the COLUMNS statement.
If a label has not been provided, the name of the column is used. For information about the LABEL
statement, see SAS Language: Reference.

MTITLE=“text”
specifies that the string of characters enclosed in quotes is a master title to be centered over all the
columns listed in the COLUMNS statement. The list of columns must be consecutive. Special
characters (“+”, “*”, “=”, and so forth) placed on either side of the text expand to fill the space. The
MTITLE= option can be abbreviated M=.

_NAME_
uses column names in column headings for the columns listed in the COLUMNS statement. This
option allows headings (“text” ) and names to be combined in a heading.
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Options for Column Print Control

+n
inserts n spaces before each column listed in the COLUMNS statement. The default spacing is given
by the CSPACE= option in the PROC COMPUTAB statement.

NOPRINT
suppresses printing of columns listed in the COLUMNS statement. This option enables you to create
columns to be used for intermediate calculations without having those columns printed.

NOZERO
suppresses printing of columns when all the values in a column are 0 or missing. Numbers within the
FUZZ= value of 0 are treated as 0.

_PAGE_
starts a new page of the report before printing each of the columns in the list that follows.

_TITLES_
prints row titles before each column in the list. The _TITLES_ option can be abbreviated as _TITLE_.

Options for Column Formatting

Column formats override row formats for particular table cells only when the input data set is not transposed
(when the NOTRANS option is specified).

FORMAT=format
specifies a format for printing the values of the columns listed in the COLUMNS statement. The
FORMAT= option can be abbreviated F=.

LJC
left-justifies the column headings for the columns listed. By default, columns are right-justified.
When the LJC (left-justify character) option is used, any character row values in the column are also
left-justified rather than right-justified.

ZERO=“text”
substitutes “text” when the value in the column is 0 or missing.

INIT Statement
INIT anchor-name [locator-name] values [locator-name values] ;

The INIT statement initializes values in the COMPUTAB data table at the beginning of each execution of the
procedure and at the beginning of each BY group if a BY statement is present.

The INIT statement in the COMPUTAB procedure is similar in function to the RETAIN statement in the
DATA step, which initializes values in the program data vector. The INIT statement can be used at any
point after the variable to which it refers has been defined in COLUMNS or ROWS statements. Each INIT
statement initializes one row or column. Any number of INIT statements can be used.
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The first term after the keyword INIT, anchor-name, anchors initialization to a row or column. If anchor-
name is a row name, then all locator-name values in the statement are columns of that row. If anchor-name
is a column name, then all locator-name values in the statement are rows of that column.

The following terms appear in the INIT statement:

anchor-name names the row or column in which values are to be initialized. This term is required.

locator-name identifies the starting column in the row (or starting row in the column) into which values
are to be placed. For example, in a table with a row SALES and a column for each month
of the year, the following statement initializes values for columns JAN, FEB, and JUN:

init sales jan 500 feb 600 jun 800;

If you do not specify locator-name values, the first value is placed into the first row or
column, the second value into the second row or column, and so on. For example, the
following statement assigns 500 to column JAN, 600 to FEB, and 450 to MAR:

init sales 500 600 450;

+n specifies the number of columns in a row (or rows in a column) that are to be skipped
when initializing values. For example, the following statement assigns 500 to JAN and
900 to JUL:

init sales jan 500 +5 900;

n*value assigns value to n columns in the row (or rows in the column). For example, both of the
following statements assign 500 to columns JAN through JUN and 1000 to JUL through
DEC:

init sales jan 6*500 jul 6*1000;

init sales 6*500 6*1000;
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ROWS Statement
ROWS row-list / options ;

ROWS statements define the rows of the report. The ROWS statement can be abbreviated ROW.

The specified row names must be valid SAS names. Abbreviated lists, as described in SAS Language:
Reference, can also be used.

You can use as many ROWS statements as you need. A ROWS statement can describe more than one row,
and one row of the report can be described with several different ROWS statements. The order of the rows in
the report is determined by the order of appearance of row names in ROWS statements. The first occurrence
of the name determines where the row is located.

The following options can be used in the ROWS statement.

Option for Row Type

CHAR
indicates that the rows contain character data.

Options for Row Titling

You can specify as many lines of row titles as needed. If no options are specified, the names from the ROWS
statement are used as row titles. Any or all of the following options can be used in a row title:

_LABEL_
uses labels as row titles for the row or rows listed in the ROWS statement. If a label is not provided, the
name of the row is substituted. For more information about the LABEL statement, see SAS Language:
Reference.

_NAME_
uses row names in row titles for the row or rows listed in the ROWS statement.

“row title”
specifies that the string of characters enclosed in quotes is to be used in the row title for the row or
rows listed in the ROWS statement. Each quoted string appears on a separate line of the heading.

Options for Row Print Control

+n
indents n spaces from the margin for the rows in the ROWS statement.

DOL
overlines the rows listed in the ROWS statement with double lines. Overlines are printed on the line
before any row titles or data for the row.
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DUL
underlines the rows listed in the ROWS statement with double lines. Underlines are printed on the line
after the data for the row. A row can have both an underline and an overline option.

NOPRINT
suppresses printing of the rows listed in the ROWS statement. This option enables you to create rows
to be used for intermediate calculations without having those rows printed.

NOZERO
suppresses the printing of a row when all the values are 0 or missing.

OL
overlines the rows listed in the ROWS statement with a single line. Overlines are printed on the line
before any row titles or data for the row.

OVERPRINT
overprints titles, values, overlining, and underlining associated with rows listed in the ROWS statement.
The OVERPRINT option can be abbreviated OVP. This option is valid only when the system option
OVP is in effect. For more information about the OVP option, see SAS Language: Reference.

_PAGE_
starts a new page of the report before printing these rows.

SKIP
prints a blank line after the data lines for these rows.

UL
underlines the rows listed in the ROWS statement with a single line. Underlines are printed on the line
after the data for the row. A row can have both an underline and an overline option.

Options for Row Formatting

Row formatting options take precedence over column-formatting options when the input data set is transposed.
Row print width can never be wider than column width. Character values are truncated on the right.

FORMAT=format
specifies a format for printing the values of the rows listed in the ROWS statement. The FORMAT=
option can be abbreviated as F=.

LJC
left-justifies character rows in each column.

ZERO=“text”
substitutes “text” when the value in the row is 0 or missing.
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SUMBY Statement
SUMBY variables ;

The SUMBY statement produces consolidation tables for variables whose names are in the SUMBY list.
Only one SUMBY statement can be used.

To use a SUMBY statement, you must use a BY statement. The SUMBY and BY variables must be in the
same relative order in both statements. For example:

by a b c;
sumby a b;

This SUMBY statement produces tables that consolidate over values of C within levels of B and over values
of B within levels of A. Suppose A has values 1, 2; B has values 1, 2; and C has values 1, 2, 3. Table 10.2
indicates the consolidation tables produced by the SUMBY statement.

Table 10.2 Consolidation Tables Produced by the SUMBY Statement

SUMBY Consolidations Consolidated BY Groups
A=1, B=1 C=1 C=2 C=3
A=1, B=2 C=1 C=2 C=3
A=1 B=1, C=1 B=1, C=2 B=1, C=3

B=2, C=1 B=2, C=2 B=2, C=3
A=2, B=1 C=1 C=2 C=3
A=2, B=2 C=1 C=2 C=3
A=2 B=1, C=1 B=1, C=2 B=1, C=3

B=2, C=1 B=2, C=2 B=2, C=3

Two consolidation tables for B are produced for each value of A. The first table consolidates the three tables
produced for the values of C while B is 1; the second table consolidates the three tables produced for C while
B is 2.

Tables are similarly produced for values of A. Nested consolidation tables are produced for B (as described
previously) for each value of A. Thus, this SUMBY statement produces a total of six consolidation tables in
addition to the tables produced for each BY group.

To produce a table that consolidates the entire data set (the equivalent of using PROC COMPUTAB with
neither BY nor SUMBY statements), use the special name _TOTAL_ as the first entry in the SUMBY variable
list. For example:

sumby _total_ a b;

PROC COMPUTAB then produces consolidation tables for SUMBY variables as well as a consolidation
table for all observations.

To produce only consolidation tables, use the SUMONLY option in the PROC COMPUTAB statement.
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Programming Statements
You can use most SAS programming statements the same way you use them in the DATA step. Also, all
DATA step functions can be used in the COMPUTAB procedure.

Lines written by the PUT statement are not integrated with the COMPUTAB report. PUT statement output is
written to the SAS log.

The automatic variable _N_ can be used; its value is the number of observations read or the number read in
the current BY group, if a BY statement is used. FIRST.variable and LAST.variable references cannot be
used.

The following statements are also available in PROC COMPUTAB:

ABORT FORMAT
ARRAY GOTO
ATTRIB IF-THEN/ELSE
assignment statement LABEL
CALL LINK
DELETE PUT
DO RETAIN
iterative DO SELECT
DO UNTIL STOP
DO WHILE sum statement
END TITLE
FOOTNOTE

The programming statements can be assigned labels ROWxxxxx: or COLxxxxx: to indicate the start of a row
and column block, respectively. Statements in a row block create or change values in all the columns in the
specified rows. Similarly, statements in a column block create or change values in all the rows in the specified
columns.

There is an implied RETURN statement before each new row or column block. Thus, the flow of execution
does not leave the current row (column) block before the block repeats for all columns (rows.) Row and
column variables and nonretained variables are initialized prior to each execution of the block.

The next COLxxxxx: label, ROWxxxxx: label, or the end of the PROC COMPUTAB step signals the end of a
row (column) block. Column blocks and row blocks can be mixed in any order. In some cases, performing
calculations in different orders can lead to different results.

For more information, see the sections “Program Flow Example” on page 483, “Order of Calculations” on
page 486, and “Controlling Execution within Row and Column Blocks” on page 489.
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Details: COMPUTAB Procedure

Program Flow Example
This example shows how the COMPUTAB procedure processes observations in the program working storage
and the COMPUTAB data table (CDT).

Assume you have three years of figures for sales and cost of goods sold (CGS), and you want to determine
total sales and cost of goods sold and calculate gross profit and the profit margin.

title 'Program Flow Example for PROC COMPUTAB';

data example;
input year sales cgs;

datalines;
1988 83 52
1989 106 85
1990 120 114
;

proc computab data=example;

columns c88 c89 c90 total;
rows sales cgs gprofit pctmarg;

/* calculate gross profit */
gprofit = sales - cgs;

/* select a column */
c88 = year = 1988;
c89 = year = 1989;
c90 = year = 1990;

/* calculate row totals for sales */
/* and cost of goods sold */
col: total = c88 + c89 + c90;

/* calculate profit margin */
row: pctmarg = gprofit / cgs * 100;

run;

Table 10.3 shows the CDT before any observation is read in. All the columns and rows are defined with the
values initialized to 0.
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Table 10.3 CDT before Any Input

C88 C89 C90 TOTAL
SALES 0 0 0 0
CGS 0 0 0 0
GPROFIT 0 0 0 0
PCTMARG 0 0 0 0

When the first input is read in (YEAR=1988, SALES=83, and CGS=52), the input block puts the values
for SALES and CGS in the C88 column since year=1988. Also the value for the gross profit for that year
(GPROFIT) is calculated as indicated in the following statements:

gprofit = sales-cgs;
c88 = year = 1988;
c89 = year = 1989;
c90 = year = 1990;

Table 10.4 shows the CDT after the first observation is input.

Table 10.4 CDT after First Observation Input (C88=1)

C88 C89 C90 TOTAL
SALES 83 0 0 0
CGS 52 0 0 0
GPROFIT 31 0 0 0
PCTMARG 0 0 0 0

Similarly, the second observation (YEAR=1989, SALES=106, CGS=85) is put in the second column, and the
GPROFIT is calculated to be 21. The third observation (YEAR=1990, SALES=120, CGS=114) is put in the
third column, and the GPROFIT is calculated to be 6. Table 10.5 shows the CDT after all observations are
input.

Table 10.5 CDT after All Observations Input

C88 C89 C90 TOTAL
SALES 83 106 120 0
CGS 52 85 114 0
GPROFIT 31 21 6 0
PCTMARG 0 0 0 0

After the input block is executed for each observation in the input data set, the first row or column block is
processed. In this case, the column block is
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col: total = c88 + c89 + c90;

The column block executes for each row, calculating the TOTAL column for each row. Table 10.6 shows the
CDT after the column block has executed for the first row (TOTAL=83 + 106 + 120). The total sales for the
three years is 309.

Table 10.6 CDT after Column Block Executed for First Row

C88 C89 C90 TOTAL
SALES 83 106 120 309
CGS 52 85 114 0
GPROFIT 31 21 6 0
PCTMARG 0 0 0 0

Table 10.7 shows the CDT after the column block has executed for all rows and the values for total cost of
goods sold and total gross profit have been calculated.

Table 10.7 CDT after Column Block Executed for All Rows

C88 C89 C90 TOTAL
SALES 83 106 120 309
CGS 52 85 114 251
GPROFIT 31 21 6 58
PCTMARG 0 0 0 0

After the column block has been executed for all rows, the next block is processed. The row block is

row: pctmarg = gprofit / cgs * 100;

The row block executes for each column, calculating the PCTMARG for each year and the total (TOTAL
column) for three years. Table 10.8 shows the CDT after the row block has executed for all columns.

Table 10.8 CDT after Row Block Executed for All Columns

C88 C89 C90 TOTAL
SALES 83 106 120 309
CGS 52 85 114 251
GPROFIT 31 21 6 58
PCTMARG 59.62 24.71 5.26 23.11
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Order of Calculations
The COMPUTAB procedure provides alternative programming methods for performing most calculations.
New column and row values are formed by adding values from the input data set, directly or with modification,
into existing columns or rows. New columns can be formed in the input block or in column blocks. New
rows can be formed in the input block or in row blocks.

This example illustrates the different ways to collect totals. Table 10.9 is the total sales report for two
products, SALES1 and SALES2, during the years 1988–1990. The values for SALES1 and SALES2 in
columns C88, C89, and C90 come from the input data set.

Table 10.9 Total Sales Report

C88 C89 C90 SALESTOT
SALES1 15 45 80 140
SALES2 30 40 50 120
YRTOT 45 85 130 260

The new column SALESTOT, which is the total sales for each product over three years, can be computed in
several different ways:

� in the input block by selecting SALESTOT for each observation:

salestot = 1;

� in a column block:

coltot: salestot = c88 + c89 + c90;

In a similar fashion, the new row YRTOT, which is the total sales for each year, can be formed as follows:

� in the input block:

yrtot = sales1 + sales2;

� in a row block:

rowtot: yrtot = sales1 + sales2;
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Performing some calculations in PROC COMPUTAB in different orders can yield different results, because
many operations are not commutative. Be sure to perform calculations in the proper sequence. It might take
several column and row blocks to produce the desired report values.

Notice that in the previous example, the grand total for all rows and columns is 260 and is the same whether
it is calculated from row subtotals or column subtotals. It makes no difference in this case whether you
compute the row block or the column block first.

However, consider the example in Table 10.10, where a new column and a new row are formed.

Table 10.10 Report Sensitive to Order of Calculations

STORE1 STORE2 STORE3 MAX
PRODUCT1 12 13 27 27
PRODUCT2 11 15 14 15
TOTAL 23 28 41 ?

The new column MAX contains the maximum value in each row, and the new row TOTAL contains the
column totals. MAX is calculated in a column block:

col: max = max(store1,store2,store3);

TOTAL is calculated in a row block:

row: total = product1 + product2;

Notice that either of two values, 41 or 42, is possible for the element in column MAX and row TOTAL. If the
row block is first, the value is the maximum of the column totals (41). If the column block is first, the value
is the sum of the MAX values (42). Whether to compute a column block before a row block can be a critical
decision.

Column Selection
The following discussion assumes that the NOTRANS option has not been specified. When NOTRANS is
specified, this section applies to rows rather than columns.

If a COLUMNS statement appears in PROC COMPUTAB, a target column must be selected for the incoming
observation. If there is no COLUMNS statement, a new column is added for each observation. When a
COLUMNS statement is present and the selection criteria fail to designate a column, the current observation
is ignored. Faulty column selection can result in columns or entire tables of 0s (or missing values if the
INITMISS option is specified).

During execution of the input block, when an observation is read, its values are copied into row variables in
the program data vector (PDV).

To select columns, use either the column variable names themselves or the special variable _COL_. Use
the column names by setting a column variable equal to some nonzero value. The example in the section
“Getting Started: COMPUTAB Procedure” on page 466 uses the logical expression COMPDIV= value, and
the result is assigned to the corresponding column variable.
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a = compdiv = 'A';
b = compdiv = 'B';
c = compdiv = 'C';

IF statements can also be used to select columns. The following statements are equivalent to the preceding
example:

if compdiv = 'A' then a = 1;
else if compdiv = 'B' then b = 1;
else if compdiv = 'C' then c = 1;

At the end of the input block for each observation, PROC COMPUTAB multiplies numeric input values by
any nonzero selector values and adds the result to selected columns. Character values simply overwrite the
contents already in the table. If more than one column is selected, the values are added to each of the selected
columns.

Use the _COL_ variable to select a column by assigning the column number to it. The COMPUTAB procedure
automatically initializes column variables and sets the _COL_ variable to 0 at the start of each execution of
the input block. At the end of the input block for each observation, PROC COMPUTAB examines the value
of _COL_. If the value is nonzero and within range, the row variable values are added to the CDT cells of the
_COL_th column. For example:

title 'Column Selection Example for PROC COMPUTAB';

data rept;
input div sales cgs;

datalines;
2 106 85
3 120 114
1 83 52
;

proc computab data=rept;
row div sales cgs;
columns div1 div2 div3;
_col_ = div;

run;

The code in this example places the first observation (DIV=2) in column 2 (DIV2), the second observation
(DIV=3) in column 3 (DIV3), and the third observation (DIV=1) in column 1 (DIV1).
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Controlling Execution within Row and Column Blocks
Row names, column names, and the special variables _ROW_ and _COL_ can be used to limit the execution
of programming statements to selected rows or columns. A row block operates on all columns of the table for
a specified row unless restricted in some way. Likewise, a column block operates on all rows for a specified
column. Use column names or _COL_ in a row block to execute programming statements conditionally; use
row names or _ROW_ in a column block.

For example, consider a simple column block that consists of only one statement:

col: total = qtr1 + qtr2 + qtr3 + qtr4;

This column block assigns a value to each row in the TOTAL column. As each row participates in the
execution of a column block, the following changes occur:

� Its row variable in the program data vector is set to 1.

� The value of _ROW_ is the number of the participating row.

� The value from each column of the row is copied from the COMPUTAB data table to the program data
vector.

To avoid calculating TOTAL on particular rows, use row names or _ROW_. For example:

col: if sales|cost then total = qtr1 + qtr2 + qtr3 + qtr4;

or

col: if _row_ < 3 then total = qtr1 + qtr2 + qtr3 + qtr4;

Row and column blocks can appear in any order, and rows and columns can be selected in each block.

Program Flow
This section describes in detail the different steps in PROC COMPUTAB execution.

Step 1: Define Report Organization and Set Up the COMPUTAB Data Table

Before the COMPUTAB procedure reads in data or executes programming statements, the columns list from
the COLUMNS statements and the rows list from the ROWS statements are used to set up a matrix of all
columns and rows in the report. This matrix is called the COMPUTAB data table (CDT). When you define
columns and rows of the CDT, the COMPUTAB procedure also sets up corresponding variables in working
storage called the program data vector (PDV) for programming statements. Data values reside in the CDT
but are copied into the program data vector as they are needed for calculations.
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Step 2: Select Input Data with Input Block Programming Statements

The input block copies input observations into rows or columns of the CDT. By default, observations go to
columns; if the data set is not transposed (the NOTRANS option is specified), observations go to rows of
the report table. The input block consists of all executable statements before any ROWxxxxx: or COLxxxxx:
statement label. Use programming statements to perform calculations and select a given observation to be
added into the report.

Input Block
The input block is executed once for each observation in the input data set. If there is no input data set, the
input block is not executed. The program logic of the input block is as follows:

1. Determine which variables, row or column, are selector variables and which are data variables. Selector
variables determine which rows or columns receive values at the end of the block. Data variables
contain the values that the selected rows or columns receive. By default, column variables are selector
variables and row variables are data variables. If the input data set is not transposed (the NOTRANS
option is specified), the roles are reversed.

2. Initialize nonretained program variables (including selector variables) to 0 (or missing if the INITMISS
option is specified). Selector variables are temporarily associated with a numeric data item supplied by
the procedure. Using these variables to control row and column selection does not affect any other data
values.

3. Transfer data from an observation in the data set to data variables in the PDV.

4. Execute the programming statements in the input block by using values from the PDV and storing
results in the PDV.

5. Transfer data values from the PDV into the appropriate columns of the CDT. If a selector variable for a
row or column has a nonmissing and nonzero value, multiply each PDV value for variables used in the
report by the selector variable and add the results to the selected row or column of the CDT.

Step 3: Calculate Final Values by Using Column Blocks and Row Blocks

Column Blocks
A column block is executed once for each row of the CDT. The program logic of a column block is as follows:

1. Indicate the current row by setting the corresponding row variable in the PDV to 1 and the other row
variables to missing. Assign the current row number to the special variable _ROW_.

2. Move values from the current row of the CDT to the respective column variables in the PDV.

3. Execute programming statements in the column block by using the column values in the PDV. Here
new columns can be calculated and old ones adjusted.

4. Move the values back from the PDV to the current row of the CDT.
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Row Blocks
A row block is executed once for each column of the CDT. The program logic of a row block is as follows:

1. Indicate the current column by setting the corresponding column variable in the PDV to 1 and the other
column variables to missing. Assign the current column number to the special variable _COL_.

2. Move values from the current column of the CDT to the respective row variables in the PDV.

3. Execute programming statements in the row block by using the row values in the PDV. Here new rows
can be calculated and old ones adjusted.

4. Move the values back from the PDV to the current column of the CDT.

See the section “Controlling Execution within Row and Column Blocks” on page 489.

Any number of column blocks and row blocks can be used. Each can include any number of programming
statements.

The values of row variables and column variables are determined by the order in which different row-block
and column-block programming statements are processed. These values can be modified throughout the
COMPUTAB procedure, and final values are printed in the report.

Direct Access to Table Cells
You can insert or retrieve numeric values from specific table cells by using the special reserved name TABLE
with row and column subscripts. References to the TABLE have the form

TABLE[ row-index, column-index ]

where row-index and column-index can be numbers, character literals, numeric variables, character variables,
or expressions that produce a number or a name. If an index is numeric, it must be within range; if it is
character, it must name a row or column.

References to TABLE elements can appear on either side of an equal sign in an assignment statement and
can be used in a SAS expression.

Reserved Words
Certain words are reserved for special use by the COMPUTAB procedure, and using these words as variable
names can lead to syntax errors or warnings. The reserved words are as follows:

� COLUMN

� COLUMNS

� COL

� COLS
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� _COL_

� ROW

� ROWS

� _ROW_

� INIT

� _N_

� TABLE

Missing Values
Missing values for variables in programming statements are treated in the same way that missing values are
treated in the DATA step; that is, missing values used in expressions propagate missing values to the result.
For more information about missing values, see SAS Language: Reference.

Missing values in the input data are treated as follows in the COMPUTAB report table. At the end of the
input block, either one or more rows or one or more columns can have been selected to receive values from
the program data vector (PDV). Numeric data values from variables in the PDV are added into selected report
table rows or columns. If a PDV value is missing, the values already in the selected rows or columns for that
variable are unchanged by the current observation. Other values from the current observation are added to
table values as usual.

OUT= Data Set
The output data set contains the following variables:

� BY variables

� a numeric variable _TYPE_

� a character variable _NAME_

� the column variables from the COMPUTAB data table

The BY variables contain values for the current BY group. For observations in the output data set from
consolidation tables, the consolidated BY variables have missing values.

The special variable _TYPE_ is a numeric variable that can have one of three values: 1, 2, or 3. _TYPE_ =
1 indicates observations from the normal report table produced for each BY group; _TYPE_ = 2 indicates
observations from the _TOTAL_ consolidation table; _TYPE_ = 3 indicates observations from other con-
solidation tables. _TYPE_ = 2 and _TYPE_ = 3 observations have one or more BY variables with missing
values.
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The special variable _NAME_ is a character variable of length 8 that contains the row or column name
associated with the observation from the report table. If the input data set is transposed, _NAME_ contains
column names; otherwise, _NAME_ contains row names.

If the input data set is transposed, the remaining variables in the output data set are row variables from the
report table. They are column variables if the input data set is not transposed.

NOTRANS Option
The NOTRANS option in the PROC COMPUTAB statement prevents the transposition of the input data set.
The NOTRANS option affects the input block, the precedence of row and column options, and the structure
of the output data set if the OUT= option is specified.

When the input data set is transposed, input variables are among the rows of the COMPUTAB report, and
observations compose columns. The reverse is true if the data set is not transposed; therefore, the input block
must select rows to receive data values, and input variables are among the columns.

Variables from the input data set dominate the format specification and data type. When the input data set is
transposed, input variables are among the rows of the report, and row options take precedence over column
options. When the input data set is not transposed, input variables are among the columns, and column
options take precedence over row options.

Variables for the output data set are taken from the dimension (row or column) that contains variables from
the input data set. When the input data set is transposed, this dimension is the row dimension; otherwise, the
output variables come from the column dimension.

Examples: COMPUTAB Procedure

Example 10.1: Using Programming Statements
This example illustrates two ways of operating on the same input variables and producing the same tabular
report. To simplify the example, no report enhancements are shown.

The manager of a hotel chain wants a report that shows the number of bookings at its hotels in each of
four cities, the total number of bookings in the current quarter, and the percentage of the total coming from
each location for each quarter of the year. Input observations contain the following variables: REPTDATE
(report date), LA (number of bookings in Los Angeles), ATL (number of bookings in Atlanta), CH (number of
bookings in Chicago), and NY (number of bookings in New York).

The following DATA step creates the SAS data set BOOKINGS:

title 'Using Programming Statements in PROC COMPUTAB';

data bookings;
input reptdate date9. la atl ch ny;

datalines;
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01JAN1989 100 110 120 130
01FEB1989 140 150 160 170
01MAR1989 180 190 200 210
01APR1989 220 230 240 250
01MAY1989 260 270 280 290
01JUN1989 300 310 320 330
01JUL1989 340 350 360 370
01AUG1989 380 390 400 410
01SEP1989 420 430 440 450
01OCT1989 460 470 480 490
01NOV1989 500 510 520 530
01DEC1989 540 550 560 570
;

The following PROC COMPUTAB statements select columns by setting _COL_ to an appropriate value. The
PCT1, PCT2, PCT3, and PCT4 columns represent the percentage contributed by each city to the total for the
quarter. These statements produce Output 10.1.1.

proc computab data=bookings cspace=1 cwidth=6;

columns qtr1 pct1 qtr2 pct2 qtr3 pct3 qtr4 pct4;
columns qtr1-qtr4 / format=6.;
columns pct1-pct4 / format=6.2;
rows la atl ch ny total;

/* column selection */
_col_ = qtr( reptdate ) * 2 - 1;

/* copy qtr column values temporarily into pct columns */
colcopy:

pct1 = qtr1;
pct2 = qtr2;
pct3 = qtr3;
pct4 = qtr4;

/* calculate total row for all columns */
/* calculate percentages for all rows in pct columns only */
rowcalc:

total = la + atl + ch + ny;
if mod( _col_, 2 ) = 0 then do;

la = la / total * 100;
atl = atl / total * 100;
ch = ch / total * 100;
ny = ny / total * 100;
total = 100;
end;

run;
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Output 10.1.1 Quarterly Report of Hotel Bookings

Using Programming Statements in PROC COMPUTAB

                 QTR1   PCT1   QTR2   PCT2   QTR3   PCT3   QTR4   PCT4          
                                                                                
         LA       420  22.58    780  23.64   1140  24.05   1500  24.27          
         ATL      450  24.19    810  24.55   1170  24.68   1530  24.76          
         CH       480  25.81    840  25.45   1200  25.32   1560  25.24          
         NY       510  27.42    870  26.36   1230  25.95   1590  25.73          
         TOTAL   1860 100.00   3300 100.00   4740 100.00   6180 100.00          

Using the same input data, the next set of statements shows the usefulness of arrays in allowing PROC
COMPUTAB to work in two directions at once. Arrays in larger programs can both reduce the amount of
program source code and simplify otherwise complex methods of referring to rows and columns. The same
report as in Output 10.1.1 is produced.

proc computab data=bookings cspace=1 cwidth=6;

columns qtr1 pct1 qtr2 pct2 qtr3 pct3 qtr4 pct4;
columns qtr1-qtr4 / format=6.;
columns pct1-pct4 / format=6.2;
rows la atl ch ny total;

array pct[4] pct1-pct4;
array qt[4] qtr1-qtr4;
array rowlist[5] la atl ch ny total;

/* column selection */
_col_ = qtr(reptdate) * 2 - 1;

/* copy qtr column values temporarily into pct columns */
colcopy:

do i = 1 to 4;
pct[i] = qt[i];
end;

/* calculate total row for all columns */
/* calculate percentages for all rows in pct columns only */

rowcalc:
total = la + atl + ch + ny;
if mod(_col_,2) = 0 then

do i = 1 to 5;
rowlist[i] = rowlist[i] / total * 100;

end;
run;
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Example 10.2: Enhancing a Report
This example shows how a report can be enhanced from a simple listing to a complex report. The simplest
COMPUTAB report is a transposed listing of the data in the SAS data set INCOMREP shown in Output 10.2.1.
To produce this output, nothing is specified except the PROC COMPUTAB statement and a TITLE statement.

title 'Enhancing a Report in PROC COMPUTAB';

data incomrep;
length type $ 8;
input type :$8. date :monyy7.

sales retdis tcos selling randd
general admin deprec other taxes;

format date monyy7.;
datalines;
BUDGET JAN1989 4600 300 2200 480 110 500 210 14 -8 510
BUDGET FEB1989 4700 330 2300 500 110 500 200 14 0 480
BUDGET MAR1989 4800 360 2600 500 120 600 250 15 2 520
ACTUAL JAN1989 4900 505 2100 430 130 410 200 14 -8 500
ACTUAL FEB1989 5100 480 2400 510 110 390 230 15 2 490
;

title 'Computab Report without Any Specifications';
proc computab data=incomrep;
run;

Output 10.2.1 Simple Report

Computab Report without Any Specifications

                      COL1       COL2       COL3       COL4       COL5          
                                                                                
        type        BUDGET     BUDGET     BUDGET     ACTUAL     ACTUAL          
        date       JAN1989    FEB1989    MAR1989    JAN1989    FEB1989          
        sales      4600.00    4700.00    4800.00    4900.00    5100.00          
        retdis      300.00     330.00     360.00     505.00     480.00          
        tcos       2200.00    2300.00    2600.00    2100.00    2400.00          
        selling     480.00     500.00     500.00     430.00     510.00          
        randd       110.00     110.00     120.00     130.00     110.00          
        general     500.00     500.00     600.00     410.00     390.00          
        admin       210.00     200.00     250.00     200.00     230.00          
        deprec       14.00      14.00      15.00      14.00      15.00          
        other        -8.00       0.00       2.00      -8.00       2.00          
        taxes       510.00     480.00     520.00     500.00     490.00          

To exclude the budgeted values from your report, select columns for ACTUAL observations only. To remove
unwanted variables, specify the variables you want in a ROWS statement.

title 'Column Selection by Month';

proc computab data=incomrep;
rows sales--other;
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columns jana feba mara;
mnth = month(date);
if type = 'ACTUAL';

jana = mnth = 1;
feba = mnth = 2;
mara = mnth = 3;

run;

The report is shown in Output 10.2.2.

Output 10.2.2 Report That Uses Column Selection Techniques

Column Selection by Month

                                 JANA       FEBA       MARA                     
                                                                                
                   sales      4900.00    5100.00       0.00                     
                   retdis      505.00     480.00       0.00                     
                   tcos       2100.00    2400.00       0.00                     
                   selling     430.00     510.00       0.00                     
                   randd       130.00     110.00       0.00                     
                   general     410.00     390.00       0.00                     
                   admin       200.00     230.00       0.00                     
                   deprec       14.00      15.00       0.00                     
                   other        -8.00       2.00       0.00                     

To complete the report, compute new rows from existing rows. This is done in a row block (although it
can also be done in the input block). Add a new column (QTR1) that accumulates all the actual data. The
NOZERO option suppresses the zero column for March. The output produced by these statements is shown
in Output 10.2.3.

title 'Completing the Report';

proc computab data=incomrep;

/* add a new column to be selected */
/* qtr1 column will be selected several times */
columns actual1-actual3 qtr1 / nozero;
array collist[3] actual1-actual3;
rows sales retdis netsales tcos grosspft selling randd general

admin deprec operexp operinc other taxblinc taxes netincom;

if type='ACTUAL';
i = month(date);
if i <= 3 then qtr1 = 1;
collist[i]=1;

rowcalc:
if sales = . then return;
netsales = sales - retdis;
grosspft = netsales - tcos;
operexp = selling + randd + general + admin + deprec;
operinc = grosspft - operexp;
taxblinc = operinc + other;
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netincom = taxblinc - taxes;
run;

Output 10.2.3 Report That Uses Techniques to Compute New Rows

Completing the Report

                               ACTUAL1    ACTUAL2       QTR1                    
                                                                                
                   SALES       4900.00    5100.00   10000.00                    
                   RETDIS       505.00     480.00     985.00                    
                   NETSALES    4395.00    4620.00    9015.00                    
                   TCOS        2100.00    2400.00    4500.00                    
                   GROSSPFT    2295.00    2220.00    4515.00                    
                   SELLING      430.00     510.00     940.00                    
                   RANDD        130.00     110.00     240.00                    
                   GENERAL      410.00     390.00     800.00                    
                   ADMIN        200.00     230.00     430.00                    
                   DEPREC        14.00      15.00      29.00                    
                   OPEREXP     1184.00    1255.00    2439.00                    
                   OPERINC     1111.00     965.00    2076.00                    
                   OTHER         -8.00       2.00      -6.00                    
                   TAXBLINC    1103.00     967.00    2070.00                    
                   TAXES        500.00     490.00     990.00                    
                   NETINCOM     603.00     477.00    1080.00                    

Now that you have all the numbers calculated, add specifications to improve the report’s appearance. Specify
titles, row and column labels, and formats. The report produced by these statements is shown in Output 10.2.4.

/* now get the report to look the way you want it */
title 'Pro Forma Income Statement';
title2 'XYZ Computer Services, Inc.';
title3 'Period to Date Actual';
title4 'Amounts in Thousands';

proc computab data=incomrep;

columns actual1-actual3 qtr1 /
nozero f=comma7. +3 ' ';

array collist[3] actual1-actual3;
columns actual1 / 'Jan';
columns actual2 / 'Feb';
columns actual3 / 'Mar';
columns qtr1 / 'Total' 'Qtr 1';
rows sales / ' '

'Gross Sales ';
rows retdis / 'Less Returns & Discounts';
rows netsales / 'Net Sales' +3 ol;
rows tcos / ' '

'Total Cost of Sales';
rows grosspft / ' '

'Gross Profit';
rows selling / ' '

'Operating Expenses:'
' Selling';
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rows randd / ' R & D';
rows general / +3;
rows admin / ' Administrative';
rows deprec / ' Depreciation' ul;
rows operexp / ' ' skip;
rows operinc / 'Operating Income';
rows other / 'Other Income/-Expense' ul;
rows taxblinc / 'Taxable Income';
rows taxes / 'Income Taxes' ul;
rows netincom / ' Net Income' dul;

if type = 'ACTUAL';
i = month( date );
collist[i] = 1;

colcalc:
qtr1 = actual1 + actual2 + actual3;

rowcalc:
if sales = . then return;
netsales = sales - retdis;
grosspft = netsales - tcos;
operexp = selling + randd + general + admin + deprec;
operinc = grosspft - operexp;
taxblinc = operinc + other;
netincom = taxblinc - taxes;

run;
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Output 10.2.4 Specifying Titles, Row and Column Labels, and Formats

Pro Forma Income Statement
XYZ Computer Services, Inc.

Period to Date Actual
Amounts in Thousands

                                                                                
                                                                Total           
                                          Jan         Feb       Qtr 1           
                                                                                
         Gross Sales                    4,900       5,100      10,000           
         Less Returns & Discounts         505         480         985           
                                    ---------   ---------   ---------           
            Net Sales                   4,395       4,620       9,015           
                                                                                
         Total Cost of Sales            2,100       2,400       4,500           
                                                                                
         Gross Profit                   2,295       2,220       4,515           
                                                                                
         Operating Expenses:                                                    
            Selling                       430         510         940           
            R & D                         130         110         240           
            GENERAL                       410         390         800           
            Administrative                200         230         430           
            Depreciation                   14          15          29           
                                    ---------   ---------   ---------           
                                        1,184       1,255       2,439           
                                                                                
         Operating Income               1,111         965       2,076           
         Other Income/-Expense             -8           2          -6           
                                    ---------   ---------   ---------           
         Taxable Income                 1,103         967       2,070           
         Income Taxes                     500         490         990           
                                    ---------   ---------   ---------           
            Net Income                    603         477       1,080           
                                    =========   =========   =========           

Example 10.3: Comparison of Actual and Budget
This example shows a more complex report that compares the actual data with the budgeted values. The same
input data as in the previous example is used.

The report produced by these statements is shown in Output 10.3.1. The report shows the values for the current
month and the year-to-date totals for budgeted amounts, actual amounts, and the actuals as a percentage of
the budgeted amounts. The data have the values for January and February. Therefore, the CURMO variable
(current month) in the RETAIN statement is set to 2. The values for the observations where the month of the
year is 2 (February) are accumulated for the current month values. The year-to-date values are accumulated
from those observations where the month of the year is less than or equal to 2 (January and February).
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title 'Comparison of Actual Data and Budgeted Values in PROC COMPUTAB';

data incomrep;
length type $ 8;
input type :$8. date :monyy7.

sales retdis tcos selling randd
general admin deprec other taxes;

format date monyy7.;
datalines;
BUDGET JAN1989 4600 300 2200 480 110 500 210 14 -8 510
BUDGET FEB1989 4700 330 2300 500 110 500 200 14 0 480
BUDGET MAR1989 4800 360 2600 500 120 600 250 15 2 520
ACTUAL JAN1989 4900 505 2100 430 130 410 200 14 -8 500
ACTUAL FEB1989 5100 480 2400 510 110 390 230 15 2 490
;

title 'Pro Forma Income Statement';
title2 'XYZ Computer Services, Inc.';
title3 'Budget Analysis';
title4 'Amounts in Thousands';

options linesize=96;
proc computab data=incomrep;

columns cmbud cmact cmpct ytdbud ytdact ytdpct /
zero=' ';

columns cmbud--cmpct / mtitle='- Current Month: February -';
columns ytdbud--ytdpct / mtitle='- Year To Date -';
columns cmbud ytdbud / 'Budget' f=comma6.;
columns cmact ytdact / 'Actual' f=comma6.;
columns cmpct ytdpct / '% ' f=7.2;
columns cmbud--ytdpct / '-';
columns ytdbud / _titles_;
retain curmo 2; /* current month: February */
rows sales / ' '

'Gross Sales';
rows retdis / 'Less Returns & Discounts';
rows netsales / 'Net Sales' +3 ol;
rows tcos / ' '

'Total Cost of Sales';
rows grosspft / ' '

'Gross Profit' +3;
rows selling / ' '

'Operating Expenses:'
' Selling';

rows randd / ' R & D';
rows general / +3;
rows admin / ' Administrative';
rows deprec / ' Depreciation' ul;
rows operexp / ' ';
rows operinc / 'Operating Income' ol;
rows other / 'Other Income/-Expense' ul;
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rows taxblinc / 'Taxable Income';
rows taxes / 'Income Taxes' ul;
rows netincom / ' Net Income' dul;

cmbud = type = 'BUDGET' & month(date) = curmo;
cmact = type = 'ACTUAL' & month(date) = curmo;
ytdbud = type = 'BUDGET' & month(date) <= curmo;
ytdact = type = 'ACTUAL' & month(date) <= curmo;

rowcalc:
if cmpct | ytdpct then return;
netsales = sales - retdis;
grosspft = netsales - tcos;
operexp = selling + randd + general + admin + deprec;
operinc = grosspft - operexp;
taxblinc = operinc + other;
netincom = taxblinc - taxes;

colpct:
if cmbud & cmact then cmpct = 100 * cmact / cmbud;
if ytdbud & ytdact then ytdpct = 100 * ytdact / ytdbud;

run;
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Output 10.3.1 Report That Uses Specifications to Tailor Output

Pro Forma Income Statement
XYZ Computer Services, Inc.

Budget Analysis
Amounts in Thousands

   --- Current Month: February ---                            -------- Year To Date ---------   
      Budget     Actual        %                                 Budget     Actual        %     
   ---------  ---------  ---------                            ---------  ---------  ---------   
                                                                                                
       4,700      5,100     108.51  Gross Sales                   9,300     10,000     107.53   
         330        480     145.45  Less Returns & Discounts        630        985     156.35   
   ---------  ---------  ---------                            ---------  ---------  ---------   
       4,370      4,620     105.72     Net Sales                  8,670      9,015     103.98   
                                                                                                
       2,300      2,400     104.35  Total Cost of Sales           4,500      4,500     100.00   
                                                                                                
       2,070      2,220     107.25     Gross Profit               4,170      4,515     108.27   
                                                                                                
                                    Operating Expenses:                                         
         500        510     102.00     Selling                      980        940      95.92   
         110        110     100.00     R & D                        220        240     109.09   
         500        390      78.00     GENERAL                    1,000        800      80.00   
         200        230     115.00     Administrative               410        430     104.88   
          14         15     107.14     Depreciation                  28         29     103.57   
   ---------  ---------  ---------                            ---------  ---------  ---------   
       1,324      1,255      94.79                                2,638      2,439      92.46   
   ---------  ---------  ---------                            ---------  ---------  ---------   
         746        965     129.36  Operating Income              1,532      2,076     135.51   
                      2             Other Income/-Expense            -8         -6      75.00   
   ---------  ---------  ---------                            ---------  ---------  ---------   
         746        967     129.62  Taxable Income                1,524      2,070     135.83   
         480        490     102.08  Income Taxes                    990        990     100.00   
   ---------  ---------  ---------                            ---------  ---------  ---------   
         266        477     179.32     Net Income                   534      1,080     202.25   
   =========  =========  =========                            =========  =========  =========   

Example 10.4: Consolidations
This example consolidates product tables by region and region tables by corporate division. Output 10.4.1
shows the North Central and Northeast regional summaries for the Equipment division for the first quarter.
Output 10.4.2 shows the profit summary for the Equipment division. Similar tables for the Publishing division
are produced but not shown here.

title 'Consolidations in PROC COMPUTAB';

data product;
input pcode div region month sold revenue recd cost;

datalines;
1 1 1 1 56 5600 29 2465
1 1 1 2 13 1300 30 2550
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1 1 1 3 17 1700 65 5525

... more lines ...

proc format;
value divfmt 1='Equipment'

2='Publishing';
value regfmt 1='North Central'

2='Northeast'
3='South'
4='West';

run;

proc sort data=product;
by div region pcode;

run;

title1 ' XYZ Development Corporation ';
title2 ' Corporate Headquarters: New York, NY ';
title3 ' Profit Summary ';
title4 ' ';

options linesize=96;
proc computab data=product sumonly;

by div region pcode;
sumby _total_ div region;

format div divfmt.;
format region regfmt.;
label div = 'DIVISION';

/* specify order of columns and column titles */
columns jan feb mar qtr1 /

mtitle='- first quarter -' ' ' nozero;
columns apr may jun qtr2 /

mtitle='- second quarter -' ' ' nozero;
columns jul aug sep qtr3 /

mtitle='- third quarter -' ' ' nozero;
columns oct nov dec qtr4 /

mtitle='- fourth quarter -' ' ' nozero;
column jan / ' ' 'January' '=';
column feb / ' ' 'February' '=';
column mar / ' ' 'March' '=';
column qtr1 / 'Quarter' 'Summary' '=';

column apr / ' ' 'April' '=' _page_;
column may / ' ' 'May' '=';
column jun / ' ' 'June' '=';
column qtr2 / 'Quarter' 'Summary' '=';

column jul / ' ' 'July' '=' _page_;
column aug / ' ' 'August' '=';
column sep / ' ' 'September' '=';
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column qtr3 / 'Quarter' 'Summary' '=';

column oct / ' ' 'October' '=' _page_;
column nov / ' ' 'November' '=';
column dec / ' ' 'December' '=';
column qtr4 / 'Quarter' 'Summary' '=';

/* specify order of rows and row titles */
row sold / ' ' 'Number Sold' f=8.;
row revenue / ' ' 'Sales Revenue';
row recd / ' ' 'Number Received' f=8.;
row cost / ' ' 'Cost of' 'Items Received';
row profit / ' ' 'Profit' 'Within Period' ol;
row pctmarg / ' ' 'Profit Margin' dul;

/* select column for appropriate month */
_col_ = month + ceil( month / 3 ) - 1;

/* calculate quarterly summary columns */
colcalc:

qtr1 = jan + feb + mar;
qtr2 = apr + may + jun;
qtr3 = jul + aug + sep;
qtr4 = oct + nov + dec;

/* calculate profit rows */
rowcalc:

profit = revenue - cost;
if cost > 0 then pctmarg = profit / cost * 100;

run;
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Output 10.4.1 Summary by Regions for the Equipment Division

XYZ Development Corporation
Corporate Headquarters: New York, NY

Profit Summary

DIVISION=Equipment region=Northeast pcode=1

--------------------SUMMARY TABLE:  DIVISION=Equipment region=North Central-------------------- 
                                                                                                
                                   ------------- first quarter --------------                   
                                                                                                
                                                                      Quarter                   
                                     January   February      March    Summary                   
                                   =========  =========  =========  =========                   
                                                                                                
                  Number Sold            198        223        119        540                   
                                                                                                
                  Sales Revenue     22090.00   26830.00   14020.00   62940.00                   
                                                                                                
                  Number Received        255        217        210        682                   
                                                                                                
                  Cost of                                                                       
                  Items Received    24368.00   20104.00   19405.00   63877.00                   
                                   ---------  ---------  ---------  ---------                   
                                                                                                
                  Profit                                                                        
                  Within Period     -2278.00    6726.00   -5385.00    -937.00                   
                                                                                                
                  Profit Margin        -9.35      33.46     -27.75      -1.47                   
                                   =========  =========  =========  =========                   
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Output 10.4.1 continued

XYZ Development Corporation
Corporate Headquarters: New York, NY

Profit Summary

DIVISION=Publishing region=North Central pcode=4

----------------------SUMMARY TABLE:  DIVISION=Equipment region=Northeast---------------------- 
                                                                                                
                                   ------------- first quarter --------------                   
                                                                                                
                                                                      Quarter                   
                                     January   February      March    Summary                   
                                   =========  =========  =========  =========                   
                                                                                                
                  Number Sold             82        180        183        445                   
                                                                                                
                  Sales Revenue      9860.00   21330.00   21060.00   52250.00                   
                                                                                                
                  Number Received        162         67        124        353                   
                                                                                                
                  Cost of                                                                       
                  Items Received    16374.00    6325.00   12333.00   35032.00                   
                                   ---------  ---------  ---------  ---------                   
                                                                                                
                  Profit                                                                        
                  Within Period     -6514.00   15005.00    8727.00   17218.00                   
                                                                                                
                  Profit Margin       -39.78     237.23      70.76      49.15                   
                                   =========  =========  =========  =========                   
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Output 10.4.2 Profit Summary for the Equipment Division

XYZ Development Corporation
Corporate Headquarters: New York, NY

Profit Summary

DIVISION=Publishing region=North Central pcode=4

-------------------------------SUMMARY TABLE:  DIVISION=Equipment------------------------------ 
                                                                                                
                                   ------------- first quarter --------------                   
                                                                                                
                                                                      Quarter                   
                                     January   February      March    Summary                   
                                   =========  =========  =========  =========                   
                                                                                                
                  Number Sold            280        403        302        985                   
                                                                                                
                  Sales Revenue     31950.00   48160.00   35080.00  115190.00                   
                                                                                                
                  Number Received        417        284        334       1035                   
                                                                                                
                  Cost of                                                                       
                  Items Received    40742.00   26429.00   31738.00   98909.00                   
                                   ---------  ---------  ---------  ---------                   
                                                                                                
                  Profit                                                                        
                  Within Period     -8792.00   21731.00    3342.00   16281.00                   
                                                                                                
                  Profit Margin       -21.58      82.22      10.53      16.46                   
                                   =========  =========  =========  =========                   

Output 10.4.3 shows the consolidation report of profit summary over both divisions and regions.
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Output 10.4.3 Profit Summary

XYZ Development Corporation
Corporate Headquarters: New York, NY

Profit Summary

-------------------------------------SUMMARY TABLE:  TOTALS------------------------------------ 
                                                                                                
                                   ------------- first quarter --------------                   
                                                                                                
                                                                      Quarter                   
                                     January   February      March    Summary                   
                                   =========  =========  =========  =========                   
                                                                                                
                  Number Sold            590        683        627       1900                   
                                                                                                
                  Sales Revenue     41790.00   55910.00   44800.00  142500.00                   
                                                                                                
                  Number Received        656        673        734       2063                   
                                                                                                
                  Cost of                                                                       
                  Items Received    46360.00   35359.00   40124.00  121843.00                   
                                   ---------  ---------  ---------  ---------                   
                                                                                                
                  Profit                                                                        
                  Within Period     -4570.00   20551.00    4676.00   20657.00                   
                                                                                                
                  Profit Margin        -9.86      58.12      11.65      16.95                   
                                   =========  =========  =========  =========                   

Example 10.5: Creating an Output Data Set
This example uses data and reports similar to those in Example 10.3 to illustrate the creation of an output
data set.

title 'Creating an Output Data Set in PROC COMPUTAB';

data product;
input pcode div region month sold revenue recd cost;

datalines;
1 1 1 1 56 5600 29 2465
1 1 1 2 13 1300 30 2550
1 1 1 3 17 1700 65 5525

... more lines ...

proc sort data=product out=sorted;
by div region;

run;
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/* create data set, profit */
proc computab data=sorted notrans out=profit noprint;

by div region;
sumby div;

/* specify order of rows and row titles */
row jan feb mar qtr1;
row apr may jun qtr2;
row jul aug sep qtr3;
row oct nov dec qtr4;

/* specify order of columns and column titles */
columns sold revenue recd cost profit pctmarg;

/* select row for appropriate month */
_row_ = month + ceil( month / 3 ) - 1;

/* calculate quarterly summary rows */
rowcalc:

qtr1 = jan + feb + mar;
qtr2 = apr + may + jun;
qtr3 = jul + aug + sep;
qtr4 = oct + nov + dec;

/* calculate profit columns */
colcalc:

profit = revenue - cost;
if cost > 0 then pctmarg = profit / cost * 100;

run;

/* make a partial listing of the output data set */
options linesize=96;
proc print data=profit(obs=10) noobs;
run;

Because the NOTRANS option is specified, column names become variables in the data set. REGION has
missing values in the output data set for observations associated with consolidation tables. The output data
set PROFIT, in conjunction with the option NOPRINT, illustrates how you can use the computational features
of PROC COMPUTAB for creating additional rows and columns as in a spreadsheet without producing a
report. Output 10.5.1 shows a partial listing of the output data set PROFIT.
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Output 10.5.1 Partial Listing of the PROFIT Data Set

Creating an Output Data Set in PROC COMPUTAB

div region _TYPE_ _NAME_ sold revenue recd cost PROFIT PCTMARG

1 1 1 JAN 198 22090 255 24368 -2278 -9.348

1 1 1 FEB 223 26830 217 20104 6726 33.456

1 1 1 MAR 119 14020 210 19405 -5385 -27.751

1 1 1 QTR1 540 62940 682 63877 -937 -1.467

1 1 1 APR 82 9860 162 16374 -6514 -39.783

1 1 1 MAY 180 21330 67 6325 15005 237.233

1 1 1 JUN 183 21060 124 12333 8727 70.761

1 1 1 QTR2 445 52250 353 35032 17218 49.149

1 1 1 JUL 194 23210 99 10310 12900 125.121

1 1 1 AUG 153 17890 164 16704 1186 7.100

Example 10.6: Cash Flows
The COMPUTAB procedure can be used to model cash flows from one time period to the next. The
RETAIN statement is useful for enabling a row or column to contribute one of its values to its successor.
Financial functions such as IRR (internal rate of return) and NPV (net present value) can be used on PROC
COMPUTAB table values to provide a more comprehensive report. The following statements produce
Output 10.6.1:

title 'Modeling Cash Flows in PROC COMPUTAB';

data cashflow;
input date date9. netinc depr borrow invest tax div adv ;

datalines;
30MAR1982 65 42 32 126 43 51 41
30JUN1982 68 47 32 144 45 54 46
30SEP1982 70 49 30 148 46 55 47
30DEC1982 73 49 30 148 48 55 47
;

title1 'Blue Sky Endeavors';
title2 'Financial Summary';
title4 '(Dollar Figures in Thousands)';

proc computab data=cashflow;

cols qtr1 qtr2 qtr3 qtr4 / 'Quarter' f=7.1;
col qtr1 / 'One';
col qtr2 / 'Two';
col qtr3 / 'Three';
col qtr4 / 'Four';
row begcash / 'Beginning Cash';
row netinc / 'Income' ' Net income';
row depr / 'Depreciation';
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row borrow;
row subtot1 / 'Subtotal';
row invest / 'Expenditures' ' Investment';
row tax / 'Taxes';
row div / 'Dividend';
row adv / 'Advertising';
row subtot2 / 'Subtotal';
row cashflow/ skip;
row irret / 'Internal Rate' 'of Return' zero=' ';
rows depr borrow subtot1 tax div adv subtot2 / +3;

retain cashin -5;
_col_ = qtr( date );

rowblock:
subtot1 = netinc + depr + borrow;
subtot2 = tax + div + adv;
begcash = cashin;
cashflow = begcash + subtot1 - subtot2;
irret = cashflow;
cashin = cashflow;

colblock:
if begcash then cashin = qtr1;
if irret then do;

temp = irr( 4, cashin, qtr1, qtr2, qtr3, qtr4 );
qtr1 = temp;
qtr2 = 0; qtr3 = 0; qtr4 = 0;
end;

run;

Output 10.6.1 Report That Uses a RETAIN Statement and the IRR Financial Function

Blue Sky Endeavors
Financial Summary

(Dollar Figures in Thousands)

                                     Quarter    Quarter    Quarter    Quarter                   
                                         One        Two      Three       Four                   
                  Beginning Cash        -5.0       -1.0        1.0        2.0                   
                  Income                                                                        
                     Net income         65.0       68.0       70.0       73.0                   
                     Depreciation       42.0       47.0       49.0       49.0                   
                     BORROW             32.0       32.0       30.0       30.0                   
                     Subtotal          139.0      147.0      149.0      152.0                   
                  Expenditures                                                                  
                     Investment        126.0      144.0      148.0      148.0                   
                     Taxes              43.0       45.0       46.0       48.0                   
                     Dividend           51.0       54.0       55.0       55.0                   
                     Advertising        41.0       46.0       47.0       47.0                   
                     Subtotal          135.0      145.0      148.0      150.0                   
                  CASHFLOW              -1.0        1.0        2.0        4.0                   
                                                                                                
                  Internal Rate                                                                 
                  of Return             20.9                                                    
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Overview: COPULA Procedure
A multivariate distribution for a random vector contains a description of both the marginal distributions
and their dependence structure. A copula approach to formulating a multivariate distribution provides a
way to isolate the description of the dependence structure from the marginal distributions. A copula is a
function that combines marginal distributions of variables into a specific multivariate distribution. All of the
one-dimensional marginals in the multivariate distribution are the cumulative distribution functions of the
factors. Copulas help perform large-scale multivariate simulation from separate models, each of which can
be fitted using different, even nonnormal, distributional specifications.

The COPULA procedure enables you to fit multivariate distributions or copulas from a given sample data set.
You can do the following:

� estimate the parameters for a specified copula type

� simulate a given copula

� plot dependent relationships among the variables

The following types of copulas are supported:

� normal copula

� t copula

� Clayton copula

� Gumbel copula

� Frank copula
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Getting Started: COPULA Procedure
The following example illustrates the use of PROC COPULA. The data used are daily returns on several
major stocks. The main purpose of this example is to estimate the joint distribution of stock returns and then
simulate from this distribution a new sample of specified size.

Figure 11.1 shows the first 10 observations of the daily stock return data set.

Figure 11.1 First 10 Observations of Daily Returns

Obs date ret_msft ret_ko ret_ibm ret_duk ret_bp

1 01/03/2008 0.004182 0.010367 0.002002 0.003503 0.019114

2 01/04/2008 -0.027960 0.001913 -0.035861 -0.000582 -0.014536

3 01/07/2008 0.006732 0.023607 -0.010671 0.025611 0.017922

4 01/08/2008 -0.033435 0.004239 -0.024610 -0.002838 -0.016049

5 01/09/2008 0.029560 0.026680 0.007301 0.010814 -0.027078

6 01/10/2008 -0.003054 0.004441 0.016414 -0.001689 -0.004395

7 01/11/2008 -0.012255 -0.027346 -0.022546 -0.012408 -0.018473

8 01/14/2008 0.013958 0.008418 0.053857 0.003427 0.001166

9 01/15/2008 -0.011318 -0.010851 -0.010689 -0.017075 -0.040925

10 01/16/2008 -0.022587 -0.015021 -0.001955 0.002316 -0.021336

The following statements fit a normal copula to the returns data (with the FIT statement) and create a new
SAS data set that contains parameter estimates of the model. The VAR statement specifies the list of variables,
which in this case are the daily returns of five large company stocks.

/* Copula estimation */
proc copula data = returns;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
fit normal / outcopula=estimates;

run;

The first table in Figure 11.2 shows some general information about the copula fitting procedure: the number
of observations, the name of the input data set, the type of model, and the correlation matrix.

Figure 11.2 Copula Estimation: Fit Summary and Correlation Matrix

The COPULA Procedure

Model Fit Summary

Number of Observations 603

Data Set WORK.RETURNS

Copula Type Normal

Correlations Matrix

ret_ibm ret_msft ret_bp ret_ko ret_duk

ret_ibm 1.0000 0.6232 0.5294 0.4725 0.4902

ret_msft 0.6232 1.0000 0.5229 0.5015 0.4567

ret_bp 0.5294 0.5229 1.0000 0.3980 0.4378

ret_ko 0.4725 0.5015 0.3980 1.0000 0.5283

ret_duk 0.4902 0.4567 0.4378 0.5283 1.0000
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Next, the following statements restrict the data set to only those columns that contain correlation parameter
estimates:

/* keep only correlation estimates */
data estimates;

set estimates;
keep ret_ibm ret_msft ret_bp ret_ko ret_duk;

run;

Then, in the following statements, the DEFINE statement specifies a normal copula named COP, and the
CORR= option specifies that the data set Estimates be used as the source for the model parameters. The
NDRAWS=500 option in the SIMULATE statement generates 500 observations from the normal copula. The
OUTUNIFORM= option specifies the name of SAS data set to contain the simulated sample with uniform
marginal distributions. Note that this syntax does not require the DATA= option.

/* Copula simulation of uniforms */
proc copula;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
define cop normal (corr = estimates);
simulate cop / ndraws = 500

seed = 1234
outuniform = simulated_uniforms
plots=(datatype=uniform);

run;

The simulated data are contained in the new SAS data set, Simulated_Uniforms. A scatter plot matrix of
uniform marginals contained in the data set is shown in Output 11.3.
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Figure 11.3 Simulated Data, Uniform Marginals

The preceding sequence of PROC COPULA usage—first fit, then simulate given estimated parameters—is
a legitimate sequence but has a limitation in that the second COPULA call does not generate the sample
according to the empirical distribution of the raw data. It generates only marginally uniform series.

In the following statements, the FIT statement fits a t copula to the returns data and at the same time simulates
the sample according to empirical marginal distributions:
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/* Copula estimation and simulation of returns */
proc copula data = returns;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
fit T;
simulate / ndraws = 1000

seed = 1234
out = simulated_returns;

run;

The output of the statements is similar in structure to the output displayed in Figure 11.2 with the addition of
parameter estimates and inference statistics that are specific to the copula model as shown in Figure 11.4. For
a t copula, the degrees of freedom are displayed (as in Figure 11.4); for Archimedean copulas, the parameter
“theta” is displayed; and for a normal copula, this table is not printed.

Figure 11.4 Copula Estimation: Specific Parameter Estimates

The COPULA Procedure

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

DF 3.659299 0.320583 11.41 <.0001

The simulated data are contained in the new SAS data set, Simulated_Returns.

Syntax: COPULA Procedure
The COPULA procedure is controlled by the following statements:

PROC COPULA < DATA=SAS-data-set > ;
VAR variables ;
DEFINE name copula-type < ( parameter-value-options . . . ) > ;
FIT type < NAME=name > < INIT=(parameter-value-options) > / options ;
BOUNDS bound1 < , bound2 . . . > ;
SIMULATE < copula-name-list > / options ;
BY variables ;
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Functional Summary
Table 11.1 summarizes the statements and options used with the COPULA procedure.

Table 11.1 PROC COPULA Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set COPULA DATA=
Specifies the input data set that contains the
correlation matrix for elliptical copulas

DEFINE CORR=

Specifies the input data set that contains the
correlation matrix defined in Kendall’s tau for
elliptical copulas

DEFINE KENDALL=

Specifies the input data set that contains the
correlation matrix defined in Spearman’s rho for
elliptical copulas

DEFINE SPEARMAN=

Specifies the degrees of freedom for t copulas DEFINE DF=
Specifies the parameter value for Archimedean
copulas

DEFINE THETA=

Specifies the hierarchy for hierarchical
Archimedean copulas

DEFINE HIERARCHY=

Declaring the Role of Variables
Specifies the names of the variables to use in copula
fitting or in simulation

VAR

Specifies BY-group processing BY

Plotting Options
Prints a summary iteration listing FIT ITPRINT
Suppresses the normal printed output FIT NOPRINT
Requests all printing options FIT PRINTALL
Suppresses the correlation matrix printed output FIT NOCORR

Printing Control Options
Displays plots for fitted copulas FIT PLOTS=
Displays plots for simulated copulas SIMULATE PLOTS=

Optimization Process Control Options
Sets boundary restrictions on parameters BOUNDS
Selects the iterative minimization method to use FIT METHOD=
Sets initial values for parameters FIT INIT=

Copula Estimation Options
Specifies the marginal distribution of the individual
variables

FIT MARGINALS=
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Table 11.1 continued

Description Statement Option

Copula Simulation Options
Specifies the marginal distribution of the simulated
variables

SIMULATE MARGINALS=

Specifies the random sample size SIMULATE NDRAWS=
Specifies the random number generator seed SIMULATE SEED=

Output Control Options
Specifies the output data set to contain the fitted
copula values

FIT OUTCOPULA=

Specifies the output data set to contain
pseudo-samples with the uniform marginal
distribution

FIT OUTPSEUDO=

Specifies the output data set to contain the random
samples from the simulation

SIMULATE OUT=

Specifies the output data set to contain the random
samples from the simulation with uniform marginal
distribution

SIMULATE OUTUNIFORM=

PROC COPULA Statement
PROC COPULA < DATA=SAS-data-set > ;

The PROC COPULA statement has the following option:

DATA= < libref. >SAS-data-set
specifies the input data set used to estimate parameters for the FIT statement. When the procedure is
used for simulation only, the input data set is not required to run the procedure. If you do not specify
libref, then the Work library is used. Work is the default temporary library that is automatically defined
by SAS at the beginning of each SAS session or job.



BOUNDS Statement F 521

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement specifies the lower and upper bounds for the parameters. You can use this statement
only when maximum likelihood estimation is used for the specified copula. Each bound is composed of
parameters, constants, and inequality operators in the following format:

item operator item < operator item operator item . . . >

Each item is a constant, parameter, or list of parameters. Parameters associated with a regressor variable
are referred to by the name of the corresponding regressor variable. Each operator is <, >, <=, or >=. The
following example indicates that the lower and upper bounds for the parameter THETA are –5 and 10,
respectively:

bounds -5 < THETA < 10;

If you do not specify bounds, the internal default values are used; the default values are described in the
section “Details: COPULA Procedure” on page 528. For the normal and t copulas, the correlation matrix
uses only the default parameter bounds, which are –1 and 1 for lower bound and upper bound, respectively.

BY Statement
BY variables ;

The BY statement specifies groups in which separate FIT analyses for copula are performed. The variables
must be present in the input data set and are excluded from the model fitting. The BY statement requires the
VAR statement to be present.

A SIMULATE statement can also be used with a BY statement, provided that a FIT statement precedes
the SIMULATE statement. Multiple FIT and SIMULATE statements can be used with a BY statement.
If a FIT statement and a SIMULATE statement both specify the same name, then the fitting results of
the FIT statement with that name are used to initialize the simulation of the same name. If no names are
specified in a sequence of FIT and SIMULATE statements, then the simulation requested by a particular
SIMULATE statement is initialized using the fitting results from the FIT statement that immediately precedes
the SIMULATE statement.

DEFINE Statement
DEFINE name copula-type < ( parameter-value-options . . . ) > ;

The DEFINE statement specifies the relevant information of copula used for the simulation.

name specifies the name of the copula definition, which can be used later in the SIMULATE
statement.

copula-type specifies one of the following types of copula:
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CLAYTON specifies the Clayton copula.

FRANK specifies the Frank copula.

GUMBEL specifies the Gumbel copula.

HACCLAYTON specifies the hierarchical Clayton copula.

HACFRANK specifies the hierarchical Frank copula.

HACGUMBEL specifies the hierarchical Gumbel copula.

NORMAL specifies the normal copula.

T specifies the t copula.

These copula models are also described in the section “Details: COPULA Procedure” on
page 528.

parameter-value-options
specify the input parameters used to simulate the specified copula. These options must be
appropriate for the type of copula specified. You can specify the following options:

CORR=SAS-data-set
specifies the data set that contains the correlation matrix to use for elliptical copulas.
If the correlation matrix is valid but its elements are not submitted in order, then
you must provide the variable names in the first column of the matrix, and these
names must match the variable names in the VAR statement. For an example of a
correlation matrix input in this form, see Output 11.2.1. If the correlation matrix
elements are submitted in order, the first column of variable names is not required.
You can use this option for normal and t copulas.

DF=value
specifies the degrees of freedom. You can use this option for t copulas.

HIERARCHY=(name=(HAC-specification )(THETA=value )) (Experimental )
specifies the hierarchy for hierarchical Archimedean copulas. The argument usually
consists of multiple specification lines, where each line specifies one copula in the
hierarchy. The name can be user-defined symbols, with the exception of the copula
at the top of the hierarchy, which must be named ROOT. The HAC-specification is a
list of symbols that can be either defined copula names or variable names from the
VAR statement, depending on whether the element of the copula is a variable or an
inner copula in the hierarchy. For example, you can use the following code to define
a hierarchical Archimedean copula, with the hierarchy shown in Figure 11.5:

var u1-u4;
define cop hacclayton hierarchy=(
root = (c1 c2)(theta=1)
c1 = (u1 u2)(theta=3)
c2 = (u3 u4)(theta=5));

Note that as long as the specification is valid, the order of the specification lines
does not matter. In the previous example, you could first list c1 and c2, and then
define root .
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KENDALL=SAS-data-set
specifies the data set that contains the correlation matrix defined in Kendall’s tau. If
the correlation matrix is valid but its elements are not submitted in order, then you
must provide the variable names in the first column of the matrix, and these names
must match the variable names in the VAR statement. If the correlation matrix
elements are submitted in order, the first column of variable names is not required.
You can use this option for normal and t copulas.

SPEARMAN=SAS-data-set
specifies the data set that contains the correlation matrix defined in Spearman’s rho.
If the correlation matrix is valid but its elements are not submitted in order, then you
must provide the variable names in the first column of the matrix, and these names
must match the variable names in the VAR statement. If the correlation matrix
elements are submitted in order, the first column of variable names is not required.
You can use this option for normal copulas.

THETA=value
specifies the parameter value for Archimedean copulas.

The DEFINE statement is used with the SIMULATE statement. The FIT statement can also be used with
the SIMULATE statement. The results of the FIT statement can be the input of the SIMULATE statement.
Therefore, the SIMULATE statement can follow the FIT statement. If there is no FIT statement, then the
DEFINE statement must precede the SIMULATE statement. However, you cannot use both the FIT and
DEFINE statements in the same procedure.

FIT Statement
FIT type < NAME=name >< INIT=(parameter-value-options) > /options ;

The FIT statement estimates the parameters for a specified copula type.

type
specifies the type of the copula to be estimated, which is one of the following:

CLAYTON fits the Clayton copula.

FRANK fits the Frank copula.

GUMBEL fits the Gumbel copula.

NORMAL fits the normal copula.

T fits the t copula.

INIT=(parameter-value-options)
provides the initial values for the numerical optimization.

[parameter-value-options]
specify the input parameters that are used to initialize the specified copula. These options must be
appropriate for the type of copula that you specify. You can specify the following options:
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CORR=SAS-data-set
specifies the data set that contains the Pearson correlation matrix to use for elliptical copulas. If
the correlation matrix is valid but its elements are not submitted in order, then you must provide
the variable names in the first column of the matrix, and these names must match the variable
names in the VAR statement. For an example of a correlation matrix input in this form, see
Output 11.2.1. If the correlation matrix elements are submitted in order, the first column of
variable names is not required. You can use this option for t copulas.

DF=value
specifies the degrees of freedom. You can use this option for t copulas.

KENDALL=SAS-data-set
specifies the data set that contains the correlation matrix defined in Kendall’s tau. If the correlation
matrix is valid but its elements are not submitted in order, then you must provide the variable
names in the first column of the matrix, and these names must match the variable names in the
VAR statement. If the correlation matrix elements are submitted in order, the first column of
variable names is not required. You can use this option for t copulas.

THETA=value
specifies the parameter value for Archimedean copulas.

For Archimedean copulas, the default initial values of the parameter are computed using the calibration
method. The default initial value for the degrees-of-freedom parameter in the t copula is set to 2.0. The
following statement shows an initialization for Student’s t copula, where the Kendall’s tau correlation
matrix is stored in the corrmat data set and the DF is set to 2.5:

fit t init=(df=2.5 kendall=corrmat);

NAME=name
specifies an identifier for the fit, which is stored as an ID variable in the OUTCOPULA= data set.

You can specify the following options after a slash (/):

MARGINALS=UNIFORM | EMPIRICAL
specifies the marginal distribution of the individual variables. You can specify the following values:

EMPIRICAL uses the marginal empirical CDF to transform the data and uses the transformed
data to fit the copula.

UNIFORM uses the input data without transformation to fit the copula.

METHOD=MLE | CAL
specifies the method used to estimate parameters. You can specify the following values:

CAL specifies the calibration method that uses the correlation matrix (only Kendall’s tau
is implemented in this procedure).

MLE represents canonical maximum likelihood estimation (CMLE) or maximum likeli-
hood estimation (MLE).
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For the t copula, if METHOD=CAL, then the correlation matrix is estimated using the calibration
method with Kendall’s tau and the degrees of freedom are estimated by the MLE. For the normal
copula, only METHOD=MLE is supported and METHOD=CAL is ignored. By default for all copula
types, METHOD=MLE.

OUTCOPULA < (KENDALL | SPEARMAN) >=SAS-data-set
specifies the name of the output data set. Each fitted copula is written to the specified SAS-data-set .
The data set is not created if this option is not specified.

You can specify one of the following options, which must be appropriate for the type of copula that
you specify:

KENDALL also writes a Kendall correlation matrix to the SAS-data-set .

SPEARMAN also writes a Spearman correlation matrix to the SAS-data-set .

OUTPSEUDO=SAS-data-set
specifies the output data set for saving the pseudo-samples with uniform marginal distributions. The
pseudo-samples are obtained by transforming the individual variables of the original data with the
empirical cumulative distribution functions (CDFs). The data set is not created if this option is not
specified.

PLOTS<(global-plot-options)> < = (specific-plot-options)>
controls the plots that are produced by the COPULA procedure. By default, PROC COPULA produces
a scatter plot matrix for variables (that is, it displays a symmetric matrix plot with the variables that are
specified in the VAR statement).

You can specify the following global-plot-options:

NVAR=ALL | n
specifies the maximum number of variables specified in the VAR statement to be displayed in the
matrix plot. The NVAR=ALL option uses all variables that are specified in the VAR statement.
By default, NVAR=5.

TAIL | CHI
requests that tail dependence plots (chi-plots) be plotted. If you specify this option with the
UNPACK option on, PROC COPULA displays a chi-plot for each applicable pair of distinct
variables that are specified in the VAR statement. If you specify this option without the UNPACK
option, PROC COPULA displays a scatter plot matrix, the lower triangular section shows regular
scatter plots between distinct pairs of variables that are specified in the VAR statement, the upper
triangular section shows chi-plots for corresponding pairs of variables.

UNPACKPANEL | UNPACK
requests scatter plots for pairs of variables. If you specify this option, PROC COPULA displays
a scatter plot for each applicable pair of distinct variables that are specified in the VAR statement.

You can specify the following specific-plot-options:
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DATATYPE=ORIGINAL | UNIFORM | BOTH
requests the data type to be plotted. DATATYPE=ORIGINAL presents the data in their origi-
nal marginal distribution; DATATYPE=UNIFORM shows the transformed data with uniform
marginal distribution; and DATATYPE=BOTH plots both the original and uniform data types. If
MARGINALS=UNIFORM, then the transformation is omitted and the DATATYPE= option is
ignored.

NONE
suppresses all plots.

Printing Options

ITPRINT
prints a summary iteration listing.

NOCORR
suppresses the correlation matrix.

NOPRINT
suppresses all output.

PRINTALL
default option.

SIMULATE Statement
SIMULATE < copula-name-list >/options ;

The SIMULATE statement simulates data from a specified copula model. The copula name specification can
be either the name of a defined copula as specified by name in the DEFINE statement or the name of a fitted
copula specified in the NAME= option in the FIT statement copula specification.

MARGINALS=UNIFORM | EMPIRICAL
specifies how the marginal distributions are computed. If MARGINALS=UNIFORM, then the samples
are drawn from the copula distribution and marginal distributions are uniform.

MARGINALS=EMPIRICAL can be used to explicitly specify that the marginal distributions are
empirical CDF computed from the DATA= option in the PROC COPULA statement.

If the MARGINALS= option is not specified in the SIMULATE statement, then the marginal distribu-
tions used in the simulation depend on whether a preceding FIT statement was used: If there is no FIT
statement, the marginal distributions depend on whether the PROC COPULA statement includes a
DATA= option. If there is a preceding FIT statement, then the marginal distributions from that fit are
used. If there is no FIT statement and there is no DATA= option, then MARGINALS=UNIFORM.
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NDRAWS=integer
specifies the number of draws to generate for this simulation. The default is 100.

OUT=SAS-data-set
specifies the output data set for the random samples from the simulation. This data set is the SAS data
set in the OUTUNIFORM= option transformed by the inverse empirical CDF. This option is useful
only when an input data exists and MARGINALS=EMPIRICAL. The data set is not created if this
option is not specified.

OUTUNIFORM=SAS-data-set
specifies the output data set for the result of the simulation in uniforms. This option can be used when
MARGINALS=UNIFORM or when MARGINALS=EMPIRICAL. If MARGINALS=EMPIRICAL,
then this option enables you to obtain the samples simulated from the joint distribution specified by
the copula, with all marginal distributions being uniform. The data are not created if this option is not
specified.

PLOTS<(global-plot-options)> < = (specific-plot-options)>
controls the plots that are produced by the COPULA procedure. By default, the PROC COPULA
produces a scatter plot matrix for variables. You can specify any of the following global-plot-options:

NVAR=ALL | n
specifies the maximum number of variables specified in the VAR statement to be displayed in the
matrix plot. The NVAR=ALL option uses all variables that are specified in the VAR statement.
By default, NVAR=5.

TAIL | CHI
requests that tail dependence plots (chi-plots) be plotted. If you specify this option with the
UNPACK option on, PROC COPULA displays a chi-plot for each applicable pair of distinct
variables that are specified in the VAR statement. If you specify this option without the UNPACK
option, PROC COPULA displays a scatter plot matrix, the lower triangular section shows regular
scatter plots between distinct pairs of variables that are specified in the VAR statement, the upper
triangular section shows chi-plots for corresponding pairs of variables.

UNPACKPANEL | UNPACK
requests scatter plots for pairs of variables. If you specify this option, PROC COPULA displays
a scatter plot for each applicable pair of distinct variables that are specified in the VAR statement.

You can specify the following specific-plot-options:

DATATYPE=ORIGINAL | UNIFORM | BOTH
requests the data type to be plotted. DATATYPE=ORIGINAL presents the data in their origi-
nal marginal distribution; DATATYPE=UNIFORM shows the transformed data with uniform
marginal distribution; and DATATYPE=BOTH plots both the original and uniform data types.
If MARGINALS=UNIFORM, then the transformation is omitted and the DATATYPE= option
is ignored. If there are no input data, then the simulated data can only have uniform marginal
distributions; in this case, the DATATYPE= option is ignored.
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DISTRIBUTION=PDF | CDF
requests distributional graphs for the case of two variables. DISTRIBUTION=PDF specifies that
the theoretical probability density function is provided with both a contour plot and a surface plot.
DISTRIBUTION=CDF requests the graph for the theoretical cumulative distribution function of
the copula.

NONE
suppresses all plots.

SEED=integer
specifies the seed for generating random numbers for the simulation. If the seed is not provided, a
random number is used as the seed.

VAR Statement
VAR variables ;

The VAR statement specifies the variable names in the input data set specified by the DATA= option in the
PROC COPULA statement. The subset of variables in the data set is used for the copula models in the FIT
statement. When there is no input data set, the VAR statement creates the names of the list of variables for
the SIMULATE statement.

Details: COPULA Procedure

Sklar’s Theorem
The copula models are tools for studying the dependence structure of multivariate distributions. The usual
joint distribution function contains the information both about the marginal behavior of the individual random
variables and about the dependence structure between the variables. The copula is introduced to decouple the
marginal properties of the random variables and the dependence structures. An m-dimensional copula is a
joint distribution function on Œ0; 1�m with all marginal distributions being standard uniform. The common
notation for a copula is C.u1; : : : ; um/.

The Sklar (1959) theorem shows the importance of copulas in modeling multivariate distributions. The first
part claims that a copula can be derived from any joint distribution functions, and the second part asserts the
opposite: that is, any copula can be combined with any set of marginal distributions to result in a multivariate
distribution function.

� Let F be a joint distribution function and Fj ; j D 1; : : : ; m, be the marginal distributions. Then there
exists a copula C W Œ0; 1�m ! Œ0; 1� such that

F.x1; : : : ; xm/ D C.F1.x1/; : : : ; Fm.xm//

for all x1; : : : ; xm in Œ�1;1�. Moreover, if the margins are continuous, then C is unique; otherwise C
is uniquely determined on RanF1 � � � � � RanFm, where RanFj D Fj .Œ�1;1�/ is the range of Fj .
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� The converse is also true. That is, if C is a copula and F1; : : : ; Fm are univariate distribution functions,
then the multivariate function defined in the preceding equation is a joint distribution function with
marginal distributions Fj ; j D 1; : : : ; m.

Dependence Measures
There are three basic types of measures: linear correlation, rank correlation, and tail dependence. Linear
correlation is given by

� � corr.X; Y / D
cov.X; Y /p

var.X/
p

var.Y /

The linear correlation coefficient carries very limited information about the joint properties of the variables.
A well-known property is that uncorrelatedness does not imply independence, while independence implies
noncorrelation. In addition, there exist distinct bivariate distributions that have the same marginal distribution
and the same correlation coefficient. These results suggest that caution must be used when interpreting the
linear correlation.

Another statistical measure of dependence is called rank correlation, which is nonparametric. Kendall’s
tau, for example, is the covariance between the sign statistic X1 � QX1 and X2 � QX2, where . QX1; QX2/ is an
independent copy of .X1; X2/:

�� � EŒsign.X1 � QX1/.X2 � QX2/�

The sign function (sometimes written as sgn) is defined by

sign.x/ D

8̂<̂
:
�1 ifx � 0
0 ifx D 0
1 ifx � 0

Spearman’s rho is the correlation between the transformed random variables:

�S .X1; X2/ � �.F1.X1/; F2.X2//

The variables are transformed by their distribution functions so that the transformed variables are uniformly
distributed on Œ0; 1�. The rank correlations depend only on the copula of the random variables and are
indifferent to the marginal distributions. Like linear correlation, the rank correlations have their limitations.
In particular, there are different copulas that result in the same rank correlation.

A third measure focuses on only part of the joint properties between the variables. Tail dependence measures
the dependence when both variables are at extreme values. Formally, they can be defined as the conditional
probabilities of quantile exceedances. There are two types of tail dependence:

� The upper tail dependence, denoted �u, is

�u.X1; X2/ � lim
q�>1�

P.X2 > F
�1
2 .q/jX1 > F

�1
1 .q//

when the limit exists �u 2 Œ0; 1�. Here F�1j is the quantile function (that is, the inverse of the CDF).
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� The lower tail dependence is defined symmetrically.

Tail dependence is hard to detect by looking at a scatter plot of realizations of two random variables. One
graphical way to detect tail dependence between two variables is by creating the chi plot of those two
variables. The chi plot, as defined in Fisher and Switzer (2001), has characteristic patterns that depend on the
dependence structure between the variables. The chi plot for the random variables X and Y is a scatter plot of
the pairs .�i ; �i / for each data point .xi ; yi /. �i is a measure of the distance of the data point .xi ; yi / from
the center of the data as measured by the median values of .xi ; yi /, and �i is a correlation coefficient between
dichotomized values of X and Y. A positive �i means that xi and yi are either both large with respect to their
median values or both small. A negative �i means that xi or yi is large with respect to its median, whereas
the other value is small. Signs of tail dependence manifest as clusters of points that are significantly far from
the � axis around � values of˙1. If X and Y are uncorrelated, the � values cluster around the � axis.

Normal Copula
Let uj � U.0; 1/ for j D 1; : : : ; m, where U.0; 1/ represents the uniform distribution on the Œ0; 1� interval.
Let† be the correlation matrix withm.m�1/=2 parameters satisfying the positive semidefiniteness constraint.
The normal copula can be written as

C†.u1; u2; : : : ; um/ D ˆ†

�
ˆ�1.u1/; : : : ; ˆ

�1.um/
�

where ˆ is the distribution function of a standard normal random variable and ˆ† is the m-variate standard
normal distribution with mean vector 0 and covariance matrix †. That is, the distribution ˆ† is Nm.0;†/.

Simulation

For the normal copula, the input of the simulation is the correlation matrix †. The normal copula can be
simulated by the following steps, in which U D .U1; : : : ; Um/ denotes one random draw from the copula:

1. Generate a multivariate normal vector Z � N.0;†/ where † is an m-dimensional correlation matrix.

2. Transform the vector Z into U D .ˆ.Z1/; : : : ; ˆ.Zm//
T , where ˆ is the distribution function of

univariate standard normal.

The first step can be achieved by Cholesky decomposition of the correlation matrix † D LLT where L is a
lower triangular matrix with positive elements on the diagonal. If QZ � N.0; I /, then L QZ � N.0;†/.

Fitting

To fit a normal copula is to estimate the covariance matrix † from an input sample data set. Given a random
sample ui D .ui;1; : : : ; ui;m/> where i D 1; : : : ; n, the log-likelihood function is

logL.†Iu1; : : : ;un/

D

nX
tD1

log f†.ˆ�1.ut;1/; : : : ; ˆ�1.ut;m// �
nX
tD1

mX
jD1

log �.ˆ�1.ut;j //



Student’s t Copula F 531

Here f† is the joint density of the multivariate normal with mean zero and variance†, and � is the univariate
density of the standard normal distribution. Note that the second term is not related to the parameters †
and, therefore, can be ignored during the optimization. The restriction that † is a correlation matrix is
very inconvenient, and it is common practice to circumvent this problem by first assuming that † has the
covariance form. Therefore, † can be estimated by

b† D 1

n

nX
iD1

�i�
T
i

where

�i D
�
ˆ�1.ui;1/; ˆ

�1.ui;2/; : : : ; ˆ
�1.ui;m/

�T
This estimate is consistent with the form of a covariance matrix but not necessarily with the form of a
correlation matrix. The approximation to the original MLE problem can be obtained using the normalizing
operator defined as follows:

�.†/ D diag.�1=211 ; : : : ; �
1=2
mm/

P.†/ D .�.†//�1†.�.†//�1

Student’s t Copula
Let ‚ D f.�;†/ W � 2 .1;1/; † 2 Rm�mgand let t� be a univariate t distribution with � degrees of freedom.

The Student’s t copula can be written as

C‚.u1; u2; : : : ; um/ D ttt�;†

�
t�1� .u1/; t

�1
� .u2/; : : : ; t

�1
� .um/

�
where ttt�;† is the multivariate Student’s t distribution with a correlation matrix † with � degrees of freedom.

Simulation

The input parameters for the simulation are .�;†/. The t copula can be simulated by the following two steps:

1. Generate a multivariate vector X � tm.�; 0;†/ following the centered t distribution with � degrees of
freedom and correlation matrix †.

2. Transform the vector X into U D .t�.X1/; : : : ; t�.Xm//
T , where t� is the distribution function of

univariate t distribution with � degrees of freedom.

To simulate centered multivariate t random variables, you can use the property that X � tm.�; 0;†/ if
X D

p
�=sZ , where Z � N.0;†/ and the univariate random variable s � �2� .
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Fitting

To fit a t copula is to estimate the covariance matrix† and degrees of freedom � from a given multivariate data
set. Given a random sample uuui D .ui;1; : : : ; ui;m/>, i D 1; : : : ; n that has uniform marginal distributions,
the log likelihood is

logL.�;†Iui;1; : : : ; ui;m/

D

nX
iD1

log g�;†.t�1� .ui;1/; : : : ; t
�1
� .ui;m// �

nX
iD1

mX
jD1

log g�.t�1� .ui;j //

where � denotes the degrees of freedom of the t copula, g�;† denotes the joint density function of the centered
multivariate t distribution with parameters .�;†/, t� is the distribution function of a univariate t distribution
with � degrees of freedom, † is a correlation matrix, and g� is the density function of univariate t distribution
with � degrees of freedom.

The log likelihood can be maximized with respect to the parameters � D .�;†/ 2 ‚ using numerical
optimization. If you allow the parameters in † to be such that † is symmetric and with ones on the diagonal,
then the MLE estimate for†might not be positive semidefinite. In that case, you need to apply the adjustment
to convert the estimated matrix to positive semidefinite, as shown by McNeil, Frey, and Embrechts (2005),
Algorithm 5.55.

When the dimension of the data m increases, the numerical optimization quickly becomes infeasible. It
is common practice to estimate the correlation matrix † by calibration using Kendall’s tau. Then, using
this fixed †, the single parameter � can be estimated by MLE. By proposition 5.37 in McNeil, Frey, and
Embrechts (2005),

�� .Ui ; Uj / D
2

�
arcsin�ij

where �� is the Kendall’s tau and �ij is the off-diagonal elements of the correlation matrix † of the t copula.
Therefore, an estimate for the correlation is

O�ij D sin
�
1

2
� O��i;j

�

where O� and O�� are the estimates of the sample correlation matrix and Kendall’s tau, respectively. However, it
is possible that the estimate of the correlation matrix O† is not positive definite. In this case, there is a standard
procedure that uses the eigenvalue decomposition to transform the correlation matrix into one that is positive
definite. Let † be a symmetric matrix with ones on the diagonal, with off-diagonal entries in Œ�1; 1�. If † is
not positive semidefinite, use Algorithm 5.55 from McNeil, Frey, and Embrechts (2005):

1. Compute the eigenvalue decomposition † D EDET , where D is a diagonal matrix that contains all
the eigenvalues and E is an orthogonal matrix that contains the eigenvectors.

2. Construct a diagonal matrix QD by replacing all negative eigenvalues in D by a small value ı > 0.

3. Compute Q† D E QDET , which is positive definite but not necessarily a correlation matrix.

4. Apply the normalizing operator P on the matrix Q† to obtain the correlation matrix desired.
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The log-likelihood function and its gradient function for a single observation are listed as follows, where
� D .�1; : : : ; �m/, with �j D t�1� .uj /, and g is the derivative of the log� function:

l D log.c/ D �
1

2
log.j†j/C log�

�
� Cm

2

�
C .m � 1/ log�

��
2

�
�m log�

�
� C 1

2

�
�
� Cm

2
log.1C �T†�1�=�/C

� C 1

2

mX
jD1

log

 
1C

�2j

�

!
@l

@�
D
1

2
g

�
� Cm

2

�
C
m � 1

2
g
��
2

�
�
m

2
g

�
� C 1

2

�
�
1

2
log.1C �T†�1�=�/C

� Cm

2�2
�T†�1�

1C �T†�1�=�

C
1

2

mX
jD1

log.1C �2j =�/ �
� C 1

2�2

mX
jD1

�2j

1C �2j =�

�
.� Cm/

�

�T†�1.d�=d�/

1C �T†�1�=�
C
� C 1

�

X �j .d�j =d�/

1C �2j =�

The derivative of the likelihood with respect to the correlation matrix † follows:

@l

@†
D �

1

2
.†�1/T C

� Cm

2

†�T ��T†�T =�

1C �T†�1�=�

D �
1

2
.†�1/T C

� Cm

2

†�T ��T†�T

� C �T†�1�

Archimedean Copulas

Overview of Archimedean Copulas

Let function � W Œ0; 1�! Œ0;1/ be a strict Archimedean copula generator function and suppose its inverse
��1 is completely monotonic on Œ0;1/. A strict generator is a decreasing function � W Œ0; 1� ! Œ0;1/

that satisfies �.0/ D 1 and �.1/ D 0. A decreasing function f .t/ W Œa; b� ! .�1;1/ is completely
monotonic if it satisfies

.�1/k
dk

dtk
f .t/ � 0; k 2 N; t 2 .a; b/

An Archimedean copula is defined as follows:

C.u1; u2; : : : ; um/ D �
�1
�
�.u1/C � � � C �.um/

�
The Archimedean copulas available in the COPULA procedure are the Clayton copula, the Frank copula, and
the Gumbel copula.
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Clayton Copula

Let the generator function �.u/ D ��1
�
u�� � 1

�
. A Clayton copula is defined as

C� .u1; u2; : : : ; um/ D

"
mX
iD1

u��i �mC 1

#�1=�
with � > 0.

Frank Copula

Let the generator function be

�.u/ D � log
�
exp.��u/ � 1
exp.��/ � 1

�
A Frank copula is defined as

C� .u1; u2; : : : ; um/ D
1

�
log

�
1C

Qm
iD1Œexp.��ui / � 1�
Œexp.��/ � 1�m�1

�
with � 2 .�1;1/nf0g for m D 2 and � > 0 for m � 3.

Gumbel Copula

Let the generator function �.u/ D .� log u/� . A Gumbel copula is defined as

C� .u1; u2; : : : ; um/ D exp

8<:�
"
mX
iD1

.� log ui /�
#1=�9=;

with � > 1.

Simulation

Suppose the generator of the Archimedean copula is �. Then the simulation method using the Laplace-
Stieltjes transformation of the distribution function is given by Marshall and Olkin (1988) where QF .t/ DR1
0 e�txdF.x/:

1. Generate a random variable V with the distribution function F such that QF .t/ D ��1.t/.

2. Draw samples from independent uniform random variables X1; : : : ; Xm.

3. Return U D . QF .� log.X1/=V /; : : : ; QF .� log.Xm/=V //T .

The Laplace-Stieltjes transformations are as follows:

� For the Clayton copula, QF D .1C t /�1=� , and the distribution function F is associated with a Gamma
random variable with shape parameter ��1 and scale parameter one.
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� For the Gumbel copula, QF D exp.�t1=� /, and F is the distribution function of the stable variable
St.��1; 1; ; 0/ with  D Œcos.�=.2�//�� .

� For the Frank copula with � > 0, QF D � logf1 � exp.�t /Œ1 � exp.��/�g=� , and F is a discrete
probability function P.V D k/ D .1 � exp.��//k=.k�/. This probability function is related to a
logarithmic random variable with parameter value 1 � e�� .

For more information about simulating a random variable from a stable distribution, see Theorem 1.19 in
Nolan (2010). For more information about simulating a random variable from a logarithmic series, see
Chapter 10.5 in Devroye (1986).

For a Frank copula with m D 2 and � < 0, the simulation can be done through conditional distributions as
follows:

1 Draw independent v1; v2 from a uniform distribution.

2 Let u1 D v1.

3 Let u2 D �1� log
�
1C v2.1�e

�� /

v2.e
��v1�1/�e��v1

�
.

Fitting

One method to estimate the parameters is to calibrate with Kendall’s tau. The relation between the parameter
� and Kendall’s tau is summarized in Table 11.5 for the three Archimedean copulas.

Table 11.2 Calibration Using Kendall’s Tau

Copula Type � Formula for �

Clayton �=.� C 2/ 2�=.1 � �/

Gumbel 1 � 1=� 1=.1 � �/

Frank 1 � 4��1.1 �D1.�// No closed form

In Table 11.2, D1.�/ D ��1
R �
0 t=.exp.t/ � 1/dt for � > 0, and D1.�/ D D1.�/C 0:5� for � < 0. In

addition, for the Frank copula, the formula for � has no closed form. The numerical algorithm for root finding
can be used to invert the function �.�/ to obtain � as a function of � .

Alternatively, you can use the MLE or the CMLE method to estimate the parameter � given the data
u D fui;j g and i D 1; : : : ; n; j D 1; : : : ; m. The log-likelihood function for each type of Archimedean
copula is provided in the following sections.

Fitting the Clayton Copula
For the Clayton copula, the log-likelihood function is as follows (Cherubini, Luciano, and Vecchiato 2004,
Chapter 7):
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l D n

�
m log.�/C log

�
�

�
1

�
Cm

��
� log

�
�

�
1

�

���
� .� C 1/

X
i;j

log uij

�

�
1

�
Cm

�X
i

log

0@X
j

u��ij �mC 1

1A
Let g.�/ be the derivative of log.�.�//. Then the first-order derivative is

dl

d�
D n

�
m

�
C g

�
1

�
Cm

�
�1

�2
� g

�
1

�

�
�1

�2

�

�

X
i;j

log.uij /C
1

�2

X
i

log

0@X
j

u��ij �mC 1

1A
�

�
1

�
Cm

�X
i

�
P
j u
��
ij log.uij /P

j u
��
ij �mC 1

The second-order derivative is

d2l

d�2
D n

�
�m

�2
C g0

�
1

�
Cm

�
1

�4
C g

�
1

�
Cm

�
2

�3
� g0

�
1

�

�
1

�4
� g

�
1

�

�
2

�3

�

�
2

�3

X
i

log

0@X
j

u��ij �mC 1

1A
C

2

�2

X
i

�
P
j u
��
ij log uijP

j u
��
ij �mC 1

�

�
1

�
Cm

�X
i

8<:
P
j u
��
ij .log uij /

2P
j u
��
ij �mC 1

�

 P
j u
��
ij log uijP

j u
��
ij �mC 1

!29=;
Fitting the Gumbel Copula
A different parameterization ˛ D ��1 is used for the following part, which is related to the fitting of the
Gumbel copula. For the Gumbel copula, you need to compute ��1.m/. It turns out that for k D 1; 2; : : : ; m,

��1.k/.u/ D .�1/k˛ exp.�u˛/u�kC˛‰k�1.u˛/

where ‰k�1 is a function that is described later. The copula density is given by

c D ��1.m/ .x/
Y
k

�0 .uk/

D .�1/m ˛ exp
�
�x˛

�
x�kC˛‰m�1

�
x˛
�Y
k

�0 .uk/

D .�1/m f1f2f3f4f5
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where x D
P
k � .uk/, f1 D ˛, f2 D exp.�x˛/,f3 D x�kC˛,f4 D ‰m�1.x

˛/, and f5 D

.�1/m
Q
k �
0.uk/.

The log density is

l D log.c/
D log .f1/C log .f2/C log .f3/C log .f4/C log

�
.�1/m f5

�
Now the first-order derivative of the log density has the decomposition

dl

d˛
D

1

c

dc

d˛
D

4X
jD1

1

fj

dfj

d˛
C
d
P
k log .��

0 .uk//

d˛

Some of the terms are given by

1

f1

df1

d˛
D

1

˛

1

f2

df2

d˛
D �x˛ log .x/ � ˛x˛�1

dx

d˛

1

f3

df3

d˛
D log .x/C .�k C ˛/ x�1

dx

d˛

where

dx

d˛
D

X
.� log uk/1=˛ log .� log uk/

�
�1

˛2

�
The last term in the derivative of the dl=d˛ is

log
�
��0 .uk/

�
D log

�
1

˛
.� log uk/

1
˛
�1 1

uk

�
D � log ˛ � log .uk/C

�
1

˛
� 1

�
log .� log .uk//

d
P
k log .��

0 .uk//

d˛
D

mX
kD1

�
1

˛
�
1

˛2
log .� log .uk//

D �
m

˛
�
1

˛2

mX
kD1

log .� log .uk//

Now the only remaining term is f4, which is related to ‰m�1. Wu, Valdez, and Sherris (2007) show that
‰k.x/ satisfies a recursive equation

‰k.x/ D Œ˛.x � 1/C k�‰k�1.x/ � ˛x‰
0
k�1.x/

with ‰0.x/ D 1.
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The preceding equation implies that ‰k�1.x/ is a polynomial of x and therefore can be represented as

‰k�1 .x/ D

k�1X
jD0

aj .k � 1; ˛/ x
j

In addition, its coefficient, denoted by aj .k � 1; ˛/, is a polynomial of ˛. For simplicity, use the notation
aj .˛/ � aj .m � 1; ˛/. Therefore,

f4 D ‰m�1
�
x˛
�
D

m�1X
jD0

aj .˛/ x
j˛

df4

d˛
D
d‰m�1 .x

˛/

d˛

D

m�1X
jD0

�
daj .˛/

d˛
xj˛ C aj .˛/ x

j˛ log .x/ j C aj .˛/ .j˛/ xj˛�1
dx

d˛

�

Fitting the Frank Copula
For the Frank copula,

��1.k/.u/ D �
1

�
‰k�1

�
.1C e�u.e�� � 1//�1

�
When � > 0, a Frank copula has a probability density function

c D '�1.m/ .x/
Y
k

'0 .uk/

D
�1

�
‰m�1

 
1

1C e�x
�
e�� � 1

�!Y
k

'0 .uk/

where x D
P
k ' .uk/.

The log likelihood is

log c D � log .�/C log

 
‰m�1

 
1

1C e�x
�
e�� � 1

�!!CX log
�
'0 .uk/

�
Denote

y D
1

1C e�x
�
e�� � 1

�
Then the derivative of the log likelihood is

d log c
d�

D �
1

�
C

1

‰m�1 .y/

d‰m�1

d�
C

X
k

1

'0 .uk/

d'0 .uk/

d�
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The term in the last summation is

1

'0 .uk/

d'0 .uk/

d�
D

1

�
�
1 � e�uk

� h1 � e�uk C �ue�uki
The function ‰m�1 satisfies a recursive relation

‰k.x/ D x.x � 1/‰
0
k�1.x/

with ‰0.x/ D x � 1. Note that ‰m�1 is a polynomial whose coefficients do not depend on � ; therefore,

d‰m�1

d�
D

d‰m�1

dy

dy

d�

D
d‰m�1

dy

�
dy

d�
C
dy

dx

dx

d�

�

D
d‰m�1

dy

24 e�xe���
1C e�x

�
e�� � 1

��2 C e�x
�
e�� � 1

�
�
1C e�x

�
e�� � 1

��2 dxd�
35

where

dx

d�
D

X
k

d' .uk/

d�
D

X
k

"
�
uke
��uk

1 � e��uk
C

e��

1 � e�

#

D

X
k

�
�

uk

e�uk � 1
C

1

e� � 1

�
For the case of m D 2 and � < 0, the bivariate density is

log c D log.�.1 � e�� // � �.u1 C u2/ � log..1 � e�� � .1 � e��u1/.1 � e��u2//2/

Hierarchical Archimedean Copula (HAC) (Experimental)
Adopting the notations of Savu and Trede (2010), let L denote the total level of hierarchies and let D denote
the dimension of the HAC. There are nl distinct copulas at each level l; l D 1; : : : ; L. These copulas are
indexed by .l; j /; j D 1; : : : ; nl . At each level, there are also dl variables, 0 � dl � D and

P
l dl D D. In

the first step, all the variables at the lowest level are grouped into n1 subsets, each subset being an ordinary
multivariate Archimedean copula

C1;j .u1;j / D �
�1
1;j

0@X
u1;j

�1;j .u1;j /

1A ; j D 1; : : : ; n1
where �1;j is the generator of copula C1;j , u1;j denotes the variables that belong to copula C1;j , and the
sum

P
u1;j

is the sum over each variable in the subset u1;j . The copulas C1;j can be different Archimedean
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copulas for j D 1; : : : ; n1. Then at the second level, the copulas C1;j that are derived in the first level are
aggregated as if they are individual variables. Suppose there are n2 copulas and d2 variables,

C2;j .C1;j ;u2;j / D �
�1
2;j

0@X
C1;j

�2;j .C1;j /C
X
u2;j

�2;j .u2;j /

1A
where �2;j denotes the generator of C2;j and C1;j represents the subset of copulas in C1;h; h D 1; : : : ; n1,
that is aggregated for copula C2;j for j D 1; : : : ; n2. This structure continues until at level l D L a single
copula CL;1 aggregates all the copulas at its previous level, l D L � 1.

A four-dimensional example that has total levels L D 2 and a structure shown in Figure 11.5 is defined as
follows:

C2;1.u1; u2; u3; u4/ D C2;1
�
C1;1.u1; u2/; C1;2.u3; u4/

�
D ��12;1

�
�2;1 ı �

�1
1;1

�
�1;1.u1/C �1;1.u2/

�
C �2;1 ı �

�1
1;2

�
�1;2.u3/C �1;2.u4/

��
Figure 11.5 Example Four-Dimensional Hierarchical Structure with Two Levels

Theorem 4.4 of McNeil (2008) states that the sufficient condition for a general hierarchical Archimedean
structure to be a proper copula is that all appearing nodes of the form �m;j ı �

�1
n;j have completely monotone

derivatives. This condition places certain constraints on the copula parameters. In particular, if all the copulas
in a hierarchical structure come from the Frank, Clayton, or Gumbel family, then �m;j � �n;j for all j when
m < n. Intuitively, this means that rank correlation must be increasing as you move down the hierarchical
structure.

The hierarchical Archimedean copulas available in the COPULA procedure are the hierarchical versions of
the Clayton, Frank, and Gumbel copulas.
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Simulation

A slightly modified version of the recursive algorithm from McNeil (2008) works for all valid hierarchical
structures that have Clayton, Frank, or Gumbel generators:

1. Start at l D L, and generate a random variable V with the distribution function F with Laplace
transform ��1L;1.

2. For l D L � 1; : : : ; 1, generate ul;j from its parent hierarchy. For Cl;j , recursively call this algorithm
with the proper inner generators that correspond to the copula family.

3. Return U D .��1L;1.� log.u1/=V /; : : : ; ��1L;1.� log.uD/=V //T .

Let �1 be the outer generator and �2 the nested generator, and let �1 and �2 be the respective generator
parameters. Let v be a draw from distribution function F with Laplace transform ��11 . The inner copula
generators �12.�I v/ D exp.�v�1 ı ��12 .�// and their corresponding Laplace transform distributions for the
Clayton, Frank, and Gumbel family are summarized in Table 11.3.

Table 11.3 Inner Generators and Corresponding Distributions

Copula Type �12.xI v/ Distribution with LT �12.�I v/

Clayton exp
�
v � v.1C x/�1=�2

�
Tiled stable

Gumbel exp.�vx�1=�2/ Stable
�
�1
�2
; 1;

�
v cos �1�

2�2

��2=�1
; 0

�
Frank

�
1

1�e��1

�
1 �

�
1 � .1 � e��2/ exp.�x/

��1=�2��v
No closed form

Note that when �1 D �2, the inner generators for the Clayton and Gumbel family both simplify to the generator
of the independence copula, exp.�vx/. For more information about simulating from the distribution with the
Laplace transform given by the inner generator for the Frank family, see Hofert (2011). For more information
about how to simulate from a tilted stable distribution, see McNeil (2008).

Canonical Maximum Likelihood Estimation (CMLE)
In the canonical maximum likelihood estimation (CMLE) method, it is assumed that the sample data
xxxi D .xi1; xi2; : : : ; xim/

>, i D 1; : : : ; n, have been transformed into uniform variates Oui D . Oui1; : : : ; Ouim/,
i D 1; : : : ; n. One commonly used transformation is the nonparametric estimation of the CDF of the marginal
distributions, which is closely related to empirical CDF,

Oui;j D OFj;n.xi;j /

where

OFj;n.x/ D
1

nC 1

nX
iD1

IŒxi;j�x�
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The transformed data Oui;j are used as if they had uniform marginal distributions; hence, they are called
pseudo-samples. The function OFj;n is different from the standard empirical CDF in the scalar 1=.nC 1/,
which is to ensure that the transformed data cannot be on the boundary of the unit interval Œ0; 1�. It is clear
that

Oui;j D
1

nC 1
rank.xi;j /

where rank.xi;j / is the rank among i D 1; : : : ; n in increasing order.

Let c.u1; u2; : : : ; umI �/ be the density function of a copula C.u1; u2; : : : ; umI �/, and let � be the parameter
vector to be estimated. The parameter � is estimated by maximum likelihood:

O� D argmax
�2‚

nX
iD1

log c. Oui1; : : : ; OuimI �/

Exact Maximum Likelihood Estimation (MLE)
Suppose that the marginal distributions of vector elements xxxi D .xi1; xi2; : : : ; xim/

>, i D 1; : : : ; n are
already known to be uniform. Then the parameter � is estimated by exact maximum likelihood:

O� D argmax
�2‚

nX
iD1

log c.xi1; xi2; : : : ; ximI �/

Calibration Estimation
Instead of fitting the whole distribution as in MLE methods, you can directly use empirical estimates of
distribution parameters. The unknown parameter that you want to estimate can be obtained by calibration
using Kendall’s tau. There exists a one-to-one map between the parameter at interest and Kendall’s tau.
Therefore, after you estimate the Kendall’s tau, you can use the map to compute the parameter value. For
example, the parameter matrix † in a t copula and the parameter � in Archimedean copulas can be estimated
in this manner. The most frequently used estimator of Kendall’s tau is the rank correlation coefficient:

O��
�
Xi ; Xj

�
D

�
n

2

��1 X
1�t<s�n

sign
��
xt;i � xs;i

� �
xt;j � xs;j

��
The preceding formula is analogous to its population counterpart

��
�
Xi ; Xj

�
D E

�
sign

��
Xi � QXi

� �
Xj � QXj

���
where . QXi ; QXj / has the same distribution but is independent of .Xi ; Xj /.

For Archimedean multivariate copulas there is only one parameter to estimate, � (or its function � ), although
for m variables there are m.m � 1/=2 unique pairwise correlation coefficients. Denote the map from �� to �
by � D O�.�� /. To aggregate the map, take simple arithmetic average:

O� D
2

m.m � 1/

X
1�i<j�m

O�
�
O��
�
Xi ; Xj

��
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Nonlinear Optimization Options
PROC COPULA uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks.
In the PROC COPULA statement, you can specify nonlinear optimization options that are then passed to the
NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 7, “Nonlinear Optimization
Methods.”

Displayed Output
PROC COPULA produces displayed output described in the following sections.

Optimization Start and Resulting Parameter Estimates

If you specify the ITPRINT option in the PROC COPULA statement, PROC COPULA displays two tables,
“Optimization Start Parameter Estimates” and “Optimization Results Parameter Estimates.” Each table
contains the following information for each model parameter:

� parameter number

� parameter name

� parameter estimate

� gradient of the objective function at the initial parameter values

In addition to this information, the table “Optimization Start Parameter Estimates” contains the following
columns:

� lower-bound constraint

� upper-bound constraint

The value of the objective function at the parameter values is displayed below each table.

Iteration History for Parameter Estimates

If you specify the ITPRINT option in the PROC COPULA statement, PROC COPULA displays a table
that contains the following information for each iteration. Note that some information is specific to the
model-fitting method chosen (for example, Newton-Raphson, trust region, or quasi-Newton method).

� iteration number

� number of restarts since the fitting began

� number of function calls

� number of active constraints at the current solution
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� value of the objective function (–1 times the log-likelihood value) at the current solution

� change in the objective function from previous iteration

� value of the maximum absolute gradient element

� step size (for Newton-Raphson and quasi-Newton methods)

� slope of the current search direction (for Newton-Raphson and quasi-Newton methods)

� lambda (for trust region method)

� radius value at current iteration (for trust region method)

Model Fit Summary

The “Model Fit Summary” table contains the following information:

� number of observations used

� number of missing values in data set, if any

� data set name

� type of model that was fit

� log-likelihood value at solution

� maximum absolute gradient at solution

� number of iterations

� optimization method

� value of Akaike’s information criterion (AIC) at the solution (a smaller value indicates better fit)

� value of Schwarz Bayesian criterion (SBC) at the solution (a smaller value indicates better fit)

Below the “Model Fit Summary” table is a statement about whether the algorithm successfully converged.

Parameter Estimates

The “Parameter Estimates” table contains the estimates of the model parameters. For the normal copula, this
table is not displayed because the only parameters are in the correlation matrix, which is displayed in the
“Correlation Matrix” table. For the t copula, the parameter is the number of degrees of freedom; in the table
it is called “DF.” For Archimedean copulas such as Clayton, Frank, and Gumbel, the parameter is called
“theta.”
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Correlation Matrix

The “Correlation Matrix” table contains the estimates of the model correlation matrix. This table is displayed
only for elliptical copulas such as the normal and t copulas. Row and column names come from the list of
variables defined in the VAR statement.

OUTCOPULA= Data Set
The OUTCOPULA= data set consists of several rows. The first row (with _TYPE_=‘PARM’) contains the
parameter estimates in the model. For a t copula, the estimate is the number of degrees of freedom; for
Archimedean copulas, the estimate is “theta.” The second row (with _TYPE_=‘STD’) contains the standard
error for the parameter estimate in the model. These two rows do not appear for the normal copula.

If you use one of the elliptical copulas, t or normal, the rest of the data set contains the correlation matrix
estimates. The correlation matrix appears in the observations with _TYPE_=‘CORR’, and the _VARIABLE_
column contains the parameter names.

If METHOD=MLE and the nonlinear optimization subsystem is used, a _STATUS_ column is created that
contains a character variable that indicates whether the optimization process reached convergence or failed to
converge:

� 0 indicates that the convergence was reached

� 1 indicates that the maximum number of iterations allowed was exceeded

� 2 indicates a failure to improve the function value

� 3 indicates a failure to converge for one of the following reasons:

– The objective function or its derivatives could not be evaluated or improved.

– Linear constraints are dependent.

– The algorithm failed to return to feasible region.

– The number of iterations is greater than prespecified.

OUTPSEUDO=, OUT=, and OUTUNIFORM= Data Sets
The OUTPSEUDO=, OUT=, and OUTUNIF= data sets contain the same number of columns as specified in
the VAR statement. The names of the columns are taken from the same VAR statement list.
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ODS Table Names
PROC COPULA assigns a name to each table it creates. You can use these names to denote the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 11.4.

Table 11.4 ODS Tables Produced in PROC COPULA

ODS Table Name Description Option

ODS Tables Created by the FIT Statement
ConvergenceStatus Convergence status Default
Correlation Correlation matrix estimates Default with elliptical

copulas
KendallCorrelation Kendall correlation matrix

estimates
Default with elliptical
copulas

SpearmanCorrelation Spearman correlation matrix
estimates

Default with normal
copula

FitSummary Summary of nonlinear estimation Default
ParameterEstimates Parameter estimates Default
ConvergenceStatus Convergence status ITPRINT
InputOptions Input options ITPRINT
IterHist Iteration history ITPRINT
IterStart Optimization start ITPRINT
IterStop Optimization results ITPRINT
ParameterEstimatesResults Parameter estimates ITPRINT
ParameterEstimatesStart Parameter estimates ITPRINT
ProblemDescription Problem description ITPRINT

ODS Graph Names
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

PROC COPULA assigns a name to each graph it creates by using ODS. You can use these names to refer to
the graphs when you use ODS. The names are listed in Table 11.5.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 11.5 ODS Graphics Produced by PROC COPULA

ODS Graph Name Plot Description Statement PLOTS= Option

MatrixPlotOrig Matrix panel of pairwise
scatter plots of the original
data

FIT DATATYPE=BOTH,
DATATYPE=ORIGINAL

MatrixPlotUnif Matrix panel of pairwise
scatter plots of the original
data transformed into uniform
marginals

FIT DATATYPE=BOTH,
DATATYPE=UNIFORM

MatrixPlotSOrig Matrix panel of pairwise
scatter plots of the simulated
data

SIMULATE DATATYPE=BOTH,
DATATYPE=ORIGINAL

MatrixPlotSUnif Matrix panel of pairwise
scatter plots of the simulated
data transformed into uniform
marginals

SIMULATE DATATYPE=BOTH,
DATATYPE=UNIFORM

ScatterPlotOrig Pairwise scatter plots of the
original data

FIT DATATYPE=BOTH
UNPACK,
DATATYPE=ORIGINAL
UNPACK

ScatterPlotUnif Pairwise scatter plots of the
original data transformed into
uniform marginals

FIT DATATYPE=BOTH
UNPACK,
DATATYPE=UNIFORM
UNPACK

ScatterPlotSOrig Pairwise scatter plots of the
simulated data

SIMULATE DATATYPE=BOTH
UNPACK,
DATATYPE=ORIGINAL
UNPACK

ScatterPlotSUnif Pairwise scatter plots of the
simulated data transformed
into uniform marginals

SIMULATE DATATYPE=BOTH
UNPACK,
DATATYPE=UNIFORM
UNPACK

CdfContourPlot Contour plot of theoretical
bivariate CDF function

SIMULATE DISTRIBUTION=CDF

CdfSurfacePlot Surface plot of theoretical
bivariate CDF function

SIMULATE DISTRIBUTION=CDF

PdfContourPlot Contour plot of theoretical
bivariate PDF function

SIMULATE DISTRIBUTION=PDF

PdfSurfacePlot Surface plot of theoretical
bivariate PDF function

SIMULATE DISTRIBUTION=PDF

ChiPlotOrig Tail dependence plot matrix
with original data

FIT
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Table 11.5 continued

ODS Graph Name Plot Description Statement PLOTS= Option

ChiPlotUnif Tail dependence plot matrix
with original data transformed
into uniform marginals

FIT

ChiPlotSOrig Tail dependence plot matrix
with simulated data

SIMULATE

ChiPlotSUnif Tail dependence plot matrix
with simulated data
transformed into uniform
marginals

SIMULATE

ChiPlot Pairwise tail dependence plot
of the data

FIT UNPACK

ChiPlotS Pairwise tail dependence plot
of the simulated data

SIMULATE UNPACK

Examples: COPULA Procedure

Example 11.1: Copula-Based VaR Estimation
Value-at-risk (VaR) has become a de facto standard in financial risk management. The purpose of this
measure is to give some quantitative insight to the riskiness of an asset portfolio. This measure is expressed
generically in the following terms: What is the probability of losing no more than given percentage of a
portfolio in a certain period of time? Or, what are the maximum possible losses at a given confidence level?
The most simple and clearly wrong answer to this question is to compute the empirical quantile of past
portfolio returns. The problem of this approach is that it does not take into account the dynamic nature of
asset returns, the possibility of changing distribution, time memory, and, most importantly, cross-sectional
dependence between individual assets in the portfolio.

This simple example of VaR computation takes into account at least cross-sectional dependence of the data.
The end result is the prediction of the next-day maximum possible loss on the portfolio of stocks.

This example uses the daily returns on large stocks such as IBM, Microsoft, British Petroleum, Coca-Cola,
and Duke Energy. Output 11.1.1 shows the first 10 observations of the data.
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Output 11.1.1 First 10 Observations of Daily Returns

Obs date ret_msft ret_ko ret_ibm ret_duk ret_bp

1 01/03/2008 0.004182 0.010367 0.002002 0.003503 0.019114

2 01/04/2008 -0.027960 0.001913 -0.035861 -0.000582 -0.014536

3 01/07/2008 0.006732 0.023607 -0.010671 0.025611 0.017922

4 01/08/2008 -0.033435 0.004239 -0.024610 -0.002838 -0.016049

5 01/09/2008 0.029560 0.026680 0.007301 0.010814 -0.027078

6 01/10/2008 -0.003054 0.004441 0.016414 -0.001689 -0.004395

7 01/11/2008 -0.012255 -0.027346 -0.022546 -0.012408 -0.018473

8 01/14/2008 0.013958 0.008418 0.053857 0.003427 0.001166

9 01/15/2008 -0.011318 -0.010851 -0.010689 -0.017075 -0.040925

10 01/16/2008 -0.022587 -0.015021 -0.001955 0.002316 -0.021336

The purpose of this exercise is to estimate one-day future losses of a stock portfolio. The simplest approach
is to assume that the joint distribution of individual asset returns does not change with time. This might be
close to the truth if only a small time interval is used. Then, a copula approach is used to estimate the joint
distribution. Next, the new large sample of daily individual asset returns is simulated from the fitted joint
distribution. These assets are then combined into a portfolio and its daily returns are computed. Finally,
quantiles of simulated portfolio returns (which simply represent possible next-day losses of the portfolio) are
examined.

The first step is to cut off a small number of past return observations as in the following SAS DATA step:

/* Keep only the last 250 observations of the data */
data returns;

set returns nobs=observ;
if (_N_ > observ-250);

run;

The following statements fit a t copula to the returns data and at the same time simulate the sample from the
fitted joint distribution:

/* Copula estimation and simulation of returns */
proc copula data = returns;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;

* fit T-copula to stock returns;
fit T /

marginals = empirical
method = MLE
plots = (datatype = both);

* simulate 10000 observations;

* independent in time, dependent in cross-section;
simulate /

ndraws = 10000
seed = 1234
out = simulated_returns
plots(unpack) = (datatype = original);

run;

The first line of the COPULA procedure uses a VAR statement to specify the list of variables. In this example,
these are daily returns of five large-company stocks.The next statement, FIT, requires some options. First,
Student’s t copula (T) is specified. After the slash, the MARGINALS=EMPIRICAL option specifies that an
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empirical distribution be fit. The choice of fitting method is MLE. The PLOTS=BOTH option requests that
both original and transformed data graphs be organized into a symmetric panel.

Then, given the estimation results, the NDRAWS= option in the SIMULATE statement simulates 10,000 new
observations for each asset return series. The SEED= option fixes the random number generator, the OUT=
option specifies the name of SAS data set to contain the simulated sample, and the PLOT= option requests
scatter plots of simulated returns in the original data scale.

The output of these statements is shown in Output 11.1.2.

Output 11.1.2 Copula Estimation

The COPULA Procedure

Model Fit Summary

Number of Observations 250

Data Set WORK.RETURNS

Copula Type T

Log Likelihood 171.52667

Maximum Absolute Gradient 1.21421E-6

Number of Iterations 9

Optimization Method Newton-Raphson

AIC -321.05333

SBC -282.31726

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

DF 6.713594 1.327879 5.06 <.0001

Correlations Matrix

ret_ibm ret_msft ret_bp ret_ko ret_duk

ret_ibm 1.0000 0.5657 0.4663 0.4548 0.4740

ret_msft 0.5657 1.0000 0.4585 0.3234 0.3658

ret_bp 0.4663 0.4585 1.0000 0.3459 0.3576

ret_ko 0.4548 0.3234 0.3459 1.0000 0.4742

ret_duk 0.4740 0.3658 0.3576 0.4742 1.0000

The first table in Output 11.1.2, “Model Fit Summary,” provides some general description of copula model
estimation. The second table, “Parameter Estimates,” provides point estimates and inference on copula
parameters. In this example the only parameter in this table is the number of degrees of freedom in
the multivariate t distribution. The last table, “Correlation Matrix,” contains estimates of copula model
parameters.

The graphical output of the preceding statements is in Output 11.1.3 and in Output 11.1.4.
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Output 11.1.3 Original Data
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Output 11.1.4 Original Data Transformed into Uniform Marginals

Note that in Output 11.1.3 the most elliptical scatter plot, between IBM and MSFT, indicates the strongest
dependence. Similarly, in Output 11.1.4 those graphs that are denser along the diagonal indicate the same
thing.

Now the equally weighted next day portfolio return is computed. Each individual return is transformed into
nominal scale first, then all returns are added up with equal weights, and the result is transformed into a net
return by subtracting one.
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/* compute equally weighted portfolio return */
data port_ret (drop = i ret);

set simulated_returns;
array returns{5} ret_ibm ret_msft ret_bp ret_ko ret_duk;
ret =0;
do i =1 to 5;

ret = ret+ 0.2*exp(returns[i]);
end;
port_ret = ret-1;

run;

The final step is to compute empirical quantiles of simulated daily portfolio return. This is done with the help
of PROC UNIVARIATE in the following statements:

/* compute descriptive statistics */
/* quantile table will give Value-at-Risk estimates for the portfolio */
proc univariate data = port_ret;

var port_ret;
run;

Output 11.1.5 shows that with 99% confidence the potential loss on an equally weighted portfolio over the
next day does not exceed 2.6% (the number in table is multiplied by 100). You can also say that there is no
more than a 5% chance of losing 1.5% of the portfolio value. These percentage measures are exactly the
value-at-risk.

Output 11.1.5 Return Quantiles

The UNIVARIATE Procedure
Variable: port_ret

Quantiles (Definition 5)

Level Quantile

100% Max 0.048144752

99% 0.026628639

95% 0.015538196

90% 0.011573916

75% Q3 0.005801203

50% Median 0.000688897

25% Q1 -0.004953729

10% -0.010636997

5% -0.014677062

1% -0.026629716

0% Min -0.052757770
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Example 11.2: Simulating Default Times
Suppose the correlation structure required for a normal copula function is already given. For example, it can
be estimated from the historic data on default times in some set of industries, but this stage is not in the scope
of this example. The correlation structure is saved in a SAS data set called Inparm. The following statements
and their output in Output 11.2.1 show that the correlation parameter is set at 0.8:

proc print data = inparm;
run;

Output 11.2.1 Copula Correlation Matrix

Obs name Y1 Y2

1 Y1 1.0 0.8

2 Y2 0.8 1.0

Now you use PROC COPULA to simulate the data. The VAR statement specifies the list of variables to
contain simulated data. The DEFINE statement assigns the name COP and specifies a normal copula that
reads the correlation matrix from the inparm data set.

The SIMULATE statement refers to the COP label defined in the VAR statement and specifies some options:
the NDRAWS= option specifies a sample size, the SEED= option specifies 1234 as the random number
generator seed, the OUTUNIFORM=NORMAL_UNIFDATA option names the output data set for the result
of simulation in uniforms, and the PLOTS= option requests the matrix of data scatter plots and marginal
distributions (DATATYPE=ORIGINAL) and theoretical cumulative distribution function contour and surface
plots (DISTRIBUTION=CDF). Theoretical distribution graphs work only for the bivariate case.

/* simulate the data from bivariate normal copula */
proc copula ;

var Y1-Y2;
define cop normal (corr=inparm);
simulate cop /

ndraws = 500
seed = 1234
outuniform = normal_unifdata
plots = (datatype = original

distribution = cdf);
run;

The graphical output is shown in Output 11.2.2 and in Output 11.2.3.
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Output 11.2.2 Simulated Data, Uniform Marginals

Output 11.2.2 shows bivariate scatter plots of the simulated data. Also note that due to the high correlation
parameter (0.8), the scatter plots are most dense around the 45 degree line, which indicates high dependence
between the two variables.
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Output 11.2.3 Joint Cumulative Distribution

Output 11.2.3 shows the theoretical CDF contour plot. If the correlation parameter were set to 0, then
knowing copula properties you would expect perfectly parallel straight lines with the slope of –45 degrees.
On the other hand, if the parameter were set to 1, you would expect perpendicular lines with corners lying on
the diagonal.

The next DATA step transforms the variables from zero-one uniformly distributed to nonnegative exponentially
distributed with parameter 0.5. Three indicator variables are added to the data set as well. SURVIVE1
and SURVIVE2 are equal to 1 if a respective company has remained in business for more than three years.
SURVIVE is equal to 1 if both companies survived the same period together.
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/* default time has exponential marginal distribution with parameter 0.5 */
data default;

set normal_unifdata;
array arr{2} Y1-Y2;
array time{2} time1-time2;
array surv{2} survive1-survive2;
lambda = 0.5;
do i=1 to 2;

time[i] = -log(1-arr[i])/lambda;
surv[i] = 0;
if (time[i] >3) then surv[i]=1;

end;
survive = 0;
if (time1 >3) && (time2 >3) then survive = 1;

run;

The first analysis step is to look at correlations between survival times of two companies. This step is
performed with the following CORR procedure:

proc corr data = default plot=matrix kendall;
var time1 time2;

run;

The output of this code is given in Output 11.2.4 and in Output 11.2.5.

Output 11.2.4 shows some descriptive statistics and two measures of correlation: Pearson and Kendall. Both
of these measures indicate high and statistically significant dependence between life spans of two companies.

Output 11.2.4 Default Time Descriptive Statistics and Correlations

The CORR Procedure

2  Variables: time1    time2

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

time1 500 2.08347 2.23677 1.26496 0.00449 13.08462

time2 500 2.07547 2.19756 1.37603 0.01076 16.85567

Pearson Correlation Coefficients, N = 500
Prob > |r| under H0: Rho=0

time1 time2

time1 1.00000 0.80268
<.0001

time2 0.80268
<.0001

1.00000

Kendall Tau b Correlation Coefficients, N = 500
Prob > |tau| under H0: Tau=0

time1 time2

time1 1.00000 0.59566
<.0001

time2 0.59566
<.0001

1.00000



558 F Chapter 11: The COPULA Procedure

Output 11.2.5 shows marginal distributions and scatter plots of simulated data. Distributions are noticeably
close to exponential and scatter plots show a high degree of dependence.

Output 11.2.5 Default Times

The second and final step is to empirically estimate the default probabilities of two companies. This is done
using the FREQ procedure as follows:

proc freq data=default;
table survive survive1-survive2;

run;
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The result is shown in Output 11.2.6.

Output 11.2.6 Probabilities of Default

The FREQ Procedure

survive Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 415 83.00 415 83.00

1 85 17.00 500 100.00

survive1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 374 74.80 374 74.80

1 126 25.20 500 100.00

survive2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 390 78.00 390 78.00

1 110 22.00 500 100.00

Output 11.2.6 shows that the empirical default probabilities are 75% and 78%. Assuming that these companies
are independent gives the probability estimate of both companies defaulting during the period of three years
as: 0.75*0.78=0.59 (59%). Comparing this naive estimate with the much higher actual 83% joint default
probability illustrates that neglecting the correlation between the two companies significantly underestimates
the probability of default.

References

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. Chichester, UK: John
Wiley & Sons.

Devroye, L. (1986). Non-uniform Random Variate Generation. New York: Springer-Verlag. http:
//luc.devroye.org/rnbookindex.html.

Fisher, N. I., and Switzer, P. (2001). “Graphical Assessment of Dependence: Is a Picture Worth 100 Tests?”
American Statistician 55:233–239.

Galiani, S. S. (2003). “Copula Functions and Their Application in Pricing and Risk Managing Multiname
Credit Derivative Products.” Master’s thesis, King’s College London. http://www.defaultrisk.
com/pp_crdrv_41.htm.

Genest, C., Ghoudi, K., and Rivest, L. P. (1995). “A Semiparametric Estimation Procedure of Dependence
Parameters in Multivariate Families of Distributions.” Biometrika 82:543–552.

Hofert, M. (2011). “Efficiently Sampling Nested Archimedean Copulas.” Computational Statistics and Data
Analysis 55:57–70.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.

http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
http://www.defaultrisk.com/pp_crdrv_41.htm
http://www.defaultrisk.com/pp_crdrv_41.htm


560 F Chapter 11: The COPULA Procedure

Joe, H., and Xu, J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate
Models. Technical Report 166, University of British Columbia.

Marshall, A. W., and Olkin, I. (1988). “Families of Multivariate Distributions.” Journal of the American
Statistical Association 83:834–841.

McNeil, A., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, and
Tools. Princeton, NJ: Princeton University Press.

McNeil, A. J. (2008). “Sampling Nested Archimedean Copulas.” Journal of Statistical Computation and
Simulation 78:567–581.

Mendes, B. V. M., de Melo, E. F. L., and Nelsen, R. B. (2007). “Robust Fits for Copula Models.” Communi-
cations in Statistics—Simulation and Computation 36:997–1008.

Nelsen, R. B. (2006). An Introduction to Copulas. 2nd ed. New York: Springer.

Nolan, J. P. (2010). Stable Distributions: Models for Heavy Tailed Data. Boston: Birkhäuser.

Rüschendorf, L. (2009). “On the Distributional Transform, Sklar’s Theorem, and the Empirical Copula
Process.” Journal of Statistical Planning and Inference 11:3921–3927.

Savu, C., and Trede, M. (2010). “Hierarchies of Archimedean Copulas.” Quantitative Finance 10:295–304.

Sklar, A. (1959). “Fonctions de répartition à n dimensions et leurs marges [Distribution functions with
n dimensions and their margins].” Publications de l’Institut de Statistique de L’Université de Paris
8:229–231.

Wu, F., Valdez, E., and Sherris, M. (2007). “Simulating from Exchangeable Archimedean Copulas.” Commu-
nications in Statistics—Simulation and Computation 36:1019–1034.



Chapter 12

The COUNTREG Procedure

Contents
Overview: COUNTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Getting Started: COUNTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
Syntax: COUNTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
PROC COUNTREG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
BAYES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
BOUNDS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
DISPMODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
INIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
NLOPTIONS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
PERFORMANCE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
PRIOR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
RESTRICT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
SCORE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
SHOW Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
SPATIALDISPEFFECTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
SPATIALEFFECTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
SPATIALID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
SPATIALZEROEFFECTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 598
STORE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
ZEROMODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Details: COUNTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Specification of Regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Conway-Maxwell-Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 607
Negative Binomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
Zero-Inflated Count Regression Overview . . . . . . . . . . . . . . . . . . . . . . . . 614
Zero-Inflated Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615



562 F Chapter 12: The COUNTREG Procedure

Zero-Inflated Conway-Maxwell-Poisson Regression . . . . . . . . . . . . . . . . . . 617
Zero-Inflated Negative Binomial Regression . . . . . . . . . . . . . . . . . . . . . . 618
Spatial Lag of X Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
Panel Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
BY Groups and Scoring with an Item Store . . . . . . . . . . . . . . . . . . . . . . . 635
Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT State-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
Nonlinear Optimization Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Covariance Matrix Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Displayed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Automated MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Marginal Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654
OUTPUT OUT= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
OUTEST= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Examples: COUNTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Example 12.1: Basic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Example 12.2: ZIP and ZINB Models for Data That Exhibit Extra Zeros . . . . . . . 668
Example 12.3: Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
Example 12.4: Spatial Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Overview: COUNTREG Procedure
The COUNTREG (count regression) procedure analyzes regression models in which the dependent variable
takes nonnegative integer or count values. The dependent variable is usually an event count, which refers
to the number of times an event occurs. For example, an event count might represent the number of ship
accidents per year for a given fleet. In count regression, the conditional mean E.yi jxi / of the dependent
variable yi is assumed to be a function of a vector of covariates xi .

The Poisson (log-linear) regression model is the most basic model that explicitly takes into account the
nonnegative integer-valued aspect of the outcome. With this model, the probability of an event count is
determined by a Poisson distribution, where the conditional mean of the distribution is a function of a vector
of covariates. However, the basic Poisson regression model is limited because it forces the conditional mean
of the outcome to equal the conditional variance. This assumption is often violated in real-life data. Negative
binomial regression is an extension of Poisson regression in which the conditional variance can exceed the
conditional mean. Also, a common characteristic of count data is that the number of zeros in the sample
exceeds the number of zeros that are predicted by either the Poisson or negative binomial model. Zero-inflated
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Poisson (ZIP) and zero-inflated negative binomial (ZINB) models explicitly model the production of zero
counts to account for excess zeros and also enable the conditional variance of the outcome to differ from the
conditional mean.

In zero-inflated models, additional zeros occur with probability 'i , which is determined by a separate model,
'i D F.z0i/, where F is the normal or logistic distribution function that results in a probit or logistic model
and zi is a set of covariates.

PROC COUNTREG supports the following models for count data:

� Poisson regression

� Conway-Maxwell-Poisson regression

� negative binomial regression with quadratic (NEGBIN2) and linear (NEGBIN1) variance functions
(Cameron and Trivedi 1986)

� zero-inflated Poisson (ZIP) model (Lambert 1992)

� zero-inflated Conway-Maxwell-Poisson (ZICMP) model

� zero-inflated negative binomial (ZINB) model

� fixed-effects and random-effects Poisson models for panel data

� fixed-effects and random-effects negative binomial models for panel data

� all models in this list (except panel data models) that have spatial effects

The count data models have been used extensively in economics, political science, and sociology. For
example, Hausman, Hall, and Griliches (1984) examine the effects of research and development expenditures
on the number of patents obtained by US companies. Cameron and Trivedi (1986) study factors that affect
the number of doctor visits that a group made during a two-week period. Greene (1994) studies the number
of derogatory reports to a credit reporting agency for a group of credit card applicants. As a final example,
Long (1997) analyzes the number of publications by PhD candidates in science in the final three years of
their doctoral studies.

The COUNTREG procedure can use the maximum likelihood method and the Bayesian method. Initial
starting values for the nonlinear optimizations are typically calculated by OLS. When a model that contains a
dependent count variable is estimated using linear ordinary least squares (OLS) regression, the count nature of
the dependent variable is ignored. This can lead to negative predicted counts and to parameter estimates that
have undesirable properties in terms of statistical efficiency, consistency, and unbiasedness unless the mean
of the counts is high, in which case the Gaussian approximation and linear regression might be satisfactory.
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Getting Started: COUNTREG Procedure
The COUNTREG procedure is similar in use to other SAS regression model procedures. For example, the
following statements are used to estimate a Poisson regression model:

proc countreg data=one ;
model y = x / dist=poisson ;

run;

The response variable y is numeric and has nonnegative integer values. To allow for variance greater than the
mean, specify the DIST=NEGBIN option to fit the negative binomial model instead of the Poisson.

The following example illustrates the use of PROC COUNTREG. The data are taken from Long (1997) and
can be found in the SAS/ETS Sample Library. This study examines how factors such as gender (fem), marital
status (mar), number of young children (kid5), prestige of the graduate program (phd), and number of articles
published by the mentor (ment) of a doctoral candidate in science affect the number of articles (art) published
by the scientist.

The first 10 observations are shown in Figure 12.1.

Figure 12.1 Article Count Data

Obs art fem mar kid5 phd ment

1 3 0 1 2 1.38000 8.0000

2 0 0 0 0 4.29000 7.0000

3 4 0 0 0 3.85000 47.0000

4 1 0 1 1 3.59000 19.0000

5 1 0 1 0 1.81000 0.0000

6 1 0 1 1 3.59000 6.0000

7 0 0 1 1 2.12000 10.0000

8 0 0 1 0 4.29000 2.0000

9 3 0 1 2 2.58000 2.0000

10 3 0 1 1 1.80000 4.0000

The following SAS statements estimate the Poisson regression model:

proc countreg data=long97data;
model art = fem mar kid5 phd ment / dist=poisson;

run;

The “Model Fit Summary” table, shown in Figure 12.2, lists several details about the model. By default, the
COUNTREG procedure uses the Newton-Raphson optimization technique. The maximum log-likelihood
value is shown, in addition to two information measures, Akaike’s information criterion (AIC) and Schwarz’s
Bayesian information criterion (SBC), which can be used to compare competing Poisson models. Smaller
values of these criteria indicate better models.
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Figure 12.2 Estimation Summary Table for a Poisson Regression

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.57373E-9

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 3314

SBC 3343

The parameter estimates of the model and their standard errors are shown in Figure 12.3. All covariates are
significant predictors of the number of articles, except for the prestige of the program (phd), which has a
p-value of 0.6271.

Figure 12.3 Parameter Estimates of Poisson Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.304617 0.102982 2.96 0.0031

fem 1 -0.224594 0.054614 -4.11 <.0001

mar 1 0.155243 0.061375 2.53 0.0114

kid5 1 -0.184883 0.040127 -4.61 <.0001

phd 1 0.012823 0.026397 0.49 0.6271

ment 1 0.025543 0.002006 12.73 <.0001

The following statements fit the negative binomial model. Although the Poisson model requires that the
conditional mean equal the conditional variance, the negative binomial model allows for overdispersion; that
is, the conditional variance can exceed the conditional mean.

proc countreg data=long97data;
model art = fem mar kid5 phd ment / dist=negbin(p=2) method=qn;

run;

The fit summary is shown in Figure 12.4, and parameter estimates are listed in Figure 12.5.
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Figure 12.4 Estimation Summary Table for a Negative Binomial Regression

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model NegBin(p=2)

Log Likelihood -1561

Maximum Absolute Gradient 9.86648E-7

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 3136

SBC 3170

Figure 12.5 Parameter Estimates of Negative Binomial Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.256144 0.138560 1.85 0.0645

fem 1 -0.216418 0.072672 -2.98 0.0029

mar 1 0.150489 0.082106 1.83 0.0668

kid5 1 -0.176415 0.053060 -3.32 0.0009

phd 1 0.015271 0.036040 0.42 0.6718

ment 1 0.029082 0.003470 8.38 <.0001

_Alpha 1 0.441620 0.052967 8.34 <.0001

The parameter estimate for _Alpha of 0.4416 is an estimate of the dispersion parameter in the negative
binomial distribution. A t test for the hypothesis H0 W ˛ D 0 is provided. It is highly significant, indicating
overdispersion (p < 0:0001).

The null hypothesis H0 W ˛ D 0 can be also tested against the alternative ˛ > 0 by using the likelihood ratio
test, as described by Cameron and Trivedi (1998, pp. 45, 77–78). The likelihood ratio test statistic is equal to
�2.LP � LNB/ D �2.�1651C 1561/ D 180, where LP and LNB are the log likelihoods for the Poisson
and negative binomial models, respectively. The likelihood ratio test is highly significant, providing strong
evidence of overdispersion.
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Syntax: COUNTREG Procedure
The following statements are available in the COUNTREG procedure:

PROC COUNTREG < options > ;
BAYES < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variable < options > . . . < variable < options > > < /global-options > ;
DISPMODEL dependent-variable � < dispersion-related-regressors >< /option > ;
FREQ variable ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent-variable � < dispersion-related-regressors ></ option> ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >< output-options > ;
PERFORMANCE < performance-options > ;
PRIOR _REGRESSORS | parameter-list Ï distribution ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST equation1 < , equation2. . . > / test-options ;
SCORE < OUT=SAS-data-set > < output-options > ;
SHOW options ;
STORE < OUT= >item-store-name ;
WEIGHT variable < /options > ;
ZEROMODEL dependent-variable � < zero-inflated-regressors > < /options > ;
SPATIALEFFECTS < model-spatial-effect-regressors > < /options > ;
SPATIALDISPEFFECTS < dispersion-spatial-effect-regressors > < /options > ;
SPATIALZEROEFFECTS < zero-inflation-spatial-effect-regressors > < /option > ;
SPATIALID variable ;

You can specify multiple MODEL statements. The CLASS statement must precede the MODEL statement.
If you include the ZEROMODEL statement, it must appear after the MODEL statement. If you specify more
than one FREQ or WEIGHT statement, the variable that is specified in the first instance is used.

Functional Summary
Table 12.1 summarizes the statements that you can use in the COUNTREG procedure.

Table 12.1 PROC COUNTREG Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set PROC COUNTREG DATA=
Specifies the input spatial weights data set PROC COUNTREG WMAT=
Specifies the identification variable for panel data
analysis

PROC COUNTREG GROUPID=

Does not row-normalize the spatial weights matrix PROC COUNTREG NONORMALIZE
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Table 12.1 continued

Description Statement Option

Writes parameter estimates to an output data set PROC COUNTREG OUTEST=
Requests that the procedure produce graphics via
the Output Delivery System

PROC COUNTREG PLOTS=

Writes estimates to an output data set OUTPUT OUT=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies classification variables CLASS
Specifies a frequency variable FREQ
Specifies a weight variable WEIGHT
Specifies a spatial ID variable SPATIALID

Item Store Control Options
Displays the contents of the item store SHOW
Stores the model in an item store STORE
Restores the model from the item store PROC COUNTREG RESTORE=

Printing Control Options
Prints the correlation matrix of the estimates MODEL CORRB
Prints the covariance matrix of the estimates MODEL COVB
Prints a summary iteration listing MODEL ITPRINT
Suppresses the normal printed output PROC COUNTREG NOPRINT
Requests all printing options MODEL PRINTALL

Option Process Control Options
Specifies maximum number of iterations allowed MODEL MAXITER=
Selects the iterative minimization method to use PROC COUNTREG METHOD=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT
Sets the number of threads to use PERFORMANCE
Specifies the optimization options NLOPTIONS See Chapter 7,

“Nonlinear
Optimization
Methods.”

Model Estimation Options
Specifies the dispersion variables DISPMODEL
Specifies the type of model PROC COUNTREG DIST=
Specifies the type of covariance matrix MODEL COVEST=
Specifies the type of error components model for
panel data

MODEL ERRORCOMP=

Suppresses the intercept parameter MODEL NOINT
Specifies the offset variable MODEL OFFSET=
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Table 12.1 continued

Description Statement Option

Specifies the parameterization for the
Conway-Maxwell-Poisson (CMP) model

MODEL PARAMETER=

Specifies the zero-inflated offset variable ZEROMODEL OFFSET=
Specifies the zero-inflated link function ZEROMODEL LINK=
Specifies variable selection MODEL SELECT=( )
Specifies variable selection DISPMODEL SELECT=( )
Specifies variable selection ZEROMODEL SELECT=( )
Specifies the spatial effects to be added to MODEL
statement

SPATIALEFFECTS

Specifies variable selection SPATIALEFFECTS SELECT=( )
Specifies the spatial effects for dispersion SPATIALDISPEFFECTS
Specifies variable selection SPATIALDISPEFFECTS SELECT=( )
Specifies the spatial effects for zero-inflation SPATIALZEROEFFECTS
Specifies variable selection SPATIALZEROEFFECTS SELECT=( )

Bayesian MCMC Options
Controls the aggregation of multiple posterior
chains

BAYES AGGREGATION=

Automates the initialization of the MCMC
algorithm

BAYES AUTOMCMC()

Specifies the initial values of the MCMC algorithm INIT
Requests evaluation of the marginal likelihood BAYES MARGINLIKE
Specifies the maximum number of tuning phases BAYES MAXTUNE=
Specifies the minimum number of tuning phases BAYES MINTUNE=
Specifies the number of burn-in iterations BAYES NBI=
Specifies the number of iterations during the
sampling phase

BAYES NMC=

Specifies the number of threads to use during the
sampling phase

BAYES NTRDS=

Specifies the number of iterations during the tuning
phase

BAYES NTU=

Controls options for constructing the initial
proposal covariance matrix

BAYES PROPCOV=

Specifies the sampling scheme BAYES SAMPLING=
Specifies the random number generator seed BAYES SEED=
Prints the time required for the MCMC sampling BAYES SIMTIME
Controls the thinning of the Markov chain BAYES THIN=

Bayesian Summary Statistics and Convergence Diagnostics
Displays convergence diagnostics BAYES DIAGNOSTICS=
Displays summary statistics of the posterior
samples

BAYES STATISTICS=
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Table 12.1 continued

Description Statement Option

Bayesian Prior and Posterior Samples
Specifies a SAS data set for the posterior samples BAYES OUTPOST=

Bayesian Analysis
Specifies normal prior distribution PRIOR NORMAL(MEAN=,

VAR=)
Specifies gamma prior distribution PRIOR GAMMA(SHAPE=,

SCALE=)
Specifies inverse gamma prior distribution PRIOR IGAMMA(SHAPE=,

SCALE=)
Specifies uniform prior distribution PRIOR UNIFORM(MIN=,

MAX=)
Specifies beta prior distribution PRIOR BETA(SHAPE1=,

SHAPE2=,
MIN=, MAX=)

Specifies t prior distribution PRIOR T(LOCATION=, DF=)

Output Control Options
Includes covariances in the OUTEST= data set PROC COUNTREG COVOUT
Outputs the estimates of dispersion for the CMP
model

OUTPUT DISPERSION

Outputs the estimates of g0iı for the CMP model OUTPUT GDELTA=
Outputs the estimates of � for the CMP model OUTPUT LAMBDA=
Outputs the estimates of � for the CMP model OUTPUT NU=
Outputs the estimates of � for the CMP model OUTPUT MU=
Outputs the estimates of mode for the CMP model OUTPUT MODE=
Outputs the probability that the response variable
will take the current value

OUTPUT PROB=

Outputs probabilities for particular response values OUTPUT PROBCOUNT( )
Outputs the expected value of the response variable OUTPUT PRED=
Outputs the estimates of variance for the CMP
model

OUTPUT VARIANCE=

Outputs estimates of x0iˇ OUTPUT XBETA=
Outputs estimates of z0i OUTPUT ZGAMMA=
Outputs the probability that the response variable
will take a zero value as a result of the
zero-generating process

OUTPUT PROBZERO=

Specifies the output data set for scoring SCORE OUT=
Outputs the estimates of dispersion for the CMP
model

SCORE DISPERSION

Outputs the estimates of g0iı for the CMP model SCORE GDELTA=
Outputs the estimates of � for the CMP model SCORE LAMBDA=
Outputs the estimates of � for the CMP model SCORE NU=
Outputs the estimates of � for the CMP model SCORE MU=
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Table 12.1 continued

Description Statement Option

Outputs the estimates of mode for the CMP model SCORE MODE=
Outputs the probability that the response variable
will take the current value

SCORE PROB=

Outputs probabilities for particular response values SCORE PROBCOUNT( )
Outputs expected value of response variable SCORE PRED=
Outputs the estimates of variance for the CMP
model

SCORE VARIANCE=

Outputs estimates of x0iˇ SCORE XBETA=
Outputs estimates of z0i SCORE ZGAMMA=
Outputs the probability that the response variable
will take a value of zero as a result of the
zero-generating process

SCORE PROBZERO=

Test Request Options
Requests Wald, Lagrange multiplier, and likelihood
ratio tests

TEST ALL

Requests the Wald test TEST WALD
Requests the Lagrange multiplier test TEST LM
Requests the likelihood ratio test TEST LR

PROC COUNTREG Statement
PROC COUNTREG < options > ;

You can specify the following options in the PROC COUNTREG statement.

Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC COUNTREG uses the
most recently created SAS data set.

GROUPID=variable
specifies an identification variable when a panel data model is estimated. The identification variable is
used as a cross-sectional ID variable.

NONORMALIZE
does not row-normalize the spatial weights matrix that is specified in the WMAT= option. By default,
the spatial weights matrix is required to be row-normalized; that is, the spatial weights matrix has
unit row sum. Equivalently, this means that w.si ; sj / is normalized by multiplying it by 1Pn

jD1w.si ;sj /
,

where n is the total number of spatial units. If the NONORMALIZE option is specified, spatial weights
are used “as is” except for w.si ; si /, which is always treated as 0. This implies that a spatial weight
w.si ; sj / cannot be missing for i ¤ j if the NONOMALIZE option is specified. If the NONOMALIZE
option is not specified, missing spatial weights are replaced with 0.
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WMAT=SAS-data-set
specifies the input SAS data set that contains spatial weights matrix. The spatial weights matrix is
often known as the W matrix. The spatial weights w.si ; sj / for two locations si and sj must satisfy
the following: w.si ; sj / � 0 and w.si ; si / D 0, where i; j D 1; 2; : : : ; n and n is the total number of
spatial locations. However, it is not necessary that w.si ; sj / D w.sj ; si /. In addition, any nonzero
w.si ; si / is replaced with 0. For more information about missing spatial weights in W, see the section
“NONORMALIZE” on page 571.

For a spatial weights data set that has n spatial units, the number of columns must be n C 1 if the
SPATIALID statement specifies a spatial ID variable for the purpose of matching observations. For
more information, see the section “SPATIALID Statement” on page 598. However, if the SPATIALID
statement is not specified, the number of rows and columns in the spatial weights data set must be
equal.

Item Store Control Options

RESTORE=item-store-name
specifies the source item store for processing. An item-store-name consists of a one- or two-level
name, as with SAS data sets. As with data sets, an item store is associated by default with the Work
library, and any item stores that are created in this library are deleted when the SAS session concludes.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to the specified output data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates. This option can also be specified in the
MODEL statement.

COVB
prints the covariance matrix of the parameter estimates. This option can also be specified in the
MODEL statement.

NOPRINT
suppresses all printed output.
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Estimation Control Options

COVEST=HESSIAN | OP | QML
specifies the type of covariance matrix of the parameter estimates. The quasi-maximum-likelihood
estimates are computed using COVEST=QML. By default, COVEST=HESSIAN. You can specify the
following values:

HESSIAN specifies the covariance from the Hessian matrix.

OP specifies the covariance from the outer product matrix.

QML specifies the covariance from the outer product and Hessian matrices.

Plot Control Options

PLOTS<(global-plot-options)> < = plot-request | (plot-requests)>
requests that the COUNTREG procedure produce statistical graphics via the Output Delivery System,
provided that ODS GRAPHICS has been enabled. For general information about ODS Graphics, see
Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide). The global-plot-options
apply to all relevant plots that are generated by the COUNTREG procedure.

You can specify the following global-plot-options:

COUNTS(value1 <value2. . . >)
supplies the plots PREDPROB and PREDPROFILE with particular values of the response variable.
Each value should be a nonnegative integer. Nonintegers are rounded to the nearest integer. The value
can also be a list of the form X TO Y BY Z. For example, COUNTS(0 1 2 TO 10 BY 2 15) specifies
plotting for counts 0, 1, 2, 4, 6, 8, 10, and 15.

ONLY
suppresses the default plots. Only the plots that are specifically requested are produced.

UNPACKPANEL

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)

You can specify the following plot-requests:

ALL
requests that all plots appropriate for the particular analysis be produced.

AUTOCORR< (LAGS=n) >
displays the autocorrelation function plots of the parameters. This plot-request is available only for
Bayesian analysis. The optional LAGS= suboption specifies the number (up to lag n) of autocorrelations
to be plotted in the AUTOCORR plot. If this suboption is not specified, autocorrelations are plotted up
to lag 50.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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BAYESDIAG
displays the TRACE, AUTOCORR, and DENSITY plots. This plot-request is available only for
Bayesian analysis.

BAYESSUM
displays the posterior distribution, prior distribution, and maximum likelihood estimates. This plot-
request is available only for Bayesian analysis.

DENSITY< (FRINGE) >
displays the kernel density plots of the parameters. This plot-request is available only for Bayesian
analysis. If you specify the FRINGE suboption, a fringe plot is created on the X axis of the kernel
density plot.

DISPERSION
produces the overdispersion diagnostic plot.

NONE
suppresses all plots.

PREDPROB
produces the overall predictive probabilities of the specified count levels. You must also specify
COUNTS in global-plot-options.

PREDPROFILE
produces the predictive probability profiles of specified count levels against model regressors. The
regressor on the X axis is varied, whereas all other regressors are fixed at the mean of the observed
data set.

PROFILELIKE
produces the profile likelihood functions of the model parameters. The model parameter on the X axis
is varied, whereas all other parameters are fixed at their estimated maximum likelihood estimates.

TRACE< (SMOOTH) >
displays the trace plots of the parameters. This plot-request is available only for Bayesian analysis.
The SMOOTH suboption displays a fitted penalized B-spline curve for each trace plot.

ZEROPROFILE | ZPPRO
produces the probability profiles of zero-inflation process selection and zero count prediction against
model regressors. The regressor on the X axis is varied, whereas all other regressors are fixed at the
mean of the observed data set.

Optimization Process Control Options

PROC COUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. All the NLO options are available in the NLOPTIONS statement. For more information, see the
“NLOPTIONS Statement” on page 589. In addition, you can specify the following option in the PROC
COUNTREG statement:
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METHOD=CONGRA | DBLDOG | NMSIMP | NRA | NRRIDG | QN | TR
specifies the iterative minimization method to use.

You can specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double-dogleg method.

NMSIMP specifies the Nelder-Mead simplex method.

NONE specifies that no optimization be performed beyond using the ordinary least squares.

NRA specifies the Newton-Raphson method.

NRRIDG specifies the Newton-Raphson ridge method.

QN specifies the quasi-Newton method.

TR specifies the trust region method.

By default, METHOD=NRA.

BAYES Statement
BAYES < options > ;

The BAYES statement controls the Metropolis sampling scheme that is used to obtain samples from the
posterior distribution of the underlying model and data. You can specify the following options.

AGGREGATION=WEIGHTED | NOWEIGHTED (Experimental )
specifies how multiple posterior samples should be aggregated. You can specify the following values:

WEIGHTED implements a weighted resampling scheme for the aggregation of multiple posterior
chains. You can use this option when the posterior distribution is characterized by
several very distinct posterior modes.

NOWEIGHTED aggregates multiple posterior chains without any adjustment. You can use this
option when the posterior distribution is characterized by one or few relatively close
posterior modes.

By default, AGGREGATION=NOWEIGHTED. For more information, see the section “Aggregation
of Multiple Chains” on page 646.

AUTOMCMC< =(automcmc-options) >
specifies an algorithm for the automated initialization of the MCMC sampling algorithm. For more
information, see the section “Automated Initialization of MCMC” on page 647. You can specify the
following automcmc-options:
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ACCURACY=(accuracy-options)
customizes the behavior of the AUTOMCMC algorithm when you are searching for an accurate
representation of the posterior distribution. By default, it implements the TARGETSTATS option.
You can specify the following accuracy-options:

ATTEMPTS=number
specifies the maximum number of attempts that are required in order to obtain accurate
samples from the posterior distribution. By default, ATTEMPTS=10.

TARGETESS=number
requests that the accuracy search be based on the effective sample size (ESS) analysis and
specifies the minimum number of effective samples.

TARGETSTATS<=(targetstats-option)>
requests that the accuracy search be based on the analysis of the posterior mean and a
posterior quantile of interest. You can customize the behavior of the analysis of the posterior
mean by adjusting the HEIDELBERGER suboptions. You can customize the behavior of
the analysis of the posterior quantile by adjusting the RAFTERY suboptions. If you specify
TARGETSTATS, you can also specify how the Raftery-Lewis test should be interpreted by
using the following option:

RLLIMITS=(LB=number UB=number )
specifies a region where the search for the optimal sample size depends directly on the
Raftery-Lewis test. By default, RLLIMITS=(LB=10000 UB=300000).

TOL=value
specifies the proportion of parameters that are required to be accurate. By default, TOL=0.95.

MAXNMC=number
specifies the maximum number of posterior samples that the AUTOMCMC option allows. By
default, MAXNMC=700000.

RANDINIT< =(randinit-options) >
specifies random starting points for the MCMC algorithm. The starting points can be sampled
around the maximum likelihood estimate and around the prior mean. You can specify the
following randinit-options:

MULTIPLIER=(value)
specifies the radius of the area where the starting points are sampled. For the starting points
that are sampled around the maximum likelihood estimate, the radius equals the standard
deviation of the maximum likelihood estimate multiplied by the multiplier value. For the
starting points that are sampled around the prior mean, the radius equals the standard devia-
tion of the prior distribution multiplied by the multiplier value. By default, MULTIPLIER=2.

PROPORTION=(value)
specifies the proportion of starting points that are sampled around the maximum likelihood
estimate and around the prior mean. By default, PROPORTION=0, which implies that all
the initial points are sampled around the maximum likelihood estimate. If you choose to
sample starting points around the prior mean, the convergence of the MCMC algorithm
could be very slow.



BAYES Statement F 577

STATIONARITY=(stationarity-options)
customizes the behavior of the AUTOMCMC algorithm when you are trying to sample from the
posterior distribution. You can specify the following stationarity-options:

ATTEMPTS=number
specifies the maximum number of attempts that are required in order to obtain stationary
samples from the posterior distribution. By default, ATTEMPTS=10.

TOL=value
specifies the proportion of parameters whose samples must be stationary. By default,
TOL=0.95.

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls which diagnostics are produced. All the following diagnostics are produced by using DI-
AGNOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOSTICS=NONE.
If you want some but not all of the diagnostics, or if you want to change certain settings of these
diagnostics, specify a subset of the following keywords. You can specify the following values; by
default, DIAGNOSTICS=NONE.

AUTOCORR< (LAGS=numeric-list) >
computes the autocorrelations at lags that are specified in the numeric-list . Elements in the
numeric-list are truncated to integers, and repeated values are removed. If you do not specify the
LAGS= option, autocorrelations of lags 1, 5, and 10 are computed.

AUTOMCMCSUM
produces a summary table for the AUTOMCMC (automatic MCMC) sampling tool is used.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter.

GEWEKE< (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

HEIDELBERGER< (heidel-options) >
computes the Heidelberger-Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then performed. Optionally, you can specify one or more of the
following heidel-options:



578 F Chapter 12: The COUNTREG Procedure

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. By default, HALPHA=0.1.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed. By default, EPS=0.05.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Carlo standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size.

RAFTERY< (raftery-options) >
computes the Raftery-Lewis diagnostics, which evaluate the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the chain
is allowed to run for a long time. The computation is stopped when the estimated probability
OPQ D Pr.� � O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q �R �
OPQ � Q C R/ D S . The following raftery-options enable you to specify Q;R; S , and a

precision level � for the test:

ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, R=0.005.

EPSILON=value

EPS=value
specifies the tolerance level (a small positive number) for the stationary test. By default,
EPS=0.001.

PROBABILITYvalue

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, S=0.95.

QUANTILEvalue

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. By default, Q=0.025.
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MARGINLIKE< (NSIM=number ) >
requests evaluation of the logarithm of the marginal likelihood. Two estimates are produced: the
cross-entropy estimate and the harmonic mean. The cross-entropy estimate is based on an importance
sampling algorithm for which you can specify the number of importance samples in the NSIM=
suboption. The default is 10,000. For more information, see the section “Marginal Likelihood” on
page 654.

MAXTUNE=number
specifies the maximum number of tuning phases. By default, MAXTUNE=24.

MINTUNE=number
specifies the minimum number of tuning phases. By default, MINTUNE=2.

NBI=number
specifies the number of burn-in iterations before the chains are saved. By default, NBI=1000.

NMC=number
specifies the number of iterations after the burn-in for Metropolis sampling scheme. By default,
NMC=1000.

NTRDS=number

THREADS=number
specifies the number of threads to be used. The number of threads cannot exceed the number of
computer cores available. Each core samples the number of iterations that is specified by the NMC=
option. By default, NTRDS=1.

NTU=number
specifies the number of samples for each tuning phase for Metropolis sampling schemes. By default,
NTU=500.

OUTPOST=SAS-data-set
names the SAS data set to contain the posterior samples. Alternatively, you can create the output data
set by specifying an ODS OUTPUT statement as follows:

ods output posteriorsample=<SAS-data-set>;

PROPCOV=CONGRA | DBLDOG | NEWRAP | NMSIMP | NRRIDG | QUANEW | TRUREG
specifies the method to use in constructing the initial covariance matrix for the Metropolis-
Hastings algorithm. The quasi-Newton (PROPCOV=QUANEW) and Nelder-Mead simplex (PROP-
COV=NMSIMP) methods find numerically approximated covariance matrices at the optimum of
the posterior density function with respect to all continuous parameters. The tuning phase starts at
the optimized values; in some problems, this can greatly increase convergence performance. If the
approximated covariance matrix is not positive definite, then an identity matrix is used instead.

You can specify the following values:

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization that combines a line-search algorithm
with ridging.
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NMSIMP performs a Nelder-Mead simplex optimization.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a quasi-Newton optimization.

TRUREG performs a trust-region optimization.

SAMPLING=value
specifies how to sample from the posterior distribution. You can specify the following values:

MULTIMETROPOLIS
implements a Metropolis sampling scheme on a single block that contains all the parameters of
the model. SAMPLING=MULTIMETROPOLIS is the default option.

UNIMETROPOLIS
implements a Metropolis sampling scheme on multiple blocks, one for each parameter of the
model.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If you
do not specify the SEED= option, or if you specify SEED=0, a random seed is derived from the time
of day, which is read from the computer’s clock.

SIMTIME
prints the time required for the MCMC sampling.

STATISTICS< (global-options) >=ALL | NONE | keyword | (keyword-list)

STATS< (global-options) >=ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics that are produced. Specifying STATISTICS=ALL is
equivalent to specifying STATISTICS=(CORR COV INTERVAL PRIOR SUMMARY). If you do not
want any posterior statistics, specify STATISTICS=NONE. By default, STATISTICS=(SUMMARY
INTERVAL).

You can specify the following global-options:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The values in the numeric-list must be between
0 and 1. Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals
for each parameter. By default, ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The values in the numeric-list must be
between 0 and 100. By default, PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th
percentile points, respectively, for each parameter.

You can specify the following keywords:
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CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the ALPHA= global-option
to request intervals of any probabilities.

NONE
suppresses printing of all summary statistics.

PRIOR
produces a summary table of the prior distributions that are used in the Bayesian analysis.

SUMMARY
produces the means, standard deviations, and percentile points (25th, 50th, and 75th) of the
posterior samples. You can use the global PERCENT= global-option to request specific percentile
points.

THIN=number

THINNING=number
controls the thinning of the Markov chain. Only one in every k samples is used when THIN=k, and if
NBI=n0 and NMC=n, the number of samples that are kept is�

n0 C n

k

�
�

�
n0

k

�
where bac represents the integer part of the number a. By default, THIN=1.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. You can specify
any number of BOUNDS statements as follows.

Each bound is composed of parameter names, constants, and inequality operators as follows:

item operator item [ operator item [ operator item . . . ] ]

Each item is a constant, a parameter name, or a list of parameter names. Each operator is <, >, <=, or >=.

Parameter names are as shown in the Parameter column of the “Parameter Estimates” table. If a parameter
name contains a blank or some other special character (such as ’*’, ’-’,’(’, or ’)’), then you must use the
internal name of the parameter in order to refer to that parameter in the BOUNDS statement.

For more information about how parameters are named in the BOUNDS statement, see the section “Parameter
Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on page 637.
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You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. See
also the section “RESTRICT Statement” on page 592.

The following BOUNDS statement constrains the estimates of the parameter for z to be negative, the
parameters for x1 through x10 to be between zero and one, and the parameter for x1 in the zero-inflation
model to be less than one:

bounds z < 0,
0 < x1-x10 < 1,
Inf_x1 < 1;

The BOUNDS statement is not supported if a BAYES statement is also specified. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.

BY Statement
BY variables ;

A BY statement can be used with PROC COUNTREG to obtain separate analyses on observations in groups
defined by the BY variables. When a BY statement appears, the input data set should be sorted in the order
of the BY variables.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < /global-options > ;

The CLASS statement names the classification variables that are used to group (classify) data in the analysis.
Classification variables can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats to
group values into levels. For more information, see the discussion of the FORMAT procedure in the Base
SAS Procedures Guide. The CLASS statement must precede the MODEL statement.

Most options can be specified either as individual variable options or as global-options. You can specify
options for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that are specified in the CLASS statement. If you specify more than one CLASS statement, the
global-options specified in any one CLASS statement apply to all CLASS statements. However, individual
CLASS variable options override the global-options. You can specify the following values for either an
option or a global-option:

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values for the CLASS variable.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data. You can specify the following values:

DATA sorts levels by the order of appearance in the input data set.

FORMATTED sorts levels by external formatted values, except for numeric variables that have no
explicit format. Those variables are sorted by their unformatted (internal) values.
Ths sort order is machine-dependent.

FREQ sorts levels by descending frequency count; levels that have more observations
come earlier in the order.

INTERNAL sorts levels by unformatted value. Ths sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Programmers Guide: Essentials.
By default, ORDER=FORMATTED.

PARAM=EFFECT | GLM | REFERENCE
specifies the parameterization method for the classification variable or variables. You can specify the
following values:

EFFECT uses effect coding to create design matrix columns from the CLASS variables.

GLM uses less-than-full-rank reference cell coding to create design matrix columns from
the CLASS variables. This value can be used only as a global option.

REFERENCE uses reference cell coding to create design matrix columns from the CLASS vari-
ables. You can abbreviate this value as REF.

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for effect and reference coding and for their orthogonal
parameterizations. It also indirectly determines the reference level for a singular GLM parameterization
through the order of levels. By default, PARAM=GLM.

REF=’level’ | FIRST | LAST
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. When PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords.

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.

By default, REF=LAST.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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DISPMODEL Statement
DISPMODEL dependent-variable � < dispersion-related-regressors ></ option> ;

The DISPMODEL statement specifies the dispersion-related-regressors that are used to model disper-
sion. This statement is ignored unless you specify DIST=COMPOISSON in the MODEL statement. The
dependent-variable in the DISPMODEL statement must be the same as the dependent-variable in the
MODEL statement.

The dependent-variable that appears in the DISPMODEL statement is directly used to model dispersion.
Each of the q variables to the right of the tilde (Ï) has a parameter to be estimated in the regression. For
example, let g0i be the ith observation’s 1 � .q C 1/ vector of values of the q dispersion explanatory variables
(q0 is set to 1 for the intercept term). Then the dispersion is a function of g0iı, where ı is the .qC1/�1 vector
of parameters to be estimated, the dispersion model intercept is ı0, and the coefficients for the q dispersion
covariates are ı1; : : : ; ıq . If you specify DIST=COMPOISSON in the MODEL statement but do not include
a DISPMODEL statement, then only the intercept term ı0 is estimated. The “Parameter Estimates” table in
the displayed output shows the estimates for the dispersion intercept and dispersion explanatory variables;
they are labeled with the prefix “Dsp_”. For example, the dispersion intercept is labeled “Dsp_Intercept”.
If you specify Age (a variable in your data set) as a dispersion explanatory variable, then the “Parameter
Estimates” table labels the corresponding parameter estimate “Dsp_Age”. The following statements fit a
Conway-Maxwell-Poisson model by using the regressors SEX, ILLNESS, and INCOME and by using AGE
as a dispersion-related regressor:

proc countreg data=docvisit;
model doctorvisits=sex illness income / dist=compoisson;
dispmodel doctorvisits ~ age;

run;

You can specify the following option after a slash (/):

SELECT=INFO=< (selection-options) >

SELECTVAR=INFO=< (selection-options) >
requests that the variable selection method be based on an information criterion. For a list of selection-
options, see the section “Options for Variable Selection Based on an Information Criterion” on page 586.
For more information about this type of variable selection, see the section “Variable Selection Using
an Information Criterion” on page 622.

FREQ Statement
FREQ variable ;

The FREQ statement specifies a variable whose values represent the frequency of occurrence of each
observation. PROC COUNTREG treats each observation as if it appears n times, where n is the value of the
FREQ variable for the observation. If the frequency value is not an integer, it is truncated to an integer; if it
is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement, then
the first statement is used.



INIT Statement F 585

INIT Statement
INIT initialization1 < , initialization2 . . . > ;

The INIT statement sets initial values for parameters in the optimization.

Each initialization is written as a parameter or parameter list, followed by an optional equal sign (=), followed
by a number:

parameter <=> number

Parameter names are as shown in the Parameter column of the “Parameter Estimates” table. If a parameter
name contains a blank or some other special character (such as ’*’, ’-’,’(’, or ’)’), then you must use the
internal name of the parameter in order to refer to that parameter in the INIT statement. For more information
about how parameters are named in the INIT statement, see the section “Parameter Naming Conventions for
the RESTRICT, TEST, BOUNDS, and INIT Statements” on page 637.

By default, initial values are determined by OLS regression. Initial values can be displayed with the ITPRINT
option in the PROC statement.

If you also specify the BAYES statement, the INIT statement also initializes the Markov chain Monte Carlo
(MCMC) algorithm. In particular, the INIT statement does one of the following:

� initializes the tuning phase (this also includes the PROPCOV= option)

� initializes the sampling phase, if there is no tuning phase

MODEL Statement
MODEL dependent-variable = <regressors> </ options> ;

The MODEL statement specifies the dependent-variable and independent covariates (regressors) for the
regression model. If you specify no regressors, PROC COUNTREG fits a model that contains only an
intercept. The dependent count variable should take on only nonnegative integer values in the input data
set. PROC COUNTREG rounds any positive noninteger count values to the nearest integer and ignores any
observations that have a negative count.

You can specify only one MODEL statement. You can specify the following options after a slash (/):

DIST=value
specifies the type of model to be analyzed. If you specify this option in both the MODEL statement
and the PROC COUNTREG statement, then only the value in the MODEL statement is used. You can
specify the following values:

COMPOISSON | C | CMP specifies a Conway-Maxwell-Poisson regression model.

NEGBIN(P=1) specifies a negative binomial regression model that uses a linear variance function.

NEGBIN(P=2) | NEGBIN specifies a negative binomial regression model that uses a quadratic vari-
ance function.

POISSON | P specifies a Poisson regression model.
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ZICOMPOISSON | ZICMP specifies a zero-inflated Conway-Maxwell-Poisson regression. You must
also specify the ZEROMODEL statement when you specify this model type.

ZINEGBIN | ZINB specifies a zero-inflated negative binomial regression. You must also specify the
ZEROMODEL statement when you specify this model type.

ZIPOISSON | ZIP specifies a zero-inflated Poisson regression. You must also specify the ZERO-
MODEL statement when you specify this model type.

ERRORCOMP=FIXED | RANDOM
specifies the type of conditional panel model to be analyzed. You can specify the following values:

FIXED specifies a fixed-effect error component regression model.

RANDOM specifies a random-effect error component regression model.

NOINT
suppresses the intercept parameter.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. The offset variable appears as
a covariate in the model with its parameter restricted to 1. The offset variable cannot be the response
variable, the zero-inflation offset variable (if any), or one of the explanatory variables. The “Model
Fit Summary” table gives the name of the data set variable used as the offset variable; it is labeled as
“Offset.”

PARAMETER=MU | LAMBDA
specifies the parameterization for the Conway-Maxwell-Poisson model. The following parameteriza-
tions are supported:

LAMBDA estimates the original Conway-Maxwell-Poisson model (Shmueli et al. 2005).

MU reparameterizes � as documented by Guikema and Coffelt (2008), where � D �1=�

and the integral part of � represents the mode, which can be considered a measure
of central tendency (mean).

By default, PARAMETER=MU.

Options for Variable Selection Based on an Information Criterion

For modeling statements (MODEL, ZEROMODEL, DISPMODEL, SPATIALEFFECTS, SPATIALDISPEF-
FECTS, and SPATIALZEROEFFECTS), you can specify the following option after a slash (/) to control the
variable selection process:

SELECT=INFO< (selection-options) >

SELECTVAR=INFO< (selection-options) >
requests that the variable selection method be based on an information criterion. For more information,
see the section “Variable Selection Using an Information Criterion” on page 622. You can specify one
or more of the following selection-options:
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CRITER=AIC | SBC
specifies the information criterion to use in the variable selection. You can specify the following
values:

AIC uses Akaike’s information criterion to determine whether the current model is better
than the previous model.

SBC uses the Schwarz-Bayesian information criterion to determine whether the current
model is better than the previous model.

By default, CRITER=SBC.

DIRECTION=FORWARD | BACKWARD
specifies the search algorithm to use in the variable selection method. You can specify the
following values:

FORWARD specifies the search algorithm that starts with a base model and adds an
additional variable at each step until either the model cannot be improved or
one of the criteria for stopping has been met.

BACKWARD specifies the search algorithm that starts with the original model and removes
a variable at each step until either the model cannot be improved or one of the
criteria for stopping has been met.

By default, DIRECTION=FORWARD.

LSTOP=percentage
specifies the percentage of decrease or increase in the AIC or SBC that is required for the
algorithm to proceed; percentage must be a nonnegative number less than 1. By default,
LSTOP=0.

MAXSTEPS=number
specifies the maximum number of steps to allow in the search algorithm. The default is infinite;
that is, the algorithm does not stop until the stopping criterion is satisfied.

NOSPLITEFFECTS
specifies that effects that involve class variables should not be split into individual effects that
correspond to class levels. If you specify this option and some effect in your model involves a
class variable, then each candidate model contains either no levels or all levels of the class variable.
By default, NOSPLITEFFECTS is turned off. Thus, unless you specify the NOSPLITEFFECTS
option, if some effect in your model involves a class variable, then some candidate models will
contain some but not all of the levels of the class variable.

RETAIN(variable1 <variable2. . . >)
requests that the variables named within parentheses be retained during the variable selection
process. Each name in the RETAIN list is the name of some parameter associated with the
statement that contains the RETAIN list. This option is ignored if the NOSPLITEFFECTS option
is specified.
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RETAINEFFECT(variable1 <variable2. . . >)
requests that the specified variables be retained during the variable selection process. Each
variable is the name of some effect (regressor ) that is associated with the modeling statement that
contains the variables. This option is ignored if the NOSPLITEFFECTS option is not specified.

Options for Penalized Variable Selection

For the MODEL statement, you can specify the following option instead of the SELECT=INFO option:

SELECT=PEN< (selection-options) >
requests the penalized variable selection method. For more information, see the section “Variable
Selection Using an Information Criterion” on page 622. You can specify one or more of the following
selection-options:

GCV
specifies the generalized cross-validation (GCV) approach. For more information, see the section
“The GCV Approach” on page 627.

GCV1
specifies the GCV1 approach. For more information, see the section “The GCV1 Approach” on
page 628.

GCVLENGTH=value
specifies the number of different values to use for the generalized cross validation (GCV) tuning
parameter. The value corresponds to �

LAMBDA=value
specifies the value of lambda to use as the shrinkage parameter. When LAMBDA=0, no shrinkage
is performed. As the value of LAMBDA increases, the coefficients are shrunk ever more strongly.
By default, LAMBDA=0.

LLASTEPS=value
specifies the maximum number of iterations in the algorithm of local linear approximations. By
default, LLASTEPS=5.

When SELECT=PEN, GCV1 is the default.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates. The CORRB option can also be specified in
the PROC COUNTREG statement.

COVB
prints the covariance matrix of the parameter estimates. The COVB can also be specified in the PROC
COUNTREG statement.
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ITPRINT
prints the objective function and parameter estimates at each iteration. The objective function is the
negative log-likelihood function. The ITPRINT option can also be specified in the PROC COUNTREG
statement.

PRINTALL
requests all printing options. The PRINTALL option can also be specified in the PROC COUNTREG
statement.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement provides the options to control the nonlinear optimization (NLO) subsystem
to perform nonlinear optimization tasks. For a list of all the options of the NLOPTIONS statement, see
Chapter 7, “Nonlinear Optimization Methods.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set
and, optionally, the estimates of x0iˇ, the expected value of the response variable, and the probability of the
response variable taking on the current value or other values that you specify. In a zero-inflated model, you
can additionally request that the output data set contain the estimates of z0i and the probability that the
response is zero as a result of the zero-generating process. For the Conway-Maxwell-Poisson model, the
estimates of g0iı, �, �, �, mode, variance, and dispersion are also available. Except for the probability of the
current value, these statistics can be computed for all observations in which the regressors are not missing,
even if the response is missing. By adding observations that have missing response values to the input data
set, you can compute these statistics for new observations or for settings of the regressors that are not present
in the data without affecting the model fit.

You can specify only one OUTPUT statement. You can specify the following output-options:

DISPERSION=name
names the variable that contains the value of dispersion for the Conway-Maxwell-Poisson distribution.

GDELTA=name
names the variable that contains estimates of g0iı for the Conway-Maxwell-Poisson distribution.

LAMBDA=name
names the variable that contains the estimate of � for the Conway-Maxwell-Poisson distribution.
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MODE=name
names the variable that contains the integral part of � (mode) for the Conway-Maxwell-Poisson
distribution.

MU=name
names the variable that contains the estimate of � for the Conway-Maxwell-Poisson distribution.

NU=name
names the variable that contains the estimate of � for the Conway-Maxwell-Poisson distribution.

OUT=SAS-data-set
names the output data set.

PRED=name

MEAN=name
names the variable that contains the predicted value of the response variable.

PROB=name
names the variable that contains the probability of the response variable taking the current value,
Pr(Y D yi ).

PROBCOUNT(value1 <value2. . . >)
outputs the probability that the response variable will take particular values. Each value should be a
nonnegative integer. If you specify a noninteger, it is rounded to the nearest integer. The value can
also be a list of the form X TO Y BY Z. For example, PROBCOUNT(0 1 2 TO 10 BY 2 15) requests
predicted probabilities for counts 0, 1, 2, 4, 5, 6, 8, 10, and 15. This option is not available for the
fixed-effects and random-effects panel models.

PROBZERO=name
names the variable that contains the value of 'i , the probability of the response variable taking on
the value of zero as a result of the zero-generating process. It is written to the output file only if the
model is zero-inflated. This is not the overall probability of a zero response; that is provided by the
PROBCOUNT(0) option.

VARIANCE=name
names the variable that contains the estimate of variance.

XBETA=name
names the variable that contains estimates of x0iˇ.

ZGAMMA=name
names the variable that contains estimates of z0i .
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PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement controls the number of threads that are used in the optimization phase. You
can also specify that multithreading not be used in the optimization phase by using the NOTHREADS option.

You can specify only one PERFORMANCE statement. The PERFORMANCE statement supports the
following performance-options:

NTHREADS=number
specifies the number of threads to be used during optimization of the model.

NOTHREADS
specifies that no threads should be used during optimization of the model.

DETAILS
specifies that a timing table be included in the output.

If you use both the NTHREADS= and NOTHREADS options, then the NTHREADS= option is ignored. If
you use a PERFORMANCE statement, then it overrides any global threading settings that might have been
set using the CPUCOUNT=, THREADS, or NOTHREADS system option.

PRIOR Statement
PRIOR _REGRESSORS | parameter-list Ï distribution ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify a single
parameter or a list of parameters, a tilde (Ï), and then a distribution with its parameters. Multiple PRIOR
statements are allowed.

You can specify the following distributions:

BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)
specifies a beta distribution that has the parameters SHAPE1 and SHAPE2 and is defined between
MIN and MAX.

GAMMA(SHAPE=a, SCALE=b)
specifies a gamma distribution that has the parameters SHAPE and SCALE.

IGAMMA(SHAPE=a, SCALE=b)
specifies an inverse gamma distribution that has the parameters SHAPE and SCALE.

NORMAL(MEAN=�, VAR=�2)
specifies a normal distribution that has the parameters MEAN and VAR.
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T(LOCATION=�, DF=�)
specifies a noncentral t distribution that has DF degrees of freedom and a location parameter equal to
LOCATION.

UNIFORM(MIN=m, MAX=M)
specifies a uniform distribution that is defined between MIN and MAX.

For more information about how to specify distributions, see the section “Standard Distributions” on page 655.

You can specify the special keyword _REGRESSORS to select all the parameters that are used in the linear
regression component of the model.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written either as a single linear equation or as a comma-separated list of two or more
linear equations. A restriction equation consists of an expression, followed by an equality operator (=) or an
inequality operator (<, >, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <=, or >=.

RESTRICT Statement Expressions

A restriction expression is composed of parameter names, constants, and the operators times (�), plus (C),
and minus (�). Each restriction expression must be a linear function of the parameters in the model. In
addition, no grouping symbols (such as parentheses) are allowed and the constant factor in any product can
only appear on the left-hand side of the times (�) operator.

In the following example, we assume that we have a data set in which y is the count variable and x1-x3 are
continuous variables. The PROC COUNTREG program below uses a RESTRICT statement to impose a
restriction on the estimate for the parameter associated with the variable x2. Thus, in any solution found by
the optimizer, the solution must satisfy the condition that the parameter associated with the variable x2 is
equal to 1.5:

proc countreg data=mycas.exrestrict;
model y = x1-x3;
restrict x2=l.5;

run;

It is important to keep in mind that the parameters associated with the variables are restricted, not the variables
themselves. Thus, in the RESTRICT statement above, we use the variable name “x2” to refer to the parameter
associated with the variable x2, and not the variable itself.

Parameter names are shown in the Parameter column of the “Parameter Estimates” table. If a parameter
name contains a blank or some other special character (such as ’*’, ’-’,’(’, or ’)’), then you must use the
internal name of the parameter in order to refer to that parameter in the RESTRICT statement. For more
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information about how parameters are named in the RESTRICT statement, see the section “Parameter
Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on page 637.

Restrictions should be consistent and not redundant. All restriction equations in all RESTRICT statements
are applied jointly.

RESTRICT Statement Examples

Examples of valid RESTRICT statements include the following:

restrict x1=0.1;
restrict a+b=l;
restrict a-b=0, b+c=1.5;
restrict 2*f=g+h, intercept+f=0;

Examples of invalid RESTRICT statements include the following:

restrict x1^2=4;
restrict x1*x3=4;
restrict x1/x3=2;
restrict sin(a)=0;
restrict a*0.5=l;
restrict 2*(f+h)=1;

In the first four examples, the equation is non-linear. The fifth example is invalid because the constant factor
(0.5) cannot appear on the right-hand side of the times (�) operator. The last example is invalid because
grouping symbols are not allowed.

The set of restrictions must be consistent. For example, you cannot specify

restrict f-g=0,
f-intercept=0,
g-intercept=1;

because the three restrictions are not consistent.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified with the names Restrict1, Restrict2, and so on. The probabilities of these Lagrange multipliers
are computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect
on the estimation results and are not noted in the output.

The following RESTRICT statement constrains the negative binomial dispersion parameter ˛ to 1, which
restricts the conditional variance to be �C �2:

restrict _Alpha = 1;

The RESTRICT statement is not supported if you also specify a BAYES statement. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.
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SCORE Statement
SCORE < OUT=SAS-data-set > < output-options > ;

The SCORE statement enables you to compute predicted values and other statistics for a SAS data set. As
with the OUTPUT statement, the new data set that is created contains all the variables in the input data set
and, optionally, the estimates of x0iˇ, the expected value of the response variable, and the probability that
the response variable will take the current value or other values that you specify. In a zero-inflated model,
you can additionally request that the output data set contain the estimates of z0i and the probability that the
response is zero as a result of the zero-generating process. For the Conway-Maxwell-Poisson model, the
estimates of g0iı, �, �, �, mode, variance, and dispersion are also available. Except for the probability of the
current value, these statistics can be computed for all observations in which the regressors are not missing,
even if the response is missing.

The following statements fit a Poisson model by using the DocVisit data set. Additional observations in the
additionalPatients data set are used to compute expected values by using the SCORE statement. The data in
the additionalPatients data set are not used during the fitting stage and are used only for scoring.

You score a data set in two separate steps. In the first step, you fit the model and use the STORE statement to
preserve it in the DocVisitPoisson item store, as shown in the following statements:

proc countreg data=docvisit;
model doctorvisits=sex illness income / dist=poisson;
store docvisitPoisson;

run;

In the second step, you retrieve the content of the DocVisitPoisson item store and use it to calculate expected
values by using the SCORE statement for the additionalPatients data set as follows:

proc countreg restore=docvisitPoisson data=additionalPatients;
score out=outScores mean=meanPoisson probability=prob;
run;

By retrieving the model from the item store and using it in a postprocessing step, you can separate the fitting
and scoring stages and use data for scoring that might not be available at the time when the model was fitted.

You can specify only one SCORE statement. You can specify the following output-options:

DISPERSION=name
names the variable that contains the value of dispersion for the Conway-Maxwell-Poisson distribution.

GDELTA=name
names the variable that contains estimates of g0iı for the Conway-Maxwell-Poisson distribution.

LAMBDA=name
names the variable that contains the estimate of � for the Conway-Maxwell-Poisson distribution.

MODE=name
names the variable that contains the integral part of � (mode) for the Conway-Maxwell-Poisson
distribution.
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MU=name
names the variable that contains the estimate of � for the Conway-Maxwell-Poisson distribution.

NU=name
names the variable that contains the estimate of � for the Conway-Maxwell-Poisson distribution.

OUT=SAS-data-set
names the output data set.

PRED=name

MEAN=name
names the variable that contains the predicted value of the response variable.

PROB=name
names the variable that contains the probability that the response variable will take the current value,
Pr(Y D yi ).

PROBCOUNT(value1 <value2. . . >)
outputs the probability that the response variable will take particular values. Each value should be
a nonnegative integer. Nonintegers are rounded to the nearest integer. The value can also be a list
of the form X TO Y BY Z. For example, PROBCOUNT(0 1 2 TO 10 BY 2 15) requests predicted
probabilities for counts 0, 1, 2, 4, 5, 6, 8, 10, and 15. This option is not available for the fixed-effects
and random-effects panel models.

PROBZERO=name
names the variable that contains the value of 'i , the probability of the response variable taking on
the value of zero as a result of the zero-generating process. It is written to the output file only if the
model is zero-inflated. This is not the overall probability of a zero response; that is provided by the
PROBCOUNT(0) option.

VARIANCE=name
names the variable that contains the estimate of variance for the Conway-Maxwell-Poisson distribution.

XBETA=name
names the variable that contains estimates of x0iˇ.

ZGAMMA=name
names the variable that contains estimates of z0i .
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SHOW Statement
SHOW options ;

The SHOW statement displays the contents of the item store. You can use the SHOW statement to verify the
contents of the item store before proceeding with the analysis.

Table 12.2 summarizes the options available in the SHOW statement.

Table 12.2 SHOW Statement Options

Option Description

ALL Displays all applicable contents
CLASSLEVELS Displays the “Class Level Information” table
CORRELATION Produces the correlation matrix of the parameter estimates
COVARIANCE Produces the covariance matrix of the parameter estimates
EFFECTS Displays information about the constructed effects
FITSTATS Displays the fit statistics
PARAMETERS Displays the parameter estimates
PROGRAM Displays the SAS program that generates the item store

You can specify the following options after the SHOW statement:

ALL | _ALL_
displays all applicable contents.

CLASSLEVELS | CLASS
displays the “Class Level Information” table. This table is produced by the COUNTREG procedure by
default if the model contains effects that depend on classification variables.

CORRELATION | CORR | CORRB
produces the correlation matrix of the parameter estimates.

COVARIANCE | COV | COVB
produces the covariance matrix of the parameter estimates.

EFFECTS
displays information about the effects in the model.

FITSTATS | FIT | FITSUMMARY
displays the fit statistics from the item store.

PARAMETERS

PARMS
displays the parameter estimates table from the item store.
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PROGRAM

PROG
displays the SAS program that generates the item store, provided that this was stored at store generation
time. The program does not include comments, titles, or some other global statements.

SPATIALDISPEFFECTS Statement
SPATIALDISPEFFECTS < dispersion-spatial-effect-regressors > < /options > ;

The SPATIALDISPEFFECTS statement adds the spatially weighted dispersion-spatial-effect-regressors to
regressors that are specified in the DISPMODEL statement. For example, if you specify q variables z1; : : : ; zq
in the SPATIALDISPEFFECTS statement, then each of q spatially weighted variables Wz1; : : : ;Wzq has
a parameter to be estimated in the regression. Here, Wz1; : : : ;Wzq denotes the matrix and vector product
between W and a column vector whose entries are the values of z1; : : : ; zq , respectively. The spatial weights
matrix W comes from the data set that is specified in the WMAT= option in the PROC COUNTREG
statement.

The “Parameter Estimates” table in the displayed output shows the estimates for spatially weighted explanatory
variables; they are labeled with the prefix “Dsp_W_”. For example, if you specify z (a variable in your data
set) as a spatial effect explanatory variable, then the “Parameter Estimates” table labels the corresponding
parameter estimate “Dsp_W_z”.

You can specify the following option after a slash (/):

SELECT=INFO=< (selection-options) >

SELECTVAR=INFO=< (selection-options) >
requests that the variable selection method be based on an information criterion. For a list of selection-
options, see the section “Options for Variable Selection Based on an Information Criterion” on page 586.
For more information about this type of variable selection, see the section “Variable Selection Using
an Information Criterion” on page 622.

SPATIALEFFECTS Statement
SPATIALEFFECTS < model-spatial-effect-regressors > < /options > ;

The SPATIALEFFECTS statement adds the spatially weighted model-spatial-effect-regressors to regressors
that are specified in the MODEL statement. For example, if you specify q variables z1; : : : ; zq in the
SPATIALEFFECTS statement, then each of q spatially weighted variables Wz1; : : : ;Wzq has a parameter
to be estimated in the regression. Here, Wz1; : : : ;Wzq denotes the matrix and vector product between W
and a column vector whose entries are the values of z1; : : : ; zq , respectively. The spatial weights matrix W
comes from the data set that is specified in the WMAT= option in the PROC COUNTREG statement.

The “Parameter Estimates” table in the displayed output shows the estimates for spatially weighted model-
spatial-effect-regressors; they are labeled with the prefix “W_”. For example, if you specify z (a variable
in your data set) as a spatial effect explanatory variable, then the “Parameter Estimates” table labels the
corresponding parameter estimate “W_z”.

You can specify the following option after a slash (/):



598 F Chapter 12: The COUNTREG Procedure

SELECT=INFO=< (selection-options) >

SELECTVAR=INFO=< (selection-options) >
requests that the variable selection method be based on an information criterion. For a list of selection-
options, see the section “Options for Variable Selection Based on an Information Criterion” on page 586.
For more information about this type of variable selection, see the section “Variable Selection Using
an Information Criterion” on page 622.

SPATIALID Statement
SPATIALID variable ;

For a spatial lag of X model, the SPATIALID statement specifies a variable that identifies a spatial unit for
each observation in the two data sets that are provided by the DATA= and WMAT= options in the PROC
COUNTREG statement. The variable also identifies the rows and columns of the WMAT= data set. The
values of the spatial ID variable cannot be missing in either the DATA= data set or the WMAT= data set.
When there are multiple SPATIALID statements, the first SPATIALID statement takes precedence over others
that follow. In such a circumstance, the first SPATIALID statement applies to all spatial lag of X models.

The variable in the SPATIALID statement can be either numeric or character. However, the type of spatial
ID variable in both the primary data set (specified in the DATA= option) and the spatial weights data set
(specified in the WMAT= option) must be the same. When the spatial ID variable is numeric, its value needs
to be an integer. If you specify a number that is not an integer, PROC COUNTREG uses the integer part of
that number for matching. When the variable is numeric, the first letter of column names in the WMAT=
data set (which specifies a spatial unit) is discarded because a valid SAS variable name must start with a
letter or an underscore. When a numeric column name (such as, 11) is in the WMAT= data set, the IMPORT
procedure (in Base SAS) appends an underscore to the column name in order to make it a valid name (for
example, 11 becomes _11).

SPATIALZEROEFFECTS Statement
SPATIALZEROEFFECTS < zero-inflation-spatial-effect-regressors > < /option > ;

The SPATIALZEROEFFECTS statement adds the spatially weighted zero-inflation-spatial-effect-regressors
to regressors that are specified in the ZEROMODEL statement. For example, if you specify q vari-
ables z1; : : : ; zq in the SPATIALZEROEFFECTS statement, then each of q spatially weighted variables
Wz1; : : : ;Wzq has a parameter to be estimated in the regression. Here, Wz1; : : : ;Wzq denotes the matrix
and vector product between W and a column vector whose entries are the values of z1; : : : ; zq , respectively.
The spatial weights matrix W comes from the data set that is specified in the WMAT= option in the PROC
COUNTREG statement.

The “Parameter Estimates” table in the displayed output shows the estimates for spatially weighted explanatory
variables; they are labeled with the prefix “Inf_W_”. For example, if you specify z (a variable in your data
set) as a spatial effect explanatory variable, then the “Parameter Estimates” table labels the corresponding
parameter estimate “Inf_W_z”.

You can specify the following option after a slash (/):
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SELECT=INFO=< (selection-options) >

SELECTVAR=INFO=< (selection-options) >
requests that the variable selection method be based on an information criterion. For a list of selection-
options, see the section “Options for Variable Selection Based on an Information Criterion” on page 586.
For more information about this type of variable selection, see the section “Variable Selection Using
an Information Criterion” on page 622.

STORE Statement
STORE < OUT= >item-store-name ;

The STORE statement saves the contents of the analysis to an item store in a binary format that cannot
be modified. You can restore the stored information by specifying the RESTORE= option in the PROC
COUNTREG statement and use it in postprocessing analysis.

TEST Statement
<label:> TEST <'string'> equation1 < , equation2. . . > / test-options ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses
about the regression parameters that are specified in the preceding MODEL statement.

Each test is written either as a single linear equation or as a comma-separated list of two or more linear
equations. A test equation specifies a linear hypothesis to be tested and consists of an expression, followed
by the equality operator (=), followed by a second expression:

expression = expression

The rules governing valid test expressions are the same as those for restriction expressions. For more
information see the section “RESTRICT Statement Expressions” on page 592.

Each equation specifies a linear hypothesis to be tested and consists of regression parameter names and
relational operators. The regression parameter names are as shown in the Parameter column of the “Parameter
Estimates” table. For more information about how parameters are named in the TEST statement, see the
section “Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on
page 637. Only linear equality restrictions and tests are permitted in PROC COUNTREG. Test equations
can consist only of algebraic operations that involve the addition symbol (+), subtraction symbol (-), and
multiplication symbol (*).

All hypotheses in one TEST statement are tested jointly.

You can specify the following test-options after a slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.
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LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

WALD
requests the Wald test.

By default, the Wald test is performed.

You can add a label (which is printed in the output) to a TEST statement in two ways: add an unquoted
label followed by a colon before the TEST keyword, or add a quoted string after the TEST keyword. The
unquoted label cannot contain any spaces. If you include both an unquoted label and a quoted string, PROC
COUNTREG uses the unquoted label . If you specify neither an unquoted label nor a quoted string, PROC
COUNTREG automatically labels the tests.

The following statements illustrate the use of the TEST statement:

proc countreg;
model y = x1 x2 x3;
test x1 = 0, 1.5 * x2 + 2 * x3 = 0;
test_int: test intercept = 0, x3 = 0.75;

run;

In the example, two separate tests are performed. The first test investigates the joint hypothesis that

ˇ1 D 0

and

1:5ˇ2 C 2ˇ3 D 0

The second test is labeled “test_int” and investigates the joint hypothesis that

ˇIntercept D 0

and

ˇ3 D 0:75

You cannot specify both the TEST statement and the BAYES statement.
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WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

You can specify the following option after a slash (/):

NONORMALIZE
does not normalize the weights. By default, the weights are normalized so that they add up to the
actual sample size. Weights wi are normalized by multiplying them by nPn

iD1wi
, where n is the sample

size. If the weights are required to be used “as is”, then specify the NONORMALIZE option.

ZEROMODEL Statement
ZEROMODEL dependent variable � < zero-inflated regressors > < /options > ;

The ZEROMODEL statement is required if you specify either ZIP or ZINB in the DIST= option in the
MODEL statement. If ZIP or ZINB is specified, then the ZEROMODEL statement must follow immediately
after the MODEL statement. The dependent variable in the ZEROMODEL statement must be the same as
the dependent variable in the MODEL statement.

The zero-inflated (ZI) regressors appear in the equation that determines the probability ('i ) of a zero count.
Each of these q variables has a parameter to be estimated in the regression. For example, let z0i be the ith
observation’s 1 � .q C 1/ vector of values of the q ZI explanatory variables (w0 is set to 1 for the intercept
term). Then 'i is a function of z0i , where  is the .q C 1/ � 1 vector of parameters to be estimated. (The ZI
intercept is 0; the coefficients for the q ZI covariates are 1; : : : ; q .) If this option is omitted, then only the
intercept term 0 is estimated. The “Parameter Estimates” table in the displayed output gives the estimates
for the ZI intercept and ZI explanatory variables; they are labeled with the prefix “Inf_”. For example, the
ZI intercept is labeled “Inf_intercept”. If you specify Age (a variable in your data set) as a ZI explanatory
variable, then the “Parameter Estimates” table labels the corresponding parameter estimate “Inf_Age”.

You can specify the following options after a slash (/):

LINK=LOGISTIC | NORMAL
specifies the distribution function to use to compute probability of zeros. The following distribution
functions are supported:

LOGISTIC specifies the logistic distribution.

NORMAL specifies the standard normal distribution.

If this option is omitted, then the default ZI link function is logistic.
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OFFSET=variable
specifies a variable in the input data set to be used as a zero-inflated (ZI) offset variable. The ZI offset
variable is included as a term, with its coefficient restricted to 1, in the equation that determines the
probability ('i ) of a zero count. The ZI offset variable cannot be the response variable, the offset
variable (if any), or one of the explanatory variables. The name of the data set variable that is used as the
ZI offset variable is displayed in the “Model Fit Summary” output, where it is labeled as “Inf_offset”.

SELECT=INFO< (option) >

SELECTVAR=INFO< (option) >
requests that the variable selection method be based on an information criterion. For a list of selection-
options, see the section “Options for Variable Selection Based on an Information Criterion” on page 586.
For more information about this type of variable selection, see the section “Variable Selection Using
an Information Criterion” on page 622.

Details: COUNTREG Procedure

Specification of Regressors
Each term in a model, called a regressor, is a variable or combination of variables. Regressors are specified
in a special notation that uses variable names and operators. There are two kinds of variables: classification
(CLASS) variables and continuous variables. There are two primary operators: crossing and nesting. A third
operator, the bar operator, is used to simplify effect specification.

In the SAS System, classification ( CLASS) variables are declared in the CLASS statement. (They can also be
called categorical, qualitative, discrete, or nominal variables.) Classification variables can be either numeric
or character. The values of a classification variable are called levels. For example, the classification variable
Sex has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is assumed to be continuous.
Continuous variables, which must be numeric, are used for covariates. For example, the heights and weights
of subjects are continuous variables. A response variable is a discrete count variable and must also be
numeric.

Types of Regressors

Seven different types of regressors are used in the COUNTREG procedure. In the following list, assume that
A, B, C, D, and E are CLASS variables and that X1 and X2 are continuous variables:

� Regressors are specified by writing continuous variables by themselves: X1 X2.

� Polynomial regressors are specified by joining (crossing) two or more continuous variables with
asterisks: X1*X1 X1*X2.

� Dummy regressors are specified by writing CLASS variables by themselves: A B C.

� Dummy interactions are specified by joining classification variables with asterisks: A*B B*C
A*B*C.
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� Nested regressors are specified by following a dummy variable or dummy interaction with a classifica-
tion variable or list of classification variables enclosed in parentheses. The dummy variable or dummy
interaction is nested within the regressor that is listed in parentheses: B(A) C(B*A) D*E(C*B*A).
In this example, B(A) is read “B nested within A.”

� Continuous-by-class regressors are written by joining continuous variables and classification variables
with asterisks: X1*A.

� Continuous-nesting-class regressors consist of continuous variables followed by a classification variable
interaction enclosed in parentheses: X1(A) X1*X2(A*B).

One example of the general form of an effect that involves several variables is

X1*X2*A*B*C(D*E)

This example contains an interaction between continuous terms and classification terms that are nested within
more than one classification variable. The continuous list comes first, followed by the dummy list, followed
by the nesting list in parentheses. Note that asterisks can appear within the nested list but not immediately
before the left parenthesis.

The MODEL statement and several other statements use these effects. Some examples of MODEL statements
that use various kinds of effects are shown in Table 12.3, where a, b, and c represent classification variables.
The variables x and z are continuous.

Table 12.3 Examples of MODEL Statement and Effects

Specification Type of Model

model y=x; Simple regression

model y=x z; Multiple regression

model y=x x*x; Polynomial regression

model y=a; Regression with one classification variable

model y=a b c; Regression with multiple classification variables

model y=a b a*b; Regression with classification variables and their interactions

model y=a b(a) c(b a); Regression with classification variables and their interactions

model y=a x; Regression with both continuous and classification variables

model y=a x(a); Separate-slopes regression

model y=a x x*a; Homogeneity-of-slopes regression

The Bar Operator

You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:
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model Y = A B C A*B A*C B*C A*B*C;

model Y = A|B|C;

When the bar (|) is used, the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 given in Searle
(1971, p. 390).

� Multiple bars are evaluated from left to right. For instance, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

� Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

� Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

� Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For instance,
A(B) | B(D E) generates A*B(B D E), but this effect is discarded immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the
specification A | B | C@2 would result in only those effects that contain two or fewer variables: in this case,
A B A*B C A*C and B*C.

More examples of using the | and @ operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)
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Missing Values
Any observation in the input data set that has a missing value for one or more of the regressors is ignored by
PROC COUNTREG and not used in the model fit. PROC COUNTREG rounds any positive noninteger count
values to the nearest integer. PROC COUNTREG ignores any observations that have a negative count, a zero
or negative weight, or a frequency less than 1.

If there are observations in the input data set that have missing response values but with nonmissing regressors,
PROC COUNTREG can compute several statistics and store them in an output data set by using the OUTPUT
statement. For example, you can request that the output data set contain the estimates of x0iˇ, the expected
value of the response variable, and the probability that the response variable will take values that you specify.
In a zero-inflated model, you can additionally request that the output data set contain the estimates of z0i ,
and the probability that the response is zero as a result of the zero-generating process. The presence of such
observations (with missing response values) does not affect the model fit.

Poisson Regression
The most widely used model for count data analysis is Poisson regression. This assumes that yi , given the
vector of covariates xi , is independently Poisson-distributed with

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
; yi D 0; 1; 2; : : :

and the mean parameter (that is, the mean number of events per period) is given by

�i D exp.x0iˇ/

where ˇ is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0; the coefficients for the k regressors are
ˇ1; : : : ; ˇk .) Taking the exponential of x0iˇ ensures that the mean parameter �i is nonnegative. It can be
shown that the conditional mean is given by

E.yi jxi / D �i D exp.x0iˇ/

The name log-linear model is also used for the Poisson regression model because the logarithm of the
conditional mean is linear in the parameters:

lnŒE.yi jxi /� D ln.�i / D x0iˇ

Note that the conditional variance of the count random variable is equal to the conditional mean in the Poisson
regression model:

V.yi jxi / D E.yi jxi / D �i

The equality of the conditional mean and variance of yi is known as equidispersion.

The marginal effect of a regressor is given by

@E.yi jxi /
@xj i

D exp.x0iˇ/ˇj D E.yi jxi /ˇj
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Thus, a one-unit change in the jth regressor leads to a proportional change in the conditional mean E.yi jxi /
of ˇj .

The standard estimator for the Poisson model is the maximum likelihood estimator (MLE). Because the
observations are independent, the log-likelihood function is written as

L D
NX
iD1

wi .��i C yi ln�i � lnyi Š/ D
NX
iD1

wi .�e
x0
i
ˇ
C yix0iˇ � lnyi Š/

where wi is defined as follows:

1 if neither the WEIGHT nor FREQ statement is used.

Wi where Wi are the nonnormalized values of the variable that are specified in the WEIGHT
statement in which the NONORMALIZE option is specified.

nPn
iD1Wi

Wi where Wi are the nonnormalized values of the variable that is specified in the WEIGHT
statement.

Fi where Fi are the values of the variable that is specified in the FREQ statement.

WiFi if both the WEIGHT statement, without the NONORMALIZE option, and the FREQ
statement are specified.Pn

iD1 FiPn
iD1 FiWi

WiFi if both the FREQ and WEIGHT statements are specified.

The gradient and the Hessian are, respectively,

@L
@ˇ
D

NX
iD1

wi .yi � �i /xi D
NX
iD1

wi .yi � e
x0
i
ˇ/xi

@2L
@ˇ@ˇ0

D �

NX
iD1

wi�ixixi 0 D �
NX
iD1

wie
x0
i
ˇxix0i

The Poisson model has been criticized for its restrictive property that the conditional variance must equal the
conditional mean. Real-life data are often characterized by overdispersion (that is, the variance exceeds the
mean). Allowing for overdispersion can improve model predictions because the Poisson restriction of equal
mean and variance results in the underprediction of zeros when overdispersion exists. The most commonly
used model that accounts for overdispersion is the negative binomial model. Conway-Maxwell-Poisson
regression enables you to model both overdispersion and underdispersion.
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Conway-Maxwell-Poisson Regression
The Conway-Maxwell-Poisson (CMP) distribution is a generalization of the Poisson distribution that enables
you to model both underdispersed and overdispersed data. This distribution was originally proposed by
Conway and Maxwell (1962), but its implementation to model under- and overdispersed count data is
attributed to Shmueli et al. (2005).

Recall that yi , given the vector of covariates xi , is independently Poisson-distributed as

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
; yi D 0; 1; 2; : : :

The Conway-Maxwell-Poisson distribution is defined as

P.Yi D yi jxi ; zi / D
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi D 0; 1; 2; : : :

where the normalization factor is

Z.�i ; �i / D

1X
nD0

�ni
.nŠ/�i

and

�i D exp.x0iˇ/

�i D exp.�g0iı/

The ˇ vector is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0, and the coefficients for the k regressors
are ˇ1; : : : ; ˇk .) The ı vector is an .mC 1/ � 1 parameter vector. (The intercept is represented by ı0, and
the coefficients for the m regressors are ı1; : : : ; ık .) The covariates are represented by xi and gi vectors.

One of the restrictive properties of the Poisson model is that the conditional mean and variance must be
equal:

E.yi jxi / D V.yi jxi / D �i D exp.x0iˇ/

The CMP distribution overcomes this restriction by defining an additional parameter, �, which governs the
rate of decay of successive ratios of probabilities such that

P.Yi D yi � 1/=P.Yi D yi / D
.yi /

�i

�i

The introduction of the additional parameter, �, allows for flexibility in modeling the tail behavior of the
distribution. If � D 1, the ratio is equal to the rate of decay of the Poisson distribution. If � < 1, the rate
of decay decreases, enabling you to model processes that have longer tails than the Poisson distribution
(overdispersed data). If � > 1, the rate of decay increases in a nonlinear fashion, thus shortening the tail of
the distribution (underdispersed data).

There are several special cases of the Conway-Maxwell-Poisson distribution. If � < 1 and � ! 1, the
Conway-Maxwell-Poisson results in the Bernoulli distribution. In this case, the data can take only the values
0 and 1, which represents an extreme underdispersion. If � D 1, the Poisson distribution is recovered with
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its equidispersion property. When � D 0 and � < 1, the normalization factor is convergent and forms a
geometric series,

Z.�i ; 0/ D
1

1 � �i

and the probability density function becomes

P.Y D yi I�i ; �i D 0/ D .1 � �i /�
yi
i

The geometric distribution represents a case of severe overdispersion.

Mean, Variance, and Dispersion for the Conway-Maxwell-Poisson Model

The mean and the variance of the Conway-Maxwell-Poisson distribution are defined as

EŒY � D
@ lnZ
@ ln�

V ŒY � D
@2 lnZ
@2 ln�

The Conway-Maxwell-Poisson distribution does not have closed-form expressions for its moments in terms
of its parameters � and �. However, the moments can be approximated. Shmueli et al. (2005) use asymptotic
expressions for Z to derive E.Y / and V.Y / as

EŒY � � �1=� C
1

2�
�
1

2

V ŒY � �
1

�
�1=�

In the Conway-Maxwell-Poisson model, the summation of infinite series is evaluated using a logarithmic
expansion. The mean and variance are calculated as follows for the Shmueli et al. (2005) model:

E.Y / D
1

Z.�; �/

1X
jD0

j�j

.j Š/�

V.Y / D
1

Z.�; �/

1X
jD0

j 2�j

.j Š/�
�E.Y /2

The dispersion is defined as

D.Y / D
V.Y /

E.Y /
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Likelihood Function for the Conway-Maxwell-Poisson Model

The likelihood for a set of n independently and identically distributed variables y1; y2; : : : ; yn is written as

L.y1; y2; : : : ; ynj�; �/ D

Qn
iD1�

yi

.
Qn
iD1 yi Š/

�
Z.�; �/�n

D �
Pn
iD1 yi exp .��

nX
iD1

ln.yi Š//Z.�; �/�n

D �S1 exp .��S2/Z.�; �/�n

where S1 and S2 are sufficient statistics for y1; y2; : : : ; yn. You can see from the preceding equation that the
Conway-Maxwell-Poisson distribution is a member of the exponential family. The log-likelihood function
can be written as

L D �n ln.Z.�; �//C
nX
iD1

.yi ln.�/ � � ln.yi Š//

The gradients can be written as

Lˇ D
 
NX
kD1

yk � n
�Z.�; �/�
Z.�; �/

!
x

Lı D
 
NX
kD1

ln.ykŠ/ � n
Z.�; �/�
Z.�; �/

!
�z

Conway-Maxwell-Poisson Regression: Guikema and Coffelt (2008) Reparameterization

Guikema and Coffelt (2008) propose a reparameterization of the Shmueli et al. (2005) Conway-Maxwell-
Poisson model to provide a measure of central tendency that can be interpreted in the context of the generalized
linear model. By substituting � D �� , the Guikema and Coffelt (2008) formulation is written as

P.Y D yi I�; �/ D
1

S.�; �/

�
�yi

yi Š

��
where the new normalization factor is defined as

S.�; �/ D

1X
jD0

 
�j

j Š

!�

In terms of their new formulations, the mean and variance of Y are given as

EŒY � D
1

�

@ lnS
@ ln�

V ŒY � D
1

�2
@2 lnS
@2 ln�
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They can be approximated as

EŒY � � �C
1

2
� �

1

2

V ŒY � �
�

�

In the COUNTREG procedure, the mean and variance are calculated according to the following formulas for
the Guikema and Coffelt (2008) model:

E.Y / D
1

Z.�; �/

1X
jD0

j��j

.j Š/�

V.Y / D
1

Z.�; �/

1X
jD0

j 2��j

.j Š/�
�E.Y /2

In terms of the new parameter �, the log-likelihood function is specified as

L D ln.S.�; �//C �
NX
iD1

.yi ln.�/ � ln.yi Š//

and the gradients are calculated as

Lˇ D
 
�

NX
iD1

yi �
�S.�; �/�

S.�; �/

!
x

Lı D
 
NX
iD1

.yi ln.�/ � ln.yi Š// �
S.�; �/�
S.�; �/

!
�g

The default in the COUNTREG procedure is the Guikema and Coffelt (2008) specification. The Shmueli
et al. (2005) model can be estimated by specifying the PARAMETER=LAMBDA option. If you specify
DISP=COMPOISSON in the MODEL statement and you omit the DISPMODEL statement, the model is
estimated according to the Lord, Guikema, and Geedipally (2008) specification, where � represents a single
parameter that does not depend on any covariates. The Lord, Guikema, and Geedipally (2008) specification
makes the model comparable to the negative binomial model because it has only one parameter.

The dispersion is defined as

D.Y / D
V.Y /

E.Y /

Using the Guikema and Coffelt (2008) specification results in the integral part of � representing the mode,
which is a reasonable approximation for the mean. The dispersion can be written as

D.Y / D
V.Y /

E.Y /
�

�
�

�C 1
2
� � 1

2

�
1

v
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When � < 1, the variance can be shown to be greater than the mean and the dispersion greater than 1. This is
a result of overdispersed data. When � = 1 and the mean and variance are equal, the dispersion is equal to 1
(Poisson model). When � > 1, the variance is smaller than the mean and the dispersion is less than 1. This is
a result of underdispersed data.

All Conway-Maxwell-Poisson models in the COUNTREG procedure are parameterized in terms of dispersion,
where

� ln.�/ D ı0 C
qX
nD1

ıngn

Negative values of ln.�/ indicate that the data are approximately overdispersed, and positive values of ln.�/
indicate that the data are approximately underdispersed.

Negative Binomial Regression
The Poisson regression model can be generalized by introducing an unobserved heterogeneity term for
observation i. Thus, the individuals are assumed to differ randomly in a manner that is not fully accounted
for by the observed covariates. This is formulated as

E.yi jxi ; �i / D �i�i D ex
0
i
ˇC�i

where the unobserved heterogeneity term �i D e
�i is independent of the vector of regressors xi . Then the

distribution of yi conditional on xi and �i is Poisson with conditional mean and conditional variance �i�i :

f .yi jxi ; �i / D
exp.��i�i /.�i�i /yi

yi Š

Let g.�i / be the probability density function of �i . Then, the distribution f .yi jxi / (no longer conditional on
�i ) is obtained by integrating f .yi jxi ; �i / with respect to �i :

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

An analytical solution to this integral exists when �i is assumed to follow a gamma distribution. This solution
is the negative binomial distribution. When the model contains a constant term, it is necessary to assume that
E.e�i / D E.�i / D 1 in order to identify the mean of the distribution. Thus, it is assumed that �i follows a
gamma(�; �) distribution with E.�i / D 1 and V.�i / D 1=� ,

g.�i / D
��

�.�/
���1i exp.���i /
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where �.x/ D
R1
0 zx�1 exp.�z/dz is the gamma function and � is a positive parameter. Then, the density

of yi given xi is derived as

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

D
���

yi
i

yi Š�.�/

Z 1
0

e�.�iC�/�i �
�Cyi�1
i d�i

D
���

yi
i �.yi C �/

yi Š�.�/.� C �i /�Cyi

D
�.yi C �/

yi Š�.�/

�
�

� C �i

�� � �i

� C �i

�yi
Making the substitution ˛ D 1

�
(˛ > 0), the negative binomial distribution can then be rewritten as

f .yi jxi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
; yi D 0; 1; 2; : : :

Thus, the negative binomial distribution is derived as a gamma mixture of Poisson random variables. It has
conditional mean

E.yi jxi / D �i D ex
0
i
ˇ

and conditional variance

V.yi jxi / D �i Œ1C
1

�
�i � D �i Œ1C ˛�i � > E.yi jxi /

The conditional variance of the negative binomial distribution exceeds the conditional mean. Overdispersion
results from neglected unobserved heterogeneity. The negative binomial model with variance function
V.yi jxi / D �i C ˛�

2
i , which is quadratic in the mean, is referred to as the NEGBIN2 model (Cameron

and Trivedi 1986). To estimate this model, specify DIST=NEGBIN(p=2) in the MODEL statement. The
Poisson distribution is a special case of the negative binomial distribution where ˛ D 0. A test of the Poisson
distribution can be carried out by testing the hypothesis that ˛ D 1

�i
D 0. A Wald test of this hypothesis is

provided (it is the reported t statistic for the estimated ˛ in the negative binomial model).

The log-likelihood function of the negative binomial regression model (NEGBIN2) is given by

L D

NX
iD1

wi

(
yi�1X
jD0

ln.j C ˛�1/ � ln.yi Š/

�.yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ

)

�.y C a/=�.a/ D

y�1Y
jD0

.j C a/

if y is an integer. For the definition of wi , see “Poisson Regression” on page 605.
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The gradient is

@L
@ˇ
D

NX
iD1

wi
yi � �i

1C ˛�i
xi

and

@L
@˛
D

NX
iD1

wi

8<:�˛�2
yi�1X
jD0

1

.j C ˛�1/
C ˛�2 ln.1C ˛�i /C

yi � �i

˛.1C ˛�i /

9=;
Cameron and Trivedi (1986) consider a general class of negative binomial models with mean �i and variance
function �i C ˛�

p
i . The NEGBIN2 model, with p D 2, is the standard formulation of the negative binomial

model. Models with other values of p, �1 < p < 1, have the same density f .yi jxi / except that ˛�1

is replaced everywhere by ˛�1�2�p. The negative binomial model NEGBIN1, which sets p D 1, has
variance function V.yi jxi / D �i C ˛�i , which is linear in the mean. To estimate this model, specify
DIST=NEGBIN(p=1) in the MODEL statement.

The log-likelihood function of the NEGBIN1 regression model is given by

L D

NX
iD1

wi

(
yi�1X
jD0

ln
�
j C ˛�1 exp.x0iˇ/

�
� ln.yi Š/ �

�
yi C ˛

�1 exp.x0iˇ/
�
ln.1C ˛/C yi ln.˛/

)

For the definition of wi , see the section “Poisson Regression” on page 605.

The gradient is

@L
@ˇ
D

NX
iD1

wi

8<:
0@yi�1X
jD0

�i

.j˛ C �i /

1A xi � ˛�1 ln.1C ˛/�ixi

9=;
and

@L
@˛
D

NX
iD1

wi

8<:�
0@yi�1X
jD0

˛�1�i

.j˛ C �i /

1A � ˛�2�i ln.1C ˛/ � .yi C ˛�1�i /
1C ˛

C
yi

˛

9=;
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Zero-Inflated Count Regression Overview
The main motivation for zero-inflated count models is that real-life data frequently display overdispersion and
excess zeros. Zero-inflated count models provide a way of modeling the excess zeros in addition to allowing
for overdispersion. In particular, for each observation, there are two possible data generation processes. The
result of a Bernoulli trial is used to determine which of the two processes is used. For observation i, Process
1 is chosen with probability 'i and Process 2 with probability 1 � 'i . Process 1 generates only zero counts.
Process 2 generates counts from either a Poisson or a negative binomial model. In general,

yi �

�
0 with probability 'i
g.yi / with probability 1 � 'i

Therefore, the probability of fYi D yig can be described as

P.yi D 0jxi / D 'i C .1 � 'i /g.0/

P.yi jxi / D .1 � 'i /g.yi /; yi > 0

where g.yi / follows either the Poisson or the negative binomial distribution. You can specify the probability
' by using the PROBZERO= option in the OUTPUT statement.

When the probability 'i depends on the characteristics of observation i, 'i is written as a function of z0i ,
where z0i is the 1� .qC 1/ vector of zero-inflation covariates and  is the .qC 1/� 1 vector of zero-inflation
coefficients to be estimated. (The zero-inflation intercept is 0; the coefficients for the q zero-inflation
covariates are 1; : : : ; q .) The function F that relates the product z0i (which is a scalar) to the probability
'i is called the zero-inflation link function,

'i D Fi D F.z0i/

In the COUNTREG procedure, the zero-inflation covariates are indicated in the ZEROMODEL statement.
Furthermore, the zero-inflation link function F can be specified as either the logistic function,

F.z0i/ D ƒ.z
0
i/ D

exp.z0i/
1C exp.z0i/

or the standard normal cumulative distribution function (also called the probit function),

F.z0i/ D ˆ.z
0
i/ D

Z z0
i


0

1
p
2�

exp.�u2=2/du

The zero-inflation link function is indicated in the LINK option in ZEROMODEL statement. The default ZI
link function is the logistic function.
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Zero-Inflated Poisson Regression
In the zero-inflated Poisson (ZIP) regression model, the data generation process that is referred to earlier as
Process 2 is

g.yi / D
exp.��i /�

yi
i

yi Š

where �i D ex
0
i
ˇ. Thus the ZIP model is defined as

P.yi D 0jxi ; zi / D Fi C .1 � Fi / exp.��i /

P.yi jxi ; zi / D .1 � Fi /
exp.��i /�

yi
i

yi Š
; yi > 0

The conditional expectation and conditional variance of yi are given by

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi /.1C �iFi /

Note that the ZIP model (as well as the ZINB model) exhibits overdispersion because V.yi jxi ; zi / >
E.yi jxi ; zi /.

In general, the log-likelihood function of the ZIP model is

L D
NX
iD1

wi ln ŒP.yi jxi ; zi /�

After a specific link function (either logistic or standard normal) for the probability 'i is chosen, it is possible
to write the exact expressions for the log-likelihood function and the gradient.

ZIP Model with Logistic Link Function

First, consider the ZIP model in which the probability 'i is expressed using a logistic link function—namely,

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

wi ln
�
exp.z0i/C exp.� exp.x0iˇ//

�
C

X
fi Wyi>0g

wi

"
yix0iˇ � exp.x0iˇ/ �

yiX
kD2

ln.k/

#

�

NX
iD1

wi ln
�
1C exp.z0i/

�
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For the definition of wi , see the section “Poisson Regression” on page 605.

The gradient for this model is given by

@L
@
D

X
fi WyiD0g

wi

�
exp.z0i/

exp.z0i/C exp.� exp.x0iˇ//

�
zi �

NX
iD1

wi

�
exp.z0i/

1C exp.z0i/

�
zi

@L
@ˇ
D

X
fi WyiD0g

wi

�
� exp.x0iˇ/ exp.� exp.x0iˇ//
exp.z0i/C exp.� exp.x0iˇ//

�
xi C

X
fi Wyi>0g

wi
�
yi � exp.x0iˇ/

�
xi

ZIP Model with Standard Normal Link Function

Next, consider the ZIP model in which the probability 'i is expressed using a standard normal link function:
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

wi ln
˚
ˆ.z0i/C

�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

	
C

X
fi Wyi>0g

wi

(
ln
��
1 �ˆ.z0i/

��
� exp.x0iˇ/C yix

0
iˇ �

yiX
kD2

ln.k/

)

For the definition of wi , see the section “Poisson Regression” on page 605.

The gradient for this model is given by

@L
@

D

X
fi WyiD0g

wi
'.z0i/

�
1 � exp.� exp.x0iˇ//

�
ˆ.z0i/C

�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

zi

�

X
fi Wyi>0g

wi
'.z0i/�

1 �ˆ.z0i/
�zi

@L
@ˇ

D

X
fi WyiD0g

wi
�
�
1 �ˆ.z0i/

�
exp.x0iˇ/ exp.� exp.x0iˇ//

ˆ.z0i/C
�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

xi

C

X
fi Wyi>0g

wi
�
yi � exp.x0iˇ/

�
xi
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Zero-Inflated Conway-Maxwell-Poisson Regression
In the Conway-Maxwell-Poisson regression model, the data generation process is defined as

P.Yi D yi jxi ; zi / D
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi D 0; 1; 2; : : :

where the normalization factor is

Z.�i ; �i / D

1X
nD0

�ni
.nŠ/�i

and

�i D exp.x0iˇ/

�i D � exp.g0iı/

The zero-inflated Conway-Maxwell-Poisson model can be written as

P.yi D 0jxi ; zi / D Fi C .1 � Fi /
1

Z.�i ; �i /

P.yi jxi ; zi / D .1 � Fi /
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi > 0

The conditional expectation and conditional variance of yi are given by

E.yi jxi ; zi / D .1 � Fi /
1

Z.�; �/

1X
jD0

j�j

.j Š/�

V.yi jxi ; zi / D .1 � Fi /
1

Z.�; �/

1X
jD0

j 2�j

.j Š/�
�E.yi jxi ; zi /2

The general form of the log-likelihood function for the Conway-Maxwell-Poisson zero-inflated model is

L D
NX
iD1

wi ln ŒP.yi jxi ; zi /�

Zero-Inflated Conway-Maxwell-Poisson Model with Logistic Link Function

In this model the probability 'i is expressed by using a logistic link function as

'i D ƒ.z0i/ D
exp.z0i/

1C exp.z0i/
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The log-likelihood function is

L D

X
fi WyiD0g

wi ln
�
ƒ.z0i/C

�
1 �ƒ.z0i/

� 1

Z.�i ; �i /

�
C

X
fi Wyi>0g

wi
˚
ln
��
1 �ƒ.z0i/

��
� ln.Z.�; �//C .yi ln.�/ � � ln.yi Š/

	

Zero-Inflated Conway-Maxwell-Poisson Model with Normal Link Function

In this model, the probability 'i is specified by using the standard normal distribution function (probit
function): 'i D ˆ.z0i/.

The log-likelihood function is written as

L D

X
fi WyiD0g

wi ln
�
ˆ.z0i/C

�
1 �ˆ.z0i/

� 1

Z.�i ; �i /

�
C

X
fi Wyi>0g

wi
˚
ln
��
1 �ˆ.z0i/

��
� ln.Z.�; �//C .yi ln.�/ � � ln.yi Š/

	

Zero-Inflated Negative Binomial Regression
The zero-inflated negative binomial (ZINB) model in PROC COUNTREG is based on the negative binomial
model with quadratic variance function (p D 2). The ZINB model is obtained by specifying a negative
binomial distribution for the data generation process referred to earlier as Process 2:

g.yi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
Thus the ZINB model is defined to be

P.yi D 0jxi ; zi / D Fi C .1 � Fi / .1C ˛�i /
�˛�1

P.yi jxi ; zi / D .1 � Fi /
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1
�

�
�i

˛�1 C �i

�yi
; yi > 0

In this case, the conditional expectation and conditional variance of yi are

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi / Œ1C �i .Fi C ˛/�

Like the ZIP model, the ZINB model exhibits overdispersion because the conditional variance exceeds the
conditional mean.
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ZINB Model with Logistic Link Function

In this model, the probability 'i is given by the logistic function—namely,

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

wi ln
h
exp.z0i/C .1C ˛ exp.x

0
iˇ//

�˛�1
i

C

X
fi Wyi>0g

wi

yi�1X
jD0

ln.j C ˛�1/

C

X
fi Wyi>0g

wi
˚
� ln.yi Š/ � .yi C ˛�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ
	

�

NX
iD1

wi ln
�
1C exp.z0i/

�
For the definition of wi , see the section “Poisson Regression” on page 605.

The gradient for this model is given by

@L
@

D

X
fi WyiD0g

wi

"
exp.z0i/

exp.z0i/C .1C ˛ exp.x
0
iˇ//

�˛�1

#
zi

�

NX
iD1

wi

�
exp.z0i/

1C exp.z0i/

�
zi

@L
@ˇ

D

X
fi WyiD0g

wi

"
� exp.x0iˇ/.1C ˛ exp.x

0
iˇ//

�˛�1�1

exp.z0i/C .1C ˛ exp.x
0
iˇ//

�˛�1

#
xi

C

X
fi Wyi>0g

wi

�
yi � exp.x0iˇ/
1C ˛ exp.x0iˇ/

�
xi

@L
@˛
D

X
fi WyiD0g

wi
˛�2

�
.1C ˛ exp.x0iˇ// ln.1C ˛ exp.x

0
iˇ// � ˛ exp.x

0
iˇ/

�
exp.z0i/.1C ˛ exp.x

0
iˇ//

.1C˛/=˛ C .1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

wi

8<:�˛�2
yi�1X
jD0

1

.j C ˛�1/
C ˛�2 ln.1C ˛ exp.x0iˇ//C

yi � exp.x0iˇ/
˛.1C ˛ exp.x0iˇ//

9=;
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ZINB Model with Standard Normal Link Function

For this model, the probability 'i is specified using the standard normal distribution function (probit function):
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

wi ln
n
ˆ.z0i/C

�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//

�˛�1
o

C

X
fi Wyi>0g

wi ln
�
1 �ˆ.z0i/

�
C

X
fi Wyi>0g

wi

yi�1X
jD0

˚
ln.j C ˛�1/

	
�

X
fi Wyi>0g

wi ln.yi Š/

�

X
fi Wyi>0g

wi .yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

wiyi ln.˛/

C

X
fi Wyi>0g

wiyix0iˇ

For the definition of wi , see the section “Poisson Regression” on page 605.

The gradient for this model is given by

@L
@
D

X
fi WyiD0g

wi

24 '.z0i/
h
1 � .1C ˛ exp.x0iˇ//

�˛�1
i

ˆ.z0i/C
�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//�˛

�1

35 zi

�

X
fi Wyi>0g

wi

�
'.z0i/

1 �ˆ.z0i/

�
zi

@L
@ˇ
D

X
fi WyiD0g

wi
�
�
1 �ˆ.z0i/

�
exp.x0iˇ/.1C ˛ exp.x

0
iˇ//

�.1C˛/=˛

ˆ.z0i/C
�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//�˛

�1
xi

C

X
fi Wyi>0g

wi

�
yi � exp.x0iˇ/
1C ˛ exp.x0iˇ/

�
xi

@L
@˛
D

X
fi WyiD0g

wi

�
1 �ˆ.z0i/

�
˛�2

�
.1C ˛ exp.x0iˇ// ln.1C ˛ exp.x

0
iˇ// � ˛ exp.x

0
iˇ/

�
ˆ.z0i/.1C ˛ exp.x

0
iˇ//

.1C˛/=˛ C
�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//



Spatial Lag of X Model F 621

C

X
fi Wyi>0g

wi

8<:�˛�2
yi�1X
jD0

1

.j C ˛�1/
C ˛�2 ln.1C ˛ exp.x0iˇ//C

yi � exp.x0iˇ/
˛.1C ˛ exp.x0iˇ//

9=;

Spatial Lag of X Model
The spatial lag of X (SLX) model is illustrated by using the general framework for a zero-inflated model.
According to the section “Zero-Inflated Count Regression Overview” on page 614, the data model for yi can
be formulated as

yi �

�
0 with probability 'i
g.yi / with probability 1 � 'i

and the general model for parameters can be written in matrix form as

� D exp.Xˇ/
' D F.Z/
� D � exp.Gı/

where ' D .'1; : : : ; 'n/0, � D .�1; : : : ; �n/0, and � D .�1; : : : ; �n/0. In addition, Z1, X1, and G1 are design
matrices, in which the ith row is z0i , x

0
i , and g0i for i D 1; 2; : : : ; n, respectively.

In the spatial context, data are often collected over a predetermined set of spatial units, s1; s2; : : : ; sn. In
this case, both the dependent variable and the explanatory variables are spatially referenced. For example,
yi D y.si / denotes the dependent variable that is observed at location si . For the SLX model, the data model
for yi remains the same. However, the parameter model becomes

� D exp.X1ˇ1 CWX2 ˇ2/ D exp.Xˇ/
' D F.Z11 CWZ2 2/ D F.Z/
� D � exp.G1ı1 CWG2 ı2/ D � exp.Gı/

where W is the spatial weights matrix, X D ŒX1 WX2�, Z D ŒZ1 WZ2�, and G D ŒG1 WG2�. Moreover, ˇ
becomes a column vector by stacking ˇ1 on top of ˇ2, and similarly for  and ı. For the sake of flexibility,
X2 does not have to be the same as X1. Similar arguments apply to the DISPMODEL and ZEROMODEL
statements. From the modeling perspective, the SLX model can be useful when spatial effects (as represented
by the WX2, WZ2, and WG2 terms) are important. The intercept term is always excluded from the design
matrix X2, Z2, or G2.

A spatial weights matrix W is a square matrix, which often has nonnegative entries and its dimension is the
total number of unique spatial units. Moreover, the diagonal elements of W are zeros because a spatial unit
is not considered to be its own neighbor. Furthermore, the spatial weight wij between locations si and sj
describes how much influence the spatial unit sj has on si . In practice, W is often row-normalized; thus
Wx1 can be interpreted as the spatially weighted average of x1.

In the SLX model, missing spatial weights are not allowed unless the NORMALIZE option is specified, in
which case missing spatial weights are replaced by zeros. In addition, missing values are not allowed for the
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variables (including both dependent and explanatory variables) in the primary data set (which is specified in
the DATA= option in the PROC COUNTREG statement).

The SPATIALEFFECTS, SPATIALZEROEFFECTS, and SPATIALDISPEFFECTS statements are used to
include spatial effects in design matrices X2, Z2, and G2, respectively. Observations in the primary data set
(specified in the DATA= option in the PROC COUNTREG statement) can be presented in different orders
of spatial units than they are presented in the spatial weights data set (specified in the WMAT= option in
the PROC COUNTREG statement). In this case, the SPATIALID statement enables you to use a spatial ID
variable to associate the observations in the primary data set with those in the spatial weights data set. The
SLX model is not supported for a panel data model.

Variable Selection

Variable Selection Methods

Variable Selection Using an Information Criterion
This type of variable selection uses either Akaike’s information criterion (AIC) or the Schwartz Bayesian
criterion (SBC) and either a forward selection method or a backward elimination method.

Forward selection starts from a small subset of variables. In each step, the variable that gives the largest
decrease in the value of the information criterion specified in the CRITER= option (AIC or SBC) is added.
The process stops when the next candidate to be added does not reduce the value of the information criterion
by more than the amount specified in the LSTOP= option in the MODEL statement.

Backward elimination starts from a larger subset of variables. In each step, one variable is dropped based on
the information criterion chosen.

You can force a variable to be retained in the variable selection process by adding a RETAIN list to the
SELECT=INFO (or SELECTVAR=INFO) option in your model. For example, suppose you add a RETAIN
list to the SELECT=INFO option in your model as follows:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) SELECT=INFO(lstop=0.001 RETAIN(Phd));

Then this causes the variable selection process to consider only those models that contain Phd as a regressor.
As a result, you are guaranteed that Phd will appear as one of the regressor variables in whatever model the
variable selection process produces. The model that results is the “best” (relative to your selection criterion)
of all the possible models that contain Phd.

When a ZEROMODEL statement is used in conjunction with a MODEL statement, then all the variables that
appear in the ZEROMODEL statement are retained by default unless the ZEROMODEL statement itself
contains a SELECT=INFO option.

For example, suppose you have the following:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) SELECT=INFO(lstop=0.001 RETAIN(Phd));
ZEROMODEL Art ~ Fem Ment / link=normal;

Then Phd is retained in the MODEL statement and all the variables in the ZEROMODEL statement (Fem and
Ment) are retained as well. You can add an empty SELECT=INFO clause to the ZEROMODEL statement
to indicate that all the variables in that statement are eligible for elimination (that is, need not be retained)
during variable selection. For example:
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MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) SELECT=INFO(lstop=0.001 RETAIN(Phd));
ZEROMODEL Art ~ Fem Ment / link=normal SELECT=INFO();

In this example, only Phd from the MODEL statement is guaranteed to be retained. All the other variables in
the MODEL statement and all the variables in the ZEROMODEL statement are eligible for elimination.

Similarly, if your ZEROMODEL statement contains a SELECT=INFO option but your MODEL statement
does not, then all the variables in the MODEL statement are retained, whereas only those variables listed
in the RETAIN() list of the SELECT=INFO option for your ZEROMODEL statement are retained. For
example:

MODEL Art = Mar Kid5 Phd / dist=negbin(p=2) ;
ZEROMODEL Art ~ Fem Ment / link=normal SELECT=INFO(RETAIN(Ment));

Here, all the variables in the MODEL statement (Mar Kid5 Phd) are retained, but only the Ment variable in
the ZEROMODEL statement is retained.

Variable Selection and Class Variables When a model that contains a classification variable is evaluated,
the classification variable is effectively replaced by a set of parameters, each of which corresponds to some
level of the classification variable. This is known as levelizing the classification variable. In the following
discussion, the parameters that result from levelizing a classification variable are called level-qualified
parameters.

By default, as variable selection proceeds, PROC COUNTREG treats each level-qualified parameter as an
effect in its own right. This is described as splitting the original classification variable effect. Thus, at any
particular step during the variable selection process, a candidate model can contain all, none, or only some of
the level-qualified parameters that result from levelizing a classification variable.

Variable Selection with Split Effects For example, suppose that Fem and Ment are continuous variables
and that Kid5 is a classification variable that has four levels: 0, 1, 2, and 3. Suppose your model is the
following:

CLASS Kid5;
MODEL Art = Fem Kid5 Ment / dist=poisson SELECT=INFO( lstop=0.001 );

Levelizing the Kid5 classification variable produces four level-qualified parameters: Kid5_0, Kid5_1, Kid5_2,
and Kid5_3. Because the Intercept is an effect in the model (by default), PROC COUNTREG eliminates
the last level-qualified parameter for each levelized class variable in the model. This prevents problems that
would otherwise ensue because of collinearity. In this case, PROC COUNTREG eliminates Kid5_3 from the
model from the outset. Thus, Kid5_3 will never be included in any candidate model. PROC COUNTREG
evaluates the following candidates at Step 1:

{Intercept, Fem}
{Intercept, Kid5_0}
{Intercept, Kid5_1}
{Intercept, Kid5_2}
{Intercept, Ment}

Note how each candidate contains either none or only one of the level-qualified parameters that result from
levelizing the Kid5 classification variable. Thus, the classification variable Kid5 has been split: its associated
level-qualified parameters are treated as individual effects. Suppose that {Intercept, Ment} is selected from
among the candidates. Then PROC COUNTREG evaluates the following candidates at Step 2:
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{Intercept, Ment, Fem}
{Intercept, Ment, Kid5_0}
{Intercept, Ment, Kid5_1}
{Intercept, Ment, Kid5_2}

Suppose that {Intercept, Ment, Fem} is selected from among the candidates. Then PROC COUNTREG
evaluates the following candidates at Step 3:

{Intercept, Ment, Fem, Kid5_0}
{Intercept, Ment, Fem, Kid5_1}
{Intercept, Ment, Fem, Kid5_2}

Suppose that {Intercept, Ment, Fem, Kid5_0} is selected from among the candidates. Depending on the data,
it is entirely possible that none of the Step 4 candidates improves the information criterion that is associated
with the model that was selected at Step 3. As a result, the final selected model is:

{Intercept, Ment, Fem, Kid5_0}

As this example shows, when classification effects are split, it is possible for the final selected model to
contain some, but not all, of the level-qualified parameters that are associated with the Kid5 classification
variable.

Variable Selection without Split Effects If you do not want the variable selection process in PROC
COUNTREG to split classification effects as illustrated in the preceding section, then you must specify the
NOSPLITEFFECTS option. If you specify the NOSPLITEFFECTS option (which can be abbreviated as
NOSPLIT), then as variable selection proceeds, a particular candidate model will contain either all or none
of the level-qualified parameters that result from levelizing the classification variable. When the NOSPLIT
option is specified, no candidate will ever contain only some but not all of the level-qualified parameters that
are associated with a classification variable.

Suppose your model is the following:

CLASS Kid5;
MODEL Art = Fem Kid5 Ment / dist=poisson SELECT=INFO( lstop=0.001 NOSPLIT );

Because the NOSPLIT option is specified, PROC COUNTREG evaluates the following candidates at Step 1:

{Intercept, Fem}
{Intercept, Kid5_0, Kid5_1, Kid5_2}
{Intercept, Ment}

Note how each candidate contains either all or none of the level-qualified parameters that result from
levelizing the Kid5 classification variable. Thus, the classification variable Kid5 is not split: its associated
level-qualified parameters are not treated as individual effects. Suppose that {Intercept, Ment} is selected
from among the candidates. Then PROC COUNTREG evaluates the following candidates at Step 2:

{Intercept, Ment, Fem}
{Intercept, Ment, Kid5_0, Kid5_1, Kid5_2}

Suppose that {Intercept, Ment, Fem} is selected from among the candidates. Depending on the data, it is
entirely possible that none of the Step 3 candidates improves the information criterion that is associated with
the model that was selected at Step 2. As a result, the final selected model is:

{Intercept, Ment, Fem}
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As this example shows, when the NOSPLIT option is specified, the final selected model contains either all or
none of the level-qualified parameters that are associated with the Kid5 classification variable.

Classification Variables and the RETAIN Option As described earlier in this section, if you want to
constrain the variable selection process in such a way that it considers only candidates that include a certain
variable, then you can use the RETAIN option. However, you cannot refer to a classification variable by
name in the RETAIN list. Recall that by default, the variable selection process in PROC COUNTREG splits
classification effects into individual effects that correspond to the levels of the classification variable. Thus, if
you want to retain the original classification variable Kid5, you must list each of its level-qualified parameters
by name. You can also retain some but not all of the level-qualified parameters. For example, to retain
the level-qualified parameters Kid5_0 and Kid5_2 of the Kid5 classification variable, you would specify the
RETAIN option as follows:

MODEL Art = Fem Kid5 Ment / dist=poisson
SELECT=INFO( lstop=0.001 RETAIN(Kid5_0 Kid5_2) );

The RETAIN option can be used to retain effects only when the NOSPLITEFFECTS option is not specified.
The RETAIN option is ignored if the NOSPLITEFFECTS option is specified.

Classification Variables and the RETAINEFFECT Option When the NOSPLITEFFECTS option is
specified, you must use the RETAINEFFECT option if you want to constrain the variable selection process
in such a way that it considers only candidates that include a certain variable. Any effect in your MODEL
statement can be added to a RETAINEFFECT list. Thus, if you want to retain the original classification
variable Kid5, you can refer to it by name in the RETAINEFFECT option as follows:

MODEL Art = Fem Kid5 Ment / dist=poisson
SELECT=INFO( lstop=0.001 NOSPLIT RETAINEFFECT(Kid5) );

Effects in other modeling statements can be retained in a similar fashion. In the following example, the
RETAINEFFECT option in the ZEROMODEL statement causes the zero-inflated Kid5 classification variable
to be retained:

MODEL Art = Fem Kid5 Ment / dist=ZIP SELECT=INFO( lstop=0.001 NOSPLIT );
ZEROMODEL Art ~ Mar Kid5 / SELECT=INFO( RETAINEFFECT(Kid5) );

Individual level-qualified parameters that are associated with a classification variable cannot be retained
using the RETAINEFFECT option. The RETAINEFFECT option can be used to retain effects only when the
NOSPLITEFFECTS option is specified. The RETAINEFFECT option is ignored if the NOSPLITEFFECTS
option is not specified.

Variable Selection Using Penalized Likelihood
Variable selection in the linear regression context can be achieved by adding some form of penalty on the
regression coefficients. One particular such form is L1 norm penalty, which leads to LASSO:

min
ˇ
kY �Xˇk2 C �

pX
jD1

ˇ̌
ˇj
ˇ̌

This penalty method is becoming more popular in linear regression, because of the computational development
in the recent years. However, how to generalize the penalty method for variable selection to the more general
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statistical models is not trivial. Some work has been done for the generalized linear models, in the sense that
the likelihood depends on the data through a linear combination of the parameters and the data:

l .ˇjx/ D l
�
xTˇ

�
In the more general form, the likelihood as a function of the parameters can be denoted by l.�/ D

P
i li .�/,

where � is a vector that can include any parameters and l.�/ is the likelihood for each observation. For example,
in the Poisson model, � D .ˇ0; ˇ1; : : : ; ˇp/, and in the negative binomial model � D .ˇ0; ˇ1; : : : ; ˇp; ˛/.
The following discussion introduces the penalty method, using the Poisson model as an example, but it
applies similarly to the negative binomial model. The penalized likelihood function takes the form

Q.ˇ/ D
X
i

li .ˇ/ � n

pX
jD1

p�j
�ˇ̌
ˇj
ˇ̌�

The L1 norm penalty function that is used in the calculation is specified as

p� .jˇj/ D �

The main challenge for this penalized likelihood method is on the computation side. The penalty function
is nondifferentiable at zero, posing a computational problem for the optimization. To get around this
nondifferentiability problem, Fan and Li (2001) suggested a local quadratic approximation for the penalty
function. However, it was later found that the numerical performance is not satisfactory in a few respects. Zou
and Li (2008) proposed local linear approximation (LLA) to solve the problem (see page 626) numerically.
The algorithm replaces the penalty function with a linear approximation around a fixed point ˇ.0/:

p�
�ˇ̌
ˇj
ˇ̌�
� p�

�ˇ̌̌
ˇ
.0/
j

ˇ̌̌�
C p0�

�ˇ̌̌
ˇ
.0/
j

ˇ̌̌� �ˇ̌
ˇj
ˇ̌
�

ˇ̌̌
ˇ
.0/
j

ˇ̌̌�
Then the problem can be solved iteratively. Start from ˇ.0/ D ǑM , which denotes the usual MLE estimate.
For iteration k,

ˇ.kC1/ D argmax
ˇ

8<:X
i

li .ˇ/ � n

pX
jD1

p0�

�ˇ̌̌
ˇ
.k/
j

ˇ̌̌� ˇ̌
ˇj
ˇ̌9=;

The algorithm stops when kˇ.kC1/�ˇ.k/k is small. To save computing time, you can also choose a maximum
number of iterations. This number can be specified by the LLASTEPS= option.

The objective function is nondifferentiable. The optimization problem can be solved using an optimization
methods with constraints, by a variable transformation

ˇj D ˇ
C
j � ˇ

�
j ; ˇ

C
j � 0; ˇ

�
j � 0

For each fixed tuning parameter �, you can solve the preceding optimization problem to obtain an estimate
for ˇ. Because of the property of the L1 norm penalty, some of the coefficients in ˇ can be exactly zero. The
remaining question is to choose the best tuning parameter �. You can use either of the approaches that are
described in the following subsections.
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The GCV Approach In the GCV approach, the generalized cross validation criteria (GCV) is computed
for each value of � on a predetermined grid f�1; : : : ; �Lg; the value of � that achieves the minimum of the
GCV is the optimal tuning parameter. The maximum value �L can be determined by lemma 1 in Park and
Hastie (2007) as follows. Suppose ˇ0 is free of penalty in the objective function. Let Ǒ0 be the MLE of ˇ0
by forcing the rest of the parameters to be zero. Then the maximum value of � is

�L D argmax
�

�
max
�
W

ˇ̌̌̌
@l

@ˇj
. Ǒ0/

ˇ̌̌̌
� nP 0�.jˇj j/; j D 1; : : : ; p

�
D argmax

�

�ˇ̌̌̌
1

n

@l

@ˇj
. Ǒ0/

ˇ̌̌̌
; j D 1; : : : ; p

�

You can compute the GCV by using the LASSO framework. In the last step of Newton-Raphson approxima-
tion, you have

1

2
min
ˇ

.r2l.ˇ.k///1=2.ˇ � ˇ.k//C .r2l.ˇ.k///�1=2rl.ˇ.k//2 C n pX
jD1

p0�.jˇ
.k/
j j/jˇj j

The solution Ǒ satisfies

Ǒ � ˇ.k/ D �.r2l.ˇ.k// � 2W �/�1
�
rl.ˇ.k// � 2b

�
where

W � D ndiag.W �1 ; : : : ; W
�
p /

W �j D

8<:
p0
�
.jˇ

.k/

j
j/

jˇj j
; ifˇj ¤ 0

0; ifˇj D 0

b D ndiag.p0�.jˇ
.k/
1 j/sgn.ˇ1/; : : : ; p0�.jˇ

.k/
p j/sgn.ˇp//

Note that the intercept term has no penalty on its absolute value, and therefore the W �j term that corresponds
to the intercept is 0. More generally, you can make any parameter (such as the ˛ in the negative binomial
model) in the likelihood function free of penalty, and you treat them the same as the intercept.

The effective number of parameters is

e.�/ D tr
��
r
2l.ˇ.k//

�1=2 �
r
2l.ˇ.k// � 2W �

��1 �
r
2l.ˇ.k//

�1=2�
D tr

��
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�
and the generalized cross validation error is
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nŒ1 � e.�/=n�2
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The GCV1 Approach Another form of GCV uses the number of nonzero coefficients as the degrees of
freedom:

e1.�/ D

pX
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1Œˇj¤0�

GCV1.�/ D
l. Ǒ/

nŒ1 � e1.�/=n�2

The standard errors follow the sandwich formula:
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� n
r
2l.ˇ.k// � 2W �
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It is common practice to report only the standard errors of the nonzero parameters.

Variable Selection with a NOINT Model

If you specify the NOINT option in your MODEL statement, the model produced by variable selection will
always contain at least one effect from the original MODEL statement. If you request forward selection with
a NOINT model and you do not retain any main model effect, then the only effects that will be candidates
for the single-effect model that is derived in the first step will be the effects that are present in the original
MODEL statement. For all subsequent steps, all effects from the MODEL, ZEROMODEL, DISPMODEL,
and SPATIALEFFECTS statements will be candidates for inclusion in the model that is derived at that step in
the process. Meanwhile, if you request backward selection with a NOINT model, you do not retain a specific
main model effect, and a model that contains only one effect from the original MODEL statement is derived
at a particular step, then that effect will remain in all the models that are evaluated in all subsequent steps.

Panel Data Analysis

Panel Data Poisson Regression with Fixed Effects

The count regression model for panel data can be derived from the Poisson regression model. Consider the
multiplicative one-way panel data model,

yit � Poisson.�it /

where

�it D ˛i�it D ˛i exp.x0itˇ/; i D 1; : : : ; N; t D 1; : : : ; T

Here, ˛i are the individual effects.

In the fixed-effects model, the ˛i are unknown parameters. The fixed-effects model can be estimated by
eliminating ˛i by conditioning on

P
t yit .

In the random-effects model, the ˛i are independent and identically distributed (iid) random variables,
in contrast to the fixed effects model. The random-effects model can then be estimated by assuming a
distribution for ˛i .
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In the Poisson fixed-effects model, conditional on �it and parameter ˛i , yit is iid Poisson-distributed with
parameter �it D ˛i�it D ˛i exp.x0itˇ/, and xit does not include an intercept. Then, the conditional joint
density for the outcomes within the ith panel is

P Œyi1; : : : ; yiTi j

TiX
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Because yit is iid Poisson(�it ), P Œyi1; : : : ; yiTi � is the product of Ti Poisson densities. Also, .
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Thus, the conditional log-likelihood function of the fixed-effects Poisson model is given by
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The gradient is
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Panel Data Poisson Regression with Random Effects

In the Poisson random-effects model, conditional on �it and parameter ˛i , yit is iid Poisson-distributed with
parameter�it D ˛i�it D ˛i exp.x0itˇ/, and the individual effects, ˛i , are assumed to be iid random variables.
The joint density for observations in all time periods for the ith individual, P Œyi1; : : : ; yiT j�i1; : : : ; �iTi �,
can be obtained after the density g.˛/ of ˛i is specified.

Let

˛i � iid gamma.�; �/

so that E.˛i / D 1 and V.˛i / D 1=� :

g.˛i / D
��

�.�/
˛��1i exp.��˛i /

Let �i D .�i1; : : : ; �iTi /. Because yit is conditional on �it and parameter ˛i is iid Poisson(�it D ˛i�it ), the
conditional joint probability for observations in all time periods for the ith individual, P Œyi1; : : : ; yiTi j�i ; ˛i �,
is the product of Ti Poisson densities:
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Then, the joint density for the ith panel conditional on just the � can be obtained by integrating out ˛i :
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where ˛.D 1=�/ is the overdispersion parameter. This is the density of the Poisson random-effects model
with gamma-distributed random effects. For this distribution, E.yit / D �it and V.yit / D �it C ˛�2it ; that
is, there is overdispersion.

Then the log-likelihood function is written as
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The gradient is
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where �it D exp.x0itˇ/, �
0.�/ D d�.�/=d.�/ and � 0.�/=�.�/ is the digamma function.

Panel Data Negative Binomial Regression with Fixed Effects

This section shows the derivation of a negative binomial model with fixed effects. Keep the assumptions of
the Poisson-distributed dependent variable

yit � Poisson .�it /

But now let the Poisson parameter be random with gamma distribution and parameters .�it ; ı/,

�it � � .�it ; ı/

where one of the parameters is the exponentially affine function of independent variables �it D exp
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Use integration by parts to obtain the distribution of yit ,
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which is a negative binomial distribution with parameters .�it ; ı/. Conditional joint distribution is given as
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Hence, the conditional fixed-effects negative binomial log-likelihood is
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Panel Data Negative Binomial Regression with Random Effects

This section describes the derivation of negative binomial model with random effects. Suppose

yit � Poisson .�it /

with the Poisson parameter distributed as gamma,

�it � � .�i�it ; ı/

where its parameters are also random:
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Explicitly, the beta density with Œ0; 1� domain is
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where B .a; b/ is the beta function. Then, conditional joint distribution of dependent variables is
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Integrating out the variable �i yields the following conditional distribution function:
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Consequently, the conditional log-likelihood function for a negative binomial model with random effects is
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BY Groups and Scoring with an Item Store
If you use the BY statement in conjunction with the ITEMSTORE statement when you fit your model, then
the parameter estimates for each BY group are preserved in your item store.

You must use a BY statement if you want to score a data set by using an item store that was created when a
BY statement was provided. The names of the BY variables in the data set to be scored (hereafter referred to
as the scored data set) must match the names of the BY variables in the data set that is used to produce the
item store (hereafter referred to as the fitted data set). The order of the names of the BY variables in your BY
statement must match their order in the BY statement that was used when the item store was created.

The order in which the values of the BY variables appear in the scored data set does not have to match their
order in the fitted data set. Furthermore, not all the values of the BY variables that are present in the fitted
data set need to be present in the scored data set.

For example, suppose you have a data set named DocVisit that you use to fit a model by using a BY statement.
Your BY variable is named AgeGroup, and there are four values for the AgeGroup variable (0, 1, 2, and 3) in
the DocVisit data set.

In the first step, you use the following statements to fit your model by using the BY statement and generate
an item store named DocVisitByAgeGroup:

PROC COUNTREG data=DocVisit;
model doctorvisits = sex illness income / dist=poisson;
store DocVisitByAgeGroup;
by AgeGroup;
run;

Now suppose you want to score a second data set named AdditionalPatients by using the DocVisitByAgeGroup
item store. Then the AdditionalPatients data set must contain a variable named AgeGroup, and the values
of this variable must be a subset of 0, 1, 2, and 3. Suppose that the values of the AgeGroup variable in the
AdditionalPatients data set are 1 and 3.

In that case, you can score the data set by using this second step:

PROC COUNTREG data=AdditionalPatients restore=DocVisitByAgeGroup;
score out=OutScores mean=meanPoisson probability=prob;
by AgeGroup;
run;



636 F Chapter 12: The COUNTREG Procedure

Because the AdditionalPatients data set contains two BY groups, PROC COUNTREG first extracts the
parameter estimates that are associated with the AgeGroup=1 BY group from the DocVisitByAgeGroup
item store and uses them to score the first BY group in the AdditionalPatients data set. Then, PROC
COUNTREG extracts the parameter estimates that are associated with the AgeGroup=3 BY group from the
DocVisitByAgeGroup item store and uses them to score the second BY group in the AdditionalPatients data
set.

What happens if your scored data set contains a value of the BY variable that is not present in the fitted
data set? Modifying the preceding example slightly, suppose the values of the AgeGroup variable in the
AdditionalPatients data set are 1, 2, 3, and 6. In that case, when the second step is submitted, PROC
COUNTREG scores the BY groups in which AgeGroup equals 1, 2, or 3, but it does not attempt to score the
BY group in which AgeGroup=6.

If you want to use the parameter estimates that are associated with a particular BY group in an item store to
score a data set that contains no BY variable, it is fairly easy to do so. First, you create a new data set based
on your original data set that includes an additional single-valued BY variable (whose value corresponds to
the BY group in the item store in which you are interested). Second, you use the new data set and the BY
statement to retrieve the parameter estimates of interest, which are then used to score the entire data set.

For example, suppose that the AdditionalPatients data set does not contain the AgeGroup variable. But
suppose you happen to know that all the observations in the AdditionalPatients data set fall within the age
group in which AgeGroup=2, as defined in the DocVisit data set. Then you could score the AdditionalPatients
data set by using the following steps.

First, you would create a new data set named AdditionalPatientsWithByVar, which essentially adds a variable
named AgeGroup, with its value set to 2, to each observation in the AdditionalPatients data set:

data AdditionalPatientsWithByVar;
set AdditionalPatients;
agegroup=2;
run;

Then, you would score the AdditionalPatientsWithByVar data set by using the DocVisitByAgeGroup item
store along with the BY statement, as follows:

PROC COUNTREG data=AdditionalPatientsWithByVar restore=DocVisitByAgeGroup;
score out=OutScores mean=meanPoisson probability=prob;
by AgeGroup;
run;
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Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and
INIT Statements
This section describes how you can refer to the parameters that are defined in the MODEL, ZEROMODEL,
DISPMODEL, SPATIALEFFECTS, SPATIALDISPEFFECTS, and SPATIALZEROEFFECTS statements
when you use the RESTRICT, TEST, BOUNDS, or INIT statement. The following examples use the
RESTRICT statement, but the same remarks apply to naming parameters when you use the TEST, BOUNDS,
or INIT statement. The names of the parameters are written to the OUTEST= data set.

To impose a restriction on a parameter that is related to a regressor in the MODEL statement, you simply use
the name of the regressor itself to refer to its associated parameter. Suppose your model is defined in the
following statement, where x1 through x5 are continuous variables:

model y = x1 x2 x5;

If you want to restrict the parameter that is associated with the regressor x5 to be greater than 1.7, then you
use the following statement:

RESTRICT x5 > 1.7;

To impose a restriction on a parameter associated with a regressor in the ZEROMODEL statement, you can
form the name of the parameter by prefixing Inf_ to the name of the regressor. Suppose your MODEL and
ZEROMODEL statements are as follows:

model y = x1 x2 x5;
zeromodel y ~ x3 x5;

If you want to restrict the parameter related to the x5 regressor in the ZEROMODEL statement to be less
than 1.0, then you refer to the parameter as Inf_x5 and provide the following statement:

RESTRICT Inf_x5 < 1.0;

Even though the regressor x5 appears in both the MODEL and ZEROMODEL statements, the parameter
associated with x5 in the MODEL statement is, of course, different from the parameter associated with x5 in
the ZEROMODEL statement. Thus, the name of a regressor that appears in a RESTRICT statement without
any prefix refers to the parameter associated with that regressor in the MODEL statement, and the name of
a regressor that appears in a RESTRICT statement with the prefix Inf_ refers to the parameter associated
with that regressor in the ZEROMODEL statement. The parameter that is associated with the intercept in the
ZEROMODEL is named Inf_Intercept.

In a similar way, you can form the name of a parameter associated with a regressor in the DISPMODEL
statement by prefixing Dsp_ to the name of the regressor. The parameter associated with the intercept in the
DISPMODEL is named Dsp_Intercept.

And you can form the name of a parameter associated with a regressor in the SPATIALEFFECTS state-
ment by prefixing W_ to the name of the regressor. The parameter associated with the intercept in the
SPATIALEFFECTS is named W_Intercept.
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Referring to Class-Level Parameters

When your MODEL statement includes a classification variable, you can impose restrictions on the parameters
associated with each of the levels that are related to the classification variable as follows.

Suppose your classification variable is named C and it has three levels: 0, 1, 2. Suppose your model is the
following:

class C;
model y = x1 x2 C;

Adding a classification variable as a regressor to your model introduces additional parameters into your
model, each of which is associated with one of the levels of the classification variable. You can form the
name of the parameter associated with a particular level of your class variable by inserting the underscore
character between the name of the classification variable and the value of the level. Thus, to restrict the
parameter associated with level 0 of the classification variable C to always be greater than 0.7, you refer to
the parameter as C_0 and provide the following statement:

RESTRICT C_0 > 0.7;

Referring to Parameters Associated with Interactions between Regressors

When a regressor in your model involves an interaction between other regressors, you can impose restrictions
on the parameters associated with the interaction.

Suppose you have the following model:

model y = x1 x2 x3*x4;

You can form the name of the parameter associated with the interaction regressor x3*x4 by replacing the
multiplication sign with an underscore. Thus, x3_x4 refers to the parameter that is associated with the
interaction regressor x3*x4.

Referring to interactions between regressors and classification variables is handled in the same way. Suppose
you have a classification variable that is named C and has three levels: 0, 1, 2. Suppose that your model is the
following:

class C;
model y = x1 x2 C*x3;

The interaction between the continuous variable x3 and the classification variable C introduces three additional
parameters, which are named x3_C_0, x3_C_1, and x3_C_2. Although the order of the terms in the interaction
is C followed by x3, note how the name of the parameter associated with the interaction is formed by placing
the name of the continuous variable x3 first, followed by an underscore, followed by the name of the
classification variable C, followed by an underscore, and then followed by the level value. Depending on the
parameterization you specify in your CLASS statement, for each interaction in your model that involves a
classification variable, one of the parameters associated with that interaction might be dropped from your
model prior to optimization.

The name of a parameter associated with a nested interaction is formed in a slightly different way. Suppose
you have a classification variable that is named C and has three levels: 0, 1, 2. Suppose that your model is the
following:
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class C;
model y = x1 x2 x3(C);

The nested interaction between the continuous variable x3 and the classification variable C introduces three
additional parameters, which are named x3_C__0, x3_C__1, and x3_C__2. Note how the name in each case
is formed from the name of the regressor by replacing the left and right parentheses with underscores and
then appending another underscore followed by the level value.

Referring to Class Level Parameters with Negative Values

When the value of a level is a negative number, you must replace the minus sign with an underscore when
you form the name of the parameter that is associated with that particular level of the classification variable.
For example, suppose your classification variable is named D and has four levels: –1, 0, 1, 2. Suppose your
model is the following:

class D;
model y = x1 x2 D;

To restrict the parameter that is associated with level –1 of the classification variable D to always be less than
0.4, you refer to the parameter as D__1 (note that there are two underscores in this parameter name: one to
connect the name of the classification variable to its value and the other to replace the minus sign in the value
itself) and provide the following statement:

RESTRICT D__1 < 0.4;

Dropping a Class Level Parameter to Avoid Collinearity

Depending on the parameterization you impose on your classification variable, one of the parameters
associated with its levels might be dropped from your model prior to optimization in order to avoid collinearity.
For example, when the default parameterization GLM is imposed, the parameter that is associated with the
last level of your classification variable is dropped prior to optimization. If you attempt to impose a restriction
on a dropped parameter by using the RESTRICT statement, PROC COUNTREG issues an error message in
the log.

For example, suppose that your classification variable is named C and that it has three levels: 0, 1, 2. Suppose
your model is the following:

class C;
model y = x1 x2 C;

Because no additional options are specified in the CLASS statement, GLM parameterization is assumed.
This means that the parameter named C_2 (which is the parameter associated with the last level of your
classification variable) is dropped from your model before the optimizer is invoked. Therefore, an error is
issued if you attempt to restrict the C_2 parameter in any way by referring to it in a RESTRICT statement.
For example, the following RESTRICT statement generates an error:

RESTRICT C_2 < 0.3;
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Referring to Implicit Parameters

For certain model types, one or more implicit parameters are added to your model prior to optimization. You
can impose restrictions on these implicit parameters.

For the Poisson model for which ERRORCOMP=RANDOM is specified, PROC COUNTREG automatically
adds the _Alpha parameter to your model.

If no ERRORCOMP= option is specified for zero-inflated binomial and negative binomial models, then
PROC COUNTREG adds the _Alpha parameter to the model. If ERRORCOMP=RANDOM is specified
for the zero-inflated binomial and negative binomial models, then PROC COUNTREG adds two implicit
parameters to the model: _Alpha and _Beta.

For Conway-Maxwell Poisson models that do not include a DISPMODEL statement, the _lnNu parameter is
added to the model.

Whenever your model type dictates the addition of one or more of these implicit parameters, you can impose
restrictions on the implicit parameters by referring to them by name in a RESTRICT statement. For example,
if your model type implies the existence of the _Alpha parameter, you can restrict _Alpha to be greater than
0.2 as follows:

RESTRICT _Alpha > 0.2;

Computational Resources
The time and memory that PROC COUNTREG requires are proportional to the number of parameters in the
model and the number of observations in the data set being analyzed. Less time and memory are required
for smaller models and fewer observations. Also affecting these resources are the method that is chosen to
calculate the variance-covariance matrix and the optimization method. All optimization methods available
through the METHOD= option have similar memory use requirements.

The processing time might differ for each method, depending on the number of iterations and functional calls
needed. The data set is read into memory to save processing time. If not enough memory is available to hold
the data, the COUNTREG procedure stores the data in a utility file on disk and rereads the data as needed
from this file. When this occurs, the execution time of the procedure increases substantially. The gradient
and the variance-covariance matrix must be held in memory. If the model has p parameters including the
intercept, then at least 8 � .p C p � .p C 1/=2/ bytes are needed. If the quasi-maximum likelihood method
is used to estimate the variance-covariance matrix (COVEST=QML), an additional 8 � p � .p C 1/=2 bytes
of memory are needed.

Time is also a function of the number of iterations needed to converge to a solution for the model parameters.
The number of iterations that are needed cannot be known in advance. The MAXITER= option can be used
to limit the number of iterations that PROC COUNTREG does. The convergence criteria can be altered by
nonlinear optimization options available in the PROC COUNTREG statement. For a list of all the nonlinear
optimization options, see Chapter 7, “Nonlinear Optimization Methods.”
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Nonlinear Optimization Options
PROC COUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. In the PROC COUNTREG statement, you can specify nonlinear optimization options that are then
passed to the NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 7, “Nonlinear
Optimization Methods.”

Covariance Matrix Types
The COUNTREG procedure enables you to specify the estimation method for the covariance matrix. The
COVEST=HESSIAN option estimates the covariance matrix based on the inverse of the Hessian matrix,
COVEST=OP uses the outer product of gradients, and COVEST=QML produces the covariance matrix based
on both the Hessian and outer product matrices. The default is COVEST=HESSIAN.

Although all three methods produce asymptotically equivalent results, they differ in computational intensity
and produce results that might differ in finite samples. The COVEST=OP option provides the covariance
matrix that is typically the easiest to compute. In some cases, the OP approximation is considered more
efficient than the Hessian or QML approximation because it contains fewer random elements. The QML
approximation is computationally the most complex because both the outer product of gradients and the
Hessian matrix are required. In most cases, OP or Hessian approximation is preferred to QML. The need to
use QML approximation arises in some cases when the model is misspecified and the information matrix
equality does not hold.

Displayed Output
PROC COUNTREG produces the following displayed output.

Class Level Information

If you specify the CLASS statement, the COUNTREG procedure displays a table that contains the following
information:

� classification variable name

� number of levels of the classification variable

� list of values of the classification variable

Iteration History for Parameter Estimates

If you specify the ITPRINT or PRINTALL option in the PROC COUNTREG statement, PROC COUNTREG
displays a table that contains the following information for each iteration. Some information is specific to the
model-fitting procedure that you choose (for example, Newton-Raphson, trust region, quasi-Newton).

� iteration number
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� number of restarts since the fitting began

� number of function calls

� number of active constraints at the current solution

� value of the objective function (–1 times the log-likelihood value) at the current solution

� change in the objective function from previous iteration

� value of the maximum absolute gradient element

� step size (for Newton-Raphson and quasi-Newton methods)

� slope of the current search direction (for Newton-Raphson and quasi-Newton methods)

� lambda (for trust region method)

� radius value at current iteration (for trust region method)

Model Fit Summary

The “Model Fit Summary” table contains the following information:

� dependent (count) variable name

� number of observations used

� number of missing values in data set, if any

� data set name

� type of model that was fit

� parameterization for the Conway-Maxwell-Poisson model

� offset variable name, if any

� zero-inflated link function, if any

� zero-inflated offset variable name, if any

� log-likelihood value at solution

� maximum absolute gradient at solution

� number of iterations

� AIC value at solution (a smaller value indicates better fit)

� SBC value at solution (a smaller value indicates better fit)

Under the “Model Fit Summary” is a statement about whether the algorithm successfully converged.
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Parameter Estimates

The “Parameter Estimates” table gives the estimates of the model parameters. In zero-inflated (ZI) models,
estimates are also given for the ZI intercept and ZI regressor parameters labeled with the prefix “Inf_”.
For example, the ZI intercept is labeled “Inf_intercept”. If you specify “Age” as a ZI regressor, then the
“Parameter Estimates” table labels the corresponding parameter estimate “Inf_Age”. If you do not list any ZI
regressors, then only the ZI intercept term is estimated.

If the DISPMODEL statement is specified for the Conway-Maxwell-Poisson model, the estimates are given
for the dispersion intercept, and parameters are labeled with the prefix “Dsp_”. For example, the dispersion
model intercept is labeled “Dsp_Intercept”. If you specify “Education” as a dispersion model regressor, then
the “Parameter Estimates” table labels the corresponding parameter estimate “Dsp_Education”. If you do not
list any dispersion regressors, then only the dispersion intercept is estimated.

“_Alpha” is the negative binomial dispersion parameter. The t statistic given for “_Alpha” is a test of
overdispersion.

Last Evaluation of the Gradient

If you specify the model option ITPRINT, the COUNTREG procedure displays the last evaluation of the
gradient vector.

Covariance of Parameter Estimates

If you specify the COVB option in the MODEL statement or in the PROC COUNTREG statement, the
COUNTREG procedure displays the estimated covariance matrix, defined as the inverse of the information
matrix at the final iteration.

Correlation of Parameter Estimates

If you specify the CORRB option in the MODEL statement or in the PROC COUNTREG statement, PROC
COUNTREG displays the estimated correlation matrix. It is based on the Hessian matrix that is used in the
final iteration.

Bayesian Analysis
To perform Bayesian analysis, you must specify a BAYES statement. Unless otherwise stated, all options in
this section are options in the BAYES statement.

By default, PROC COUNTREG uses the random walk Metropolis algorithm to obtain posterior samples.
For information about implementing the Metropolis algorithm in PROC COUNTREG, such as blocking the
parameters and tuning the covariance matrices, see the sections “Blocking of Parameters” on page 644 and
“Tuning the Proposal Distribution” on page 644.

The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a parameter or a vector of parameters and �.�/ is the product of the prior densities that are
specified in the PRIOR statement. The term L.yj�/ is the likelihood that is associated with the MODEL
statement.
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Blocking of Parameters

In a multivariate parameter model, all the parameters are updated in one single block (by default or when
you specify the SAMPLING=MULTIMETROPOLIS option). This could be inefficient, especially when
parameters have vastly different scales. As an alternative, you could update the parameters one at a time (by
specifying SAMPLING=UNIMETROPOLIS).

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is called tuning. The tuning phase consists of a number
of loops that are controlled by the options MINTUNE= and MAXTUNE=. The MINTUNE= option controls
the minimum number of tuning loops and has a default value of 2. The MAXTUNE= option controls the
maximum number of tuning loops and has a default value of 24. Each loop iterates the number of times that
are specified by the NTU= option, which has a default of 500. At the end of every loop, PROC COUNTREG
examines the acceptance probability for each block. The acceptance probability is the percentage of samples,
specified by the NTU= option, that have been accepted. If this probability does not fall within the acceptable
tolerance range (see the following section), the proposal distribution is modified before the next tuning loop
begins.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large
sample theory states that the posterior distribution of the parameters approaches a multivariate normal
distribution (see Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal
proposal distribution often works well in practice. The default proposal distribution in PROC COUNTREG
is the normal distribution.

Scale Tuning
The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random walk
Metropolis, a high acceptance rate means that most new samples occur right around the current data point.
Their frequent acceptance means that the Markov chain is moving rather slowly and not exploring the
parameter space fully. A low acceptance rate means that the proposed samples are often rejected; hence the
chain is not moving much. An efficient Metropolis sampler has an acceptance rate that is neither too high
nor too low. The scale c in the proposal distribution q.�j�/ effectively controls this acceptance probability.
Roberts, Gelman, and Gilks (1997) show that if both the target and proposal densities are normal, the optimal
acceptance probability (TargetAcceptance) for the Markov chain should be around 0.45 in a one-dimensional
problem and should asymptotically approach 0.234 in higher-dimensional problems. The corresponding
optimal scale is 2.38, which is the initial scale that is set for each block.

Because of the nature of stochastic simulations, it is impossible to fine-tune a set of variables so that the
Metropolis chain has exactly the desired acceptance rate that you want. In addition, Roberts and Rosenthal
(2001) empirically demonstrate that an acceptance rate between 0.15 and 0.5 is at least 80% efficient,
so there is really no need to fine-tune the algorithms to reach an acceptance probability that is within a
small tolerance of the optimal values. PROC COUNTREG works with a probability range, determined by
TargetAcceptance ˙ 0:075. If the observed acceptance rate in a given tuning loop is less than the lower
bound of the range, the scale is reduced; if the observed acceptance rate is greater than the upper bound of
the range, the scale is increased. During the tuning phase, a scale parameter in the normal distribution is
adjusted as a function of the observed acceptance rate and the target acceptance rate. PROC COUNTREG
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uses the updating scheme1

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/

where ccur is the current scale, pcur is the current acceptance rate, and popt is the optimal acceptance
probability.

Covariance Tuning
To tune a covariance matrix, PROC COUNTREG takes a weighted average of the old proposal covariance
matrix and the recent observed covariance matrix, based on the number of samples (as specified by the NTU=
option) in the current loop. The formula to update the covariance matrix is

COVnew D 0:75 COVcur C 0:25 COVold

There are two ways to initialize the covariance matrix:

� The default is an identity matrix that is multiplied by the initial scale of 2.38 and divided by the square
root of the number of estimated parameters in the model. A number of tuning phases might be required
before the proposal distribution is tuned to its optimal stage, because the Markov chain needs to spend
time learning about the posterior covariance structure. If the posterior variances of your parameters
vary by more than a few orders of magnitude, if the variances of your parameters are much different
from 1, or if the posterior correlations are high, then the proposal tuning algorithm might have difficulty
forming an acceptable proposal distribution.

� Alternatively, you can use a numerical optimization routine, such as the quasi-Newton method, to find
a starting covariance matrix. The optimization is performed on the joint posterior distribution, and the
covariance matrix is a quadratic approximation at the posterior mode. In some cases this is a better
and more efficient way of initializing the covariance matrix. However, there are cases, such as when
the number of parameters is large, in which the optimization could fail to find a matrix that is positive
definite. In those cases, the tuning covariance matrix is reset to the identity matrix.

A by-product of the optimization routine is that it also finds the maximum a posteriori (MAP) estimates with
respect to the posterior distribution. The MAP estimates are used as the initial values of the Markov chain.

For more information, see the section “INIT Statement” on page 585.

1 Roberts, Gelman, and Gilks (1997) and Roberts and Rosenthal (2001) demonstrate that the relationship between acceptance
probability and scale in a random walk Metropolis scheme is p D 2ˆ

�
�
p
Ic=2

�
, where c is the scale, p is the acceptance rate, ˆ

is the CDF of a standard normal, and I � Ef Œ.f
0.x/=f .x//2�, f .x/ is the density function of samples (Roberts, Gelman, and

Gilks 1997; Roberts and Rosenthal 2001). This relationship determines the updating scheme, with I replaced by the identity matrix
to simplify calculation.
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Initial Values of the Markov Chains

You can assign initial values to any parameters. (For more information, see the section “INIT Statement” on
page 585) If you use the optimization option PROPCOV=, then PROC COUNTREG starts the tuning at the
optimized values. This option overwrites the provided initial values. If you specify the RANDINIT option,
the information that the INIT statement provides is overwritten.

Aggregation of Multiple Chains

When you want to exploit the possibility of running several MCMC instances at the same time (that is, the
value of the NTRDS= option is greater than 1), you face the problem of aggregating the chains. In ordinary
applications, each MCMC instance can easily obtain stationary samples from the entire posterior distribution.
In these applications, you can use the option AGGREGATION=NOWEIGHTED. This option piles one
chain on top of another and makes no particular adjustment. However, when the posterior distribution is
characterized by multiple distinct posterior modes, some of the MCMC instances fail to obtain stationary
samples from the entire posterior distribution. You can use the option AGGREGATION=WEIGHTED when
the posterior samples from each MCMC instance approximate well only a part of the posterior distribution.

The main idea behind the option AGGREGATION=WEIGHTED is to consider the entire posterior distribution
to be similar to a mixture distribution. When you are sampling with multiple threads, each MCMC instance
samples from one of the mixture components. Then the samples from each mixture component are aggregated
together using a resampling scheme in which weights are proportional to the nonnormalized posterior
distribution.

Description of the Algorithm
The preliminary step of the aggregation that is implied by the option AGGREGATION=WEIGHTED is to
run several (K) independent instances of the MCMC algorithm. Each instance searches for a set of stationary
samples. Notice that the concept of stationarity is weaker: each instance might be able to explore not the
entire posterior but only portions of it. In the following, each column represents the output from one MCMC
instance:0BB@

x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA � globally or locally sampled from the posterior

If the length of each chain is less than n, you can augment the corresponding chain by subsampling the chain
itself. Each chain is then sorted with respect to the nonnormalized posterior density: �.xŒ1�:/ � �.xŒ2�:/ �
� � ��.xŒn�:/. Therefore,0BB@

x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA!
0BB@
xŒ1�1
xŒ2�1
: : :

xŒn�1

1CCA
0BB@
xŒ1�2
xŒ2�2
: : :

xŒn�2

1CCA : : :
0BB@
xŒ1�K
xŒ2�K
: : :

xŒn�K

1CCA
The final step is to use a multinomial sampler to resample each row i with weights proportional to the
nonnormalized posterior densities:

ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK � Multinom
�
xŒi�1; xŒi�2; : : : ; xŒi�K I�.xŒi�1/; �.xŒi�2/; : : : ; �.xŒi�K/

�
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The resulting posterior sample,

ex1;ex2; : : : ;exK ; : : : ;ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK ; : : : ;ex.n�1/KC1;ex.n�1/KC2; : : : ;exnK
is a good approximation of the posterior distribution that is characterized by multiple modes.

Automated Initialization of MCMC

The MCMC methods can generate samples from the posterior distribution. The correct implementation of
these methods often requires the stationarity analysis, convergence analysis, and accuracy analysis of the
posterior samples. These analyses usually imply the following:

� initialization of the proposal distribution

� initialization of the chains (starting values)

� determination of the burn-in

� determination of the length of the chains

In more general terms, this determination is equivalent to deciding whether the samples are drawn from the
posterior distribution (stationarity analysis) and whether the number of samples is large enough to accurately
approximate the posterior distribution (accuracy analysis). You can use the AUTOMCMC option to automate
and facilitate the stationary analysis and the accuracy analysis.

Description of the Algorithm
The algorithm has two phases. In the first phase, the stationarity phase, the algorithm tries to generate
stationary samples from the posterior distribution. In the second phase, the accuracy phase, the algorithm
searches for an accurate representation of the posterior distribution. The algorithm implements the following
tools:

� Geweke test to check stationarity

� Heidelberger-Welch test to check stationarity and provide a proxy for the burn-in

� Heidelberger-Welch halfwidth test to check the accuracy of the posterior mean

� Raftery-Lewis test to check the accuracy of a specified percentile (indirectly providing a proxy for the
number of required samples)

� effective sample size analysis to determine a proxy for the number of required samples

During the stationarity phase, the algorithm searches for stationarity. The number of attempts that the
algorithm makes is determined by the ATTEMPTS= option. During each attempt, a preliminary tuning stage
chooses a proposal distribution for the MCMC sampler. At the end of the preliminary tuning phase, the
algorithm analyzes tests for the stationarity of the samples. If the percentage of successful stationary tests is
greater than or equal to the percentage that is indicated by the TOL= option, then the posterior sample is
considered to be stationary. If the sample cannot be considered stationary, then the algorithm attempts to
achieve stationarity by changing some of the initialization parameters as follows:
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� increasing the number of tuning samples (NTU= option)

� increasing the number of posterior samples (NMC= option)

� increasing the burn-in (NBI= option)

Figure 12.6 shows a flowchart of the AUTOMCMC algorithm as it searches for stationarity.

Figure 12.6 Flowchart of the AUTOMCMC Algorithm: Stationarity Analysis

You can initialize NMC=M, NBI=B, and NTU=T during the stationarity phase by specifying the NMC=,
NBI=, and NTU= options in the BAYES statement. You can also change the minimum stationarity acceptance
ratio of successful stationarity tests that are needed to exit the stationarity phase. By default, TOL=0.95. For
example:

proc countreg data=dataset;
...;
bayes nmc=M nbi=B ntu=T automcmc=( stationarity=(tol=0.95) );
...;

run;

During the accuracy phase, the algorithm attempts to determine how many posterior samples are needed.
The number of attempts is determined by the ATTEMPTS= option. You can choose between two different
approaches to study the accuracy:
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� accuracy analysis based on the effective sample size (ESS)

� accuracy analysis based on the Heidelberger-Welch halfwidth test and the Raftery-Lewis test

If you choose the effective sample size approach, you must provide the minimum number of effective samples
that are needed. You can also change the tolerance for the ESS accuracy analysis (by default, TOL=0.95).
For example:

proc countreg data=dataset;
...;
bayes automcmc=(targetess=N accuracy=(tol=0.95));
...;

run;

Figure 12.7 shows a flowchart of the AUTOMCMC algorithm based on the effective sample size approach to
determine whether the samples provide an accurate representation of the posterior distribution.

Figure 12.7 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the ESS

If you choose the accuracy analysis based on the Heidelberger-Welch halfwidth test and the Raftery-Lewis
test (the default option), then you might want to choose a posterior quantile of interest for the Raftery-Lewis
test (by default, 0.025). You can also change the tolerance for the accuracy analysis (by default, TOL=0.95).
Notice that the Raftery-Lewis test produces a proxy for the number of posterior samples that are required.
In each attempt, the current number of posterior samples is compared to this proxy. If the proxy is greater
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than the current NMC, then the algorithm reinitializes itself. To control this reinitialization, you can use the
option RLLIMITS=(LB=lb UB=ub). In particular, there are three cases

� If the proxy is greater than ub, then NMC is set equal to ub.

� If the proxy is less than lb, then NMC is set equal to lb.

� If lb is less than the proxy, which is less than ub, then NMC is set equal to the proxy.

For example:

proc countreg data=dataset;
...;
bayes automcmc=( accuracy=(tol=0.95 targetstats=(rllimits=(lb=k1 ub=k2))) )

raftery(q=0.025);
...;

run;

Figure 12.8 shows a flowchart of the AUTOMCMC algorithm based on the Heidelberger-Welch halfwidth
test and the Raftery-Lewis test approach to determine whether the posterior samples provide an accurate
representation of the posterior distribution.

Figure 12.8 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the Heidelberger-Welch
Halfwidth Test and the Raftery-Lewis Test
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Prior Distributions
The PRIOR statement is used to specify the prior distribution of the model parameters. You must specify a
list of parameters, a tilde (Ï), and then a distribution and its parameters. You can specify multiple PRIOR
statements to define independent priors. Parameters that are associated with a regressor variable are referred
to by the name of the corresponding regressor variable.

You can specify the special keyword _REGRESSORS to consider all the regressors of a model. If multiple
prior statements affect the same parameter, the prior that is specified is used. For example, in a regression
that uses three regressors (X1, X2, X3), the following statements imply that the prior on X1 is NOR-
MAL(MEAN=0, VAR=1), the prior on X2 is GAMMA(SHAPE=3, SCALE=4), and the prior on X3 is
UNIFORM(MIN=0, MAX=1):

...
prior _Regressors ~ uniform(min=0, max=1);
prior X1 X2 ~ gamma(shape=3, scale=4);
prior X1 ~ normal(mean=0, var=1);
...

If a parameter is not associated with a PRIOR statement or if some of the prior hyperparameters are missing,
then the default choices shown in Table 12.4 are considered.

Table 12.4 Default Values for Prior Distributions

PRIOR distribution Hyperparameter1 Hyperparameter2 Min Max Parameters Default Choice

NORMAL MEAN=0 VAR=1E6 �1 1 Regression-Location-Threshold
IGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale
GAMMA SHAPE=1 SCALE=1 0 1

UNIFORM �1 1

BETA SHAPE1=1 SHAPE2=1 �1 1

T LOCATION=0 DF=3 �1 1

For density specifications, see the section “Standard Distributions” on page 655.

Automated MCMC
The main purpose is to provide the user with the opportunity of obtaining a good approximation of the
posterior distribution without initializing the MCMC algorithm: initial values, proposal distributions, burn-in
and number of samples.

The automated algorithm is composed of two phases: tuning and sampling. In the tuning phase, there are
two main concerns: the choice of a good proposal distribution and the search for the stationary region of the
posterior distribution. In the sampling phase, the algorithm will decide how many samples are necessary to
obtain good approximations of the posterior mean and some quantiles of interest.
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Stationarity Phase

During the stationarity phase, the algorithm tries to search for a good proposal distribution and, at the same
time, to reach the stationary region of the posterior. The choice of the proposal distribution is based on the
analysis of the acceptance rates. This is similar to what is done in PROC MCMC; for more information, see
Chapter 80.10, “Tuning the Proposal Distribution” (SAS/STAT User’s Guide). For the stationarity analysis,
the main idea is to run two tests, Geweke (Ge) and Heidleberger-Welch (HW), on the posterior chains at
the end of each attempt. For more information, see Chapter 8.4, “Geweke Diagnostics” (SAS/STAT User’s
Guide), and Chapter 8.4, “Heidelberger and Welch Diagnostics” (SAS/STAT User’s Guide). If the stationarity
hypothesis is rejected, then the tuning samples are increased and the tests repeated in the next attempt. After
10 attempts, the stationarity phase will be ended regardless of the results. The tuning parameters for the first
attempt are fixed:

1000 burn-in (nbi),

500 tuning samples (ntu),

1000 MCMC samples (nmc).

For the remaining attempts, the tuning parameters will be adjusted dynamically. More specifically, each
parameter will be assigned an acceptance ratio (AR) of the stationarity hypothesis,

ARi D 0 if both tests reject the stationarity hypothesis,

ARi D 0:5 if one tests rejects and the other does not,

ARi D 1 if both tests do not reject the stationarity hypothesis,

for i D 1; : : : ; k. For the Geweke test, the implemented significance level is 0.05. Then, an overall stationarity
average (SA) for all parameters ratios is evaluated,

SA D

kX
iD1

ARi

k

and the number of tuning samples is updated accordingly:

ntu D ntuC 2000 if SA < 70%;
ntu D ntuC 1000 if 70% � SA < 100%;
ntu D ntu if SA D 100%:

The burn-in is also updated whenever stationarity is not achieved:

nbi D nbiC 1000

Moreover, the Heidelberger-Welch test also provides an indications of how much burn-in should be used.
The algorithm requires this burn-in to be: nbi.HW/ D 0. If that is not the case, the burn-in will updated
accordingly,

nbi D maxŒnbi; nbi.HW/�

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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and a new attempt searching for stationarity will be implemented. This choice is motivated by the fact that
the burn-in must be discarded in order to reach the stationary region of the posterior distribution.

The number of samples is updated at each attempt. However, in order to exit the stationarity phase, it will
not be required nmc.RL/ D 0. The default update is nmc D nmcC 1000. Depending on the outcome of
the Raftery-Lewis diagnostics, if nmc < min fLB Œnmc.RL/� ; nmc.RL/g, the number of sampling is further
updated to nmc D LB Œnmc.RL/�. By default, LB Œnmc.RL/� D 10000. Finally, if the number of projected
samples is not sufficient to perform a stable evaluation of the Raftery-Lewis test, the number of samples is
updated to nmc D min Œnmc.RL/�. For more information, see “AUTOMCMC< =(automcmc-options) >” on
page 575 and Chapter 8.4, “Raftery and Lewis Diagnostics” (SAS/STAT User’s Guide).

Accuracy Phase

The main idea of the accuracy phase is to make sure that the mean and a quantile of interest are evaluated
accurately. This can be tested by implementing the half-width test by Heidelberger-Welch and by analyzing
the Raftery-Lewis diagnostic tool. In addition, the requirements defined in the stationarity phase will also
be checked: the Geweke and the Heidelberger-Welch tests must not reject the stationary hypothesis and the
burn-in predicted by the Heidelberger-Welch test must be zero.

The accuracy phase is characterized by a maximum of 10 attempts. If the algorithm exceeds this limit,
the accuracy phase will end and indications on how to improve sampling will be given. The search of
accuracy can be performed using two different method. The first method (the default) is triggered by the
option TARGETSTATS and it is based on the accuracy analysis of the mean and a percentile of interest.
The second method is triggered by the option TARGETESS and it targets a minimum number of effective
samples. The accuracy phase will first update the burn-in with the information provided by the HW
test: nbi D nbi C nbi.HW/. Then, it determines the difference between the actual number of samples
and the number of samples predicted by either the RL test or the ESS: �Œnmc� D nmc.RL/ � nmc; or
�Œnmc� D nmc.ESS/ � nmc: The new number of samples will be updated accordingly:

nmc D nmcC LB Œnmc.RL/� if 0 < �Œnmc� � LB Œnmc.RL/� ;

nmc D nmcC�Œnmc� if LB Œnmc.RL/� < �Œnmc� � UB Œnmc.RL/� ;

nmc D nmcC UB Œnmc.RL/� if UB Œnmc.RL/� < �Œnmc�:

By default, LB Œnmc.RL/� D 10000 and UB Œnmc.RL/� D 300000.

In addition, the accuracy search triggered by the option TARGETSTATS also implements the HW half-width
test to checks whether the sample mean is accurate. If the mean of any parameters is not considered to be
accurate and the number of samples has not been updated based on �Œnmc�, then the number of samples is
increased:

nmc D nmcC 5000 if �Œnmc� � 0;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Marginal Likelihood
The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a vector of parameters and �.�/ is the product of the prior densities, which are specified in the
PRIOR statement. The term L.yj�/ is the likelihood associated with the MODEL statement. The function
�.�/L.yj�/ is the nonnormalized posterior distribution over the parameter vector � . The normalized
posterior distribution, or simply the posterior distribution, is

p.� jy/ D
�.�/L.yj�/R

� �.�/L.yj�/d�

The denominator m.y/ D
R
� �.�/L.yj�/d� , also called the “marginal likelihood,” is a quantity of interest

because it represents the probability of the data after the effect of the parameter vector has been averaged
out. Due to its interpretation, the marginal likelihood can be used in various applications, including model
averaging and variable or model selection.

A natural estimate of the marginal likelihood is provided by the harmonic mean,

m.y/ D

(
1

n

nX
iD1

1

L.yj�i /

)�1
where �i is a sample draw from the posterior distribution. This estimator has proven to be unstable in practical
applications.

An alternative and more stable estimator can be obtained by using an importance sampling scheme. The
auxiliary distribution for the importance sampler can be chosen through the cross-entropy theory (Chan and
Eisenstat 2015). In particular, given a parametric family of distributions, the auxiliary density function is
chosen to be the one closest, in terms of the Kullback-Leibler divergence, to the probability density that
would give a zero variance estimate of the marginal likelihood. In practical terms, this is equivalent to the
following algorithm:

1. Choose a parametric family, f .:; ˇ/, for the parameters of the model: f .� jˇ/

2. Evaluate the maximum likelihood estimator of ˇ by using the posterior samples �1; : : : ; �n as data

3. Use f .��j Ǒmle/ to generate the importance samples: ��1 ; : : : ; �
�
n�

4. Estimate the marginal likelihood:

m.y/ D
1

n�

n�X
jD1

L.yj��j /�.�
�
j /

f .��j j
Ǒ
mle/

The parametric family for the auxiliary distribution is chosen to be Gaussian. The parameters that are subject
to bounds are transformed accordingly

� If �1 < � <1, then p D � .
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� If m � � <1, then q D log.� �m/.

� If �1 < � �M , then r D log.M � �/.

� If m � � �M , then s D log.� �m/ � log.M � �/.

Assuming independence for the parameters that are subject to bounds, the auxiliary distribution to generate
importance samples is0BB@

p
q
r
s

1CCA � N

2664
0BB@
�p
�q
�r
�s

1CCA ;
0BB@
†p 0 0 0

0 †q 0 0

0 0 †r 0

0 0 0 †r

1CCA
3775

where p, q, r and s are vectors containing the transformations of the unbounded, bounded-below, bounded-
above and bounded-above-and-below parameters. Also, given the imposed independence structure, †p can
be a non-diagonal matrix while †q , †r and †s are imposed to be diagonal matrices.

Standard Distributions

Table 12.5 through Table 12.10 show all the distribution density functions that PROC COUNTREG recognizes.
You specify these distribution densities in the PRIOR statement.

Table 12.5 Beta Distribution

PRIOR statement BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

Note: Commonly m D 0 and M D 1.

Density .��m/a�1.M��/b�1

B.a;b/.M�m/aCb�1

Parameter restriction a > 0, b > 0, �1 < m < M <1

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œm;M� when a D 1; b D 1

Œm;M/ when a D 1; b ¤ 1

.m;M� when a ¤ 1; b D 1

.m;M/ otherwise

Mean a
aCb
� .M �m/Cm

Variance ab
.aCb/2.aCbC1/

� .M �m/2

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

�M C b�1
aCb�2

�m a > 1; b > 1

m and M a < 1; b < 1

m

(
a < 1; b � 1

a D 1; b > 1

M

(
a � 1; b < 1

a > 1; b D 1

not unique a D b D 1

Defaults SHAPE1=SHAPE2=1, MIN! �1, MAX!1
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Table 12.6 Gamma Distribution

PRIOR statement GAMMA(SHAPE=a, SCALE=b )

Density 1
ba�.a/

�a�1e��=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean ab

Variance ab2

Mode .a � 1/b

Defaults SHAPE=SCALE=1

Table 12.7 Inverse Gamma Distribution

PRIOR statement IGAMMA(SHAPE=a, SCALE=b)

Density ba

�.a/
��.aC1/e�b=�

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean b
a�1

; a > 1

Variance b2

.a�1/2.a�2/
; a > 2

Mode b
aC1

Defaults SHAPE=2.000001, SCALE=1

Table 12.8 Normal Distribution

PRIOR statement NORMAL(MEAN=�, VAR=�2)

Density 1

�
p
2�

exp
�
�
.���/2

2�2

�
Parameter restriction �2 > 0

Range �1 < � <1

Mean �

Variance �2

Mode �

Defaults MEAN=0, VAR=1000000
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Table 12.9 t Distribution

PRIOR statement T(LOCATION=�, DF=�)

Density
�
�
�C1
2

�
�.�2 /

p
��

h
1C .���/2

�

i��C1
2

Parameter restriction � > 0

Range �1 < � <1

Mean �; for � > 1

Variance �
��2

; for � > 2

Mode �

Defaults LOCATION=0, DF=3

Table 12.10 Uniform Distribution

PRIOR statement UNIFORM(MIN=m, MAX=M)

Density 1
M�m

Parameter restriction �1 < m < M <1

Range � 2 Œm;M�

Mean mCM
2

Variance .M�m/2

12

Mode Not unique

Defaults MIN! �1, MAX!1

OUTPUT OUT= Data Set
The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimates of x0iˇ, the expected value of the response variable, and the probability that the
response variable will take the current value or other values that you specify. In a zero-inflated model, you
can also request that the output data set contain the estimates of z0i , and the probability that the response is
zero as a result of the zero-generating process. In a Conway-Maxwell-Poisson model, you can also request
that the output data set contains estimates of g0iı, �, �, �, mode, variance and dispersion.

Except for the probability of the current value, these statistics can be computed for all observations in which
the regressors are not missing, even if the response is missing. By adding observations that have missing
response values to the input data set, you can compute these statistics for new observations or for settings of
the regressors that are not present in the data without affecting the model fit.
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OUTEST= Data Set
The OUTEST= data set is has two rows: the first row (with _TYPE_=‘PARM’) contains each of the parameter
estimates in the model, and the second row (with _TYPE_=‘STD’) contains the standard errors for the
parameter estimates in the model.

If you specify the COVOUT option in the PROC COUNTREG statement, the OUTEST= data set also
contains the covariance matrix for the parameter estimates. The covariance matrix appears in the observations
for which _TYPE_=‘COV’, and the _NAME_ variable labels the rows with the parameter names.

The names of the parameters are used as variable names. These are the same names that are used in the INIT,
BOUNDS, and RESTRICT statements.

ODS Table Names
PROC COUNTREG assigns a name to each table that it creates. You can use these names to denote the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 12.11.

Table 12.11 ODS Tables Produced in PROC COUNTREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ClassLevels Class levels Default
FitSummary Summary of nonlinear estimation Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
InputOptions Input options ITPRINT
IterStart Optimization start ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ParameterEstimatesResults Parameter estimates ITPRINT
ParameterEstimatesStart Parameter estimates ITPRINT
ProblemDescription Problem description ITPRINT

ODS Tables Created by the TEST Statement
TestResults Test results Default

ODS Tables Created by the BAYES Statement
AutoCorr Autocorrelation statistics for each

parameter
Default

AutoMcmcSummary Automatic MCMC summary DIAGNOSTICS=AUTOSUM
Corr Correlation matrix of the posterior

samples
STATS=COR
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Table 12.11 continued

ODS Table Name Description Option

Cov Covariance matrix of the posterior
samples

STATS=COV

ESS Effective sample size for each
parameter

Default

MCSE Monte Carlo standard error for each
parameter

Default

Geweke Geweke diagnostics for each
parameter

Default

Heidelberger Heidelberger-Welch diagnostics for
each parameter

DIAGNOSTICS=HEIDEL

LogMarginLike Marginal likelihood MARGINLIKE
PostIntervals Equal-tail and HPD intervals for each

parameter
Default

PosteriorSample Posterior samples (ODS output data set only)
PostSummaries Posterior summaries Default
PriorSummaries Prior summaries STATS=PRIOR
Raftery Raftery-Lewis diagnostics for each

parameter
DIAGNOSTICS=RAFTERY

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS Graphics to create graphics by using the COUNTREG procedure.

To request these graphs, you must specify the ODS GRAPHICS ON statement. There is no default plot for
the COUNTREG procedure. If, in addition to the ODS GRAPHICS statement, you specify the ALL option
in the PROC COUNTREG statement, then all applicable plots are created.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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ODS Graph Names

PROC COUNTREG assigns a name to each graph that it creates using ODS. You can use these names to
refer to the graphs when using ODS. The names are listed in Table 12.12.

Table 12.12 ODS Graphics Produced in PROC COUNTREG

ODS Table
Name

Description PLOTS= Option

PredProbPlot Predictive probability plot PLOTS(COUNTS)=PREDPROB
ProfileLikPlot Profile likelihood functions PLOTS(UNPACK)=PROFILELIKE

or PROLIK
OverDispersion Overdispersion diagnostic plot PLOTS=DISPERSION
ZpProfilePlot Zero-probability and zero-inflation

profile plot
PLOTS(UNPACK)=ZEROPROFILE
or ZPPRO

PredProfilePlot Predictive probability profile plot PLOTS(UNPACK
COUNTS)=PREDPRO or
PREDPROFILE

Table 12.13 Graphs Produced by PROC COUNTREG When a
BAYES Statement Is Included

ODS Graph Name Plot Description PLOTS= Option

Bayesian Diagnostic Plots
ADPanel Autocorrelation function and density

panel
PLOTS=(AUTOCORR
DENSITY)

AutocorrPanel Autocorrelation function panel PLOTS=AUTOCORR
AutocorrPlot Autocorrelation function plot PLOTS(UNPACK)=AUTOCORR
DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation function panel PLOTS=(TRACE AUTOCORR)
TADPanel Trace, density, and autocorrelation

function panel
PLOTS=(TRACE AUTOCORR
DENSITY)
PLOTS=BAYESDIAG

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Bayesian Summary Plots
BayesSumPlot Prior/posterior densities and MLE PLOTS=BAYESSUM



Example 12.1: Basic Models F 661

Examples: COUNTREG Procedure

Example 12.1: Basic Models

Data Description and Objective

The data set DocVisit contains information for approximately 5,000 Australian individuals about the number
and possible determinants of doctor visits that were made during a two-week interval. This data set contains a
subset of variables that are taken from the Racd3 data set used by Cameron and Trivedi (1998). The DocVisit
data set can be found in the SAS/ETS Sample Library.

The variable Doctorco represents doctor visits. Additional variables in the data set that you want to evaluate
as determinants of doctor visits include Sex (coded 0=male, 1=female), Age (age in years divided by 100),
Illness (number of illnesses during the two-week interval, with five or more coded as five), Income (annual
income in Australian dollars divided by 1,000), and Hscore (a score on a general health questionnaire, in
which a high score indicates bad health). Summary statistics for these variables are computed in the following
statements and presented in Output 12.1.1:

proc means data=docvisit;
var doctorco sex age illness income hscore;

run;

Output 12.1.1 Summary Statistics

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

doctorco
sex
age
illness
income
hscore

5190
5190
5190
5190
5190
5190

0.3017341
0.5206166
0.4063854
1.4319846
0.5831599
1.2175337

0.7981338
0.4996229
0.2047818
1.3841524
0.3689067
2.1242665

0
0

0.1900000
0
0
0

9.0000000
1.0000000
0.7200000
5.0000000
1.5000000
12.0000000

Poisson Model

The following statements fit a Poisson model to the data by using the covariates Sex, Illness, Income, and
Hscore:

proc countreg data=docvisit plots(only counts(0 to 4 by 1))=(predprob predpro);
model doctorco=sex illness income hscore / dist=poisson printall;

run;
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Output 12.1.2 Mean Predicted Count Probabilities

Output 12.1.2 shows the predicted probabilities of count levels 0 to 4 from the Poisson model. Most of the
observed counts are in the range 0 to 4 and account for more than 99% of the entire data set. One factor
that would be interesting to explore is how the model-predicted probabilities of those count levels react
to different regressor values. Output 12.1.3 shows the predictive profiles of the count levels in question
against the first three regressors in the model. In each panel, the regressor in question is varied while all other
regressors are fixed at their observed mean and the model parameters are fixed at their MLE.
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Output 12.1.3 Profile Function of Predictive Probabilities

In this example, the DIST= option in the MODEL statement specifies the Poisson distribution. In addition,
the PRINTALL option displays the correlation and covariance matrices for the parameters, log-likelihood
values, and convergence information in addition to the parameter estimates. The parameter estimates for this
model are shown in Output 12.1.4.

Output 12.1.4 Parameter Estimates of Poisson Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.855552 0.074545 -24.89 <.0001

sex 1 0.235583 0.054362 4.33 <.0001

illness 1 0.270326 0.017080 15.83 <.0001

income 1 -0.242095 0.077829 -3.11 0.0019

hscore 1 0.096313 0.009089 10.60 <.0001
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Using the CLASS Statement

If some regressors are categorical in nature (meaning that these variables can take only a few discrete
qualitative values), specify them in the CLASS statement. In this example, Sex is categorical because it takes
only two values. A CLASS variable can be numeric or character.

Consider the following extension:

proc countreg data=docvisit;
class sex;
model doctorco=sex illness income hscore / dist=poisson;

run;

The partial output is given in Output 12.1.5.

Output 12.1.5 Parameter Estimates of Poisson Model with CLASS statement

The COUNTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.619969 0.063985 -25.32 <.0001

sex 0 1 -0.235583 0.054362 -4.33 <.0001

sex 1 0 0 . . .

illness 1 0.270326 0.017080 15.83 <.0001

income 1 -0.242095 0.077829 -3.11 0.0019

hscore 1 0.096313 0.009089 10.60 <.0001

If the CLASS statement is present, the COUNTREG procedure creates as many indicator or dummy variables
as there are categories in a CLASS variable and uses them as independent variables. In order to avoid
collinearity with the intercept, the last-created dummy variable is assigned a zero coefficient by default.
This means that only the dummy variable that is associated with the first level of Sex (male=0) is used as a
regressor. Consequently, the estimated coefficient for this dummy variable is the negative of the one for the
original Sex variable in Output 12.1.4, because the reference level has switched from male to female.

Now consider a more practical task. The previous example implicitly assumes that each additional illness
during the two-week interval has the same effect. In other words, this variable is thought of as a continuous
variable. But this variable has only six values, and it is quite possible that the number of illnesses has a
nonlinear effect on doctor visits. In order to check this conjecture, the following statements specify the Illness
variable in the CLASS statement so that it is represented in the model by a set of six dummy variables that
can account for any type of nonlinearity:

proc countreg data=docvisit;
class sex illness;
model doctorco=sex illness income hscore / dist=poisson;

run;

The parameter estimates are displayed in Output 12.1.6.
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Output 12.1.6 Parameter Estimates of Poisson Model with CLASS statement

The COUNTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -0.385930 0.088062 -4.38 <.0001

sex 0 1 -0.219118 0.054190 -4.04 <.0001

sex 1 0 0 . . .

illness 0 1 -1.934983 0.121267 -15.96 <.0001

illness 1 1 -0.698307 0.089732 -7.78 <.0001

illness 2 1 -0.471100 0.090742 -5.19 <.0001

illness 3 1 -0.488481 0.099127 -4.93 <.0001

illness 4 1 -0.272372 0.107593 -2.53 0.0114

illness 5 0 0 . . .

income 1 -0.253583 0.077441 -3.27 0.0011

hscore 1 0.094590 0.009025 10.48 <.0001

The Estimate column shows the difference between each ILLNESS parameter and ILLNESS=5. Note that
these estimates for different Illness categories do not increase linearly but instead show a relatively large
jump from zero illnesses to one illness, followed by relatively smaller increases.

Zero-Inflated Poisson (ZIP) Model

Suppose you suspect that the population of individuals can be viewed as two distinct groups: a low-risk
group, consisting of individuals who never go to the doctor, and a high-risk group, consisting of individuals
who do go to the doctor. You might suspect that the data have this structure both because the sample variance
of Doctorco (0.64) exceeds its sample mean (0.30), which suggests overdispersion, and because a large
fraction of the Doctorco observations (80%) have the value zero. Estimating a zero-inflated model is one way
to deal with overdispersion that results from excess zeros.

Suppose also that you suspect that the covariate Age has an impact on whether an individual belongs to the
low-risk group. For example, younger individuals might have illnesses of much lower severity when they do
get sick and be less likely to visit a doctor, all other factors being equal. The following statements estimate a
zero-inflated Poisson regression, with Age as a covariate in the zero-generation process:

proc countreg data=docvisit plots(only)=(dispersion zeroprofile);
model doctorco=sex illness income hscore / dist=zip;
zeromodel doctorco ~ age;

run;



666 F Chapter 12: The COUNTREG Procedure

Output 12.1.7 Profile Function of Zero Process Selection and Zero Prediction

You might be interested in exploring how the zero process selection probability reacts to different regressor
values. Output 12.1.7 displays this information in much the same fashion as Output 12.1.3. Because Sex,
Illness, Income, and Hscore do not appear in the ZEROMODEL statement, the zero-inflation selection
probability does not change for different values of those regressors. However, the plot shows that Age
positively affects the zero process selection probability in a linear fashion.

In this case, the ZEROMODEL statement that follows the MODEL statement specifies that both an intercept
and the variable Age be used to estimate the likelihood of zero doctor visits. Output 12.1.8 shows the resulting
parameter estimates.
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Output 12.1.8 Parameter Estimates for ZIP Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.033387 0.096973 -10.66 <.0001

sex 1 0.122511 0.062566 1.96 0.0502

illness 1 0.237478 0.019997 11.88 <.0001

income 1 -0.143945 0.087810 -1.64 0.1012

hscore 1 0.088386 0.010043 8.80 <.0001

Inf_Intercept 1 0.986557 0.131339 7.51 <.0001

Inf_age 1 -2.090924 0.270580 -7.73 <.0001

The estimates of the zero-inflated intercept (Inf_Intercept) and the zero-inflated regression coefficient for Age
(Inf_age) are approximately 0.99 and –2.09, respectively. Because the zero-inflation model uses a logistic
link by default, you can estimate the probabilities for individuals of ages 20, 50, and 70 as follows:

20 years:
e.0:99�2:09�:20/

1C e.0:99�2:09�:20/
D 0:64

50 years:
e.0:99�2:09�:50/

1C e.0:99�2:09�:50/
D 0:49

70 years:
e.0:99�2:09�:70/

1C e.0:99�2:09�:70/
D 0:38

That is, the estimated probability of belonging to the low-risk group is about 0.64 for a 20-year-old individual,
0.49 for a 50-year-old individual, and only 0.38 for a 70-year-old individual. This supports the suspicion that
older individuals are more likely to have a positive number of doctor visits.

Alternative models to account for the overdispersion are the negative binomial and the zero-inflated negative
binomial models, which can be fit using the DIST=NEGBIN and DIST=ZINB options, respectively.
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Output 12.1.9 Overdispersion Diagnostic Plot

Output 12.1.9 plots the conditional variance against the conditional mean and can be used as a diagnostic
tool to check the level of overdispersion in a model.

Example 12.2: ZIP and ZINB Models for Data That Exhibit Extra Zeros
In the study by Long (1997) of the number of published articles by scientists (see the section “Getting Started:
COUNTREG Procedure” on page 564), the observed proportion of scientists who publish no articles is
0.3005. The following statements use PROC FREQ to compute the proportion of scientists who publish each
observed number of articles. Output 12.2.1 shows the results.

proc freq data=long97data;
table art / out=obs;

run;
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Output 12.2.1 Proportion of Scientists Who Publish a Certain Number of Articles

The FREQ Procedure

art Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 275 30.05 275 30.05

1 246 26.89 521 56.94

2 178 19.45 699 76.39

3 84 9.18 783 85.57

4 67 7.32 850 92.90

5 27 2.95 877 95.85

6 17 1.86 894 97.70

7 12 1.31 906 99.02

8 1 0.11 907 99.13

9 2 0.22 909 99.34

10 1 0.11 910 99.45

11 1 0.11 911 99.56

12 2 0.22 913 99.78

16 1 0.11 914 99.89

19 1 0.11 915 100.00

PROC COUNTREG is then used to fit Poisson and negative binomial models to the data. For each model,
the PROBCOUNT option computes the probability that the number of published articles is m, for m = 0 to
10. The following statements compute the estimates for Poisson and negative binomial models. The MEAN
procedure is then used to compute the average probability of a zero response.

proc countreg data=long97data;
model art=fem mar kid5 phd ment / dist=poisson;
output out=predpoi probcount(0 to 10);

run;

proc means mean data=predpoi;
var p_0;

run;

The output from the Poisson model for the COUNTREG and MEAN procedures is shown in Output 12.2.2.
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Output 12.2.2 Poisson Model Estimation

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.57373E-9

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 3314

SBC 3343

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.304617 0.102982 2.96 0.0031

fem 1 -0.224594 0.054614 -4.11 <.0001

mar 1 0.155243 0.061375 2.53 0.0114

kid5 1 -0.184883 0.040127 -4.61 <.0001

phd 1 0.012823 0.026397 0.49 0.6271

ment 1 0.025543 0.002006 12.73 <.0001

The MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.2092071

The following statements show the syntax for the negative binomial model:

proc countreg data=long97data plots(only)=profilelike;
model art=fem mar kid5 phd ment / dist=negbin(p=2) method=qn;
output out=prednb probcount(0 to 10);

run;

proc means mean data=prednb;
var p_0;

run;
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Output 12.2.3 Profile Likelihood Functions
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Output 12.2.3 continued

Output 12.2.3 show the profile likelihood functions of the negative binomial model for the Long (1997) data
set, in which each model parameter is varied while holding all others fixed at the MLE. This can serve as a
diagnostic tool for model performance, because a large number of flat profile likelihood functions indicates
poor optimization results and the resulting MLE should be used with caution.

Output 12.2.4 shows the results of the preceding statements.
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Output 12.2.4 Negative Binomial Model Estimation

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model NegBin(p=2)

Log Likelihood -1561

Maximum Absolute Gradient 9.86648E-7

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 3136

SBC 3170

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.256144 0.138560 1.85 0.0645

fem 1 -0.216418 0.072672 -2.98 0.0029

mar 1 0.150489 0.082106 1.83 0.0668

kid5 1 -0.176415 0.053060 -3.32 0.0009

phd 1 0.015271 0.036040 0.42 0.6718

ment 1 0.029082 0.003470 8.38 <.0001

_Alpha 1 0.441620 0.052967 8.34 <.0001

The MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.3035957

For each model, the predicted proportion of zero articles can be calculated as the average predicted probability
of zero articles across all scientists. Under the Poisson model, the predicted proportion of zero articles is
0.2092, which considerably underestimates the observed proportion. The negative binomial more closely
estimates the proportion of zeros (0.3036). Also, the test of the dispersion parameter, _Alpha, in the negative
binomial model indicates significant overdispersion (p < 0:0001). As a result, the negative binomial model
is preferred to the Poisson model.

Another way to account for the large number of zeros in this data set is to fit a zero-inflated Poisson (ZIP) or
a zero-inflated negative binomial (ZINB) model. In the following statements, DIST=ZIP requests the ZIP
model. In the ZEROMODEL statement, you can specify the predictors, z, for the process that generates the
additional zeros. The ZEROMODEL statement also specifies the model for the probability '. By default, a
logistic model is used for '. You can change the default by using the LINK= option. In this particular ZIP
model, all variables that are used to model the article counts are also used to model '.
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proc countreg data=long97data;
model art = fem mar kid5 phd ment / dist=zip;
zeromodel art ~ fem mar kid5 phd ment;
output out=predzip probcount(0 to 10);

run;

proc means data=predzip mean;
var p_0;

run;

The parameters of the ZIP model are displayed in Output 12.2.5. The first set of parameters gives the
estimates of ˇ in the model for the Poisson process mean. Parameters that have the prefix “Inf_” are the
estimates of  in the logistic model for '.

Output 12.2.5 ZIP Model Estimation

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model ZIP

ZI Link Function Logistic

Log Likelihood -1605

Maximum Absolute Gradient 2.08803E-7

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 3234

SBC 3291

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.640838 0.121306 5.28 <.0001

fem 1 -0.209145 0.063405 -3.30 0.0010

mar 1 0.103751 0.071111 1.46 0.1446

kid5 1 -0.143320 0.047429 -3.02 0.0025

phd 1 -0.006166 0.031008 -0.20 0.8424

ment 1 0.018098 0.002295 7.89 <.0001

Inf_Intercept 1 -0.577060 0.509383 -1.13 0.2573

Inf_fem 1 0.109747 0.280082 0.39 0.6952

Inf_mar 1 -0.354013 0.317611 -1.11 0.2650

Inf_kid5 1 0.217101 0.196481 1.10 0.2692

Inf_phd 1 0.001272 0.145262 0.01 0.9930

Inf_ment 1 -0.134114 0.045244 -2.96 0.0030
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Output 12.2.5 continued

The MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.2985679

The proportion of zeros that are predicted by the ZIP model is 0.2986, which is much closer to the observed
proportion than the Poisson model. But Output 12.2.7 shows that both models deviate from the observed
proportions at one, two, and three articles.

The ZINB model is specified by the DIST=ZINB option. All variables are again used to model both the
number of articles and '. The METHOD=QN option specifies that the quasi-Newton method be used to fit
the model rather than the default Newton-Raphson method. These options are implemented in the following
statements:

proc countreg data=long97data;
model art=fem mar kid5 phd ment / dist=zinb method=qn;
zeromodel art ~ fem mar kid5 phd ment;
output out=predzinb probcount(0 to 10);

run;

proc means data=predzinb mean;
var p_0;

run;

The estimated parameters of the ZINB model are shown in Output 12.2.6. The test for overdispersion again
indicates a preference for the negative binomial version of the zero-inflated model (p < 0:0001). The ZINB
model also does a good job of estimating the proportion of zeros (0.3119), and it follows the observed
proportions well, though possibly not as well as the negative binomial model.

Output 12.2.6 ZINB Model Estimation

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model ZINB

ZI Link Function Logistic

Log Likelihood -1550

Maximum Absolute Gradient 0.00146

Number of Iterations 82

Optimization Method Quasi-Newton

AIC 3126

SBC 3189

Algorithm converged.
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Output 12.2.6 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.416747 0.143596 2.90 0.0037

fem 1 -0.195507 0.075592 -2.59 0.0097

mar 1 0.097583 0.084452 1.16 0.2479

kid5 1 -0.151733 0.054206 -2.80 0.0051

phd 1 -0.000700 0.036270 -0.02 0.9846

ment 1 0.024786 0.003493 7.10 <.0001

Inf_Intercept 1 -0.191691 1.322805 -0.14 0.8848

Inf_fem 1 0.635935 0.848910 0.75 0.4538

Inf_mar 1 -1.499465 0.938657 -1.60 0.1102

Inf_kid5 1 0.628427 0.442779 1.42 0.1558

Inf_phd 1 -0.037714 0.308004 -0.12 0.9025

Inf_ment 1 -0.882292 0.316223 -2.79 0.0053

_Alpha 1 0.376681 0.051029 7.38 <.0001

The MEANS Procedure

Analysis
Variable : P_0
Probability of

art taking
level=0

Mean

0.3119488

The following statements compute the average predicted count probability across all scientists for each count
0, 1, . . . , 10. The averages for each model, along with the observed proportions, are then arranged for plotting
by PROC SGPLOT.

proc summary data=predpoi;
var p_0-p_10;
output out=mnpoi mean(p_0-p_10)=mn0-mn10;

run;
proc summary data=prednb;

var p_0-p_10;
output out=mnnb mean(p_0-p_10)=mn0-mn10;

run;
proc summary data=predzip;

var p_0-p_10;
output out=mnzip mean(p_0-p_10)=mn0-mn10;

run;
proc summary data=predzinb;

var p_0-p_10;
output out=mnzinb mean(p_0-p_10)=mn0-mn10;

run;

data means;
set mnpoi mnnb mnzip mnzinb;
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drop _type_ _freq_;
run;

proc transpose data=means out=tmeans;
run;

data allpred;
merge obs(where=(art<=10)) tmeans;
obs=percent/100;

run;

proc sgplot;
yaxis label='Probability';
xaxis label='Number of Articles';
series y=obs x=art / name='obs' legendlabel='Observed'

lineattrs=(color=black thickness=4px);
series y=col1 x=art / name='poi' legendlabel='Poisson'

lineattrs=(color=blue);
series y=col2 x=art/ name='nb' legendlabel='Negative Binomial'

lineattrs=(color=red);
series y=col3 x=art/ name='zip' legendlabel='ZIP'

lineattrs=(color=blue pattern=2);
series y=col4 x=art/ name='zinb' legendlabel='ZINB'

lineattrs=(color=red pattern=2);
discretelegend 'poi' 'zip' 'nb' 'zinb' 'obs' / title='Models:'

location=inside position=ne across=2 down=3;
run;

For each of the four fitted models, Output 12.2.7 shows the average predicted count probability for each
article count across all scientists. The Poisson model clearly underestimates the proportion of zero articles
published, whereas the other three models are quite accurate at zero. All the models do well at the larger
numbers of articles.
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Output 12.2.7 Average Predicted Count Probability

Example 12.3: Variable Selection
This example demonstrates two algorithms of automatic variable selection in the COUNTREG procedure.
Automatic variable selection is most effective when the number of possible candidates for explaining the
variation of some variable is large. For clarity of exposition, this example uses only a small number of
variables. The data set Article published by Long (1997) contains six variables. (This data set is also used
in “Example 12.2: ZIP and ZINB Models for Data That Exhibit Extra Zeros” on page 668.) The dependent
variable Art records the number of articles that were published by a doctoral student in the last three years of
his or her program. Explanatory variables include sex of the student (Fem), marital status (Mar), number of
children (Kid5), prestige of the program (Phd), and publishing activity of the academic adviser (Ment). All
these variables intuitively suggest their effect on the students’ primary academic output.

First, for comparison purposes, estimate the simple Poisson model. The choice of model is specified by
DIST= option in the MODEL statement, as follows:
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proc countreg data = long97data;
model art = fem mar kid5 phd ment / dist = poisson;

run;

The output of these statements is shown in Figure 12.3.1.

Output 12.3.1 Poisson Model for the Number of Published Articles

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.57373E-9

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 3314

SBC 3343

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.304617 0.102982 2.96 0.0031

fem 1 -0.224594 0.054614 -4.11 <.0001

mar 1 0.155243 0.061375 2.53 0.0114

kid5 1 -0.184883 0.040127 -4.61 <.0001

phd 1 0.012823 0.026397 0.49 0.6271

ment 1 0.025543 0.002006 12.73 <.0001

Note that the Newton-Raphson optimization algorithm took five steps to converge. All parameters, except for
one, are significant at a 1% or 5% level, whereas Phd is not significant even at the 10% level.

In this case, it might be easy to identify the variables that have limited explanatory power. However, if the
number of variables were large, the manual selection could be time-consuming and inaccurate. For a large
number of variables, you would be better off in applying one of the automatic algorithms of variable selection.
The following statements use the penalized likelihood method, which is indicated by SELECT=PEN option
in the MODEL statement:

proc countreg data = long97data method = qn;
model art = fem mar kid5 phd ment / dist = poisson

select = PEN;
run;

The output of these statements is shown in Output 12.3.2.
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Output 12.3.2 Poisson Model for the Number of Published Articles with Penalized Likelihood Method

The COUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 3.48839E-7

Number of Iterations 7

Optimization Method Quasi-Newton

AIC 3312

SBC 3336

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.345174 0.060125 5.74 <.0001

fem 1 -0.225303 0.054615 -4.13 <.0001

mar 1 0.152175 0.061067 2.49 0.0127

kid5 1 -0.184993 0.040139 -4.61 <.0001

ment 1 0.025761 0.001950 13.21 <.0001

The “Parameter Estimates” table shows that the variable Phd was dropped from the model.

The next statements use the information criterion by specifying the SELECT=INFO option. The direction
of the search is chosen to be forward, and the information criterion is AIC. In order to achieve the same
selection of variables as for the penalized likelihood method, 0.001 is specified for the percentage of decrease
in the information criterion necessary for the algorithm to stop.

proc countreg data = long97data;
model art = fem mar kid5 phd ment / dist = poisson

select = INFO
( direction = forward
criter = AIC
lstop = 0.001 );

run;

The output of these statements is shown in Figure 12.3.3.
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Output 12.3.3 Poisson Model for the Number of Published Articles with Search Method Using
Information Criterion

The COUNTREG Procedure

Variable Selection Information

Step
Effect
Entered

Effect
Removed AIC SBC

0 Base Model 3487.146950 3491.965874

1 ment 3341.286487 3350.924335

2 fem 3330.744604 3345.201376

3 kid5 3316.593036 3335.868733

4 mar 3312.348824 3336.443445

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 1.28196E-9

Number of Iterations 0

Optimization Method Newton-Raphson

AIC 3312

SBC 3336

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.345174 0.060125 5.74 <.0001

fem 1 -0.225303 0.054615 -4.13 <.0001

mar 1 0.152175 0.061067 2.49 0.0127

kid5 1 -0.184993 0.040139 -4.61 <.0001

ment 1 0.025761 0.001950 13.21 <.0001

From the output, it is clear that the same set of variables was chosen as the result of information criterion
algorithm. Note that the forward optimization algorithm starts with the constant as the only explanatory
variable.
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Example 12.4: Spatial Effects
This example demonstrates how to use the COUNTREG procedure to model count data with spatial effects.
The data set Shigdata contains county-level data related to shigellosis, an infectious bacterial disease. The
dependent variable Shigellosis records the number of shigellosis cases reported in each California county in
2011. The data are from the California Department of Public Health. Additional variables include PopDensity
(population in thousands per square mile), Hispanic (percentage of Hispanic population), and BigHousehold
(percentage of households with six or more persons); these data are from the 2010 United States Census. The
following statements compute summary statistics for these variables and the frequency of each observed
shigellosis count:

proc means data=Shigdata;
var Shigellosis PopDensity Hispanic BigHousehold;

run;
proc freq data=Shigdata;

table Shigellosis;
run;

The results are presented in Output 12.4.1.

Output 12.4.1 Summary Statistics and Frequency of Counts

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

Shigellosis
PopDensity
Hispanic
Bighousehold

58
58
58
58

16.3620690
0.6632695
28.4724138
6.3818966

40.6692687
2.3148907
17.3124947
3.4006318

0
0.0015900
6.9600000
1.7500000

284.0000000
17.1801800
80.3700000
13.1500000
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Output 12.4.1 continued

The FREQ Procedure

Shigellosis Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 18 31.03 18 31.03

1 5 8.62 23 39.66

2 1 1.72 24 41.38

3 4 6.90 28 48.28

4 5 8.62 33 56.90

5 1 1.72 34 58.62

6 1 1.72 35 60.34

8 2 3.45 37 63.79

9 2 3.45 39 67.24

12 1 1.72 40 68.97

13 1 1.72 41 70.69

15 1 1.72 42 72.41

16 2 3.45 44 75.86

17 1 1.72 45 77.59

18 1 1.72 46 79.31

21 2 3.45 48 82.76

25 1 1.72 49 84.48

26 1 1.72 50 86.21

34 1 1.72 51 87.93

37 1 1.72 52 89.66

39 1 1.72 53 91.38

48 1 1.72 54 93.10

50 1 1.72 55 94.83

64 1 1.72 56 96.55

109 1 1.72 57 98.28

284 1 1.72 58 100.00

The number of observations is 58, which is the number of California counties. The variance of Shigellosis
(1653.99) is much larger than its mean (16.36), suggesting overdispersion. Moreover, the fact that 18 counties
(31.03%) have counts of 0 indicates zero-inflation in the data.

A map of California counties that shows their shigellosis counts would help visualize any spatial effects. You
can generate such a map by using the following statements:

ods graphics on;
goptions reset=all border;
data ca;

set maps.counties;
where state = 6;

run;

proc sort data=ca out=ca;
by county;

run;

pattern value=mempty color=blue;
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/* The COUNTY and COUNTIES data sets are unprojected */
/* Without the gproject procedure, you would get an inverse map */
proc gproject data=ca out=caproj;

id state county;
run;

proc gmap map=caproj data=Shigdata all;
id county;
choro Shigellosis/discrete coutline=black;

run;

The map is shown in Output 12.4.2.

Output 12.4.2 California Map Showing Shigellosis Counts

The following statements fit a Poisson model with spatially weighted regressors:

proc countreg data=Shigdata Wmat=W;
model Shigellosis = PopDensity BigHousehold / dist=poisson;
spatialeffects PopDensity BigHousehold;

run;

The SPATIALEFFECTS statement accounts for spatial effects on regressors in the MODEL statement.
Because there might be local spillovers in the two explanatory variables, PopDensity and BigHousehold, both
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variables are included in the SPATIALEFFECTS statement. The data set W contains the spatial weights matrix.
The model fit summary, convergence status, and parameter estimation results are shown in Output 12.4.3.

Output 12.4.3 Poisson Model with Spatially Weighted Regressors

The COUNTREG Procedure

Model Fit Summary

Dependent Variable Shigellosis

Number of Observations 58

Data Set WORK.SHIGDATA

Model Poisson

Log Likelihood -450.76547

Maximum Absolute Gradient 3.81342E-8

Number of Iterations 5

Optimization Method Newton-Raphson

AIC 911.53094

SBC 921.83315

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -3.801313 0.291041 -13.06 <.0001

PopDensity 1 0.257388 0.008752 29.41 <.0001

Bighousehold 1 0.147668 0.014902 9.91 <.0001

W_PopDensity 1 0.566756 0.032005 17.71 <.0001

W_Bighousehold 1 0.567433 0.026606 21.33 <.0001

As shown in the “Parameter Estimates” table, all estimates are significant at the 5% level. The spatially
weighted regressors are labeled with the prefix “W_”. Because of the likely overdispersion in the data, you
might consider using a negative binomial model. The following statements fit a negative binomial model
with spatially weighted regressors:

proc countreg data=Shigdata Wmat=W;
model Shigellosis = PopDensity BigHousehold / dist=negbin;
spatialeffects PopDensity BigHousehold;

run;

The model fit summary, convergence status, and parameter estimation results are listed in Output 12.4.4.
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Output 12.4.4 Negative Binomial Model with Spatially Weighted Regressors

The COUNTREG Procedure

Model Fit Summary

Dependent Variable Shigellosis

Number of Observations 58

Data Set WORK.SHIGDATA

Model NegBin(p=2)

Log Likelihood -165.09815

Maximum Absolute Gradient 3.89549E-8

Number of Iterations 6

Optimization Method Newton-Raphson

AIC 342.19629

SBC 354.55895

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -2.296188 0.541472 -4.24 <.0001

PopDensity 1 0.293422 0.103991 2.82 0.0048

Bighousehold 1 0.200243 0.063505 3.15 0.0016

W_PopDensity 1 0.542599 0.178125 3.05 0.0023

W_Bighousehold 1 0.329966 0.089232 3.70 0.0002

_Alpha 1 1.029608 0.259475 3.97 <.0001

The AIC and SBC values in the “Model Fit Summary” table in Output 12.4.4 are both smaller than those
in Output 12.4.3, indicating that the negative binomial model provides a better fit than the Poisson model.
The parameter estimate for _Alpha is an estimate of the dispersion parameter in the negative binomial
distribution. The null hypothesis that _Alpha is 0 can be tested against the alternative hypothesis that
_Alpha is positive, by using the likelihood ratio test. The likelihood ratio test statistic is �2.LP � LNB/ D
�2.�450:77C 165:10/ D 571:34, where LP and LNB are the log likelihoods for the Poisson (null) and
negative binomial (alternative) models, respectively. The likelihood ratio test is highly significant at the 5%
level, providing strong evidence of overdispersion.

An alternative model to account for overdispersion is the Conway-Maxwell-Poisson (CMP) model, which
uses dispersion regressors to model the parameter � that controls the degree of dispersion. The following
statements fit a CMP model that accounts for local spillovers in both model regressors and includes a
DISPMODEL statement for the dispersion model:

proc countreg data=Shigdata Wmat=W;
model Shigellosis = PopDensity BigHousehold / dist=compoisson;
spatialeffects PopDensity BigHousehold;
dispmodel Shigellosis ~ Hispanic;
spatialdispeffects Hispanic;

run;

The model fit summary, convergence status, and parameter estimation results are provided in Output 12.4.5.
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Output 12.4.5 CMP Model with Spatially Weighted Regressors

The COUNTREG Procedure

Model Fit Summary

Dependent Variable Shigellosis

Number of Observations 58

Data Set WORK.SHIGDATA

Model CMPoisson

Parameterization Mu

Log Likelihood -166.12239

Maximum Absolute Gradient 4.28048E-7

Number of Iterations 27

Optimization Method Newton-Raphson

AIC 348.24478

SBC 364.72832

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -22.264412 9.575905 -2.33 0.0201

PopDensity 1 0.734791 0.254503 2.89 0.0039

Bighousehold 1 0.408236 0.199566 2.05 0.0408

W_PopDensity 1 2.060400 0.797948 2.58 0.0098

W_Bighousehold 1 1.925729 0.726975 2.65 0.0081

Dsp_Intercept 1 3.090424 0.680127 4.54 <.0001

Dsp_Hispanic 1 0.038153 0.016549 2.31 0.0211

Dsp_W_Hispanic 1 -0.024452 0.022193 -1.10 0.2706

The dispersion regressor is labeled with the prefix “Dsp_”, and its spatially weighted counterpart is labeled
with the prefix “Dsp_W”. The dispersion regressor, Dsp_Hispanic, is significant at the 5% level, whereas
its spatially weighted counterpart, Dsp_W_Hispanic, is not significant even at the 10% level. The AIC and
SBC values in Output 12.4.5 are both slightly higher than those from the previous negative binomial model.
Therefore, the negative binomial model with spatially weighted regressors is the best fit thus far.

Because 31% of observations have counts of 0, you might consider a zero-inflated negative binomial (ZINB)
model. The following statements fit a ZINB model with local spillovers in the model regressors, with a
ZEROMODEL statement to model zero inflation:

proc countreg data=Shigdata Wmat=W;
model Shigellosis = PopDensity BigHousehold / dist=ZINB;
zeromodel Shigellosis ~ Hispanic;
spatialeffects PopDensity BigHousehold;
spatialzeroeffects Hispanic;

run;

The model fit summary, convergence status, and parameter estimation results are shown in Output 12.4.6.
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Output 12.4.6 ZINB Model with Spatially Weighted Regressors

The COUNTREG Procedure

Model Fit Summary

Dependent Variable Shigellosis

Number of Observations 58

Data Set WORK.SHIGDATA

Model ZINB

ZI Link Function Logistic

Log Likelihood -160.43071

Maximum Absolute Gradient 4.42773E-6

Number of Iterations 24

Optimization Method Newton-Raphson

AIC 338.86142

SBC 357.40541

Algorithm converged.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.943401 0.542508 -3.58 0.0003

PopDensity 1 0.290024 0.099347 2.92 0.0035

Bighousehold 1 0.218002 0.062099 3.51 0.0004

W_PopDensity 1 0.504903 0.165523 3.05 0.0023

W_Bighousehold 1 0.276429 0.086860 3.18 0.0015

Inf_Intercept 1 294.884742 38.757068 7.61 <.0001

Inf_Hispanic 1 15.507228 192.906493 0.08 0.9359

Inf_W_Hispanic 1 -41.162730 217.771026 -0.19 0.8501

_Alpha 1 0.913846 0.227689 4.01 <.0001

The “Parameter Estimates” table gives the estimate for the spatially weighted regressor from the ZE-
ROMODEL statement, labeled with the prefix “Inf_W_”. The estimates of regression coefficients for
Inf_Hispanic and Inf_W_Hispanic are insignificant at the 10% level.
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Overview: DATASOURCE Procedure
The DATASOURCE procedure extracts time series and event data from many different kinds of data files
distributed by various data vendors and stores them in a SAS data set. Once stored in a SAS data set, the time
series and event variables can be processed by other SAS procedures.

The DATASOURCE procedure has statements and options to extract only a subset of time series data from
an input data file. It gives you control over the frequency of data to be extracted, time series variables to be
selected, cross sections to be included, and time range of data to be output.

The DATASOURCE procedure can create auxiliary data sets containing descriptive information on the time
series variables and cross sections. More specifically, the OUTCONT= option names a data set containing
information on time series variables, the OUTBY= option names a data set that reports information on
cross-sectional variables, and the OUTALL= option names a data set that combines both time series variables
and cross-sectional information.

In addition to the auxiliary data sets, two types of primary output data sets are the OUT= and OUTEVENT=
data sets. The OUTEVENT= data set contains event variables but excludes periodic time series data. The
OUT= data set contains periodic time series data and any event variables referenced in the KEEP statement.

The output variables in the output and auxiliary data sets can be assigned various attributes by the DATA-
SOURCE procedure. These attributes are labels, formats, new names, and lengths. While the first three
attributes in this list are used to enhance the output, the length attribute is used to control the memory and
disk-space usage of the DATASOURCE procedure.

Data files currently supported by the DATASOURCE procedure include the following:

� U.S. Bureau of Economic Analysis data files

� National Income and Product Accounts

� National Income and Product Accounts PC format

� S-pages

� U.S. Bureau of Labor Statistics data files

� Consumer Price Index Surveys
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� Producer Price Index Survey

� National Employment, Hours, and Earnings Survey

� State and Area Employment, Hours, and Earnings Survey

� Standard & Poor’s Compustat Services Financial Database Files

� COMPUSTAT Annual

� COMPUSTAT 48 Quarter

� COMPUSTAT Full Coverage Annual

� COMPUSTAT Full Coverage 48 Quarter

� Center for Research in Security Prices (CRSP) data files

� Daily Binary Format Files

� Monthly Binary Format Files

� Daily Character Format Files

� Monthly Character Format Files

� Global Insight, formerly DRI/McGraw-Hill data files

� Basic Economics Data (formerly CITIBASE)

� DRI Data Delivery Service files

� CITIBASE Data Files

� DRI Data Delivery Service Time Series

� PC Format CITIBASE Databases

� FAME Information Services Databases

� Haver Analytics data files

� United States Economic Indicators

� Specialized Databases

� Financial Indicators

� Industry

� Industrial Countries

� Emerging Markets

� International Organizations

� Forecasts and As Reported Data

� United States Regional

� International Monetary Fund’s Economic Information System data files

� International Financial Statistics
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� Direction of Trade Statistics

� Balance of Payment Statistics

� Government Finance Statistics

� Organization for Economic Cooperation and Development

� Annual National Accounts

� Quarterly National Accounts

� Main Economic Indicators

Getting Started: DATASOURCE Procedure

Structure of a SAS Data Set Containing Time Series Data
SAS procedures require time series data to be in a specific form recognizable by the SAS System. This form
is a two-dimensional array, called a SAS data set, whose columns correspond to series variables and whose
rows correspond to measurements of these variables at certain time periods.

The time periods at which observations are recorded can be included in the data set as a time ID variable.
The DATASOURCE procedure does include a time ID variable by the name of DATE.

For example, the data set in Table 13.1, extracted from a DRIBASIC data file, gives the foreign exchange
rates for Japan, Switzerland, and the United Kingdom, respectively.

Table 13.1 The Form of SAS Data Sets Required by Most SAS/ETS Procedures

Time ID Time Series
Variable Variables

DATE EXRJAN EXRSW EXRUK

SEP1987 143.290 1.50290 164.460
OCT1987 143.320 1.49400 166.200
NOV1987 135.400 1.38250 177.540
DEC1987 128.240 1.33040 182.880
JAN1988 127.690 1.34660 180.090
FEB1988 129.170 1.39160 175.820
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Reading Data Files
The DATASOURCE procedure is designed to read data from many different files and to place them in a SAS
data set. For example, if you have a DRI Basic Economics data file you want to read, use the following
statements:

proc datasource filetype=dribasic infile=citifile out=dataset;
run;

Here, the FILETYPE= option indicates that you want to read DRI’s Basic Economics data file, the INFILE=
option specifies the fileref CITIFILE of the external file you want to read, and the OUT= option names the
SAS data set to contain the time series data.

Subsetting Input Data Files
When only a subset of a data file is needed, it is inefficient to extract all the data and then subset it in a
subsequent DATA step. Instead, you can use the DATASOURCE procedure options and statements to extract
only needed information from the data file.

The DATASOURCE procedure offers the following subsetting capabilities:

� the INTERVAL= option controls the frequency of data output

� the KEEP or DROP statement selects a subset of time series variables

� the RANGE statement restricts the time range of data

� the WHERE statement selects a subset of cross sections

Controlling the Frequency of Data: The INTERVAL= Option
The OUT= data set contains only data with the same frequency. If the data file you want to read contains
time series data with several frequencies, you can indicate the frequency of data you want to extract with
the INTERVAL= option. For example, the following statements extract all monthly time series from the
DRIBASIC file CITIFILE:

proc datasource filetype=dribasic infile=citifile
interval=month out=dataset;

run;

When the INTERVAL= option is not given, the default frequency defined for the FILETYPE= type file is
used. For example, the statements in the previous section extract yearly series since INTERVAL=YEAR is
the default frequency for DRI’s Basic Economic Data files.

To extract data for several frequencies, you need to execute the DATASOURCE procedure once for each
frequency.
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Selecting Time Series Variables: The KEEP and DROP Statements
If you want to include specific series in the OUT= data set, list them in a KEEP statement. If, on the other
hand, you want to exclude some variables from the OUT= data set, list them in a DROP statement. For
example, the following statements extract monthly foreign exchange rates for Japan (EXRJAN), Switzerland
(EXRSW), and the United Kingdom (EXRUK) from a DRIBASIC file CITIFILE:

proc datasource filetype=dribasic infile=citifile
interval=month out=dataset;

keep exrjan exrsw exruk;
run;

The KEEP statement also allows input names to be quoted strings. If the name of a series in the input file
contains blanks or special characters that are not valid SAS name syntax, put the series name in quotes to
select it. Another way to allow the use of special characters in your SAS variable names is to use the SAS
options statement to designate VALIDVARNAME=ANY. This option will allow PROC DATASOURCE to
include special characters in your SAS variable names. The following is an example of extracting series from
a FAME database by using the DATASOURCE procedure:

proc datasource filetype=fame dbname='fame_nys /disk1/prc/prc'
interval=weekday out=outds outcont=attrds;

range '1jan90'd to '1feb90'd;
keep cci.close

'{ibm.high,ibm.low,ibm.close}'
'mave(ibm.close,30)'
'crosslist({gm,f,c},{volume})'
'cci.close+ibm.close';

rename 'mave(ibm.close,30)' = ibm30day
'cci.close+ibm.close' = cci_ibm;

run;

The resulting output data set OUTDS contains the following series: DATE, CCI_CLOS, IBM_HIGH,
IBM_LOW, IBM_CLOS, IBM30DAY, GM_VOLUM, F_VOLUME, C_VOLUME, CCI_IBM.

Obviously, to be able to use KEEP and DROP statements, you need to know the name of time series
variables available in the data file. The OUTCONT= option gives you this information. More specifically, the
OUTCONT= option creates a data set containing descriptive information on the same frequency time series.
This descriptive information includes series names, a flag indicating if the series is selected for output, series
variable types, lengths, position of series in the OUT= data set, labels, format names, format lengths, format
decimals, and a set of FILETYPE= specific descriptor variables.

For example, the following statements list some of the monthly series available in the CITIFILE and are
shown in Figure 13.1:

/*-- Selecting Time Series Variables -- The KEEP and DROP Statements --*/
filename citifile "%sysget(DATASRC_DATA)citiaf.dat" RECFM=F LRECL=80;
proc datasource filetype=dribasic infile=citifile

interval=month outcont=vars;
drop e: ;

run;

title1 'Some Time Series Variables Available in CITIFILE';



Selecting Time Series Variables: The KEEP and DROP Statements F 697

proc print data=vars;
run;

Figure 13.1 Listing of the OUTCONT= Data Set

Some Time Series Variables Available in CITIFILE

Obs NAME KEPT SELECTED TYPE LENGTH VARNUM LABEL

1 BUS 1 1 1 5 . INDEX OF NET BUSINESS FORMATION, (1967=100;SA)

2 CCBPY 1 1 1 5 . RATIO, CONSUMER INSTAL CREDIT TO PERSONAL INCOME
(%,SA)(BCD-95)

3 CCI30M 1 1 1 5 . CONSUMER INSTAL.LOANS: DELINQUENCY RATE,30
DAYS & OVER, (%,SA)

4 CCIPY 1 1 1 5 . RATIO, CONSUMER INSTAL CREDIT TO PERSONAL INCOME
(%,SA)(BCD-95)

5 COCI77 1 1 1 5 . CONSTRUCTION COST INDEX: DEPT OF COMMERCE
COMPOSITE(1977=100,NSA)

6 CONU 1 1 1 5 . CONSTRUCT.PUT IN PLACE: PRIV NEW HOUSING UNITS
(MIL$,SAAR)

7 DLEAD 1 1 1 5 . COMPOSITE INDEX OF 12 LEADING INDICATORS(67=100,SA)

8 F6CMB 1 1 1 5 . DEPOSITORY INST RESERVES: TOTAL BORROWINGS AT RES
BANKS(MIL$,NSA)

9 F6EDM 1 1 1 5 . U.S.MDSE EXPORTS:  MANUFACTURED GOODS (MIL$,NSA)

10 WTNO8 1 1 1 5 . MFG & TRADE SALES:MERCHANT WHOLESALERS,OTHR
NONDUR GDS,82$

11 WTNR 1 1 1 5 . MERCHANT WHOLESALERS' SALES: NONDURABLE GOODS
(MIL$,SA)

12 WTR 1 1 1 5 . MERCHANT WHOLESALERS' SALES: TOTAL (MIL$,SA)

Obs FORMAT FORMATL FORMATD CODE

1 0 0 BUS

2 0 0 CCBPY

3 0 0 CCI30M

4 0 0 CCIPY

5 0 0 COCI77

6 0 0 CONU

7 0 0 DLEAD

8 0 0 F6CMB

9 0 0 F6EDM

10 0 0 WTNO8

11 0 0 WTNR

12 0 0 WTR
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Controlling the Time Range of Data: The RANGE Statement
The RANGE statement is used to control the time range of observations included in the output data set.
Figure 13.2 shows an example extracting the foreign exchange rates from September 1985 to February 1987.
You can use the following statements:

/*-- Controlling the Time Range of Data - The RANGE Statement --*/
filename citifile "%sysget(DATASRC_DATA)citiaf.dat" RECFM=F LRECL=80;
proc datasource filetype=dribasic infile=citifile

interval=month out=dataset;
keep exrjan exrsw exruk;
range from 1985:9 to 1987:2;

run;

title1 'Printout of the OUT= Data Set';
proc print data=dataset;
run;

Figure 13.2 Subset Obtained by KEEP and RANGE Statements

Printout of the OUT= Data Set

Obs DATE EXRJAN EXRSW EXRUK

1 SEP1985 236.530 2.37490 136.420

2 OCT1985 214.680 2.16920 142.150

3 NOV1985 204.070 2.13060 143.960

4 DEC1985 202.790 2.10420 144.470

5 JAN1986 199.890 2.06600 142.440

6 FEB1986 184.850 1.95470 142.970

7 MAR1986 178.690 1.91500 146.740

8 APR1986 175.090 1.90160 149.850

9 MAY1986 167.030 1.85380 152.110

10 JUN1986 167.540 1.84060 150.850

11 JUL1986 158.610 1.74450 150.710

12 AUG1986 154.180 1.66160 148.610

13 SEP1986 154.730 1.65370 146.980

14 OCT1986 156.470 1.64330 142.640

15 NOV1986 162.850 1.68580 142.380

16 DEC1986 162.050 1.66470 143.930

17 JAN1987 154.830 1.56160 150.540

18 FEB1987 153.410 1.54030 152.800
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Reading in Data Files Containing Cross Sections
Some data files group time series data with respect to cross-section identifiers; for example, International
Financial Statistics files, distributed by IMF, group data with respect to countries (COUNTRY). Within each
country, data are further grouped by Control Source Code (CSC), Partner Country Code (PARTNER), and
Version Code (VERSION).

If a data file contains cross-section identifiers, the DATASOURCE procedure adds them to the output data set
as BY variables. For example, the data set in Table 13.2 contains three cross sections:

� Cross-section one is identified by (COUNTRY=’112’ CSC=’F’ PARTNER=’ ’ VERSION=’Z’).

� Cross-section two is identified by (COUNTRY=’146’ CSC=’F’ PARTNER=’ ’ VERSION=’Z’).

� Cross-section three is identified by (COUNTRY=’158’ CSC=’F’ PARTNER=’ ’ VERSION=’Z’).

Table 13.2 The Form of a SAS Data Set Containing BY
Variables

BY Time ID Time Series
Variables Variable Variables

COUNTRY CSC PARTNER VERSION DATE EFFEXR EXRINDEX

112 F Z SEP1987 9326 12685
112 F Z OCT1987 9393 12813
112 F Z NOV1987 9626 13694
112 F Z DEC1987 9675 14099
112 F Z JAN1988 9581 13910
112 F Z FEB1988 9493 13549

146 F Z SEP1987 12046 16192
146 F Z OCT1987 12067 16266
146 F Z NOV1987 12558 17596
146 F Z DEC1987 12759 18301
146 F Z JAN1988 12642 18082
146 F Z FEB1988 12409 17470

158 F Z SEP1987 13841 16558
158 F Z OCT1987 13754 16499
158 F Z NOV1987 14222 17505
158 F Z DEC1987 14768 18423
158 F Z JAN1988 14933 18565
158 F Z FEB1988 14915 18331

Note that the data sets in Table 13.1 and Table 13.2 use two different ways of representing time series data
for three different countries: the United Kingdom (COUNTRY=’112’), Switzerland (COUNTRY=’146’),
and Japan (COUNTRY=’158’). The first representation (Table 13.1) incorporates each country’s name into
the series names, while the second representation (Table 13.2) represents countries as different cross sections
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by using the BY variable named COUNTRY. See the section “Time Series and SAS Data Sets” in Chapter 4,
“Working with Time Series Data.”

Obtaining Descriptive Information on Cross Sections
If you want to know the unique set of values BY variables assume for each cross section in the data file, use
the OUTBY= option. For example, the following statements list some of the cross sections available for an
IFS file, and are shown in Figure 13.3:

filename ifsfile "%sysget(DATASRC_DATA)imfifs1.dat" RECFM=F LRECL=88;
proc datasource

filetype=imfifsp infile=ifsfile
outselect=on ebcdic
interval=month
outby=xsection;

run;

title1 'Some Cross Sections Available in IFSFILE';
proc print data=xsection;
run;

Figure 13.3 Listing of the OUTBY= Data Set

Some Cross Sections Available in IFSFILE

Obs COUNTRY CSC PARTNER VERSION ST_DATE END_DATE NTIME NOBS NSERIES NSELECT CNTYNAME

1 111 F Z JAN1957 SEP1986 357 357 6 3 UNITED STATES

2 112 F Z JAN1957 SEP1986 357 357 6 3 UNITED KINGDOM

3 146 F Z JAN1957 SEP1986 357 357 6 3 SWITZERLAND

4 158 F Z JAN1957 SEP1986 357 357 6 3 JAPAN

5 186 F Z JAN1957 SEP1986 357 357 6 3 TURKEY

The OUTBY= data set reports the total number of series, NSERIES, defined in each cross section, NSELECT
of which represent the selected variables. If you want to see the descriptive information on each of these
NSELECT variables for each cross section, specify the OUTALL= option. For example, the following
statements print descriptive information on all monthly series defined for all cross sections (COUNTRY=’111’,
COUNTRY=’112’, COUNTRY=’146’, COUNTRY=’158’, and COUNTRY=’186’), which are shown in
Figure 13.4:

filename datafile "%sysget(DATASRC_DATA)imfifs1.dat" RECFM=F LRECL=88;

title3 'Time Series Defined in Cross Section';
proc datasource filetype=imfifsp

outselect=on ebcdic
interval=month
outall=ifsall;

run;

title4 'Cross Sections Available in OUTALL=IFSALL Data Set';
proc print

data=ifsall;
run;
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Figure 13.4 Listing of the OUTALL= Data Set

Time Series Defined in Cross Section
Cross Sections Available in OUTALL=IFSALL Data Set

Obs COUNTRY CSC PARTNER VERSION NAME KEPT SELECTED TYPE LENGTH VARNUM

1 111 F Z F___AA 1 1 1 5 .

2 111 F Z F___AC 1 1 1 5 .

3 111 F Z F___AE 1 1 1 5 .

4 112 F Z F___AA 1 1 1 5 .

5 112 F Z F___AC 1 1 1 5 .

6 112 F Z F___AE 1 1 1 5 .

7 146 F Z F___AA 1 1 1 5 .

8 146 F Z F___AC 1 1 1 5 .

Obs BLKNUM LABEL FORMAT FORMATL FORMATD ST_DATE END_DATE NTIME NOBS

1 1 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

2 2 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

3 3 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

4 4 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

5 5 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

6 6 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

7 7 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

8 8 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

Obs CNTYNAME SUBJECT SCDATA DATATYPE DU_CODE DU_NAME NDEC BASEYEAR SOURCE

1 UNITED STATES S E U      U 5

2 UNITED STATES S F U      U 5

3 UNITED STATES S A U      U 5

4 UNITED KINGDOM S E U      U 6

5 UNITED KINGDOM S F U      U 5

6 UNITED KINGDOM S A U      U 6

7 SWITZERLAND S E U 4

8 SWITZERLAND S F U 6
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Figure 13.4 continued

Time Series Defined in Cross Section
Cross Sections Available in OUTALL=IFSALL Data Set

Obs COUNTRY CSC PARTNER VERSION NAME KEPT SELECTED TYPE LENGTH VARNUM

9 146 F Z F___AE 1 1 1 5 .

10 158 F Z F___AA 1 1 1 5 .

11 158 F Z F___AC 1 1 1 5 .

12 158 F Z F___AE 1 1 1 5 .

13 186 F Z F___AA 1 1 1 5 .

14 186 F Z F___AC 1 1 1 5 .

15 186 F Z F___AE 1 1 1 5 .

Obs BLKNUM LABEL FORMAT FORMATL FORMATD ST_DATE END_DATE NTIME NOBS

9 9 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

10 10 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

11 11 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

12 12 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

13 13 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

14 14 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

15 15 MARKET RATE CONVERSION
FACTOR

0 0 JAN1957 SEP1986 357 357

Obs CNTYNAME SUBJECT SCDATA DATATYPE DU_CODE DU_NAME NDEC BASEYEAR SOURCE

9 SWITZERLAND S A U 4

10 JAPAN S E U 3

11 JAPAN S F U 6

12 JAPAN S A U 3

13 TURKEY S E U 3

14 TURKEY S F U 5

15 TURKEY S A U 3

The OUTCONT= data set contains one observation for each time series variable with the descriptive
information summarized over BY groups. When the data file contains no cross sections, the OUTCONT= and
OUTALL= data sets are equivalent, except that the OUTALL= data set also reports time ranges of available



Subsetting a Data File Containing Cross Sections F 703

data. The OUTBY= data set in this case contains a single observation reporting the number of series and
time ranges for the whole data file.

Subsetting a Data File Containing Cross Sections
Data files containing cross sections can be subsetted by controlling which cross sections to include in the
output data set. Selecting a subset of cross sections is accomplished using the WHERE statement. The
WHERE statement gives a condition that the BY variables must satisfy for a cross section to be selected.
For example, the following statements extract the monthly market rate conversion factors for the United
Kingdom (COUNTRY=’112’) and Switzerland (COUNTRY=’146’) for the period from September 1985 to
February 1986:

filename datafile "%sysget(DATASRC_DATA)imfifs1.dat" RECFM=F LRECL=88;

title3 'Time Series Defined in Selected Cross Sections';
proc datasource filetype=imfifsp

outselect=on ebcdic
interval=month
out=ifs;

where country in ('146', '112') and partner=' ';
keep F___AA F___AC;
range from '01sep85'd to '01feb86'd;

run;

title4 'OUTALL=IFS Data Set';
proc print

data=ifs;
run;

Renaming Time Series Variables
Sometimes the time series variable names as given by data vendors are not descriptive enough, or you might
prefer a different naming convention. In such cases, you can use the RENAME statement to assign more
meaningful names to time series variables. You can also use LABEL statements to associate descriptive
labels with your series variables.

For example, the series names for market rate conversion factor (F___AA) and market rate conversion factor
(F___AC) used by IMF can be given more descriptive names and labels by the following statements and are
shown in Figure 13.5 and Figure 13.6.

filename ifsfile "%sysget(DATASRC_DATA)imfifs1.dat" RECFM=F LRECL=88;

proc datasource filetype=imfifsp infile=ifsfile
interval=month
out=market outcont=mrktvars;

where country in ('112','146','158') and partner=' ';
keep f___aa f___ac;
range from '01jun85'd to '01feb86'd;
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rename f___aa=alphmkt f___ac=charmkt;
label f___aa='F___AA: Market Rate Conversion Factor Used in Alpha Test'

f___ac='F___AC: Market Rate Conversion Used in Charlie Test';
run;

title1 'Printout of OUTCONT= Showing New NAMEs and LABELs';
proc print data=mrktvars ;

var name label length;
run;

title1 'Contents of OUT= Showing New NAMEs and LABELs';
proc contents data=market;
run;

The RENAME statement allows input names to be quoted strings. If the name of a series in the input
file contains blanks or special characters that are not in valid SAS name syntax, use the SAS option
VALIDVARNAME=ANY or put the series name in quotes to rename it. See the FAME example using the
RENAME statement in the section “Selecting Time Series Variables: The KEEP and DROP Statements” on
page 696.

Figure 13.5 Renaming and Labeling Variables

Printout of OUTCONT= Showing New NAMEs and LABELs

Obs NAME LABEL LENGTH

1 alphmkt F___AA: Market Rate Conversion Factor Used in Alpha Test 5

2 charmkt F___AC: Market Rate Conversion Used in Charlie Test 5

Figure 13.6 Renaming and Labeling Variables

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 COUNTRY Char 3 COUNTRY CODE

2 CSC Char 1 CONTROL SOURCE CODE

5 DATE Num 4 MONYY7. Date of Observation

3 PARTNER Char 3 PARTNER COUNTRY CODE

4 VERSION Char 1 VERSION CODE

6 alphmkt Num 5 F___AA: Market Rate Conversion Factor Used in Alpha Test

7 charmkt Num 5 F___AC: Market Rate Conversion Used in Charlie Test

Notice that even though you changed the names of F___AA and F___AC to alphmkt and charmkt, respectively,
you still use their old names in the KEEP and LABEL statements because renaming takes place at the output
stage.
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Changing the Lengths of Numeric Variables
The length attribute indicates the number of bytes the SAS System uses for storing the values of variables in
output data sets. Therefore, the shorter the variable lengths, the more efficient the disk-space usage. However,
there is a trade-off. The lengths of numeric variables are closely tied to their precision, and reducing their
lengths arbitrarily can cause precision loss.

The DATASOURCE procedure uses default lengths for series variables appropriate to each file type. For
example, the default lengths for numeric variables are 5 for IMFIFSP type files. In some cases, however,
you might want to assign different lengths. Assigning lengths less than the defaults reduces memory and
disk-space usage at the expense of precision. Specifying lengths longer than the defaults increases the
precision but causes the DATASOURCE procedure to use more memory and disk space. The following
statements define a default length of 4 for all numeric variables in the IFSFILE and then assign a length of 6
to the exchange rate index. Output is shown in Figure 13.7 and Figure 13.8.

filename ifsfile "%sysget(DATASRC_DATA)imfifs1.dat" RECFM=F LRECL=88;

proc datasource filetype=imfifsp infile=ifsfile
interval=month
out=market outcont=mrktvars;

where country in ('112','146','158') and partner=' ';
keep f___aa f___ac;
range from '01jun85'd to '01feb86'd;
rename f___aa=alphmkt f___ac=charmkt;
label f___aa='F___AA: Market Rate Conversion Factor Used in Alpha Test'

f___ac='F___AC: Market Rate Conversion Used in Charlie Test';
length _numeric_ 4;
length f___aa 6;

run;

title1 'Printout of OUTCONT= Showing New NAMEs and LABELs';
proc print data=mrktvars ;

var name label length;
run;

title1 'Contents of OUT= Showing New NAMEs and LABELs';
proc contents data=market;
run;

Figure 13.7 Changing the Lengths of Numeric Variables

Printout of OUTCONT= Showing New NAMEs and LABELs

Obs NAME LABEL LENGTH

1 alphmkt F___AA: Market Rate Conversion Factor Used in Alpha Test 6

2 charmkt F___AC: Market Rate Conversion Used in Charlie Test 4
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Figure 13.8 Changing the Lengths of Numeric Variables

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 COUNTRY Char 3 COUNTRY CODE

2 CSC Char 1 CONTROL SOURCE CODE

5 DATE Num 4 MONYY7. Date of Observation

3 PARTNER Char 3 PARTNER COUNTRY CODE

4 VERSION Char 1 VERSION CODE

6 alphmkt Num 6 F___AA: Market Rate Conversion Factor Used in Alpha Test

7 charmkt Num 4 F___AC: Market Rate Conversion Used in Charlie Test

The default lengths of the character variables are set to the minimum number of characters that can hold the
longest possible value.

Syntax: DATASOURCE Procedure
The following statements are available in the DATASOURCE procedure:

PROC DATASOURCE options ;
KEEP variable-list ;
DROP variable-list ;
KEEPEVENT variable-list ;
DROPEVENT variable-list ;
WHERE where-expression ;
RANGE FROM from TO to ;
ATTRIBUTE variable-list attribute-list . . . ;
FORMAT variable-list format . . . ;
LABEL variable="label" . . . ;
LENGTH variable-list length . . . ;
RENAME old-name=new-name . . . ;

The PROC DATASOURCE statement is required. All the rest of the statements are optional.

The DATASOURCE procedure uses two kinds of statements, subsetting statements and attribute statements.
Subsetting statements provide selection of time series data over selected time periods and cross sections from
the input data file. Attribute statements control the attributes of the variables in the output SAS data set.

The subsetting statements are the KEEP, DROP, KEEPEVENT, and DROPEVENT statements (which select
output variables); the RANGE statement (which selects time ranges); and the WHERE statement (which
selects cross sections). The attribute statements are the ATTRIBUTE, FORMAT, LABEL, LENGTH, and
RENAME statements.

The statements and options used by PROC DATASOURCE are summarized in Table 13.3. The rest of
this section provides detailed syntax information about each of these statements, beginning with the PROC
DATASOURCE statement. The remaining statements are described in alphabetical order.
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Table 13.3 Functional Summary

Option Description

Input Data File Options
FILETYPE= Type of input data file to read
INFILE= Filerefs of the input data
LRECL= LRECLs of the input data
RECFM= RECFMs of the input data
ASCII Character set of the incoming data
EBCDIC Character set of the incoming data

Output Data Set Options
OUT= Write the extracted time series data
OUTALL= Information on time series and cross sections
OUTBY= Information on only cross sections
OUTCONT= Information on only time series variables
OUTEVENT= Write event-oriented data
OUTSELECT= Control reporting of all or only selected series and cross sections
INDEX Create single indexes from BY variables for the OUT= data set
ALIGN= Control the alignment of SAS date values

Subsetting Option and Statements
INTERVAL= Select periodicity of series to extract
KEEP Time series to include in the OUT= data set
DROP Time series to exclude from the OUT= data set
KEEPEVENT Events to include in the OUTEVENT= data set
DROPEVENT Events to exclude from the OUTEVENT= data set
WHERE Select cross sections for output
RANGE Time range of observations to be output

Assigning Attributes Options and Statements
FORMAT Assign formats to variables in the output data sets
ATTRIBUTE FORMAT= Assign formats to variables in the output data sets
LABEL Assign labels to variables in the output data sets
ATTRIBUTE LABEL= Assign labels to variables in the output data sets
LENGTH Control the lengths of variables in the output data sets
ATTRIBUTE LENGTH= Control the lengths of variables in the output data sets
RENAME Assign new names to variables in the output data sets
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PROC DATASOURCE Statement
PROC DATASOURCE options ;

The PROC DATASOURCE statement invokes the DOCSAMPLE procedure. You can specify the following
options:

ALIGN=option
controls the alignment of SAS dates used to identify output observations. The ALIGN= option
allows the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.

ASCII
specifies the incoming data is ASCII. This option is used when the native character set of your host
machine is EBCDIC.

DBNAME='database name'
specifies the FAME database to access. Only use this option with the FILETYPE=FAME option. The
character string you specify in the DBNAME= option is passed through to FAME. Specify the value of
this option as you would in accessing the database from within FAME software.

EBCDIC
specifies the incoming data is ebcdic. This option is needed when the native character set of your host
machine is ASCII.

FAMEPRINT
prints the FAME command file generated by PROC DATASOURCE and the log file produced by the
FAME component of the interface system. Only use this option with the FILETYPE=FAME option.

FILETYPE=entry

DBTYPE=dbtype
specifies the kind of input data file to process. For a list of supported file types, see the section “Data
Elements Reference: DATASOURCE Procedure” on page 723. The FILETYPE= option is required.

INDEX
creates a set of single indexes from BY variables for the OUT= data set. Under some circumstances,
creating indexes for a SAS data set might increase the efficiency in locating observations when BY or
WHERE statements are used in subsequent steps. For more information about SAS indexes, see SAS
Programmers Guide: Essentials. The INDEX option is ignored when no OUT= data set is created
or when the data file does not contain any BY variables. The INDEX= data set option can be used to
override the index variable definitions.

INFILE=fileref

INFILE=(fileref1 fileref2 . . . filerefn)
specifies the fileref assigned to the input data file. The default value is DATAFILE. The fileref (or if no
INFILE= option is specified, the fileref DATAFILE) must be associated with the physical data file in
a FILENAME statement. (On some operating systems, the fileref assignment can be made with the
system’s control language, and a FILENAME statement might not be needed. For more information
about the FILENAME statement, see SAS Global Statements: Reference. Physical data files can reside
on DVD, CD-ROM, or other media.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsglobal&docsetTarget=titlepage.htm
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For some file types, the data are distributed over several files. In this case, the INFILE= option is
required, and it lists in parentheses the filerefs for each of the files that make up the database. The
order in which these filerefs are listed is important and must conform to the specifics of each file type
as explained in the section “Data Elements Reference: DATASOURCE Procedure” on page 723.

LRECL=lrecl

LRECL=(lrecl1 lrecl2 . . . lrecln)
specifies the logical record length in bytes of the infile. Use this option only if you need to override the
default LRECL of the file. For some file types, the data are distributed over several files. In this case,
the LRECL= option lists in parentheses the lrecls for each of the files that make up the database. The
order in which these lrecls are listed is important and must conform to the specifics of each file type as
explained in the section “Data Elements Reference: DATASOURCE Procedure” on page 723.

RECFM=recfm

RECFM=(recfm1 recfm2 . . . recfmn)
specifies the record format of the infile. Use this option only if you need to override the default record
format of the file. For some file types, the data are distributed over several files. In this case, the
RECFM= option lists in parentheses the recfms for each of the files making up the database. The order
in which these recfms are listed is important and must conform to the specifics of each file type as
explained in the section “Data Elements Reference: DATASOURCE Procedure” on page 723. The
possible values of RECFM are as follows:

� F or FIXED for fixed length records

� N or BIN for binary records

� D or VAR for varying length records

� U or DEF for host default record format

� DOM_V or DOMAIN_VAR or BIN_V or BIN_VAR for UNIX binary record format

INTERVAL=interval

FREQUENCY=interval

TYPE=interval
specifies the periodicity of series selected for output to the OUT= data set. The OUT= data set created
by PROC DATASOURCE can contain only time series with the same periodicity. Some data files
contain time series with different periodicities; for example, a file can contain both monthly series and
quarterly series. Use the INTERVAL= option to indicate which periodicity you want. If you want to
extract series with different periodicities, use different PROC DATASOURCE invocations with the
desired INTERVAL= options.

Common values for INTERVAL= are YEAR, QUARTER, MONTH, WEEK, and DAY. The values
allowed, as well as the default value of the INTERVAL= option, depend on the file type. For the
INTERVAL= values appropriate to the data file type you are reading, see the section “Data Elements
Reference: DATASOURCE Procedure” on page 723.
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OUT=SAS-data-set
names the output data set for the time series extracted from the data file. If none of the output data
set options are specified, including the OUT= data set itself, an OUT= data set is created and named
according to the DATAn convention. However, when you create any of the other output data sets, such
as OUTCONT=, OUTBY=, OUTALL=, or OUTEVENT=, you must explicitly specify the OUT=
data set; otherwise, it will not be created. For more information, see the section “OUT= Data Set” on
page 718.

OUTALL=SAS-data-set
writes information on the contents of the input data file to an output data set. The OUTALL= data set
includes descriptive information, time ranges, and observation counts for all the time series within
each BY group. By default, no OUTALL= data set is created.

The OUTALL= data set contains the Cartesian product of the information output by the OUTCONT=
and OUTBY= options. In data files for which there are no cross sections, the OUTALL= and
OUTCONT= data sets are almost equivalent, except that OUTALL= data set also reports time ranges
and observation counts of series. For more information, see the section “OUTALL= Data Set” on
page 721.

OUTBY=SAS-data-set
writes information on the BY variables to an output data set. The OUTBY= data set contains the list
of cross sections in the database delimited by the unique set of values that the BY variables assume.
Unless the OUTSELECT=OFF option is present, only the selected BY groups are written to the
OUTBY= data set. If you omit the OUTBY= option, no OUTBY= data set is created. For more
information, see the section “OUTBY= Data Set” on page 720.

OUTCONT=SAS-data-set
writes information on the contents of the input data file to an output data set. By default, the OUT-
CONT= data set includes descriptive information on all of the unique series of the selected periodicity
in the data file. When the OUTSELECT=OFF option is omitted, the OUTCONT= data set includes
observations only for the series selected for output to the OUT= data set. By default, no OUTCONT=
data set is created. For more information, see the section “OUTCONT= Data Set” on page 719.

OUTEVENT=SAS-data-set
names the output data set to output event-oriented time series data. This option can only be used when
CRSP stock files are being processed. For all other file types, it will be ignored. For more information,
see the section “OUTEVENT= Data Set” on page 722.

OUTSELECT=ON | OFF
determines whether to output all observations (OUTSELECT=OFF) or only those corresponding to
the selected time series and selected BY groups (OUTSELECT=ON) to OUTCONT=, OUTBY=, and
OUTALL= data sets. The default is OUTSELECT=ON. The OUTSELECT= option is only relevant
when any one of the auxiliary data sets is specified. The option writes observations to OUTCONT=,
OUTBY=, and OUTALL= data sets for only the selected time series and selected BY groups if it is set
ON. The OUTSELECT= option is only relevant when any one of the OUTCONT=, OUTBY=, and
OUTALL= options is specified. The default is OUTSELECT=ON.
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ATTRIBUTE Statement
ATTRIBUTE variable-list attribute-list . . . ;

The ATTRIBUTE statement assigns formats, labels, and lengths to variables in the output data sets.

The variable-list can contain variable names and variable name range specifications. For more information,
see the section “Variable Lists” on page 717. The attributes specified in the following attribute list apply to
all variables in the variable list.

An attribute-list consists of one or more of the following options:

FORMAT=format
associates a format with variables in variable-list . The format can be either a standard SAS format or a
format defined with the FORMAT procedure. The default formats for variables depend on the file type.

LABEL="label"
assigns a label to the variables in the variable list. The default labels for variables depend on the file
type. Labels can be up to 256 bytes in length.

LENGTH=length
specifies the number of bytes used to store the values of variables in the variable list. The default
lengths for numeric variables depend on the file type. Usually default lengths are set to 5 bytes.

The length specification also controls the amount of memory that PROC DATASOURCE uses to hold
variable values while processing the input data file. Thus, specifying a LENGTH= value smaller than
the default will reduce both the disk space taken up by the output data sets and the amount of memory
used by the PROC DATASOURCE step, at the cost of precision of output data values.

DROP Statement
DROP variable-list ;

The DROP statement specifies that some variables be excluded from the OUT= data set. Only the time
series and event variables can be specified in a DROP statement. None of the BY variables or the time ID
variable DATE can be excluded from the OUT= data set. If they are referenced in a DROP statement, a
warning message is given and the reference is ignored. Use the WHERE statement for selection based on BY
variables, and use the RANGE statement for date selections.

The variable list can contain variable names or name range specifications. For more information, see the
section “Variable Lists” on page 717.

Only one DROP or one KEEP statement can be used. KEEP and DROP are mutually exclusive.

There is a default DROP or KEEP list for each file type. Usually, descriptor type variables, like footnotes, are
not included in the default KEEP list. If you specify a DROP statement, the default list becomes undefined.

You can also use the DROP= data set option to control which variables to exclude from the OUT= data set.
However, the DROP statement differs from the DROP= data set option in several aspects:
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� The DROP statement selection is applied before variables are read from the data file, while the DROP=
data set option selection is applied after variables are read and as they are written to the OUT= data set.
Therefore, using the DROP statement instead of the DROP= data set option is much more efficient.

� If the DROP statement causes all series variables to be excluded, then no observations are output to the
OUT= data set.

� The DROP statement variable specifications are applied to each cross section independently. This
behavior might produce variables different from those produced by the DROP= data set option when
order-range variable list specifications are used.

DROPEVENT Statement
DROPEVENT variable-list ;

The DROPEVENT statement specifies that some event variables be excluded from the OUTEVENT= data
set. As a result, the DROPEVENT statement is valid only for data files containing event-oriented time series
data. All the BY variables, the time ID variable DATE, and the event-grouping variable EVENT are always
included in the OUTEVENT= data set. These variables cannot be referenced in the DROPEVENT statement.
If any of these variables are referenced, a warning message is given and the reference is ignored.

The variable-list can contain variable names or name range specifications. For more information, see the
section “Variable Lists” on page 717.

Only one DROPEVENT or one KEEPEVENT statement can be used. DROPEVENT and KEEPEVENT are
mutually exclusive.

You can also use the DROP= data set option to control which event variables to exclude from the OUT-
EVENT= data set. However, the DROPEVENT statement differs from the DROP= data set option in several
respects:

� The DROPEVENT statement selection is applied before variables are read from the data file, while
the DROP= data set option selection is applied after variables are read and as they are written to the
OUTEVENT= data set. Therefore, using the DROPEVENT statement instead of the DROP= data set
option is much more efficient.

� If the DROPEVENT statement causes all series variables to be excluded, then no observations are
output to the OUTEVENT= data set.



FORMAT Statement F 713

FORMAT Statement
FORMAT variable-list format . . . ;

The FORMAT statement assigns formats to variables in output data sets. The variable-list can contain variable
names and variable name range specifications. For more information, see the section “Variable Lists” on
page 717. The format specified applies to all variables in the variable list.

A single FORMAT statement can assign the same format to several variables or different formats to different
variables. The FORMAT statement can use standard SAS formats or formats defined using the FORMAT
procedure.

Any later format specification for a variable, using either the FORMAT statement or the FORMAT= option in
the ATTRIBUTE statement, always overrides the previous one.

KEEP Statement
KEEP variable-list ;

The KEEP statement specifies which variables in the data file are to be included in the OUT= data set. Only
the time series and event variables can be specified in a KEEP statement. All the BY variables and the time
ID variable DATE are always included in the OUT= data set; they cannot be referenced in a KEEP statement.
If they are referenced, a warning message is given and the reference is ignored.

The variable-list can contain variable names or name range specifications. For more information, see the
section “Variable Lists” on page 717.

There is a default KEEP list for each file type. Usually, descriptor type variables, like footnotes, are not
included in the default KEEP list. If you give a KEEP statement, the default list becomes undefined.

Only one KEEP or one DROP statement can be used. KEEP and DROP are mutually exclusive.

You can also use the KEEP= data set option to control which variables to include in the OUT= data set.
However, the KEEP statement differs from the KEEP= data set option in several respects:

� The KEEP statement selection is applied before variables are read from the data file, while the KEEP=
data set option selection is applied after variables are read and as they are written to the OUT= data set.
Therefore, using the KEEP statement instead of the KEEP= data set option is much more efficient.

� If the KEEP statement causes no series variables to be selected, then no observations are output to the
OUT= data set.

� The KEEP statement variable specifications are applied to each cross section independently. This
behavior might produce variables different from those produced by the KEEP= data set option when
order-range variable list specifications are used.
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KEEPEVENT Statement
KEEPEVENT variable-list ;

The KEEPEVENT statement specifies which event variables in the data file are to be included in the
OUTEVENT= data set. As a result, the KEEPEVENT statement is valid only for data files containing
event-oriented time series data. All the BY variables, the time ID variable DATE, and the event-grouping
variable EVENT are always included in the OUTEVENT= data set. These variables cannot be referenced in
the KEEPEVENT statement. If any of these variables are referenced, a warning message is given and the
reference is ignored.

The variable-list can contain variable names or name range specifications. For more information, see the
section “Variable Lists” on page 717.

Only one KEEPEVENT or one DROPEVENT statement can be used. KEEPEVENT and DROPEVENT are
mutually exclusive.

You can also use the KEEP= data set option to control which event variables to include in the OUTEVENT=
data set. However, the KEEPEVENT statement differs from the KEEP= data set option in several respects:

� The KEEPEVENT statement selection is applied before variables are read from the data file, while
the KEEP= data set option selection is applied after variables are read and as they are written to the
OUTEVENT= data set. Therefore, using the KEEPEVENT statement instead of the KEEP= data set
option is much more efficient.

� If the KEEPEVENT statement causes no event variables to be selected, then no observations are output
to the OUTEVENT= data set.

LABEL Statement
LABEL variable = "label" . . . ;

The LABEL statement assigns SAS variable labels to variables in the output data sets. You can give labels
for any number of variables in a single LABEL statement. The default labels for variables depend on the file
type. Extra-long labels (> 256 bytes) reside in the OUTCONT= data set as the DESCRIPT variable.

Any later label specification for a variable, using either the LABEL statement or the LABEL= option in the
ATTRIBUTE statement, always overrides the previous one.
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LENGTH Statement
LENGTH variable-list length . . . ;

The LENGTH statement, like the LENGTH= option in the ATTRIBUTE statement, specifies the number of
bytes used to store values of variables in output data sets. The default lengths for numeric variables depend
on the file type. Usually default lengths are set to 5 bytes.

The default lengths of character variables are defined as the minimum number of characters that can hold the
longest possible value.

For some file types, the LENGTH statement also controls the amount of memory used to store values of
numeric variables while processing the input data file. Thus, specifying LENGTH values smaller than the
default will reduce both the disk space taken up by the output data sets and the amount of memory used by
the PROC DATASOURCE step, at the cost of precision of output data values.

Any later length specification for a variable, using either the LENGTH statement or the LENGTH= option in
the ATTRIBUTE statement, always overrides the previous one.

RANGE Statement
RANGE FROM from TO to ;

The RANGE statement selects the time range of observations written to the OUT= and OUTEVENT= data
sets. The from and to values can be SAS date, time, or datetime constants, or they can be specified as year or
year : period, where year is a two-digit or four-digit year, and period (when specified) is a period within the
year corresponding to the INTERVAL= option. (For example, if INTERVAL=QTR, then period refers to
quarters.) When period is omitted, the beginning of the year is assumed for the from value, and the end of the
year is assumed for the to value.

If a two-digit year is specified, PROC DATASOURCE uses the current value of the YEARCUTOFF option
to determine the century of your data. Warnings are issued in the SAS log whenever DATASOURCE needs
to determine the century from a two-digit year specification.

The default YEARCUTOFF value is 1926. To use a different YEARCUTOFF value, specify

options yearcutoff=yyyy;

where YYYY is the YEARCUTOFF value you want to use. For more information about the YEARCUTOFF
option, see SAS System Options: Reference.

Both the FROM and TO specifications are optional, and both the FROM and TO keywords are optional. If
the FROM limit is omitted, the output observations start with the minimum date for which data are available
for any selected series. Similarly, if the TO limit is omitted, the output observations end with the maximum
date for which data are available.

The following are some examples of RANGE statements:

range from 1980 to 1990;
range 1980 - 1990;
range from 1980;
range 1980;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lesysoptsref&docsetTarget=titlepage.htm
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range to 1990;
range to 1990:2;
range from '31aug89'd to '28feb1990'd;

The RANGE statement applies to each BY group independently. If all the selected series contain no data in
the specified range for a given BY group, then there will be no observations for that BY group in the OUT=
and OUTEVENT= data sets.

If you want to know the time ranges for which periodic time series data are available, you can first run PROC
DATASOURCE with the OUTBY= or OUTALL= option. The OUTBY= data set reports the union of the
time ranges over all the series within each BY group, while the OUTALL= data set gives time ranges for
each series separately in each BY group.

RENAME Statement
RENAME old-name = new-name . . . ;

The RENAME statement is used to change the names of variables in the output data sets. Any number of
variables can be renamed in a single RENAME statement. The most recent RENAME specification overrides
any previous ones for a given variable. The new-name is limited to 32 characters.

Renaming of variables is done at the output stage. Therefore, you need to use the old variable names in all
other PROC DATASOURCE statements. For example, the series variable names DATA1–DATA350 used with
annual COMPUSTAT files are not very descriptive, so you can choose to rename them to reflect the financial
aspect they represent. You can rename “DATA51” as “INVESTTAX” with the RENAME statement

rename data51=investtax;

since it contains investment tax credit data. However, in all other DATASOURCE statements, you must use
the old name, DATA51.

WHERE Statement
WHERE where-expression ;

The WHERE statement specifies conditions that BY variables must satisfy in order for a cross section to be
included in the OUT= and OUTEVENT= data sets. By default, all BY groups are selected.

The where-expression must refer only to BY variables defined for the file type you are reading. The section
“Data Elements Reference: DATASOURCE Procedure” on page 723 lists the names of the BY variables for
each file type.

For example, DOTS (Direction of Trade Statistics) files, distributed by the International Monetary Fund,
have four BY variables: COUNTRY, CSC, PARTNER, and VERSION. Both COUNTRY and PARTNER are
three-digit country codes. To select the direction of trade statistics of the United States (COUNTRY=’111’)
with Turkey (COUNTRY=’186’), Japan (COUNTRY=’158’), and the oil exporting countries group (COUN-
TRY=’985’), you should specify
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where country='111' and partner in ('186','158','985');

You can use any SAS language operators and special WHERE expression operators in the WHERE statement
condition. For more information about WHERE expressions, see SAS Programmers Guide: Essentials.

If you want to see the names of the BY variables and the values they assume for each cross section, you can
first run PROC DATASOURCE with only the OUTBY= option. The information contained in the OUTBY=
data set will aid you in selecting the appropriate BY groups for subsequent PROC DATASOURCE steps.

Details: DATASOURCE Procedure

Variable Lists
Variable lists used in PROC DATASOURCE statements can consist of any combination of variable names
and name range specifications. Items in variable lists can have the following forms:

� a name, such as PZU.

� an alphabetic range name1-name2. For example, A-DZZZZZZZ specifies all variables with names
starting with A, B, C, or D.

� a prefix range prefix :. For example, IP: selects all variables with names starting with the letters IP.

� an order range name1–name2. For example, GLR72–GLRD72 specifies all variables in the input data
file between GLR72 and GRLD72 inclusive.

� a numeric order range name1-NUMERIC-name2. For example, GLR72-NUMERIC-GLRD72 specifies
all numeric variables between GLR72 and GRLD72 inclusive.

� a character order range name1-CHARACTER-name2. For example, GLR72-CHARACTER-GLRD72
specifies all character variables between GLR72 and GRLD72 inclusive.

� one of the keywords _NUMERIC_, _CHARACTER_, or _ALL_. The keyword _NUMERIC_ specifies
all numeric variables, _CHARACTER_ specifies all character variables, and _ALL_ specifies all
variables.

To determine the order of series in a data file, run PROC DATASOURCE with the OUTCONT= option, and
print the output data set. Note that order and alphabetic range specifications are inclusive, meaning that the
beginning and ending names of the range are also included in the variable list.

For order ranges, the names used to define the range must actually name variables in the input data file. For
alphabetic ranges, however, the names used to define the range need not be present in the data file.

Note that variable specifications are applied to each cross section independently. This might cause the order-
range variable list specification to behave differently than its DATA step and data set option counterparts.
This is because PROC DATASOURCE knows which variables are defined for which cross sections, while the
DATA step applies order range specification to the whole collection of time series variables.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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If the ending variable name in an order range specification is not in the current cross section, all variables
starting from the beginning variable to the last variable defined in that cross section get selected. If the first
variable is not in the current cross section, then order range specification has no effect for that cross section.

The variable names used in variable list specifications can refer either to series names appearing in the input
data file or to the SAS names assigned to series data fields internally if the series names are not recorded to
the INFILE= file. When the latter is the case, internally defined variable names are listed in the section “Data
Elements Reference: DATASOURCE Procedure” on page 723.

The following are examples of the use of variable lists:

keep ip: pw112-pw117 pzu;
drop data1-data99 data151-data350;
length data1-numeric-aftnt350 ucode 4;

The first statement keeps all the variables starting with IP:, all the variables between PW112 and PW117
including PW112 and PW117 themselves, and a single variable PZU. The second statement drops all the
variables that fall alphabetically between DATA1 and DATA99, and between DATA151 and DATA350.
Finally, the third statement assigns a length of 4 bytes to all the numeric variables defined between DATA1
and AFTNT350, and UCODE. Variable lists can not exceed 200 characters in length.

OUT= Data Set
The OUT= data set can contain the following variables:

� the BY variables, which identify cross-sectional dimensions when the input data file contains time
series replicated for different values of the BY variables. Use the BY variables in a WHERE statement
to process the OUT= data set by cross sections. The order in which BY variables are defined in the
OUT= data set corresponds to the order in which the data file is sorted.

� DATE, a SAS date-, time-, or datetime-valued variable that reports the time period of each observation.
The values of the DATE variable can span different time ranges for different BY groups. The format of
the DATE variable depends on the INTERVAL= option.

� the periodic time series variables, which are included in the OUT= data set only if they have data in at
least one selected BY group and they are not discarded by a KEEP or DROP statement

� the event variables, which are included in the OUT= data set if they are not discarded by a KEEP or
DROP statement. By default, these variables are not output to the OUT= data set.

The values of BY variables remain constant in each cross section. Observations within each BY group
correspond to the sampling of the series variables at the time periods indicated by the DATE variable.

You can create a set of single indexes for the OUT= data set by using the INDEX option, provided there are
BY variables. Under some circumstances, this might increase the efficiency of subsequent PROC and DATA
steps that use BY and WHERE statements. However, there is a cost associated with creation and maintenance
of indexes. The SAS Programmers Guide: Essentials lists the conditions under which the benefits of indexes
outweigh the cost.

With data files containing cross sections, there can be various degrees of overlap among the series variables.
One extreme is when all the series variables contain data for all the cross sections. In this case, the output

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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data set is very compact. In the other extreme case, however, the set of time series variables are unique for
each cross section, making the output data set very sparse, as depicted in Table 13.4.

Table 13.4 The OUT= Data Set Containing Unique Series for Each BY Group

BY Series in Series in : : : Series in
Variables first BY group second BY group : : : last BY group

BY1 : : : BYP F1 F2 F3 : : : FN S1 S2 S3 : : : SM : : : T1 T2 T3 : : : TK
BY DATA

group is
1 here

BY DATA Data is missing
group is everywhere except

2 here on diagonal
DATA

::: is
here

BY DATA
group is

N here

The data in Table 13.4 can be represented more compactly if cross-sectional information is incorporated into
series variable names.

OUTCONT= Data Set
The OUTCONT= data set contains descriptive information for the time series variables. This descriptive
information includes various attributes of the time series variables. The OUTCONT= data set contains the
following variables:

� NAME, a character variable that contains the series name

� KEPT, a numeric variable that indicates whether the series was selected for output by the DROP or
KEEP statements. KEPT is usually the same as SELECTED, but can differ if a WHERE statement is
used.

� SELECTED, a numeric variable that indicates whether the series is selected for output to the OUT=
data set. The series is included in the OUT= data set (SELECTED=1) if it is kept (KEPT=1) and it has
data for at least one selected BY group.

� TYPE, a numeric variable that indicates the type of the time series variable. TYPE=1 for numeric
series; TYPE=2 for character series.

� LENGTH, a numeric variable that gives the number of bytes allocated for the series variable in the
OUT= data set
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� VARNUM, a numeric variable that gives the variable number of the series in the OUT= data set. If
the series variable is not selected for output (SELECTED=0), then VARNUM has a missing value.
Likewise, if no OUT= option is given, VARNUM has all missing values.

� LABEL, a character variable that contains the label of the series variable. LABEL contains only the
first 256 characters of the labels. If they are longer than 256 characters, then the variable DESCRIPT
is defined to hold the whole length of series labels. Note that if a data file assigns different labels
to the same series variable within different cross sections, only the first occurrence of labels will be
transferred to the LABEL column.

� the variables FORMAT, FORMATL, and FORMATD, which give the format name, length, and number
of format decimals, respectively

� the GENERIC variables, whose values can vary from one series to another, but whose values remain
constant across BY groups for the same series

By default, the OUTCONT= data set contains observations for only the selected series where SELECTED=1.
If the OUTSELECT=OFF option is specified, the OUTCONT= data set contains one observation for each
unique series of the specified periodicity contained in the input data file.

If you do not know what series are in the data file, you can run PROC DATASOURCE with the OUTCONT=
option and OUTSELECT=OFF. The information contained in the OUTCONT= data set can then help you to
determine which time series data you want to extract.

OUTBY= Data Set
The OUTBY= data set contains information on the cross sections contained in the input data file. These cross
sections are represented as BY groups in the OUT= data set. The OUTBY= data set contains the following
variables:

� the BY variables, whose values identify the different cross sections in the data file. The BY variables
depend on the file type.

� BYSELECT, a numeric variable that reports the outcome of the WHERE statement condition for the
BY variable values for this observation. The value of BYSELECT is 1 for BY groups selected by the
WHERE statement for output to the OUT= data set and is 0 for BY groups that are excluded by the
WHERE statement. BYSELECT is added to the data set only if a WHERE statement is given. When
there is no WHERE statement, then all the BY groups are selected.

� ST_DATE, a numeric variable that gives the starting date for the BY group. The starting date is the
earliest of the starting dates of all the series that have data for the current BY group.

� END_DATE, a numeric variable that gives the ending date for the BY group. The ending date is the
latest of the ending dates of all the series that have data for the BY group.

� NTIME, a numeric variable that gives the number of time periods between ST_DATE and END_DATE,
inclusive. Usually, this is the same as NOBS, but they differ when time periods are not equally spaced
and when the OUT= data set is not specified. NTIME is a maximum limit on NOBS.
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� NOBS, a numeric variable that gives the number of time series observations in the OUT= data set
between ST_DATE and END_DATE inclusive. When a given BY group is discarded by a WHERE
statement, the NOBS variable corresponding to this BY group becomes 0, since the OUT= data set
does not contain any observations for this BY group. Note that BYSELECT=0 for every discarded BY
group.

� NINRANGE, a numeric variable that gives the number of observations in the range (from,to ) defined
by the RANGE statement. This variable is only added to the OUTBY= data set when the RANGE
statement is specified.

� NSERIES, a numeric variable that gives the total number of unique time series variables having data
for the BY group

� NSELECT, a numeric variable that gives the total number of selected time series variables having data
for the BY group

� the generic variables, whose values remain constant for all the series in the current BY group

In this list, you can only control the attributes of the BY and GENERIC variables.

The variables NOBS, NTIME, and NINRANGE give observation counts, while the variables NSERIES and
NSELECT give series counts.

By default, observations for only the selected BY groups (where BYSELECT=1) are output to the OUTBY=
data set, and the date and time range variables are computed over only the selected time series variables.
If the OUTSELECT=OFF option is specified, the OUTBY= data set contains an observation for each BY
group, and the date and time range variables are computed over all the time series variables.

For file types that have no BY variables, the OUTBY= data set contains one observation giving ST_DATE,
END_DATE, NTIME, NOBS, NINRANGE, NSERIES, and NSELECT for all the series in the file.

If you do not know the BY variable names or their possible values, you can do an initial run of PROC
DATASOURCE with the OUTBY= option. The information contained in the OUTBY= data set can
help you design your WHERE expression and RANGE statement for the subsequent executions of PROC
DATASOURCE to obtain different subsets of the same data file.

OUTALL= Data Set
The OUTALL= data set combines and expands the information provided by the OUTCONT= and OUTBY=
data sets. That is, the OUTALL= data set not only reports the OUTCONT= information separately for
each BY group, but also reports the OUTBY= information separately for each series. Each observation in
the OUTBY= data set gets expanded to NSERIES or NSELECT observations in the OUTALL= data set,
depending on whether the OUTSELECT=OFF option is specified.

By default, only the selected BY groups and series are included in the OUTALL= data set. If the OUTSE-
LECT=OFF option is specified, then all the series within all the BY groups are reported.

The OUTALL= data set contains all the variables defined in the OUTBY= and OUTCONT= data sets and
also contains the GENERIC variables (whose values can vary from one series to another and from one BY
group to another). Another additional variable is BLKNUM, which gives the data block number in the data
file containing the series variable.
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The OUTALL= data set is useful when BY groups do not contain the same time series variables or when the
time ranges for series change across BY groups.

You should be careful in using the OUTALL= option, since the OUTALL= data set can get very large for
many file types. Some file types have the same series and time ranges for each BY group; the OUTALL=
option should not be used with these file types. For example, you should not specify the OUTALL= option
with COMPUSTAT files, since all the BY groups contain the same series variables.

The OUTALL= and OUTCONT= data sets are equivalent when there are no BY variables, except that the
OUTALL= data set contains extra information about the time ranges and observation counts of the series
variables.

OUTEVENT= Data Set
The OUTEVENT= data set is used to output event-oriented time series data. Events occurring at discrete
points in time are recorded along with the date they occurred. Only CRSP stock files contain event-oriented
time series data. For all other types of files, the OUTEVENT= option is ignored.

The OUTEVENT= data set contains the following variables:

� the BY variables, which identify cross-sectional dimensions when the input data file contains time
series replicated for different values of the BY variables. Use the BY variables in a WHERE statement
to process the OUTEVENT= data set by cross sections. The order in which BY variables are defined
in the OUTEVENT= data set corresponds to the order in which the data file is sorted.

� DATE, a SAS date-, time- or datetime-valued variable that reports the discrete time periods at which
events occurred. The format of the DATE variable depends on the INTERVAL= option, and should accu-
rately report the date based on the SAS YEARCUTOFF option. The default value for YEARCUTOFF
is 1920. The dates used can span up to 250 years.

� EVENT, a character variable that contains the event group name. The EVENT variable is another
cross-sectional variable.

� the event variables, which are included in the OUTEVENT= data set only if they have data in at least
one selected BY group, and are not discarded by a KEEPEVENT or DROPEVENT statement

Note that each event group contains a nonoverlapping set of event variables; therefore, the OUTEVENT= data
set is very sparse. You should exercise care when selecting event variables to be included in the OUTEVENT=
data set.

Also note that even though the OUTEVENT= data set cannot contain any periodic time series variables, the
OUT= data set can contain event variables if they are explicitly specified in a KEEP statement. In summary,
you can specify event variables in a KEEP statement, but you cannot specify periodic time series variables in
a KEEPEVENT statement.

While variable selection for OUT= and OUTEVENT= data sets are controlled by a different set of statements
(KEEP versus KEEPEVENT or DROP versus DROPEVENT), cross-section and range selections are con-
trolled by the same statements, so in summary, the WHERE and the RANGE statements are effective for
both output data sets.
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Data Elements Reference: DATASOURCE Procedure
PROC DATASOURCE can process only certain kinds of data files. For certain time series databases, the
DATASOURCE procedure has built-in information on the layout of files composing the database. PROC
DATASOURCE knows how to read only these kinds of data files. To access these databases, you must
indicate the data file type in the FILETYPE= option. For more detailed information, see the corresponding
document for each filetype. (See “References.”) The currently supported file types are summarized in
Table 13.5.

Table 13.5 Supported File Types

Supplier FILETYPE= Description

BEA BEANIPA National Income and Product Accounts
BEANIPAD National Income and Product Accounts PC Format

BLS BLSCPI Consumer Price Index Surveys
BLSWPI Producer Price Index Survey
BLSEENA National Employment, Hours, and Earnings Survey
BLSEESA State and Area Employment, Hours, and Earnings Survey

GLOBAL DRIBASIC Basic Economic (formerly CITIBASE) Data Files
INSIGHT CITIBASE CITIBASE Data Files
(DRI) DRIDDS DRI Data Delivery Service Time Series
(DRI) CITIDISK PC Format CITIBASE Databases

CRSP CRY2DBS Y2K Daily Binary Security File Format
CRY2DBI Y2K Daily Binary Calendar&Indices File Format
CRY2DBA Y2K Daily Binary File Annual Data Format
CRY2MBS Y2K Monthly Binary Security File Format
CRY2MBI Y2K Monthly Binary Calendar&Indices File Format
CRY2MBA Y2K Monthly Binary File Annual Data Format
CRY2DCS Y2K Daily Character Security File Format
CRY2DCI Y2K Daily Character Calendar&Indices File Format
CRY2DCA Y2K Daily Character File Annual Data Format
CRY2MCS Y2K Monthly Character Security File Format
CRY2MCI Y2K Monthly Character Calendar&Indices File Format
CRY2MCA Y2K Monthly Character File Annual Data Format
CRY2DIS Y2K Daily IBM Binary Security File Format
CRY2DII Y2K Daily IBM Binary Calendar&Indices File Format
CRY2DIA Y2K Daily IBM Binary File Annual Data Format
CRY2MIS Y2K Monthly IBM Binary Security File Format
CRY2MII Y2K Monthly IBM Binary Calendar&Indices File Format
CRY2MIA Y2K Monthly IBM Binary File Annual Data Format
CRY2MVS Y2K Monthly VAX Binary Security File Format
CRY2MVI Y2K Monthly VAX Binary Calendar&Indices File Format
CRY2MVA Y2K Monthly VAX Binary File Annual Data Format
CRY2DVS Y2K Daily VAX Binary Security File Format
CRY2DVI Y2K Daily VAX Binary Calendar&Indices File Format
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Table 13.5 continued

Supplier FILETYPE= Description

CRY2DVA Y2K Daily VAX Binary File Annual Data Format
CRSPDBS CRSP Daily Binary Security File Format
CRSPDBI CRSP Daily Binary Calendar&Indices File Format
CRSPDBA CRSP Daily Binary File Annual Data Format
CRSPMBS CRSP Monthly Binary Security File Format
CRSPMBI CRSP Monthly Binary Calendar&Indices File Format
CRSPMBA CRSP Monthly Binary File Annual Data Format
CRSPDCS CRSP Daily Character Security File Format
CRSPDCI CRSP Daily Character Calendar&Indices File Format
CRSPDCA CRSP Daily Character File Annual Data Format
CRSPMCS CRSP Monthly Character Security File Format
CRSPMCI CRSP Monthly Character Calendar&Indices File Format
CRSPMCA CRSP Monthly Character File Annual Data Format
CRSPDIS CRSP Daily IBM Binary Security File Format
CRSPDII CRSP Daily IBM Binary Calendar&Indices File Format
CRSPDIA CRSP Daily IBM Binary File Annual Data Format
CRSPMIS CRSP Monthly IBM Binary Security File Format

CRSP CRSPMII CRSP Monthly IBM Binary Calendar&Indices File Format
CRSPMIA CRSP Monthly IBM Binary File Annual Data Format
CRSPMVS CRSP Monthly VAX Binary Security File Format
CRSPMVI CRSP Monthly VAX Binary Calendar&Indices File Format
CRSPMVA CRSP Monthly VAX Binary File Annual Data Format
CRSPDVS CRSP Daily VAX Binary Security File Format
CRSPDVI CRSP Daily VAX Binary Calendar&Indices File Format
CRSPDVA CRSP Daily VAX Binary File Annual Data Format
CRSPMUS CRSP Monthly UNIX Binary Security File Format

or utility dump of CRSPAccess Monthly Security File Format
CRSPMUI CRSP Monthly UNIX Binary Calendar&Indices File Format

or utility dump of CRSPAccess Monthly Calendar&Indices Format
CRSPMUA CRSP Monthly UNIX Binary File Annual Data Format

or utility dump of CRSPAccess Monthly Annual Data Format
CRSPDUS CRSP Daily UNIX Binary Security File Format

or utility dump of CRSPAccess Daily Security Format
CRSPDUI CRSP Daily UNIX Binary Calendar&Indices File Format

or utility dump of CRSPAccess Daily Calendar&Indices Format
CRSPDUA CRSP Daily UNIX Binary File Annual Data Format

or utility dump of CRSPAccess Daily Annual Data Format
CRSP CRSPMOS CRSP Monthly Old Character Security File Format

CRSPMOI CRSP Monthly Old Character Calendar&Indices File Format
CRSPMOA CRSP Monthly Old Character File Annual Data Format
CRSPDOS CRSP Daily Old Character Security File Format
CRSPDOI CRSP Daily Old Character Calendar&Indices File Format
CRSPDOA CRSP Daily Old Character File Annual Data Format
CR95MIS CRSP 1995 Monthly IBM Binary Security File Format
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Table 13.5 continued

Supplier FILETYPE= Description

CR95MII CRSP 1995 Monthly IBM Binary Calendar&Indices File Format
CR95MIA CRSP 1995 Monthly IBM Binary File Annual Data Format
CR95DIS CRSP 1995 Daily IBM Binary Security File Format
CR95DII CRSP 1995 Daily IBM Binary Calendar&Indices File Format
CR95DIA CRSP 1995 Daily IBM Binary File Annual Data Format
CR95MVS CRSP 1995 Monthly VAX Binary Security File Format
CR95MVI CRSP 1995 Monthly VAX Binary Calendar&Indices File Format
CR95MVA CRSP 1995 Monthly VAX Binary File Annual Data Format
CR95DVS CRSP 1995 Daily VAX Binary Security File Format
CR95DVI CRSP 1995 Daily VAX Binary Calendar&Indices File Format
CR95DVA CRSP 1995 Daily VAX Binary File Annual Data Format
CR95MUS CRSP 1995 Monthly UNIX Binary Security File Format
CR95MUI CRSP 1995 Monthly UNIX Binary Calendar&Indices File Format
CR95MUA CRSP 1995 Monthly UNIX Binary File Annual Data Format
CR95DUS CRSP 1995 Daily UNIX Binary Security File Format
CR95DUI CRSP 1995 Daily UNIX Binary Calendar&Indices File Format
CR95DUA CRSP 1995 Daily UNIX Binary File Annual Data Format
CR95MSS CRSP 1995 Monthly VMS Binary Security File Format
CR95MSI CRSP 1995 Monthly VMS Binary Calendar&Indices File Format
CR95MSA CRSP 1995 Monthly VMS Binary File Annual Data Format
CR95DSS CRSP 1995 Daily VMS Binary Security File Format
CR95DSI CRSP 1995 Daily VMS Binary Calendar&Indices File Format
CR95DSA CRSP 1995 Daily VMS Binary File Annual Data Format
CR95MAS CRSP 1995 Monthly ALPHA Binary Security File Format
CR95MAI CRSP 1995 Monthly ALPHA Binary Calendar&Indices Format
CR95MAA CRSP 1995 Monthly ALPHA Binary File Annual Data Format
CR95DAS CRSP 1995 Daily ALPHA Binary Security File Format
CR95DAI CRSP 1995 Daily ALPHA Binary Calendar&Indices File Format
CR95DAA CRSP 1995 Daily ALPHA Binary File Annual Data Format

FAME FAME FAME Information Services Databases

HAVER HAVER Haver Analytics Data Files

IMF IMFIFSP International Financial Statistics, Packed Format
IMFDOTSP Direction of Trade Statistics, Packed Format
IMFBOPSP Balance of Payment Statistics, Packed Format
IMFGFSP Government Finance Statistics, Packed Format

OECD OECDANA OECD Annual National Accounts Format
OECDQNA OECD Quarterly National Accounts Format
OECDMEI OECD Main Economic Indicators Format

S&P CSAIBM COMPUSTAT Annual, IBM 360&370 Format
CS48QIBM COMPUSTAT 48 Quarter, IBM 360&370 Format
CSAUC COMPUSTAT Annual, Universal Character Format
CS48QUC COMPUSTAT 48 Quarter, Universal Character Format
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Table 13.5 continued

Supplier FILETYPE= Description

CSAIY2 Y2K COMPUSTAT Annual, IBM 360&370 Format
CSQIY2 Y2K COMPUSTAT 48 Quarter, IBM 360&370 Format
CSAUCY2 Y2K COMPUSTAT Annual, Universal Character Format
CSQUCY2 Y2K COMPUSTAT 48 Quarter, Universal Character Format

Data supplier abbreviations used in Table 13.5 are summarized in Table 13.6.

Table 13.6 Data Supplier Abbreviations

Abbreviation Supplier

BEA Bureau of Economic Analysis, U.S. Department of Commerce
BLS Bureau of Labor Statistics, U.S. Department of Labor
CRSP Center for Research in Security Prices
DRI Global Insight (formerly DRI/McGraw-Hill)
FAME FAME Information Services, Inc.
GLOBAL INSIGHT Global Insight, Inc.
HAVER Haver Analytics Inc.
IMF International Monetary Fund
OECD Organization for Economic Cooperation and Development
S&P Standard & Poor’s Compustat Services Inc.

BEA Data Files

The Bureau of Economic Analysis, U.S. Department of Commerce, supplies national income, product
accounting, and various other macroeconomic data at the regional, national, and international levels in the
form of data files with various formats and on various media.

The following BEA data file types are supported.

FILETYPE=BEANIPA–National Income and Product Accounts Format

Table 13.7 FILETYPE=BEANIPA–National Income and Product
Accounts Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables PARTNO Part Number of Publication,

Integer Portion of the Table Number, 1–9
(character)
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Table 13.7 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

TABNUM Table Number Within Part,
Decimal Portion of the Table Number, 1–24
(character)

Series Variables Series variable names are constructed by concatenating table number
suffix, line and column numbers within each table. An underscore (_)
prefix is also added for readability.

FILETYPE=BEANIPAD–National Income and Product Accounts PC Format
The PC format National Income and Product Accounts files contain the same information as the BEANIPA
files described previously.

Table 13.8 FILETYPE=BEANIPAD–National Income and
Product Accounts PC Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables PARTNO Part Number of Publication,

Integer Portion of the Table Number, 1–9
(character)

TABNUM Table Number Within Part,
Decimal Portion of the Table Number, 1–24
(character)

Series Variables Series variable names are constructed by concatenating table number
suffix, line and column numbers within each table. An underscore (_)
prefix is also added for readability.

BLS Data Files

The Bureau of Labor Statistics, U.S. Department of Labor, compiles and distributes data on employment,
expenditures, prices, productivity, injuries and illnesses, and wages.

The following BLS file types are supported.
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FILETYPE=BLSCPI–Consumer Price Index Surveys (=CU,CW)

Table 13.9 FILETYPE=BLSCPI–Consumer Price Index Surveys
(=CU,CW)

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR, SEMIYEAR1.6, MONTH (default)
BY Variables SURVEY Survey type: CU=All Urban Consumers,

CW=Urban Wage Earners and Clerical Workers
(character)

SEASON Seasonality: S=Seasonally adjusted,
U=Unadjusted (character)

AREA Geographic Area (character)
BASPTYPE Index Base Period Type, S=Standard,

A=Alternate Reference (character)
BASEPER Index Base Period (character)

Series Variables Series variable names are the same as consumer item codes listed in
the Series Directory shipped with the data.

Missing Codes A data value of 0 is interpreted as MISSING.

FILETYPE=BLSWPI–Producer Price Index Survey (WP)

Table 13.10 FILETYPE=BLSWPI–Producer Price Index Survey
(WP)

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR, MONTH (default)
BY Variables SEASON Seasonality: S=Seasonally adjusted,

U=Unadjusted (character)
MAJORCOM Major Commodity Group (character)

Sorting Order BY SEASON MAJORCOM
Series Variables Series variable names are the same as commodity codes but prefixed

by an underscore (_).
Missing Codes A data value of 0 is interpreted as MISSING.
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FILETYPE=BLSEENA–National Employment, Hours, and Earnings Survey

Table 13.11 FILETYPE=BLSEENA–National Employment,
Hours, and Earnings Survey

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR, QUARTER, MONTH (default)
BY Variables SEASON Seasonality: S=Seasonally adjusted,

U=Unadjusted (character)
DIVISION Major Industrial Division (character)
INDUSTRY Industry Code (character)

Sorting Order BY SEASON DIVISION INDUSTRY
Series Variables Series variable names are the same as data type codes prefixed by EE.

EE01 Total Employment
EE02 Employment of Women
EE03 Employment of Production or Nonsupervisory

Workers
EE04 Average Weekly Earnings of Production Workers
EE05 Average Weekly Hours of Production Workers
EE06 Average Hourly Earnings of Production Workers
EE07 Average Weekly Overtime Hours of Production

Workers
EE40 Index of Aggregate Weekly Hours
EE41 Index of Aggregate Weekly Payrolls
EE47 Hourly Earnings Index; 1977 Weights; Current

Dollars
EE48 Hourly Earnings Index; 1977 Weights; Base 1977

Dollars
EE49 Average Hourly Earnings; Base 1977 Dollars
EE50 Gross Average Weekly Earnings; Current Dollars
EE51 Gross Average Weekly Earnings; Base 1977

Dollars
EE52 Spendable Average Weekly Earnings; No

Dependents; Current Dollars
EE53 Spendable Average Weekly Earnings; No

Dependents; Base 1977 Dollars
EE54 Spendable Average Weekly Earnings; 3

Dependents; Current Dollars
EE55 Spendable Average Weekly Earnings; 3

Dependents; Base 1977 Dollars
EE60 Average Hourly Earnings Excluding Overtime
EE61 Index of Diffusion; 1-month Span; Base 1977
EE62 Index of Diffusion; 3-month Span; Base 1977
EE63 Index of Diffusion; 6-month Span; Base 1977
EE64 Index of Diffusion; 12-month Span; Base 1977

Missing Codes Series data values are set to MISSING when their status codes are 1.
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FILETYPE=BLSEESA–State and Area Employment, Hours, and Earnings Survey

Table 13.12 FILETYPE=BLSEESA–State and Area
Employment, Hours, and Earnings Survey

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR, MONTH (default)
BY Variables STATE State FIPS codes (numeric)

AREA Area codes (character)
DIVISION Major industrial division (character)
INDUSTRY Industry code (character)
DETAIL Private/Government detail

Sorting Order BY STATE AREA DIVISION INDUSTRY DETAIL
Series Variables Series variable names are the same as data type codes prefixed by SA.

SA1 All employees
SA2 Women workers
SA3 Production workers
SA4 Average weekly earnings
SA5 Average weekly hours

Missing Codes Series data values are set to MISSING when their status codes are 1.

Global Insight DRI Data Files

The DRIBASIC (formerly CITIBASE) database contains economic and financial indicators of the U.S. and
international economies gathered from various government and private sources by DRI/McGraw-Hill, Inc.
There are over 8000 yearly, quarterly, monthly, weekly, and daily time series.

Global Insight, formerly DRI/McGraw-Hill, distributes Basic Economic data files on various media. Old
DRIDDS data files can be read by DATASOURCE using the DRIDDS filetype.

The following DRI file types are supported.
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FILETYPE=DRIBASIC–Global Insight DRI Basic Economic Data Files

Table 13.13 FILETYPE=DRIBASIC–Global Insight DRI Basic
Economic Data Files

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH, WEEK, WEEK1.1,

WEEK1.2, WEEK1.3, WEEK1.4, WEEK1.5, WEEK1.6, WEEK1.7,
WEEKDAY

BY Variables None
Series Variables Variable names are taken from the series descriptor records in the data

file. Note that series codes can be 20 bytes.
Missing Codes MISSING=( ’1.000000E9’=. ’NA’-’ND’=. )

Note that when you specify the INTERVAL=WEEK option, all the weekly series will be aggregated, and the
DATE variable in the OUT= data set will be set to the date of Sundays. The date of first observation for each
series is the Sunday marking the beginning of the week that contains the starting date of that variable.

FILETYPE=DRIDDS–Global Insight DRI Data Delivery Service Data Files

Table 13.14 FILETYPE=DRIDDS–Global Insight DRI Data
Delivery Service Data Files

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), SEMIYEAR, QUARTER, MONTH, SEMIMONTH,

TENDAY, WEEK, WEEK1.1, WEEK1.2, WEEK1.3, WEEK1.4,
WEEK1.5, WEEK1.6, WEEK1.7, WEEKDAY, DAY

BY Variables None
Series Variables Variable names are taken from the series descriptor records in the data

file. Note that series names can be 24 bytes.
Missing Codes MISSING=( ’NA’-’ND’=. )

FILETYPE=CITIOLD–Old Format CITIBASE Data Files
This file type is used for CITIBASE data distributed prior to May 1987.
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Table 13.15 FILETYPE=CITIOLD–Old Format CITIBASE Data
Files

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables None
Series Variables Variable names are taken from the series descriptor records in the data

file and are the same as the series codes reported in the CITIBASE
Directory.

Missing Codes 1.0E9=.

FILETYPE=CITIDISK–PC Format CITIBASE Databases

Table 13.16 FILETYPE=CITIDISK–PC Format CITIBASE
Databases

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in groups of three associated files having the same
file name but different extensions: KEY, IND, or DB. The INFILE=
option should contain three filerefs in the following order:
INFILE=(keyfile indfile dbfile).

INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables None
Series Variables Series variable names are the same as series codes reported in the

CITIBASE Directory.
Missing Codes 1.0E9=.

COMPUSTAT Data Files

COMPUSTAT data files, distributed by Standard & Poor’s Compustat Services, Inc., consist of a collection of
financial, statistical, and market information covering several thousand industrial and nonindustrial companies.
Data are available in both an IBM 360/370 format and a “Universal Character” format, both of which further
subdivide into annual and quarterly formats.

The BY variables are used to select individual companies or a group of companies. Individual companies can
be selected by their unique six-digit CUSIP issuer code (CNUM). A number of specific groups of companies
can be extracted by the following key fields:

FILE specifies the file identification code used to group companies by files.

ZLIST specifies the exchange listing code that can be used to group companies by exchange.

DNUM is used to extract companies in a specific SIC industry group.
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Series names are internally constructed from the data array names documented in the COMPUSTAT manual.
Each column of data array is treated as a SAS variable. The names of these variables are generated by
concatenating the corresponding column numbers to the array name.

Missing values use four codes. Missing code ’.C’ represents a combined figure where the data item has been
combined into another data item, ’.I’ reports an insignificant figure, ’.S’ represents a semi-annual figure in
the second and fourth quarters, ’.A’ represents an annual figure in the fourth quarter, and ’.’ indicates that the
data item is not available. The missing codes ’.C’ and ’.I’ are not used for Aggregate or Prices, Dividends,
and Earnings (PDE) files. The missing codes ’.S’ and ’.A’ are used only on the Industrial Quarterly File and
not on the Aggregate Quarterly, Business Information, or PDE files.

FILETYPE=CSAIBM–COMPUSTAT Annual, IBM 360/370 Format
FILETYPE=CSAIY2–Four-Digit Year COMPUSTAT Annual, IBM 360/370 Format

Table 13.17 FILETYPE=CSAIBM,CSAIY2 –COMPUSTAT
Annual,IBM 360/370 Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default)
BY Variables DNUM Industry Classification Code (numeric)

CNUM CUSIP Issuer Code (character)
CIC CUSIP Issue Number and Check Digit (numeric)
FILE File Identification Code (numeric)
ZLIST Exchange Listing and S&P Index Code (numeric)
CONAME Company Name (character)
INAME Industry Name (character)
SMBL Stock Ticker Symbol (character)
XREL S&P Industry Index Relative Code (numeric)
STK Stock Ownership Code (numeric)
STATE Company Location Identification Code - State

(numeric)
COUNTY Company Location Identification Code - County

(numeric)
FINC Incorporation Code - Foreign (numeric)
EIN Employer Identification Number (character)
CPSPIN S&P Index Primary Marker (character)
CSSPIN S&P Index Secondary Identifier (character)
CSSPII S&P Index Subset Identifier (character)
SDBT S&P Senior Debt Rating - Current (character)
SDBTIM Footnote- S&P Senior Debt Rating- Current

(character)
SUBDBT S&P Subordinated Debt Rating - Current

(character)
CPAPER S&P Commercial Paper Rating - Current

(character)
Sorting Order BY DNUM CNUM CIC
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Table 13.17 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

Series Variables DATA1-DATA350 FYR UCODE SOURCE AFTNT1-AFTNT70
Default KEEP
List

DROP DATA322-DATA326 DATA338 DATA345-DATA347
DATA350 AFTNT52-AFTNT70;

Missing Codes 0.0001=. 0.0004=.C 0.0008=.I 0.0002=.S 0.0003=.A

FILETYPE=CS48QIBM–COMPUSTAT 48-Quarter, IBM 360/370 Format
FILETYPE=CSQIY2–FOUR-DIGIT YEAR COMPUSTAT 48-Quarter, IBM 360/370 Format

Table 13.18 FILETYPE=CS48QIBM,CSQIY2 –COMPUSTAT
48-Quarter, IBM 360/370 Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= QUARTER (default)
BY Variables DNUM Industry Classification Code (numeric)

CNUM CUSIP Issuer Code (character)
CIC CUSIP Issue Number and Check Digit (numeric)
FILE File Identification Code (numeric)
CONAME Company Name (character)
INAME Industry Name (character)
EIN Employer Identification Number (character)
STK Stock Ownership Code (numeric)
SMBL Stock Ticker Symbol (character)
ZLIST Exchange Listing and S&P Index Code (numeric)
XREL S&P Industry Index Relative Code (numeric)
FIC Incorporation Code - Foreign (numeric)
INCORP Incorporation Code - State (numeric)
STATE Company Location Identification Code - State

(numeric)
COUNTY Company Location Identification Code - County

(numeric)
CANDX Canadian Index Code - Current (character)

Sorting Order BY DNUM CNUM CIC;
Series Variables DATA1-

DATA232
Data Array

QFTNT1-
QFTNT60

Data Footnotes

FYR Fiscal Year-End Month of Data
SPCSCYR SPCS Calendar Year
SPCSCQTR SPCS Calendar Quarter
UCODE Update Code
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Table 13.18 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

SOURCE Source Document Code
BONDRATE S&P Bond Rating
DEBTCL S&P Class of Debt
CPRATE S&P Commercial Paper Rating
STOCK S&P Common Stock Ranking
MIC S&P Major Index Code
IIC S&P Industry Index Code
REPORTDT Report Date of Quarterly Earnings
FORMAT Flow of Funds Statement Format Code
DEBTRT S&P Subordinated Debt Rating
CANIC Canadian Index Code
CS Comparability Status
CSA Company Status Alert
SENIOR S&P Senior Debt Rating

Default KEEP
List

DROP DATA122-DATA232 QFTNT24-QFTNT60;

Missing Codes 0.0001=. 0.0004=.C 0.0008=.I 0.0002=.S 0.0003=.A

FILETYPE=CSAUC–COMPUSTAT Annual, Universal Character Format
FILETYPE=CSAUCY2–Four-Digit Year COMPUSTAT Annual, Universal Character Format

Table 13.19 FILETYPE=CSAUC,CSAUCY2 –COMPUSTAT
Annual, Universal Character Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default)
BY Variables DNUM Industry Classification Code (numeric)

CNUM CUSIP Issuer Code (character)
CIC CUSIP Issue Number and Check Digit (character)
FILE File Identification Code (numeric)
ZLIST Exchange Listing and S&P Index Code (numeric)
CONAME Company Name (character)
INAME Industry Name (character)
SMBL Stock Ticker Symbol (character)
XREL S&P Industry Index Relative Code (numeric)
STK Stock Ownership Code (numeric)
STATE Company Location Identification Code - State

(numeric)
COUNTY Company Location Identification Code - County

(numeric)
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Table 13.19 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

FINC Incorporation Code - Foreign (numeric)
EIN Employer Identification Number (character)
CPSPIN S&P Index Primary Marker (character)
CSSPIN S&P Index Secondary Identifier (character)
CSSPII S&P Index Subset Identifier (character)
SDBT S&P Senior Debt Rating - Current (character)
SDBTIM Footnote- S&P Senior Debt Rating- Current

(character)
SUBDBT S&P Subordinated Debt Rating - Current

(character)
CPAPER S&P Commercial Paper Rating - Current

(character)
Sorting Order BY DNUM CNUM CIC
Series Variables DATA1-DATA350 FYR UCODE SOURCE AFTNT1-AFTNT70
Default KEEP
List

DROP DATA322-DATA326 DATA338 DATA345-DATA347
DATA350 AFTNT52-AFTNT70;

Missing Codes -0.001=. -0.004=.C -0.008=.I -0.002=.S -0.003=.A

FILETYPE=CS48QUC–COMPUSTAT 48 Quarter, Universal Character Format
FILETYPE=CSQUCY2–Four-Digit Year COMPUSTAT 48 Quarter, Universal Character Format

Table 13.20 FILETYPE=CS48QUC,CSQUCY2–COMPUSTAT
48 Quarter, Universal Character Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= QUARTER (default)
BY Variables DNUM Industry Classification Code (numeric)

CNUM CUSIP Issuer Code (character)
CIC CUSIP Issue Number and Check Digit (character)
FILE File Identification Code (numeric)
CONAME Company Name (character)
INAME Industry Name (character)
EIN Employer Identification Number (character)
STK Stock Ownership Code (numeric)
SMBL Stock Ticker Symbol (character)
ZLIST Exchange Listing and S&P Index Code (numeric)
XREL S&P Industry Index Relative Code (numeric)
FIC Incorporation Code - Foreign (numeric)
INCORP Incorporation Code - State (numeric)
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Table 13.20 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

STATE Company Location Identification Code - State
(numeric)

COUNTY Company Location Identification Code - County
(numeric)

CANDXC Canadian Index Code - Current (numeric)
Sorting Order BY DNUM CNUM CIC
Series Variables DATA1-

DATA232
Data Array

QFTNT1-
QFTNT60

Data Footnotes

FYR Fiscal Year-End Month of Data
SPCSCYR SPCS Calendar Year
SPCSCQTR SPCS Calendar Quarter
UCODE Update Code
SOURCE Source Document Code
BONDRATE S&P Bond Rating
DEBTCL S&P Class of Debt
CPRATE S&P Commercial Paper Rating
STOCK S&P Common Stock Ranking
MIC S&P Major Index Code
IIC S&P Industry Index Code
REPORTDT Report Date of Quarterly Earnings
FORMAT Flow of Funds Statement Format Code
DEBTRT S&P Subordinated Debt Rating
CANIC Canadian Index Code - Current
CS Comparability Status
CSA Company Status Alert
SENIOR S&P Senior Debt Rating

Default KEEP
List

DROP DATA122-DATA232 QFTNT24-QFTNT60;

Missing Codes -0.001=. -0.004=.C -0.008=.I -0.002=.S -0.003=.A

CRSP Stock Files

The Center for Research in Security Prices provides comprehensive security price data through two primary
stock files, the NYSE/AMEX file and the NASDAQ file. These files contain master and return components,
available separately or combined. CRSP stock files are further differentiated by the frequency at which prices
and returns are reported, daily or monthly. Both daily and monthly files contain annual data fields.

CRSP data files are distributed in CRSPAccess format. For more information about accessing your CRSPAc-
cess database, see Chapter 47, “The SASECRSP Interface Engine.” You can convert your CRSPAccess data to
binary format (SFA format) by using the CRSP-supplied utility (STK_DUMP_BIN). Use the DATASOURCE
procedure for SFA format access and use SASECRSP Interface for CRSPAccess.
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CRSP stock data (in SFA format) are provided in two files, a main data file containing security information
and a calendar/indices file containing a list of trading dates and market information associated with those
trading dates.

The file types for CRSP stock files are constructed by concatenating CRSP with a D or M to indicate the
frequency of data, followed by B, C, or I to indicate file formats. B is for host binary, C is for character, and I
is for IBM binary formats. The last character in the file type indicates if you are reading the Calendar/Indices
file (I), or if you are extracting the security (S) or annual data (A). For example, the file type for the daily
NYSE/AMEX combined data in IBM binary format is CRSPDIS. Its calendar/indices file can be read by
CRSPDII, and its annual data can be extracted by CRSPDIA.

Starting in 1995, binary data used split records (RICFAC=2), so the 1995 filetypes (CR95*) should be used
for 1995 and 1996 binary data. If you use utility routines supplied by CRSP to convert a character format file
to a binary format file on a given host, then you need to use host binary file types (RIDFAC=1) to read those
files in. Note that you cannot do the conversion on one host and transfer and read the file on another host.

If you are using the CRSPAccess Database, you will need to use the utility routine (stk_dump_bin) supplied
by CRSP to generate the UNIX binary format of the data. You can access the UNIX (or SUN) binary data by
using PROC DATASOURCE with the CRSPDUS for daily or CRSPMUS for monthly stock data.

For the four-digit year data, use the Y2K-compliant filetypes for that data type.

For CRSP file types, the INFILE= option must be of the form

INFILE=( calfile security1 < security2 \ldots > )

where calfile is the fileref assigned to the calendar/indices file, and security1 < security2 . . . > are the filerefs
given to the security files, in the order in which they should be read.

CRSP Calendar/Indices Files

Table 13.21 CRSP Calendar/Indices Files Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= DAY for products DA, DR, DX, EX, NX, and RA

MONTH for products MA, MX, and MZ
BY Variables None
Series Variables VWRETD Value-Weighted Return (including all

distributions)
VWRETX Value-Weighted Return (excluding dividends)
EWRETD Equal-Weighted Return (including all

distributions)
EWRETX Equal-Weighted Return (excluding dividends)
TOTVAL Total Market Value
TOTCNT Total Market Count
USDVAL Market Value of Securities Used
USDCNT Count of Securities Used
SPINDX Level of the Standard & Poor’s Composite Index
SPRTRN Return on the Standard & Poor’s Composite Index
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Table 13.21 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

NCINDX NASDAQ Composite Index
NCRTRN NASDAQ Composite Return

Default KEEP
List

All variables will be kept.

CRSP Daily Security Files

Table 13.22 CRSP Daily Security Files Format

Metadata Field
Types

Metadata
Fields

Metadata
Labels

Data Files INFILE=( calfile security1 < security2 . . . > )
INTERVAL= DAY
BY Variables CUSIP CUSIP Identifier (character)

PERMNO CRSP Permanent Number (numeric)
COMPNO NASDAQ Company Number (numeric)
ISSUNO NASDAQ Issue Number (numeric)
HEXCD Header Exchange Code (numeric)
HSICCD Header SIC Code (numeric)

Sorting Order BY CUSIP
Series Variables BIDLO Bid or Low

ASKHI Ask or High
PRC Closing Price of Bid/Ask Average
VOL Share Volume
RET Holding Period Return

missing=( -66.0 = .p -77.0 = .t -88.0 = .r -99.0 = .b )
BXRET Beta Excess Return

missing=( -44.0 = . )
SXRET Standard Deviation Excess Return

missing=( -44.0 = . )
Events NAMES NCUSIP Name CUSIP

TICKER Exchange Ticker Symbol
COMNAM Company Name
SHRCLS Share Class
SHRCD Share Code
EXCHCD Exchange Code
SICCD Standard Industrial Classification

Code
DIST DISTCD Distribution Code

DIVAMT Dividend Cash Amount
FACPR Factor to Adjust Price
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Table 13.22 continued

Metadata Field
Types

Metadata
Fields

Metadata
Labels

FACSHR Factor to Adjust Shares
Outstanding

DCLRDT Declaration Date
RCRDDT Record Date
PAYDT Payment Date

SHARES SHROUT Number of Shares Outstanding
SHRFLG Share Flag

DELIST DLSTCD Delisting Code
NWPERM New CRSP Permanent Number
NEXTDT Date of Next Available

Information
DLBID Delisting Bid
DLASK Delisting Ask
DLPRC Delisting Price
DLVOL Delisting Volume

missing=( -99 = . )
DLRET Delisting Return

missing=( -55.0=.s -66.0=.t
-88.0=.a -99.0=.p );

NASDIN TRTSCD Traits Code
NMSIND National Market System

Indicator
MMCNT Market Maker Count
NSDINX NASD Index

Default KEEP
Lists

All periodic series variables will be output to the OUT= data set and all
event variables will be output to the OUTEVENT= data set.

CRSP Monthly Security Files

Table 13.23 CRSP Monthly Security Files Format

Metadata Field
Types

Metadata
Fields

Metadata
Labels

Data Files INFILE=( calfile security1 < security2 . . . > )
INTERVAL= MONTH
BY Variables CUSIP CUSIP Identifier (character)

PERMNO CRSP Permanent Number (numeric)
COMPNO NASDAQ Company Number (numeric)
ISSUNO NASDAQ Issue Number (numeric)
HEXCD Header Exchange Code (numeric)
HSICCD Header SIC Code (numeric)

Sorting Order BY CUSIP



Data Elements Reference: DATASOURCE Procedure F 741

Table 13.23 continued

Metadata Field
Types

Metadata
Fields

Metadata
Labels

Series Variables BIDLO Bid or Low
ASKHI Ask or High
PRC Closing Price of Bid/Ask average
VOL Share Volume
RET Holding Period Return

missing=( -66.0 = .p -77.0 = .t -88.0 = .r -99.0 = .b );
RETX Return Without Dividends

missing=( -44.0 = . )
PRC2 Secondary Price

missing=( -44.0 = . )
Events NAMES NCUSIP Name CUSIP

TICKER Exchange Ticker Symbol
COMNAM Company Name
SHRCLS Share Class
SHRCD Share Code
EXCHCD Exchange Code
SICCD Standard Industrial Classification

Code
DIST DISTCD Distribution Code

DIVAMT Dividend Cash Amount
FACPR Factor to Adjust Price
FACSHR Factor to Adjust Shares

Outstanding
EXDT Ex-distribution Date
RCRDDT Record Date
PAYDT Payment Date

SHARES SHROUT Number of Shares Outstanding
SHRFLG Share Flag

DELIST DLSTCD Delisting Code
NWPERM New CRSP Permanent Number
NEXTDT Date of Next Available

Information
DLBID Delisting Bid
DLASK Delisting Ask
DLPRC Delisting Price
DLVOL Delisting Volume
DLRET Delisting Return

missing=( -55.0=.s -66.0=.t
-88.0=.a -99.0=.p );

NASDIN TRTSCD Traits Code
NMSIND National Market System

Indicator
MMCNT Market Maker Count
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Table 13.23 continued

Metadata Field
Types

Metadata
Fields

Metadata
Labels

NSDINX NASD Index
Default KEEP
Lists

All periodic series variables will be output to the OUT= data set and all
event variables will be output to the OUTEVENT= data set.

CRSP Annual Data

Table 13.24 CRSP Annual Data Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files INFILE=( security1 < security2 . . . > )
INTERVAL= YEAR
BY Variables CUSIP CUSIP Identifier (character)

PERMNO CRSP Permanent Number (numeric)
COMPNO NASDAQ Company Number (numeric)
ISSUNO NASDAQ Issue Number (numeric)
HEXCD Header Exchange Code (numeric)
HSICCD Header SIC Code (numeric)

Sorting Order BY CUSIP
Series Variables CAPV Year End Capitalization

SDEVV Annual Standard Deviation
missing=( -99.0 = . )

BETAV Annual Beta
missing=( -99.0 = . )

CAPN Year End Capitalization Portfolio Assignment
SDEVN Standard Deviation Portfolio Assignment
BETAN Beta Portfolio Assignment

Default KEEP
Lists

All variables will be kept.

FAME Information Services Databases

The DATASOURCE procedure provides access to FAME Information Services databases for UNIX-based
systems only. For information about a more flexible FAME database access, see the section “The SASEFAME
Interface Engine” in Chapter 48, “The SASEFAME Interface Engine.”

The DATASOURCE interface to FAME requires a component supplied by FAME Information Services,
Inc. Once this FAME component is installed on your system, you can use the DATASOURCE procedure to
extract data from your FAME databases by giving the following specifications.

Specify FILETYPE=FAME in the PROC DATASOURCE statement and give the FAME database name to
access with a DBNAME=’fame-database ’ option. The character string you specify in the DBNAME= option
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is passed through to FAME; specify the value of this option as you would in accessing the database from
within FAME software.

Specify the output SAS data set to be created, the frequency of the series to be extracted, and other usual
DATASOURCE procedure options as appropriate.

Specify the time range to extract with a RANGE statement. The RANGE statement is required when
extracting series from FAME databases.

Name the FAME series to be extracted with a KEEP statement. The items in the KEEP statement are passed
through to FAME software; therefore, you can use any valid FAME expression to specify the series to be
extracted. Enclose in quotes any FAME series name or expression that is not a valid SAS name.

Name the SAS variable names you want to use for the extracted series in a RENAME statement. Give the
FAME series name or expression (in quotes if needed) followed by an equal sign and the SAS name. The
RENAME statement is not required; however, if the FAME series name is not a valid SAS variable name, the
DATASOURCE procedure will construct a SAS name by translating and truncating the FAME series name.
This process might not produce the desired name for the variable in the output SAS data set, so a rename
statement could be used to produce a more appropriate variable name. The VALIDVARNAME=ANY option
in your SAS options statement can be used to allow special characters in the SAS variable name.

For an alternative solution to PROC DATASOURCE’s access to FAME, see the section “The SASEFAME
Interface Engine” in Chapter 48, “The SASEFAME Interface Engine.”

FILETYPE=FAME–FAME Information Services Databases

Table 13.25 FILETYPE=FAME–FAME Information Services
Database Format

Metadata
Field Types

Metadata
Fields

Metadata Labels

INTERVAL= YEAR Correspond to FAME’s ANNUAL(DECEMBER)
YEAR.2 Correspond to FAME’s ANNUAL(JANUARY)
YEAR.3 Correspond to FAME’s ANNUAL(FEBRUARY)
YEAR.4 Correspond to FAME’s ANNUAL(MARCH)
YEAR.5 Correspond to FAME’s ANNUAL(APRIL)
YEAR.6 Correspond to FAME’s ANNUAL(MAY)
YEAR.7 Correspond to FAME’s ANNUAL(JUNE)
YEAR.8 Correspond to FAME’s ANNUAL(JULY)
YEAR.9 Correspond to FAME’s ANNUAL(AUGUST)
YEAR.10 Correspond to FAME’s ANNUAL(SEPTEMBER)
YEAR.11 Correspond to FAME’s ANNUAL(OCTOBER)
YEAR.12 Correspond to FAME’s ANNUAL(NOVEMBER)
SEMIYEAR Correspond to FAME’s SEMIYEAR
QUARTER Correspond to FAME’s QUARTER
MONTH Correspond to FAME’s MONTH
SEMIMONTH Correspond to FAME’s SEMIMONTH
TENDAY Correspond to FAME’s TENDAY
WEEK Corresponds to FAME’s WEEKLY(SATURDAY)
WEEK.2 Corresponds to FAME’s WEEKLY(SUNDAY)
WEEK.3 Corresponds to FAME’s WEEKLY(MONDAY)
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Table 13.25 continued

Metadata
Field Types

Metadata
Fields

Metadata Labels

WEEK.4 Corresponds to FAME’s WEEKLY(TUESDAY)
WEEK.5 Corresponds to FAME’s WEEKLY(WEDNESDAY)
WEEK.6 Corresponds to FAME’s WEEKLY(THURSDAY)
WEEK.7 Corresponds to FAME’s WEEKLY(FRIDAY)
WEEK2 Corresponds to FAME’s BIWEEKLY(ASATURDAY)
WEEK2.2 Correspond to FAME’s BIWEEKLY(ASUNDAY)
WEEK2.3 Correspond to FAME’s BIWEEKLY(AMONDAY)
WEEK2.4 Correspond to FAME’s BIWEEKLY(ATUESDAY)
WEEK2.5 Correspond to FAME’s BIWEEKLY(AWEDNESDAY)
WEEK2.6 Correspond to FAME’s BIWEEKLY(ATHURSDAY)
WEEK2.7 Correspond to FAME’s BIWEEKLY(AFRIDAY)
WEEK2.8 Correspond to FAME’s BIWEEKLY(BSATURDAY)
WEEK2.9 Correspond to FAME’s BIWEEKLY(BSUNDAY)
WEEK2.10 Correspond to FAME’s BIWEEKLY(BMONDAY)
WEEK2.11 Correspond to FAME’s BIWEEKLY(BTUESDAY)
WEEK2.12 Correspond to FAME’s BIWEEKLY(BWEDNESDAY)
WEEK2.13 Correspond to FAME’s BIWEEKLY(BTHURSDAY)
WEEK2.14 Correspond to FAME’s BIWEEKLY(BFRIDAY)
WEEKDAY Correspond to FAME’s WEEKDAY
DAY Correspond to FAME’s DAY

BY
Variables

None

Series
Variables

Variable names are constructed from the FAME series codes. Note
that series names are limited to 32 bytes.

Haver Analytics Data Files

Haver Analytics offers a broad range of economic, financial, and industrial data for the United States and other
countries. For information about accessing your HAVER DLX database, see the section “The SASEHAVR
Interface Engine” in Chapter 50, “The SASEHAVR Interface Engine.” SASEHAVR is supported on most
Windows environments. Use the DATASOURCE procedure for serial access of your data. The format of
Haver Analytics data files is similar to the CITIBASE/DRIBASIC formats.

FILETYPE=HAVER–Haver Analytics Data Files HAVERO–Old Format Haver Files

Table 13.26 FILETYPE=HAVER–Haver Analytics Data Files
Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
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Table 13.26 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

Series Variables Variable names are taken from the series descriptor records in the data
file. NOTE: HAVER filetype reports the UPDATE and SOURCE in
the OUTCONT= data set, while HAVERO does not.

Missing Codes 1.0E9=.

IMF Data Files

The International Monetary Fund’s Economic Information System (EIS) offers subscriptions for their
International Financial Statistics (IFS), Direction of Trade Statistics (DOTS), Balance of Payment Statistics
(BOPS), and Government Finance Statistics (GFS) databases. The first three contain annual, quarterly, and
monthly data, while the GFS file has only annual data.

PROC DATASOURCE supports only the packed format IMF data.

FILETYPE=IMFIFSP–International Financial Statistics, Packed Format
The IFS data files contain over 23,000 time series including interest and exchange rates, national income and
product accounts, price and production indexes, money and banking, export commodity prices, and balance
of payments for nearly 200 countries and regional aggregates.

Table 13.27 FILETYPE=IMFIFSP–International Financial
Statistics Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables COUNTRY Country Code (character, three digits)

CSC Control Source Code (character)
PARTNER Partner Country Code (character, three digits)
VERSION Version Code (character)

Sorting Order BY COUNTRY CSC PARTNER VERSION
Series Variables Series variable names are the same as series codes reported in IMF

Documentation prefixed by F for data and F_F for footnote indicators.
Default KEEP
List

By default all the footnote indicators will be dropped.

FILETYPE=IMFDOTSP–Direction of Trade Statistics, Packed Format
The DOTS files contain time series on the distribution of exports and imports for about 160 countries and
country groups by partner country and areas.
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Table 13.28 FILETYPE=IMFDOTSP–Direction of Trade
Statistics Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables COUNTRY Country Code (character, three digits)

CSC Control Source Code (character)
PARTNER Partner Country Code (character, three digits)
VERSION Version Code (character)

Sorting Order BY COUNTRY CSC PARTNER VERSION
Series Variables Series variable names are the same as series codes reported in IMF

Documentation prefixed by D for data and F_D for footnote
indicators.

Default KEEP
List

By default all the footnote indicators will be dropped.

FILETYPE=IMFBOPSP–Balance of Payment Statistics, Packed Format
The BOPS data files contain approximately 43,000 time series on balance of payments for about 120 countries.

Table 13.29 FILETYPE=IMFBOPSP–Balance of Payment
Statistics Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables COUNTRY Country Code (character, three digits)

CSC Control Source Code (character)
PARTNER Partner Country Code (character, three digits)
VERSION Version Code (character)

Sorting Order BY COUNTRY CSC PARTNER VERSION
Series Variables Series variable names are the same as series codes reported in IMF

Documentation prefixed by B for data and F_B for footnote
indicators.

Default KEEP
List

By default all the footnote indicators will be dropped.

FILETYPE=IMFGFSP–Government Finance Statistics, Packed Format
The GFS data files encompass approximately 28,000 time series that give a detailed picture of federal
government revenue, grants, expenditures, lending minus repayment financing and debt, and summary data
of state and local governments, covering 128 countries.
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Table 13.30 FILETYPE=IMFGFSP–Government Finance
Statistics Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored in a single file.
INTERVAL= YEAR (default), QUARTER, MONTH
BY Variables COUNTRY Country Code (character, three digits)

CSC Control Source Code (character)
PARTNER Partner Country Code (character, three digits)
VERSION Version Code (character)

Sorting Order BY COUNTRY CSC PARTNER VERSION
Series Variables Series variable names are the same as series codes reported in IMF

Documentation prefixed by G for data and F_G for footnote
indicators.

Default KEEP
List

By default all the footnote indicators will be dropped.

OECD Data Files

The Organization for Economic Cooperation and Development compiles and distributes statistical data,
including National Accounts and Main Economic Indicators.

FILETYPE=OECDANA–Annual National Accounts
The ANA data files contain both main national aggregates accounts (Volume I) and detailed tables for each
OECD Member country (Volume II).

Table 13.31 FILETYPE=OECDANA–Annual National Accounts
Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored on a single file.
INTERVAL= YEAR (default), SEMIYR1.6, QUARTER, MONTH, WEEK,

WEEKDAY
BY Variables PREFIX Table number prefix (character)

CNTRYZ Country Code (character)
Series Variables Series variable names are the same as the mnemonic name of the

element given on the element ’E’ record. They are taken from the 12
byte time series ’T’ record time series indicative.

Series Renamed OLDNAME NEWNAME
p0discgdpe p0digdpe
doll2gdpe dol2gdpe
doll3gdpe dol3gdpe
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Table 13.31 continued

Metadata Field
Types

Metadata
Fields

Metadata Labels

doll1gdpe dol1gdpe
ppp1gdpd pp1gdpd
ppp1gdpd1 pp1gdpd1
p0itxgdpc p0itgdpc
p0itxgdps p0itgdps
p0subgdpc p0sugdpc
p0subgdps p0sugdps
p0cfcgdpc p0cfgdpc
p0cfgddps p0cfgdps
p0discgdpc p0dicgdc
p0discgdps p0dicgds

Missing Codes A data value of * is interpreted as MISSING.

FILETYPE=OECDQNA–Quarterly National Accounts
The QNA file contains the main aggregates of quarterly national accounts for 16 OECD Member Countries
and on a selected number of aggregates for 4 groups of member countries: OECD-Total, OECD-Europe,
EEC, and the 7 major countries.

Table 13.32 FILETYPE=OECDQNA–Quarterly National
Accounts Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored on a single file.
INTERVAL= QUARTER(default),YEAR
BY Variables COUNTRY Country Code (character)

SEASON Seasonality
S=seasonally adjusted
0=raw data, not seasonally adjusted

PRICETAG Prices
C=data at current prices
R,L,M=data at constant prices
P,K,J,V=implicit price index or volume index

Series Variables Subject code used to distinguish series within countries. Series
variables are prefixed by _ for data, C for control codes, and D for
relative date.

Default DROP
List

By default all the control codes and relative dates will be dropped.

Missing Codes A data value of + or - is interpreted as MISSING.
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FILETYPE=OECDMEI–Main Economic Indicators
The MEI file contains all series found in Parts 1 and 2 of the publication Main Economic Indicators.

Table 13.33 FILETYPE=OECDMEI–Main Economic Indicators
Format

Metadata Field
Types

Metadata
Fields

Metadata Labels

Data Files Database is stored on a single file.
INTERVAL= YEAR(default),QUARTER,MONTH
BY Variables COUNTRY Country Code (character)

CURRENCY Unit of expression of the series.
ADJUST Adjustment

0,H,S,A,L=no adjustment
1,I=calendar or working day adjusted
2,B,J,M=seasonally adjusted by National
Authorities
3,K,D=seasonally adjusted by OECD

Series Variables Series variables are prefixed by _ for data, C for control codes, and D
for relative date in weeks since last updated.

Default DROP
List

By default, all the control codes and relative dates will be dropped.

Missing Codes A data value of + or - is interpreted as MISSING.

Examples: DATASOURCE Procedure

Example 13.1: BEA National Income and Product Accounts
In this example, exports and imports of goods and services are extracted to demonstrate how to work with a
National Income and Product Accounts (NIPA) file.

From the “Statistical Tables” published by the United States Department of Commerce, Bureau of Economic
Analysis, the relation of foreign transactions in the Balance of Payments Accounts (BPA) are given in the
fifth table (TABNUM=’05’) of the “Foreign Transactions” section (PARTNO=’4’). Moreover, the first line in
the table gives BPAs, while the eighth gives exports of goods and services. The series names __00100 and
__00800 are constructed by two underscores followed by three digits as the line numbers, and then two digits
as the column numbers.

The following statements put this information together to extract quarterly BPAs and exports from a BEANIPA
type file:
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/*- assign fileref to the external file to be processed --------*/

filename ascifile "%sysget(DATASRC_DATA)beanipa.data" recfm=v lrecl=108;

title1 'Relation of Foreign Transactions to Balance of Payment Accounts';
title2 'Range from 1984 to 1989';

title3 'Annual';
proc datasource filetype=beanipa infile=ascifile

interval=year
outselect=off
outkey=byfor4;

range from 1984 to 1989;
keep __00100 __00800;

label __00100='Balance of Payment Accounts';
label __00800='Exports of Goods and Services';

rename __00100=BPAs __00800=exports;
run;

proc print data=byfor4;
run;

/*- assign fileref to the external file to be processed --------*/

filename ascifile "%sysget(DATASRC_DATA)beanipa.data" recfm=v lrecl=108;

title1 'Relation of Foreign Transactions to Balance of Payment Accounts';
title2 'Range from 1984 to 1989';

title3 'Annual';
proc datasource filetype=beanipa infile=ascifile

interval=year
outselect=off
outkey=byfor4
out=foreign4;

range from 1984 to 1989;
keep __00100 __00800;

label __00100='Balance of Payment Accounts';
label __00800='Exports of Goods and Services';

rename __00100=BPAs __00800=exports;

run;

proc contents data=foreign4;
run;
proc print data=foreign4;
run;
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The results are shown in Output 13.1.1, Output 13.1.2, and Output 13.1.3.

Output 13.1.1 Listing of OUTBY=byfor4 of the BEANIPA Data

Relation of Foreign Transactions to Balance of Payment Accounts
Range from 1984 to 1989

Annual

Obs PARTNO TABNUM ST_DATE END_DATE NTIME NOBS NINRANGE NSERIES NSELECT

1 1 07 1929 1989 61 0 6 2 0

2 1 14 1929 1989 61 0 6 1 0

3 1 15 1929 1989 61 0 6 1 0

4 1 20 1967 1989 23 23 6 2 1

5 1 23 1929 1989 61 0 6 2 0

6 2 04 1929 1989 61 0 6 1 0

7 2 05 1929 1989 61 0 6 2 0

8 3 05 1929 1989 61 0 6 1 0

9 3 14 1952 1989 38 0 6 2 0

10 3 15 1952 1989 38 0 6 7 0

11 3 16 1952 1989 38 0 6 1 0

12 4 05 1946 1989 44 44 6 1 1

13 5 07 1929 1989 61 0 6 1 0

14 5 09 1929 1989 61 0 6 1 0

15 6 04 1929 1989 61 0 6 3 0

16 6 05 1929 1948 20 0 0 2 0

17 6 07 1929 1948 20 0 0 1 0

18 6 08 1929 1989 61 0 6 3 0

19 6 09 1948 1989 42 0 6 1 0

20 6 10 1929 1948 20 0 0 1 0

21 6 14 1929 1948 20 0 0 1 0

22 6 19 1929 1948 20 0 0 1 0

23 6 20 1929 1989 61 0 6 2 0

24 6 22 1929 1989 61 0 6 2 0

25 6 23 1948 1989 42 0 6 1 0

26 6 24 1948 1989 42 0 6 1 0

27 7 09 1929 1989 61 0 6 1 0

28 7 10 1929 1989 61 0 6 2 0

29 7 13 1959 1989 31 0 6 1 0
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Output 13.1.2 CONTENTS of OUT=foreign4 of the BEANIPA Data

Relation of Foreign Transactions to Balance of Payment Accounts
Range from 1984 to 1989

Annual

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

3 DATE Num 4 YEAR4. Date of Observation

1 PARTNO Char 1 Part Number of Publication, IntegerPortion of the Table Number, 1-9

2 TABNUM Char 2 Table Number Within Part, DecimalPortion of the Table Number, 1-24

4 exports Num 5 Exports of Goods and Services

Output 13.1.3 Listing of OUT=foreign4 of the BEANIPA Data

Relation of Foreign Transactions to Balance of Payment Accounts
Range from 1984 to 1989

Annual

Obs PARTNO TABNUM DATE exports

1 1 20 1984 44

2 1 20 1985 53

3 1 20 1986 46

4 1 20 1987 40

5 1 20 1988 48

6 1 20 1989 47

7 4 05 1984 3835

8 4 05 1985 3709

9 4 05 1986 3965

10 4 05 1987 4496

11 4 05 1988 5520

12 4 05 1989 6262

This example illustrates the following features:

� You need to know the series variables names used by a particular vendor in order to construct the
KEEP statement.

� You need to know the BY-variable names and their values for the required cross sections.

� You can use RENAME and LABEL statements to associate more meaningful names and labels with
your selected series variables.
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Example 13.2: BLS Consumer Price Index Surveys
This example compares changes of the prices in medical care services with respect to different regions for all
urban consumers (SURVEY=’CU’) since May 1975. The source of the data is the Consumer Price Index
Surveys distributed by the U.S. Department of Labor, Bureau of Labor Statistics.

An initial run of PROC DATASOURCE gives the descriptive information on different regions available
(the OUTBY= data set), as well as the series variable name corresponding to medical care services (the
OUTCONT= data set).

options yearcutoff = 1900;

filename datafile "%sysget(DATASRC_DATA)blscpi1.data" recfm=v lrecl=152;
proc datasource filetype=blscpi

interval=mon
outselect=off
outby=cpikey(where=( upcase(areaname)

in ('NORTHEAST','NORTH CENTRAL','SOUTH','WEST')) )
outcont=cpicont(where= ( index( upcase(label), 'MEDICAL CARE' )) );
where survey='CU';

run;

title1 'OUTBY= Data Set, By AREANAME Selection';
proc print

data=cpikey;
run;

title1 'OUTCONT= Data Set, By LABEL Selection';
proc print

data=cpicont;
run;

The OUTBY= data set in Output 13.2.1 lists all cross sections available for the four geographical re-
gions: Northeast (AREA=’0100’), North Central (AREA=’0200’), Southern (AREA=’0300’), and Western
(AREA=’0400’). The OUTCONT= data set in Output 13.2.2 gives the variable names for medical care
related series.
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Output 13.2.1 Partial Listings of the OUTBY= Data Set

OUTBY= Data Set, By AREANAME Selection

Obs SURVEY SEASON AREA BASPTYPE BASEPER BYSELECT ST_DATE

1 CU U 0200 S 1982-84=100 1 DEC1977

2 CU U 0100 S 1982-84=100 1 .

3 CW U 0400 S 1982-84=100 0 DEC1977

4 CW U 0100 S 1982-84=100 0 .

5 CW U 0200 S 1982-84=100 0 .

Obs END_DATE NTIME NOBS NSERIES NSELECT SURTITLE AREANAME

1 JUL1990 152 152 2 2 ALL URBAN CONSUMNORTH CENTRAL

2 . . 0 0 0 ALL URBAN CONSUMNORTHEAST

3 JUL1990 152 0 1 0 URBAN WAGE EARN WEST

4 . . 0 0 0 URBAN WAGE EARN NORTHEAST

5 . . 0 0 0 URBAN WAGE EARN NORTH CENTRAL

Output 13.2.2 Partial Listings of the OUTCONT= Data Set

OUTCONT= Data Set, By LABEL Selection

Obs NAME SELECTED TYPE LENGTH VARNUM LABEL FORMAT FORMATL FORMATD

1 ASL5 1 1 5 . SERVICES LESS MEDICAL CARE 0 0

2 A512 1 1 5 . MEDICAL CARE SERVICES 0 0

3 A0L5 0 1 5 . ALL ITEMS LESS MEDICAL CARE 0 0

The following statements make use of this information to extract the data for A512 and descriptive information
on cross sections containing A512. Output 13.2.3 and Output 13.2.4 show these results.

options yearcutoff = 1900;

filename datafile "%sysget(DATASRC_DATA)blscpi1.data" recfm=v lrecl=152;

proc format;
value $areafmt '0100' = 'Northeast Region'

'0200' = 'North Central Region'
'0300' = 'Southern Region'
'0400' = 'Western Region';

run;

proc datasource filetype=blscpi interval=month
out=medical outall=medinfo;

where survey='CU' and area in ( '0100','0200','0300','0400' );
keep date a512;
range from 1988:9;
format area $areafmt.;
rename a512=medcare;

run;

title1 'Information on Medical Care Service, OUTALL= Data Set';
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proc print
data=medinfo;

run;

title1 'Medical Care Service By Region, OUT= Data Set';
title2 'Range from September, 1988';
proc print

data=medical;
run;

Output 13.2.3 Printout of the OUTALL= Data Set

Information on Medical Care Service, OUTALL= Data Set

Obs SURVEY SEASON AREA BASPTYPE BASEPER BYSELECT NAME KEPT SELECTED TYPE

1 CU U North Central
Region

S 1982-84=100 1 medcare 1 1 1

Obs LENGTH VARNUM BLKNUM LABEL FORMAT FORMATL FORMATD ST_DATE END_DATE NTIME

1 5 7 50 MEDICAL CARE
SERVICES

0 0 DEC1977 JUL1990 152

Obs NOBS NINRANGE SURTITLE AREANAME S_CODE UNITS NDEC

1 152 23 ALL URBAN
CONSUM

NORTH
CENTRAL

CUUR0200SA512 1
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Output 13.2.4 Printout of the OUT= Data Set

Medical Care Service By Region, OUT= Data Set
Range from September, 1988

Obs SURVEY SEASON AREA BASPTYPE BASEPER DATE medcare

1 CU U North Central Region S 1982-84=100 SEP1988 1364

2 CU U North Central Region S 1982-84=100 OCT1988 1365

3 CU U North Central Region S 1982-84=100 NOV1988 1368

4 CU U North Central Region S 1982-84=100 DEC1988 1372

5 CU U North Central Region S 1982-84=100 JAN1989 1387

6 CU U North Central Region S 1982-84=100 FEB1989 1399

7 CU U North Central Region S 1982-84=100 MAR1989 1405

8 CU U North Central Region S 1982-84=100 APR1989 1413

9 CU U North Central Region S 1982-84=100 MAY1989 1416

10 CU U North Central Region S 1982-84=100 JUN1989 1425

11 CU U North Central Region S 1982-84=100 JUL1989 1439

12 CU U North Central Region S 1982-84=100 AUG1989 1452

13 CU U North Central Region S 1982-84=100 SEP1989 1460

14 CU U North Central Region S 1982-84=100 OCT1989 1473

15 CU U North Central Region S 1982-84=100 NOV1989 1481

16 CU U North Central Region S 1982-84=100 DEC1989 1485

17 CU U North Central Region S 1982-84=100 JAN1990 1500

18 CU U North Central Region S 1982-84=100 FEB1990 1516

19 CU U North Central Region S 1982-84=100 MAR1990 1528

20 CU U North Central Region S 1982-84=100 APR1990 1538

21 CU U North Central Region S 1982-84=100 MAY1990 1548

22 CU U North Central Region S 1982-84=100 JUN1990 1557

23 CU U North Central Region S 1982-84=100 JUL1990 1573

The OUTALL= data set in Output 13.2.3 indicates that data values are stored with one decimal place (see the
NDEC variable). Therefore, they need to be rescaled, as follows:

data medical;
set medical;
medcare = medcare * 0.1;

run;

This example illustrates the following features:

� Descriptive information needed to write KEEP and WHERE statements can be obtained with an initial
run of the DATASOURCE procedure.

� The OUTCONT= and OUTALL= data sets contain information on how data values are stored, such as
the precision, the units, and so on.

� The OUTCONT= and OUTALL= data sets report the new series names assigned by the RENAME
statement, not the old names (see the NAME variable in Output 13.2.3).

� You can use PROC FORMAT to define formats for series or BY variables to enhance your output.
Note that PROC DATASOURCE associates a permanent format, $AREAFMT., with the BY variable
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AREA. As a result, the formatted values are displayed in the printout of the OUTALL=MEDINFO data
set (see Output 13.2.3).

Example 13.3: BLS State and Area Employment, Hours, and Earnings Surveys
This example illustrates how to extract specific series from a State and Area Employment, Hours, and
Earnings Survey. The series to be extracted is total employment in real estate and construction industries
with respect to states from March 1989 to March 1990.

The State and Area, Employment, Hours and Earnings survey designates the totals for statewide figures by
AREA=’0000’.

The data type code for total employment is reported to be 1. Therefore, the series name for this variable is
SA1, since series names are constructed by adding an SA prefix to the data type codes given by BLS.

Output 13.3.1 and Output 13.3.2 show statewide figures for total employment (SA1) in many industries from
March 1989 through March 1990.

filename ascifile "%sysget(DATASRC_DATA)blseesa.dat" RECFM=F LRECL=152;
proc datasource filetype=blseesa

infile=ascifile
outall=totkey
out=totemp;

keep sa1;
range from 1989:3 to 1990:3;
rename sa1=totemp;

run;

title1 'Information on Total Employment, OUTALL= Data Set';
proc print data=totkey;
run;

title1 'Total Employment, OUT= Data Set';
proc print data=totemp;
run;
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Output 13.3.1 Printout of the OUTALL= Data Set for All BY Groups

Information on Total Employment, OUTALL= Data Set

Obs STATE AREA DIVISION INDUSTRY DETAIL NAME KEPT SELECTED TYPE LENGTH VARNUM BLKNUM

1 5 2580 7 0000 1 totemp 1 1 1 5 7 3

2 6 0360 4 2039 6 totemp 1 1 1 5 7 6

3 6 6000 4 2300 2 totemp 1 1 1 5 7 7

4 6 7120 2 0000 1 totemp 1 1 1 5 7 8

5 10 0000 7 6102 6 totemp 1 1 1 5 7 10

6 11 8840 6 5600 2 totemp 1 1 1 5 7 11

Obs LABEL FORMAT FORMATL FORMATD ST_DATE END_DATE NTIME NOBS NINRANGE STATEABB

1 ALL
EMP

0 0 JAN1970 JUN1990 246 246 13 AR

2 ALL
EMP

0 0 JAN1972 JUN1990 222 222 13 CA

3 ALL
EMP

0 0 JAN1972 JUN1990 222 222 13 CA

4 ALL
EMP

0 0 JAN1957 DEC1987 372 372 0 CA

5 ALL
EMP

0 0 JAN1984 DEC1987 48 48 0 DE

6 ALL
EMP

0 0 JAN1972 JUN1990 222 222 13 DC

Obs AREANAME INDTITLE S_CODE SEASON UNITS NDEC

1 FAYETTEVILLE-SPRINGDALE FINANCE, INSURANCE, AND REAL
ESTATE

SAU0525807000011 U 1

2 ANAHEIM-SANTA ANA CANNED, CURED, AND FROZEN FOODS SAU0603604203961 U 1

3 OXNARD-VENTURA APPAREL AND OTHER TEXTILE
PRODUCTS

SAU0660004230021 U 1

4 SALINAS-SEASIDE-MONTEREY CONSTRUCTION SAU0671202000011 U 1

5 DELAWARE NONDEPOS. INSTNS. & SEC. & COM.
BRKRS.

SAU1000007610261 U 1

6 WASHINGTON MSA APPAREL AND ACCESSORY STORES SAU1188406560021 U 1

filename datafile "%sysget(DATASRC_DATA)blseesa.dat" RECFM=F LRECL=152;
proc datasource filetype=blseesa

outall=totkey
out=totemp;

where industry='0000';
keep sa1;
range from 1989:3 to 1990:3;
rename sa1=totemp;

run;
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title1 'Total Employment for Real Estate and Construction, OUT= Data Set';
proc print data=totemp;
run;

Output 13.3.2 Printout of the OUT= Data Set for INDUSTRY=0000

Total Employment for Real Estate and Construction, OUT= Data Set

Obs STATE AREA DIVISION INDUSTRY DETAIL DATE totemp

1 5 2580 7 0000 1 MAR1989 16

2 5 2580 7 0000 1 APR1989 16

3 5 2580 7 0000 1 MAY1989 16

4 5 2580 7 0000 1 JUN1989 16

5 5 2580 7 0000 1 JUL1989 16

6 5 2580 7 0000 1 AUG1989 16

7 5 2580 7 0000 1 SEP1989 16

8 5 2580 7 0000 1 OCT1989 16

9 5 2580 7 0000 1 NOV1989 16

10 5 2580 7 0000 1 DEC1989 16

11 5 2580 7 0000 1 JAN1990 15

12 5 2580 7 0000 1 FEB1990 15

13 5 2580 7 0000 1 MAR1990 15

Note the following for this example:

� When the INFILE= option is omitted, the fileref assigned to the BLSEESA file is the default value
DATAFILE.

� The FROM and TO values in the RANGE statement correspond to monthly data points since the
INTERVAL= option defaults to MONTH for the BLSEESA filetype.

Example 13.4: DRI/McGraw-Hill Format CITIBASE Files
Output 13.4.1 and Output 13.4.2 illustrate how to extract weekly series from a sample CITIBASE file. They
also demonstrate how the OUTSELECT= option affects the contents of the auxiliary data sets.

The weekly series contained in the sample data file CITIDEMO are listed by the following statements:

options yearcutoff=1920;

filename datafile "%sysget(DATASRC_DATA)citidem.dat" RECFM=D LRECL=80;

proc datasource filetype=citibase interval=week
outall=citiall outby=citikey;

run;

title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=citikey;
run;
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title1 'Weekly Series Available in CITIDEMO File';
proc print data=citiall( drop=label );
run;

Output 13.4.1 Listing of the OUTBY= CITIKEY Data Set

Summary Information on Weekly Data for CITIDEMO File

Obs ST_DATE END_DATE NTIME NOBS NSERIES NSELECT

1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 6 6

Output 13.4.2 Listing of the OUTALL= CITIALL Data Set

Weekly Series Available in CITIDEMO File

Obs NAME SELECTED TYPE LENGTH VARNUM BLKNUM FORMAT FORMATL

1 FF142B 1 1 5 . 36 0

2 WSPCA 1 1 5 . 37 0

3 WSPUA 1 1 5 . 38 0

4 WSPIA 1 1 5 . 39 0

5 WSPGLT 1 1 5 . 40 0

6 FCPOIL 1 1 5 . 41 0

Obs FORMATD ST_DATE END_DATE NTIME NOBS CODE ATTRIBUT NDEC

1 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 FF142B 1 2

2 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 WSPCA 1 2

3 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 WSPUA 1 2

4 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 WSPIA 1 2

5 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 WSPGLT 1 2

6 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 FCPOIL 1 4

Note the following from Output 13.4.2:

� The OUTALL= data set reports the time ranges of variables.

� There are six observations in the OUTALL= data set, the same number as reported by NSERIES and
NSELECT variables in the OUTBY= data set.

� The VARNUM variable contains all MISSING values, since no OUT= data set is created.

Output 13.4.3 and Output 13.4.4 demonstrate how the OUTSELECT= option affects the contents of the
OUTBY= and OUTALL= data sets when a KEEP statement is present. First, set the OUTSELECT= option
to OFF.

filename citidemo "%sysget(DATASRC_DATA)citidem.dat" RECFM=D LRECL=80;

proc datasource filetype=citibase infile=citidemo interval=week
outall=alloff outby=keyoff outselect=off;

keep WSP:;
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run;

title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=keyoff;
run;

title1 'Weekly Series Available in CITIDEMO File';
proc print data=alloff( keep=name kept selected st_date

end_date ntime nobs );
run;

Output 13.4.3 Listing of the OUTBY= Data Set with OUTSELECT=OFF

Summary Information on Weekly Data for CITIDEMO File

Obs ST_DATE END_DATE NTIME NOBS NSERIES NSELECT

1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 6 4

Output 13.4.4 Listing of the OUTALL= Data Set with OUTSELECT=OFF

Weekly Series Available in CITIDEMO File

Obs NAME KEPT SELECTED ST_DATE END_DATE NTIME NOBS

1 FF142B 0 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

2 WSPCA 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

3 WSPUA 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

4 WSPIA 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

5 WSPGLT 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

6 FCPOIL 0 0 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

Specifying OUTSELECT=ON gives the results shown in Output 13.4.5 and Output 13.4.6.

filename citidemo "%sysget(DATASRC_DATA)citidem.dat" RECFM=D LRECL=80;
proc datasource filetype=citibase infile=citidemo

interval=week
outall=allon outby=keyon outselect=on;

keep WSP:;
run;

title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=keyon;
run;

title1 'Weekly Series Available in CITIDEMO File';
proc print data=allon( keep=name kept selected st_date

end_date ntime nobs );
run;
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Output 13.4.5 Listing of the OUTBY= Data Set with OUTSELECT=ON

Summary Information on Weekly Data for CITIDEMO File

Obs ST_DATE END_DATE NTIME NOBS NSERIES NSELECT

1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 6 4

Output 13.4.6 Listing of the OUTALL= Data Set with OUTSELECT=ON

Weekly Series Available in CITIDEMO File

Obs NAME KEPT SELECTED ST_DATE END_DATE NTIME NOBS

1 WSPCA 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

2 WSPUA 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

3 WSPIA 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

4 WSPGLT 1 1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271

Comparison of Output 13.4.4 and Output 13.4.6 reveals the following:

� The OUTALL= data set contains six (NSERIES) observations when OUTSELECT=OFF, and four
(NSELECT) observations when OUTSELECT=ON.

� The observations in OUTALL=ALLON are those for which SELECTED=1 in OUTALL=ALLOFF.

� The time ranges in the OUTBY= data set are computed over all the variables (selected or not) for
OUTSELECT=OFF, but only computed over the selected variables for OUTSELECT=ON. This
corresponds to computing time ranges over all the series reported in the OUTALL= data set.

� The variable NTIME is the number of time periods between ST_DATE and END_DATE, while NOBS is
the number of observations the OUT= data set is to contain. Thus, NTIME is different depending on
whether the OUTSELECT= option is set to ON or OFF, while NOBS stays the same.

The KEEP statement in the last two examples illustrates the use of an additional variable, KEPT, in the
OUTALL= data sets of Output 13.4.4 and Output 13.4.6. KEPT, which reports the outcome of the KEEP
statement, is only added to the OUTALL= data set when there is KEEP statement.

Adding the RANGE statement to the last example generates the data sets in Output 13.4.7 and Output 13.4.8:

filename citidemo "%sysget(DATASRC_DATA)citidem.dat" RECFM=D LRECL=80;
proc datasource filetype=citibase infile=citidemo interval=week

outby=keyrange out=citiout outselect=on;
keep WSP:;
range from '01dec1990'd;

run;

title1 'Summary Information on Weekly Data for CITIDEMO File';
proc print data=keyrange;
run;

title1 'Weekly Data in CITIDEMO File';
proc print data=citiout;
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run;

Output 13.4.7 Listing of the OUTBY=KEYRANGE Data Set for FILETYPE=CITIBASE

Summary Information on Weekly Data for CITIDEMO File

Obs ST_DATE END_DATE NTIME NOBS NINRANGE NSERIES NSELECT

1 Sun, 29 Dec 1985 Sun, 3 Mar 1991 271 271 15 6 4

Output 13.4.8 Printout of the OUT=CITIOUT Data Set for FILETYPE=CITIBASE

Weekly Data in CITIDEMO File

Obs DATE WSPCA WSPUA WSPIA WSPGLT

1 Sun, 25 Nov 1990 9.77000 9.66000 9.87000 8.62000

2 Sun, 2 Dec 1990 9.75000 9.64000 9.85000 8.47000

3 Sun, 9 Dec 1990 9.59000 9.48000 9.69000 8.22000

4 Sun, 16 Dec 1990 9.62000 9.51000 9.72000 8.35000

5 Sun, 23 Dec 1990 9.70000 9.60000 9.80000 8.48000

6 Sun, 30 Dec 1990 9.64000 9.53000 9.75000 8.31000

7 Sun, 6 Jan 1991 9.70000 9.59000 9.81000 8.62000

8 Sun, 13 Jan 1991 9.80000 9.70000 9.89000 8.58000

9 Sun, 20 Jan 1991 9.66000 9.57000 9.75000 8.36000

10 Sun, 27 Jan 1991 9.65000 9.56000 9.74000 8.38000

11 Sun, 3 Feb 1991 9.52000 9.43000 9.61000 8.16000

12 Sun, 10 Feb 1991 9.38000 9.29000 9.48000 8.14000

13 Sun, 17 Feb 1991 9.38000 9.29000 9.48000 8.21000

14 Sun, 24 Feb 1991 9.61000 9.53000 9.68000 8.50000

15 Sun, 3 Mar 1991 9.61000 9.53000 9.68000 8.50000

The OUTBY= data set in this last example contains an additional variable NINRANGE. This variable is added
since there is a RANGE statement. Its value, 15, is the number of observations in the OUT= data set. In this
case, NOBS gives the number of observations the OUT= data set would contain if there were not a RANGE
statement.

Example 13.5: DRI Data Delivery Service Database
This example demonstrates the DRIDDS filetype for the daily Federal Reserve Series fxrates_dds. Use
VALIDVARNAME=ANY in your SAS options statement to allow special characters such as @, $, and % to
be in the series name. Note the use of long variable names in the OUT= data set in Output 13.5.2 and long
labels in the OUTCONT= data set in Output 13.5.1.

The following statements extract daily series starting in January 1, 1997:

options validvarname=any;
filename datafile "%sysget(DATASRC_DATA)drifxrat.dat" RECFM=F LRECL=80;
proc format;

value distekfm 0 = 'Unspecified'
2 = 'Linear'
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4 = 'Triag'
6 = 'Polynomial'
8 = 'Even'

10 = 'Step'
12 = 'Stocklast'
14 = 'LinearUnadjusted'
16 = 'PolyUnadjusted'
18 = 'StockWithNAS'
99 = 'None'

255 = 'None';

value convtkfm 0 = 'Unspecified'
1 = 'Average'
3 = 'AverageX'
5 = 'Sum'
7 = 'SumAnn'
9 = 'StockEnd'

11 = 'StockBegin'
13 = 'AvgNP'
15 = 'MaxNP'
17 = 'MinNP'
19 = 'StockEndNP'
21 = 'StockBeginNP'
23 = 'Max'
25 = 'Min'
27 = 'AvgXNP'
29 = 'SumNP'
31 = 'SumAnnNP'
99 = 'None'

255 = 'None';

/*--------------------------------------------------------*
* process daily series *
*--------------------------------------------------------*/

title3 'Reading DAILY Federal Reserve Series with fxrates_.dds';
proc datasource filetype=dridds

infile=datafile
interval=day
out=fixr
outcont=fixrcnt
outall=fixrall;

keep rx: ;
range from '01jan97'd to '31dec99'd;
format disttek distekfm.;
format convtek convtkfm.;

run;

title1 'CONTENTS of FXRATES_.DDS File, KEEP RX:';
proc print

data=fixrcnt;
run;

title1 'Daily Series Available in FXRATES_.DDS File, KEEP RX:';
proc print
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data=fixr;
run;

Output 13.5.1 Listing of the OUTCONT=FIXRCNT Data Set for FILETYPE=DRIDDS

CONTENTS of FXRATES_.DDS File, KEEP RX:

Obs NAME KEPT SELECTED TYPE LENGTH VARNUM LABEL FORMAT FORMATL FORMATD

1 RXA$%US$@AU 1 1 1 5 2 EXCHANGE RATE IN
AUSTRALIAN DOLLAR
PER US
DOLLAR - AUSTRALIA

0 0

2 RXBF%US$@BE 1 1 1 5 3 EXCHANGE RATE IN
BELGIAN FRANCS
PER US
DOLLAR - BELGIUM

0 0

3 RXDK%US$@DK 1 1 1 5 4 EXCHANGE RATE IN
DANISH KRONE PER
100 US
DOLLAR - DENMARK

0 0

Obs SOURCEID DISTTEK CONVTEK STATUS UPDATE UPTIME

1 @FACS/DATA.D Unspecified Unspecified 0 31JAN97 132605

2 @FACS/DATA.D Unspecified Unspecified 0 31JAN97 132544

3 @FACS/DATA.D Unspecified Unspecified 0 31JAN97 132544
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Output 13.5.2 Printout of the OUT=FIXR Data Set for FILETYPE=DRIDDS

Daily Series Available in FXRATES_.DDS File, KEEP RX:

Obs DATE RXA$%US$@AU RXBF%US$@BE RXDK%US$@DK

1 01JAN1997 1.26133 31.9200 5.92877

2 02JAN1997 1.26133 31.9200 5.92877

3 03JAN1997 1.26133 31.9200 5.92877

4 04JAN1997 1.27708 32.4620 6.01098

5 05JAN1997 1.27708 32.4620 6.01098

6 06JAN1997 1.27708 32.4620 6.01098

7 07JAN1997 1.27708 32.4620 6.01098

8 08JAN1997 1.27708 32.4620 6.01098

9 09JAN1997 1.27708 32.4620 6.01098

10 10JAN1997 1.27708 32.4620 6.01098

11 11JAN1997 1.28443 32.9360 6.09112

12 12JAN1997 1.28443 32.9360 6.09112

13 13JAN1997 1.28443 32.9360 6.09112

14 14JAN1997 1.28443 32.9360 6.09112

15 15JAN1997 1.28443 32.9360 6.09112

16 16JAN1997 1.28443 32.9360 6.09112

17 17JAN1997 1.28443 32.9360 6.09112

18 18JAN1997 1.29195 33.7500 6.24658

19 19JAN1997 1.29195 33.7500 6.24658

20 20JAN1997 1.29195 33.7500 6.24658

21 21JAN1997 1.29195 33.7500 6.24658

22 22JAN1997 1.29195 33.7500 6.24658

23 23JAN1997 1.29195 33.7500 6.24658

24 24JAN1997 1.29195 33.7500 6.24658

25 25JAN1997 1.30133 33.8974 6.27520

26 26JAN1997 1.30133 33.8974 6.27520

27 27JAN1997 1.30133 33.8974 6.27520

28 28JAN1997 1.30133 33.8974 6.27520

29 29JAN1997 1.30133 33.8974 6.27520

30 30JAN1997 1.30133 33.8974 6.27520

31 31JAN1997 1.30133 33.8974 6.27520
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Example 13.6: PC Format CITIBASE Database
This example uses a PC format CITIBASE database (FILETYPE=CITIDISK) to extract annual population
estimates for females and males with respect to various age groups.

Population estimate series for all ages of females including those in the armed forces overseas are given
by PANF, while PANM gives the population estimate for all ages of males including those in armed forces
overseas. More population estimate time series are described in Output 13.6.1 and are output in Output 13.6.2.

The following statements extract the required population estimates series:

filename keyfile "%sysget(DATASRC_DATA)basekey.dat" RECFM=V LRECL=22;
filename indfile "%sysget(DATASRC_DATA)baseind.dat" RECFM=F LRECL=84;
filename dbfile "%sysget(DATASRC_DATA)basedb.dat" RECFM=F LRECL=4;

proc datasource filetype=citidisk infile=( keyfile indfile dbfile )
out=popest outall=popinfo;

run;

proc print data=popinfo;
run;
proc print data=popest;
run;
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Output 13.6.1 Listing of the OUTALL=POPINFO Data Set for FILETYPE=CITIDISK

Obs NAME SELECTED TYPE LENGTH VARNUM BLKNUM LABEL FORMAT FORMATL

1 PAN 1 1 5 2 1 POPULATION EST.: ALL AGES,
INC.ARMED F.
OVERSEAS(THOUS.,ANNUAL)

0

2 PAN17 1 1 5 3 2 POPULATION EST.: 16 YRS AND
OVER,INC ARMED
F.OVERSEAS(THOUS,ANNUAL)

0

3 PAN18 1 1 5 4 3 POPULATION EST.: 18-64
YRS,INC.ARMED
F.OVERSEAS(THOUS,ANNUAL)

0

4 PANF 1 1 5 5 4 POPULATION EST.: FEMALES,ALL
AGES,INC.ARMED
F.O'SEAS(THOUS.,ANN)

0

5 PANM 1 1 5 6 5 POPULATION EST.: MALES, ALL AGES,
INC.ARMED F.O'SEAS(THOUS.,ANN)

0

Obs FORMATD ST_DATE END_DATE NTIME NOBS DISKNUM ATTRIBUT NDEC AGGREGAT

1 0 1980 1989 10 10 1 1 0 0

2 0 1980 1989 10 10 1 1 0 0

3 0 1980 1989 10 10 1 1 0 0

4 0 1980 1989 10 10 1 1 0 0

5 0 1980 1989 10 10 1 1 0 0

Output 13.6.2 Printout of the OUT=POPEST Data Set for FILETYPE=CITIDISK

Obs DATE PAN PAN17 PAN18 PANF PANM

1 1980 227757 172456 138358 116869 110888

2 1981 230138 175017 140618 118074 112064

3 1982 232520 177346 142740 119275 113245

4 1983 234799 179480 144591 120414 114385

5 1984 237001 181514 146257 121507 115494

6 1985 239279 183583 147759 122631 116648

7 1986 241625 185766 149149 123795 117830

8 1987 243942 187988 150542 124945 118997

9 1988 246307 189867 152113 126118 120189

10 1989 248762 191570 153695 127317 121445

This example demonstrates the following:

� The INFILE= options lists the filerefs of the key, index, and database files, in that order.

� The INTERVAL= option is omitted since the default interval for CITIDISK type files is YEAR.
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Example 13.7: Quarterly COMPUSTAT Data Files
This example shows how to extract data from a 48-quarter Compustat Database File. For COMPUSTAT
data files, the series variable names are constructed by concatenating the name of the data array DATA and
the column number containing the required information. For example, for quarterly files the common stock
data is in column 56. Therefore, the variable name for this series is DATA56. Similarly, the series variable
names for quarterly footnotes are constructed by adding the column number to the array name, QFTNT. For
example, the variable name for common stock footnotes is QFTNT14 since the 14th column of the QFTNT
array contains this information.

The following example extracts common stock series (DATA56) and its footnote (QFTNT14) for companies
whose stocks are traded over-the-counter and not in the S&P 500 Index (ZLIST=06) and whose data reside in
the over-the-counter file (FILE=06):

filename compstat "%sysget(DATASRC_DATA)csqibm.dat" recfm=s370v
lrecl=4820 blksize=14476;

proc datasource filetype=cs48qibm infile=compstat
out=stocks outby=company;

keep data56 qftnt14;
rename data56=comstock qftnt14=ftcomstk;
label data56='Common Stock'

qftnt14='Footnote for Common Stock';
range from 1990:4;

run;

/*- add company name to the out= data set */
data stocks;

merge stocks company( keep=dnum cnum cic coname );
by dnum cnum cic;

run;

title1 'Common Stocks for Last Quarter of 1990';
proc print data=stocks ;
run;

Output 13.7.1 contains a listing of the STOCKS data set.
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Output 13.7.1 Listing of the OUT=STOCKS Data Set

Common Stocks for Last Quarter of 1990

Obs DNUM CNUM CIC FILE EIN STK SMBL ZLIST XREL FIC

1 2670 293308 102 6 56-0481457 0 ENGH 6 0 0

2 2835 372917 104 6 06-1047163 0 GENZ 6 0 0

3 3564 896726 106 6 25-0922753 0 TRON 6 0 0

4 3576 172755 100 6 77-0024818 0 CRUS 6 0 0

5 3577 602191 108 6 11-2693062 0 MILT 6 0 0

6 3630 616350 104 6 34-0299600 0 MORF 6 0 0

7 3674 827079 203 6 94-1527868 0 SILI 6 0 0

8 3842 602720 104 6 25-0668780 0 MNES 6 0 0

9 5080 007698 103 6 59-1001822 0 AESM 6 0 0

10 5122 090324 104 6 84-0601662 0 BIND 6 0 0

11 5211 977865 104 6 38-1746752 0 WLHN 6 0 0

12 5600 299155 101 6 36-1050870 0 EVAN 6 0 0

13 5731 382091 106 6 94-2366177 0 GGUY 6 0 0

14 7372 45812M 104 6 94-2658153 0 INTS 6 0 0

15 7372 566140 109 6 04-2711580 0 MCAM 6 0 0

16 7373 913077 103 6 81-0422894 0 TOTE 6 0 0

17 7510 008450 108 6 34-1050582 0 AGNC 6 0 0

18 7819 026038 307 6 23-2359277 0 AFTI 6 0 0

19 8700 055383 103 6 59-1781257 0 BEIH 6 0 0

20 8731 759916 109 6 04-2729386 0 RGEN 6 0 0

Obs INCORP STATE COUNTY DATE comstock ftcomstk CONAME

1 10 13 121 1990:4 16.2510 ENGRAPH INC

2 10 25 17 1990:4 0.1620 GENZYME CORP

3 42 37 105 1990:4 3.1380 TRION INC

4 6 6 85 1990:4 . CIRRUS LOGIC INC

5 10 36 103 1990:4 . MILTOPE GROUP INC

6 39 39 35 1990:4 . MOR-FLO INDS

7 10 6 85 1990:4 . SILICONIX INC

8 42 42 3 1990:4 6.7540 MINE SAFETY APPLIANCES CO

9 12 12 25 1990:4 . AERO SYSTEMS INC

10 18 18 97 1990:4 3.2660 BINDLEY WESTERN INDS

11 26 26 145 1990:4 6.4800 WOLOHAN LUMBER CO

12 10 17 31 1990:4 . EVANS INC

13 6 6 75 1990:4 0.0520 GOOD GUYS INC

14 6 6 85 1990:4 . INTEGRATED SYSTEMS INC

15 25 25 17 1990:4 0.0770 MARCAM CORPORATION

16 10 30 111 1990:4 0.0570 UNITED TOTE INC

17 10 39 35 1990:4 . AGENCY RENT-A-CAR INC

18 10 42 45 1990:4 0.0210 AMERICAN FILM TECHNOL

19 10 13 121 1990:4 0.5170 BEI HOLDINGS LTD

20 10 25 17 1990:4 . REPLIGEN CORP

Note that quarterly Compustat data are also available in Universal Character format. If you have this type of
file instead of IBM 360/370 General format, use the FILETYPE=CS48QUC option instead.
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Example 13.8: Annual COMPUSTAT Data Files, V9.2 New Filetype CSAUC3
Annual COMPUSTAT data in Universal Character format are read for PRICES since the year 2002, so that
the desired output show the PRICE (HIGH), PRICE (LOW), and PRICE (CLOSE) for each company.

filename datafile "%sysget(DATASRC_DATA)csaucy3.dat" RECFM=F LRECL=13612;
/*--------------------------------------------------------------*
* create OUT=csauy3 data set with ASCII 2003 Industrial Data *
* compare it with the OUT=csauc data set created by DATA STEP *
*--------------------------------------------------------------*/

proc datasource filetype=csaucy3 ascii
infile=datafile
interval=year
outselect=on
outkey=y3key
out=csauy3;

keep data197-data199 label;
range from 2002;

run;

proc sort
data=csauy3 out=csauy3;
by dnum cnum cic file zlist smbl xrel stk;

run;

title1 'Price, High, Low and Close for Range from 2002';
proc contents data=csauy3;
run;

proc print data=csauy3;
run;

Output 13.8.1 shows information on the contents of the CSAUY3 data set, while Output 13.8.2 shows a listing
of the CSAUY3 data set.
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Output 13.8.1 Listing of the Contents of OUT=CSAUY3 Data Set

Price, High, Low and Close for Range from 2002

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

3 CIC Char 3

2 CNUM Char 6

11 COUNTY Num 5

13 CPSPIN Char 1

15 CSSPII Char 1

14 CSSPIN Char 2

18 DATA197 Num 5 Price - Fiscal Year - High ($&c,NA)

19 DATA198 Num 5 Price - Fiscal Year - Low ($&c,NA)

20 DATA199 Num 5 Price - Close - Fiscal Year-End ($&c,NA)

17 DATE Num 4 YEAR4. Date of Observation

1 DNUM Num 5

9 DUPFILE Num 5

16 EIN Char 10

4 FILE Num 5

12 FINC Num 5

6 SMBL Char 8

10 STATE Num 5

8 STK Num 5

7 XREL Num 5

5 ZLIST Num 5
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Output 13.8.2 Listing of the OUT=CSAUY3 Data Set

Price, High, Low and Close for Range from 2002

Obs DNUM CNUM CIC FILE ZLIST SMBL XREL STK DUPFILE STATE COUNTY FINC CPSPIN

1 3089 899896 104 11 1 TUP 444 0 0 12 95 0 1

2 3089 899896 104 11 1 TUP 444 0 0 12 95 0 1

3 3674 032654 105 11 1 ADI 928 0 0 25 21 0 1

4 3674 032654 105 11 1 ADI 928 0 0 25 21 0 1

5 3842 053801 106 1 5 AVR 0 0 0 25 21 0

6 3842 053801 106 1 5 AVR 0 0 0 25 21 0

7 6035 149547 101 3 25 CAVB 0 0 0 47 149 0

8 6035 149547 101 3 25 CAVB 0 0 0 47 149 0

9 6211 617446 448 11 1 MWD 725 0 0 36 61 0 1

10 6211 617446 448 11 1 MWD 725 0 0 36 61 0 1

11 6726 09247M 105 1 4 BMN 0 0 0 34 13 0

12 6726 09247M 105 1 4 BMN 0 0 0 34 13 0

13 7011 54021P 205 1 5 LGN 0 0 0 13 121 0

14 7011 54021P 205 1 5 LGN 0 0 0 13 121 0

15 7370 35921T 108 1 5 FNT 0 0 0 36 87 0

16 7370 35921T 108 1 5 FNT 0 0 0 36 87 0

17 7370 459200 101 11 1 IBM 903 0 0 36 119 0 1

18 7370 459200 101 11 1 IBM 903 0 0 36 119 0 1

19 7812 591610 100 1 4 MGM 0 0 0 6 37 0

20 7812 591610 100 1 4 MGM 0 0 0 6 37 0

Obs CSSPIN CSSPII EIN DATE DATA197 DATA198 DATA199

1 10 36-4062333 2002 24.990 14.4000 15.0800

2 10 36-4062333 2003 . . .

3 10 04-2348234 2002 48.840 17.8800 26.8000

4 10 04-2348234 2003 . . .

5 06-1174053 2002 1.500 0.2200 0.2300

6 06-1174053 2003 . . .

7 62-1721072 2002 14.000 11.5810 13.3400

8 62-1721072 2003 . . .

9 10 1 36-3145972 2002 60.020 28.8010 45.2400

10 10 1 36-3145972 2003 . . .

11 2002 11.050 10.3700 11.0100

12 2003 . . .

13 52-2093696 2002 13.894 1.0084 13.8940

14 52-2093696 2003 . . .

15 13-3950283 2002 0.440 0.1200 0.2600

16 13-3950283 2003 . . .

17 10 1 13-0871985 2002 126.390 54.0100 77.5000

18 10 1 13-0871985 2003 . . .

19 95-4605850 2002 23.250 9.0000 13.0000

20 95-4605850 2003 . . .

Note that annual COMPUSTAT data are available in either IBM 360/370 General format or Universal
Character format. The first example expects an IBM 360/370 General format file since the FILETYPE= is set
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to CSAIBM, while the second example uses a Universal Character format file (FILETYPE=CSAUC).

Example 13.9: CRSP Daily NYSE/AMEX Combined Stocks
This sample code reads all the data in a three-volume daily NYSE/AMEX combined character data set.
Assume that the following filerefs are assigned to the calendar/indices file and security files that this database
comprises:

Fileref VOLSER File Type

calfile DXAA1 Calendar/indices file on volume 1
secfile1 DXAA1 Security file on volume 1
secfile2 DXAA2 Security file on volume 2
secfile3 DXAA3 Security file on volume 3

The data set CALDATA is created by the following statements to contain the calendar/indices file:

proc datasource filetype=crspdci infile=calfile out=caldata;
run;

Here the FILETYPE=CRSPDCI indicates that you are reading a character format (indicated by a C in the
6th position) daily (indicated by a D in the 5th position) calendar/indices file (indicated by an I in the 7th
position).

The annual data in security files can be obtained by the following statements:

proc datasource filetype=crspdca
infile=( secfile1 secfile2 secfile3 )
out=annual;

run;

Similarly, the data sets to contain the daily security data (the OUT= data set) and the event data (the
OUTEVENT= data set) are obtained by the following statements:

proc datasource filetype=crspdcs
infile=( calfile secfile1 secfile2 secfile3 )
out=periodic index outevent=events;

run;

Note that the FILETYPE= has an S in the 7th position, since you are reading the security files. Also, the
INFILE= option first expects the fileref of the calendar/indices file since the dating variable (CALDT) is
contained in that file. Following the fileref of calendar/indices file, you give the list of security files in the
order in which you want to read them. When data span more than one physical volume, the filerefs of the
security files residing on each volume must be given following the fileref of the calendar/indices file. The
DATASOURCE procedure reads each of these files in the order in which they are specified. Therefore, you
can request that all three volumes be mounted to the same drive, if you choose to do so.

This sample code illustrates the following points:

� The INDEX option in the second PROC DATASOURCE run creates an index file for the
OUT=PERIODIC data set. This index file provides random access to the OUT= data set and might
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increase the efficiency of the subsequent PROC and DATA steps that use BY and WHERE statements.
The index variables are CUSIP, CRSP permanent number (PERMNO), NASDAQ company number
(COMPNO), NASDAQ issue number (ISSUNO), header exchange code (HEXCD), and header SIC
code (HSICCD). Each one of these variables forms a different key which is a single index. If you
want to form keys from a combination of variables (composite indexes) or use some other variables as
indexes, you should use the INDEX= data set option for the OUT= data set.

� The OUTEVENT=EVENTS data set is sparse. In fact, for each EVENT type, a unique set of event
variables are defined. For example, for EVENT=’SHARES’, only the variables SHROUT and SHRFLG
are defined, and they have missing values for all other EVENT types. Pictorially, this structure is
similar to the data set shown in Figure 13.4. Because of this sparse representation, you should create
the OUTEVENT= data set only when you need a subset of securities and events.

By default, the OUT= data set contains only the periodic data. However, you might also want to include
the event-oriented data in the OUT= data set. This is accomplished by listing the event variables together
with periodic variables in a KEEP statement. For example, if you want to extract the historical CUSIP
(NCUSIP), number of shares outstanding (SHROUT), and dividend cash amount (DIVAMT) together with
all the periodic series, use the following statements:

proc datasource filetype=crspdcs
infile=( calfile secfile1 secfile2 secfile3 )
out=both outevent=events;

where cusip='09523220';
keep bidlo askhi prc vol ret sxret bxret ncusip shrout divamt;

run;

The KEEP statement has no effect on the event variables output to the OUTEVENT= data set. If you
want to extract only a subset of event variables, you need to use the KEEPEVENT statement. For ex-
ample, the following sample code outputs only NCUSIP and SHROUT to the OUTEVENT= data set for
CUSIP=’09523220’:

proc datasource filetype=crspdxc
infile=( calfile secfile)
outevent=subevts;

where cusip='09523220';
keepevent ncusip shrout;

run;

Output 13.9.1, Output 13.9.2, Output 13.9.3, and Output 13.9.4 show how to read the CRSP Daily
NYSE/AMEX Combined ASCII Character Files.

filename dxci "%sysget(DATASRC_DATA)dxccal95.dat" RECFM=F LRECL=130;
filename dxc "%sysget(DATASRC_DATA)dxcsub95.dat" RECFM=F LRECL=400;

/*--- create output data sets from character format DX files ---*/
/*- create securities output data sets using DATASOURCE -------*/
/*- statements -*/
proc datasource filetype=crspdcs ascii

infile=( dxci dxc )
interval=day
outcont=dxccont
outkey=dxckey
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outall=dxcall
out=dxc
outevent=dxcevent
outselect=off;

range from '15aug95'd to '28aug95'd ;
where cusip in ('12709510','35614220');

run;

title1 'Date Range 15aug95-28aug95 ';

title3 'DX Security File Outputs';
title4 'OUTKEY= Data Set';
proc print data=dxckey;
run;

title4 'OUTCONT= Data Set';
proc print data=dxccont;
run;

title4 "Listing of OUT= Data Set for cusip in ('12709510','35614220')";
proc print data=dxc;
run;

title4 "Listing of OUTEVENT= Data Set for cusip in ('12709510','35614220')";
proc print data=dxcevent;
run;

Output 13.9.1 Listing of the OUTBY= Data Set with OUTSELECT=OFF

Date Range 15aug95-28aug95

DX Security File Outputs
OUTKEY= Data Set

Obs CUSIP PERMNO COMPNO ISSUNO HEXCD HSICCD BYSELECT ST_DATE END_DATE

1 68391610 10000 7952 9787 3 3990 0 07JAN1986 11JUN1987

2 12709510 10010 7967 9809 3 3840 1 17JAN1986 28AUG1995

3 49307510 10020 7972 9824 3 6710 0 27JAN1986 30APR1993

4 00338690 10030 22160 0 1 3310 0 02JUL1962 26DEC1968

5 41741F20 10040 7988 9846 3 6210 0 07FEB1986 15JUN1989

6 00074210 10050 13 11 3 3448 0 29DEC1972 16JUN1978

7 35614220 10060 8007 9876 3 1040 1 24FEB1986 29DEC1995

Obs NTIME NOBS NINRANGE NSERIES NSELECT

1 521 0 0 35 7

2 3511 2431 10 35 7

3 2651 0 0 35 7

4 2370 0 0 35 7

5 1225 0 0 35 7

6 1996 0 0 35 7

7 3596 2492 10 35 7



Example 13.9: CRSP Daily NYSE/AMEX Combined Stocks F 777

Output 13.9.2 Listing of the OUTCONT= Data Set

Date Range 15aug95-28aug95

DX Security File Outputs
OUTCONT= Data Set

Obs NAME KEPT SELECTED TYPE LENGTH VARNUM LABEL FORMAT FORMATL FORMATD

1 BIDLO 1 1 1 6 8 Bid or Low 0 0

2 ASKHI 1 1 1 6 9 Ask or High 0 0

3 PRC 1 1 1 6 10 Closing Price of Bid/Ask
average

0 0

4 VOL 1 1 1 6 11 Share Volume 0 0

5 RET 1 1 1 6 12 Holding Period Return 0 0

6 SXRET 1 1 1 6 13 Standard Deviation Excess
Return

0 0

7 BXRET 1 1 1 6 14 Beta Excess Return 0 0

8 NCUSIP 0 0 2 8 . Name CUSIP 0 0

9 TICKER 0 0 2 5 . Exchange Ticker Symbol 0 0

10 COMNAM 0 0 2 32 . Company Name 0 0

11 SHRCLS 0 0 2 1 . Share Class 0 0

12 SHRCD 0 0 1 6 . Share Code 0 0

13 EXCHCD 0 0 1 6 . Exchange Code 0 0

14 SICCD 0 0 1 6 . Standard Industrial
Classification Code

0 0

15 DISTCD 0 0 1 6 . Distribution Code 0 0

16 DIVAMT 0 0 1 6 . Dividend Cash Amount 0 0

17 FACPR 0 0 1 6 . Factor to adjust price 0 0

18 FACSHR 0 0 1 6 . Factor to adjust shares
outstanding

0 0

19 DCLRDT 0 0 1 6 . Declaration date DATE 7 0

20 RCRDDT 0 0 1 6 . Record date DATE 7 0

21 PAYDT 0 0 1 6 . Payment date DATE 7 0

22 SHROUT 0 0 1 6 . Number of shares outstanding 0 0

23 SHRFLG 0 0 1 6 . Share flag 0 0

24 DLSTCD 0 0 1 6 . Delisting code 0 0

25 NWPERM 0 0 1 6 . New CRSP permanent number 0 0

26 NEXTDT 0 0 1 6 . Date of next available
information

DATE 7 0

27 DLBID 0 0 1 6 . Delisting bid 0 0

28 DLASK 0 0 1 6 . Delisting ask 0 0

29 DLPRC 0 0 1 6 . Delisting price 0 0

30 DLVOL 0 0 1 6 . Delisting volume 0 0

31 DLRET 0 0 1 6 . Delisting return 0 0

32 TRTSCD 0 0 1 6 . Traits code 0 0

33 NMSIND 0 0 1 6 . National Market System
Indicator

0 0

34 MMCNT 0 0 1 6 . Market maker count 0 0

35 NSDINX 0 0 1 6 . NASD index 0 0
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Output 13.9.3 Listing of the OUT= Data Set with OUTSELECT=OFF for CUSIPs 12709510 and 35614220

Date Range 15aug95-28aug95

DX Security File Outputs
Listing of OUT= Data Set for cusip in ('12709510','35614220')

Obs CUSIP PERMNO COMPNO ISSUNO HEXCD HSICCD DATE BIDLO ASKHI

1 12709510 10010 7967 9809 3 3840 15AUG1995 7.500 7.8750

2 12709510 10010 7967 9809 3 3840 16AUG1995 7.500 7.8750

3 12709510 10010 7967 9809 3 3840 17AUG1995 7.500 7.8750

4 12709510 10010 7967 9809 3 3840 18AUG1995 7.375 7.5000

5 12709510 10010 7967 9809 3 3840 21AUG1995 7.375 7.3750

6 12709510 10010 7967 9809 3 3840 22AUG1995 7.250 7.3750

7 12709510 10010 7967 9809 3 3840 23AUG1995 7.250 7.3750

8 12709510 10010 7967 9809 3 3840 24AUG1995 7.125 7.5000

9 12709510 10010 7967 9809 3 3840 25AUG1995 6.875 7.3750

10 12709510 10010 7967 9809 3 3840 28AUG1995 7.000 7.1250

11 35614220 10060 8007 9876 3 1040 15AUG1995 12.375 12.6875

12 35614220 10060 8007 9876 3 1040 16AUG1995 12.125 12.3750

13 35614220 10060 8007 9876 3 1040 17AUG1995 12.250 12.3125

14 35614220 10060 8007 9876 3 1040 18AUG1995 12.250 12.6250

15 35614220 10060 8007 9876 3 1040 21AUG1995 12.375 12.6250

16 35614220 10060 8007 9876 3 1040 22AUG1995 12.250 12.3750

17 35614220 10060 8007 9876 3 1040 23AUG1995 12.125 12.2500

18 35614220 10060 8007 9876 3 1040 24AUG1995 12.125 12.3750

19 35614220 10060 8007 9876 3 1040 25AUG1995 12.000 12.2500

20 35614220 10060 8007 9876 3 1040 28AUG1995 12.000 12.0625

Obs PRC VOL RET SXRET BXRET

1 7.5625 29200 -0.008197 . .

2 7.5000 22365 -0.008264 . .

3 7.5000 33416 0.000000 . .

4 7.3750 16666 -0.016667 . .

5 7.3750 9382 0.000000 . .

6 7.2500 33674 -0.016949 . .

7 7.3125 22371 0.008621 . .

8 7.1250 38621 -0.025641 . .

9 7.0000 29713 -0.017544 . .

10 7.0000 38798 0.000000 . .

11 12.3750 39136 0.000000 . .

12 12.2031 45916 -0.013889 . .

13 12.2500 43644 0.003841 . .

14 12.3750 11027 0.010204 . .

15 12.3750 7378 0.000000 . .

16 12.2500 99655 -0.010101 . .

17 12.1250 95148 -0.010204 . .

18 12.3750 185572 0.020619 . .

19 12.0000 9575 -0.030303 . .

20 12.0625 12854 0.005208 . .
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Output 13.9.4 Listing of the OUTEVENT= Data Set in Range 15aug95–28aug95

Date Range 15aug95-28aug95

DX Security File Outputs
Listing of OUTEVENT= Data Set for cusip in ('12709510','35614220')

Obs CUSIP PERMNO COMPNO ISSUNO HEXCD HSICCD EVENT DATE NCUSIP TICKER COMNAM SHRCLS

1 12709510 10010 7967 9809 3 3840 DELIST 28AUG1995

2 12709510 10010 7967 9809 3 3840 NASDIN 24AUG1995

Obs SHRCD EXCHCD SICCD DISTCD DIVAMT FACPR FACSHR DCLRDT RCRDDT PAYDT SHROUT SHRFLG

1 . . . . . . . . . . . .

2 . . . . . . . . . . . .

Obs DLSTCD NWPERM NEXTDT DLBID DLASK DLPRC DLVOL DLRET TRTSCD NMSIND MMCNT NSDINX

1 203 23588 . . . 0 . 0.037500 . . . .

2 . . . . . . . . 1 2 17 2

Note in Output 13.9.4 that there were no events in range for cusip 35614220. For more information about
CRSPAccess Data access, see Chapter 47, “The SASECRSP Interface Engine.”
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Overview: ENTROPY Procedure
The ENTROPY procedure implements a parametric method of linear estimation based on generalized
maximum entropy. The ENTROPY procedure is suitable when there are outliers in the data and robustness
is required, when the model is ill-posed or under-determined for the observed data, or for regressions that
involve small data sets.

The main features of the ENTROPY procedure are as follows:

� estimation of simultaneous systems of linear regression models

� estimation of Markov models

� estimation of seemingly unrelated regression (SUR) models

� estimation of unordered multinomial discrete choice models

� solution of pure inverse problems

� allowance of bounds and restrictions on parameters

� performance of tests on parameters

� allowance of data and moment constrained generalized cross entropy

It is often the case that the statistical/economic model of interest is ill-posed or under-determined for the
observed data. For the general linear model, this can imply that high degrees of collinearity exist among
explanatory variables or that there are more parameters to estimate than observations available to estimate
them. These conditions lead to high variances or non-estimability for traditional generalized least squares
(GLS) estimates.

Under these situations it might be in the researcher’s or practitioner’s best interest to consider a nontraditional
technique for model fitting. The principle of maximum entropy is the foundation for an estimation methodol-
ogy that is characterized by its robustness to ill-conditioned designs and its ability to fit over-parameterized
models. For a discussion of Shannon’s maximum entropy measure and the related Kullback-Leibler informa-
tion, see Mittelhammer, Judge, and Miller (2000) and Golan, Judge, and Miller (1996).

Generalized maximum entropy (GME) is a means of selecting among probability distributions to choose the
distribution that maximizes uncertainty or uniformity remaining in the distribution, subject to information
already known about the distribution. Information takes the form of data or moment constraints in the
estimation procedure. PROC ENTROPY creates a GME distribution for each parameter in the linear model,
based upon support points supplied by the user. The mean of each distribution is used as the estimate of the
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parameter. Estimates tend to be biased, as they are a type of shrinkage estimate, but typically portray smaller
variances than ordinary least squares (OLS) counterparts, making them more desirable from a mean squared
error viewpoint (see Figure 14.1).

Figure 14.1 Distribution of Maximum Entropy Estimates versus OLS

Maximum entropy techniques are most widely used in the econometric and time series fields. Some important
uses of maximum entropy include the following:

� size distribution of firms

� stationary Markov process

� social accounting matrix (SAM)

� consumer brand preference

� exchange rate regimes

� wage-dependent firm relocation

� oil market dynamics
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Getting Started: ENTROPY Procedure
This section introduces the ENTROPY procedure and shows how to use PROC ENTROPY for several kinds
of statistical analyses.

Simple Regression Analysis
The ENTROPY procedure is similar in syntax to the other regression procedures in SAS. To demonstrate the
similarity, suppose the endogenous/dependent variable is y, and x1 and x2 are two exogenous/independent
variables of interest. To estimate the parameters in this single equation model using PROC ENTROPY, use
the following SAS statements:

proc entropy;
model y = x1 x2;

run;

Test Scores Data Set

Consider the following test score data compiled by Coleman et al. (1966):

title "Test Scores Compiled by Coleman et al. (1966)";
data coleman;

input test_score 6.2 teach_sal 6.2 prcnt_prof 8.2
socio_stat 9.2 teach_score 8.2 mom_ed 7.2;

label test_score="Average sixth grade test scores in observed district";
label teach_sal="Average teacher salaries per student (1000s of dollars)";
label prcnt_prof="Percent of students' fathers with professional employment";
label socio_stat="Composite measure of socio-economic status in the district";
label teach_score="Average verbal score for teachers";
label mom_ed="Average level of education (years) of the students' mothers";

datalines;
37.01 3.83 28.87 7.20 26.60 6.19

... more lines ...

This data set contains outliers, and the condition number of the matrix of regressors, X, is large, which
indicates collinearity among the regressors. Since the maximum entropy estimates are both robust with
respect to the outliers and also less sensitive to a high condition number of the X matrix, maximum entropy
estimation is a good choice for this problem.

To fit a simple linear model to these data by using PROC ENTROPY, use the following statements:

proc entropy data=coleman;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;
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This requests the estimation of a linear model for TEST_SCORE with the following form:

test_score D intercept C a � teach_sal C b � prcnt_prof C c � socio_stat

Cd � teach_score C e �mom_ed C �I

This estimation produces the “Model Summary” table in Figure 14.2, which shows the equation variables
used in the estimation.

Figure 14.2 Model Summary Table

Test Scores Compiled by Coleman et al. (1966)

The ENTROPY Procedure

Variables(Supports(Weights)) teach_sal prcnt_prof socio_stat teach_score mom_ed Intercept

Equations(Supports(Weights)) test_score

Since support points and prior weights are not specified in this example, they are not shown in the “Model
Summary” table. The next four pieces of information displayed in Figure 14.3 are the “Data Set Options,”
the “Minimization Summary,” the “Final Information Measures,” and the “Observations Processed.”

Figure 14.3 Estimation Summary Tables

Test Scores Compiled by Coleman et al. (1966)

The ENTROPY Procedure
GME Estimation Summary

Data Set Options

DATA= WORK.COLEMAN

Minimization Summary

Parameters Estimated 6

Covariance Estimator GME

Entropy Type Shannon

Entropy Form Dual

Numerical Optimizer Quasi Newton

Final Information Measures

Objective Function Value 9.553699

Signal Entropy 9.569484

Noise Entropy -0.01578

Normed Entropy (Signal) 0.990976

Normed Entropy (Noise) 0.999786

Parameter Information Index 0.009024

Error Information Index 0.000214

Observations
Processed

Read 20

Used 20
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The item labeled “Objective Function Value” is the value of the entropy estimation criterion for this estimation
problem. This measure is analogous to the log-likelihood value in a maximum likelihood estimation. The
“Parameter Information Index” and the “Error Information Index” are normalized entropy values that measure
the proximity of the solution to the prior or target distributions.

The next table displayed is the ANOVA table, shown in Figure 14.4. This is in the same form as the ANOVA
table for the MODEL procedure, since this is also a multivariate procedure.

Figure 14.4 Summary of Residual Errors

GME Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square Adj RSq

test_score 6 14 175.8 8.7881 2.9645 0.7266 0.6290

The last table displayed is the “Parameter Estimates” table, shown in Figure 14.5. The difference between
this parameter estimates table and the parameter estimates table produced by other regression procedures is
that the standard error and the probabilities are labeled as approximate.

Figure 14.5 Parameter Estimates

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

teach_sal 0.287979 0.00551 52.26 <.0001

prcnt_prof 0.02266 0.00323 7.01 <.0001

socio_stat 0.199777 0.0308 6.48 <.0001

teach_score 0.497137 0.0180 27.61 <.0001

mom_ed 1.644472 0.0921 17.85 <.0001

Intercept 10.5021 0.3958 26.53 <.0001

The parameter estimates produced by the REG procedure for this same model are shown in Figure 14.6. Note
that the parameters and standard errors from PROC REG are much different than estimates produced by
PROC ENTROPY.

proc reg data=coleman plots=residualchart(unpack);
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;
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Figure 14.6 REG Procedure Parameter Estimates

Test Scores Compiled by Coleman et al. (1966)

The REG Procedure
Model: MODEL1

Dependent Variable: test_score

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 19.94857 13.62755 1.46 0.1653

teach_sal 1 -1.79333 1.23340 -1.45 0.1680

prcnt_prof 1 0.04360 0.05326 0.82 0.4267

socio_stat 1 0.55576 0.09296 5.98 <.0001

teach_score 1 1.11017 0.43377 2.56 0.0227

mom_ed 1 -1.81092 2.02739 -0.89 0.3868

This data set contains two outliers, observations 3 and 18. These can be seen in a plot of the residuals shown
in Figure 14.7: the studentized residuals of observations 3 and 18 are outside Œ�1:771; 1:771�, the 90%
confidence interval for a Student’s t distribution with 13 degrees of freedom.

Figure 14.7 PROC REG Residuals with Outliers
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The presence of outliers suggests that a robust estimator such as M-estimator in the ROBUSTREG procedure
should be used. The following statements use the ROBUSTREG procedure to estimate the model:

proc robustreg data=coleman;
model test_score = teach_sal prcnt_prof

socio_stat teach_score mom_ed;
run;

The results of the estimation are shown in Figure 14.8.

Figure 14.8 M-Estimation Results

Test Scores Compiled by Coleman et al. (1966)

The ROBUSTREG Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 29.3416 6.0381 17.5072 41.1761 23.61 <.0001

teach_sal 1 -1.6329 0.5465 -2.7040 -0.5618 8.93 0.0028

prcnt_prof 1 0.0823 0.0236 0.0361 0.1286 12.17 0.0005

socio_stat 1 0.6653 0.0412 0.5846 0.7461 260.95 <.0001

teach_score 1 1.1744 0.1922 0.7977 1.5510 37.34 <.0001

mom_ed 1 -3.9706 0.8983 -5.7312 -2.2100 19.54 <.0001

Scale 1 0.6966

Note that TEACH_SAL(VAR1) and MOM_ED(VAR5) change greatly when the robust estimation is used.
Unfortunately, these two coefficients are negative, which implies that the test scores increase with decreasing
teacher salaries and decreasing levels of the mother’s education. Since ROBUSTREG is robust to outliers,
they are not causing the counterintuitive parameter estimates.

The condition number of the regressor matrix X also plays a important role in parameter estimation. The
condition number of the matrix can be obtained by specifying the COLLIN option in the PROC ENTROPY
statement.

proc entropy data=coleman collin;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;

The output produced by the COLLIN option is shown in Figure 14.9.
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Figure 14.9 Collinearity Diagnostics

Test Scores Compiled by Coleman et al. (1966)

The ENTROPY Procedure

Collinearity Diagnostics

Proportion of Variation

Number Eigenvalue
Condition

Number teach_sal prcnt_prof socio_stat teach_score mom_ed Intercept

1 4.978128 1.0000 0.0007 0.0012 0.0026 0.0001 0.0001 0.0000

2 0.937758 2.3040 0.0006 0.0028 0.2131 0.0001 0.0000 0.0001

3 0.066023 8.6833 0.0202 0.3529 0.6159 0.0011 0.0000 0.0003

4 0.016036 17.6191 0.7961 0.0317 0.0534 0.0059 0.0083 0.0099

5 0.001364 60.4112 0.1619 0.3242 0.0053 0.7987 0.3309 0.0282

6 0.000691 84.8501 0.0205 0.2874 0.1096 0.1942 0.6607 0.9614

The condition number of the X matrix is reported to be 84.85. This means that the condition number of X0X
is 84:852 D 7199:5, which is very large.

Ridge regression can be used to offset some of the problems associated with ill-conditioned X matrices.
Using the formula for the ridge value as

�R D
kS2

Ǒ0 Ǒ
� 0:9

where Ǒ and S2 are the least squares estimators of ˇ and �2 and k D 6. A ridge regression of the test score
model was performed by using the data set with the outliers removed. The following PROC REG code
performs the ridge regression:

data coleman;
set coleman;
if _n_ = 3 or _n_ = 18 then delete;

run;

proc reg data=coleman ridge=0.9 outest=t noprint;
model test_score = teach_sal prcnt_prof socio_stat teach_score mom_ed;

run;

proc print data=t;
run;

The results of the estimation are shown in Figure 14.10.
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Figure 14.10 Ridge Regression Estimates

Test Scores Compiled by Coleman et al. (1966)

Obs _MODEL_ _TYPE_ _DEPVAR_ _RIDGE_ _PCOMIT_ _RMSE_ Intercept teach_sal

1 MODEL1 PARMS test_score . . 0.78236 29.7577 -1.69854

2 MODEL1 RIDGE test_score 0.9 . 3.19679 9.6698 -0.08892

Obs prcnt_prof socio_stat teach_score mom_ed test_score

1 0.085118 0.66617 1.18400 -4.06675 -1

2 0.041889 0.23223 0.60041 1.32168 -1

Note that the ridge regression estimates are much closer to the estimates produced by the ENTROPY
procedure that uses the original data set. Ridge regressions are not robust to outliers as maximum entropy
estimates are. This might explain why the estimates still differ for TEACH_SAL.

Using Prior Information
You can use prior information about the parameters or the residuals to improve the efficiency of the estimates.
Some authors prefer the term pre-sample or pre-data over the term prior when used with maximum entropy
to avoid confusion with Bayesian methods. The maximum entropy method described here does not use
Bayes’ rule when including prior information in the estimation.

To perform regression, the ENTROPY procedure uses a generalization of maximum entropy called generalized
maximum entropy. In maximum entropy estimation, the unknowns are probabilities. Generalized maximum
entropy expands the set of problems that can be solved by introducing the concept of support points.
Generalized maximum entropy still estimates probabilities, but these are the probabilities of a support point.
Support points are used to map the .0; 1/ domain of the maximum entropy to any finite range of values.

Prior information, such as expected ranges for the parameters or the residuals, is added by specifying support
points for the parameters or the residuals. Support points are points in one dimension that specify the expected
domain of the parameter or the residual. The wider the domain specified, the less efficient your parameter
estimates are (the more variance they have). Specifying more support points in the same width interval also
improves the efficiency of the parameter estimates at the cost of more computation. Golan, Judge, and Miller
(1996) show that the gains in efficiency fall off for adding more than five support points. You can specify
between 2 and 256 support points in the ENTROPY procedure.

If you have only a small amount of data, the estimates are very sensitive to your selection of support points
and weights. For larger data sets, incorrect priors are discounted if they are not supported by the data.

Consider the data set generated by the following SAS statements:

title "Prior Distribution of Parameter T";

data prior;
do by = 1 to 100;

do t = 1 to 10;
y = 2*t + 5 * rannor(4);
output;

end;
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end;
run;

The PRIOR data set contains 100 samples of 10 observations each from the population

y D 2 � t C �

� � N.0; 5/

You can estimate these samples using PROC ENTROPY as follows:

proc entropy data=prior outest=parm1 noprint;
model y = t ;
by by;

run;

The 100 estimates are summarized by using the following SAS statements:

proc univariate data=parm1;
var t;

run;

The summary statistics from PROC UNIVARIATE are shown in Output 14.11. The true value of the
coefficient T is 2.0, demonstrating that maximum entropy estimates tend to be biased.

Figure 14.11 No Prior Information Monte Carlo Summary

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable: t

Basic Statistical Measures

Location Variability

Mean 1.693608 Std Deviation 0.30199

Median 1.707653 Variance 0.09120

Mode . Range 1.46194

Interquartile Range 0.32329

Now assume that you have prior information about the slope and the intercept for this model. You are
reasonably confident that the slope is 2 and you are less confident that intercept is zero. To specify prior
information about the parameters, use the PRIORS statement.

There are two parts to the prior information specified in the PRIORS statement. The first part is the support
points for a parameter. The support points specify the domain of the parameter. For example, the following
statement sets the support points –1000 and 1000 for the parameter associated with variable T:

priors t -1000 1000;

This means that the coefficient lies in the interval Œ�1000; 1000�. If the estimated value of the coefficient
is actually outside of this interval, the estimation will not converge. In the previous PRIORS statement,
no weights were specified for the support points, so uniform weights are assumed. This implies that the
coefficient has a uniform probability of being in the interval Œ�1000; 1000�.
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The second part of the prior information is the weights on the support points. For example, the following
statements sets the support points 10, 15, 20, and 25 with weights 1, 5, 5, and 1, respectively, for the
coefficient of T:

priors t 10(1) 15(5) 20(5) 25(1);

This creates the prior distribution on the coefficient shown in Figure 14.12. The weights are automatically
normalized so that they sum to one.

Figure 14.12 Prior Distribution of Parameter T

For the PRIOR data set created previously, the expected value of the coefficient of T is 2. The following SAS
statements reestimate the parameters with a prior weight specified for each one:

proc entropy data=prior outest=parm2 noprint;
priors t 0(1) 2(3) 4(1)

intercept -100(.5) -10(1.5) 0(2) 10(1.5) 100(0.5);
model y = t;
by by;

run;

The priors on the coefficient of T express a confident view of the value of the coefficient. The priors on
INTERCEPT express a more diffuse view on the value of the intercept. The following PROC UNIVARIATE
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statement computes summary statistics from the estimations:

proc univariate data=parm2;
var t;

run;

The summary statistics for the distribution of the estimates of T are shown in Figure 14.13.

Figure 14.13 Prior Information Monte Carlo Summary

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable: t

Basic Statistical Measures

Location Variability

Mean 1.999953 Std Deviation 0.01436

Median 2.001423 Variance 0.0002061

Mode . Range 0.08525

Interquartile Range 0.01855

The prior information improves the estimation of the coefficient of T dramatically. The downside of specifying
priors comes when they are incorrect. For example, say the priors for this model were specified as

priors t -2(1) 0(3) 2(1);

to indicate a prior centered on zero instead of two.

The resulting summary statistics shown in Figure 14.14 indicate how the estimation is biased away from the
solution.

Figure 14.14 Incorrect Prior Information Monte Carlo Summary

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable: t

Basic Statistical Measures

Location Variability

Mean 0.062550 Std Deviation 0.00920

Median 0.062527 Variance 0.0000847

Mode . Range 0.05442

Interquartile Range 0.01112

The more data available for estimation, the less sensitive the parameters are to the priors. If the number
of observations in each sample is 50 instead of 10, then the summary statistics shown in Figure 14.15 are
produced. The prior information is not supported by the data, so it is discounted.
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Figure 14.15 Incorrect Prior Information with More Data

Prior Distribution of Parameter T

The UNIVARIATE Procedure
Variable: t

Basic Statistical Measures

Location Variability

Mean 0.652921 Std Deviation 0.00933

Median 0.653486 Variance 0.0000870

Mode . Range 0.04351

Interquartile Range 0.01498

Pure Inverse Problems
A special case of systems of equations estimation is the pure inverse problem. A pure problem is one that
contains an exact relationship between the dependent variable and the independent variables and does not
have an error component. A pure inverse problem can be written as

y D Xˇ

where y is a n-dimensional vector of observations, X is a n� k matrix of regressors, and ˇ is a k-dimensional
vector of unknowns. Notice that there is no error term.

A classic example is a dice problem (Jaynes 1963). Given a six-sided die that can take on the values x D
1; 2; 3; 4; 5; 6 and the average outcome of the die y D A, compute the probabilities ˇ D .p1; p2; : : : ; p6/0 of
rolling each number. This infers six values from two pieces of information. The data points are the expected
value of y, and the sum of the probabilities is one. Given E.y/ D 4:0, this problem is solved by using the
following SAS code:

title "Pure Inverse Problems";

data one;
array x[6] ( 1 2 3 4 5 6 );
y=4.0;

run;

proc entropy data=one pure;
priors x1 0 1 x2 0 1 x3 0 1 x4 0 1 x5 0 1 x6 0 1;
model y = x1-x6/ noint;
restrict x1 + x2 +x3 +x4 + x5 + x6 =1;

run;

The probabilities are given in Figure 14.16.
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Figure 14.16 Jaynes’ Dice Pure Inverse Problem

Pure Inverse Problems

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Information

Index Label

x1 0.101763 0.5254

x2 0.122658 0.4630

x3 0.147141 0.3974

x4 0.175533 0.3298

x5 0.208066 0.2622

x6 0.244839 0.1970

Restrict943 2.388082 . x1 + x2 + x3 + x4 + x5 + x6  =  1

Note how the probabilities are skewed to the higher values because of the high average roll provided in the
input data.

First-Order Markov Process Estimation

A more useful inverse problem is the first-order markov process. Companies have a share of the marketplace
where they do business. Generally, customers for a specific market space can move from company to company.
The movement of customers can be visualized graphically as a flow diagram, as in Figure 14.17. The arrows
represent movements of customers from one company to another.
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Figure 14.17 Markov Transition Diagram

You can model the probability that a customer moves from one company to another using a first-order Markov
model. Mathematically the model is

yt D Pyt�1

where yt is a vector of k market shares at time t and P is a k � k matrix of unknown transition probabilities.
The value pij represents the probability that a customer who is currently using company j at time t � 1 moves
to company i at time t. The diagonal elements then represent the probability that a customer stays with the
current company. The columns in P sum to one.

Given market share information over time, you can estimate the transition probabilities P. In order to estimate
P using traditional methods, you need at least k observations. If you have fewer than k transitions, you can
use the ENTROPY procedure to estimate the probabilities.

Suppose you are studying the market share for four companies. If you want to estimate the transition
probabilities for these four companies, you need a time series with four observations of the shares. Assume
the current transition probability matrix is as follows:2664

0:7 0:4 0:0 0:1

0:1 0:5 0:4 0:0

0:0 0:1 0:6 0:0

0:2 0:0 0:0 0:9

3775
The following SAS DATA step statements generate a series of market shares from this probability matrix. A
transition is represented as the current period shares, y, and the previous period shares, x.
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data m;
/* Known Transition matrix */

array p[4,4] (0.7 .4 .0 .1
0.1 .5 .4 .0
0.0 .1 .6 .0
0.2 .0 .0 .9 ) ;

/* Initial Market shares */
array y[4] y1-y4 ( .4 .3 .2 .1 );
array x[4] x1-x4;
drop p1-p16 i;
do i = 1 to 3;

x[1] = y[1]; x[2] = y[2];
x[3] = y[3]; x[4] = y[4];
y[1] = p[1,1] * x1 + p[1,2] * x2 + p[1,3] * x3 + p[1,4] * x4;
y[2] = p[2,1] * x1 + p[2,2] * x2 + p[2,3] * x3 + p[2,4] * x4;
y[3] = p[3,1] * x1 + p[3,2] * x2 + p[3,3] * x3 + p[3,4] * x4;
y[4] = p[4,1] * x1 + p[4,2] * x2 + p[4,3] * x3 + p[4,4] * x4;
output;

end;
run;

The following SAS statements estimate the transition matrix by using only the first transition:

proc entropy markov pure data=m(obs=1);
model y1-y4 = x1-x4;

run;

The MARKOV option implies NOINT for each model, that the sum of the parameters in each column is one,
and chooses support points of 0 and 1. This model can be expressed equivalently as follows:

proc entropy pure data=m(obs=1) ;
priors y1.x1 0 1 y1.x2 0 1 y1.x3 0 1 y1.x4 0 1;
priors y2.x1 0 1 y2.x2 0 1 y2.x3 0 1 y2.x4 0 1;
priors y3.x1 0 1 y3.x2 0 1 y3.x3 0 1 y3.x4 0 1;
priors y4.x1 0 1 y4.x2 0 1 y4.x3 0 1 y4.x4 0 1;

model y1 = x1-x4 / noint;
model y2 = x1-x4 / noint;
model y3 = x1-x4 / noint;
model y4 = x1-x4 / noint;

restrict y1.x1 + y2.x1 + y3.x1 + y4.x1 = 1;
restrict y1.x2 + y2.x2 + y3.x2 + y4.x2 = 1;
restrict y1.x3 + y2.x3 + y3.x3 + y4.x3 = 1;
restrict y1.x4 + y2.x4 + y3.x4 + y4.x4 = 1;

run;

The transition matrix is given in Figure 14.18.
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Figure 14.18 Estimate of P by Using One Transition

Pure Inverse Problems

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Information

Index

y1.x1 0.463407 0.0039

y1.x2 0.41055 0.0232

y1.x3 0.356272 0.0605

y1.x4 0.302163 0.1161

y2.x1 0.272755 0.1546

y2.x2 0.271459 0.1564

y2.x3 0.267252 0.1625

y2.x4 0.260084 0.1731

y3.x1 0.119926 0.4709

y3.x2 0.148481 0.3940

y3.x3 0.180224 0.3194

y3.x4 0.214394 0.2502

y4.x1 0.143903 0.4056

y4.x2 0.169504 0.3434

y4.x3 0.196252 0.2856

y4.x4 0.223364 0.2337

Note that P varies greatly from the true solution.

If two transitions are used instead (OBS=2), the resulting transition matrix is shown in Figure 14.19.

proc entropy markov pure data=m(obs=2);
model y1-y4 = x1-x4;

run;
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Figure 14.19 Estimate of P by Using Two Transitions

Pure Inverse Problems

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Information

Index

y1.x1 0.721012 0.1459

y1.x2 0.355703 0.0609

y1.x3 0.026095 0.8256

y1.x4 0.096654 0.5417

y2.x1 0.083987 0.5839

y2.x2 0.53886 0.0044

y2.x3 0.373668 0.0466

y2.x4 0.000133 0.9981

y3.x1 0.000062 0.9990

y3.x2 0.099848 0.5315

y3.x3 0.600104 0.0291

y3.x4 7.871E-8 1.0000

y4.x1 0.194938 0.2883

y4.x2 0.00559 0.9501

y4.x3 0.000133 0.9981

y4.x4 0.903214 0.5413

This transition matrix is much closer to the actual transition matrix.

If, in addition to the transitions, you had other information about the transition matrix, such as your own
company’s transition values, that information can be added as restrictions to the parameter estimates. For
noisy data, the PURE option should be dropped. Note that this example has six zero probabilities in the
transition matrix; the accurate estimation of transition matrices with fewer zero probabilities generally
requires more transition observations.

Analyzing Multinomial Response Data
Multinomial discrete choice models suffer the same problems with collinearity of the regressors and small
sample sizes as linear models. Unordered multinomial discrete choice models can be estimated using a
variant of GME for discrete models called GME-D.

Consider the model shown in Golan, Judge, and Perloff (1996). In this model, there are five occupational
categories, and the categories are considered a function of four individual characteristics. The sample contains
337 individuals.

title "Analyzing Multinomial Response Data";

data kpdata;
input job x1 x2 x3 x4;

datalines;
0 1 3 11 1
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... more lines ...

The dependent variable in these data, job, takes on values 0 through 4. Support points are used only for the
error terms; so error supports are specified in the MODEL statement.

proc entropy data=kpdata gmed tech=nra;
model job = x1 x2 x3 x4 / noint

esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 );
run;

Figure 14.20 Estimate of Jobs Model by Using GME-D

Analyzing Multinomial Response Data

The ENTROPY Procedure

GME-D Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1_1 1.802572 1.3610 1.32 0.1863

x2_1 -0.00251 0.0154 -0.16 0.8705

x3_1 -0.17282 0.0885 -1.95 0.0517

x4_1 1.054659 0.6986 1.51 0.1321

x1_2 0.089156 1.2764 0.07 0.9444

x2_2 0.019947 0.0146 1.37 0.1718

x3_2 0.010716 0.0830 0.13 0.8974

x4_2 0.288629 0.5775 0.50 0.6176

x1_3 -4.62047 1.6476 -2.80 0.0053

x2_3 0.026175 0.0166 1.58 0.1157

x3_3 0.245198 0.0986 2.49 0.0134

x4_3 1.285466 0.8367 1.54 0.1254

x1_4 -9.72734 1.5813 -6.15 <.0001

x2_4 0.027382 0.0156 1.75 0.0805

x3_4 0.660836 0.0947 6.98 <.0001

x4_4 1.47479 0.6970 2.12 0.0351

Note there are five estimates of the parameters produced for each regressor, one for each choice. The first
choice is restricted to zero for normalization purposes. PROC ENTROPY drops the zeroed regressors. PROC
ENTROPY also generates tables of marginal effects for each regressor. The following statements generate
the marginal effects table for the previous analysis at the means of the variables:

proc entropy data=kpdata gmed tech=nra;
model job = x1 x2 x3 x4 / noint

esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 )
marginals;

run;
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Figure 14.21 Estimate of Jobs Model by Using GME-D (Marginals)

Analyzing Multinomial Response Data

The ENTROPY Procedure

GME-D Variable Marginal
Effects  Table

Variable
Marginal

Effect Mean

x1_0 0.338758 1

x2_0 -0.0019 20.50148

x3_0 -0.02129 13.09496

x4_0 -0.09917 0.916914

x1_1 0.859883 1

x2_1 -0.00345 20.50148

x3_1 -0.0648 13.09496

x4_1 0.034396 0.916914

x1_2 0.86101 1

x2_2 0.000963 20.50148

x3_2 -0.04948 13.09496

x4_2 -0.16297 0.916914

x1_3 -0.25969 1

x2_3 0.0015 20.50148

x3_3 0.009289 13.09496

x4_3 0.065569 0.916914

x1_4 -1.79996 1

x2_4 0.00288 20.50148

x3_4 0.126283 13.09496

x4_4 0.162172 0.916914

The marginals are derivatives of the probabilities with respect to each variable and so summarize how a small
change in each variable affects the overall probability.

PROC ENTROPY also enables the user to specify where the derivative is evaluated, as follows:

proc entropy data=kpdata gmed tech=nra;
model job = x1 x2 x3 x4 / noint

esupports=( -.1 -0.0666 -0.0333 0 0.0333 0.0666 .1 )
marginals=( x2=.4 x3=10 x4=0);

run;
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Figure 14.22 Estimate of Jobs Model by Using GME-D (Marginals)

Analyzing Multinomial Response Data

The ENTROPY Procedure

GME-D Variable Marginal Effects  Table

Variable
Marginal

Effect Mean

Marginal
Effect at

User
Supplied

Values

User
Supplied

Values

x1_0 0.338758 1 -0.0901 1

x2_0 -0.0019 20.50148 -0.00217 0.4

x3_0 -0.02129 13.09496 0.009586 10

x4_0 -0.09917 0.916914 -0.14204 0

x1_1 0.859883 1 0.463181 1

x2_1 -0.00345 20.50148 -0.00311 0.4

x3_1 -0.0648 13.09496 -0.04339 10

x4_1 0.034396 0.916914 0.174876 0

x1_2 0.86101 1 -0.07894 1

x2_2 0.000963 20.50148 0.004405 0.4

x3_2 -0.04948 13.09496 0.015555 10

x4_2 -0.16297 0.916914 -0.072 0

x1_3 -0.25969 1 -0.16459 1

x2_3 0.0015 20.50148 0.000623 0.4

x3_3 0.009289 13.09496 0.00929 10

x4_3 0.065569 0.916914 0.02648 0

x1_4 -1.79996 1 -0.12955 1

x2_4 0.00288 20.50148 0.000256 0.4

x3_4 0.126283 13.09496 0.008956 10

x4_4 0.162172 0.916914 0.012684 0

In this example, you evaluate the derivative when x1=1, x2=0.4, x3=10, and x4=0. If the user neglects a
variable, PROC ENTROPY uses its mean value.
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Syntax: ENTROPY Procedure
The following statements are available in the ENTROPY procedure:

PROC ENTROPY options ;
BOUNDS bound1 < , bound2, . . . > ;
BY variable < variable . . . > ;
ID variable < variable . . . > ;
MODEL variable = variable < variable > . . . < / options > ;
PRIORS variable < support points > variable < value > . . . ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST < “name” > test1 < , test2 . . . > < / options > ;
WEIGHT variable ;

Functional Summary
The statements and options in the ENTROPY procedure are summarized in Table 14.1.

Table 14.1 Functional Summary

Description Statement Option

Data Set Options
Specify the input data set for the variables ENTROPY DATA=
Specify the input data set for support points and priors ENTROPY PDATA=
Specify the output data set for residual, predicted, and
actual values

ENTROPY OUT=

Specify the output data set for the support points and
priors

ENTROPY OUTP=

Write the covariance matrix of the estimates to
OUTEST= data set

ENTROPY OUTCOV

Write the parameter estimates to a data set ENTROPY OUTEST=
Write the Lagrange multiplier estimates to a data set ENTROPY OUTL=
Write the covariance matrix of the equation errors to a
data set

ENTROPY OUTS=

Write the S matrix used in the objective function
definition to a data set

ENTROPY OUTSUSED=

Read the covariance matrix of the equation errors ENTROPY SDATA=

Printing Options
Request that the procedure produce graphics via the
Output Delivery System

ENTROPY PLOTS=

Print collinearity diagnostics ENTROPY COLLIN
Suppress the normal printed output ENTROPY NOPRINT

Options to Control Iteration Output
Print a summary iteration listing ENTROPY ITPRINT
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Table 14.1 continued

Description Statement Option

Options to Control the Minimization Process
Specify the convergence criteria ENTROPY CONVERGE=
Specify the maximum number of iterations allowed ENTROPY MAXITER=
Specify the maximum number of subiterations allowed ENTROPY MAXSUBITER=
Select the iterative minimization method to use ENTROPY METHOD=

Statements That Declare Variables
Specify BY-group processing BY
Specify a weight variable WEIGHT
Specify identifying variables ID

General PROC ENTROPY Statement Options
Specify seemingly unrelated regression ENTROPY SUR
Specify iterated seemingly unrelated regression ENTROPY ITSUR
Specify data-constrained generalized maximum entropy ENTROPY GME
Specify moment generalized maximum entropy ENTROPY GMEM
Specify the denominator for computing variances and
covariances

ENTROPY VARDEF=

General TEST Statement Options
Specify that a Wald test be computed TEST WALD
Specify that a Lagrange multiplier test be computed TEST LM
Specify that a likelihood ratio test be computed TEST LR
Request all three types of tests TEST ALL

The following sections describe the PROC ENTROPY statement and then describe the other statements in
alphabetical order.

PROC ENTROPY Statement
PROC ENTROPY options ;

The following options can be specified in the PROC ENTROPY statement.

General Options

COLLIN
requests that the collinearity diagnostics of the X 0X matrix be printed.
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COVBEST=CROSS | GME | GMEM
specifies the method for producing the covariance matrix of parameters for output and for standard
error calculations. GMEM and GME are aliases and are the default.

GME | GCE
requests generalized maximum entropy or generalized cross entropy. This is the default estimation
method.

GMEM | GCEM
requests moment maximum entropy or the moment cross entropy.

GMED
requests a variant of GME suitable for multinomial discrete choice models.

MARKOV
specifies that the model is a first-order Markov model.

PURE
specifies a regression without an error term.

SUR | ITSUR
specifies seemingly unrelated regression or iterated seemingly unrelated regression.

VARDEF=N | WGT | DF | WDF
specifies the denominator to be used in computing variances and covariances. You can specify the
following values:

N uses the number of nonmissing observations.

WGT uses the sum of the weights.

DF uses the number of nonmissing observations minus the model degrees of freedom
(number of parameters).

WDF uses the sum of the weights minus the model degrees of freedom.

By default, VARDEF=DF.

Data Set Options

DATA=SAS-data-set
specifies the input data set. Values for the variables in the model are read from this data set.

PDATA=SAS-data-set
names the SAS data set that contains the data about priors and supports.

OUT=SAS-data-set
names the SAS data set to contain the residuals from each estimation.
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OUTCOV

COVOUT
writes the covariance matrix of the estimates to the OUTEST= data set in addition to the parameter
estimates. The OUTCOV option is applicable only if the OUTEST= option is also specified.

OUTEST=SAS-data-set
names the SAS data set to contain the parameter estimates and optionally the covariance of the
estimates.

OUTL=SAS-data-set
names the SAS data set to contain the estimated Lagrange multipliers for the models.

OUTP=SAS-data-set
names the SAS data set to contain the support points and estimated probabilities.

OUTS=SAS-data-set
names the SAS data set to contain the estimated covariance matrix of the equation errors. This is the
covariance of the residuals computed from the parameter estimates.

OUTSUSED=SAS-data-set
names the SAS data set to contain the S matrix used in the objective function definition. The
OUTSUSED= data set is the same as the OUTS= data set for the methods that iterate the S matrix.

SDATA=SAS-data-set
specifies a data set that provides the covariance matrix of the equation errors. The matrix read from
the SDATA= data set is used for the equation error covariance matrix (S matrix) in the estimation.
The SDATA= matrix is used to provide only the initial estimate of S for the methods that iterate the S
matrix.

Printing Options

ITPRINT
prints the parameter estimates, objective function value, and convergence criteria at each iteration.

NOPRINT
suppresses the normal printed output but does not suppress error listings. Using any other print option
turns the NOPRINT option off.

PLOTS=global-plot-options | plot-request
controls the plots that the ENTROPY procedure produces. (For general information about ODS
Graphics, see Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).) The global-
plot-options apply to all relevant plots generated by the ENTROPY procedure.

The global-plot-options supported by the ENTROPY procedure are as follows:

ONLY suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL displays each graph separately. (By default, some graphs can appear together
in a single panel.)

The specific plot-request values supported by the ENTROPY procedure are as follows:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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ALL requests that all plots appropriate for the particular analysis be produced.
ALL is equivalent to specifying FITPLOT, COOKSD, QQ, RESIDUAL-
HISTOGRAM, and STUDENTRESIDUAL.

FITPLOT plots the predicted and actual values.

COOKSD produces the Cook’s D plot.

QQ produces a Q-Q plot of residuals.

RESIDUALHISTOGRAM plots the histogram of residuals.

STUDENTRESIDUAL plots the studentized residuals.

NONE suppresses all plots.

The default behavior is to plot all plots appropriate for the particular analysis (ALL) in a panel.

Options to Control the Minimization Process

The following options can be helpful if a convergence problem occurs for a given model and set of data. The
ENTROPY procedure uses the nonlinear optimization subsystem (NLO) to perform the model optimizations.
In addition to the options listed below, all options supported in the NLO subsystem can be specified on the
ENTROPY procedure statement. For more information, see Chapter 7, “Nonlinear Optimization Methods.”

CONVERGE=value

GCONV=value
specifies the convergence criteria for S-iterated methods. The convergence measure computed dur-
ing model estimation must be less than value before convergence is assumed. By default, CON-
VERGE=0.001.

DUAL | PRIMAL
specifies whether the optimization problem is solved using the dual or primal form. The dual form is
the default.

MAXITER=n
specifies the maximum number of iterations allowed. By default, MAXITER=100.

MAXSUBITER=n
specifies the maximum number of subiterations allowed for an iteration. The MAXSUBITER= option
limits the number of step halvings. By default, MAXSUBITER=30.

METHOD=CONGR | DBLDOG | LEVMAR | NEWRAP | NRR | NSIMP | QN | TR

TECHNIQUE=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR

TECH=TR | NEWRAP | NRR | QN | CONGR | NSIMP | DBLDOG | LEVMAR
specifies the iterative minimization method to use. You can specify the following values:

CONGR specifies the conjugate-gradient optimization method.

DBLDOG specifies the double-dogleg optimization method.

LEVMAR specifies the Levenberg-Marquardt method.

NEWRAP specifies the Newton-Raphson method.

NRR specifies the Newton-Raphson ridge method.
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NSIMP specifies the Nelder-Mead simplex optimization method.

QN specifies the quasi-Newton method.

TR specifies the trust region method.

For more information about optimization methods, see Chapter 7, “Nonlinear Optimization Methods.”
By default, METHOD=QN for the dual form and METHOD=NEWRAP for the primal form.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters estimated by the ENTROPY procedure. You can specify any
number of BOUNDS statements.

Each boundary constraint is composed of variables, constants, and inequality operators in the following
form:

item operator item <,operator item <,operator item ...> >

Each item is a constant, the name of a regressor variable, or a list of regressor names. Each operator is <, >,
<=, or >=.

You can use either the BOUNDS statement or the RESTRICT statement to impose boundary constraints; the
BOUNDS statement provides a simpler syntax for specifying inequality constraints. For more information
about the computational details of estimation with inequality restrictions, see the section “RESTRICT
Statement” on page 812.

Lagrange multipliers are reported for all the active boundary constraints. In the printed output and in the
OUTEST= data set, the Lagrange multiplier estimates are identified with the names BOUND1, BOUND2,
and so forth. The probability of the Lagrange multipliers are computed using a beta distribution (LaMotte
1994). Nonactive or nonbinding bounds have no effect on the estimation results and are not noted in the
output. To give the constraints more descriptive names, use the RESTRICT statement instead of the BOUNDS
statement.

The following BOUNDS statement constrains the estimates of the coefficients of WAGE and TARGET
and the 10 coefficients of x1 through x10 to be between zero and one. This example illustrates the use of
parameter lists to specify boundary constraints.

bounds 0 < wage target x1-x10 < 1;

The following is an example of the use of the BOUNDS statement to impose boundary constraints on the
variables X1, X2, and X3:

title "BOUNDS Statement";

proc entropy data=zero;
bounds .1 <= x1 <= 100,

0 <= x2 <= 25.6,
0 <= x3 <= 5;
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model y = x1 x2 x3;
run;

The parameter estimates from this run are shown in Figure 14.23.

Figure 14.23 Output from Bounded Estimation

BOUNDS Statement

The ENTROPY Procedure

Variables(Supports(Weights)) x1 x2 x3 Intercept

Equations(Supports(Weights)) y

BOUNDS Statement

The ENTROPY Procedure
GME Estimation Summary

Data Set Options

DATA= WORK.ZERO

Minimization Summary

Parameters Estimated 4

Covariance Estimator GME

Entropy Type Shannon

Entropy Form Dual

Numerical Optimizer Newton-Raphson

Final Information Measures

Objective Function Value 6.292861

Signal Entropy 6.375715

Noise Entropy -0.08285

Normed Entropy (Signal) 0.990364

Normed Entropy (Noise) 1.004172

Parameter Information Index 0.009636

Error Information Index -0.00417

Observations
Processed

Read 20

Used 20

NOTE: At GME Iteration 20 convergence criteria met.

GME Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square Adj RSq

y 4 16 1665620 83281.0 288.6 -0.0013 -0.1891
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Figure 14.23 continued

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 0.1 0.000055 1826.06 <.0001

x2 0 0.4226 0.00 1.0000

x3 1.11E-16 0.000067 0.00 1.0000

Intercept -0.00432 0.0107 -0.41 0.6898

BY Statement
BY variables ;

A BY statement is used to obtain separate estimates for observations in groups defined by the BY variables.
To save parameter estimates for each BY group, use the OUTEST= option.

ID Statement
ID variables ;

The ID statement specifies variables to identify observations in error messages or other listings and in the
OUT= data set. The ID variables are normally SAS date or datetime variables. If more than one ID variable
is used, the first variable is used to identify the observations and the remaining variables are added to the
OUT= data set.

MODEL Statement
MODEL dependent = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. If no independent variables are specified in the MODEL statement, only the mean (intercept) is
estimated. To model a system of equations, specify more than one MODEL statement.

The following options can be used in the MODEL statement after a slash (/):

ESUPPORTS=( support (prior) . . . )
specifies the support points and prior weights on the residuals for the specified equation. The default is
the following five support values:

�10 � value;�value; 0; value; 10 � value

where value is computed as

value D .max.y/ � Ny/ �multiplier

for GME, where y is the dependent variable, and

value D .max.y/ � Ny/ �multiplier � nobs �max.X/ � 0:1
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for generalized maximum entropy—moments (GME-M), where X is the information matrix, and
nobs is the number of observations. The multiplier depends on the MULTIPLIER= option. The
MULTIPLIER= option defaults to 2 for unrestricted models and to 4 for restricted models. The prior
probabilities default to the following:

0:0005; 0:333; 0:333; 0:333; 0:0005

The support points and prior weights are selected so that hypothesis tests can be performed without
adding significant bias to the estimation. These prior probability values are ad hoc.

NOINT
suppresses the intercept parameter.

MARGINALS = ( variable = value, . . . , variable = value)
requests that the marginal effects of each variable be calculated for GME-D. Specifying the
MARGINALS option with an optional list of values calculates the marginals at that vector of values.
For example, if x1–x4 are explanatory variables, then including

MARGINALS = ( x1 = 2, x2 = 4, x3 = –1, x4 = 5)

calculates the marginal effects at that vector. A skipped variable implies that its mean value is to be
used.

CENSORED ( ( UB | LB) = (variable | value ), ESUPPORTS =( support (prior) . . . ) )
specifies that the dependent variable be observed with censoring and specifies the censoring thresholds
and the supports of the censored observations.

CATEGORY= variable
specifies the variable that keeps track of the categories the dependent variable is in when there is range
censoring. When the actual value is observed, this variable should be set to MISSING.

RANGE ( ID = (QS | INT) L = ( number ) R = ( number ) , ESUPPORTS=( support < (prior) > . . . ) )
specifies that the dependent variable be range bound. The RANGE option defines the range and the
key ( RANGE ) that is used to identify the observation as being range bound. The RANGE = value
should be some value in the CATEGORY= variable. The L and R define, respectively, the left endpoint
of the range and the right endpoint of the range. ESUPPORTS sets the error supports on the variable.

PRIORS Statement
PRIORS variable < support points < (priors) > > variable < support points < (priors) > > . . . ;

The PRIORS statement specifies the support points and prior weights for the coefficients on the variables.

Support points for coefficients default to five points, determined as follows:

�2 � value;�value; 0; value; 2 � value

where value is computed as

value D .kmeank C 3 � stderr/ �multiplier



812 F Chapter 14: The ENTROPY Procedure (Experimental)

where the mean and the stderr are obtained from OLS and the multiplier depends on the MULTIPLIER=
option. The MULTIPLIER= option defaults to 2 for unrestricted models and to 4 for restricted models. The
prior probabilities for each support point default to the uniform distribution.

The number of support points must be at least two. If priors are specified, they must be positive and there
must be the same number of priors as there are support points. Priors and support points can also be specified
through the PDATA= data set.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. You can specify
any number of RESTRICT statements.

Each restriction is written as an optional name, followed by an expression, followed by an equality operator
(=) or an inequality operator (<, >, <=, >=), followed by a second expression:

<“name” > expression operator expression

The optional “name” is a string used to identify the restriction in the printed output and in the OUTEST=
data set. The operator can be =, <, >, <= , or >=. The operator and second expression are optional, as in the
TEST statement, where they default to = 0.

Restriction expressions can be composed of variable names, multiplication (�), and addition (C) operators,
and constants. Variable names in restriction expressions must be among the variables whose coefficients are
estimated by the model. The restriction expressions must be a linear function of the variables.

The following is an example of the use of the RESTRICT statement:

proc entropy data=one;
restrict y1.x1*2 <= x2 + y2.x1;
model y1 = x1 x2;
model y2 = x1 x3;

run;

This example illustrates the use of compound names, y1.x1, to specify coefficients of specific equations.

TEST Statement
TEST < “name” > test1 < , test2 . . . > < ,/ options > ;

The TEST statement performs tests of linear hypotheses on the model parameters.

The TEST statement applies only to parameters estimated in the model. You can specify any number of
TEST statements.

Each test is written as an expression optionally followed by an equal sign (=) and a second expression:

expression <= expression>

Test expressions can be composed of variable names, multiplication (�), addition (C), and subtraction (�)
operators, and constants. Variables named in test expressions must be among the variables estimated by the
model.
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If you specify only one expression in a TEST statement, that expression is tested against zero. For example,
the following two TEST statements are equivalent:

test a + b;

test a + b = 0;

When you specify multiple tests in the same TEST statement, a joint test is performed. For example, the
following TEST statement tests the joint hypothesis that both of the coefficients on a and b are equal to zero:

test a, b;

To perform separate tests rather than a joint test, use separate TEST statements. For example, the following
TEST statements test the two separate hypotheses that a is equal to zero and that b is equal to zero:

test a;
test b;

You can use the following options in the TEST statement:

WALD
specifies that a Wald test be computed. WALD is the default.

LM

RAO

LAGRANGE
specifies that a Lagrange multiplier test be computed.

LR

LIKE
specifies that a pseudo-likelihood ratio test be computed.

ALL
requests all three types of tests.

OUT=
specifies the name of an output SAS data set that contains the test results. The format of the OUT=
data set produced by the TEST statement is similar to that of the OUTEST= data set.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters.

If the weight of an observation is nonpositive, that observation is not used for the estimation. Variable must
be a numeric variable in the input data set. The regressors and the dependent variables are multiplied by the
square root of the weight variable to form the weighted X matrix and the weighted dependent variable. The
same weight is used for all MODEL statements.
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Details: ENTROPY Procedure
Shannon’s measure of entropy for a distribution is given by

maximize �

nX
iD1

pi ln.pi /

subject to
nX
iD1

pi D 1

where pi is the probability associated with the ith support point. Properties that characterize the entropy
measure are set forth by Kapur and Kesavan (1992).

The objective is to maximize the entropy of the distribution with respect to the probabilities pi and subject to
constraints that reflect any other known information about the distribution (Jaynes 1957). This measure, in
the absence of additional information, reaches a maximum when the probabilities are uniform. A distribution
other than the uniform distribution arises from information already known.

Generalized Maximum Entropy
Reparameterization of the errors in a regression equation is the process of specifying a support for the errors,
observation by observation. If a two-point support is used, the error for the tth observation is reparameterized
by setting et D wt1 vt1 C wt2 vt2, where vt1 and vt2 are the upper and lower bounds for the tth error et ,
and wt1 and wt2 represent the weight associated with the point vt1 and vt2. The error distribution is usually
chosen to be symmetric, centered around zero, and the same across observations so that vt1 D �vt2 D R,
where R is the support value chosen for the problem (Golan, Judge, and Miller 1996).

The generalized maximum entropy (GME) formulation was proposed for the ill-posed or underdetermined
case where there is insufficient data to estimate the model with traditional methods. ˇ is reparameterized by
defining a support for ˇ (and a set of weights in the cross entropy case), which defines a prior distribution for
ˇ.

In the simplest case, each ˇk is reparameterized as ˇk D pk1 zk1 C pk2 zk2, where pk1 and pk2 represent
the probabilities ranging from [0,1] for each ˇ, and zk1 and zk2 represent the lower and upper bounds placed
on ˇk . The support points, zk1 and zk2, are usually distributed symmetrically around the most likely value
for ˇk based on some prior knowledge.

With these reparameterizations, the GME estimation problem is

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to y D X Z p C V w

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

where y denotes the column vector of length T of the dependent variable; X denotes the .T � K / matrix
of observations of the independent variables; p denotes the LK column vector of weights associated with
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the points in Z; w denotes the LT column vector of weights associated with the points in V; 1K , 1L, and
1T are K-, L-, and T-dimensional column vectors, respectively, of ones; and IK and IT are .K �K/- and
.T � T /-dimensional identity matrices.

These equations can be rewritten using set notation as follows:

maximize H.p;w/ D �

LX
lD1

KX
kD1

pkl ln.pkl/ �
LX
lD1

TX
tD1

wtl ln.wtl/

subject to yt D

LX
lD1

"
KX
kD1

.Xkt Zkl pkl/ C Vtl wtl

#
LX
lD1

pkl D 1 and
LX
lD1

wtl D 1

The subscript l denotes the support point (l=1, 2, . . . , L), k denotes the parameter (k=1, 2, . . . , K), and t
denotes the observation (t=1, 2, . . . , T).

The GME objective is strictly concave; therefore, a unique solution exists. The optimal estimated probabilities,
p and w, and the prior supports, Z and V, can be used to form the point estimates of the unknown parameters,
ˇ, and the unknown errors, e.

Generalized Cross Entropy
Kullback and Leibler (1951) cross entropy measures the “discrepancy” between one distribution and another.
Cross entropy is called a measure of discrepancy rather than distance because it does not satisfy some of
the properties one would expect of a distance measure. (For a discussion of cross entropy as a measure of
discrepancy, see Kapur and Kesavan (1992).) Mathematically, cross entropy is written as

minimize
nX
iD1

pi ln. pi = qi /

subject to
nX
iD1

pi D 1

where qi is the probability associated with the ith point in the distribution from which the discrepancy is
measured. The qi (in conjunction with the support) are often referred to as the prior distribution. The measure
is nonnegative and is equal to zero when pi equals qi . The properties of the cross entropy measure are
examined by Kapur and Kesavan (1992).

The principle of minimum cross entropy (Kullback 1959; Good 1963) states that one should choose prob-
abilities that are as close as possible to the prior probabilities. That is, out of all probability distributions
that satisfy a given set of constraints which reflect known information about the distribution, choose the
distribution that is closest (as measured by p.ln.p/ � ln.q//) to the prior distribution. When the prior
distribution is uniform, maximum entropy and minimum cross entropy produce the same results (Kapur
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and Kesavan 1992), where the higher values for entropy correspond exactly with the lower values for cross
entropy.

If the prior distributions are nonuniform, the problem can be stated as a generalized cross entropy (GCE)
formulation. The cross entropy terminology specifies weights, qi and ui , for the points Z and V, respectively.
Given informative prior distributions on Z and V, the GCE problem is

minimize I.p; q; w; u/ D p0 ln.p=q/C w0 ln.w=u/
subject to y D X Z p C V w

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

where y denotes the T column vector of observations of the dependent variables; X denotes the .T � K /
matrix of observations of the independent variables; q and p denote LK column vectors of prior and posterior
weights, respectively, associated with the points in Z; u and w denote the LT column vectors of prior and
posterior weights, respectively, associated with the points in V; 1K , 1L, and 1T are K-, L-, and T-dimensional
column vectors, respectively, of ones; and IK and IT are (K �K)- and (T �T )-dimensional identity matrices.

The optimization problem can be rewritten using set notation as follows:

minimize I.p; q; w; u/ D

LX
lD1

KX
kD1

pkl ln.pkl=qkl/ C
LX
lD1

TX
tD1

wtl ln.wtl=utl/

subject to yt D

LX
lD1

"
KX
kD1

.Xkt Zkl pkl/ C Vtl wtl

#
LX
lD1

pkl D 1 and
LX
lD1

wtl D 1

The subscript l denotes the support point (l=1, 2, . . . , L), k denotes the parameter (k=1, 2, . . . , K), and t
denotes the observation (t=1, 2, . . . , T).

The objective function is strictly convex; therefore, there is a unique global minimum for the problem (Golan,
Judge, and Miller 1996). The optimal estimated weights, p and w, and the prior supports, Z and V, can be
used to form the point estimates of the unknown parameters, ˇ, and the unknown errors, e, by using

ˇ D Z p D

26664
z11 � � � zL1 0 0 0 0 0 0 0

0 0 0 z12 � � � zL2 0 0 0 0

0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 z1K � � � zLK

37775

26666666666666666664

p11
:::

pL1
p12
:::

pL2
:::

p1K
:::

pLK

37777777777777777775
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e D V w D

26664
v11 � � � vL1 0 0 0 0 0 0 0

0 0 0 v12 � � � vL2 0 0 0 0

0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 v1T � � � vLT

37775

26666666666666666664

w11
:::

wL1
w12
:::

wL2
:::

w1T
:::

wLT

37777777777777777775
Computational Details

This constrained estimation problem can be solved either directly (primal) or by using the dual form. Either
way, it is prudent to factor out one probability for each parameter and each observation as the sum of the other
probabilities. This factoring reduces the computational complexity significantly. If the primal formalization
is used and two support points are used for the parameters and the errors, the resulting GME problem
is O..nparms C nobs/3/. For the dual form, the problem is O..nobs/3/. Therefore for large data sets,
GME-M should be used instead of GME.

Moment Generalized Maximum Entropy
The default estimation technique is moment generalized maximum entropy (GME-M). This is simply GME
with the data constraints modified by multiplying both sides by X 0. GME-M then becomes

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to X 0y D X 0X Z p C X 0V w

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

There is also the cross entropy version of GME-M, which has the same form as GCE but with the moment
constraints.

GME versus GME-M

GME-M is more computationally attractive than GME for large data sets because the computational com-
plexity of the estimation problem depends primarily on the number of parameters and not on the number of
observations. GME-M is based on the first moment of the data, whereas GME is based on the data itself. If
the distribution of the residuals is well defined by its first moment, then GME-M is a good choice. So if the
residuals are normally distributed or exponentially distributed, then GME-M should be used. On the other
hand if the distribution is Cauchy, lognormal, or some other distribution where the first moment does not
describe the distribution, then use GME. For an illustration of this point, see Example 14.1.
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Maximum Entropy-Based Seemingly Unrelated Regression
In a multivariate regression model, the errors in different equations might be correlated. In this case,
the efficiency of the estimation can be improved by taking these cross-equation correlations into account.
Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation,
is a generalization of OLS for multi-equation systems.

Like SUR in the least squares setting, the generalized maximum entropy SUR (GME-SUR) method assumes
that all the regressors are independent variables and uses the correlations among the errors in different
equations to improve the regression estimates. The GME-SUR method requires an initial entropy regression
to compute residuals. The entropy residuals are used to estimate the cross-equation covariance matrix.

In the iterative GME-SUR (ITGME-SUR) case, the preceding process is repeated by using the residuals
from the GME-SUR estimation to estimate a new cross-equation covariance matrix. ITGME-SUR method
alternates between estimating the system coefficients and estimating the cross-equation covariance matrix
until the estimated coefficients and covariance matrix converge.

The estimation problem becomes the generalized maximum entropy system adapted for multi-equations,

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to y D X Z p C V w

1KM D .IKM ˝ 10L/ p

1MT D .IMT ˝ 10L/ w

where

ˇ D Z p

Z D

2666666666664

z111 � � � z1L1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
: : : 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 zK11 � � � zKL1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
: : : 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 z11M � � � z1LM 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 zK1M � � � zKLM

3777777777775

p D
�
p111 � p1L1 � pK11 � pKL1 � p11M � p1LM � pK1M � pKLM

�0

e D V w
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V D

2666666666664

v111 � � � vL11 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
: : : 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 v11T � � � vL1T 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
: : : 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 v1M1 � � � vLM1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
: : : 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 v1MT � � � vLMT

3777777777775

w D
�
w111 � wL11 � w11T � wL1T � w1M1 � wLM1 � w1MT � wLMT

�0
y denotes the MT column vector of observations of the dependent variables; X denotes the .MT �KM/

matrix of observations for the independent variables; p denotes the LKM column vector of weights associated
with the points in Z; w denotes the LMT column vector of weights associated with the points in V; 1L, 1KM ,
and 1MT are L-, KM-, and MT-dimensional column vectors, respectively, of ones; and IKM and IMT are
.KM �KM/- and .MT �MT /-dimensional identity matrices. The subscript l denotes the support point
.l D 1; 2; : : : ; L/, k denotes the parameter .k D 1; 2; : : : ; K/, m denotes the equation .m D 1; 2; : : : ;M/,
and t denotes the observation .t D 1; 2; : : : ; T /.

Using this notation, the maximum entropy problem that is analogous to the OLS problem used as the initial
step of the traditional SUR approach is

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to .y � X Z p/ D

p
† V w

1KM D .IKM ˝ 10L/ p

1MT D .IMT ˝ 10L/ w

The results are GME-SUR estimates with independent errors, the analog of OLS. The covariance matrix O† is
computed based on the residual of the equations, Vw D e. An L0L factorization of the O† is used to compute
the square root of the matrix.

After solving this problem, these entropy-based estimates are analogous to the Aitken two-step estimator.
For iterative GME-SUR, the covariance matrix of the errors is recomputed, and a new O† is computed and
factored. As in traditional ITSUR, this process repeats until the covariance matrix and the parameter estimates
converge.

The estimation of the parameters for the normed-moment version of SUR (GME-SUR-NM) uses an identical
process. The constraints for GME-SUR-NM is defined as

X 0y D X 0.S�1˝I/X Z p C X 0.S�1˝I/V w

The estimation of the parameters for GME-SUR-NM uses an identical process as outlined previously for
GME-SUR.
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Generalized Maximum Entropy for Multinomial Discrete Choice Models
Multinomial discrete choice models take the form of an experiment that consists of n trials. On each trial,
one of k alternatives is observed. If yij is the random variable that takes on the value 1 when alternative
j is selected for the ith trial and 0 otherwise, then the probability that yij is 1, conditional on a vector of
regressors Xi and unknown parameter vector ˇj , is

Pr.yij D 1jXi ; ˇj / D G.X 0iˇj /

where G./ is a link function. For noisy data the model becomes

yij D G.X
0
iˇj /C �ij D pij C �ij

The standard maximum likelihood approach for multinomial logit is equivalent to the maximum entropy
solution for discrete choice models. The generalized maximum entropy approach avoids an assumption of
the form of the link function G./.

The generalized maximum entropy for discrete choice models (GME-D) is written in primal form as

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to .Ij ˝X

0y/ D .Ij ˝X
0/p C .Ij ˝X

0/V wPk
j pij D 1 for i D 1 toNPL
mwijm D 1 for i D 1 toN and j D 1 to k

Golan, Judge, and Miller (1996) have shown that the dual unconstrained formulation of the GME-D can
be viewed as a general class of logit models. Additionally, as the sample size increases, the solution of the
dual problem approaches the maximum likelihood solution. Because of these characteristics, only the dual
approach is available for the GME-D estimation method.

The parameters ˇj are the Lagrange multipliers of the constraints. The covariance matrix of the parameter
estimates is computed as the inverse of the Hessian of the dual form of the objective function.

Censored or Truncated Dependent Variables
In practice, you might find that variables are not always measured throughout their natural ranges. A given
variable might be recorded continuously in a range, but, outside of that range, only the endpoint is denoted.
In other words, say that the data generating process is

yi D xi ˛C �

However, you observe the following:

y?i D

8<:
ub W yi � ub

xi ˛C � W lb < yi < ub

lb W yi � lb
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The primal problem is simply a slight modification of the primal formulation for GME-GCE. You specify
different supports for the errors in the truncated or censored region, perhaps reflecting some nonsample
information. Then the data constraints are modified. The constraints that arise in the censored areas
are changed to inequality constraints (Golan, Judge, and Perloff 1997). Let the variable Xu denote the
observations of the explanatory variable where censoring occurs from the top, Xl from the bottom, and Xa in
the middle region (no censoring). Let Vu be the supports for the observations at the upper bound, Vl lower
bound, and Va in the middle.

You have24 yu � ub
ya

yl � lb

35 D
24 Xu

Xa

Xl

35ZpC

24 Vuwu

Vawa

Vlwl

35
The primal problem then becomes

maximize H.p;w/ D �p0 ln.p/ � w0 ln.w/
subject to ya D Xa Va p C Va wa

yu � XuVu p C Vu wu

yl � Xl Vl p C Vl wl

1K D .IK ˝ 10L/ p

1T D .IT ˝ 10L/ w

PROC ENTROPY requires that the number of supports be identical for all three regions.

Alternatively, you can think of cases where the dependent variable is observed continuously for most of its
range. However, the variable’s range is reported for some observations. Such data are often found in highly
disaggregated state level employment measures.

y?i D

8̂̂̂<̂
ˆ̂:

missing W l1 � y � r1
::: W

:::

missing W lk � y � rk
xi ˛C � W otherwise

Just as in the censored case, each range yields two inequality constraints for each observation in that range.
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Information Measures
PROC ENTROPY returns several measures of fit. First, the value of the objective function is returned. Next,
the signal entropy is provided followed by the noise entropy. The sum of the noise and signal entropies
should equal the value of the objective function. The next two metrics that follow are the normed entropies
of both the signal and the noise.

Normalized entropy (NE) measures the relative informational content of both the signal and noise components
through p and w, respectively (Golan, Judge, and Miller 1996). Let S denote the normalized entropy of the
signal, Xˇ, defined as

S. Qp/ D
� Qp0 ln. Qp/
�q0 ln.q/

where S. Qp/ � Œ0; 1�. In the case of GME, where uniform priors are assumed, S can be written as

S. Qp/ D
� Qp0 ln. Qp/P
i ln.Mi /

where Mi is the number of support points for parameter i. A value of 0 for S implies that there is no
uncertainty regarding the parameters; hence, it is a degenerate situation. However, a value of 1 implies that
the posterior distributions equal the priors, which indicates total uncertainty if the priors are uniform.

Because NE is relative, it can be used for comparing various situations. Consider adding a data point to
the model. If STC1 D ST , then there is no additional information contained within that data constraint.
However, if STC1 < ST , then the data point gives a more informed set of parameter estimates.

NE can be used for determining the importance of particular variables with regard to the reduction of the
uncertainty they bring to the model. Each of the k parameters that is estimated has an associated NE defined
as

S. Qpk/ D
� Qp0

k
ln. Qpk/

� ln.qk/

or, in the GME case,

S. Qpk/ D
� Qp0

k
ln. Qpk/

ln.M/

where Qpk is the vector of supports for parameter ˇk and M is the corresponding number of support points.
Since a value of 1 implies no relative information for that particular sample, Golan, Judge, and Miller (1996)
suggest an exclusion criteria of S. Qpk/ > 0:99 as an acceptable means of selecting noninformative variables.
For some simulation results, see Golan, Judge, and Miller (1996).

The final set of measures of fit are the parameter information index and error information index. These
measures can be best summarized as 1 – the appropriate normed entropy.
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Parameter Covariance for GCE
For the cross-entropy problem, the estimate of the asymptotic variance of the signal parameter is given by

OVar. Ǒ/ D
O�2 .
Ǒ/

O 2. Ǒ/
.X 0X/�1

where

O�2 .
Ǒ/ D

1

N

NX
iD1

2i

and i is the Lagrange multiplier associated with the ith row of the Vw constraint matrix. Also,

O 2. Ǒ/ D

264 1
N

NX
iD1

0@ JX
jD1

v2ijwij � .

JX
jD1

vijwij /
2

1A�1
375
2

Parameter Covariance for GCE-M
Golan, Judge, and Miller (1996) give the finite approximation to the asymptotic variance matrix of the
moment formulation as

OVar. Ǒ/ D †zX 0XC�1DC�1X 0X†z

where

C D X 0X†zX
0X C†v

and

D D X 0†eX

Recall that in the moment formulation, V is the support of X
0e
T

, which implies that †v is a k-dimensional
variance matrix. †z and †v are both diagonal matrices with the form

†z D

264
PL
lD1 z

2
1l
p1l � .

PL
lD1 z1lp1l/

2 0 0

0
: : : 0

0 0
PL
lD1 z

2
Kl
pKl � .

PL
lD1 zKlpKl/

2

375
and

†v D

264
PJ
jD1 v

2
1jwjl � .

PJ
jD1 v1jw1j /

2 0 0

0
: : : 0

0 0
PJ
jD1 v

2
Kl
wKl � .

PJ
jD1 vKlwKl/

2

375
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Statistical Tests
Since the GME estimates have been shown to be asymptotically normally distributed, the classical Wald,
Lagrange multiplier, and likelihood ratio statistics can be used for testing linear restrictions on the parameters.

Wald Tests

Let H0 W Lˇ D m, where L is a set of linearly independent combinations of the elements of ˇ. Then under
the null hypothesis, the Wald test statistic,

TW D .Lˇ �m/
0
�
L. OVar. Ǒ//L0

��1
.Lˇ �m/

has a central �2 limiting distribution with degrees of freedom equal to the rank of L.

Pseudo-Likelihood Ratio Tests

Using the conditionally maximized entropy function as a pseudo-likelihood, F, Mittelhammer and Cardell
(2000) state that

2 O . Ǒ/

O�2 .
Ǒ/

�
F. Ǒ/ � F. Q̌/

�

has the limiting distribution of the Wald statistic when testing the same hypothesis. Note that F. Ǒ/ and
F. Q̌/ are the maximum values of the entropy objective function over the full and restricted parameter spaces,
respectively.

Lagrange Multiplier Tests

Again using the GME function as a pseudo-likelihood, Mittelhammer and Cardell (2000) define the Lagrange
multiplier statistic as

1

O�2 .
Q̌/
G. Q̌/0.X 0X/�1G. Q̌/

where G is the gradient of F, which is being evaluated at the optimum point for the restricted parameters.
This test statistic shares the same limiting distribution as the Wald and pseudo-likelihood ratio tests.
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Missing Values
If an observation in the input data set contains a missing value for any of the regressors or dependent values,
that observation is dropped from the analysis.

Input Data Sets

DATA= Data Set

The DATA= data set specified in the PROC ENTROPY statement is the data set that contains the data to be
analyzed.

PDATA= Data Set

The PDATA= data set specified in the PROC ENTROPY statement specifies the support points and prior
probabilities to be used in the estimation. The PDATA= can be used in lieu of a PRIORS statement, but
is intended for use in conjunction with the OUTP= option. Once priors are entered through a PRIORS
statement, they can be reused in subsequent estimations by specifying the PDATA= option.

The variables in the data set are as follows:

� BY variables (if any)

� _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMEM. This
is an optional column.

� variable, a character variable of length 32 that indicates the name of the regressor. The regressor name
and the equation name identify a unique coefficient. This is required.

� _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the
observation number when the probabilities are for the residual terms. The _OBS_ and the equation
name identify which residual the probability is associated with. This an optional column.

� equation, a character variable of length 32 indicating the name of the dependent variable. This is a
required column.

� NSupport, a numeric variable that indicates the number of support points for each basis. This variable
is required.

� support, a numeric variable that is the support value the probability is associated with. This is a
required column.

� prior, a numeric variable that is the prior probability associated with the probability. This is a required
column.

� Prb, a numeric variable that is the estimated probability. This is optional.



826 F Chapter 14: The ENTROPY Procedure (Experimental)

SDATA= Data Set

The SDATA= data set specifies a data set that provides the covariance matrix of the equation errors. The
matrix read from the SDATA= data set is used for the equation covariance matrix (S matrix) in the estimation.
(The SDATA= S matrix is used to provide only the initial estimate of S for the methods that iterate the S
matrix.)

Output Data Sets

OUT= Data Set

The OUT= data set specified in the PROC ENTROPY statement contains residuals of the dependent variables
computed from the parameter estimates. The ID and BY variables are also added to this data set.

OUTEST= Data Set

The OUTEST= data set contains parameter estimates and, if requested via the COVOUT option, estimates of
the covariance of the parameter estimates.

The variables in the data set are as follows:

� BY variables

� _NAME_, a character variable of length 32, blank for observations that contain parameter estimates or
a parameter name for observations that contain covariances

� _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMEM

� the parameters estimated

If the COVOUT option is specified, an additional observation is written for each row of the estimate of the
covariance matrix of parameter estimates, with the _NAME_ values containing the parameter names for the
rows.

OUTP= Data Set

The OUTP= data set specified in the PROC ENTROPY statement contains the probabilities estimated for
each support point, as well as the support points and prior probabilities used in the estimation.

The variables in the data set are as follows:

� BY variables (if any)

� _TYPE_, a character variable of length 8 that identifies the estimation method: GME or GMEM.

� variable, a character variable of length 32 that indicates the name of the regressor. The regressor name
and the equation name identify a unique coefficient.

� _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the
observation number when the probabilities are for the residual terms. The _OBS_ and the equation
name identify which residual the probability is associated with.
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� equation, a character variable of length 32 that indicates the name of the dependent variable

� NSupport, a numeric variable that indicates the number of support points for each basis

� support, a numeric variable that is the support value the probability is associated with

� prior, a numeric variable that is the prior probability associated with the probability

� Prb, a numeric variable that is the estimated probability

OUTL= Data Set

The OUTL= data set specified in the PROC ENTROPY statement contains the Lagrange multiplier values for
the underlying maximum entropy problem.

The variables in the data set are as follows:

� BY variables

� equation, a character variable of length 32 that indicates the name of the dependent variable

� variable, a character variable of length 32 that indicates the name of the regressor. The regressor name
and the equation name identify a unique coefficient.

� _OBS_, a numeric variable that is either missing when the probabilities are for coefficients or the
observation number when the probabilities are for the residual terms. The _OBS_ and the equation
name identify which residual the Lagrange multiplier is associated with.

� LagrangeMult, a numeric variable that contains the Lagrange multipliers

ODS Table Names
PROC ENTROPY assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 14.2.

Table 14.2 ODS Tables Produced in PROC ENTROPY

ODS Table Name Description Option

ConvCrit Convergence criteria for estimation Default
ConvergenceStatus Convergence status Default
DatasetOptions Data sets used Default
MinSummary Number of parameters, estimation kind Default
ObsUsed Observations read, used, and missing Default
ParameterEstimates Parameter estimates Default
ResidSummary Summary of the SSE, MSE for the equations Default
TestResults Test statement table TEST statement
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the ENTROPY procedure.

ODS Graph Names

PROC ENTROPY assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 14.3.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 14.3 ODS Graphics Produced by PROC ENTROPY

ODS Graph Name Plot Description

DiagnosticsPanel Includes all the plots listed below
FitPlot Predicted versus actual plot
CooksD Cook’s D plot
QQPlot Q-Q plot of residuals
StudentResidualPlot Studentized residual plot
ResidualHistogram Histogram of the residuals

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Examples: ENTROPY Procedure

Example 14.1: Nonnormal Error Estimation
This example illustrates the difference between GME-M and GME. One of the basic assumptions of OLS
estimation is that the errors in the estimation are normally distributed. If this assumption is violated, the
estimated parameters are biased. For GME-M, the story is similar. If the first moment of the distribution of
the errors and a scale factor cannot be used to describe the distribution, then the parameter estimates from
GME-MN are more biased. GME is much less sensitive to the underlying distribution of the errors than
GME-M.

To illustrate this, data for the following model are simulated with three different error distributions:

y D a � x1 C b � x2 C �

For the first simulation, � is distributed normally, then a chi-squared distribution with six degrees of freedom
is assumed for the second simulation, and finally � is assumed to have a Cauchy distribution in the third
simulation.

In each of the three simulations, 100 samples of 10 observations each were simulated. The data for the model
with the Cauchy error distribution are generated using the following DATA step code:

data one;
call streaminit(156789);
do by = 1 to 100;

do x2 = 1 to 10;
x1 = 10 * ranuni( 512);
y = x1 + 2*x2 + rand('cauchy');
output;

end;
end;

run;

The statements for the other distributions are identical except for the argument to the RAND() function.

The parameters to the model were estimated by using maximum entropy with the following programming
statements:

title "Nonnormal Error Estimation";
proc entropy data=one gme outest=parm1;

model y = x1 x2;
by by;

run;

The estimation by using moment-constrained maximum entropy was performed by changing the GME option
to GMEM. For comparison, the same model was estimated by using OLS with the following PROC REG
statements:
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proc reg data=one outest=parm3;
model y = x1 x2;
by by;

run;

The 100 estimations of the coefficient on variable x1 are then summarized for each of the three error
distributions by using PROC UNIVARIATE, as follows:

proc univariate data=parm1;
var x1;

run;

The following table summarizes the results from the estimations. The true value for the coefficient on x1 is
1.0.

Estimation
Method

Normal Chi-Squared Cauchy

Mean Std Deviation Mean Std Deviation Mean Std Deviation

GME 0.418 0.117 0.626 .330 0.818 3.36
GME-M 0.878 0.116 0.948 0.427 3.03 13.62

OLS 0.973 0.142 1.023 0.467 5.54 26.83

For normally distributed or nearly normally distributed data, moment-constrained maximum entropy is a good
choice. For distributions not well described by a normal distribution, data-constrained maximum entropy is a
good choice.

Example 14.2: Unreplicated Factorial Experiments
Factorial experiments are useful for studying the effects of various factors on a response. For the practitioner
constrained to the use of OLS regression, there must be replication to estimate all of the possible main and
interaction effects in a factorial experiment. Using OLS regression to analyze unreplicated experimental
data results in zero degrees of freedom for error in the ANOVA table, since there are as many parameters
as observations. This situation leaves the experimenter unable to compute confidence intervals or perform
hypothesis testing on the parameter estimates.

Several options are available when replication is impossible. The higher-order interactions can be assumed to
have negligible effects, and their degrees of freedom can be pooled to create the error degrees of freedom
used to perform inference on the lower-order estimates. Or, if a preliminary experiment is being run, a normal
probability plot of all effects can provide insight as to which effects are significant, and therefore focused, in
a later, more complete experiment.

The following example illustrates the probability plot methodology and the alternative by using PROC EN-
TROPY. Consider a 24 factorial model with no replication. The data are taken from Myers and Montgomery
(1995).

data rate;
do a=-1,1; do b=-1,1; do c=-1,1; do d=-1,1;

input y @@;
ab=a*b; ac=a*c; ad=a*d; bc=b*c; bd=b*d; cd=c*d;
abc=a*b*c; abd=a*b*d; acd=a*c*d; bcd=b*c*d;
abcd=a*b*c*d;
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output;
end; end; end; end;
datalines;
45 71 48 65 68 60 80 65 43 100 45 104 75 86 70 96
;

run;

Analyze the data by using PROC REG, then output the resulting estimates.

proc reg data=rate outest=regout;
model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

run;

proc transpose data=regout out=ploteff name=effect prefix=est;
var a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

run;

Now the normal scores for the estimates can be computed with the rank procedure as follows:

proc rank data=ploteff normal=blom out=qqplot;
var est1;
ranks normalq;

run;

To create the probability plot, simply plot the estimates versus their normal scores by using PROC SGPLOT
as follows:

title "Unreplicated Factorial Experiments";
proc sgplot data=qqplot;

scatter x=est1 y=normalq / markerchar=effect
markercharattrs=(size=10pt);

xaxis label="Estimate";
yaxis label="Normal Quantile";

run;
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Output 14.2.1 Normal Probability Plot of Effects

The plot shown in Output 14.2.1 displays evidence that the a, b, d, ad, and bd estimates do not fit into the
purely random normal model, which suggests that they may have some significant effect on the response
variable. To verify this, fit a reduced model that contains only these effects.

proc reg data=rate;
model y=a b d ad bd;

run;

The estimates for the reduced model are shown in Output 14.2.2.
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Output 14.2.2 Reduced Model OLS Estimates

Unreplicated Factorial Experiments

The REG Procedure
Model: MODEL1

Dependent Variable: y

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 70.06250 1.10432 63.44 <.0001

a 1 7.31250 1.10432 6.62 <.0001

b 1 4.93750 1.10432 4.47 0.0012

d 1 10.81250 1.10432 9.79 <.0001

ad 1 8.31250 1.10432 7.53 <.0001

bd 1 -9.06250 1.10432 -8.21 <.0001

These results support the probability plot methodology.

PROC ENTROPY can directly estimate the full model without having to rely on the probability plot for
insight into which effects can be significant. To illustrate this, PROC ENTROPY is run by using default
parameter and error supports in the following statements:

proc entropy data=rate;
model y=a b c d ab ac ad bc bd cd abc abd acd bcd abcd;

run;

The resulting GME estimates are shown in Output 14.2.3. Note that the parameter estimates associated with
the a, b, d, ad, and bd effects are all significant.
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Output 14.2.3 Full Model Entropy Results

Unreplicated Factorial Experiments

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 5.688417 0.7911 7.19 <.0001

b 2.988032 0.5464 5.47 <.0001

c 0.234331 0.1379 1.70 0.1086

d 9.627312 0.9765 9.86 <.0001

ab -0.01386 0.0270 -0.51 0.6149

ac -0.00054 0.00325 -0.16 0.8712

ad 6.833076 0.8627 7.92 <.0001

bc 0.113908 0.0941 1.21 0.2435

bd -7.68105 0.9053 -8.48 <.0001

cd 0.00002 0.000364 0.05 0.9569

abc -0.14876 0.1087 -1.37 0.1900

abd -0.0399 0.0516 -0.77 0.4509

acd 0.466936 0.1961 2.38 0.0300

bcd 0.059581 0.0654 0.91 0.3756

abcd 0.024785 0.0387 0.64 0.5312

Intercept 69.87293 1.1403 61.28 <.0001

Example 14.3: Censored Data Models in PROC ENTROPY
Data available to an analyst might sometimes be censored, where only part of the actual series is observed.
Consider the case in which only observations greater than some lower bound are recorded, as defined by the
following process:

y D max .Xˇ C �; lb/

Running ordinary least squares estimation on data generated by the preceding process is not optimal because
the estimates are likely to be biased and inefficient. One alternative to estimating models with censored data
is the tobit estimator. This model is supported in the QLIM procedure in SAS/ETS and in the LIFEREG
procedure in SAS/STAT. PROC ENTROPY provides another alternative which can make it very easy to
estimate such a model correctly.

The following DATA step generates censored data in which any negative values of the dependent variable, y,
are set to a lower bound of 0:

data cens;
do t = 1 to 100;

x1 = 5 * ranuni(456);
x2 = 10 * ranuni(456);
y = 4.5*x1 + 2*x2 + 15 * rannor(456);
if( y<0 ) then y = 0;
output;
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end;
run;

To illustrate the effect of the censored option in PROC ENTROPY, the model is initially estimated without
accounting for censoring in the following statements:

title "Censored Data Estimation";
proc entropy data = cens gme primal;

priors intercept -32 32
x1 -15 15
x2 -15 15;

model y = x1 x2 /
esupports = (-25 1 25);

run;

Output 14.3.1 GME Estimates

Censored Data Estimation

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 2.389461 0.0871 27.44 <.0001

x2 2.361062 0.0441 53.60 <.0001

intercept 5.393182 0.3262 16.53 <.0001

The previous model is reestimated by using the CENSORED option in the following statements:

proc entropy data = cens gme primal;
priors intercept -32 32

x1 -15 15
x2 -15 15;

model y = x1 x2 /
esupports = (-25 1 25)
censored(lb = 0, esupports=(-15 1 15) );

run;

Output 14.3.2 Entropy Estimates

Censored Data Estimation

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 4.433805 0.00260 1705.39 <.0001

x2 1.467409 0.00132 1115.64 <.0001

intercept 8.253583 0.00974 847.35 <.0001

The second set of entropy estimates are much closer to the true parameter estimates of 4.5 and 2. Since
another alternative available for fitting a model of censored data is a tobit model, PROC QLIM is used in the
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following statements to fit a tobit model to the data:

proc qlim data=cens;
model y = x1 x2;
endogenous y ~ censored(lb=0);

run;

Output 14.3.3 QLIM Estimates

Censored Data Estimation

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.979455 3.824252 0.78 0.4359

x1 1 4.882284 1.019913 4.79 <.0001

x2 1 1.374006 0.513000 2.68 0.0074

_Sigma 1 13.723213 1.032911 13.29 <.0001

For these data and this code, PROC ENTROPY produces estimates that are closer to the true parameter
values than those computed by PROC QLIM.

Example 14.4: Use of the PDATA= Option
It is sometimes useful to specify priors and supports by using the PDATA= option. This example illustrates
how to create a PDATA= data set which contains the priors and support points for use in a subsequent PROC
ENTROPY step. In order to have a model to estimate in PROC ENTROPY, you must first have data to
analyze. The following DATA step generates the data used in this analysis:

title "Using a PDATA= data set";
data a;

array x[4];
do t = 1 to 100;

ys = -5;
do k = 1 to 4;

x[k] = rannor( 55372 ) ;
ys = ys + x[k] * k;

end;
ys = ys + rannor( 55372 );
output;

end;
run;

Next you fit these data with some arbitrary parameter support points and priors by using the following PROC
ENTROPY statements:

proc entropy data = a gme primal;
priors x1 -10(2) 30(1)

x2 -20(3) 30(2)
x3 -15(4) 30(4)
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x4 -25(3) 30(2)
intercept -13(4) 30(2) ;

model ys = x1 x2 x3 x4 / esupports=(-25 0 25);
run;

These statements produce the output shown in Output 14.4.1.

Output 14.4.1 Output From PROC ENTROPY

Using a PDATA= data set

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 1.195688 0.1078 11.09 <.0001

x2 1.844903 0.1018 18.12 <.0001

x3 3.268396 0.1136 28.77 <.0001

x4 3.908194 0.0934 41.83 <.0001

intercept -4.94319 0.1005 -49.21 <.0001

You can estimate the same model by first creating a PDATA= data set, which includes the same information
as the PRIORS statement in the preceding PROC ENTROPY step.

A data set that defines the supports and priors for the model parameters is shown in the following statements:

data test;
length Variable $ 12 Equation $ 12;
input Variable $ Equation $ Nsupport Support Prior ;

datalines;
Intercept . 2 -13 0.66667
Intercept . 2 30 0.33333

x1 . 2 -10 0.66667
x1 . 2 30 0.33333
x2 . 2 -20 0.60000
x2 . 2 30 0.40000
x3 . 2 -15 0.50000
x3 . 2 30 0.50000
x4 . 2 -25 0.60000
x4 . 2 30 0.40000

;

The following statements reestimate the model by using these support points:

proc entropy data=a gme primal pdata=test;
model ys = x1 x2 x3 x4 / esupports=(-25 0 25);

run;

These statements produce the output shown in Output 14.4.2.
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Output 14.4.2 Output From PROC ENTROPY with PDATA= option

Using a PDATA= data set

The ENTROPY Procedure

GME Variable Estimates

Variable Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 1.195686 0.1078 11.09 <.0001

x2 1.844902 0.1018 18.12 <.0001

x3 3.268395 0.1136 28.77 <.0001

x4 3.908194 0.0934 41.83 <.0001

Intercept -4.94319 0.1005 -49.21 <.0001

These results are identical to the ones produced by the previous PROC ENTROPY step.

Example 14.5: Illustration of ODS Graphics
This example illustrates how to use ODS graphics in the ENTROPY procedure. This example is a continuation
of the example in the section “Simple Regression Analysis” on page 784. Graphical displays are requested by
specifying the ODS GRAPHICS statement. For information about the graphics available in the ENTROPY
procedure, see the section “ODS Graphics” on page 828.

The following statements show how to generate ODS graphics plots with the ENTROPY procedure. The
plots are displayed in Output 14.5.1.

proc entropy data=coleman;
model test_score = teach_sal prcnt_prof socio_stat

teach_score mom_ed;
run;
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Overview: ESM Procedure
The ESM procedure generates forecasts by using exponential smoothing models with optimized smoothing
weights for many time series or transactional data.

� For typical time series, you can use the following smoothing models:

– simple

– double

– linear

– damped trend

– seasonal

– Winters method (additive and multiplicative)

� Additionally, transformed versions of these models are provided:

– log

– square root

– logistic

– Box-Cox

Graphics are available with the ESM procedure. For more information, see the section “ODS Graphics” on
page 864.

The ESM procedure writes the time series extrapolated by the forecasts, the series summary statistics, the
forecasts and confidence limits, the parameter estimates, and the fit statistics to output data sets. The ESM
procedure optionally produces printed output for these results by using the Output Delivery System (ODS).

The ESM procedure can forecast both time series data, whose observations are equally spaced by a specific
time interval (for example, monthly, weekly), or transactional data, whose observations are not spaced with
respect to any particular time interval. Internet, inventory, sales, and similar data are typical examples of
transactional data. For transactional data, the data are accumulated based on a specified time interval to form
a time series prior to modeling and forecasting.
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Getting Started: ESM Procedure
The ESM procedure is simple to use and does not require in-depth knowledge of forecasting methods. It can
provide results in output data sets or in other output formats by using the Output Delivery System (ODS).
The following examples are more fully illustrated in “Example 15.2: Forecasting of Transactional Data” on
page 868.

Given an input data set that contains numerous time series variables recorded at a specific frequency, the
ESM procedure can forecast the series as follows:

proc esm data=<input-data-set> out=<output-data-set>;
id <time-ID-variable> interval=<frequency>;
forecast <time-series-variables>;

run;

For example, suppose that the input data set SALES contains sales data recorded monthly, the variable that
represents time is DATE, and the forecasts are to be recorded in the output data set NEXTYEAR. The ESM
procedure could be used as follows:

proc esm data=sales out=nextyear;
id date interval=month;
forecast _numeric_;

run;

The preceding statements generate forecasts for every numeric variable in the input data set SALES for the
next 12 months and store these forecasts in the output data set NEXTYEAR. Other output data sets can be
specified to store the parameter estimates, forecasts, statistics of fit, and summary data.

By default, PROC ESM generates no printed output. If you want to print the forecasts by using the Output
Delivery System (ODS), then you need to add the PRINT=FORECASTS option to the PROC ESM statement,
as shown in the following example:

proc esm data=sales out=nextyear print=forecasts;
id date interval=month;
forecast _numeric_;

run;

Other PRINT= options can be specified to print the parameter estimates, statistics of fit, and summary data.

The ESM procedure can forecast both time series data, whose observations are equally spaced by a specific
time interval (for example, monthly, weekly), or transactional data, whose observations are not spaced with
respect to any particular time interval.

Given an input data set that contains transactional variables not recorded at any specific frequency, the ESM
procedure accumulates the data to a specific time interval and forecasts the accumulated series as follows:

proc esm data=<input-data-set> out=<output-data-set>;
id <time-ID-variable> interval=<frequency>

accumulate=<accumulation>;
forecast <time-series-variables> / model=<esm>;

run;

For example, suppose that the input data set WEBSITES contains three variables (BOATS, CARS, PLANES)
that are Internet data recorded on no particular time interval, and the variable that represents time is TIME,
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which records the time of the website hit. The forecasts for the total daily values are to be recorded in the
output data set NEXTWEEK. The ESM procedure could be used as follows:

proc esm data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats cars planes;

run;

The preceding statements accumulate the data into a daily time series, generate forecasts for the BOATS,
CARS, and PLANES variables in the input data set (WEBSITES) for the next seven days, and store the fore-
casts in the output data set (NEXTWEEK). Because the MODEL= option is not specified in the FORECAST
statement, a simple exponential smoothing model is fit to each series.

Syntax: ESM Procedure
The following statements are available in the ESM procedure:

PROC ESM options ;
BY variables ;
ID variable INTERVAL= interval < options > ;
FORECAST variable-list / < options > ;

Functional Summary
The statements and options that control the ESM procedure are summarized in Table 15.1.

Table 15.1 Functional Summary

Description Statement Option

Statements
Specify data sets and options PROC ESM
Specify BY-group processing BY
Specify variables to forecast FORECAST
Specify the time ID variable ID

Data Set Options
Specify the input data set PROC ESM DATA=
Specify to output forecasts only PROC ESM NOOUTALL
Specify the output data set PROC ESM OUT=
Specify parameter output data set PROC ESM OUTEST=
Specify forecast output data set PROC ESM OUTFOR=
Specify the forecast procedure information
output data set

PROC ESM OUTPROCINFO=

Specify statistics output data set PROC ESM OUTSTAT=
Specify summary output data set PROC ESM OUTSUM=
Replace actual values held back FORECAST REPLACEBACK
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Table 15.1 continued

Description Statement Option

Replace missing values FORECAST REPLACEMISSING
Use forecast value to append FORECAST USE=

Accumulation and Seasonality Options
Specify accumulation frequency ID INTERVAL=
Specify length of seasonal cycle PROC ESM SEASONALITY=
Specify interval alignment ID ALIGN=
Specify that time ID variable values are not
sorted

ID NOTSORTED

Specify starting time ID value ID START=
Specify ending time ID value ID END=
Specify accumulation statistic ID, FORECAST ACCUMULATE=
Specify missing value interpretation ID, FORECAST SETMISSING=
Specify zero value interpretation ID, FORECAST ZEROMISS=

Forecasting Horizon, Holdback Options
Specify data to hold back PROC ESM BACK=
Specify forecast horizon or lead PROC ESM LEAD=
Specify horizon to start summation PROC ESM STARTSUM=

Forecasting Model Options
Specify confidence limit width FORECAST ALPHA=
Specify forecast model FORECAST MODEL=
Specify median forecasts FORECAST MEDIAN
Specify backcast initialization FORECAST NBACKCAST=
Specify model transformation FORECAST TRANSFORM=

Printing and Plotting Control Options
Specify time ID format ID FORMAT=
Specify graphical output PROC ESM PLOT=
Specify printed output PROC ESM PRINT=
Specify detailed printed output PROC ESM PRINTDETAILS

Miscellaneous Options
Specify that analysis variables are processed in
sorted order

PROC ESM SORTNAMES

Limit error and warning messages PROC ESM MAXERROR=

The following sections describe the PROC ESM statement and then describe the other statements in alphabet-
ical order.
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PROC ESM Statement
PROC ESM options ;

You can specify the following options:

BACK=n
specifies the number of observations before the end of the data where the multistep forecasts are to
begin. By default, BACK=0.

DATA=SAS-data-set
names the SAS data set that contains the input data for the procedure to forecast. If the DATA= option
is not specified, the most recently created SAS data set is used.

LEAD=n
specifies the number of periods ahead to forecast (forecast lead or horizon). By default, LEAD=12.

The LEAD= value is relative to the BACK= option specification and to the last observation in the input
data set or the accumulated series, and not to the last nonmissing observation of a particular series.
Thus, if a series has missing values at the end, the actual number of forecasts computed for that series
is greater than the LEAD= value.

MAXERROR=number
limits the number of warning and error messages produced during the execution of the procedure to
the specified value. This option is particularly useful in BY-group processing where it can be used to
suppress the recurring messages. By default, MAXERRORS=50.

NOOUTALL
specifies that only forecasts are written to the OUT= and OUTFOR= data sets. The NOOUTALL
option includes only the final forecast observations in the output data sets; it does not include the
one-step forecasts for the data before the forecast period.

The OUT= and OUTFOR= data set will only contain the forecast results starting at the next period
following the last observation and ending with the forecast horizon specified by the LEAD= option.

OUT=SAS-data-set
names the output data set to contain the forecasts of the variables specified in the subsequent FORE-
CAST statements. If an ID variable is specified, it is also included in the OUT= data set. The values
are accumulated based on the ACCUMULATE= option, and forecasts are appended to these values
based on the USE= option in the FORECAST statement. The OUT= data set is particularly useful
in extending the independent variables. The OUT= data set can be used as the input data set in a
subsequent PROC step to forecast a dependent series by using a regression modeling procedure. If the
OUT= option is not specified, a default output data set is created by using the DATAn convention. If
you do not want the OUT= data set created, use OUT=_NULL_.

OUTEST=SAS-data-set
names the output data set to contain the model parameter estimates and the associated test statistics
and probability values. The OUTEST= data set is useful for evaluating the significance of the model
parameters and understanding the model dynamics.
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OUTFOR=SAS-data-set
names the output data set to contain the forecast time series components (actual, predicted, lower
confidence limit, upper confidence limit, prediction error, prediction standard error). The OUTFOR=
data set is useful for displaying the forecasts in tabular or graphical form.

OUTPROCINFO=SAS-data-set
names the output data set to contain information in the SAS log, specifically the number of notes,
errors, and warnings and the number of series processed, forecasts requested, and forecasts failed.

OUTSTAT=SAS-data-set
names the output data set to contain the statistics of fit (or goodness-of-fit statistics). The OUTSTAT=
data set is useful for evaluating how well the model fits the series.

OUTSUM=SAS-data-set
names the output data set to contain the summary statistics and the forecast summation. The summary
statistics are based on the accumulated time series when the ACCUMULATE= or SETMISSING=
option is specified. The forecast summations are based on the LEAD=, STARTSUM=, and USE=
options. The OUTSUM= data set is useful when forecasting large numbers of series and a summary of
the results are needed.

PLOT=option | ( options )
specifies the graphical output desired. By default, the ESM procedure produces no graphical output.
The following plotting options are available:

ACF plots prediction error autocorrelation function graphics.

ALL is the same as specifying all of the PLOT= options.

BASIC equivalent to specifying PLOT=(CORR ERRORS MODELFORECASTS).

CORR plots the prediction error series graphics panel containing the ACF, IACF,
PACF, and white noise probability plots.

ERRORS plots prediction error time series graphics.

FORECASTS plots forecast graphics.

FORECASTSONLY plots the forecast in the forecast horizon only.

IACF plots prediction error inverse autocorrelation function graphics.

LEVELS plots smoothed level component graphics.

MODELFORECASTS plots the one-step ahead model forecast and its confidence bands in the
historical period; the forecast and its confidence bands over the forecast
horizon.

MODELS plots model graphics.

PACF plots prediction error partial autocorrelation function graphics.

PERIODOGRAM plots prediction error periodogram.

SEASONS plots smoothed seasonal component graphics.

SPECTRUM plots periodogram and smoothed periodogram of the prediction error series
in a single graph.

TRENDS plots smoothed trend (slope) component graphics.
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WN plots white noise graphics.

For example, PLOT=FORECASTS plots the forecasts for each series. The PLOT= option produces
printed output for these results by using the Output Delivery System (ODS).

PRINT=option | ( options )
specifies the printed output desired. By default, the ESM procedure produces no printed output. The
following printing options are available:

ESTIMATES prints the results of parameter estimation.

FORECASTS prints the forecasts.

PERFORMANCE prints the performance statistics for each forecast.

PERFORMANCESUMMARY prints the performance summary for each BY group.

PERFORMANCEOVERALL prints the performance summary for all of the BY groups.

STATISTICS prints the statistics of fit.

STATES prints the backcast, initial, and final states.

SUMMARY prints the summary statistics for the accumulated time series.

ALL Same as PRINT=(ESTIMATES FORECASTS STATISTICS SUMMARY).

For example, PRINT=FORECASTS prints the forecasts, PRINT=(ESTIMATES FORECASTS) prints
the parameter estimates and the forecasts, and PRINT=ALL prints all of the output.

PRINTDETAILS
specifies that output requested with the PRINT= option be printed in greater detail.

SEASONALITY=number
specifies the length of the seasonal cycle. For example, SEASONALITY=3 means that every group of
three observations forms a seasonal cycle. The SEASONALITY= option is applicable only for seasonal
forecasting models. By default, the length of the seasonal cycle is one (no seasonality) or the length
implied by the INTERVAL= option specified in the ID statement. For example, INTERVAL=MONTH
implies that the length of the seasonal cycle is 12.

SORTNAMES
specifies that the variables specified in the FORECAST statements are processed in sorted order.

STARTSUM=n
specifies the starting forecast lead (or horizon) for which to begin summation of the forecasts specified
by the LEAD= option. The STARTSUM= value must be less than the LEAD= value. By default,
STARTSUM=1; that is, the sum from the one-step ahead forecast (which is the first forecast in the
forecast horizon) to the multistep forecast specified by the LEAD= option.

The prediction standard errors of the summation of forecasts take into account the correlation between
the multistep forecasts. For more information about the STARTSUM= option, see the section “Forecast
Summation” on page 858.



BY Statement F 849

BY Statement
BY variables ;

A BY statement can be used with PROC ESM to obtain separate dummy variable definitions for groups of
observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the option NOTSORTED or DESCENDING in the BY statement for the ESM procedure. The
NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Programmers Guide: Essentials. For more information
about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FORECAST Statement
FORECAST variable-list / < options > ;

The FORECAST statement lists the numeric variables in the DATA= data set whose accumulated values
represent time series to be modeled and forecast. The options specify which forecast model is to be used.

A data set variable can be specified in only one FORECAST statement. Any number of FORECAST
statements can be used. You can specify the following options:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period for the variables listed
in the FORECAST statement. If the ACCUMULATE= option is not specified in the FORECAST
statement, accumulation is determined by the ACCUMULATE= option in the ID statement. Use the
ACCUMULATE= option with multiple FORECAST statements when you want different accumulation
specifications for different variables. For more information, see the ACCUMULATE= option in the ID
statement.

ALPHA=number
specifies the significance level to use in computing the confidence limits of the forecast. The ALPHA=
value must be between 0 and 1. By default, ALPHA=0.05, which produces 95% confidence intervals.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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MEDIAN
specifies that the median forecast values are to be estimated. Forecasts can be based on the mean or
median. By default, the mean value is provided. If no transformation is applied to the time series by
using the TRANSFORM= option, the mean and median forecast values are identical.

MODEL=model-name
specifies the forecasting model to be used to forecast the time series. You can specify the following
forecasting model-names:

NONE produces no forecast, but the time series is appended with missing values in
the OUT= data set. This option is useful when the results stored in the OUT=
data set are used in a subsequent analysis where forecasts of the independent
variables are needed to forecast the dependent variable.

SIMPLE performs simple (single) exponential smoothing.

DOUBLE performs double (Brown) exponential smoothing.

LINEAR performs linear (Holt) exponential smoothing.

DAMPTREND performs damped trend exponential smoothing.

ADDSEASONAL | SEASONAL performs additive seasonal exponential smoothing.

MULTSEASONAL performs multiplicative seasonal exponential smoothing.

WINTERS uses the Winters multiplicative method.

ADDWINTERS uses the Winters additive method.

By default, MODEL=SIMPLE.

NBACKCAST=n
specifies the number of observations used to initialize the backcast states. The default is the entire
series.

REPLACEBACK
replaces actual values that are excluded by the BACK= option with one-step-ahead forecasts in the
OUT= data set.

REPLACEMISSING
replaces embedded missing values with one-step-ahead forecasts in the OUT= data set.

SETMISSING=option | number
specifies how missing values (either input or accumulated) are assigned in the accumulated time series
for variables listed in the FORECAST statement. If the SETMISSING= option is not specified in the
FORECAST statement, missing values are set based on the SETMISSING= option of the ID statement.
For more information, see the SETMISSING= option in the ID statement.

TRANSFORM=option
specifies the time series transformation to be applied to the input or accumulated time series. The
following transformations are provided:

NONE no transformation.

LOG logarithmic transformation
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SQRT square-root transformation

LOGISTIC logistic transformation

BOXCOX(n) Box-Cox transformation with parameter number where number is between –5 and 5

By default, TRANSFORM=NONE.

When the TRANSFORM= option is specified, the time series must be strictly positive. After the
time series is transformed, the model parameters are estimated by using the transformed series. The
forecasts of the transformed series are then computed, and finally the transformed series forecasts are
inverse transformed. The inverse transform produces either mean or median forecasts depending on
whether the MEDIAN option is specified. For more information, see the sections “Transformations”
on page 856 and “Inverse Transformations” on page 857.

USE=option
specifies which forecast values are appended to the actual values in the OUT= and OUTSUM= data
sets. You can specify the following options:

PREDICT appends the predicted values to the actual values.

LOWER appends the lower confidence limit values to the actual values.

UPPER appends the upper confidence limit values to the actual values.

By default, USE=PREDICT.

Thus, the USE= option enables the OUT= and OUTSUM= data sets to be used for worst-case, best-case,
average-case, and median-case decisions.

ZEROMISS=NONE | LEFT | RIGHT | BOTH
specifies how beginning or ending zero values (either input or accumulated) are interpreted in the
accumulated time series for variables listed in the FORECAST statement. If the ZEROMISS= option
is not specified in the FORECAST statement, beginning or ending zero values are set to missing values
based on the ZEROMISS= option in the ID statement. For more information, see the ZEROMISS=
option in the ID statement.

ID Statement
ID variable INTERVAL= interval < options > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date or datetime values. In addition, the ID statement specifies
the (desired) frequency associated with the time series. The ID statement options also specify how the
observations are accumulated and how the time ID values are aligned to form the time series to be forecast.
The information specified affects all variables specified in subsequent FORECAST statements. If the ID
statement is specified, the INTERVAL= option must be specified. If an ID statement is not specified, the
observation number, with respect to the BY group, is used as the time ID. You can specify the following
options.
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ACCUMULATE=option
specifies how the data set observations are accumulated within each time period. The frequency (width
of each time interval) is specified by the INTERVAL= option. The ID variable contains the time ID
values. Each time ID variable value corresponds to a specific time period. The accumulated values
form the time series, which is used in subsequent model fitting and forecasting.

This option is particularly useful when there are gaps in the input data or when there are multiple
input observations that coincide with a particular time period (for example, transactional data). The
EXPAND procedure offers additional frequency conversions and transformations that can also be
useful in creating a time series.

The following options determine how the observations are accumulated within each time period based
on the ID variable and the frequency specified by the INTERVAL= option:

NONE No accumulation occurs; the ID variable values must be equally spaced with respect
to the frequency.

TOTAL accumulates observations based on the total sum of their values.

AVERAGE | AVG accumulates observations based on the average of their values.

MINIMUM | MIN accumulates observations based on the minimum of their values.

MEDIAN | MED accumulates observations based on the median of their values.

MAXIMUM | MAX accumulates observations based on the maximum of their values.

N accumulates observations based on the number of nonmissing observations.

NMISS accumulates observations based on the number of missing observations.

NOBS accumulates observations based on the number of observations.

FIRST accumulates observations based on the first of their values.

LAST accumulates observations based on the last of their values.

STDDEV | STD accumulates observations based on the standard deviation of their values.

CSS accumulates observations based on the corrected sum of squares of their values.

USS accumulates observations based on the uncorrected sum of squares of their values.

By default, ACCUMULATE=NONE.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying how
accumulated missing values are treated. If missing values should be interpreted as zero, then SETMISS-
ING=0 should be used. For more information about accumulation, see the section “Accumulation” on
page 855.

ALIGN=option
controls the alignment of SAS dates used to identify output observations. The ALIGN= option
accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.
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END=date | datetime
specifies a SAS date or datetime literal value that represents the end of the data. If the last time
ID variable value is less than the END= value, the series is extended with missing values. If the
last time ID variable value is greater than the END= value, the series is truncated. For example,
END=‘1jan2008’D specifies that data for time periods after the first of January 2008 not be used. The
option END=“&sysdate”D uses the automatic macro variable SYSDATE to extend or truncate the series
to the current date. This option and the START= option can be used to ensure that data associated with
each BY group contain the same number of observations.

FORMAT=format
specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default
format is implied from the INTERVAL= option.

INTERVAL=interval
specifies the frequency of the input time series or for the time series to be accumulated from the input
data. For example, if the input data set consists of quarterly observations, then INTERVAL=QTR
should be used. If the SEASONALITY= option is not specified, the length of the seasonal cycle
is implied by the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of
length 4. If the ACCUMULATE= option is also specified, the INTERVAL= option determines the time
periods for the accumulation of observations.

The basic intervals are YEAR, SEMIYEAR, QTR, MONTH, SEMIMONTH, TENDAY, WEEK,
WEEKDAY, DAY, HOUR, MINUTE, SECOND. For more information about the intervals that can be
specified, see Chapter 5, “Date Intervals, Formats, and Functions.”

NOTSORTED
specifies that the time ID values are not in sorted order. The ESM procedure sorts the data with respect
to the time ID prior to analysis.

SETMISSING=option | number
specifies how missing values (either input or accumulated) are assigned in the accumulated time
series. If a number is specified, missing values are set to that number. If a missing value in the input
data set indicates an unknown value, the SETMISSING= option should not be used. If a missing
value indicates no value, SETMISSING=0 should be used. You typically use SETMISSING=0 for
transactional data, because no recorded data usually implies no activity. The following options can
also be used to determine how missing values are assigned:

MISSING sets missing values to missing. The missing observations are replaced with
predicted values that are computed from the exponential smoothing model.

AVERAGE | AVG sets missing values to the accumulated average value.

MINIMUM | MIN sets missing values to the accumulated minimum value.

MEDIAN | MED sets missing values to the accumulated median value.

MAXIMUM | MAX sets missing values to the accumulated maximum value.

FIRST sets missing values to the accumulated first nonmissing value.

LAST sets missing values to the accumulated last nonmissing value.

PREVIOUS | PREV sets missing values to the previous accumulated nonmissing value. Missing
values at the beginning of the accumulated series remain missing.
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NEXT sets missing values to the next accumulated nonmissing value. Missing
values at the end of the accumulated series remain missing.

By default, SETMISSING=MISSING.

START=date | datetime
specifies a SAS date or datetime literal value that represents the beginning of the data. If the first time
ID variable value is greater than the START= value, the series is prefixed with missing values. If the
first time ID variable value is less than the START= value, the series is truncated. This option and the
END= option can be used to ensure that data associated with each BY group contain the same number
of observations.

ZEROMISS=NONE | LEFT | RIGHT | BOTH
specifies how beginning and ending zero values (either input or accumulated) are interpreted in the
accumulated time series. You can specify the following values:

NONE Beginning and ending zeros are unchanged.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.

By default, ZEROMISS=NONE.

If the accumulated series is all missing or zero, the series is not changed.

Details: ESM Procedure
The ESM procedure can be used to forecast time series data as well as transactional data. If the data are
transactional, then the procedure must first accumulate the data into a time series before it can be forecast.
The procedure uses the sequential steps in Table 15.2 to produce forecasts, with the options that control the
step listed to the right.

Table 15.2 ESM Processing Steps and Control Options

Step Operation Option Statements

1 Accumulation ACCUMULATE= ID
2 Missing value interpretation SETMISSING= ID, FORECAST
3 Transformations TRANSFORM= FORECAST
4 Parameter estimation MODEL= FORECAST
5 Forecasting MODEL=, LEAD= FORECAST, PROC ESM
6 Inverse transformation TRANSFORM, MEDIAN FORECAST
7 Summation of forecasts LEAD=, STARTSUM= PROC ESM

Each of the steps shown in Table 15.2 is described in the following sections.
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Accumulation
If the ACCUMULATE= option is specified in the ID statement, data set observations are accumulated within
each time period. The frequency (width of each time interval) is specified by the INTERVAL= option,
and the ID variable contains the time ID values. Each time ID value corresponds to a specific time period.
Accumulation is particularly useful when the input data set contains transactional data, whose observations
are not spaced with respect to any particular time interval. The accumulated values form the time series that
is used in subsequent analyses by the ESM procedure.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20

If the INTERVAL=MONTH option is specified in the ID statement, all of the preceding observations fall
within three time periods: March 1999, April 1999, and May 1999. The observations are accumulated within
each time period as follows.

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are
not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the resulting time series is

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified, the resulting time series is

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified, the resulting time series is

O1MAR1999 10
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MEDIAN option is specified, the resulting time series is

O1MAR1999 20
01APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified, the resulting time series is

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified, the resulting time series is
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O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified, the resulting time series is

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified, the resulting time series is

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the preceding examples, even though the data set observations contained no missing
values, the accumulated time series can have missing values.

Missing Value Interpretation
Sometimes missing values should be interpreted as truly unknown values and retained as missing values in
the data set. The forecasting models used by the ESM procedure can effectively handle missing values (see
the section “Missing Value Modeling Issues” on page 857). However, sometimes missing values are known,
such as when missing values are created from accumulation and represent no observed values for the variable.
In this case, the value for the period should be interpreted as zero (no values), and the SETMISSING=0
option should be used to cause PROC ESM to recode missing values as zero. In other cases, missing values
should be interpreted as global values, such as minimum or maximum values of the accumulated series. The
accumulated and missing-value-recoded time series is used in subsequent analyses in PROC ESM.

Transformations
If the TRANSFORM= option is specified in the FORECAST statement, the time series is transformed prior
to model parameter estimation and forecasting. Only strictly positive series can be transformed. An error is
generated when the TRANSFORM= option is used with a nonpositive series. (For more information about
forecasting transformed time series, see Chapter 66, “Forecasting Process Details.”)
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Parameter Estimation
All the parameters (smoothing weights) associated with the exponential smoothing model used to forecast the
time series (as specified by the MODEL= option) are optimized based on the data, with the default parameter
restrictions imposed. If the TRANSFORM= option is specified, the transformed time series data are used to
estimate the model parameters.

The techniques used in the ESM procedure are identical to those used for exponential smoothing models in
the Time Series Forecasting System of SAS/ETS software. For more information, see Chapter 58, “Overview
of the Time Series Forecasting System.”

Missing Value Modeling Issues
The treatment of missing values varies with the forecasting model. Missing values after the start of the
series are replaced with one-step-ahead predicted values, and the predicted values are used in the smoothing
equations.

The treatment of missing values can also be specified with the SETMISSING= option, which changes the
missing values prior to modeling.

NOTE: Even if all of the observed data are nonmissing, the ACCUMULATE= option can create missing
values in the accumulated series (when the data contain no observations for some of the time periods specified
by the INTERVAL= option).

Forecasting
Once the model parameters are estimated, one-step-ahead forecasts are generated for the full range of the
accumulated and optionally transformed time series data, and multistep forecasts are generated from the end
of the time series to the future time period specified by the LEAD= option. If there are missing values at the
end of the time series, the forecast horizon will be greater than that specified by the LEAD= option.

Inverse Transformations
If the TRANSFORM= option is specified in the FORECAST statement, the forecasts of the transformed
time series are inverse transformed. By default, forecasts of the mean (expected value) are generated. If
the MEDIAN option is specified, median forecasts are generated. (For more information about forecasting
transformed time series, see Chapter 66, “Forecasting Process Details.”)
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Statistics of Fit
The statistics of fit are computed by comparing the time series data (after accumulation and missing value
recoding, if specified) with the generated forecasts. If the TRANSFORM= option is specified, the statistics of
fit are based on the inverse transformed forecasts. (For more information about statistics of fit for forecasting
models, see Chapter 66, “Forecasting Process Details.”)

Forecast Summation
The multistep forecasts generated by the preceding steps can optionally be summed from the STARTSUM=
value to the LEAD= value. For example, if the options STARTSUM=4 and LEAD=6 are specified in the
PROC ESM statement, the four-step-ahead through six-step-ahead forecasts are summed.

The forecasts are simply summed; however, the prediction error variance of this sum is computed by taking
into account the correlation between the individual predictions. (These variance-related computations are
performed only when no transformation is specified; that is, when TRANSFORM=NONE.) The upper and
lower confidence limits for the sum of the predictions is then computed based on the prediction error variance
of the sum.

The forecast summation is particularly useful when it is desirable to model in one frequency but the forecast of
interest is another frequency. For example, if a time series has a monthly frequency (INTERVAL=MONTH)
and you want a forecast for the third and fourth future months, a forecast summation for the third and fourth
month can be obtained by specifying STARTSUM=3 and LEAD=4.

Data Set Output
The ESM procedure can create the OUT=, OUTEST=, OUTFOR=, OUTSTAT=, and OUTSUM= data sets.
These data sets contain the variables listed in the BY statement and statistics related to the variables listing
in the FORECAST statement. In general, if a forecasting step related to an output data set fails, the values
of this step are not recorded or are set to missing in the related output data set and appropriate error and/or
warning messages are recorded in the log. For more information about how the variables in the output data
sets are computed, see “Smoothing Models” on page 4178).

OUT= Data Set

The OUT= data set contains the variables specified in the BY, ID, and FORECAST statements. If the
ID statement is specified, the ID variable values are aligned and extended based on the ALIGN= and
INTERVAL= options. The values of the variables specified in the FORECAST statements are accumulated
based on the ACCUMULATE= option, and missing values are interpreted based on the SETMISSING=
option. If the REPLACEMISSING option is specified, embedded missing values are replaced by the one-
step-ahead predicted values.

These FORECAST variables are then extrapolated based on the forecasts from the fitted models, or extended
with missing values when the MODEL=NONE option is specified. If USE=LOWER is specified, the variable
is extrapolated with the lower confidence limits; if USE=UPPER, the variable is extrapolated using the
upper confidence limits; otherwise, the variable values are extrapolated with the predicted values. If the
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TRANSFORM= option is specified, the predicted values contain either mean or median forecasts depending
on whether or not the MEDIAN option is specified.

If any of the forecasting steps fail for a particular variable, the variable is extended by missing values.

OUTEST= Data Set

The OUTEST= data set contains the variables specified in the BY statement as well as the variables listed
below. For variables listed in FORECAST statements where the option MODEL=NONE is specified, no
observations are recorded in the OUTEST= data set. For variables listed in FORECAST statements where
the option MODEL=NONE is not specified, the following variables in the OUTEST= data set contain
observations related to the parameter estimation step:

_NAME_ variable name

_MODEL_ forecasting model

_TRANSFORM_ transformation

_PARM_ parameter name

_EST_ parameter estimate

_STDERR_ standard errors

_TVALUE_ t values

_PVALUE_ probability values

If the parameter estimation step fails for a particular variable, no observations are output to the OUTEST=
data set for that variable.

OUTFOR= Data Set

The OUTFOR= data set contains the variables specified in the BY statement as well as the variables listed
below. For variables listed in FORECAST statements where the option MODEL=NONE is specified, no
observations are recorded in the OUTFOR= data set for these variables. For variables listed in FORECAST
statements where the option MODEL=NONE is not specified, the following variables in the OUTFOR= data
set contain observations related to the forecasting step:

_NAME_ variable name

_TIMEID_ time ID values

ACTUAL actual values

PREDICT predicted values

STD prediction standard errors

LOWER prediction lower confidence limits

UPPER prediction upper confidence limits

ERROR prediction errors

If the forecasting step fails for a particular variable, no observations are recorded in the OUTFOR= data set
for that variable. If the TRANSFORM= option is specified, the values in the preceding variables are the
inverse transform forecasts. If the MEDIAN option is specified, the median forecasts are stored; otherwise,
the mean forecasts are stored.
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OUTPROCINFO= Data Set

The OUTPROCINFO= data set contains information about the run of the ESM procedure. The following
variables are present:

_SOURCE_ set to the name of the procedure, in this case ESM

_NAME_ name of an item being reported; can be the number of errors, notes, or warnings, number
of forecasts requested, and so on

_LABEL_ descriptive label for the item in _NAME_

_STAGE_ set to the current stage of the procedure; for PROC ESM this is set to ALL

_VALUE_ value of the item specified in _NAME_

OUTSTAT= Data Set

The OUTSTAT= data set contains the variables specified in the BY statement as well as the variables listed
below. For variables listed in FORECAST statements where the option MODEL=NONE is specified, no
observations are recorded for these variables in the OUTSTAT= data set. For variables listed in FORECAST
statements where the option MODEL=NONE is not specified, the following variables in the OUTSTAT=
data set contain observations related to the statistics of fit:

_NAME_ variable name

_REGION_ the region in which the statistics are calculated. Statistics calculated in the fit region are
indicated by FIT. Statistics calculated in the forecast region, which happens only if the
BACK= option is greater than zero, are indicated by FORECAST.

DFE degrees of freedom error

N number of observations used

NOBS number of observations

NMISSA number of missing actuals

NMISSP number of missing predicted values

NPARMS number of parameters

TSS total sum of squares

SST corrected total sum of squares

SSE sum of square error

MSE mean square error

UMSE unbiased mean square error

RMSE root mean square error

URMSE unbiased root mean square error

MAPE mean absolute percent error

MAE mean absolute error

MASE mean absolute scaled error

RSQUARE R-square
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ADJRSQ adjusted R-square

AADJRSQ Amemiya’s adjusted R-square

RWRSQ random walk R-square

AIC Akaike’s information criterion

AICC finite sample corrected AIC

SBC Schwarz Bayesian information criterion

APC Amemiya’s prediction criterion

MAXERR maximum error

MINERR minimum error

MINPE minimum percent error

MAXPE maximum percent error

ME mean error

MPE mean percent error

MDAPE median absolute percent error

GMAPE geometric mean absolute percent error

MINPPE minimum predictive percent error

MAXPPE maximum predictive percent error

MSPPE mean predictive percent error

MAPPE symmetric mean absolute predictive percent error

MDAPPE median absolute predictive percent error

GMAPPE geometric mean absolute predictive percent error

MINSPE minimum symmetric percent error

MAXSPE maximum symmetric percent error

MSPE mean symmetric percent error

SMAPE symmetric mean absolute percent error

MDASPE median absolute symmetric percent error

GMASPE geometric mean absolute symmetric percent error

MINRE minimum relative error

MAXRE maximum relative error

MRE mean relative error

MRAE mean relative absolute error

MDRAE median relative absolute error

GMRAE geometric mean relative absolute error

MINAPES minimum absolute error percent of standard deviation

MAXAPES maximum absolute error percent of standard deviation
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MAPES mean absolute error percent of standard deviation

MDAPES median absolute error percent of standard deviation

GMAPES geometric mean absolute error percent of standard deviation

If the statistics of fit cannot be computed for a particular variable, no observations are recorded in the
OUTSTAT= data set for that variable. If the TRANSFORM= option is specified, the values in the preceding
variables are computed based on the inverse transform forecasts. If the MEDIAN option is specified, the
median forecasts are the basis; otherwise, the mean forecasts are the basis.

For more information about the calculation of forecasting statistics of fit, see Chapter 66, “Forecasting
Process Details.”

OUTSUM= Data Set

The OUTSUM= data set contains the variables specified in the BY statement as well as the variables listed
below. The OUTSUM= data set records the summary statistics for each variable specified in a FORECAST
statement. For variables listed in FORECAST statements where the option MODEL=NONE is specified, the
values related to forecasts are set to missing for those variables in the OUTSUM= data set. For variables
listed in FORECAST statements where the option MODEL=NONE is not specified, the forecast values are
set based on the USE= option.

The following variables related to summary statistics are based on the ACCUMULATE= and SETMISSING=
options:

_NAME_ variable name

_STATUS_ forecasting status. Nonzero values imply that no forecast was generated for the series.

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

MIN minimum value

MAX maximum value

MEAN mean value

STDDEV standard deviation

The following variables related to forecast summation are based on the LEAD= and STARTSUM= options:

PREDICT forecast summation predicted values

STD forecast summation prediction standard errors

LOWER forecast summation lower confidence limits

UPPER forecast summation upper confidence limits

Variance-related computations are computed only when no transformation is specified (TRANSFORM=NONE).

The following variables related to multistep forecast are based on the LEAD= and USE= options:
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_LEADn_ multistep forecast (n ranges from one to the value of the LEAD= option). If USE=LOWER,
this variable contains the lower confidence limits; if USE=UPPER, this variable contains the
upper confidence limits; otherwise, this variable contains the predicted values.

If the forecast step fails for a particular variable, the variables that are related to forecasting are set to missing
for that variable. The OUTSUM= data set contains both a summary of the (accumulated) time series and
optionally its forecasts for all series.

Printed Output
The ESM procedure optionally produces printed output by using the Output Delivery System (ODS). By
default, the procedure produces no printed output. All output is controlled by the PRINT= and PRINTDE-
TAILS options in the PROC ESM statement. In general, if a forecasting step that is related to printed output
fails, the values of this step are not printed and appropriate error or warning messages are recorded in the log.
The printed output is similar to the output data sets.

The printed output produced by the PRINT= option values is described as follows:

SUMMARY prints the summary statistics and forecast summaries similar to the OUT-
SUM= data set.

ESTIMATES prints the parameter estimates similar to the OUTEST= data set.

FORECASTS prints the forecasts similar to the OUTFOR= data set.

PERFORMANCE prints the performance statistics.

PERFORMANCESUMMARY prints the performance summary for each BY group.

PERFORMANCEOVERALL prints the performance summary for all BY groups.

STATES prints the backcast, initial, and final smoothed states.

STATISTICS prints the statistics of fit similar to the OUTSTAT= data set.

The PRINTDETAILS option is the opposite of the NOOUTALL option. Specifically, if PRINT=FORECASTS
and the PRINTDETAILS options are specified in the PROC ESM statement, the one-step-ahead forecasts
through the range of the data are printed in addition to the information related to a specific forecasting model,
such as the smoothing states. If the PRINTDETAILS option is not specified, only the multistep forecasts are
printed.
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ODS Table Names
Table 15.3 relates the PRINT= options to ODS tables.

Table 15.3 ODS Tables Produced in PROC ESM

ODS Table Name Description PRINT= Option

DescStats Descriptive statistics SUMMARY
ForecastSummary Forecast summary SUMMARY
ForecastSummation Forecast summation SUMMARY
ParameterEstimates Parameter estimates ESTIMATES
Forecasts Forecasts FORECASTS
Performance Performance statistics PERFORMANCE
PerformanceSummary Performance summary PERFORMANCESUMMARY
PerformanceOverall Performance overall PERFORMANCEOVERALL
SmoothedStates Smoothed states STATES
FitStatistics Evaluation statistics of fit STATISTICS
PerformanceStatistics Performance (out-of-sample)

statistics of fit
STATISTICS

The ODS table “ForecastSummary” is related to all time series within a BY group. The other tables are
related to a single series within a BY group.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the ESM procedure. To request these graphs
you must specify the PLOT= option in the PROC ESM statement.

ODS Graph Names

PROC ESM assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when using ODS. The names are listed in Table 15.4.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 15.4 ODS Graphics Produced by the PLOT= Option in
PROC ESM

ODS Graph Name Plot Description PLOT= Option

ErrorACFNORMPlot Standardized autocorrelation of
prediction errors

ACF

ErrorACFPlot Autocorrelation of prediction
errors

ACF

ErrorHistogram Prediction error histogram ERRORS
ErrorCorrelationPlots Prediction error plot panel CORR
ErrorIACFNORMPlot Standardized inverse

autocorrelation of prediction
errors

IACF

ErrorIACFPlot Inverse autocorrelation of
prediction errors

IACF

ErrorPACFNORMPlot Standardized partial
autocorrelation of prediction
errors

PACF

ErrorPACFPlot Partial autocorrelation of
prediction errors

PACF

ErrorPeriodogramPlot Periodogram of prediction errors PERIODOGRAM
ErrorPlot Plot of prediction errors ERRORS
ErrorSpectralDensityPlot Combined periodogram and

spectral density estimate plot
SPECTRUM

ErrorWhiteNoiseLogProbPlot White noise log probability plot
of prediction errors

WN

ErrorWhiteNoiseProbPlot White noise probability plot of
prediction errors

WN

ForecastsOnlyPlot Forecasts only plot FORECASTSONLY
ForecastsPlot Forecasts plot FORECASTS
LevelStatePlot Smoothed level state plot LEVELS
ModelForecastsPlot Model and forecasts plot MODELFORECASTS
ModelPlot Model plot MODELS
SeasonStatePlot Smoothed season state plot SEASONS
TrendStatePlot Smoothed trend state plot TRENDS



866 F Chapter 15: The ESM Procedure

Examples: ESM Procedure

Example 15.1: Forecasting of Time Series Data
This example uses retail sales data to illustrate how the ESM procedure can be used to forecast time series
data.

The following DATA step creates a data set from data recorded monthly at numerous points of sale. The data
set, SALES, contains a variable, DATE, that represents time and a variable for each sales item. Each value of
the DATE variable is recorded in ascending order, and the values of each of the other variables represent a
single time series:

data sales;
format date date9.;
input date : date9. shoes socks laces dresses

coats shirts ties belts hats blouses;
datalines;

01JAN1994 3557 3718 6368.80 575 987 10.8200 15.0000 102.600 12410 15013

... more lines ...

The following ESM procedure statements forecast each of the monthly time series:

proc esm data=sales out=nextyear;
id date interval=month;
forecast _numeric_;

run;

The preceding statements generate forecasts for every numeric variable in the input data set SALES for the
next 12 months and store these forecasts in the output data set NEXTYEAR.

The following statements plot the forecasts:

title1 "Shoe Department Sales";
proc sgplot data=nextyear;

series x=date y=shoes / markers
markerattrs=(symbol=circlefilled color=red)
lineattrs=(color=red);

series x=date y=socks / markers
markerattrs=(symbol=asterisk color=blue)
lineattrs=(color=blue);

series x=date y=laces / markers
markerattrs=(symbol=circle color=styg)

lineattrs=(color=styg);
refline '01JAN1999'd / axis=x;
xaxis values=('01JAN1994'd to '01DEC2000'd by year);
yaxis values=(2000 to 10000 by 1000) minor label='Websites';

run;

The plots are shown in Output 15.1.1. The historical data are shown to the left of the reference line, and the
forecasts for the next 12 monthly periods are shown to the right.
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Output 15.1.1 Retail Sales Forecast Plots

The default simple exponential smoothing model is used because the MODEL= option is omitted from the
FORECAST statement. Note that for simple exponential smoothing the forecasts are constant.

The following ESM procedure statements are identical to the preceding statements except that the
PRINT=FORECASTS option is specified:

proc esm data=sales out=nextyear print=forecasts;
id date interval=month;
forecast _numeric_;

run;

In addition to forecasting each of the monthly time series, the preceding statements print the forecasts by
using the Output Delivery System (ODS); the forecasts are partially shown in Output 15.1.2. This output
shows the predictions, prediction standard errors, and upper and lower confidence limits for the next 12
monthly periods.
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Output 15.1.2 Forecast Tables

Shoe Department Sales

The ESM Procedure

Forecasts for Variable shoes

Obs Time Forecasts
Standard

Error
95%

Confidence Limits

62 FEB1999 6009.1986 1069.4059 3913.2016 8105.1956

63 MAR1999 6009.1986 1075.7846 3900.6996 8117.6976

64 APR1999 6009.1986 1082.1257 3888.2713 8130.1259

65 MAY1999 6009.1986 1088.4298 3875.9154 8142.4818

66 JUN1999 6009.1986 1094.6976 3863.6306 8154.7666

67 JUL1999 6009.1986 1100.9298 3851.4158 8166.9814

68 AUG1999 6009.1986 1107.1269 3839.2698 8179.1274

69 SEP1999 6009.1986 1113.2895 3827.1914 8191.2058

70 OCT1999 6009.1986 1119.4181 3815.1794 8203.2178

71 NOV1999 6009.1986 1125.5134 3803.2329 8215.1643

72 DEC1999 6009.1986 1131.5758 3791.3507 8227.0465

73 JAN2000 6009.1986 1137.6060 3779.5318 8238.8654

Example 15.2: Forecasting of Transactional Data
This example illustrates how the ESM procedure can be used to forecast transactional data.

The following DATA step creates a data set from data recorded at several Internet websites. The data set
WEBSITES contains a variable, TIME, that represents time and the variables ENGINE, BOATS, CARS, and
PLANES that represent Internet website data. Each value of the TIME variable is recorded in ascending order,
and the values of each of the other variables represent a transactional data series.

The following ESM procedure statements forecast each of the transactional data series:

proc esm data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats cars planes;

run;

The preceding statements accumulate the data into a daily time series, generate forecasts for the BOATS,
CARS, and PLANES variables in the input data set WEBSITES for the next week, and the forecasts are stored
in the OUT= data set NEXTWEEK.

The following statements plot the forecasts related to the Internet data:

title1 "Website Data";
proc sgplot data=nextweek;

series x=time y=boats / markers
markerattrs=(symbol=circlefilled color=red)
lineattrs=(color=red);

series x=time y=cars / markers
markerattrs=(symbol=asterisk color=blue)
lineattrs=(color=blue);



Example 15.2: Forecasting of Transactional Data F 869

series x=time y=planes / markers
markerattrs=(symbol=circle color=styg)
lineattrs=(color=styg);

refline '11APR2000:00:00:00'dt / axis=x;
xaxis values=('13MAR2000:00:00:00'dt to '18APR2000:00:00:00'dt by dtweek);
yaxis label='Websites' minor;

run;

The plots are shown in Output 15.2.1. The historical data are shown to the left of the reference line, and the
forecasts for the next seven days are shown to the right.

Output 15.2.1 Internet Data Forecast Plots
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Example 15.3: Specifying the Forecasting Model
This example illustrates how the ESM procedure can be used to specify different models for different series.
Internet data from the previous example are used for this illustration.

This example forecasts the BOATS variable by using the seasonal exponential smoothing model (SEA-
SONAL), the CARS variable by using the Winters (multiplicative) model (MULTWINTERS), and the
PLANES variable by using the Log Winters (additive) model. The following ESM procedure statements
forecast each of the transactional data series based on these requirements:

proc esm data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast boats / model=seasonal;
forecast cars / model=multwinters;
forecast planes / model=addwinters transform=log;

run;

Example 15.4: Extending the Independent Variables for Multivariate Forecasts
In the previous example, the ESM procedure was used to forecast several transactional series variables
by using univariate models. This example illustrates how the ESM procedure can be used to extend the
independent variables that are associated with a multiple regression forecasting problem.

This example accumulates and forecasts the BOATS, CARS, and PLANES variables that were illustrated in
the previous example. In addition, this example accumulates the ENGINES variable to form a time series that
is then extended with missing values within the forecast horizon with the specification of MODEL=NONE.

proc esm data=websites out=nextweek lead=7;
id time interval=dtday accumulate=total;
forecast engines / model=none;
forecast boats / model=seasonal;
forecast cars / model=multwinters;
forecast planes / model=addwinters transform=log;

run;

The following AUTOREG procedure statements are used to forecast the ENGINES variable by regressing on
the independent variables (BOATS, CARS, and PLANES):

proc autoreg data= nextweek;
model engines = boats cars planes / noprint;
output out=enginehits p=predicted;

run;

The NEXTWEEK data set created by PROC ESM is used as an input data set to PROC AUTOREG. The output
data set from PROC AUTOREG contains the forecast of the variable ENGINES based on the regression model
with the variables BOATS, CARS, and PLANES as regressors. For more information about autoregression
models, see Chapter 9, “The AUTOREG Procedure.”

The following statements plot the forecasts related to the ENGINES variable:
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title1 "Website Data";
proc sgplot data=enginehits;

series x=time y=boats / markers
markerattrs=(symbol=circlefilled color=red)
lineattrs=(color=red);

series x=time y=cars / markers
markerattrs=(symbol=asterisk color=blue)
lineattrs=(color=blue);

series x=time y=planes / markers
markerattrs=(symbol=circle color=styg)
lineattrs=(color=styg);

scatter x=time y=predicted / markerattrs=(symbol=plus color=black);
refline '11APR2000:00:00:00'dt / axis=x;
xaxis values=('13MAR2000:00:00:00'dt to '18APR2000:00:00:00'dt by dtweek);
yaxis label='Websites' minor;

run;

The plots are shown in Output 15.4.1. The historical data are shown to the left of the reference line, and the
forecasts for the next seven daily periods are shown to the right.

Output 15.4.1 Internet Data Forecast Plots
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Example 15.5: Illustration of ODS Graphics
This example illustrates the use of ODS graphics in the ESM procedure and uses the SASHELP.AIR data set
to forecast the time series of international airline travel.

The graphical displays are requested by specifying the PLOT= option in the PROC ESM statement. In this
case, all plots are requested. Output 15.5.1 through Output 15.5.5 show a selection of the plots created.

For information about the graphics available in the ESM procedure, see the section “ODS Graphics” on
page 864.

proc esm data=sashelp.air out=_null_
lead=20
back=20
print=all
plot=all;

id date interval=month;
forecast air / model=addwinters transform=log;

run;

Output 15.5.1 Smoothed Trend Plot
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Output 15.5.2 Prediction Error Plot
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Output 15.5.3 Prediction Error Standardized ACF Plot



Example 15.5: Illustration of ODS Graphics F 875

Output 15.5.4 Forecast Plot
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Output 15.5.5 Prediction Error Spectral Density
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Overview: EXPAND Procedure
The EXPAND procedure converts time series from one sampling interval or frequency to another and
interpolates missing values in time series. A wide array of data transformations is also supported. Using
PROC EXPAND, you can collapse time series data from higher frequency intervals to lower frequency
intervals, or expand data from lower frequency intervals to higher frequency intervals. For example, quarterly
values can be aggregated to produce an annual series, or quarterly estimates can be interpolated from an
annual series.

Time series frequency conversion is useful when you need to combine series with different sampling intervals
into a single data set. For example, if you need as input to a monthly model a series that is only available
quarterly, you might use PROC EXPAND to interpolate the needed monthly values.

You can also interpolate missing values in time series, either without changing series frequency or in
conjunction with expanding or collapsing the series.

You can convert between any combination of input and output frequencies that can be specified by SAS
time interval names. (For a complete description of SAS interval names, see Chapter 5, “Date Intervals,
Formats, and Functions.”) When the FROM= and TO= options are used to specify from and to intervals,
PROC EXPAND automatically accounts for calendar effects such as the differing number of days in each
month and leap years.

The EXPAND procedure also handles conversions of frequencies that cannot be defined by standard interval
names. Using the FACTOR= option, you can interpolate any number of output observations for each group
of a specified number of input observations. For example, if you specify the option FACTOR=(13:2), 13
equally spaced output observations are interpolated from each pair of input observations.

You can also convert aperiodic series, observed at arbitrary points in time, into periodic estimates. For
example, a series of randomly timed quality control spot-check results might be interpolated to form
estimates of monthly average defect rates.

The EXPAND procedure can also change the observation characteristics of time series. Time series observa-
tions can measure beginning-of-period values, end-of-period values, midpoint values, or period averages or
totals. PROC EXPAND can convert between these cases. You can construct estimates of interval averages
from end-of-period values of a variable, estimate beginning-of-period or midpoint values from interval
averages, or compute averages from interval totals, and so forth.

By default, the EXPAND procedure fits cubic spline curves to the nonmissing values of variables to form
continuous-time approximations of the input series. Output series are then generated from the spline
approximations. Several alternate conversion methods are described in the section “Conversion Methods”
on page 896. You can also interpolate estimates of the rate of change of time series by differentiating the
interpolating spline curve.

Various transformations can be applied to the input series prior to interpolation and to the interpolated
output series. For example, the interpolation process can be modified by transforming the input series,
interpolating the transformed series, and applying the inverse of the input transformation to the output series.
PROC EXPAND can also be used to apply transformations to time series without interpolation or frequency
conversion.

The results of the EXPAND procedure are stored in a SAS data set. No printed output is produced.
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Getting Started: EXPAND Procedure

Converting to Higher Frequency Series
To create higher frequency estimates, specify the input and output intervals with the FROM= and TO=
options, and list the variables to be converted in a CONVERT statement. For example, suppose variables X,
Y, and Z in the data set ANNUAL are annual time series, and you want monthly estimates. You can interpolate
monthly estimates by using the following statements:

proc expand data=annual out=monthly from=year to=month;
convert x y z;

run;

Note that interpolating values of a time series does not add any real information to the data as the interpolation
process is not the same process that generated the other (nonmissing) values in the series. While time series
interpolation can sometimes be useful, great care is needed in analyzing time series containing interpolated
values.

Aggregating to Lower Frequency Series
PROC EXPAND provides two ways to convert from a higher frequency to a lower frequency. When a curve
fitting method is used, converting to a lower frequency is no different than converting to a higher frequency—
you just specify the desired output frequency with the TO= option. This provides for interpolation of missing
values and allows conversion from non-nested intervals, such as converting from weekly to monthly values.

Alternatively, you can specify simple aggregation or selection without interpolation of missing values. This
might be useful, for example, if you want to add up monthly values to produce annual totals, but want the
annual output data set to contain values only for complete years.

To perform simple aggregation, use the METHOD=AGGREGATE option in the CONVERT statement. For
example, the following statements aggregate monthly values to yearly values:

proc expand data=monthly out=annual
from=month to=year;

convert x y z / method=aggregate;
convert a b c / method=aggregate observed=total;
id date;

run;

This example assumes that the variables X, Y, and Z represent point-in-time values observed at the beginning
of each month, and that the desired results are point-in-time values observed at the beginning of each year.
(The default value of the OBSERVED= option is OBSERVED=(BEGINNING,BEGINNING).) The variables
A, B, and C are assumed to represent monthly totals, and that the desired results are annual totals; therefore
the option OBSERVED=TOTAL is specified. For more information about the OBSERVED= option, see the
section “Specifying Observation Characteristics” on page 882.

Note that the AGGREGATE method can be used only if the input intervals are nested within the output
intervals, as when converting from daily to monthly or from monthly to yearly frequency.
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Combining Time Series with Different Frequencies
One important use of PROC EXPAND is to combine time series measured at different sampling frequencies.
For example, suppose you have data on monthly money stocks (M1), quarterly gross domestic product (GDP),
and weekly interest rates (INTEREST), and you want to perform an analysis of a model that uses all these
variables. To perform the analysis, you first need to convert the series to a common frequency and then
combine the variables into one data set.

The following statements illustrate this process for the three data sets QUARTER, MONTHLY, and WEEKLY.
The data sets QUARTER and WEEKLY are converted to monthly frequency using two PROC EXPAND steps,
and the three data sets are then merged using a DATA step MERGE statement to produce the data set COM-
BINED. The quarterly GDP data are interpolated as the total GDP over each month (OBSERVED=TOTAL),
while the weekly INTEREST data are converted to average rates over each month (OBSERVED=AVERAGE).

proc expand data=quarter out=temp1
from=qtr to=month;

id date;
convert gdp / observed=total;

run;

proc expand data=weekly out=temp2
from=week to=month;

id date;
convert interest / observed=average;

run;

data combined;
merge monthly temp1 temp2;
by date;

run;

For further discussion of time series periodicity, time series dating, and time series interpolation, see Chapter 4,
“Working with Time Series Data.” For more information about the OBSERVED= option, see the section
“Specifying Observation Characteristics” on page 882.

Interpolating Missing Values
To interpolate missing values in time series without converting the observation frequency, omit the TO=
option from the PROC EXPAND statement. For example, the following statements interpolate any missing
values in the time series in the data set ANNUAL:

proc expand data=annual out=new from=year;
id date;
convert x y z;
convert a b c / observed=total;

run;

This example assumes that the variables X, Y, and Z represent point-in-time values observed at the beginning
of each year. (The default value of the OBSERVED= option is OBSERVED=BEGINNING.) The variables A,
B, and C are assumed to represent annual totals.
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To interpolate missing values in variables observed at specific points in time, omit both the FROM= and TO=
options and use the ID statement to supply time values for the observations. The observations do not need to
be periodic or form regular time series, but the data set must be sorted by the ID variable. For example, the
following statements interpolate any missing values in the numeric variables in the data set A:

proc expand data=a out=b;
id date;

run;

If the observations are equally spaced in time, and all the series are observed as beginning-of-period values,
only the input and output data sets need to be specified. For example, the following statements interpolate
any missing values in the numeric variables in the data set A using a cubic spline function, assuming that the
observations are at equally spaced points in time:

proc expand data=a out=b;
run;

For more information, see the section “Missing Values” on page 905.

Requesting Different Interpolation Methods
By default, a cubic spline curve is fit to the input series, and the output is computed from this interpolating
curve. Other interpolation methods can be specified with the METHOD= option in the CONVERT statement.
The section “Conversion Methods” on page 896 explains the available methods.

For example, the following statements convert annual series to monthly series using linear interpolation
instead of cubic spline interpolation:

proc expand data=annual out=monthly from=year to=month;
id date;
convert x y z / method=join;

run;

Using the ID Statement
An ID statement is normally used with PROC EXPAND to specify a SAS date or datetime variable to identify
the time of each input observation. An ID variable allows PROC EXPAND to do the following:

� identify the observations in the output data set

� determine the time span between observations and detect gaps in the input series caused by omitted
observations

� account for calendar effects such as the number of days in each month and leap years

If you do not specify an ID variable with SAS date or datetime values, PROC EXPAND makes default
assumptions that may not be what you want. For more information, see the section “ID Statement” on
page 890.
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Specifying Observation Characteristics
It is important to distinguish between variables that are measured at points in time and variables that represent
totals or averages over an interval. Point-in-time values are often called stocks or levels. Variables that
represent totals or averages over an interval are often called flows or rates.

For example, the annual series U.S. Gross Domestic Product represents the total value of production over the
year and also the yearly average rate of production in dollars per year. However, a monthly variable inventory
may represent the cost of a stock of goods as of the end of the month.

When the data represent periodic totals or averages, the process of interpolation to a higher frequency is
sometimes called distribution, and the total values of the larger intervals are said to be distributed to the
smaller intervals. The process of interpolating periodic total or average values to lower frequency estimates
is sometimes called aggregation.

By default, PROC EXPAND assumes that all time series represent beginning-of-period point-in-time values.
If a series does not measure beginning of period point-in-time values, interpolation of the data values using
this assumption is not appropriate, and you should specify the correct observation characteristics of the series.
The observation characteristics of the series are specified with the OBSERVED= option in the CONVERT
statement.

For example, suppose that the data set ANNUAL contains variables A, B, and C that measure yearly totals,
while the variables X, Y, and Z measure first-of-year values. The following statements estimate the contribution
of each month to the annual totals in A, B, and C, and interpolate first-of-month estimates of X, Y, and Z:

proc expand data=annual out=monthly
from=year to=month;

id date;
convert x y z;
convert a b c / observed=total;

run;

The EXPAND procedure supports five different observation characteristics. The OBSERVED= options for
these five observation characteristics are as follows:

BEGINNING beginning-of-period values

MIDDLE period midpoint values

END end-of-period values

TOTAL period totals

AVERAGE period averages

The interpolation of each series is adjusted appropriately for its observation characteristics. When OB-
SERVED=TOTAL or AVERAGE is specified, the interpolating curve is fit to the data values so that the area
under the curve within each input interval equals the value of the series. For OBSERVED=MIDDLE or END,
the curve is fit through the data points, with the time position of each data value placed at the specified offset
from the start of the interval.

For more information, see the section “OBSERVED= Option” on page 894.
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Converting Observation Characteristics
The EXPAND procedure can be used to interpolate values for output series with different observation
characteristics than the input series. To change observation characteristics, specify two values in the
OBSERVED= option. The first value specifies the observation characteristics of the input series; the second
value specifies the observation characteristics of the output series.

For example, the following statements convert the period total variable A in the data set ANNUAL to yearly
midpoint estimates. This example does not change the series frequency, and the other variables in the data set
are copied to the output data set unchanged.

proc expand data=annual out=new from=year;
id date;
convert a / observed=(total,middle);

run;

Creating New Variables
You can use the CONVERT statement to name a new variable to contain the results of the conversion. Using
this feature, you can create several different versions of a series in a single PROC EXPAND step. Specify the
new name after the input variable name and an equal sign:

convert variable=newname ... ;

For example, suppose you are converting quarterly data to monthly and you want both first-of-month and
midmonth estimates for a beginning-of-period variable X. The following statements perform this task:

proc expand data=a out=b
from=qtr to=month;

id date;
convert x=x_begin / observed=beginning;
convert x=x_mid / observed=(beginning,middle);

run;

Transforming Series
The interpolation methods used by PROC EXPAND assume that there are no restrictions on the range of
values that series can have. This assumption can sometimes cause problems if the series must be within a
certain range.

For example, suppose you are converting monthly sales figures to weekly estimates. Sales estimates should
never be less than zero, but since the spline curve ignores this restriction some interpolated values may be
negative. One way to deal with this problem is to transform the input series before fitting the interpolating
spline and then reverse transform the output series.

You can apply various transformations to the input series using the TRANSFORMIN= option in the CON-
VERT statement. (The TRANSFORMIN= option can be abbreviated as TRANSFORM= or TIN=.) You can
apply transformations to the output series using the TRANSFORMOUT= option. (The TRANSFORMOUT=
option can be abbreviated as TOUT=.)
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For example, you might use a logarithmic transformation of the input sales series and exponentiate the
interpolated output series. The following statements fit a spline curve to the log of SALES and then
exponentiate the output series:

proc expand data=a out=b from=month to=week;
id date;
convert sales / observed=total

transformin=(log)
transformout=(exp);

run;

Note that the transformations specified by the TRANSFORMIN= option are applied before the data are
interpolated; the cubic spline curve or other interpolation method is fitted to transformed input data. The
transformations specified by the TRANSFORMOUT= option are applied to interpolated values computed
from the curves fit to the transformed input data.

As another example, suppose you are interpolating missing values in a series of market share estimates.
Market shares must be between 0% and 100%, but applying a spline interpolation to the raw series can
produce estimates outside of this range.

The following statements use the logistic transformation to transform proportions in the range 0 to 1 to values
in the range �1 toC1. The TIN= option first divides the market shares by 100 to rescale percent values to
proportions and then applies the LOGIT function. The TOUT= option applies the inverse logistic function
ILOGIT to the interpolated values to convert back to proportions and then multiplies by 100 to rescale back
to percentages.

proc expand data=a out=b;
id date;
convert mshare / tin=( / 100 logit )

tout=( ilogit * 100 );
run;

When more than one transformation is specified in the TRANSFORMIN= or TRANSFORMOUT= option,
the transformations are applied in the order in which they are listed. Thus in the preceding example the
complete input transformation is logit(mshare/100) (and not logit(mshare)/100) because the division operation
is listed first in the TIN= option.

You can also use the TRANSFORM= (or TRANSFORMOUT=) option as a convenient way to do calculations
normally performed with the SAS DATA step. For example, the following statements add the lead of X to the
data set A. The METHOD=NONE option is used to suppress interpolation.

proc expand data=a method=none;
id date;
convert x=xlead / transform=(lead);

run;

Any number of operations can be listed in the TRANSFORMIN= and TRANSFORMOUT= options. For a
list of the operations supported, see Table 16.2.
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Syntax: EXPAND Procedure
The following statements are available in the EXPAND procedure:

PROC EXPAND options ;
BY variables ;
CONVERT variables / options ;
ID variable ;

Functional Summary
The statements and options controlling the EXPAND procedure are summarized in Table 16.1.

Table 16.1 Functional Summary

Description Statement Option

Statements
Specify options PROC EXPAND
Specify BY-group processing BY
Specify conversion options CONVERT
Specify the ID variable ID

Data Set Options
Specify the input data set PROC EXPAND DATA=
Extrapolate values before or after input series PROC EXPAND EXTRAPOLATE
Specify the output data set PROC EXPAND OUT=
Write interpolating functions to a data set PROC EXPAND OUTEST=

Input and Output Frequencies
Control the alignment of SAS date values PROC EXPAND ALIGN=
Specify frequency conversion factor PROC EXPAND FACTOR=
Specify input frequency PROC EXPAND FROM=
Specify output frequency PROC EXPAND TO=

Interpolation Control Options
Specify interpolation method for all series PROC EXPAND METHOD=
Specify interpolation method for series CONVERT METHOD=
Specify observation characteristics for series PROC EXPAND OBSERVED=
Specify observation characteristics for series CONVERT OBSERVED=
Specify transformations of the input series CONVERT TRANSFORMIN=
specify transformations of the output series CONVERT TRANSFORMOUT=

Graphical Output Control Options
Specify graphical output PROC EXPAND PLOTS=
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The following sections describe the PROC EXPAND statement and then describe the other statements in
alphabetical order.

PROC EXPAND Statement
PROC EXPAND options ;

You can specify the following options:

Data Set Options

DATA=SAS-data-set
names the input data set. If the DATA= option is omitted, the most recently created SAS data set is
used.

OUT=SAS-data-set
names the output data set containing the resulting time series. If OUT= is not specified, the data set
is named using the DATAn convention. For more information, see the section “OUT= Data Set” on
page 912.

OUTEST=SAS-data-set
names an output data set containing the coefficients of the spline curves fit to the input series. If the
OUTEST= option is not specified, the spline coefficients are not output. For more information, see the
section “OUTEST= Data Set” on page 913.

Options That Define Input and Output Frequencies

ALIGN=option
controls the alignment of SAS dates used to identify output observations. The ALIGN= option
allows the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.

FACTOR=n

FACTOR=( n : m )
specifies the number of output observations to be created from the input observations. FACTOR=n
specifies that n output observations are to be produced for each input observation. FACTOR=( n : m )
specifies that n output observations are to be produced for each group of m input observations.
FACTOR=n is the same as FACTOR=(n : 1).

In the FACTOR=() option, a comma can be used instead of a colon or the delimiter can be omitted.
Thus FACTOR=( n, m ) or FACTOR=( n m ) is the same as FACTOR=( n : m ).

The FACTOR= option cannot be used if the TO= option is used. The default value is FACTOR=(1:1).
For more information, see the section “Frequency Conversion” on page 891.
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FROM=interval
specifies the time interval between observations in the input data set. Examples of FROM= values
are YEAR, QTR, MONTH, DAY, and HOUR. For a complete description and examples of interval
specifications, see Chapter 5, “Date Intervals, Formats, and Functions.”

TO=interval
specifies the time interval between observations in the output data set. By default, the TO= interval
is generated from the combination of the FROM= and the FACTOR= values or is set to be the same
as the FROM= value if FACTOR= is not specified. For a description of interval specifications, see
Chapter 5, “Date Intervals, Formats, and Functions.”

Options to Control the Interpolation

EXTRAPOLATE
specifies that missing values at the beginning or end of input series be replaced with values produced
by a linear extrapolation of the interpolating curve fit to the input series. For more information, see the
section “Extrapolation” on page 893.

By default, PROC EXPAND avoids extrapolating values beyond the first or last input value for a series
and only interpolates values within the range of the nonmissing input values. Note that the extrapolated
values are often not very accurate and for the SPLINE method the EXTRAPOLATE option results
may be very unreasonable. The EXTRAPOLATE option is rarely used.

METHOD=option

METHOD=SPLINE( constraint < , constraint > )
specifies the method used to convert the data series. The methods supported are SPLINE, JOIN,
STEP, AGGREGATE, and NONE. The METHOD= option specified in the PROC EXPAND statement
can be overridden for particular series by the METHOD= option in the CONVERT statement. The
default is METHOD=SPLINE. The constraint specifications for METHOD=SPLINE can have the
values NOTAKNOT (the default), NATURAL, SLOPE=value, and/or CURVATURE=value. For more
information about these methods, see the section “Conversion Methods” on page 896.

OBSERVED=value

OBSERVED=( from-value , to-value )
indicates the observation characteristics of the input time series and of the output series. Specifying
the OBSERVED= option in the PROC EXPAND statement sets the default OBSERVED= value for
subsequent CONVERT statements. For more information, see the sections “CONVERT Statement” on
page 889 and “OBSERVED= Option” on page 894. The default is OBSERVED=BEGINNING.

Options to Control Graphical Output

PLOTS=option | ( options )
specifies the graphical output desired. If the PLOTS= option is used, the specified graphical output
is produced for each output variable that is specified by a CONVERT statement. By default, the
EXPAND procedure produces no graphical output. The following PLOTS= options are available:

INPUT plots the input series.

TRANSFORMIN plots the transformed input series. The TRANSFORMIN= option must
also be specified in the CONVERT statement.
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CROSSINPUT plots both the input series and the transformed input series on one plot with
two Y axes. The input and transformed series are shown on separate scales.
The TRANSFORMIN= option must also be specified in the CONVERT
statement.

JOINTINPUT plots both the input series and the transformed input series on one plot with
one Y axis. The input and transformed series are shown on the same scale.
The TRANSFORMIN= option must also be specified in the CONVERT
statement.

CONVERTED plots the converted series after input transformations and interpolation,
but before any TRANSFORMOUT= transformations are applied. The
METHOD= option must also be specified in the PROC EXPAND or
CONVERT statements.

TRANSFORMOUT plots the transformed output series. The TRANSFORMOUT= option must
also be specified in the CONVERT statement.

CROSSOUTPUT plots both the converted series and the transformed output series on one
plot with two Y axes. The converted and transformed output series are
shown on separate scales. The TRANSFORMOUT= option must also be
specified in the CONVERT statement.

JOINTOUTPUT plots both the converted series and the transformed output series on one
plot with one Y axis. The converted and transformed output series are
shown on the same scale. The TRANSFORMOUT= option must also be
specified in the CONVERT statement.

OUTPUT plots the series stored in the OUT= data set. The OUTPUT option does
not require any options to be specified in the CONVERT statement.

ALL produces all plots except the joint and cross plots. PLOTS=ALL
is the same as PLOTS=(INPUT TRANFORMIN CONVERTED
TRANSFORMOUT).

The PLOTS= option produces results associated with each CONVERT statement output variable and
the options listed in the PLOTS= specification. For more information, see the section “PLOTS= Option
Details” on page 915.

BY Statement
BY variables ;

A BY statement can be used with PROC EXPAND to obtain separate analyses on observations in groups
defined by the BY variables. The input data set must be sorted by the BY variables and be sorted by the ID
variable within each BY group.

Use a BY statement when you want to interpolate or convert time series within levels of a cross-sectional
variable. For example, suppose you have a data set STATE containing annual estimates of average disposable
personal income per capita (DPI) by state and you want quarterly estimates by state. These statements convert
the DPI series within each state:
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proc sort data=state;
by state date;

run;

proc expand data=state out=stateqtr from=year to=qtr;
convert dpi;
by state;
id date;

run;

CONVERT Statement
CONVERT variable = newname . . . < / options > ;

The CONVERT statement lists the variables to be processed. Only numeric variables can be processed.

For each of the variables listed, a new variable name can be specified after an equal sign to name the variable
in the output data set that contains the converted values. If a name for the output series is not given, the
variable in the output data set has the same name as the input variable. Variable lists may be used only when
no name is given for the output series.

For example, variable lists can be specified as follows:

convert y1-y25 / observed=(beginning,end);
convert x--a / observed=average;
convert x-numeric-a / observed=average;

Any number of CONVERT statements can be used. If no CONVERT statement is used, all the numeric
variables in the input data set except those appearing in the BY and ID statements are processed.

The following options can be used with the CONVERT statement:

METHOD=option

METHOD=SPLINE( constraint < , constraint > )
specifies the method used to convert the data series. (The method specified by the METHOD=
option is applied to the input data series after applying any transformations specified by the TRANS-
FORMIN= option.) The methods supported are SPLINE, JOIN, STEP, AGGREGATE, and NONE.
The METHOD= option specified in the PROC EXPAND statement can be overridden for particular
series by the METHOD= option in the CONVERT statement. The default is METHOD=SPLINE.
The constraint specifications for METHOD=SPLINE can have the values NOTAKNOT (the default),
NATURAL, SLOPE=value, and/or CURVATURE=value. For more information about these methods,
see the section “Conversion Methods” on page 896.

OBSERVED=value

OBSERVED=( from-value , to-value )
indicates the observation characteristics of the input time series and of the output series. The values
supported are TOTAL, AVERAGE, BEGINNING, MIDDLE, and END. In addition, DERIVATIVE
can be specified as the to-value when the SPLINE method is used.

When only one value is specified, that value specifies both the from-value and the to-value. (That
is, OBSERVED=value is equivalent to OBSERVED=(value, value).) If the OBSERVED= op-
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tion is omitted from both the PROC EXPAND and the CONVERT statements, the default is OB-
SERVED=(BEGINNING, BEGINNING). For more information, see the section “OBSERVED=
Option” on page 894.

TRANSFORMIN=( operation . . . )
specifies a list of transformations to be applied to the input series before the interpolating function
is fit. The operations are applied in the order listed. For the operations that can be specified, see the
section “Transformation Operations” on page 898. The TRANSFORMIN= option can be abbreviated
as TRANSIN=, TIN=, or TRANSFORM=.

TRANSFORMOUT=( operation . . . )
specifies a list of transformations to be applied to the output series. The operations are applied in the
order listed. For the operations that can be specified, see the section “Transformation Operations” on
page 898. The TRANSFORMOUT= option can be abbreviated as TRANSOUT= or TOUT=.

ID Statement
ID variable ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date or datetime values.

The input data must form time series. This means that the observations in the input data set must be sorted by
the ID variable (within the BY variables, if any). Moreover, there should be no duplicate observations, and
no two observations should have ID values within the same time interval as defined by the FROM= option.

If the ID statement is omitted, SAS date or datetime values are generated to label the input observations.
These ID values are generated by assuming that the input data set starts at a SAS date value of 0, that is, 1
January 1960. This default starting date is then incremented for each observation by the FROM= interval
(using the same logic as the DATA step INTNX function). If the FROM= option is not specified, the ID
values are generated as the observation count minus 1. When the ID statement is not used, an ID variable is
added to the output data set named either DATE or DATETIME, depending on the value specified in the TO=
option. If neither the TO= option nor the FROM= option is given, the ID variable in the output data set is
named TIME.
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Details: EXPAND Procedure

Frequency Conversion
Frequency conversion is controlled by the FROM=, TO=, and FACTOR= options. The possible combinations
of these options are explained in the following:

None Used
If FROM=, TO=, and FACTOR= are not specified, no frequency conversion is done. The data are processed
to interpolate any missing values and perform any specified transformations. Each input observation produces
one output observation.

FACTOR=(n:m)
FACTOR=(n :m ) specifies that n output observations are produced for each group of m input observations.
The fraction m /n is reduced first: thus FACTOR=(10:6) is equivalent to FACTOR=(5:3). Note that if m /n
=1, the result is the same as the case given previously under “None Used.”

FROM=interval
The FROM= option used alone establishes the frequency and interval widths of the input observations.
Missing values are interpolated, and any specified transformations are performed, but no frequency conversion
is done.

TO=interval
When the TO= option is used without the FROM= option, output observations with the TO= frequency are
generated over the range of input ID values. The first output observation is for the TO= interval containing
the ID value of the first input observation; the last output observation is for the TO= interval containing the
ID value of the last input observation. The input observations are not assumed to form regular time series and
may represent aperiodic points in time. An ID variable is required to give the date or datetime of the input
observations.

FROM=interval TO=interval
When both the FROM= and TO= options are used, the input observations have the frequency given by the
FROM= interval, and the output observations have the frequency given by the TO= interval.

FROM=interval FACTOR=(n:m)
When both the FROM= and FACTOR= options are used, a TO= interval is inferred from the combination of
the FROM=interval and the FACTOR=(n:m ) values specified. For example, FROM=YEAR FACTOR=4 is
the same as FROM=YEAR TO=QTR. Also, FROM=YEAR FACTOR=(3:2) is the same as FROM=YEAR
used with TO=MONTH8. Once the implied TO= interval is determined, this combination operates the same
as if FROM= and TO= had been specified. If no valid TO= interval can be constructed from the combination
of the FROM= and FACTOR= options, an error is produced.

TO=interval FACTOR=(n:m)
The combination of the TO= option and the FACTOR= option is not allowed and produces an error.

ALIGN= option
Controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows the
following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E. BEGINNING is
the default.
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Converting to a Lower Frequency

When converting to a lower frequency, the results are either exact or approximate, depending on whether or
not the input interval nests within the output interval and depending on the need to interpolate missing values
within the series. If the TO= interval is nested within the FROM= interval (as when converting from monthly
to yearly), and if there are no missing input values or partial periods, the results are exact.

When values are missing or the FROM= interval is not nested within the TO= interval (as when aggregating
from weekly to monthly), the results depend on an interpolation. The METHOD=AGGREGATE option
always produces exact results, never an interpolation. However, this method can only be used if the FROM=
interval is nested within the TO= interval.

Identifying Observations
The variable specified in the ID statement is used to identify the observations. Usually, SAS date or datetime
values are used for this variable. PROC EXPAND uses the ID variable to do the following:

� identify the time interval of the input values

� validate the input data set observations

� compute the ID values for the observations in the output data set

Identifying the Input Time Intervals

When the FROM= option is specified, observations are understood to refer to the whole time interval and
not to a single time point. The ID values are interpreted as identifying the FROM= time interval containing
the value. In addition, the widths of these input intervals are used by the OBSERVED= values TOTAL,
AVERAGE, MIDDLE, and END.

For example, if FROM=MONTH is specified, then each observation is for the whole calendar month
containing the ID value for the observation, and the width of the time interval covered by the observation is
the number of days in that month. Therefore, if FROM=MONTH, the ID value ’31MAR92’D is equivalent
to the ID value ’1MAR92’D—both of these ID values identify the same interval, March of 1992.

Widths of Input Time Intervals

When the FROM= option is not specified, the ID variable values are usually interpreted as referring to points
in time. However, if an OBSERVED= option value is specified that assumes the observations refer to whole
intervals and also requires interval widths (TOTAL or AVERAGE), then, in the absence of the FROM=
specification, interval widths are assumed to be the time span between ID values. For the last observation,
the interval width is assumed to be the same as for the next to last observation. (If neither the FROM= option
nor the ID statement is specified, interval widths are assumed to be 1.0.) A note is printed in the SAS log
warning that this assumption is made.
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Validating the Input Data Set Observations

The ID variable is used to verify that successive observations read from the input data set correspond to
sequential FROM= intervals. When the FROM= option is not used, PROC EXPAND verifies that the ID
values are nonmissing and in ascending order. An error message is produced and the observation is ignored
when an invalid ID value is found in the input data set.

ID values for Observations in the Output Data Set

The time unit used for the ID variable in the output data set is controlled by the interval value specified by the
TO= option. If you specify a date interval for the TO= value, the ID variable values in the output data set are
SAS date values. If you specify a datetime interval for the TO= value, the ID variable values in the output
data set are SAS datetime values.

The date or datetime values for the ID variable for output observations are the first date or datetime of the TO=
interval, unless the ALIGN= option is used to specify a different alignment. (For example, if TO=WEEK is
specified, then the output dates are Sundays. If TO=WEEK.2 is specified, then the output date are Mondays.)
For more information about interval specifications, see Chapter 5, “Date Intervals, Formats, and Functions.”

Range of Output Observations
If no frequency conversion is done, the range of output observations is the same as in the input data set.

When frequency conversion is done, the observations in the output data set range from the earliest start of
any result series to the latest end of any result series. Observations at the beginning or end of the input range
for which all result values are missing are not written to the OUT= data set.

When the EXTRAPOLATE option is not used, the range of the nonmissing output results for each series
is as follows. The first result value is for the TO= interval that contains the ID value of the start of the
FROM= interval containing the ID value of the first nonmissing input observation for the series. The last
result value is for the TO= interval that contains the end of the FROM= interval containing the ID value of
the last nonmissing input observation for the series.

When the EXTRAPOLATE option is used, result values for all series are computed for the full time range
covered by the input data set.

Extrapolation
The spline functions fit by the EXPAND procedure are very good at approximating continuous curves within
the time range of the input data but poor at extrapolating beyond the range of the data. The accuracy of the
results produced by PROC EXPAND may be somewhat less at the ends of the output series than at time
periods for which there are several input values at both earlier and later times. The curves fit by PROC
EXPAND should not be used for forecasting.

PROC EXPAND normally avoids extrapolation of values beyond the time range of the nonmissing input
data for a series, unless the EXTRAPOLATE option is used. However, if the start or end of the input series
does not correspond to the start or end of an output interval, some output values may depend in part on an
extrapolation.
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For example, if FROM=YEAR, TO=WEEK, and OBSERVED=BEGINNING are specified, then the first
observation output for a series is for the week of 1 January of the first nonmissing input year. If 1 January of
that year is not a Sunday, the beginning of this week falls before the date of the first input value, and therefore
a beginning-of-period output value for this week is extrapolated.

This extrapolation is made only to the extent needed to complete the terminal output intervals that overlap
the endpoints of the input series and is limited to no more than the width of one FROM= interval or one
TO= interval, whichever is less. This restriction of the extrapolation to complete terminal output intervals is
applied to each series separately, and it takes into account the OBSERVED= option for the input and output
series.

When the EXTRAPOLATE option is used, the normal restriction on extrapolation is overridden. Output
values are computed for the full time range covered by the input data set.

For the SPLINE method, extrapolation is performed by a linear projection of the trend of the cubic spline
curve fit to the input data, not by extrapolation of the first and last cubic segments.

The EXTRAPOLATE option should be used with caution.

OBSERVED= Option
The values of the CONVERT statement OBSERVED= option are as follows:

BEGINNING indicates that the data are beginning-of-period values. OBSERVED=BEGINNING is the
default.

MIDDLE indicates that the data are period midpoint values.

ENDING indicates that the data represent end-of-period values.

TOTAL indicates that the data values represent period totals for the time interval corresponding to
the observation.

AVERAGE indicates that the data values represent period averages.

DERIVATIVE requests that the output series be the derivatives of the cubic spline curve fit to the input
data by the SPLINE method.

If only one value is specified in the OBSERVED= option, that value applies to both the input and the output
series. For example, OBSERVED=TOTAL is the same as OBSERVED=(TOTAL,TOTAL), which indicates
that the input values represent totals over the time intervals corresponding to the input observations, and the
converted output values also represent period totals. The value DERIVATIVE can be used only as the second
OBSERVED= option value, and it can be used only when METHOD=SPLINE is specified or is the default
method.

Since the TOTAL, AVERAGE, MIDDLE, and END cases require that the width of each input interval be
known, both the FROM= option and an ID statement are normally required if one of these observation
characteristics is specified for any series. However, if the FROM= option is not specified, each input interval
is assumed to extend from the ID value for the observation to the ID value of the next observation, and
the width of the interval for the last observation is assumed to be the same as the width for the next to last
observation.
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Scale of OBSERVED=AVERAGE Values

The average values are assumed to be expressed in the time units defined by the FROM= or TO= option. That
is, the product of the average value for an interval and the width of the interval is assumed to equal the total
value for the interval. For purposes of interpolation, OBSERVED=AVERAGE values are first converted to
OBSERVED=TOTAL values using this assumption, and then the interpolated totals are converted back to
averages by dividing by the widths of the output intervals.

For example, suppose the options FROM=MONTH, TO=HOUR, and OBSERVED=AVERAGE are specified.
Since FROM=MONTH is specified, each input value is assumed to represent an average rate per day such
that the product of the value and the number of days in the month is equal to the total for the month.
The input values are assumed to represent a per-day rate because FROM=MONTH implies SAS date ID
values that measure time in days, and therefore the widths of MONTH intervals are measured in days. If
FROM=DTMONTH is used instead, the values are assumed to represent a per-second rate, because the
widths of DTMONTH intervals are measured in seconds.

Since TO=HOUR is specified, the output values are scaled as an average rate per second such that the product
of each output value and the number of seconds in an hour (3600) is equal to the interpolated hourly total. A
per-second rate is used because TO=HOUR implies SAS datetime ID values that measure time in seconds,
and therefore the widths of HOUR intervals are measured in seconds.

Note that the scale assumed for OBSERVED=AVERAGE data is important only when converting between
AVERAGE and another OBSERVED= option, or when converting between SAS date and SAS datetime ID
values. When both the input and the output series are AVERAGE values, and the units for the ID values are
not changed, the scale assumed does not matter.

For example, suppose you are converting gross domestic product (GDP) from quarterly to monthly. The GDP
values are quarterly averages measured at annual rates. If you want the interpolated monthly values to also be
measured at annual rates, then the option OBSERVED=AVERAGE works fine. Since there is no change of
scale involved in this problem, it makes no difference that PROC EXPAND assumes daily rates instead of
annual rates.

However, suppose you want to convert GDP from quarterly to monthly and also convert from annual
rates to monthly rates, so that the result is total gross domestic product for the month. Using the option
OBSERVED=(AVERAGE,TOTAL) would fail, because PROC EXPAND assumes the average is scaled to
daily, not annual, rates.

One solution is to rescale to quarterly totals and treat the data as totals. You could use the options TRANS-
FORMIN=( / 4 ) OBSERVED=TOTAL. Alternatively, you could treat the data as averages but first convert to
daily rates. In this case you would use the options TRANSFORMIN=( / 365.25 ) OBSERVED=AVERAGE.

Results of the OBSERVED=DERIVATIVE Option

If the first value of the OBSERVED= option is BEGINNING, TOTAL, or AVERAGE, the result is the
derivative of the spline curve evaluated at first-of-period ID values for the output observation. For OB-
SERVED=(MIDDLE,DERIVATIVE), the derivative of the function is evaluated at output interval midpoints.
For OBSERVED=(END,DERIVATIVE), the derivative is evaluated at end-of-period ID values.
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Conversion Methods

The SPLINE Method

The SPLINE method fits a cubic spline curve to the input values. A cubic spline is a segmented function
consisting of third-degree (cubic) polynomial functions joined together so that the whole curve and its first
and second derivatives are continuous.

For point-in-time input data, the spline curve is constrained to pass through the given data points. For interval
total or average data, the definite integrals of the spline over the input intervals are constrained to equal the
given interval totals.

For boundary constraints, the not-a-knot condition is used by default. This means that the first two spline
pieces are constrained to be part of the same cubic curve, as are the last two pieces. Thus the spline used
by PROC EXPAND by default is not the same as the commonly used natural spline, which uses zero
second-derivative endpoint constraints. While De Boor (1978) recommends the not-a-knot constraint for
cubic spline interpolation, using this constraint can sometimes produce anomalous results at the ends of the
interpolated series. PROC EXPAND provides options to specify other endpoint constraints for spline curves.

To specify endpoint constraints, use the following form of the METHOD= option.

METHOD=SPLINE( constraint < , constraint > )
The first constraint specification applies to the lower endpoint, and the second constraint specification
applies to the upper endpoint. If only one constraint is specified, it applies to both the lower and upper
endpoints.

The constraint specifications can have the following values:

NOTAKNOT specifies the not-a-knot constraint. This is the default.

NATURAL specifies the natural spline constraint. The second derivative of the spline curve
is constrained to be zero at the endpoint.

SLOPE=value specifies the first derivative of the spline curve at the endpoint. The value
specified can be any positive or negative number, but extreme values may
produce unreasonable results.

CURVATURE=value specifies the second derivative of the spline curve at the endpoint. The value
specified can be any positive or negative number, but extreme values may
produce unreasonable results. Specifying CURVATURE=0 is equivalent to
specifying the NATURAL option.

For example, to specify natural spline interpolation, use the following option in the CONVERT or
PROC EXPAND statement:

method=spline(natural)

For OBSERVED=BEGINNING, MIDDLE, and END series, the spline knots are placed at the be-
ginning, middle, and end of each input interval, respectively. For total or averaged series, the spline
knots are set at the start of the first interval, at the end of the last interval, and at the interval midpoints,
except that there are no knots for the first two and last two midpoints.
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Once the cubic spline curve is fit to the data, the spline is extended by adding linear segments at the
beginning and end. These linear segments are used for extrapolating values beyond the range of the
input data.

For point-in-time output series, the spline function is evaluated at the appropriate points. For interval
total or average output series, the spline function is integrated over the output intervals.

The JOIN Method

The JOIN method fits a continuous curve to the data by connecting successive straight line segments. For
point-in-time data, the JOIN method connects successive nonmissing input values with straight lines. For
interval total or average data, interval midpoints are used as the break points, and ordinates are chosen so that
the integrals of the piecewise linear curve agree with the input totals.

For point-in-time output series, the JOIN function is evaluated at the appropriate points. For interval total or
average output series, the JOIN function is integrated over the output intervals.

The STEP Method

The STEP method fits a discontinuous piecewise constant curve. For point-in-time input data, the resulting
step function is equal to the most recent input value. For interval total or average data, the step function is
equal to the average value for the interval.

For point-in-time output series, the step function is evaluated at the appropriate points. For interval total or
average output series, the step function is integrated over the output intervals.

The AGGREGATE Method

The AGGREGATE method performs simple aggregation of time series without interpolation of missing
values.

If the input data are totals or averages, the results are the sums or averages, respectively, of the input values
for observations corresponding to the output observations. That is, if either TOTAL or AVERAGE is specified
for the OBSERVED= option, the METHOD=AGGREGATE result is the sum or mean of the input values
corresponding to the output observation. For example, suppose METHOD=AGGREGATE, FROM=MONTH,
and TO=YEAR are specified. For OBSERVED=TOTAL series, the result for each output year is the sum of
the input values over the months of that year. If any input value is missing, the corresponding sum or mean is
also a missing value.

If the input data are point-in-time values, the result value of each output observation equals the
input value for a selected input observation determined by the OBSERVED= attribute. For ex-
ample, suppose METHOD=AGGREGATE, FROM=MONTH, and TO=YEAR are specified. For
OBSERVED=BEGINNING series, January observations are selected as the annual values. For
OBSERVED=MIDDLE series, July observations are selected as the annual values. For OBSERVED=END
series, December observations are selected as the annual values. If the selected value is missing, the output
annual value is missing.

The AGGREGATE method can be used only when the FROM= intervals are nested within the TO= intervals.
For example, you can use METHOD=AGGREGATE when FROM=MONTH and TO=QTR because months
are nested within quarters. You cannot use METHOD=AGGREGATE when FROM=WEEK and TO=QTR
because weeks are not nested within quarters.
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In addition, the AGGREGATE method cannot convert between point-in-time data and interval total or average
data. Conversions between TOTAL and AVERAGE data are allowed, but conversions between BEGINNING,
MIDDLE, and END are not.

Missing input values produce missing result values for METHOD=AGGREGATE. However, gaps in the
sequence of input observations are not allowed. For example, if FROM=MONTH, you may have a missing
value for a variable in an observation for a given February. But if an observation for January is followed by
an observation for March, there is a gap in the data, and METHOD=AGGREGATE cannot be used.

When the AGGREGATE method is used, there is no interpolating curve, and therefore the EXTRAPOLATE
option is not allowed.

Alternate methods for aggregating or accumulating time series data are supported by the TIMESERIES
procedure. For more information, see Chapter 39, “The TIMESERIES Procedure.”

METHOD=NONE

The option METHOD=NONE specifies that no interpolation be performed. This option is normally used in
conjunction with the TRANSFORMIN= or TRANSFORMOUT= option.

When METHOD=NONE is specified, there is no difference between the TRANSFORMIN= and TRANS-
FORMOUT= options; if both are specified, the TRANSFORMIN= operations are performed first, followed by
the TRANSFORMOUT= operations. TRANSFORM= can be used as an abbreviation for TRANSFORMIN=.
METHOD=NONE cannot be used when frequency conversion is specified.

Transformation Operations
The operations that can be used in the TRANSFORMIN= and TRANSFORMOUT= options are shown in
Table 16.2. Operations are applied to each value of the series. Each value of the series is replaced by the
result of the operation.

In Table 16.2, xt or x represents the value of the series at a particular time period t before the transformation
is applied, yt represents the value of the result series, and N represents the total number of observations.

The notation noptional indicates that the argument noptional is an optional integer; the default is 1. The notation
window is used as the argument for the moving statistics operators, and it indicates that you can specify either
a number of periods n (where n is an integer) or a list of n weights in parentheses. The internal maximum
value of the number of periods n is clipped at the number of observations in the series. The notation sequence
is used as the argument for the sequence operators, and it indicates that you must specify a sequence of
numbers. The notation s indicates the length of seasonality, and it is a required argument.

Table 16.2 Transformation Operations

Syntax Result

+ number Adds the specified number : x C number
� number Subtracts the specified number : x � number
* number Multiplies by the specified number : x � number
/ number Divides by the specified number : x=number
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Table 16.2 continued

Syntax Result

ABS Absolute value: jxj
ADJUST Indicates that the following moving window summation or

product operator should be adjusted for window width
CD_I s Classical decomposition irregular component
CD_S s Classical decomposition seasonal component
CD_SA s Classical decomposition seasonally adjusted series
CD_TC s Classical decomposition trend-cycle component
CDA_I s Classical decomposition (additive) irregular component
CDA_S s Classical decomposition (additive) seasonal component
CDA_SA s Classical decomposition (additive) seasonally adjusted series
CEIL Smallest integer greater than or equal to x : ceil.x/
CMOVAVE window Centered moving average
CMOVCSS window Centered moving corrected sum of squares
CMOVGMEAN window Centered moving geometric mean

for window = number of periods, n:
.
Qjmax
jDjmin

xtCj /
1=n

jmin D �.nC n mod 2/=2C 1
jmax D .n � n mod 2/=2
for window = weight list, w:

.
Qjmax
jDjmin

x
wj�jmin
tCj /1=

Pn�1
jD0wj

CMOVMAX n Centered moving maximum
CMOVMED n Centered moving median
CMOVMIN n Centered moving minimum
CMOVPROD window Centered moving product

for window = number of periods, n:Qjmax
jDjmin

xtCj

for window = weight list, w:

.
Qjmax
jDjmin

x
wj�jmin
tCj /1=

Pn�1
jD0wj

CMOVRANGE n Centered moving range
CMOVRANK n Centered moving rank
CMOVSTD window Centered moving standard deviation
CMOVSUM n Centered moving sum
CMOVTVALUE window Centered moving t value
CMOVUSS window Centered moving uncorrected sum of squares
CMOVVAR window Centered moving variance
CUAVE noptional Cumulative average
CUCSS noptional Cumulative corrected sum of squares
CUGMEAN noptional Cumulative geometric mean
CUMAX noptional Cumulative maximum
CUMED noptional Cumulative median
CUMIN noptional Cumulative minimum
CUPROD noptional Cumulative product
CURANK noptional Cumulative rank
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Table 16.2 continued

Syntax Result

CURANGE noptional Cumulative range
CUSTD noptional Cumulative standard deviation
CUSUM noptional Cumulative sum
CUTVALUE noptional Cumulative t value
CUUSS noptional Cumulative uncorrected sum of squares
CUVAR noptional Cumulative variance
DIF noptional Span n difference: xt � xt�n
EWMA number Exponentially weighted moving average of x with

smoothing weight number, where 0 < number < 1:
yt D number xt C .1 � number/yt�1.
This operation is also called simple exponential smoothing.

EXP Exponential function: exp.x/
FDIF d Fractional difference with difference order d where

0 < d < 0:5

FLOOR Largest integer less than or equal to x : floor.x/
FSUM d Fractional summation with summation order d where

0 < d < 0:5

HP_T lambda Hodrick-Prescott Filter trend component where lambda is the
nonnegative filter parameter

HP_C lambda Hodrick-Prescott Filter cycle component where lambda is the
nonnegative filter parameter

ILOGIT Inverse logistic function: exp.x/
1Cexp.x/

LAG noptional Value of the series n periods earlier: xt�n
LEAD noptional Value of the series n periods later: xtCn
LOG Natural logarithm: log.x/
LOGIT Logistic function: log. x

1�x
/

MAX number Maximum of x and number : max.x; number/
MIN number Minimum of x and number : min.x; number/
> number Missing value if x <D number, else x
>= number Missing value if x < number, else x
= number Missing value if x ¤ number, else x
^= number Missing value if x D number, else x
< number Missing value if x >D number, else x
<= number Missing value if x > number, else x
MOVAVE n Backward moving average of n neighboring values:

1
n

Pn�1
jD0 xt�j

MOVAVE window Backward weighted moving average of neighboring values:
.
Pn
jD1wjxt�nCj /=.

Pn
jD1wj /

MOVCSS window Backward moving corrected sum of squares
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Table 16.2 continued

Syntax Result

MOVGMEAN window Backward moving geometric mean
for window = number of periods, n:
.
Qn
jD1 xt�nCj /

1=n

for window = weight list, w:
.
Qn
jD1 x

wj
t�nCj /

1=
Pn
jD1wj

MOVMAX n Backward moving maximum
MOVMED n Backward moving median
MOVMIN n Backward moving minimum
MOVPROD window Backward moving product

for window = number of periods, n:Qn
jD1 xt�nCj

for window = weight list, w:
.
Qn
jD1 x

wj
t�nCj /

1=
Pn
jD1wj

MOVRANGE n Backward moving range
MOVRANK n Backward moving rank
MOVSTD window Backward moving weighted standard deviation:q

1
n�1

Pn
jD1wi .xj � xw/

2

MOVSUM n Backward moving sum
MOVTVALUE window Backward moving t value
MOVUSS window Backward moving uncorrected sum of squares
MOVVAR window Backward moving variance
MISSONLY <MEAN> Indicates that the following moving time window

statistic operator should replace only missing values with the
moving statistic and should leave nonmissing values
unchanged.
If the option MEAN is specified, then missing values are
replaced by the overall mean of the series.

NEG Changes the sign: �x
NOMISS Indicates that the following moving time window

statistic operator should not allow missing values
PCTDIF n Percent difference of the current value and lag n
PCTSUM n Percent summation of the current value and cumulative sum

n-lag periods
RATIO n Ratio of current value to lag n
RECIPROCAL Reciprocal: 1=x
REVERSE Reverses the series: x

N�t

SCALE n1 n2 Scales the series between n1 and n2
SEQADD sequence Adds sequence values to series
SEQDIV sequence Divides the series by sequence values
SEQMINUS sequence Subtracts sequence values to series
SEQMULT sequence Multiplies the series by sequence values
SET (n1 n2) Sets all values of n1 to n2
SETEMBEDDED (n1 n2) Sets embedded values of n1 to n2
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Table 16.2 continued

Syntax Result

SETLEFT (n1 n2) Sets beginning values of n1 to n2
SETMISS number Replaces missing values in the series with the number specified
SETRIGHT (n1 n2) Sets ending values of n1 to n2
SIGN �1, 0, or 1 as x is < 0, equals 0, or > 0, respectively
SQRT Square root:

p
x

SQUARE Square: x2

SUM Cumulative sum:
Pt
jD1 xj

SUM n Cumulative sum of multiples of n-period lags:
xt C xt�n C xt�2n C � � �

TRIM n Sets xt to missing a value if t�n or t�N � nC 1
TRIMLEFT n Sets xt to missing a value if t�n
TRIMRIGHT n Sets xt to missing a value if t�N � nC 1

Moving Time Window Operators

Some operators compute statistics for a set of values within a moving time window; these are called moving
time window operators. There are centered and backward versions of these operators.

The centered moving time window operators are CMOVAVE, CMOVCSS, CMOVGMEAN, CMOVMAX,
CMOVMED, CMOVMIN, CMOVPROD, CMOVRANGE, CMOVRANK, CMOVSTD, CMOVSUM,
CMOVTVALUE, CMOVUSS, and CMOVVAR. These operators compute statistics of the n values xi
for observations t � .nC n mod 2/=2C 1 � i � t C .n � n mod 2/=2

The backward moving time window operators are MOVAVE, MOVCSS, MOVGMEAN, MOVMAX,
MOVMED, MOVMIN, MOVPROD, MOVRANGE, MOVRANK, MOVSTD, MOVSUM, MOVTVALUE,
MOVUSS, and MOVVAR. These operators compute statistics of the n values xt ; xt�1; : : : ; xt�nC1.

All the moving time window operators accept an argument n specifying the number of periods to include in
the time window. For example, the following statement computes a five-period backward moving average of
X:

convert x=y / transformout=( movave 5 );

In this example, the resulting transformation is

yt D .xt C xt�1 C xt�2 C xt�3 C xt�4/=5

The following statement computes a five-period centered moving average of X:

convert x=y / transformout=( cmovave 5 );

In this example, the resulting transformation is

yt D .xt�2 C xt�1 C xt C xtC1 C xtC2/=5

If the window with a centered moving time window operator is not an odd number, one more lead value than
lag value is included in the time window. For example, the result of the CMOVAVE 4 operator is

yt D .xt�1 C xt C xtC1 C xtC2/=4
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You can compute a forward moving time window operation by combining a backward moving time window
operator with the REVERSE operator. For example, the following statement computes a five-period forward
moving average of X:

convert x=y / transformout=( reverse movave 5 reverse );

In this example, the resulting transformation is

yt D .xt C xtC1 C xtC2 C xtC3 C xtC4/=5

Some of the moving time window operators enable you to specify a list of weight values to compute weighted
statistics. These are CMOVAVE, CMOVCSS, CMOVGMEAN, CMOVPROD, CMOVSTD, CMOVTVALUE,
CMOVUSS, CMOVVAR, MOVAVE, MOVCSS, MOVGMEAN, MOVPROD, MOVSTD, MOVTVALUE,
MOVUSS, and MOVVAR.

To specify a weighted moving time window operator, enter the weight values in parentheses after the operator
name. The window width n is equal to the number of weights that you specify; do not specify n.

For example, the following statement computes a weighted five-period centered moving average of X:

convert x=y / transformout=( cmovave( .1 .2 .4 .2 .1 ) );

In this example, the resulting transformation is

yt D :1xt�2 C :2xt�1 C :4xt C :2xtC1 C :1xtC2

The weight values must be greater than zero. If the weights do not sum to 1, the weights specified are divided
by their sum to produce the weights used to compute the statistic.

A complete time window is not available at the beginning of the series. For the centered operators a complete
window is also not available at the end of the series. The computation of the moving time window operators
is adjusted for these boundary conditions as follows.

For backward moving window operators, the width of the time window is shortened at the beginning of the
series. For example, the results of the MOVSUM 3 operator are

y1 D x1

y2 D x1 C x2

y3 D x1 C x2 C x3

y4 D x2 C x3 C x4

y5 D x3 C x4 C x5

� � �

For centered moving window operators, the width of the time window is shortened at the beginning and the
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end of the series due to unavailable observations. For example, the results of the CMOVSUM 5 operator are

y1 D x1 C x2 C x3

y2 D x1 C x2 C x3 C x4

y3 D x1 C x2 C x3 C x4 C x5

y4 D x2 C x3 C x4 C x5 C x6

� � �

y
N�2

D x
N�4
C x

N�3
C x

N�2
C x

N�1
C x

N

y
N�1

D x
N�3
C x

N�2
C x

N�1
C x

N

y
N
D x

N�2
C x

N�1
C x

N

For weighted moving time window operators, the weights for the unavailable or unused observations are
ignored and the remaining weights renormalized to sum to 1.

Cumulative Statistics Operators

Some operators compute cumulative statistics for a set of current and previous values of the series. The
cumulative statistics operators are CUAVE, CUCSS, CUMAX, CUMED, CUMIN, CURANGE, CUSTD,
CUSUM, CUUSS, and CUVAR.

By default, the cumulative statistics operators compute the statistics from all previous values of the series, so
that yt is based on the set of values xt ; xt�1; : : : ; x1. For example, the following statement computes yt as
the cumulative sum of nonmissing xi values for i�t :

convert x=y / transformout=( cusum );

You can specify a lag increment argument n for the cumulative statistics operators. In this case, the statistic
is computed from the current and every nth previous value. When n is specified these operators compute
statistics of the values xt ; xt�n; xt�2n; : : : ; xt�in for t � in > 0.

For example, the following statement computes yt as the cumulative sum of nonmissing xi values for odd i
when t is odd and for even i when t is even:

convert x=y / transformout=( cusum 2 );

The results of this example are

y1 D x1

y2 D x2

y3 D x1 C x3

y4 D x2 C x4

y5 D x1 C x3 C x5

y6 D x2 C x4 C x6

� � �
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Missing Values

You can truncate the length of the result series by using the TRIM, TRIMLEFT, and TRIMRIGHT operators
to set values to missing at the beginning or end of the series.

You can use these functions to trim the results of moving time window operators so that the result series
contains only values computed from a full width time window. For example, the following statements
compute a centered five-period moving average of X, and they set to missing values at the ends of the series
that are averages of fewer than five values:

convert x=y / transformout=( cmovave 5 trim 2 );

Normally, the moving time window and cumulative statistics operators ignore missing values and compute
their results for the nonmissing values. When preceded by the NOMISS operator, these functions produce a
missing result if any value within the time window is missing.

The NOMISS operator does not perform any calculations, but serves to modify the operation of the moving
time window operator that follows it. The NOMISS operator has no effect unless it is followed by a moving
time window operator.

For example, the following statement computes a five-period moving average of the variable X but produces
a missing value when any of the five values are missing:

convert x=y / transformout=( nomiss movave 5 );

The following statement computes the cumulative sum of the variable X but produces a missing value for all
periods after the first missing X value:

convert x=y / transformout=( nomiss cusum );

Similar to the NOMISS operator, the MISSONLY operator does not perform any calculations (unless followed
by the MEAN option), but it serves to modify the operation of the moving time window operator that follows
it. When preceded by the MISSONLY operator, these moving time window operators replace any missing
values with the moving statistic and leave nonmissing values unchanged.

For example, the following statement replaces any missing values of the variable X with an exponentially
weighted moving average of the past values of X and leaves nonmissing values unchanged. The missing
values are interpolated using the specified exponentially weighted moving average. (This is also called simple
exponential smoothing.)

convert x=y / transformout=( missonly ewma 0.3 );

The following statement replaces any missing values of the variable X with the overall mean of X:

convert x=y / transformout=( missonly mean );

You can use the SETMISS operator to replace missing values with a specified number. For example, the
following statement replaces any missing values of the variable X with the number 8.77:

convert x=y / transformout=( setmiss 8.77 );
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Classical Decomposition Operators

If xt is a seasonal time series with s observations per season, classical decomposition methods “break down”
the time series into four components: trend, cycle, seasonal, and irregular components. The trend and cycle
components are often combined to form the trend-cycle component. There are two basic forms of classical
decomposition: multiplicative and additive, which are show below.

xt D TCtStIt

xt D TCt C St C It

where

TCt is the trend-cycle component

St is the seasonal component or seasonal factors that are periodic with period s and with
mean one (multiplicative) or zero (additive)

It is the irregular or random component that is assumed to have mean one (multiplicative) or
zero (additive)

For multiplicative decomposition, all of the xt values should be positive.

The CD_TC operator computes the trend-cycle component for both the multiplicative and additive models.
When s is odd, this operator computes an s-period centered moving average as follows:

TCt D

bs=2cX
kD�bs=2c

xtCk=s

For example, in the case where s=5, the CD_TC s operator

convert x=tc / transformout=( cd_tc 5 );

is equivalent to the following CMOVAVE operator:

convert x=tc / transformout=( cmovave 5 trim 2 );

When s is even, the CD_TC s operator computes the average of two adjacent s-period centered moving
averages as follows:

TCt D

bs=2c�1X
kD�bs=2c

.xtCk C xtC1Ck/=2s

For example, in the case where s=12, the CD_TC s operator

convert x=tc / transformout=( cd_tc 12 );

is equivalent to the following CMOVAVE operator:
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convert x=tc / transformout=(cmovave 12 movave 2 trim 6);

The CD_S and CDA_S operators compute the seasonal components for the multiplicative and additive models,
respectively. First, the trend-cycle component is computed as shown previously. Second, the seasonal-
irregular component is computed by SIt D xt=TCt for the multiplicative model and by SIt D xt � TCt
for the additive model. The seasonal component is obtained by averaging the seasonal-irregular component
for each season.

SkCjs D
X

tDk mod s

SIt

n=s

where 0�j�n=s and 1�k�s. The seasonal components are normalized to sum to one (multiplicative) or
zero (additive).

The CD_I and CDA_I operators compute the irregular component for the multiplicative and additive models
respectively. First, the seasonal component is computed as shown previously. Next, the irregular component
is determined from the seasonal-irregular and seasonal components as appropriate.

It D SIt=St

It D SIt � St

The CD_SA and CDA_SA operators compute the seasonally adjusted time series for the multiplicative and
additive models, respectively. After decomposition, the original time series can be seasonally adjusted as
appropriate.

Qxt D xt=St D TCtIt

Qxt D xt � St D TCt C It

The following statements compute all the multiplicative classical decomposition components for the variable
X for s=12:

convert x=tc / transformout=( cd_tc 12 );
convert x=s / transformout=( cd_s 12 );
convert x=i / transformout=( cd_i 12 );
convert x=sa / transformout=( cd_sa 12 );

The following statements compute all the additive classical decomposition components for the variable X for
s=4:

convert x=tc / transformout=( cd_tc 4 );
convert x=s / transformout=( cda_s 4 );
convert x=i / transformout=( cda_i 4 );
convert x=sa / transformout=( cda_sa 4 );

The X12 and X11 procedures provide other methods for seasonal decomposition. See Chapter 45, “The X12
Procedure,” and Chapter 44, “The X11 Procedure.”
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Fractional Operators

For fractional operators, the parameter, d, represents the order of fractional differencing. Fractional summation
is the inverse operation of fractional differencing.

Examples of Usage
Suppose that X is a fractionally integrated time series variable of order d=0.25. Fractionally differencing X
forms a time series variable Y, which is not integrated.

convert x=y / transformout=(fdif 0.25);

Suppose that Z is a non-integrated time series variable. Fractionally summing Z forms a time series W, which
is fractionally integrated of order d D 0:25.

convert z=w / transformout=(fsum 0.25);

Moving Rank Operators

For the rank operators, the ranks are computed based on the current value with respect to the cumulative,
centered, or moving window values. If the current value is missing, the transformed current value is set to
missing. If the NOMISS option was previously specified and if any missing values are present in the moving
window, the transformed current value is set to missing. Otherwise, redundant values from the moving
window are removed and the rank of the current value is computed among the unique values of the moving
window.

Examples of Usage
The trades of a particular security are recorded for each weekday in a variable named PRICE. Given the
historical daily trades, the ranking of the price of this security for each trading day, considering its entire past
history, can be computed as follows:

convert price=history / transformout=( curank );

The ranking of the price of this security for each trading day considering the previous week’s history can be
computed as follows:

convert price=lastweek / transformout=( movrank 5 );

The ranking of the price of this security for each trading day considering the previous two week’s history can
be computed as follows:

convert price=twoweek / transformout=( movrank 10 );

Moving Product and Geometric Mean Operators

For the product and geometric mean operators, the current transformed value is computed based on the
(weighted) product of the cumulative, centered, or moving window values. If missing values are present in
the moving window and the NOMISS operator is previously specified, the current transformed value is set to
missing. Otherwise, the current transformed value is set to the product of the nonmissing values within the
moving window. If a geometric mean operator is specified for a window of size n, the nth root of the product
is taken. In cases where weights are specified explicitly, both the product and geometric mean operators
normalize these exponents so that they sum to one.
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Examples of Usage
The interest rates for a savings account are recorded for each month in the data set variable RATES. The
cumulative interest rate for each month considering the entire account past history can be computed as
follows:

convert rates=history / transformout=( + 1 cuprod - 1);

The interest rate for each quarter considering the previous quarter’s history can be computed as follows:

convert rates=lastqtr / transformout=( + 1 movprod 3 - 1);

The average interest rate for the previous quarter’s history can be computed as follows:

convert rates=lastqtr / transformout=( + 1 movprod (1 1 1) - 1);

Sequence Operators

For the sequence operators, the sequence values are used to compute the transformed values from the original
values in a sequential fashion. You can add to or subtract from the original series or you can multiply or
divide by the sequence values. The first sequence value is applied to the first observation of the series, the
second sequence value is applied to the second observation of the series, and so on until the end of the
sequence is reached. At this point, the first sequence value is applied to the next observation of the series and
the second sequence value on the next observation and so on.

Let v1; : : : ; vm be the sequence values and let xt , t D 1; : : : N , be the original time series. The transformed
series, yt , is computed as follows:

y1 D x1 op v1

y2 D x2 op v2

� � �

ym D xm op vm

ymC1 D xmC1 op v1

ymC2 D xmC2 op v2

� � �

y2m D x2m op vm

y2mC1 D x2mC1 op v1

y2mC2 D x2mC2 op v2

� � �

where op D C;�;�; or =.

Examples of Usage
The multiplicative seasonal indices are 0.9, 1.2. 0.8, and 1.1 for the four quarters. Let SEASADJ be a
quarterly time series variable that has been seasonally adjusted in a multiplicative fashion. To restore the
seasonality to SEASADJ, use the following transformation:
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convert seasadj=seasonal /
transformout=(seqmult (0.9 1.2 0.8 1.1));

The additive seasonal indices are 4.4, –1.1, –2.1, and –1.2 for the four quarters. Let SEASADJ be a quarterly
time series variable that has been seasonally adjusted in additive fashion. To restore the seasonality to
SEASADJ, use the following transformation:

convert seasadj=seasonal /
transformout=(seqadd (4.4 -1.1 -2.1 -1.2));

Set Operators

For the set operators, the first parameter, n1, represents the value to be replaced and the second parameter,
n2, represents the replacement value. The replacement can be localized to the beginning, middle, or end of
the series.

Examples of Usage
Suppose that a store opened recently and that the sales history is stored in a database that does not recognize
missing values. Even though demand may have existed prior to the stores opening, this database assigns
the value of zero. Modeling the sales history may be problematic because the sales history is mostly zero.
To compensate for this deficiency, the leading zero values should be set to missing with the remaining zero
values unchanged (representing no demand).

convert sales=demand / transformout=(setleft (0 .));

Likewise, suppose a store is closed recently. The demand might still be present; hence, a recorded value of
zero does not accurately reflect actual demand.

convert sales=demand / transformout=(setright (0 .));

Scale Operator

For the scale operator, the first parameter, n1, represents the value associated with the minimum value (xmin)
and the second parameter, n2, represents the value associated with the maximum value (xmax) of the original
series (xt ). The scale operator rescales the original data to be between the parameters n1 and n2 as follows:

yt D ..n2 � n1/=.xmax � xmin//.xt � xmin/C n1

Examples of Usage
Suppose that two new product sales histories are stored in the variables X and Y and you want to determine
their adoption rates. In order to compare their adoption histories, the variables must be scaled for comparison.

convert x=w / transformout=(scale 0 1);
convert y=z / transformout=(scale 0 1);
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Adjust Operator

For the moving summation and product window operators, the window widths at the beginning and end of
the series are smaller than those in the middle of the series. Likewise, if there are embedded missing values,
the window width is smaller than specified. When preceded by the ADJUST operator, the moving summation
(MOVSUM CMOVSUM) and moving product operators (MOVPROD CMOVPROD) are adjusted by the
window width.

For example, suppose the variable X has 10 values, and the moving summation operator of width 3 is applied
to X to create the variable Y with window width adjustment and the variable Z without adjustment.

convert x=y / transformout=(adjust movsum 3);
convert x=z / transformout=(movsum 3);

The preceding transformations result in the following relationship between Y and Z: y1 D 3z1, y2 D 3
2
z2,

yt D zt for t > 2 because the first two window widths are smaller than 3.

For example, suppose the variable X has 10 values and the moving multiplicative operator of width 3 is
applied to X to create the variable Y with window width adjustment and the variable Z without adjustment.

convert x=y / transformout=(adjust movprod 3);
convert x=z / transformout=(movprod 3);

The preceding transformations result in the following: y1 D z31 , y2 D z
3=2
2 , yt D zt for t > 2 because the

first two window widths are smaller than 3.

Moving T-Value Operators

The moving t-value operators (CUTVALUE, MOVTVALUE, CMOVTVALUE) compute the t-value of the
cumulative series or moving window. They can be viewed as combinations of the moving average (CUAVE,
MOVAVE, CMOVAVE) and the moving standard deviation (CUSTD, MOVSTD, CMOVSTD), respectively.

Percent Operators

The percentage operators compute the percent summation and the percent difference of the current value and
the lag.n/. The percent summation operator (PCTSUM) computes yt D 100xt=cusum.xt�n/. If any of the
values of the preceding equation are missing or the cumulative summation is zero, the result is set to missing.
The percent difference operator (PCTDIF) computes yt D 100.xt � xt�n/=xt�n. If any of the values of the
preceding equation are missing or the lag value is zero, the result is set to missing.

For example, suppose the variable X contains the series. The percent summation of lag 4 is applied to X to
create the variable Y. The percent difference of lag 4 is applied to X to create the variable Z.

convert x=y / transformout=(pctsum 4);
convert x=z / transformout=(pctdif 4);
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Ratio Operators

The ratio operator computes the ratio of the current value and the lag.n/ value. The ratio operator (RATIO)
computes yt D xt=xt�n. If any of the values of the preceding equation are missing or the lag value is zero,
the result is set to missing.

For example, suppose the variable X contains the series. The ratio of the current value and the lag 4 value of
X is assigned to the variable Y. The percent ratio of the current value and lag 4 value of X is assigned to the
variable Z.

convert x=y / transformout=(ratio 4);
convert x=z / transformout=(ratio 4 * 100);

OUT= Data Set
The OUT= output data set contains the following variables:

� the BY variables, if any

� an ID variable that identifies the time period for each output observation

� the result variables

� if no frequency conversion is performed (so that there is one output observation corresponding to each
input observation), all the other variables in the input data set are copied to the output data set

The ID variable in the output data set is named as follows:

� If an ID statement is used, the new ID variable has the same name as the variable used in the ID
statement.

� If no ID statement is used, but the FROM= option is used, then the name of the ID variable is either
DATE or DATETIME, depending on whether the TO= option indicates SAS date or SAS datetime
values.

� If neither an ID statement nor the TO= option is used, the ID variable is named TIME.
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OUTEST= Data Set
The OUTEST= data set contains the coefficients of the spline curves fit to the input series. The OUTEST=
data set is of interest if you want to verify the interpolating curve PROC EXPAND uses, or if you want to use
this function in another context, (for example, in a SAS/IML program).

The OUTEST= data set contains the following variables:

� the BY variables, if any

� VARNAME, a character variable containing the name of the input variable to which the coefficients
apply

� METHOD, a character variable containing the value of the METHOD= option used to fit the series

� OBSERVED, a character variable containing the first letter of the OBSERVED= option name for the
input series

� the ID variable that contains the lower breakpoint (or “knot”) of the spline segment to which the
coefficients apply. The ID variable has the same name as the variable used in the ID statement. If an
ID statement is not used, but the FROM= option is used, then the name of the ID variable is DATE or
DATETIME, depending on whether the FROM= option indicates SAS date or SAS datetime values. If
neither an ID statement nor the FROM= option is used, the ID variable is named TIME.

� CONSTANT, the constant coefficient for the spline segment

� LINEAR, the linear coefficient for the spline segment

� QUAD, the quadratic coefficient for the spline segment

� CUBIC, the cubic coefficient for the spline segment

For each BY group, the OUTEST= data set contains observations for each polynomial segment of the spline
curve fit to each input series. To obtain the observations defining the spline curve used for a series, select the
observations where the value of VARNAME equals the name of the series.

The observations for a series in the OUTEST= data set encode the spline function fit to the series as follows.
Let ai ; bi ; ci ; and di be the values of the variables CUBIC, QUAD, LINEAR, and CONSTANT, respectively,
for the ith observation for the series. Let xi be the value of the ID variable for the ith observation for the
series. Let n be the number of observations in the OUTEST= data set for the series. The value of the spline
function evaluated at a point x is

f .x/ D ai .x � xi /
3
C bi .x � xi /

2
C ci .x � xi /C di

where the segment number i is selected as follows:

i D

8̂<̂
:
i xi � x < xiC1; 1 � i < n

1 x < x1

n x � xn
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In other words, if x is between the first and last ID values (x1 � x < xn), use the observation from the
OUTEST= data set with the largest ID value less than or equal to x. If x is less than the first ID value x1, then
i D 1. If x is greater than or equal to the last ID value (x � xn), then i D n.

For METHOD=JOIN, the curve is a linear spline, and the values of CUBIC and QUAD are 0. For
METHOD=STEP, the curve is a constant spline, and the values of CUBIC, QUAD, and LINEAR are
0. For METHOD=AGGREGATE, no coefficients are output.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the EXPAND procedure. To request these
graphs, you must specify the PLOTS= option in the PROC EXPAND statement.

ODS Graph Names

PROC EXPAND assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 16.3.

Table 16.3 ODS Graphics Produced by PROC EXPAND

ODS Graph Name Plot Description PLOTS= Options

ConvertedSeriesPlot Converted Series Plot CONVERTED OUTPUT
ALL

CrossInputSeriesPlot Cross Input Series Plot CROSSINPUT
CrossOutputSeriesPlot Cross Output Series Plot CROSSOUTPUT
InputSeriesPlot Input Series Plot INPUT JOINTINPUT ALL
JointInputSeriesPlot Joint Input Series Plot JOINTINPUT
JointOutputSeriesPlot Joint Output Series Plot JOINTOUTPUT
OutputSeriesPlot Output Series Plot SERIES | OUTPUT
TransformedInputSeriesPlot Transformed Input Series Plot TRANSFORMIN

OUTPUT ALL
TransformedOutputSeriesPlot Transformed Output Series Plot TRANSFORMOUT

OUTPUT ALL

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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PLOTS= Option Details

Some plots are produced for a series only if the relevant options are also specified. For example, if
PLOTS=TRANSFORMIN is specified, then the TRANSFORMIN plot is not produced for a variable
unless the TRANSFORMIN= option is specified in a CONVERT statement for that variable. The
PLOTS=TRANSFORMIN option plots the series after the input transformation (TRANSFORMIN= option)
is applied.

The PLOTS=CONVERTED option plots the series after the input transformation (TRANSFORMIN= option)
is applied and after frequency conversion (METHOD= option). If there is no frequency conversion for an
output variable, the converted series plot is not produced.

The PLOTS=TRANSFORMOUT option plots the series after the output transformation (TRANSFORMOUT=
option) is applied. If the TRANFORMOUT= option is not specified in the CONVERT statement for an
output variable, the output transformation plot is not produced.

The PLOTS=OUTPUT option plots the series after it has undergone input transformation (TRANSFORMIN=
option), frequency conversion (METHOD= option), and output transformation (TRANSFORMOUT= option)
if these CONVERT statement options were specified.

Cross and Joint Plots
The PLOTS= option values CROSSINPUT and CROSSOUTPUT produce graphs that overlay plots of two
series by using two Y axes and with each of the two plots shown at a separate scale. These plots are called
cross plots.

The PLOTS= option values JOINTINPUT and JOINTOUTPUT produce graphs that overlay plots of two
series by using a single Y axis and with both of the plots shown on the same scale. These plots are called
joint plots. The joint graphics options (PLOTS=JOINTINPUT or PLOTS=JOINTOUTPUT) plot the (input
or converted) series and the transformed series on the same scale; therefore if the transformation changes, the
range of the series these plots might be hard to visualize.

The PLOTS=CROSSINPUT option plots both the input series and the series after the input transformation
(TRANSFORMIN= option) is applied. The left vertical axis refers to the input series, while the right vertical
axis refers to the series after the transformation. If the TRANFORMIN= option is not specified in the
CONVERT statement for an output variable, then the cross input plot is not produced for that variable.

The PLOTS=JOINTINPUT option jointly plots both the input series and the series after the input trans-
formation (TRANSFORMIN= option) is applied. If the TRANSFORMIN= option is not specified in the
CONVERT statement for an output variable, then the joint input plot is not produced for that variable.

The PLOTS=CROSSOUTPUT option plots both the converted series and the converted series after the output
transformation (TRANSFORMOUT= option) is applied. The left vertical axis refers to the input series,
while the right vertical axis refers to the series after the transformation. If the TRANSFORMOUT= option is
not specified in the CONVERT statement for an output variable, then the cross output plot is not produced
for that variable.

The PLOTS=JOINTOUTPUT option jointly plots both the converted series and the converted series after the
output transformation (TRANSFORMOUT= option) is applied. If the TRANSFORMOUT= option is not
specified in the CONVERT statement for an output variable, then the joint output plot is not produced for
that variable.
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Requesting All Plots
The PLOTS=ALL option is a convenient way to specify all the plots except the OUTPUT plots and the
joint and cross plots. The option PLOTS=(ALL OUTPUT JOINTINPUT JOINTOUTPUT CROSSINPUT
CROSSOUTPUT) requests that all possible plots be produced.

Examples: EXPAND Procedure

Example 16.1: Combining Monthly and Quarterly Data
This example combines monthly and quarterly data sets by interpolating monthly values for the quarterly
series. The series are extracted from two small sample data sets stored in the SASHELP library. These data
sets were contributed by Citicorp Data Base services and contain selected U.S. macro economic series.

The quarterly series gross domestic product (GDP) and implicit price deflator (GD) are extracted from
SASHELP.CITIQTR. The monthly series industrial production index (IP) and unemployment rate (LHUR)
are extracted from SASHELP.CITIMON. Only observations for the years 1990 and 1991 are selected. PROC
EXPAND is then used to interpolate monthly estimates for the quarterly series, and the interpolated series are
merged with the monthly data.

The following statements extract and print the quarterly data, shown in Output 16.1.1:

data qtrly;
set sashelp.citiqtr;
where date >= '1jan1990'd &

date < '1jan1992'd ;
keep date gdp gd;

run;

title "Quarterly Data";
proc print data=qtrly;
run;

Output 16.1.1 Quarterly Data Set

Quarterly Data

Obs DATE GD GDP

1 1990:1 111.100 5422.40

2 1990:2 112.300 5504.70

3 1990:3 113.600 5570.50

4 1990:4 114.500 5557.50

5 1991:1 115.900 5589.00

6 1991:2 116.800 5652.60

7 1991:3 117.400 5709.20

8 1991:4 . 5736.60

The following statements extract and print the monthly data, shown in Output 16.1.2:
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data monthly;
set sashelp.citimon;
where date >= '1jan1990'd &

date < '1jan1992'd ;
keep date ip lhur;

run;

title "Monthly Data";
proc print data=monthly;
run;

Output 16.1.2 Monthly Data Set

Monthly Data

Obs DATE IP LHUR

1 JAN1990 107.500 5.30000

2 FEB1990 108.500 5.30000

3 MAR1990 108.900 5.20000

4 APR1990 108.800 5.40000

5 MAY1990 109.400 5.30000

6 JUN1990 110.100 5.20000

7 JUL1990 110.400 5.40000

8 AUG1990 110.500 5.60000

9 SEP1990 110.600 5.70000

10 OCT1990 109.900 5.80000

11 NOV1990 108.300 6.00000

12 DEC1990 107.200 6.10000

13 JAN1991 106.600 6.20000

14 FEB1991 105.700 6.50000

15 MAR1991 105.000 6.70000

16 APR1991 105.500 6.60000

17 MAY1991 106.400 6.80000

18 JUN1991 107.300 6.90000

19 JUL1991 108.100 6.80000

20 AUG1991 108.000 6.80000

21 SEP1991 108.400 6.80000

22 OCT1991 108.200 6.90000

23 NOV1991 108.000 6.90000

24 DEC1991 107.800 7.10000

The following statements interpolate monthly estimates for the quarterly series and merge the interpolated
series with the monthly data. The resulting combined data set is then printed, as shown in Output 16.1.3.

proc expand data=qtrly out=temp from=qtr to=month;
convert gdp gd / observed=average;
id date;

run;

data combined;
merge monthly temp;
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by date;
run;

title "Combined Data Set";
proc print data=combined;
run;

Output 16.1.3 Combined Data Set

Combined Data Set

Obs DATE IP LHUR GDP GD

1 JAN1990 107.500 5.30000 5409.69 110.879

2 FEB1990 108.500 5.30000 5417.67 111.048

3 MAR1990 108.900 5.20000 5439.39 111.367

4 APR1990 108.800 5.40000 5470.58 111.802

5 MAY1990 109.400 5.30000 5505.35 112.297

6 JUN1990 110.100 5.20000 5538.14 112.801

7 JUL1990 110.400 5.40000 5563.38 113.264

8 AUG1990 110.500 5.60000 5575.69 113.641

9 SEP1990 110.600 5.70000 5572.49 113.905

10 OCT1990 109.900 5.80000 5561.64 114.139

11 NOV1990 108.300 6.00000 5553.83 114.451

12 DEC1990 107.200 6.10000 5556.92 114.909

13 JAN1991 106.600 6.20000 5570.06 115.452

14 FEB1991 105.700 6.50000 5588.18 115.937

15 MAR1991 105.000 6.70000 5608.68 116.314

16 APR1991 105.500 6.60000 5630.81 116.600

17 MAY1991 106.400 6.80000 5652.92 116.812

18 JUN1991 107.300 6.90000 5674.06 116.988

19 JUL1991 108.100 6.80000 5693.43 117.164

20 AUG1991 108.000 6.80000 5710.54 117.380

21 SEP1991 108.400 6.80000 5724.11 117.665

22 OCT1991 108.200 6.90000 5733.65 .

23 NOV1991 108.000 6.90000 5738.46 .

24 DEC1991 107.800 7.10000 5737.75 .

Example 16.2: Illustration of ODS Graphics
This example illustrates the use of ODS graphics with PROC EXPAND.

The graphical displays are requested by specifying the PLOTS= option in the PROC EXPAND statement.
For information about the graphics available in the EXPAND procedure, see the section “ODS Graphics” on
page 914.

The following statements utilize the SASHELP.WORKERS data set to convert the time series of electrical
workers from monthly to quarterly frequency and display ODS graphics plots. The PLOTS=ALL option is
specified to request the plots of the input series, the transformed input series, the converted series, and the
transformed output series. Figure 16.2.1 through Figure 16.2.4 show these plots.
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proc expand data=sashelp.workers out=out
from=month to=qtr
plots=all;

id date;
convert electric=eout / method=spline

transformin=(movmed 4)
transformout=(movave 3);

run;

Output 16.2.1 Input Series Plot
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Output 16.2.2 Transformed Input Series Plot—Four-Period Moving Median
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Output 16.2.3 Converted Plot of Transformed Input Series



922 F Chapter 16: The EXPAND Procedure

Output 16.2.4 Transformed Output Series Plot—Three-Period Moving Average

Example 16.3: Interpolating Irregular Observations
This example shows the interpolation of a series of values measured at irregular points in time. The data are
hypothetical. Assume that a series of randomly timed quality control inspections are made and defect rates
for a process are measured. The problem is to produce two reports: estimates of monthly average defect rates
for the months within the period covered by the samples, and a plot of the interpolated defect rate curve over
time.

The following statements read and print the input data, as shown in Output 16.3.1:

data samples;
input date : date9. defects @@;
label defects = "Defects per 1000 Units";
format date date9.;

datalines;
13jan1992 55 27jan1992 73 19feb1992 84 8mar1992 69

... more lines ...
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title "Sampled Defect Rates";
proc print data=samples;
run;

Output 16.3.1 Measured Defect Rates

Sampled Defect Rates

Obs date defects

1 13JAN1992 55

2 27JAN1992 73

3 19FEB1992 84

4 08MAR1992 69

5 27MAR1992 66

6 05APR1992 77

7 29APR1992 63

8 11MAY1992 81

9 25MAY1992 89

10 07JUN1992 94

11 23JUN1992 105

12 11JUL1992 97

13 15AUG1992 112

14 29AUG1992 89

15 10SEP1992 77

16 27SEP1992 82

To compute the monthly estimates, use PROC EXPAND with the TO=MONTH option and specify OB-
SERVED=(BEGINNING,AVERAGE). The following statements interpolate the monthly estimates:

proc expand data=samples
out=monthly
to=month
plots=(input output);

id date;
convert defects / observed=(beginning,average);

run;

The following PROC PRINT step prints the results, as shown in Output 16.3.2:

title "Estimated Monthly Average Defect Rates";
proc print data=monthly;
run;
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Output 16.3.2 Monthly Average Estimates

Estimated Monthly Average Defect Rates

Obs date defects

1 JAN1992 59.323

2 FEB1992 82.000

3 MAR1992 66.909

4 APR1992 70.205

5 MAY1992 82.762

6 JUN1992 99.701

7 JUL1992 101.564

8 AUG1992 105.491

9 SEP1992 79.206

The plots produced by PROC EXPAND are shown in Output 16.3.3.

Output 16.3.3 Interpolated Defects Rate Curve
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Output 16.3.3 continued

Example 16.4: Using Transformations
This example shows the use of PROC EXPAND to perform various transformations of time series. The
following statements read in monthly values for a variable X:

data test;
input year qtr x;
date = yyq( year, qtr );
format date yyqc.;

datalines;
1989 3 5238
1989 4 5289
1990 1 5375
1990 2 5443
1990 3 5514
1990 4 5527
1991 1 5557
1991 2 5615
;
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The following statements use PROC EXPAND to compute lags and leads and a 3-period moving average of
the X series:

proc expand data=test out=out method=none;
id date;
convert x = x_lag2 / transformout=(lag 2);
convert x = x_lag1 / transformout=(lag 1);
convert x;
convert x = x_lead1 / transformout=(lead 1);
convert x = x_lead2 / transformout=(lead 2);
convert x = x_movave / transformout=(movave 3);

run;

title "Transformed Series";
proc print data=out;
run;

Because there are no missing values to interpolate and no frequency conversion, the METHOD=NONE
option is used to prevent PROC EXPAND from performing unnecessary computations. Because no frequency
conversion is done, all variables in the input data set are copied to the output data set. The CONVERT X;
statement is included to control the position of X in the output data set. This statement can be omitted, in
which case X is copied to the output data set following the new variables computed by PROC EXPAND.

The results are shown in Output 16.4.1.

Output 16.4.1 Output Data Set with Transformed Variables

Transformed Series

Obs date x_lag2 x_lag1 x x_lead1 x_lead2 x_movave year qtr

1 1989:3 . . 5238 5289 5375 5238.00 1989 3

2 1989:4 . 5238 5289 5375 5443 5263.50 1989 4

3 1990:1 5238 5289 5375 5443 5514 5300.67 1990 1

4 1990:2 5289 5375 5443 5514 5527 5369.00 1990 2

5 1990:3 5375 5443 5514 5527 5557 5444.00 1990 3

6 1990:4 5443 5514 5527 5557 5615 5494.67 1990 4

7 1991:1 5514 5527 5557 5615 . 5532.67 1991 1

8 1991:2 5527 5557 5615 . . 5566.33 1991 2
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Overview: HPCDM Procedure
In many loss modeling applications, the loss events are analyzed by modeling the severity (magnitude) of
loss and the frequency (count) of loss separately. The primary goal of preparing these models is to estimate
the aggregate loss—that is, the total loss that occurs over a period of time for which the frequency model is
applicable. For example, an insurance company might want to assess the expected and worst-case losses for a
particular business line, such as automobile insurance, over an entire year given the models for the number of
losses in a year and the severity of each loss. A bank might want to assess the value-at-risk (VaR), a measure
of the worst-case loss, for a portfolio of assets given the frequency and severity models for each asset type.

Loss severity and loss frequency are random variables, so the aggregate loss is also a random variable. Instead
of preparing a point estimate of the expected aggregate loss, it is more desirable to estimate its probability
distribution, because this enables you to infer various aspects of the aggregate loss such as measures of
location, scale (variability), and shape in addition to percentiles. For example, the value-at-risk that banks or
insurance companies use to compute regulatory capital requirements is usually the estimate of the 97.5th or
99th percentile from the aggregate loss distribution.

Let N represent the frequency random variable for the number of loss events that occur in the time period
of interest. Let X represent the severity random variable for the magnitude of one loss event. Then, the
aggregate loss S is defined as

S D

NX
jD1

Xj

The goal is to estimate the probability distribution of S. Let FX .x/ denote the cumulative distribution function
(CDF) of X, F �nX .x/ denote the n-fold convolution of the CDF of X, and Pr.N D n/ denote the probability
of seeing n losses as per the frequency distribution. The CDF of S is theoretically computable as

FS .s/ D

1X
nD0

Pr.N D n/ � F �nX .x/

This probability distribution model of S, characterized by the CDF FS .s/, is referred to as a compound
distribution model (CDM). The HPCDM procedure computes an estimate of the CDM, given the distribution
models of X and N.

PROC HPCDM accepts the severity model of X as estimated by the SEVERITY procedure. It accepts the
frequency model of N as estimated by the COUNTREG procedure. Both the SEVERITY and COUNTREG
procedures are part of SAS/ETS software. Both procedures allow models of X and N to be conditional
on external factors (regressors). In particular, you can model the severity distribution such that its scale
parameter depends on severity regressors, and you can model the frequency distribution such that its mean
depends on frequency regressors. The frequency model can also be a zero-inflated model. PROC HPCDM
uses the estimates of model parameters and the values of severity and frequency regressors to estimate the
compound distribution model.

Direct computation of FS is usually a difficult task because of the need to compute the n-fold convolution.
Klugman, Panjer, and Willmot (1998, Ch. 4) suggest some relatively efficient recursion and inversion
methods for certain combinations of severity and frequency distributions. However, those methods assume
that distributions of N and X are fixed and all Xs are identically distributed. When the distributions of X
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and N are conditional on regressors, each set of regressor values results in a different distribution. So you
must repeat the recursion and inversion methods for each combination of regressor values, and this repetition
makes these methods prohibitively expensive. PROC HPCDM instead estimates the compound distribution
by using a Monte Carlo simulation method, which can use all available computational resources to generate a
sufficiently large, representative sample of the compound distribution while accommodating the dependence
of distributions of X and N on external factors. Conceptually, the simulation method works as follows:

1. Use the specified frequency model to draw a value N, which represents the number of loss events.

2. Use the specified severity model to draw N values, each of which represents the magnitude of loss for
each of the N loss events.

3. Add the N severity values from step 2 to compute aggregate loss S as

S D

NX
jD1

Xj

This forms one sample point of the CDM.

Steps 1 through 3 are repeated M number of times, where M is specified by you, to obtain the representative
sample of the CDM. PROC HPCDM analyzes this sample to compute empirical estimates of various summary
statistics of the compound distribution such as the mean, variance, skewness, and kurtosis in addition to
percentiles such as the median, the 95th percentile, the 99th percentile, and so on. You can also use PROC
HPCDM to write the entire simulated sample to an output data set and to produce the plot of the empirical
distribution function (EDF), which serves as a nonparametric estimate of FS .

The simulation process gets more complicated when the frequency and severity models contain regression
effects. The CDM is then conditional on the given values of regressors. The simulation process essentially
becomes a scenario analysis, because you need to specify the expected values of the regressors that together
represent the scenario for which you want to estimate the CDM. PROC HPCDM enables you to specify an
input data set that contains the scenario. If you are modeling a group of entities together (such as a portfolio
of multiple assets or a group of insurance policies), each with a different set of characteristics, then the
scenario consists of more than one observation, and each observation corresponds to a different entity. PROC
HPCDM enables you to specify such a group scenario in the input data set and performs a realistic simulation
of loss events that each entity can generate.

PROC HPCDM also enables you to specify externally simulated counts. This is useful if you have an
empirical frequency model or if you estimate the frequency model by using a method other than PROC
COUNTREG and simulate counts by using such a model. You can specify M replications of externally
simulated counts. For each of the replications, in step 1 of the simulation, instead of using the frequency
model, PROC HPCDM uses the count N that you specify. If the severity model contains regression effects,
then you can specify the scenario to simulate for each of the M replications.

If the parameters of your severity and frequency models have uncertainty associated with them, and they
usually do, then you can use PROC HPCDM to conduct parameter perturbation analysis to assess the effect
of parameter uncertainty on the estimates of CDM. If you specify that P perturbed samples be generated, then
the parameter set is perturbed P times, and each time PROC HPCDM makes a random draw from either the
univariate normal distribution of each parameter or the multivariate normal distribution over all parameters.
For each of the P perturbed parameter sets, a full compound distribution sample is simulated and summarized.
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This process yields P number of estimates for each summary statistic and percentile, which are then used to
provide you with estimates of the location and variability of each summary statistic and percentile.

You can also use PROC HPCDM to compute the distribution of an aggregate adjusted loss. For example,
in insurance applications, you might want to compute the distribution of the amount paid in a given time
period after applying adjustments such as deductible and policy limit to each individual loss. PROC HPCDM
enables you to specify SAS programming statements to adjust each severity value. If Xaj represents the
adjusted severity value, then PROC HPCDM computes Sa, an aggregate adjusted loss, as

Sa D

NX
jD1

Xaj

All the analyses that PROC HPCDM conducts for the aggregate unadjusted loss, including scenario analysis
and parameter perturbation analysis, are also conducted for the aggregate adjusted loss, thereby giving you a
comprehensive picture of the adjusted compound distribution model.

Getting Started: HPCDM Procedure
This section outlines the use of the HPCDM procedure to fit compound distribution models. The examples
are intended as a gentle introduction to some of the features of the procedure.

Estimating a Simple Compound Distribution Model
This example illustrates the simplest use of PROC HPCDM. Assume that you are an insurance company that
has used the historical data about the number of losses per year and the severity of each loss to determine that
the Poisson distribution is the best distribution for the loss frequency and that the gamma distribution is the
best distribution for the severity of each loss. Now, you want to estimate the distribution of an aggregate loss
to determine the worst-case loss that can be incurred by your policyholders in a year. In other words, you
want to estimate the compound distribution of S D

PN
iD1Xi , where the loss frequency, N, follows the fitted

Poisson distribution and the severity of each loss event, Xi , follows the fitted gamma distribution.

If your historical count and severity data are stored in the data sets Work.ClaimCount and Work.ClaimSev,
respectively, then you need to ensure that you use the following PROC COUNTREG and PROC SEVERITY
steps to fit and store the parameter estimates of the frequency and severity models:

/* Fit an intercept-only Poisson count model and
write estimates to an item store */

proc countreg data=claimcount;
model numLosses= / dist=poisson;
store countStorePoisson;

run;

/* Fit severity models and write estimates to a data set */
proc severity data=claimsev criterion=aicc outest=sevest covout plots=none;

loss lossValue;
dist _predefined_;

run;
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The STORE statement in the PROC COUNTREG step saves the count model information, including the
parameter estimates, in the Work.CountStorePoisson item store. An item store contains the model information
in a binary format that cannot be modified after it is created. You can examine the contents of an item store
that is created by a PROC COUNTREG step by specifying a combination of the RESTORE= option and
the SHOW statement in another PROC COUNTREG step. For more information, see Chapter 12, “The
COUNTREG Procedure.”

The OUTEST= option in the PROC SEVERITY statement stores the estimates of all the fitted severity
models in the Work.SevEst data set. Let the best severity model that the PROC SEVERITY step chooses be
the gamma distribution model.

You can now submit the following PROC HPCDM step to simulate an aggregate loss sample of size 10,000
by specifying the count model’s item store in the COUNTSTORE= option and the severity model’s data set
of estimates in the SEVERITYEST= option:

/* Simulate and estimate Poisson-gamma compound distribution model */
proc hpcdm countstore=countStorePoisson severityest=sevest

seed=13579 nreplicates=10000 plots=(edf(alpha=0.05) density)
print=(summarystatistics percentiles);

severitymodel gamma;
output out=aggregateLossSample samplevar=aggloss;
outsum out=aggregateLossSummary mean stddev skewness kurtosis

p01 p05 p95 p995=var pctlpts=90 97.5;
run;

The SEVERITYMODEL statement requests that an aggregate sample be generated by compounding only the
gamma distribution and the frequency distribution. Specifying the SEED= value helps you get an identical
sample each time you execute this step, provided that you use the same execution environment. The execution
environment is the combination of the operating environment and the number of threads that are used for
execution.

Upon completion, PROC HPCDM creates the two output data sets that you specify in the OUT= options of the
OUTPUT and OUTSUM statements. The Work.AggregateLossSample data set contains 10,000 observations
such that the value of the AggLoss variable in each observation represents one possible aggregate loss value
that you can expect to see in one year. Together, the set of the 10,000 values of the AggLoss variable represents
one sample of compound distribution. PROC HPCDM uses this sample to compute the empirical estimates of
various summary statistics and percentiles of the compound distribution. The Work.AggregateLossSummary
data set contains the estimates of mean, standard deviation, skewness, and kurtosis that you specify in the
OUTSUM statement. It also contains the estimates of the 1st, 5th, 90th, 95th, 97.5th, and 99.5th percentiles
that you specify in the OUTSUM statement. The value-at-risk (VaR) is an aggregate loss value such that
there is a very low probability that an observed aggregate loss value exceeds the VaR. One of the commonly
used probability levels to define VaR is 0.005, which makes the 99.5th percentile an empirical estimate of the
VaR. Hence, the OUTSUM statement of this example stores the 99.5th percentile in a variable named VaR.
VaR is one of the widely used measures of worst-case risk.

Some of the default output and some of the output that you have requested by specifying the PRINT= option
are shown in Figure 17.1.
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Figure 17.1 Information, Summary Statistics, and Percentiles of the Poisson-Gamma
Compound Distribution

The HPCDM Procedure
Severity Model: Gamma
Count Model: Poisson

Compound Distribution Information

Severity Model Gamma Distribution

Count Model Poisson Model in Item Store WORK.COUNTSTOREPOISSON

Sample Summary Statistics

Mean 4076.8 Median 3440.2

Standard Deviation 3442.6 Interquartile Range 4523.9

Variance 11851305.5 Minimum 0

Skewness 1.14554 Maximum 27971.5

Kurtosis 1.75272 Sample Size 10000

Sample
Percentiles

Percentile Value

1 0

5 0

25 1430.7

50 3440.2

75 5954.6

90 8743.8

95 10740.0

97.5 12453.3

99 14738.1

99.5 16406.8

Percentile
Method = 5

The “Sample Summary Statistics” table indicates that for the given parameter estimates of the Poisson
frequency and gamma severity models, you can expect to see a mean aggregate loss of 4,076.8 and a median
aggregate loss of 3,440.2 in a year. The “Sample Percentiles” table indicates that there is a 0.5% chance
that the aggregate loss exceeds 16,406.8, which is the VaR estimate, and a 2.5% chance that the aggregate
loss exceeds 12,453.3. These summary statistic and percentile estimates provide a quantitative picture of
the compound distribution. You can also visually analyze the compound distribution by examining the plots
that PROC HPCDM prepares. The first plot in Figure 17.2 shows the empirical distribution function (EDF),
which is a nonparametric estimate of the cumulative distribution function (CDF). The second plot shows
the histogram and the kernel density estimate, which are nonparametric estimates of the probability density
function (PDF).
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Figure 17.2 Nonparametric CDF and PDF Plots of the Poisson-Gamma Compound Distribution
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Figure 17.2 continued

The plots confirm the right skew that is indicated by the estimate of skewness in Figure 17.1 and a relatively
fat tail, which is indicated by comparing the maximum and the 99.5th percentiles in Figure 17.1.

Analyzing the Effect of Parameter Uncertainty on the Compound
Distribution
Continuing with the previous example, note that you have fitted the frequency and severity models by using
the historical data. Even if you choose the best-fitting models, the true underlying models are not known
exactly. This fact is reflected in the uncertainty that is associated with the parameters of your models. Any
compound distribution estimate that is computed by using these uncertain parameter estimates is inherently
uncertain. You can request that PROC HPCDM conduct parameter perturbation analysis, which assesses
the effect of the parameter uncertainty on the estimates of the compound distribution by simulating multiple
samples, each with parameters that are randomly perturbed from their mean estimates.

The following PROC HPCDM step adds the NPERTURBEDSAMPLES= option to the PROC HPCDM
statement to request that perturbation analysis be conducted and the PRINT=PERTURBSUMMARY option
to request that a summary of the perturbation analysis be displayed:
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/* Conduct parameter perturbation analysis of
the Poisson-gamma compound distribution model */

proc hpcdm countstore=countStorePoisson severityest=sevest
seed=13579 nreplicates=10000 nperturbedsamples=30
print(only)=(perturbsummary) plots=none;

severitymodel gamma;
output out=aggregateLossSample samplevar=aggloss;
outsum out=aggregateLossSummary mean stddev skewness kurtosis

p01 p05 p95 p995=var pctlpts=90 97.5;
run;

The Work.AggregateLossSummary data set contains the specified summary statistics and percentiles for all
30 perturbed samples. You can identify a perturbed sample by the value of the _DRAWID_ variable. The
first few observations of the Work.AggregateLossSummary data set are shown in Figure 17.3. For the first
observation, the value of the _DRAWID_ variable is 0, which represents an unperturbed sample—that is, the
aggregate sample that is simulated without perturbing the parameters from their means.

Figure 17.3 Summary Statistics and Percentiles of the Perturbed Samples

_SEVERITYMODEL_ _COUNTMODEL_ _DRAWID_ _SAMPLEVAR_ N MEAN STDDEV

Gamma Poisson 0 aggloss 10000 4076.78 3442.57

Gamma Poisson 1 aggloss 10000 4155.34 3430.45

Gamma Poisson 2 aggloss 10000 4024.20 3407.80

Gamma Poisson 3 aggloss 10000 4241.48 3565.67

Gamma Poisson 4 aggloss 10000 4161.65 3544.71

Gamma Poisson 5 aggloss 10000 3892.26 3273.01

Gamma Poisson 6 aggloss 10000 4474.95 3704.71

Gamma Poisson 7 aggloss 10000 4216.14 3476.55

Gamma Poisson 8 aggloss 10000 4049.96 3413.21

Gamma Poisson 9 aggloss 10000 3950.08 3350.04

Gamma Poisson 10 aggloss 10000 4286.65 3668.01

SKEWNESS KURTOSIS P01 P05 P90 P95 P97_5 var

1.14554 1.75272 0 0 8743.85 10740.03 12453.26 16406.81

1.12929 1.85707 0 0 8783.93 10569.44 12448.84 16390.42

1.16006 1.84717 0 0 8599.78 10441.09 12242.83 16219.61

1.11373 1.48627 0 0 9133.00 11107.39 12974.48 16946.76

1.17400 1.79535 0 0 8943.12 10800.95 12780.92 17142.43

1.08180 1.45528 0 0 8334.01 10180.93 11742.12 15147.64

1.07704 1.41288 0 0 9606.49 11489.24 13304.55 17662.93

1.11500 1.58827 0 0 8890.20 10732.59 12600.30 16581.44

1.14044 1.61876 0 0 8671.02 10546.62 12323.83 16333.81

1.09693 1.35455 0 0 8561.27 10322.30 11986.43 15829.09

1.16766 1.75264 0 0 9328.43 11299.10 13240.13 17417.01

The PRINT=PERTURBSUMMARY option in the preceding PROC HPCDM step produces the “Sample
Perturbation Analysis” and “Sample Percentile Perturbation Analysis” tables that are shown in Figure 17.4.
The tables show that you can expect a mean aggregate loss of about 4,098.5 and the standard error of the
mean is 172.1. If you want to use the VaR estimate to determine the amount of reserves that you need to
maintain to cover the worst-case loss, then you should consider not only the mean estimate of the 99.5th
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percentile, which is about 16,448.2, but also the standard error of 708.9 to account for the effect of uncertainty
in your frequency and severity parameter estimates.

Figure 17.4 Summary of Perturbation Analysis of the Poisson-Gamma Compound Distribution

The HPCDM Procedure
Severity Model: Gamma
Count Model: Poisson

Sample Perturbation Analysis

Statistic Estimate
Standard

Error

Mean 4098.5 172.08823

Standard Deviation 3470.4 136.68712

Variance 12062522 947666.8

Skewness 1.13817 0.04237

Kurtosis 1.65486 0.21853

Number of Perturbed Samples = 30

Size of Each Sample = 10000

Sample Percentile
Perturbation Analysis

Percentile Estimate
Standard

Error

1 0 0

5 0 0

25 1425.4 90.99084

50 3421.7 155.81011

75 6003.1 244.90738

90 8818.2 362.42625

95 10732.8 422.41895

97.5 12540.3 504.12071

99 14839.4 680.49452

99.5 16448.2 708.87293

Number of Perturbed
Samples = 30

Size of Each Sample = 10000

Scenario Analysis
The distributions of loss frequency and loss severity often depend on exogenous variables (regressors). For
example, the number of losses and the severity of each loss that an automobile insurance policyholder incurs
might depend on the characteristics of the policyholder and the characteristics of the vehicle. When you
fit frequency and severity models, you need to account for the effects of such regressors on the probability
distributions of the counts and severity. The COUNTREG procedure enables you to model regression effects
on the mean of the count distribution, and the SEVERITY procedure enables you to model regression effects
on the scale parameter of the severity distribution. When you use these models to estimate the compound
distribution model of the aggregate loss, you need to specify a set of values for all the regressors, which
represents the state of the world for which the simulation is conducted. This is referred to as the what-if or
scenario analysis.
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Consider that you, as an automobile insurance company, have postulated that the distribution of the loss event
frequency depends on five regressors (external factors): age of the policyholder, gender, type of car, annual
miles driven, and policyholder’s education level. Further, the distribution of the severity of each loss depends
on three regressors: type of car, safety rating of the car, and annual household income of the policyholder
(which can be thought of as a proxy for the luxury level of the car). Note that the frequency model regressors
and severity model regressors can be different, as illustrated in this example.

Let these regressors be recorded in the variables Age (scaled by a factor of 1/50), Gender (1: female, 2:
male), CarType (1: sedan, 2: sport utility vehicle), AnnualMiles (scaled by a factor of 1/5,000), Education (1:
high school graduate, 2: college graduate, 3: advanced degree holder), CarSafety (scaled to be between 0 and
1, the safest being 1), and Income (scaled by a factor of 1/100,000), respectively. Let the historical data about
the number of losses that various policyholders incur in a year be recorded in the NumLoss variable of the
Work.LossCounts data set, and let the severity of each loss be recorded in the LossAmount variable of the
Work.Losses data set.

The following PROC COUNTREG step fits the count regression model and stores the fitted model information
in the Work.CountregModel item store:

/* Fit negative binomial frequency model for the number of losses */
proc countreg data=losscounts;

model numloss = age gender carType annualMiles education / dist=negbin;
store work.countregmodel;

run;

You can examine the parameter estimates of the count model that are stored in the Work.CountregModel item
store by submitting the following statements:

/* Examine the parameter estimates for the model in the item store */
proc countreg restore=work.countregmodel;

show parameters;
run;

The “Parameter Estimates” table that is displayed by the SHOW statement is shown in Figure 17.5.

Figure 17.5 Parameter Estimates of the Count Regression Model

ITEM STORE CONTENTS: WORK.COUNTREGMODEL

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.910479 0.090515 10.06 <.0001

age 1 -0.626803 0.058547 -10.71 <.0001

gender 1 1.025034 0.032099 31.93 <.0001

carType 1 0.615165 0.031153 19.75 <.0001

annualMiles 1 -1.010276 0.017512 -57.69 <.0001

education 1 -0.280246 0.021677 -12.93 <.0001

_Alpha 1 0.318403 0.020090 15.85 <.0001

The following PROC SEVERITY step fits the severity scale regression models for all the common distribu-
tions that are predefined in PROC SEVERITY:
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/* Fit severity models for the magnitude of losses */
proc severity data=losses plots=none outest=work.sevregest print=all;

loss lossamount;
scalemodel carType carSafety income;
dist _predef_;
nloptions maxiter=100;

run;

The comparison of fit statistics of various scale regression models is shown in Figure 17.6. The scale
regression model that is based on the lognormal distribution is deemed the best-fitting model according to
the likelihood-based statistics, whereas the scale regression model that is based on the generalized Pareto
distribution (GPD) is deemed the best-fitting model according to the EDF-based statistics.

Figure 17.6 Severity Model Comparison

The SEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Burr 127231 127243 127243 127286 7.75407 224.47578 27.41346

Exp 128431 128439 128439 128467 6.13537 181.75649 12.33919

Gamma 128324 128334 128334 128370 7.54562 275.83377 24.59515

Igauss 127434 127444 127444 127480 6.15855 211.51200 17.70942

Logn 127062 * 127072 * 127072 * 127107 * 6.77687 212.70400 21.47945

Pareto 128166 128176 128176 128211 5.37453 110.53673 7.07119

Gpd 128166 128176 128176 128211 5.37453 * 110.53660 * 7.07116 *

Weibull 128429 128439 128439 128475 6.21268 190.73733 13.45425

Note: The asterisk (*) marks the best model according to each column's criterion.

Now, you are ready to analyze the distribution of the aggregate loss that can be expected from a specific
policyholder—for example, a 59-year-old male policyholder with an advanced degree who earns 159,870
and drives a sedan that has a very high safety rating about 11,474 miles annually. First, you need to encode
and scale this information into the appropriate regressor variables of a data set. Let that data set be named
Work.SinglePolicy, with an observation as shown in Figure 17.7.

Figure 17.7 Scenario Analysis Data for One Policyholder

age gender carType annualMiles education carSafety income

1.18 2 1 2.2948 3 0.99532 1.5987

Now, you can submit the following PROC HPCDM step to analyze the compound distribution of the
aggregate loss that is incurred by the policyholder in the Work.SinglePolicy data set in a given year by using
the frequency model from the Work.CountregModel item store and the two best severity models, lognormal
and GPD, from the Work.SevRegEst data set:

/* Simulate the aggregate loss distribution for the scenario
with single policyholder */

proc hpcdm data=singlePolicy nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest;

severitymodel logn gpd;
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outsum out=onepolicysum mean stddev skew kurtosis median
pctlpts=97.5 to 99.5 by 1;

run;

The displayed results from the preceding PROC HPCDM step are shown in Figure 17.8.

When you use a severity scale regression model, it is recommended that you verify the severity scale
regressors that are used by PROC HPCDM by examining the Scale Model Regressors row of the “Compound
Distribution Information” table. PROC HPCDM detects the severity regressors automatically by examining
the variables in the SEVERITYEST= and DATA= data sets. If those data sets contain variables that you did
not include in the SCALEMODEL statement in PROC SEVERITY, then such variables can be treated as
severity regressors. One common mistake that can lead to this situation is to fit a severity model by using the
BY statement and forget to specify the identical BY statement in the PROC HPCDM step; this can cause
PROC HPCDM to treat BY variables as scale model regressors. In this example, Figure 17.8 confirms that
the correct set of scale model regressors is detected.

Figure 17.8 Scenario Analysis Results for One Policyholder with Lognormal Severity Model

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Lognormal Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Summary Statistics

Mean 214.05031 Median 0

Standard Deviation 436.27333 Interquartile Range 264.68948

Variance 190334.4 Minimum 0

Skewness 5.15057 Maximum 9005.2

Kurtosis 50.23372 Sample Size 10000

Sample Percentiles

Percentile Value

1 0

5 0

25 0

50 0

75 264.68948

95 950.03355

97.5 1340.0

98.5 1682.8

99 1979.5

99.5 2664.5

Percentile
Method = 5

The “Sample Summary Statistics” and “Sample Percentiles” tables in Figure 17.8 show estimates of the
aggregate loss distribution for the lognormal severity model. The average expected loss is about 214, and the
worst-case loss, if approximated by the 97.5th percentile, is about 1,340. The percentiles table shows that
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the distribution is highly skewed to the right; this is also confirmed by the skewness estimate. The median
estimate of 0 can be interpreted in two ways. One way is to conclude that the policyholder will not incur
any loss in 50% of the years during which he or she is insured. The other way is to conclude that 50%
of policyholders who have the characteristics of this policyholder will not incur any loss in a given year.
However, there is a 2.5% chance that the policyholder will incur a loss that exceeds 1,340 in any given year
and a 0.5% chance that the policyholder will incur a loss that exceeds 2,665 in any given year.

If the aggregate loss sample is simulated by using the GPD severity model, then the results are as shown in
Figure 17.9. The average and worst-case losses are 213 and 1,337, respectively. These estimates are very
close to the values that are predicted by the lognormal severity model.

Figure 17.9 Scenario Analysis Results for One Policyholder with GPD Severity Model

The HPCDM Procedure
Severity Model: Gpd

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Generalized Pareto Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Summary Statistics

Mean 212.54792 Median 0

Standard Deviation 401.95332 Interquartile Range 275.99091

Variance 161566.5 Minimum 0

Skewness 3.46433 Maximum 5360.2

Kurtosis 18.55938 Sample Size 10000

Sample Percentiles

Percentile Value

1 0

5 0

25 0

50 0

75 275.99091

95 977.06997

97.5 1337.4

98.5 1622.2

99 1867.4

99.5 2303.2

Percentile
Method = 5

The scenario that you just analyzed contains only one policyholder. You can extend the scenario to include
multiple policyholders. Let the Work.GroupOfPolicies data set record information about five different
policyholders, as shown in Figure 17.10.
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Figure 17.10 Scenario Analysis Data for Multiple Policyholders

policyholderId age gender carType annualMiles education carSafety income

1 1.18 2 1 2.2948 3 0.99532 1.59870

2 0.66 2 1 2.6718 2 0.86412 0.84459

3 0.64 2 2 1.9528 1 0.86478 0.50177

4 0.46 1 2 2.6402 2 0.27062 1.18870

5 0.62 1 1 1.7294 1 0.32830 0.37694

The following PROC HPCDM step conducts a scenario analysis for the aggregate loss that is incurred by all
five policyholders in the Work.GroupOfPolicies data set together in one year:

/* Simulate the aggregate loss distribution for the scenario
with multiple policyholders */

proc hpcdm data=groupOfPolicies nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest
plots=(conditionaldensity(rightq=0.95)) nperturbedSamples=50;

severitymodel logn gpd;
outsum out=multipolicysum mean stddev skew kurtosis median

pctlpts=97.5 to 99.5 by 1;
run;

The preceding PROC HPCDM step conducts perturbation analysis by simulating 50 perturbed samples. The
perturbation summary results for the lognormal severity model are shown in Figure 17.11, and the results for
the GPD severity model are shown in Figure 17.12. If the severity of each loss follows the fitted lognormal
distribution, then you can expect that the group of policyholders together incurs an average loss of 5,300˙
328 and a worst-case loss of 15,734˙ 960 when you define the worst-case loss as the 97.5th percentile.

Figure 17.11 Perturbation Analysis of Losses from Multiple Policyholders with Lognormal Severity Model

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Lognormal Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Perturbation Analysis

Statistic Estimate
Standard

Error

Mean 5299.8 327.70569

Standard Deviation 4151.9 269.78790

Variance 17311274 2254196.7

Skewness 2.14414 1.24620

Kurtosis 16.65290 58.38318

Number of Perturbed Samples = 50

Size of Each Sample = 10000
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Figure 17.11 continued

Sample Percentile Perturbation
Analysis

Percentile Estimate
Standard

Error

1 194.20187 28.77686

5 742.04381 59.84686

25 2379.0 154.80380

50 4324.3 272.87497

75 7113.4 438.24370

95 13101.5 805.58237

97.5 15734.1 960.35241

98.5 17746.7 1098.9

99 19384.7 1189.9

99.5 22409.7 1433.0

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

If the severity of each loss follows the fitted GPD distribution, then you can expect an average loss of 5,236
˙ 365 and a worst-case loss of 14,992˙ 1,014.

If you decide to use the 99.5th percentile to define the worst-case loss, then the worst-case loss is 22,410˙
1,433 for the lognormal severity model and 20,246˙ 1,400 for the GPD severity model. The numbers for
lognormal and GPD are well within two standard errors of each other, which indicates that the aggregate loss
distribution is less sensitive to the choice of these two severity distributions in this particular example; you
can use the results from either of them.

Figure 17.12 Perturbation Analysis of Losses from Multiple Policyholders with GPD Severity Model

The HPCDM Procedure
Severity Model: Gpd

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Generalized Pareto Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Perturbation Analysis

Statistic Estimate
Standard

Error

Mean 5235.5 364.77905

Standard Deviation 3894.0 270.62630

Variance 15236520 2107602.2

Skewness 1.48825 0.24040

Kurtosis 4.33915 6.27802

Number of Perturbed Samples = 50

Size of Each Sample = 10000
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Figure 17.12 continued

Sample Percentile Perturbation
Analysis

Percentile Estimate
Standard

Error

1 155.29557 25.93762

5 699.37268 62.80951

25 2381.4 173.33561

50 4367.2 308.51028

75 7136.8 498.42048

95 12717.7 883.48043

97.5 14991.8 1014.0

98.5 16657.1 1148.8

99 17993.5 1235.1

99.5 20246.2 1399.7

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

The PLOTS=CONDITIONALDENSITY option that is used in the preceding PROC HPCDM step prepares
the conditional density plots for the body and right-tail regions of the density function of the aggregate
loss. The plots for the aggregate loss sample that is generated by using the lognormal severity model are
shown in Figure 17.13. The plot on the left side is the plot of Pr.Y jY � 13,122/, where the limit 13,122
is the 95th percentile as specified by the RIGHTQ=0.95 option. The plot on the right side is the plot of
Pr.Y jY > 13,122/, which helps you visualize the right-tail region of the density function. You can also
request the plot of the left tail by specifying the LEFTQ= suboption of the CONDITIONALDENSITY option
if you want to explore the details of the left tail region. Note that the conditional density plots are always
produced by using the unperturbed sample.
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Figure 17.13 Conditional Density Plots for the Aggregate Loss of Multiple Policyholders

Syntax: HPCDM Procedure
The following statements are available in the HPCDM procedure:

PROC HPCDM options ;
BY variable-list ;
DISTBY replication-id-variable ;
SEVERITYMODEL severity-model-list ;
EXTERNALCOUNTS COUNT=frequency-variable < ID=replication-id-variable > ;
OUTPUT OUT=SAS-data-set < variable-name-options > < / out-option > ;
OUTSUM OUT=SAS-data-set statistic-keyword< =variable-name > < . . . statistic-

keyword< =variable-name > > < outsum-options > ;
PERFORMANCE options ;
Programming statements ;
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Functional Summary
Table 17.1 summarizes the statements and options available in the HPCDM procedure.

Table 17.1 PROC HPCDM Functional Summary

Description Statement Option

Statements
Specifies the names of severity distribution
models

SEVERITYMODEL

Specifies externally simulated count data EXTERNALCOUNTS
Specifies where and how the full simulated
samples are written

OUTPUT

Specifies where and how the summary statistics of
simulated samples are written

OUTSUM

Specifies performance options PERFORMANCE
Specifies programming statements that define an
objective function

Programming statements

Data Set Options
Specifies the input data set PROC HPCDM DATA=
Specifies the output data set for the full simulated
samples

OUTPUT OUT=

Specifies the output data set for the summary
statistics

OUTSUM OUT=

Model Input Options
Specifies the variable that contains externally
simulated counts

EXTERNALCOUNTS COUNT=

Specifies the item store that contains the
frequency (count) model

PROC HPCDM COUNTSTORE=

Specifies the replicate identifier variable for
external counts

EXTERNALCOUNTS ID=

Specifies the input data set for parameter
estimates of the severity models

PROC HPCDM SEVERITYEST=

Specifies the item store for parameter estimates of
the severity models

PROC HPCDM SEVERITYSTORE=

Simulation Options
Specifies the adjusted severity symbol in the
programming statements

PROC HPCDM ADJUSTEDSEVERITY=

Specifies the upper limit on the count for each
sample point

PROC HPCDM MAXCOUNTDRAW=

Specifies the number of parameter-perturbed
samples to be simulated

PROC HPCDM NPERTURBEDSAMPLES=

Specifies a number that controls the size of the
simulated sample

PROC HPCDM NREPLICATES=
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Table 17.1 continued

Description Statement Option

Specifies the parameter perturbation method PROC HPCDM PERTURBMETHOD=
Specifies a seed for the internal pseudorandom
number generator

PROC HPCDM SEED=

Output Preparation Options
Specifies the variable for the aggregate adjusted
loss sample

OUTPUT ADJSAMPLEVAR=

Specifies the method to compute the percentiles PROC HPCDM PCTLDEF=
Specifies the names of the variables for percentiles OUTSUM PCTLNAME=
Specifies the decimal precision to form default
percentile variable names

OUTSUM PCTLNDEC=

Specifies percentiles to compute and report OUTSUM PCTLPTS=
Specifies that all perturbed samples be written to
the OUT= data set

OUTPUT PERTURBOUT

Specifies the variable for the aggregate loss
sample

OUTPUT SAMPLEVAR=

Specifies the denominator for computing second-
and higher-order moments

PROC HPCDM VARDEF=

Displayed Output and Plotting Options
Suppresses all displayed and graphical output PROC HPCDM NOPRINT
Specifies which graphical output to prepare PROC HPCDM PLOTS=
Specifies which displayed output to prepare PROC HPCDM PRINT=

PROC HPCDM Statement
PROC HPCDM options ;

The PROC HPCDM statement invokes the procedure. You can specify the following options, which are listed
in alphabetical order.

ADJUSTEDSEVERITY=symbol-name

ADJSEV=symbol-name
names the symbol that represents the adjusted severity value in the SAS programming statements that
you specify. The symbol-name is a SAS name that conforms to the naming conventions of a SAS
variable. For more information, see the section “Programming Statements” on page 960.

COUNTSTORE=SAS-item-store
names the item store that contains all the information about the frequency (count) model. The
COUNTREG procedure generates this item store when you use the STORE statement.

The exogenous variables in the frequency model, if any, are deduced from this item store. The DATA=
data set must contain all those variables.
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If you specify a BY statement in the PROC COUNTREG step that creates the COUNTSTORE= item
store, then you must specify an identical BY statement in the PROC HPCDM step.

You must specify this option if you do not specify the EXTERNALCOUNTS statement. This option is
ignored if you specify the EXTERNALCOUNTS statement, because PROC HPCDM does not need to
simulate frequency counts internally when you specify externally simulated counts.

DATA=SAS-data-set
names the input data set that contains the values of regression variables in frequency or severity models
and severity adjustment variables that you use in the programming statements.

The DATA= data set specifies information about the scenario for which you want to estimate the
aggregate loss distribution. The interpretation of the contents of the data set depends on whether
you specify the EXTERNALCOUNTS statement. For more information, see the section “Specifying
Scenario Data in the DATA= Data Set” on page 960.

MAXCOUNTDRAW=number

MAXCOUNT=number
specifies an upper limit on the number of loss events (count) that is used for simulating one aggregate
loss sample point. If the number is equal to Nmax, then any count that is greater than Nmax is
assumed to be equal to Nmax, and only Nmax severity draws are made to compute one point in the
aggregate loss sample.

If you specify this option and also specify the COUNTSTORE= item store, then the limit is applied to
each count that PROC HPCDM randomly draws from the count distribution in the COUNTSTORE=
item store. Any count draw that is larger than the number is replaced by the number .

If you specify this option and also specify the EXTERNALCOUNTS statement, then the limit is
applied to each observation in the DATA= data set, and any value of the COUNT= variable that is
larger than the number is replaced by the number .

If you do not specify this option, then a default value of 1,000 is used.

If you specify a number that is significantly larger than 1,000, then PROC HPCDM might take a very
long time to complete the simulation, especially when some counts are closer to the limit.

NOPRINT
turns off all displayed and graphical output. If you specify this option, then PROC HPCDM ignores
any value that you specify for the PRINT= or PLOTS= option.

NPERTURBEDSAMPLES=number

NPERTURB=number
requests that parameter perturbation analysis be conducted. The model parameters are perturbed the
specified number of times and a separate full sample is simulated for each set of perturbed parameter
values. The summary statistics and percentiles are computed for each such perturbed sample, and their
values are aggregated across the samples to compute the mean and standard deviation of each summary
statistic and percentile.

The parameter perturbation procedure makes random draws of parameter values from a multivariate nor-
mal distribution if the covariance estimates of the parameters are available. For the multivariate normal
distribution of severity model parameters, PROC HPCDM attempts to read the covariance estimates
from the SEVERITYEST= data set or the SEVERITYSTORE= item store. For the multivariate normal
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distribution of count model parameters, PROC HPCDM attempts to read the covariance estimates from
the COUNTSTORE= store. If covariance estimates are not available or valid, then for each parameter,
a random draw is made from the univariate normal distribution that has mean and standard deviation
equal to the point estimate and the standard error, respectively, of that parameter. If neither covariance
nor standard error estimates are available, then perturbation analysis is not conducted.

If you specify the PRINT=ALL or PRINT=PERTURBSUMMARY option, then the summary of
perturbation analysis is printed for the core summary statistics and the percentiles of the aggregate
loss distribution. If you specify the OUTSUM statement, then the requested summary statistics are
written to the OUTSUM= data set for each perturbed sample. You can also optionally request that each
perturbed sample be written in its entirety to the OUT= data set by specifying the PERTURBOUT
option in the OUTPUT statement.

For more information on the parameter perturbation analysis, see the section “Parameter Perturbation
Analysis” on page 976.

NREPLICATES=number

NREP=number
specifies a number that controls the size of the compound distribution sample that PROC HPCDM sim-
ulates. The number is interpreted differently based on whether you specify the EXTERNALCOUNTS
statement.

If you do not specify the EXTERNALCOUNTS statement, then the sample size is equal to the number
that you specify for this option. If you do not specify this option, then a default value of 100,000 is
used.

If you specify the EXTERNALCOUNTS statement, then the number of replicates that you specify in
the DATA= data set is multiplied by the number that you specify for this option to get the total size of
the compound distribution sample. If you do not specify this option, then a default value of 1 is used.

PCTLDEF=percentile-method
specifies the method to compute the percentiles of the compound distribution. The percentile-method
can be 1, 2, 3, 4, or 5. The default method is 5. For more information, see the description of the
PCTLDEF= option in the UNIVARIATE procedure in the Base SAS Procedures Guide: Statistical
Procedures.

PERTURBMETHOD=perturbation-method
specifies a method to perturb the parameters of the severity and count models. This option has no effect
if you do not specify the NPERTURBEDSAMPLES= option. You can specify one of the following
perturbation-methods:

ASYNC | 0
causes each thread of computation to use its own set of perturbed model parameters. In partic-
ular, each thread uses its own pseudorandom number generator (PRNG) to perturb the model
parameters, which is the same PRNG as the PRNG that the thread uses for making random draws
from the severity or count distributions. Because each thread’s PRNG starts with a different seed
and because random draws that pertain to perturbation are interleaved with random draws that
are made from the severity or count distributions, each thread effectively uses a different set of
perturbed models parameters even though it is simulating a subset of the same, global perturbed
sample.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=procstat&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=procstat&docsetTarget=titlepage.htm
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This method is computationally slightly more efficient because it does not need to synchronize the
set of perturbed parameters among threads. However, each perturbed sample that it produces is
conceptually a collection of smaller, distinct perturbed samples that belong to different compound
distribution models.

SYNC | 1
specifies that all threads of computation use the same (synchronized) set of perturbed model
parameters. When you specify this option, PROC HPCDM in concept uses a single, dedicated
PRNG to perturb the model parameters and shares those parameters with all threads.

This method ensures that all observations of a particular perturbed sample belong to the same
compound distribution model, because each thread uses the same set of perturbed model parame-
ters.

It is recommended that you specify the SYNC method. By default, PERTURBMETHOD=ASYNC to
ensure that the current release of PROC HPCDM produces, by default, the same perturbation results as
releases prior to SAS/ETS 15.1.

PLOTS < (global-plot-options) > =plot-request-option

PLOTS < (global-plot-options) > =(plot-request-option . . . plot-request-option)
specifies the desired graphical output.

By default, the HPCDM procedure produces no graphical output.

You can specify the following global-plot-option:

ONLY
turns off the default graphical output and prepares only the requested plots.

If you specify more than one plot-request-option, then separate them with spaces and enclose them in
parentheses. The following plot-request-options are available:

ALL
displays all the graphical output.

CONDITIONALDENSITY (conditional-density-plot-options)

CONDPDF (conditional-density-plot-options)
prepares a group of plots of the conditional density functions estimates. The group contains at
most three plots, each conditional on the value of the aggregate loss being in one of the three
regions that are defined by the quantiles that you specify in the following conditional-density-
plot-options:

LEFTQ=number
specifies the quantile in the range (0,1) that marks the end of the left-tail region. If you
specify a value of l for number , then the left-tail region is defined as the set of values that are
less than or equal to ql , where ql is the lth quantile. For the left-tail region, nonparametric
estimates of the conditional probability density function f lS .s/ D PrŒS D sjS � ql � are
plotted. The value of ql is estimated by the 100l th percentile of the simulated compound
distribution sample.

If you do not specify this option or you specify a missing value for this option, then the
left-tail region is not plotted.
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RIGHTQ=number
specifies the quantile in the range (0,1) that marks the beginning of the right-tail region. If
you specify a value of r for number , then the right-tail region is defined as the set of values
that are greater than qr , where qr is the rth quantile. For the right-tail region, nonparametric
estimates of the conditional probability density function f rS .s/ D PrŒS D sjS > qr � are
plotted. The value of qr is estimated by the 100r th percentile of the simulated compound
distribution sample.

If you do not specify this option or you specify a missing value for this option, then the
right-tail region is not plotted.

You must specify nonmissing value for at least one of the preceding two options. For the region
between the LEFTQ= and RIGHTQ= quantiles, which is referred to as the central or body region,
nonparametric estimates of the conditional probability density function f cS .s/ D PrŒS D sjql <
S � qr � are plotted. If you do not specify a LEFTQ= value, then ql is assumed to be 0. If you do
not specify a RIGHTQ= value, then qr is assumed to be1.

DENSITY
prepares a plot of the nonparametric estimates of the probability density function (in particular,
histogram and kernel density estimates) of the compound distribution.

EDF < (edf-plot-option) >
prepares a plot of the nonparametric estimates of the cumulative distribution function of the
compound distribution.

You can request that the confidence interval be plotted by specifying the following edf-plot-option:

ALPHA=number
specifies the confidence level in the (0,1) range that is used for computing the confidence
intervals for the EDF estimates. If you specify a value of ˛ for number , then the upper and
lower confidence limits for the confidence level of 100.1 � ˛/ are plotted.

NONE
displays none of the graphical output. If you specify this option, then it overrides all other plot
request options. The default graphical output is also suppressed.

Note that if the simulated sample size is large, then it can take a significant amount of time and memory
to prepare the plots.

PRINT < (global-display-option) > =display-option

PRINT < (global-display-option) > =(display-option . . . display-option)
specifies the desired displayed output. If you specify more than one display-option, then separate them
with spaces and enclose them in parentheses.

You can specify the following global-display-option:

ONLY
turns off the default displayed output and displays only the requested output.

You can specify the following display-options:
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ALL
displays all the output.

NONE
displays none of the output. If you specify this option, then it overrides all other display options.
The default displayed output is also suppressed.

PERCENTILES
displays the percentiles of the compound distribution sample. This includes all the predefined
percentiles, percentiles that you request in the OUTSUM statement, and percentiles that you
specify for preparing conditional density plots.

PERTURBSUMMARY
displays the mean and standard deviation of the summary statistics and percentiles that are taken
across all the samples produced by perturbing the model parameters. This option is valid only if
you specify the NPERTURBEDSAMPLES= option in the PROC HPCDM statement.

SUMMARYSTATISTICS | SUMSTAT
displays the summary statistics of the compound distribution sample.

If you do not specify the PRINT= option or the ONLY global-display-option, then the default displayed
output is equivalent to specifying PRINT=(SUMMARYSTATISTICS).

SEED=number
specifies the integer to use as the seed in generating the pseudorandom numbers that are used for
simulating severity and frequency values.

If you do not specify the seed or if number is negative or 0, then the time of day from the computer’s
clock is used as the seed.

SEVERITYEST=SAS-data-set
names the input data set that contains the parameter estimates for the severity model. The format of
this data set must be the same as the OUTEST= data set that is produced by the SEVERITY procedure.

The names of the regression variables in the scale regression model, if any, are deduced from this data
set. In particular, PROC HPCDM assumes that all the variables in the SEVERITYEST= data set that
do not appear in the following list are scale regression variables:

� BY variables

� _MODEL_, _TYPE_, _NAME_, and _STATUS_ variables

� variables that represent distribution parameters

The DATA= data set must contain all the regressors in the scale regression model.

To ensure that PROC HPCDM correctly matches the values of regressors and the values of regression
parameter estimates, you might need to rename the regressors in the DATA= data set so that their
names match the names of the regressors that you specify in the SCALEMODEL statement of the
PROC SEVERITY step that fits the severity model.

If you specify a BY statement in the PROC SEVERITY step that creates the SEVERITYEST= data
set, then you must specify an identical BY statement in the PROC HPCDM step. Otherwise, PROC
HPCDM detects the BY variables as regression variables in the scale regression model, which might
produce unexpected results.
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SEVERITYSTORE=SAS-item-store

SEVSTORE=SAS-item-store
specifies the item store that contains the context and estimates of the severity model. A PROC
SEVERITY step with the OUTSTORE= option creates this item store.

If your severity model contains classification or interaction effects, then you need to use this option
instead of the SEVERITYEST= option to specify the severity model. If you specify this option, you
cannot specify the SEVERITYEST= option.

If you specify a BY statement in the PROC SEVERITY step that creates the SEVERITYSTORE=
item store, then you must specify an identical BY statement in the PROC HPCDM step.

VARDEF=divisor
specifies the divisor to use in the calculation of variance, standard deviation, kurtosis, and skewness of
the compound distribution sample. If the sample size is N, then you can specify one of the following
values for the divisor :

DF
sets the divisor for variance to N � 1. This is the default. This also changes the definitions of
skewness and kurtosis.

N
sets the divisor to N.

For more information, see the section “Descriptive Statistics” on page 977.

BY Statement
BY variable-list ;

You can use the BY statement in the HPCDM procedure to process the input data set in groups of observations
defined by the BY variables.

If you specify the BY statement, then you must specify the DATA= option in order to specify the input data
set. PROC HPCDM expects the input data set to be sorted in the order of the BY variables unless you specify
the NOTSORTED option.

DISTBY Statement
DISTBY replication-id-variable ;

A DISTBY statement is necessary if and only if you specify an ID= variable in the EXTERNALCOUNTS
statement. In fact, the replication-id-variable must be the same as the ID= variable. This is required for
correct simulation of the CDM in the presence of the ID= variable.

The replication-id-variable must not appear in the BY statement. However, the DATA= data set must be sorted
as if the replication-id-variable were listed after the BY variables in the BY statement.
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EXTERNALCOUNTS Statement
EXTERNALCOUNTS COUNT=frequency-variable < ID=replication-id-variable > ;

The EXTERNALCOUNTS statement enables you to specify externally simulated frequency counts. By
default, PROC HPCDM internally simulates the number of loss events by using the frequency model input
(COUNTSTORE= item store). However, if you specify the EXTERNALCOUNTS statement, then PROC
HPCDM uses the counts that you specify in the DATA= data set and simulates only the severity values
internally.

If you specify more than one EXTERNALCOUNTS statement, only the first one is used.

You must specify the following option in the EXTERNALCOUNTS statement:

COUNT=count-variable
specifies the variable that contains the simulated counts. This variable must be present in the DATA=
data set.

You can also specify the following option in the EXTERNALCOUNTS statement:

ID=replication-id-variable
specifies the variable that contains the replicate identifier. This variable must be present in the DATA=
data set. Furthermore, you must specify the DISTBY statement with replication-id-variable as the only
DISTBY variable to ensure correct simulation.

The observations of DATA= data set must be arranged such that the values of the ID= variable are in
increasing order in each BY group or in the entire data set if you do not specify the BY statement.

If you do not specify the ID= option, then PROC HPCDM assumes that each observation represents
one replication. In other words, the observation number serves as the default replication identifier.

The simulation process of using the external counts to generate the compound distribution sample is described
in the section “Simulation with External Counts” on page 964.

OUTPUT Statement
OUTPUT OUT=SAS-data-set < variable-name-options > < / out-option > ;

The OUTPUT statement enables you to specify the data set to output the generated compound distribution
sample.

If you specify more than one OUTPUT statement, only the first one is used.

You must specify the output data set by using the following option:

OUT=SAS-data-set
OUTSAMPLE=SAS-data-set

specifies the output data set to contain the simulated compound distribution sample. If you specify
programming statements to adjust individual severity values, then this data set contains both unadjusted
and adjusted samples.

You can specify the following variable-name-options to control the names of the variables created in the
OUT= data set:
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ADJSAMPLEVAR=variable-name
specifies the name of the variable to contain the adjusted compound distribution sample in the OUT=
data set. If you do not specify the ADJSAMPLEVAR= option, then “_AGGADJSEV_” is used by
default.

This option is ignored if you do not specify the ADJUSTEDSEVERITY= option and the programming
statements to adjust the simulated severity values.

SAMPLEVAR=variable-name
specifies the name of the variable to contain the simulated sample in the OUT= data set. If you do not
specify the SAMPLEVAR= option, then “_AGGSEV_” is used by default.

Further, you can request that the perturbed samples be written to the OUT= data set by specifying the
following out-option:

PERTURBOUT
specifies that all the perturbed samples be written to the OUT= data set. Each perturbed sample is
identified by the _DRAWID_ variable in the OUT= data set. A value of 0 for the _DRAWID_ variable
indicates an unperturbed sample.

Separate compound distribution samples are generated for each combination of specified severity and fre-
quency models. The _SEVERITYMODEL_ and _COUNTMODEL_ columns in the OUT= data set identify
the severity and frequency models, respectively, that are used to generate the sample in the SAMPLEVAR=
and ADJSAMPLEVAR= variables.

OUTSUM Statement
OUTSUM OUT=SAS-data-set statistic-keyword< =variable-name > < . . . statistic-keyword< =variable-

name > > < outsum-options > ;

The OUTSUM statement enables you to specify the data set in which PROC HPCDM writes the summary
statistics of the compound distribution samples.

If you specify more than one OUTSUM statement, only the first one is used.

You must specify the output data set by using the following option:

OUT=SAS-data-set

OUTSUM=SAS-data-set
specifies the output data set that contains the summary statistics of each of the simulated compound
distribution samples. You can control the summary statistics that appear in this data set by specifying
different statistic-keywords and outsum-options.

You can request that one or more predefined statistics of the compound distribution sample be written to the
OUTSUM= data set. For each specification of the form statistic-keyword< =variable-name >, the statistic
that is specified by the statistic-keyword is written to a variable named variable-name. If you do not specify
the variable-name, then the statistic is written to a variable named statistic-keyword . You can specify the
following statistic-keywords:
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KURTOSIS

KURT
specifies the kurtosis of the compound distribution sample.

MEAN
specifies the mean of the compound distribution sample.

MEDIAN

Q2

P50
specifies the median (the 50th percentile) of the compound distribution sample.

P01
specifies the 1st percentile of the compound distribution sample.

P05
specifies the 5th percentile of the compound distribution sample.

P95
specifies the 95th percentile of the compound distribution sample.

P99
specifies the 99th percentile of the compound distribution sample.

P99_5

P995
specifies the 99.5th percentile of the compound distribution sample.

Q1

P25
specifies the lower or 1st quartile (the 25th percentile) of the compound distribution sample.

Q3

P75
specifies the upper or 3rd quartile (the 75th percentile) of the compound distribution sample.

QRANGE
specifies the interquartile range (Q3–Q1) of the compound distribution sample.

SKEWNESS

SKEW
specifies the skewness of the compound distribution sample.

STDDEV

STD
specifies the standard deviation of the compound distribution sample.

All percentiles are computed by using the method that you specify for the PCTLDEF= option in the PROC
HPCDM statement. You can also request additional percentiles to be reported in the OUTSUM= data set by
specifying the following outsum-options:
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PCTLPTS=percentile-list
specifies one or more percentiles that you want to be computed and written to the OUTSUM= data
set. This option is useful if you need to request percentiles that are not available in the preceding
list of statistic-keyword values. Each percentile value must belong to the (0,100) open interval. The
percentile-list is a comma-separated list of numbers. You can also use a list notation of the form
“< number1 > to < number2 > by < increment >”. For example, the following two options are equivalent:

pctlpts=10, 20, 99.6, 99.7, 99.8, 99.9
pctlpts=10, 20, 99.6 to 99.9 by 0.1

The name of the variable for a given percentile value is decided by the PCTLNAME= option.

PCTLNAME=percentile-variable-name-list
specifies the names of the variables that contain the estimates of the percentiles that you request by
using the PCTLPTS= option.

If you do not specify the PCTLNAME= option, then each percentile value t in the list of values in
the PCTLPTS= option is written to the variable named “Pt ,” where the decimal point in t , if any, is
replaced by an underscore.

The percentile-variable-name-list is a space-separated list of names. You can also use a shortcut
notation of <prefix>m–<prefix>n for two integers m and n (m < n) to generate the following list of
names: <prefix>m, <prefix>mC 1, . . . , and <prefix>n. For example, the following two options are
equivalent:

pctlname=p1 p2 pc5 pc6 pc7 pc8 pc9 pc10
pctlname=p1 p2 pc5-pc10

The name in jth position of the expanded name list of the PCTLNAME= option is used to create a
variable for a percentile value in the jth position of the expanded value list of the PCTLPTS= option.
If you specify kn names in the PCTLNAME= option and kv percentile values in the PCTLPTS=
option, and if kn < kv , then the first kn percentiles are written to the variables that you specify and the
remaining kv � kn percentiles are written to the variables that have the name of the form Pt, where t is
the text representation of the percentile value that is formed by retaining at most PCTLNDEC= digits
after the decimal point and replacing the decimal point with an underscore (‘_’). For example, assume
you specify the options

pctlpts=10, 20, 99.3 to 99.5 by 0.1, 99.995
pctlname=pten ptwenty ninenine3-ninenine5

Then PROC HPCDM writes the 10th and 20th percentiles to pten and ptwenty variables, respectively;
the 99.3rd through 99.5th percentiles to ninenine3, ninenine4, and ninenine5 variables, respectively;
and the remaining 99.995th percentile to the P99_995 variable.

If a percentile value in the PCTLPTS= option matches a percentile value implied by one of the
predefined percentile statistics and you specify the corresponding statistic-keyword , then the variable
name that is implied by the statistic-keyword< =variable-name > specification takes precedence over
the name that you specify in the PCTLNAME= option. For example, assume you specify the predefined
percentile statistic of P95 as in the OUTSUM statement
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outsum out=mypctls p95=ninetyfifth
pctlpts=95 to 99 by 1 pctlname=pct95-pct99;

Then the 95th percentile is written to the ninetyfifth variable instead of the pct95 variable that the
PCTLNAME= option implies.

PCTLNDEC=integer-value
specifies the maximum number of decimal places to use while creating the names of the variables for
the percentile values in the PCTLPTS= option. The default value is 3. For example, for a percentile
value of 99.9995, PROC HPCDM creates a variable named P99_999 by default, but if you specify
PCTLNDEC=4, then the variable is named P99_9995.

The PCTLNDEC= option is used only for percentile values for which you do not specify a name in the
PCTLNAME= option.

Note that all variable names in the OUTSUM= data set have a limit of 32 characters. If a name exceeds that
limit, then it is truncated to contain only the first 32 characters. For more information about the variables in
the OUTSUM= data set, see the section “Output Data Sets” on page 980.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for multithreaded computing, and requests
detailed results about the performance characteristics of PROC HPCDM.

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement”
(Chapter 21, SAS/STAT User’s Guide).

SEVERITYMODEL Statement
SEVERITYMODEL severity-model-list ;

The SEVERITYMODEL statement specifies one or more severity distribution models that you want to use
in simulating a compound distribution sample. The severity-model-list is a space-separated list of names
of severity models that you would use with PROC SEVERITY’s DIST statement. The SEVERITYEST=
data set or the SEVERITYSTORE= item store must contain all the severity models in the list. If you specify
the SEVERITYEST= data set and you specify a name that does not appear in the _MODEL_ column of the
SEVERITYEST= data set, then that name is ignored. Similarly, if you specify the SEVERITYSTORE= item
store and a severity model by that name does not appear in the item store, then that name is ignored.

If you specify more than one SEVERITYMODEL statement, only the first one is used.

If you do not specify a SEVERITYMODEL statement, then this is equivalent to specifying all the severity
models that appear in the SEVERITYEST= data set or the SEVERITYSTORE= item store.

A compound distribution sample is generated for each of the severity models by compounding that severity
model with the frequency model that you specify in the COUNTSTORE= item store or the external frequency
model that is encoded by the COUNT= variable that you specify in the EXTERNALCOUNTS statement.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Programming Statements
In PROC HPCDM, you can use a series of programming statements that use variables in the DATA= data set
to adjust an individual severity value. The adjusted severity values are aggregated to form a separate adjusted
compound distribution sample.

The programming statements are executed for each simulated individual severity value. The observation
of the input data set that is used to evaluate the programming statements is determined by the simulation
procedure that is described in the section “Simulation Procedure” on page 961.

For more information, see the section “Simulation of Adjusted Compound Distribution Sample” on page 968.

Details: HPCDM Procedure

Specifying Scenario Data in the DATA= Data Set
A scenario represents a state of the world for which you want to estimate the distribution of aggregate losses.
The state consists of one or more entities that generate the loss events. For example, an entity might be an
individual who has an insurance policy or an organization that has a workers’ compensation policy. Each
entity has some characteristics of its own and some external factors that affect the frequency with which
it generates the losses and the severity of each loss. For example, characteristics of an individual with an
automobile insurance policy can include various demographics of the individual and various features of
the automobile. Characteristics of an organization with a workers’ compensation policy can be the number
of employees, revenue, ratio of temporary to permanent employees, and so on. The organization can also
be affected by external macroeconomic factors such as GDP and unemployment of the country where
the organization operates and factors that affect its industry. You need to quantify and specify all these
characteristics as external factors (regressors) when you fit severity and frequency models.

You should specify all the information about a scenario in the DATA= data set that you specify in the PROC
HPCDM statement. Each observation in the DATA= data set encodes the characteristics of an entity. For
proper simulation of severities, you must specify in the DATA= data set all the characteristics that you use as
regressors in the severity scale regression models. When you use the COUNTSTORE= option to specify the
frequency model, you must specify in the DATA= data set all the characteristics that you use as regressors
in the frequency model in order to properly simulate the counts. All the regressors are expected to have
nonmissing values. If any of the regressors have a missing value in an observation, then that observation is
ignored.

The information in the DATA= data set is interpreted as follows, based on whether you specify the EXTER-
NALCOUNTS statement:

� If you do not specify the EXTERNALCOUNTS statement, then all the observations in the data set
form a scenario. The observations are used together to compute one random draw from the compound
distribution. The total number of draws is equal to the value that you specify in the NREPLICATES=
option. The simulation process is described in the section “Simulation with Regressors and No External
Counts” on page 962 and illustrated using an example in the section “Illustration of Aggregate Loss
Simulation Process” on page 963.
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� If you specify the EXTERNALCOUNTS statement, then the DATA= data set is expected to contain
multiple replications (draws) of the frequency counts that you simulate externally for a scenario. The
DATA= data set must contain the COUNT= variable that you specify in the EXTERNALCOUNTS
statement. The replications are identified by the observation number or the ID= variable that you specify
in the EXTERNALCOUNTS statement. For each observation in a given replication, the COUNT=
variable is expected to contain the count of losses that are generated by the entity associated with that
observation. All the observations of a given replication are used together to compute one random
draw from the compound distribution. The size of the compound distribution sample is equal to the
number of distinct replications that you specify in the DATA= data set, multiplied by the value that you
specify in the NREPLICATES= option. The simulation process is described in the section “Simulation
with External Counts” on page 964 and illustrated using an example in the section “Illustration of the
Simulation Process with External Counts” on page 965.

In both cases, an observation can also contain severity adjustment variables that you can use to adjust the
severity of the losses generated by that entity, based on some policy rules. For more information about
simulating the adjusted compound distribution sample, see the section “Simulation of Adjusted Compound
Distribution Sample” on page 968.

If you specify severity and frequency models that have no regression effects in them and if you do not specify
externally simulated counts in the EXTERNALCOUNTS statement, then you do not need to specify the
DATA= data set. This case corresponds to a fixed scenario that is represented entirely by the distribution
parameters of the models.

Simulation Procedure
PROC HPCDM selects a simulation procedure based on whether you specify external counts or you request
that PROC HPCDM simulate the counts, and whether the severity or frequency models contain regression
effects. The following sections describe the process for the different scenarios.

Simulation with No Regressors and No External Counts

If you specify severity and frequency models that have no regression effects in them, and if you do not specify
externally simulated counts in the EXTERNALCOUNTS statement, then PROC HPCDM uses the following
simulation procedure.

The process is described for one severity distribution, dist . If you specify multiple severity distributions in
the SEVERITYMODEL statement, then the process is repeated for each specified distribution.

The following steps are repeated M times to generate a compound distribution sample of size M, where M is
the value that you specify in the NREPLICATES= option or the default value of that option:

1. Use the frequency model that you specify in the COUNTSTORE= option to draw a value N from the
count distribution. N is the number of loss events that are expected to occur in the time period that
is being simulated. N is adjusted to conform to the upper limit by setting it equal to min.N;Nmax/,
where Nmax is either 1,000 or the value that you specify in the MAXCOUNTDRAW= option.

2. Draw N values, Xj (j D 1; : : : ; N ), from the severity distribution dist with parameters that you
specify in the SEVERITYEST= data set or the SEVERITYSTORE= item store.
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3. Add the N severity values that are drawn in step 2 to compute one point S from the compound
distribution as

S D

NX
jD1

Xj

Note that although it is more common to fit the frequency model with regressors, PROC COUNTREG
enables you to fit a frequency model without regressors. If you do not specify any regressors in the MODEL
statement of the COUNTREG procedure, then it fits a model that contains only an intercept.

Simulation with Regressors and No External Counts

If the severity or frequency models have regression effects and if you do not specify externally simulated
counts in the EXTERNALCOUNTS statement, then you must specify a DATA= data set to provide values of
the regression variables, which together represent a scenario for which you want to simulate the CDM. In
this case, PROC HPCDM uses the following simulation procedure.

The process is described for one severity distribution. If you specify multiple severity distributions in the
SEVERITYMODEL statement, then the process is repeated for each specified distribution.

Note that you are doing scenario analysis when regression effects are present. Let K denote the number of
observations that form the scenario. This is the number of observations either in the current BY group or
in the entire DATA= data set if you do not specify the BY statement. If K > 1, then you are modeling the
scenario for a group of entities. If K = 1, then you are modeling the scenario for one entity.

The following steps are repeated M times to generate a compound distribution sample of size M, where M is
the value that you specify in the NREPLICATES= option or the default value of that option:

1. For each observation k (k D 1; : : : ; K), a count Nk is drawn from the frequency model that you
specify in the COUNTSTORE= option. The parameters of this model are determined by the frequency
regressors in observation k. Nk represents the number of loss events that are expected to be generated
by entity k in the time period that is being simulated. Nk is adjusted to conform to the upper limit by
setting it equal to min.Nk; Nmax/, where Nmax is either 1,000 or the value that you specify in the
MAXCOUNTDRAW= option.

2. Counts from all observations are added to compute N D
PK
kD1Nk . N is the total number of loss

events that are expected to occur in the time period that is being simulated.

3. N number of random draws are made from the severity distribution, and they are added to generate one
point of the compound distribution sample. Each of the N draws uses one of the K observations. If you
specify a scale regression model for the severity distribution, then the scale parameter of the severity
distribution is determined by the values of the severity regressors in the observation that is chosen for
that draw.

If you specify the BY statement, then a separate sample of size M is created for each BY group in the DATA=
data set.
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Illustration of Aggregate Loss Simulation Process
As an illustration of the simulation process, consider a very simple example of analyzing the distribution of
an aggregate loss that is incurred by a set of policyholders of an automobile insurance company in a period
of one year. It is postulated that the frequency and severity distributions depend on three variables: Age,
Gender (1: female, 2: male), and CarType (1: sedan, 2: sport utility vehicle). So these variables are used as
regressors while you fit the count model and severity scale regression model by using the COUNTREG and
SEVERITY procedures, respectively. Now, consider that you want to use the fitted frequency and severity
models to estimate the distribution of the aggregate loss that is incurred by a set of five policyholders together.
Let the characteristics of the five policyholders be encoded in a SAS data set named Work.Scenario that has
the following contents:

Obs age gender carType
1 30 2 1
2 25 1 2
3 45 2 2
4 33 1 1
5 50 1 1

The column Obs contains the observation number. It is shown only for the purpose of illustration. It need not
be present in the data set. The following PROC HPCDM step simulates the scenario in the Work.Scenario
data set:

proc hpcdm data=scenario
severityest=<severity parameter estimates data set>
countstore=<count model store> nreplicates=<sample size>;

severitymodel <severity distribution name(s)>;
run;

The following process generates a sample from the aggregate loss distribution for the scenario in the
Work.Scenario data set:

1. Use the values Age=30, Gender=2, and CarType=1 in the first observation to draw a count from the
count distribution. Let that count be 2. Repeat the process for the remaining four observations. Let the
counts be as shown in the Count column in the following table:

Obs age gender carType count
1 30 2 1 2
2 25 1 2 1
3 45 2 2 2
4 33 1 1 3
5 50 1 1 0

Note that the Count column is shown for illustration only; it is not added as a variable to the DATA=
data set.

2. The simulated counts from all the observations are added to get a value of N = 8. This means that
for this particular sample point, you expect a total of eight loss events in a year from these five
policyholders.

3. For the first observation, the scale parameter of the severity distribution is computed by using the
values Age=30, Gender=2, and CarType=1. That value of the scale parameter is used together with
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estimates of the other parameters from the SEVERITYEST= data set to make two draws from the
severity distribution. Each of the draws simulates the magnitude of the loss that is expected from the
first policyholder. The process is repeated for the remaining four policyholders. The fifth policyholder
does not generate any loss event for this particular sample point, so no severity draws are made by
using the fifth observation. Let the severity draws, rounded to integers for convenience, be as shown in
the _SEV_ column in the following table:

Obs age gender carType count _sev_
1 30 2 1 2 350 2100
2 25 1 2 1 4500
3 45 2 2 2 700 4300
4 33 1 1 3 600 1500 950
5 50 1 1 0

Note that the _SEV_ column is shown for illustration only; it is not added as a variable to the DATA=
data set.

PROC HPCDM adds the severity values of the eight draws to compute an aggregate loss value of
15,000. After recording this amount in the sample, the process returns to step 1 to compute the next
point in the aggregate loss sample. For example, in the second iteration, the count distribution of each
policyholder might generate one loss event for a total of five loss events, and the five severity draws
from the severity distributions that govern each of the policyholders might add up to 5,000. Then, the
value of 5,000 is recorded as the second point in the aggregate loss sample. The process continues
until M aggregate loss sample points are simulated, where the M is the value that you specify in the
NREPLICATES= option.

Simulation with External Counts

If you specify externally simulated counts by using the EXTERNALCOUNTS statement, then each replication
in the input data set represents the loss events generated by an entity. An entity can be an individual or
organization for which you want to estimate the compound distribution. If an entity has any characteristics
that are used as external factors (regressors) in developing the severity scale regression model, then you must
specify the values of those factors in the DATA= data set. If you specify the ID= variable, then multiple
observations for the same replication ID represent different entities in a group for which you are simulating
the CDM.

PROC HPCDM uses the following simulation procedure in the presence of externally simulated counts.

The process is described for one severity distribution. If you specify multiple severity distributions in the
SEVERITYMODEL statement, then the process is repeated for each specified distribution.

Let there be M distinct replications in the current BY group of the DATA= data set or in the entire DATA=
data set if you do not specify the BY statement. A replication is identified by either the observation number
or the value of the ID= variable that you specify in the EXTERNALCOUNTS statement.

For each of the M values of the replication identifier, the following steps are executed R times, where R is the
value of the NREPLICATES= option or the default value of that option:

1. Compute the total number of losses, N. If there are K (K � 1) observations for the current value of
the replication identifier, then N D

PK
kD1Nk , where Nk is the value of the COUNT= variable for
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observation k, after it is adjusted to conform to the upper limit of either 1,000 or the value that you
specify in the MAXCOUNTDRAW= option.

2. N number of random draws are made from the severity distribution, and they are added to generate one
point of the compound distribution sample.

This process generates a compound distribution sample of size M �R. If you specify the BY statement, then
a separate sample of size M �R is created for each BY group in the DATA= data set.

Illustration of the Simulation Process with External Counts
In order to illustrate the simulation process, consider the following simple example. In this example, your
severity model does not contain any regressors. An example that uses a severity scale regression model is
illustrated later. Assume that you have made 10 random draws from an external count model and recorded
them in the ExtCount variable of a SAS data set named Work.Counts1 as follows:

Obs extCount
1 3
2 2
3 0
4 1
5 3
6 4
7 1
8 2
9 0
10 5

Because the data set does not contain an ID= variable, the observation number that is shown in the Obs
column acts as the replicate identifier. The following PROC HPCDM step simulates an aggregate loss sample
by using the Work.Counts1 data set:

proc hpcdm data=work.counts1 nreplicates=5
severityest=<severity parameter estimates data set>;

severitymodel <severity distribution name(s)>;
externalcounts count=extCount;

run;

The simulation process works as follows:

1. For the first replication, which is associated with the first observation, three severity values are drawn
from the severity distribution by using the parameter estimates that you specify in the SEVERITYEST=
data set. If the severity values are 150, 500, and 320, then their sum of 970 is recorded as the first point
of the aggregate loss sample. Because the value of the NREPLICATES= option is 5, this process of
drawing three severity values and adding them to form a point of the aggregate loss sample is repeated
four more times to generate a total of five sample points that correspond to the first observation.

2. For the second replication, two severity values are drawn from the severity distribution. If the severity
values are 450 and 100, then their sum of 550 is recorded as a point of the aggregate loss sample. This
process of drawing two severity values and adding them to form a point of the aggregate loss sample
is repeated four more times to generate a total of five sample points that correspond to the second
observation.
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3. The process continues until all the replications, which are observations in this case, are exhausted.

The process results in an aggregate loss sample of size 50, which is equal to the number of replications in the
data set (10) multiplied by the value of the NREPLICATES= option (5).

Now, consider an example in which the severity models in the SEVERITYEST= data set are scale regression
models. In this case, the severity distribution that is used for drawing the severity value is decided by the
values of regressors in the observation that is being processed. Consider that you want to simulate the
aggregate loss that is incurred by one policyholder and you have recorded, in the ExtCount variable, the
results of 10 random draws from an external count model. The DATA= data set has the following contents:

Obs age gender carType extCount
1 30 2 1 5
2 30 2 1 2
3 30 2 1 0
4 30 2 1 1
5 30 2 1 3
6 30 2 1 4
7 30 2 1 1
8 30 2 1 2
9 30 2 1 0
10 30 2 1 5

The simulation process in this case is the same as the process in the previous case of no regressors, except that
the severity distribution that is used for drawing the severity values has a scale parameter that is determined
by the values of the regressors Age, Gender, and CarType in the observation that is being processed. In this
particular example, all observations have the same value for all regressors, indicating that you are modeling
a scenario in which the characteristics of the policyholder do not change during the time for which you
have simulated the number of events. You can also model a scenario in which the characteristics of the
policyholder change by recording those changes in the values of the appropriate regressors.

Extending this example further, consider that you want to analyze the distribution of the aggregate loss that
is incurred by a group of policyholders, as in the example in the section “Illustration of Aggregate Loss
Simulation Process” on page 963. Let the Work.Counts2 data set record multiple replications of the number
of losses that might be generated by each policyholder. The contents of the Work.Counts2 data set are as
follows:

Obs replicateId age gender carType extCount
1 1 30 2 1 2
2 1 25 1 2 1
3 1 45 2 2 3
4 1 33 1 1 5
5 1 50 1 1 1

6 2 30 2 1 3
7 2 25 1 2 2
8 1 45 2 2 0
9 2 33 1 1 4
10 2 50 1 1 1

The ReplicateId variable records the identifier for the replication. Each replication contains multiple
observations, such that each observation represents one of the policyholders that you are analyzing. For
simplicity, only the first two replications are shown here.
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The following PROC HPCDM step simulates an aggregate loss sample by using the Work.Counts2 data set:

proc hpcdm data=work.counts2 nreplicates=3
severityest=<severity parameter estimates data set>;

severitymodel <severity distribution name(s)>;
distby replicateId;
externalcounts count=extCount id=replicateId;
output out=aggloss samplevar=totalLoss;

run;

When you specify an ID= variable in the EXTERNALCOUNTS statement, you must specify the same ID=
variable in the DISTBY statement. Further, the DATA= set must be sorted in ascending order of the ID=
variable values.

The simulation process works as follows:

1. First, the five observations of the first replication (ReplicateId=1 are analyzed. For the first observation
(Obs=1), the scale parameter of the severity distribution is computed by using the values Age=30,
Gender=2, and CarType=1. That value of the scale parameter is used together with estimates of the
other parameters from the SEVERITYEST= data set to make two draws from the severity distribution.
Next, the regressor values of the second observation are used to compute the scale parameter of the
severity distribution, which is used to make one severity draw. The process continues such that the
regressor values in the third, fourth, and fifth observations are used to decide the severity distribution
to make three, five, and one draws from, respectively. Let the severity values that are drawn from the
observations of this replication be as shown in the _SEV_ column in the following table, where the
_SEV_ column is shown for illustration only; it is not added as a variable to the DATA= data set:

Obs replicateId age gender carType extCount _sev_
1 1 30 2 1 2 700 500
2 1 25 1 2 1 5000
3 1 45 2 2 3 900 1400 300
4 1 33 1 1 5 350 2000 150 800 600
5 1 50 1 1 1 250

The values of all 12 severity draws are added to compute and record the value of 12,950 as the first
point of the aggregate loss sample. Because you specify NREPLICATES=3 in the PROC HPCDM
step, this process of making 12 severity draws from the respective observations is repeated two more
times to generate a total of three sample points for the first replication.

2. The five observations of the second replication (ReplicateId=2) are analyzed next to draw three, two,
four, and one severity values from the severity distributions, with scale parameters that are decided by
the regressor values in the sixth, seventh, ninth, and tenth observations, respectively. The 10 severity
values are added to form a point of the aggregate loss sample. This process of making 10 severity
draws from the respective observations is repeated two more times to generate a total of three sample
points for the second replication.

If your Work.Counts2 data set contains 10,000 distinct values of ReplicateId, then 30,000 observations are
written to the Work.AggLoss data set that you specify in the OUTPUT statement of the preceding PROC
HPCDM step. Because you specify SAMPLEVAR=TotalLoss in the OUTPUT statement, the aggregate loss
sample is available in the TotalLoss column of the Work.AggLoss data set.
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Simulation of Adjusted Compound Distribution Sample
If you specify programming statements that adjust the severity value, then a separate adjusted compound
distribution sample is also generated.

Your programming statements are expected to implement an adjustment function f that uses the unadjusted
severity value, Xj , to compute and return an adjusted severity value, Xaj . To compute Xaj , you might also
use the sum of unadjusted severity values and the sum of adjusted severity values.

Formally, if N denotes the number of loss events that are to be simulated for the current replication of the
simulation process, then for the severity draw, Xj , of the jth loss event (j D 1; : : : ; N ), the adjusted severity
value is

Xaj D f .Xj ; Sj�1; S
a
j�1/

where Sj�1 D
Pj�1

lD1
Xl is the aggregate unadjusted loss before Xj is generated and Saj�1 D

Pj�1

lD1
Xa
l

is
the aggregate adjusted loss before Xj is generated. The initial values of both types of aggregate losses are set
to 0. In other words, S0 D 0 and Sa0 D 0.

The aggregate adjusted loss for the replication is SaN , which is denoted by Sa for simplicity, and is defined as

Sa D

NX
jD1

Xaj

In your programming statements that implement f, you can use the following keywords as placeholders for
the input arguments of the function f :

_SEV_
indicates the placeholder for Xj , the unadjusted severity value. PROC HPCDM generates this value as
described in the section “Simulation with No Regressors and No External Counts” on page 961 (step
2) or the section “Simulation with Regressors and No External Counts” on page 962 (step 3). PROC
HPCDM supplies this value to your program.

_CUMSEV_
indicates the placeholder for Sj�1, the sum of unadjusted severity values that PROC HPCDM generates
before Xj is generated. PROC HPCDM supplies this value to your program.

_CUMADJSEV_
indicates the placeholder for Saj�1, the sum of adjusted severity values that are computed by your
programming statements before Xj is generated and adjusted. PROC HPCDM supplies this value to
your program.

In your programming statements, you must assign the value of Xaj , the output of function f, to a symbol that
you specify in the ADJUSTEDSEVERITY= option in the PROC HPCDM statement. PROC HPCDM uses
the final assigned value of this symbol as the value of Xaj .

You can use most DATA step statements and functions in your program. The DATA step file and the data
set I/O statements (for example, INPUT, FILE, SET, and MERGE) are not available. However, some
functionality of the PUT statement is supported. For more information, see the section “PROC FCMP and
DATA Step Differences” in Base SAS Procedures Guide.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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The simulation process that generates the aggregate adjusted loss sample is identical to the process that is
described in the section “Simulation with Regressors and No External Counts” on page 962 or the section
“Simulation with External Counts” on page 964, except that after making each of the N severity draws, PROC
HPCDM executes your severity adjustment programming statements to compute the adjusted severity (Xaj ).
All the N adjusted severity values are added to compute Sa, which forms a point of the aggregate adjusted
loss sample. The process is illustrated using an example in the section “Illustration of Aggregate Adjusted
Loss Simulation Process” on page 971.

Using Severity Adjustment Variables

If you do not specify the DATA= data set, then your ability to adjust the severity value is limited, because you
can use only the current severity draw, sums of unadjusted and adjusted severity draws that are made before
the current draw, and some constant numbers to encode your adjustment policy. That is sufficient if you want
to estimate the distribution of aggregate adjusted loss for only one entity. However, if you are simulating a
scenario that contains more than one entity, then it might be more useful if the adjustment policy depends on
factors that are specific to each entity that you are simulating. To do that, you must specify the DATA= data
set and encode such factors as adjustment variables in the DATA= data set. Let A denote the set of values of
the adjustment variables. Then, the form of the adjustment function f that computes the adjusted severity
value becomes

Xaj D f .Xj ; Sj�1; S
a
j�1; A/

PROC HPCDM reads the values of adjustment variables from the DATA= data set and supplies the set of
those values (A) to your severity adjustment program. For an invocation of f with an unadjusted severity
value of Xj , the values in set A are read from the same observation that is used to simulate Xj .

All adjustment variables that you use in your program must be present in the DATA= data set. You must
not use any keyword for a placeholder symbol as a name of any variable in the DATA= data set, whether
the variable is a severity adjustment variable or a regressor in the frequency or severity model. Further, the
following restrictions apply to the adjustment variables:

� You can use only numeric-valued variables in PROC HPCDM programming statements. This restriction
also implies that you cannot use SAS functions or call routines that require character-valued arguments,
unless you pass those arguments as constant (literal) strings or characters.

� You cannot use functions that create lagged versions of a variable in PROC HPCDM programming
statements. If you need lagged versions, then you can use a DATA step before the PROC HPCDM step
to add those versions to the input data set.

The use of adjustment variables is illustrated using an example in the section “Illustration of Aggregate
Adjusted Loss Simulation Process” on page 971.

Aggregate Adjusted Loss Simulation for a Multi-entity Scenario

If you are simulating a scenario that consists of multiple entities, then you can use some additional pieces of
information in your severity adjustment program. Let the scenario consist of K entities and let Nk denote the
number of loss events that are incurred by kth entity (k D 1; : : : ; K) in the current iteration of the simulation
process. Each value of Nk is adjusted to conform to the upper limit of either 1,000 or the value that you
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specify in the MAXCOUNTDRAW= option. The total number of severity draws that need to be made is
N D

PK
kD1Nk . The aggregate adjusted loss is now defined as

Sa D

KX
kD1

NkX
jD1

Xak;j

where Xa
k;j

is an adjusted severity value of the jth draw (j D 1; : : : ; Nk) for the kth entity, and the form of
the adjustment function f that computes Xa

k;j
is

Xak;j D f .Xk;j ; Sk;j�1; S
a
k;j�1; Sn�1; S

a
n�1; A/

where Xk;j is the value of the jth draw of unadjusted severity for the kth entity. Sk;j�1 D
Pj�1

lD1
Xk;l

and Sa
k;j�1

D
Pj�1

lD1
Xa
k;l

are the aggregate unadjusted loss and the aggregate adjusted loss, respectively,
for the kth entity before Xk;j is generated. The index n (n D 1; : : : ; N ) keeps track of the total number
of severity draws, across all entities, that are made before Xk;j is generated. So Sn�1 D

Pn�1
lD1 Xl and

San�1 D
Pn�1
lD1 X

a
l

are the aggregate unadjusted loss and aggregate adjusted loss, respectively, for all the
entities that are processed before Xk;j is generated. Note that Sn�1 and San�1 include the j � 1 draws that
are made for the kth entity before Xk;j is generated.

The initial values of all types of aggregate losses are set to 0. In other words, S0 D 0, Sa0 D 0, and for all
values of k, Sk;0 D 0 and Sa

k;0
D 0.

PROC HPCDM uses the final value that you assign to the ADJUSTEDSEVERITY= symbol in your pro-
gramming statements as the value of Xa

k;j
.

In your severity adjustment program, you can use the following two additional placeholder keywords:

_CUMSEVFOROBS_
indicates the placeholder for Sk;j�1, which is the total loss that is incurred by the kth entity before the
current loss event. PROC HPCDM supplies this value to your program.

_CUMADJSEVFOROBS_
indicates the placeholder for Sa

k;j�1
, which is the total adjusted loss that is incurred by the kth entity

before the current loss event. PROC HPCDM supplies this value to your program.

The previously described placeholder symbols _CUMSEV_ and _CUMADJSEV_ represent Sn�1 and San�1,
respectively. If you have only one entity in the scenario (K = 1), then the values of _CUMSEVFOROBS_ and
_CUMADJSEVFOROBS_ are identical to the values of _CUMSEV_ and _CUMADJSEV_, respectively.

There is one caveat when a scenario consists of more than one entity (K > 1) and when you use any of
the symbols for cumulative severity values (_CUMSEV_, _CUMADJSEV_, _CUMSEVFOROBS_, or
_CUMADJSEVFOROBS_) in your programming statements. In this case, to make the simulation realistic,
it is important to randomize the order of N severity draws across K entities. For more information, see the
section “Randomizing the Order of Severity Draws across Observations of a Scenario” on page 973.
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Illustration of Aggregate Adjusted Loss Simulation Process

This section continues the example in the section “Simulation with Regressors and No External Counts” on
page 962 to illustrate the simulation of aggregate adjusted loss.

Recall that the earlier example simulates a scenario that consists of five policyholders. Assume that you
want to compute the distribution of the aggregate amount paid to all the policyholders in a year, where the
payment for each loss is decided by a deductible and a per-payment limit. To begin with, you must record the
deductible and limit information in the input DATA= data set. The following table shows the DATA= data set
from the earlier example, extended to include two variables, Deductible and Limit:

Obs age gender carType deductible limit
1 30 2 1 250 5000
2 25 1 2 500 3000
3 45 2 2 100 2000
4 33 1 1 500 5000
5 50 1 1 200 2000

The variables Deductible and Limit are referred to as severity adjustment variables, because you need to use
them to compute the adjusted severity. Let AmountPaid represent the value of adjusted severity that you are
interested in. Further, let the following SAS programming statements encode your logic of computing the
value of AmountPaid:

amountPaid = MAX(_sev_ - deductible, 0);
amountPaid = MIN(amountPaid, MAX(limit - _cumadjsevforobs_, 0));

PROC HPCDM supplies your program with values of the placeholder symbols _SEV_ and _CUMADJ-
SEVFOROBS_, which represent the value of the current unadjusted severity draw and the sum of adjusted
severity values from the previous draws, respectively, for the observation that is being processed. The use of
_CUMADJSEVFOROBS_ helps you ensure that the payment that is made to a given policyholder in a year
does not exceed the limit that is recorded in the Limit variable.

In order to simulate a sample for the aggregate of AmountPaid, you need to submit a PROC HPCDM step
whose structure is like the following:

proc hpcdm data=<data set name> adjustedseverity=amountPaid
severityest=<severity parameter estimates data set>
countstore=<count model store>;

severitymodel <severity distribution name(s)>;

amountPaid = MAX(_sev_ - deductible, 0);
amountPaid = MIN(amountPaid, MAX(limit - _cumadjsevforobs_, 0));

run;

The simulation process of one replication that generates one point of the aggregate loss sample and the
corresponding point of the aggregate adjusted loss sample is as follows:

1. Use the values Age=30, Gender=2, and CarType=1 in the first observation to draw a count from the
count distribution. Let that count be 3. Repeat the process for the remaining four observations. Let the
counts be as shown in the Count column in the following table:
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Obs age gender carType deductible limit count
1 30 2 1 250 5000 2
2 25 1 2 500 3000 1
3 45 2 2 100 2000 2
4 33 1 1 500 5000 3
5 50 1 1 200 2000 0

Note that the Count column is shown for illustration only; it is not added as a variable to the DATA=
data set.

2. The simulated counts from all the observations are added to get a value of N = 8. This means that for
this particular replication, you expect a total of eight loss events in a year from these five policyholders.

3. For the first observation, the scale parameter of the severity distribution is computed by using the values
Age=30, Gender=2, and CarType=1. That value of the scale parameter is used together with estimates
of the other parameters from the SEVERITYEST= data set to make two draws from the severity
distribution. The process is repeated for the remaining four policyholders. The fifth policyholder does
not generate any loss event for this particular replication, so no severity draws are made by using the
fifth observation. Let the severity draws, rounded to integers for convenience, be as shown in the
_SEV_ column in the following table, where the _SEV_ column is shown for illustration only; it is not
added as a variable to the DATA= data set:

Obs age gender carType deductible limit count _sev_
1 30 2 1 250 5000 2 350 2100
2 25 1 2 500 3000 1 4500
3 45 2 2 100 2000 2 700 4300
4 33 1 1 200 5000 3 600 1500 950
5 50 1 1 200 2000 0

The sample point for the aggregate unadjusted loss is computed by adding the severity values of eight
draws, which gives an aggregate loss value of 15,000. The unadjusted aggregate loss is also referred to
as the ground-up loss.

For each of the severity draws, your severity adjustment programming statements are executed to
compute the adjusted severity, which is the value of AmountPaid in this case. For the draws in the
preceding table, the values of AmountPaid are as follows:

Obs deductible limit _sev_ _cumadjsevforobs_ amountPaid
1 250 5000 350 0 100
1 250 5000 2100 100 1850
2 500 3000 4500 0 3000
3 100 2000 700 0 600
3 100 2000 4300 600 1400
4 200 5000 600 0 400
4 200 5000 1500 400 1300
4 200 5000 950 1700 750

The adjusted severity values are added to compute the cumulative payment value of 9,400, which forms
the first sample point for the aggregate adjusted loss.
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After recording the aggregate unadjusted and aggregate adjusted loss values in their respective samples,
the process returns to step 1 to compute the next sample point unless the specified number of sample
points have been simulated.

In this particular example, you can verify that the order in which the 8 loss events are simulated does
not affect the aggregate adjusted loss. As a simple example, consider the following order of draws that
is different from the consecutive order that was used in the preceding table:

Obs deductible limit _sev_ _cumadjsevforobs_ amountPaid
4 200 5000 600 0 400
3 100 2000 4300 0 2000
1 250 5000 350 0 100
3 100 2000 700 2000 0
4 200 5000 950 400 750
1 250 5000 2100 100 1850
2 500 3000 4500 0 3000
4 200 5000 1500 1150 1300

Although the payments that are made for individual loss events differ, the aggregate adjusted loss is
still 9,400.

However, in general, when you use a cumulative severity value such as _CUMADJSEVFOROBS_
in your program, the order in which the draws are processed affects the final value of aggregate
adjusted loss. For more information, see the sections “Randomizing the Order of Severity Draws
across Observations of a Scenario” on page 973 and “Illustration of the Need to Randomize the Order
of Severity Draws” on page 974.

Randomizing the Order of Severity Draws across Observations of a Scenario

If you specify a scenario that consists of a group of more than one entity, then it is assumed that each entity
generates its loss events independently from other entities. In other words, the time at which the loss event
of one entity is generated or recorded is independent of the time at which the loss event of another entity
is generated or recorded. If entity k generates Nk loss events, where Nk is adjusted to conform to the
upper limit of either 1,000 or the value that you specify in the MAXCOUNTDRAW= option, then the total
number of loss events for a group of K entities is N D

PK
kD1Nk . To simulate the aggregate loss for this

group, N severity draws are made and aggregated to compute one point of the compound distribution sample.
However, to honor the assumption of independence among entities, the order of those N severity draws must
be randomized across K entities such that no entity is preferred over another.

The K entities are represented by K observations of the scenario in the DATA= data set. If you specify
external counts, the K observations correspond to the observations that have the same replication identifier
value. If you do not specify the external counts, then the K observations correspond to all the observations in
the BY group or in the entire DATA= set if you do not specify the BY statement.

The randomization process over K observations is implemented as follows. First, one of the K observations is
chosen at random and one severity value is drawn from the severity distribution implied by that observation,
then another observation is chosen at random and one severity value is drawn from its implied severity
distribution, and so on. In each step, the total number of events that are simulated for the selected observation
k is incremented by 1. When all Nk events for an observation k are simulated, observation k is retired and
the process continues with the remaining observations until a total of N severity draws are made. Let k.j /
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denote a function that implements this randomization by returning an observation k (k D 1; : : : ; K) for the
jth draw (j D 1; : : : ; N ). The aggregate loss computation can then be formally written as

S D

NX
jD1

Xk.j /

where Xk.j / denotes the severity value that is drawn by using observation k.j /.

If you do not specify a scale regression model for severity, then all severity values are drawn from the same
severity distribution. However, if you specify a scale regression model for severity, then the severity draw
is made from the severity distribution that is determined by the values of regressors in observation k. In
particular, the scale parameter of the distribution depends on the values of regressors in observation k. If
R.l/ denotes the scale regression model for observation l and XR.l/ denotes the severity value drawn from
scale regression model R.l/, then the aggregate loss computation can be formally written as

S D

NX
jD1

XR.k.j //

This randomization process is especially important in the context of simulating an adjusted compound
distribution sample when your severity adjustment program uses the aggregate adjusted severity observed so
far to adjust the next severity value. For an illustration of the need to randomize in such cases, see the next
section.

Illustration of the Need to Randomize the Order of Severity Draws
This section uses the example of the section “Illustration of Aggregate Adjusted Loss Simulation Process” on
page 971, but with the following PROC HPCDM step:

proc hpcdm data=<data set name> adjustedseverity=amountPaid
severityest=<severity parameter estimates data set>
countstore=<count model store>;

severitymodel <severity distribution name(s)>;

if (_cumadjsev_ > 15000) then
amountPaid = 0;

else do;
penaltyFactor = MIN(3, 15000/(15000 - _cumadjsev_));
amountPaid = MAX(0, _sev_ - deductible * penaltyFactor);

end;
run;

The severity adjustment statements in the preceding steps compute the value of AmountPaid by using the
following provisions in the insurance policy:

� There is a limit of 15,000 on the total amount that can be paid in a year to the group of policyholders
that is being simulated. The amount of payment for each loss event depends on the total amount of
payments before that loss event.

� The penalty for incurring more losses is imposed in the form of an increased deductible. In particular,
the deductible is increased by the ratio of the maximum cumulative payment (15,000) to the amount
that remains available to pay for future losses in the year. The factor by which the deductible can be
raised has a limit of three.
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This example illustrates only step 3 of the simulation process, where randomization is done. It assumes
that step 2 of the simulation process is identical to the step 2 in the example in the section “Illustration of
Aggregate Adjusted Loss Simulation Process” on page 971. At the beginning of step 3, let the severity draws
from all the observations be as shown in the _SEV_ column in the following table:

Obs age gender carType deductible count _sev_
1 30 2 1 250 2 350 2100
2 25 1 2 500 1 4500
3 45 2 2 100 2 700 4300
4 33 1 1 200 3 600 1500 950
5 50 1 1 200 0

If the order of these eight draws is not randomized, then all the severity draws for the first observation are
adjusted before all the severity draws of the second observation, and so on. The execution of the severity
adjustment program leads to the following sequence of values for AmountPaid:

Obs deductible _sev_ _cumadjsev_ penaltyFactor amountPaid
1 250 350 0 1 100
1 250 2100 100 1.0067 1848.32
2 500 4500 1948.32 1.1493 3925.36
3 100 700 5873.68 1.6436 535.64
3 100 4300 6409.32 1.7461 4125.39
4 200 600 10534.72 3 0
4 200 1500 10534.72 3 900
4 200 950 11434.72 3 350

The preceding sequence of simulating loss events results in a cumulative payment of 11,784.72.

If the sequence of draws is randomized over observations, then the computation of the cumulative payment
might proceed as follows for one instance of randomization:

Obs deductible _sev_ _cumadjsev_ penaltyFactor amountPaid
2 500 4500 0 1 4000
1 250 350 4000 1.3636 9.09
3 100 700 4009.09 1.3648 563.52
4 200 950 4572.61 1.4385 662.30
4 200 1500 5234.91 1.5361 1192.78
1 250 2100 6427.69 1.7498 1662.54
4 200 600 8090.24 2.1708 165.83
3 100 4300 8256.07 2.2242 4077.58

In this example, a policyholder is identified by the value in the Obs column. As the table indicates, PROC
HPCDM randomizes the order of loss events not only across policyholders but also across the loss events
that a given policyholder incurs. The particular sequence of loss events that is shown in the table results in a
cumulative payment of 12,333.65. This differs from the cumulative payment that results from the previously
considered nonrandomized sequence of loss events, which tends to penalize the fourth policyholder by
always processing her payments after all other payments, with a possibility of underestimating the total paid
amount. This comparison not only illustrates that the order of randomization affects the aggregate adjusted
loss sample but also corroborates the arguments about the importance of order randomization that are made
at the beginning of the section “Randomizing the Order of Severity Draws across Observations of a Scenario”
on page 973.
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Parameter Perturbation Analysis
It is important to realize that most of the parameters of the frequency and severity models are estimated
and there is uncertainty associated with the parameter estimates. Any compound distribution estimate
that is computed by using these uncertain parameter estimates is inherently uncertain. The aggregate loss
sample that is simulated by using the mean estimates of the parameters is just one possible sample from the
compound distribution. If information about parameter uncertainty is available, then it is recommended that
you conduct parameter perturbation analysis that generates multiple samples of the compound distribution,
in which each sample is simulated by using a set of perturbed parameter estimates. You can use the
NPERTURBEDSAMPLES= option in the PROC HPCDM statement to specify the number of perturbed
samples to be generated. The set of perturbed parameter estimates is created by making a random draw of
the parameter values from their joint probability distribution. If you specify NPERTURBEDSAMPLES=P,
then PROC HPCDM creates P sets of perturbed parameters and each set is used to simulate a full aggregate
sample. The summary analysis of P such aggregate loss samples results in a set of P estimates for each
summary statistic and percentile of the compound distribution. The mean and standard deviation of this set
of P estimates quantify the uncertainty that is associated with the compound distribution.

The parameter uncertainty information is available in the form of either the variance-covariance matrix of
the parameter estimates or standard errors of the parameters estimates. If the variance-covariance matrix
is available and is positive definite, then PROC HPCDM assumes that the joint probability distribution of
the parameter estimates is a multivariate normal distribution, N .�; †/, where the mean vector � is the set
of point parameter estimates and † is the variance-covariance matrix. If the variance-covariance matrix is
not available or is not positive definite, then PROC HPCDM assumes that each parameter has a univariate
normal distribution, N .�; �2/, where � is the point estimate of the parameter and � is the standard error of
the parameter estimate.

To make the random draws from the multivariate normal distribution of all parameters or the univariate
distributions of individual parameters, PROC HPCDM uses a pseudorandom number generator (PRNG) that
is controlled by the PERTURBMETHOD= option as follows:

� PERTURBMETHOD=ASYNC is the legacy method that releases prior to SAS/ETS 15.1 used and
is the default for the current release. This method allows each thread to use a different PRNG for
perturbation, which in fact is the same PRNG that the thread uses for making random draws from
the severity or frequency distributions. Using different PRNGs and interleaving perturbation-related
random draws with severity and count random draws causes each thread to use a different set of
perturbed parameters while generating a subset of the same perturbed sample; in turn, this leads to a
perturbed sample that is a heterogeneous collection of smaller perturbed samples, each of which is
generated from a different compound distribution model.

� PERTURBMETHOD=SYNC method is the recommended method because it uses a single PRNG to
perturb the parameters and synchronizes the set of perturbed parameters across all threads. This makes
each perturbed sample a homogeneous sample that corresponds to a single compound distribution
model.

If you specify the severity models by using the SEVERITYEST= data set, then the point parameter estimates
are expected to be available in the SEVERITYEST= data set in observations for which _TYPE_=‘EST’,
the standard errors are expected to be available in the SEVERITYEST= data set in observations for which
_TYPE_=‘STDERR’, and the variance-covariance matrix is expected to be available in the SEVERITYEST=
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data set in observations for which _TYPE_=‘COV’. If you use the SEVERITY procedure to create the
SEVERITYEST= data set, then you need to specify the COVOUT option in the PROC SEVERITY statement
to make the variance-covariance estimates available in the SEVERITYEST= data set.

If you specify the severity models by using the SEVERITYSTORE= item store, then you need to specify
the OUTSTORE= option in the PROC SEVERITY statement to create that item store, which includes the
point parameter estimates and standard errors by default. In addition, you need to specify the COVOUT
option in the PROC SEVERITY statement to make the variance-covariance estimates available in the
SEVERITYSTORE= item store.

For the frequency model, you must use the COUNTREG procedure to create the COUNTSTORE= item store,
which always contains the point estimates, standard errors, and variance-covariance matrix of the parameters.

If you specify the ADJUSTEDSEVERITY= option in the PROC HPCDM statement, then a separate
perturbation analysis is conducted for the distribution of the aggregate adjusted loss.

Descriptive Statistics
This section provides computational details for the descriptive statistics that are computed for each aggregate
loss sample. You can also save these statistics in an OUTSUM= data set by specifying appropriate keywords
in the OUTSUM statement.

This section gives specific details about the moment statistics. For more information about the methods of
computing percentile statistics, see the description of the PCTLDEF= option in the UNIVARIATE procedure
in the Base SAS Procedures Guide: Statistical Procedures.

Standard algorithms (Fisher 1973) are used to compute the moment statistics. The computational methods
that the HPCDM procedure uses are consistent with those that other SAS procedures use for calculating
descriptive statistics.

Mean

The sample mean is calculated as

Ny D

Pn
iD1 yi

n

where n is the size of the generated aggregate loss sample and yi is the ith value of the aggregate loss.

Standard Deviation

The standard deviation is calculated as

s D

vuut 1

d

nX
iD1

.yi � Ny/2

where n is the size of the generated aggregate loss sample, yi is the ith value of the aggregate loss, Ny is the
sample mean, and d is the divisor controlled by the VARDEF= option in the PROC HPCDM statement:

d D

�
n � 1 if VARDEF=DF (default)
n if VARDEF=N

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=procstat&docsetTarget=titlepage.htm
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Skewness

The sample skewness, which measures the tendency of the deviations to be larger in one direction than in the
other, is calculated as

1

ds

nX
iD1

�
yi � Ny

s

�3

where n is the size of the generated aggregate loss sample, yi is the ith value of the aggregate loss, Ny is the
sample mean, s is the sample standard deviation, and ds is the divisor controlled by the VARDEF= option in
the PROC HPCDM statement:

ds D

�
.n�1/.n�2/

n
if VARDEF=DF (default)

n if VARDEF=N

If VARDEF=DF, then n must be greater than 2.

The sample skewness can be positive or negative; it measures the asymmetry of the data distribution and

estimates the theoretical skewness
p
ˇ1 D �3�

� 3
2

2 , where �2 and �3 are the second and third central
moments. Observations that are normally distributed should have a skewness near zero.

Kurtosis

The sample kurtosis, which measures the heaviness of tails, is calculated as in Table 17.2 depending on the
value that you specify in the VARDEF= option.

Table 17.2 Formulas for Kurtosis

VARDEF= Value Formula

DF (default)
n.nC 1/

.n � 1/.n � 2/.n � 3/

nX
iD1

�
yi � Ny

s

�4
�

3.n � 1/2

.n � 2/.n � 3/

N
1

n

nX
iD1

�
yi � Ny

s

�4
� 3

In these formulas, n is the size of the generated aggregate loss sample, yi is the ith value of the aggregate loss,
Ny is the sample mean, and s is the sample standard deviation. If VARDEF=DF, then n must be greater than 3.

The sample kurtosis measures the heaviness of the tails of the data distribution. It estimates the adjusted
theoretical kurtosis denoted as ˇ2 � 3, where ˇ2 D

�4
�22

and �4 is the fourth central moment. Observations
that are normally distributed should have a kurtosis near zero.
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Input Specification
PROC HPCDM accepts the DATA= and SEVERITYEST= data sets and the COUNTSTORE= and SEVERI-
TYSTORE= item stores as input. This section details the information that they are expected to contain.

DATA= Data Set

If you specify the BY statement, then the DATA= data set must contain all the BY variables that you specify
in the BY statement and the data set must be sorted by the BY variables unless the BY statement includes the
NOTSORTED option.

If the severity models in the SEVERITYEST= data set or the SEVERITYSTORE= item store contain any
scale regressors, then all those regressors must be present in the DATA= data set.

If you specify the programming statements to compute an aggregate adjusted loss, and if your specified
ADJUSTEDSEVERITY= symbol depends on severity adjustment variables, then the DATA= data set must
contain all such variables.

The rest of the contents of the DATA= data set depends on whether you specify the EXTERNALCOUNTS
statement. If you specify the EXTERNALCOUNTS statement, then the DATA= data set is expected to
contain the COUNT= and ID= variables that you specify in the EXTERNALCOUNTS statement. If you do
not specify the EXTERNALCOUNTS statement, then the DATA= data set must contain all the regressors,
including zero model regressors, that are present in the count model that the COUNTSTORE= item store
contains.

You do not need to specify the DATA= data set if all the following conditions are true:

� You do not specify the BY statement.

� You specify the severity models such that none of them are scale regression models.

� You do not specify the EXTERNALCOUNTS statement.

� You specify a COUNTSTORE= item store such that the count model contains no count regressors.

� Your severity adjustment programming statements, if you specify any, do not use any external input.

If you specify the BY statement, then PROC HPCDM analyzes only the BY groups that are present in the
input source of the severity and count models. If neither the severity models nor the count models contain
regression effects, then the DATA= data set must contain BY variables and one row for each BY group that
you want PROC HPCDM to analyze.

SEVERITYEST= Data Set

The SEVERITYEST= data set is expected to contain the parameter estimates of the severity models. This is
a required data set; you must specify it whenever you use PROC HPCDM.

The SEVERITYEST= data set must have the same format as the OUTEST= data set that is created by
the SEVERITY procedure. For more information, see the description of the OUTEST= data set in the
SEVERITY procedure in the SAS/ETS User’s Guide.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=etsug&docsetTarget=titlepage.htm
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If you specify the BY statement, then the SEVERITYEST= data set must contain all the BY variables that
you specify in the BY statement. If you do not specify the NOTSORTED option in the BY statement, then
the SEVERITYEST= data set must be sorted by the BY variables.

SEVERITYSTORE= Item Store

The SEVERITYSTORE= item store is expected to be created by using the OUTSTORE= option in a
PROC SEVERITY statement. For more information, see the description of the OUTSTORE= option in the
SEVERITY procedure in the SAS/ETS User’s Guide.

You must specify this item store when you do not specify the SEVERITYEST= data set. Also, if your severity
model is a scale regression model that contains classification or interaction effects, then you cannot use the
SEVERITYEST= data set. You must specify such severity models by specifying the SEVERITYSTORE=
item store.

If you specify the BY statement, then the SEVERITYSTORE= item store must have been created by using a
PROC SEVERITY step that uses an identical BY statement.

COUNTSTORE= Item Store

The COUNTSTORE= item store is expected to be created by using the STORE statement in the COUNTREG
procedure. You must specify the COUNTSTORE= item store when you do not specify the EXTERNAL-
COUNTS statement. For more information, see the description of the STORE statement in the COUNTREG
procedure in the SAS/ETS User’s Guide.

If you specify the BY statement, then the COUNTSTORE= item store must have been created by using a
PROC COUNTREG step that uses an identical BY statement.

Output Data Sets
PROC HPCDM writes the output data sets that you specify in the OUT= option of the OUTPUT and
OUTSUM statements. The contents of these output data sets are described in the sections “OUTSAMPLE=
Data Set” on page 980 and “OUTSUM= Data Set” on page 981, respectively.

OUTSAMPLE= Data Set

The OUTSAMPLE= data set records the full sample of the aggregate loss and aggregate adjusted loss.

If you specify the BY statement, then the data are organized in BY groups and the data set contains variables
that you specify in the BY statement. In addition, the OUTSAMPLE= data set contains the following
variables:

_SEVERITYMODEL_
indicates the name of the severity distribution model.

_COUNTMODEL_
indicates the name of the count model. If you specify the EXTERNALCOUNTS statement,
then the value of this variable is “_EXTERNAL_”. If you specify the COUNTSTORE=
option, then the value of this variable is “_COUNTSTORE_”.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=etsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=etsug&docsetTarget=titlepage.htm
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<unadjusted sample variable>
indicates the value of the unadjusted aggregate loss. The name of this variable is the
value of the SAMPLEVAR= option in the OUTPUT statement. If you do not specify the
SAMPLEVAR= option, then the variable is named _AGGSEV_.

<adjusted sample variable>
indicates the value of the adjusted aggregate loss. This variable is created only when
you specify the programming statements and the ADJUSTEDSEVERITY= option in the
PROC HPCDM statement. The name of this variable is the value of the ADJSAMPLE-
VAR= option in the OUTPUT statement. If you do not specify the ADJSAMPLEVAR=
option, then the variable is named _AGGADJSEV_.

_DRAWID_ indicates the identifier for the perturbed sample. This variable is created only when you
specify the NPERTURBEDSAMPLES= option in the PROC HPCDM statement. The
value of this variable identifies the perturbed sample. A value of 0 for the _DRAWID_
variable indicates an unperturbed sample.

OUTSUM= Data Set

The OUTSUM= data set records the summary statistics and percentiles of the compound distributions of
aggregate loss and aggregate adjusted loss. Only the estimates that you request in the OUTSUM statement
are written to the OUTSUM= data set. For more information about the method of naming the variables that
correspond to the summary statistics or percentiles, see the description of the OUTSUM statement.

If you specify the BY statement, then the data are organized in BY groups and the data set contains variables
that you specify in the BY statement. In addition, the OUTSUM= data set contains the following variables:

_SEVERITYMODEL_
indicates the name of the severity distribution model.

_COUNTMODEL_
indicates the name of the count model. If you specify the EXTERNALCOUNTS statement,
then the value of this variable is “_EXTERNAL_”. If you specify the COUNTSTORE=
option, then the value of this variable is “_COUNTSTORE_”.

_SAMPLEVAR_
indicates the name of the aggregate loss sample. For an unadjusted sample, the value of
the variable is the value of the SAMPLEVAR= option that you specify in the OUTPUT
statement or the default value of _AGGSEV_. For an adjusted sample, the value of the
variable is the value of the ADJSAMPLEVAR= option that you specify in the OUTPUT
statement or the default value of _AGGADJSEV_.

_DRAWID_ indicates the identifier for the perturbed sample. This variable is created only when
you specify the NPERTURBEDSAMPLES= option in the PROC HPCDM statement.
The value of this variable identifies the perturbed sample. A value of 0 for _DRAWID_
indicates an unperturbed sample.
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Displayed Output
The HPCDM procedure optionally produces displayed output by using the Output Delivery System (ODS).
All output is controlled by the PRINT= option in the PROC HPCDM statement. Table 17.3 relates the
PRINT= options to ODS tables.

Table 17.3 ODS Tables Produced in PROC HPCDM

ODS Table Name Description Option

CompoundInfo Compound distribution
information

Default

DataSummary Input data summary Default
Percentiles Percentiles of the aggregate loss

sample
PRINT=PERCENTILES

PerformanceInfo Execution environment
information that pertains to the
computational performance

Default

PerturbedPctlSummary Perturbation analysis of
percentiles

PRINT=PERTURBSUMMARY and
NPERTURBEDSAMPLES > 0

PerturbedSummary Perturbation analysis of summary
statistics

PRINT=PERTURBSUMMARY and
NPERTURBEDSAMPLES > 0

SummaryStatistics Summary statistics of the
aggregate loss sample

PRINT=SUMMARYSTATISTICS

Timing Timing information for various
computational stages of the
procedure

DETAILS (PERFORMANCE
statement)

PRINT= Option

This section provides detailed descriptions of the tables that are displayed by using different PRINT= options.

� If you do not specify the PRINT= option and if you do not specify the NOPRINT or PRINT=NONE
options, then by default PROC HPCDM produces the CompoundInfo, DataSummary, and SummaryS-
tatistics ODS tables.

The “Compound Distribution Information” table (ODS name: CompoundInfo) displays the information
about the severity and count models.

The “Input Data Summary” table (ODS name: DataSummary) is displayed when you specify the
DATA= data set. The table displays the total number of observations and the valid number of
observations in the data set. If you specify the EXTERNALCOUNTS statement, then the table also
displays the number of replications and total number of loss events across all replications.

� If you specify PRINT=PERCENTILES, the “Percentiles” table (ODS name: Percentiles) is displayed
for the distribution of the aggregate loss. The table contains estimates of all the predefined percentiles
in addition to the percentiles that you request in the OUTSUM statement.
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If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then an addi-
tional table is displayed for the distribution of the aggregate adjusted loss. This table also contains
estimates of all the predefined percentiles in addition to the percentiles that you request in the OUTSUM
statement.

� If you specify PRINT=PERTURBSUMMARY, two tables are displayed for the distribution of the
aggregate loss. The “Perturbed Summary Statistics” table (ODS name: PerturbedSummary) displays
the summary of the effect of perturbing model parameters on the following five summary statistics
of the distribution: mean, standard deviation, variance, skewness, and kurtosis. The “Perturbed
Percentiles” table (ODS name: PerturbedPctlSummary) displays the perturbation summary for all the
predefined percentiles in addition to the percentiles that you request in the OUTSUM statement.

The tables are displayed only if you specify a value greater than 0 for the NPERTURBEDSAMPLES=
option.

If you specify a value of P for the NPERTURBEDSAMPLES= option, then for each summary statistic
and percentile, an average and standard error of the set of P values of that summary statistic or
percentile are displayed in the respective perturbation summary tables.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then additional
perturbation summary tables are displayed for the distribution of the aggregate adjusted loss.

� If you specify PRINT=SUMMARYSTATISTICS, the “Summary Statistics” table (ODS name: Sum-
maryStatistics) is displayed for the distribution of the aggregate loss. The table contains estimates of
the following summary statistics: the number of observations in the sample, maximum value in the
sample, minimum value in the sample, mean, median, standard deviation, interquartile range, variance,
skewness, and kurtosis.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then an addi-
tional table of summary statistics is displayed for the distribution of the aggregate adjusted loss.

Performance Information

The “Performance Information” table (ODS name: PerformanceInfo) is produced by default. It displays the
number of threads that are used. It also confirms that the procedure always uses the single-machine execution
mode.

If you specify the DETAILS option in the PERFORMANCE statement, PROC HPCDM also produces a
“Timing” table (ODS name: Timing) that displays elapsed times (absolute and relative) for the main tasks of
the procedure.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the HPCDM procedure.

NOTE: If you request simulation of an aggregate loss sample of large size, either by specifying a large value
for the NREPLICATES= option or by including a large number of replicates in the DATA= data set that
you specify in conjunction with the EXTERNALCOUNTS statement, then it is recommended that you not
request any plots, because creating plots that have large numbers of points can require a very large amount
of hardware resources and can take a very long time. You can disable the generation of plots either by
submitting the ODS GRAPHICS OFF statement before submitting the PROC HPCDM step or by specifying
the PLOTS=NONE option in the PROC HPCDM statement. It is recommended that you request plots only
when the sample size is less than 100,000.

ODS Graph Names

PROC HPCDM assigns a name to each graph that it creates by using ODS. You can use these names to
selectively refer to the graphs. The names are listed in Table 17.4.

Table 17.4 ODS Graphics Produced by PROC HPCDM

ODS Graph Name Plot Description PLOTS= Option

ConditionalDensityPlot Conditional density plot CONDITIONALDENSITY
DensityPlot Probability density function plot DENSITY
EDFPlot Empirical distribution function plot EDF

Conditional Density Plot

The conditional density plot helps you visually analyze two or three regions of the compound distribution by
displaying a density function estimate that is conditional on the values of the aggregate loss that fall in those
regions. You can specify the region boundaries in terms of quantiles by using the LEFTQ= and RIGHTQ=
suboptions of the PLOTS=CONDITIONALDENSITY option. This is especially useful if you want to see the
distribution of aggregate loss values in the right- and left-tail regions.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then a separate set of
conditional density plots are displayed for the aggregate adjusted loss.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Probability Density Function Plot

The probability density function (PDF) plot shows the nonparametric estimates of the PDF of the aggregate
loss distribution. This plot includes histogram and kernel density estimates.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then a separate density
plot is displayed for the aggregate adjusted loss.

Empirical Distribution Function Plot

The empirical density function (EDF) plot shows the nonparametric estimate of the cumulative distribution
function of the aggregate loss distribution. You can specify the ALPHA= suboption of the PLOTS=EDF
option to request that the upper and lower confidence limits be plotted for each EDF estimate. By default, the
confidence interval is not plotted.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then a separate EDF
plot is displayed for the aggregate adjusted loss.

Examples: HPCDM Procedure

Example 17.1: Estimating the Probability Distribution of Insurance Payments
The primary outcome of running PROC HPCDM is the estimate of the compound distribution of aggregate
loss, given the distributions of frequency and severity of the individual losses. This aggregate loss is often
referred to as the ground-up loss. If you are an insurance company or a bank, you are also interested in acting
on the ground-up loss by computing an entity that is derived from the ground-up loss. For example, you might
want to estimate the distribution of the amount that you are expected to pay for the losses or the distribution
of the amount that you can offload onto another organization, such as a reinsurance company. PROC HPCDM
enables you to specify a severity adjustment program, which is a sequence of SAS programming statements
that adjust the severity of the individual loss event to compute the entity of interest. Your severity adjustment
program can use external information that is recorded as variables in the observations of the DATA= data
set in addition to placeholder symbols for information that PROC HPCDM generates internally, such as
the severity of the current loss event (_SEV_) and the sum of the adjusted severity values of the events that
have been simulated thus far for the current sample point (_CUMADJSEV_). If you are doing a scenario
analysis such that a scenario contains more than one observation, then you can also access the cumulative
severity and cumulative adjusted severity for the current observation by using the _CUMSEVFOROBS_ and
_CUMADJSEVFOROBS_ symbols.

This example continues the example of the section “Scenario Analysis” on page 938 to illustrate how you
can estimate the distribution of the aggregate amount that is paid to a group of policyholders. Let the amount
that is paid to an individual policyholder be computed by using what is usually referred to as a disappearing
deductible (Klugman, Panjer, and Willmot 1998, Ch. 2). If X denotes the ground-up loss that a policyholder
incurs, d denotes the lower limit on the deductible, d 0 denotes the upper limit on the deductible, and u denotes
the limit on the total payments that are made to a policyholder in a year, then Y, the amount that is paid to the
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policyholder for each loss event, is defined as follows:

Y D

8̂̂̂̂
<̂
ˆ̂̂:
0 X � d

d 0 X�d
d 0�d

d < X � d 0

X d 0 < X � u

u X > u

You can encode this logic by using a set of SAS programming statements.

Extend the Work.GroupOfPolicies data set in the example in the section “Scenario Analysis” on page 938 to
include the following three additional variables for each policyholder: LowDeductible to record d, HighDe-
ductible to record d 0, and Limit to record u. The data set contains the observations as shown in Output 17.1.1.

Output 17.1.1 Scenario Analysis Data for Multiple Policyholders with Policy Provisions

policyholderId age gender carType annualMiles education carSafety income

1 1.18 2 1 2.2948 3 0.99532 1.59870

2 0.66 2 2 2.8148 1 0.05625 0.67539

3 0.82 1 2 1.6130 2 0.84146 1.05940

4 0.44 1 1 1.2280 3 0.14324 0.24110

5 0.44 1 1 0.9670 2 0.08656 0.65979

lowDeductible highDeductible limit annualLimit

400 1400 7500 10000

300 1300 2500 20000

100 1100 5000 10000

300 800 5000 20000

100 1100 5000 20000

The following PROC HPCDM step estimates the compound distributions of the aggregate loss and the
aggregate amount that is paid to the group of policyholders in the Work.GroupOfPolicies data set by using
the count model that is stored in the Work.CountregModel item store and the lognormal severity model that is
stored in the Work.SevRegEst data set:

/* Simulate the aggregate loss distribution and aggregate adjusted
loss distribution for the scenario with multiple policyholders */

proc hpcdm data=groupOfPolicies nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest
plots=(edf pdf) nperturbedSamples=50
adjustedseverity=amountPaid;

severitymodel logn;

if (_sev_ <= lowDeductible) then
amountPaid = 0;

else do;
if (_sev_ <= highDeductible) then

amountPaid = highDeductible *
(_sev_-lowDeductible)/(highDeductible-lowDeductible);

else
amountPaid = MIN(_sev_, limit); /* imposes per-loss payment limit */

end;
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run;

The preceding step uses a severity adjustment program to compute the value of the symbol AmountPaid and
specifies that symbol in the ADJUSTEDSEVERITY= option in the PROC HPCDM step. The program is
executed for each simulated loss event. The PROC HPCDM supplies your program with the value of the
severity in the _SEV_ placeholder symbol.

The “Sample Summary Statistics” table in Output 17.1.2 shows the summary statistics of the compound
distribution of the aggregate ground-up loss. The “Adjusted Sample Summary Statistics” table shows the
summary statistics of the compound distribution of the aggregate AmountPaid. The average aggregate
payment is about 4,361, as compared to the average aggregate ground-up loss of 5,906.

Output 17.1.2 Summary Statistics of Compound Distributions of the Total Loss and Total Amount Paid

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Lognormal Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Summary Statistics

Mean 5906.2 Median 4727.7

Standard Deviation 4801.7 Interquartile Range 5227.0

Variance 23056465.3 Minimum 0

Skewness 2.25016 Maximum 64811.8

Kurtosis 10.01578 Sample Size 10000

Adjusted Sample Summary Statistics

Mean 4361.0 Median 3762.9

Standard Deviation 3181.7 Interquartile Range 4133.6

Variance 10123000.5 Minimum 0

Skewness 1.11692 Maximum 23657.4

Kurtosis 1.64518 Sample Size 10000

The perturbation summary of the distribution of AmountPaid is shown in Output 17.1.3. It shows that you
can expect to pay a median of 3,796˙ 271 to this group of five policyholders in a year. Also, if the 99.5th
percentile defines the worst case, then you can expect to pay 15,573˙ 859 in the worst-case.
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Output 17.1.3 Perturbation Summary of the Total Amount Paid

Adjusted Sample Percentile
Perturbation Analysis

Percentile Estimate
Standard

Error

1 0.94036 6.15322

5 386.17494 65.79399

25 1988.9 188.59978

50 3796.0 271.27093

75 6153.8 393.13966

95 10435.2 621.20756

99 14108.5 827.74239

99.5 15573.1 858.66726

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

The empirical distribution function (EDF) and probability density function plots of the aggregate adjusted
loss are shown in Output 17.1.4. Both plots indicate a heavy-tailed distribution of the total amount paid.

Output 17.1.4 PDF and EDF Plots of the Compound Distribution of the Total Amount Paid

Now consider that, in the future, you want to modify the policy provisions to add a limit on the total amount
of payment that is made to an individual policyholder in one year and to impose a group limit of 15,000 on
the total amount of payments that are made to the group as a whole in one year. You can analyze the effects of
these modified policy provisions on the distribution of the aggregate paid amount by recording the individual
policyholder’s annual limit in the AnnualLimit variable of the input data set and then modifying your severity
adjustment program by using the placeholder symbols _CUMADJSEVFOROBS_ and _CUMADJSEV_ as
shown in the following PROC HPCDM step:

/* Simulate the aggregate loss distribution and aggregate adjusted
loss distribution for the modified set of policy provisions */

proc hpcdm data=groupOfPolicies nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest
plots=none nperturbedSamples=50
adjustedseverity=amountPaid;
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severitymodel logn;

if (_sev_ <= lowDeductible) then
amountPaid = 0;

else do;
if (_sev_ <= highDeductible) then

amountPaid = highDeductible *
(_sev_-lowDeductible)/(highDeductible-lowDeductible);

else
amountPaid = MIN(_sev_, limit); /* imposes per-loss payment limit */

/* impose policyholder's annual limit */
amountPaid = MIN(amountPaid, MAX(0,annualLimit - _cumadjsevforobs_));

/* impose group's annual limit */
amountPaid = MIN(amountPaid, MAX(0,15000 - _cumadjsev_));

end;
run;

The results of the perturbation analysis for these modified policy provisions are shown in Output 17.1.5.
When compared to the results of Output 17.1.3, the additional policy provisions of restricting the total
payment to the policyholder and the group have reduced the median payment slightly, but the provisions have
reduced the worst-case payment (99.5th percentile) to 14,755˙ 392 from 15,573˙ 859.

Output 17.1.5 Perturbation Summary of the Total Amount Paid for Modified Policy Provisions

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Adjusted Sample Percentile
Perturbation Analysis

Percentile Estimate
Standard

Error

1 0.46949 2.23897

5 382.04931 56.96535

25 1953.8 167.85926

50 3733.5 250.62840

75 6054.8 348.38707

95 10272.4 520.34620

99 13728.9 631.17302

99.5 14754.8 392.25491

Number of Perturbed
Samples = 50

Size of Each Sample = 10000
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Example 17.2: Using Externally Simulated Count Data
The COUNTREG procedure enables you to estimate count regression models that are based on the most
commonly used discrete distributions, such as the Poisson, negative binomial (both p = 1 and p = 2), and
Conway-Maxwell-Poisson distributions. PROC COUNTREG also enables you to fit zero-inflated models
that are based on Poisson, negative binomial (p = 2), and Conway-Maxwell-Poisson distributions. However,
there might be situations in which you want to use some other method of fitting count regression models. For
example, if you are modeling the number of loss events that are incurred by two financial instruments such
that there is some dependency between the two, then you might use some multivariate frequency modeling
methods and simulate the counts for each instrument by using the dependency structure between the count
model parameters of the two instruments. As another example, you might want to use different types of
count models for different BY groups in your data; this is not possible in PROC COUNTREG. So you need
to simulate the counts for such BY groups externally. PROC HPCDM enables you to supply externally
simulated counts by using the EXTERNALCOUNTS statement. PROC HPCDM then does not need to
simulate the counts internally; it simulates only the severity of each loss event by using the severity model
estimates that you specify in the SEVERITYEST= data set or the SEVERITYSTORE= item store. The
simulation process is described and illustrated in the section “Simulation with External Counts” on page 964.

Consider that you are a bank, and as part of quantifying your operational risk, you want to estimate the
aggregate loss distributions for two lines of business, retail banking and commercial banking, by using some
key risk indicators (KRIs). Assume that your model fitting and model selection process has determined that
the Poisson regression model and negative binomial regression model are the best-fitting count models for
number of loss events that are incurred in the retail banking and commercial banking businesses, respectively.
Let CorpKRI1, CorpKRI2, CbKRI1, CbKRI2, and CbKRI3 be the KRIs that are used in the count regression
model of the commercial banking business, and let CorpKRI1, RbKRI1, and RbKRI2 be the KRIs that are
used in the count regression model of the retail banking business. Some examples of corporate-level KRIs
(CorpKRI1 and CorpKRI2 in this example) are the ratio of temporary to permanent employees and the
number of security breaches that are reported during a year. Some examples of KRIs that are specific to the
commercial banking business (CbKRI1, CbKRI2, and CbKRI3 in this example) are number of credit defaults,
proportion of financed assets that are movable, and penalty claims against your bank because of processing
delays. Some examples of KRIs that are specific to the retail banking business (RbKRI1 and RbKRI2 in this
example) are number of credit cards that are reported stolen, fraction of employees who have not undergone
fraud detection training, and number of forged drafts and checks that are presented in a year.

Let the severity of each loss event in the commercial banking business be dependent on two KRIs, CorpKRI1
and CbKRI2. Let the severity of each loss event in the retail banking business be dependent on three KRIs,
CorpKRI2, RbKRI1, and RbKRI3. Note that for each line of business, the set of KRIs that are used for
the severity model is different from the set of KRIs that are used for the count model, although there is
some overlap between the two sets. Further, the severity model for retail banking includes a new regressor
(RbKRI3) that is not used for any of the count models. Such use of different sets of KRIs for count and
severity models is typical of real-world applications.

Let the parameter estimates of the negative binomial and Poisson regression models, as determined by
PROC COUNTREG, be available in the Work.CountEstEx2NB2 and Work.CountEstEx2Poisson data sets,
respectively. These data sets are produced by using the OUTEST= option in the respective PROC COUN-
TREG statements. Let the parameter estimates of the best-fitting severity models, as determined by PROC
SEVERITY, be available in the Work.SevEstEx2Best data set. You can find the code to prepare these data
sets in the PROC HPCDM sample program hcdmex02.sas.



Example 17.2: Using Externally Simulated Count Data F 991

Now, consider that you want to estimate the distribution of the aggregate loss for a scenario, which is
represented by a specific set of KRI values. The following DATA step illustrates one such scenario:

/* Generate a scenario data set for a single operating condition */
data singleScenario (keep=corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3

rbKRI1 rbKRI2 rbKRI3);
array x{8} corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3 rbKRI1 rbKRI2 rbKRI3;
call streaminit(5151);
do i=1 to dim(x);

x(i) = rand('NORMAL');
end;
output;

run;

The Work.SingleScenario data set contains all the KRIs that are included in the count and severity models of
both business lines. Note that if you standardize or scale the KRIs while fitting the count and severity models,
then you must apply the same standardization or scaling method to the values of the KRIs that you specify in
the scenario. In this particular example, all KRIs are assumed to be standardized.

The following DATA step uses the scenario in the Work.SingleScenario data set to simulate 10,000 replications
of the number of loss events that you might observe for each business line and writes the simulated counts to
the NumLoss variable of the Work.LossCounts1 data set:

/* Simulate multiple replications of the number of loss events that
you can expect in the scenario being analyzed */

data lossCounts1 (keep=line corpKRI1 corpKRI2 cbKRI2 rbKRI1 rbKRI3 numloss);
array cxR{3} corpKRI1 rbKRI1 rbKRI2;
array cbetaR{4} _TEMPORARY_;
array cxC{5} corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3;
array cbetaC{6} _TEMPORARY_;

retain theta;
if _n_ = 1 then do;

call streaminit(5151);

* read count model estimates *;
set countEstEx2NB2(where=(line='CommercialBanking' and _type_='PARM'));
cbetaC(1) = Intercept;
do i=1 to dim(cxC);

cbetaC(i+1) = cxC(i);
end;
alpha = _Alpha;
theta = 1/alpha;

set countEstEx2Poisson(where=(line='RetailBanking' and _type_='PARM'));
cbetaR(1) = Intercept;
do i=1 to dim(cxR);

cbetaR(i+1) = cxR(i);
end;

end;

set singleScenario;
do iline=1 to 2;

if (iline=1) then line = 'CommercialBanking';
else line = 'RetailBanking';
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do repid=1 to 10000;

* draw from count distribution *;
if (iline=1) then do;

xbeta = cbetaC(1);
do i=1 to dim(cxC);

xbeta = xbeta + cxC(i) * cbetaC(i+1);
end;
Mu = exp(xbeta);
p = theta/(Mu+theta);
numloss = rand('NEGB',p,theta);

end;
else do;

xbeta = cbetaR(1);
do i=1 to dim(cxR);

xbeta = xbeta + cxR(i) * cbetaR(i+1);
end;
numloss = rand('POISSON', exp(xbeta));

end;
output;

end;
end;

run;

The Work.LossCounts1 data set contains the NumLoss variable in addition to the KRIs that are used by the
severity regression model, which are needed by PROC HPCDM to simulate the aggregate loss.

By default, PROC HPCDM computes an aggregate loss distribution by using each of the severity models that
you specify in the SEVERITYMODEL statement. However, you can restrict PROC HPCDM to use only a
subset of the severity models for a given BY group by modifying the SEVERITYEST= data set to include
only the estimates of the desired severity models in each BY group, as illustrated in the following DATA step:

/* Keep only the best severity model for each business line
and set coefficients of unused regressors in each model to 0 */

data sevestEx2Best;
set sevestEx2;
if ((line = 'CommercialBanking' and _model_ = 'Logn')) then do;

corpKRI2 = 0; rbKRI1 = 0; rbKRI3 = 0;
output;

end;
else if ((line = 'RetailBanking' and _model_ = 'Gamma')) then do;

corpKRI1 = 0; cbKRI2 = 0;
output;

end;
run;

Note that the preceding DATA step also sets the coefficients of the unused regressors in each model to 0. This
is important because PROC HPCDM uses all the regressors that it detects from the SEVERITYEST= data set
for each severity model.

Now, you are ready to estimate the aggregate loss distribution for each line of business by submitting the
following PROC HPCDM step, in which you specify the EXTERNALCOUNTS statement to request that
external counts in the NumLoss variable of the DATA= data set be used for simulation of the aggregate loss:
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/* Estimate the distribution of the aggregate loss for both
lines of business by using the externally simulated counts */

proc hpcdm data=lossCounts1 seed=13579 print=all
severityest=sevestEx2Best;

by line;
externalcounts count=numloss;
severitymodel logn gamma;

run;

Each observation in the Work.LossCounts1 data set represents one replication of the external counts simula-
tion process. For each such replication, the preceding PROC HPCDM step makes as many severity draws
from the severity distribution as the value of the NumLoss variable and adds the severity values from those
draws to compute one sample point of the aggregate loss. The severity distribution that is used for making
the severity draws has a scale parameter value that is decided by the KRI values in the given observation and
the regression parameter values that are read from the Work.SevEstEx2Best data set.

The summary statistics and percentiles of the aggregate loss distribution for the commercial banking business,
which uses the lognormal severity model, are shown in Output 17.2.1. The “Input Data Summary” table
indicates that each of the 10,000 observations in the BY group is treated as one replication and that
there are a total of 19,028 loss events produced by all the replications together. For the scenario in the
Work.SingleScenario data set, you can expect the commercial banking business to incur an average aggregate
loss of 643 units, as shown in the “Sample Summary Statistics” table, and the chance that the loss will exceed
4,762 units is 0.5%, as shown in the “Sample Percentiles” table.

Output 17.2.1 Aggregate Loss Summary for Commercial Banking Business

The HPCDM Procedure

line=CommercialBanking

Input Data Summary

Name WORK.LOSSCOUNTS1

Observations 10000

Valid Observations 10000

Replications 10000

Total Count 19028

line=CommercialBanking

Sample Summary Statistics

Mean 643.24599 Median 363.33564

Standard Deviation 843.56959 Interquartile Range 842.66329

Variance 711609.7 Minimum 0

Skewness 2.66370 Maximum 8807.3

Kurtosis 11.00174 Sample Size 10000
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Output 17.2.1 continued

line=CommercialBanking

Sample Percentiles

Percentile Value

1 0

5 0

25 51.29272

50 363.33564

75 893.95601

95 2291.3

99 3990.7

99.5 4762.4

Percentile
Method = 5

For the retail banking business, which uses the gamma severity model, the “Sample Percentiles” table in
Output 17.2.2 indicates that the median operational loss of that business is about 69 units and the chance that
the loss will exceed 391 units is about 1%.

Output 17.2.2 Aggregate Loss Percentiles for Retail Banking Business

line=RetailBanking

Sample Percentiles

Percentile Value

1 0

5 0

25 0

50 69.26829

75 140.27686

95 273.61767

99 391.15896

99.5 439.23312

Percentile
Method = 5

When you conduct the simulation and estimation for a scenario that contains only one observation, you
assume that the operating environment does not change over the period of time that is being analyzed. That
assumption might be valid for shorter durations and stable business environments, but often the operating
environments change, especially if you are estimating the aggregate loss over a longer period of time. So you
might want to include in your scenario all the possible operating environments that you expect to see during
the analysis time period. Each environment is characterized by its own set of KRI values. For example, the
operating conditions might change from quarter to quarter, and you might want to estimate the aggregate loss
distribution for the entire year. You start the estimation process for such scenarios by creating a scenario
data set. The following DATA step creates the Work.MultiConditionScenario data set, which consists of four
operating environments, one for each quarter:
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/* Generate a scenario data set for multiple operating conditions */
data multiConditionScenario (keep=opEnvId corpKRI1 corpKRI2

cbKRI1 cbKRI2 cbKRI3 rbKRI1 rbKRI2 rbKRI3);
array x{8} corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3 rbKRI1 rbKRI2 rbKRI3;
call streaminit(5151);
do opEnvId=1 to 4;

do i=1 to dim(x);
x(i) = rand('NORMAL');

end;
output;

end;
run;

All four observations of the Work.MultiConditionScenario data set together form one scenario. When
simulating the external counts for such multi-entity scenarios, one replication consists of the possible number
of loss events that can occur as a result of each of the four operating environments. In any given replication,
some operating environments might not produce any loss event or all four operating environments might
produce some loss events. Assume that you use a DATA step to create the Work.LossCounts2 data set that
contains, for each business line, 10,000 replications of the loss counts and that you identify each replication
by using the RepId variable. You can find the DATA step code to prepare the Work.LossCounts2 data set in
the PROC HPCDM sample program hcdmex02.sas.

Output 17.2.3 shows some observations of the Work.LossCounts2 data set for each business line. For the
first replication (RepId=1) of the commercial banking business, only operating environments 3 and 4 incur
loss events, whereas the other environments incur no loss events. For the second replication (RepId=2), all
operating environments incur at least one loss event. For the first replication (RepId=1) of the retail banking
business, operating environments 2, 3, and 4 incur two, one, and three loss events, respectively.

Output 17.2.3 Snapshot of the External Counts Data with Replication Identifier

line opEnvId corpKRI1 corpKRI2 cbKRI2 rbKRI1 rbKRI3 repid numloss

CommercialBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 1 0

CommercialBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 1 0

CommercialBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 1 3

CommercialBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 1 1

CommercialBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 2 2

CommercialBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 2 5

CommercialBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 2 12

CommercialBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 2 12

RetailBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 1 0

RetailBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 1 2

RetailBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 1 1

RetailBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 1 3

RetailBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 2 2

RetailBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 2 2

RetailBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 2 0

RetailBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 2 1

You can now use this simulated count data to estimate the distribution of the aggregate loss that is incurred in
all four operating environments by submitting the following PROC HPCDM step, in which you specify the
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replication identifier variable RepId in the ID= option of the EXTERNALCOUNTS statement:

/* Estimate the distribution of the aggregate loss for both
lines of business by using the externally simulated counts
for the multiple operating environments */

proc hpcdm data=lossCounts2 seed=13579 print=all
severityest=sevestEx2Best plots=density;

by line;
distby repid;
externalcounts count=numloss id=repid;
severitymodel logn gamma;

run;

Note that when you specify the ID= variable in the EXTERNALCOUNTS statement, you must also specify
that variable in the DISTBY statement. Within each BY group, for each value of the RepId variable, one point
of the aggregate loss sample is simulated by using the process that is described in the section “Simulation
with External Counts” on page 964.

The summary statistics and percentiles of the distribution of the aggregate loss, which is the aggregate of
the losses across all four operating environments, are shown in Output 17.2.4 for the commercial banking
business. The “Input Data Summary” table indicates that there are 10,000 replications in the BY group
and that a total of 145,721 loss events are generated across all replications. The “Sample Percentiles” table
indicates that you can expect a median aggregate loss of 4,761 units and a worst-case loss, as defined by the
99.5th percentile, of 17,051 units from the commercial banking business when you combine losses that result
from all four operating environments.

Output 17.2.4 Aggregate Loss Summary for the Commercial Banking Business in Multiple Operating
Environments

The HPCDM Procedure

line=CommercialBanking

Input Data Summary

Name WORK.LOSSCOUNTS2

Observations 40000

Valid Observations 40000

Replications 10000

Total Count 145721

line=CommercialBanking

Sample Percentiles

Percentile Value

1 762.69922

5 1521.1

25 3127.8

50 4760.8

75 6963.0

95 11180.1

99 15302.7

99.5 17050.8

Percentile
Method = 5



Example 17.3: Scenario Analysis with Rich Regression Effects and BY Groups F 997

The probability density functions of the aggregate loss for the commercial and retail banking businesses are
shown in Output 17.2.5. In addition to the difference in scales of the losses in the two businesses, you can
see that the aggregate loss that is incurred in the commercial banking business has a heavier right tail than the
aggregate loss that is incurred in the retail banking business.

Output 17.2.5 Density Plots of the Aggregate Losses for Commercial Banking (left) and Retail Banking
(right) Businesses

Example 17.3: Scenario Analysis with Rich Regression Effects and BY
Groups

This example illustrates scenario analysis when frequency and severity models use regression models that
contain classification and interaction effects. It also illustrates how you can analyze scenarios for multiple
groups of observations in one PROC HPCDM step without your having to simulate counts externally.

The example in the section “Scenario Analysis” on page 938 encodes the discrete-valued, nominal (nonordi-
nal) variables Gender, CarType, and Education as numerical variables with an implied order. For example,
a high school diploma is assigned a smaller number than an advanced degree. This method of forcing an
order on otherwise nonordinal (categorical) variables is not natural and might lead to biased estimates. A
more accurate approach is to treat such variables as classification variables that enter the statistical analysis
or model not through their values but through their levels. For example, when you specify Education as a
classification variable, the modeling process creates different parameters for the Education = ‘High School’
and Education = ‘Advanced Degree’ levels and estimates a regression coefficient for each. When you specify
such variables in the CLASS statement of PROC COUNTREG and PROC SEVERITY, those procedures
perform the appropriate levelization for you, which is the process of finding and transforming levels into
regression parameters. For more information, see the description of the CLASS statement in Chapter 29,
“The SEVERITY Procedure.”

In addition to specifying nominal variables as classification (CLASS) variables, you can include interaction
effects in severity and frequency models. For example, you might want to evaluate how the distribution
of losses that are incurred by a policyholder with a college degree who drives an SUV differs from that of
a policyholder with an advanced degree who drives a sedan. You can do this by including an interaction
between CarType and Education in your severity model. Similarly, if you want to evaluate how the number
of losses that a policyholder incurs per year varies by the number of annual miles for different types of cars,
you can include an interaction between CarType and AnnualMiles in your frequency model. Analyzing such
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a rich set of regression effects can help you make more accurate predictions about the frequency and severity
distributions of losses. PROC HPCDM is designed to use such rich models to simulate a more accurate
distribution of the aggregate loss.

As an example of the process, first, let the following programming statements fit the severity and count
models that contain a certain set of regression effects:

proc severity data=losses(where=(not(missing(lossAmount))))
covout outstore=work.sevstore print=all plots=none;

by region;
loss lossAmount;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn burr;

run;

proc countreg data=losscounts covout;
by region;
class gender carType education;
model numloss = age income gender carType*annualmiles education / dist=negbin;
zeromodel numloss ~ age income carType education;
store cstore;

run;

Note the following points about these statements:

� You can find the code that prepares the Work.Losses and Work.LossCounts data sets in the PROC
HPCDM sample program hcdmex03.sas. The data sets are organized in groups of observations that
represent data from two regions, East and West. You can analyze both groups at once by specifying the
BY statement with Region as the BY variable.

� Both severity and count models use three CLASS variables. The severity model includes three
interaction effects (Education*CarType, Income*Gender, and CarSafety*Income) and four main
effects. PROC SEVERITY uses the same set of regression effects in the scale regression model of
each of the two distributions that you specify in the DIST statement, which are LOGN and BURR in
this example.

� The count model is a mixture of two models: a model to estimate the occurrence of zero loss events
and a model to estimate nonzero counts. The zero model is a regression model with four main effects
and the default logistic link function. The model for nonzero counts is a negative binomial model with
one interaction effect (CarType*AnnualMiles) and four main effects.

The “Parameter Estimates” table of the lognormal severity model in Output 17.3.1 for the Region=‘East’
BY group shows that Income*Gender and CarSafety*Income effects are not statistically significant. The
“Parameter Estimates” table in Output 17.3.2 shows that those two effects are not statistically significant for
the Burr severity model also.
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Output 17.3.1 Parameter Estimates for LOGN Severity Model for Region=East

region=East

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 4.98253 0.02861 174.16 <.0001

Sigma 1 0.48894 0.00535 91.41 <.0001

carType SUV 1 0.51772 0.03648 14.19 <.0001

carType Sedan 0 0 . . .

gender F 1 1.16690 0.03082 37.86 <.0001

gender M 0 0 . . .

carSafety 1 -0.71517 0.04599 -15.55 <.0001

income 1 -0.28528 0.03652 -7.81 <.0001

carType*education SUV Advanced Degree 1 0.44599 0.06245 7.14 <.0001

carType*education SUV College 1 0.67852 0.04416 15.36 <.0001

carType*education SUV High School 0 0 . . .

carType*education Sedan Advanced Degree 1 -0.49680 0.02689 -18.47 <.0001

carType*education Sedan College 1 -0.26310 0.01849 -14.23 <.0001

carType*education Sedan High School 0 0 . . .

income*gender F 1 0.00988 0.04010 0.25 0.8054

income*gender M 0 0 . . .

carSafety*income 1 -0.09390 0.06166 -1.52 0.1278

Output 17.3.2 Parameter Estimates for BURR Severity Model for Region=East

region=East

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 145.63709 5.74371 25.36 <.0001

Alpha 1 0.99783 0.06470 15.42 <.0001

Gamma 1 3.58743 0.09362 38.32 <.0001

carType SUV 1 0.51648 0.03701 13.96 <.0001

carType Sedan 0 0 . . .

gender F 1 1.16664 0.03083 37.84 <.0001

gender M 0 0 . . .

carSafety 1 -0.71636 0.04590 -15.61 <.0001

income 1 -0.29522 0.03639 -8.11 <.0001

carType*education SUV Advanced Degree 1 0.43696 0.06385 6.84 <.0001

carType*education SUV College 1 0.68049 0.04501 15.12 <.0001

carType*education SUV High School 0 0 . . .

carType*education Sedan Advanced Degree 1 -0.50160 0.02672 -18.77 <.0001

carType*education Sedan College 1 -0.26483 0.01840 -14.39 <.0001

carType*education Sedan High School 0 0 . . .

income*gender F 1 0.01268 0.03986 0.32 0.7504

income*gender M 0 0 . . .

carSafety*income 1 -0.07713 0.06162 -1.25 0.2107
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The “Parameter Estimates” table of the count model in Output 17.3.3 shows that the income and Inf_income
parameters are insignificant. This implies that the income effect is not significant for the main and zero
inflation parts of the count model.

The results for the Region=‘West’ BY group are not shown here, but you can execute the sample program
hcdmex03.sas to verify that the same parameters are statistically insignificant in severity and count models of
that BY group as well. However, in general, you might find that some effects are significant for some BY
groups but insignificant for other BY groups. In such cases, for more accurate results, it is recommended that
you create a separate data set for each set of similar BY groups and invoke the SEVERITY, COUNTREG,
and HPCDM procedures on each data set to separately analyze each set of similar BY groups.

Output 17.3.3 Count Model Parameter Estimates for Region=East

region=East

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.156626 0.130641 8.85 <.0001

age 1 0.734798 0.112299 6.54 <.0001

income 1 -0.040744 0.081573 -0.50 0.6174

gender F 1 -0.999094 0.053170 -18.79 <.0001

gender M 0 0 . . .

annualmiles*carType SUV 1 -1.266453 0.045996 -27.53 <.0001

annualmiles*carType Sedan 1 -0.632281 0.027818 -22.73 <.0001

education Advanced Degree 1 0.418651 0.099414 4.21 <.0001

education College 1 0.709479 0.069596 10.19 <.0001

education High School 0 0 . . .

Inf_Intercept 1 -0.501241 0.353073 -1.42 0.1557

Inf_age 1 -0.945657 0.329950 -2.87 0.0042

Inf_income 1 -0.173541 0.233461 -0.74 0.4573

Inf_carType SUV 1 -0.693427 0.369119 -1.88 0.0603

Inf_carType Sedan 0 0 . . .

Inf_education Advanced Degree 1 0.668613 0.291821 2.29 0.0220

Inf_education College 1 0.474212 0.232499 2.04 0.0414

Inf_education High School 0 0 . . .

_Alpha 1 0.790839 0.103522 7.64 <.0001

The following modified PROC SEVERITY and PROC COUNTREG steps refit the severity and count models,
respectively, after removing the insignificant effects:

/* Re-fit models after removing insignificant effects. */
proc severity data=losses(where=(not(missing(lossAmount))))

covout outstore=work.sevstore print=all plots=none;
by region;
loss lossAmount;
class carType gender education;
scalemodel carType gender carSafety income education*carType;
dist logn burr;

run;

proc countreg data=losscounts covout;
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by region;
class gender carType education;
model numloss = age gender carType*annualmiles education / dist=negbin;
zeromodel numloss ~ age carType education;
store cstore;

run;

Note that the PROC SEVERITY step uses the OUTSTORE= option to store the parameter estimates in
an item store. When your scale regression model contains classification or interaction effects, you must
store the parameter estimates in an item store instead of storing them in an OUTEST= data set, because
PROC HPCDM cannot obtain the necessary information about classification or interaction effects from an
OUTEST= data set.

The “Parameter Estimates” tables in Output 17.3.4 and Output 17.3.5 show that all parameters are now
statistically significant, most at the 95% confidence level and a few at the 90% confidence level. If you want
every parameter to be significant at the 95% confidence level, then you might want to continue the process by
removing the carType effect with a p-value of 0.0607 from the ZEROMODEL statement and refitting the
count model. However, for the purpose of this example, the preceding models are declared to be satisfactory,
and the effect selection process stops here.

You need to follow this process of model inspection and effect selection before you use the severity and count
models with the HPCDM procedure. For count models, you can use the automatic effect (variable) selection
feature of PROC COUNTREG. For more information, see the description of the SELECT= option in the
MODEL statement of Chapter 12, “The COUNTREG Procedure.” For severity models, you need to perform
effect selection manually by inspecting the estimates and refitting the model after removing one or a few
insignificant effects at a time until you find the final set of significant effects. Although it is not shown in this
example, you can also decide which set of effects is better by comparing the fit statistics of two models; the
better model might contain certain effects at lower confidence levels than the usual 95% or 90% confidence
levels. In fact, the SELECT=INFO option of PROC COUNTREG uses the AIC or BIC of the entire model to
select the set of effects instead of using the p-values of individual parameters. You might also want to use
some domain knowledge to retain certain effects in the model even if their confidence level is not very high.

Output 17.3.4 Final LOGN Severity Model Parameter Estimates for Region=East

region=East

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 5.00845 0.02135 234.61 <.0001

Sigma 1 0.48908 0.00535 91.43 <.0001

carType SUV 1 0.51556 0.03642 14.16 <.0001

carType Sedan 0 0 . . .

gender F 1 1.17291 0.01726 67.96 <.0001

gender M 0 0 . . .

carSafety 1 -0.77273 0.02614 -29.56 <.0001

income 1 -0.32702 0.01962 -16.67 <.0001

carType*education SUV Advanced Degree 1 0.44870 0.06223 7.21 <.0001

carType*education SUV College 1 0.68360 0.04404 15.52 <.0001

carType*education SUV High School 0 0 . . .

carType*education Sedan Advanced Degree 1 -0.49572 0.02688 -18.44 <.0001

carType*education Sedan College 1 -0.26234 0.01848 -14.19 <.0001

carType*education Sedan High School 0 0 . . .
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Output 17.3.5 Final Count Model Parameter Estimates for Region=East

region=East

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.136175 0.124786 9.10 <.0001

age 1 0.737805 0.112339 6.57 <.0001

gender F 1 -1.001311 0.052996 -18.89 <.0001

gender M 0 0 . . .

annualmiles*carType SUV 1 -1.263178 0.045809 -27.57 <.0001

annualmiles*carType Sedan 1 -0.631419 0.027728 -22.77 <.0001

education Advanced Degree 1 0.400307 0.092060 4.35 <.0001

education College 1 0.703436 0.067935 10.35 <.0001

education High School 0 0 . . .

Inf_Intercept 1 -0.585662 0.338796 -1.73 0.0839

Inf_age 1 -0.928293 0.324629 -2.86 0.0042

Inf_carType SUV 1 -0.658089 0.350886 -1.88 0.0607

Inf_carType Sedan 0 0 . . .

Inf_education Advanced Degree 1 0.588511 0.269195 2.19 0.0288

Inf_education College 1 0.446600 0.228151 1.96 0.0503

Inf_education High School 0 0 . . .

_Alpha 1 0.785018 0.101327 7.75 <.0001

For severity models, you also need to inspect the “All Fit Statistics” table to decide which severity distributions
you want to use for aggregate loss modeling. The table in Output 17.3.6 shows that the lognormal distribution
is the best according to the majority of fit statistics, so you can choose that. However, in some cases, you might
see that the likelihood-based fit statistics (–2 log likelihood, AIC, AICC, BIC) choose one distribution and
the EDF-based statistics (KS, AD, CvM) choose another distribution. In such cases, it is recommended that
before making your final decision, you conduct aggregate loss simulation by using both severity distributions
and compare the summary statistics and percentiles that each severity distribution produces.

Output 17.3.6 Comparison of Severity Distributions for Region=East

region=East

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Logn 45280 * 45300 * 45300 * 45364 * 10.31771 * 613.78765 46.37913 *

Burr 45346 45368 45368 45437 10.90815 519.83495 * 49.71973

Note: The asterisk (*) marks the best model according to each column's criterion.

After you have satisfactorily estimated the severity and frequency models, it is time to estimate the distribution
of the aggregate loss by using the HPCDM procedure. The scenario data set must contain the final set of
regressors that are used in both the severity model and the frequency model. Note that even if your models
contain interaction effects, your scenario data set needs to contain only the columns for individual variables
of the effects. PROC HPCDM internally performs levelization of each observation, which is the process of
expanding the variable values to match them with the parameters of each effect. A typical scenario for an
insurance application might consist of a large number of policyholders, but for illustration purposes, this
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example uses a small scenario of only a few policyholders per region. Output 17.3.7 shows the contents of
the Work.Scenario data set, and the following PROC HPCDM step simulates the aggregate losses for that
scenario:

proc hpcdm data=scenario nreplicates=10000 seed=123 print=all
severitystore=work.sevstore countstore=work.cstore
nperturb=30;

by region;
severitymodel logn;
outsum out=agglossStats mean stddev skewness kurtosis pctlpts=(90 97.5 99.5);

run;

Output 17.3.7 Work.Scenario Data Set for BY-Group Processing

Obs region gender carType education age annualmiles carSafety income

1 East F SUV High School 1.16 2.1540 0.29288 0.26090

2 East F Sedan High School 0.86 2.3978 0.69844 0.15000

3 East F Sedan Advanced Degree 0.78 1.9926 0.59421 0.58808

4 West M Sedan College 0.82 1.8550 0.66849 0.15000

5 West M SUV College 0.40 3.6240 0.23194 1.25274

6 West M Sedan High School 0.62 3.6162 0.86477 0.42597

7 West F Sedan College 0.32 3.4598 0.66294 0.36132

8 West M Sedan Advanced Degree 0.90 3.2580 0.37172 0.15000

The SEVERITYSTORE= and COUNTSTORE= options specify the item stores that contain the effect
information and parameter estimates of the severity and counts models, respectively, for both BY groups.
The COVOUT option in the preceding PROC SEVERITY and PROC COUNTREG steps ensures that the
respective item stores include the covariance estimates that are needed for the perturbation analysis that the
NPERTURB= option requests.
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Output 17.3.8 Aggregate Loss Simulation Results for Region=East

The HPCDM Procedure
Severity Model: Logn

Count Model: ZINB

region=East

Sample Percentile Perturbation
Analysis

Percentile Estimate
Standard

Error

1 0 0

5 0 0

25 0 0

50 151.62052 20.57120

75 492.04365 33.55686

90 917.18029 51.54978

95 1233.3 63.95801

97.5 1553.5 78.97273

99 1981.2 111.13102

99.5 2308.0 127.42680

Number of Perturbed
Samples = 30

Size of Each Sample = 10000

Output 17.3.9 Aggregate Loss Simulation Results for Region=West

region=West

Sample Percentile Perturbation
Analysis

Percentile Estimate
Standard

Error

1 0 0

5 0 0

25 134.16405 16.72670

50 417.89498 27.34826

75 863.13053 48.13708

90 1453.7 74.88636

95 1913.2 101.60492

97.5 2368.8 140.43218

99 2979.5 190.75595

99.5 3462.9 242.14530

Number of Perturbed
Samples = 30

Size of Each Sample = 10000

Output 17.3.8 and Output 17.3.9 show the summary of the perturbation analysis for the two regions. You can
deduce that for the collection of three policyholders in the eastern region of the specified scenario, the 97.5th
percentile of their collective aggregate loss is 1553.5˙ 79 units, and for the collection of five policyholders
in the western region of the specified scenario, the 99.5th percentile of their collective aggregate loss is
3462.9˙ 242.2.
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Overview: HPCOPULA Procedure
The HPCOPULA procedure is a high-performance version of the SAS/ETS COPULA procedure, which
simulates data from a specified copula.

Unlike the COPULA procedure, which can be run only on one thread, the HPCOPULA procedure takes
advantage of a computing environment in which the optimization task can be distributed to multiple threads.
When several threads are used, the result is a highly parallel computation that provides a dramatic gain in
performance.

By default, PROC HPCOPULA performs computations on multiple threads.

PROC HPCOPULA Features
The HPCOPULA procedure enables you to simulate a specified copula, and it supports the following types
of copulas:

� normal copula

� t copula

� Archimedean copulas:

– Clayton copula

– Frank copula

– Gumbel copula

Getting Started: HPCOPULA Procedure
This example illustrates the use of PROC HPCOPULA. The data are daily returns on several major stocks.
The main purpose of this example is to simulate from the joint distribution of stock returns a new sample of a
specified size, provided that the parameter estimates of the copula model that is used are available.

In the following statements, the DEFINE statement specifies a normal copula named COP, and the
CORR= option specifies that the data set Estimates be used as the source for the model parameters. The
NDRAWS=1000000 option in the SIMULATE statement generates one million observations from the normal
copula. The OUTUNIFORM= option specifies the name of the SAS data set to contain the simulated
sample that has uniform marginal distributions. The PERFORMANCE statement requests that the analytic
computations use two threads. Note that this syntax does not require the DATA= option.

/* Copula simulation of uniforms */
proc hpcopula;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
define cop normal (corr = estimates);
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simulate cop / ndraws = 1000000
outuniform = simulated_uniforms;

PERFORMANCE nthreads=2 details;
run;

The simulated data are contained in the new SAS data set, Simulated_Uniforms.

Syntax: HPCOPULA Procedure
The following statements are available in the HPCOPULA procedure:

PROC HPCOPULA options ;
VAR variables ;
DEFINE name copula-type < ( parameter-value-options . . . ) > ;
SIMULATE < copula-name-list > / options ;
PERFORMANCE < performance-options > ;

Functional Summary
Table 18.1 summarizes the statements and options that the HPCOPULA procedure uses.

Table 18.1 Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set that contains the
correlation matrix for elliptical copulas

DEFINE CORR=

Declaring the Role of Variables
Specifies the names of the variables to use in copula
fitting or in simulation

VAR

Copula Simulation Options
Specifies the random sample size SIMULATE NDRAWS=
Specifies the random number generator seed SIMULATE SEED=

Output Control Options
Specifies the output data set to contain the random
samples from the simulation with uniform marginal
distribution

SIMULATE OUTUNIFORM=
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PROC HPCOPULA Statement
PROC HPCOPULA ;

The PROC HPCOPULA statement invokes the HPCOPULA procedure.

DEFINE Statement
DEFINE name copula-type < ( parameter-value-options . . . ) > ;

The DEFINE statement specifies the relevant information about the copula that is used for the simulation.
You can specify the following arguments:

name specifies the name of the copula definition. You can be use this name later in the
SIMULATE statement.

copula-type specifies the type of copula. You must specify one of the following copula types, which
are described in the section “Details: HPCOPULA Procedure” on page 1012:

NORMAL fits the normal copula.

T fits the t copula.

CLAYTON fits the Clayton copula.

FRANK fits the Frank copula.

GUMBEL fits the Gumbel copula.

parameter-value-options
specify the input parameters that are used to simulate the specified copula. These options
must be appropriate for the type of copula specified. You can specify the following
parameter-value-options:

CORR=SAS-data-set
specifies the data set that contains the correlation matrix to use for elliptical copulas.
If the correlation matrix is valid but its elements are not submitted in order, then you
must provide the variable names in the first column of the matrix, and these names
must match the variable names in the VAR statement. See Output 18.1.1 for an
example of a correlation matrix input in this form. If the correlation matrix elements
are submitted in order, the first column of variable names is not required. You can
use this option for normal and t copulas.

DF=value
specifies the degrees of freedom. You can use this option for t copulas.

THETA=value
specifies the parameter value for the Archimedean copulas.

The DEFINE statement is used with the SIMULATE statement.
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SIMULATE Statement
SIMULATE < copula-name-list > / options ;

The SIMULATE statement simulates data from a specified copula model. The copula name specification is
the name of a defined copula as specified by name in the DEFINE statement. You can specify the following
options:

NDRAWS=integer
specifies the number of draws to generate for this simulation. By default, NDRAWS=100.

OUTUNIFORM=SAS-data-set
specifies the output data set to contain the result of the simulation in uniform margins. You
can use this option when MARGINALS=UNIFORM or MARGINALS=EMPIRICAL. If
MARGINALS=EMPIRICAL, then this option enables you to obtain the samples that are simu-
lated from the joint distribution specified by the copula, where all marginal distributions are uniform.
The data are not created if you do not specify this option.

SEED=integer
specifies the seed for generating random numbers for the simulation. If you do not provide the seed, a
random number is used as the seed.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options to control the multithreaded computing
environment and requests detailed performance results of the HPCOPULA procedure. You can specify the
following performance-options:

DETAILS
requests a table that shows a timing breakdown of the PROC HPCOPULA steps.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPCOPULA
creates one thread for the analytic computations.

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement”
(Chapter 21, SAS/STAT User’s Guide).

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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VAR Statement
VAR variables ;

The VAR statement specifies the variable names in the input data set that is specified by the DATA= option in
the PROC HPCOPULA statement. The subset of variables in the data set is used for the copula models in
the FIT statement. If there is no input data set, the VAR statement creates the list of variable names for the
SIMULATE statement.

Details: HPCOPULA Procedure

Sklar’s Theorem
The copula models are tools for studying the dependence structure of multivariate distributions. The usual
joint distribution function contains the information both about the marginal behavior of the individual random
variables and about the dependence structure between the variables. The copula is introduced to decouple the
marginal properties of the random variables and the dependence structures. An m-dimensional copula is a
joint distribution function on Œ0; 1�m, where all marginal distributions are standard uniform. The common
notation for a copula is C.u1; : : : ; um/.

The Sklar (1959) theorem shows the importance of copulas in modeling multivariate distributions. The first
part of the theorem states that a copula can be derived from any joint distribution functions, and the second
part asserts the opposite: that any copula can be combined with any set of marginal distributions to result in a
multivariate distribution function. The theorem follows:

� Let F be a joint distribution function, and let Fj ; j D 1; : : : ; m, be the marginal distributions. Then
there exists a copula C W Œ0; 1�m ! Œ0; 1� such that

F.x1; : : : ; xm/ D C.F1.x1/; : : : ; Fm.xm//

for all x1; : : : ; xm in Œ�1;1�. Moreover, if the margins are continuous, then C is unique; otherwise C
is uniquely determined on RanF1 � � � � � RanFm, where RanFj D Fj .Œ�1;1�/ is the range of Fj .

� The converse is also true. That is, if C is a copula and F1; : : : ; Fm are univariate distribution functions,
then the multivariate function that is defined in the preceding equation is a joint distribution function
with marginal distributions Fj ; j D 1; : : : ; m.
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Dependence Measures
There are three basic types of dependence measures: linear correlation, rank correlation, and tail dependence.
Linear correlation is given by

� � corr.X; Y / D
cov.X; Y /p

var.X/
p

var.Y /

The linear correlation coefficient contains very limited information about the joint properties of the variables.
A well-known property is that zero correlation does not imply independence, whereas independence implies
zero correlation. In addition, there are distinct bivariate distributions that have the same marginal distribution
and the same correlation coefficient. These results suggest that caution must be used in interpreting the linear
correlation.

Another statistical measure of dependence is rank correlation, which is nonparametric. For example, Kendall’s
tau is the covariance between the sign statistics X1 � QX1 and X2 � QX2, where . QX1; QX2/ is an independent
copy of .X1; X2/:

�� � EŒsign.X1 � QX1/.X2 � QX2/�

The sign function (sometimes written as sgn) is defined as

sign.x/ D

8̂<̂
:
�1 ifx � 0
0 ifx D 0
1 ifx � 0

Spearman’s rho is the correlation between the transformed random variables:

�S .X1; X2/ � �.F1.X1/; F2.X2//

The variables are transformed by their distribution functions so that the transformed variables are uniformly
distributed on Œ0; 1�. The rank correlations depend only on the copula of the random variables and are
indifferent to the marginal distributions. Like linear correlation, rank correlation has its limitations. In
particular, different copulas result in the same rank correlation.

A third measure, tail dependence, focuses on only part of the joint properties between the variables. Tail
dependence measures the dependence when both variables have extreme values. Formally, they can be
defined as the conditional probabilities of quantile exceedances. There are two types of tail dependence:

� Upper tail dependence is defined as

�u.X1; X2/ � lim
q�>1�

P.X2 > F
�1
2 .q/jX1 > F

�1
1 .q//

when the limit exists and �u 2 Œ0; 1�. Here F�1j is the quantile function (that is, the inverse of the
CDF).

� Lower tail dependence is defined symmetrically.
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Normal Copula
Let uj � U.0; 1/ for j D 1; : : : ; m, where U.0; 1/ represents the uniform distribution on the Œ0; 1� interval.
Let† be the correlation matrix, wherem.m�1/=2 parameters satisfy the positive semidefiniteness constraint.
The normal copula can be written as

C†.u1; u2; : : : ; um/ D ˆ†

�
ˆ�1.u1/; : : : ; ˆ

�1.um/
�

where ˆ is the distribution function of a standard normal random variable and ˆ† is the m-variate standard
normal distribution with mean vector 0 and covariance matrix †. That is, the distribution ˆ† is Nm.0;†/.

Simulation

For the normal copula, the input of the simulation is the correlation matrix †. The normal copula can be
simulated by the following steps, in which U D .U1; : : : ; Um/ denotes one random draw from the copula:

1. Generate a multivariate normal vector Z � N.0;†/, where † is an m-dimensional correlation matrix.

2. Transform the vector Z into U D .ˆ.Z1/; : : : ; ˆ.Zm//
T , where ˆ is the distribution function of

univariate standard normal.

The first step can be achieved by Cholesky decomposition of the correlation matrix † D LLT , where L is a
lower triangular matrix with positive elements on the diagonal. If QZ � N.0; I /, then L QZ � N.0;†/.

Student’s t Copula
Let ‚ D f.�;†/ W � 2 .1;1/; † 2 Rm�mg, and let t� be a univariate t distribution with � degrees of
freedom.

The Student’s t copula can be written as

C‚.u1; u2; : : : ; um/ D ttt�;†

�
t�1� .u1/; t

�1
� .u2/; : : : ; t

�1
� .um/

�
where ttt�;† is the multivariate Student’s t distribution that has a correlation matrix † with � degrees of
freedom.

Simulation

The input parameters for the simulation are .�;†/. The t copula can be simulated by the following steps:

1. Generate a multivariate vector X � tm.�; 0;†/ that follows the centered t distribution with � degrees
of freedom and correlation matrix †.

2. Transform the vector X into U D .t�.X1/; : : : ; t�.Xm//
T , where t� is the distribution function of

univariate t distribution with � degrees of freedom.

To simulate centered multivariate t random variables, you can use the property that X � tm.�; 0;†/ if
X D

p
�=sZ , where Z � N.0;†/ and the univariate random variable s � �2� .
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Archimedean Copulas

Overview of Archimedean Copulas

Let function � W Œ0; 1� ! Œ0;1/ be a strict Archimedean copula generator function, and suppose that its
inverse ��1 is completely monotonic on Œ0;1/. A strict generator is a decreasing function � W Œ0; 1� !
Œ0;1/ that satisfies �.0/ D1 and �.1/ D 0. A decreasing function f .t/ W Œa; b�! .�1;1/ is completely
monotonic if it satisfies

.�1/k
dk

dtk
f .t/ � 0; k 2 N; t 2 .a; b/

An Archimedean copula is defined as follows:

C.u1; u2; : : : ; um/ D �
�1
�
�.u1/C � � � C �.um/

�
The Archimedean copulas available in the HPCOPULA procedure are the Clayton copula, the Frank copula,
and the Gumbel copula.

Clayton Copula

Let the generator function �.u/ D ��1
�
u�� � 1

�
. A Clayton copula is defined as

C� .u1; u2; : : : ; um/ D

"
mX
iD1

u��i �mC 1

#�1=�
where � > 0.

Frank Copula

Let the generator function be

�.u/ D � log
�
exp.��u/ � 1
exp.��/ � 1

�

A Frank copula is defined as

C� .u1; u2; : : : ; um/ D
1

�
log

�
1C

Qm
iD1Œexp.��ui / � 1�
Œexp.��/ � 1�m�1

�
where � 2 .�1;1/nf0g for m D 2 and � > 0 for m � 3.
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Gumbel Copula

Let the generator function �.u/ D .� log u/� . A Gumbel copula is defined as

C� .u1; u2; : : : ; um/ D exp

8<:�
"
mX
iD1

.� log ui /�
#1=�9=;

where � > 1.

Simulation

Suppose that the generator of the Archimedean copula is �. Then the simulation method that uses a
Laplace-Stieltjes transformation of the distribution function is given by Marshall and Olkin (1988), where
QF .t/ D

R1
0 e�txdF.x/:

1. Generate a random variable V that has the distribution function F such that QF .t/ D ��1.t/.

2. Draw samples from the independent uniform random variables X1; : : : ; Xm.

3. Return U D . QF .� log.X1/=V /; : : : ; QF .� log.Xm/=V //T .

The Laplace-Stieltjes transformations are as follows:

� For the Clayton copula, QF D .1C t /�1=� , and the distribution function F is associated with a gamma
random variable that has a shape parameter of ��1 and a scale parameter of 1.

� For the Gumbel copula, QF D exp.�t1=� /, and F is the distribution function of the stable variable
St.��1; 1; ; 0/, where  D Œcos.�=.2�//�� .

� For the Frank copula where � > 0, QF D � logf1 � exp.�t /Œ1 � exp.��/�g=� , and F is a discrete
probability function P.V D k/ D .1 � exp.��//k=.k�/. This probability function is related to a
logarithmic random variable that has a parameter value of 1 � e�� .

For more information about simulating a random variable from a stable distribution, see Theorem 1.19 in
Nolan (2010). For more information about simulating a random variable from a logarithmic series, see
Chapter 10.5 in Devroye (1986).

For a Frank copula where m D 2 and � < 0, the simulation can be done through conditional distributions as
follows:

1 Draw independent v1; v2 from a uniform distribution.

2 Let u1 D v1.

3 Let u2 D �1� log
�
1C v2.1�e

�� /

v2.e
��v1�1/�e��v1

�
.
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OUTUNIFORM= Data Sets
The number of columns and the names of columns in OUTUNIFORM= data sets match the number and
names of the variables in the VAR statement.

Examples: HPCOPULA Procedure

Example 18.1: Simulating Default Times
Suppose the correlation structure that is required for a normal copula function is already known. For example,
the correlation structure can be estimated from the historical data on default times in some industries, but this
estimation is not within the scope of this example. The correlation structure is saved in a SAS data set called
Inparm. The following statements and their output in Output 18.1.1 show that the correlation parameter is set
at 0.8:

proc print data = inparm;
run;

Output 18.1.1 Copula Correlation Matrix

Obs Y1 Y2

1 1.0 0.8

2 0.8 1.0

The following statements use PROC HPCOPULA to simulate the data:

/* simulate the data from bivariate normal copula */
proc hpcopula;

var Y1-Y2;
define cop normal (corr=inparm);
simulate cop /

ndraws = 1000000
seed = 1234
outuniform = normal_unifdata;

PERFORMANCE nthreads=4 details
host="&GRIDHOST" install="&GRIDINSTALLLOC";

run;

The VAR statement specifies the list of variables that contains the simulated data. The DEFINE statement
assigns the name COP and specifies a normal copula that reads the correlation matrix from the Inparm data
set. The SIMULATE statement refers to the COP label that is defined in the VAR statement and specifies
several options: the NDRAWS= option specifies a sample size, the SEED= option specifies 1234 as the
random number generator seed, and the OUTUNIFORM=NORMAL_UNIFDATA option names the output
data set to contain the result of simulation in uniforms. The PERFORMANCE statement requests that the
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analytic computations be performed on four threads. Output 18.1.2 shows the run time of this particular
simulation experiment.

Output 18.1.2 Run-Time Performance

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Procedure Task Timing

Task Seconds Percent

Simulation of Model 0.24 100.00%

The following DATA step transforms the variables from zero-one uniformly distributed to nonnegative
exponentially distributed with parameter 0.5 and adds three indicator variables to the data set: SURVIVE1
and SURVIVE2 are equal to 1 if company 1 or company 2, respectively, has remained in business for more
than three years, and SURVIVE is equal to 1 if both companies survived the same period together.

/* default time has exponential marginal distribution with parameter 0.5 */
data default;

set normal_unifdata;
array arr{2} Y1-Y2;
array time{2} time1-time2;
array surv{2} survive1-survive2;
lambda = 0.5;
do i=1 to 2;

time[i] = -log(1-arr[i])/lambda;
surv[i] = 0;
if (time[i] >3) then surv[i]=1;

end;
survive = 0;
if (time1 >3) && (time2 >3) then survive = 1;

run;

The first analysis step is to look at correlations between survival times of the two companies. You can perform
this step by using the CORR procedure as follows:

proc corr data = default pearson kendall;
var time1 time2;

run;

Output 18.1.3 shows the output of this code. The output contains some descriptive statistics and two measures
of correlation: Pearson and Kendall. Both measures indicate high and statistically significant dependence
between the life spans of the two companies.

Output 18.1.3 Default Time Descriptive Statistics and Correlations

The CORR Procedure

2  Variables: time1    time2
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Output 18.1.3 continued

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

time1 1000000 2.00023 1.99883 1.38633 3.85293E-6 24.18938

time2 1000000 1.99897 1.99965 1.38476 6.43006E-6 25.85567

Pearson Correlation Coefficients, N = 1000000
Prob > |r| under H0: Rho=0

time1 time2

time1 1.00000 0.77046
<.0001

time2 0.77046
<.0001

1.00000

Kendall Tau b Correlation Coefficients, N = 1000000
Prob > |tau| under H0: Tau=0

time1 time2

time1 1.00000 0.59046
<.0001

time2 0.59046
<.0001

1.00000

The second and final step is to empirically estimate the default probabilities of the two companies. This is
done by using the FREQ procedure as follows:

proc freq data=default;
table survive survive1-survive2;

run;

The results are shown in Output 18.1.4.

Output 18.1.4 Probabilities of Default

The FREQ Procedure

survive Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 852317 85.23 852317 85.23

1 147683 14.77 1000000 100.00

survive1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 776594 77.66 776594 77.66

1 223406 22.34 1000000 100.00

survive2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 777292 77.73 777292 77.73

1 222708 22.27 1000000 100.00

Output 18.1.4 shows that the empirical default probabilities are 78% and 78%. Assuming that these companies
are independent yields the probability estimate that both companies default during the period of three years
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as 0.78*0.78=0.61 (61%). Comparing this naive estimate with the much higher actual 85% joint default
probability illustrates that neglecting the correlation between the two companies significantly underestimates
the probability of default.
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Overview: HPCOUNTREG Procedure
The HPCOUNTREG procedure is a high-performance version of the COUNTREG procedure in SAS/ETS
software. Like the COUNTREG procedure, the HPCOUNTREG procedure fits regression models in which
the dependent variable takes nonnegative integer or count values.

By default, PROC HPCOUNTREG performs computations in multiple threads.

PROC HPCOUNTREG Features
The HPCOUNTREG procedure estimates the parameters of a count regression model by maximum likelihood
techniques.

The HPCOUNTREG procedure supports the following models for count data:

� Poisson regression

� Conway-Maxwell-Poisson regression

� negative binomial regression with quadratic and linear variance functions (Cameron and Trivedi 1986)

� zero-inflated Poisson (ZIP) model (Lambert 1992)

� zero-inflated Conway-Maxwell-Poisson (ZICMP) model

� zero-inflated negative binomial (ZINB) model

� fixed-effects and random-effects Poisson models for panel data

� fixed-effects and random-effects negative binomial models for panel data

The following list summarizes some basic features of the HPCOUNTREG procedure:

� is multithreaded during all phases of analytic execution

� has model-building syntax that uses CLASS and effect-based MODEL statements familiar from
SAS/ETS analytic procedures

� performs maximum likelihood estimation

� supports multiple link functions

� uses the WEIGHT statement for weighted analysis
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� uses the FREQ statement for grouped analysis

� uses the OUTPUT statement to produce a data set that contains predicted probabilities and other
observationwise statistics

Getting Started: HPCOUNTREG Procedure
Except for its ability to operate in the multithreaded environment, the HPCOUNTREG procedure is similar
to other regression model procedures in the SAS System. For example, the following statements are used to
estimate a Poisson regression model:

proc hpcountreg data=one ;
model y = x / dist=poisson ;

run;

The response variable y is numeric and has nonnegative integer values.

This section illustrates two simple examples that use PROC HPCOUNTREG. The data are taken from Long
(1997). This study examines how factors such as gender (fem), marital status (mar), number of young
children (kid5), prestige of the graduate program (phd), and number of articles published by a scientist’s
mentor (ment) affect the number of articles (art) published by the scientist.

The first 10 observations are shown in Figure 19.1.

Figure 19.1 Article Count Data

Obs art fem mar kid5 phd ment

1 3 0 1 2 1.38000 8.0000

2 0 0 0 0 4.29000 7.0000

3 4 0 0 0 3.85000 47.0000

4 1 0 1 1 3.59000 19.0000

5 1 0 1 0 1.81000 0.0000

6 1 0 1 1 3.59000 6.0000

7 0 0 1 1 2.12000 10.0000

8 0 0 1 0 4.29000 2.0000

9 3 0 1 2 2.58000 2.0000

10 3 0 1 1 1.80000 4.0000

The following SAS statements estimate the Poisson regression model. The model is executed in single-
machine mode with two threads.

/*-- Poisson Regression --*/
proc hpcountreg data=long97data;

model art = fem mar kid5 phd ment / dist=poisson method=quanew;
performance nthreads=2 details;

run;
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The “Model Fit Summary” table that is shown in Figure 19.2 lists several details about the model. By
default, the HPCOUNTREG procedure uses the Newton-Raphson optimization technique. The maximum
log-likelihood value is shown, in addition to two information measures—Akaike’s information criterion
(AIC) and Schwarz’s Bayesian information criterion (SBC)—which can be used to compare competing
Poisson models. Smaller values of these criteria indicate better models.

Figure 19.2 Estimation Summary Table for a Poisson Regression

The HPCOUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 0.0002080

Number of Iterations 13

Optimization Method Quasi-Newton

AIC 3314

SBC 3343

Figure 19.3 shows the parameter estimates of the model and their standard errors. All covariates are significant
predictors of the number of articles, except for the prestige of the program (phd), which has a p-value of
0.6271.

Figure 19.3 Parameter Estimates of Poisson Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.3046 0.1030 2.96 0.0031

fem 1 -0.2246 0.05461 -4.11 <.0001

mar 1 0.1552 0.06137 2.53 0.0114

kid5 1 -0.1849 0.04013 -4.61 <.0001

phd 1 0.01282 0.02640 0.49 0.6271

ment 1 0.02554 0.002006 12.73 <.0001

To allow for variance greater than the mean, you can fit the negative binomial model instead of the Poisson
model by specifying the DIST=NEGBIN option, as shown in the following statements. Whereas the Poisson
model requires that the conditional mean and conditional variance be equal, the negative binomial model
allows for overdispersion, in which the conditional variance can exceed the conditional mean.

/*-- Negative Binomial Regression --*/
proc hpcountreg data=long97data;

model art = fem mar kid5 phd ment / dist=negbin(p=2) method=quanew;
performance nthreads=2 details;

run;

Figure 19.4 shows the fit summary and Figure 19.5 shows the parameter estimates.
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Figure 19.4 Estimation Summary Table for a Negative Binomial Regression

The HPCOUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model NegBin

Log Likelihood -1561

Maximum Absolute Gradient 0.0000666

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 3136

SBC 3170

Figure 19.5 Parameter Estimates of Negative Binomial Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.2561 0.1386 1.85 0.0645

fem 1 -0.2164 0.07267 -2.98 0.0029

mar 1 0.1505 0.08211 1.83 0.0668

kid5 1 -0.1764 0.05306 -3.32 0.0009

phd 1 0.01527 0.03604 0.42 0.6718

ment 1 0.02908 0.003470 8.38 <.0001

_Alpha 1 0.4416 0.05297 8.34 <.0001

The parameter estimate for _Alpha of 0.4416 is an estimate of the dispersion parameter in the negative
binomial distribution. A t test for the hypothesis H0 W ˛ D 0 is provided. It is highly significant, indicating
overdispersion (p < 0:0001).

The null hypothesis H0 W ˛ D 0 can be also tested against the alternative ˛ > 0 by using the likelihood ratio
test, as described by Cameron and Trivedi (1998, pp. 45, 77–78). The likelihood ratio test statistic is equal to
�2.LP � LNB/ D �2.�1651C 1561/ D 180, which is highly significant, providing strong evidence of
overdispersion.
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Syntax: HPCOUNTREG Procedure
The following statements are available in the HPCOUNTREG procedure. Items within angle brackets (< >)
or square brackets ([ ]) are optional.

PROC HPCOUNTREG <options> ;
BOUNDS bound1 [ , bound2 . . . ] ;
BY variables ;
CLASS variables ;
DISPMODEL dependent variable � < dispersion-related regressors > ;
FREQ freq-variable ;
INIT initialization1 < , initialization2 . . . > ;
MODEL dependent-variable = regressors </ options> ;
OUTPUT <output-options> ;
PERFORMANCE performance-options ;
RESTRICT restriction1 [, restriction2 . . . ] ;
TEST equation1 < , equation2. . . > / < test-options > ;
WEIGHT variable </ option> ;
ZEROMODEL dependent-variable � zero-inflated-regressors </ options> ;

There can be only one MODEL statement. The ZEROMODEL statement, if used, must appear after the
MODEL statement. If a FREQ or WEIGHT statement is specified more than once, the variable specified in
the first instance is used.

Functional Summary
Table 19.1 summarizes the statements and options used with the HPCOUNTREG procedure.

Table 19.1 Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set HPCOUNTREG DATA=
Specifies the identification variable for panel data
analysis

HPCOUNTREG GROUPID=

Writes parameter estimates to an output data set HPCOUNTREG OUTEST=
Writes estimates to an output data set OUTPUT OUT=

Specifies BY-group processing BY
Specifies an optional frequency variable FREQ
Specifies an optional weight variable WEIGHT

Printing Control Options
Prints the correlation matrix of the estimates HPCOUNTREG CORRB
Prints the covariance matrix of the estimates HPCOUNTREG COVB
Suppresses the normal printed output HPCOUNTREG NOPRINT
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Table 19.1 continued

Description Statement Option

Requests all printing options HPCOUNTREG PRINTALL

Options to Control the Optimization Process
Specifies maximum number of iterations allowed HPCOUNTREG MAXITER=
Selects the iterative minimization method to use HPCOUNTREG METHOD=
Specifies maximum number of iterations allowed HPCOUNTREG MAXITER=
Specifies maximum number of function calls HPCOUNTREG MAXFUNC=
Specifies the upper limit of CPU time in seconds HPCOUNTREG MAXTIME=
Specifies absolute function convergence criterion HPCOUNTREG ABSCONV=
Specifies absolute function convergence criterion HPCOUNTREG ABSFCONV=
Specifies absolute gradient convergence criterion HPCOUNTREG ABSGCONV=
Specifies relative function convergence criterion HPCOUNTREG FCONV=
Specifies relative gradient convergence criterion HPCOUNTREG GCONV=
Specifies absolute parameter convergence criterion HPCOUNTREG ABSXCONV=
Specifies matrix singularity criterion HPCOUNTREG SINGULAR=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT

Model Estimation Options
Specifies the dispersion variables DISPMODEL
Specifies the type of model HPCOUNTREG DIST=
Specifies the type of covariance matrix HPCOUNTREG COVEST=
Specifies the type of error components model for
panel data

MODEL ERRORCOMP=

Suppresses the intercept parameter MODEL NOINT
Specifies the offset variable MODEL OFFSET=
Specifies the parameterization for the Conway-
Maxwell-Poisson (CMP) model

MODEL PARAMETER=

Specifies the zero-inflated offset variable ZEROMODEL OFFSET=
Specifies the zero-inflated link function ZEROMODEL LINK=

Output Control Options
Includes covariances in the OUTEST= data set HPCOUNTREG COVOUT
Includes correlations in the OUTEST= data set HPCOUNTREG CORROUT
Outputs SAS variables to the output data set OUTPUT COPYVAR=
Outputs the estimates of dispersion for the CMP
model

OUTPUT DISPERSION

Outputs the estimates of GDeltaD g0iı for the CMP
model

OUTPUT GDELTA=

Outputs the estimates of � for the CMP model OUTPUT LAMBDA=
Outputs the estimates of � for the CMP model OUTPUT NU=
Outputs the estimates of � for the CMP model OUTPUT MU=
Outputs the estimates of mode for the CMP model OUTPUT MODE=
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Table 19.1 continued

Description Statement Option

Outputs the probability that the response variable
will take the current value

OUTPUT PROB=

Outputs probabilities for particular response values OUTPUT PROBCOUNT( )
Outputs expected value of response variable OUTPUT PRED=
Outputs the estimates of variance for the CMP model OUTPUT VARIANCE=
Outputs estimates of XBetaD x0iˇ OUTPUT XBETA=
Outputs estimates of ZGammaD z0i OUTPUT ZGAMMA=
Outputs probability of a zero value as a result of the
zero-generating process

OUTPUT PROBZERO=

Performance Options
Requests a table that shows a timing breakdown PERFORMANCE DETAILS
Specifies the number of threads to use PERFORMANCE NTHREADS=

PROC HPCOUNTREG Statement
PROC HPCOUNTREG <options> ;

The following options can be used in the PROC HPCOUNTREG statement.

Input Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC HPCOUNTREG uses the
most recently created SAS data set.

GROUPID=variable
specifies an identification variable when a panel data model is estimated. The identification variable is
used as a cross-sectional ID variable.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to the specified output data set.

CORROUT
writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.
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COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

Printing Options

You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement:

CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

NOPRINT
suppresses all printed output.

PRINTALL
requests all printing options.

Estimation Control Options

You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement:

COVEST=HESSIAN | OP | QML
specifies the type of covariance matrix for the parameter estimates.

The default is COVEST=HESSIAN. You can specify the following values:

HESSIAN specifies the covariance from the Hessian matrix.

OP specifies the covariance from the outer product matrix.

QML specifies the covariance from the outer product and Hessian matrices.

Optimization Control Options

PROC HPCOUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement.

ABSCONV=r

ABSTOL=r
specifies an absolute function value convergence criterion by which minimization stops when
f .� .k// � r . The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.
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ABSFCONV=r

ABSFTOL=r
specifies an absolute function difference convergence criterion by which minimization stops when the
function value has a small change in successive iterations:

jf .� .k�1// � f .� .k//j � r

The default is 0.

ABSGCONV=r

ABSGTOL=r
specifies an absolute gradient convergence criterion. Optimization stops when the maximum absolute
gradient element is small:

max
j
jgj .�

.k//j � r

The default is 1E–5.

ABSXCONV=r

ABSXTOL=r
specifies an absolute parameter convergence criterion. Optimization stops when the Euclidean distance
between successive parameter vectors is small:

k � .k/ � � .k�1/ k2� r

The default is 0.

FCONV=r

FTOL=r
specifies a relative function convergence criterion. Optimization stops when a relative change of the
function value in successive iterations is small:

jf .� .k// � f .� .k�1//j

jf .� .k�1//j
� r

The default value is 2�, where � denotes the machine precision constant, which is the smallest double-
precision floating-point number such that 1C � > 1.

GCONV=r

GTOL=r
specifies a relative gradient convergence criterion. For all techniques except CONGRA, optimization
stops when the normalized predicted function reduction is small:

g.� .k//T ŒH .k/��1g.� .k//

jf .� .k//j
� r

For the CONGRA technique (where a reliable Hessian estimate H is not available), the following
criterion is used:

k g.� .k// k22 k s.� .k// k2

k g.� .k// � g.� .k�1// k2 jf .� .k//j
� r

The default is 1E–8.
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MAXFUNC=i

MAXFU=i
specifies the maximum number of function calls in the optimization process. The default is 1,000.

The optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number of calls that are specified by this option.

MAXITER=i

MAXIT=i
specifies the maximum number of iterations in the optimization process. The default is 200.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is
the largest floating-point double representation of your computer. The time that is specified by this
option is checked only once at the end of each iteration. Therefore, the actual run time can be much
longer than r . The actual run time includes the remaining time needed to finish the iteration and the
time needed to generate the output of the results.

METHOD=value

specifies the iterative minimization method to use. The default is METHOD=NEWRAP. You can
specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double-dogleg method.

NEWRAP specifies the Newton-Raphson method (this is the default).

NONE specifies that no optimization be performed beyond using the ordinary least squares
method to compute the parameter estimates.

NRRIDG specifies the Newton-Raphson Ridge method.

QUANEW specifies the quasi-Newton method.

TRUREG specifies the trust region method.

SINGULAR=r
specifies the general singularity criterion that is applied by the HPCOUNTREG procedure in sweeps
and inversions. The default is 1E–8.



1032 F Chapter 19: The HPCOUNTREG Procedure

BOUNDS Statement
BOUNDS bound1 [, bound2 . . . ] ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. You can specify
any number of BOUNDS statements.

Each bound is composed of parameter names, constants, and inequality operators as follows:

item operator item [ operator item [ operator item . . . ] ]

Each item is a constant, a parameter name, or a list of parameter names. Each operator is <, >, <=, or
>=. Parameter names are as shown in the Parameter column of the “Parameter Estimates” table. For more
information about how parameters are named in the BOUNDS statement, see the section “Parameter Naming
Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on page 1054.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints.
However, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. For
more information, see the section “RESTRICT Statement” on page 1038.

The following BOUNDS statement illustrates the use of parameter lists to specify boundary constraints.
It constrains the estimates of the parameter for z to be negative, the parameters for x1 through x10 to be
between 0 and 1, and the parameter for x1 in the zero-inflation model to be less than 1.

bounds z < 0,
0 < x1-x10 < 1,
Inf_x1 < 1;

BY Statement
BY variables ;

A BY statement can be used with PROC HPCOUNTREG to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the input data set should be sorted in
order of the BY variables.

BY statement processing is not supported when the HPCOUNTREG procedure runs alongside the database
or alongside the Hadoop Distributed File System (HDFS). These modes are used if the input data are stored
in a database or HDFS and the grid host is the appliance that houses the data.
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CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats to
group values into levels. For more information, see the discussion of the FORMAT procedure in Base SAS
Procedures Guide.

DISPMODEL Statement
DISPMODEL dependent-variable � < dispersion-related-regressors > ;

The DISPMODEL statement specifies the dispersion-related-regressors that are used to model dispersion.
This statement is ignored unless you specify DIST=CMPOISSON in the MODEL statement. The dependent-
variable in the DISPMODEL statement must be the same as the dependent-variable in the MODEL statement.

The dependent-variable that appears in the DISPMODEL statement is directly used to model dispersion.
Each of the q variables to the right of the tilde (Ï) has a parameter to be estimated in the regression. For
example, let g0i be the ith observation’s 1 � .q C 1/ vector of values of the q dispersion explanatory variables
(q0 is set to 1 for the intercept term). Then the dispersion is a function of g0iı, where ı is the .qC1/�1 vector
of parameters to be estimated, the dispersion model intercept is ı0, and the coefficients for the q dispersion
covariates are ı1; : : : ; ıq . If you specify DISP=CMPOISSON in the MODEL statement but do not include a
DISPMODEL statement, then only the intercept term ı0 is estimated. The “Parameter Estimates” table in
the displayed output shows the estimates for the dispersion intercept and dispersion explanatory variables;
they are labeled with the prefix “Disp_”. For example, the dispersion intercept is labeled “Disp_Intercept”.
If you specify Age (a variable in your data set) as a dispersion explanatory variable, then the “Parameter
Estimates” table labels the corresponding parameter estimate “Disp_Age”. The following statements fit a
Conway-Maxwell-Poisson model by using the regressors SEX, ILLNESS, and INCOME and by using AGE
as a dispersion-related regressor:

proc hpcountreg data=docvisit;
model doctorvisits=sex illness income / dist=cmpoisson;
dispmodel doctorvisits ~ age;

run;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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FREQ Statement
FREQ freq-variable ;

The FREQ statement identifies a variable (freq-variable) that contains the frequency of occurrence of each
observation. PROC HPCOUNTREG treats each observation as if it appears n times, where n is the value
of freq-variable for the observation. If the value for the observation is not an integer, it is truncated to an
integer. If the value is less than 1 or missing, the observation is not used in the model fitting. When the FREQ
statement is not specified, each observation is assigned a frequency of 1.

INIT Statement
INIT initialization1 < , initialization2 . . . > ;

The INIT statement sets initial values for parameters in the optimization.

Each initialization is written as a parameter or parameter list, followed by an optional equal sign (=), followed
by a number:

parameter <=> number

Parameter names are as shown in the Parameter column of the “Parameter Estimates” table. For more
information about how parameters are named in the INIT statement, see the section “Parameter Naming
Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on page 1054.

MODEL Statement
MODEL dependent-variable = regressors </ options> ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. The dependent count variable should take only nonnegative integer values from the input data
set. PROC HPCOUNTREG rounds any positive noninteger count value to the nearest integer. PROC
HPCOUNTREG discards any observation that has a negative count.

Only one MODEL statement can be specified. You can specify the following options in the MODEL
statement after a slash (/):

DIST=value
specifies a type of model to be analyzed. You can specify the following values:

POISSON | P specifies the Poisson regression model.

CMPOISSON | C | CMP specifies a Conway-Maxwell-Poisson regression model.

NEGBIN(P=1) specifies the negative binomial regression model that uses a linear variance
function.

NEGBIN(P=2) | NEGBIN specifies the negative binomial regression model that uses a quadratic
variance function.

ZIPOISSON | ZIP specifies zero-inflated Poisson regression.
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ZICMPOISSON | ZICMP specifies a zero-inflated Conway-Maxwell-Poisson regression. The ZERO-
MODEL statement must be specified when this model type is specified.

ZINEGBIN | ZINB specifies zero-inflated negative binomial regression.

You can also specify the DIST option in the HPCOUNTREG statement.

ERRORCOMP=FIXED | RANDOM
specifies a type of conditional panel model to be analyzed. You can specify the following model types:

FIXED specifies a fixed-effect error component regression model.

RANDOM specifies a random-effect error component regression model.

NOINT
suppresses the intercept parameter.

OFFSET=offset-variable
specifies a variable in the input data set to be used as an offset variable. The offset-variable is used to
allow the observational units to vary across observations. For example, when the number of shipping
accidents could be measured across different time periods or the number of students who participate in
an activity could be reported across different class sizes, the observational units need to be adjusted
to a common denominator by using the offset variable. The offset variable appears as a covariate in
the model with its parameter restricted to 1. The offset variable cannot be the response variable, the
zero-inflation offset variable (if any), or any of the explanatory variables. The “Model Fit Summary”
table gives the name of the data set variable that is used as the offset variable; it is labeled “Offset.”

PARAMETER=MU | LAMBDA
specifies the parameterization for the Conway-Maxwell-Poisson model. The following parameteriza-
tions are supported:

LAMBDA estimates the original Conway-Maxwell-Poisson model (Shmueli et al. 2005).

MU reparameterizes � as documented by Guikema and Coffelt (2008), where � D �1=�

and the integral part of � represents the mode, which can be considered a measure
of central tendency (mean).

By default, PARAMETER=MU.

Printing Options

You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement:

CORRB
prints the correlation matrix of the parameter estimates.
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COVB
prints the covariance matrix of the parameter estimates.

NOPRINT
suppresses all printed output.

PRINTALL
requests all printing options.

OUTPUT Statement
OUTPUT < output-options > ;

The OUTPUT statement creates a new SAS data set that includes variables created by the output-options.
These variables include the estimates of x0iˇ, the expected value of the response variable, and the probability
of the response variable taking on the current value. Furthermore, if a zero-inflated model was fit, you can
request that the output data set contain the estimates of z0i and the probability that the response is zero as a
result of the zero-generating process. For the Conway-Maxwell-Poisson model, the estimates of g0iı, �, �,
�, mode, variance, and dispersion are also available. Except for the probability of the current value, these
statistics can be computed for all observations in which the regressors are not missing, even if the response is
missing. By adding observations that have missing response values to the input data set, you can compute
these statistics for new observations or for settings of the regressors that are not present in the data without
affecting the model fit.

You can specify only one OUTPUT statement. You can specify the following output-options:

OUT=SAS-data-set
names the output data set

COPYVAR=SAS-variable-names

COPYVARS=SAS-variable-names
adds SAS variables to the output data set.

XBETA=name
names the variable to contain estimates of x0iˇ.

PRED=name

MEAN=name
names the variable to contain the predicted value of the response variable.

PROB=name
names the variable to contain the probability that the response variable will take the actual value,
Pr(Y D yi ).

PROBCOUNT(value1 < value2 . . . >)
outputs the probability that the response variable will take particular values. Each value should be a
nonnegative integer. If you specify a noninteger, it is rounded to the nearest integer. The value can
also be a list of the form X TO Y BY Z. For example, PROBCOUNT(0 1 2 TO 10 BY 2 15) requests
predicted probabilities for counts 0, 1, 2, 4, 5, 6, 8, 10, and 15. This option is not available for the
fixed-effects and random-effects panel models.
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ZGAMMA=name
names the variable to contain estimates of z0i .

PROBZERO=name
names the variable to contain the value of 'i , which is the probability that the response variable will
take the value of 0 as a result of the zero-generating process. This variable is written to the output file
only if the model is zero-inflated.

GDELTA=name
assigns a name to the variable that contains estimates of g0iı for the Conway-Maxwell-Poisson
distribution.

LAMBDA=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

NU=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

MU=name
assigns a name to the variable that contains the estimate of � for the Conway-Maxwell-Poisson
distribution.

MODE=name
assigns a name to the variable that contains the integral part of � (mode) for the Conway-Maxwell-
Poisson distribution.

VARIANCE=name
assigns a name to the variable that contains the estimate of variance for the Conway-Maxwell-Poisson
distribution.

DISPERSION=name
assigns a name to the variable that contains the value of dispersion for the Conway-Maxwell-Poisson
distribution.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies options to control the multithreaded computing environment and
requests detailed results about the performance characteristics of the HPCOUNTREG procedure. The most
commonly used performance-options in the PERFORMANCE statement are as follows:

DETAILS
requests a table that shows a timing breakdown of the procedure steps.
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NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPCOUNTREG
creates one thread per CPU for the analytic computations.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” (Chap-
ter 21, SAS/STAT User’s Guide).

RESTRICT Statement
RESTRICT restriction1 [, restriction2 . . . ] ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=) and then by a second expression, as follows:

expression operator expression

The operator can be =, <, >, <=, or >=.

Restriction expressions can be composed of parameter names, constants, and the following operators: times
(�), plus (C), and minus (�). Parameter names are as shown in the Effect column of the “Parameter Estimates”
table. The restriction expressions must be a linear function of the variables.

Parameter names are as shown in the Parameter column of the “Parameter Estimates” table. For more
information about how parameters are named in the RESTRICT statement, see the section “Parameter
Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on page 1054.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified by the names Restrict1, Restrict2, and so on. The probabilities of these Lagrange multipliers
are computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect
on the estimation results and are not noted in the output.

The following RESTRICT statement constrains the negative binomial dispersion parameter ˛ to 1, which
restricts the conditional variance to be �C �2:

restrict _Alpha = 1;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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TEST Statement
<label:> TEST <'string'> equation1 < , equation2. . . > / < test-options > ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses
about the regression parameters that are specified in the preceding MODEL statement.

You can add a label (which is printed in the output) to a TEST statement in two ways: add an unquoted
label followed by a colon before the TEST keyword, or add a quoted string after the TEST keyword. The
unquoted label cannot contain any spaces. If you include both an unquoted label and a quoted string, PROC
HPCOUNTREG uses the unquoted label . If you specify neither an unquoted label nor a quoted string, PROC
HPCOUNTREG automatically labels the tests.

Each equation specifies a linear hypothesis to be tested and consists of regression parameter names and
relational operators. The regression parameter names are as shown in the Parameter column of the “Parameter
Estimates” table. For more information about how parameters are named in the TEST statement, see the
section “Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements” on
page 1054. Only linear equality restrictions and tests are permitted in PROC COUNTREG. Test equations
can consist only of algebraic operations that involve the addition symbol (+), subtraction symbol (-), and
multiplication symbol (*).

All hypotheses in one TEST statement are tested jointly.

You can specify the following test-options after a slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

WALD
requests the Wald test.

By default, the Wald test is performed.

The following illustrates the use of the TEST statement:

proc hpcountreg;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test _int: test intercept = 0, x3 = 0;

run;

The first test investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ2 C 2ˇ3 D 0
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Only linear equality restrictions and tests are permitted in PROC HPCOUNTREG. Tests expressions can
consist only of algebraic operations that involve the addition symbol (+), subtraction symbol (-), and
multiplication symbol (*).

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

The following option can be added to the WEIGHT statement after a slash (/):

NONORMALIZE
does not normalize the weights. (By default, the weights are normalized so that they add up to the
actual sample size. The weights wi are normalized by multiplying them by nPn

iD1wi
, where n is the

sample size.) If the weights are required to be used as they are, then specify the NONORMALIZE
option.

ZEROMODEL Statement
ZEROMODEL dependent-variable � zero-inflated-regressors < / options > ;

The ZEROMODEL statement is required if either ZIP or ZINB is specified in the DIST= option in the
MODEL statement. If ZIP or ZINB is specified, then the ZEROMODEL statement must follow the MODEL
statement. The dependent variable in the ZEROMODEL statement must be the same as the dependent
variable in the MODEL statement.

The zero-inflated (ZI) regressors appear in the equation that determines the probability ('i ) of a zero count.
Each of these q variables has a parameter to be estimated in the regression. For example, let z0i be the ith
observation’s 1 � .q C 1/ vector of values of the q ZI explanatory variables (w0 is set to 1 for the intercept
term). Then 'i is a function of z0i , where  is the .q C 1/ � 1 vector of parameters to be estimated. (The
zero-inflated intercept is 0; the coefficients for the q zero-inflated covariates are 1; : : : ; q .) If q is equal to
0 (no ZI explanatory variables are provided), then only the intercept term 0 is estimated. The “Parameter
Estimates” table in the displayed output shows the estimates for the ZI intercept and ZI explanatory variables;
they are labeled with the prefix “Inf_”. For example, the ZI intercept is labeled “Inf_intercept”. If you specify
Age (a variable in your data set) as a ZI explanatory variable, then the “Parameter Estimates” table labels the
corresponding parameter estimate “Inf_Age”.

You can specify the following options in the ZEROMODEL statement after a slash (/):
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LINK=LOGISTIC | NORMAL
specifies the distribution function used to compute probability of zeros. The supported distribution
functions are as follows:

LOGISTIC specifies logistic distribution.

NORMAL specifies standard normal distribution.

If this option is omitted, then the default ZI link function is logistic.

OFFSET=zero-inflated-offset-variable
specifies a variable in the input data set to be used as a zero-inflated (ZI) offset variable. The ZI
offset variable zero-inflated-offset-variable is included as a term, with coefficient restricted to 1, in
the equation that determines the probability ('i ) of a zero count and represents an adjustment to a
common observational unit. The ZI offset variable cannot be the response variable, the offset variable
(if any), or any of the explanatory variables. The name of the data set variable that is used as the ZI
offset variable is displayed in the “Model Fit Summary” table, where it is labeled as “Inf_offset”.

Details: HPCOUNTREG Procedure

Missing Values
Any observations in the input data set that have a missing value for one or more of the regressors are ignored
by PROC HPCOUNTREG and not used in the model fit. PROC HPCOUNTREG rounds any positive
noninteger count values to the nearest integer and ignores any observations that have a negative count.

If the input data set contains any observations that have missing response values but nonmissing regressors,
PROC HPCOUNTREG can compute several statistics and store them in an output data set by using the
OUTPUT statement. For example, you can request that the output data set contain the estimates of x0iˇ, the
expected value of the response variable, and the probability that the response variable will take the current
value. Furthermore, if a zero-inflated model was fit, you can request that the output data set contain the
estimates of z0i , and the probability that the response is 0 as a result of the zero-generating process. Note
that the presence of such observations (that have missing response values) does not affect the model fit.
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Poisson Regression
The most widely used model for count data analysis is Poisson regression. Poisson regression assumes that
yi , given the vector of covariates xi , is independently Poisson distributed with

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
; yi D 0; 1; 2; : : :

and the mean parameter—that is, the mean number of events per period—is given by

�i D exp.x0iˇ/

where ˇ is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0; the coefficients for the k regressors are
ˇ1; : : : ; ˇk .) Taking the exponential of x0iˇ ensures that the mean parameter �i is nonnegative. It can be
shown that the conditional mean is given by

E.yi jxi / D �i D exp.x0iˇ/

Note that the conditional variance of the count random variable is equal to the conditional mean in the Poisson
regression model:

V.yi jxi / D E.yi jxi / D �i

The equality of the conditional mean and variance of yi is known as equidispersion.

The standard estimator for the Poisson model is the maximum likelihood estimator (MLE). Because the
observations are independent, the log-likelihood function is written as

L D
NX
iD1

.��i C yi ln�i � lnyi Š/ D
NX
iD1

.�ex
0
i
ˇ
C yix0iˇ � lnyi Š/

For more information about the Poisson regression model, see the section “Poisson Regression” on page 605.

The Poisson model has been criticized for its restrictive property that the conditional variance equals the
conditional mean. Real-life data are often characterized by overdispersion—that is, the variance exceeds the
mean. Allowing for overdispersion can improve model predictions because the Poisson restriction of equal
mean and variance results in the underprediction of zeros when overdispersion exists. The most commonly
used model that accounts for overdispersion is the negative binomial model. Conway-Maxwell-Poisson
regression enables you to model both overdispersion and underdispersion.
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Conway-Maxwell-Poisson Regression
The Conway-Maxwell-Poisson (CMP) distribution is a generalization of the Poisson distribution that enables
you to model both underdispersed and overdispersed data. It was originally proposed by Conway and
Maxwell (1962), but its implementation to model under- and overdispersed count data is attributed to Shmueli
et al. (2005).

Recall that yi , given the vector of covariates xi , is independently Poisson-distributed as

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
; yi D 0; 1; 2; : : :

The Conway-Maxwell-Poisson distribution is defined as

P.Yi D yi jxi ; zi / D
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi D 0; 1; 2; : : :

where the normalization factor is

Z.�i ; �i / D

1X
nD0

�ni
.nŠ/�i

and

�i D exp.x0iˇ/

�i D � exp.g0iı/

The ˇ vector is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0, and the coefficients for the k regressors
are ˇ1; : : : ; ˇk .) The ı vector is an .mC 1/ � 1 parameter vector. (The intercept is represented by ı0, and
the coefficients for the m regressors are ı1; : : : ; ık .) The covariates are represented by xi and gi vectors.

One of the restrictive properties of the Poisson model is that the conditional mean and variance must be
equal:

E.yi jxi / D V.yi jxi / D �i D exp.x0iˇ/

The CMP distribution overcomes this restriction by defining an additional parameter, �, which governs the
rate of decay of successive ratios of probabilities such that

P.Yi D yi � 1/=P.Yi D yi / D
.yi /

�i

�i

The introduction of the additional parameter, �, allows for flexibility in modeling the tail behavior of the
distribution. If � D 1, the ratio is equal to the rate of decay of the Poisson distribution. If � < 1, the rate
of decay decreases, enabling you to model processes that have longer tails than the Poisson distribution
(overdispersed data). If � > 1, the rate of decay increases in a nonlinear fashion, thus shortening the tail of
the distribution (underdispersed data).

There are several special cases of the Conway-Maxwell-Poisson distribution. If � < 1 and � ! 1, the
Conway-Maxwell-Poisson results in the Bernoulli distribution. In this case, the data can take only the values
0 and 1, which represents an extreme underdispersion. If � D 1, the Poisson distribution is recovered with
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its equidispersion property. When � D 0 and � < 1, the normalization factor is convergent and forms a
geometric series,

Z.�i ; 0/ D
1

1 � �i

and the probability density function becomes

P.Y D yi I�i ; �i D 0/ D .1 � �i /�
yi
i

The geometric distribution represents a case of severe overdispersion.

Mean, Variance, and Dispersion for the Conway-Maxwell-Poisson Model

The mean and the variance of the Conway-Maxwell-Poisson distribution are defined as

EŒY � D
@ lnZ
@ ln�

V ŒY � D
@2 lnZ
@2 ln�

The Conway-Maxwell-Poisson distribution does not have closed-form expressions for its moments in terms
of its parameters � and �. However, the moments can be approximated. Shmueli et al. (2005) use asymptotic
expressions for Z to derive E.Y / and V.Y / as

EŒY � � �1=� C
1

2�
�
1

2

V ŒY � �
1

�
�1=�

In the Conway-Maxwell-Poisson model, the summation of infinite series is evaluated using a logarithmic
expansion. The mean and variance are calculated as follows for the Shmueli et al. (2005) model:

E.Y / D
1

Z.�; �/

1X
jD0

j�j

.j Š/�

V.Y / D
1

Z.�; �/

1X
jD0

j 2�j

.j Š/�
�E.Y /2

The dispersion is defined as

D.Y / D
V.Y /

E.Y /
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Likelihood Function for the Conway-Maxwell-Poisson Model

The likelihood for a set of n independently and identically distributed variables y1; y2; : : : ; yn is written as

L.y1; y2; : : : ; ynj�; �/ D

Qn
iD1�

yi

.
Qn
iD1 yi Š/

�
Z.�; �/�n

D �
Pn
iD1 yi exp .��

nX
iD1

ln.yi Š//Z.�; �/�n

D �S1 exp .��S2/Z.�; �/�n

where S1 and S2 are sufficient statistics for y1; y2; : : : ; yn. You can see from the preceding equation that the
Conway-Maxwell-Poisson distribution is a member of the exponential family. The log-likelihood function
can be written as

L D �n ln.Z.�; �//C
nX
iD1

.yi ln.�/ � � ln.yi Š//

The gradients can be written as

Lˇ D
 
NX
kD1

yk � n
�Z.�; �/�
Z.�; �/

!
x

Lı D
 
NX
kD1

ln.ykŠ/ � n
Z.�; �/�
Z.�; �/

!
�z

Conway-Maxwell-Poisson Regression: Guikema and Coffelt (2008) Reparameterization

Guikema and Coffelt (2008) propose a reparameterization of the Shmueli et al. (2005) Conway-Maxwell-
Poisson model to provide a measure of central tendency that can be interpreted in the context of the generalized
linear model. By substituting � D �� , the Guikema and Coffelt (2008) formulation is written as

P.Y D yi I�; �/ D
1

S.�; �/

�
�yi

yi Š

��
where the new normalization factor is defined as

S.�; �/ D

1X
jD0

 
�j

j Š

!�

In terms of their new formulations, the mean and variance of Y are given as

EŒY � D
1

�

@ lnS
@ ln�

V ŒY � D
1

�2
@2 lnS
@2 ln�
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They can be approximated as

EŒY � � �C
1

2
� �

1

2

V ŒY � �
�

�

In the HPCOUNTREG procedure, the mean and variance are calculated according to the following formulas,
respectively, for the Guikema and Coffelt (2008) model:

E.Y / D
1

Z.�; �/

1X
jD0

j��j

.j Š/�

V.Y / D
1

Z.�; �/

1X
jD0

j 2��j

.j Š/�
�E.Y /2

In terms of the new parameter �, the log-likelihood function is specified as

L D ln.S.�; �//C �
NX
iD1

.yi ln.�/ � ln.yi Š//

and the gradients are calculated as

Lˇ D
 
�

NX
iD1

yi �
�S.�; �/�

S.�; �/

!
x

Lı D
 
NX
iD1

.yi ln.�/ � ln.yi Š// �
S.�; �/�
S.�; �/

!
�g

By default, the HPCOUNTREG procedure uses the Guikema and Coffelt (2008) specification. The Shmueli
et al. (2005) model can be estimated by specifying the PARAMETER=LAMBDA option. If you specify
DISP=CMPOISSON in the MODEL statement and you omit the DISPMODEL statement, the model is
estimated according to the Lord, Guikema, and Geedipally (2008) specification, where � represents a single
parameter that does not depend on any covariates. The Lord, Guikema, and Geedipally (2008) specification
makes the model comparable to the negative binomial model because it has only one parameter.

The dispersion is defined as

D.Y / D
V.Y /

E.Y /

Using the Guikema and Coffelt (2008) specification results in the integral part of � representing the mode,
which is a reasonable approximation for the mean. The dispersion can be written as

D.Y / D
V.Y /

E.Y /
�

�
�

�C 1
2
� � 1

2

�
1

v
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When � < 1, the variance can be shown to be greater than the mean and the dispersion greater than 1. This is
a result of overdispersed data. When � = 1 and the mean and variance are equal, the dispersion is equal to 1
(Poisson model). When � > 1, the variance is smaller than the mean and the dispersion is less than 1. This is
a result of underdispersed data.

All Conway-Maxwell-Poisson models in the HPCOUNTREG procedure are parameterized in terms of
dispersion, where

� ln.�/ D ı0 C
qX
nD1

ıngn

Negative values of ln.�/ indicate that the data are approximately overdispersed, and positive values of ln.�/
indicate that the data are approximately underdispersed.

Negative Binomial Regression
The Poisson regression model can be generalized by introducing an unobserved heterogeneity term for
observation i. Thus, the individuals are assumed to differ randomly in a manner that is not fully accounted
for by the observed covariates. This is formulated as

E.yi jxi ; �i / D �i�i D ex
0
i
ˇC�i

where the unobserved heterogeneity term �i D e
�i is independent of the vector of regressors xi . Then the

distribution of yi conditional on xi and �i is Poisson with conditional mean and conditional variance �i�i :

f .yi jxi ; �i / D
exp.��i�i /.�i�i /yi

yi Š

Let g.�i / be the probability density function of �i . Then, the distribution f .yi jxi / (no longer conditional on
�i ) is obtained by integrating f .yi jxi ; �i / with respect to �i :

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

An analytical solution to this integral exists when �i is assumed to follow a gamma distribution. This solution
is the negative binomial distribution. If the model contains a constant term, then in order to identify the mean
of the distribution, it is necessary to assume that E.e�i / D E.�i / D 1. Thus, it is assumed that �i follows a
gamma(�; �) distribution with E.�i / D 1 and V.�i / D 1=� ,

g.�i / D
��

�.�/
���1i exp.���i /
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where �.x/ D
R1
0 zx�1 exp.�z/dz is the gamma function and � is a positive parameter. Then, the density

of yi given xi is derived as

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

D
���

yi
i

yi Š�.�/

Z 1
0

e�.�iC�/�i �
�Cyi�1
i d�i

D
���

yi
i �.yi C �/

yi Š�.�/.� C �i /�Cyi

D
�.yi C �/

yi Š�.�/

�
�

� C �i

�� � �i

� C �i

�yi
If you make the substitution ˛ D 1

�
(˛ > 0), the negative binomial distribution can then be rewritten as

f .yi jxi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
; yi D 0; 1; 2; : : :

Thus, the negative binomial distribution is derived as a gamma mixture of Poisson random variables. It has
the conditional mean

E.yi jxi / D �i D ex
0
i
ˇ

and the conditional variance

V.yi jxi / D �i Œ1C
1

�
�i � D �i Œ1C ˛�i � > E.yi jxi /

The conditional variance of the negative binomial distribution exceeds the conditional mean. Overdispersion
results from neglected unobserved heterogeneity. The negative binomial model with variance function
V.yi jxi / D �i C ˛�

2
i , which is quadratic in the mean, is referred to as the NEGBIN2 model Cameron

and Trivedi (1986). To estimate this model, specify DIST=NEGBIN(P=2) in the MODEL statement. The
Poisson distribution is a special case of the negative binomial distribution where ˛ D 0. A test of the Poisson
distribution can be carried out by testing the hypothesis that ˛ D 1

�i
D 0. A Wald test of this hypothesis is

provided (it is the reported t statistic for the estimated ˛ in the negative binomial model).

The log-likelihood function of the negative binomial regression model (NEGBIN2) is given by

L D

NX
iD1

(
yi�1X
jD0

ln.j C ˛�1/ � ln.yi Š/

�.yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ

)

where use of the following fact is made if y is an integer:

�.y C a/=�.a/ D

y�1Y
jD0

.j C a/
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Cameron and Trivedi (1986) consider a general class of negative binomial models that have mean �i and
variance function �i C ˛�

p
i . The NEGBIN2 model, with p D 2, is the standard formulation of the negative

binomial model. Models that have other values of p, �1 < p <1, have the same density f .yi jxi /, except
that ˛�1 is replaced everywhere by ˛�1�2�p. The negative binomial model NEGBIN1, which sets p D 1,
has the variance function V.yi jxi / D �i C ˛�i , which is linear in the mean. To estimate this model, specify
DIST=NEGBIN(P=1) in the MODEL statement.

The log-likelihood function of the NEGBIN1 regression model is given by

L D

NX
iD1

(
yi�1X
jD0

ln
�
j C ˛�1 exp.x0iˇ/

�
� ln.yi Š/ �

�
yi C ˛

�1 exp.x0iˇ/
�
ln.1C ˛/C yi ln.˛/

)

For more information about the negative binomial regression model, see the section “Negative Binomial
Regression” on page 611.

Zero-Inflated Count Regression Overview
The main motivation for using zero-inflated count models is that real-life data frequently display overdisper-
sion and excess zeros. Zero-inflated count models provide a way to both model the excess zeros and allow
for overdispersion. In particular, there are two possible data generation processes for each observation. The
result of a Bernoulli trial is used to determine which of the two processes to use. For observation i, Process 1
is chosen with probability 'i and Process 2 with probability 1 � 'i . Process 1 generates only zero counts.
Process 2 generates counts from either a Poisson or a negative binomial model. In general,

yi �

(
0 with probability 'i

g.yi / with probability 1 � 'i

Therefore, the probability of fYi D yig can be described as

P.yi D 0jxi / D 'i C .1 � 'i /g.0/

P.yi jxi / D .1 � 'i /g.yi /; yi > 0

where g.yi / follows either the Poisson or the negative binomial distribution.

If the probability 'i depends on the characteristics of observation i, then 'i is written as a function of
z0i , where z0i is the 1 � .q C 1/ vector of zero-inflated covariates and  is the .q C 1/ � 1 vector of zero-
inflated coefficients to be estimated. (The zero-inflated intercept is 0; the coefficients for the q zero-inflated
covariates are 1; : : : ; q .) The function F that relates the product z0i (which is a scalar) to the probability
'i is called the zero-inflated link function,

'i D Fi D F.z0i/
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In the HPCOUNTREG procedure, the zero-inflated covariates are indicated in the ZEROMODEL statement.
Furthermore, the zero-inflated link function F can be specified as either the logistic function,

F.z0i/ D ƒ.z
0
i/ D

exp.z0i/
1C exp.z0i/

or the standard normal cumulative distribution function (also called the probit function),

F.z0i/ D ˆ.z
0
i/ D

Z z0
i


0

1
p
2�

exp.�u2=2/du

The zero-inflated link function is indicated by using the LINK= option in the ZEROMODEL statement. The
default ZI link function is the logistic function.

Zero-Inflated Poisson Regression
In the zero-inflated Poisson (ZIP) regression model, the data generation process that is referred to earlier as
Process 2 is

g.yi / D
exp.��i /�

yi
i

yi Š

where �i D ex
0
i
ˇ. Thus the ZIP model is defined as

P.yi D 0jxi ; zi / D Fi C .1 � Fi / exp.��i /

P.yi jxi ; zi / D .1 � Fi /
exp.��i /�

yi
i

yi Š
; yi > 0

The conditional expectation and conditional variance of yi are given by

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi /.1C �iFi /

Note that the ZIP model (in addition to the ZINB model) exhibits overdispersion because V.yi jxi ; zi / >
E.yi jxi ; zi /.

In general, the log-likelihood function of the ZIP model is

L D
NX
iD1

ln ŒP.yi jxi ; zi /�

After a specific link function (either logistic or standard normal) for the probability 'i is chosen, it is possible
to write the exact expressions for the log-likelihood function and the gradient.
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ZIP Model with Logistic Link Function

First, consider the ZIP model in which the probability 'i is expressed by a logistic link function, namely

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

ln
�
exp.z0i/C exp.� exp.x0iˇ//

�
C

X
fi Wyi>0g

"
yix0iˇ � exp.x0iˇ/ �

yiX
kD2

ln.k/

#

�

NX
iD1

ln
�
1C exp.z0i/

�

ZIP Model with Standard Normal Link Function

Next, consider the ZIP model in which the probability 'i is expressed by a standard normal link function:
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

ln
˚
ˆ.z0i/C

�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

	
C

X
fi Wyi>0g

(
ln
��
1 �ˆ.z0i/

��
� exp.x0iˇ/C yix

0
iˇ �

yiX
kD2

ln.k/

)

For more information about the zero-inflated Poisson regression model, see the section “Zero-Inflated Poisson
Regression” on page 615.

Zero-Inflated Conway-Maxwell-Poisson Regression
In the Conway-Maxwell-Poisson regression model, the data generation process is defined as

P.Yi D yi jxi ; zi / D
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi D 0; 1; 2; : : :

where the normalization factor is

Z.�i ; �i / D

1X
nD0

�ni
.nŠ/�i

and

�i D exp.x0iˇ/
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�i D � exp.g0iı/

The zero-inflated Conway-Maxwell-Poisson model can be written as

P.yi jxi ; zi / D Fi C .1 � Fi /
1

Z.�i ; �i /
; yi D 0

P.yi jxi ; zi / D .1 � Fi /
1

Z.�i ; �i /

�
yi
i

.yi Š/�i
; yi > 0

The conditional expectation and conditional variance of yi are given respectively by

E.yi jxi ; zi / D .1 � Fi /
1

Z.�; �/

1X
jD0

j�j

.j Š/�

V.yi jxi ; zi / D .1 � Fi /
1

Z.�; �/

1X
jD0

j 2�j

.j Š/�
�E.yi jxi ; zi /2

The general form of the log-likelihood function for the Conway-Maxwell-Poisson zero-inflated model is

L D
NX
iD1

wi ln ŒP.yi jxi ; zi /�

Zero-Inflated Conway-Maxwell-Poisson Model with Logistic Link Function

For this model, the probability 'i is expressed by using a logistic link function as

'i D ƒ.z0i/ D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

wi ln
�
ƒ.z0i/C

�
1 �ƒ.z0i/

� 1

Z.�i ; �i /

�
C

X
fi Wyi>0g

wi
˚
ln
��
1 �ƒ.z0i/

��
� ln.Z.�; �//C .yi ln.�/ � � ln.yi Š/

	

Zero-Inflated Conway-Maxwell-Poisson Model with Normal Link Function

For this model, the probability 'i is specified by using the standard normal distribution function (probit
function): 'i D ˆ.z0i/.

The log-likelihood function is written as

L D

X
fi WyiD0g

wi ln
�
ˆ.z0i/C

�
1 �ˆ.z0i/

� 1

Z.�i ; �i /

�
C

X
fi Wyi>0g

wi
˚
ln
��
1 �ˆ.z0i/

��
� ln.Z.�; �//C .yi ln.�/ � � ln.yi Š/
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Zero-Inflated Negative Binomial Regression
The zero-inflated negative binomial (ZINB) model in PROC HPCOUNTREG is based on the negative
binomial model that has a quadratic variance function (when DIST=NEGBIN in the MODEL or PROC
HPCOUNTREG statement). The ZINB model is obtained by specifying a negative binomial distribution for
the data generation process referred to earlier as Process 2:

g.yi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
Thus the ZINB model is defined to be

P.yi D 0jxi ; zi / D Fi C .1 � Fi / .1C ˛�i /
�˛�1

P.yi jxi ; zi / D .1 � Fi /
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1
�

�
�i

˛�1 C �i

�yi
; yi > 0

In this case, the conditional expectation (E) and conditional variance (V) of yi are

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi / Œ1C �i .Fi C ˛/�

Like the ZIP model, the ZINB model exhibits overdispersion because the conditional variance exceeds the
conditional mean.

ZINB Model with Logistic Link Function

In this model, the probability 'i is given by the logistic function, namely

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

ln
h
exp.z0i/C .1C ˛ exp.x

0
iˇ//

�˛�1
i

C

X
fi Wyi>0g

yi�1X
jD0

ln.j C ˛�1/

C

X
fi Wyi>0g

˚
� ln.yi Š/ � .yi C ˛�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ
	

�

NX
iD1

ln
�
1C exp.z0i/

�
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ZINB Model with Standard Normal Link Function

For this model, the probability 'i is expressed by the standard normal distribution function (probit function):
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

ln
n
ˆ.z0i/C

�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//

�˛�1
o

C

X
fi Wyi>0g

ln
�
1 �ˆ.z0i/

�
C

X
fi Wyi>0g

yi�1X
jD0

˚
ln.j C ˛�1/

	
�

X
fi Wyi>0g

ln.yi Š/

�

X
fi Wyi>0g

.yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

yi ln.˛/

C

X
fi Wyi>0g

yix0iˇ

For more information about the zero-inflated negative binomial regression model, see the section “Zero-
Inflated Negative Binomial Regression” on page 618.

Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and
INIT Statements
This section describes how you can refer to the parameters in the MODEL, ZEROMODEL, and DISPMODEL
statements when you use the RESTRICT, TEST, BOUNDS, or INIT statement. The following examples
use the RESTRICT statement, but the same remarks apply to naming parameters when you use the TEST,
BOUNDS, or INIT statement. The names of the parameters can be seen in the OUTEST= data set.

To impose a restriction on a parameter that is related to a regressor in the MODEL statement, you simply use
the name of the regressor itself to refer to its associated parameter. Suppose your model is

model y = x1 x2 x5;

where x1 through x5 are continuous variables. If you want to restrict the parameter associated with the
regressor x5 to be greater than 1.7, then you should use the following statement:

RESTRICT x5 > 1.7;

To impose a restriction on a parameter associated with a regressor in the ZEROMODEL statement, you can
form the name of the parameter by prefixing Inf_ to the name of the regressor. Suppose your MODEL and
ZEROMODEL statements are as follows:
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model y = x1 x2 x5;
zeromodel y ~ x3 x5;

If you want to restrict the parameter related to the x5 regressor in the ZEROMODEL statement to be less
than 1.0, then you refer to the parameter as Inf_x5 and provide the following statement:

RESTRICT Inf_x5 < 1.0;

Even though the regressor x5 appears in both the MODEL and ZEROMODEL statements, the parameter
associated with x5 in the MODEL statement is, of course, different from the parameter associated with x5 in
the ZEROMODEL statement. Thus, when the name of a regressor is used in a RESTRICT statement without
any prefix, it refers to the parameter associated with that regressor in the MODEL statement. Meanwhile,
when the name of a regressor is used in a RESTRICT statement with the prefix Inf_, it refers to the parameter
associated with that regressor in the ZEROMODEL statement. The parameter associated with the intercept in
the ZEROMODEL is named Inf_Intercept.

In a similar way, you can form the name of a parameter associated with a regressor in the DISPMODEL
statement by prefixing Dsp_ to the name of the regressor. The parameter associated with the intercept in the
DISPMODEL is named Dsp_Intercept.

Referring to Class-Level Parameters

When your MODEL includes a classification variable, you can impose restrictions on the parameters
associated with each of the levels that are related to the classification variable as follows.

Suppose your classification variable is named C and it has three levels: 0, 1, 2. Suppose your model is the
following:

class C;
model y = x1 x2 C;

Adding a classification variable as a regressor to your model introduces additional parameters into your
model, each of which is associated with one of the levels of the classification variable. You can form the
name of the parameter associated with a particular level of your class variable by inserting the underscore
character between the name of the classification variable and the value of the level. Thus, to restrict the
parameter associated with level 0 of the classification variable C to always be greater than 0.7, you refer to
the parameter as C_0 and provide the following statement:

RESTRICT C_0 > 0.7;

Referring to Parameters Associated with Interactions between Regressors

When a regressor in your model involves an interaction between other regressors, you can impose restrictions
on the parameters associated with the interaction.

Suppose you have the following model:

model y = x1 x2 x3*x4;

You can form the name of the parameter associated with the interaction regressor x3*x4 by replacing the
multiplication sign with an underscore. Thus, x3_x4 refers to the parameter that is associated with the
interaction regressor x3*x4.
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Referring to interactions between regressors and classification variables is handled in the same way. Suppose
you have a classification variable that is named C and has three levels: 0, 1, 2. Suppose that your model is the
following:

class C;
model y = x1 x2 C*x3;

The interaction between the continuous variable x3 and the classification variable C introduces three additional
parameters, which are named x3_C_0, x3_C_1, and x3_C_2. Note how, although the order of the terms in
the interaction is C followed by x3, the name of the parameter associated with the interaction is formed by
placing the name of the continuous variable x3 first, followed by an underscore, followed by the name of
the classification variable C, followed by an underscore, and then followed by the level value. Once again,
depending on the parameterization you specify in your CLASS statement, for each interaction in your model
that involves a classification variable, one of the parameters associated with that interaction might be dropped
from your model prior to optimization.

The name of a parameter associated with a nested interaction is formed in a slightly different way. Suppose
you have a classification variable that is named C and has three levels: 0, 1, 2. Suppose that your model is the
following:

class C;
model y = x1 x2 x3(C);

The nested interaction between the continuous variable x3 and the classification variable C introduces three
additional parameters, which are named x3_C__0, x3_C__1, and x3_C__2. Note how the name in each case
is formed from the name of the regressor by replacing the left and right parentheses with underscores and
then appending another underscore followed by the level value.

Referring to Class Level Parameters with Negative Values

When the value of a level is a negative number, you must replace the minus sign with an underscore when
you form the name of the parameter that is associated with that particular level of the classification variable.
For example, suppose your classification variable is named D and has four levels: –1, 0, 1, 2. Suppose your
model is the following:

class D;
model y = x1 x2 D;

To restrict the parameter that is associated with level –1 of the classification variable D to always be less than
0.4, you refer to the parameter as D__1 (note that there are two underscores in this parameter name: one to
connect the name of the classification variable to its value and the other to replace the minus sign in the value
itself) and provide the following statement:

RESTRICT D__1 < 0.4;

Dropping a Class Level Parameter to Avoid Collinearity

Depending on the parameterization you impose on your classification variable, one of the parameters
associated with its levels might be dropped from your model prior to optimization in order to avoid collinearity.
For example, when the default parameterization GLM is imposed, the parameter that is associated with the
last level of your classification variable is dropped prior to optimization. If you attempt to impose a restriction



Computational Resources F 1057

on a dropped parameter by using the RESTRICT statement, PROC COUNTREG issues an error message in
the log.

For example, suppose again that your classification variable is named C and that it has three levels: 0, 1, 2.
Suppose your model is the following:

class C;
model y = x1 x2 C;

Because no additional options are specified in the CLASS statement, GLM parameterization is assumed.
This means that the parameter named C_2 (which is the parameter associated with the last level of your
classification variable) will be dropped from your model before the optimizer is invoked. Therefore, an error
will be issued if you attempt to restrict the C_2 parameter in any way by referring to it in a RESTRICT
statement. For example, the following RESTRICT statement will generate an error:

RESTRICT C_2 < 0.3;

Referring to Implicit Parameters

For certain model types, one or more implicit parameters will be added to your model prior to optimization.
You can impose restrictions on these implicit parameters.

For the Poisson model for which ERRORCOMP=RANDOM is specified, PROC COUNTREG automatically
adds the _Alpha parameter to your model.

If no ERRORCOMP= option is specified, for zero-inflated binomial and negative binomial models, PROC
COUNTREG adds the _Alpha parameter to the model. If ERRORCOMP=RANDOM is specified for the
zero-inflated binomial and negative binomial models, then PROC COUNTREG adds two implicit parameters
to the model: _Alpha and _Beta.

For Conway-Maxwell Poisson models that do not include a DISPMODEL statement, the _lnNu parameter is
added to the model.

Whenever your model type dictates the addition of one or more of these implicit parameters, you can impose
restrictions on the implicit parameters by referring to them by name in a RESTRICT statement. For example,
if your model type implies the existence of the _Alpha parameter, you can restrict _Alpha to be greater than
0.2 as follows:

RESTRICT _Alpha > 0.2;

Computational Resources
The time and memory that PROC HPCOUNTREG requires are proportional to the number of parameters in
the model and the number of observations in the data set being analyzed. Less time and memory are required
for smaller models and fewer observations. When PROC HPCOUNTREG is run in the multi-threaded
environment, the amount of time required is also affected by the number of threads as specified in the
PERFORMANCE statement.

The method that is chosen to calculate the variance-covariance matrix and the optimization method also
affect the time and memory resources. All optimization methods available through the METHOD= option
have similar memory use requirements. The processing time might differ for each method, depending on
the number of iterations and functional calls needed. The data set is read into memory to save processing
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time. If not enough memory is available to hold the data, the HPCOUNTREG procedure stores the data
in a utility file on disk and rereads the data as needed from this file, substantially increasing the execution
time of the procedure. The gradient and the variance-covariance matrix must be held in memory. If the
model has p parameters including the intercept, then at least 8 � .p C p � .p C 1/=2/ bytes of memory
are needed. The processing time is also a function of the number of iterations needed to converge to a
solution for the model parameters. The number of iterations that are needed cannot be known in advance.
You can use the MAXITER= option to limit the number of iterations that PROC HPCOUNTREG executes.
You can alter the convergence criteria by using the nonlinear optimization options available in the PROC
HPCOUNTREG statement. For a list of all the nonlinear optimization options, see “Optimization Control
Options” on page 1029.

Covariance Matrix Types
The COVEST= option in the PROC HPCOUNTREG statement enables you to specify the estimation method
for the covariance matrix. COVEST=HESSIAN estimates the covariance matrix that is based on the inverse
of the Hessian matrix; COVEST=OP uses the outer product of gradients; and COVEST=QML produces the
covariance matrix that is based on both the Hessian and outer product matrices. Although all three methods
produce asymptotically equivalent results, they differ in computational intensity and produce results that
might differ in finite samples. The COVEST=OP option provides the covariance matrix that is typically the
easiest to compute. In some cases, the OP approximation is considered more efficient than the Hessian or
QML approximation because it contains fewer random elements. The QML approximation is computationally
the most complex because it requires both the outer product of gradients and the Hessian matrix. In most
cases, the OP or Hessian approximation is preferred to QML. The need for QML approximation arises in
cases where the model is misspecified and the information matrix equality does not hold. The default is
COVEST=HESSIAN.

Displayed Output
PROC HPCOUNTREG produces the following displayed output.

Model Fit Summary

The “Model Fit Summary” table contains the following information:

� dependent (count) variable name

� number of observations used

� number of missing values in data set, if any

� data set name

� type of model that was fit

� parameterization for the Conway-Maxwell-Poisson model

� offset variable name, if any
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� zero-inflated link function, if any

� zero-inflated offset variable name, if any

� log-likelihood value at solution

� maximum absolute gradient at solution

� number of iterations

� AIC value at solution (smaller value indicates better fit)

� SBC value at solution (smaller value indicates better fit)

A line in the “Model Fit Summary” table indicates whether the algorithm successfully converged.

Parameter Estimates

The “Parameter Estimates” table gives the estimates of the model parameters. In zero-inflated (ZI) models,
estimates are also given for the ZI intercept and ZI regressor parameters, which are labeled with the prefix
“Inf_”. For example, the ZI intercept is labeled “Inf_intercept”. If you specify “Age” as a ZI regressor, then
the “Parameter Estimates” table labels the corresponding parameter estimate “Inf_Age”. If you do not list
any ZI regressors, then only the ZI intercept term is estimated.

If the DISPMODEL statement is specified for the Conway-Maxwell-Poisson model, the estimates are given
for the dispersion intercept, and parameters are labeled with the prefix “Dsp_”. For example, the dispersion
model intercept is labeled “Dsp_Intercept”. If you specify “Education” as a dispersion model regressor, then
the “Parameter Estimates” table labels the corresponding parameter estimate “Dsp_Education”. If you do not
list any dispersion regressors, then only the dispersion intercept is estimated.

“_Alpha” is the negative binomial dispersion parameter. The t statistic that is given for “_Alpha” is a test of
overdispersion.

Covariance of Parameter Estimates

If you specify the COVB option in the PROC HPCOUNTREG or MODEL statement, the HPCOUNTREG
procedure displays the estimated covariance matrix, which is defined as the inverse of the information matrix
at the final iteration.

Correlation of Parameter Estimates

If you specify the CORRB option in the PROC HPCOUNTREG or MODEL statement, the HPCOUNTREG
procedure displays the estimated correlation matrix, which is based on the Hessian matrix used at the final
iteration.
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OUTPUT OUT= Data Set
The OUTPUT statement creates a new SAS data set that contains various estimates that you specify. You can
request that the output data set contain the estimates of x0iˇ, the expected value of the response variable, and
the probability that the response variable will take the current value. In a zero-inflated model, you can also
request that the output data set contain the estimates of z0i , and the probability that the response is zero as a
result of the zero-generating process. In a Conway-Maxwell-Poisson model, you can also request that the
output data set contains estimates of g0iı, �, �, �, mode, variance and dispersion.

Except for the probability of the current value, these statistics can be computed for all observations in
which the regressors are not missing, even if the response is missing. By adding observations with missing
response values to the input data set, you can compute these statistics for new observations or for settings
of the regressors that are not present in the data without affecting the model fit. Because of potential space
limitations on the client workstation, the data set that is created by the OUTPUT statement does not contain
the variables in the input data set.

OUTEST= Data Set
The OUTEST= data set is made up of at least two rows: the first row (with _TYPE_=‘PARM’) contains each
of the parameter estimates in the model, and the second row (with _TYPE_=‘STD’) contains the standard
errors for the parameter estimates in the model.

If you use the COVOUT option in the PROC HPCOUNTREG statement, the OUTEST= data set also contains
the covariance matrix for the parameter estimates. The covariance matrix appears in the observations with
_TYPE_=‘COV’, and the _NAME_ variable labels the rows with the parameter names.

ODS Table Names
PROC HPCOUNTREG assigns a name to each table that it creates. You can use these names to denote the
table when you use the Output Delivery System (ODS) to select tables and create output data sets. These
table names are listed in Table 19.2.

Table 19.2 ODS Tables Produced in PROC HPCOUNTREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
FitSummary Summary of nonlinear estimation Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
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Examples: The HPCOUNTREG Procedure

Example 19.1: High-Performance Zero-Inflated Poisson Model
This example shows the use of the HPCOUNTREG procedure with an emphasis on large data set processing.

The following DATA step generates one million replicates from the zero-inflated Poisson (ZIP) model. The
model contains seven variables and three variables that correspond to the zero-inflated process.

data simulate;
call streaminit(12345);
array vars x1-x7;
array zero_vars z1-z3;

array parms{7} (.3 .4 .2 .4 -.3 -.5 -.3);
array zero_parms{3} (-.6 .3 .2);

intercept=2;
z_intercept=-1;
theta=0.5;

do i=1 to 1000000;
sum_xb=0;
sum_gz=0;
do j=1 to 7;

vars[j]=rand('NORMAL',0,1);
sum_xb=sum_xb+parms[j]*vars[j];

end;
mu=exp(intercept+sum_xb);
y_p=rand('POISSON', mu);

do j=1 to 3;
zero_vars[j]=rand('NORMAL',0,1);
sum_gz = sum_gz+zero_parms[j]*zero_vars[j];

end;
z_gamma = z_intercept+sum_gz;
pzero = cdf('LOGISTIC',z_gamma);
cut=rand('UNIFORM');
if cut<pzero then y_p=0;
output;

end;
keep y_p x1-x7 z1-z3;
run;

The following statements estimate a zero-inflated Poisson model:

proc hpcountreg data=simulate dist=zip;
performance nthreads=2 details;
model y_p=x1-x7;
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zeromodel y_p ~ z1-z3;
run;

The model is executed in single-machine mode with two threads. These settings are used to obtain a hypothet-
ical environment that might resemble running the HPCOUNTREG procedure on a desktop workstation with
a dual-core CPU. Output 19.1.1 shows the “Performance Information” table for this hypothetical scenario.

Output 19.1.1 Performance Information for Single-Machine Mode with Two Threads

Performance Information

Execution Mode Single-Machine

Number of Threads 2

Output 19.1.2 shows the results for the zero-inflated Poisson model. The “Model Fit Summary” table shows
detailed information about the model and indicates that all one million observations were used to fit the
model. All parameter estimates in the “Parameter Estimates” table are highly significant and correspond to
their theoretical values set during the data generating process.

Output 19.1.2 Zero-Inflated Poisson Model Execution for Single-Machine Mode with Two Threads

Model Fit Summary

Dependent Variable y_p

Number of Observations 1000000

Data Set WORK.SIMULATE

Model ZIP

ZI Link Function Logistic

Log Likelihood -2215238

Maximum Absolute Gradient 2.06423E-8

Number of Iterations 7

Optimization Method Newton-Raphson

AIC 4430500

SBC 4430642

Convergence criterion (FCONV=2.220446E-16) satisfied.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.0005 0.000492 4069.80 <.0001

x1 1 0.2995 0.000352 850.17 <.0001

x2 1 0.3998 0.000353 1132.23 <.0001

x3 1 0.2008 0.000352 570.27 <.0001

x4 1 0.3994 0.000353 1132.85 <.0001

x5 1 -0.2995 0.000353 -848.95 <.0001

x6 1 -0.5000 0.000353 -1414.9 <.0001

x7 1 -0.3002 0.000352 -852.14 <.0001

Inf_Intercept 1 -0.9993 0.002521 -396.45 <.0001

Inf_z1 1 -0.6024 0.002585 -233.02 <.0001

Inf_z2 1 0.2976 0.002454 121.25 <.0001

Inf_z3 1 0.1974 0.002430 81.20 <.0001
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Output 19.1.2 continued

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 3.40 7.77%

Optimization 40.30 92.21%

Post-Optimization 0.01 0.02%

In the following statements, the PERFORMANCE statement is modified to use a single-machine mode with
twenty threads:

proc hpcountreg data=simulate dist=zip;
performance nthreads=20 details;
model y_p=x1-x7;
zeromodel y_p ~ z1-z3;

run;

Because the two models being estimated are identical, it is reasonable to expect that Output 19.1.2 and
Output 19.1.3 would show the same results. However, you can see a significant difference in performance
between the two models.

In certain circumstances, you might observe slight numerical differences in the results, depending on
the number of nodes and threads involved. This happens because the order in which partial results are
accumulated can make a difference in the final result, owing to the limits of numerical precision and the
propagation of error in numerical computations.

Output 19.1.3 Zero-Inflated Poisson Model Execution on a Single-Machine Mode with Twenty Threads

The HPCOUNTREG Procedure

Model Fit Summary

Dependent Variable y_p

Number of Observations 1000000

Data Set WORK.SIMULATE

Model ZIP

ZI Link Function Logistic

Log Likelihood -2215238

Maximum Absolute Gradient 2.06483E-8

Number of Iterations 7

Optimization Method Newton-Raphson

AIC 4430500

SBC 4430642

Convergence criterion (FCONV=2.220446E-16) satisfied.
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Output 19.1.3 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.0005 0.000492 4069.80 <.0001

x1 1 0.2995 0.000352 850.17 <.0001

x2 1 0.3998 0.000353 1132.23 <.0001

x3 1 0.2008 0.000352 570.27 <.0001

x4 1 0.3994 0.000353 1132.85 <.0001

x5 1 -0.2995 0.000353 -848.95 <.0001

x6 1 -0.5000 0.000353 -1414.9 <.0001

x7 1 -0.3002 0.000352 -852.14 <.0001

Inf_Intercept 1 -0.9993 0.002521 -396.45 <.0001

Inf_z1 1 -0.6024 0.002585 -233.02 <.0001

Inf_z2 1 0.2976 0.002454 121.25 <.0001

Inf_z3 1 0.1974 0.002430 81.20 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 2.10 19.42%

Optimization 8.70 80.47%

Post-Optimization 0.01 0.11%

As this example suggests, increasing the number of threads improves performance considerably.
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Overview: HPPANEL Procedure
The HPPANEL procedure is a high-performance version of the PANEL procedure in SAS/ETS software.
Both procedures analyze a class of linear econometric models that commonly arise when time series and
cross-sectional data are combined. This type of data on time series cross-sectional bases is often referred to
as panel data. Typical examples of panel data include observations over time about households, countries,
firms, trade, and so on. For example, in the case of survey data about household income, the panel is created
by repeatedly surveying the same households in different time periods (years).

The HPPANEL procedure is specifically designed to operate in the high-performance distributed mode. By
default, PROC HPPANEL performs computations in multiple threads.

The panel data models can be grouped into several categories that depend on the structure of the error term.
The HPPANEL procedure uses the following error structures and the corresponding methods to analyze data:

� one-way and two-way models

� fixed-effects and random-effects models

A one-way model depends only on the cross section to which the observation belongs. A two-way model
depends on both the cross section and the time period to which the observation belongs.

Apart from the possible one-way or two-way nature of the effect, the other dimension of difference between
the possible specifications is the nature of the cross-sectional or time-series effect. The models are referred to
as fixed-effects models if the effects are nonrandom and as random-effects models otherwise.

If the effects are fixed, the models are essentially regression models that have dummy variables that correspond
to the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is the best linear
unbiased estimator. Random-effects models use a two-stage approach: In the first stage, variance components
are calculated by using methods described by Fuller and Battese (1974); Wansbeek and Kapteyn (1989);
Wallace and Hussain (1969); Nerlove (1971). In the second stage, variance components are used to standardize
the data, and ordinary least squares (OLS) regression is performed.
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Getting Started: HPPANEL Procedure
The following statements use the cost function data from Greene (1990) to estimate the variance components
model. The variable Production is the log of output in millions of kilowatt-hours, and the variable Cost is the
log of cost in millions of dollars. For more information, see Greene (1990).

data greene;
input firm year production cost @@;

datalines;
1 1955 5.36598 1.14867 1 1960 6.03787 1.45185
1 1965 6.37673 1.52257 1 1970 6.93245 1.76627
2 1955 6.54535 1.35041 2 1960 6.69827 1.71109
2 1965 7.40245 2.09519 2 1970 7.82644 2.39480
3 1955 8.07153 2.94628 3 1960 8.47679 3.25967

... more lines ...

You decide to fit the following model to the data,

Cit D InterceptC ˇPit C vi C et C �it for i D 1; : : : ;N and t D 1; : : : ;T

where Cit and Pit represent the cost and production; and vi , et , and �it are the cross-sectional, time series,
and error variance components, respectively.

If you assume that the time and cross-sectional effects are random, four possible estimators are left for the
variance components. The following statements choose the Fuller-Battese method to fit this model:

proc hppanel data=greene;
model cost = production / rantwo vcomp = fb;
id firm year;
performance nthreads=2;

run;

The output of the HPPANEL procedure is shown in Output 20.1.

Figure 20.1 Two-Way Random Effects Results

The HPPANEL Procedure

Model Information

Data Source GREENE

Response Variable cost

Model RANTWO

Variance Component FULLER

Fit Statistics

Sum of Squared Error 0.348082

Degrees of Freedom 22

Mean Squared Error 0.015822

Root Mean Squared Error 0.125785

R-Square 0.813624
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Figure 20.1 continued

Variance Component Estimates

Variance Component for Cross Sections 0.0469

Variance Component for Time Series 0.00906

Variance Component for Error 0.00875

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -2.99992 0.64778 -4.63 <.0001

production 1 0.74660 0.07618 9.80 <.0001

Printed first is the model description, which reports the method used for estimation and the method used
for estimating error components. Printed next is the fit statistics table, and then the variance components
estimates. Finally, the table of regression parameter estimates shows the estimates, standard errors, and t
tests.

Syntax: HPPANEL Procedure
The following statements are available in the HPPANEL procedure:

PROC HPPANEL options ;
ID cross-section-id time-series-id ;
MODEL response = regressors < /options > ;
RESTRICT equation1< ,equation2. . . > ;
TEST equation < ,equation2. . . >< / options > ;
OUTPUT OUT=SAS-data-set < output-options > ;
PERFORMANCE < performance-options > ;

The ID and MODEL statements are required.

The following sections provide a functional summary of statements and options, describe the PROC HP-
PANEL statement, and then describe the other statements in alphabetical order.

Functional Summary
Table 20.1 summarizes the statements and options that you can use in the HPPANEL procedure.

Table 20.1 Functional Summary

Description Statement Option

Data Set Options
Includes correlations in the OUTEST= data set PROC HPPANEL CORROUT
Includes covariances in the OUTEST= data set PROC HPPANEL COVOUT
Specifies the input data set PROC HPPANEL DATA=
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Table 20.1 continued

Description Statement Option

Specifies the name of an output SAS data set OUTPUT OUT=
Writes parameter estimates to an output data set PROC HPPANEL OUTEST=

Variable Role Options
Specifies the cross-sectional and time ID variables ID

Performance Options
Requests a table that shows a timing breakdown PERFORMANCE DETAILS
Specifies the number of threads to use PERFORMANCE NTHREADS=
Specifies the number of nodes to use on the SAS
appliance

PERFORMANCE NODES=

Printing Control Options
Prints correlations of the estimates PROC HPPANEL CORRB
Prints covariances of the estimates PROC HPPANEL COVB
Suppresses printed output PROC HPPANEL NOPRINT
Prints fixed effects MODEL PRINTFIXED
Performs tests of linear hypotheses TEST

Model Estimation Options
Estimates the between-groups model MODEL BTWNG
Estimates the between-time-periods model MODEL BTWNT
Estimates the one-way fixed-effects model MODEL FIXONE
Estimates the one-way fixed-effects model with
respect to time

MODEL FIXONETIME

Estimates the two-way fixed-effects model MODEL FIXTWO
Suppresses the intercept term MODEL NOINT
Estimates the pooled regression model MODEL POOLED
Estimates the one-way random-effects model MODEL RANONE
Estimates the two-way random-effects model MODEL RANTWO
Specifies the method for the variance components
estimator

MODEL VCOMP=

Specifies linear equality restrictions on the
parameters

RESTRICT

Specifies which tests to perform TEST WALD, LM, LR
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PROC HPPANEL Statement
PROC HPPANEL options ;

The HPPANEL statement invokes the HPPANEL procedure.

You can specify the following options:

DATA=SAS-data-set
names the input data set. Only one observation is allowed for each cross section and time period. If
you omit the DATA= option, PROC HPPANEL uses the most recently created SAS data set.

CORRB
prints the matrix of estimated correlations between the parameter estimates.

COVB
prints the matrix of estimated covariances between the parameter estimates.

NOPRINT
suppresses the normal printed output.

OUTEST=SAS-data-set
names an output data set to contain the parameter estimates. When the OUTEST= option is not
specified, the OUTEST= data set is not created. For more information about the structure of the
OUTEST= data set, see the section “OUTEST= Data Set” on page 1086.

OUTCOV

COVOUT
writes the standard errors and covariance matrix of the parameter estimates to the OUTEST= data set.
For more information, see the section “OUTEST= Data Set” on page 1086.

OUTCORR

CORROUT
writes the correlation matrix of the parameter estimates to the OUTEST= data set. For more information,
see the section “OUTEST= Data Set” on page 1086.

In addition, you can specify any of the following MODEL statement options in the PROC HPPANEL state-
ment: FIXONE, FIXONETIME, FIXTWO, RANONE, RANTWO, NOINT, PRINTFIXED, and VCOMP=.
Specifying these options in the PROC HPPANEL statement is equivalent to specifying them in the MODEL
statement. For a complete description of each of these options, see the section “MODEL Statement” on
page 1073.
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ID Statement
ID cross-section-id time-series-id ;

The ID statement specifies variables in the input data set that identify the cross section and the time period
for each observation. The ID statement is required. Unlike the PANEL procedure, the HPPANEL procedure
does not require the data set to be sorted.

MODEL Statement
MODEL response = regressors < / options > ;

The MODEL statement specifies the regression model, the error structure that is assumed for the regression
residuals, and the estimation technique to be used. The response variable is regressed on the independent
variables (regressors). You can specify only one MODEL statement and only one response.

You specify the error structure and estimation technique by including one of the following options after a
slash (/):

BTWNG
estimates the between-groups model.

BTWNT
estimates the between-time-periods model.

FIXONE
estimates a one-way fixed-effects model, which corresponds to cross-sectional effects.

FIXONETIME
estimates a one-way fixed-effects model, which corresponds to time effects.

FIXTWO
estimates a two-way fixed-effects model.

POOLED
estimates the pooled regression model.

RANONE
estimates a one-way random-effects model.

RANTWO
estimates a two-way random-effects model.

By default, a FIXONE estimation is performed.

You can also specify the following options after the slash:
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NOINT
suppresses the intercept parameter from the model.

PRINTFIXED
prints the fixed effects.

VCOMP=FB | NL | WH | WK
specifies the type of variance component estimator to use. You can specify the following values:

FB requests the Fuller-Battese estimator.

WK requests the Wansbeek-Kapteyn estimator.

WH requests the Wallace-Hussain estimator.

NERLOVE requests the Nerlove estimator.

By default, VCOMP=WK for both balanced and unbalanced data.

OUTPUT Statement
OUTPUT OUT=SAS-data-set < output-options > ;

The OUTPUT statement creates a new SAS data set to contain variables that are specified by the COPYVAR
option, the cross-sectional ID (_CSID_), and the time period (_TSID_). This data set also contains the
predicted value and the residual if they are specified by output-options. When the response values are
missing for the observation, all output estimates except the residual are still computed as long as none of the
explanatory variables are missing. You can specify only one OUTPUT statement.

You must specify the OUT= option:

OUT=SAS-data-set
names the output data set.

You can specify one or more of the following output-options:

COPYVAR=(SAS-variable-names)

COPYVARS=(SAS-variable-names)
adds SAS variables to the output data set.

PREDICTED
outputs estimates of predicted dependent variables.

RESIDUAL
outputs estimates of residuals.
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PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options to control the multithreaded computing
environment and requests detailed performance results of the HPPANEL procedure. You can specify the
following performance-options:

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPPANEL creates
one thread per CPU for the analytic computations.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” (Chap-
ter 21, SAS/STAT User’s Guide).

RESTRICT Statement
RESTRICT equation1 < ,equation2. . . > ;

The RESTRICT statement specifies linear equality restrictions on the parameters in the MODEL statement.
There can be as many unique restrictions as the number of parameters in the MODEL statement. Multiple
RESTRICT statements are understood as joint restrictions on the model’s parameters.

Currently, PROC HPPANEL only supports linear equality restrictions. Restriction expressions can be
composed only of algebraic operations that involve the addition symbol (+), subtraction symbol (–), and
multiplication symbol (*).

The following statements illustrate the use of the RESTRICT statement:

proc hppanel;
id csid tsid;
model y = x1 x2 x3;
restrict x1 = 0, x2 * .5 + 2 * x3= 0;
restrict x2 = 0, intercept = 0;

run;

A RESTRICT statement cannot include a division sign in its formulation. As in the preceding example, you
can obtain restrictions on the intercept by using the keyword INTERCEPT.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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TEST Statement
TEST equation1 < ,equation2. . . >< / options > ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the MODEL statement. Each equation specifies a linear hypothesis to be tested.
Currently, only linear equality restrictions and tests are permitted in PROC HPPANEL. Test expressions can
be composed only of algebraic operations that involve the addition symbol (+), subtraction symbol (–), and
multiplication symbol (*). All hypotheses in one TEST statement are tested jointly. Variable names in the
equations must correspond to regressors in the preceding MODEL statement, and each name represents the
coefficient of the corresponding regressor. In the equality restrictions, you can use the keyword INTERCEPT
to refer to the coefficient of the intercept.

You can specify the following options after the slash (/):

ALL
specifies Wald, Lagrange multiplier, and likelihood ratio tests.

WALD
specifies the Wald test.

LM
specifies the Lagrange multiplier test.

LR
specifies the likelihood ratio test.

By default, the Wald test is performed.

The following statements illustrate the use of the TEST statement:

proc hppanel;
id csid tsid;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test intercept = 0, x3 = 0;

run;

The first test investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ2 C 2ˇ3 D 0
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Details: HPPANEL Procedure

Specifying the Input Data
The HPPANEL procedure is similar to other regression procedures in SAS. Suppose you want to regress the
variable Y on regressors X1 and X2. Cross sections are identified by the variable State, and time periods are
identified by the variable Date. Unlike the PANEL procedure, the HPPANEL procedure does not require the
data set to be sorted. To invoke the HPPANEL procedure, you must specify the cross section and time series
variables in an ID statement. The following statements show the correct syntax:

proc hppanel data=a;
id state date;
model y = x1 x2;
performance nthreads=4;

run;

Specifying the Regression Model
The MODEL statement in PROC HPPANEL is specified like the MODEL statement in other SAS regression
procedures: the dependent variable is listed first, followed by an equal sign, followed by the list of regressor
variables, as shown in the following statements:

proc hppanel data=a;
id state date;
model y = x1 x2;
performance nthreads=4;

run;

Specifying the Number of Threads
The PERFORMANCE statement in PROC HPPANEL is specified like the PERFORMANCE statement in
other SAS high-performance procedures. The following statements execute the model in single machine
model with four threads:

proc hppanel data=a;
id state date;
model y = x1 x2;
performance nthreads=4;

run;

The major advantage of using PROC HPPANEL is that you can incorporate a model for the structure of the
random errors. It is important to consider what type of error structure model is appropriate for your data and
to specify the corresponding option in the MODEL statement.

The error structure options supported by the HPPANEL procedure are FIXONE, FIXONETIME, FIXTWO,
RANONE, and RANTWO. For more information about these methods and the error structures they assume,
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see the following sections. The following statements fit a Fuller-Battese one-way random-effects model:

proc hppanel data=a;
id state date;
model y = x1 x2 / ranone vcomp=fb;
performance nthreads=1;

run;

To aid in model specification within this class of models, PROC HPPANEL provides one specification test
statistic, the Hausman m statistic, which provides information about the appropriateness of the random-effects
specification. The m statistic is based on the idea that, under the null hypothesis of no correlation between
the effects variables and the regressors, ordinary least squares (OLS) and generalized least squares (GLS) are
consistent. However, OLS is inefficient. Hence, a test can be based on the result that the covariance between
an efficient estimator and its difference from an inefficient estimator is 0. Rejection of the null hypothesis
might suggest that the fixed-effects model is more appropriate.

The HPPANEL procedure also provides the Buse R-square measure. This number is interpreted as a measure
of the proportion of the transformed sum of squares of the dependent variable that is attributable to the
influence of the independent variables. For OLS estimation, the Buse R-square measure is equivalent to the
usual R-square measure.

Unbalanced Data
The HPPANEL procedure can process data that have different numbers of time series observations across
different cross sections. The missing time series observations are recognized by the absence of time series
ID variable values in some of the cross sections in the input data set. Moreover, if an observation that has a
particular time series ID value and cross-sectional ID value is present in the input data set but one or more of
the model variables are missing, that time series point is treated as missing for that cross section.

One-Way Fixed-Effects Model
The specification for the one-way fixed-effects model is

uit D i C �it

where the i are nonrandom parameters to be estimated.

Let Q0 D diag.ETi /, with NJTi D JTi=Ti and ETi D ITi � NJTi , where JTi is a matrix of Ti ones.

The matrix Q0 represents the within transformation. In the one-way model, the within transformation is the
conversion of the raw data to deviations from a cross section’s mean. The vector Qxit is a row of the general
matrix Xs , where the subscripted s implies that the constant (column of ones) is missing.

Let QXs D Q0Xs and Qy D Q0y. The estimator of the slope coefficients is given by

Q̌
s D . QX

0

s
QXs/�1 QX

0

s Qy

After the slope estimates have been calculated, the estimation of an intercept or the cross-sectional fixed
effects is handled as follows. First, you obtain the cross-sectional effects:

i D Nyi � � Q̌s Nxi � for i D 1 : : :N
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If the NOINT option is specified, then the dummy variables’ coefficients are set equal to the fixed effects. If
you want an intercept, then the ith dummy variable is obtained from the following expression:

Di D i � N for i D 1 : : :N � 1

The intercept is the Nth fixed effect N .

The within-model sum of squared errors is

SSE D
NX

iD1

TiX
tD1

.yit � i �Xs Q̌s/2

The estimated error variance can be written as

O�2� D SSE=.M � N � .K � 1//

Alternatively, an equivalent way to express the error variance is

O�2� D Qu
0

Q0 Qu=.M � N � .K � 1//

where the residuals Qu are given by Qu D .IM � jM j0M=M /.y � Xs Q̌s/ if there is an intercept and by
Qu D .y �Xs Q̌s/ if there is not. The drawback is that the formula changes (but the results do not) with the
inclusion of a constant.

The variance covariance matrix of Q̌s is given by

Var
h
Q̌
s

i
D O�2� .

QX
0

s
QXs/�1

The covariance of the dummy variables and the dummy variables with the Q̌s depends on whether the
intercept is included in the model. For more information, see the section “One-Way Fixed-Effects Model
(FIXONE and FIXONETIME Options)” on page 1793.

Alternatively, the FIXONETIME model option estimates a one-way model in which the heterogeneity comes
from time effects. This option is analogous to re-sorting the data by time and then by cross section, and then
running a FIXONE model. The advantage of using the FIXONETIME option is that sorting is avoided and
the model remains labeled correctly.

Two-Way Fixed-Effects Model
The specification for the two-way fixed-effects model is

uit D i C ˛t C �it

where the i and ˛t are nonrandom parameters to be estimated.

If you do not specify the NOINT option (which suppresses the intercept) in the MODEL statement, the
estimates for the fixed effects are reported under the restriction that N D 0 and ˛T D 0. If you specify the
NOINT option to suppress the intercept, only the restriction ˛T D 0 is imposed.
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Balanced Panels
Assume that the data are balanced (for example, all cross sections have T observations). Then you can write

Qyit D yit � Nyi � � Ny�t C NNy

Qxit D xit � Nxi � � Nx�t C NNx

where the symbols are as follows:

� yit and xit are the dependent variable (a scalar) and the explanatory variables (a vector whose columns
are the explanatory variables, not including a constant), respectively

� Nyi � and Nxi � are cross section means

� Ny�t and Nx�t are time means

� NNy and NNx are the overall means

The two-way fixed-effects model is simply a regression of Qyit on Qxit . Therefore, the two-way ˇ is given by

Q̌
s D

�
QX
0
QX
��1
QX
0

Qy

The following calculations of cross-sectional dummy variables, time dummy variables, and intercepts are
similar to how they are calculated in the one-way model:

First, you obtain the net cross-sectional and time effects. Denote the cross-sectional effects by  and the time
effects by ˛. These effects are calculated from the following relations:

Oi D
�
Nyi � � NNy

�
� Q̌s

�
Nxi � � NNx

�
Ǫ t D

�
Ny�t � NNy

�
� Q̌s

�
Nx�t � NNx

�
Use the superscript C and T to denote the cross-sectional dummy variables and time dummy variables,
respectively. Under the NOINT option, the following equations produce the dummy variables:

DCi D Oi C ǪT

DTt D Ǫ t � ǪT

When an intercept is specified, the equations for dummy variables and intercept are

DCi D Oi � ON

DTt D Ǫ t � ǪT

Intercept D ON C ǪT

The sum of squared errors is

SSE D
NX

iD1

TiX
tD1

.yit � i � ˛t �Xs Q̌s/2
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The estimated error variance is

O�2� D SSE=.M � N � T � .K � 1//

With or without a constant, the covariance matrix of Q̌s is given by

Var
h
Q̌
s

i
D O�2� .

QX
0

s
QXs/�1

For information about the covariance matrix that is related to dummy variables, see the section “Two-Way
Random-Effects Model (RANTWO Option)” on page 1799.

Unbalanced Panels
Let X� and y� be the independent and dependent variables, respectively, that are arranged by time and by
cross section within each time period. (Note that the input data set that the PANEL procedure uses must be
sorted by cross section and then by time within each cross section.) Let Mt be the number of cross sections
that are observed in year t, and let

P
t Mt D M . Let Dt be the Mt�N matrix that is obtained from the N�N

identity matrix from which rows that correspond to cross sections that are not observed at time t have been
omitted. Consider

Z D .Z1;Z2/

where Z1 D .D
0

1;D
0

2; : : : ;D
0

T /
0

and Z2 D diag.D1jN ;D2jN ; : : : ;DT jN /. The matrix Z contains the dummy
variable structure for the two-way model.

Let

�N D Z
0

1Z1

�T D Z
0

2Z2

A D Z
0

2Z1
NZ D Z2 � Z1��1N A

0

Q D �T �A��1N A
0

P D .IM � Z1��1N Z
0

1/ �
NZQ�1 NZ

0

The estimate of the regression slope coefficients is given by

Q̌
s D .X

0

�sPX�s/
�1X

0

�sPy�

where X�s is the X� matrix without the vector of 1s.

The estimator of the error variance is

O�2� D Qu
0

P Qu=.M � T � N C 1 � .K � 1//

where the residuals are given by Qu D .IM � jM j
0

M=M /.y� �X�s Q̌s/ if there is an intercept in the model
and by Qu D y� �X�s Q̌s if there is no intercept.

The actual implementation is quite different from the theory. For more information, see the section “Two-Way
Fixed-Effects Model (FIXTWO Option)” on page 1794.
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One-Way Random-Effects Model
The specification for the one-way random-effects model is

uit D �i C �it

Let Z0 D diag.JTi ), P0 D diag.NJTi /, and Q0 D diag.ETi /, with NJTi D JTi=Ti and ETi D ITi � NJTi .
Define QXs D Q0Xs . Also define Qy D Q0y and J as a vector of 1s whose length is Ti .

In the one-way model, estimation proceeds in a two-step fashion. First, you obtain estimates of the variance
of the �2� and �2� . There are multiple ways to derive these estimates; PROC HPPANEL provides four options.
For more information, see the section “One-Way Random-Effects Model (RANONE Option)” on page 1797.

After the variance components are calculated from any method, the next task is to estimate the regression
model of interest. For each individual, you form a weight (�i ),

�i D 1 � ��=wi

w2i D Ti�
2
� C �

2
�

where Ti is the ith cross section’s time observations.

Taking the �i , you form the partial deviations,

Qyit D yit � �i Nyi �

Qxit D xit � �i Nxi �

where Nyi � and Nxi � are cross section means of the dependent variable and independent variables (including the
constant if any), respectively.

The random-effects ˇ is then the result of simple OLS on the transformed data.

Two-Way Random-Effects Model
The specification for the two-way random-effects model is

uit D �i C et C �it

As it does for the one-way random-effects model, the HPPANEL procedure provides four options for variance
component estimators. However, unbalanced panels present some special concerns that do not occur for
one-way random-effects models.

Let X� and y� be the independent and dependent variables that are arranged by time and by cross section
within each time period. (Note that the input data set that the PANEL procedure uses must be sorted by cross
section and then by time within each cross section.) Let Mt be the number of cross sections that are observed
in time t, and let

P
t Mt D M . Let Dt be the Mt�N matrix that is obtained from the N�N identity matrix

from which rows that correspond to cross sections that are not observed at time t have been omitted. Consider

Z D .Z1;Z2/
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where Z1 D .D
0

1;D
0

2; : : : ;D
0

T /
0

and Z2 D diag.D1jN ;D2jN ; : : : ;DT jN /.

The matrix Z contains the dummy variable structure for the two-way model.

For notational ease, let

�N D Z
0

1Z1

�T D Z
0

2Z2

A D Z
0

2Z1
NZ D Z2 � Z1��1N A

0

N�1 D IM � Z1��1N Z
0

1

N�2 D IM � Z2��1T Z
0

2

Q D �T �A��1N A
0

P D .IM � Z1��1N Z
0

1/ �
NZQ�1 NZ

0

PROC HPPANEL provides four methods to estimate the variance components. For more information, see the
section “Two-Way Random-Effects Model (RANTWO Option)” on page 1799.

After the estimates of the variance components are calculated, you can proceed to the final estimation. If the
panel is balanced, partial mean deviations are used as follows

Qyit D yit � �1 Nyi � � �2 Ny�t C �3 Ny��

Qxit D xit � �1 Nxi � � �2 Nx�t C �3 Nx��

The � estimates are obtained from

�1 D 1 �
��p

T�2� C �
2
�

�2 D 1 �
��p

N�2e C �
2
�

�3 D �1 C �2 C
��p

T�2� CN�
2
e C �

2
�

� 1

With these partial deviations, PROC HPPANEL uses OLS on the transformed series (including an intercept if
you want).

The case of an unbalanced panel is somewhat more complicated. Wansbeek and Kapteyn show that the
inverse of � can be written as

�2��
�1
D V �VZ2 QP�1Z

0

2V

with the following:

V D IM � Z1 Q��1N Z01
QP D Q�T � A Q��1N A

0

Q�N D �N C

�
�2�
�2�

�
IN

Q�T D �T C

�
�2�
�2e

�
IT
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By using the inverse of the covariance matrix of the error, it becomes possible to complete GLS on the
unbalanced panel.

Between Estimators
The between-groups estimator is the regression of the cross section means of y on the cross section means of
QXs . In other words, you fit the following regression:

Nyi � D Nxi �ˇ
BG
C �i

The between-time-periods estimator is the regression of the time means of y on the time means of QXs . In
other words, you fit the following regression:

Ny�t D Nx�tˇBT C �t

In both cases, the error is assumed to be normally distributed with mean zero and a constant variance.

Pooled Estimator
The pooled estimator is simply linear regression that is run on all the data, without regard to cross section or
time:

yit D xitˇ
P
C uit

The error is assumed to be normally distributed with mean zero and a constant variance.

Linear Hypothesis Testing
For a linear hypothesis of the form R ˇ D r, where R is J�K and r is J�1, the F-statistic with J;M �K
degrees of freedom is computed as

.Rˇ � r/
0

ŒR OVR0��1.Rˇ � r/

However, it is also possible to write the F statistic as

F D
. Ou
0

� Ou� � Ou
0

Ou/=J
Ou0 Ou=.M �K/

where

� Ou�is the residual vector from the restricted regression

� Ou is the residual vector from the unrestricted regression

� J is the number of restrictions
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� M �K are the degrees of freedom, M is the number of observations, and K is the number of parameters
in the model

The Wald, likelihood ratio (LR), and Lagrange multiplier (LM) tests are all related to the F test. You use this
relationship of the F test to the likelihood ratio and Lagrange multiplier tests. The Wald test is calculated
from its definition.

The Wald test statistic is

W D .Rˇ � r/
0

ŒR OVR0��1.Rˇ � r/

The likelihood ratio is

LR D M ln
�
1C

1

M �K
JF

�
The Lagrange multiplier test statistic is

LM D M
�

JF
M �K C JF

�
where JF represents the number of restrictions multiplied by the result of the F test.

The distribution of these test statistics is the �2 distribution whose degrees of freedom equal the number
of restrictions imposed (J). The three tests are asymptotically equivalent, but they have differing small-
sample properties. Greene (2000, p. 392) and Davidson and MacKinnon (1993, pp. 456–458) discuss the
small-sample properties of these statistics.

Specification Tests
The HPPANEL procedure outputs one specification test for random effects: the Hausman (1978) specification
test (m statistic) can be used to test hypotheses in terms of bias or inconsistency of an estimator. This test was
also proposed by Wu (1973) and further extended in Hausman and Taylor (1982). Hausman’s m statistic is as
follows.

Consider two estimators, Ǒa and Ǒb , which under the null hypothesis are both consistent, but only Ǒa is
asymptotically efficient. Under the alternative hypothesis, only Ǒb is consistent. The m statistic is

m D . Ǒb � Ǒa/
0

. OSb � OSa/�1. Ǒb � Ǒa/

where OSb and OSa are consistent estimates of the asymptotic covariance matrices of Ǒb and Ǒa. Then m is
distributed as �2 with k degrees of freedom, where k is the dimension of Ǒa and Ǒb .

In the random-effects specification, the null hypothesis of no correlation between effects and regressors
implies that the OLS estimates of the slope parameters are consistent and inefficient but the GLS estimates of
the slope parameters are consistent and efficient. This facilitates a Hausman specification test. The reported
degrees of freedom for the �2 statistic are equal to the number of slope parameters. If the null hypothesis
holds, the random-effects specification should be used.
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OUTPUT OUT= Data Set
PROC HPPANEL writes the initial data of the estimated model, predicted values, and residuals to an output
data set when the OUT= option is specified in the OUTPUT statement. The OUT= data set contains the
following variables:

_CSID_ is the value of the cross section ID. The variable name is the one specified in the id
statement.

_TSID_ is the value of the time period in the dynamic model. The variable name is the one
specified in the id statement.

Regressors are the values of regressor variables that are specified in the COPYVAR option.

Pred is the predicted value of dependent variable. This column is output only if the PRED
option is specified.

Resid is the residual from the regression. This column is output only if the RESIDUAL option
is specified.

OUTEST= Data Set
PROC HPPANEL writes the parameter estimates to an output data set when the OUTEST= option is specified
in the PROC HPPANEL statement. The OUTEST= data set contains the following variables in the PROC
statement:

_METHOD_ is a character variable that identifies the estimation method.

_TYPE_ is a character variable that identifies the type of observation. Values of the _TYPE_
variable are CORRB, COVB, CSPARMS, STD, and the type of model estimated. The
CORRB observation contains correlations of the parameter estimates; the COVB obser-
vation contains covariances of the parameter estimates; the STD observation indicates
the row of standard deviations of the corresponding coefficients; and the type of model
estimated observation contains the parameter estimates.

_NAME_ is a character variable that contains the name of a regressor variable for COVB and
CORRB observations and is left blank for other observations. The _NAME_ variable is
used in conjunction with the _TYPE_ values COVB and CORRB to identify rows of the
correlation or covariance matrix.

_DEPVAR_ is a character variable that contains the name of the response variable.

_MSE_ is the mean square error of the transformed model.

_VARCS_ is the variance component estimate due to cross sections. The _VARCS_ variable is
included in the OUTEST= data set when the RANONE option is specified in the MODEL
or PROC HPPANEL statement.

_VARTS_ is the variance component estimate due to time series. The _VARTS_ variable is included
in the OUTEST= data set when the RANTWO option is specified in the MODEL or
PROC HPPANEL statement.
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_VARERR_ is the variance component estimate due to error. The _VARERR_ variable is included
in the OUTEST= data set when the RANONE or RANTWO option is specified in the
MODEL or PROC HPPANEL statement.

Intercept is the intercept parameter estimate. (The intercept is missing for models when the NOINT
option is specified in the MODEL statement.)

Regressors are the regressor variables that are specified in the MODEL statement. The regressor
variables in the OUTEST= data set contain the corresponding parameter estimates, and
the corresponding covariance or correlation matrix elements for _TYPE_=COVB and
_TYPE_=CORRB observations.

Printed Output
The printed output from PROC HPPANEL includes the following:

� the model information, which includes the data source, the dependent variable name, the estimation
method used, and for random-effects model analysis, the variance component estimation method.

� the number of observations

� the fit statistics, which include the sum of squared error (SSE), the degree of freedom for error (DFE),
the mean square error (MSE), the root mean square error (RMSE), and the R-square

� the error components estimates for random-effects model

� the Hausman test statistics, which include the degree of freedom (DF), the test statistics, and the
p-value.

� the regression parameter estimates and analysis, which include for each regressor the name of the
regressor, the degrees of freedom, the parameter estimate, the standard error of the estimate, a t statistic
for testing whether the estimate is significantly different from 0, and the significance probability of the
t statistic

Optionally, PROC HPPANEL prints the following:

� the covariance and correlation of the resulting regression parameter estimates

� the WALD, LR, and LM test statistics for linear equality restrictions that are specified in the TEST
statements

� the timing breakdown of the procedure steps
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ODS Table Names
PROC HPPANEL assigns a name to each table it creates. You can use these names to refer to the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 20.2.

Table 20.2 ODS Tables Produced in PROC HPPANEL

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ModelInfo Model information Default
PerformanceInfo Performance information Default
Nobs Number of observations Default
FitStatistics Fit statistics Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlations of parameter estimates CORRB
RandomEffectsTest Hausman test for random effects RANONE, RANTWO

ODS Tables Created by the TEST Statement
TestResults Test results

ODS Tables Created by the PERFORMANCE Statement
Timing Timing Table

Example: HPPANEL Procedure

Example 20.1: One-Way Random-Effects High-Performance Model
This example shows the use of the one-way random-effects model that is available in the HPPANEL
procedure.

The following DATA step generates five million observations from one-way panel data that includes 50,000
cross sections and 100 time periods:

data hppan_ex01 (keep = cs ts y x1-x10);
retain seed 55371;
array x[10];
label y = 'Dependent Variable';
do cs = 1 to 50000;

dummy = 10 * rannor(seed);
do ts = 1 to 100;
/*- generate regressors and compute the structural */
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/*- part of the dependent variable */
y = 5;
do k = 1 to 10;

x[k] = -1 + 2 * ranuni(seed);
y = y + x[k] * k;

end;

/*- add an error term, such that e - N(0,100) -------*/
y = y + 10 * rannor(seed);
/*- add a random effect, such that v - N(0,100) -------*/
y = y + dummy;
output;

end;
end;

run;

The estimation is executed in single-machine mode with ten threads.

proc hppanel data=hppan_ex01;
id cs ts;
model y = x1-x10 / ranone;
performance threads = 10 details;

run;

In Output 20.1.1, the “Performance Information” table shows that the model was estimated in single-machine
mode with ten threads.

Output 20.1.1 Performance Information with Single-machine Mode and One Thread

Performance Information

Execution Mode Single-Machine

Number of Threads 10

Output 20.1.2 shows the results for the one-way random-effects model. The “Model Information” table shows
detailed information about the model. The “Number of Observations” table indicates that all five million
observations were used to fit the model. All parameter estimates in the “Parameter Estimates” table are highly
significant and correspond to the theoretical values that were set for them during the data generating process.
In the “Procedure Task Timing” table, you can see that for five million observations, computing the moments
took 8.55 seconds, and the time taken for cross-product accumulation was 2.31 seconds.

Output 20.1.2 One-Way Random-Effects Model

Model Information

Data Source HPPAN_EX01

Response Variable y

Model RANONE

Variance Component WANSBEEK

Number of Observations

Number of Observations Read 5000000

Number of Observations Used 5000000

Number of Cross Sections 50000

Number of Time Series 100
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Output 20.1.2 continued

Fit Statistics

Sum of Squared Error 4.9976E8

Degrees of Freedom 4999989

Mean Squared Error 99.952

Root Mean Squared Error 9.9976

R-Square 0.559771

Variance Component Estimates

Variance Component for Cross Sections 99.9117

Variance Component for Error 99.9520

Hausman Test for Random
Effects

Coefficients DF m Value Pr > m

10 10 14.04 0.1713

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 4.96955 0.04492 110.62 <.0001

x1 1 1.00902 0.00778 129.69 <.0001

x2 1 1.99743 0.00778 256.66 <.0001

x3 1 3.00116 0.00778 385.64 <.0001

x4 1 3.99847 0.00778 513.68 <.0001

x5 1 4.99497 0.00778 641.81 <.0001

x6 1 6.01034 0.00778 772.12 <.0001

x7 1 6.99770 0.00778 899.39 <.0001

x8 1 7.98897 0.00778 1026.61 <.0001

x9 1 9.00692 0.00778 1157.12 <.0001

x10 1 10.00563 0.00778 1285.47 <.0001

Procedure Task Timing

Task Seconds Percent

Data Read and Variable Levelization 2.37 16.88%

Computing Moments 9.27 66.04%

Cross-Product Accumulation 2.19 15.61%

For comparison, you now fit a pooled regression estimation on the same data, again using single-machine
model with ten threads. The following SAS statements perform the estimation on the grid:

proc hppanel data=hppan_ex01;
id cs ts;
model y = x1-x10 / pooled;
performance threads = 10 details;

run;

Based on Output 20.1.3, you find that the parameter estimates are similar to those from the random-effects
estimator. You also find that the timings are similar, indicating that the bulk of the computational effort is due
to tasks common to both random-effects estimation and standard OLS regression. In both cases, estimation is
dominated by the calculation of sums of squares and other moment terms, over the whole data set.
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Output 20.1.3 Pooled Regression Model

The HPPANEL Procedure

Model Information

Data Source HPPAN_EX01

Response Variable y

Model POOLED

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 4.96957 0.00632 786.03 <.0001

x1 1 1.01251 0.01095 92.49 <.0001

x2 1 1.98374 0.01095 181.17 <.0001

x3 1 3.00294 0.01095 274.23 <.0001

x4 1 3.99649 0.01095 364.90 <.0001

x5 1 5.00187 0.01095 456.77 <.0001

x6 1 5.99952 0.01095 547.77 <.0001

x7 1 7.00478 0.01095 639.88 <.0001

x8 1 7.97232 0.01095 728.13 <.0001

x9 1 9.01244 0.01095 822.90 <.0001

x10 1 10.01578 0.01095 914.52 <.0001

Procedure Task Timing

Task Seconds Percent

Data Read and Variable Levelization 1.76 15.18%

Computing Moments 8.67 74.61%

Cross-Product Accumulation 0.99 8.55%
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Overview: HPQLIM Procedure
The HPQLIM (high-performance qualitative and limited dependent variable model) procedure is a high-
performance version of the QLIM procedure in SAS/ETS software, which analyzes univariate limited
dependent variable models in which dependent variables are observed only in a limited range of values.

The HPQLIM procedure can use maximum likelihood or Bayesian methods. By default, PROC HPQLIM
uses multiple threads to perform computations.

The HPQLIM procedure is similar to the other SAS procedures that support regression or simultaneous
equations models. For example, the standard model with censoring or truncation is estimated by specifying
the endogenous variable to be truncated or censored. When the data are limited by specific values or variables,
the limits of the dependent variable can be specified with the CENSORED or TRUNCATED option in the
ENDOGENOUS or MODEL statement. For example, the two-limit censored model requires two variables:
one that contains the lower (bottom) bound and one that contains the upper (top) bound. The following
statements execute the model in the single-machine environment with two threads:

proc hpqlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=bottom ub=top);
performance nthreads=2 details;

run;

The bounds can be numbers if they are fixed for all observations in the data set. For example, the standard
Tobit model can be specified as follows:

proc hpqlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=0);
performance nthreads=2 details;

run;

PROC HPQLIM Features
The HPQLIM procedure supports the following models:

� linear regression models with heteroscedasticity

� Tobit models (censored and truncated) with heteroscedasticity

� stochastic frontier production and cost models

In linear regression models with heteroscedasticity, the assumption that error variance is constant across
observations is relaxed. The HPQLIM procedure allows for a number of different linear and nonlinear
variance specifications.

The HPQLIM procedure also offers a class of models in which the dependent variable is censored or truncated
from below or above or both. When a continuous dependent variable is observed only within a certain range,
and values outside this range are not available, the HPQLIM procedure offers a class of models that adjust
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for truncation. In some cases, the dependent variable is continuous only in a certain range, and all values
outside this range are reported as being on its boundary. For example, if it is not possible to observe negative
values, the value of the dependent variable is reported as equal to 0. Because the data are censored, ordinary
least squares (OLS) results are inconsistent, and it cannot be guaranteed that the predicted values from the
model will fall in the appropriate region.

Stochastic frontier production and cost models allow for random shocks of the production or cost. They
include a systematic positive component in the error term that adjusts for technical or cost inefficiency.

The HPQLIM procedure can use maximum likelihood or Bayesian methods. Initial starting values for the
nonlinear optimizations are typically calculated by OLS. Initial values for the Bayesian sampling are typically
calculated by maximum likelihood.

Getting Started: HPQLIM Procedure
This example illustrates the use of the HPQLIM procedure. The data were originally published by Mroz
(1987), and the following statements show a subset of that data set:

title1 'Estimating a Tobit Model';

data subset;
input Hours Yrs_Ed Yrs_Exp @@;
if Hours eq 0 then Lower=.;

else Lower=Hours;
datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;

In these data, Hours is the number of hours that the wife worked outside the household in a given year,
Yrs_Ed is the years of education, and Yrs_Exp is the years of work experience.

By the nature of the data it is clear that there are a number of women who committed some positive number
of hours to outside work (yi > 0 is observed). There are also a number of women who did not work outside
the home at all (yi D 0 is observed). This yields the following model:

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � iidN.0; �2/ and the set of explanatory variables is denoted by xi . The following statements fit a
Tobit model to the hours worked with years of education and years of work experience as covariates:

/*-- Tobit Model --*/
proc hpqlim data=subset;

model hours = yrs_ed yrs_exp;
endogenous hours ~ censored(lb=0);
performance nthreads=2 details;
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run;

The output of the HPQLIM procedure is shown in Output 21.1.

Figure 21.1 Tobit Analysis Results

Estimating a Tobit Model

The HPQLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable Hours

Number of Observations 17

Log Likelihood -74.93700

Maximum Absolute Gradient 1.18953E-6

Number of Iterations 23

Optimization Method Quasi-Newton

AIC 157.87400

Schwarz Criterion 161.20685

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -5598.295130 27.692220 -202.16 <.0001

Yrs_Ed 1 373.123254 53.988877 6.91 <.0001

Yrs_Exp 1 63.336247 36.551299 1.73 0.0831

_Sigma 1 1582.859635 390.076480 4.06 <.0001

The “Parameter Estimates” table contains four rows. The first three rows correspond to the vector estimate of
the regression coefficients ˇ. The last row is called _Sigma, which corresponds to the estimate of the error
variance � .
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Syntax: HPQLIM Procedure
The following statements are available in the HPQLIM procedure:

PROC HPQLIM options ;
BAYES < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
FREQ variable ;
ENDOGENOUS variables � options ;
HETERO dependent-variables � exogenous-variables / options ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent-variables = regressors / options ;
OUTPUT OUT=SAS-data-set < output-options > ;
PRIOR _REGRESSORS | parameter-list � distribution ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST options ;
WEIGHT variable < / option > ;
PERFORMANCE < performance-options > ;

One MODEL statement is required. If a FREQ or WEIGHT statement is specified more than once, the
variable that is specified in the first instance is used.

Functional Summary
Table 21.1 summarizes the statements and options used with the HPQLIM procedure.

Table 21.1 PROC HPQLIM Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set PROC HPQLIM DATA=
Writes parameter estimates to an output data set PROC HPQLIM OUTEST=
Writes predictions to an output data set OUTPUT OUT=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies a frequency variable FREQ
Specifies a weight variable WEIGHT NONORMALIZE

Printing Control Options
Requests all printing options PROC HPQLIM PRINTALL
Prints the correlation matrix of the estimates PROC HPQLIM CORRB
Prints the covariance matrix of the estimates PROC HPQLIM COVB
Suppresses the normal printed output PROC HPQLIM NOPRINT
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Table 21.1 continued

Description Statement Option

Plotting Options
Displays plots PROC HPQLIM PLOTS=

Optimization Process Control Options
Selects the iterative minimization method to use PROC HPQLIM METHOD=
Specifies the maximum number of iterations
allowed

PROC HPQLIM MAXITER=

Specifies the maximum number of function calls PROC HPQLIM MAXFUNC=
Specifies the upper limit of CPU time in seconds PROC HPQLIM MAXTIME=
Specifies an absolute convergence criterion PROC HPQLIM ABSCONV=
Specifies an absolute function convergence criterion PROC HPQLIM ABSFCONV=
Specifies an absolute gradient convergence criterion PROC HPQLIM ABSGCONV=
Specifies a relative function convergence criterion PROC HPQLIM FCONV=
Specifies a relative gradient convergence criterion PROC HPQLIM GCONV=
Specifies an absolute parameter convergence
criterion

PROC HPQLIM ABSXCONV=

Specifies a matrix singularity criterion PROC HPQLIM SINGULAR=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT

Model Estimation Options
Suppresses the intercept parameter MODEL NOINT
Specifies the method to calculate parameter
covariance

PROC HPQLIM COVEST=

Bayesian MCMC Options
Specifies the initial values of the MCMC INIT
Specifies the maximum number of tuning phases BAYES MAXTUNE=
Specifies the minimum number of tuning phases BAYES MINTUNE=
Specifies the number of burn-in iterations BAYES NBI=
Specifies the number of iterations during the
sampling phase

BAYES NMC=

Specifies the number of iterations during the tuning
phase

BAYES NTU=

Controls options for constructing the initial
proposal covariance matrix

BAYES PROPCOV

Specifies the sampling scheme BAYES SAMPLING=
Specifies the random number generator seed BAYES SEED=
Controls the thinning of the Markov chain BAYES THIN=

Bayesian Summary Statistics and Convergence Diagnostic Options
Displays convergence diagnostics BAYES DIAGNOSTICS=
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Table 21.1 continued

Description Statement Option

Displays summary statistics of the posterior
samples

BAYES STATISTICS=

Bayesian Prior and Posterior Sample Options
Specifies a SAS data set for the posterior samples BAYES OUTPOST=

Bayesian Analysis Options
Specifies the normal prior distribution PRIOR NORMAL(MEAN=,

VAR=)
Specifies the gamma prior distribution PRIOR GAMMA(SHAPE=,

SCALE=)
Specifies the inverse gamma prior distribution PRIOR IGAMMA(SHAPE=,

SCALE=)
Specifies the uniform prior distribution PRIOR UNIFORM(MIN=,

MAX=)
Specifies the beta prior distribution PRIOR BETA(SHAPE1=,

SHAPE2=,
MIN=, MAX=)

Specifies the t prior distribution PRIOR T(LOCATION=, DF=)

Endogenous Variable Options
Specifies a discrete variable ENDOGENOUS DISCRETE()
Specifies a censored variable ENDOGENOUS CENSORED()
Specifies a truncated variable ENDOGENOUS TRUNCATED()
Specifies a stochastic frontier variable ENDOGENOUS FRONTIER()

Heteroscedasticity Model Options
Specifies the function for heteroscedasticity models HETERO LINK=
Squares the function for heteroscedasticity models HETERO SQUARE
Specifies no constant for heteroscedasticity models HETERO NOCONST

Output Control Options
Outputs predicted values OUTPUT PREDICTED
Outputs the structured part OUTPUT XBETA
Outputs residuals OUTPUT RESIDUAL
Outputs the error standard deviation OUTPUT ERRSTD
Outputs marginal effects OUTPUT MARGINAL
Outputs probability for the current response OUTPUT PROB
Outputs probability for all responses OUTPUT PROBALL
Outputs the expected value OUTPUT EXPECTED
Outputs the conditional expected value OUTPUT CONDITIONAL
Outputs inverse Mills ratio OUTPUT MILLS
Outputs technical efficiency measures OUTPUT TE1

OUTPUT TE2



1100 F Chapter 21: The HPQLIM Procedure

Table 21.1 continued

Description Statement Option

Includes covariances in the OUTEST= data set PROC HPQLIM COVOUT
Includes correlations in the OUTEST= data set PROC HPQLIM CORROUT

Test Request Options
Requests Wald, Lagrange multiplier, and likelihood
ratio tests

TEST ALL

Requests the Wald test TEST WALD
Requests the Lagrange multiplier test TEST LM
Requests the likelihood ratio test TEST LR

PROC HPQLIM Statement
PROC HPQLIM options ;

The PROC HPQLIM statement invokes the HPQLIM procedure. You can specify the following options.

Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If this option is not specified, PROC HPQLIM uses the most recently
created SAS data set.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to an output data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

CORROUT
writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

Printing Options

NOPRINT
suppresses the normal printed output but does not suppress error listings. If this option is specified,
then any other print option is turned off.
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PRINTALL
turns on all the printing options. The options that are set by PRINTALL are COVB and CORRB.

CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

Model Estimation Options

COVEST=covariance-option
specifies the method for calculating the covariance matrix of parameter estimates. You can specify the
following covariance-options:

OP specifies the covariance from the outer product matrix.

HESSIAN specifies the covariance from the inverse Hessian matrix.

QML specifies the covariance from the outer product and Hessian matrices (the quasi-
maximum likelihood estimates).

The default is COVEST=HESSIAN.

Optimization Control Options

PROC HPQLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks.
You can specify the following options:

ABSCONV=r

ABSTOL=r
specifies an absolute function value convergence criterion by which minimization stops when
f .� .k// � r . The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.

ABSFCONV=r

ABSFTOL=r
specifies an absolute function difference convergence criterion by which minimization stops when the
function value has a small change in successive iterations:

jf .� .k�1// � f .� .k//j � r

The default value is r D 0.

ABSGCONV=r

ABSGTOL=r
specifies an absolute gradient convergence criterion. Optimization stops when the maximum absolute
gradient element is small:

max
j
jgj .�

.k//j � r

The default value is r=1E–5.
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ABSXCONV=r

ABSXTOL=r
specifies an absolute parameter convergence criterion. Optimization stops when the Euclidean distance
between successive parameter vectors is small:

k � .k/ � � .k�1/ k2� r

The default is 0.

FCONV=r

FTOL=r
specifies a relative function convergence criterion. Optimization stops when a relative change of the
function value in successive iterations is small:

jf .� .k// � f .� .k�1//j

jf .� .k�1//j
� r

The default value is r D 2�, where � denotes the machine precision constant, which is the smallest
double-precision floating-point number such that 1C � > 1.

GCONV=r

GTOL=r
specifies a relative gradient convergence criterion. For all techniques except CONGRA, optimization
stops when the normalized predicted function reduction is small:

g.� .k//T ŒH .k/��1g.� .k//

jf .� .k//j
� r

For the CONGRA technique (where a reliable Hessian estimate H is not available), the following
criterion is used:

k g.� .k// k22 k s.� .k// k2

k g.� .k// � g.� .k�1// k2 jf .� .k//j
� r

The default value is r D1E–8.

MAXFUNC=i

MAXFU=i
specifies the maximum number of function calls in the optimization process. The default is 1,000.

The optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number of calls that are specified by this option.

MAXITER=i

MAXIT=i
specifies the maximum number of iterations in the optimization process. The default is 200.
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MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is
the largest floating-point double representation of your computer. The time that is specified by this
option is checked only once at the end of each iteration. Therefore, the actual running time can be
much longer than r . The actual running time includes the remaining time needed to finish the iteration
and the time needed to generate the output of the results.

METHOD=value
specifies the iterative minimization method to use. The default is METHOD=NEWRAP. You can
specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double dogleg method.

NONE specifies that no optimization be performed beyond using the ordinary least squares
method to compute the parameter estimates.

NEWRAP specifies the Newton-Raphson method (the default).

NRRIDG specifies the Newton-Raphson ridge method.

QUANEW specifies the quasi-Newton method.

TRUREG specifies the trust region method.

SINGULAR=r
specifies the general singularity criterion that is applied by the HPQLIM procedure in sweeps and
inversions. The default for the optimization is 1E–8.

Plotting Options

PLOTS< (global-plot-options) > = plot-request | (plot-requests)
controls the display of plots. By default, the plots are displayed in panels unless the UNPACK global-
plot-option is specified. When you specify only one plot-request , you can omit the parentheses around
it.

Global Plot Options
You can specify the following global-plot-options:

ONLY
displays only the requested plot.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed separately.

Plot Requests
You can specify the following plot-requests:
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ALL
specifies all types of available plots.

AUTOCORR< (LAGS=n) >
displays the autocorrelation function plots for the parameters. The optional LAGS= suboption specifies
the number (up to lag n) of autocorrelations to be plotted in the autocorrelation function plot. If this
suboption is not specified, autocorrelations are plotted up to lag 50. This plot-request is available only
for Bayesian analysis.

BAYESDIAG
is equivalent to specifying the TRACE, AUTOCORR, and DENSITY plot-requests.

DENSITY< (FRINGE) >
displays the kernel density plots for the parameters. If you specify the FRINGE suboption, a fringe
plot is created on the X axis of the kernel density plot. This plot-request is available only for Bayesian
analysis.

NONE
suppresses all diagnostic plots.

TRACE< (SMOOTH) >
displays the trace plots for the parameters. The SMOOTH suboption displays a fitted penalized B-spline
curve for each plot. This plot-request is available only for Bayesian analysis.

BAYES Statement
BAYES < options > ;

The BAYES statement controls the Metropolis sampling scheme that is used to obtain samples from the
posterior distribution of the underlying model and data.

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls which diagnostics are produced. All the following diagnostics are produced when you specify
DIAGNOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOSTICS=NONE.
If you want some but not all of the diagnostics, or if you want to change certain settings of these
diagnostics, specify one or more of the following keywords. The default is DIAGNOSTICS=NONE.

AUTOCORR < (LAGS=numeric-list) >
computes the autocorrelations at lags that are specified in the numeric-list . Elements in the
numeric-list are truncated to integers, and repeated values are removed. If the LAGS= option is
not specified, autocorrelations of lags 1, 5, and 10 are computed.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter.
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GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The defaults are f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

HEIDELBERGER < (heidel-options) >
computes for each variable the Heidelberger and Welch diagnostic, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Carlo standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size.

RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile ( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy
when the chain is allowed to run for a long time. The computation stops when the estimated
probability OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with probability S; that is,
Pr.Q �R � OPQ � QCR/ D S . The following raftery-options enable you to specify Q;R; S ,
and a precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of the
estimation of the quantile. The default is 0.005.
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PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.

MINTUNE=number
specifies the minimum number of tuning phases. The default is 2.

MAXTUNE=number
specifies the maximum number of tuning phases. The default is 24.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 1,000.

NMC=number
specifies the number of iterations after the burn-in. The default is 1,000.

NTU=number
specifies the number of samples for each tuning phase. The default is 500.

OUTPOST=SAS-data-set
names the SAS data set to contain the posterior samples. Alternatively, you can create the output data
set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE = < SAS-data-set > ;

PROPCOV=value
specifies the method that is used in constructing the initial covariance matrix for the Metropolis-
Hastings algorithm. The QUANEW and NMSIMP methods find numerically approximated covariance
matrices at the optimum of the posterior density function with respect to all continuous parameters. The
tuning phase starts at the optimized values; in some problems, this can greatly increase convergence
performance. If the approximated covariance matrix is not positive definite, then an identity matrix is
used instead. You can specify the following values:

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization that combines a line-search algorithm
with ridging.

NMSIMP performs a Nelder-Mead simplex optimization.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a quasi-Newton optimization.

TRUREG performs a trust-region optimization.
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SAMPLING=MULTIMETROPOLIS | UNIMETROPOLIS
specifies how to sample from the posterior distribution. SAMPLING=MULTIMETROPOLIS imple-
ments a Metropolis sampling scheme on a single block that contains all the parameters of the model.
SAMPLING=UNIMETROPOLIS implements a Metropolis sampling scheme on multiple blocks, one
for each parameter of the model. The default is SAMPLING=MULTIMETROPOLIS.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If you
do not specify the SEED= option, or if you specify a nonpositive seed, a random seed is derived from
the time of day.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics that are produced. Specifying STATISTICS=ALL is
equivalent to specifying STATISTICS=(CORR COV INTERVAL PRIOR SUMMARY). If you do not
want any posterior statistics, specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY
INTERVAL). You can specify the following global-options:

ALPHA=value < ,value >. . . < ,value >
controls the probabilities of the credible intervals. The value, which must be between 0 and 1,
produces a pair of 100(1–value)% equal-tail and highest posterior density (HPD) intervals for
each parameter. The default is ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=value < ,value >. . . < ,value >
requests the percentile points of the posterior samples. The value must be between 0 and 100.
The default is PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th percentile points,
respectively, for each parameter.

You can specify the following keywords:

CORR produces the posterior correlation matrix.

COV produces the posterior covariance matrix.

INTERVAL produces equal-tail credible intervals and HPD intervals. The default is to produce
the 95% equal-tail credible intervals and 95% HPD intervals, but you can use the
ALPHA= global-option to request intervals of any probabilities.

NONE suppresses printing of all summary statistics.

PRIOR produces a summary table of the prior distributions that are used in the Bayesian
analysis.

SUMMARY produces the means, standard deviations, and percentile points (25th, 50th, and
75th) for the posterior samples. You can use the PERCENT= global-option to
request specific percentile points.
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THIN=number

THINNING=number
controls the thinning of the Markov chain. Only one in every k samples is used when THIN=k. If
NBI=n0 and NMC=n, the number of samples that are retained is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THIN=1.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters that are estimated by the HPQLIM procedure. You can specify
any number of BOUNDS statements.

Each bound is composed of parameters, constants, and inequality operators. Parameters that are associated
with regressor variables are referred to by the names of the corresponding regressor variables. Specify each
bound as follows:

item operator item < operator item < operator item . . . > >

Each item is a constant, the name of a parameter, or a list of parameter names. For more information about
how parameters are named in the HPQLIM procedure, see the section “Naming of Parameters” on page 1132.
Each operator is <, >, <=, or >=.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these types of constraints. For
more information, see the section “RESTRICT Statement” on page 1117.

The following BOUNDS statement constrains the estimates of the parameters that are associated with the
variable ttime and the variables x1 through x10 to be between 0 and 1. The following example illustrates the
use of parameter lists to specify boundary constraints:

bounds 0 < ttime x1-x10 < 1;

The following BOUNDS statement constrains the estimates of the correlation (_RHO) and sigma (_SIGMA)
in the bivariate model:

bounds _rho >= 0, _sigma.y1 > 1, _sigma.y2 < 5;
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BY Statement
BY variables ;

A BY statement can be used with PROC HPQLIM to obtain separate analyses on observations in groups
defined by the BY variables.

BY statement processing is not supported when the HPQLIM procedure runs alongside the database or
alongside the Hadoop Distributed File System (HDFS). These modes are used if the input data are stored in a
database or HDFS and the grid host is the appliance that houses the data.

ENDOGENOUS Statement
ENDOGENOUS variables � options ;

The ENDOGENOUS statement specifies the type of dependent variables that appear on the left-hand side of
the equation. The listed endogenous variables refer to the dependent variables that appear on the left-hand
side of the equation. Currently, no right-hand-side endogeneity is handled in PROC HPQLIM. All variables
that appear on the right-hand side of the equation are treated as exogenous.

Discrete Variable Options

DISCRETE < (discrete-options ) >
specifies that the endogenous variables in this statement be discrete. You can specify the following
discrete-options:

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type
specifies the cumulative distribution function that is used to model the response probabilities. You can
specify the following distribution-types:

LOGISTIC specifies the logistic distribution for the logit model.

NORMAL specifies the normal distribution for the probit model.

By default, DISTRIBUTION=NORMAL.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the discrete variables that are specified in the ENDOGENOUS
statement. This ordering determines which parameters in the model correspond to each level in the
data. You can specify the following sort orders:

DATA sorts levels by order of appearance in the input data set.

FORMATTED sorts levels by formatted value. The sort order is machine-dependent.

FREQ sorts levels by descending frequency count; levels that have the most observations
come first in the order.

INTERNAL sorts levels by unformatted value. The sort order is machine-dependent.
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By default, ORDER=FORMATTED. For more information about sort order, see the chapter on the
SORT procedure in the Base SAS Procedures Guide.

Censored Variable Options

CENSORED (censored-options )
specifies that the endogenous variables in this statement be censored. You can specify the following
censored-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Truncated Variable Options

TRUNCATED (truncated-options )
You can specify the following truncated-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Stochastic Frontier Variable Options

FRONTIER < (frontier-options ) >
You can specify the following frontier-options:

TYPE=HALF | EXPONENTIAL | TRUNCATED
specifies the model type.

HALF specifies half-normal model.

EXPONENTIAL specifies exponential model.

TRUNCATED specifies truncated normal model.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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PRODUCTION
specifies that the estimated model be a production function.

COST
specifies that the estimated model be a cost function.

If neither PRODUCTION nor COST is specified, a production function is estimated by default.

FREQ Statement
FREQ variable ;

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation.
PROC HPQLIM treats each observation as if it appeared n times, where is the value of the FREQ variable for
the observation. If the frequency value is not an integer, it is truncated to an integer. If the frequency value
is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement, then
the first FREQ statement is used.

HETERO Statement
HETERO dependent-variables � exogenous-variables < / options > ;

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and
the way that these variables are used to model the error variance. PROC HPQLIM supports the following
heteroscedastic regression model:

yi D x0iˇ C �i

�i � N.0; �2i /

For more information about the specification of functional forms, see the section “Heteroscedasticity” on
page 1123. The following options specify the functional forms of heteroscedasticity:

LINK=EXP | LINEAR
specifies the functional form.

EXP specifies the exponential link function:

�2i D �2.1C exp.z
0

i//

LINEAR specifies the linear link function:

�2i D �2.1C z
0

i/

The default is LINK=EXP.
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NOCONST
specifies that there be no constant in the linear or exponential heteroscedasticity model:

�2i D �2.z
0

i/

�2i D �2exp.z
0

i/

This option is ignored if you do not specify the LINK= option.

SQUARE
estimates the model by using the square of the linear heteroscedasticity function. For example, you can
specify the following heteroscedasticity function:

�2i D �
2.1C .z

0

i/
2/

model y = x1 x2 / censored(lb=0);
hetero y ~ z1 / link=linear square;

The SQUARE option does not apply to the exponential heteroscedasticity function because the square
of an exponential function of z

0

i is the same as the exponential of 2z
0

i . Hence, the only difference is
that all  estimates are divided by two.

This option is ignored if you do not specify the LINK= option. You cannot use the HETERO statement
within a Bayesian framework.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization. You can specify any number of
INIT statements.

Each initvalue is written as a parameter or parameter list, followed by an optional equality operator (=),
followed by a number:

parameter <=> number

MODEL Statement
MODEL dependent-variables = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model.

You can specify the following option after a slash (/):
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NOINT
suppresses the intercept parameter.

You can also specify the following endogenous variable options, which are the same as the options that are
specified in the ENDOGENOUS statement. If an endogenous variable option is specified in both the MODEL
statement and the ENDOGENOUS statement, the option in the ENDOGENOUS statement is used.

Discrete Variable Options

DISCRETE < (discrete-options ) >
specifies that the endogenous variables in this statement be discrete. You can specify the following
discrete-options:

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type
specifies the cumulative distribution function that is used to model the response probabilities. You can
specify the following distribution-types:

LOGISTIC specifies the logistic distribution for the logit model.

NORMAL specifies the normal distribution for the probit model.

By default, DISTRIBUTION=NORMAL.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the discrete variables that are specified in the ENDOGENOUS
statement. This ordering determines which parameters in the model correspond to each level in the
data. You can specify the following sort orders:

DATA sorts levels by order of appearance in the input data set.

FORMATTED sorts levels by formatted value. The sort order is machine-dependent.

FREQ sorts levels by descending frequency count; levels that have the most observations
come first in the order.

INTERNAL sorts levels by unformatted value. The sort order is machine-dependent.

By default, ORDER=FORMATTED. For more information about sort order, see the chapter on the
SORT procedure in the Base SAS Procedures Guide.

Censored Variable Options

CENSORED < (censored-options ) >
specifies that the endogenous variables in this statement be censored. You can specify the following
censored-options:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Truncated Variable Options

TRUNCATED < (truncated-options ) >
You can specify the following truncated-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Stochastic Frontier Variable Options

FRONTIER < (frontier-options ) >
You can specify the following frontier-options:

TYPE=HALF | EXPONENTIAL | TRUNCATED
specifies the model type.

HALF specifies a half-normal model.

EXPONENTIAL specifies an exponential model.

TRUNCATED specifies a truncated normal model.

PRODUCTION
specifies that the estimated model be a production function.

COST
specifies that the estimated model be a cost function.

If neither PRODUCTION nor COST is specified, a production function is estimated by default.
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OUTPUT Statement
OUTPUT OUT=SAS-data-set < output-options > ;

The OUTPUT statement creates a new SAS data set to contain variables that are specified with the COPYVAR
option and the following data if they are specified by output-options: estimates of x0ˇ, predicted value,
residual, marginal effects, probability, standard deviation of the error, expected value, conditional expected
value, technical efficiency measures, and inverse Mills ratio. When the response values are missing for the
observation, all output estimates except the residual are still computed as long as none of the explanatory
variables are missing. This enables you to compute these statistics for prediction. You can specify only one
OUTPUT statement.

You must specify the OUT= option:

OUT=SAS-data-set
names the output data set.

You can specify one or more of the following output-options:

CONDITIONAL
outputs estimates of conditional expected values of continuous endogenous variables.

COPYVAR=SAS-variable-names

COPYVARS=(SAS-variable-names)
adds SAS variables to the output data set.

ERRSTD
outputs estimates of �j , the standard deviation of the error term.

EXPECTED
outputs estimates of expected values of continuous endogenous variables.

MARGINAL
outputs marginal effects.

MILLS
outputs estimates of inverse Mills ratios of censored or truncated continuous, binary discrete, and
selection endogenous variables.

PREDICTED
outputs estimates of predicted endogenous variables.

PROB
outputs estimates of probability of discrete endogenous variables taking the current observed responses.

PROBALL
outputs estimates of probability of discrete endogenous variables for all possible responses.
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RESIDUAL
outputs estimates of residuals of continuous endogenous variables.

XBETA
outputs estimates of x0ˇ.

TE1
outputs estimates of technical efficiency for each producer in the stochastic frontier model that is
suggested by Battese and Coelli (1988).

TE2
outputs estimates of technical efficiency for each producer in the stochastic frontier model that is
suggested by Jondrow et al. (1982).

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options to control the multithreaded computing
environment and requests detailed performance results of the HPQLIM procedure. You can specify the
following performance-options:

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS System option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPQLIM creates
one thread per CPU for the analytic computations.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” (Chap-
ter 21, SAS/STAT User’s Guide).

PRIOR Statement
PRIOR _REGRESSORS | parameter-list � distribution ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify one
parameter or a list of parameters, a tilde �, and then a distribution with its parameters. Multiple PRIOR
statements are allowed.

You can specify the following distributions:

NORMAL(MEAN=�, VAR=�2)
specifies a normal distribution with the parameters MEAN and VAR.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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GAMMA(SHAPE=a, SCALE=b)
specifies a gamma distribution with the parameters SHAPE and SCALE.

IGAMMA(SHAPE=a, SCALE=b)
specifies an inverse gamma distribution with the parameters SHAPE and SCALE.

UNIFORM(MIN=m, MAX=M)
specifies a uniform distribution that is defined between MIN and MAX.

BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)
specifies a beta distribution with the parameters SHAPE1 and SHAPE2 and defined between MIN and
MAX.

T(LOCATION=�, DF=�)
specifies a noncentral t distribution with DF degrees of freedom and a location parameter equal to
LOCATION.

For more information about how to specify distributions, see the section “Standard Distributions” on
page 1126.

You can specify the special keyword REGRESSORS to select all the parameters that are used in the linear
regression component of the model.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements, but the number of restrictions that are imposed is limited by the number
of regressors.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <= , or >=. The operator and second expression are optional.

Restriction expressions can be composed of parameter names; multiplication (�), addition (C), and substi-
tution (�) operators; and constants. Parameters that are named in restriction expressions must be among
the parameters that are estimated by the model. Parameters that are associated with a regressor variable are
referred to by the name of the corresponding regressor variable. The restriction expressions must be a linear
function of the parameters.

The following statements illustrate the use of the RESTRICT statement:

proc hpqlim data=one;
model y = x1-x10 / censored(lb=0);
restrict x1*2 <= x2 + x3;

run;
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TEST Statement
<’label’:> TEST <’string’:> equation < ,equation. . . > / options ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to
be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must
correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the
corresponding regressor. Use the keyword INTERCEPT for a test that includes a constant.

You can specify the following options after the slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

WALD
requests the Wald test.

The following statements illustrate the use of the TEST statement (note the use of the INTERCEPT keyword
in the second TEST statement):

proc hpqlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test _int: test intercept = 0, x3 = 0;

run;

The first TEST statement investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ2 C 2ˇ3 D 0

Only linear equality restrictions and tests are permitted in PROC HPQLIM. Test expressions can be composed
only of algebraic operations that involve the addition symbol (+), subtraction symbol (–), and multiplication
symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. You can label a TEST statement
in two ways: you can specify a label followed by a colon before the TEST keyword, or you can specify a
quoted string after the TEST keyword. If you specify both a label before the TEST keyword and a quoted
string after the keyword, PROC HPQLIM uses the label that precedes the colon. If no label or quoted string
is specified, PROC HPQLIM labels the test automatically.
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WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable that supplies weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

You can add the following option after a slash (/):

NONORMALIZE
specifies that the weights must be used as is. When this option is not specified, the weights are
normalized so that they add up to the actual sample size. Weights wi are normalized by multiplying
them by nPn

iD1wi
, where n is the sample size.

Details: HPQLIM Procedure

Ordinal Discrete Choice Modeling

Binary Probit and Logit Model

The binary choice model is

y�i D x0iˇ C �i

where the value of the latent dependent variable, y�i , is observed only as follows:

yi D 1 if y�i > 0

D 0 otherwise

The disturbance, �i , of the probit model has a standard normal distribution with the distribution function
(CDF)

ˆ.x/ D

Z x

�1

1
p
2�

exp.�t2=2/dt

The disturbance of the logit model has a standard logistic distribution with the distribution function (CDF)

ƒ.x/ D
exp.x/

1C exp.x/
D

1

1C exp.�x/

The binary discrete choice model has the following probability that the event fyi D 1g occurs:

P.yi D 1/ D F.x0iˇ/ D
�
ˆ.x0iˇ/ .probit/
ƒ.x0iˇ/ .logit/

For more information, see the section “Ordinal Discrete Choice Modeling” on page 1950.
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Ordinal Probit/Logit

When the dependent variable is observed in sequence with M categories, binary discrete choice modeling
is not appropriate for data analysis. McKelvey and Zavoina (1975) propose the ordinal (or ordered) probit
model.

Consider the regression equation

y�i D x0iˇ C �i

where error disturbances, �i , have the distribution function F. The unobserved continuous random variable,
y�i , is identified as M categories. Suppose there are M C 1 real numbers, �0; : : : ; �M , where �0 D �1,
�1 D 0, �M D1, and �0 � �1 � � � � � �M . Define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

For more information, see the section “Ordinal Discrete Choice Modeling” on page 1950.

Limited Dependent Variable Models

Censored Regression Models

When the dependent variable is censored, values in a certain range are all transformed to a single value. For
example, the standard Tobit model can be defined as

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � iidN.0; �2/.

The Tobit model can be generalized to handle observation-by-observation censoring. The censored model on
both the lower and upper limits can be defined as

yi D

8<:
Ri if y�i � Ri
y�i if Li < y�i < Ri
Li if y�i � Li

For more information, see Chapter 28.7, “Censored Regression Models.”
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Truncated Regression Models

In a truncated model, the observed sample is a subset of the population where the dependent variable falls
within a certain range. For example, when neither a dependent variable nor exogenous variables are observed
for y�i � 0, the truncated regression model can be specified as

` D
X

i2fyi>0g

�
� lnˆ.x0iˇ=�/C ln

�
�..yi � x0iˇ/=�/

�

��

For more information, see the section “Truncated Regression Models” on page 1955.

Stochastic Frontier Production and Cost Models
Stochastic frontier production models were first developed by Aigner, Lovell, and Schmidt (1977); Meeusen
and van den Broeck (1977). Specification of these models allow for random shocks of the production or
cost but also include a term for technical or cost inefficiency. Assuming that the production function takes a
log-linear Cobb-Douglas form, the stochastic frontier production model can be written as

ln.yi / D ˇ0 C
X
n

ˇn ln.xni /C �i

where �i D vi � ui . The vi term represents the stochastic error component, and the ui term represents the
nonnegative, technical inefficiency error component. The vi error component is assumed to be distributed iid
normal and independent from ui . If ui > 0, the error term �i is negatively skewed and represents technical
inefficiency. If ui < 0, the error term �i is positively skewed and represents cost inefficiency. PROC
HPQLIM models the ui error component as a half-normal, exponential, or truncated normal distribution.

The Normal-Half-Normal Model

When vi is iid N.0; �2v / in a normal-half-normal model, ui is iid NC.0; �2u/, with vi and ui independent of
each other. Given the independence of error terms, the joint density of v and u can be written as

f .u; v/ D
2

2��u�v
exp

�
�
u2

2�2u
�
v2

2�2v

�

Substituting v D � C u into the preceding equation and integrating u out gives

f .�/ D
2

�
�
� �
�

�
ˆ

�
�
��

�

�

where � D �u=�v and � D
p
�2u C �

2
v .

In the case of a stochastic frontier cost model, v D � � u and

f .�/ D
2

�
�
� �
�

�
ˆ

�
��

�

�

For more information, see the section “Stochastic Frontier Production and Cost Models” on page 1956.
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The Normal-Exponential Model

Under the normal-exponential model, vi is iid N.0; �2v / and ui is iid exponential. Given the independence of
error term components ui and vi , the joint density of v and u can be written as

f .u; v/ D
1

p
2��u�v

exp
�
�
u

�u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D

�
1

�u

�
ˆ

�
�
�

�v
�
�v

�u

�
exp

�
�

�u
C

�2v
2�2u

�
The marginal density function for the cost function is equal to

f .�/ D

�
1

�u

�
ˆ

�
�

�v
�
�v

�u

�
exp

�
�
�

�u
C

�2v
2�2u

�

For more information, see the section “Stochastic Frontier Production and Cost Models” on page 1956.

The Normal–Truncated Normal Model

The normal–truncated normal model is a generalization of the normal-half-normal model that allows the
mean of ui to differ from zero. Under the normal–truncated normal model, the error term component vi is
iid NC.0; �2v / and ui is iid N.�; �2u/. The joint density of vi and ui can be written as

f .u; v/ D
1

p
2��u�vˆ.�=�u/

exp
�
�
.u � �/2

2�2u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D
1

�
�

�
� C �

�

�
ˆ

�
�

��
�
��

�

��
ˆ

�
�

�u

���1
The marginal density function for the cost function is

f .�/ D
1

�
�
�� � �

�

�
ˆ

�
�

��
C
��

�

��
ˆ

�
�

�u

���1

For more information, see the section “Stochastic Frontier Production and Cost Models” on page 1956.

For more information about normal-half-normal, normal-exponential, and normal–truncated normal models,
see Kumbhakar and Lovell (2000); Coelli, Prasada Rao, and Battese (1998).
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Heteroscedasticity
If the variance of regression disturbance, (�i ), is heteroscedastic, the variance can be specified as a function
of variables

E.�2i / D �
2
i D f .z

0
i/

Table 21.2 shows various functional forms of heteroscedasticity and the corresponding options to request
each model.

Table 21.2 Specification Summary for Modeling
Heteroscedasticity

Number Model Options

1 f .z0i/ D �
2.1C exp.z0i// LINK=EXP (default)

2 f .z0i/ D �
2 exp.z0i/ LINK=EXP NOCONST

3 f .z0i/ D �
2.1C

PL
lD1 lzli / LINK=LINEAR

4 f .z0i/ D �
2.1C .

PL
lD1 lzli /

2/ LINK=LINEAR SQUARE
5 f .z0i/ D �

2.
PL
lD1 lzli / LINK=LINEAR NOCONST

6 f .z0i/ D �
2..
PL
lD1 lzli /

2/ LINK=LINEAR SQUARE NOCONST

In models 3 and 5, variances of some observations might be negative. Although the HPQLIM procedure
assigns a large penalty to move the optimization away from such a region, the optimization might not be able
to improve the objective function value and might become locked in the region. Signs of such an outcome
include extremely small likelihood values or missing standard errors in the estimates. In models 2 and 6,
variances are guaranteed to be greater than or equal to zero, but variances of some observations might be very
close to 0. In these scenarios, standard errors might be missing. Models 1 and 4 do not have such problems.
Variances in these models are always positive and never close to 0.

For more information, see the section “Heteroscedasticity and Box-Cox Transformation” on page 1958.

Tests on Parameters
In general, the tested hypothesis can be written as

H0 W h.�/ D 0

where h.�/ is an r �1 vector-valued function of the parameters � given by the r expressions that are specified
in the TEST statement.

Let OV be the estimate of the covariance matrix of O� . Let O� be the unconstrained estimate of � and Q� be the
constrained estimate of � such that h. Q�/ D 0. Let

A.�/ D @h.�/=@� j O�

Using this notation, the test statistics for the three types of tests are computed as follows.
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� The Wald test statistic is defined as

W D h
0

. O�/
8:A. O�/ OV A0. O�/9;�1h. O�/

� The Lagrange multiplier test statistic is

LM D �
0

A. Q�/ QV A
0

. Q�/�

where � is the vector of Lagrange multipliers from the computation of the restricted estimate Q� .

� The likelihood ratio test statistic is

LR D 2
�
L. O�/ � L. Q�/

�
where Q� represents the constrained estimate of � and L is the concentrated log-likelihood value.

The following statements use the TEST statement to perform a likelihood ratio test:

proc hpqlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0 /lr;

run;

For more information, see the section “Tests on Parameters” on page 1965.

Bayesian Analysis
To perform Bayesian analysis, you must specify a BAYES statement. Unless otherwise stated, all options
that are described in this section are options in the BAYES statement.

By default, PROC HPQLIM uses the random walk Metropolis algorithm to obtain posterior samples. For
the implementation details of the Metropolis algorithm in PROC HPQLIM, such as the blocking of the
parameters and tuning of the covariance matrices, see the sections “Blocking of Parameters” on page 1125
and “Tuning the Proposal Distribution” on page 1125.

The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a parameter or a vector of parameters and �.�/ is the product of the prior densities that are
specified in the PRIOR statement. The term L.yj�/ is the likelihood that is associated with the MODEL
statement.
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Blocking of Parameters

In a multivariate parameter model, all the parameters are updated in one single block (by default or when you
specify the SAMPLING=MULTIMETROPOLIS option). This can be inefficient, especially when parameters
have vastly different scales. As an alternative, you can update the parameters one at a time (by specifying
SAMPLING=UNIMETROPOLIS).

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is called tuning. The tuning phase consists of a
number of loops that are controlled by the options MINTUNE= and MAXTUNE=. The MINTUNE= option
controls the minimum number of tuning loops and has a default value of 2. The MAXTUNE= option controls
the maximum number of tuning loops and has a default value of 24. Each loop repeats the number of times
specified by the NTU= option, which has a default of 500. At the end of every loop, PROC HPQLIM
examines the acceptance probability for each block. The acceptance probability is the percentage of NTU
proposed values that have been accepted. If this probability does not fall within the acceptance tolerance
range (see the following section), the proposal distribution is modified before the next tuning loop.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large sample
theory states that the posterior distribution of the parameters approaches a multivariate normal distribution
(Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal proposal distribution
often works well in practice. The default proposal distribution in PROC HPQLIM is the normal distribution.

For more information, see Chapter 28.7, “Bayesian Analysis.”

Initial Values of the Markov Chains

You can assign initial values to any parameters. For more information, see the INIT statement. If you use
the optimization PROPCOV= option, PROC HPQLIM starts the tuning at the optimized values. This option
overwrites the provided initial values.

Prior Distributions
The PRIOR statement specifies the prior distribution of the model parameters. You must specify one
parameter or a list of parameters, a tilde �, and then a distribution with its parameters. You can specify
multiple PRIOR statements to define independent priors. Parameters that are associated with a regressor
variable are referred to by the name of the corresponding regressor variable.

You can specify the special keyword _REGRESSORS to consider all the regressors of a model. If multiple
PRIOR statements affect the same parameter, the last PRIOR statement prevails. For example, in a regression
with two regressors (X1, X2), the following statements imply that the prior on X1 is NORMAL(MEAN=0,
VAR=1) and the prior on X2 is GAMMA(SHAPE=3, SCALE=4):

...
prior _Regressors ~ uniform(min=0, max=1);
prior X1 X2 ~ gamma(shape=3, scale=4);
prior X1 ~ normal(mean=0, var=1);
...
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If a parameter is not associated with a PRIOR statement or if some of the prior hyperparameters are missing,
then the default choices in Table 21.3 are considered.

Table 21.3 Default Values for Prior Distributions

PRIOR Distribution Hyperparameter1 Hyperparameter2 Min Max Parameters Default Choice

NORMAL MEAN=0 VAR=1E6 �1 1 Regression-Location-Threshold
IGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale
GAMMA SHAPE=1 SCALE=1 0 1

UNIFORM �1 1

BETA SHAPE1=1 SHAPE2=1 �1 1

T LOCATION=0 DF=3 �1 1

For density specification, see the section “Standard Distributions” on page 1126.

Standard Distributions

Table 21.4 through Table 21.9 show all the distribution density functions that PROC HPQLIM recognizes.
You specify these distribution densities in the PRIOR statement.

Table 21.4 Beta Distribution

PRIOR statement BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

Note: Commonly m D 0 and M D 1.

Density .��m/a�1.M��/b�1

B.a;b/.M�m/aCb�1

Parameter restriction a > 0, b > 0, �1 < m < M <1

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œm;M� when a D 1; b D 1

Œm;M/ when a D 1; b ¤ 1

.m;M� when a ¤ 1; b D 1

.m;M/ otherwise

Mean a
aCb
� .M �m/Cm

Variance ab
.aCb/2.aCbC1/

� .M �m/2

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

�M C b�1
aCb�2

�m a > 1; b > 1

m and M a < 1; b < 1

m

(
a < 1; b � 1

a D 1; b > 1

M

(
a � 1; b < 1

a > 1; b D 1

not unique a D b D 1

Defaults SHAPE1=SHAPE2=1, MIN! �1, MAX!1



Prior Distributions F 1127

Table 21.5 Gamma Distribution

PRIOR statement GAMMA(SHAPE=a, SCALE=b)

Density 1
ba�.a/

�a�1e��=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean ab

Variance ab2

Mode .a � 1/b

Defaults SHAPE=SCALE=1

Table 21.6 Inverse Gamma Distribution

PRIOR statement IGAMMA(SHAPE=a, SCALE=b)

Density ba

�.a/
��.aC1/e�b=�

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean b
a�1

; a > 1

Variance b2

.a�1/2.a�2/
; a > 2

Mode b
aC1

Defaults SHAPE=2.000001, SCALE=1

Table 21.7 Normal Distribution

PRIOR statement NORMAL(MEAN=�, VAR=�2)

Density 1

�
p
2�

exp
�
�
.���/2

2�2

�
Parameter restriction �2 > 0

Range �1 < � <1

Mean �

Variance �2

Mode �

Defaults MEAN=0, VAR=1000000
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Table 21.8 t Distribution

PRIOR statement T(LOCATION=�, DF=�)

Density
�
�
�C1
2

�
�.�2 /

p
��

h
1C .���/2

�

i��C1
2

Parameter restriction � > 0

Range �1 < � <1

Mean �; for � > 1

Variance �
��2

; for � > 2

Mode �

Defaults LOCATION=0, DF=3

Table 21.9 Uniform Distribution

PRIOR statement UNIFORM(MIN=m, MAX=M)

Density 1
M�m

Parameter restriction �1 < m < M <1

Range � 2 Œm;M�

Mean mCM
2

Variance .M�m/2

12

Mode Not unique

Defaults MIN! �1, MAX!1

Output to SAS Data Set

XBeta, Predicted, and Residual

Xbeta is the structural part on the right-hand side of the model. The predicted value is the predicted dependent
variable value. For censored variables, if the predicted value is outside the boundaries, it is reported as the
closest boundary. The residual is defined only for continuous variables and is defined as

Residual D Observed � Predicted
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Error Standard Deviation

The error standard deviation is �i in the model. It varies only when the HETERO statement is used.

Marginal Effects

A marginal effect is defined as a contribution of one control variable to the response variable. For a binary
choice model with two response categories, �0 D �1 and �1 D 0, �2 D 1. For an ordinal response
model with M response categories (�0; : : : ; �M ), define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

The marginal effect of changes in the regressors on the probability of yi D j is then

@ProbŒyi D j �
@x

D Œf .�j�1 � x0iˇ/ � f .�j � x0iˇ/�ˇ

where f .x/ D dF .x/
dx

. In particular,

f .x/ D
dF.x/

dx
D

(
1p
2�
e�x

2=2 .probit/
e�x

Œ1Ce.�x/�2
.logit/

The marginal effects in the truncated regression model are

@EŒyi jLi < y
�
i < Ri �

@x
D ˇ

�
1 �

.�.ai / � �.bi //
2

.ˆ.bi / �ˆ.ai //2
C
ai�.ai / � bi�.bi /

ˆ.bi / �ˆ.ai /

�
where ai D

Li�x0
i
ˇ

�i
and bi D

Ri�x0
i
ˇ

�i
.

The marginal effects in the censored regression model are

@EŒyjxi �
@x

D ˇ � ProbŒLi < y�i < Ri �

Expected and Conditionally Expected Values

The expected value is the unconditional expectation of the dependent variable. For a censored variable, it is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.ˆ.bi / �ˆ.ai //C .1 �ˆ.bi //Ri

For a left-censored variable (Ri D1), this formula is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.1 �ˆ.ai //

where � D �.ai /
1�ˆ.ai /

.

For a right-censored variable (Li D �1), this formula is

EŒyi � D .x0iˇ C ��i /ˆ.bi /C .1 �ˆ.bi //Ri
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where � D � �.bi /
ˆ.bi /

.

For a noncensored variable, this formula is

EŒyi � D x0iˇ

The conditional expected value is the expectation when the variable is inside the boundaries:

EŒyi jLi < yi < Ri � D x0iˇ C ��i

Technical Efficiency

Technical efficiency for each producer is computed only for stochastic frontier models.

In general, the stochastic production frontier can be written as

yi D f .xi Iˇ/ expfvigTEi

where yi denotes producer i’s actual output, f .�/ is the deterministic part of the production frontier, expfvig
is a producer-specific error term, and TEi is the technical efficiency coefficient, which can be written as

TEi D
yi

f .xi Iˇ/ expfvig

For a Cobb-Douglas production function, TEi D expf�uig. For more information, see the section “Stochas-
tic Frontier Production and Cost Models” on page 1121.

The cost frontier can be written in general as

Ei D c.yi ; wi Iˇ/ expfvig=CEi

where wi denotes producer i’s input prices, c.�/ is the deterministic part of the cost frontier, expfvig is a
producer-specific error term, and CEi is the cost efficiency coefficient, which can be written as

CEi D
c.xi ; wi Iˇ/ expfvig

Ei

For a Cobb-Douglas cost function, CEi D expf�uig. For more information, see the section “Stochastic
Frontier Production and Cost Models” on page 1121. Hence, both technical and cost efficiency coefficients
are the same. The estimates of technical efficiency are provided in the following subsections.

Normal-Half-Normal Model

Define �� D ���2u=�
2 and �2� D �

2
u�

2
v =�

2. Then, as shown by Jondrow et al. (1982), conditional density
is as follows:

f .uj�/ D
f .u; �/

f .�/
D

1
p
2���

exp
�
�
.u � ��/

2

2�2�

���
1 �ˆ

�
�
��

��

��
Hence, f .uj�/ is the density for NC.��; �2�/.

From this result, it follows that the estimate of technical efficiency (Battese and Coelli 1988) is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�� � ��i=��/

1 �ˆ.���i=��/

�
exp

�
���i C

1

2
�2�

�
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The second version of the estimate (Jondrow et al. 1982) is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D ��i C ��

�
�.���i=��/

1 �ˆ.���i=��/

�
D ��

�
�.�i�=�/

1 �ˆ.�i�=�/
�

�
�i�

�

��
Normal-Exponential Model

Define A D � Q�=�v and Q� D �� � �2v =�u. Then, as shown by Kumbhakar and Lovell (2000), conditional
density is as follows:

f .uj�/ D
1

p
2��vˆ.� Q�=�v/

exp
�
�
.u � Q�/2

2�2

�
Hence, f .uj�/ is the density for NC. Q�; �2v /.

From this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�v � Q�i=�v/

1 �ˆ.� Q�i=�v/

�
exp

�
� Q�i C

1

2
�2v

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C �v

�
�.� Q�i=�v/

1 �ˆ.� Q�i=�v/

�
D �v

�
�.A/

ˆ.�A/
� A

�
Normal–Truncated Normal Model

Define Q� D .��2u�i C ��
2
v /=�

2 and �2� D �2u�
2
v =�

2. Then, as shown by Kumbhakar and Lovell (2000),
conditional density is as follows:

f .uj�/ D
1

p
2���Œ1 �ˆ.� Q�=��/�

exp
�
�
.u � Q�/2

2�2�

�
Hence, f .uj�/ is the density for NC. Q�; �2�/.

From this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
1 �ˆ.�� � Q�i=��/

1 �ˆ.� Q�i=��/
exp

�
� Q�i C

1

2
�2�

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C ��

�
�. Q�i=��/

1 �ˆ.� Q�i=��/

�
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OUTEST= Data Set
The OUTEST= data set contains all the parameters that are estimated by a MODEL statement. Each parameter
contains the estimate for the corresponding parameter in the corresponding model. In addition, the OUTEST=
data set contains the following variables:

_NAME_ indicates the name of the independent variable.

_TYPE_ indicates the type of observation. PARM indicates the row of coefficients; STD indicates
the row of standard deviations of the corresponding coefficients.

_STATUS_ indicates the convergence status for optimization.

The rest of the columns correspond to the explanatory variables.

The OUTEST= data set contains one observation for the MODEL statement, which shows the parameter
estimates for that model. If you specify the COVOUT option in the PROC HPQLIM statement, the OUTEST=
data set includes additional observations for the MODEL statement, which show the rows of the covariance
matrix of parameter estimates. For covariance observations, the value of the _TYPE_ variable is COV, and
the _NAME_ variable identifies the parameter that is associated with that row of the covariance matrix. If you
specify the CORROUT option in the PROC HPQLIM statement, the OUTEST= data set includes additional
observations for the MODEL statement, which show the rows of the correlation matrix of parameter estimates.
For correlation observations, the value of the _TYPE_ variable is CORR, and the _NAME_ variable identifies
the parameter that is associated with that row of the correlation matrix.

Naming

Naming of Parameters

The parameters are named in the same way as in other SAS procedures such as the REG and PROBIT
procedures. The constant in the regression equation is called Intercept. The coefficients of independent
variables are named by the independent variables. The standard deviation of the errors is called _Sigma. If
the HETERO statement is included, the coefficients of the independent variables in the HETERO statement
are called _H.x, where x is the name of the independent variable.

Naming of Output Variables

Table 21.10 shows the options in the OUTPUT statement, with the corresponding variable names and their
explanations.

Table 21.10 OUTPUT Statement Options

output-option Variable Name Explanation

CONDITIONAL CEXPCT_y Conditional expected value of y,
conditioned on the truncation

ERRSTD ERRSTD_y Standard deviation of error term
EXPECTED EXPCT_y Unconditional expected value of y
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Table 21.10 continued

output-option Variable Name Explanation

MARGINAL MEFF_x Marginal effect of x on y (@y
@x

) with single
equation

PREDICTED P_y Predicted value of y
RESIDUAL RESID_y Residual of y, (y – PredictedY)
PROB PROB_y Probability that y is taking the observed

value in this observation (discrete y only)
PROBALL PROBi_y Probability that y is taking the ith value

(discrete y only)
MILLS MILLS_y Inverse Mills ratio for y
TE1 TE1 Technical efficiency estimate for each

producer proposed by Battese and Coelli
(1988)

TE2 TE2 Technical efficiency estimate for each
producer proposed by Jondrow et al.
(1982)

XBETA XBETA_y Structure part (x0ˇ) of y equation

If you prefer to name the output variables differently, you can use the RENAME option in the data set. For
example, the following statements rename the residual of y as Resid:

proc hpqlim data=one;
model y = x1-x10 / censored;
output out=outds(rename=(resid_y=resid)) residual;

run;

ODS Table Names
PROC HPQLIM assigns a name to each table that it creates. You can use these names to refer to the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 21.11.

Table 21.11 ODS Tables Produced in PROC HPQLIM

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement and TEST Statement
ResponseProfile Response profile Default
FitSummary Summary of nonlinear estimation Default
ParameterEstimates Parameter estimates Default
SummaryContResponse Summary of continuous response Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
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Table 21.11 (continued)

ODS Table Name Description Option

ODS Tables Created by the BAYES Statement
AutoCorr Autocorrelation statistics for each parameter Default
Corr Correlation matrix of the posterior samples STATS=COR
Cov Covariance matrix of the posterior samples STATS=COV
ESS Effective sample size for each parameter Default
MCSE Monte Carlo standard error for each

parameter
Default

Geweke Geweke diagnostics for each parameter Default
Heidelberger Heidelberger-Welch diagnostics for each

parameter
DIAGNOSTICS=HEIDEL

PostIntervals Equal-tail and HPD intervals for each
parameter

Default

PosteriorSample Posterior samples (ODS output data set only)
PostSummaries Posterior summaries Default
PriorSummaries Prior summaries STATS=PRIOR
Raftery Raftery-Lewis diagnostics for each parameter DIAGNOSTICS=RAFTERY

ODS Tables Created by the TEST Statement
TestResults Test results Default

ODS Graphics
You can use a name to reference every graph that is produced through ODS Graphics. The names of the
graphs that PROC HPQLIM generates are listed in Table 21.12.

Table 21.12 Graphs Produced by PROC HPQLIM When a
BAYES Statement Is Included

ODS Graph
Name

Plot Description Statement and Option

Bayesian Diagnostic Plots
ADPanel Autocorrelation function and density

panel
PLOTS=(AUTOCORR
DENSITY)

AutocorrPanel Autocorrelation function panel PLOTS=AUTOCORR
AutocorrPlot Autocorrelation function plot PLOTS(UNPACK)=AUTOCORR
DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation function

panel
PLOTS=(TRACE AUTOCORR)

TADPanel Trace, density, and autocorrelation
function panel

PLOTS=(TRACE AUTOCORR
DENSITY)
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Table 21.12 continued

ODS Graph
Name

Plot Description Statement and Option

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Examples: The HPQLIM Procedure

Example 21.1: High-Performance Model with Censoring
This example shows the use of the HPQLIM procedure with an emphasis on processing a large data set.

The following DATA step generates 5 million replicates from a censored model. The model contains seven
variables.

data simulate;
call streaminit(12345);
array vars x1-x7;
array parms{7} (3 4 2 4 -3 -5 -3);

intercept=2;

do i=1 to 5000000;
sum_xb=0;
do j=1 to 7;

vars[j]=rand('NORMAL',0,1);
sum_xb=sum_xb+parms[j]*vars[j];

end;
y=intercept+sum_xb+400*rand('NORMAL',0,1);
if y>400 then y=400;
if y<0 then y=0;
output;

end;
keep y x1-x7;
run;

The following statements estimate a censored model. The model is executed in single-machine mode with
one thread.

title1 'Estimating a Censored Model';

proc hpqlim data=simulate ;
performance nthreads=1 details;
model y=x1-x7 /censored(lb=0 ub=400);
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run;

Output 21.1.1 shows that the censored model was estimated in single-machine mode with one thread.

Output 21.1.1 Censored Model Estimation in Single-Machine Mode with One Thread: Performance Table

Estimating a Censored Model

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Output 21.1.2 shows the estimation results for the censored model. The “Model Fit Summary” table shows
detailed information about the model and indicates that all 5 million observations were used to fit the model.
All parameter estimates in the “Parameter Estimates” table are highly significant and correspond to their
theoretical values that were set during the data generating process. The optimization of the model with 5
million observations took around 90 seconds.

Output 21.1.2 Censored Model in Single-Machine Mode with One Thread: Summary

Model Information

Data Source SIMULATE

Response Variable y

Optimization Technique Quasi-Newton

Number of Observations

Number of Observations Read 5000000

Number of Observations Used 5000000

Summary Statistics of Continuous Responses

Variable Mean
Standard

Error Type
Lower
Bound

Upper
Bound

N Obs
Lower
Bound

N Obs
Upper
Bound

y 127.0 159.491090 Censored 0 400.0 249E4 8E5

Convergence criterion (FCONV=2.220446E-16) satisfied.

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable y

Number of Observations 5000000

Log Likelihood -15268972

Maximum Absolute Gradient 0.0008332

Number of Iterations 10

Optimization Method Quasi-Newton

AIC 30537962

Schwarz Criterion 30538083
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Output 21.1.2 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.220385 0.222201 9.99 <.0001

x1 1 3.055547 0.201620 15.16 <.0001

x2 1 4.000169 0.201570 19.85 <.0001

x3 1 1.852741 0.201555 9.19 <.0001

x4 1 4.170247 0.201533 20.69 <.0001

x5 1 -3.010683 0.201458 -14.94 <.0001

x6 1 -5.176015 0.201541 -25.68 <.0001

x7 1 -2.695967 0.201671 -13.37 <.0001

_Sigma 1 399.997844 0.261930 1527.12 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 26.14 16.39%

Optimization 133.30 83.61%

Post-optimization 0.00 0.00%

In the following statements, the PERFORMANCE statement is modified to run in single-machine mode with
10 threads:

proc hpqlim data=simulate ;
performance nthreads=10 details;
model y=x1-x7 /censored(lb=0 ub=400);

run;

The second model, which was run in single-machine mode with 10 threads (Output 21.1.3), took only 10
seconds instead of 94 seconds to optimize.

Output 21.1.3 Censored Model in Single-Machine Mode with 10 Threads: Performance Table

Estimating a Censored Model

Performance Information

Execution Mode Single-Machine

Number of Threads 10

Because the two models being estimated are identical, it is reasonable to expect that Output 21.1.2 and
Output 21.1.4 would show the same results except for the performance. However, in certain circumstances,
you might observe slight numerical differences in the results (depending on the number threads) because the
order in which partial results are accumulated, the limits of numerical precision, and the propagation of error
in numerical computations can make a difference in the final result.
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Output 21.1.4 Censored Model in Single-Machine Mode with 10 Threads: Summary

Model Information

Data Source SIMULATE

Response Variable y

Optimization Technique Quasi-Newton

Number of Observations

Number of Observations Read 5000000

Number of Observations Used 5000000

Summary Statistics of Continuous Responses

Variable Mean
Standard

Error Type
Lower
Bound

Upper
Bound

N Obs
Lower
Bound

N Obs
Upper
Bound

y 127.0 159.491090 Censored 0 400.0 249E4 8E5

Convergence criterion (FCONV=2.220446E-16) satisfied.

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable y

Number of Observations 5000000

Log Likelihood -15268972

Maximum Absolute Gradient 0.0008332

Number of Iterations 10

Optimization Method Quasi-Newton

AIC 30537962

Schwarz Criterion 30538083

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.220358 0.222201 9.99 <.0001

x1 1 3.055491 0.201620 15.15 <.0001

x2 1 4.000196 0.201570 19.85 <.0001

x3 1 1.852735 0.201555 9.19 <.0001

x4 1 4.170323 0.201533 20.69 <.0001

x5 1 -3.010670 0.201458 -14.94 <.0001

x6 1 -5.176019 0.201541 -25.68 <.0001

x7 1 -2.695886 0.201671 -13.37 <.0001

_Sigma 1 399.997846 0.261930 1527.12 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 12.70 39.69%

Optimization 19.29 60.31%

Post-optimization 0.00 0.00%

As this example suggests, increasing the number of threads improves performance significantly.
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Example 21.2: Bayesian High-Performance Model with Censoring
This example shows the use of the Bayesian analysis available in the HPQLIM procedure with an emphasis
on processing a large data set and on the performance improvements that are achieved by executing in a
high-performance distributed environment.

The model and the data set are the same as in Example 21.1, and the priors are set to the defaults.

The model is executed in single-machine mode with 32 threads.

title1 'Bayesian Estimation of a Censored Model';

proc hpqlim data=simulate ;
bayes nbi=100 nmc=1000;

performance nthreads=32 details;
model y=x1-x7 /censored(lb=0 ub=400);

run;

Output 21.2.1 shows a summary of the posterior distribution that is associated with the censored model when
you use diffuse prior distributions.

Output 21.2.1 Posterior Summary for Bayesian Censored Model

Bayesian Estimation of a Censored Model

The HPQLIM Procedure

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 1000 2.2074 0.2532 2.0407 2.2208 2.3998

x1 1000 3.0522 0.2077 2.9130 3.0706 3.2080

x2 1000 3.9879 0.2378 3.8285 3.9885 4.1549

x3 1000 1.8761 0.2324 1.7277 1.8853 2.0314

x4 1000 4.1859 0.2027 4.0289 4.1938 4.3254

x5 1000 -2.9589 0.2202 -3.1090 -2.9455 -2.7882

x6 1000 -5.1753 0.2083 -5.3356 -5.1675 -5.0062

x7 1000 -2.6820 0.1921 -2.8095 -2.6764 -2.5349

_Sigma 1000 400.1 0.2813 399.9 400.1 400.3

Output 21.2.2 shows a summary of the performance when you run in single-machine mode with 32 threads.

Output 21.2.2 Performance Analysis for Bayesian Censored Model in Single-Machine Mode with 32
Threads

Bayesian Estimation of a Censored Model

Performance Information

Execution Mode Single-Machine

Number of Threads 32
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Output 21.2.2 continued

Bayesian Estimation of a Censored Model

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 6.64 0.22%

Bayesian Analysis: Likelihood for MCMC 2980.97 99.27%

Bayesian Analysis: MCMC 0.85 0.03%

Optimization 14.50 0.48%

Post-optimization 0.00 0.00%

Finally, Output 21.2.3 shows the diagnostic and summary plots that are associated with X1.

Output 21.2.3 Bayesian Diagnostic and Summary Plots for x1

The implementation took around 30 minutes to sample from the posterior distribution. The same implementa-
tion using a single thread would have taken approximately 12 hours.
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Overview: HPSEVERITY Procedure
The HPSEVERITY procedure estimates parameters of any arbitrary continuous probability distribution that
is used to model the magnitude (severity) of a continuous-valued event of interest. Some examples of such
events are loss amounts paid by an insurance company and demand of a product as depicted by its sales.
PROC HPSEVERITY is especially useful when the severity of an event does not follow typical distributions
(such as the normal distribution) that are often assumed by standard statistical methods.

PROC HPSEVERITY provides a default set of probability distribution models that includes the Burr,
exponential, gamma, generalized Pareto, inverse Gaussian (Wald), lognormal, Pareto (Type II), Tweedie, and
Weibull distributions. In the simplest form, you can estimate the parameters of any of these distributions by
using a list of severity values that are recorded in a SAS data set. You can optionally group the values by a
set of BY variables. PROC HPSEVERITY computes the estimates of the model parameters, their standard
errors, and their covariance structure by using the maximum likelihood method for each of the BY groups.

PROC HPSEVERITY can fit multiple distributions at the same time and choose the best distribution according
to a selection criterion that you specify. You can use seven different statistics of fit as selection criteria. They
are log likelihood, Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICC),
Schwarz Bayesian information criterion (BIC), Kolmogorov-Smirnov statistic (KS), Anderson-Darling
statistic (AD), and Cramér–von Mises statistic (CvM).

You can request the procedure to output the status of the estimation process, the parameter estimates and their
standard errors, the estimated covariance structure of the parameters, the statistics of fit, estimated cumulative
distribution function (CDF) for each of the specified distributions, and the empirical distribution function
(EDF) estimate (which is used to compute the KS, AD, and CvM statistics of fit).

The following key features make PROC HPSEVERITY unique among SAS procedures that can estimate
continuous probability distributions:

� It enables you to fit a distribution model when the severity values are truncated or censored or both. You
can specify any combination of the following types of censoring and truncation effects: left-censoring,



Overview: HPSEVERITY Procedure F 1145

right-censoring, left-truncation, or right-truncation. This is especially useful in applications with an
insurance-type model where a severity (loss) is reported and recorded only if it is greater than the
deductible amount (left-truncation) and where a severity value greater than or equal to the policy limit
is recorded at the limit (right-censoring). Another useful application is that of interval-censored data,
where you know both the lower limit (right-censoring) and upper limit (left-censoring) on the severity,
but you do not know the exact value.

PROC HPSEVERITY also enables you to specify a probability of observability for the left-truncated
data, which is a probability of observing values greater than the left-truncation threshold. This
additional information can be useful in certain applications to more correctly model the distribution of
the severity of events.

It uses an appropriate estimator of the empirical distribution function (EDF). EDF is required to
compute the KS, AD, and CvM statistics-of-fit. The procedure also provides the EDF estimates to
your custom parameter initialization method. When you specify truncation or censoring, the EDF is
estimated by using either Kaplan-Meier’s product-limit estimator or Turnbull’s estimator. The former is
used by default when you specify only one form of censoring effect (right-censoring or left-censoring),
whereas the latter is used by default when you specify both left-censoring and right-censoring effects.
The procedure computes the standard errors for all EDF estimators.

� It enables you to define any arbitrary continuous parametric distribution model and to estimate its
parameters. You just need to define the key components of the distribution, such as its probability
density function (PDF) and cumulative distribution function (CDF), as a set of functions and subroutines
written with the FCMP procedure, which is part of Base SAS software. As long as the functions and
subroutines follow certain rules, the HPSEVERITY procedure can fit the distribution model defined by
them.

� It can model the influence of exogenous or regressor variables on a probability distribution, as long as
the distribution has a scale parameter. A linear combination of regression effects is assumed to affect
the scale parameter via an exponential link function.

If a distribution does not have a scale parameter, then either it needs to have another parameter that can
be derived from a scale parameter by using a supported transformation or it needs to be reparameterized
to have a scale parameter. If neither of these is possible, then regression effects cannot be modeled.

You can easily construct many types of regression effects by using various operators on a set of classifi-
cation and continuous variables. You can specify classification variables in the CLASS statement.

� It enables you to specify your own objective function to be optimized for estimating the parameters of
a model. You can write SAS programming statements to specify the contribution of each observation
to the objective function. You can use keyword functions such as _PDF_ and _CDF_ to generalize
the objective function to any distribution. If you do not specify your own objective function, then the
parameters of a model are estimated by maximizing the likelihood function of the data.

� It enables you to create scoring functions that offer a convenient way to evaluate any distribution
function, such as PDF, CDF, QUANTILE, or your custom distribution function, for a fitted model on
new observations.
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Getting Started: HPSEVERITY Procedure
This section outlines the use of the HPSEVERITY procedure to fit continuous probability distribution models.
Three examples illustrate different features of the procedure.

A Simple Example of Fitting Predefined Distributions
The simplest way to use PROC HPSEVERITY is to fit all the predefined distributions to a set of values and
let the procedure identify the best fitting distribution.

Consider a lognormal distribution, whose probability density function (PDF) f and cumulative distribution
function (CDF) F are as follows, respectively, where ˆ denotes the CDF of the standard normal distribution:

f .xI�; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2
and F.xI�; �/ D ˆ

�
log.x/ � �

�

�

The following DATA step statements simulate a sample from a lognormal distribution with population
parameters � D 1:5 and � D 0:25, and store the sample in the variable Y of a data set Work.Test_sev1:

/*------------- Simple Lognormal Example -------------*/
data test_sev1(keep=y label='Simple Lognormal Sample');

call streaminit(45678);
label y='Response Variable';
Mu = 1.5;
Sigma = 0.25;
do n = 1 to 100;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;

The following statements fit all the predefined distribution models to the values of Y and identify the best
distribution according to the corrected Akaike’s information criterion (AICC):

proc hpseverity data=test_sev1 crit=aicc;
loss y;
dist _predefined_;

run;

The PROC HPSEVERITY statement specifies the input data set along with the model selection criterion, the
LOSS statement specifies the variable to be modeled, and the DIST statement with the _PREDEFINED_
keyword specifies that all the predefined distribution models be fitted.

Some of the default output displayed by this step is shown in Figure 22.1 through Figure 22.3. First,
information about the input data set is displayed followed by the “Model Selection” table, as shown in
Figure 22.1. The model selection table displays the convergence status, the value of the selection criterion,
and the selection status for each of the candidate models. The Converged column indicates whether the
estimation process for a given distribution model has converged, might have converged, or failed. The
Selected column indicates whether a given distribution has the best fit for the data according to the selection
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criterion. For this example, the lognormal distribution model is selected, because it has the lowest value for
the selection criterion.

Figure 22.1 Data Set Information and Model Selection Table

The HPSEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV1

Label Simple Lognormal Sample

Model Selection

Distribution Converged AICC Selected

Burr Yes 322.50845 No

Exp Yes 508.12287 No

Gamma Yes 320.50264 No

Igauss Yes 319.61652 No

Logn Yes 319.56579 Yes

Pareto Yes 510.28172 No

Gpd Yes 510.20576 No

Weibull Yes 334.82373 No

Next, the estimation information for each of the candidate models is displayed. The information for the
lognormal model, which is the best fitting model, is shown in Figure 22.2. The first table displays a summary
of the distribution. The second table displays the convergence status. This is followed by a summary of
the optimization process which indicates the technique used, the number of iterations, the number of times
the objective function was evaluated, and the log likelihood attained at the end of the optimization. Since
the model with lognormal distribution has converged, PROC HPSEVERITY displays its statistics of fit and
parameter estimates. The estimates of Mu=1.49605 and Sigma=0.26243 are quite close to the population
parameters of Mu=1.5 and Sigma=0.25 from which the sample was generated. The p-value for each estimate
indicates the rejection of the null hypothesis that the estimate is 0, implying that both the estimates are
significantly different from 0.

Figure 22.2 Estimation Details for the Lognormal Model

The HPSEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn

Description Lognormal Distribution

Distribution Parameters 2

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 2

Function Calls 8

Log Likelihood -157.72104
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Figure 22.2 continued

Fit Statistics

-2 Log Likelihood 315.44208

AIC 319.44208

AICC 319.56579

BIC 324.65242

Kolmogorov-Smirnov 0.50641

Anderson-Darling 0.31240

Cramer-von Mises 0.04353

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 1.49605 0.02651 56.43 <.0001

Sigma 1 0.26243 0.01874 14.00 <.0001

The parameter estimates of the Burr distribution are shown in Figure 22.3. These estimates are used in the
next example.

Figure 22.3 Parameter Estimates for the Burr Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 4.62348 0.46181 10.01 <.0001

Alpha 1 1.15706 0.47493 2.44 0.0167

Gamma 1 6.41227 0.99039 6.47 <.0001

An Example with Left-Truncation and Right-Censoring
PROC HPSEVERITY enables you to specify that the response variable values are left-truncated or right-
censored. The following DATA step expands the data set of the previous example to simulate a scenario that
is typically encountered by an automobile insurance company. The values of the variable Y represent the
loss values on claims that are reported to an auto insurance company. The variable THRESHOLD records
the deductible on the insurance policy. If the actual value of Y is less than or equal to the deductible, then
it is unobservable and does not get recorded. In other words, THRESHOLD specifies the left-truncation of
Y. LIMIT records the policy limit. If the value of Y is equal to or greater than the recorded value, then the
observation is right-censored.

/*----- Lognormal Model with left-truncation and censoring -----*/
data test_sev2(keep=y threshold limit

label='A Lognormal Sample With Censoring and Truncation');
set test_sev1;
label y='Censored & Truncated Response';
if _n_ = 1 then call streaminit(45679);

/* make about 20% of the observations left-truncated */
if (rand('UNIFORM') < 0.2) then
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threshold = y * (1 - rand('UNIFORM'));
else

threshold = .;
/* make about 15% of the observations right-censored */
iscens = (rand('UNIFORM') < 0.15);
if (iscens) then

limit = y;
else

limit = .;
run;

The following statements use the AICC criterion to analyze which of the four predefined distributions
(lognormal, Burr, gamma, and Weibull) has the best fit for the data:

proc hpseverity data=test_sev2 crit=aicc print=all ;
loss y / lt=threshold rc=limit;

dist logn burr gamma weibull;
performance nthreads=2;

run;

The LOSS statement specifies the left-truncation and right-censoring variables. The DIST statement specifies
the candidate distributions. The PRINT= option in the PROC HPSEVERITY statement requests that all
the displayed output be prepared. The NTHREADS option in the PERFORMANCE statement specifies
that two threads of computation be used. The option is shown here just for illustration. You should use
it only when you want to restrict the procedure to use a different number of threads than the value of the
CPUCOUNT= system option, which usually defaults to the number of physical CPU cores available on your
machine, thereby allowing the procedure to fully utilize the computational power of your machine.

Some of the key results prepared by PROC HPSEVERITY are shown in Figure 22.4 through Figure 22.7. In
addition to the estimates of the range, mean, and standard deviation of Y, the “Descriptive Statistics for y”
table shown in Figure 22.4 also indicates the number of observations that are left-truncated or right-censored.
The “Model Selection” table in Figure 22.4 shows that models with all the candidate distributions have
converged and that the Logn (lognormal) model has the best fit for the data according to the AICC criterion.

Figure 22.4 Summary Results for the Truncated and Censored Data

The HPSEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV2

Label A Lognormal Sample With Censoring and Truncation

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 2.30264

Maximum 8.34116

Mean 4.62007

Standard Deviation 1.23627

Left Truncated Observations 23

Right Censored Observations 14
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Figure 22.4 continued

Model Selection

Distribution Converged AICC Selected

Logn Yes 298.92672 Yes

Burr Yes 302.66229 No

Gamma Yes 299.45293 No

Weibull Yes 309.26779 No

PROC HPSEVERITY also prepares a table that shows all the fit statistics for all the candidate models. It is
useful to see which model would be the best fit according to each of the criteria. The “All Fit Statistics” table
prepared for this example is shown in Figure 22.5. It indicates that the lognormal model is chosen by all the
criteria.

Figure 22.5 Comparing All Statistics of Fit for the Truncated and Censored Data

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Logn 294.80301 * 298.80301 * 298.92672 * 304.01335 * 0.51824 * 0.34736 * 0.05159 *

Burr 296.41229 302.41229 302.66229 310.22780 0.66984 0.36712 0.05726

Gamma 295.32921 299.32921 299.45293 304.53955 0.62511 0.42921 0.05526

Weibull 305.14408 309.14408 309.26779 314.35442 0.93307 1.40699 0.17465

Note: The asterisk (*) marks the best model according to each column's criterion.

Specifying Initial Values for Parameters

All the predefined distributions have parameter initialization functions built into them. For the current
example, Figure 22.6 shows the initial values that are obtained by the predefined method for the Burr
distribution. It also shows the summary of the optimization process and the final parameter estimates.

Figure 22.6 Burr Model Summary for the Truncated and Censored Data

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Theta 4.78102 1.05367E-8 Infty

Alpha 2.00000 1.05367E-8 Infty

Gamma 2.00000 1.05367E-8 Infty

Optimization Summary

Optimization Technique Trust Region

Iterations 8

Function Calls 23

Log Likelihood -148.20614



An Example with Left-Truncation and Right-Censoring F 1151

Figure 22.6 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 4.76980 0.62492 7.63 <.0001

Alpha 1 1.16363 0.58859 1.98 0.0509

Gamma 1 5.94081 1.05004 5.66 <.0001

You can specify a different set of initial values if estimates are available from fitting the distribution to similar
data. For this example, the parameters of the Burr distribution can be initialized with the final parameter
estimates of the Burr distribution that were obtained in the first example (shown in Figure 22.3). One of the
ways in which you can specify the initial values is as follows:

/*------ Specifying initial values using INIT= option -------*/
proc hpseverity data=test_sev2 crit=aicc print=all;

loss y / lt=threshold rc=limit;

dist burr(init=(theta=4.62348 alpha=1.15706 gamma=6.41227));
performance nthreads=2;

run;

The names of the parameters that are specified in the INIT option must match the parameter names in the
definition of the distribution. The results obtained with these initial values are shown in Figure 22.7. These
results indicate that new set of initial values causes the optimizer to reach the same solution with fewer
iterations and function evaluations as compared to the default initialization.

Figure 22.7 Burr Model Optimization Summary for the Truncated and Censored Data

The HPSEVERITY Procedure
Burr Distribution

Optimization Summary

Optimization Technique Trust Region

Iterations 5

Function Calls 16

Log Likelihood -148.20614

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 4.76980 0.62492 7.63 <.0001

Alpha 1 1.16363 0.58859 1.98 0.0509

Gamma 1 5.94081 1.05004 5.66 <.0001
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An Example of Modeling Regression Effects
Consider a scenario in which the magnitude of the response variable might be affected by some regressor
(exogenous or independent) variables. The HPSEVERITY procedure enables you to model the effect of
such variables on the distribution of the response variable via an exponential link function. In particular, if
you have k random regressor variables denoted by xj (j D 1; : : : ; k), then the distribution of the response
variable Y is assumed to have the form

Y � exp.
kX
jD1

ˇjxj / � F.‚/

where F denotes the distribution of Y with parameters ‚ and ˇj .j D 1; : : : ; k/ denote the regression
parameters (coefficients).

For the effective distribution of Y to be a valid distribution from the same parametric family as F , it is
necessary for F to have a scale parameter. The effective distribution of Y can be written as

Y � F.�;�/

where � denotes the scale parameter and � denotes the set of nonscale parameters. The scale � is affected by
the regressors as

� D �0 � exp.
kX
jD1

ˇjxj /

where �0 denotes a base value of the scale parameter.

Given this form of the model, PROC HPSEVERITY allows a distribution to be a candidate for modeling
regression effects only if it has an untransformed or a log-transformed scale parameter.

All the predefined distributions, except the lognormal distribution, have a direct scale parameter (that is, a
parameter that is a scale parameter without any transformation). For the lognormal distribution, the parameter
� is a log-transformed scale parameter. This can be verified by replacing � with a parameter � D e�, which
results in the following expressions for the PDF f and the CDF F in terms of � and � , respectively, where ˆ
denotes the CDF of the standard normal distribution:

f .xI �; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/�log.�/

�

�2
and F.xI �; �/ D ˆ

�
log.x/ � log.�/

�

�

With this parameterization, the PDF satisfies the f .xI �; �/ D 1
�
f .x

�
I 1; �/ condition and the CDF satisfies

the F.xI �; �/ D F.x
�
I 1; �/ condition. This makes � a scale parameter. Hence, � D log.�/ is a log-

transformed scale parameter and the lognormal distribution is eligible for modeling regression effects.

The following DATA step simulates a lognormal sample whose scale is decided by the values of the three
regressors X1, X2, and X3 as follows:

� D log.�/ D 1C 0:75 X1 � X2C 0:25 X3
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/*----------- Lognormal Model with Regressors ------------*/
data test_sev3(keep=y x1-x3

label='A Lognormal Sample Affected by Regressors');
array x{*} x1-x3;
array b{4} _TEMPORARY_ (1 0.75 -1 0.25);
call streaminit(45678);
label y='Response Influenced by Regressors';
Sigma = 0.25;
do n = 1 to 100;

Mu = b(1); /* log of base value of scale */
do i = 1 to dim(x);

x(i) = rand('UNIFORM');
Mu = Mu + b(i+1) * x(i);

end;
y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;

The following PROC HPSEVERITY step fits the lognormal, Burr, and gamma distribution models to these
data. The regressors are specified in the SCALEMODEL statement.

proc hpseverity data=test_sev3 crit=aicc print=all;
loss y;
scalemodel x1-x3;

dist logn burr gamma;
run;

Some of the key results prepared by PROC HPSEVERITY are shown in Figure 22.8 through Figure 22.12.
The descriptive statistics of all the variables are shown in Figure 22.8.

Figure 22.8 Summary Results for the Regression Example

The HPSEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV3

Label A Lognormal Sample Affected by Regressors

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 1.17863

Maximum 6.65269

Mean 2.99859

Standard Deviation 1.12845
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Figure 22.8 continued

Descriptive Statistics for Regressors

Variable N Minimum Maximum Mean
Standard
Deviation

x1 100 0.0005115 0.97971 0.51689 0.28206

x2 100 0.01883 0.99937 0.47345 0.28885

x3 100 0.00255 0.97558 0.48301 0.29709

The comparison of the fit statistics of all the models is shown in Figure 22.9. It indicates that the lognormal
model is the best model according to each of the likelihood-based statistics, whereas the gamma model is the
best model according to two of the three EDF-based statistics.

Figure 22.9 Comparison of Statistics of Fit for the Regression Example

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Logn 187.49609 * 197.49609 * 198.13439 * 210.52194 * 1.97544 17.24618 1.21665

Burr 190.69154 202.69154 203.59476 218.32256 2.09334 13.93436 * 1.28529

Gamma 188.91483 198.91483 199.55313 211.94069 1.94472 * 15.84787 1.17617 *

Note: The asterisk (*) marks the best model according to each column's criterion.

The distribution information and the convergence results of the lognormal model are shown in Figure 22.10.
The iteration history gives you a summary of how the optimizer is traversing the surface of the log-likelihood
function in its attempt to reach the optimum. Both the change in the log likelihood and the maximum gradient
of the objective function with respect to any of the parameters typically approach 0 if the optimizer converges.

Figure 22.10 Convergence Results for the Lognormal Model with Regressors

The HPSEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn

Description Lognormal Distribution

Distribution Parameters 2

Regression Parameters 3

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Iteration History

Iter
Function

Calls
-Log

Likelihood Change
Maximum
Gradient

0 2 93.75285 6.16002

1 4 93.74805 -0.0048055 0.11031

2 6 93.74805 -1.5017E-6 0.00003376

3 10 93.74805 -1.279E-13 3.1122E-12
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Figure 22.10 continued

Optimization Summary

Optimization Technique Trust Region

Iterations 3

Function Calls 10

Log Likelihood -93.74805

The final parameter estimates of the lognormal model are shown in Figure 22.11. All the estimates are
significantly different from 0. The estimate that is reported for the parameter Mu is the base value for the
log-transformed scale parameter �. Let xi .1 � i � 3/ denote the observed value for regressor Xi. If the
lognormal distribution is chosen to model Y, then the effective value of the parameter � varies with the
observed values of regressors as

� D 1:04047C 0:65221 x1 � 0:91116 x2 C 0:16243 x3

These estimated coefficients are reasonably close to the population parameters (that is, within one or two
standard errors).

Figure 22.11 Parameter Estimates for the Lognormal Model with Regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 1.04047 0.07614 13.66 <.0001

Sigma 1 0.22177 0.01609 13.78 <.0001

x1 1 0.65221 0.08167 7.99 <.0001

x2 1 -0.91116 0.07946 -11.47 <.0001

x3 1 0.16243 0.07782 2.09 0.0395

The estimates of the gamma distribution model, which is the best model according to a majority of the
EDF-based statistics, are shown in Figure 22.12. The estimate that is reported for the parameter Theta is the
base value for the scale parameter � . If the gamma distribution is chosen to model Y, then the effective value
of the scale parameter is � D 0:14293 exp.0:64562 x1 � 0:89831 x2 C 0:14901 x3/.

Figure 22.12 Parameter Estimates for the Gamma Model with Regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 0.14293 0.02329 6.14 <.0001

Alpha 1 20.37726 2.93277 6.95 <.0001

x1 1 0.64562 0.08224 7.85 <.0001

x2 1 -0.89831 0.07962 -11.28 <.0001

x3 1 0.14901 0.07870 1.89 0.0613
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Syntax: HPSEVERITY Procedure
The following statements are available in the HPSEVERITY procedure:

PROC HPSEVERITY options ;
BY variable-list ;
LOSS < response-variable > < / censoring-truncation-options > ;
WEIGHT weight-variable ;
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;
SCALEMODEL regression-effect-list < / scalemodel-options > ;
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword

< (distribution-option) > > . . . > < / preprocess-options > ;
OUTPUT < OUT=SAS-data-set > output-options ;
OUTSCORELIB < OUTLIB= > fcmp-library-name options ;
NLOPTIONS options ;
PERFORMANCE options ;
Programming statements ;

Functional Summary
Table 22.1 summarizes the statements and options that control the HPSEVERITY procedure.

Table 22.1 Functional Summary

Description Statement Option

Statements
Specifies BY-group processing BY
Specifies the response variable to model along
with censoring and truncation effects

LOSS

Specifies the weight variable WEIGHT
Specifies the classification variables CLASS
Specifies the regression effects to model SCALEMODEL
Specifies distributions to fit DIST
Specifies the scoring functions and quantiles to
write

OUTPUT

Specifies the library to write scoring functions to OUTSCORELIB
Specifies optimization options NLOPTIONS
Specifies performance options PERFORMANCE
Specifies programming statements that define an
objective function

Programming statements

Input and Output Options
Specifies that the OUTEST= data set contain
covariance estimates

PROC HPSEVERITY COVOUT

Specifies the input data set PROC HPSEVERITY DATA=
Specifies the input data set for parameter estimates PROC HPSEVERITY INEST=
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Table 22.1 continued

Description Statement Option

Specifies the input item store for parameter
initialization

PROC HPSEVERITY INSTORE=

Limits the length of effect names PROC HPSEVERITY NAMELEN=
Specifies the output data set for estimates of
scoring functions and quantiles

OUTPUT OUT=

Specifies the output data set for CDF estimates PROC HPSEVERITY OUTCDF=
Specifies the output data set for parameter
estimates

PROC HPSEVERITY OUTEST=

Specifies the output data set for model information PROC HPSEVERITY OUTMODELINFO=
Specifies the output data set for statistics of fit PROC HPSEVERITY OUTSTAT=
Specifies the output item store for context and
estimation results

PROC HPSEVERITY OUTSTORE=

Data Interpretation Options
Specifies left-censoring LOSS LEFTCENSORED=
Specifies left-truncation LOSS LEFTTRUNCATED=
Specifies the probability of observability LOSS PROBOBSERVED=
Specifies right-censoring LOSS RIGHTCENSORED=
Specifies right-truncation LOSS RIGHTTRUNCATED=

Model Estimation Options
Specifies the model selection criterion PROC HPSEVERITY CRITERION=
Specifies the method for computing mixture
distribution

SCALEMODEL DFMIXTURE=

Specifies initial values for model parameters DIST INIT=
Specifies role of constant distribution parameters
in fit statistic calculations

PROC HPSEVERITY NOCONSTFITSTATS

Specifies the objective function symbol PROC HPSEVERITY OBJECTIVE=
Specifies the offset variable in the scale regression
model

SCALEMODEL OFFSET=

Specifies the denominator for computing
covariance estimates

PROC HPSEVERITY VARDEF=

Empirical Distribution Function (EDF) Estimation Options
Specifies the confidence level for reporting the
confidence interval for EDF estimates

PROC HPSEVERITY EDFALPHA=

Specifies the nonparametric method of CDF
estimation

PROC HPSEVERITY EMPIRICALCDF=

Specifies the sample to be used for computing the
EDF estimates

PROC HPSEVERITY INITSAMPLE

EMPIRICALCDF=MODIFIEDKM Options
Specifies the ˛ value for the lower bound on risk
set size

PROC HPSEVERITY ALPHA=
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Table 22.1 continued

Description Statement Option

Specifies the c value for the lower bound on risk
set size

PROC HPSEVERITY C=

Specifies the absolute lower bound on risk set size PROC HPSEVERITY RSLB=

EMPIRICALCDF=TURNBULL Options
Specifies that the final EDF estimates be
maximum likelihood estimates

PROC HPSEVERITY ENSUREMLE

Specifies the relative convergence criterion PROC HPSEVERITY EPS=
Specifies the maximum number of iterations PROC HPSEVERITY MAXITER=
Specifies the threshold below which an EDF
estimate is deemed to be 0

PROC HPSEVERITY ZEROPROB=

OUT= Data Set Generation Options
Specifies the variables to copy from the DATA=
data set to the OUT= data set

OUTPUT COPYVARS=

Specifies the scoring functions to estimate OUTPUT FUNCTIONS=
Specifies the quantiles to estimate OUTPUT QUANTILES=

Scoring Function Generation Options
Specifies that scoring functions of all models be
written to one package

OUTSCORELIB COMMONPACKAGE

Specifies the output data set for BY-group
identifiers

OUTSCORELIB OUTBYID=

Specifies the output library for scoring functions OUTSCORELIB OUTLIB=

Displayed Output and Plotting Options
Specifies that distributions be listed to the log
without estimating any models that use them

DIST LISTONLY

Limits or suppresses the display of class levels PROC HPSEVERITY NOCLPRINT
Suppresses all displayed and graphical output PROC HPSEVERITY NOPRINT
Specifies which graphical output to prepare PROC HPSEVERITY PLOTS=
Specifies which output to display PROC HPSEVERITY PRINT=
Specifies that distributions be validated without
estimating any models that use them

DIST VALIDATEONLY
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PROC HPSEVERITY Statement
PROC HPSEVERITY options ;

The PROC HPSEVERITY statement invokes the procedure. You can specify two types of options in the
PROC HPSEVERITY statement. One set of options controls input and output. The other set of options
controls the model estimation and selection process.

The following options control the input data sets used by PROC HPSEVERITY and various forms of output
generated by PROC HPSEVERITY. The options are listed in alphabetical order.

COVOUT
specifies that the OUTEST= data set contain the estimate of the covariance structure of the parameters.
This option has no effect if you do not specify the OUTEST= option. For more information about
how the covariance is reported in the OUTEST= data set, see the section “OUTEST= Data Set” on
page 1257.

DATA=SAS-data-set
names the input data set. If you do not specify the DATA= option, then the most recently created SAS
data set is used.

EDFALPHA=confidence-level
specifies the confidence level in the (0,1) range that is used for computing the confidence intervals for
the EDF estimates. The lower and upper confidence limits that correspond to this level are reported in
the OUTCDF= data set, if specified, and are displayed in the plot that is created when you specify the
PLOTS=CDFPERDIST option.

If you do not specify the EDFALPHA= option, then PROC HPSEVERITY uses a default value of 0.05.

INEST=SAS-data-set
names the input data set that contains the initial values of the parameter estimates to start the opti-
mization process. The initial values that you specify in the INIT= option in the DIST statement take
precedence over any initial values that you specify in the INEST= data set. For more information about
the variables in this data set, see the section “INEST= Data Set” on page 1255.

If you specify the SCALEMODEL statement, then PROC HPSEVERITY reads the INEST= data
set only if the SCALEMODEL statement contains singleton continuous effects. For more generic
regression effects, you should save the estimates by specifying the OUTSTORE= item store in a step
and then use the INSTORE= option to read those estimates. The INSTORE= option is the newer and
more flexible method of specifying initial values for distribution and regression parameters.

INITSAMPLE (initsample-option)

INITSAMPLE (initsample-option . . . initsample-option)
specifies that a sample of the input data be used for initializing the distribution parameters. If you
specify more than one initsample-option, then separate them with spaces.

When you do not specify initial values for the distribution parameters, PROC HPSEVERITY needs to
compute the empirical distribution function (EDF) estimates as part of the default method for parameter
initialization. The EDF estimation process can be expensive, especially when you specify censoring
or truncation effects for the loss variable. Furthermore, it is not amenable to parallelism due to the
sequential nature of the algorithm for truncation effects. You can use the INITSAMPLE option to
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specify that only a fraction of the input data be used in order to reduce the time taken to compute the
EDF estimates. PROC HPSEVERITY uses the uniform random sampling method to select the sample,
the size and randomness of which are controlled by the following initsample-options:

FRACTION=number
specifies the fraction, between 0 and 1, of the input data to be used for sampling.

SEED=number
specifies the seed to be used for the uniform random number generator. This option enables you
to select the same sample from the same input data across different runs of PROC HPSEVERITY,
which can be useful for replicating the results across different runs. If you do not specify the seed
value, PROC HPSEVERITY generates a seed that is based on the system clock.

SIZE=number
specifies the size of the sample. If you specify both of the SIZE= and FRACTION= options, then
the value that you specify in the SIZE= option is used and the FRACTION= option is ignored.

If you do not specify the INITSAMPLE option, then a uniform random sample of at most 10,000
observations is used for EDF estimation.

INSTORE=store-name
names the item store that contains the context and results of the severity model estimation process. An
item store has a binary file format that cannot be modified. You must specify an item store that you
have created in another PROC HPSEVERITY step by using the OUTSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then PROC HPSEVERITY reads the item store from the WORK library. If you specify a
two-level name of the form libname.membername, then PROC HPSEVERITY reads the item store from
the libname library.

This option is more flexible than the INEST= option, because it can read estimates of any type of scale
regression model; the INEST= option can read only scale regression models that contain singleton
continuous effects.

For more information about how the input item store is used for parameter initialization, see the
sections “Parameter Initialization” on page 1199 and “Parameter Initialization for Regression Models”
on page 1201.

NAMELEN=number
specifies the length to which long regression effect names are shortened. The default and minimum
value is 20.

This option does not apply to the names of singleton continuous effects if you have not specified any
CLASS variables.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , the values of the classification variables are displayed for only those variables whose
number of levels is less than number . Specifying a number helps to reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels. This option has no
effect if you do not specify the CLASS statement.
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NOPRINT
turns off all displayed and graphical output. If you specify this option, then any value that you specify
for the PRINT= and PLOTS= options is ignored.

OUTCDF=SAS-data-set
names the output data set to contain estimates of the cumulative distribution function (CDF) value at
each of the observations.

The information is output for each specified model whose parameter estimation process converges. The
data set also contains the estimates of the empirical distribution function (EDF). For more information
about the variables in this data set, see the section “OUTCDF= Data Set” on page 1256.

OUTEST=SAS-data-set
names the output data set to contain estimates of the parameter values and their standard errors for
each model whose parameter estimation process converges. For more information about the variables
in this data set, see the section “OUTEST= Data Set” on page 1257.

If you specify the SCALEMODEL statement such that it contains at least one effect that is not a
singleton continuous effect, then the OUTEST= data set that this option creates cannot be used as an
INEST= data set in a subsequent PROC HPSEVERITY step. In such cases, it is recommended that you
use the newer OUTSTORE= option to save the estimates and specify those estimates in a subsequent
PROC HPSEVERITY step by using the INSTORE= option.

OUTMODELINFO=SAS-data-set
names the output data set to contain the information about each candidate distribution. For more
information about the variables in this data set, see the section “OUTMODELINFO= Data Set” on
page 1259.

OUTSTAT=SAS-data-set
names the output data set to contain the values of statistics of fit for each model whose parameter
estimation process converges. For more information about the variables in this data set, see the section
“OUTSTAT= Data Set” on page 1259.

OUTSTORE=store-name
names the item store to contain the context and results of the severity model estimation process. The
resulting item store has a binary file format that cannot be modified. You can specify this item store in
a subsequent PROC HPSEVERITY step by using the INSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-
level name, then the item store resides in the WORK library and is deleted at the end of the SAS
session. Because item stores are meant to be consumed by a subsequent PROC HPSEVERITY step for
parameter initialization, typical usage specifies a two-level name of the form libname.membername.

This option is more useful than the OUTEST= option, especially when you specify a scale regression
model that contains interaction effects or effects that have CLASS variables. You can initialize such
scale regression models in a subsequent PROC HPSEVERITY step only by specifying the item store
that this option creates as an INSTORE= item store in that step.
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PLOTS < (global-plot-options) > < =plot-request-option >

PLOTS < (global-plot-options) > < =(plot-request-option . . . plot-request-option) >
specifies the desired graphical output. If you specify more than one global-plot-option, then separate
them with spaces and enclose them in parentheses. If you specify more than one plot-request-option,
then separate them with spaces and enclose them in parentheses.

You can specify the following global-plot-options:

HISTOGRAM
plots the histogram of the response variable on the PDF plots.

KERNEL
plots the kernel estimate of the probability density of the response variable on the PDF plots.

ONLY
turns off the default graphical output and creates only the requested plots.

You can specify the following plot-request-options:

ALL
creates all the graphical output.

CDF
creates a plot that compares the cumulative distribution function (CDF) estimates of all the
candidate distribution models to the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge.

CDFPERDIST
creates a plot of the CDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

CONDITIONALPDF < (cpdf-options) >

CONDPDF < (cpdf-options) >
creates a plot that compares the conditional PDF estimates of all the candidate distribution models.
The plot does not contain conditional PDF estimates for models whose parameter estimation
process does not converge.

A conditional PDF of a loss random variable Y in an interval .Yl ; Yr � is the probability that a
specific loss value is observed, given that the loss values belong to that interval. Formally, the
conditional PDF of y, denoted by f c.y/, for the .Yl ; Yr � interval is defined as f c.y/ D PrŒY D
yjYl < Y � Yr �. If f .y/ and F.y/ denote the PDF and CDF at loss value y, respectively, then
f c.y/ for the .Yl ; Yr � interval is computed as f c.y/ D f .y/=.F.Yr/ � F.Yl//. The scaling
factor of 1=.F.Yr/ � F.Yl// ensures that the conditional PDF is a true PDF that integrates to 1
in the .Yl ; Yr � interval.

PROC HPSEVERITY prepares a conditional PDF comparison plot that contains at most three
regions (intervals) of mutually exclusive ranges of the loss variable’s value:

� Left-tail: .ymin � �; L�,
� Center: .L;R�, and
� Right-tail: .R; ymax�,
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where ymin and ymax denote the smallest and largest values of the loss variable in the DATA=
data set, respectively, and � denotes a small machine-precision constant for a double-precision
value.

You can specify the following cpdf-options to control how the values of L and R are computed
and which regions are displayed:

LEFTQ | LEFT | L=number
specifies the CDF value, between 0 and 1, to mark the end of the left-tail region. The left-tail
region always starts at the minimum loss variable value in the DATA= data set. The value of L,
the end of the left-tail region, is determined by the number that you specify. Let the number
be pl . If you do not specify the QUANTILEBOUNDS option, then PROC HPSEVERITY
sets L equal to the 100pl th percentile. If you specify the QUANTILEBOUNDS option, then
for a distribution D with an estimated quantile function OQD , LD D OQD.pl/ marks the end
of the left-tail region. LD can be different for each distribution, so the left-tail region ends
at different values for different distributions.

RIGHTQ | RIGHT | R=number
specifies the CDF value, between 0 and 1, to mark the start of the right-tail region. The
right-tail region always ends at the maximum loss variable value in the DATA= data set.
The value of R, the start of the right-tail region, is determined by the number that you
specify. Let the number be pr . If you do not specify the QUANTILEBOUNDS option,
then PROC HPSEVERITY sets R equal to the 100pr th percentile. If you specify the
QUANTILEBOUNDS option, then for a distribution D with an estimated quantile function
OQD , RD D OQD.pr/ marks the start of the right-tail region. RD can be different for each

distribution, so the right-tail region starts at different values for different distributions.

QUANTILEBOUNDS
specifies that the region boundaries be computed by using the estimated quantile functions of
individual distributions. If you do not specify this option, then the boundaries are computed
by using the percentiles, which are quantiles from the empirical distribution.

When you specify this option, the left-tail region of different distributions can end at different
values and the right-tail region of different distributions can start at different values, because
the quantile function of different distributions can produce different values for the same CDF
value.

SHOWREGION | SHOW=region-option

SHOWREGION | SHOW=(region-options)
specifies the regions to display in the plot. You can specify any combination of the following
region-options:

CENTER | C
specifies that the center region of the plot, which is the region between the end of the
left-tail region and the beginning of the right-tail region, be shown. If you specify this
option, you must also specify valid values for both the LEFTQ= and RIGHTQ= options.
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LEFT | L
specifies that the left-tail region of the plot be shown. If you specify this option, you
must also specify a valid value for the LEFTQ= option.

RIGHT | R
specifies that the right-tail region of the plot be shown. If you specify this option, you
must also specify a valid value for the RIGHTQ= option.

If you do not specify the SHOWREGION option, then PROC HPSEVERITY determines the
default displayed regions as follows:

� If you do not specify either the LEFTQ= or RIGHTQ= option, then this is equivalent to
specifying (LEFTQ=0.25 RIGHTQ=0.75), and PROC HPSEVERITY displays all three
regions (left-tail, center, and right-tail).

� If you specify valid values for both the LEFTQ= and RIGHTQ= options, then PROC
HPSEVERITY displays all three regions (left-tail, center, and right-tail).

� If you specify a valid value for the LEFTQ= option but do not specify the RIGHTQ=
option, then PROC HPSEVERITY displays two regions: left-tail and the remaining
region that combines the center and right-tail regions.

� If you specify a valid value for the RIGHTQ= option but do not specify the LEFTQ=
option, then PROC HPSEVERITY displays two regions: right-tail and the remaining
region that combines the center and left-tail regions.

Whether you specify the SHOWREGION option or not, PROC HPSEVERITY does not display
a region if the region contains fewer than five observations, and it issues a corresponding warning
in the SAS log.

For an illustration of the CONDITIONALPDF option, see “Example 22.3: Defining a Model for
Mixed-Tail Distributions” on page 1275.

CONDITIONALPDFPERDIST < (cpdf-options) >

CONDPDFDIST < (cpdf-options) >
creates a plot of the conditional PDF estimates of each candidate distribution model. A plot is
not created for models whose parameter estimation process does not converge.

The cpdf-options are identical to those listed for the CONDITIONALPDF plot option, except that
they are interpreted in the context of each candidate distribution individually. You can specify a
different set of values for the cpdf-options in the CONDITIONALPDFPERDIST option than you
specify in the CONDITIONALPDF option.

For an illustration of the CONDITIONALPDFPERDIST option, see “Example 22.4: Fitting a
Scaled Tweedie Model with Regressors” on page 1281.

NONE
creates none of the graphical output. If you specify this option, then it overrides all the other
plot-request-options. The default graphical output is also suppressed.
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PDF
creates a plot that compares the probability density function (PDF) estimates of all the candidate
distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge.

PDFPERDIST
creates a plot of the PDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

PP
creates the probability-probability plot (known as the P-P plot), which compares the CDF estimate
of each candidate distribution model to the empirical distribution function (EDF). The data that
are shown in this plot are used for computing the EDF-based statistics of fit.

QQ
creates the quantile-quantile plot (known as the Q-Q plot), which compares the empirical quantiles
to the quantiles of each candidate distribution model.

If you do not specify the PLOTS= option or if you do not specify the ONLY global-plot-option, then
the default graphical output is equivalent to specifying PLOTS(HISTOGRAM KERNEL)=(CDF PDF).

PRINT < (global-display-option) > < =display-option >

PRINT < (global-display-option) > < = (display-option . . . display-option) >
specifies the desired displayed output. If you specify more than one display-option, then separate them
with spaces and enclose them in parentheses.

You can specify the following global-display-option:

ONLY
turns off the default displayed output and displays only the requested output.

You can specify the following display-options:

ALL
displays all the output.

ALLFITSTATS
displays the comparison of all the statistics of fit for all the models in one table. The table does
not include the models whose parameter estimation process does not converge.

CONVSTATUS
displays the convergence status of the parameter estimation process.

DESCSTATS
displays the descriptive statistics for the response variable. If you specify the SCALEMODEL
statement, then this option also displays the descriptive statistics for the regression effects that do
not contain a CLASS variable.
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DISTINFO
displays the information about each specified distribution. For each distribution, the information
includes the name, description, validity status, and number of distribution parameters.

ESTIMATES | PARMEST
displays the final estimates of parameters. The estimates are not displayed for models whose
parameter estimation process does not converge.

ESTIMATIONDETAILS
displays the details of the estimation process for all the models in one table.

INITIALVALUES
displays the initial values and bounds used for estimating each model.

NLOHISTORY
displays the iteration history of the nonlinear optimization process used for estimating the
parameters.

NLOSUMMARY
displays the summary of the nonlinear optimization process used for estimating the parameters.

NONE
displays none of the output. If you specify this option, then it overrides all other display options.
The default displayed output is also suppressed.

SELECTION | SELECT
displays the model selection table.

STATISTICS | FITSTATS
displays the statistics of fit for each model. The statistics of fit are not displayed for models
whose parameter estimation process does not converge.

If you do not specify the PRINT= option or if you do not specify the ONLY global-display-option,
then the default displayed output is equivalent to specifying PRINT=(SELECTION CONVSTATUS
NLOSUMMARY STATISTICS ESTIMATES).

VARDEF=DF | N
specifies the denominator to use for computing the covariance estimates. You can specify one of the
following values:

DF specifies that the number of nonmissing observations minus the model degrees of freedom
(number of parameters) be used.

N specifies that the number of nonmissing observations be used.

For more information about the covariance estimation, see the section “Estimating Covariance and
Standard Errors” on page 1198.

The following options control the model estimation and selection process:
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CRITERION | CRITERIA | CRIT=criterion-option
specifies the model selection criterion.

If you specify two or more candidate models for estimation, then the one with the best value for the
selection criterion is chosen as the best model. If you specify the OUTSTAT= data set, then the best
model’s observation has a value of 1 for the _SELECTED_ variable.

You can specify one of the following criterion-options:

AD
specifies the Anderson-Darling (AD) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

AIC
specifies Akaike’s information criterion (AIC) as the selection criterion. A lower value is deemed
better.

AICC
specifies the finite-sample corrected Akaike’s information criterion (AICC) as the selection
criterion. A lower value is deemed better.

BIC
specifies the Schwarz Bayesian information criterion (BIC) as the selection criterion. A lower
value is deemed better.

CUSTOM
specifies the custom objective function as the selection criterion. You can specify this only if you
also specify the OBJECTIVE= option. A lower value is deemed better.

CVM
specifies the Craḿer–von Mises (CvM) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

KS
specifies the Kolmogorov-Smirnov (KS) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

LOGLIKELIHOOD | LL
specifies �2 � log.L/ as the selection criterion, where L is the likelihood of the data. A lower
value is deemed better. This is the default.

For more information about these criterion-options, see the section “Statistics of Fit” on page 1221.

EMPIRICALCDF | EDF=method
specifies the method to use for computing the nonparametric or empirical estimate of the cumulative
distribution function of the data. You can specify one of the following values for method :
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AUTOMATIC | AUTO
specifies that the method be chosen automatically based on the data specification.

If you do not specify any censoring or truncation, then the standard empirical estimation method
(STANDARD) is chosen. If you specify both right-censoring and left-censoring, then Turnbull’s
estimation method (TURNBULL) is chosen. For all other combinations of censoring and
truncation, the Kaplan-Meier method (KAPLANMEIER) is chosen.

KAPLANMEIER | KM
specifies that the product limit estimator proposed by Kaplan and Meier (1958) be used. Specifi-
cation of this method has no effect when you specify both right-censoring and left-censoring.

MODIFIEDKM | MKM <(options)>
specifies that the modified product limit estimator be used. Specification of this method has no
effect when you specify both right-censoring and left-censoring.

This method allows Kaplan-Meier’s product limit estimates to be more robust by ignoring the
contributions to the estimate due to small risk-set sizes. The risk set is the set of observations at
the risk of failing, where an observation is said to fail if it has not been processed yet and might
experience censoring or truncation. You can specify the minimum risk-set size that makes it
eligible to be included in the estimation either as an absolute lower bound on the size (RSLB=
option) or a relative lower bound determined by the formula cn˛ proposed by Lai and Ying
(1991). You can specify the values of c and ˛ by using the C= and ALPHA= options, respectively.
By default, the relative lower bound is used with values of c = 1 and ˛ = 0.5. However, you can
modify the default by using the following options:

ALPHA | A=number
specifies the value to use for ˛ when the lower bound on the risk set size is defined as cn˛.
This value must satisfy 0 < ˛ < 1.

C=number
specifies the value to use for c when the lower bound on the risk set size is defined as cn˛.
This value must satisfy c > 0.

RSLB=number
specifies the absolute lower bound on the risk set size to be included in the estimate.

NOTURNBULL
specifies that the method be chosen automatically based on the data specification and that
Turnbull’s method not be used. This option is the default.

This method first replaces each left-censored or interval-censored observation with an uncensored
observation. If the resulting set of observations has any truncated or right-censored observations,
then the Kaplan-Meier method (KAPLANMEIER) is chosen. Otherwise, the standard empirical
estimation method (STANDARD) is chosen. The observations are modified only for the purpose
of computing the EDF estimates; the modification does not affect the parameter estimation
process.
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STANDARD | STD
specifies that the standard empirical estimation method be used. If you specify both right-
censoring and left-censoring, then the specification of this method has no effect. If you specify
any other combination of censoring or truncation effects, then this method ignores such effects,
and can thus result in estimates that are more biased than those obtained with other methods that
are more suitable for censored or truncated data.

TURNBULL | EM <(options)>
specifies that the Turnbull’s method be used. This method is used when you specify both right-
censoring and left-censoring. An iterative expectation-maximization (EM) algorithm proposed
by Turnbull (1976) is used to compute the empirical estimates. If you also specify truncation,
then the modification suggested by Frydman (1994) is used.

This method is used if you specify both right-censoring and left-censoring and if you explicitly
specify the EMPIRICALCDF=TURNBULL option.

You can modify the default behavior of the EM algorithm by using the following options:

ENSUREMLE
specifies that the final EDF estimates be maximum likelihood estimates. The Kuhn-Tucker
conditions are computed for the likelihood maximization problem and checked to ensure
that EM algorithm converges to maximum likelihood estimates. The method generalizes
the method proposed by Gentleman and Geyer (1994) by taking into account any truncation
information that you might specify.

EPS=number
specifies the maximum relative error to be allowed between estimates of two consecutive
iterations. This criterion is used to check the convergence of the algorithm. If you do not
specify this option, then PROC HPSEVERITY uses a default value of 1.0E–8.

MAXITER=number
specifies the maximum number of iterations to attempt to find the empirical estimates. If
you do not specify this option, then PROC HPSEVERITY uses a default value of 500.

ZEROPROB=number
specifies the threshold below which an empirical estimate of the probability is considered
zero. This option is used to decide if the final estimate is a maximum likelihood estimate.
This option does not have an effect if you do not specify the ENSUREMLE option. If you
specify the ENSUREMLE option, but do not specify this option, then PROC HPSEVERITY
uses a default value of 1.0E–8.

For more information about each of the methods, see the section “Empirical Distribution Function
Estimation Methods” on page 1215.

NOCONSTFITSTATS

NOCONSTSOF
excludes the constant distribution parameters, if any are specified, from the calculations of likelihood-
based fit statistics (AIC, AICC, and SBC) that depend on the number of model parameters.

By default, constant distribution parameters are assumed to be estimable (even if PROC HPSEVERITY
does not estimate them) and are included in the calculations of the likelihood-based fit statistics.



1170 F Chapter 22: The HPSEVERITY Procedure

OBJECTIVE=symbol-name
names the symbol that represents the objective function in the SAS programming statements that you
specify. For each model to be estimated, PROC HPSEVERITY executes the programming statements to
compute the value of this symbol for each observation. The values are added across all observations to
obtain the value of the objective function. The optimization algorithm estimates the model parameters
such that the objective function value is minimized. A separate optimization problem is solved for each
candidate distribution. If you specify a BY statement, then a separate optimization problem is solved
for each candidate distribution within each BY group.

For more information about writing SAS programming statements to define your own objective
function, see the section “Custom Objective Functions” on page 1251.

BY Statement
BY variable-list ;

A BY statement can be used in the HPSEVERITY procedure to process the input data set in groups of
observations defined by the BY variables.

If you specify the BY statement, then PROC HPSEVERITY expects the input data set to be sorted in the
order of the BY variables unless you specify the NOTSORTED option.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the scale regression model. These
variables enter the analysis not through their values, but through levels to which the unique values are mapped.
For more information about these mappings, see the section “Levelization of Classification Variables” on
page 1205.

If you specify a CLASS statement, then it must precede the SCALEMODEL statement.

You can specify options either as individual variable options or as global-options. You can specify options
for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that you specify in the CLASS statement. If you specify more than one CLASS statement, the
global-options that are specified in any one CLASS statement apply to all CLASS statements. However,
individual CLASS variable options override the global-options.

You can specify the following values for either an option or a global-option:

DESCENDING

DESC
reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, the HPSEVERITY procedure orders the levels of classification variables according
to the ORDER= option and then reverses that order.
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ORDER=DATA | FORMATTED | INTERNAL

ORDER=FREQ | FREQDATA | FREQFORMATTED | FREQINTERNAL
specifies the sort order for the levels of classification variables. This order is used by the parame-
terization method to create the parameters in the model. By default, ORDER=FORMATTED. For
ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent. When
ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit
format, the levels are ordered by their internal values.

Table 22.2 shows how the HPSEVERITY procedure interprets values of the ORDER= option.

Table 22.2 Interpretation of ORDER= Option Values

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric variables that have no

explicit format, which are sorted by their unformatted (internal) values
FREQ Descending frequency count (levels that have more observations come

earlier in the order)
FREQDATA Order of descending frequency count, and within counts by order of

appearance in the input data set when counts are tied
FREQFORMATTED Order of descending frequency count, and within counts by formatted value

when counts are tied
FREQINTERNAL Order of descending frequency count, and within counts by unformatted

(internal) value when counts are tied
INTERNAL Unformatted value

For more information about sort order, see the chapter about the SORT procedure in Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Programmers Guide: Essentials.

REF=’level’ | keyword

REFERENCE=’level’ | keyword
specifies the reference level that is used when you specify PARAM=REFERENCE. For an individual
(but not a global) variable REF= option, you can specify the level of the variable to use as the reference
level. Specify the formatted value of the variable if a format is assigned. For a REF= option or
global-option, you can use one of the following keywords:

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.

By default, REF=LAST.

If you choose a reference level for any CLASS variable, all variables are parameterized in the reference
parameterization for computational efficiency. In other words, the HPSEVERITY procedure applies a
single parameterization method to all classification variables.

Suppose that the variable temp has three levels ('hot', 'warm', and 'cold') and that the variable
gender has two levels ('M' and 'F'). The following statements fit a scale regression model:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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proc hpseverity;
loss y;
class gender(ref='F') temp;
scalemodel gender*temp gender;

run;

Both CLASS variables are in reference parameterization in this model. The reference levels are 'F'
for the variable gender and 'warm' for the variable temp, because the statements are equivalent to the
following statements:

proc hpseverity;
loss y;
class gender(ref='F') temp(ref=last);
scalemodel gender*temp gender;

run;

You can specify the following global-options:

MISSING
treats missing values (“.”, “.A”, . . . , “.Z” for numeric variables and blanks for character variables) as
valid values for the CLASS variable.

If you do not specify the MISSING option, observations that have missing values for CLASS variables
are removed from the analysis, even if the CLASS variables are not used in the model formulation.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify the
following keywords:

GLM specifies a less-than-full-rank reference cell coding.

REFERENCE specifies a reference cell encoding. You can choose the reference value by specifying
an option for a specific variable or set of variables in the CLASS statement, or you
can designate the first- or last-ordered value by specifying a global-option. By default,
REFERENCE=LAST.

The GLM parameterization is the default. For more information about how parameterization of
classification variables affects the construction and interpretation of model effects, see the section
“Specification and Parameterization of Model Effects” on page 1208.

TRUNCATE< =n >
specifies the truncation width of formatted values of CLASS variables when the optional n is specified.

If n is not specified, the TRUNCATE option requests that classification levels be determined by using
no more than the first 16 characters of the formatted values of CLASS variables.



DIST Statement F 1173

DIST Statement
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword < (distribution-

option) > > . . . > < / preprocess-options > ;

The DIST statement specifies candidate distributions to be estimated by the HPSEVERITY procedure. You
can specify multiple DIST statements, and each statement can contain one or more distribution specifications.

For your convenience, PROC HPSEVERITY provides the following 10 different predefined distributions
(the name in parentheses is the name to use in the DIST statement): Burr (BURR), exponential (EXP),
gamma (GAMMA), generalized Pareto (GPD), inverse Gaussian or Wald (IGAUSS), lognormal (LOGN),
Pareto (PARETO), Tweedie (TWEEDIE), scaled Tweedie (STWEEDIE), and Weibull (WEIBULL). These
are described in detail in the section “Predefined Distributions” on page 1185.

You can specify any of the predefined distributions or any distribution that you have defined. If a distribution
that you specify is not a predefined distribution, then you must submit the CMPLIB= system option with
appropriate libraries before you submit the PROC HPSEVERITY step to enable the procedure to find the
functions associated with your distribution. The predefined distributions are defined in the Sashelp.Svrtdist
library. However, you are not required to specify this library in the CMPLIB= system option. For more
information about defining your own distributions, see the section “Defining a Severity Distribution Model
with the FCMP Procedure” on page 1227.

As a convenience, you can also use a shortcut keyword to indicate a list of distributions. You can specify one
or more of the following keywords:

_ALL_
specifies all the predefined distributions and the distributions that you have defined in the libraries that
you specify in the CMPLIB= system option. In addition to the eight predefined distributions included
by the _PREDEFINED_ keyword, this list also includes the Tweedie and scaled Tweedie distributions
that are defined in the Sashelp.Svrtdist library.

_PREDEFINED_
specifies the list of eight predefined distributions: BURR, EXP, GAMMA, GPD, IGAUSS, LOGN,
PARETO, and WEIBULL. Although the TWEEDIE and STWEEDIE distributions are available in the
Sashelp.Svrtdist library along with these eight distributions, they are not included by this keyword. If
you want to fit the TWEEDIE and STWEEDIE distributions, then you must specify them explicitly or
use the _ALL_ keyword.

_USER_
specifies the list of all the distributions that you have defined in the libraries that you specify in the
CMPLIB= system option. This list does not include the distributions defined in the Sashelp.Svrtdist
library, even if you specify the Sashelp.Svrtdist library in the CMPLIB= option.

The use of these keywords, especially _ALL_, can result in a large list of distributions, which might take a
longer time to estimate. A warning is printed to the SAS log if the number of total distribution models to
estimate exceeds 10.

If you specify the OUTCDF= option or request a CDF plot and you do not specify any DIST statement, then
PROC HPSEVERITY does not fit any distributions and produces the empirical estimates of the cumulative
distribution function.
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The following distribution-option values can be used in the DIST statement for a distribution name that is not
a shortcut keyword:

INIT=(name=value . . . name=value)
specifies the initial values to be used for the distribution parameters to start the parameter estimation
process. You must specify the values by parameter names, and the parameter names must match
the names used in the model definition. For example, let a model M’s definition contain an M_PDF
function with the following signature:

function M_PDF(x, alpha, beta);

For this model, the names alpha and beta must be used for the INIT option. The names are case-
insensitive. If you do not specify initial values for some parameters in the INIT statement, then a
default value of 0.001 is assumed for those parameters. If you specify an incorrect parameter, PROC
HPSEVERITY prints a warning to the SAS log and does not fit the model. All specified values must
be nonmissing.

If you are modeling regression effects, then the initial value of the first distribution parameter (alpha
in the preceding example) should be the initial base value of the scale parameter or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects” on page 1200.

The use of INIT= option is one of the three methods available for initializing the parameters. For
more information, see the section “Parameter Initialization” on page 1199. If none of the initialization
methods is used, then PROC HPSEVERITY initializes all parameters to 0.001.

You can specify the following preprocess-options in the DIST statement:

LISTONLY
specifies that the list of all candidate distributions be printed to the SAS log without doing any further
processing on them. This option is especially useful when you use a shortcut keyword to include a list
of distributions. It enables you to find out which distributions are included by the keyword.

VALIDATEONLY
specifies that all candidate distributions be checked for validity without doing any further processing on
them. If a distribution is invalid, the reason for invalidity is written to the SAS log. If all distributions
are valid, then the distribution information is written to the SAS log. The information includes name,
description, validity status (valid or invalid), and number of distribution parameters. The information
is not written to the SAS log if you specify an OUTMODELINFO= data set or the PRINT=DISTINFO
or PRINT=ALL option in the PROC HPSEVERITY statement. This option is especially useful
when you specify your own distributions or when you specify the _USER_ or _ALL_ keywords in
the DIST statement. It enables you to check whether your custom distribution definitions satisfy
PROC HPSEVERITY’s requirements for the specified modeling task. It is recommended that you
specify the SCALEMODEL statement if you intend to fit a model with regression effects, because the
SCALEMODEL statement instructs PROC HPSEVERITY to perform additional checks to validate
whether regression effects can be modeled on each candidate distribution.
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LOSS Statement
LOSS < response-variable-name > < / censoring-truncation-options > ;

The LOSS statement specifies the name of the response or loss variable whose distribution needs to be
modeled. You can also specify additional options to indicate any truncation or censoring of the response. The
specification of response variable is optional if you specify at least one type of censoring. You must specify a
response variable if you do not specify any censoring. If you specify more than one LOSS statement, then
the first statement is used.

All the analysis variables that you specify in this statement must be present in the input data set that you
specify by using the DATA= option in the PROC HPSEVERITY statement. The response variable is expected
to have nonmissing values. If the variable has a missing value in an observation, then a warning is written to
the SAS log and that observation is ignored.

The following censoring-truncation-options can be used in the LOSS statement:

LEFTCENSORED | LC=variable-name

LEFTCENSORED | LC=number
specifies the left-censoring variable or a global left-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the left-censoring
limit. If the value of this variable is missing, then PROC HPSEVERITY assumes that such observations
are not left-censored.

Alternatively, you can use the number argument to specify a left-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of left-censoring, an exact value of the response is not known when it is less than or
equal to the left-censoring limit. If you specify the response variable and the value of that variable is less
than or equal to the value of the left-censoring limit for some observations, then PROC HPSEVERITY
treats such observations as left-censored and the value of the response variable is ignored. If you specify
the response variable and the value of that variable is greater than the value of the left-censoring limit
for some observations, then PROC HPSEVERITY assumes that such observations are not left-censored
and the value of the left-censoring limit is ignored.

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about left-censoring, see the section “Censoring and Truncation” on page 1194.

LEFTTRUNCATED | LT=variable-name < (left-truncation-option) >

LEFTTRUNCATED | LT=number < (left-truncation-option) >
specifies the left-truncation variable or a global left-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the left-truncation
threshold. If the value of this variable is missing or 0 for some observations, then PROC HPSEVERITY
assumes that such observations are not left-truncated.

Alternatively, you can use the number argument to specify a left-truncation threshold that applies to all
the observations in the data set. This threshold must be a nonzero positive number.
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It is assumed that the response variable contains the observed values. By the definition of left-truncation,
you can observe only a value that is greater than the left-truncation threshold. If a response variable
value is less than or equal to the left-truncation threshold, a warning is printed to the SAS log, and the
observation is ignored. For more information about left-truncation, see the section “Censoring and
Truncation” on page 1194.

You can specify the following left-truncation-option for an alternative interpretation of the left-truncation
threshold:

PROBOBSERVED | POBS=number
specifies the probability of observability, which is defined as the probability that the underlying
severity event is observed (and recorded) for the specified left-threshold value.

The specified number must lie in the (0.0, 1.0] interval. A value of 1.0 is equivalent to specifying
that there is no left-truncation, because it means that no severity events can occur with a value less
than or equal to the threshold. If you specify value of 1.0, PROC HPSEVERITY prints a warning
to the SAS log and proceeds by assuming that LEFTTRUNCATED= option is not specified.

For more information, see the section “Probability of Observability” on page 1195.

RIGHTCENSORED | RC=variable-name

RIGHTCENSORED | RC=number
specifies the right-censoring variable or a global right-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the right-censoring
limit. If the value of this variable is missing, then PROC HPSEVERITY assumes that such observations
are not right-censored.

Alternatively, you can use the number argument to specify a right-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of right-censoring, an exact value of the response is not known when it is greater than
or equal to the right-censoring limit. If you specify the response variable and the value of that variable
is greater than or equal to the value of the right-censoring limit for some observations, then PROC
HPSEVERITY treats such observations as right-censored and the value of the response variable is
ignored. If you specify the response variable and the value of that variable is less than the value of the
right-censoring limit for some observations, then PROC HPSEVERITY assumes that such observations
are not right-censored and the value of the right-censoring limit is ignored.

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about right-censoring, see the section “Censoring and Truncation” on page 1194.

RIGHTTRUNCATED | RT=variable-name

RIGHTTRUNCATED | RT=number
specifies the right-truncation variable or a global right-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the right-truncation
threshold. If the value of this variable is missing for some observations, then PROC HPSEVERITY
assumes that such observations are not right-truncated.
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Alternatively, you can use the number argument to specify a right-truncation threshold that applies to
all the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of right-
truncation, you can observe only a value that is less than or equal to the right-truncation threshold.
If a response variable value is greater than the right-truncation threshold, a warning is printed to the
SAS log, and the observation is ignored. For more information about right-truncation, see the section
“Censoring and Truncation” on page 1194.

NLOPTIONS Statement
NLOPTIONS options ;

The HPSEVERITY procedure uses the nonlinear optimization (NLO) subsystem to perform the nonlinear
optimization of the likelihood function to obtain the estimates of distribution and regression parameters.
You can use the NLOPTIONS statement to control different aspects of this optimization process. For most
problems, the default settings of the optimization process are adequate. However, in some cases it might be
useful to change the optimization technique or to change the maximum number of iterations. The following
statement uses the MAXITER= option to set the maximum number of iterations to 200 and uses the TECH=
option to change the optimization technique to the double-dogleg optimization (DBLDOG) rather than the
default technique, the trust region optimization (TRUREG), that is used in the HPSEVERITY procedure:

nloptions tech=dbldog maxiter=200;

A discussion of the full range of options that can be used in the NLOPTIONS statement is given in Chapter 7,
“Nonlinear Optimization Methods.” The HPSEVERITY procedure supports all those options except the
options that are related to displaying the optimization information. You can use the PRINT= option in the
PROC HPSEVERITY statement to request the optimization summary and iteration history. If you specify
more than one NLOPTIONS statement, then the first statement is used.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > output-options ;

The OUTPUT statement specifies the data set to write the estimates of scoring functions and quantiles to. To
specify the name of the output data set, use the following option:

OUT=SAS-data-set
specifies the name of the output data set. If you do not specify this option, then PROC HPSEVERITY
names the output data set by using the DATAn convention.

To control the contents of the OUT= data set, specify the following output-options:

COPYVARS=variable-list
specifies the names of the variables that you want to copy from the input DATA= data set to the OUT=
data set. If you want to specify more than one name, then separate them by spaces.

If you specify the BY statement, then the BY variables are not automatically copied to the OUT= data
set, so you must specify the BY variables in the COPYVARS= option.
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FUNCTIONS=(function< (arg) >< =variable > < function< (arg) >< =variable > > . . . )
specifies the scoring functions that you want to estimate. For each scoring function that you want to
estimate, specify the suffix of the scoring function as the function. For each function that you specify
in this option and for each distribution D that you specify in the DIST statement, the FCMP function
D_function must be defined in the search path that you specify by using the CMPLIB= system option.

If you want to evaluate the scoring function at a specific value of the response variable, then specify a
number arg, which is enclosed in parentheses immediately after the function. If you do not specify
arg or if you specify a missing value as arg, then for each observation in the DATA= data set, PROC
HPSEVERITY computes the value v by using the following table and evaluates the scoring function at
v, where y, r, and l denote the values of the response variable, right-censoring limit, and left-censoring
limit, respectively:

Right-Censored Left-Censored v

No No y
No Yes l
Yes No r
Yes Yes .l C r/=2

You can specify the suffix of the variable that contains the estimate of the scoring function by specifying
a valid SAS name as a variable. If you do not specify a variable, then PROC HPSEVERITY uses
function as the suffix of the variable name.

To illustrate the FUNCTIONS= option with an example, assume that you specify the following DIST
and OUTPUT statements:

dist exp logn;
output out=score functions=(cdf pdf(1000)=f1000 mean);

Let both exponential (EXP) and lognormal (LOGN) distributions converge. If O� is the final estimate of
the scale parameter of the exponential distribution, then PROC HPSEVERITY creates the following
three scoring function variables for the exponential (EXP) distribution in the Work.Score data set:

EXP_CDF contains the CDF estimate Fexp.v; O�/, where Fexp denotes the CDF of the expo-
nential distribution and v is the value that is determined by the preceding table.

EXP_F1000 contains the PDF estimate fexp.1000; O�/, where fexp denotes the PDF of the
exponential distribution.

EXP_MEAN contains the mean of the exponential distribution for the scale parameter O� .

Similarly, if O� and O� are the final estimates of the log-scale and shape parameters of the lognormal
distribution, respectively, then PROC HPSEVERITY creates the following three scoring function
variables for the lognormal (LOGN) distribution in the Work.Score data set:

LOGN_CDF contains the CDF estimate Flogn.v; O�; O�/, where Flogn denotes the CDF of the
lognormal distribution and v is the value that is determined by the preceding table.

LOGN_F1000 contains the probability density function (PDF) estimate flogn.1000; O�; O�/, where
flogn denotes the PDF of the lognormal distribution.
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LOGN_MEAN contains the mean of the lognormal distribution for the parameters O� and O� .

If you specify the SCALEMODEL statement, then the value of the scale parameter of a distribution
depends on the values of the regression parameters. So it might be different for different observations.
In this example, the values of O� and O� might vary by observation, which might cause the values of the
EXP_F1000, EXP_MEAN, LOGN_F1000, and LOGN_MEAN variables to vary by observation. The
values of the EXP_CDF and LOGN_CDF variables might vary not only because of the varying values
of v but also because of the varying values of O� and O�.

If you do not specify the SCALEMODEL statement, then the values of scoring functions for which
you specify a nonmissing argument arg and scoring functions that do not depend on the response
variable value do not vary by observation. In this example, the values of the EXP_F1000, EXP_MEAN,
LOGN_F1000, and LOGN_MEAN variables do not vary by observation.

If a distribution does not converge, then the scoring function variables for that distribution contain
missing values in all observations.

For more information about scoring functions, see the section “Scoring Functions” on page 1244.

QUANTILES=quantile-options
specifies the quantiles that you want to estimate. To use this option, for each distribution that you
specify in the DIST statement, the FCMP function D_QUANTILE must be defined in the search path
that you specify by using the CMPLIB= system option.

You can specify the following quantile-options:

CDF=CDF-values

POINTS=CDF-values
specifies the CDF values at which you want to estimate the quantiles. CDF-values can be one or
more numbers, separated by spaces. Each number must be in the interval (0,1).

NAMES=variable-names
specifies the suffixes of the names of the variables for each of the quantile estimates. If you
specify n (n � 0) names in the variable-names option and k values in the CDF= option, and
if n < k, then PROC HPSEVERITY uses the n names to name the variables that correspond
to the first n CDF values. For each of the remaining k � n CDF values, pi (n < i � k),
PROC HPSEVERITY creates a variable name Pt , where t is the text representation of 100pi that
is formed by retaining at most NDECIMAL= digits after the decimal point and replacing the
decimal point with an underscore (‘_’).

NDECIMAL=number
specifies the number of digits to keep after the decimal point when PROC HPSEVERITY creates
the name of the quantile estimate variable. If you do not specify this option, then the default
value is 3.

For example, assume that you specify the following DIST and OUTPUT statements:

dist burr;
output out=score quantiles=(cdf=0.9 0.975 0.995 names=ninety var);
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PROC HPSEVERITY creates three quantile estimate variables, BURR_NINETY, BURR_VAR, and
BURR_P99_5, in the Work.Score data set for the Burr distribution. These variables contain the
estimates of QBurr.p; O�; Ǫ ; O/, for p = 0.9, 0.975, and 0.995, respectively, where QBurr denotes the
quantile function and O� , Ǫ , and O denote the parameter estimates of the Burr distribution.

If you specify the SCALEMODEL statement, then the quantile estimate might vary by observation,
because the scale parameter of a distribution depends on the values of the regression parameters.

If you do not specify the SCALEMODEL statement, then the quantile estimates do not vary by
observation, and if you do not specify any scoring functions in the FUNCTIONS= option whose
estimates vary by observation, then the OUT= data set contains only one observation per BY group.

If a distribution does not converge, then the quantile estimate variables for that distribution contain
missing values for all observations.

For more information about the variables and observations in the OUT= data set, see the section “OUT=
Data Set” on page 1256.

OUTSCORELIB Statement
OUTSCORELIB < OUTLIB= > fcmp-library-name options ;

The OUTSCORELIB statement specifies the library to write scoring functions to. Scoring functions enable
you to easily compute a distribution function on the fitted parameters of the distribution without going
through a potentially complex process of extracting the fitted parameter estimates from other output such as
the OUTEST= data set that is created by PROC HPSEVERITY.

If you specify the SCALEMODEL statement and if you specify interaction or classification effects, then
PROC HPSEVERITY ignores the OUTSCORELIB statement and does not generate scoring functions. In
other words, if you specify the SCALEMODEL statement, then PROC HPSEVERITY generates scoring
functions if you specify only singleton continuous effects in the SCALEMODEL statement.

You must specify the following option as the first option in the statement:

OUTLIB=fcmp-library-name
names the FCMP library to contain the scoring functions. PROC HPSEVERITY writes the scoring
functions to the FCMP library named fcmp-library-name. If a library or data set named fcmp-library-
name already exists, PROC HPSEVERITY deletes it before proceeding.

This option is similar to the OUTLIB= option that you would specify in a PROC FCMP statement,
except that fcmp-library-name must be a two-level name whereas the OUTLIB= option in the PROC
FCMP statement requires a three-level name. The third level of a three-level name specifies the package
to which the functions belong. You do not need to specify the package name in the fcmp-library-name,
because PROC HPSEVERITY automatically creates the package for you. By default, a separate
package is created for each distribution that has not failed to converge. Each package is named for a
distribution. For example, if you define and fit a distribution named mydist , and if mydist does not fail
to converge, then PROC HPSEVERITY creates a package named mydist in the OUTLIB= library that
you specify. Further, let the definition of the mydist distribution contain three distribution functions,
mydist_PDF(x,Parm1,Parm2), mydist_LOGCDF(x,Parm1,Parm2), and mydist_XYZ(x,Parm1,Parm2).
If you specify the OUTSCORELIB statement
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outscorelib outlib=sasuser.scorefunc;

then the Sasuser.Scorefunc library contains the following three functions in a package named mydist :
SEV_PDF(x), SEV_LOGCDF(x), and SEV_XYZ(x).

The key feature of scoring functions is that they do not require the parameter arguments (Parm1 and
Parm2 in this example). The fitted parameter estimates are encoded inside the scoring function so
that you can compute or score the value of each function for a given value of the loss variable without
having to know or extract the parameter estimates through some other means.

For convenience, you can omit the OUTLIB= portion of the specification and just specify the name, as
in the following example:

outscorelib sasuser.scorefunc;

When the HPSEVERITY procedure runs successfully, the fcmp-library-name is appended to the CMPLIB
system option, so you can immediately start using the scoring functions in a DATA step or PROC FCMP step.

You can specify the following options in the OUTSCORELIB statement:

COMMONPACKAGE

ONEPACKAGE
requests that only one common package be created to contain all the scoring functions.

If you specify this option, then all the scoring functions are created in a package called sevfit . For
each distribution function that has the name distribution_suffix , the name of the corresponding scoring
function is formed as SEV_suffix_distribution. For example, the scoring function of the distribution
function ‘MYDIST_BAR’ is named ‘SEV_BAR_MYDIST’.

If you do not specify this option, then all scoring functions for a distribution are created in a package
that has the same name as the distribution, and for each distribution function that has the name
distribution_suffix , the name of the corresponding scoring function is formed as SEV_suffix . For
example, the scoring function of the distribution function ‘MYDIST_BAR’ is named ‘SEV_BAR’.

OUTBYID=SAS-data-set
names the output data set to contain the unique identifier for each BY group. This unique identifier is
used as part of the name of the package or scoring function for each distribution. This is a required
option when you specify a BY statement in PROC HPSEVERITY.

The OUTBYID= data set contains one observation per BY group and a variable named _ID_ in addition
to the BY variables that you specify in the BY statement. The _ID_ variable contains the unique
identifier for each BY group. The identifier of the BY group is the decimal representation of the
sequence number of the BY group. The first BY group has an identifier of 1, the second BY group has
an identifier of 2, the tenth BY group has an identifier of 10, and so on.

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution, PROC HPSEVERITY creates as many packages as the number of BY groups. The
unique BY-group identifier is used as a suffix for the package name. For example, if your DATA= data
set has three BY groups and if you specify the OUTSCORELIB statement
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outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid;

then for the distribution ‘MYDIST’, the Sasuser.Byscorefunc library contains the three packages
‘MYDIST1’, ‘MYDIST2’, and ‘MYDIST3’, and each package contains one scoring function named
‘SEV_BAR’ for each distribution function named ‘MYDIST_BAR’.

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, PROC HPSEVER-
ITY creates as many versions of the distribution function as the number of BY groups. The unique
BY-group identifier is used as a suffix for the function name. Extending the previous example, if you
specify the OUTSCORELIB statement with the COMMONPACKAGE option,

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid commonpackage;

then for the distribution function ‘MYDIST_BAR’ of the distribution ‘MYDIST’, the
Sasuser.Byscorefunc library contains the following three scoring functions: ‘SEV_BAR_MYDIST1’,
‘SEV_BAR_MYDIST2’, and ‘SEV_BAR_MYDIST3’. All the scoring functions are created in one
common package named sevfit .

For both the preceding examples, the Sasuser.Byid data set contains three observations, one for each
BY group. The value of the _ID_ variable is 1 for the first BY group, 2 for the second BY group, and 3
for the third BY group.

For more information about scoring functions, see the section “Scoring Functions” on page 1244.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for multithreaded computing, and requests
detailed results about the performance characteristics of PROC HPSEVERITY.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” (Chap-
ter 21, SAS/STAT User’s Guide).

SCALEMODEL Statement
SCALEMODEL regression-effect-list < / scalemodel-options > ;

The SCALEMODEL statement specifies regression effects. A regression effect is formed from one or more
regressor variables according to effect construction rules. Each regression effect forms one element of X
in the linear model structure Xˇ that affects the scale parameter of the distribution. The SCALEMODEL
statement in conjunction with the CLASS statement supports a rich set of effects. Effects are specified by a
special notation that uses regressor variable names and operators. There are two types of regressor variables:
classification (or CLASS) variables and continuous variables. Classification variables can be either numeric
or character and are specified in a CLASS statement. To include CLASS variables in regression effects, you
must specify the CLASS statement so that it appears before the SCALEMODEL statement. A regressor
variable that is not declared in the CLASS statement is assumed to be continuous. For more information

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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about effect construction rules, see the section “Specification and Parameterization of Model Effects” on
page 1208.

All the regressor variables must be present in the input data set that you specify by using the DATA= option
in the PROC HPSEVERITY statement. The scale parameter of each candidate distribution is linked to the
linear predictor Xˇ that includes an intercept. If a distribution does not have a scale parameter, then a model
based on that distribution is not estimated. If you specify more than one SCALEMODEL statement, then the
first statement is used.

The regressor variables are expected to have nonmissing values. If any of the variables has a missing value in
an observation, then a warning is written to the SAS log and that observation is ignored.

For more information about modeling regression effects, see the section “Estimating Regression Effects” on
page 1200.

You can specify the following scalemodel-options in the SCALEMODEL statement:

DFMIXTURE=method-name < (method-options) >
specifies the method for computing representative estimates of the cumulative distribution function
(CDF) and the probability density function (PDF).

When you specify regression effects, the scale of the distribution depends on the values of the regressors.
For a given distribution family, each observation in the input data set implies a different scaled version
of the distribution. To compute estimates of CDF and PDF that are comparable across different
distribution families, PROC HPSEVERITY needs to construct a single representative distribution
from all such distributions. You can specify one of the following method-name values to specify the
method that is used to construct the representative distribution. For more information about each of the
methods, see the section “CDF and PDF Estimates with Regression Effects” on page 1203.

FULL
specifies that the representative distribution be the mixture of N distributions such that each
distribution has a scale value that is implied by each of the N observations that are used for
estimation. This method is the slowest.

MEAN
specifies that the representative distribution be the one-point mixture of the distribution whose
scale value is computed by using the mean of the N values of the linear predictor that are implied
by the N observations that are used for estimation. If you do not specify the DFMIXTURE=
option, then this method is used by default. This is also the fastest method.

QUANTILE < (K=q) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the quantiles from the sample of N values of the linear
predictor that are implied by the N observations that are used for estimation.

You can use the K= option to specify the number of distributions in the mixture. If you specify
K=q, then the mixture contains .q � 1/ distributions such that each distribution has as its scale
one of the .q � 1/-quantiles.

If you do not specify the K= option, then PROC HPSEVERITY uses the default of 2, which
implies the use of a one-point mixture with a distribution whose scale value is the median of all
scale values.
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RANDOM < (random-method-options) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the values of the linear predictor that are implied by
a randomly chosen subset of the set of all observations that are used for estimation. The same
subset of observations is used for each distribution family.

You can specify the following random-method-options to specify how the subset is chosen:

K=r
specifies the number of distributions to include in the mixture. If you do not specify this
option, then PROC HPSEVERITY uses the default of 15.

SEED=number
specifies the seed that is used to generate the uniform random sample of observation indices.
If you do not specify this option, then PROC HPSEVERITY generates a seed internally that
is based on the current value of the system clock.

OFFSET=offset-variable-name
specifies the name of the offset variable in the scale regression model. An offset variable is a regressor
variable whose regression coefficient is known to be 1. For more information, see the section “Offset
Variable” on page 1200.

WEIGHT Statement
WEIGHT variable-name ;

The WEIGHT statement specifies the name of a variable whose values represent the weight of each obser-
vation. PROC HPSEVERITY associates a weight of w to each observation, where w is the value of the
WEIGHT variable for the observation. If the weight value is missing or less than or equal to 0, then the
observation is ignored and a warning is written to the SAS log. When you do not specify the WEIGHT
statement, each observation is assigned a weight of 1. If you specify more than one WEIGHT statement, then
the last statement is used.

The weights are normalized so that they add up to the actual sample size. In particular, the weight of
each observation is multiplied by NPN

iD1wi
, where N is the sample size. All computations, including the

computations of the EDF-based statistics of fit, use normalized weights.
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Programming Statements
You can use a series of programming statements that use variables in the input data set that you specify in the
DATA= option in the PROC HPSEVERITY statement to assign a value to an objective function symbol. You
must specify the objective function symbol by using the OBJECTIVE= option in the PROC HPSEVERITY
statement. If you do not specify the OBJECTIVE= option in the PROC HPSEVERITY statement, then the
programming statements are ignored and models are estimated using the maximum likelihood method.

You can use most DATA step statements and functions in your program. Any additional functions, restrictions,
and differences are listed in the section “Custom Objective Functions” on page 1251.

Details: HPSEVERITY Procedure

Predefined Distributions
For the response variable Y, PROC HPSEVERITY assumes the model

Y � F.‚/

where F is a continuous probability distribution with parameters ‚. The model hypothesizes that the
observed response is generated from a stochastic process that is governed by the distribution F . This model
is usually referred to as the error model. Given a representative input sample of response variable values,
PROC HPSEVERITY estimates the model parameters for any distribution F and computes the statistics of fit
for each model. This enables you to find the distribution that is most likely to generate the observed sample.

A set of predefined distributions is provided with the HPSEVERITY procedure. A summary of the distribu-
tions is provided in Table 22.3. For each distribution, the table lists the name of the distribution that should be
used in the DIST statement, the parameters of the distribution along with their bounds, and the mathematical
expressions for the probability density function (PDF) and cumulative distribution function (CDF) of the
distribution.

All the predefined distributions, except LOGN and TWEEDIE, are parameterized such that their first
parameter is the scale parameter. For LOGN, the first parameter � is a log-transformed scale parameter.
TWEEDIE does not have a scale parameter. The presence of scale parameter or a log-transformed scale
parameter enables you to use all of the predefined distributions, except TWEEDIE, as a candidate for
estimating regression effects.

A distribution model is associated with each predefined distribution. You can also define your own distribution
model, which is a set of functions and subroutines that you define by using the FCMP procedure. For more
information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on page 1227.



1186 F Chapter 22: The HPSEVERITY Procedure

Table 22.3 Predefined PROC HPSEVERITY Distributions

Name Distribution Parameters PDF (f ) and CDF (F)

BURR Burr (Type XII) � > 0, ˛ > 0, f .x/ D ˛z

x.1Cz /.˛C1/

 > 0 F.x/ D 1 �
�

1
1Cz

�˛
EXP Exponential � > 0 f .x/ D 1

�
e�z

F.x/ D 1 � e�z

GAMMA Gamma � > 0, ˛ > 0 f .x/ D z˛e�z

x�.˛/

F.x/ D .˛;z/
�.˛/

GPD Generalized � > 0, � > 0 f .x/ D 1
�
.1C �z/�1�1=�

Pareto F.x/ D 1 � .1C �z/�1=�

IGAUSS Inverse Gaussian � > 0, ˛ > 0 f .x/ D 1
�

q
˛

2�z3
e
�˛.z�1/2

2z

(Wald) F.x/ D ˆ
�
.z � 1/

q
˛
z

�
C

ˆ
�
�.z C 1/

q
˛
z

�
e2˛

LOGN Lognormal � (no bounds), f .x/ D 1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2
� > 0 F.x/ D ˆ

�
log.x/��

�

�
PARETO Pareto (Type II) � > 0, ˛ > 0 f .x/ D ˛�˛

.xC�/˛C1

F.x/ D 1 �
�

�
xC�

�˛
TWEEDIE Tweedie** p > 1, � > 0, f .x/ D a.x; �/ exp

h
1
�

�
x�1�p

1�p
� �.�; p/

�i
� > 0 F.x/ D

R x
0 f .t/dt

STWEEDIE Scaled Tweedie** � > 0, � > 0, f .x/ D a.x; �; �; p/ exp
�
�
x
�
� �

�
1 < p < 2 F.x/ D

R x
0 f .t/dt

WEIBULL Weibull � > 0, � > 0 f .x/ D 1
x
�z�e�z

�

F.x/ D 1 � e�z
�

**For more information, see the section “Tweedie Distributions” on page 1187.
Notes:
1. z D x=� , wherever z is used.
2. � denotes the scale parameter for all the distributions. For LOGN, log.�/ D �.
3. Parameters are listed in the order in which they are defined in the distribution model.
4. .a; b/ D

R b
0 t

a�1e�tdt is the lower incomplete gamma function.

5. ˆ.y/ D 1
2

�
1C erf

�
y
p
2

��
is the standard normal CDF.
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Tweedie Distributions

Tweedie distributions are a special case of the exponential dispersion family (Jørgensen 1987) with a property
that the variance of the distribution is equal to ��p , where � is the mean of the distribution, � is a dispersion
parameter, and p is an index parameter as discovered by Tweedie (1984). The distribution is defined for all
values of p except for values of p in the open interval .0; 1/. Many important known distributions are a special
case of Tweedie distributions including normal (p=0), Poisson (p=1), gamma (p=2), and the inverse Gaussian
(p=3). Apart from these special cases, the probability density function (PDF) of the Tweedie distribution
does not have an analytic expression. For p > 1, it has the form (Dunn and Smyth 2005),

f .xI�; �; p/ D a.x; �/ exp
�
1

�

�
x�1�p

1 � p
� �.�; p/

��
where �.�; p/ D �2�p=.2 � p/ for p ¤ 2 and �.�; p/ D log.�/ for p = 2. The function a.x; �/ does not
have an analytical expression. It is typically evaluated using series expansion methods described in Dunn and
Smyth (2005).

For 1 < p < 2, the Tweedie distribution is a compound Poisson-gamma mixture distribution, which is the
distribution of S defined as

S D

NX
iD1

Xi

where N � Poisson.�/ and Xi � gamma.˛; �/ are independent and identically distributed gamma random
variables with shape parameter ˛ and scale parameter � . At X = 0, the density is a probability mass that
is governed by the Poisson distribution, and for values of X > 0, it is a mixture of gamma variates with
Poisson mixing probability. The parameters �, ˛, and � are related to the natural parameters �, �, and p of
the Tweedie distribution as

� D
�2�p

�.2 � p/

˛ D
2 � p

p � 1

� D �.p � 1/�p�1

The mean of a Tweedie distribution is positive for p > 1.

Two predefined versions of the Tweedie distribution are provided with the HPSEVERITY procedure. The
first version, named TWEEDIE and defined for p > 1, has the natural parameterization with parameters �,
�, and p. The second version, named STWEEDIE and defined for 1 < p < 2, is the version with a scale
parameter. It corresponds to the compound Poisson-gamma distribution with gamma scale parameter � ,
Poisson mean parameter �, and the index parameter p. The index parameter decides the shape parameter ˛ of
the gamma distribution as

˛ D
2 � p

p � 1

The parameters � and � of the STWEEDIE distribution are related to the parameters� and � of the TWEEDIE
distribution as

� D ��˛

� D
.��˛/2�p

�.2 � p/
D

�

.p � 1/.��˛/p�1
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You can fit either version when there are no regression variables. Each version has its own merits. If you
fit the TWEEDIE version, you have the direct estimate of the overall mean of the distribution. If you are
interested in the most practical range of the index parameter 1 < p < 2, then you can fit the STWEEDIE
version, which provides you direct estimates of the Poisson and gamma components that comprise the
distribution (an estimate of the gamma shape parameter ˛ is easily obtained from the estimate of p).

If you want to estimate the effect of exogenous (regression) variables on the distribution, then you must use
the STWEEDIE version, because PROC HPSEVERITY requires a distribution to have a scale parameter in
order to estimate regression effects. For more information, see the section “Estimating Regression Effects”
on page 1200. The gamma scale parameter � is the scale parameter of the STWEEDIE distribution. If you
are interested in determining the effect of regression variables on the mean of the distribution, you can do so
by first fitting the STWEEDIE distribution to determine the effect of the regression variables on the scale
parameter � . Then, you can easily estimate how the mean of the distribution � is affected by the regression
variables using the relationship � D c� , where c D �˛ D �.2�p/=.p� 1/. The estimates of the regression
parameters remain the same, whereas the estimate of the intercept parameter is adjusted by the estimates of
the � and p parameters.

Parameter Initialization for Predefined Distributions

The parameters are initialized by using the method of moments for all the distributions, except for the gamma
and the Weibull distributions. For the gamma distribution, approximate maximum likelihood estimates are
used. For the Weibull distribution, the method of percentile matching is used.

Given n observations of the severity value yi (1 � i � n), the estimate of kth raw moment is denoted by mk
and computed as

mk D
1

n

nX
iD1

yki

The 100pth percentile is denoted by �p (0 � p � 1). By definition, �p satisfies

F.�p�/ � p � F.�p/

where F.�p�/ D limh#0 F.�p � h/. PROC HPSEVERITY uses the following practical method of
computing �p . Let OFn.y/ denote the empirical distribution function (EDF) estimate at a severity value y. Let
y�p and yCp denote two consecutive values in the ascending sequence of y values such that OFn.y�p / < p and
OFn.y

C
p / � p. Then, the estimate O�p is computed as

O�p D y
�
p C

p � OFn.y
�
p /

OFn.y
C
p / � OFn.y

�
p /
.yCp � y

�
p /

Let � denote the smallest double-precision floating-point number such that 1C � > 1. This machine precision
constant can be obtained by using the CONSTANT function in Base SAS software.

The details of how parameters are initialized for each predefined distribution are as follows:

BURR Burr proposed 12 types of families of continuous distributions (Burr 1942; Rodriguez 2006).
The predefined BURR distribution in PROC HPSEVERITY implements Burr’s Type XII
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distribution. The parameters are initialized by using the method of moments. The kth raw
moment of the Burr distribution of Type XII is

EŒXk� D
�k�.1C k=/�.˛ � k=/

�.˛/
; � < k < ˛

Three moment equations EŒXk� D mk (k D 1; 2; 3) need to be solved for initializing the
three parameters of the distribution. In order to get an approximate closed form solution, the
second shape parameter O is initialized to a value of 2. If 2m3�3m1m2 > 0, then simplifying
and solving the moment equations yields the following feasible set of initial values:

O� D

r
m2m3

2m3 � 3m1m2
; Ǫ D 1C

m3

2m3 � 3m1m2
; O D 2

If 2m3 � 3m1m2 < �, then the parameters are initialized as follows:

O� D
p
m2; Ǫ D 2; O D 2

EXP The parameters are initialized by using the method of moments. The kth raw moment of the
exponential distribution is

EŒXk� D �k�.k C 1/; k > �1

Solving EŒX� D m1 yields the initial value of O� D m1.

GAMMA The parameter ˛ is initialized by using its approximate maximum likelihood (ML) estimate.
For a set of n independent and identically distributed observations yi (1 � i � n) drawn from
a gamma distribution, the log likelihood l is defined as follows:

l D

nX
iD1

log

 
y˛�1i

e�yi=�

�˛�.˛/

!

D .˛ � 1/

nX
iD1

log.yi / �
1

�

nX
iD1

yi � n˛ log.�/ � n log.�.˛//

Using a shorter notation of
P

to denote
Pn
iD1 and solving the equation @l=@� D 0 yields the

following ML estimate of � :

O� D

P
yi

n˛
D
m1

˛

Substituting this estimate in the expression of l and simplifying gives

l D .˛ � 1/
X

log.yi / � n˛ � n˛ log.m1/C n˛ log.˛/ � n log.�.˛//

Let d be defined as follows:

d D log.m1/ �
1

n

X
log.yi /

Solving the equation @l=@˛ D 0 yields the following expression in terms of the digamma
function,  .˛/:

log.˛/ �  .˛/ D d
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The digamma function can be approximated as follows:

O .˛/ � log.˛/ �
1

˛

�
0:5C

1

12˛ C 2

�
This approximation is within 1.4% of the true value for all the values of ˛ > 0 except when
˛ is arbitrarily close to the positive root of the digamma function (which is approximately
1.461632). Even for the values of ˛ that are close to the positive root, the absolute error
between true and approximate values is still acceptable (j O .˛/� .˛/j < 0:005 for ˛ > 1:07).
Solving the equation that arises from this approximation yields the following estimate of ˛:

Ǫ D
3 � d C

p
.d � 3/2 C 24d

12d

If this approximate ML estimate is infeasible, then the method of moments is used. The kth
raw moment of the gamma distribution is

EŒXk� D �k
�.˛ C k/

�.˛/
; k > �˛

Solving EŒX� D m1 and EŒX2� D m2 yields the following initial value for ˛:

Ǫ D
m21

m2 �m
2
1

If m2 �m21 < � (almost zero sample variance), then ˛ is initialized as follows:

Ǫ D 1

After computing the estimate of ˛, the estimate of � is computed as follows:

O� D
m1

Ǫ

Both the maximum likelihood method and the method of moments arrive at the same relation-
ship between Ǫ and O� .

GPD The parameters are initialized by using the method of moments. Notice that for � > 0, the
CDF of the generalized Pareto distribution (GPD) is:

F.x/ D 1 �

�
1C

�x

�

��1=�
D 1 �

�
�=�

x C �=�

�1=�
This is equivalent to a Pareto distribution with scale parameter �1 D �=� and shape pa-
rameter ˛ D 1=�. Using this relationship, the parameter initialization method used for the
PARETO distribution is used to get the following initial values for the parameters of the GPD
distribution:

O� D
m1m2

2.m2 �m
2
1/
; O� D

m2 � 2m
2
1

2.m2 �m
2
1/

If m2 � m21 < � (almost zero sample variance) or m2 � 2m21 < �, then the parameters are
initialized as follows:

O� D
m1

2
; O� D

1

2
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IGAUSS The parameters are initialized by using the method of moments. The standard parameterization
of the inverse Gaussian distribution (also known as the Wald distribution), in terms of the
location parameter � and shape parameter �, is as follows (Klugman, Panjer, and Willmot
1998, p. 583):

f .x/ D

r
�

2�x3
exp

�
��.x � �/2

2�2x

�
F.x/ D ˆ

 �
x

�
� 1

�r
�

x

!
Cˆ

 
�

�
x

�
C 1

�r
�

x

!
exp

�
2�

�

�
For this parameterization, it is known that the mean is EŒX� D � and the variance is
VarŒX� D �3=�, which yields the second raw moment as EŒX2� D �2.1C�=�/ (computed
by using EŒX2� D VarŒX�C .EŒX�/2).

The predefined IGAUSS distribution in PROC HPSEVERITY uses the following alternate
parameterization to allow the distribution to have a scale parameter, � :

f .x/ D

r
˛�

2�x3
exp

�
�˛.x � �/2

2x�

�
F.x/ D ˆ

 �x
�
� 1

�r˛�

x

!
Cˆ

 
�

�x
�
C 1

�r˛�

x

!
exp .2˛/

The parameters � (scale) and ˛ (shape) of this alternate form are related to the parameters �
and � of the preceding form such that � D � and ˛ D �=�. Using this relationship, the first
and second raw moments of the IGAUSS distribution are

EŒX� D �

EŒX2� D �2
�
1C

1

˛

�
Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D m1; Ǫ D
m21

m2 �m
2
1

If m2 �m21 < � (almost zero sample variance), then the parameters are initialized as follows:

O� D m1; Ǫ D 1

LOGN The parameters are initialized by using the method of moments. The kth raw moment of the
lognormal distribution is

EŒXk� D exp
�
k�C

k2�2

2

�
Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D 2 log.m1/ �
log.m2/

2
; O� D

p
log.m2/ � 2 log.m1/
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PARETO The predefined PARETO distribution in PROC HPSEVERITY implements the Type II Pareto
distribution with the location parameter set to 0. This predefined PARETO distribution is
also known as the Lomax distribution. The parameters are initialized by using the method of
moments. The kth raw moment of the Pareto distribution is

EŒXk� D
�k�.k C 1/�.˛ � k/

�.˛/
;�1 < k < ˛

Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D
m1m2

m2 � 2m
2
1

; Ǫ D
2.m2 �m

2
1/

m2 � 2m
2
1

If m2 � m21 < � (almost zero sample variance) or m2 � 2m21 < �, then the parameters are
initialized as follows:

O� D m1; Ǫ D 2

TWEEDIE The parameter p is initialized by assuming that the sample is generated from a gamma
distribution with shape parameter ˛ and by computing Op D ǪC2

ǪC1
. The initial value Ǫ is

obtained from using the method previously described for the GAMMA distribution. The
parameter � is the mean of the distribution. Hence, it is initialized to the sample mean as

O� D m1

Variance of a Tweedie distribution is equal to ��p. Thus, the sample variance is used to
initialize the value of � as

O� D
m2 �m

2
1

O� Op

STWEEDIE STWEEDIE is a compound Poisson-gamma mixture distribution with mean � D ��˛, where
˛ is the shape parameter of the gamma random variables in the mixture and the parameter p is
determined solely by ˛. First, the parameter p is initialized by assuming that the sample is
generated from a gamma distribution with shape parameter ˛ and by computing Op D ǪC2

ǪC1
.

The initial value Ǫ is obtained from using the method previously described for the GAMMA
distribution. As done for initializing the parameters of the TWEEDIE distribution, the sample
mean and variance are used to compute the values O� and O� as

O� D m1

O� D
m2 �m

2
1

O� Op

Based on the relationship between the parameters of TWEEDIE and STWEEDIE distributions
described in the section “Tweedie Distributions” on page 1187, values of � and � are initialized
as

O� D O�. Op � 1/ O�p�1

O� D
O�

O� Ǫ
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WEIBULL The parameters are initialized by using the percentile matching method. Let q1 and q3 denote
the estimates of the 25th and 75th percentiles, respectively. Using the formula for the CDF of
Weibull distribution, they can be written as

1 � exp.�.q1=�/� / D 0:25
1 � exp.�.q3=�/� / D 0:75

Simplifying and solving these two equations yields the following initial values,

O� D exp
�
r log.q1/ � log.q3/

r � 1

�
; O� D

log.log.4//

log.q3/ � log. O�/

where r D log.log.4//= log.log.4=3//. These initial values agree with those suggested in
Klugman, Panjer, and Willmot (1998).

A summary of the initial values of all the parameters for all the predefined distributions is given in Table 22.4.
The table also provides the names of the parameters to use in the INIT= option in the DIST statement if you
want to provide a different initial value.

Table 22.4 Parameter Initialization for Predefined Distributions

Distribution Parameter Name for INIT Option Default Initial Value

BURR � theta
q

m2m3
2m3�3m1m2

˛ alpha 1C m3
2m3�3m1m2

 gamma 2

EXP � theta m1

GAMMA � theta m1=˛

˛ alpha 3�dC
p
.d�3/2C24d

12d

GPD � theta m1m2=.2.m2 �m
2
1//

� xi .m2 � 2m
2
1/=.2.m2 �m

2
1//

IGAUSS � theta m1
˛ alpha m21=.m2 �m

2
1/

LOGN � mu 2 log.m1/ � log.m2/=2
� sigma

p
log.m2/ � 2 log.m1/

PARETO � theta m1m2=.m2 � 2m
2
1/

˛ alpha 2.m2 �m
2
1/=.m2 � 2m

2
1/

TWEEDIE � mu m1
� phi .m2 �m

2
1/=m

p
1

p p .˛ C 2/=.˛ C 1/

where ˛ D 3�dC
p
.d�3/2C24d

12d
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Table 22.4 continued

Distribution Parameter Name for INIT Option Default Initial Value

STWEEDIE � theta .m2 �m
2
1/.p � 1/=m1

� lambda m21=.˛.m2 �m
2
1/.p � 1//

p p .˛ C 2/=.˛ C 1/

where ˛ D 3�dC
p
.d�3/2C24d

12d

WEIBULL � theta exp
�
r log.q1/�log.q3/

r�1

�
� tau log.log.4//=.log.q3/ � log. O�//

Notes:
1. mk denotes the kth raw moment.
2. d D log.m1/ � .

P
log.yi //=n

3. q1 and q3 denote the 25th and 75th percentiles, respectively.
4. r D log.log.4//= log.log.4=3//

Censoring and Truncation
One of the key features of PROC HPSEVERITY is that it enables you to specify whether the severity event’s
magnitude is observable and if it is observable, then whether the exact value of the magnitude is known. If an
event is unobservable when the magnitude is in certain intervals, then it is referred to as a truncation effect. If
the exact magnitude of the event is not known, but it is known to have a value in a certain interval, then it is
referred to as a censoring effect.

PROC HPSEVERITY allows a severity event to be subject to any combination of the following four censoring
and truncation effects:

� Left-truncation: An event is said to be left-truncated if it is observed only when Y > T l , where
Y denotes the random variable for the magnitude and T l denotes a random variable for the trunca-
tion threshold. You can specify left-truncation using the LEFTTRUNCATED= option in the LOSS
statement.

� Right-truncation: An event is said to be right-truncated if it is observed only when Y � T r , where Y
denotes the random variable for the magnitude and T r denotes a random variable for the truncation
threshold. You can specify right-truncation using the RIGHTTRUNCATED= option in the LOSS
statement.

� Left-censoring: An event is said to be left-censored if it is known that the magnitude is Y � C l , but
the exact value of Y is not known. C l is a random variable for the censoring limit. You can specify
left-censoring using the LEFTCENSORED= option in the LOSS statement.

� Right-censoring: An event is said to be right-censored if it is known that the magnitude is Y > C r ,
but the exact value of Y is not known. C r is a random variable for the censoring limit. You can specify
right-censoring using the RIGHTCENSORED= option in the LOSS statement.
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For each effect, you can specify a different threshold or limit for each observation or specify a single threshold
or limit that applies to all the observations.

If all four types of effects are present on an event, then the following relationship holds: T l < C r � C l � T r .
PROC HPSEVERITY checks these relationships and writes a warning to the SAS log if any relationship is
violated.

If you specify the response variable in the LOSS statement, then PROC HPSEVERITY also checks whether
each observation satisfies the definitions of the specified censoring and truncation effects. If you specify
left-truncation, then PROC HPSEVERITY ignores observations where Y � T l , because such observations
are not observable by definition. Similarly, if you specify right-truncation, then PROC HPSEVERITY ignores
observations where Y > T r . If you specify left-censoring, then PROC HPSEVERITY treats an observation
with Y > C l as uncensored and ignores the value of C l . The observations with Y � C l are considered
as left-censored, and the value of Y is ignored. If you specify right-censoring, then PROC HPSEVERITY
treats an observation with Y � C r as uncensored and ignores the value of C r . The observations with
Y > C r are considered as right-censored, and the value of Y is ignored. If you specify both left-censoring
and right-censoring, it is referred to as interval-censoring. If C r < C l is satisfied for an observation, then
it is considered as interval-censored and the value of the response variable is ignored. If C r D C l for an
observation, then PROC HPSEVERITY assumes that observation to be uncensored. If all the observations in
a data set are censored in some form, then the specification of the response variable in the LOSS statement is
optional, because the actual value of the response variable is not required for the purposes of estimating a
model.

Specification of censoring and truncation affects the likelihood of the data (see the section “Likelihood
Function” on page 1197) and how the empirical distribution function (EDF) is estimated (see the section
“Empirical Distribution Function Estimation Methods” on page 1215).

Probability of Observability

For left-truncated data, PROC HPSEVERITY also enables you to provide additional information in the form
of probability of observability by using the PROBOBSERVED= option. It is defined as the probability that the
underlying severity event gets observed (and recorded) for the specified left-truncation threshold value. For
example, if you specify a value of 0.75, then for every 75 observations recorded above a specified threshold,
25 more events have happened with a severity value less than or equal to the specified threshold. Although
the exact severity value of those 25 events is not known, PROC HPSEVERITY can use the information about
the number of those events.

In particular, for each left-truncated observation, PROC HPSEVERITY assumes a presence of .1 � p/=p
additional observations with yi D ti . These additional observations are then used for computing the likelihood
(see the section “Probability of Observability and Likelihood” on page 1198) and an unconditional estimate
of the empirical distribution function (see the section “EDF Estimates and Truncation” on page 1220).

Truncation and Conditional CDF Estimates

If you specify left-truncation without the probability of observability or if you specify right-truncation, then
the EDF estimates that are computed by all methods except the STANDARD method are conditional on the
truncation information. For more information, see the section “EDF Estimates and Truncation” on page 1220.
In such cases, PROC HPSEVERITY uses conditional estimates of the CDF for computational or visual
comparison to the EDF estimates.
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Let t lmin D minift li g be the smallest value of the left-truncation threshold (t li is the left-truncation threshold
for observation i) and trmax D maxiftri g be the largest value of the right-truncation threshold (tri is the
right-truncation threshold for observation i). If OF .y/ denotes the unconditional estimate of the CDF at y,
then the conditional estimate OF c.y/ is computed as follows:

� If you do not specify the probability of observability, then the EDF estimates are conditional on the
left-truncation information. If an observation is both left-truncated and right-truncated, then

OF c.y/ D
OF .y/ � OF .t lmin/

OF .trmax/ �
OF .t lmin/

If an observation is left-truncated but not right-truncated, then

OF c.y/ D
OF .y/ � OF .t lmin/

1 � OF .t lmin/

If an observation is right-truncated but not left-truncated, then

OF c.y/ D
OF .y/

OF .trmax/

� If you specify the probability of observability, then EDF estimates are not conditional on the left-
truncation information. If an observation is not right-truncated, then the conditional estimate is the
same as the unconditional estimate. If an observation is right-truncated, then the conditional estimate
is computed as

OF c.y/ D
OF .y/

OF .trmax/

If you specify regression effects, then OF .y/, OF .t lmin/, and OF .trmax/ are all computed from a mixture distribu-
tion, as described in the section “CDF and PDF Estimates with Regression Effects” on page 1203.

Parameter Estimation Method
If you do not specify a custom objective function by specifying programming statements and the OB-
JECTIVE= option in the PROC HPSEVERITY statement, then PROC HPSEVERITY uses the maximum
likelihood (ML) method to estimate the parameters of each model. A nonlinear optimization process is
used to maximize the log of the likelihood function. If you specify a custom objective function, then
PROC HPSEVERITY uses a nonlinear optimization algorithm to estimate the parameters of each model
that minimize the value of your specified objective function. For more information, see the section “Custom
Objective Functions” on page 1251.
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Likelihood Function

Let f‚.x/ and F‚.x/ denote the PDF and CDF, respectively, evaluated at x for a set of parameter values ‚.
Let Y denote the random response variable, and let y denote its value recorded in an observation in the input
data set. Let T l and T r denote the random variables for the left-truncation and right-truncation threshold,
respectively, and let t l and tr denote their values for an observation, respectively. If there is no left-truncation,
then t l D � l , where � l is the smallest value in the support of the distribution; so F.t l/ D 0. If there is no
right-truncation, then tr D �h, where �h is the largest value in the support of the distribution; so F.tr/ D 1.
Let C l and C r denote the random variables for the left-censoring and right-censoring limit, respectively, and
let cl and cr denote their values for an observation, respectively. If there is no left-censoring, then cl D �h;
so F.cl/ D 1. If there is no right-censoring, then cr D � l ; so F.cr/ D 0.

The set of input observations can be categorized into the following four subsets within each BY group:

� E is the set of uncensored and untruncated observations. The likelihood of an observation in E is

lE D Pr.Y D y/ D f‚.y/

� Et is the set of uncensored observations that are truncated. The likelihood of an observation in Et is

lEt D Pr.Y D yjt l < Y � tr/ D
f‚.y/

F‚.tr/ � F‚.t l/

� C is the set of censored observations that are not truncated. The likelihood of an observation C is

lC D Pr.cr < Y � cl/ D F‚.cl/ � F‚.cr/

� Ct is the set of censored observations that are truncated. The likelihood of an observation Ct is

lCt D Pr.cr < Y � cl jt l < Y � tr/ D
F‚.c

l/ � F‚.c
r/

F‚.tr/ � F‚.t l/

Note that .E [Et /\ .C [Ct / D ;. Also, the sets Et and Ct are empty when you do not specify truncation,
and the sets C and Ct are empty when you do not specify censoring.

Given this, the likelihood of the data L is as follows:

L D
Y
E

f‚.y/
Y
Et

f‚.y/

F‚.tr/ � F‚.t l/

Y
C

F‚.c
l/ � F‚.c

r/
Y
Ct

F‚.c
l/ � F‚.c

r/

F‚.tr/ � F‚.t l/

The maximum likelihood procedure used by PROC HPSEVERITY finds an optimal set of parameter values
O‚ that maximizes log.L/ subject to the boundary constraints on parameter values. For a distribution dist ,

you can specify such boundary constraints by using the dist_LOWERBOUNDS and dist_UPPERBOUNDS
subroutines. For more information, see the section “Defining a Severity Distribution Model with the
FCMP Procedure” on page 1227. Some aspects of the optimization process can be controlled by using the
NLOPTIONS statement.
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Probability of Observability and Likelihood

If you specify the probability of observability for the left-truncation, then PROC HPSEVERITY uses a
modified likelihood function for each truncated observation. If the probability of observability is p 2
.0:0; 1:0�, then for each left-truncated observation with truncation threshold t l , there exist .1 � p/=p
observations with a response variable value less than or equal to t l . Each such observation has a probability
of Pr.Y � t l/ D F‚.t

l/. The right-truncation and censoring information does not apply to these added
observations. Thus, following the notation of the section “Likelihood Function” on page 1197, the likelihood
of the data is as follows:

L D
Y
E

f‚.y/
Y

Et ;t lD� l

f‚.y/

F‚.tr/

Y
Et ;t l>� l

f‚.y/

F‚.tr/
F‚.t

l/
1�p
p

Y
C

F‚.c
l/ � F‚.c

r/
Y

Ct ;t lD� l

F‚.c
l/ � F‚.c

r/

F‚.tr/

Y
Ct ;t l>� l

F‚.c
l/ � F‚.c

r/

F‚.tr/
F‚.t

l/
1�p
p

Note that the likelihood of the observations that are not left-truncated (observations in sets E and C, and
observations in sets Et and Ct for which t l D � l ) is not affected.

If you specify a custom objective function, then PROC HPSEVERITY accounts for the probability of
observability only while computing the empirical distribution function estimate. The parameter estimates are
affected only by your custom objective function.

Estimating Covariance and Standard Errors

PROC HPSEVERITY computes an estimate of the covariance matrix of the parameters by using the
asymptotic theory of the maximum likelihood estimators (MLE). If N denotes the number of observations
used for estimating a parameter vector ��� , then the theory states that as N !1, the distribution of O��� , the
estimate of ��� , converges to a normal distribution with mean ��� and covariance OC such that I.���/ � OC! 1, where
I.���/ D �E

�
r2 log.L.���//

�
is the information matrix for the likelihood of the data, L.���/. The covariance

estimate is obtained by using the inverse of the information matrix.

In particular, if G D r2.� log.L.���/// denotes the Hessian matrix of the negative of log likelihood, then the
covariance estimate is computed as

OC D
N

d
G�1

where d is a denominator that is determined by the VARDEF= option. If VARDEF=N, then d D N ,
which yields the asymptotic covariance estimate. If VARDEF=DF, then d D N � k, where k is number of
parameters (the model’s degrees of freedom). The VARDEF=DF option is the default, because it attempts to
correct the potential bias introduced by the finite sample.

The standard error si of the parameter �i is computed as the square root of the ith diagonal element of the

estimated covariance matrix; that is, si D
q
OCi i .

If you specify a custom objective function, then the covariance matrix of the parameters is still computed by
inverting the information matrix, except that the Hessian matrix G is computed as G D r2 log.U.���//, where
U denotes your custom objective function that is minimized by the optimizer.
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Covariance and standard error estimates might not be available if the Hessian matrix is found to be singular
at the end of the optimization process. This can especially happen if the optimization process stops without
converging.

Parameter Initialization
PROC HPSEVERITY enables you to initialize parameters of a model in different ways. A model can have
two kinds of parameters: distribution parameters and regression parameters.

The distribution parameters can be initialized by using one of the following three methods:

INIT= option You can use the INIT= option in the DIST statement.

INEST= or INSTORE= option You can use either the INEST= data set or the INSTORE= item store, but
not both.

PARMINIT subroutine You can define a dist_PARMINIT subroutine in the distribution model.
For more information, see the section “Defining a Severity Distribution
Model with the FCMP Procedure” on page 1227.

Note that only one of the initialization methods is used. You cannot combine them. They are used in the
following order:

� The method that uses the INIT= option takes the highest precedence. If you use the INIT= option
to provide an initial value for at least one parameter, then other initialization methods (INEST=,
INSTORE=, or PARMINIT) are not used. If you specify initial values for some but not all the
parameters by using the INIT= option, then the uninitialized parameters are initialized to the default
value of 0.001.

If you use this option and if you specify the regression effects, then the value of the first distribution
parameter must be related to the initial value for the base value of the scale or log-transformed scale
parameter. For more information, see the section “Estimating Regression Effects” on page 1200.

� The method that uses the INEST= data set or INSTORE= item store takes second precedence. If
the INEST= data set or INSTORE= item store contains a nonmissing value for even one distribution
parameter, then the PARMINIT method is not used and any uninitialized parameters are initialized to
the default value of 0.001.

� If none of the distribution parameters are initialized by using the INIT= option, the INEST= data
set, or the INSTORE= item store, but the distribution model defines a PARMINIT subroutine, then
PROC HPSEVERITY invokes that subroutine with appropriate inputs to initialize the parameters. If
the PARMINIT subroutine returns missing values for some parameters, then those parameters are
initialized to the default value of 0.001.

� If none of the initialization methods are used, each distribution parameter is initialized to the default
value of 0.001.

For more information about regression models and initialization of regression parameters, see the section
“Estimating Regression Effects” on page 1200.
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Estimating Regression Effects
The HPSEVERITY procedure enables you to estimate the influence of regression (exogenous) effects while
fitting a distribution if the distribution has a scale parameter or a log-transformed scale parameter.

Let xj , j D 1; : : : ; k, denote the k regression effects. Let ˇj denote the regression parameter that corresponds
to the effect xj . If you do not specify regression effects, then the model for the response variable Y is of the
form

Y � F.‚/

where F is the distribution of Y with parameters ‚. This model is usually referred to as the error model. The
regression effects are modeled by extending the error model to the following form:

Y � exp.
kX
jD1

ˇjxj / � F.‚/

Under this model, the distribution of Y is valid and belongs to the same parametric family as F if and only
if F has a scale parameter. Let � denote the scale parameter and � denote the set of nonscale distribution
parameters of F . Then the model can be rewritten as

Y � F.�;�/

such that � is modeled by the regression effects as

� D �0 � exp.
kX
jD1

ˇjxj /

where �0 is the base value of the scale parameter. Thus, the scale regression model consists of the following
parameters: �0, �, and ˇj .j D 1; : : : ; k/.

Given this form of the model, distributions without a scale parameter cannot be considered when regression
effects are to be modeled. If a distribution does not have a direct scale parameter, then PROC HPSEVERITY
accepts it only if it has a log-transformed scale parameter—that is, if it has a parameter p D log.�/.

Offset Variable

You can specify that an offset variable be included in the scale regression model by specifying it in the
OFFSET= option of the SCALEMODEL statement. The offset variable is a regressor whose regression
coefficient is known to be 1. If xo denotes the offset variable, then the scale regression model becomes

� D �0 � exp.xo C
kX
jD1

ˇjxj /

The regression coefficient of the offset variable is fixed at 1 and not estimated, so it is not reported in
the ParameterEstimates ODS table. However, if you specify the OUTEST= data set, then the regression
coefficient is added as a variable to that data set. The value of the offset variable in OUTEST= data set is
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equal to 1 for the estimates row (_TYPE_=‘EST’) and is equal to a special missing value (.F) for the standard
error (_TYPE_=‘STDERR’) and covariance (_TYPE_=‘COV’) rows.

An offset variable is useful to model the scale parameter per unit of some measure of exposure. For example,
in the automobile insurance context, measure of exposure can be the number of car-years insured or the total
number of miles driven by a fleet of cars at a rental car company. For worker’s compensation insurance,
if you want to model the expected loss per enterprise, then you can use the number of employees or total
employee salary as the measure of exposure. For epidemiological data, measure of exposure can be the
number of people who are exposed to a certain pathogen when you are modeling the loss associated with an
epidemic. In general, if e denotes the value of the exposure measure and if you specify xo D log.e/ as the
offset variable, then you are modeling the influence of other regression effects (xj ) on the size of the scale of
the distribution per unit of exposure.

Another use for an offset variable is when you have a priori knowledge of the influence of some exogenous
variables that cannot be included in the SCALEMODEL statement. You can model the combined influence
of such variables as an offset variable in order to correct for the omitted variable bias.

Parameter Initialization for Regression Models

The regression parameters are initialized either by using the values that you specify or by the default method.

� If you provide initial values for the regression parameters, then you must provide valid, nonmissing
initial values for �0 and ˇj parameters for all j.

You can specify the initial value for �0 by using either the INEST= data set, the INSTORE= item
store, or the INIT= option in the DIST statement. If the distribution has a direct scale parameter (no
transformation), then the initial value for the first parameter of the distribution is used as an initial
value for �0. If the distribution has a log-transformed scale parameter, then the initial value for the first
parameter of the distribution is used as an initial value for log.�0/.

You can use only the INEST= data set or the INSTORE= item store, but not both, to specify the initial
values for ˇj . The requirements for each option are as follows:

– If you use the INEST= data set, then it must contain nonmissing initial values for all the regressors
that you specify in the SCALEMODEL statement. The only missing value that is allowed is
the special missing value .R, which indicates that the regressor is linearly dependent on other
regressors. If you specify .R for a regressor for one distribution in a BY group, you must specify
it the same way for all the distributions in that BY group.
Note that you cannot specify INEST= data set if the regression model contains effects that have
CLASS variables or interaction effects.

– The parameter estimates in the INSTORE= item store are used to initialize the parameters of a
model if the item store contains a model specification that matches the model specification in the
current PROC HPSEVERITY step according to the following rules:

� The distribution name and the number and names of the distribution parameters must match.
� The model in the item store must include a scale regression model whose regression parame-

ters match as follows:
� If the regression model in the item store does not contain any redundant parameters,

then at least one regression parameter must match. Initial values of the parameters that
match are set equal to the estimates that are read from the item store, and initial values
of the other regression parameters are set equal to the default value of 0.001.
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� If the regression model in the item store contains any redundant parameters, then all the
regression parameters must match, and the initial values of all parameters are set equal
to the estimates that are read from the item store.

Note that a regression parameter is defined by the variables that form the underlying re-
gression effect and by the levels of the CLASS variables if the effect contains any CLASS
variables.

� If you do not specify valid initial values for �0 or ˇj parameters for all j, then PROC HPSEVERITY
initializes those parameters by using the following method:

Let a random variable Y be distributed as F.�;�/, where � is the scale parameter. By the definition of
the scale parameter, a random variable W D Y=� is distributed as G.�/ such that G.�/ D F.1;�/.
Given a random error term e that is generated from a distribution G.�/, a value y from the distribution
of Y can be generated as

y D � � e

Taking the logarithm of both sides and using the relationship of � with the regression effects yields

log.y/ D log.�0/C
kX
jD1

ˇjxj C log.e/

PROC HPSEVERITY makes use of the preceding relationship to initialize parameters of a regression
model with distribution dist as follows:

1. The following linear regression problem is solved to obtain initial estimates of ˇ0 and ˇj :

log.y/ D ˇ0 C
kX
jD1

ˇjxj

The estimates of ˇj .j D 1; : : : ; k/ in the solution of this regression problem are used to initialize
the respective regression parameters of the model. The estimate of ˇ0 is later used to initialize
the value of �0.
The results of this regression are also used to detect whether any regression parameters are
linearly dependent on the other regression parameters. If any such parameters are found, then a
warning is written to the SAS log and the corresponding parameter is eliminated from further
analysis. The estimates for linearly dependent regression parameters are denoted by a special
missing value of .R in the OUTEST= data set and in any displayed output.

2. Let s0 denote the initial value of the scale parameter.
If the distribution model of dist does not contain the dist_PARMINIT subroutine, then s0 and all
the nonscale distribution parameters are initialized to the default value of 0.001.
However, it is strongly recommended that each distribution’s model contain the dist_PARMINIT
subroutine. For more information, see the section “Defining a Severity Distribution Model with
the FCMP Procedure” on page 1227. If that subroutine is defined, then s0 is initialized as follows:
Each input value yi of the response variable is transformed to its scale-normalized version wi as

wi D
yi

exp.ˇ0 C
Pk
jD1 ˇjxij /
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where xij denotes the value of jth regression effect in the ith input observation. These wi values
are used to compute the input arguments for the dist_PARMINIT subroutine. The values that are
computed by the subroutine for nonscale parameters are used as their respective initial values.
If the distribution has an untransformed scale parameter, then s0 is set to the value of the scale
parameter that is computed by the subroutine. If the distribution has a log-transformed scale
parameter P, then s0 is computed as s0 D exp.l0/, where l0 is the value of P computed by the
subroutine.

3. The value of �0 is initialized as

�0 D s0 � exp.ˇ0/

Reporting Estimates of Regression Parameters

When you request estimates to be written to the output (either ODS displayed output or in the OUTEST= data
set), the estimate of the base value of the first distribution parameter is reported. If the first parameter is the log-
transformed scale parameter, then the estimate of log.�0/ is reported; otherwise, the estimate of �0 is reported.
The transform of the first parameter of a distribution dist is controlled by the dist_SCALETRANSFORM
function that is defined for it.

CDF and PDF Estimates with Regression Effects

When regression effects are estimated, the estimate of the scale parameter depends on the values of the
regressors and the estimates of the regression parameters. This dependency results in a potentially different
distribution for each observation. To make estimates of the cumulative distribution function (CDF) and
probability density function (PDF) comparable across distributions and comparable to the empirical distri-
bution function (EDF), PROC HPSEVERITY computes and reports the CDF and PDF estimates from a
representative distribution. The representative distribution is a mixture of a certain number of distributions,
where each distribution differs only in the value of the scale parameter. You can specify the number of
distributions in the mixture and how their scale values are chosen by using the DFMIXTURE= option in the
SCALEMODEL statement.

Let N denote the number of observations that are used for estimation, K denote the number of components
in the mixture distribution, sk denote the scale parameter of the kth mixture component, and dk denote the
weight associated with kth mixture component.

Let f .yI sk; O�/ and F.yI sk; O�/ denote the PDF and CDF, respectively, of the kth component distribution,
where O� denotes the set of estimates of all parameters of the distribution other than the scale parameter. Then,
the PDF and CDF estimates, f �.y/ and F �.y/, respectively, of the mixture distribution at y are computed as

f �.y/ D
1

D

KX
kD1

dkf .yI sk; O�/

F �.y/ D
1

D

KX
kD1

dkF.yI sk; O�/

where D is the normalization factor (D D
PK
kD1 dk).

PROC HPSEVERITY uses the F �.y/ values to compute the EDF-based statistics of fit and to create the
OUTCDF= data set and the CDF plots. The PDF estimates that it plots in the PDF plots are the f �.y/ values.
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The scale values sk for the K mixture components are derived from the set fO�ig (i D 1; : : : ; N ) of N linear
predictor values, where O�i denotes the estimate of the linear predictor due to observation i. It is computed as

O�i D log. O�0/C
kX
jD1

Ǒ
jxij

where O�0 is an estimate of the base value of the scale parameter, Ǒj are the estimates of regression coefficients,
and xij is the value of jth regression effect in observation i.

Let wi denote the weight of observation i. If you specify the WEIGHT statement, then the weight is equal to
the value of the specified weight variable for the corresponding observation in the DATA= data set; otherwise,
the weight is set to 1.

You can specify one of the following method-names in the DFMIXTURE= option in the SCALEMODEL
statement to specify the method of choosing K and the corresponding sk and dk values:

FULL In this method, there are as many mixture components as the number of observations that
are used for estimation. In other words, K = N, sk D O�k , and dk D wk (k D 1; : : : ; N ).
This is the slowest method, because it requires O.N/ computations to compute the
mixture CDF F �.yi / or the mixture PDF f �.yi / of one observation. For N observations,
the computational complexity in terms of number of CDF or PDF evaluations is O.N 2/.
Even for moderately large values of N, the time that is taken to compute the mixture CDF
and PDF can significantly exceed the time that is taken to estimate the model parameters.
So it is recommended that you use the FULL method only for small data sets.

MEAN In this method, the mixture contains only one distribution, whose scale value is determined
by the mean of the linear predictor values that are implied by all the observations. In other
words, s1 is computed as

s1 D exp

 
1

N

NX
iD1

O�i

!

The component’s weight d1 is set to 1.

This method is the fastest because it requires only one CDF or PDF evaluation per
observation. The computational complexity is O.N/ for N observations.

If you do not specify the DFMIXTURE= option in the SCALEMODEL statement, then
this is the default method.

QUANTILE In this method, a certain number of quantiles are chosen from the set of all linear predictor
values. If you specify a value of q for the K= option when specifying this method, then
K D q � 1 and sk (k D 1; : : : ; K) is computed as sk D exp. O�k/, where O�k is the kth
q-quantile from the set fO�ig (i D 1; : : : ; N ). The weight of each of the components (dk)
is assumed to be 1 for this method.

The default value of q is 2, which implies a one-point mixture that has a distribution
whose scale value is equal to the median scale value.

For this method, PROC HPSEVERITY needs to sort the N linear predictor values in
the set fO�ig; the sorting requires O.N log.N // computations. Then, computing the
mixture estimate of one observation requires .q � 1/ CDF or PDF evaluations. Hence,
the computational complexity of this method is O.qN/CO.N log.N // for computing
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a mixture CDF or PDF of N observations. For q << N , the QUANTILE method is
significantly faster than the FULL method.

RANDOM In this method, a uniform random sample of observations is chosen, and the mixture
contains the distributions that are implied by those observations. If you specify a value of
r for the K= option when specifying this method, then the size of the sample is r . Hence,
K D r . If lj denotes the index of jth observation in the sample (j D 1; : : : ; r ), such that
1 � lj � N , then the scale of kth component distribution in the mixture is sk D exp. O�lk /.
The weight of each of the components (dk) is assumed to be 1 for this method.

You can also specify the seed to be used for generating the random sample by using the
SEED= option for this method. The same sample of observations is used for all models.

Computing a mixture estimate of one observation requires r CDF or PDF evaluations.
Hence, the computational complexity of this method is O.rN/ for computing a mixture
CDF or PDF of N observations. For r << N , the RANDOM method is significantly
faster than the FULL method.

Levelization of Classification Variables
A classification variable enters the statistical analysis or model not through its values but through its levels.
The process of associating values of a variable with levels is called levelization.

During the process of levelization, observations that share the same value are assigned to the same level. The
manner in which values are grouped can be affected by the inclusion of formats. You can determine the sort
order of the levels by specifying the ORDER= option in the CLASS statement. You can also control the sort
order separately for each variable in the CLASS statement.

Consider the data on nine observations in Table 22.5. The variable A is integer-valued, and the variable X is
a continuous variable that has a missing value for the fourth observation. The fourth and fifth columns of
Table 22.5 apply two different formats to the variable X.

Table 22.5 Example Data for Levelization

Obs A X FORMAT
X 3.0

FORMAT
X 3.1

1 2 1.09 1 1.1
2 2 1.13 1 1.1
3 2 1.27 1 1.3
4 3 . . .
5 3 2.26 2 2.3
6 3 2.48 2 2.5
7 4 3.34 3 3.3
8 4 3.34 3 3.3
9 4 3.14 3 3.1

By default, levelization of the variables groups the observations by the formatted value of the variable, except
for numerical variables for which no explicit format is provided. Those numerical variables are sorted by their
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internal value. The levelization of the four columns in Table 22.5 leads to the level assignment in Table 22.6.

Table 22.6 Values and Levels

A X FORMAT X 3.0 FORMAT X 3.1

Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 1 1 1 1.1 1
2 2 1 1.13 2 1 1 1.1 1
3 2 1 1.27 3 1 1 1.3 2
4 3 2 . . . . . .
5 3 2 2.26 4 2 2 2.3 3
6 3 2 2.48 5 2 2 2.5 4
7 4 3 3.34 7 3 3 3.3 6
8 4 3 3.34 7 3 3 3.3 6
9 4 3 3.14 6 3 3 3.1 5

You can specify the sort order for the levels of CLASS variables in the ORDER= option in the CLASS
statement.

When ORDER=FORMATTED (which is the default) is in effect for numeric variables for which you have
supplied no explicit format, the levels are ordered by their internal values. To order numeric class levels that
have no explicit format by their BEST12. formatted values, you can specify the BEST12. format explicitly
for the CLASS variables.

Table 22.7 shows how values of the ORDER= option are interpreted.

Table 22.7 Interpretation of Values of ORDER= Option

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables that
have no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count (levels that have the most
observations come first in the order)

INTERNAL Unformatted value

FREQDATA Order of descending frequency count, and within counts
by order of appearance in the input data set when counts
are tied

FREQFORMATTED Order of descending frequency count, and within counts
by formatted value when counts are tied

FREQINTERNAL Order of descending frequency count, and within counts
by unformatted (internal) value when counts are tied
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For FORMATTED, FREQFORMATTED, FREQINTERNAL, and INTERNAL values, the sort order is
machine-dependent. For more information about sort order, see the chapter about the SORT procedure in
the Base SAS Procedures Guide and the discussion of BY-group processing in SAS Programmers Guide:
Essentials.

When you specify the MISSING option in the CLASS statement, the missing values (‘.’ for a numeric variable
and blanks for a character variable) are included in the levelization and are assigned a level. Table 22.8
displays the results of levelizing the values in Table 22.5 when the MISSING option is in effect.

Table 22.8 Values and Levels with the MISSING Option

A X FORMAT x 3.0 FORMAT x 3.1

Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 2 1 2 1.1 2
2 2 1 1.13 3 1 2 1.1 2
3 2 1 1.27 4 1 2 1.3 3
4 3 2 . 1 . 1 . 1
5 3 2 2.26 5 2 3 2.3 4
6 3 2 2.48 6 2 3 2.5 5
7 4 3 3.34 8 3 4 3.3 7
8 4 3 3.34 8 3 4 3.3 7
9 4 3 3.14 7 3 4 3.1 6

When you do not specify the MISSING option, it is important to understand the implications of missing values
for your statistical analysis. When PROC HPSEVERITY levelizes the CLASS variables, any observations
for which a CLASS variable has a missing value are excluded from the analysis. This is true regardless of
whether the variable is used to form the statistical model. For example, consider the case in which some
observations contain missing values for variable A but the records for these observations are otherwise
complete with respect to all other variables in the model. The analysis results that come from the following
statements do not include any observations for which variable A contains missing values, even though A is
not specified in the SCALEMODEL statement:

class A B;
scalemodel B x B*x;

You can request PROC HPSEVERITY to print the “Descriptive Statistics” table, which shows the number
of observations that are read from the data set and the number of observations that are used in the analysis.
Pay careful attention to this table—especially when your data set contains missing values—to ensure that no
observations are unintentionally excluded from the analysis.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Specification and Parameterization of Model Effects
PROC HPSEVERITY supports formation of regression effects in the SCALEMODEL statement. A regression
effect is formed from one or more regressor variables according to effect construction rules (parameterization).
Each regression effect forms one element of X in the linear model structure Xˇ that affects the scale parameter.
The SCALEMODEL statement in conjunction with the CLASS statement supports a rich set of effects. In
order to correctly interpret the results, you need to understand the specification and parameterization of
effects that are discussed in this section.

Effects are specified by a special notation that uses variable names and operators. There are two types of
regressor variables: classification (or CLASS) variables and continuous variables. Classification variables
can be either numeric or character and are specified in a CLASS statement. For more information, see the
section “Levelization of Classification Variables” on page 1205. A regressor variable that is not declared in
the CLASS statement is assumed to be continuous.

Two primary operators (crossing and nesting) are used for combining the variables, and several additional
operators are used to simplify effect specification. Operators are discussed in the section “Effect Operators”
on page 1208.

If you specify the CLASS statement, then PROC HPSEVERITY supports a general linear model (GLM)
parameterization and a reference parameterization for the classification variables. The GLM parameterization
is the default. For more information, see the sections “GLM Parameterization of Classification Variables and
Effects” on page 1210 and “Reference Parameterization” on page 1214.

Effect Operators

Table 22.9 summarizes the operators that are available for selecting and constructing effects. These operators
are discussed in the following sections.

Table 22.9 Available Effect Operators

Operator Example Description

Interaction A*B Crosses the levels of the effects
Nesting A(B) Nests A levels within B levels
Bar operator A | B | C Specifies all interactions
At sign operator A | B | C@2 Reduces interactions in bar effects
Dash operator A1-A10 Specifies sequentially numbered variables
Colon operator A: Specifies variables that have a common prefix
Double dash operator A- -C Specifies sequential variables in data set order

Bar and At Sign Operators
You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:
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scalemodel A B C A*B A*C B*C A*B*C;

scalemodel A|B|C;

When you use the bar (|), the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 from Searle
(1971, p. 390).

� Multiple bars are evaluated from left to right. For example, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

� Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

� Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

� Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For example,
A(B) | B(D E) generates A*B(B D E), but this effect is eliminated immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an at sign (@), at the end of the bar effect. For example,
the following specification selects only those effects that contain two or fewer variables:

scalemodel A|B|C@2;

The preceding example is equivalent to the following SCALEMODEL statement:

scalemodel A B C A*B A*C B*C;

More examples of using the bar and at sign operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

NOTE: The preceding examples assume the following CLASS statement specification:
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class A B C D;

Colon, Dash, and Double Dash Operators
You can simplify the specification of a large model when some of your variables have a common prefix by
using the colon (:) operator and the dash (-) operator. The colon operator selects all variables that have a
particular prefix, and the dash operator enables you to list variables that are numbered sequentially. For
example, if your data set contains the variables X1 through X9, the following SCALEMODEL statements are
equivalent:

scalemodel X1 X2 X3 X4 X5 X6 X7 X8 X9;

scalemodel X1-X9;

scalemodel X:;

If your data set contains only the three covariates X1, X2, and X9, then the colon operator selects all three
variables:

scalemodel X:;

However, the following specification returns an error because X3 through X8 are not in the data set:

scalemodel X1-X9;

The double dash (- -) operator enables you to select variables that are stored sequentially in the SAS data
set, whether or not they have a common prefix. You can use the CONTENTS procedure (see Base SAS
Procedures Guide) to determine your variable ordering. For example, if you replace the dash in the preceding
SCALEMODEL statement with a double dash, as follows, then all three variables are selected:

scalemodel X1--X9;

If your data set contains the variables A, B, and C, then you can use the double dash operator to select these
variables by specifying the following:

scalemodel A--C;

GLM Parameterization of Classification Variables and Effects

Table 22.10 shows the types of effects that are available in the HPSEVERITY procedure; they are discussed
in more detail in the following sections. Let A, B, and C represent classification variables, and let X and Z
represent continuous variables.

Table 22.10 Available Types of Effects

Effect Example Description

Singleton continuous X Z Continuous variables
Polynomial continuous X*Z Interaction of continuous variables
Main A B CLASS variables
Interaction A*B Crossing of CLASS variables
Nested A(B) Main effect A nested within CLASS effect B
Continuous-by-class X*A Crossing of continuous and CLASS variables

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Effect Example Description

Continuous-nesting-class X(A) Continuous variable X nested within CLASS variable A
General X*Z*A(B) Combinations of different types of effects

Continuous Effects
Continuous variables or polynomial terms that involve them can be included in the model as continuous
effects. An effect that contains a single continuous variable is referred to as a singleton continuous effect, and
an effect that contains an interaction of only continuous variables is referred to as a polynomial continuous
effect. The actual values of such terms are included as columns of the relevant model matrices. You can
use the bar operator along with a continuous variable to generate polynomial effects. For example, X | X | X
expands to X X*X X*X*X, which is a cubic model.

Main Effects
If a classification variable has m levels, the GLM parameterization generates m columns for its main effect in
the model matrix. Each column is an indicator variable for a given level. The order of the columns is the sort
order of the values of their levels and can be controlled by the ORDER= option in the CLASS statement.

Table 22.11 is an example where ˇ0 denotes the intercept and A and B are classification variables that have
two and three levels, respectively.

Table 22.11 Example of Main Effects

Data I A B

A B ˇ0 A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

There are usually more columns for these effects than there are degrees of freedom to estimate them. In other
words, the GLM parameterization of main effects is singular.

Interaction Effects
Often a regression model includes interaction (crossed) effects to account for how the effect of a variable
changes along with the values of other variables. In an interaction, the terms are first reordered to correspond
to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A precedes B in the CLASS
statement. Then, the GLM parameterization generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the interaction change faster than
the leftmost variables, as illustrated in Table 22.12.
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Table 22.12 Example of Interaction Effects

Data I A B A*B

A B ˇ0 A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the matrix in Table 22.12, main-effects columns are not linearly independent of crossed-effects columns.
In fact, the column space for the crossed effects contains the space of the main effect.

When your regression model contains many interaction effects, you might be able to code them more
parsimoniously by using the bar operator ( | ). The bar operator generates all possible interaction effects. For
example, A | B | C expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use
the at sign (@) in conjunction with the bar operator. For example, A | B | C | D@2 expands to A B A*B C A*C
B*C D A*D B*D C*D.

Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design columns that are
generated by the following two statements are the same (but the ordering of the columns is different):

scalemodel A B(A);

scalemodel A A*B;

The nesting operator in PROC HPSEVERITY is more of a notational convenience than an operation that is
distinct from crossing. Nested effects are usually characterized by the property that the nested variables do
not appear as main effects. The order of the variables within nesting parentheses is made to correspond to the
order of these variables in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested variables index faster
than the leftmost variables, as illustrated in Table 22.13.

Table 22.13 Example of Nested Effects

Data I A B(A)

A B ˇ0 A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1
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Continuous-Nesting-Class Effects
When a continuous variable nests or crosses with a classification variable, the design columns are constructed
by multiplying the continuous values into the design columns for the classification effect, as illustrated in
Table 22.14.

Table 22.14 Example of Continuous-Nesting-Class Effects

Data I A X(A)

X A ˇ0 A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

Continuous-by-Class Effects
Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. Ta-
ble 22.15 shows the construction of the X*A effect. The two columns for this effect are the same as the
columns for the X(A) effect in Table 22.14.

Table 22.15 Example of Continuous-by-Class Effects

Data I X A X*A

X A ˇ0 X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

General Effects
An example that combines all the effects is X1*X2*A*B*C(D E). The continuous list comes first, followed by
the crossed list, followed by the nested list in parentheses. PROC HPSEVERITY might rename effects to
correspond to ordering rules. For example, B*A(E D) might be renamed A*B(D E) to satisfy the following:

� Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.

� Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS
statement.

The sequencing of the parameters that are generated by an effect is determined by the variables whose levels
are indexed faster:
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� Variables in the crossed list index faster than variables in the nested list.

� Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each of which has two levels, 1 and 2.
Assume the CLASS statement is

class A B C D;

Then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A1B1C1D1 ! A1B2C1D1 ! A2B1C1D1 ! A2B2C1D1 !

A1B1C1D2 ! A1B2C1D2 ! A2B1C1D2 ! A2B2C1D2 !

A1B1C2D1 ! A1B2C2D1 ! A2B1C2D1 ! A2B2C2D1 !

A1B1C2D2 ! A1B2C2D2 ! A2B1C2D2 ! A2B2C2D2

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect changes fastest because it is rightmost in the cross list. Then A
changes next fastest, and D changes next fastest after that. The C effect changes most slowly because it is
leftmost in the nested list.

Reference Parameterization

Classification variables can be represented in the reference parameterization. Consider the classification
variable A that has four values, 1, 2, 5, and 7. The reference parameterization generates three columns (one
less than the number of variable levels). The columns indicate group membership of the nonreference levels.
For the reference level, the three dummy variables have a value of 0. If the reference level is 7 (REF=’7’), the
design columns for variable A are as shown in Table 22.16.

Table 22.16 Reference Coding

Design Matrix

A A1 A2 A5

1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects that use the reference coding scheme estimate the difference in
the effect of each nonreference level compared to the effect of the reference level.
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Empirical Distribution Function Estimation Methods
The empirical distribution function (EDF) is a nonparametric estimate of the cumulative distribution function
(CDF) of the distribution. PROC HPSEVERITY computes EDF estimates for two purposes: to send the
estimates to a distribution’s PARMINIT subroutine in order to initialize the distribution parameters, and to
compute the EDF-based statistics of fit.

To reduce the time that it takes to compute the EDF estimates, you can use the INITSAMPLE option to
specify that only a fraction of the input data be used. If you do not specify the INITSAMPLE option and
the data set has more than 10,000 valid observations, then a uniform random sample of at most 10,000
observations is used for EDF estimation.

This section describes the methods that are used for computing EDF estimates.

Notation

Let there be a set of N observations, each containing a quintuplet of values .yi ; t li ; t
r
i ; c

r
i ; c

l
i /; i D 1; : : : ; N ,

where yi is the value of the response variable, t li is the value of the left-truncation threshold, tri is the value
of the right-truncation threshold, cri is the value of the right-censoring limit, and cli is the value of the
left-censoring limit.

If an observation is not left-truncated, then t li D � l , where � l is the smallest value in the support of the
distribution; so F.t li / D 0. If an observation is not right-truncated, then tri D �h, where �h is the largest
value in the support of the distribution; so F.tri / D 1. If an observation is not right-censored, then cri D �

l ;
so F.cri / D 0. If an observation is not left-censored, then cli D �h; so F.cli / D 1.

Let wi denote the weight associated with ith observation. If you specify the WEIGHT statement, then wi is
the normalized value of the weight variable; otherwise, it is set to 1. The weights are normalized such that
they sum up to N.

An indicator function I Œe� takes a value of 1 or 0 if the expression e is true or false, respectively.

Estimation Methods

If the response variable is subject to both left-censoring and right-censoring effects and if you explicitly
specify the EMPIRICALCDF=TURNBULL option, then PROC HPSEVERITY uses the Turnbull’s method.
This section describes methods other than Turnbull’s method. For Turnbull’s method, see the next section
“Turnbull’s EDF Estimation Method” on page 1218.

The method descriptions assume that all observations are either uncensored or right-censored; that is, each
observation is of the form .yi ; t

l
i ; t

r
i ; �

l ; �h/ or .yi ; t li ; t
r
i ; c

r
i ; �h/.

If all observations are either uncensored or left-censored, then each observation is of the form
.yi ; t

l
i ; t

r
i ; �l ; c

l
i /. It is converted to an observation .�yi ;�tri ;�t

l
i ;�c

l
i ; �h/; that is, the signs of all the

response variable values are reversed, the new left-truncation threshold is equal to the negative of the original
right-truncation threshold, the new right-truncation threshold is equal to the negative of the original left-
truncation threshold, and the negative of the original left-censoring limit becomes the new right-censoring
limit. With this transformation, each observation is either uncensored or right-censored. The methods
described for handling uncensored or right-censored data are now applicable. After the EDF estimates are
computed, the observations are transformed back to the original form and EDF estimates are adjusted such
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Fn.yi / D 1 � Fn.�yi�/, where Fn.�yi�/ denotes the EDF estimate of the value slightly less than the
transformed value �yi .

Further, a set of uncensored or right-censored observations can be converted to a set of observations of
the form .yi ; t

l
i ; t

r
i ; ıi /, where ıi is the indicator of right-censoring. ıi D 0 indicates a right-censored

observation, in which case yi is assumed to record the right-censoring limit cri . ıi D 1 indicates an
uncensored observation, and yi records the exact observed value. In other words, ıi D I ŒY � C r � and
yi D min.yi ; cri /.

Given this notation, the EDF is estimated as

Fn.y/ D

8<:
0 if y < y.1/
OFn.y

.k// if y.k/ � y < y.kC1/; k D 1; : : : ; N � 1
OFn.y

.N// if y.N/ � y

where y.k/ denotes the kth-order statistic of the set fyig and OFn.y.k// is the estimate computed at that
value. The definition of OFn depends on the estimation method. You can specify a particular method or let
PROC HPSEVERITY choose an appropriate method by using the EMPIRICALCDF= option in the PROC
HPSEVERITY statement. Each method computes OFn as follows:

NOTURNBULL This is the default method. First, censored observations, if any, are processed as
follows:

� An observation that is left-censored but not right-censored is converted to an
uncensored observation .yui ; t

l
i ; t

r
i ; �

l ; �h/, where yui D c
l
i =2.

� An observation that is both left-censored and right-censored is converted to an
uncensored observation .yui ; t

l
i ; t

r
i ; �

l ; �h/, where yui D .c
r
i C c

l
i /=2.

� An observation that is right-censored but not left-censored is left unchanged.

If the processed set of observations contains any truncated or right-censored observa-
tions, the KAPLANMEIER method is used. Otherwise, the STANDARD method is
used.

The observations are modified only for the purpose of computing the EDF estimates.
The original censoring information is used by the parameter estimation process.

STANDARD This method is the standard way of computing EDF. The EDF estimate at observation
i is computed as follows:

OFn.yi / D
1

N

NX
jD1

wj � I Œyj � yi �

If you do not specify any censoring or truncation information, then this method is
chosen. If you explicitly specify this method, then PROC HPSEVERITY ignores any
censoring and truncation information that you specify in the LOSS statement.

The standard error of OFn.yi / is computed by using the normal approximation method:

O�n.yi / D

q
OFn.yi /.1 � OFn.yi //=N
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KAPLANMEIER The Kaplan-Meier (KM) estimator, also known as the product-limit estimator, was first
introduced by Kaplan and Meier (1958) for censored data. Lynden-Bell (1971) derived
a similar estimator for left-truncated data. PROC HPSEVERITY uses the definition
that combines both censoring and truncation information (Klein and Moeschberger
1997; Lai and Ying 1991).

The EDF estimate at observation i is computed as

OFn.yi / D 1 �
Y
��yi

�
1 �

n.�/

Rn.�/

�
where n.�/ and Rn.�/ are defined as follows:

� n.�/ D
PN
kD1wk � I Œyk D � and � � tr

k
and ık D 1�, which is the number

of uncensored observations (ık D 1) for which the response variable value is
equal to � and � is observable according to the right-truncation threshold of that
observation (� � tr

k
).

� Rn.�/ D
PN
kD1wk � I Œyk � � > t

l
k
�, which is the size (cardinality) of the risk

set at � . The term risk set has its origins in survival analysis; it contains the
events that are at risk of failure at a given time, � . In other words, it contains the
events that have survived up to time � and might fail at or after � . For PROC
HPSEVERITY, time is equivalent to the magnitude of the event and failure is
equivalent to an uncensored and observable event, where observable means it
satisfies the truncation thresholds.

This method is chosen when you specify at least one form of censoring or truncation.

The standard error of OFn.yi / is computed by using Greenwood’s formula (Greenwood
1926):

O�n.yi / D

vuut.1 � OFn.yi //2 �
X
��yi

�
n.�/

Rn.�/.Rn.�/ � n.�//

�

MODIFIEDKM The product-limit estimator used by the KAPLANMEIER method does not work well
if the risk set size becomes very small. For right-censored data, the size can become
small towards the right tail. For left-truncated data, the size can become small at the
left tail and can remain so for the entire range of data. This was demonstrated by
Lai and Ying (1991). They proposed a modification to the estimator that ignores the
effects due to small risk set sizes.

The EDF estimate at observation i is computed as

OFn.yi / D 1 �
Y
��yi

�
1 �

n.�/

Rn.�/
� I ŒRn.�/ � cN

˛�

�
where the definitions of n.�/ and Rn.�/ are identical to those used for the KAPLAN-
MEIER method described previously.

You can specify the values of c and ˛ by using the C= and ALPHA= options. If you
do not specify a value for c, the default value used is c = 1. If you do not specify a
value for ˛, the default value used is ˛ D 0:5.
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As an alternative, you can also specify an absolute lower bound, say L, on the risk
set size by using the RSLB= option, in which case I ŒRn.�/ � cN ˛� is replaced by
I ŒRn.�/ � L� in the definition.

The standard error of OFn.yi / is computed by using Greenwood’s formula (Greenwood
1926):

O�n.yi / D

vuut.1 � OFn.yi //2 �
X
��yi

�
n.�/

Rn.�/.Rn.�/ � n.�//
� I ŒRn.�/ � cN ˛�

�

Turnbull’s EDF Estimation Method

If the response variable is subject to both left-censoring and right-censoring effects and if you explicitly
specify the EMPIRICALCDF=TURNBULL option, then the HPSEVERITY procedure uses a method
proposed by Turnbull (1976) to compute the nonparametric estimates of the cumulative distribution function.
The original Turnbull’s method is modified using the suggestions made by Frydman (1994) when truncation
effects are present.

Let the input data consist of N observations in the form of quintuplets of values .yi ; t li ; t
r
i ; c

r
i ; c

l
i /; i D

1; : : : ; N with notation described in the section “Notation” on page 1215. For each observation, let Ai D
.cri ; c

l
i � be the censoring interval; that is, the response variable value is known to lie in the interval Ai , but

the exact value is not known. If an observation is uncensored, then Ai D .yi � �; yi � for any arbitrarily small
value of � > 0. If an observation is censored, then the value yi is ignored. Similarly, for each observation,
let Bi D .t li ; t

r
i � be the truncation interval; that is, the observation is drawn from a truncated (conditional)

distribution F.y;Bi / D P.Y � yjY 2 Bi /.

Two sets, L and R, are formed using Ai and Bi as follows:

L D fcri ; 1 � i � N g [ ft
r
i ; 1 � i � N g

R D fcli ; 1 � i � N g [ ft
l
i ; 1 � i � N g

The sets L and R represent the left endpoints and right endpoints, respectively. A set of disjoint intervals
Cj D Œqj ; pj �, 1 � j � M is formed such that qj 2 L and pj 2 R and qj � pj and pj < qjC1. The
value of M is dependent on the nature of censoring and truncation intervals in the input data. Turnbull (1976)
showed that the maximum likelihood estimate (MLE) of the EDF can increase only inside intervals Cj . In
other words, the MLE estimate is constant in the interval .pj ; qjC1/. The likelihood is independent of the
behavior of Fn inside any of the intervals Cj . Let sj denote the increase in Fn inside an interval Cj . Then,
the EDF estimate is as follows:

Fn.y/ D

8<:
0 if y < q1Pj

kD1
sk if pj < y < qjC1; 1 � j �M � 1

1 if y > pM

PROC HPSEVERITY computes the estimates Fn.pjC/ D Fn.qjC1�/ D
Pj

kD1
sk at points pj and qjC1

and computes Fn.q1�/ D 0 at point q1, where Fn.xC/ denotes the limiting estimate at a point that is
infinitesimally larger than x when approaching x from values larger than x and where Fn.x�/ denotes the
limiting estimate at a point that is infinitesimally smaller than x when approaching x from values smaller than
x.
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PROC HPSEVERITY uses the expectation-maximization (EM) algorithm proposed by Turnbull (1976), who
referred to the algorithm as the self-consistency algorithm. By default, the algorithm runs until one of the
following criteria is met:

� Relative-error criterion: The maximum relative error between the two consecutive estimates of sj falls
below a threshold �. If l indicates an index of the current iteration, then this can be formally stated as

arg max
1�j�M

(
jslj � s

l�1
j j

sl�1j

)
� �

You can control the value of � by specifying the EPS= suboption of the EDF=TURNBULL option in
the PROC HPSEVERITY statement. The default value is 1.0E–8.

� Maximum-iteration criterion: The number of iterations exceeds an upper limit that you specify for the
MAXITER= suboption of the EDF=TURNBULL option in the PROC HPSEVERITY statement. The
default number of maximum iterations is 500.

The self-consistent estimates obtained in this manner might not be maximum likelihood estimates. Gentleman
and Geyer (1994) suggested the use of the Kuhn-Tucker conditions for the maximum likelihood problem to
ensure that the estimates are MLE. If you specify the ENSUREMLE suboption of the EDF=TURNBULL
option in the PROC HPSEVERITY statement, then PROC HPSEVERITY computes the Kuhn-Tucker
conditions at the end of each iteration to determine whether the estimates {sj } are MLE. If you do not
specify any truncation effects, then the Kuhn-Tucker conditions derived by Gentleman and Geyer (1994)
are used. If you specify any truncation effects, then PROC HPSEVERITY uses modified Kuhn-Tucker
conditions that account for the truncation effects. An integral part of checking the conditions is to determine
whether an estimate sj is zero or whether an estimate of the Lagrange multiplier or the reduced gradient
associated with the estimate sj is zero. PROC HPSEVERITY declares these values to be zero if they are
less than or equal to a threshold ı. You can control the value of ı by specifying the ZEROPROB= suboption
of the EDF=TURNBULL option in the PROC HPSEVERITY statement. The default value is 1.0E–8. The
algorithm continues until the Kuhn-Tucker conditions are satisfied or the number of iterations exceeds the
upper limit. The relative-error criterion stated previously is not used when you specify the ENSUREMLE
option.

The standard errors for Turnbull’s EDF estimates are computed by using the asymptotic theory of the
maximum likelihood estimators (MLE), even though the final estimates might not be MLE. Turnbull’s
estimator essentially attempts to maximize the likelihood L, which depends on the parameters sj (j D
1; : : : ;M ). Let sss D fsj g denote the set of these parameters. If G.sss/ D r2.� log.L.sss/// denotes the
Hessian matrix of the negative of log likelihood, then the variance-covariance matrix of sss is estimated as
OC.sss/ D G�1.sss/. Given this matrix, the standard error of Fn.y/ is computed as

�n.y/ D

vuuut jX
kD1

0@ OCkk C 2 � k�1X
lD1

OCkl

1A, if pj < y < qjC1; 1 � j �M � 1

The standard error is undefined outside of these intervals.
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EDF Estimates and Truncation

If you specify truncation, then the estimate OFn.y/ that is computed by any method other than the STANDARD
method is a conditional estimate. In other words, OFn.y/ D Pr.Y � yj�G < Y � �H /, where G and
H denote the (unknown) distribution functions of the left-truncation threshold variable T l and the right-
truncation threshold variable T r , respectively, �G denotes the smallest left-truncation threshold with a nonzero
cumulative probability, and �H denotes the largest right-truncation threshold with a nonzero cumulative
probability. Formally, �G D inffs W G.s/ > 0g and �H D supfs W H.s/ > 0g. For computational purposes,
PROC HPSEVERITY estimates �G and �H by t lmin and trmax, respectively, defined as

t lmin D minft lk W 1 � k � N g

trmax D maxftrk W 1 � k � N g

These estimates of t lmin and trmax are used to compute the conditional estimates of the CDF as described in the
section “Truncation and Conditional CDF Estimates” on page 1195.

If you specify left-truncation with the probability of observability p, then PROC HPSEVERITY uses the
additional information provided by p to compute an estimate of the EDF that is not conditional on the
left-truncation information. In particular, for each left-truncated observation i with response variable value
yi and truncation threshold t li , an observation j is added with weight wj D .1 � p/=p and yj D t lj . Each
added observation is assumed to be uncensored and untruncated. Then, your specified EDF method is used
by assuming no left-truncation. The EDF estimate that is obtained using this method is not conditional on
the left-truncation information. For the KAPLANMEIER and MODIFIEDKM methods with uncensored
or right-censored data, definitions of n.�/ and Rn.�/ are modified to account for the added observations.
If N a denotes the total number of observations including the added observations, then n.�/ is defined as
n.�/ D

PNa

kD1wkI Œyk D � and � � tr
k

and ık D 1�, andRn.�/ is defined asRn.�/ D
PNa

kD1wkI Œyk � ��.
In the definition of Rn.�/, the left-truncation information is not used, because it was used along with p to
add the observations.

If the original data are a combination of left- and right-censored data and if you specify the EMPIRI-
CALCDF=TURNBULL option, then Turnbull’s method is applied to the appended set that contains no
left-truncated observations.

Supplying EDF Estimates to Functions and Subroutines

The parameter initialization subroutines in distribution models and some predefined utility functions require
EDF estimates. For more information, see the sections “Defining a Severity Distribution Model with the
FCMP Procedure” on page 1227 and “Predefined Utility Functions” on page 1239.

PROC HPSEVERITY supplies the EDF estimates to these subroutines and functions by using two arrays,
x and F, the dimension of each array, and a type of the EDF estimates. The type identifies how the EDF
estimates are computed and stored. They are as follows:

Type 1 specifies that EDF estimates are computed using the STANDARD method; that is, the data that
are used for estimation are neither censored nor truncated.

Type 2 specifies that EDF estimates are computed using either the KAPLANMEIER or the MODI-
FIEDKM method; that is, the data that are used for estimation are subject to truncation and one
type of censoring (left or right, but not both).

Type 3 specifies that EDF estimates are computed using the TURNBULL method; that is, the data that
are used for estimation are subject to both left- and right-censoring. The data might or might not
be truncated.
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For Types 1 and 2, the EDF estimates are stored in arrays x and F of dimension N such that the following
holds,

Fn.y/ D

8<:
0 if y < xŒ1�
F Œk� if xŒk� � y < xŒk C 1�; k D 1; : : : ; N � 1
F ŒN � if xŒN � � y

where Œk� denotes kth element of the array ([1] denotes the first element of the array).

For Type 3, the EDF estimates are stored in arrays x and F of dimension N such that the following holds:

Fn.y/ D

8̂̂<̂
:̂
0 if y < xŒ1�
undefined if xŒ2k � 1� � y < xŒ2k�; k D 1; : : : ; .N � 1/=2
F Œ2k� D F Œ2k C 1� if xŒ2k� � y < xŒ2k C 1�; k D 1; : : : ; .N � 1/=2
F ŒN � if xŒN � � y

Although the behavior of EDF is theoretically undefined for the interval ŒxŒ2k� 1�; xŒ2k�/, for computational
purposes, all predefined functions and subroutines assume that the EDF increases linearly from F Œ2k � 1�

to F Œ2k� in that interval if xŒ2k � 1� < xŒ2k�. If xŒ2k � 1� D xŒ2k�, which can happen when the EDF
is estimated from a combination of uncensored and interval-censored data, the predefined functions and
subroutines assume that Fn.xŒ2k � 1�/ D Fn.xŒ2k�/ D F Œ2k�.

Statistics of Fit
PROC HPSEVERITY computes and reports various statistics of fit to indicate how well the estimated model
fits the data. The statistics belong to two categories: likelihood-based statistics and EDF-based statistics.
Neg2LogLike, AIC, AICC, and BIC are likelihood-based statistics, and KS, AD, and CvM are EDF-based
statistics.

The EDF estimates are computed by using the local data. The EDF-based statistics are computed by using
these local EDF estimates. For large data sets, the EDF estimates are computed by using a fraction of the
input data that is governed by either the INITSAMPLE option or the default sample size. Because of this
nature of computing the EDF estimates, the EDF-based statistics of fit are an approximation of the values
that would have been computed if the entire input data set were used for computing the EDF estimates. So
the values that are reported for EDF-based statistics should be used only for comparing different models. The
reported values should not be interpreted as true estimates of the corresponding statistics.

The likelihood-based statistics are reported for the entire input data.

The following subsections provide definitions of each category of statistics.

Likelihood-Based Statistics of Fit

Let yi ; i D 1; : : : ; N , denote the response variable values. Let L be the likelihood as defined in the section
“Likelihood Function” on page 1197. Let p denote the number of model parameters that are estimated.
Note that p D pd C .k � kr/, where pd is the number of distribution parameters, k is the number of all
regression parameters, and kr is the number of regression parameters that are found to be linearly dependent
(redundant) on other regression parameters. By default, the value of pd includes the distribution parameters
that you have defined as constant by using the dist_CONSTANTPARM subroutine. You can exclude them by
specifying the NOCONSTFITSTATS option in the PROC HPSEVERITY statement. Given this notation, the
likelihood-based statistics are defined as follows:
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Neg2LogLike The log likelihood is reported as

Neg2LogLike D �2 log.L/

The multiplying factor �2 makes it easy to compare it to the other likelihood-based
statistics. A model that has a smaller value of Neg2LogLike is deemed better.

AIC Akaike’s information criterion (AIC) is defined as

AIC D �2 log.L/C 2p

A model that has a smaller AIC value is deemed better.

AICC The corrected Akaike’s information criterion (AICC) is defined as

AICC D �2 log.L/C
2Np

N � p � 1

A model that has a smaller AICC value is deemed better. It corrects the finite-sample bias
that AIC has when N is small compared to p. AICC is related to AIC as

AICC D AICC
2p.p C 1/

N � p � 1

As N becomes large compared to p, AICC converges to AIC. AICC is usually recom-
mended over AIC as a model selection criterion.

BIC The Schwarz Bayesian information criterion (BIC) is defined as

BIC D �2 log.L/C p log.N /

A model that has a smaller BIC value is deemed better.

EDF-Based Statistics

This class of statistics is based on the difference between the estimate of the cumulative distribution function
(CDF) and the estimate of the empirical distribution function (EDF). A model that has a smaller value of the
chosen EDF-based statistic is deemed better.

Let yi ; i D 1; : : : ; N; denote the sample of N values of the response variable. Let wi denote the normalized
weight of the ith observation. If woi denotes the original, unnormalized weight of the ith observation, then
wi D Nw

o
i =.
PN
iD1w

o
i /. Let Nu denote the number of observations with unique (nonduplicate) values of

the response variable. Let Wi D
PN
jD1wj I Œyj D yi � denote the total weight of observations with a value

yi , where I is an indicator function. Let ri D
PN
jD1wj I Œyj � yi � denote the total weight of observations

with a value less than or equal to yi . Let W D
PNu
iD1Wi denote the total weight of all observations. Use of

normalized weights implies that W D N .

Let Fn.yi / denote the EDF estimate that is computed by using the method that you specify in the EMPIRI-
CALCDF= option. Let Zi D OF .yi / denote the estimate of the CDF. Let Fn.Zi / denote the EDF estimate of
Zi values that are computed using the same method that is used to compute the EDF of yi values. Using the
probability integral transformation, if F.y/ is the true distribution of the random variable Y, then the random
variable Z D F.y/ is uniformly distributed between 0 and 1 (D’Agostino and Stephens 1986, Ch. 4). Thus,
comparing Fn.yi / with OF .yi / is equivalent to comparing Fn.Zi / with OF .Zi / D Zi (uniform distribution).

Note the following two points regarding which CDF estimates are used for computing the test statistics:
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� If you specify regression effects, then the CDF estimates Zi that are used for computing the EDF
test statistics are from a mixture distribution. For more information, see the section “CDF and PDF
Estimates with Regression Effects” on page 1203.

� If the EDF estimates are conditional because of the truncation information, then each unconditional
estimateZi is converted to a conditional estimate using the method described in the section “Truncation
and Conditional CDF Estimates” on page 1195.

In the following, it is assumed that Zi denotes an appropriate estimate of the CDF if you specify any
truncation or regression effects. Given this, the EDF-based statistics of fit are defined as follows:

KS The Kolmogorov-Smirnov (KS) statistic computes the largest vertical distance between the CDF
and the EDF. It is formally defined as follows:

KS D sup
y
jFn.y/ � F.y/j

If the STANDARD method is used to compute the EDF, then the following formula is used:

DC D maxi .
ri

W
�Zi /

D� D maxi .Zi �
ri�1

W
/

KS D
p
W max.DC;D�/C

0:19
p
W

Note that r0 is assumed to be 0.

If the method used to compute the EDF is any method other than the STANDARD method, then
the following formula is used:

DC D maxi .Fn.Zi / �Zi /; if Fn.Zi / � Zi
D� D maxi .Zi � Fn.Zi //; if Fn.Zi / < Zi

KS D
p
W max.DC;D�/C

0:19
p
W

AD The Anderson-Darling (AD) statistic is a quadratic EDF statistic that is proportional to the expected
value of the weighted squared difference between the EDF and CDF. It is formally defined as
follows:

AD D N
Z 1
�1

.Fn.y/ � F.y//
2

F.y/.1 � F.y//
dF.y/

If the STANDARD method is used to compute the EDF, then the following formula is used:

AD D �W �
1

W

NuX
iD1

Wi Œ.2ri � 1/ log.Zi /C .2W C 1 � 2ri / log.1 �Zi /�

If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:
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� If the EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM methods,
then EDF is a step function such that the estimate Fn.z/ is a constant equal to Fn.Zi�1/ in
interval ŒZi�1; Zi �. If the EDF estimates are computed using the TURNBULL method, then
there are two types of intervals: one in which the EDF curve is constant and the other in
which the EDF curve is theoretically undefined. For computational purposes, it is assumed
that the EDF curve is linear for the latter type of the interval. For each method, the EDF
estimate Fn.y/ at y can be written as

Fn.z/ D Fn.Zi�1/C Si .z �Zi�1/; for z 2 ŒZi�1; Zi �

where Si is the slope of the line defined as

Si D
Fn.Zi / � Fn.Zi�1/

Zi �Zi�1

For the KAPLANMEIER or MODIFIEDKM method, Si D 0 in each interval.

� Using the probability integral transform z D F.y/, the formula simplifies to

AD D N
Z 1
�1

.Fn.z/ � z/
2

z.1 � z/
dz

The computation formula can then be derived from the approximation,

AD D N
KC1X
iD1

Z Zi

Zi�1

.Fn.z/ � z/
2

z.1 � z/
dz

D N

KC1X
iD1

Z Zi

Zi�1

.Fn.Zi�1/C Si .z �Zi�1/ � z/
2

z.1 � z/
dz

D N

KC1X
iD1

Z Zi

Zi�1

.Pi �Qiz/
2

z.1 � z/
dz

where Pi D Fn.Zi�1/ � SiZi�1, Qi D 1 � Si , and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K D 2k for some k.

Assuming Z0 D 0, ZKC1 D 1, Fn.0/ D 0, and Fn.ZK/ D 1 yields the computation formula,

AD D�N.Z1 C log.1 �Z1/C log.ZK/C .1 �ZK//

CN

KX
iD2

�
P 2i Ai � .Qi � Pi /

2Bi �Q
2
i Ci

�
where Ai D log.Zi / � log.Zi�1/, Bi D log.1 �Zi / � log.1 �Zi�1/, and Ci D Zi �Zi�1.

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
Pi D Fn.Zi�1/ and Qi D 1, which simplifies the formula as

AD D�N.1C log.1 �Z1/C log.ZK//

CN

KX
iD2

�
Fn.Zi�1/

2Ai � .1 � Fn.Zi�1//
2Bi

�
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CvM The Cramér–von Mises (CvM) statistic is a quadratic EDF statistic that is proportional to the
expected value of the squared difference between the EDF and CDF. It is formally defined as
follows:

CvM D N
Z 1
�1

.Fn.y/ � F.y//
2dF.y/

If the STANDARD method is used to compute the EDF, then the following formula is used:

CvM D
1

12W
C

NuX
iD1

Wi

�
Zi �

.2ri � 1/

2W

�2
If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:

� As described previously for the AD statistic, the EDF estimates are assumed to be piecewise
linear such that the estimate Fn.y/ at y is

Fn.z/ D Fn.Zi�1/C Si .z �Zi�1/; for z 2 ŒZi�1; Zi �

where Si is the slope of the line defined as

Si D
Fn.Zi / � Fn.Zi�1/

Zi �Zi�1

For the KAPLANMEIER or MODIFIEDKM method, Si D 0 in each interval.

� Using the probability integral transform z D F.y/, the formula simplifies to

CvM D N
Z 1
�1

.Fn.z/ � z/
2dz

The computation formula can then be derived from the following approximation,

CvM D N
KC1X
iD1

Z Zi

Zi�1

.Fn.z/ � z/
2dz

D N

KC1X
iD1

Z Zi

Zi�1

.Fn.Zi�1/C Si .z �Zi�1/ � z/
2dz

D N

KC1X
iD1

Z Zi

Zi�1

.Pi �Qiz/
2dz

where Pi D Fn.Zi�1/ � SiZi�1, Qi D 1 � Si , and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K D 2k for some k.

Assuming Z0 D 0, ZKC1 D 1, and Fn.0/ D 0 yields the following computation formula,

CvM D N
Z31
3
CN

KC1X
iD2

"
P 2i Ai � PiQiBi �

Q2i
3
Ci

#

where Ai D Zi �Zi�1, Bi D Z2i �Z
2
i�1, and Ci D Z3i �Z

3
i�1.
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If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
Pi D Fn.Zi�1/ and Qi D 1, which simplifies the formula as

CvM D
N

3
CN

KC1X
iD2

�
Fn.Zi�1/

2.Zi �Zi�1/ � Fn.Zi�1/.Z
2
i �Z

2
i�1/

�
which is similar to the formula proposed by Koziol and Green (1976).

Multithreaded Computation
PROC HPSEVERITY makes an attempt to use all the computational resources that you specify in the
PERFORMANCE statement in order to complete the assigned tasks as fast as possible. This section describes
the multithreading computing methods that PROC HPSEVERITY uses.

Multithreading

Threading refers to the organization of computational work into multiple tasks (processing units that can be
scheduled by the operating system). A task is associated with a thread. Multithreading refers to the concurrent
execution of threads. When multithreading is possible, you can achieve more substantial performance gains
than you can with sequential (single-threaded) execution.

The number of threads the HPSEVERITY procedure spawns is determined by the number of CPUs on a
machine. You can control the number of CPUs in the following ways:

� You can use the CPUCOUNT= SAS system option to specify the CPU count. For example, if you
specify the following statement, then PROC HPSEVERITY schedules threads as if it were executing
on a system that had four CPUs, regardless of the actual CPU count:

options cpucount=4;

This specification does not take effect if the THREADS system option is turned off.

The default value of the CPUCOUNT= system option might not equal the number of all the logical
CPU cores available on your machine, such as those available because of hyperthreading. To allow
PROC HPSEVERITY to use all the logical cores, specify the following OPTIONS statement:

options cpucount=actual;

� You can specify the NTHREADS= option in the PERFORMANCE statement. This specification
overrides the THREADS and CPUCOUNT= system options. Specify NTHREADS=1 to force single-
threaded execution.

If you do not specify the NTHREADS= option and the THREADS system option is turned on, then
the number of threads used is determined by the CPUCOUNT= system option.

If you do not specify the NTHREADS= option and the THREADS system option is turned off, then
only one thread of execution is used.
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The number of threads per machine is displayed in the “Performance Information” table, which is part of the
default output.

Performance improvement is not always guaranteed when you use more threads, for several reasons: the
increased cost of communication and synchronization among threads might offset the reduced cost of
computation, the hyperthreading feature of the processor might not be very efficient for floating-point
computations, and other applications might be running on the machine.

Defining a Severity Distribution Model with the FCMP Procedure
A severity distribution model consists of a set of functions and subroutines that are defined using the FCMP
procedure. The FCMP procedure is part of Base SAS software. Each function or subroutine must be named as
<distribution-name>_<keyword>, where distribution-name is the identifying short name of the distribution
and keyword identifies one of the functions or subroutines. The total length of the name should not exceed
32. Each function or subroutine must have a specific signature, which consists of the number of arguments,
sequence and types of arguments, and return value type. The summary of all the recognized function and
subroutine names and their expected behavior is given in Table 22.17.

Consider the following points when you define a distribution model:

� When you define a function or subroutine requiring parameter arguments, the names and order of those
arguments must be the same. Arguments other than the parameter arguments can have any name, but
they must satisfy the requirements on their type and order.

� When the HPSEVERITY procedure invokes any function or subroutine, it provides the necessary input
values according to the specified signature, and expects the function or subroutine to prepare the output
and return it according to the specification of the return values in the signature.

� You can use most of the SAS programming statements and SAS functions that you can use in a DATA
step for defining the FCMP functions and subroutines. However, there are a few differences in the
capabilities of the DATA step and the FCMP procedure. To learn more, see the documentation of the
FCMP procedure in the Base SAS Procedures Guide.

� You must specify either the PDF or the LOGPDF function. Similarly, you must specify either the
CDF or the LOGCDF function. All other functions are optional, except when necessary for correct
definition of the distribution. It is strongly recommended that you define the PARMINIT subroutine
to provide a good set of initial values for the parameters. The information that PROC HPSEVERITY
provides to the PARMINIT subroutine enables you to use popular initialization approaches based on
the method of moments and the method of percentile matching, but you can implement any algorithm
to initialize the parameters by using the values of the response variable and the estimate of its empirical
distribution function.

� The LOWERBOUNDS subroutines should be defined if the lower bound on at least one distribution
parameter is different from the default lower bound of 0. If you define a LOWERBOUNDS subroutine
but do not set a lower bound for some parameter inside the subroutine, then that parameter is assumed
to have no lower bound (or a lower bound of �1). Hence, it is recommended that you explicitly return
the lower bound for each parameter when you define the LOWERBOUNDS subroutine.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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� The UPPERBOUNDS subroutines should be defined if the upper bound on at least one distribution
parameter is different from the default upper bound of1. If you define an UPPERBOUNDS subroutine
but do not set an upper bound for some parameter inside the subroutine, then that parameter is assumed
to have no upper bound (or a upper bound of1). Hence, it is recommended that you explicitly return
the upper bound for each parameter when you define the UPPERBOUNDS subroutine.

� If you want to use the distribution in a model with regression effects, then make sure that the first
parameter of the distribution is the scale parameter itself or a log-transformed scale parameter. If the
first parameter is a log-transformed scale parameter, then you must define the SCALETRANSFORM
function.

� In general, it is not necessary to define the gradient and Hessian functions, because the HPSEVERITY
procedure uses an internal system to evaluate the required derivatives. The internal system typically
computes the derivatives analytically. But it might not be able to do so if your function definitions use
other functions that it cannot differentiate analytically. In such cases, derivatives are approximated
using a finite difference method and a note is written to the SAS log to indicate the components that are
differentiated using such approximations. PROC HPSEVERITY does reasonably well with these finite
difference approximations. But, if you know of a way to compute the derivatives of such components
analytically, then you should define the gradient and Hessian functions.

In order to use your distribution with PROC HPSEVERITY, you need to record the FCMP library that
contains the functions and subroutines for your distribution and other FCMP libraries that contain FCMP
functions or subroutines used within your distribution’s functions and subroutines. Specify all those libraries
in the CMPLIB= system option by using the OPTIONS global statement. For more information about the
OPTIONS statement, see SAS Global Statements: Reference. For more information about the CMPLIB=
system option, see SAS System Options: Reference.

Each predefined distribution mentioned in the section “Predefined Distributions” on page 1185 has a
distribution model associated with it. The functions and subroutines of all those models are available in the
Sashelp.Svrtdist library. The order of the parameters in the signatures of the functions and subroutines is
the same as listed in Table 22.3. You do not need to use the CMPLIB= option in order to use the predefined
distributions with PROC HPSEVERITY. However, if you need to use the functions or subroutines of the
predefined distributions in SAS statements other than the PROC HPSEVERITY step (such as in a DATA
step), then specify the Sashelp.Svrtdist library in the CMPLIB= system option by using the OPTIONS global
statement prior to using them.

Table 22.17 shows functions and subroutines that define a distribution model, and subsections after the table
provide more detail. The functions are listed in alphabetical order of the keyword suffix.

Table 22.17 List of Functions and Subroutines That Define a
Distribution Model

Name Type Required Expected to Return

dist_CDF Function YES1 Cumulative distribution
function value

dist_CDFGRADIENT Subroutine NO Gradient of the CDF
dist_CDFHESSIAN Subroutine NO Hessian of the CDF
dist_CONSTANTPARM Subroutine NO Constant parameters
dist_DESCRIPTION Function NO Description of the distribution

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsglobal&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lesysoptsref&docsetTarget=titlepage.htm
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Table 22.17 continued

Name Type Required Expected to Return

dist_LOGCDF Function YES1 Log of cumulative distribution
function value

dist_LOGCDFGRADIENT Subroutine NO Gradient of the LOGCDF
dist_LOGCDFHESSIAN Subroutine NO Hessian of the LOGCDF
dist_LOGPDF Function YES2 Log of probability density

function value
dist_LOGPDFGRADIENT Subroutine NO Gradient of the LOGPDF
dist_LOGPDFHESSIAN Subroutine NO Hessian of the LOGPDF
dist_LOGSDF Function NO Log of survival

function value
dist_LOGSDFGRADIENT Subroutine NO Gradient of the LOGSDF
dist_LOGSDFHESSIAN Subroutine NO Hessian of the LOGSDF
dist_LOWERBOUNDS Subroutine NO Lower bounds on parameters
dist_PARMINIT Subroutine NO Initial values

for parameters
dist_PDF Function YES2 Probability density

function value
dist_PDFGRADIENT Subroutine NO Gradient of the PDF
dist_PDFHESSIAN Subroutine NO Hessian of the PDF
dist_QUANTILE Function NO Quantile for a given CDF value
dist_SCALETRANSFORM Function NO Type of relationship between

the first distribution parameter
and the scale parameter

dist_SDF Function NO Survival function value
dist_SDFGRADIENT Subroutine NO Gradient of the SDF
dist_SDFHESSIAN Subroutine NO Hessian of the SDF
dist_UPPERBOUNDS Subroutine NO Upper bounds on parameters

Notes:
1. Either the dist_CDF or the dist_LOGCDF function must be defined.
2. Either the dist_PDF or the dist_LOGPDF function must be defined.

The signature syntax and semantics of each function or subroutine are as follows:

dist_CDF
defines a function that returns the value of the cumulative distribution function (CDF) of the distribution
at the specified values of the random variable and distribution parameters.

� Type: Function

� Required: YES

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:
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x Numeric value of the random variable at which the CDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the CDF value F.xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

F.xIp1; p2; : : : ; pm/ D F.
x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

F.xIp1; p2; : : : ; pm/ D F.
x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_CDF(x, P1, P2);
/* Code to compute CDF by using x, P1, and P2 */

F = <computed CDF>;
return (F);

endsub;

dist_CONSTANTPARM
defines a subroutine that specifies constant parameters. A parameter is constant if it is required for
defining a distribution but is not subject to optimization in PROC HPSEVERITY. Constant parameters
are required to be part of the model in order to compute the PDF or the CDF of the distribution.
Typically, values of these parameters are known a priori or estimated using some means other than
the maximum likelihood method used by PROC HPSEVERITY. You can estimate them inside the
dist_PARMINIT subroutine. Once initialized, the parameters remain constant in the context of
PROC HPSEVERITY; that is, they retain their initial value. PROC HPSEVERITY estimates only the
nonconstant parameters.

� Type: Subroutine

� Required: NO

� Number of arguments: k, where k is the number of constant parameters

� Sequence and type of arguments:

constant parameter 1 Name of the first constant parameter
. . .

constant parameter k Name of the kth constant parameter
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� Return value: None

Here is a sample structure of the subroutine for a distribution named ‘FOO’ that has P3 and P5 as its
constant parameters, assuming that distribution has at least three parameters:

subroutine FOO_CONSTANTPARM(p5, p3);
endsub;

Note the following points when you specify the constant parameters:

� At least one distribution parameter must be free to be optimized; that is, if a distribution has total
m parameters, then k must be strictly less than m.

� If you want to use this distribution for modeling regression effects, then the first parameter must
not be a constant parameter.

� The order of arguments in the signature of this subroutine does not matter as long as each
argument’s name matches the name of one of the parameters that are defined in the signature of
the dist_PDF function.

� The constant parameters must be specified in signatures of all the functions and subroutines that
accept distribution parameters as their arguments.

� You must provide a nonmissing initial value for each constant parameter by using one of the
supported parameter initialization methods.

dist_DESCRIPTION
defines a function that returns a description of the distribution.

� Type: Function

� Required: NO

� Number of arguments: None

� Sequence and type of arguments: Not applicable

� Return value: Character value containing a description of the distribution

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_DESCRIPTION() $48;
length desc $48;
desc = "A model for a continuous distribution named foo";
return (desc);

endsub;

There is no restriction on the length of the description (the length of 48 used in the previous example is
for illustration purposes only). However, if the length is greater than 256, then only the first 256 char-
acters appear in the displayed output and in the _DESCRIPTION_ variable of the OUTMODELINFO=
data set. Hence, the recommended length of the description is less than or equal to 256.
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dist_LOGcore
defines a function that returns the natural logarithm of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, or SDF.

� Type: Function

� Required: YES only if core is PDF or CDF and you have not defined that core function; otherwise,
NO

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the natural logarithm of the core function
should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the natural logarithm of the core function

Here is a sample structure of the function for the core function PDF of a distribution named ‘FOO’:

function FOO_LOGPDF(x, P1, P2);
/* Code to compute LOGPDF by using x, P1, and P2 */

l = <computed LOGPDF>;
return (l);

endsub;

dist_LOWERBOUNDS
defines a subroutine that returns lower bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the HPSEVERITY procedure assumes a lower bound of
0 for each parameter. If a lower bound of li is returned for a parameter pi , then the HPSEVERITY
procedure assumes that li < pi (strict inequality). If a missing value is returned for some parameter,
then the HPSEVERITY procedure assumes that there is no lower bound for that parameter (equivalent
to a lower bound of �1).

� Type: Subroutine

� Required: NO

� Number of arguments: m, where m is the number of distribution parameters

� Sequence and type of arguments:

p1 Output argument that returns the lower bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the lower bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .
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pm Output argument that returns the lower bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

� Return value: The results, lower bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_LOWERBOUNDS(p1, p2);
outargs p1, p2;

p1 = <lower bound for P1>;
p2 = <lower bound for P2>;

endsub;

dist_PARMINIT
defines a subroutine that returns the initial values for the distribution’s parameters given an empirical
distribution function (EDF) estimate.

� Type: Subroutine

� Required: NO

� Number of arguments: mC 4, where m is the number of distribution parameters

� Sequence and type of arguments:

dim Input numeric value that contains the dimension of the x, nx, and F array arguments.

x{*} Input numeric array of dimension dim that contains values of the random variables
at which the EDF estimate is available. It can be assumed that x contains values in
an increasing order. In other words, if i < j , then x[i] < x[j].

nx{*} Input numeric array of dimension dim. Each nx[i] contains the number of observa-
tions in the original data that have the value x[i].

F{*} Input numeric array of dimension dim. Each F[i] contains the EDF estimate for x[i].
This estimate is computed by the HPSEVERITY procedure based on the options that
you specify in the LOSS statement and the EMPIRICALCDF= option.

Ftype Input numeric value that contains the type of the EDF estimate that is stored in x and
F. For definitions of types, see the section “Supplying EDF Estimates to Functions
and Subroutines” on page 1220.

p1 Output argument that returns the initial value of the first parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the initial value of the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the initial value of the mth parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

� Return value: The results, initial values of the parameters, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:
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subroutine FOO_PARMINIT(dim, x{*}, nx{*}, F{*}, Ftype, p1, p2);
outargs p1, p2;

/* Code to initialize values of P1 and P2 by using
dim, x, nx, and F */

p1 = <initial value for p1>;
p2 = <initial value for p2>;

endsub;

dist_PDF
defines a function that returns the value of the probability density function (PDF) of the distribution at
the specified values of the random variable and distribution parameters.

� Type: Function

� Required: YES

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the PDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the PDF value f .xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

f .xIp1; p2; : : : ; pm/ D
1

p1
f .

x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

f .xIp1; p2; : : : ; pm/ D
1

exp.p1/
f .

x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_PDF(x, P1, P2);
/* Code to compute PDF by using x, P1, and P2 */

f = <computed PDF>;
return (f);

endsub;
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dist_QUANTILE
defines a function that returns the quantile of the distribution at the specified value of the CDF for the
specified values of distribution parameters.

� Type: Function

� Required: NO

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

cdf Numeric value of the cumulative distribution function (CDF) for which the quantile should
be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the quantile F�1.cdfIp1; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_QUANTILE(c, P1, P2);
/* Code to compute quantile by using c, P1, and P2 */

Q = <computed quantile>;
return (Q);

endsub;

dist_SCALETRANSFORM
defines a function that returns a keyword to identify the transform that needs to be applied to the scale
parameter to convert it to the first parameter of the distribution.

If you want to use this distribution for modeling regression effects, then the first parameter of this
distribution must be a scale parameter. However, for some distributions, a typical or convenient
parameterization might not have a scale parameter, but one of the parameters can be a simple transform
of the scale parameter. As an example, consider a typical parameterization of the lognormal distribution
with two parameters, location � and shape � , for which the PDF is defined as follows:

f .xI�; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2

You can reparameterize this distribution to contain a parameter � instead of the parameter � such
that � D log.�/. The parameter � would then be a scale parameter. However, if you want to specify
the distribution in terms of � and � (which is a more recognized form of the lognormal distribution)
and still allow it as a candidate distribution for estimating regression effects, then instead of writing
another distribution with parameters � and � , you can simply define the distribution with � as the first
parameter and specify that it is the logarithm of the scale parameter.
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� Type: Function

� Required: NO

� Number of arguments: None

� Sequence and type of arguments: Not applicable

� Return value: Character value that contains one of the following keywords:

LOG specifies that the first parameter is the logarithm of the scale parameter.

IDENTITY specifies that the first parameter is a scale parameter without any transforma-
tion.

If you do not specify this function, then the IDENTITY transform is assumed.

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_SCALETRANSFORM() $8;
length xform $8;
xform = "IDENTITY";
return (xform);

endsub;

dist_SDF
defines a function that returns the value of the survival distribution function (SDF) of the distribution
at the specified values of the random variable and distribution parameters.

� Type: Function

� Required: NO

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the SDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the SDF value S.xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when estimating a response variable
model with regression effects, then the first parameter of this distribution must be a scale parameter
or log-transformed scale parameter. In other words, if the distribution has a scale parameter, then the
following equation must be satisfied:

S.xIp1; p2; : : : ; pm/ D S.
x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

S.xIp1; p2; : : : ; pm/ D S.
x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:
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function FOO_SDF(x, P1, P2);
/* Code to compute SDF by using x, P1, and P2 */

S = <computed SDF>;
return (S);

endsub;

dist_UPPERBOUNDS
defines a subroutine that returns upper bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the HPSEVERITY procedure assumes that there is no
upper bound for any of the parameters. If an upper bound of ui is returned for a parameter pi , then
the HPSEVERITY procedure assumes that pi < ui (strict inequality). If a missing value is returned
for some parameter, then the HPSEVERITY procedure assumes that there is no upper bound for that
parameter (equivalent to an upper bound of1).

� Type: Subroutine

� Required: NO

� Number of arguments: m, where m is the number of distribution parameters

� Sequence and type of arguments:

p1 Output argument that returns the upper bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the upper bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the upper bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

� Return value: The results, upper bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_UPPERBOUNDS(p1, p2);
outargs p1, p2;

p1 = <upper bound for P1>;
p2 = <upper bound for P2>;

endsub;

dist_coreGRADIENT
defines a subroutine that returns the gradient vector of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

� Type: Subroutine

� Required: NO
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� Number of arguments: mC 2, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the gradient should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

grad{*} Output numeric array of size m that contains the gradient vector evaluated at the
specified values. If h denotes the value of the core function, then the expected order
of the values in the array is as follows: @h

@p1

@h
@p2
� � �

@h
@pm

� Return value: Numeric array that contains the gradient evaluated at x for the parameter values
.p1; p2; : : : ; pm/

Here is a sample structure of the function for the core function CDF of a distribution named ‘FOO’:

subroutine FOO_CDFGRADIENT(x, P1, P2, grad{*});
outargs grad;

/* Code to compute gradient by using x, P1, and P2 */
grad[1] = <partial derivative of CDF w.r.t. P1

evaluated at x, P1, P2>;
grad[2] = <partial derivative of CDF w.r.t. P2

evaluated at x, P1, P2>;
endsub;

dist_coreHESSIAN
defines a subroutine that returns the Hessian matrix of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

� Type: Subroutine

� Required: NO

� Number of arguments: mC 2, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the Hessian matrix should be evalu-
ated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

hess{*} Output numeric array of size m.mC 1/=2 that contains the lower triangular portion
of the Hessian matrix in a packed vector form, evaluated at the specified values. If h
denotes the value of the core function, then the expected order of the values in the
array is as follows: @

2h

@p21
j

@2h
@p1@p2

@2h

@p22
j � � � j

@2h
@p1@pm

@2h
@p2@pm

� � �
@2h

@p2m
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� Return value: Numeric array that contains the lower triangular portion of the Hessian matrix
evaluated at x for the parameter values .p1; p2; : : : ; pm/

Here is a sample structure of the subroutine for the core function LOGSDF of a distribution named
‘FOO’:

subroutine FOO_LOGSDFHESSIAN(x, P1, P2, hess{*});
outargs hess;

/* Code to compute Hessian by using x, P1, and P2 */
hess[1] = <second order partial derivative of LOGSDF

w.r.t. P1 evaluated at x, P1, P2>;
hess[2] = <second order partial derivative of LOGSDF

w.r.t. P1 and P2 evaluated at x, P1, P2>;
hess[3] = <second order partial derivative of LOGSDF

w.r.t. P2 evaluated at x, P1, P2>;
endsub;

Predefined Utility Functions
The following predefined utility functions are provided with the HPSEVERITY procedure and are available
in the Sashelp.Svrtdist library:

SVRTUTIL_EDF
This function computes the empirical distribution function (EDF) estimate at the specified value of the
random variable given the EDF estimate for a sample.

� Type: Function

� Signature: SVRTUTIL_EDF(y, n, x{*}, F{*}, Ftype)

� Argument description:

y Value of the random variable at which the EDF estimate is desired

n Dimension of the x and F input arrays

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. For definitions of
types, see the section “Supplying EDF Estimates to Functions and Subroutines” on
page 1220.

� Return value: The EDF estimate at y

The type of the sample EDF estimate determines how the EDF estimate at y is computed. For more
information, see the section “Supplying EDF Estimates to Functions and Subroutines” on page 1220.
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SVRTUTIL_EMPLIMMOMENT
This function computes the empirical estimate of the limited moment of specified order for the specified
upper limit, given the EDF estimate for a sample.

� Type: Function

� Signature: SVRTUTIL_EMPLIMMOMENT(k, u, n, x{*}, F{*}, Ftype)

� Argument description:

k Order of the desired empirical limited moment

u Upper limit on the value of the random variable to be used in the computation of the
desired empirical limited moment

n Dimension of the x and F input arrays

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. For definitions of
types, see the section “Supplying EDF Estimates to Functions and Subroutines” on
page 1220.

� Return value: The desired empirical limited moment

The empirical limited moment is computed by using the empirical estimate of the CDF. If Fn.x/
denotes the EDF at x, then the empirical limited moment of order k with upper limit u is defined as

EnŒ.X ^ u/
k� D k

Z u

0

.1 � Fn.x//x
k�1dx

The SVRTUTIL_EMPLIMMOMENT function uses the piecewise linear nature of Fn.x/ as described
in the section “Supplying EDF Estimates to Functions and Subroutines” on page 1220 to compute the
integration.

SVRTUTIL_HILLCUTOFF
This function computes an estimate of the value where the right tail of a distribution is expected to
begin. The function implements the algorithm described in Danielsson et al. 2001. The description of
the algorithm uses the following notation:

n Number of observations in the original sample

B Number of bootstrap samples to draw

m1 Size of the bootstrap sample in the first step of the algorithm (m1 < n)

x
j;m

.i/
ith-order statistic of jth bootstrap sample of size m (1 � i � m; 1 � j � B)

x.i/ ith-order statistic of the original sample (1 � i � n)

Given the input sample x and values of B and m1, the steps of the algorithm are as follows:

1. Take B bootstrap samples of size m1 from the original sample.
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2. Find the integer k1 that minimizes the bootstrap estimate of the mean squared error:

k1 D arg min
1�k<m1

Q.m1; k/

3. Take B bootstrap samples of size m2 D m21=n from the original sample.

4. Find the integer k2 that minimizes the bootstrap estimate of the mean squared error:

k2 D arg min
1�k<m2

Q.m2; k/

5. Compute the integer kopt, which is used for computing the cutoff point:

kopt D
k21
k2

�
log.k1/

2 log.m1/ � log.k1/

�2�2 log.k1/= log.m1/
6. Set the cutoff point equal to x.koptC1/.

The bootstrap estimate of the mean squared error is computed as

Q.m; k/ D
1

B

BX
jD1

MSEj .m; k/

The mean squared error of jth bootstrap sample is computed as

MSEj .m; k/ D .Mj .m; k/ � 2.j .m; k//
2/2

where Mj .m; k/ is a control variate proposed by Danielsson et al. 2001,

Mj .m; k/ D
1

k

kX
iD1

�
log.xj;m

.m�iC1/
/ � log.xj;m

.m�k/
/
�2

and j .m; k/ is the Hill’s estimator of the tail index (Hill 1975),

j .m; k/ D
1

k

kX
iD1

log.xj;m
.m�iC1/

/ � log.xj;m
.m�k/

/

This algorithm has two tuning parameters, B and m1. The number of bootstrap samples B is chosen
based on the availability of computational resources. The optimal value of m1 is chosen such that the
following ratio, R.m1/, is minimized:

R.m1/ D
.Q.m1; k1//

2

Q.m2; k2/

The SVRTUTIL_HILLCUTOFF utility function implements the preceding algorithm. It uses the grid
search method to compute the optimal value of m1.

� Type: Function

� Signature: SVRTUTIL_HILLCUTOFF(n, x{*}, b, s, status)

� Argument description:
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n Dimension of the array x

x{*} Input numeric array of dimension n that contains the sample

b Number of bootstrap samples used to estimate the mean squared error. If b is less
than 10, then a default value of 50 is used.

s Approximate number of steps used to search the optimal value of m1 in the range
Œn0:75; n � 1�. If s is less than or equal to 1, then a default value of 10 is used.

status Output argument that contains the status of the algorithm. If the algorithm succeeds
in computing a valid cutoff point, then status is set to 0. If the algorithm fails, then
status is set to 1.

� Return value: The cutoff value where the right tail is estimated to start. If the size of the input
sample is inadequate (n � 5), then a missing value is returned and status is set to a missing
value. If the algorithm fails to estimate a valid cutoff value (status = 1), then the fifth-largest
value in the input sample is returned.

SVRTUTIL_PERCENTILE
This function computes the specified empirical percentile given the EDF estimates.

� Type: Function

� Signature: SVRTUTIL_PERCENTILE(p, n, x{*}, F{*}, Ftype)

� Argument description:

p Desired percentile. The value must be in the interval (0,1). The function returns the
100pth percentile.

n Dimension of the x and F input arrays

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. For definitions of
types, see the section “Supplying EDF Estimates to Functions and Subroutines” on
page 1220.

� Return value: The 100pth percentile of the input sample

The method used to compute the percentile depends on the type of the EDF estimate (Ftype argument).

Ftype = 1 Smoothed empirical estimates are computed using the method described in Klug-
man, Panjer, and Willmot (1998). Let bxc denote the greatest integer less than or
equal to x. Define g D bp.nC 1/c and h D p.nC 1/ � g. Then the empirical
percentile O�p is defined as

O�p D .1 � h/xŒg�C hxŒg C 1�

This method does not work if p < 1=.nC 1/ or p > n=.nC 1/. If p < 1=.nC 1/,
then the function returns O�p D xŒ1�=2, which assumes that the EDF is 0 in the
interval Œ0; xŒ1�/. If p > n=.nC 1/, then O�p D xŒn�.
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Ftype = 2 If p < F Œ1�, then O�p D xŒ1�=2, which assumes that the EDF is 0 in the interval
Œ0; xŒ1�/. If jp � F Œi�j < � for some value of i and i < n, then O�p is computed as

O�p D
xŒi �C xŒi C 1�

2

where � is a machine-precision constant as returned by the SAS function CON-
STANT(‘MACEPS’). If F Œi � 1� < p < F Œi�, then O�p is computed as

O�p D xŒi �

If p � F Œn� , then O�p D xŒn�.

Ftype = 3 If p < F Œ1�, then O�p D xŒ1�=2, which assumes that the EDF is 0 in the interval
Œ0; xŒ1�/. If jp � F Œi�j < � for some value of i and i < n, then O�p is computed as

O�p D
xŒi �C xŒi C 1�

2

where � is a machine-precision constant as returned by the SAS function CON-
STANT(’MACEPS’). If F Œi � 1� < p < F Œi�, then O�p is computed as

O�p D xŒi � 1�C .p � F Œi � 1�/
xŒi � � xŒi � 1�

F Œi � � F Œi � 1�

If p � F Œn� , then O�p D xŒn�.

SVRTUTIL_RAWMOMENTS
This subroutine computes the raw moments of a sample.

� Type: Subroutine

� Signature: SVRTUTIL_RAWMOMENTS(n, x{*}, nx{*}, nRaw, raw{*})

� Argument description:

n Dimension of the x and nx input arrays

x{*} Input numeric array of dimension n that contains distinct values of the random variable
that are observed in the sample

nx{*} Input numeric array of dimension n in which each nx[i] contains the number of
observations in the sample that have the value x[i]

nRaw Desired number of raw moments. The output array raw contains the first nRaw raw
moments.

raw{*} Output array of raw moments. The kth element in the array (raw{k}) contains the kth
raw moment, where 1 � k � nRaw.

� Return value: Numeric array raw that contains the first nRaw raw moments. The array contains
missing values if the sample has no observations (that is, if all the values in the nx array add up
to zero).

SVRTUTIL_SORT
This function sorts the given array of numeric values in an ascending or descending order.

� Type: Subroutine

� Signature: SVRTUTIL_SORT(n, x{*}, flag)

� Argument description:
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n Dimension of the input array x

x{*} Numeric array that contains the values to be sorted at input. The subroutine uses the
same array to return the sorted values.

flag A numeric value that controls the sort order. If flag is 0, then the values are sorted in
an ascending order. If flag has any value other than 0, then the values are sorted in
descending order.

� Return value: Numeric array x , which is sorted in place (that is, the sorted array is stored in the
same storage area occupied by the input array x)

You can use the following predefined functions when you use the FCMP procedure to define functions and
subroutines. They are summarized here for your information. For more information, see the FCMP procedure
documentation in Base SAS Procedures Guide.

INVCDF
This function computes the quantile from any continuous probability distribution by numerically
inverting the CDF of that distribution. You need to specify the CDF function of the distribution, the
values of its parameters, and the cumulative probability to compute the quantile.

LIMMOMENT
This function computes the limited moment of order k with upper limit u for any continuous probability
distribution. The limited moment is defined as

EŒ.X ^ u/k� D

Z u

0

xkf .x/dx C

Z 1
u

ukf .x/dx

D

Z u

0

xkf .x/dx C uk.1 � F.u//

where f .x/ and F.x/ denote the PDF and the CDF of the distribution, respectively. The LIMMO-
MENT function uses the following alternate definition, which can be derived using integration-by-parts:

EŒ.X ^ u/k� D k

Z u

0

.1 � F.x//xk�1dx

You need to specify the CDF function of the distribution, the values of its parameters, and the values
of k and u to compute the limited moment.

Scoring Functions
Scoring refers to the act of evaluating a distribution function, such as LOGPDF, SDF, or QUANTILE, on
an observation by using the fitted parameter estimates of that distribution. You can do scoring in a DATA
step by using the OUTEST= data set that you create with PROC HPSEVERITY. However, that approach
requires some cumbersome programming. In order to simplify the scoring process, you can specify that
PROC HPSEVERITY create scoring functions for each fitted distribution.

As an example, assume that you have fitted the Pareto distribution by using PROC HPSEVERITY and that it
converges. Further assume that you want to use the fitted distribution to evaluate the probability of observing
a loss value greater than some set of regulatory limits {L} that are encoded in a data set. You can simplify this
scoring process as follows. First, in the PROC HPSEVERITY step that fits your distributions, you create the
scoring functions library by specifying the OUTSCORELIB statement as illustrated in the following steps:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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proc hpseverity data=input;
loss lossclaim;
dist pareto;
outscorelib outlib=sasuser.fitdist;

run;

Upon successful completion, if the Pareto distribution model has converged, then the Sasuser.Fitdist li-
brary contains the SEV_SDF scoring function in addition to other scoring functions, such as SEV_PDF ,
SEV_LOGPDF , and so on. Further, PROC HPSEVERITY also sets the CMPLIB system option to include
the Sasuser.Fitdist library. If the set of limits {L} is recorded in the variable Limit in the scoring data set
Work.Limits, then you can submit the following DATA step to compute the probability of seeing a loss greater
than each limit:

data prob;
set work.limits;
exceedance_probability = sev_sdf(limit);

run;

Without the use of scoring functions, you can still perform this scoring task, but the DATA step that you need
to write to accomplish it becomes more complicated and less flexible. For example, you would need to read
the parameter estimates from some output created by PROC HPSEVERITY. To do that, you would need to
know the parameter names, which are different for different distributions; this in turn would require you to
write a specific DATA step for each distribution or to write a SAS macro. With the use of scoring functions,
you can accomplish that task much more easily.

If you fit multiple distributions, then you can specify the COMMONPACKAGE option in the OUTSCORELIB
statement as follows:

proc hpseverity data=input;
loss lossclaim;
dist exp pareto weibull;
outscorelib outlib=sasuser.fitdist commonpackage;

run;

The preceding step creates scoring functions such as SEV_SDF_Exp, SEV_SDF_Pareto, and
SEV_SDF_Weibull . You can use them to compare the probabilities of exceeding the limit for differ-
ent distributions by using the following DATA step:

data prob;
set work.limits;
exceedance_exp = sev_sdf_exp(limit);
exceedance_pareto = sev_sdf_pareto(limit);
exceedance_weibull = sev_sdf_weibull(limit);

run;

Formal Description

PROC HPSEVERITY creates a scoring function for each distribution function. A distribution function is
defined as any function named dist_suffix , where dist is the name of a distribution that you specify in the
DIST statement and the function’s signature is identical to the signature of the required distribution function
such as dist_CDF or dist_LOGCDF. For example, for the function ‘FOO_BAR’ to be a distribution function,
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you must specify the distribution ‘FOO’ in the DIST statement and you must define ‘FOO_BAR’ in the
following manner if the distribution ‘FOO’ has parameters named ‘P1’ and ‘P2’:

function FOO_BAR(y, P1, P2);
/* Code to compute BAR by using y, P1, and P2 */
R = <computed BAR>;
return (R);

endsub;

For more information about the signature that defines a distribution function, see the description of the
dist_CDF function in the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 1227.

The name and package of the scoring function of a distribution function depend on whether you specify the
COMMONPACKAGE option in the OUTSCORELIB statement.

When you do not specify the COMMONPACKAGE option, the scoring function that corresponds to the
distribution function dist_suffix is named SEV_suffix , where SEV_ is the standard prefix of all scoring
functions. The scoring function is created in a package named dist . Each scoring function accepts only one
argument, the value of the loss variable, and returns the same value as the value returned by the corresponding
distribution function for the final estimates of the distribution’s parameters. For example, for the preceding
‘FOO_BAR’ distribution function, the scoring function named ‘SEV_BAR’ is created in the package named
‘FOO’ and ‘SEV_BAR’ has the following signature:

function SEV_BAR(y);
/* returns value of FOO_BAR for the supplied value

of y and fitted values of P1, P2 */
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then the scoring function
that corresponds to the distribution function dist_suffix is named SEV_suffix_dist , where SEV_ is the standard
prefix of all scoring functions. The scoring function is created in a package named sevfit . For example, for
the preceding ‘FOO_BAR’ distribution function, if you specify the COMMONPACKAGE option, the scoring
function named ‘SEV_BAR_FOO’ is created in the sevfit package and ‘SEV_BAR_FOO’ has the following
signature:

function SEV_BAR_FOO(y);
/* returns value of FOO_BAR for the supplied value

of y and fitted values of P1, P2 */
endsub;

Scoring Functions for the Scale Regression Model

If you use the SCALEMODEL statement to specify a scale regression model, then PROC HPSEVERITY
generates the scoring functions when you specify only singleton continuous effects. If you specify interaction
or classification effects, then scoring functions are not generated.

For a scale regression model, the estimate of the scale parameter or the log-transformed scale parameter of
the distribution depends on the values of the regressors. So PROC HPSEVERITY creates a scoring function
that has the following signature, where x{*} represents the array of regressors:
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function SEV_BAR(y, x{*});
/* returns value of FOO_BAR for the supplied value of x and fitted values of P1, P2 */

endsub;

As an illustration of using this form, assume that you submit the following PROC HPSEVERITY step to
create the scoring library Sasuser.Scalescore:

proc hpseverity data=input;
loss lossclaim;
scalemodel x1-x3;
dist pareto;
outscorelib outlib=sasuser.scalescore;

run;

Your scoring data set must contain all the regressors that you specify in the SCALEMODEL statement. You
can submit the following DATA step to score observations by using the scale regression model:

data prob;
array regvals{*} x1-x3;
set work.limits;
exceedance_probability = sev_sdf(limit, regvals);

run;

PROC HPSEVERITY creates two utility functions, SEV_NUMREG and SEV_REGNAME, in the OUTLIB=
library that return the number of regressors and name of a given regressor, respectively. They are described in
detail in the next section. These utility functions are useful when you do not have easy access to the regressor
names in the SCALEMODEL statement. You can use the utility functions as follows:

data prob;
array regvals{10} _temporary_;
set work.limits;
do i = 1 to sev_numreg();

regvals(i) = input(vvaluex(sev_regname(i)), best12.);
end;
exceedance_probability = sev_sdf(limit, regvals);

run;

The dimension of the regressor values array that you supply to the scoring function must be equal to K C L,
where K is the number of regressors that you specify in the SCALEMODEL statement irrespective of whether
PROC HPSEVERITY deems any of those regressors to be redundant. L is 1 if you specify an OFFSET=
variable in the SCALEMODEL statement, and 0 otherwise.

Utility Functions and Subroutines in the OUTLIB= Library

In addition to creating the scoring functions for all distribution functions, PROC HPSEVERITY creates the
following utility functions and subroutines in the OUTLIB= library.

SEV_NUMPARM | SEV_NUMPARM_dist
is a function that returns the number of distribution parameters and has the following signature:

� Type: Function

� Number of arguments: 0

� Sequence and type of arguments: Not applicable
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� Return value: Numeric value that contains the number of distribution parameters

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_NUMPARM is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_NUMPARM();
n = <number of distribution parameters>;
return (n);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , the function named SEV_NUMPARM_dist is created in the sevfit package.
SEV_NUMPARM_dist has the same structure as the SEV_NUMPARM function that is described
previously.

SEV_PARMEST | SEV_PARMEST_dist
is a subroutine that returns the estimate and standard error of a specified distribution parameter and has
the following signature:

� Type: Subroutine

� Number of arguments: 3

� Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this subroutine belongs.

est specifies the output argument that returns the estimate of the requested parameter.

stderr specifies the output argument that returns the standard error of the requested parameter.

� Return value: Estimate and standard error of the requested distribution parameter that are returned
in the output arguments est and stderr , respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_PARMEST is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the subroutine:

subroutine SEV_PARMEST(index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the distribution parameter

at position 'index'>;
stderr = <value of the standard error for distribution parameter

at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , the subroutine named SEV_PARMEST_dist is created in the sevfit package.
SEV_PARMEST_dist has the same structure as the SEV_PARMEST subroutine that is described
previously.
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If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then for index=1, the returned estimates are of �0, the base value of the
scale parameter, or log.�0/ if the distribution has a log-scale parameter. For more information about
�0, see the section “Estimating Regression Effects” on page 1200.

SEV_PARMNAME | SEV_PARMNAME_dist
is a function that returns the name of a specified distribution parameter and has the following signature:

� Type: Function

� Number of arguments: 1

� Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this function belongs.

� Return value: Character value that contains the name of the distribution parameter that appears at
the position index in the distribution’s definition

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_PARMNAME is created in the package of each distribution.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_PARMNAME(index) $32;
name = <name of the distribution parameter at position 'index'>;
return (name);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , a function named SEV_PARMNAME_dist is created in the sevfit package.
SEV_PARMNAME_dist has the same structure as the SEV_PARMNAME function that is described
previously.

If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then the following helper functions and subroutines are also created in the
OUTLIB= library.

SEV_NUMREG
is a function that returns the number of regressors and has the following signature:

� Type: Function

� Number of arguments: 0

� Sequence and type of arguments: Not applicable

� Return value: Numeric value that contains the number of regressors that you specify in the
SCALEMODEL statement. If you specify an OFFSET= variable in the SCALEMODEL state-
ment, then the returned value is equal to 1 plus the number of regressors that you specify in the
SCALEMODEL statement.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:
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function SEV_NUMREG();
m = <number of regressors>;
if (<offset variable is specified>) then m = m + 1;
return (m);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

SEV_REGEST | SEV_REGEST_dist
is a subroutine that returns the estimate and standard error of a specified regression parameter and has
the following signature:

� Type: Subroutine

� Number of arguments: 3

� Sequence and type of arguments:

index specifies the numeric value of the index of the regression parameter for which you want
the information. The value of index must be in the interval [1,K], where K is the number
of regressors as returned by the SEV_NUMREG function. If you specify an OFFSET=
variable in the SCALEMODEL statement, then an index value of K corresponds to the
offset variable.

est specifies the output argument that returns the estimate of the requested regression param-
eter.

stderr specifies the output argument that returns the standard error of the requested regression
parameter.

� Return value: Estimate and standard error of the requested regression parameter that are returned
in the output arguments est and stderr , respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_REGEST is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the subroutine:

subroutine SEV_REGEST(index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the regression parameter

at position 'index'>;
stderr = <value of the standard error for regression parameter

at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution dist , the subroutine named SEV_REGEST_dist is created in the sevfit package.
SEV_REGEST_dist has the same structure as the SEV_REGEST subroutine that is described previ-
ously.

If the regressor that corresponds to the specified index value is a redundant regressor, the returned
values of both est and stderr are equal to the special missing value of .R. If you specify an OFFSET=
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variable in the SCALEMODEL statement and if the index value corresponds to the offset variable—that
is, it is equal to the value that the SEV_NUMREG function returns—then the returned value of est is
equal to 1 and the returned value of stderr is equal to the special missing value of .F.

SEV_REGNAME
is a function that returns the name of a specified regressor and has the following signature:

� Type: Function

� Number of arguments: 1

� Sequence and type of arguments:

index specifies the numeric value of the index of the regressor for which you want the name.
The value of index must be in the interval [1,K], where K is the number of regressors as
returned by the SEV_NUMREG function. If you specify an OFFSET= variable in the
SCALEMODEL statement, then an index value of K corresponds to the offset variable.

� Return value: Character value that contains the name of the regressor that appears at the position
index in the SCALEMODEL statement. If you specify an OFFSET= variable in the SCALE-
MODEL statement, then for an index value of K, the returned value contains the name of the
offset variable.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_REGNAME(index) $32;
name = <name of regressor at position 'index'>;
return (name);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

Custom Objective Functions
You can use a series of programming statements that use variables in the DATA= data set to assign a value to
an objective function symbol. You must specify the objective function symbol by using the OBJECTIVE=
option in the PROC HPSEVERITY statement.

The objective function can be programmed such that it is applicable to any distribution that is used in
the model. For that purpose, PROC HPSEVERITY recognizes the following keyword functions in the
programming statements:

_PDF_(x) returns the probability density function (PDF) of a distribution evaluated at the current
value of a data set variable x.

_CDF_(x) returns the cumulative distribution function (CDF) of a distribution evaluated at the current
value of a data set variable x.

_SDF_(x) returns the survival distribution function (SDF) of a distribution evaluated at the current
value of a data set variable x.
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_LOGPDF_(x) returns the natural logarithm of the PDF of a distribution evaluated at the current value of
a data set variable x.

_LOGCDF_(x) returns the natural logarithm of the CDF of a distribution evaluated at the current value of
a data set variable x.

_LOGSDF_(x) returns the natural logarithm of the SDF of a distribution evaluated at the current value of
a data set variable x.

_EDF_(x) returns the empirical distribution function (EDF) estimate evaluated at the current value
of a data set variable x. Internally, PROC HPSEVERITY computes the estimate using
the SVRTUTIL_EDF function as described in the section “Predefined Utility Functions”
on page 1239. The EDF estimate that is required by the SVRTUTIL_EDF function is
computed by using the response variable values in the current BY group or in the entire
input data set if you do not specify the BY statement.

_EMPLIMMOMENT_(k, u)
returns the empirical limited moment of order k evaluated at the current value of a data
set variable u that represents the upper limit of the limited moment. The order k can
also be a data set variable. Internally, PROC HPSEVERITY computes the moment using
the SVRTUTIL_EMPLIMMOMENT function as described in the section “Predefined
Utility Functions” on page 1239. The EDF estimate that is required by the SVRTU-
TIL_EMPLIMMOMENT function is computed by using the response variable values in
the current BY group or in the entire input data set if you do not specify the BY statement.

_LIMMOMENT_(k, u)
returns the limited moment of order k evaluated at the current value of a data set variable
u that represents the upper limit of the limited moment. The order k can be a data set
variable or a constant. Internally, for each candidate distribution, PROC HPSEVERITY
computes the moment using the LIMMOMENT function as described in the section
“Predefined Utility Functions” on page 1239.

All the preceding functions are right-hand side functions. They act as placeholders for distribution-specific
functions, with the exception of _EDF_ and _EMPLIMMOMENT_ functions.

As an example, let the data set Work.Test contain a response variable Y and a left-truncation threshold variable
T. The following statements use the values in this data set to fit a model with distribution D such that the
parameters of the model minimize the value of the objective function symbol MYOBJ:

options cmplib=(work.mydist);
proc hpseverity data=work.test objective=myobj;

loss y / lt=t;

myobj = -_LOGPDF_(y);
if (not(missing(t))) then

myobj = myobj + log(1-_CDF_(t));

dist d;
run;

The symbol MYOBJ is designated as an objective function symbol by using the OBJECTIVE= option in the
PROC HPSEVERITY statement. The response variable Y and left-truncation variable T are specified in the
LOSS statement. The distribution D is specified in the DIST statement. The remaining statements constitute
a program that computes the value of the MYOBJ symbol.
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Let the distribution D have parameters P1 and P2. In order to estimate the model for this distribution, PROC
HPSEVERITY internally converts the generic program to the following program specific to distribution D:

myobj = -D_LOGPDF(y, p1, p2);
if (not(missing(t))) then

myobj = myobj + log(1-D_CDF(t, p1, p2));

Note that the generic keyword functions _LOGPDF_ and _CDF_ have been replaced with distribution-specific
functions D_LOGPDF and D_CDF, respectively, with appropriate distribution parameters. The D_LOGPDF
and D_CDF functions must have been defined previously and are assumed to be available in the Work.Mydist
library that you specify in the CMPLIB= option.

The program is executed for each observation in Work.Test to compute the value of MYOBJ by using the
values of variables Y and T in that observation and internally computed values of the model parameters
P1 and P2. The values of MYOBJ are then added over all the observations of the data set or over all the
observations of the current BY group if you specify the BY statement. The resulting aggregate value is the
value of the objective function, and it is supplied to the optimizer. If the optimizer requires derivatives of
the objective function, then PROC HPSEVERITY automatically differentiates MYOBJ with respect to the
parameters P1 and P2. The optimizer iterates over various combinations of the values of parameters P1 and
P2, each time computing a new value of the objective function and the needed derivatives of it, until it finds a
combination that minimizes the objective function.

Note the following points when you define your own program to compute the custom objective function:

� The value of the objective function is always minimized by PROC HPSEVERITY. If you want to
maximize the value of a certain objective, then add a statement that assigns the negated value of the
maximization objective to the objective function symbol that you specify in the OBJECTIVE= option.
Minimization of the negated objective is equivalent to the maximization of the original objective.

� The contributions of individual observations are always added to compute the overall objective function
in a given iteration of the optimizer. If you specify the WEIGHT statement, then the contribution of
each observation is weighted by multiplying it with the normalized value of the weight variable for
that observation.

� If you are fitting multiple distributions in one PROC HPSEVERITY step and use any of the keyword
functions in your program, then it is recommended that you do not explicitly use the parameters of any
of the specified distributions in your programming statements.

� If you use a specific keyword function in your programming statements, then the corresponding
distribution functions must be defined in a library that you specify in the CMPLIB= system option
or in Sashelp.Svrtdist, the predefined functions library. In the preceding example, it is assumed that
the functions D_LOGPDF and D_CDF are defined in the Work.Mydist library that is specified in the
CMPLIB= option.

� You can use most DATA step statements and functions in your program. The DATA step file and the
data set I/O statements (for example, INPUT, FILE, SET, and MERGE) are not available. However,
some functionality of the PUT statement is supported. For more information, see the section “PROC
FCMP and DATA Step Differences” in Base SAS Procedures Guide. In addition to the differences
listed in that section, the following differences exist:

– Only numeric-valued variables can be used in PROC HPSEVERITY programming statements.
This restriction also implies that you cannot use SAS functions or call routines that require

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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character-valued arguments, unless you pass those arguments as constant (literal) strings or
characters.

– You cannot use functions that create lagged versions of a variable in PROC HPSEVERITY
programming statements. If you need lagged versions, then you can use a DATA step prior to the
PROC HPSEVERITY step to add those versions to the input data set.

� When coding your programming statements, avoid defining variables that begin with an underscore
(_), because they might conflict with internal variables created by PROC HPSEVERITY.

Custom Objective Functions and Regression Effects

If you specify regression effects by using the SCALEMODEL statement, then PROC HPSEVERITY
automatically adds a statement prior to your programming statements to compute the value of the scale
parameter or the log-transformed scale parameter of the distribution using the values of the regression variables
and internally created regression parameters. For example, if your specification of the SCALEMODEL
statement results in three regression effects x1, x2, and x3, then for a model that contains the distribution D
with scale parameter S, PROC HPSEVERITY adds a statement that is equivalent to the following statement
to the beginning of your program:

S = _SEVTHETA0 * exp(_SEVBETA1 * x1 + _SEVBETA2 * x2 + _SEVBETA3 * x3);

If a model contains a distribution D1 with a log-transformed scale parameter M, PROC HPSEVERITY adds
a statement that is equivalent to the following statement to the beginning of your program:

M = _SEVTHETA0 + _SEVBETA1 * x1 + _SEVBETA2 * x2 + _SEVBETA3 * x3;

The _SEVTHETA0, _SEVBETA1, _SEVBETA2, and _SEVBETA3 are the internal regression parameters
associated with the intercept and the regression effects x1, x2, and x3, respectively.

Since the names of the internal regression parameters start with a prefix _SEV, if you use a variable in your
program with a name that begins with _SEV, then PROC HPSEVERITY writes an error message to the SAS
log and stops processing.

Input Data Sets
PROC HPSEVERITY accepts DATA= and INEST= data sets as input data sets. This section details the
information they are expected to contain.

DATA= Data Set

The DATA= data set is expected to contain the values of the analysis variables that you specify in the LOSS
statement and the SCALEMODEL statement.

If you specify the BY statement, then the DATA= data set must contain all the BY variables that you specify
in the BY statement and the data set must be sorted by the BY variables unless you specify the NOTSORTED
option in the BY statement.
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INEST= Data Set

The INEST= data set is expected to contain the initial values of the parameters for the parameter estimation
process.

If you specify the SCALEMODEL statement, then you can use the INEST= data set only if the SCALE-
MODEL statement contains singleton continuous effects.

If you specify the BY statement, then the INEST= data set must contain all the BY variables that you specify
in the BY statement. If you do not specify the NOTSORTED option in the BY statement, then the INEST=
data set must be sorted by the BY variables. However, it is not required to contain all the BY groups present
in the DATA= data set. For the BY groups that are not present in the INEST= data set, the default parameter
initialization method is used. If you specify the NOTSORTED option in the BY statement, then the INEST=
data set must contain all the BY groups that are present in the DATA= data set and they must appear in the
same order as they appear in the DATA= data set.

In addition to any variables that you specify in the BY statement, the data set must contain the following
variables:

_MODEL_ identifying name of the distribution for which the estimates are provided.

_TYPE_ type of the estimate. The value of this variable must be EST for an observation to be valid.

<Parameter 1> . . . <Parameter M>
M variables, named after the parameters of all candidate distributions, that contain initial
values of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are read only
from variables for parameters that correspond to the distribution that is indicated by the
_MODEL_ variable.

If you specify a missing value for some parameters, then default initial values are used
unless the parameter is initialized by using the INIT= option in the DIST statement. If
you want to use the dist_PARMINIT subroutine for initializing the parameters of a model,
then you should either not specify the model in the INEST= data set or specify missing
values for all the distribution parameters in the INEST= data set and not use the INIT=
option in the DIST statement.

If you specify regressors, then the initial value that you provide for the first parameter of
each distribution must be the base value of the scale or log-transformed scale parameter.
For more information, see the section “Estimating Regression Effects” on page 1200.

<Regressor 1> . . . <Regressor K>
If you specify K regressors in the SCALEMODEL statement, then the INEST= data set
must contain K variables that are named for each regressor. The variables contain initial
values of the respective regression coefficients. If a regressor is linearly dependent on
other regressors for a given BY group, then you can indicate this by providing a special
missing value of .R for the respective variable. In a given BY group, if you mark a
variable as linearly dependent for one model, then you must mark that variable as linearly
dependent for all the models. Similarly, in a given BY group, if you do not mark a variable
as linearly dependent for one model, then you must not mark that variable as linearly
dependent for all the models.
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Output Data Sets
PROC HPSEVERITY writes the OUTCDF=, OUTEST=, OUTMODELINFO=, and OUTSTAT= data sets
when requested by their respective options in the PROC HPSEVERITY statement. It also writes the OUT=
data set when you specify the OUTPUT statement. The data sets and their contents are described in the
following sections.

OUT= Data Set

The OUT= data set that you specify in the OUTPUT statement records the estimates of the scoring functions
and quantiles that you specify in the OUTPUT statement.

For each distribution that you specify in the DIST statement, the OUT= data set contains one variable for
each scoring function that you specify in the FUNCTIONS= option and one variable for each quantile that
you specify in the QUANTILES= option. The prefix of the variable’s name is <distribution-name>_, whereas
the suffix of the variable’s name is determined by the information that you specify in the respective option or
by the default method that PROC HPSEVERITY uses. For more information about variable names, see the
description of the OUTPUT statement.

The OUT= data set also contains the variables that you specify in the COPYVARS= option. If you specify
the BY statement and if you want PROC HPSEVERITY to copy the BY variables from the DATA= data set
to the OUT= data set, then you must specify them in the COPYVARS= option.

The number of observations in the OUT= data set depends on the options that you specify in the OUTPUT
statement and whether or not you specify the SCALEMODEL statement.

If either of the following conditions is met, then the number of observations in the OUT= data set is equal to
the number of observations in the DATA= data set:

� You specify the SCALEMODEL statement.

� You specify the FUNCTIONS= option in the OUTPUT statement such that at least one scoring function
does not have a constant, nonmissing argument.

If neither of the preceding conditions is met, then the number of observations in the OUT= data set is equal
to the number of BY groups, which is equal to 1 if you do not specify the BY statement.

OUTCDF= Data Set

The OUTCDF= data set records the estimates of the cumulative distribution function (CDF) of each of the
specified model distributions and an estimate of the empirical distribution function (EDF).

If you specify BY variables, then the data are organized in BY groups and the data set contains variables that
you specify in the BY statement. In addition, the data set contains the following variables:

<response variable>
value of the response variable. The values are sorted. If there are multiple BY groups, the
values are sorted within each BY group.

_OBSNUM_ observation number in the DATA= data set. This is a sequence number that indicates the
order in which the procedure accesses the observation; it does not necessarily reflect the
actual observation number in the data set.
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_EDF_ estimate of the empirical distribution function (EDF). This estimate is computed by using
the EMPIRICALCDF= option that you specify in the PROC HPSEVERITY statement.

_EDF_STD estimate of the standard error of EDF. This estimate is computed by using a method
that is appropriate for the EMPIRICALCDF= option that you specify in the PROC
HPSEVERITY statement.

_EDF_LOWER estimate of the lower confidence limit of EDF for a pointwise 100.1 � ˛/% confidence
interval, where ˛ is the value of the EDFALPHA= option that you specify in the PROC
HPSEVERITY statement (default is ˛ D 0:05). For an EDF estimate Fn that has standard
error �n, it is computed as MAX.0; Fn � z.1�˛=2/�n/, where zp is the pth quantile from
the standard normal distribution.

_EDF_UPPER estimate of the upper confidence limit of EDF for a pointwise 100.1 � ˛/% confidence
interval, where ˛ is the value of the EDFALPHA= option that you specify in the PROC
HPSEVERITY statement (default is ˛ D 0:05). For an EDF estimate Fn that has standard
error �n, it is computed as MIN.1; Fn C z.1�˛=2/�n/, where zp is the pth quantile from
the standard normal distribution.

<distribution1>_CDF . . . <distributionD>_CDF
estimate of the cumulative distribution function (CDF) for each of the D candidate
distributions, computed by using the final parameter estimates for that distribution. This
value is missing if the parameter estimation process does not converge for the given
distribution.

If you specify regressor variables, then the reported estimates are from a mixture distribu-
tion. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 1203.

If you specify truncation, then the data set contains the following additional variables:

<distribution1>_COND_CDF . . . <distributionD>_COND_CDF
estimate of the conditional CDF for each of the D candidate distributions, computed
by using the final parameter estimates for that distribution. This value is missing if the
parameter estimation process does not converge for the distribution. The conditional
estimates are computed by using the method that is described in the section “Truncation
and Conditional CDF Estimates” on page 1195.

OUTEST= Data Set

The OUTEST= data set records the estimates of the model parameters. It also contains estimates of their
standard errors and optionally their covariance structure. If you specify BY variables, then the data are
organized in BY groups and the data set contains variables that you specify in the BY statement.

If you do not specify the COVOUT option, then the data set contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information about
this distribution.

_TYPE_ type of the estimates reported in this observation. It can take one of the following two
values:
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EST point estimates of model parameters

STDERR standard error estimates of model parameters

_STATUS_ status of the reported estimates. The possible values are listed in the section “_STATUS_
Variable Values” on page 1260.

<Parameter 1> . . . <Parameter M>
M variables, named after the parameters of all candidate distributions, that contain
estimates of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are populated
only for parameters that correspond to the distribution that is indicated by the _MODEL_
variable. If _TYPE_ is EST, then the estimates are missing if the model does not
converge. If _TYPE_ is STDERR, then the estimates are missing if covariance estimates
cannot be obtained.

If you specify regression effects, then the estimate that is reported for the first parameter
of each distribution is the estimate of the base value of the scale or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects”
on page 1200.

<Regression Effect 1> . . . <Regression Effect K>
If your effect specification in the SCALEMODEL statement results in K regression
effects, then the OUTEST= data set contains K regression variables. The name of each
variable is formed by using the name of the effect and the names of the levels of the
CLASS variables that the effect might contain. If the effect name or level names are
too long, then the variable name is constructed by using partial effect name and integer
identifiers for BY groups and CLASS variable levels. The label of the variable is more
descriptive than the name of the variable. The variables contain estimates for their
respective regression coefficients. If an effect is deemed to be linearly dependent on
other effects for a given BY group, then a warning message is written to the SAS log
and a special missing value of .R is written in the respective variable. If _TYPE_ is EST,
then the estimates are missing if the model does not converge. If _TYPE_ is STDERR,
then the estimates are missing if covariance estimates cannot be obtained.

<Offset Variable>
If you specify an OFFSET= variable in the SCALEMODEL statement, then the OUT-
EST= data set contains a variable that is named after the offset variable. If _TYPE_ is
EST, then the value of this variable is 1. If _TYPE_ is STDERR, then the value of this
variable is a special missing value of .F.

If you specify the COVOUT option in the PROC HPSEVERITY statement, then the OUTEST= data set
contains additional observations that contain the estimates of the covariance structure. Given the symmetric
nature of the covariance structure, only the lower triangular portion is reported. In addition to the variables
listed and described previously, the data set contains the following variables that are either new or have a
modified description:

_TYPE_ type of the estimates reported in this observation. For observations that contain rows of
the covariance structure, the value is COV.

_STATUS_ status of the reported estimates. For observations that contain rows of the covariance
structure, the status is 0 if covariance estimation was successful. If estimation fails, the



Output Data Sets F 1259

status is 1 and a single observation is reported with _TYPE_=COV and missing values for
all the parameter variables.

_NAME_ name of the parameter for the row of covariance matrix that is reported in the current
observation.

OUTMODELINFO= Data Set

The OUTMODELINFO= data set records the information about each candidate distribution that you specify
in the DIST statement. It contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information
about this distribution.

_DEPVAR_ name of the loss variable.

_DESCRIPTION_ descriptive name of the model. This has a nonmissing value only if the DESCRIP-
TION function has been defined for this model.

_VALID_ validity of the distribution definition. This has a value of 1 for valid definitions
and a value of 0 for invalid definitions. If the definition is invalid, then PROC
HPSEVERITY writes the reason for invalidity to the SAS log.

_PARMNAME1 . . . _PARMNAMEM
M variables that contain names of parameters of the distribution model, where M
is the maximum number of parameters across all the specified distribution models.
For a given distribution with m parameters, values of variables _PARMNAMEj
(j > m) are missing.

OUTSTAT= Data Set

The OUTSTAT= data set records statistics of fit and model selection information. If you specify BY variables,
then the data are organized in BY groups and the data set contains variables that you specify in the BY
statement. The data set contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information
about this distribution.

_NMODELPARM_ number of parameters in the distribution.

_NESTPARM_ number of estimated parameters. This includes the regression parameters, if you
specify any regression effects.

_NOBS_ number of nonmissing observations used for parameter estimation.

_STATUS_ status of the parameter estimation process for this model. The possible values are
listed in the section “_STATUS_ Variable Values” on page 1260.

_SELECTED_ indicator of the best distribution model. If the value is 1, then this model is the
best model for the current BY group according to the specified model selection
criterion. This value is missing if the parameter estimation process does not
converge for this model.
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Neg2LogLike value of the log likelihood, multiplied by –2, that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AIC value of the Akaike’s information criterion (AIC) that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AICC value of the corrected Akaike’s information criterion (AICC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

BIC value of the Schwarz Bayesian information criterion (BIC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

KS value of the Kolmogorov-Smirnov (KS) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AD value of the Anderson-Darling (AD) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

CVM value of the Craḿer–von Mises (CvM) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

_STATUS_ Variable Values

The _STATUS_ variable in the OUTEST= and OUTSTAT= data sets contains a value that indicates the status
of the parameter estimation process for the respective distribution model. The variable can take the following
values in the OUTEST= data set for _TYPE_=EST observations and in the OUTSTAT= data set:

0 The parameter estimation process converged for this model.

301 The parameter estimation process might not have converged for this model because there is no
improvement in the objective function value. This might indicate that the initial values of the
parameters are optimal, or you can try different convergence criteria in the NLOPTIONS statement.

302 The parameter estimation process might not have converged for this model because the number of
iterations exceeded the maximum allowed value. You can try setting a larger value for the MAXITER=
options in the NLOPTIONS statement.

303 The parameter estimation process might not have converged for this model because the number of
objective function evaluations exceeded the maximum allowed value. You can try setting a larger
value for the MAXFUNC= options in the NLOPTIONS statement.

304 The parameter estimation process might not have converged for this model because the time taken
by the process exceeded the maximum allowed value. You can try setting a larger value for the
MAXTIME= option in the NLOPTIONS statement.

400 The parameter estimation process did not converge for this model.

The _STATUS_ variable can take the following values in the OUTEST= data set for _TYPE_=STDERR and
_TYPE_=COV observations:
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0 The covariance and standard error estimates are available and valid.

1 The covariance and standard error estimates are not available, because the process of computing
covariance estimates failed.

Displayed Output
The HPSEVERITY procedure optionally produces displayed output by using the Output Delivery System
(ODS). All output is controlled by the PRINT= option in the PROC HPSEVERITY statement. Table 22.18
relates the ODS tables to PRINT= options.

Table 22.18 ODS Tables Produced in PROC HPSEVERITY

ODS Table Name Description Option

AllFitStatistics Statistics of fit for all the
distribution models

PRINT=ALLFITSTATS

ConvergenceStatus Convergence status of
parameter estimation process

PRINT=CONVSTATUS

DescStats Descriptive statistics for the
response variable

PRINT=DESCSTATS

DistributionInfo Distribution information PRINT=DISTINFO
EstimationDetails Details of the estimation

process for all the
distribution models

PRINT=ESTIMATIONDETAILS

InitialValues Initial parameter values and
bounds

PRINT=INITIALVALUES

IterationHistory Optimization iteration
history

PRINT=NLOHISTORY

ModelSelection Model selection summary PRINT=SELECTION
OptimizationSummary Optimization summary PRINT=NLOSUMMARY
ParameterEstimates Final parameter estimates PRINT=ESTIMATES
PerformanceInfo Execution environment

information that pertains to
the computational
performance

Default

RegDescStats Descriptive statistics for the
regression effects that do not
contain a CLASS variable

PRINT=DESCSTATS

StatisticsOfFit Statistics of fit PRINT=STATISTICS
Timing Timing information for

various computational stages
of the procedure

DETAILS (PERFOR-
MANCE statement)

TurnbullSummary Turnbull EDF estimation
summary

PRINT=ALL

If you do not specify the PRINT= option, then by default PROC HPSEVERITY produces ModelSelection,
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PerformanceInfo, ConvergenceStatus, OptimizationSummary, StatisticsOfFit, and ParameterEstimates ODS
tables.

The following describes the content that each table displays:

AllFitStatistics (PRINT=ALLFITSTATS)
displays the comparison of all the statistics of fit for all the models in one table. The table does not
include the models whose parameter estimation process does not converge. If all the models fail to
converge, then this table is not produced. If the table contains more than one model, then the best
model according to each statistic is indicated with an asterisk (*) in that statistic’s column.

ConvergenceStatus (PRINT=CONVSTATUS)
displays the convergence status of the parameter estimation process.

DescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the response variable.

DistributionInfo (PRINT=DISTINFO)
displays the information about all the candidate distribution. It includes the name, the description, the
number of distribution parameters, and whether the distribution is valid for the specified modeling task.

EstimationDetails (PRINT=ESTIMATIONDETAILS)
displays the comparative details of the estimation process that is used to fit each candidate distribution.
If you specify the DETAILS option in the PERFORMANCE statement, then this table contains a
column that indicates the time taken to estimate each candidate model.

InitialValues (PRINT=INITIALVALUES)
displays the initial values and bounds used for estimating each model.

IterationHistory (PRINT=NLOHISTORY)
displays the iteration history of the nonlinear optimization process used for estimating the parameters.

ModelSelection (PRINT=SELECTION)
displays the model selection table. The table shows the convergence status of each candidate model,
and the value of the selection criterion along with an indication of the selected model.

OptimizationSummary (PRINT=NLOSUMMARY)
displays the summary of the nonlinear optimization process used for estimating the parameters.

ParameterEstimates (PRINT=ESTIMATES)
displays the final estimates of parameters. The estimates are not displayed for models whose parameter
estimation process does not converge.

PerformanceInfo
displays the number of threads that are used. It also confirms that the procedure always uses the single-
machine execution mode. displays information about the execution mode. PROC HPSEVERITY
produces this table by default.
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RegDescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the regression effects in the SCALEMODEL statement that do
not contain a CLASS variable.

StatisticsOfFit (PRINT=STATISTICS)
displays the statistics of fit for each model. The statistics of fit are not displayed for models whose
parameter estimation process does not converge.

Timing (DETAILS option in the PERFORMANCE statement
displays elapsed times (absolute and relative) for the main tasks of the procedure. PROC HPSEVERITY
produces this table when you specify the DETAILS option in the PERFORMANCE statement,

TurnbullSummary (PRINT=ALL)
displays the summary of Turnbull’s estimation process if Turnbull’s method is used for computing
EDF estimates. The summary includes whether the nonlinear optimization converged, the number of
iterations, the maximum absolute relative error, the maximum absolute reduced gradient, and whether
the final estimates are maximum likelihood estimates. This table is produced only if you specify
PRINT=ALL and Turnbull’s method is used for computing EDF estimates.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, by using the ODS GRAPHICS ON
statement). For more information, see the section “Enabling and Disabling ODS Graphics” (Chapter 24,
SAS/STAT User’s Guide).

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” (Chapter 24, SAS/STAT User’s
Guide).

This section describes how the HPSEVERITY procedure uses ODS to create graphics.

ODS Graph Names

PROC HPSEVERITY assigns a name to each graph that it creates by using ODS. You can use these names to
selectively reference the graphs. The names are listed in Table 22.19.

Table 22.19 ODS Graphics Produced by PROC HPSEVERITY

ODS Graph Name Plot Description PLOTS= Option

CDFPlot Comparative CDF plot CDF
CDFDistPlot CDF plot per distribution CDFPERDIST
PDFPlot Comparative PDF plot PDF
PDFDistPlot PDF plot per distribution PDFPERDIST
PPPlot P-P plot of CDF and EDF PP
QQPlot Q-Q plot QQ

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Comparative CDF Plot

The comparative CDF plot helps you visually compare the cumulative distribution function (CDF) estimates
of all the candidate distribution models and the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge. The horizontal
axis represents the values of the response variable. The vertical axis represents the values of the CDF or EDF
estimates.

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 1195.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1203.

CDF Plot per Distribution

The CDF plot per distribution shows the CDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The plot also contains estimates of the EDF. The
horizontal axis represents the values of the response variable. The vertical axis represents the values of the
CDF or EDF estimates.

This plot shows the lower and upper pointwise confidence limits for the EDF estimates. For an EDF estimate
Fn with standard error �n, they are computed as MAX.0; Fn � z.1�˛=2/�n/ and MIN.1; Fn C z.1�˛=2/�n/,
respectively, where zp is the pth quantile from the standard normal distribution and ˛ denotes the confidence
level that you specify in the EDFALPHA= option (the default is ˛ D 0:05).

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 1195.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1203.

Comparative PDF Plot

The comparative PDF plot helps you visually compare the probability density function (PDF) estimates of all
the candidate distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge. The horizontal axis represents the values of the response variable. The
vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1203.
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PDF Plot per Distribution

The PDF plot per distribution shows the PDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The horizontal axis represents the values of the
response variable. The vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 1203.

P-P Plot of CDF and EDF

The P-P plot of CDF and EDF is the probability-probability plot that compares the CDF estimates of a
distribution to the EDF estimates. A plot is not prepared for models whose parameter estimation process does
not converge. The horizontal axis represents the CDF estimates of a candidate distribution, and the vertical
axis represents the EDF estimates.

This plot can be interpreted as displaying the data that are used for computing the EDF-based statistics of
fit for the given candidate distribution. As described in the section “EDF-Based Statistics” on page 1222,
these statistics are computed by comparing the EDF, denoted by Fn.y/, to the CDF, denoted by F.y/, at
each of the response variable values y. Using the probability inverse transform z D F.y/, this is equivalent
to comparing the EDF of the z, denoted by Fn.z/, to the CDF of z, denoted by F.z/ (D’Agostino and
Stephens 1986, Ch. 4). Because the CDF of z is a uniform distribution (F.z/ D z), the EDF-based statistics
can be computed by comparing the EDF estimate of z to the estimate of z. The horizontal axis of the plot
represents the estimated CDF Oz D OF .y/. The vertical axis represents the estimated EDF of z, OFn.z/. The
plot contains a scatter plot of ( Oz, OFn.z/) points and a reference line Fn.z/ D z that represents the expected
uniform distribution of z. Points that are scattered closer to the reference line indicate a better fit than the
points that are scattered farther away from the reference line.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 1220. So conditional estimates of CDF are displayed, which are computed by using
the method that is described in the section “Truncation and Conditional CDF Estimates” on page 1195.

If you specify regression effects, then the displayed CDF estimates, both unconditional and conditional, are
from a mixture distribution. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 1203.

Q-Q Plot

The Q-Q plot is a quantile-quantile scatter plot that compares the empirical quantiles to the quantiles from
a candidate distribution. A plot is not prepared for models whose parameter estimation process does not
converge. The horizontal axis represents the quantiles from a candidate distribution, and the vertical axis
represents the empirical quantiles.

Each point in the plot corresponds to a specific value of the EDF estimate, Fn. The Y coordinate is the value
of the response variable for which Fn is computed. The X coordinate is computed by using one of the two
following methods for a candidate distribution named dist:
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� If you have defined the dist_QUANTILE function that satisfies the requirements listed in the section
“dist_QUANTILE” on page 1235, then that function is invoked by using Fn and estimated distribution
parameters as arguments. The QUANTILE function is defined in the Sashelp.Svrtdist library for all
the predefined distributions.

� If the dist_QUANTILE function is not defined, then PROC HPSEVERITY numerically inverts the
dist_CDF function at the CDF value of Fn for the estimated distribution parameters. If the dist_CDF
function is not defined, then the exp(dist_LOGCDF) function is inverted. If the inversion fails, the
corresponding point is not plotted in the Q-Q plot.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 1220. The CDF inversion process, whether done numerically or by evaluating the
dist_QUANTILE function, needs to accept an unconditional CDF value. So the Fn value is first transformed
to an unconditional estimate F un as

F un D Fn � .
OF .trmax/ �

OF .t lmin//C
OF .t lmin/

where OF .trmax/ and OF .t lmin/ are as defined in the section “Truncation and Conditional CDF Estimates” on
page 1195.

If you specify regression effects, then the value of the first distribution parameter is determined by using the
DFMIXTURE=MEAN method that is described in the section “CDF and PDF Estimates with Regression
Effects” on page 1203.

Examples: HPSEVERITY Procedure

Example 22.1: Defining a Model for Gaussian Distribution
Suppose you want to fit a distribution model other than one of the predefined ones available to you. Suppose
you want to define a model for the Gaussian distribution with the following typical parameterization of the
PDF (f ) and CDF (F):

f .xI�; �/ D
1

�
p
2�

exp
�
�
.x � �/2

2�2

�
F.xI�; �/ D

1

2

�
1C erf

�
x � �

�
p
2

��

For PROC HPSEVERITY, a distribution model consists of a set of functions and subroutines that are defined
with the FCMP procedure. Each function and subroutine should be written following certain rules. For
more information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 1227.

NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the process of defining your own distribution models. Although the distribution has
a support over the entire real line, you can fit the distribution with PROC HPSEVERITY only if the input
sample contains nonnegative values.
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The following SAS statements define a distribution model named NORMAL for the Gaussian distribution.
The OUTLIB= option in the PROC FCMP statement stores the compiled versions of the functions and
subroutines in the ‘models’ package of the Work.Sevexmpl library. The LIBRARY= option in the PROC
FCMP statement enables this PROC FCMP step to use the SVRTUTIL_RAWMOMENTS utility subroutine
that is available in the Sashelp.Svrtdist library. The subroutine is described in the section “Predefined Utility
Functions” on page 1239.

/*-------- Define Normal Distribution with PROC FCMP ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function normal_pdf(x,Mu,Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
return ( exp(-(x-Mu)**2/(2 * Sigma**2)) /

(Sigma * sqrt(2*constant('PI'))) );
endsub;

function normal_cdf(x,Mu,Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
z = (x-Mu)/Sigma;
return (0.5 + 0.5*erf(z/sqrt(2)));

endsub;

subroutine normal_parminit(dim, x[*], nx[*], F[*], Ftype, Mu, Sigma);
outargs Mu, Sigma;
array m[2] / nosymbols;

/* Compute estimates by using method of moments */
call svrtutil_rawmoments(dim, x, nx, 2, m);
Mu = m[1];
Sigma = sqrt(m[2] - m[1]**2);

endsub;

subroutine normal_lowerbounds(Mu, Sigma);
outargs Mu, Sigma;
Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */

endsub;
quit;

The statements define the two functions required of any distribution model (NORMAL_PDF and NOR-
MAL_CDF) and two optional subroutines (NORMAL_PARMINIT and NORMAL_LOWERBOUNDS). The
name of each function or subroutine must follow a specific structure. It should start with the model’s short or
identifying name, which is ‘NORMAL’ in this case, followed by an underscore ‘_’, followed by a keyword
suffix such as ‘PDF’. Each function or subroutine has a specific purpose. For more information about all the
functions and subroutines that you can define for a distribution model, see the section “Defining a Severity
Distribution Model with the FCMP Procedure” on page 1227. Following is the description of each function
and subroutine defined in this example:

� The PDF and CDF suffixes define functions that return the probability density function and cumulative
distribution function values, respectively, given the values of the random variable and the distribution
parameters.
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� The PARMINIT suffix defines a subroutine that returns the initial values for the parameters by using the
sample data or the empirical distribution function (EDF) estimate computed from it. In this example,
the parameters are initialized by using the method of moments. Hence, you do not need to use the EDF
estimates, which are available in the F array. The first two raw moments of the Gaussian distribution
are as follows:

EŒx� D �; EŒx2� D �2 C �2

Given the sample estimates, m1 and m2, of these two raw moments, you can solve the equations
EŒx� D m1 and EŒx2� D m2 to get the following estimates for the parameters: O� D m1 and

O� D

q
m2 �m

2
1. The NORMAL_PARMINIT subroutine implements this solution. It uses the

SVRTUTIL_RAWMOMENTS utility subroutine to compute the first two raw moments.

� The LOWERBOUNDS suffix defines a subroutine that returns the lower bounds on the parameters.
PROC HPSEVERITY assumes a default lower bound of 0 for all the parameters when a LOWER-
BOUNDS subroutine is not defined. For the parameter � (Mu), there is no lower bound, so you
need to define the NORMAL_LOWERBOUNDS subroutine. It is recommended that you assign
bounds for all the parameters when you define the LOWERBOUNDS subroutine or its counterpart,
the UPPERBOUNDS subroutine. Any unassigned value is returned as a missing value, which PROC
HPSEVERITY interprets to mean that the parameter is unbounded, and that might not be what you
want.

You can now use this distribution model with PROC HPSEVERITY. Let the following DATA step statements
simulate a normal sample with � D 10 and � D 2:5:

/*-------- Simulate a Normal sample ----------*/
data testnorm(keep=y);

call streaminit(12345);
do i=1 to 100;

y = rand('NORMAL', 10, 2.5);
output;

end;
run;

Prior to using your distribution with PROC HPSEVERITY, you must communicate the location of the library
that contains the definition of the distribution and the locations of libraries that contain any functions and
subroutines used by your distribution model. The following OPTIONS statement sets the CMPLIB= system
option to include the FCMP library Work.Sevexmpl in the search path used by PROC HPSEVERITY to find
FCMP functions and subroutines:

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

Now, you are ready to fit the NORMAL distribution model with PROC HPSEVERITY. The following
statements fit the model to the values of Y in the Work.Testnorm data set:

/*--- Fit models with PROC HPSEVERITY ---*/
proc hpseverity data=testnorm print=all;

loss y;
dist Normal;

run;
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The DIST statement specifies the identifying name of the distribution model, which is ‘NORMAL’. Neither
the INEST= option nor the INSTORE= option is specified in the PROC HPSEVERITY statement, and the
INIT= option is not specified in the DIST statement. So PROC HPSEVERITY initializes the parameters by
invoking the NORMAL_PARMINIT subroutine.

Some of the results prepared by the preceding PROC HPSEVERITY step are shown in Output 22.1.1 and
Output 22.1.2. The descriptive statistics of variable Y and the “Model Selection” table, which includes just
the normal distribution, are shown in Output 22.1.1.

Output 22.1.1 Summary of Results for Fitting the Normal Distribution

The HPSEVERITY Procedure

Input Data Set

Name WORK.TESTNORM

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 3.88249

Maximum 16.00864

Mean 10.02059

Standard Deviation 2.37730

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal Yes 455.97541 Yes

The initial values for the parameters, the optimization summary, and the final parameter estimates are shown
in Output 22.1.2. No iterations are required to arrive at the final parameter estimates, which are identical to
the initial values. This confirms the fact that the maximum likelihood estimates for the Gaussian distribution
are identical to the estimates obtained by the method of moments that was used to initialize the parameters in
the NORMAL_PARMINIT subroutine.

Output 22.1.2 Details of the Fitted Normal Distribution Model

The HPSEVERITY Procedure
Normal Distribution

Distribution Information

Name Normal

Distribution Parameters 2

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 10.02059 -Infty Infty

Sigma 2.36538 1.05367E-8 Infty



1270 F Chapter 22: The HPSEVERITY Procedure

Output 22.1.2 continued

Optimization Summary

Optimization Technique Trust Region

Iterations 0

Function Calls 4

Log Likelihood -227.98770

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 10.02059 0.23894 41.94 <.0001

Sigma 1 2.36538 0.16896 14.00 <.0001

The NORMAL distribution defined and illustrated here has no scale parameter, because all the following
inequalities are true:
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This implies that you cannot estimate the influence of regression effects on a model for the response variable
based on this distribution.

Example 22.2: Defining a Model for the Gaussian Distribution with a Scale
Parameter

If you want to estimate the influence of regression effects, then the model needs to be parameterized to have
a scale parameter. Although this might not be always possible, it is possible for the Gaussian distribution by
replacing the location parameter � with another parameter, ˛ D �=� , and defining the PDF (f ) and the CDF
(F) as follows:
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You can verify that � is the scale parameter, because both of the following equalities are true:
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NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the concept of parameterizing a distribution such that it has a scale parameter. Although
the distribution has a support over the entire real line, you can fit the distribution with PROC HPSEVERITY
only if the input sample contains nonnegative values.

The following statements use the alternate parameterization to define a new model named NORMAL_S. The
definition is stored in the Work.Sevexmpl library.

/*-------- Define Normal Distribution With Scale Parameter ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function normal_s_pdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
return ( exp(-(x/Sigma - Alpha)**2/2) /

(Sigma * sqrt(2*constant('PI'))) );
endsub;

function normal_s_cdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
z = x/Sigma - Alpha;
return (0.5 + 0.5*erf(z/sqrt(2)));

endsub;

subroutine normal_s_parminit(dim, x[*], nx[*], F[*], Ftype, Sigma, Alpha);
outargs Sigma, Alpha;
array m[2] / nosymbols;
/* Compute estimates by using method of moments */
call svrtutil_rawmoments(dim, x, nx, 2, m);
Sigma = sqrt(m[2] - m[1]**2);
Alpha = m[1]/Sigma;

endsub;

subroutine normal_s_lowerbounds(Sigma, Alpha);
outargs Sigma, Alpha;
Alpha = .; /* Alpha has no lower bound */
Sigma = 0; /* Sigma > 0 */

endsub;
quit;

An important point to note is that the scale parameter Sigma is the first distribution parameter (after the
‘x’ argument) listed in the signatures of NORMAL_S_PDF and NORMAL_S_CDF functions. Sigma is
also the first distribution parameter listed in the signatures of other subroutines. This is required by PROC
HPSEVERITY, so that it can identify which is the scale parameter. When you specify regression effects,
PROC HPSEVERITY checks whether the first parameter of each candidate distribution is a scale parameter
(or a log-transformed scale parameter if dist_SCALETRANSFORM subroutine is defined for the distribution
with LOG as the transform). If it is not, then an appropriate message is written the SAS log and that
distribution is not fitted.

Let the following DATA step statements simulate a sample from the normal distribution where the parameter
� is affected by the regressors as follows:

� D exp.1C 0:5 X1C 0:75 X3 � 2 X4C X5/



1272 F Chapter 22: The HPSEVERITY Procedure

The sample is simulated such that the regressor X2 is linearly dependent on regressors X1 and X3.

/*--- Simulate a Normal sample affected by Regressors ---*/
data testnorm_reg(keep=y x1-x5 Sigma);

array x{*} x1-x5;
array b{6} _TEMPORARY_ (1 0.5 . 0.75 -2 1);
call streaminit(34567);
label y='Normal Response Influenced by Regressors';

do n = 1 to 100;
/* simulate regressors */
do i = 1 to dim(x);

x(i) = rand('UNIFORM');
end;
/* make x2 linearly dependent on x1 */
x(2) = 5 * x(1);

/* compute log of the scale parameter */
logSigma = b(1);
do i = 1 to dim(x);

if (i ne 2) then
logSigma = logSigma + b(i+1) * x(i);

end;

Sigma = exp(logSigma);
y = rand('NORMAL', 25, Sigma);
output;

end;
run;

The following statements use PROC HPSEVERITY to fit the NORMAL_S distribution model along with
some of the predefined distributions to the simulated sample:

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit models with PROC HPSEVERITY --------*/
proc hpseverity data=testnorm_reg print=all;

loss y;
scalemodel x1-x5;
dist Normal_s burr logn pareto weibull;

run;

The “Model Selection” table in Output 22.2.1 indicates that all the models, except the Burr distribution
model, have converged. Also, only three models, Normal_s, Burr, and Weibull, seem to have a good fit for
the data. The table that compares all the fit statistics indicates that Normal_s model is the best according to
the likelihood-based statistics; however, the Burr model is the best according to the EDF-based statistics.

Output 22.2.1 Summary of Results for Fitting the Normal Distribution with Regressors

The HPSEVERITY Procedure

Input Data Set

Name WORK.TESTNORM_REG
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Output 22.2.1 continued

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal_s Yes 603.95786 Yes

Burr Maybe 612.81685 No

Logn Yes 749.20125 No

Pareto Yes 841.07022 No

Weibull Yes 612.77496 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152 0.70769

Burr 612.81685 626.81685 628.03424 645.05304 1.50448 * 3.90072 * 0.63399 *

Logn 749.20125 761.20125 762.10448 776.83227 2.88110 16.20558 3.04825

Pareto 841.07022 853.07022 853.97345 868.70124 4.83810 31.60568 6.84046

Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559 0.63458

Note: The asterisk (*) marks the best model according to each column's criterion.

This prompts you to further evaluate why the model with Burr distribution has not converged. The initial
values, convergence status, and the optimization summary for the Burr distribution are shown in Output 22.2.2.
The initial values table indicates that the regressor X2 is redundant, which is expected. More importantly, the
convergence status indicates that it requires more than 50 iterations. PROC HPSEVERITY enables you to
change several settings of the optimizer by using the NLOPTIONS statement. In this case, you can increase
the limit of 50 on the iterations, change the convergence criterion, or change the technique to something other
than the default trust-region technique.

Output 22.2.2 Details of the Fitted Burr Distribution Model

The HPSEVERITY Procedure
Burr Distribution

Distribution Information

Name Burr

Description Burr Distribution (Type XII Family)

Distribution Parameters 3

Regression Parameters 4

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Theta 25.75198 1.05367E-8 Infty

Alpha 2.00000 1.05367E-8 Infty

Gamma 2.00000 1.05367E-8 Infty

x1 0.07345 -709.78271 709.78271

x2 Redundant

x3 -0.14056 -709.78271 709.78271

x4 0.27064 -709.78271 709.78271

x5 -0.23230 -709.78271 709.78271
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Output 22.2.2 continued

Convergence Status

Needs more than 50 iterations.

Optimization Summary

Optimization Technique Trust Region

Iterations 50

Function Calls 137

Log Likelihood -306.40842

The following PROC HPSEVERITY step uses the NLOPTIONS statement to change the convergence crite-
rion and the limits on the iterations and function evaluations, exclude the lognormal and Pareto distributions
that have been confirmed previously to fit the data poorly, and exclude the redundant regressor X2 from the
model:

/*--- Refit and compare models with higher limit on iterations ---*/
proc hpseverity data=testnorm_reg print=all;

loss y;
scalemodel x1 x3-x5;
dist Normal_s burr weibull;
nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500;

run;

The results shown in Output 22.2.3 indicate that the Burr distribution has now converged and that the Burr
and Weibull distributions have an almost identical fit for the data. The NORMAL_S distribution is still the
best distribution according to the likelihood-based criteria.

Output 22.2.3 Summary of Results after Changing Maximum Number of Iterations

The HPSEVERITY Procedure

Input Data Set

Name WORK.TESTNORM_REG

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal_s Yes 603.95786 Yes

Burr Yes 612.79276 No

Weibull Yes 612.77496 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152 0.70769

Burr 612.79276 626.79276 628.01015 645.02895 1.50472 * 3.90351 * 0.63433 *

Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559 0.63458

Note: The asterisk (*) marks the best model according to each column's criterion.
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Example 22.3: Defining a Model for Mixed-Tail Distributions
In some applications, a few severity values tend to be extreme as compared to the typical values. The extreme
values represent the worst case scenarios and cannot be discarded as outliers. Instead, their distribution
must be modeled to prepare for their occurrences. In such cases, it is often useful to fit one distribution to
the non-extreme values and another distribution to the extreme values. The mixed-tail distribution mixes
two distributions: one for the body region, which contains the non-extreme values, and another for the tail
region, which contains the extreme values. The tail distribution is usually a generalized Pareto distribution
(GPD), because it is usually good for modeling the conditional excess severity above a threshold. The body
distribution can be any distribution. The following definitions are used in describing a generic formulation of
a mixed-tail distribution:

g.x/ PDF of the body distribution

G.x/ CDF of the body distribution

h.x/ PDF of the tail distribution

H.x/ CDF of the tail distribution

� scale parameter for the body distribution

� set of nonscale parameters for the body distribution

� shape parameter for the GPD tail distribution

xr normalized value of the response variable at which the tail starts

pn mixing probability

Given these notations, the PDF f .x/ and the CDF F.x/ of the mixed-tail distribution are defined as

f .x/ D

� pn
G.xb/

g.x/ if x � xb
.1 � pn/h.x � xb/ if x > xb

F.x/ D

� pn
G.xb/

G.x/ if x � xb
pn C .1 � pn/H.x � xb/ if x > xb

where xb D �xr is the value of the response variable at which the tail starts.

These definitions indicate the following:

� The body distribution is conditional on X � xb , where X denotes the random response variable.

� The tail distribution is the generalized Pareto distribution of the .X � xb/ values.

� The probability that a response variable value belongs to the body is pn. Consequently the probability
that the value belongs to the tail is .1 � pn/.

The parameters of this distribution are � , �, �, xr , and pn. The scale of the GPD tail distribution �t is
computed as

�t D
G.xbI �;�/

g.xbI �;�/

.1 � pn/

pn
D �

G.xr I � D 1;�/

g.xr I � D 1;�/

.1 � pn/

pn
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The parameter xr is usually estimated using a tail index estimation algorithm. One such algorithm is
Hill’s algorithm (Danielsson et al. 2001), which is implemented by the predefined utility function SVRTU-
TIL_HILLCUTOFF available to you in the Sashelp.Svrtdist library. The algorithm and the utility function
are described in detail in the section “Predefined Utility Functions” on page 1239. The function computes an
estimate of xb , which can be used to compute an estimate of xr because xr D xb= O� , where O� is the estimate
of the scale parameter of the body distribution.

The parameter pn is usually determined by the domain expert based on the fraction of losses that are expected
to belong to the tail.

The following SAS statements define the LOGNGPD distribution model for a mixed-tail distribution with the
lognormal distribution as the body distribution and GPD as the tail distribution:

/*------- Define Lognormal Body-GPD Tail Mixed Distribution -------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function LOGNGPD_DESCRIPTION() $256;
length desc $256;
desc1 = "Lognormal Body-GPD Tail Distribution.";
desc2 = " Mu, Sigma, and Xi are free parameters.";
desc3 = " Xr and Pn are constant parameters.";
desc = desc1 || desc2 || desc3;
return(desc);

endsub;

function LOGNGPD_SCALETRANSFORM() $3;
length xform $3;
xform = "LOG";
return (xform);

endsub;

subroutine LOGNGPD_CONSTANTPARM(Xr,Pn);
endsub;

function LOGNGPD_PDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then do;

return ((Pn/p)*PDF('LOGN', x, Mu, Sigma));
end;
else do;

gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
h = (1+Xi*(x-cutoff)/gpd_scale)**(-1-(1/Xi))/gpd_scale;
return ((1-Pn)*h);

end;
endsub;

function LOGNGPD_CDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then do;

return ((Pn/p)*CDF('LOGN', x, Mu, Sigma));
end;
else do;

gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
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H = 1 - (1 + Xi*((x-cutoff)/gpd_scale))**(-1/Xi);
return (Pn + (1-Pn)*H);

end;
endsub;

subroutine LOGNGPD_PARMINIT(dim,x[*],nx[*],F[*],Ftype,
Mu,Sigma,Xi,Xr,Pn);

outargs Mu,Sigma,Xi,Xr,Pn;
array xe[1] / nosymbols;
array nxe[1] / nosymbols;

eps = constant('MACEPS');

Pn = 0.8; /* Set mixing probability */
_status_ = .;
call streaminit(56789);
Xb = svrtutil_hillcutoff(dim, x, 100, 25, _status_);
if (missing(_status_) or _status_ = 1) then

Xb = svrtutil_percentile(Pn, dim, x, F, Ftype);

/* Initialize lognormal parameters */
call logn_parminit(dim, x, nx, F, Ftype, Mu, Sigma);
if (not(missing(Mu))) then

Xr = Xb/exp(Mu);
else

Xr = .;

/* prepare arrays for excess values */
i = 1;
do while (i <= dim and x[i] < Xb+eps);

i = i + 1;
end;
dime = dim-i+1;
if (dime > 0) then do;

call dynamic_array(xe, dime);
call dynamic_array(nxe, dime);
j = 1;
do while(i <= dim);

xe[j] = x[i] - Xb;
nxe[j] = nx[i];
i = i + 1;
j = j + 1;

end;

/* Initialize GPD's shape parameter using excess values */
call gpd_parminit(dime, xe, nxe, F, Ftype, theta_gpd, Xi);

end;
else do;

Xi = .;
end;

endsub;

subroutine LOGNGPD_LOWERBOUNDS(Mu,Sigma,Xi,Xr,Pn);
outargs Mu,Sigma,Xi,Xr,Pn;
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Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */
Xi = 0; /* Xi > 0 */

endsub;
quit;

Note the following points about the LOGNGPD definition:

� The parameters xr and pn are not estimated with the maximum likelihood method used by
PROC HPSEVERITY, so you need to specify them as constant parameters by defining the
dist_CONSTANTPARM subroutine. The signature of the LOGNGPD_CONSTANTPARM subroutine
lists only the constant parameters Xr and Pn.

� The parameter xr is estimated by first using the SVRTUTIL_HILLCUTOFF utility function to compute
an estimate of the cutoff point Oxb and then computing xr D Oxb=e O�. If SVRTUTIL_HILLCUTOFF
fails to compute a valid estimate, then the SVRTUTIL_PERCENTILE utility function is used to set Oxb
to the pnth percentile of the data. The parameter pn is fixed to 0.8.

� The Sashelp.Svrtdist library is specified with the LIBRARY= option in the PROC FCMP state-
ment to enable the LOGNGPD_PARMINIT subroutine to use the predefined utility functions (SVR-
TUTIL_HILLCUTOFF and SVRTUTIL_PERCENTILE) and parameter initialization subroutines
(LOGN_PARMINIT and GPD_PARMINIT).

� The LOGNGPD_LOWERBOUNDS subroutine defines the lower bounds for all parameters. This
subroutine is required because the parameter Mu has a non-default lower bound. The bounds for Sigma
and Xi must be specified. If they are not specified, they are returned as missing values, which PROC
HPSEVERITY interprets as having no lower bound. You do not need to specify any bounds for the
constant parameters Xr and Pn, because they are not subject to optimization.

The following DATA step statements simulate a sample from a mixed-tail distribution with a lognormal
body and GPD tail. The parameter pn is fixed to 0.8, the same value used in the LOGNGPD_PARMINIT
subroutine defined previously.

/*----- Simulate a sample for the mixed-tail distribution -----*/
data testmixdist(keep=y label='Lognormal Body-GPD Tail Sample');

call streaminit(45678);
label y='Response Variable';
N = 100;
Mu = 1.5;
Sigma = 0.25;
Xi = 1.5;
Pn = 0.8;

/* Generate data comprising the lognormal body */
Nbody = N*Pn;
do i=1 to Nbody;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;

/* Generate data comprising the GPD tail */
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cutoff = quantile('LOGNORMAL', Pn, Mu, Sigma);
gpd_scale = (1-Pn) / pdf('LOGNORMAL', cutoff, Mu, Sigma);
do i=Nbody+1 to N;

y = cutoff + ((1-rand('UNIFORM'))**(-Xi) - 1)*gpd_scale/Xi;
output;

end;
run;

The following statements use PROC HPSEVERITY to fit the LOGNGPD distribution model to the simulated
sample. They also fit three other predefined distributions (BURR, LOGN, and GPD). The final parameter
estimates are written to the Work.Parmest data set.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);
/*-------- Fit LOGNGPD model with PROC HPSEVERITY --------*/
proc hpseverity data=testmixdist print=all outest=parmest;

loss y;
dist logngpd burr logn gpd;

run;

Some of the results prepared by PROC HPSEVERITY are shown in Output 22.3.1 and Output 22.3.2. The
“Model Selection” table in Output 22.3.1 indicates that all models converged. The last table in Output 22.3.1
shows that the model with LOGNGPD distribution has the best fit according to almost all the statistics of
fit. The Burr distribution model is the closest contender to the LOGNGPD model, but the GPD distribution
model fits the data very poorly.

Output 22.3.1 Summary of Fitting Mixed-Tail Distribution

The HPSEVERITY Procedure

Input Data Set

Name WORK.TESTMIXDIST

Label Lognormal Body-GPD Tail Sample

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

logngpd Yes 418.78232 Yes

Burr Yes 424.93728 No

Logn Yes 459.43471 No

Gpd Yes 558.13444 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

logngpd 418.78232 * 428.78232 * 429.42062 * 441.80817 0.62140 * 0.31670 * 0.04972 *

Burr 424.93728 430.93728 431.18728 438.75280 * 0.71373 0.57649 0.07860

Logn 459.43471 463.43471 463.55842 468.64505 1.55267 3.27122 0.48448

Gpd 558.13444 562.13444 562.25815 567.34478 3.43470 16.74156 3.31860

Note: The asterisk (*) marks the best model according to each column's criterion.

The detailed results for the LOGNGPD distribution are shown in Output 22.3.2. The initial values table
indicates the values computed by LOGNGPD_PARMINIT subroutine for the Xr and Pn parameters. It also
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uses the bounds columns to indicate the constant parameters. The last table in the figure shows the final
parameter estimates. The estimates of all free parameters are significantly different from 0. As expected, the
final estimates of the constant parameters Xr and Pn have not changed from their initial values.

Output 22.3.2 Detailed Results for the LOGNGPD Distribution

The HPSEVERITY Procedure
logngpd Distribution

Distribution Information

Name logngpd

Description Lognormal Body-GPD Tail Distribution. Mu, Sigma, and Xi are free parameters. Xr and Pn are constant
parameters.

Distribution
Parameters

5

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 1.49954 -Infty Infty

Sigma 0.76306 1.05367E-8 Infty

Xi 0.36661 1.05367E-8 Infty

Xr 1.27395 Constant Constant

Pn 0.80000 Constant Constant

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 11

Function Calls 33

Failed Function Calls 1

Log Likelihood -209.39116

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 1.57921 0.06426 24.57 <.0001

Sigma 1 0.31868 0.04459 7.15 <.0001

Xi 1 1.03771 0.38205 2.72 0.0078

Xr 1 1.27395 Constant . .

Pn 1 0.80000 Constant . .

The following SAS statements use the parameter estimates to compute the value where the tail region is
estimated to start (xb D e O� Oxr ) and the scale of the GPD tail distribution (�t D

G.xb/
g.xb/

.1�pn/
pn

):

/*-------- Compute tail cutoff and tail distribution's scale --------*/
data xb_thetat(keep=x_b theta_t);

set parmest(where=(_MODEL_='logngpd' and _TYPE_='EST'));
x_b = exp(Mu) * Xr;
theta_t = (CDF('LOGN',x_b,Mu,Sigma)/PDF('LOGN',x_b,Mu,Sigma)) *



Example 22.4: Fitting a Scaled Tweedie Model with Regressors F 1281

((1-Pn)/Pn);
run;

proc print data=xb_thetat noobs;
run;

Output 22.3.3 Start of the Tail and Scale of the GPD Tail Distribution

x_b theta_t

6.18005 1.27865

The computed values of xb and �t are shown as x_b and theta_t in Output 22.3.3. Equipped with this
additional derived information, you can now interpret the results of fitting the mixed-tail distribution as
follows:

� The tail starts at y � 6:18. The primary benefit of using the scale-normalized cutoff (xr ) as the
constant parameter instead of using the actual cutoff (xb) is that the absolute cutoff is optimized by
virtue of optimizing the scale of the body region (� D e�). It works well for this example. However,
by keeping xr constant, you must rely on Hill’s tail index estimator to yield an initial estimate of xb
that is close to an optimal estimate. In general, you might want to optimize xr by making it a free
parameter, which gives you more flexibility in optimizing xb . You can make xr a free parameter by
removing Xr from the signature of the LOGNGPD_CONSTANTPARM subroutine.

� The values y � 6:18 follow the lognormal distribution with parameters � � 1:58 and � � 0:32.
These parameter estimates are reasonably close to the parameters of the body distribution that is used
for simulating the sample.

� If Xt denotes the loss random variable for the tail defined as Xt D X � xb , where X is the original loss
variable, then for this example, PrŒXt D X � 6:18jXt > 0� follows the GPD density function with
scale �t � 1:28 and shape � � 1:04.

Example 22.4: Fitting a Scaled Tweedie Model with Regressors
The Tweedie distribution is often used in the insurance industry to explain the influence of regression effects
on the distribution of losses. PROC HPSEVERITY provides a predefined scaled Tweedie distribution
(STWEEDIE) that enables you to model the influence of regression effects on the scale parameter. The
scale regression model has its own advantages such as the ability to easily account for inflation effects. This
example illustrates how that model can be used to evaluate the influence of regression effects on the mean of
the Tweedie distribution, which is useful in problems such rate-making and pure premium modeling.

Assume a Tweedie process, whose mean � is affected by k regression effects xj , j D 1; : : : ; k, as follows,

� D �0 exp

0@ kX
jD1

ˇjxj

1A
where �0 represents the base value of the mean (you can think of �0 as exp.ˇ0/, where ˇ0 is the intercept).
This model for the mean is identical to the popular generalized linear model for the mean with a logarithmic
link function.
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More interestingly, it parallels the model used by PROC HPSEVERITY for the scale parameter � ,

� D �0 exp

0@ kX
jD1

ˇjxj

1A
where �0 represents the base value of the scale parameter. As described in the section “Tweedie Distributions”
on page 1187, for the parameter range p 2 .1; 2/, the mean of the Tweedie distribution is given by

� D ��
2 � p

p � 1

where � is the Poisson mean parameter of the scaled Tweedie distribution. This relationship enables you to
use the scale regression model to infer the influence of regression effects on the mean of the distribution.

Let the data set Work.Test_Sevtw contain a sample generated from a Tweedie distribution with dispersion
parameter � D 0:5, index parameter p D 1:75, and the mean parameter that is affected by three regression
variables x1, x2, and x3 as follows:

� D 5 exp.0:25 x1 � x2C 3 x3/

Thus, the population values of regression parameters are �0 D 5, ˇ1 D 0:25, ˇ2 D �1, and ˇ3 D 3. You
can find the code used to generate the sample in the PROC HPSEVERITY sample program hsevex04.sas.

The following PROC HPSEVERITY step uses the sample in Work.Test_Sevtw data set to estimate the
parameters of the scale regression model for the predefined scaled Tweedie distribution (STWEEDIE) with
the dual quasi-Newton (QUANEW) optimization technique:

/*--- Fit the scale parameter version of the Tweedie distribution ---*/
proc hpseverity data=test_sevtw outest=estw covout print=all;

loss y;
scalemodel x1-x3;

dist stweedie;
nloptions tech=quanew;

run;

The dual quasi-Newton technique is used because it requires only the first-order derivatives of the objective
function, and it is harder to compute reasonably accurate estimates of the second-order derivatives of Tweedie
distribution’s PDF with respect to the parameters.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 22.4.1 and Output 22.4.2.
The distribution information and the convergence results are shown in Output 22.4.1.

Output 22.4.1 Convergence Results for the STWEEDIE Model with Regressors

The HPSEVERITY Procedure
stweedie Distribution

Distribution Information

Name stweedie

Description Tweedie Distribution with Scale Parameter

Distribution Parameters 3

Regression Parameters 3
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Output 22.4.1 continued

Convergence Status

Convergence criterion (FCONV=2.220446E-16) satisfied.

Optimization Summary

Optimization Technique Dual Quasi-Newton

Iterations 41

Function Calls 196

Log Likelihood -1044.3

The final parameter estimates of the STWEEDIE regression model are shown in Output 22.4.2. The estimate
that is reported for the parameter Theta is the estimate of the base value �0. The estimates of regression
coefficients ˇ1, ˇ2, and ˇ3 are indicated by the rows of x1, x2, and x3, respectively.

Output 22.4.2 Parameter Estimates for the STWEEDIE Model with Regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 0.82500 0.25705 3.21 0.0015

Lambda 1 16.33948 12.22096 1.34 0.1823

P 1 1.75092 0.19347 9.05 <.0001

x1 1 0.27957 0.09874 2.83 0.0050

x2 1 -0.76688 0.10311 -7.44 <.0001

x3 1 3.03227 0.10139 29.91 <.0001

If your goal is to explain the influence of regression effects on the scale parameter, then the output displayed
in Output 22.4.2 is sufficient. But, if you want to compute the influence of regression effects on the mean of
the distribution, then you need to do some postprocessing. Using the relationship between � and � , � can be
written in terms of the parameters of the STWEEDIE model as

� D �0 exp

0@ kX
jD1

ˇjxj

1A�2 � p
p � 1

This shows that the parameters ˇj are identical for the mean and the scale model, and the base value �0 of
the mean model is

�0 D �0�
2 � p

p � 1

The estimate of �0 and the standard error associated with it can be computed by using the property of the
functions of maximum likelihood estimators (MLE). If g.�/ represents a totally differentiable function of
parameters �, then the MLE of g has an asymptotic normal distribution with mean g. O�/ and covariance
C D .@g/0†.@g/, where O� is the MLE of �, † is the estimate of covariance matrix of �, and @g is the
gradient vector of g with respect to � evaluated at O�. For �0, the function is g.�/ D �0�.2 � p/=.p � 1/.
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The gradient vector is

@g D
�
@g

@�0

@g

@�

@g

@p

@g

@ˇ1
: : :

@g

@ˇk

�
D

�
�0

�0

�0

�

��0

.p � 1/.2 � p/
0 : : : 0

�

You can write a DATA step that implements these computations by using the parameter and covariance
estimates prepared by PROC HPSEVERITY step. The DATA step program is available in the sample program
hsevex04.sas. The estimates of �0 prepared by that program are shown in Output 22.4.3. These estimates
and the estimates of ˇj as shown in Output 22.4.2 are reasonably close (that is, within one or two standard
errors) to the parameters of the population from which the sample in Work.Test_Sevtw data set was drawn.

Output 22.4.3 Estimate of the Base Value Mu0 of the Mean Parameter

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu0 4.47144 0.42213 10.5925 0

Another outcome of using the scaled Tweedie distribution to model the influence of regression effects is that
the regression effects also influence the variance V of the Tweedie distribution. The variance is related to
the mean as V D ��p , where � is the dispersion parameter. Using the relationship between the parameters
TWEEDIE and STWEEDIE distributions as described in the section “Tweedie Distributions” on page 1187,
the regression model for the dispersion parameter is

log.�/ D .2 � p/ log.�/ � log.�.2 � p//

D ..2 � p/ log.�0/ � log.�.2 � p///C .2 � p/
kX
jD1

ˇjxj

Subsequently, the regression model for the variance is

log.V / D 2 log.�/ � log.�.2 � p//

D .2 log.�0/ � log.�.2 � p///C 2
kX
jD1

ˇjxj

In summary, PROC HPSEVERITY enables you to estimate regression effects on various parameters and
statistics of the Tweedie model.
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Example 22.5: Fitting Distributions to Interval-Censored Data
In some applications, the data available for modeling might not be exact. A commonly encountered scenario
is the use of grouped data from an external agency, which for several reasons, including privacy, does not
provide information about individual loss events. The losses are grouped into disjoint bins, and you know
only the range and number of values in each bin. Each group is essentially interval-censored, because you
know that a loss magnitude is in certain interval, but you do not know the exact magnitude. This example
illustrates how you can use PROC HPSEVERITY to model such data.

The following DATA step generates sample grouped data for dental insurance claims, which is taken from
Klugman, Panjer, and Willmot (1998):

/* Grouped dental insurance claims data
(Klugman, Panjer, and Willmot 1998) */

data gdental;
input lowerbd upperbd count @@;
datalines;

0 25 30 25 50 31 50 100 57 100 150 42 150 250 65 250 500 84
500 1000 45 1000 1500 10 1500 2500 11 2500 4000 3
;
run;

The following PROC HPSEVERITY step fits all the predefined distributions to the data in the Work.Gdental
data set:

/* Fit all predefined distributions */
proc hpseverity data=gdental edf=turnbull print=all criterion=aicc;

loss / rc=lowerbd lc=upperbd;
weight count;
dist _predef_;
performance nthreads=1;

run;

The EDF= option in the PROC HPSEVERITY statement specifies that the Turnbull’s method be used for EDF
estimation. The LOSS statement specifies the left and right boundaries of each group as the right-censoring
and left-censoring limits, respectively. The variable count records the number of losses in each group and is
specified in the WEIGHT statement. Note that no response variable is specified in the LOSS statement, which
is allowed as long as each observation in the input data set is censored. The PERFORMANCE statement
specifies that just one thread of execution be used, to minimize the overhead associated with multithreading,
because the input data set is very small.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 22.5.1. According to the
“Model Selection” table in Output 22.5.1, all distribution models have converged. The “All Fit Statistics”
table in Output 22.5.1 indicates that the exponential distribution (EXP) has the best fit for data according to a
majority of the likelihood-based statistics and that the Burr distribution (BURR) has the best fit according to
all the EDF-based statistics.
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Output 22.5.1 Statistics of Fit for Interval-Censored Data

The HPSEVERITY Procedure

Input Data Set

Name WORK.GDENTAL

Model Selection

Distribution Converged AICC Selected

Burr Yes 51.41112 No

Exp Yes 44.64768 Yes

Gamma Yes 47.63969 No

Igauss Yes 48.05874 No

Logn Yes 47.34027 No

Pareto Yes 47.16908 No

Gpd Yes 47.16908 No

Weibull Yes 47.47700 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Burr 41.41112 * 47.41112 51.41112 48.31888 0.08974 * 0.00103 * 0.0000816 *

Exp 42.14768 44.14768 * 44.64768 * 44.45026 * 0.26412 0.09936 0.01866

Gamma 41.92541 45.92541 47.63969 46.53058 0.19569 0.04608 0.00759

Igauss 42.34445 46.34445 48.05874 46.94962 0.34514 0.12301 0.02562

Logn 41.62598 45.62598 47.34027 46.23115 0.16853 0.01884 0.00333

Pareto 41.45480 45.45480 47.16908 46.05997 0.11423 0.00739 0.0009084

Gpd 41.45480 45.45480 47.16908 46.05997 0.11423 0.00739 0.0009084

Weibull 41.76272 45.76272 47.47700 46.36789 0.17238 0.03293 0.00472

Note: The asterisk (*) marks the best model according to each column's criterion.

When the best distributions that are chosen by the likelihood-based and EDF-based statistics are different,
you need to decide which fit statistic best represents your objective. In this example, if your objective is
to minimize the distance between EDF and CDF values, then you should choose the Burr distribution. On
the other hand, if your objective is to maximize the likelihood of the observed data while minimizing the
model complexity, then you should choose the exponential distribution. Note that the exponential distribution
has worse (lower) raw likelihood than the Burr distribution, but it has better AIC, AICC, and BIC statistics
than the Burr distribution because the exponential distribution has only one parameter compared to the three
parameters of the Burr distribution. Further, the small sample size of 10 helps accentuate the role of model
complexity in the AIC, AICC, and BIC statistics. If the sample size would have been larger, the exponential
distribution might not have won according to the likelihood-based statistics.
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Example 22.6: Benefits of Multithreaded Computing
One of the key features of the HPSEVERITY procedure is that it takes advantage of the multithreaded
computing machinery in order to solve a given problem faster. This example illustrates the benefits of using
multithreaded computing.

The example uses a simulated data set Work.Largedata, which contains 10,000,000 observations, some of
which are right-censored or left-truncated. The losses are affected by three external effects. The DATA step
program that generates this data set is available in the accompanying sample program hsevex06.sas.

The following PROC HPSEVERITY step fits all the predefined distributions to the data in the Work.Largedata
data set on the client machine with just one thread of computation:

/* Fit all predefined distributions without any multithreading computing */
proc hpseverity data=largedata criterion=aicc initsample(size=20000);

loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nthreads=1 bufsize=1000000 details;

run;

The NTHREADS=1 option in the PERFORMANCE statement specifies that just one thread of computation
be used. The BUFSIZE= option in the PERFORMANCE statement specifies the number of observations to
read at one time. Specifying a larger value tends to decrease the time it takes to load the data. The DETAILS
option in the performance statement enables reporting of the timing information. The INITSAMPLE option in
the PROC HPSEVERITY statement specifies that a uniform random sample of maximum 20,000 observations
be used for parameter initialization.

The “Performance Information” and “Procedure Task Timing” tables that PROC HPSEVERITY creates are
shown in Output 22.6.1. The “Performance Information” table contains the information about the execution
environment. The “Procedure Task Timing” table indicates the total time and relative time taken by each of
the four main steps of PROC HPSEVERITY. As that table shows, it takes around 26.3 minutes for the task of
estimating parameters, which is usually the most time-consuming of all the tasks.

Output 22.6.1 Performance with No Multithreading

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 4.57 0.29%

Load and Prepare Data 10.36 0.65%

Initialize Parameters 0.81 0.05%

Estimate Parameters 1576.51 98.93%

Compute Fit Statistics 1.32 0.08%

If the grid appliance is not available, you can improve the performance by using multiple threads of
computation; this is in fact the default. The following PROC HPSEVERITY step fits all the predefined
distributions by using all the logical CPU cores of the machine:
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/* Specify that all the logical CPU cores on the machine be used */
options cpucount=actual;

/* Fit all predefined distributions with multithreading*/
proc hpseverity data=largedata criterion=aicc initsample(size=20000);

loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance bufsize=1000000 details;

run;

When you do not specify the NTHREADS= option in the PERFORMANCE statement, the HPSEVERITY
procedure uses the value of the CPUCOUNT= system option to decide the number of threads to use. Setting
the CPUCOUNT= option to ACTUAL before the PROC HPSEVERITY step enables the procedure to use all
the logical cores of the machine. The machine that is used to obtain these results (and the earlier results in
Output 22.6.1) has four physical CPU cores, each with a clock speed of 3.4 GHz. Hyperthreading is enabled
on the CPUs to yield eight logical CPU cores; this number is confirmed by the “Performance Information”
table in Output 22.6.2. The results in the “Procedure Task Timing” table in Output 22.6.2 indicate that the
use of multithreading has improved the performance by reducing the time to estimate parameters to around
5.5 minutes.

Output 22.6.2 Performance with Eight Threads

Performance Information

Execution Mode Single-Machine

Number of Threads 8

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 0.75 0.22%

Load and Prepare Data 1.06 0.31%

Initialize Parameters 0.67 0.20%

Estimate Parameters 332.05 97.44%

Compute Fit Statistics 6.25 1.83%

The computations and time taken to fit each model are shown in the “Estimation Details” table of Out-
put 22.6.3, which is generated whenever you specify the DETAILS option in the PERFORMANCE statement.
This table can be useful for comparing the relative effort required to fit each model and drawing some broader
conclusions.
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Output 22.6.3 Estimation Details

Estimation Details

Distribution Converged Iterations
Function

Calls
Gradient
Updates

Hessian
Updates

Time
(Seconds)

Burr Yes 11 28 104 90 40.91

Exp Yes 4 12 27 20 8.74

Gamma Yes 5 15 35 27 99.51

Igauss Yes 4 12 27 20 24.99

Logn Yes 4 12 27 20 17.67

Pareto Maybe 50 137 1430 1377 106.47

Gpd Yes 6 17 44 35 17.82

Weibull Yes 4 12 27 20 15.95

Example 22.7: Estimating Parameters Using the Cramér–von Mises Estimator
PROC HPSEVERITY enables you to estimate model parameters by minimizing your own objective function.
This example illustrates how you can use PROC HPSEVERITY to implement the Cramér–von Mises
estimator. Let F.yi I‚/ denote the estimate of CDF at yi for a distribution with parameters‚, and let Fn.yi /
denote the empirical estimate of CDF (EDF) at yi that is computed from a sample yi , 1 � i � N . Then, the
Cramér–von Mises estimator of the parameters is defined as

O‚ D argmin
‚

NX
iD1

.F.yi I‚/ � Fn.yi //
2

This estimator belongs to the class of minimum distance estimators. It attempts to estimate the parameters
such that the squared distance between the CDF and EDF estimates is minimized.

The following PROC HPSEVERITY step uses the Cramér–von Mises estimator to fit four candidate distribu-
tion models, including the LOGNGPD mixed-tail distribution model that was defined in “Example 22.3: Defin-
ing a Model for Mixed-Tail Distributions” on page 1275. The input sample is the same as is used in that
example.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit LOGNGPD model with PROC HPSEVERITY by using -------
-------- the Cramer-von Mises minimum distance estimator -------*/

proc hpseverity data=testmixdist obj=cvmobj print=all;
loss y;
dist logngpd burr logn gpd;

* Cramer-von Mises estimator (minimizes the distance *
* between parametric and nonparametric estimates) *;
cvmobj = _cdf_(y);
cvmobj = (cvmobj -_edf_(y))**2;

run;
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The OBJ= option in the PROC HPSEVERITY statement specifies that the objective function cvmobj should
be minimized. The programming statements compute the contribution of each observation in the input data
set to the objective function cvmobj. The use of keyword functions _CDF_ and _EDF_ makes the program
applicable to all the distributions.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 22.7.1. The “Model Selection”
table indicates that all models converged. When you specify a custom objective function, the default selection
criterion is the value of the custom objective function. The “All Fit Statistics” table indicates that LOGNGPD
is the best distribution according to all the statistics of fit. Comparing the fit statistics of Output 22.7.1 with
those of Output 22.3.1 indicates that the use of the Cramér–von Mises estimator has resulted in smaller
values for all the EDF-based statistics of fit for all the models, which is expected from a minimum distance
estimator.

Output 22.7.1 Summary of Cramér–von Mises Estimation

The HPSEVERITY Procedure

Input Data Set

Name WORK.TESTMIXDIST

Label Lognormal Body-GPD Tail Sample

Model Selection

Distribution Converged cvmobj Selected

logngpd Yes 0.02694 Yes

Burr Yes 0.03325 No

Logn Yes 0.03633 No

Gpd Yes 2.96090 No

All Fit Statistics

Distribution cvmobj
-2 Log

Likelihood AIC AICC BIC KS AD CvM

logngpd 0.02694 * 419.49635 * 429.49635 * 430.13464 * 442.52220 * 0.51332 * 0.21563 * 0.03030 *

Burr 0.03325 436.58823 442.58823 442.83823 450.40374 0.53084 0.82875 0.03807

Logn 0.03633 491.88659 495.88659 496.01030 501.09693 0.52469 2.08312 0.04173

Gpd 2.96090 560.35409 564.35409 564.47780 569.56443 2.99095 15.51378 2.97806

Note: The asterisk (*) marks the best model according to each column's criterion.

Example 22.8: Defining a Finite Mixture Model That Has a Scale Parameter
A finite mixture model is a stochastic model that postulates that the probability distribution of the data
generation process is a mixture of a finite number of probability distributions. For example, when an
insurance company analyzes loss data from multiple policies that are underwritten in different geographic
regions, some regions might behave similarly, but the distribution that governs some regions might be
different from the distribution that governs other regions. Further, it might not be known which regions
behave similarly. Also, the larger amounts of losses might follow a different stochastic process from the
stochastic process that governs the smaller amounts of losses. It helps to model all policies together in order
to pool the data together and exploit any commonalities among the regions, and the use of a finite mixture
model can help capture the differences in distributions across regions and ranges of loss amounts.
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Formally, if fi and Fi denote the PDF and CDF, respectively, of component distribution i and pi represents
the mixing probability that is associated with component i, then the PDF and CDF of the finite mixture of K
distribution components are

f .xI‚; p/ D
KX
iD1

pifi .xI‚i /

F.xI‚; p/ D
KX
iD1

piFi .xI‚i /

where ‚i denotes the parameters of component distribution i and ‚ denotes the parameters of the mixture
distribution, which is a union of all the ‚i parameters. p denotes the set of mixing probabilities. All mixing
probabilities must add up to 1 (

PK
iD1 pi D 1).

You can define the finite mixture of a specific number of components and specific distributions for each of
the components by defining the FCMP functions for the PDF and CDF. However, in general, it is not possible
to fit a scale regression model by using any finite mixture distribution unless you take special care to ensure
that the mixture distribution has a scale parameter. This example provides a formulation of a two-component
finite mixture model that has a scale parameter.

To start with, each component distribution must have either a scale parameter or a log-transformed scale
parameter. Let �1 and �2 denote the scale parameters of the first and second components, respectively. Let
p1 D p be the mixing probability, which makes p2 D 1 � p by using the constraint on p. The PDF of the
mixture of these two distributions can be written as

f .xI �1; �2; ˆ; p/ D
p

�1
f1.

x

�1
Iˆ1/C

1 � p

�2
f2.

x

�2
Iˆ2/

where ˆ1 and ˆ2 denote the sets of nonscale parameters of the first and second components, respectively,
and ˆ denotes a union of ˆ1 and ˆ2. For the mixture to have the scale parameter � , the PDF must be of the
form

f .xI �;ˆ0; p/ D
1

�

�
pf1.

x

�
Iˆ01/C .1 � p/f2.

x

�
Iˆ02/

�
where ˆ0, ˆ01, and ˆ02 denote the modified sets of nonscale parameters. One simple way to achieve this is
to make �1 D �2 D � and ˆ0 D ˆ; that is, you simply equate the scale parameters of both components
and keep the set of nonscale parameters unchanged. However, forcing the scale parameters to be equal in
both components is restrictive, because the mixture cannot model potential differences in the scales of the
two components. A better approach is to tie the scale parameters of the two components by a ratio such
that �1 D � and �2 D �� . If the ratio parameter � is estimated along with the other parameters, then the
mixture distribution becomes flexible enough to model the variations across the scale parameters of individual
components.

To summarize, the PDF and CDF are of the following form for the two-component mixture that has a scale
parameter:

f .xI �; �;ˆ; p/ D
1

�

�
pf1.

x

�
Iˆ1/C .1 � p/f2.

x

�
I �;ˆ2/

�
F.xI �; �;ˆ; p/ D pF1.

x

�
Iˆ1/C .1 � p/F2.

x

�
I �;ˆ2/
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This can be generalized to a mixture of K components by introducing the K � 1 ratio parameters �i that
relate the scale parameters of each of the K components to the scale parameter � of the mixture distribution
as follows:

�1 D �

�i D �i� I i 2 Œ2;K�

In order to illustrate this approach, define a mixture of two lognormal distributions by using the following
PDF function:

f .xI�; �1; p2; �2; �2/ D
.1 � p2/

�1x
p
2�

exp

 
�.log.x/ � �/2

2�21

!
C

p2

�2x
p
2�

exp

 
�.log.x/ � � � log.�2//2

2�22

!
You can verify that � serves as the log of the scale parameter � (� D log.�/).

The following PROC FCMP steps encode this formulation in a distribution named SLOGNMIX2 for use
with PROC HPSEVERITY:

/*- Define Mixture of 2 Lognormal Distributions with a Log-Scale Parameter -*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function slognmix2_description() $128;
return ("Mixture of two lognormals with a log-scale parameter Mu");

endsub;

function slognmix2_scaletransform() $8;
return ("LOG");

endsub;

function slognmix2_pdf(x, Mu, Sigma1, p2, Rho2, Sigma2);
Mu1 = Mu;
Mu2 = Mu + log(Rho2);
pdf1 = logn_pdf(x, Mu1, Sigma1);
pdf2 = logn_pdf(x, Mu2, Sigma2);
return ((1-p2)*pdf1 + p2*pdf2);

endsub;

function slognmix2_cdf(x, Mu, Sigma1, p2, Rho2, Sigma2);
Mu1 = Mu;
Mu2 = Mu + log(Rho2);
cdf1 = logn_cdf(x, Mu1, Sigma1);
cdf2 = logn_cdf(x, Mu2, Sigma2);
return ((1-p2)*cdf1 + p2*cdf2);

endsub;

subroutine slognmix2_parminit(dim, x[*], nx[*], F[*], Ftype,
Mu, Sigma1, p2, Rho2, Sigma2);

outargs Mu, Sigma1, p2, Rho2, Sigma2;
array m[1] / nosymbols;
p2 = 0.5;
Rho2 = 0.5;
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median = svrtutil_percentile(0.5, dim, x, F, Ftype);
Mu = log(2*median/1.5);
call svrtutil_rawmoments(dim, x, nx, 1, m);
lm1 = log(m[1]);

/* Search Rho2 that makes log(sample mean) > Mu */
do while (lm1 <= Mu and Rho2 < 1);

Rho2 = Rho2 + 0.01;
Mu = log(2*median/(1+Rho2));

end;
if (Rho2 >= 1) then

/* If Mu cannot be decreased enough to make it less
than log(sample mean), then revert to Rho2=0.5.
That will set Sigma1 and possibly Sigma2 to missing.
PROC HPSEVERITY replaces missing initial values with 0.001. */

Mu = log(2*median/1.5);

Sigma1 = sqrt(2.0*(log(m[1])-Mu));
Sigma2 = sqrt(2.0*(log(m[1])-Mu-log(Rho2)));

endsub;

subroutine slognmix2_lowerbounds(Mu, Sigma1, p2, Rho2, Sigma2);
outargs Mu, Sigma1, p2, Rho2, Sigma2;
Mu = .; /* Mu has no lower bound */
Sigma1 = 0; /* Sigma1 > 0 */
p2 = 0; /* p2 > 0 */
Rho2 = 0; /* Rho2 > 0 */
Sigma2 = 0; /* Sigma2 > 0 */

endsub;

subroutine slognmix2_upperbounds(Mu, Sigma1, p2, Rho2, Sigma2);
outargs Mu, Sigma1, p2, Rho2, Sigma2;
Mu = .; /* Mu has no upper bound */
Sigma1 = .; /* Sigma1 has no upper bound */
p2 = 1; /* p2 < 1 */
Rho2 = 1; /* Rho2 < 1 */
Sigma2 = .; /* Sigma2 has no upper bound */

endsub;
quit;

As shown in previous examples, an important aspect of defining a distribution for use with PROC HPSEVER-
ITY is the definition of the PARMINIT subroutine that initializes the parameters. For mixture distributions,
in general, the parameter initialization is a nontrivial task. For a two-component mixture, some simplifying
assumptions make the problem easier to handle. For the initialization of SLOGNMIX2, the initial values of
p2 and �2 are fixed at 0.5, and the following two simplifying assumptions are made:

� The median of the mixture is the average of the medians of the two components:

F�1.0:5/ D .exp.�1/C exp.�2//=2 D exp.�/.1C �2/=2

Solution of this equation yields the value of � in terms of �2 and the sample median.

� Each component has the same mean, which implies the following:

exp.�C �21=2/ D exp.�C log.�2/C �22=2/
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If Xi represents the random variable of component distribution i and X represents the random variable
of the mixture distribution, then the following equation holds for the raw moment of any order k:

EŒXk� D

KX
iD1

piEŒX
k
i �

This, in conjunction with the assumption on component means, leads to the equations

log.m1/ D �C
�21
2

log.m1/ D �C log.�2/C
�22
2

where m1 denotes the first raw moment of the sample. Solving these equations leads to the following
values of �1 and �2:

�21 D 2.log.m1/ � �/

�22 D 2.log.m1/ � � � log.�2//

Note that �1 has a valid value only if log.m1/ > �. Among the many possible methods of ensuring
this condition, the SLOGNMIX2_PARMINIT subroutine uses the method of doing a linear search over
�2.

Even when the preceding assumptions are not true for a given problem, they produce reasonable initial values
to help guide the nonlinear optimizer to an acceptable optimum if the mixture of two lognormal distributions
is indeed a good fit for your input data. This is illustrated by the results of the following steps that fit the
SLOGNMIX2 distribution to simulated data, which have different means for the two components (12.18 and
22.76, respectively), and the median of the sample (15.94) is not equal to the average of the medians of the
two components (7.39 and 20.09, respectively):

/*-------- Simulate a lognormal mixture sample ----------*/
data testlognmix(keep=y);

call streaminit(12345);
Mu1 = 2;
Sigma1 = 1;
i = 0;
do j=1 to 2000;

y = exp(Mu1) * rand('LOGNORMAL')**Sigma1;
output;

end;
Mu2 = 3;
Sigma2 = 0.5;
do j=1 to 3000;

y = exp(Mu2) * rand('LOGNORMAL')**Sigma2;
output;

end;
run;

/*-- Fit and compare scale regression models with 2-component --*/
/*-- lognormal mixture and the standard lognormal distribution --*/
options cmplib=(work.sevexmpl);
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proc hpseverity data=testlognmix print=all;
loss y;
dist slognmix2 logn;

run;

The comparison of the fit statistics of SLOGNMIX2 and LOGN, as shown in Output 22.8.1, confirms that
the two-component mixture is certainly a better fit to these data than the single lognormal distribution.

Output 22.8.1 Comparison of Fitting One versus Two Lognormal Components to Mixture Data

The HPSEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

slognmix2 38343 * 38353 * 38353 * 38386 * 0.52221 * 0.19843 * 0.02728 *

Logn 39073 39077 39077 39090 5.86522 66.93414 11.72703

Note: The asterisk (*) marks the best model according to each column's criterion.

The detailed results for the SLOGNMIX2 distribution are shown in Output 22.8.2. According to the “Initial
Parameter Values and Bounds” table, the initial value of �2 is not 0.5, indicating that a linear search was
conducted to ensure log.m1/ > �.

Output 22.8.2 Detailed Estimation Results for the SLOGNMIX2 Distribution

The HPSEVERITY Procedure
slognmix2 Distribution

Distribution Information

Name slognmix2

Description Mixture of two lognormals with a log-scale parameter Mu

Distribution Parameters 5

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 2.92006 -Infty Infty

Sigma1 0.10455 1.05367E-8 Infty

P2 0.50000 1.05367E-8 1.00000

Rho2 0.72000 1.05367E-8 1.00000

Sigma2 0.81728 1.05367E-8 Infty

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 7

Function Calls 18

Log Likelihood -19171.5
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Output 22.8.2 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 3.00922 0.01554 193.68 <.0001

Sigma1 1 0.49516 0.01451 34.13 <.0001

P2 1 0.40619 0.02600 15.62 <.0001

Rho2 1 0.37212 0.02038 18.26 <.0001

Sigma2 1 1.00019 0.02124 47.09 <.0001

By using the relationship that �2 D �C log.�2/, you can see that the final parameter estimates are indeed
close to the true parameter values that were used to simulate the input sample.

Example 22.9: Predicting Mean and Value-at-Risk by Using Scoring Functions
If you work in the risk management department of an insurance company or a bank, then one of your primary
applications of severity loss distribution models is to predict the value-at-risk (VaR) so that there is a very
low probability of experiencing a loss value that is greater than the VaR. The probability level at which VaR
is measured is prescribed by industry regulations such as Basel III and Solvency II. The VaR level is usually
specified in terms of .1 � ˛/, where ˛ 2 .0; 1/ is the probability that a loss value exceeds the VaR. Typical
VaR levels are 0.95, 0.975, and 0.995.

In addition to predicting the VaR, which is regarded as an estimate of the worst-case loss, businesses are
often interested in predicting the average loss by estimating either the mean or median of the distribution.

The estimation of the mean and VaR combined with the scale regression model is very potent tool for
analyzing worst-case and average losses for various scenarios. For example, if the regressors that are used in
a scale regression model represent some key macroeconomic and operational indicators, which are widely
referred to as key risk indicators (KRIs), then you can analyze the VaR and mean loss estimates over various
values for the KRIs to get a more comprehensive picture of the risk profile of your organization across various
market and internal conditions.

This example illustrates the use of scoring functions to simplify the process of predicting the mean and VaR
of scale regression models.

To compute the mean, you need to ensure that the function to compute the mean of a distribution is available
in the function library. If you define and fit your own distribution and you want to compute its mean, then you
need to use the FCMP procedure to define that function and you need to use the CMPLIB= system option to
specify the location of that function. For your convenience, the dist_MEAN function (which computes the
mean of the dist distribution) is already defined in the Sashelp.Svrtdist library for each of the 10 predefined
distributions. The following statements display the definitions of MEAN functions of all distributions. Note
that the MEAN functions for the Burr, Pareto, and generalized Pareto distributions check the existence of the
first moment for specified parameter values.

/*--------- Definitions distribution functions that compute the mean ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.means.scalemod;

function BURR_MEAN(x, Theta, Alpha, Gamma);
if not(Alpha * Gamma > 1) then

return (.); /* first moment does not exist */
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return (Theta*gamma(1 + 1/Gamma)*gamma(Alpha - 1/Gamma)/gamma(Alpha));
endsub;
function EXP_MEAN(x, Theta);

return (Theta);
endsub;
function GAMMA_MEAN(x, Theta, Alpha);

return (Theta*Alpha);
endsub;
function GPD_MEAN(x, Theta, Xi);

if not(Xi < 1) then
return (.); /* first moment does not exist */

return (Theta/(1 - Xi));
endsub;
function IGAUSS_MEAN(x, Theta, Alpha);

return (Theta);
endsub;
function LOGN_MEAN(x, Mu, Sigma);

return (exp(Mu + Sigma*Sigma/2.0));
endsub;

function PARETO_MEAN(x, Theta, Alpha);
if not(Alpha > 1) then

return (.); /* first moment does not exist */
return (Theta/(Alpha - 1));

endsub;
function STWEEDIE_MEAN(x, Theta, Lambda, P);

return (Theta* Lambda * (2 - P) / (P - 1));
endsub;
function TWEEDIE_MEAN(x, P, Mu, Phi);

return (Mu);
endsub;
function WEIBULL_MEAN(x, Theta, Tau);

return (Theta*gamma(1 + 1/Tau));
endsub;

quit;

For your further convenience, the dist_QUANTILE function (which computes the quantile of the dist
distribution) is also defined in the Sashelp.Svrtdist library for each of the 10 predefined distributions.
Because the MEAN and QUANTILE functions satisfy the definition of a distribution function as described
in the section “Formal Description” on page 1245, you can submit the following PROC HPSEVERITY
step to fit all regression-friendly predefined distributions and generate the scoring functions for the MEAN,
QUANTILE, and other distribution functions:

/*----- Fit all distributions and generate scoring functions ------*/
proc hpseverity data=test_sev9 outest=est print=all;

loss y;
scalemodel x1-x5;
dist _predefined_ stweedie;
outscorelib outlib=scorefuncs commonpackage;

run;

The SAS statements that simulate the sample in the Work.Test_sev9 data set are available in the PROC
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HPSEVERITY sample program hsevex09.sas. The OUTLIB= option in the OUTSCORELIB statement
requests that the scoring functions be written to the Work.Scorefuncs library, and the COMMONPACKAGE
option in the OUTSCORELIB statement requests that all the functions be written to the same package. Upon
completion, PROC HPSEVERITY sets the CMPLIB system option to the following value:

(sashelp.svrtdist work.scorefuncs)

The “All Fit Statistics” table in Output 22.9.1 shows that the lognormal distribution’s scale model is the best
and the inverse Gaussian’s scale model is a close second according to the likelihood-based statistics.

You can examine the scoring functions by viewing the Work.Scorefuncs library, which is essentially a
SAS data set. For example, the preceding PROC HPSEVERITY step automatically generates and sub-
mits the following PROC FCMP statements to define the scoring functions SEV_MEAN_LOGN and
SEV_QUANTILE_IGAUSS:

proc fcmp library=(sashelp.svrtdist) outlib=work.scorefuncs.sevfit;
function SEV_MEAN_LOGN(y, x{*});

_logscale_=0;
_logscale_ = _logscale_ + ( 7.64722278930350E-01 * x{1});
_logscale_ = _logscale_ + ( 2.99209540369860E+00 * x{2});
_logscale_ = _logscale_ + (-1.00788916253430E+00 * x{3});
_logscale_ = _logscale_ + ( 2.58883602184890E-01 * x{4});
_logscale_ = _logscale_ + ( 5.00927479793970E+00 * x{5});
_logscale_ = _logscale_ + ( 9.95078833050690E-01);
return (LOGN_MEAN(y, _logscale_, 2.31592981635590E-01));

endsub;

function SEV_QUANTILE_IGAUSS(y, x{*});
_logscale_=0;
_logscale_ = _logscale_ + ( 7.64581738373520E-01 * x{1});
_logscale_ = _logscale_ + ( 2.99159055015310E+00 * x{2});
_logscale_ = _logscale_ + (-1.00793496641510E+00 * x{3});
_logscale_ = _logscale_ + ( 2.58870460543840E-01 * x{4});
_logscale_ = _logscale_ + ( 5.00996884646730E+00 * x{5});
_scale_ = 2.77854870591020E+00 * exp(_logscale_);
return (IGAUSS_QUANTILE(y, _scale_, 1.81511227238720E+01));

endsub;
quit;
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Output 22.9.1 Comparison of Fitted Scale Models for Mean and VaR Illustration

The HPSEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

stweedie 460.65755 476.65755 476.95083 510.37442 10.44549 4765 37.07707

Burr 451.42238 467.42238 467.71565 501.13924 10.32782 4431 37.19808

Exp 1515 1527 1527 1552 8.85827 2062 23.98267

Gamma 448.28222 462.28222 462.50986 491.78448 10.42272 6068 37.19450

Igauss 444.44512 458.44512 458.67276 487.94738 10.33028 6257 37.30880

Logn 444.43670 * 458.43670 * 458.66434 * 487.93895 * 10.37035 6155 37.18553

Pareto 1515 1529 1529 1559 8.85775 * 2061 * 23.98149 *

Gpd 1515 1529 1529 1559 8.85827 2062 23.98267

Weibull 527.28676 541.28676 541.51440 570.78902 10.48084 4947 36.36039

Note: The asterisk (*) marks the best model according to each column's criterion.

PROC HPSEVERITY detects all the distribution functions that are available in the current CMPLIB= search
path (which always includes the Sashelp.Svrtdist library) for the distributions that you specify in the DIST
statement, and it creates the corresponding scoring functions. You can define any distribution function that
has the desired signature to compute an estimate of your choice, include its library in the CMPLIB= system
option, and then specify the OUTSCORELIB statement to generate the corresponding scoring functions.
Specifying the COMMONPACKAGE option in the OUTSCORELIB statement causes the name of the
scoring function to take the form SEV_function-suffix_dist . If you do not specify the COMMONPACKAGE
option, PROC HPSEVERITY creates a scoring function named SEV_function-suffix in a package named dist .
You can invoke functions from a specific package only inside the FCMP procedure. If you want to invoke the
scoring functions from a DATA step, then it is recommended that you specify the COMMONPACKAGE
option when you specify multiple distributions in the DIST statement.

To illustrate the use of scoring functions, let Work.Reginput contain the scoring data, where the values of
regressors in each observation define one scenario. Scoring functions make it very easy to compute the mean
and VaR of each distribution’s scale model for each of the scenarios, as the following steps illustrate for the
lognormal and inverse Gaussian distributions by using a VaR level of 97.5%:

/*--- Set VaR level ---*/
%let varLevel=0.975;

/*--- Compute scores (mean and var) for the ---
--- scoring data by using the scoring functions ---*/

data scores;
array x{*} x1-x5;
set reginput;

igauss_mean = sev_mean_igauss(., x);
igauss_var = sev_quantile_igauss(&varLevel, x);
logn_mean = sev_mean_logn(., x);
logn_var = sev_quantile_logn(&varLevel, x);

run;

The following DATA step accomplishes the same task by reading the parameter estimates that were written
to the Work.Est data set by the previous PROC HPSEVERITY step:
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/*--- Compute scores (mean and var) for the ---
--- scoring data by using the OUTEST= data set ---*/

data scoresWithOutest(keep=x1-x5 igauss_mean igauss_var logn_mean logn_var);
array _x_{*} x1-x5;
array _xparmIgauss_{5} _temporary_;
array _xparmLogn_{5} _temporary_;

retain _Theta0_ Alpha0;
retain _Mu0_ Sigma0;

*--- read parameter estimates for igauss and logn models ---*;
if (_n_ = 1) then do;

set est(where=(upcase(_MODEL_)='IGAUSS' and _TYPE_='EST'));
_Theta0_ = Theta; Alpha0 = Alpha;
do _i_=1 to dim(_x_);

if (_x_(_i_) = .R) then _xparmIgauss_(_i_) = 0;
else _xparmIgauss_(_i_) = _x_(_i_);

end;

set est(where=(upcase(_MODEL_)='LOGN' and _TYPE_='EST'));
_Mu0_ = Mu; Sigma0 = Sigma;
do _i_=1 to dim(_x_);

if (_x_(_i_) = .R) then _xparmLogn_(_i_) = 0;
else _xparmLogn_(_i_) = _x_(_i_);

end;
end;

set reginput;

*--- predict mean and VaR for inverse Gaussian ---*;

* first compute X'*beta for inverse Gaussian *;
_xbeta_ = 0.0;
do _i_ = 1 to dim(_x_);

_xbeta_ = _xbeta_ + _xparmIgauss_(_i_) * _x_(_i_);
end;

* now compute scale for inverse Gaussian *;
_SCALE_ = _Theta0_ * exp(_xbeta_);
igauss_mean = igauss_mean(., _SCALE_, Alpha0);
igauss_var = igauss_quantile(&varLevel, _SCALE_, Alpha0);

*--- predict mean and VaR for lognormal ---*;

* first compute X'*beta for lognormal*;
_xbeta_ = 0.0;
do _i_ = 1 to dim(_x_);

_xbeta_ = _xbeta_ + _xparmLogn_(_i_) * _x_(_i_);
end;

* now compute Mu=log(scale) for lognormal *;
_MU_ = _Mu0_ + _xbeta_;
logn_mean = logn_mean(., _MU_, Sigma0);
logn_var = logn_quantile(&varLevel, _MU_, Sigma0);

run;

The “Values Comparison Summary” table in Output 22.9.2 shows that the difference between the estimates
that are produced by both methods is within the acceptable machine precision. However, the comparison
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of the DATA step complexity of each method clearly shows that the method that uses the scoring functions
is much easier because it saves a lot of programming effort. Further, new distribution functions, such as
the dist_MEAN functions that are illustrated here, are automatically discovered and converted to scoring
functions by PROC HPSEVERITY. That enables you to focus your efforts on writing the distribution function
that computes your desired score, which needs to be done only once. Then, you can create and use the
corresponding scoring functions multiple times with much less effort.

Output 22.9.2 Comparison of Mean and VaR Estimates of Two Scoring Methods

                             The COMPARE Procedure                              
              Comparison of WORK.SCORESWITHOUTEST with WORK.SCORES              
                  (Method=RELATIVE(0.0222), Criterion=1.0E-12)                  
                                                                                
NOTE: All values compared are within the equality criterion used. However, 40   
      of the values compared are not exactly equal.                             

Example 22.10: Scale Regression with Rich Regression Effects
This example illustrates the use of regression effects that include CLASS variables and interaction effects.

Consider that you, as an actuary at an automobile insurance company, want to evaluate the effect of certain
external factors on the distribution of the severity of the losses that your policyholders incur. Such analysis
can help you determine the relative differences in premiums that you should charge to policyholders who
have different characteristics. Assume that when you collect and record the information about each claim,
you also collect and record some key characteristics of the policyholder and the vehicle that is involved in
the claim. This example focuses on the following five factors: type of car, safety rating of the car, gender
of the policyholder, education level of the policyholder, and annual household income of the policyholder
(which can be thought of as a proxy for the luxury level of the car). Let these regressors be recorded in the
variables CarType (1: sedan, 2: sport utility vehicle), CarSafety (scaled to be between 0 and 1, the safest
being 1), Gender (1: female, 2: male), Education (1: high school graduate, 2: college graduate, 3: advanced
degree holder), and Income (scaled by a factor of 1/100,000), respectively. Let the historical data about the
severity of each loss be recorded in the LossAmount variable of the Work.Losses data set. Let the data set
also contain two additional variables, Deductible and Limit, that record the deductible and ground-up loss
limit provisions, respectively, of the insurance policy that the policyholder has. The limit on ground-up loss
is usually derived from the payment limit that a typical insurance policy states. Deductible serves as the
left-truncation variable, and Limit serves as the right-censoring variable. The SAS statements that simulate an
example of the Work.Losses data set are available in the PROC HPSEVERITY sample program hsevex10.sas.

The variables CarType, Education, and Gender each contain a known, finite set of discrete values. By
specifying such variables as classification variables, you can separately identify the effect of each level of the
variable on the severity distribution. For example, you might be interested in finding out how the magnitude
of loss for a sport utility vehicle (SUV) differs from that for a sedan. This is an example of a main effect.
You might also want to evaluate how the distribution of losses that are incurred by a policyholder with a
college degree who drives a SUV differs from that of a policyholder with an advanced degree who drives
a sedan. This is an example of an interaction effect. You can include various such types of effects in the
scale regression model. For more information about the effect types, see the section “Specification and
Parameterization of Model Effects” on page 1208. Analyzing such a rich set of regression effects can help
you make more accurate predictions about the losses that a new applicant with certain characteristics might
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incur when he or she requests insurance for a specific vehicle, which can further help you with ratemaking
decisions.

The following PROC HPSEVERITY step fits the scale regression model with a lognormal distribution to data
in the Work.Losses data set, and stores the model and parameter estimate information in the Work.EstStore
item store:

/* Fit scale regression model with different types of regression effects */
proc hpseverity data=losses outstore=eststore

print=all plots=none;
loss lossAmount / lt=deductible rc=limit;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn;

run;

The SCALEMODEL statement in the preceding PROC HPSEVERITY step includes two main effects
(carType and gender), two singleton continuous effects (carSafety and income), one interaction effect
(education*carType), one continuous-by-class effect (income*gender), and one polynomial continuous effect
(carSafety*income). For more information about effect types, see Table 22.10, “GLM Parameterization of
Classification Variables and Effects,” on page 1210.

When you specify a CLASS statement, it is recommended that you observe the “Class Level Information”
table. For this example, the table is shown in Output 22.10.1. Note that if you specify BY-group processing,
then the class level information might change from one BY group to the next, potentially resulting in a
different parameterization for each BY group.

Output 22.10.1 Class Level Information Table

The HPSEVERITY Procedure

Class Level Information

Class Levels Values

carType 2 SUV Sedan

gender 2 Female Male

education 3 AdvancedDegree College High School

The regression modeling results for the lognormal distribution are shown in Output 22.10.2. The “Initial
Parameter Values and Bounds” table is important especially because the preceding PROC HPSEVERITY
step uses the default GLM parameterization, which is a singular parameterization—that is, it results in some
redundant parameters. As shown in the table, the redundant parameters correspond to the last level of each
classification variable; this correspondence is a defining characteristic of a GLM parameterization. An
alternative would be to use the reference parameterization by specifying the PARAM=REFERENCE option
in the CLASS statement, which does not generate redundant parameters for effects that contain CLASS
variables and enables you to specify a reference level for each CLASS variable.



Example 22.10: Scale Regression with Rich Regression Effects F 1303

Output 22.10.2 Initial Values for the Scale Regression Model with Class and Interaction Effects

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 4.88526 -709.78271 709.78271

Sigma 0.51283 1.05367E-8 Infty

carType SUV 0.56953 -709.78271 709.78271

carType Sedan Redundant

gender Female 0.41154 -709.78271 709.78271

gender Male Redundant

carSafety -0.72742 -709.78271 709.78271

income -0.33216 -709.78271 709.78271

carType*education SUV AdvancedDegree 0.31686 -709.78271 709.78271

carType*education SUV College 0.66361 -709.78271 709.78271

carType*education SUV High School Redundant

carType*education Sedan AdvancedDegree -0.47841 -709.78271 709.78271

carType*education Sedan College -0.25968 -709.78271 709.78271

carType*education Sedan High School Redundant

income*gender Female -0.02112 -709.78271 709.78271

income*gender Male Redundant

carSafety*income 0.13084 -709.78271 709.78271

The convergence and optimization summary information in Output 22.10.3 indicates that the scale regression
model for the lognormal distribution has converged with the default optimization technique in five iterations.

Output 22.10.3 Optimization Summary for the Scale Regression Model with Class and Interaction Effects

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 5

Function Calls 14

Log Likelihood -8286.8

The “Parameter Estimates” table in Output 22.10.4 shows the distribution parameter estimates and estimates
for various regression effects. You can use the estimates for effects that contain CLASS variables to infer the
relative influence of various CLASS variable levels. For example, on average, the magnitude of losses that
are incurred by the female drivers is exp.0:44145/ � 1:56 times greater than that of male drivers, and an
SUV driver with an advanced degree incurs a loss that is on average exp.0:39393/= exp.�0:35210/ � 2:11
times greater than the loss that a college-educated sedan driver incurs. Neither the continuous-by-class effect
income*gender nor the polynomial continuous effect carSafety*income is significant in this example.
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Output 22.10.4 Parameter Estimates for the Scale Regression with Class and Interaction Effects

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 5.08874 0.05768 88.23 <.0001

Sigma 1 0.55774 0.01119 49.86 <.0001

carType SUV 1 0.62459 0.04452 14.03 <.0001

carType Sedan 0 0 . . .

gender Female 1 0.44145 0.04885 9.04 <.0001

gender Male 0 0 . . .

carSafety 1 -0.82942 0.08371 -9.91 <.0001

income 1 -0.35212 0.07657 -4.60 <.0001

carType*education SUV AdvancedDegree 1 0.39393 0.07351 5.36 <.0001

carType*education SUV College 1 0.76532 0.05723 13.37 <.0001

carType*education SUV High School 0 0 . . .

carType*education Sedan AdvancedDegree 1 -0.61064 0.05387 -11.34 <.0001

carType*education Sedan College 1 -0.35210 0.03942 -8.93 <.0001

carType*education Sedan High School 0 0 . . .

income*gender Female 1 -0.01486 0.06629 -0.22 0.8226

income*gender Male 0 0 . . .

carSafety*income 1 0.07045 0.11447 0.62 0.5383

If you want to update the model when new claims data arrive, then you can potentially speed up the estimation
process by specifying the OUTSTORE= item store that is created by the preceding PROC HPSEVERITY
step as an INSTORE= item store in a new PROC HPSEVERITY step as follows:

/* Refit scale regression model on new data different types of regression effects */
proc hpseverity data=withNewLosses instore=eststore print=all plots=all;

loss lossAmount / lt=deductible rc=limit;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn;

run;

PROC HPSEVERITY uses the parameter estimates in the INSTORE= item store to initialize the distribution
and regression parameters.

References

Burr, I. W. (1942). “Cumulative Frequency Functions.” Annals of Mathematical Statistics 13:215–232.

D’Agostino, R. B., and Stephens, M., eds. (1986). Goodness-of-Fit Techniques. New York: Marcel Dekker.

Danielsson, J., de Haan, L., Peng, L., and de Vries, C. G. (2001). “Using a Bootstrap Method to Choose the
Sample Fraction in Tail Index Estimation.” Journal of Multivariate Analysis 76:226–248.



References F 1305

Dunn, P. K., and Smyth, G. K. (2005). “Series Evaluation of Tweedie Exponential Dispersion Model
Densities.” Statistics and Computing 15:267–280.

Frydman, H. (1994). “A Note on Nonparametric Estimation of the Distribution Function from Interval-
Censored and Truncated Observations.” Journal of the Royal Statistical Society, Series B 56:71–74.

Gentleman, R., and Geyer, C. J. (1994). “Maximum Likelihood for Interval Censored Data: Consistency and
Computation.” Biometrika 81:618–623.

Greenwood, M. (1926). “The Natural Duration of Cancer.” In Reports of Public Health and Related Subjects,
vol. 33, 1–26. London: Her Majesty’s Stationery Office.

Hill, B. M. (1975). “A Simple General Approach to Inference about the Tail of a Distribution.” Annals of
Statistics 3:1163–1173.

Jørgensen, B. (1987). “Exponential Dispersion Models.” Journal of the Royal Statistical Society, Series B
49:127–162. With discussion.

Kaplan, E. L., and Meier, P. (1958). “Nonparametric Estimation from Incomplete Observations.” Journal of
the American Statistical Association 53:457–481.

Klein, J. P., and Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated
Data. New York: Springer-Verlag.

Klugman, S. A., Panjer, H. H., and Willmot, G. E. (1998). Loss Models: From Data to Decisions. New York:
John Wiley & Sons.

Koziol, J. A., and Green, S. B. (1976). “A Cramér–von Mises Statistic for Randomly Censored Data.”
Biometrika 63:466–474.

Lai, T. L., and Ying, Z. (1991). “Estimating a Distribution Function with Truncated and Censored Data.”
Annals of Statistics 19:417–442.

Lynden-Bell, D. (1971). “A Method of Allowing for Known Observational Selection in Small Samples
Applied to 3CR Quasars.” Monthly Notices of the Royal Astronomical Society 155:95–118.

Rodriguez, R. N. (2006). “Burr Distributions.” In Encyclopedia of Statistical Sciences, 2nd ed., vol. 1, edited
by S. Kotz, N. Balakrishnan, C. B. Read, B. Vidakovic, and N. L. Johnson. New York: John Wiley & Sons.

Searle, S. R. (1971). Linear Models. New York: John Wiley & Sons.

Turnbull, B. W. (1976). “The Empirical Distribution Function with Arbitrarily Grouped, Censored, and
Truncated Data.” Journal of the Royal Statistical Society, Series B 38:290–295.

Tweedie, M. C. K. (1984). “An Index Which Distinguishes between Some Important Exponential Families.”
In Statistics: Applications and New Directions—Proceedings of the Indian Statistical Institute Golden
Jubilee International Conference, edited by J. K. Ghosh and J. Roy, 579–604. Calcutta: Indian Statistical
Institute.



1306



Chapter 23

The LOAN Procedure

Contents
Overview: LOAN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308
Getting Started: LOAN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308

Analyzing Fixed Rate Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
Analyzing Balloon Payment Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310
Analyzing Adjustable Rate Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311
Analyzing Buydown Rate Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312
Loan Repayment Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313
Loan Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314

Syntax: LOAN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317
PROC LOAN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
ARM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
BALLOON Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
BUYDOWN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
COMPARE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323
FIXED Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1324

Details: LOAN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328
Loan Comparison Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330
OUT= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
OUTCOMP= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332
OUTSUM= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332
Printed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1334

Examples: LOAN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
Example 23.1: Discount Points for Lower Interest Rates . . . . . . . . . . . . . . . . 1335
Example 23.2: Refinancing a Loan . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336
Example 23.3: Prepayments on a Loan . . . . . . . . . . . . . . . . . . . . . . . . . 1337
Example 23.4: Output Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
Example 23.5: Piggyback Loans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1340

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342



1308 F Chapter 23: The LOAN Procedure

Overview: LOAN Procedure
The LOAN procedure analyzes and compares fixed rate, adjustable rate, buydown, and balloon payment
loans. The LOAN procedure computes the loan parameters and outputs the loan summary information for
each loan.

Multiple loan specifications can be processed and compared in terms of economic criteria such as after-tax or
before-tax present worth of cost and true interest rate, breakeven of periodic payment and of interest paid,
and outstanding balance at different periods in time. PROC LOAN selects the best alternative in terms of the
specified economic criterion for each loan comparison period.

The LOAN procedure allows various payment and compounding intervals (including continuous com-
pounding) and uniform or lump sum prepayments for a loan. Down payments, discount points, and other
initialization costs can be included in the loan analysis and comparison.

The LOAN procedure does not support an input data set. All loans analyzed are specified with statements in
the PROC LOAN step. The SAS DATA step provides a function MORT that can be used for data-driven
analysis of many fixed-rate mortgage or installment loans. However, the MORT function supports only
simple fixed rate loans.

Getting Started: LOAN Procedure
PROC LOAN supports four types of loans. You specify each type of loan with the corresponding statement:
FIXED, BALLOON, ARM, and BUYDOWN.

� FIXED—Fixed rate loans have a constant interest rate and periodic payment throughout the life of the
loan.

� BALLOON—Balloon payment loans are fixed rate loans with lump sum payments in certain payment
periods in addition to the constant periodic payment.

� ARM—Adjustable rate loans are those in which the interest rate and periodic payment vary over the
life of the loan. The future interest rates of an adjustable rate loan are not known with certainty, but
they will vary within specified limits according to terms stated in the loan agreement. In practice, the
rate adjustment terms vary. PROC LOAN offers a flexible set of options to capture a wide variety of
rate adjustment terms.

� BUYDOWN—Buydown rate loans are similar to adjustable rate loans, but the interest rate adjustments
are predetermined at the initialization of the loan, usually by paying interest points at the time of loan
initialization.
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Analyzing Fixed Rate Loans
The most common loan analysis is the calculation of the periodic payment when the loan amount, life, and
interest rate are known. The following PROC LOAN statements analyze a 15-year (180 monthly payments)
fixed rate loan for $100,000 with an annual nominal interest rate of 7.5%:

proc loan;
fixed amount=100000 rate=7.5 life=180;

run;

Another parameter the PROC LOAN statement can compute is the maximum amount you can borrow given
the periodic payment you can afford and the rates available in the market. The following SAS statements
analyze a loan for 180 monthly payments of $900, with a nominal annual rate of 7.5%, and compute the
maximum amount that can be borrowed:

proc loan;
fixed payment=900 rate=7.5 life=180;

run;

Assume that you want to borrow $100,000 and can pay $900 a month. You know that the lender charges a
7.5% nominal interest rate compounded monthly. To determine how long it will take you to pay off your
debt, use the following statements:

proc loan;
fixed amount=100000 payment=900 rate=7.5;

run;

Sometimes, a loan is expressed in terms of the amount borrowed and the amount and number of periodic
payments. In this case, you want to calculate the annual nominal rate charged on the loan to compare it to
other alternatives. The following statements analyze a loan of $100,000 paid in 180 monthly payments of
$800:

proc loan;
fixed amount=100000 payment=800 life=180;

run;

There are four basic parameters that define a loan: life (number of periodic payments), principal amount,
interest rate, and the periodic payment amount. PROC LOAN calculates the missing parameter among these
four. Loan analysis output includes a loan summary table and an amortization schedule.

You can use the START= and LABEL= options to enhance your output. The START= option specifies the
date of loan initialization and dates all the output accordingly. The LABEL= specification is used to label
all output that corresponds to a particular loan; it is especially useful when multiple loans are analyzed.
For example, the preceding statements for the first fixed rate loan are revised to include the START= and
LABEL= options as follows:

proc loan start=1998:12;
fixed amount=100000 rate=7.5 life=180

label='BANK1, Fixed Rate';
run;
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Loan Summary Table

The loan summary table is produced by default and contains loan analysis information. It shows the
principal amount, the costs at the time of loan initialization (down payment, discount points, and other loan
initialization costs), the total payment and interest, the initial nominal and effective interest rates, payment
and compounding intervals, the length of the loan in the time units specified, the start and end dates (if
specified), a list of nominal and effective interest rates, and periodic payments throughout the life of the loan.

Figure 23.1 shows the loan summary table for the fixed rate loan labeled “BANK1, Fixed Rate.”

Figure 23.1 Fixed Rate Loan Summary

The LOAN Procedure

Fixed Rate Loan Summary

BANK1, Fixed Rate

Downpayment 0.00 Principal Amount 100000.00

Initialization 0.00 Points 0.00

Total Interest 66862.61 Nominal Rate 7.5000%

Total Payment 166862.61 Effective Rate 7.7633%

Pay Interval MONTHLY Compounding MONTHLY

No. of Payments 180 No. of Compoundings 180

Start Date DEC1998 End Date DEC2013

Rates and Payments for BANK1, Fixed Rate

Date Nominal Rate Effective Rate Payment

DEC1998 7.5000% 7.7633% 927.01

The loan is initialized in December 1998 and paid off in December 2013. The monthly payment is calculated
to be $927.01, and the effective interest rate is 7.7633%. Over the 15 years, $66,862.61 is paid for interest
charges on the loan.

Analyzing Balloon Payment Loans
You specify balloon payment loans like fixed rate loans, with the additional specification of the balloon
payments. Assume you have an alternative to finance the $100,000 investment with a 15-year balloon
payment loan. The annual nominal rate is 7.5%, as in the fixed rate loan. The terms of the loan require two
balloon payments of $2000 and $1000 at the 15th and 48th payment periods, respectively. These balloon
payments keep the periodic payment lower than that of the fixed rate loan. The balloon payment loan is
defined by the following BALLOON statement:

proc loan start=1998:12;
balloon amount=100000 rate=7.5 life=180

balloonpayment=(15=2000 48=1000)
label = 'BANK2, with Balloon Payment';

run;
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List of Balloon Payments

In addition to the information for the fixed rate loan, the “Loan Summary Table” for the balloon payment
loan includes a list of balloon payments in the list of rates and payments. For example, the balloon payment
loan described previously includes two balloon payments, as shown in Figure 23.2.

Figure 23.2 List of Rates and Payments for a Balloon Payment Loan

The LOAN Procedure

Rates and Payments for BANK2, with Balloon Payment

Date Nominal Rate Effective Rate Payment

DEC1998 7.5000% 7.7633% 903.25

Balloon Period Payment

MAR2000 2000.00

DEC2002 1000.00

The periodic payment for the balloon payment loan is $23.76 less than that of the fixed rate loan.

Analyzing Adjustable Rate Loans
In addition to specifying the basic loan parameters, you need to specify the terms of the rate adjustments
for an adjustable rate loan. There are many ways of stating the rate adjustment terms, and PROC LOAN
facilitates all of them. For more information, see the section “Rate Adjustment Terms Options” on page 1320.

Assume that you have an alternative to finance the $100,000 investment with a 15-year adjustable rate loan
with an initial annual nominal interest rate of 5.5%. The rate adjustment terms specify a 0.5% annual cap,
a 2.5% life cap, and a rate adjustment every 12 months. Annual cap refers to the maximum increase in
interest rate per adjustment period, and life cap refers to the maximum increase over the life of the loan. The
following ARM statement specifies this adjustable rate loan by assuming the interest rate adjustments will
always increase by the maximum allowed by the terms of the loan. These assumptions are specified by the
WORSTCASE and CAPS= options, as shown in the following statements:

proc loan start=1998:12;
arm amount=100000 rate=5.5 life=180 worstcase

caps=(0.5, 2.5)
label='BANK3, Adjustable Rate';

run;

List of Rates and Payments for Adjustable Rate Loans

The list of rates and payments in the loan summary table for the adjustable rate loans reflects the changes
in the interest rates and payments and the dates these changes become effective. For the adjustable rate
loan described previously, Figure 23.3 shows the list of rates and payments that indicate five annual rate
adjustments in addition to the initial rate and payment.
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Figure 23.3 List of Rates and Payments for an Adjustable Rate Loan

The LOAN Procedure

Rates and Payments for BANK3, Adjustable Rate

Date Nominal Rate Effective Rate Payment

DEC1998 5.5000% 5.6408% 817.08

JAN2000 6.0000% 6.1678% 842.33

JAN2001 6.5000% 6.6972% 866.44

JAN2002 7.0000% 7.2290% 889.32

JAN2003 7.5000% 7.7633% 910.88

JAN2004 8.0000% 8.3000% 931.03

Notice that the periodic payment of the adjustable rate loan as of January 2004 ($931.03) exceeds that of the
fixed rate loan ($927.01).

Analyzing Buydown Rate Loans
A 15-year buydown rate loan is another alternative to finance the $100,000 investment. The nominal annual
interest rate is 6.5% initially and will increase to 8% and 9% as of the 24th and 48th payment periods,
respectively. The nominal annual interest rate is lower than that of the fixed rate alternative, at the cost of
a 1% discount point ($1000) paid at the initialization of the loan. The following BUYDOWN statement
represents this loan alternative:

proc loan start=1998:12;
buydown amount=100000 rate=6.5 life=180

buydownrates=(24=8 48=9) pointpct=1
label='BANK4, Buydown';

run;

List of Rates and Payments for Buydown Rate Loans

Figure 23.4 shows the list of rates and payments in the loan summary table. It reflects the two rate adjustments
and the corresponding monthly payments as well as the initial values for these parameters. As of December
2000, the periodic payment of the buydown loan exceeds the periodic payment for any of the other alternatives.

Figure 23.4 List of Rates and Payments for a Buydown Rate Loan

The LOAN Procedure

Rates and Payments for BANK4, Buydown

Date Nominal Rate Effective Rate Payment

DEC1998 6.5000% 6.6972% 871.11

DEC2000 8.0000% 8.3000% 946.50

DEC2002 9.0000% 9.3807% 992.01
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Loan Repayment Schedule
In addition to the loan summary, you can print a loan repayment (amortization) schedule for each loan. For
each payment period, this schedule contains the year and period within the year (or date, if the START=
option is specified), the principal balance at the beginning of the period, the total payment, interest payment,
principal repayment for the period, and the principal balance at the end of the period.

To print the first year of the amortization schedule for the fixed rate loan shown in Figure 23.5, use the
following statements:

proc loan start=1998:12;
fixed amount=100000 rate=7.5 life=180

schedule=1
label='BANK1, Fixed Rate';

run;

Figure 23.5 Loan Repayment Schedule for the First Year

The LOAN Procedure

Loan Repayment Schedule

BANK1, Fixed Rate

Date
Beginning

Outstanding Payment
Interest
Payment

Principal
Repayment

Ending
Outstanding

DEC1998 100000.00 0.00 0.00 0.00 100000.00

DEC1998 100000.00 0.00 0.00 0.00 100000.00

JAN1999 100000.00 927.01 625.00 302.01 99697.99

FEB1999 99697.99 927.01 623.11 303.90 99394.09

MAR1999 99394.09 927.01 621.21 305.80 99088.29

APR1999 99088.29 927.01 619.30 307.71 98780.58

MAY1999 98780.58 927.01 617.38 309.63 98470.95

JUN1999 98470.95 927.01 615.44 311.57 98159.38

JUL1999 98159.38 927.01 613.50 313.51 97845.87

AUG1999 97845.87 927.01 611.54 315.47 97530.40

SEP1999 97530.40 927.01 609.57 317.44 97212.96

OCT1999 97212.96 927.01 607.58 319.43 96893.53

NOV1999 96893.53 927.01 605.58 321.43 96572.10

DEC1999 96572.10 927.01 603.58 323.43 96248.67

DEC1999 100000.00 11124.12 7372.79 3751.33 96248.67

The principal balance at the end of one year is $96,248.67. The total payment for the year is $11,124.12, of
which $3,751.33 went toward principal repayment.

You can also print the amortization schedule with annual summary information or for a specified number of
years. The SCHEDULE=YEARLY option produces an annual summary loan amortization schedule, which
is useful for loans with a long life. For example, to print the annual summary loan repayment schedule for
the buydown loan shown in Figure 23.6, use the following statements:
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proc loan start=1998:12;
buydown amount=100000 rate=6.5 life=180

buydownrates=(24=8 48=9) pointpct=1
schedule=yearly
label='BANK4, Buydown';

run;

Figure 23.6 Annual Summary Loan Repayment Schedule

The LOAN Procedure

Loan Repayment Schedule

BANK4, Buydown

Year
Beginning

Outstanding Payment
Interest
Payment

Principal
Repayment

Ending
Outstanding

1998 100000.00 1000.00 0.00 0.00 100000.00

1999 100000.00 10453.32 6380.07 4073.25 95926.75

2000 95926.75 10528.71 6222.21 4306.50 91620.25

2001 91620.25 11358.00 7178.57 4179.43 87440.82

2002 87440.82 11403.51 6901.12 4502.39 82938.43

2003 82938.43 11904.12 7276.64 4627.48 78310.95

2004 78310.95 11904.12 6842.58 5061.54 73249.41

2005 73249.41 11904.12 6367.76 5536.36 67713.05

2006 67713.05 11904.12 5848.43 6055.69 61657.36

2007 61657.36 11904.12 5280.35 6623.77 55033.59

2008 55033.59 11904.12 4659.00 7245.12 47788.47

2009 47788.47 11904.12 3979.34 7924.78 39863.69

2010 39863.69 11904.12 3235.96 8668.16 31195.53

2011 31195.53 11904.12 2422.83 9481.29 21714.24

2012 21714.24 11904.12 1533.41 10370.71 11343.53

2013 11343.53 11904.09 560.56 11343.53 0.00

Loan Comparison
The LOAN procedure can compare alternative loans on the basis of different economic criteria and help select
the most desirable loan. You can compare alternative loans through different points in time. The economic
criteria offered by PROC LOAN are as follows:

� outstanding principal balance—that is, the unpaid balance of the loan

� present worth of cost—that is, before-tax or after-tax net value of the loan cash flow through the
comparison period. The cash flow includes all payments, discount points, initialization costs, down
payment, and the outstanding principal balance at the comparison period.

� true interest rate—that is, before-tax or after-tax effective annual interest rate charged on the loan. The
cash flow includes all payments, discount points, initialization costs, and the outstanding principal
balance at the specified comparison period.

� periodic payment
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� the total interest paid on the loan

The figures for present worth of cost, true interest rate, and interest paid are reported on the cash flow through
the comparison period. The reported outstanding principal balance and the periodic payment are the values
as of the comparison period.

The COMPARE statement specifies the type of comparison and the periods of comparison. For each period
specified in the COMPARE statement, a loan comparison report is printed that also indicates the best
alternative. Different criteria can lead to selection of different alternatives. Also, the period of comparison
might change the desirable alternative. For more information, see the section “Loan Comparison Details” on
page 1330.

Comparison of 15-Year versus 30-Year Loan Alternatives

An issue that arises in the purchase of a house is the length of the loan life. Residential home loans are often
for 15 or 30 years. Ordinarily, 15-year loans have a lower interest rate but higher periodic payments than
30-year loans. A comparison of both loans might identify the better loan for your means and needs. The
following SAS statements compare two such loans:

proc loan start=1998:12 amount=120000;
fixed rate=7.5 life=360 label='30 year loan';
fixed rate=6.5 life=180 label='15 year loan';
compare;

run;

Default Loan Comparison Report
The default loan comparison report in Figure 23.7 shows the ending outstanding balance, periodic payment,
interest paid, and before-tax true rate at the end of 30 years. In the case of the default loan comparison, the
selection of the best alternative is based on minimization of the true rate.

Figure 23.7 Default Loan Comparison Report

The LOAN Procedure

Loan Comparison Report

Analysis through DEC2028

Loan Label
Ending

Outstanding Payment
Interest

Paid
True
Rate

30 year loan 0.00 835.48 182058.02 7.76

15 year loan 0.00 1044.95 68159.02 6.70

Note: "15 year loan" is the best alternative based on true rate analysis through DEC2028.

Based on true rate, the best alternative is the 15-year loan. However, if the objective were to minimize the
periodic payment, the 30-year loan would be the more desirable.
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Comparison of Fixed Rate and Adjustable Rate Loans

Suppose you want to compare a fixed rate loan to an adjustable rate alternative. The nominal interest rate on
the adjustable rate loan is initially 1.5% lower than the fixed rate loan. The future rates of the adjustable rate
loan are calculated using the worst-case scenario.

The interest paid on a loan might be deductible for tax purposes, depending on the purpose of the loan and
applicable laws. In the following example, the TAXRATE=28 (income tax rate) option in the COMPARE
statement bases the calculations of true interest rate on the after-tax cash flow. Assume, also, that you are
uncertain as to how long you will keep this property. The AT=(60 120) option, as shown in the following
example, produces two loan comparison reports through the end of the 5th and the 10th years, respectively:

proc loan start=1998:12 amount=120000 life=360;
fixed rate=7.5 label='BANK1, Fixed Rate';
arm rate=6.0 worstcase caps=(0.5 2.5)

label='BANK3, Adjustable Rate';
compare taxrate=28 at=(60 120);

run;

After-Tax Loan Comparison Reports
The two loan comparison reports in Figure 23.8 and Figure 23.9 show the ending outstanding balance,
periodic payment, interest paid, and after-tax true rate at the end of five years and ten years, respectively.

Figure 23.8 Loan Comparison Report as of December 2003

The LOAN Procedure

Loan Comparison Report

Analysis through DEC2003

Loan Label
Ending

Outstanding Payment
Interest

Paid
True
Rate

BANK1, Fixed Rate 113540.74 839.06 43884.34 5.54

BANK3, Adjustable Rate 112958.49 871.83 40701.93 5.11

Note: "BANK3, Adjustable Rate" is the best alternative based on true rate analysis through DEC2003.

Figure 23.9 Loan Comparison Report as of December 2008

Loan Comparison Report

Analysis through DEC2008

Loan Label
Ending

Outstanding Payment
Interest

Paid
True
Rate

BANK1, Fixed Rate 104153.49 839.06 84840.69 5.54

BANK3, Adjustable Rate 104810.98 909.57 87128.62 5.60

Note: "BANK1, Fixed Rate" is the best alternative based on true rate analysis through DEC2008.

The loan comparison report through December 2003 picks the adjustable rate loan as the best alternative,
whereas the report through December 2008 shows the fixed rate loan as the better alternative. This implies
that if you intend to keep the loan for 10 years or longer, the best alternative is the fixed rate alternative.
Otherwise, the adjustable rate loan is the better alternative in spite of the worst-case scenario. Further analysis
shows that the actual breakeven of true interest rate occurs at August 2008. That is, the desirable alternative
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switches from the adjustable rate loan to the fixed rate loan in August 2008.

Note that, under the assumption of worst-case scenario for the rate adjustments, the periodic payment for the
adjustable rate loan already exceeds that of the fixed rate loan on December 2003 (as of the rate adjustment
on January 2003 to be exact). If the objective were to minimize the periodic payment, the fixed rate loan
would have been more desirable as of December 2003. However, all of the other criteria at that point still
favor the adjustable rate loan.

Syntax: LOAN Procedure
The following statements are used with PROC LOAN:

PROC LOAN options ;
FIXED options ;
BALLOON options ;
ARM options ;
BUYDOWN options ;
COMPARE options ;

Functional Summary
Table 23.1 summarizes the statements and options that control the LOAN procedure. Many of the loan
specification options can be used on all of the statements except the COMPARE statement. For these options,
the statement column is left blank. Options specific to a type of loan indicate the statement name.

Table 23.1 Functional Summary

Description Statement Option

Statements
Specify an adjustable rate loan ARM
Specify a balloon payment loan BALLOON
Specify a buydown rate loan BUYDOWN
Specify loan comparisons COMPARE
Specify a fixed rate loan FIXED

Data Set Options
Specify output data set for loan summary PROC LOAN OUTSUM=
Specify output data set for repayment schedule OUT=
Specify output data set for loan comparison COMPARE OUTCOMP=

Printing Control Options
Suppress printing of loan summary report NOSUMMARYPRINT
Suppress all printed output NOPRINT
Print amortization schedule SCHEDULE=
Suppress printing of loan comparison report COMPARE NOCOMPRINT
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Table 23.1 continued

Description Statement Option

Required Specifications
Specify the loan amount AMOUNT=
Specify life of loan as number of payments LIFE=
Specify the periodic payment PAYMENT=
Specify the initial annual nominal interest rate RATE=

Loan Specifications Options
Specify loan amount as percentage of price AMOUNTPCT=
Specify time interval between compoundings COMPOUND=
Specify down payment at loan initialization DOWNPAYMENT=
Specify down payment as percentage of price DOWNPAYPCT=
Specify amount paid for loan initialization INITIAL=
Specify initialization costs as a percent INITIALPCT=
Specify time interval between payments INTERVAL=
Specify label for the loan LABEL=
Specify amount paid for discount points POINTS=
Specify discount points as a percent POINTPCT=
Specify uniform or lump sum prepayments PREPAYMENTS=
Specify the purchase price PRICE=
Specify number of decimal places for rounding ROUND=
Specify the date of loan initialization START=

Balloon Payment Loan Specification Option
Specify the list of balloon payments BALLOON BALLOONPAYMENT=

Rate Adjustment Terms Options
Specify frequency of rate adjustments ARM ADJUSTFREQ=
Specify periodic and life cap on rate
adjustment

ARM CAPS=

Specify maximum rate adjustment ARM MAXADJUST=
Specify maximum annual nominal interest rate ARM MAXRATE=
Specify minimum annual nominal interest rate ARM MINRATE=

Rate Adjustment Case Options
Specify best-case (optimistic) scenario ARM BESTCASE
Specify predicted interest rates ARM ESTIMATEDCASE=
Specify constant rate ARM FIXEDCASE
Specify worst-case (pessimistic) scenario ARM WORSTCASE

Buydown Rate Loan Specification Option
Specify list of nominal interest rates BUYDOWN BUYDOWNRATES=

Loan Comparison Options
Specify all comparison criteria COMPARE ALL
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Table 23.1 continued

Description Statement Option

Specify the loan comparison periods COMPARE AT=
Specify breakeven analysis of the interest paid COMPARE BREAKINTEREST
Specify breakeven analysis of periodic
payment

COMPARE BREAKPAYMENT

Specify minimum attractive rate of return COMPARE MARR=
Specify present worth of cost analysis COMPARE PWOFCOST
Specify the income tax rate COMPARE TAXRATE=
Specify true interest rate analysis COMPARE TRUEINTEREST

PROC LOAN Statement
PROC LOAN options ;

The OUTSUM= option can be used in the PROC LOAN statement. In addition, the following loan speci-
fication options can be specified in the PROC LOAN statement to be used as defaults for all loans unless
otherwise specified for a given loan:

AMOUNT= INTERVAL= POINTPCT=
AMOUNTPCT= LABEL= PREPAYMENTS=
COMPOUND= LIFE= PRICE=
DOWNPAYMENT= NOSUMMARYPRINT RATE=
DOWNPAYPCT= NOPRINT ROUND=
INITIAL= PAYMENT= START=
INITIALPCT= POINTS= SCHEDULE=

Output Option

OUTSUM=SAS-data-set
creates an output data set that contains loan summary information for all loans other than those for
which a different OUTSUM= output data set is specified.

ARM Statement
ARM options ;

The ARM statement specifies an adjustable rate loan where the future interest rates are not known with
certainty but will vary within specified limits according to the terms stated in the loan agreement. In practice,
the adjustment terms vary. Adjustments in the interest rate can be captured using the ARM statement options.

In addition to the required specifications and options listed under the FIXED statement, you can use the
following options with the ARM statement.
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Rate Adjustment Terms Options

ADJUSTFREQ=n

ADF=n
specifies the number of periods, in terms of the INTERVAL= specification, between rate adjustments.
INTERVAL=MONTH ADJUSTFREQ=6 indicates that the nominal interest rate can be adjusted every
six months until the life cap or maximum rate (whichever is specified) is reached. The default is
ADJUSTFREQ=12. The periodic payment is adjusted every adjustment period even if there is no
rate change; therefore, if prepayments are made (as specified with the PREPAYMENTS= option), the
periodic payment might change even if the nominal rate does not.

CAPS=( periodic-cap, life-cap )
specifies the maximum interest rate adjustment, in percent notation, allowed by the loan agreement.
The periodic cap specifies the maximum adjustment allowed at each adjustment period. The life cap
specifies the maximum total adjustment over the life of the loan. For example, a loan specified with
CAPS=(0.5, 2) indicates that the nominal interest rate can change by 0.5% each adjustment period,
and the annual nominal interest rate throughout the life of the loan will be within a 2% range of the
initial annual nominal rate.

MAXADJUST=rate

MAXAD=rate
specifies the maximum rate adjustment, in percent notation, allowed at each adjustment period. Use
the MAXADJUST= option with the MAXRATE= and MINRATE= options. The initial nominal rate
plus the maximum adjustment should not exceed the specified MAXRATE= value. The initial nominal
rate minus the maximum adjustment should not be less than the specified MINRATE= value.

MAXRATE=rate

MAXR=rate
specifies the maximum annual nominal rate, in percent notation, that might be charged on the loan.
The maximum annual nominal rate should be greater than or equal to the initial annual nominal rate
specified with the RATE= option.

MINRATE=rate

MINR=rate
specifies the minimum annual nominal rate, in percent notation, that might be charged on the loan. The
minimum annual nominal rate should be less than or equal to the initial annual nominal rate specified
with the RATE= option.

Rate Adjustment Case Options

PROC LOAN supports four rate adjustment scenarios for analysis of adjustable rate loans: pessimistic
(WORSTCASE), optimistic (BESTCASE), no-change (FIXEDCASE), and estimated (ESTIMATEDCASE).
The estimated case enables you to analyze the adjustable rate loan with your predictions of future interest
rates. The default is worst-case analysis. If more than one case is specified, worst-case analysis is performed.
You can specify options for adjustable rate loans as follows:
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BESTCASE

B
specifies a best-case analysis. The best-case analysis assumes that the interest rate charged on the
loan will reach its minimum allowed limits at each adjustment period and over the life of the loan. If
you use the BESTCASE option, you must specify either the CAPS= option or the MINRATE= and
MAXADJUST= options.

ESTIMATEDCASE=( date1=rate1 date2=rate2 . . . )

ESTIMATEDCASE=( period1=rate1 period2=rate2 . . . )

ESTC=
specifies an estimated case analysis that indicates the rate adjustments will follow the rates you predict.
This option specifies pairs of periods and estimated nominal interest rates.

The ESTIMATEDCASE= option can specify adjustments that cannot fit into the BESTCASE,
WORSTCASE, or FIXEDCASE specifications, or “what-if” type analysis. If you specify the START=
option, you can also specify the estimation periods as dates, in the form of SAS date literals. Estimated
rates and the respective periods must be in time sequence.

If the estimated period falls between two adjustment periods (determined by ADJUSTFREQ= option),
the rate is adjusted in the next adjustment period. The nominal interest rate charged on the loan is
constant between two adjustment periods.

If any of the MAXRATE=, MINRATE=, CAPS=, and MAXADJUST= options are specified to
indicate the rate adjustment terms of the loan agreement, these specifications are used to bound the
rate adjustments. By using the ESTIMATEDCASE= option, you are predicting what the annual
nominal rates in the market will be at different points in time, not necessarily the interest rate on your
particular loan. For example, if the initial nominal rate (RATE= option) is 6.0, ADJUSTFREQ=6,
MAXADJUST=0.5, and the ESTIMATEDCASE=(6=6.5, 12=7.5), the actual nominal rates charged
on the loan would be 6.0% initially, 6.5% for the sixth through the eleventh periods, and 7.5% for the
twelfth period onward.

FIXEDCASE

FIXCASE
specifies a fixed case analysis that assumes the rate will stay constant. The FIXEDCASE option
calculates the ARM loan values similar to a fixed rate loan, but the payments are updated every
adjustment period even if the rate does not change, leading to minor differences between the two
methods. One such difference is in the way prepayments are handled. In a fixed rate loan, the rate
and the payments are never adjusted; therefore, the payment stays the same over the life of the loan
even when prepayments are made (instead, the life of the loan is shortened). In an ARM loan with
the FIXEDCASE option, on the other hand, if prepayments are made, the payment is adjusted in the
following adjustment period, leaving the life of the loan constant.

WORSTCASE

W
specifies a worst-case analysis. The worst-case analysis assumes that the interest rate charged on the
loan will reach its maximum allowed limits at each rate adjustment period and over the life of the loan.
If the WORSTCASE option is used, either the CAPS= option or the MAXRATE= and MAXADJUST=
options must be specified.
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BALLOON Statement
BALLOON options ;

The BALLOON statement specifies a fixed rate loan with scheduled balloon payments in addition to the
periodic payment. The following option is used in the BALLOON statement, in addition to the required
options listed under the FIXED statement:

BALLOONPAYMENT=( date1=payment1 date2=payment2 . . . )

BALLOONPAYMENT=( period1=payment1 period2=payment2 . . . )

BPAY=( date1=payment1 date2=payment2 . . . )

BPAY=( period1=payment1 period2=payment2 . . . )
specifies pairs of periods and amounts of balloon (lump sum) payments in excess of the periodic
payment during the life of the loan. You can also specify the balloon periods as dates if you specify
the START= option. The dates are specified as SAS date literals. For example, BALLOONPAYMENT=(
’1MAR2011’D=1000 ) specifies a payment of 1000 in March 2011.

If you do not specify this option, the calculations are identical to a loan specified in a FIXED statement.
Balloon periods (or dates) and the respective balloon payments must be in time sequence.

BUYDOWN Statement
BUYDOWN options ;

The BUYDOWN statement specifies a buydown rate loan. The buydown rate loans are similar to ARM loans,
but the interest rate adjustments are predetermined at the initialization of the loan, usually by paying interest
points at the time of loan initialization.

You must use all the required specifications and options listed under the FIXED statement with the BUY-
DOWN statement. The following option is specific to the BUYDOWN statement and is required:

BUYDOWNRATES=( date1=rate1 date2=rate2 . . . )

BUYDOWNRATES=( period1=rate1 period2=rate2 . . . )

BDR=
specifies pairs of periods and the predetermined nominal interest rates that will be charged on the loan
starting at the corresponding time periods.

You can also specify the buydown periods as dates in the form of SAS date literals if you also specify
the date of the initial payment by using a date value in the START= option. Buydown periods (or dates)
and the respective buydown rates must be in time sequence.
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COMPARE Statement
COMPARE options ;

The COMPARE statement compares multiple loans, or it can be used with a single loan. You can use only
one COMPARE statement. COMPARE statement options specify the periods and desired types of analysis
for loan comparison. The default analysis reports the outstanding principal balance, breakeven of payment,
breakeven of interest paid, and before-tax true interest rate. The default comparison period corresponds to
the first LIFE= option specification. If the LIFE= option is not specified for any loan, the loan comparison
period defaults to the first calculated life.

You can use the following options with the COMPARE statement. For more information about loan
comparison, see the section “Loan Comparison Details” on page 1330.

Analysis Options

ALL
is equivalent to specifying the BREAKINTEREST, BREAKPAYMENT, PWOFCOST, and TRUEIN-
TEREST options. The loan comparison report includes all the criteria. You need to specify the MARR=
option for present worth of cost calculation.

AT=( date1 date2 . . . )

AT=( period1 period2 . . . )
specifies the periods for loan comparison reports. If you specify the START= option in the PROC
LOAN statement, you can specify the AT= option as a list of dates expressed as SAS date literals
instead of periods. The comparison periods do not need to be in time sequence. If you do not specify
the AT= option, the comparison period defaults to the first LIFE= option specification. If you do not
specify the LIFE= option for any of the loans, the loan comparison period defaults to the first calculated
life.

BREAKINTEREST

BI
specifies breakeven analysis of the interest paid. The loan comparison report includes the interest paid
for each loan through the specified comparison period (AT= option).

BREAKPAYMENT

BP
specifies breakeven analysis of payment. The periodic payment for each loan is reported for every
comparison period specified in the AT=option.

MARR=rate
specifies the MARR (minimum attractive rate of return) in percent notation. The MARR reflects the
cost of capital or the opportunity cost of money. The MARR= option is used in calculating the present
worth of cost.
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PWOFCOST
PWC

calculates the present worth of cost (net present value of costs) for each loan based on the cash flow
through the specified comparison periods. The calculations account for down payment, initialization
costs, and discount points, as well as the payments and outstanding principal balance at the comparison
period. If you specify the TAXRATE= option, the present worth of cost is based on after-tax cash flow.
Otherwise, before-tax present worth of cost is calculated. You need to specify the MARR= option for
present worth of cost calculations.

TAXRATE=rate

TAX=rate
specifies income tax rate in percent notation for the after-tax calculations of the true interest rate
and present worth of cost for those assets that qualify for tax deduction. If you specify this option,
the amount specified in the POINTS= option and the interest paid on the loan are assumed to be
tax-deductible. Otherwise, it is assumed that the asset does not qualify for tax deductions, and the cash
flow is not adjusted for tax savings.

TRUEINTEREST
TI

calculates the true interest rate (effective interest rate based on the cash flow of all payments, initial-
ization costs, discount points, and the outstanding principal balance at the comparison period) for all
the specified loans through each comparison period. If you specify the TAXRATE= option, the true
interest rate is based on after-tax cash flow. Otherwise, the before-tax true interest rate is calculated.

Output Options

NOCOMPRINT
NOCP

suppresses the printing of the loan comparison report. The NOCOMPRINT option is usually used
when an OUTCOMP= data set is created to store loan comparison information.

OUTCOMP=SAS-data-set
writes the loan comparison report to an output data set.

FIXED Statement
FIXED options ;

The FIXED statement specifies a fixed rate and periodic payment loan. It can be specified using the options
that are common to all loan statements. The FIXED statement options are listed in this section.

You must specify three of the following options in each loan statement: AMOUNT=, LIFE=, RATE=, and
PAYMENT=. The LOAN procedure calculates the fourth parameter based on the values you give the other
three. If you specify all four of the options, the PAYMENT= specification is ignored, and the periodic
payment is recalculated for consistency.

As an alternative to specifying the AMOUNT= option, you can specify the PRICE= option along with one of
the following options to facilitate the calculation of the loan amount: AMOUNTPCT=, DOWNPAYMENT=,
or DOWNPAYPCT=.
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Required Specifications

AMOUNT=amount

A=amount
specifies the loan amount (the outstanding principal balance at the initialization of the loan).

LIFE=n

L=n
gives the life of the loan in number of payments. (The payment frequency is specified by the
INTERVAL= option.) For example, if the life of the loan is 10 years with monthly payments,
use LIFE=120 and INTERVAL=MONTH (default) to indicate a 10-year loan in which 120 monthly
payments are made.

PAYMENT=amount

P=amount
specifies the periodic payment. For ARM and BUYDOWN loans where the periodic payment might
change, the PAYMENT= option specifies the initial amount of the periodic payment.

RATE=rate

R=rate
specifies the initial annual (nominal) interest rate in percent notation. The rate specified must be in the
range 0% to 120%. For example, use RATE=12.75 for a 12.75% loan. For ARM and BUYDOWN
loans, where the rate might change over the life of the loan, the RATE= option specifies the initial
annual interest rate.

Specification Options

AMOUNTPCT=value

APCT=value
specifies the loan amount as a percentage of the purchase price (PRICE= option). The AMOUNTPCT=
specification is used to calculate the loan amount if the AMOUNT= option is not specified. The value
specified must be in the range 1% to 100%.

If both the AMOUNTPCT= and DOWNPAYPCT= options are specified and the sum of their values is
not equal to 100, the value of the down payment percentage is set equal to 100 minus the value of the
amount percentage.

COMPOUND=time-unit
specifies the time interval between compoundings. The default is the time unit given by the INTER-
VAL= option. If the INTERVAL= option is not used, then the default is COMPOUND=MONTH.
The following time units are valid COMPOUND= values: CONTINUOUS, DAY, SEMIMONTH,
MONTH, QUARTER, SEMIYEAR, and YEAR. The compounding interval is used to calculate the
simple interest rate per payment period from the nominal annual interest rate or vice versa.

DOWNPAYMENT=amount

DP=amount
specifies the down payment at the initialization of the loan. The down payment is included in the
calculation of the present worth of cost but not in the calculation of the true interest rate. The after-tax
analysis assumes that the down payment is not tax-deductible. (Specify after-tax analysis with the
TAXRATE= option in the COMPARE statement.)
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DOWNPAYPCT=value

DPCT=value
specifies the down payment as a percentage of the purchase price (PRICE= option). The DOWN-
PAYPCT= specification is used to calculate the down payment amount if you do not specify the
DOWNPAYMENT= option. The value you specify must be in the range 0% to 99%.

If you specified both the AMOUNTPCT= and DOWNPAYPCT= options and the sum of their values is
not equal to 100, the value of the down payment percentage is set equal to 100 minus the value of the
amount percentage.

INITIAL=amount

INIT=amount
specifies the amount paid for loan initialization other than the discount points and down payment.
This amount is included in the calculation of the present worth of cost and the true interest rate. The
after-tax analysis assumes that the initial amount is not tax-deductible. (After-tax analysis is specified
by the TAXRATE= option in the COMPARE statement.)

INITIALPCT=value

INITPCT=value
specifies the initialization costs as a percentage of the loan amount (AMOUNT= option). The
INITIALPCT= specification is used to calculate the amount paid for loan initialization if you do
not specify the INITIAL= option. The value you specify must be in the range of 0% to 100%.

INTERVAL=time-unit
gives the time interval between periodic payments. The default is INTERVAL=MONTH. The follow-
ing time units are valid INTERVAL values: SEMIMONTH, MONTH, QUARTER, SEMIYEAR, and
YEAR.

LABEL=‘loan-label’
specifies a label for the loan. If you specify the LABEL= option, all output related to the loan is labeled
accordingly. If you do not specify the LABEL= option, the loan is labeled by sequence number.

POINTS=amount

PNT=amount
specifies the amount paid for discount points at the initialization of the loan. This amount is included in
the calculation of the present worth of cost and true interest rate. The amount paid for discount points
is assumed to be tax-deductible in after-tax analysis (that is, if the TAXRATE= option is specified in
the COMPARE statement).

POINTPCT=value

PNTPCT=value
specifies the discount points as a percentage of the loan amount (AMOUNT= option). The POINTPCT=
specification is used to calculate the amount paid for discount points if you do not specify the POINTS=
option. The value you specify must be in the range of 0% to 100%.
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PREPAYMENTS=amount

PREPAYMENTS=( date1=prepayment1 date2=prepayment2 . . . )

PREPAYMENTS=( period1=prepayment1 period2=prepayment2 . . . )

PREP=
specifies either a uniform prepayment p throughout the life of the loan or lump sum prepayments.
A uniform prepayment p is assumed to be paid with each periodic payment. Specify lump sum
prepayments by pairs of periods (or dates) and respective prepayment amounts.

You can specify the prepayment periods as dates if you specify the START= option. Prepayment
periods or dates and the respective prepayment amounts must be in time sequence. The prepayments
are treated as principal payments, and the outstanding principal balance is adjusted accordingly. In the
adjustable rate and buydown rate loans, if there is a rate adjustment after prepayments, the adjusted
periodic payment is calculated based on the outstanding principal balance. The prepayments do not
result in periodic payment amount adjustments in fixed rate and balloon payment loans.

PRICE=amount

PRC=amount
specifies the purchase price, which is the loan amount plus the down payment. If you specify the
PRICE= option along with the loan amount (AMOUNT= option) or the down payment (DOWNPAY-
MENT= option), the value of the other one is calculated.

If you specify the PRICE= option with the AMOUNTPCT= or DOWNPAYPCT= options, the loan
amount and the down payment are calculated.

ROUND=n

ROUND=NONE
specifies the number of decimal places to which the monetary amounts are rounded for the loan. Valid
values for n are integers from 0 to 6. If you specify ROUND=NONE, the values are not rounded off
internally, but the printed output is rounded off to two decimal places. The default is ROUND=2.

START=SAS-date-literal

START=yyyy:period

S=
gives the date of loan initialization. The first payment is assumed to be one payment interval after
the start date. For example, you can specify the START= option as START=’1APR2010’D or as
START=2010:3, where 3 is the third payment interval within the year 2010. If INTERVAL=QUARTER,
3 refers to the third quarter. If you specify the START= option, all output for the particular loan is
dated accordingly.

Output Options

NOSUMMARYPRINT

NOSUMPR
suppresses the printing of the loan summary report. The NOSUMMARYPRINT option is usually used
when an OUTSUM= data set is created to store loan summary information.
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NOPRINT

NOP
suppresses all printed output for the loan.

OUT=SAS-data-set
writes the loan amortization schedule to an output data set.

OUTSUM=SAS-data-set
writes the loan summary for the individual loan to an output data set.

SCHEDULE

SCHEDULE=nyears

SCHEDULE=YEARLY

SCHED
prints the amortization schedule for the loan. SCHEDULE=nyears specifies the number of years
the printed amortization table covers. If you omit the number of years or specify a period longer
than the loan life, the schedule is printed for the full term of the loan. SCHEDULE=YEARLY prints
yearly summary information in the amortization schedule rather than the full amortization schedule.
SCHEDULE=YEARLY is useful for long-term loans.

Details: LOAN Procedure

Computational Details
These terms are used in the formulas that follow:

p periodic payment

a principal amount

ra nominal annual rate

f compounding frequency (per year)

f 0 payment frequency (per year)

r periodic rate

re effective interest rate

n total number of payments

The periodic rate, or the simple interest applied during a payment period, is given by

r D

�
1C

ra

f

�f=f 0
� 1

Note that the interest calculation is performed at each payment period rather than at the compound period.
This is done by adjusting the nominal rate. For more information, see Muksian (1984).
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Note that when f D f 0 (that is, when the payment and compounding frequency coincide), the preceding
expression reduces to the familiar form:

r D
ra

f

The periodic rate for continuous compounding can be obtained from this general expression by taking the
limit as the compounding frequency f goes to infinity. The resulting expression is

r D exp
�
ra

f 0

�
� 1

The effective interest rate, or annualized percentage rate (APR), is that rate which, if compounded once per
year, is equivalent to the nominal annual rate compounded f times per year. Thus,

.1C re/ D .1C r/
f
D

�
1C

ra

f

�f
or

re D

�
1C

ra

f

�f
� 1

For continuous compounding, the effective interest rate is given by

re D exp .ra/ � 1

For more information, see Muksian (1984).

The payment is calculated as

p D
ar

1 � 1
.1Cr/n

The amount is calculated as

a D
p

r

�
1 �

1

.1C r/n

�
Both the payment and amount are rounded to the nearest hundredth (cent) unless the ROUND= specification
is different from the default, 2.

The total number of payments n is calculated as

n D
� ln

�
1 � ar

p

�
ln.1C r/

The total number of payments is rounded up to the nearest integer.

The nominal annual rate is calculated using the bisection method, with a as the objective and r starting in the
interval between 8 � 10�6 and 0.1 with an initial midpoint 0.01 and successive midpoints bisecting.
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Loan Comparison Details
In order to compare the costs of different alternatives, the input cash flow for the alternatives must be
represented in equivalent values. The equivalent value of a cash flow accounts for the time-value of money.
That is, it is preferable to pay the same amount of money later than to pay it now, since the money can earn
interest while you keep it. The MARR (minimum attractive rate of return) reflects the cost of capital or the
opportunity cost of money—that is, the interest that would have been earned on the savings that is forgone by
making the investment. The MARR is used to discount the cash flow of alternatives into equivalent values
at a fixed point in time. The MARR can vary for each investor and for each investment. Therefore, the
MARR= option must be specified in the COMPARE statement if present worth of cost (PWOFCOST option)
comparison is specified.

Present worth of cost reflects the equivalent amount at loan initialization of the loan cash flow discounted at
MARR, not accounting for inflation. Present worth of cost accounts for the down payment, initialization
costs, discount points, periodic payments, and the principal balance at the end of the report period. Therefore,
it reflects the present worth of cost of the asset, not the loan. It is meaningful to use minimization of present
worth of cost as a selection criterion only if the assets (down payment plus loan amount) are of the same
value.

Another economic selection criterion is the rate of return (internal rate of return) of the alternatives. If interest
is being earned by an alternative, the objective is to maximize the rate of return. If interest is being paid, as in
loan alternatives, the best alternative is the one that minimizes the rate of return. The true interest rate reflects
the effective annual rate charged on the loan based on the cash flow, including the initialization cost and the
discount points.

The effects of taxes on different alternatives must be accounted for when these vary among different
alternatives. Since interest costs on certain loans are tax-deductible, the comparisons for those loans are made
based on the after-tax cash flows. The cost of the loan is reduced by the tax benefits it offers through the loan
life if the TAXRATE= option is specified. The present worth of cost and true interest rate are calculated based
on the after-tax cash flow of the loan. The down payment on the loan and initialization costs are assumed to
be not tax-deductible in after-tax analysis. Discount points and the interest paid in each periodic payment
are assumed to be tax-deductible if the TAXRATE= option is specified. If the TAXRATE= option is not
specified, the present worth of cost and the true interest rate are based on before-tax cash flow, assuming that
the interest paid on the specified loan does not qualify for tax benefits.

The other two selection criteria are breakeven analysis of periodic payment and interest paid. If the objective
is to minimize the periodic payment, the best alternative is the one with the minimum periodic payment. If
the objective is to minimize the interest paid on the principal, then the best alternative is the one with the
least interest paid.

Another criterion might be the minimization of the outstanding balance of the loan at a particular point
in time. For example, if you plan to sell a house before the end of the loan life (which is often the case),
you might want to select the loan with the minimum principal balance at the time of the sale, since this
balance must be paid at that time. The outstanding balance of the alternative loans is calculated for each loan
comparison period by default.

If you specified the START= option in the PROC LOAN statement, the present worth of cost reflects the
equivalent amount for each loan at that point in time. Any loan that has a START= specification different
from the one in the PROC LOAN statement is not processed in the loan comparison.
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The loan comparison report for each comparison period contains for each loan the loan label, outstanding
balance, and any of the following measures if requested in the COMPARE statement: periodic payment
(BREAKPAYMENT option), total interest paid to date (BREAKINTEREST option), present worth of cost
(PWOFCOST option), and true interest rate (TRUEINTEREST option). The best loan is selected on the
basis of present worth of cost or true interest rate. If both PWOFCOST and TRUEINTEREST options are
specified, present worth of cost is the basis for the selection of the best loan.

You can use the OUTCOMP= option in the COMPARE statement to write the loan comparison report to a
data set. The NOCOMPRINT option suppresses the printing of a loan comparison report.

OUT= Data Set
The OUT= option writes the loan amortization schedule to an output data set. The OUT= data set contains
one observation for each payment period (or one observation for each year if you specified the SCHED-
ULE=YEARLY option). If you specified the START= option, the DATE variable denotes the date of the
payment. Otherwise, YEAR and period variable (SEMIMONTH, MONTH, QUARTER, or SEMIYEAR) denote
the payment year and period within the year.

The OUT= data set contains the following variables:

� DATE, date of the payment. DATE is included in the OUT= data set only when you specify the START=
option.

� YEAR, year of the payment period. YEAR is included in the OUT= data set only when you do not
specify the START= option.

� PERIOD, period within the year of the payment period. The name of the period variable matches the
INTERVAL= specification (SEMIMONTH, MONTH, QUARTER, or SEMIYEAR.) The PERIOD
variable is included in the OUT= data set only when you do not specify the START= option.

� BEGPRIN, beginning principal balance

� PAYMENT, payment

� INTEREST, interest payment

� PRIN, principal repayment

� ENDPRIN, ending principal balance
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OUTCOMP= Data Set
The OUTCOMP= option in the COMPARE statement writes the loan comparison analysis results to an output
data set. If you specified the START= option, the DATE variable identifies the date of the loan comparison.
Otherwise, the PERIOD variable identifies the comparison period.

The OUTCOMP= data set contains one observation for each loan and for each loan comparison period. The
OUTCOMP= data set contains the following variables:

� DATE, date of loan comparison report. The DATE variable is included in the OUTCOMP= data set
only when you specify the START= option.

� PERIOD, period of the loan comparison for the observation. The PERIOD variable is included in the
OUTCOMP= data set only when you do not specify the START= option.

� LABEL, label string for the loan

� TYPE, type of the loan

� PAYMENT, periodic payment at the time of report. The PAYMENT is included in the OUTCOMP=
data set if you specified the BREAKPAYMENT or ALL option or if you used default criteria.

� INTPAY, interest paid through the time of report. The INTPAY variable is included in the OUTCOMP=
data set if you specified the BREAKINTEREST or ALL option or if you used default criteria.

� TRUERATE, true interest rate charged on the loan. The TRUERATE variable is included in the
OUTCOMP= data set if you specified the TRUERATE or ALL option or if you used default criteria.

� PWOFCOST, present worth of cost. The PWOFCOST variable is included in the OUTCOMP= data
set only if you specified the PWOFCOST or ALL option.

� BALANCE, outstanding principal balance at the time of report

OUTSUM= Data Set
The OUTSUM= option writes the loan summary to an output data set. If you specified this option in the
PROC LOAN statement, the loan summary information for all loans is written to the specified data set,
except for those loans for which you specified a different OUTSUM= data set in the ARM, BALLOON,
BUYDOWN, or FIXED statement.

The OUTSUM= data set contains one observation for each loan and contains the following variables:

� TYPE, type of loan

� LABEL, loan label

� PAYMENT, periodic payment

� AMOUNT, loan principal
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� DOWNPAY, down payment. DOWNPAY is included in the OUTSUM= data set only when you specify
a down payment.

� INITIAL, loan initialization costs. INITIAL is included in the OUTSUM= data set only when you specify
initialization costs.

� POINTS, discount points. POINTS is included in the OUTSUM= data set only when you specify
discount points.

� TOTAL, total payment

� INTEREST, total interest paid

� RATE, nominal annual interest rate

� EFFRATE, effective interest rate

� INTERVAL, payment interval

� COMPOUND, compounding interval

� LIFE, loan life (that is, the number of payment intervals)

� NCOMPND, number of compounding intervals

� COMPUTE, computed loan parameter: life, amount, payment, or rate

If you specified the START= option either in the PROC LOAN statement or for the individual loan, the
OUTSUM= data set also contains the following variables:

� BEGIN, start date

� END, loan termination date

Printed Output
The output from PROC LOAN consists of the loan summary table, loan amortization schedule, and loan
comparison report.

Loan Summary Table

The loan summary table shows the total payment and interest, the initial nominal annual and effective interest
rates, payment and compounding intervals, the length of the loan in the time units specified, the start and end
dates if specified, a list of nominal and effective interest rates, and periodic payments throughout the life of
the loan.

A list of balloon payments for balloon payment loans and a list of prepayments if specified are printed with
their respective periods or dates.

The loan summary table is printed for each loan by default. The NOSUMMARYPRINT option specified in
the PROC LOAN statement suppresses the printing of the loan summary table for all loans. The NOSUM-
MARYPRINT option can be specified in individual loan statements to selectively suppress the printing of the
loan summary table.
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Loan Repayment Schedule

The amortization schedule contains for each payment period: the year and period within the year (or date, if
you specified the START= option); principal balance at the beginning of the period; total payment, interest
payment and principal payment for the period; and the principal balance at the end of the period. If you
specified the SCHEDULE=YEARLY option, the amortization contains a summary for each year instead of
for each payment period.

The amortization schedule is not printed by default. The SCHEDULE option in the PROC LOAN statement
requests the printing of amortization tables for all loans. You can specify the SCHEDULE option in individual
loan statements to selectively request the printing of the amortization schedule.

Loan Comparison Report

The loan comparison report is processed for each report period and contains the results of economic analysis
of the loans. The quantities reported can include the outstanding principal balance, after-tax or before-tax
present worth of cost and true interest rate, periodic payment, and the interest paid through the report period
for each loan. The best alternative is identified if the asset value (down payment plus loan amount) is the
same for each alternative.

The loan comparison report is printed by default. The NOCOMPRINT option specified in the COMPARE
statement suppresses the printing of the loan comparison report.

ODS Table Names
PROC LOAN assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 23.2.

Table 23.2 ODS Tables Produced in PROC LOAN

ODS Table Name Description Option

ODS Tables Created by the PROC LOAN, FIXED, ARM, BALLOON, and BUYDOWN Statements
Repayment Loan repayment schedule SCHEDULE

ODS Tables Created by the FIXED, ARM, BALLOON, and BUYDOWN Statements
LoanSummary Loan summary Default
RateList Rates and payments Default
PrepayList Prepayments and periods PREPAYMENTS=

ODS Tables Created by the BALLOON Statement
BalloonList Balloon payments and periods Default

ODS Tables Created by the COMPARE Statement
Comparison Loan comparison report Default
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Examples: LOAN Procedure

Example 23.1: Discount Points for Lower Interest Rates
This example illustrates the comparison of two $100,000 loans. The major difference between the two loans
is that the nominal interest rate in the second loan is lower than the first with the added expense of paying
discount points at the time of initialization.

Both alternatives are 30-year loans. The first loan is labeled “8.25% - no discount points” and the second one
is labeled “8% - 1 discount point.”

Assume that the interest paid qualifies for a tax deduction and you are in the 33% tax bracket. Also, your
minimum attractive rate of return (MARR) for an alternative investment is 4% (adjusted for tax rate).

You use the following statements to find the breakeven point in the life of the loan for your preference
between the loans:

proc loan start=1992:1 nosummaryprint amount=100000 life=360;
fixed rate=8.25 label='8.25% - no discount points';
fixed rate=8 points=1000 label='8% - 1 discount point';
compare at=(48 54 60) all taxrate=33 marr=4;

run;

Output 23.1.1 shows the loan comparison reports as of January 1996 (48th period), July 1996 (54th period),
and January 1997 (60th period).

Output 23.1.1 Loan Comparison Reports for Discount Point Breakeven

The LOAN Procedure

Loan Comparison Report

Analysis through JAN1996

Loan Label
Ending

Outstanding
Present Worth

of Cost Payment
Interest

Paid
True
Rate

8.25% - no discount points 96388.09 105546.17 751.27 32449.05 5.67

8% - 1 discount point 96219.32 105604.05 733.76 31439.80 5.69

Note: "8.25% - no discount points" is the best alternative based on present worth of cost analysis through JAN1996.

Loan Comparison Report

Analysis through JUL1996

Loan Label
Ending

Outstanding
Present Worth

of Cost Payment
Interest

Paid
True
Rate

8.25% - no discount points 95847.27 106164.97 751.27 36415.85 5.67

8% - 1 discount point 95656.22 106153.97 733.76 35279.26 5.67

Note: "8% - 1 discount point" is the best alternative based on present worth of cost analysis through JUL1996.
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Output 23.1.1 continued

Loan Comparison Report

Analysis through JAN1997

Loan Label
Ending

Outstanding
Present Worth

of Cost Payment
Interest

Paid
True
Rate

8.25% - no discount points 95283.74 106768.07 751.27 40359.94 5.67

8% - 1 discount point 95070.21 106689.80 733.76 39095.81 5.66

Note: "8% - 1 discount point" is the best alternative based on present worth of cost analysis through JAN1997.

Notice that the breakeven point for present worth of cost and true rate both happen on July 1996. This
indicates that if you intend to keep the loan for 4.5 years or more, it is better to pay the discount points for
the lower rate. If your objective is to minimize the interest paid or the periodic payment, the “8% - 1 discount
point” loan is the preferred choice.

Example 23.2: Refinancing a Loan
Assume that you obtained a fixed rate 15-year loan in June 1995 for $78,500 with a nominal annual rate of
9%. By early 1998, the market offers a 6.5% interest rate, and you are considering whether to refinance your
loan.

Use the following statements to find out the status of the loan on February 1998. Output 23.2.1 shows the
results:

proc loan start=1995:6;
fixed life=180 rate=9 amount=78500 noprint

label='Original Loan';
compare at=('10FEB1998'd);

run;

Output 23.2.1 Loan Comparison Report for Original Loan

The LOAN Procedure

Loan Comparison Report

Analysis through FEB1998

Loan Label
Ending

Outstanding Payment
Interest

Paid
True
Rate

Original Loan 71028.75 796.20 18007.15 9.38

The monthly payment on the original loan is $796.20. The ending outstanding principal balance as of
February is $71,028.75. At this point, you might want to refinance your loan with another 15-year loan. The
alternate loan has a 6.5% nominal annual rate. The initialization costs are $1,419.00. Use the following
statements to compare your alternatives:

proc loan start=1998:2 amount=71028.75;
fixed rate=9 payment=796.20

label='Keep the original loan' noprint;
fixed life=180 rate=6.5 init=1419
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label='Refinance at 6.5%' noprint;
compare at=(15 16) taxrate=33 marr=4 all;

run;

The comparison reports of May 1999 and June 1999 in Output 23.2.2 illustrate the break even between the
two alternatives. If you intend to keep the loan through June 1999 or longer, your initialization costs for the
refinancing are justified. The periodic payment of the refinanced loan is $618.74.

Output 23.2.2 Loan Comparison Report for Refinancing Decision

The LOAN Procedure

Loan Comparison Report

Analysis through MAY1999

Loan Label
Ending

Outstanding
Present Worth

of Cost Payment
Interest

Paid
True
Rate

Keep the original loan 66862.10 72737.27 796.20 7776.35 6.20

Refinance at 6.5% 67382.48 72747.51 618.74 5634.83 6.23

Note: "Keep the original loan" is the best alternative based on present worth of cost analysis through MAY1999.

Loan Comparison Report

Analysis through JUN1999

Loan Label
Ending

Outstanding
Present Worth

of Cost Payment
Interest

Paid
True
Rate

Keep the original loan 66567.37 72844.52 796.20 8277.82 6.20

Refinance at 6.5% 67128.73 72766.42 618.74 5999.82 6.12

Note: "Refinance at 6.5%" is the best alternative based on present worth of cost analysis through JUN1999.

Example 23.3: Prepayments on a Loan
This example compares a 30-year loan with and without prepayments. Assume the $240,000 30-year loan has
an 8.25% nominal annual rate. Use the following statements to see the effect of making uniform prepayments
of $500 with periodic payment:

proc loan start=1992:12 rate=8.25 amount=240000 life=360;
fixed label='No prepayments';
fixed label='With Prepayments' prepay=500;
compare at=(120) taxrate=33 marr=4 all;

run;

Output 23.3.1 through Output 23.3.3 show the loan summary reports and the loan comparison report.
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Output 23.3.1 Loan Summary Reports without Prepayments

The LOAN Procedure

Fixed Rate Loan Summary

No prepayments

Downpayment 0.00 Principal Amount 240000.00

Initialization 0.00 Points 0.00

Total Interest 409094.17 Nominal Rate 8.2500%

Total Payment 649094.17 Effective Rate 8.5692%

Pay Interval MONTHLY Compounding MONTHLY

No. of Payments 360 No. of Compoundings 360

Start Date DEC1992 End Date DEC2022

Rates and Payments for No prepayments

Date Nominal Rate Effective Rate Payment

DEC1992 8.2500% 8.5692% 1803.04

Output 23.3.2 Loan Summary Reports with Prepayments

The LOAN Procedure

Fixed Rate Loan Summary

With Prepayments

Downpayment 0.00 Principal Amount 240000.00

Initialization 0.00 Points 0.00

Total Interest 183650.70 Nominal Rate 8.2500%

Total Payment 423650.70 Effective Rate 8.5692%

Pay Interval MONTHLYCompounding MONTHLY

No. of Payments 184 No. of Compoundings 184

Start Date DEC1992 End Date APR2008

Rates and Payments for With Prepayments

Date Nominal Rate Effective Rate Payment

DEC1992 8.2500% 8.5692% 2303.04

Output 23.3.3 Loan Comparison Report

The LOAN Procedure

Loan Comparison Report

Analysis through DEC2002

Loan Label
Ending

Outstanding
Present Worth

of Cost Payment
Interest

Paid
True
Rate

No prepayments 211608.05 268762.31 1803.04 187972.85 5.67

With Prepayments 118848.23 264149.25 2303.04 155213.03 5.67

Note: "With Prepayments" is the best alternative based on present worth of cost analysis through DEC2002.

Notice that with prepayments you pay off the loan in slightly more than 15 years. Also, the total payments
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and total interest are considerably lower with the prepayments. If you can afford the prepayments of $500
each month, another alternative you should consider is using a 15-year loan, which is generally offered at a
lower nominal interest rate.

Example 23.4: Output Data Sets
This example shows the analysis and comparison of five alternative loans. Initialization cost, discount points,
and both lump sum and periodic payments are included in the specification of these loans. Although no
printed output is produced, the loan summary and loan comparison information is stored in the OUTSUM=
and OUTCOMP= data sets.

proc loan start=1998:12 noprint outsum=loans
amount=150000 life=360;

fixed rate=7.5 life=180 prepayment=500
label='BANK1, Fixed Rate';

arm rate=5.5 estimatedcase=(12=7.5 18=8)
label='BANK1, Adjustable Rate';

buydown rate=7 interval=semimonth init=15000
bdrates=(3=9 10=10) label='BANK2, Buydown';

arm rate=5.75 worstcase caps=(0.5 2.5)
adjustfreq=6 label='BANK3, Adjustable Rate'
prepayments=(12=2000 36=5000);

balloon rate=7.5 life=480
points=1100 balloonpayment=(15=2000 48=2000)
label='BANK4, with Balloon Payment';

compare at=(120 360) all marr=7 tax=33 outcomp=comp;
run;

proc print data=loans;
run;

proc print data=comp;
run;

Output 23.4.1 and Output 23.4.2 illustrate the contents of the output data sets.
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Output 23.4.1 OUTSUM= Data Set

Obs TYPE LABEL PAYMENT AMOUNT INITIAL POINTS TOTAL INTEREST RATE

1 FIXED BANK1, Fixed Rate 1890.52 150000 0 0 207839.44 57839.44 0.0750

2 ARM BANK1, Adjustable Rate 851.68 150000 0 0 390325.49 240325.49 0.0550

3 BUYDOWN BANK2, Buydown 673.57 150000 15000 0 288858.08 138858.08 0.0700

4 ARM BANK3, Adjustable Rate 875.36 150000 0 0 387647.82 237647.82 0.0575

5 BALLOON BANK4, with Balloon Payment 965.36 150000 0 1100 467372.31 317372.31 0.0750

Obs EFFRATE INTERVAL COMPOUND LIFE NCOMPND COMPUTE START END

1 0.077633 MONTHLY MONTHLY 110 110 PAYMENT DEC1998 FEB2008

2 0.056408 MONTHLY MONTHLY 360 360 PAYMENT DEC1998 DEC2028

3 0.072399 SEMIMONTHLY SEMIMONTHLY 360 360 PAYMENT DEC1998 DEC2013

4 0.059040 MONTHLY MONTHLY 360 360 PAYMENT DEC1998 DEC2028

5 0.077633 MONTHLY MONTHLY 480 480 PAYMENT DEC1998 DEC2038

Output 23.4.2 OUTCOMP= Data Set

Obs DATE TYPE LABEL PAYMENT INTEREST TRUERATE PWOFCOST BALANCE

1 DEC2008 FIXED BANK1, Fixed Rate 1772.76 57839.44 0.051424 137741.07 0.00

2 DEC2008 ARM BANK1, Adjustable Rate 1093.97 108561.77 0.052212 130397.88 130788.65

3 DEC2008 BUYDOWN BANK2, Buydown 803.98 118182.19 0.087784 161810.00 75798.19

4 DEC2008 ARM BANK3, Adjustable Rate 1065.18 107015.58 0.053231 131955.90 125011.88

5 DEC2008 BALLOON BANK4, with Balloon Payment 965.36 107906.61 0.052107 130242.56 138063.41

6 DEC2028 FIXED BANK1, Fixed Rate 1772.76 57839.44 0.051424 137741.07 0.00

7 DEC2028 ARM BANK1, Adjustable Rate 1094.01 240325.49 0.053247 121980.94 0.00

8 DEC2028 BUYDOWN BANK2, Buydown 800.46 138858.08 0.086079 161536.44 0.00

9 DEC2028 ARM BANK3, Adjustable Rate 1065.20 237647.82 0.054528 124700.22 0.00

10 DEC2028 BALLOON BANK4, with Balloon Payment 965.36 282855.86 0.051800 117294.50 81326.26

Example 23.5: Piggyback Loans
The piggyback loan is becoming a widely available alternative. Borrowers like to avoid the PMI (private
mortgage insurance) required with loans where the borrower has a down payment of less than 20% of the
price. The piggyback allows a secondary home equity loan to be packaged with a primary loan with less than
20% down payment. The secondary loan usually has a shorter life and higher interest rate. The interest paid
on both loans are tax-deductible whereas PMI does not qualify for a tax deduction.

The following example compares a conventional fixed rate loan with 20% down as opposed to a piggyback
loan: one primary fixed rate with 10% down payment and a secondary, home equity loan for 10% of the
original price. All loans have monthly payments.

The conventional loan alternative is a 30-year loan with a fixed annual rate of 7.5%. The primary loan in
the piggyback loan setup is also a 30-year loan with a fixed annual rate of 7.75%. The secondary loan is a
15-year loan with a fixed annual interest rate of 8.25%.

The comparison output for the two loans comprising the piggyback loan is aggregated using the TIMESERIES
procedure with a minimum of specified options:



Example 23.5: Piggyback Loans F 1341

� The INTERVAL= option requests that the data be aggregated into periods of length 5 years beginning
on the 25th month, resulting in appropriately identified periods.

� The ACC=TOTAL option specifies that the output should reflect accumulated totals as opposed to, say,
averages.

� The NOTSORTED option indicates that the input data set has not been sorted by the ID variable.

For more information about this procedure, see Chapter 39, “The TIMESERIES Procedure.”

Use the following statements to analyze the conventional loan, as well as the piggyback alternative, and
compare them on the basis of their present worth of cost, outstanding balance, and interest payment amounts
at the end of 5, 10, and 15 years into the loan life:

title1 'LOAN: Piggyback loan example';

title2 'LOAN: Conventional loan';

proc loan start=2002:1 noprint;

fixed price=200000 dp=40000 rate=7.5 life=360
label='20 percent down: Conventional Fixed Rate' ;

compare at=(60 120 180) pwofcost taxrate=30 marr=12
breakpay breakint outcomp=comploans;

run;

title2 'LOAN: Piggyback: Primary Loan';

proc loan start=2002:1 noprint;

fixed amount=160000 dp=20000 rate=7.75 life=360
label='Piggyback: Primary loan' out=loan1;

compare at=(60 120 180 ) pwofcost taxrate=30 marr=12
breakpay breakint outcomp=cloan1;

run;

title2 'LOAN: Piggyback: Secondary (Home Equity) Loan';

proc loan start=2002:1 noprint;

fixed amount=20000 rate=8.25 life=180
label='Piggyback: Secondary (Home Equity) Loan' out=loan2;

compare at=(60 120 180 ) pwofcost taxrate=30 marr=12
breakpay breakint outcomp=cloan2;

run;

data cloan12;
set cloan1 cloan2;
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run;

proc timeseries data=cloan12 out= totcomp ;
id date interval=year5.25 acc=total notsorted;
var payment interest pwofcost balance ;

run;

/*-- LOAN: Piggyback loan --*/
title;
proc print data=totcomp;

format date monyy7.;
run;

data comploans;
set comploans;
drop type label;

run;

/*-- LOAN: Conventional Loan --*/
title;
proc print data=comploans;
run;

The loan comparisons in Output 23.5.1 and Output 23.5.2 illustrate the after-tax comparison of the loans.
The after-tax present value of cost for the piggyback loan is lower than the 20% down conventional fixed rate
loan.

Output 23.5.1 Piggyback Loan

Obs DATE PAYMENT INTEREST PWOFCOST BALANCE

1 JAN2007 1340.29 67992.92 157157.41 167575.52

2 JAN2012 1340.29 129973.53 135556.98 149138.73

3 JAN2017 1339.66 183028.58 125285.77 121777.01

Output 23.5.2 Conventional Loan

Obs DATE PAYMENT INTEREST PWOFCOST BALANCE

1 JAN2007 1118.74 58512.54 160436.81 151388.14

2 JAN2012 1118.74 113121.41 140081.64 138872.61

3 JAN2017 1118.74 162056.97 130014.97 120683.77
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Overview: MDC Procedure
The MDC (multinomial discrete choice) procedure analyzes models in which the choice set consists of
multiple alternatives. This procedure supports conditional logit, mixed logit, heteroscedastic extreme value,
nested logit, and multinomial probit models. The MDC procedure uses the maximum likelihood (ML) or
simulated maximum likelihood method for model estimation. The term multinomial logit is often used in the
econometrics literature to refer to the conditional logit model of McFadden (1974). Here, the term conditional
logit refers to McFadden’s conditional logit model, and the term multinomial logit refers to a model that
differs slightly. Early applications of the multinomial logit model in the econometrics literature are provided
by Schmidt and Strauss (1975); Theil (1969). The main difference between McFadden’s conditional logit
model and the multinomial logit model is that the multinomial logit model makes the choice probabilities
depend on the characteristics of the individuals only, whereas the conditional logit model considers the effects
of choice attributes on choice probabilities as well.

Unordered multiple choices are observed in many settings in different areas of application. For example,
choices of housing location, occupation, political party affiliation, type of automobile, and mode of trans-
portation are all unordered multiple choices. Economics and psychology models often explain observed
choices by using the random utility function. The utility of a specific choice can be interpreted as the relative
pleasure or happiness that the decision maker derives from that choice with respect to other alternatives in a
finite choice set. It is assumed that the individual chooses the alternative for which the associated utility is
highest. However, the utilities are not known to the analyst with certainty and are therefore treated by the
analyst as random variables. When the utility function contains a random component, the individual choice
behavior becomes a probabilistic process.

The random utility function of individual i for choice j can be decomposed into deterministic and stochastic
components

Uij D Vij C �ij

where Vij is a deterministic utility function, assumed to be linear in the explanatory variables, and �ij is an
unobserved random variable that captures the factors that affect utility that are not included in Vij . Different
assumptions on the distribution of the errors, �ij , give rise to different classes of models.

The features of discrete choice models available in the MDC procedure are summarized in Table 24.1.
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Table 24.1 Summary of Models Supported by PROC MDC

Model Type Utility Function Distribution of �ij
Conditional
logit

Uij D x0ijˇ C �ij IEV,
independent and identical

HEV Uij D x0ijˇ C �ij HEV,
independent and nonidentical

Nested logit Uij D x0ijˇ C �ij GEV,
correlated and identical

Mixed logit Uij D x0ijˇ C �ij C �ij IEV,
independent and identical

Multinomial
probit

Uij D x0ijˇ C �ij MVN,
correlated and nonidentical

IEV stands for type I extreme-value (or Gumbel) distribution with the probability density function and
the cumulative distribution function of the random error given by f .�ij / D exp.��ij / exp.� exp.��ij //
and F.�ij / D exp.� exp.��ij //. HEV stands for heteroscedastic extreme-value distribution with the
probability density function and the cumulative distribution function of the random error given by f .�ij / D
1
�j

exp. �ij
�j
/ expŒ� exp.� �ij

�j
/� and F.�ij / D expŒ� exp.� �ij

�j
/�, where �j is a scale parameter for the

random component of the jth alternative. GEV stands for generalized extreme-value distribution. MVN
represents multivariate normal distribution; and �ij is an error component. For more information about �ij ,
see the section “Mixed Logit Model” on page 1383. .

Getting Started: MDC Procedure

Conditional Logit: Estimation and Prediction
The MDC procedure is similar in use to the other regression model procedures in the SAS System. However,
the MDC procedure requires identification and choice variables. For example, consider a random utility
function

Uij D x1;ijˇ1 C x2;ijˇ2 C �ij j D 1; : : : ; 3

where the cumulative distribution function of the stochastic component is a Type I extreme value, F.�ij / D
exp.� exp.��ij //. You can estimate this conditional logit model with the following statements:

proc mdc;
model decision = x1 x2 / type=clogit

choice=(mode 1 2 3);
id pid;

run;

Note that the MDC procedure, unlike other regression procedures, does not include the intercept term
automatically. The dependent variable decision takes the value 1 when a specific alternative is chosen;
otherwise, it takes the value 0. Each individual is allowed to choose one and only one of the possible
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alternatives. In other words, the variable decision takes the value 1 one time only for each individual. If each
individual has three elements (1, 2, and 3) in the choice set, the NCHOICE=3 option can be specified instead
of CHOICE=(mode 1 2 3).

Consider the following trinomial data from Daganzo (1979). The original data (origdata) contain travel time
(ttime1–ttime3) and choice (choice) variables. The variables ttime1–ttime3 are the travel times for three
different modes of transportation, and choice indicates which one of the three modes is chosen. The choice
variable must have integer values.

data origdata;
input ttime1 ttime2 ttime3 choice @@;

datalines;
16.481 16.196 23.89 2 15.123 11.373 14.182 2
19.469 8.822 20.819 2 18.847 15.649 21.28 2
12.578 10.671 18.335 2 11.513 20.582 27.838 1
10.651 15.537 17.418 1 8.359 15.675 21.05 1

... more lines ...

A new data set (newdata) is created because PROC MDC requires that each individual decision maker has
one case for each alternative in his choice set. Note that the ID statement is required for all MDC models. In
the following example, there are two public transportation modes, 1 and 2, and one private transportation
mode, 3, and all individuals share the same choice set.

The first nine observations of the raw data set are shown in Figure 24.1.

Figure 24.1 Initial Choice Data

Obs ttime1 ttime2 ttime3 choice

1 16.481 16.196 23.890 2

2 15.123 11.373 14.182 2

3 19.469 8.822 20.819 2

4 18.847 15.649 21.280 2

5 12.578 10.671 18.335 2

6 11.513 20.582 27.838 1

7 10.651 15.537 17.418 1

8 8.359 15.675 21.050 1

9 11.679 12.668 23.104 1

The following statements transform the data according to MDC procedure requirements:

data newdata(keep=pid decision mode ttime);
set origdata;
array tvec{3} ttime1 - ttime3;
retain pid 0;
pid + 1;
do i = 1 to 3;

mode = i;
ttime = tvec{i};
decision = ( choice = i );
output;

end;
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run;

The first nine observations of the transformed data set are shown in Figure 24.2.

Figure 24.2 Transformed Modal Choice Data

Obs pid mode ttime decision

1 1 1 16.481 0

2 1 2 16.196 1

3 1 3 23.890 0

4 2 1 15.123 0

5 2 2 11.373 1

6 2 3 14.182 0

7 3 1 19.469 0

8 3 2 8.822 1

9 3 3 20.819 0

The decision variable, decision, must have one nonzero value for each decision maker that corresponds to
the actual choice. When the RANK option is specified, the decision variable must contain rank data. For
more details, see the section “MODEL Statement” on page 1366. The following SAS statements estimate the
conditional logit model by using maximum likelihood:

proc mdc data=newdata;
model decision = ttime /

type=clogit
nchoice=3
optmethod=qn
covest=hess;

id pid;
run;

The MDC procedure enables different individuals to have different choice sets. When all individuals have
the same choice set, the NCHOICE= option can be used instead of the CHOICE= option. However, the
NCHOICE= option is not allowed when a nested logit model is estimated. When the NCHOICE=number
option is specified, the choices are generated as 1; : : : ; number. For more flexible alternatives (for example,
1, 3, 6, 8), you need to use the CHOICE= option. The choice variable must have integer values.

The OPTMETHOD=QN option specifies the quasi-Newton optimization technique. The covariance matrix of
the parameter estimates is obtained from the Hessian matrix because COVEST=HESS is specified. You can
also specify COVEST=OP or COVEST=QML. For more information, see the section “MODEL Statement”
on page 1366.

The MDC procedure produces a summary of model estimation displayed in Figure 24.3. Since there are
multiple observations for each individual, the “Number of Cases” (150)—that is, the total number of choices
faced by all individuals—is larger than the number of individuals, “Number of Observations” (50).
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Figure 24.3 Estimation Summary Table

The MDC Procedure

Conditional Logit Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -33.32132

Log Likelihood Null (LogL(0)) -54.93061

Maximum Absolute Gradient 2.97024E-6

Number of Iterations 6

Optimization Method Dual Quasi-Newton

AIC 68.64265

Schwarz Criterion 70.55467

Figure 24.4 shows the frequency distribution of the three choice alternatives. In this example, mode 2 is most
frequently chosen.

Figure 24.4 Choice Frequency

Discrete Response Profile

Index CHOICE Frequency Percent

0 1 14 28.00

1 2 29 58.00

2 3 7 14.00

The MDC procedure computes nine goodness-of-fit measures for the discrete choice model. Seven of them
are pseudo-R-square measures based on the null hypothesis that all coefficients except for an intercept term
are zero (Figure 24.5). McFadden’s likelihood ratio index (LRI) is the smallest in value. For more details,
see the section “Model Fit and Goodness-of-Fit Statistics” on page 1390.

Figure 24.5 Likelihood Ratio Test and R-Square Measures

Goodness-of-Fit Measures

Measure Value Formula

Likelihood Ratio (R) 43.219 2 * (LogL - LogL0)

Upper Bound of R (U) 109.86 - 2 * LogL0

Aldrich-Nelson 0.4636 R / (R+N)

Cragg-Uhler 1 0.5787 1 - exp(-R/N)

Cragg-Uhler 2 0.651 (1-exp(-R/N)) / (1-exp(-U/N))

Estrella 0.6666 1 - (1-R/U)^(U/N)

Adjusted Estrella 0.6442 1 - ((LogL-K)/LogL0)^(-2/N*LogL0)

McFadden's LRI 0.3934 R / U

Veall-Zimmermann 0.6746 (R * (U+N)) / (U * (R+N))

N = # of observations, K = # of regressors

Finally, the parameter estimate is displayed in Figure 24.6.
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Figure 24.6 Parameter Estimate of Conditional Logit

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime 1 -0.3572 0.0776 -4.60 <.0001

The predicted choice probabilities are produced using the OUTPUT statement:

output out=probdata pred=p;

The parameter estimates can be used to forecast the choice probability of individuals that are not in the input
data set. To do so, you need to append to the input data set extra observations whose values of the dependent
variable decision are missing, since these extra observations are not supposed to be used in the estimation
stage. The identification variable pid must have values that are not used in the existing observations. The
output data set, probdata, contains a new variable, p, in addition to input variables in the data set extdata.

The following statements forecast the choice probability of individuals that are not in the input data set:

data extra;
input pid mode decision ttime;

datalines;
51 1 . 5.0
51 2 . 15.0
51 3 . 14.0
;

data extdata;
set newdata extra;

run;

proc mdc data=extdata;
model decision = ttime /

type=clogit
covest=hess
nchoice=3;

id pid;
output out=probdata pred=p;

run;

proc print data=probdata( where=( pid >= 49 ) );
var mode decision p ttime;
id pid;

run;

The last nine observations from the forecast data set (probdata ) are displayed in Figure 24.7. It is expected
that the decision maker will choose mode “1” based on predicted probabilities for all modes.
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Figure 24.7 Out-of-Sample Mode Choice Forecast

pid mode decision p ttime

49 1 0 0.46393 11.852

49 2 1 0.41753 12.147

49 3 0 0.11853 15.672

50 1 0 0.06936 15.557

50 2 1 0.92437 8.307

50 3 0 0.00627 22.286

51 1 . 0.93611 5.000

51 2 . 0.02630 15.000

51 3 . 0.03759 14.000

Nested Logit Modeling
A more general model can be specified using the nested logit model.

Consider, for example, the following random utility function:

Uij D xijˇ C �ij j D 1; : : : ; 3

Suppose the set of all alternatives indexed by j is partitioned into K nests, B1; : : : ; BK . The nested logit
model is obtained by assuming that the error term in the utility function has the GEV cumulative distribution
function

exp

0B@� KX
kD1

0@X
j2Bk

expf��ij =�kg

1A�k
1CA

where �k is a measure of a degree of independence among the alternatives in nest k. When �k D 1 for all k,
the model reduces to the standard logit model.

Since the public transportation modes, 1 and 2, tend to be correlated, these two choices can be grouped
together. The decision tree displayed in Figure 24.8 is constructed.

Figure 24.8 Decision Tree for Model Choice
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The two-level decision tree is specified in the NEST statement. The NCHOICE= option is not allowed for
nested logit estimation. Instead, the CHOICE= option needs to be specified, as in the following statements:

/*-- nested logit estimation --*/
proc mdc data=newdata;

model decision = ttime /
type=nlogit
choice=(mode 1 2 3)
covest=hess;

id pid;
utility u(1,) = ttime;
nest level(1) = (1 2 @ 1, 3 @ 2),

level(2) = (1 2 @ 1);
run;

In Figure 24.9, estimates of the inclusive value parameters, INC_L2G1C1 and INC_L2G1C2, are in-
dicative of a nested model structure. For more information about inclusive values, see the sections
“Nested Logit” on page 1386 and “Decision Tree and Nested Logit” on page 1388.

Figure 24.9 Two-Level Nested Logit Estimates

The MDC Procedure

Nested Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime_L1 1 -0.4040 0.1241 -3.25 0.0011

INC_L2G1C1 1 0.8016 0.4352 1.84 0.0655

INC_L2G1C2 1 0.8087 0.3591 2.25 0.0243

The nested logit model is estimated with the restriction INC_L2G1C1 = INC_L2G1C2 by specifying the
SAMESCALE option, as in the following statements:

/*-- nlogit with samescale option --*/
proc mdc data=newdata;

model decision = ttime /
type=nlogit
choice=(mode 1 2 3)
samescale
covest=hess;

id pid;
utility u(1,) = ttime;
nest level(1) = (1 2 @ 1, 3 @ 2),

level(2) = (1 2 @ 1);
run;

The estimation result is displayed in Figure 24.10.
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Figure 24.10 Nested Logit Estimates with One Dissimilarity Parameter

The MDC Procedure

Nested Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime_L1 1 -0.4025 0.1217 -3.31 0.0009

INC_L2G1 1 0.8209 0.3019 2.72 0.0066

The nested logit model is equivalent to the conditional logit model if INC_L2G1C1 = INC_L2G1C2 = 1.
You can verify this relationship by estimating a constrained nested logit model as shown in the following
statements. (For more information about imposing linear restrictions on parameter estimates, see the section
“RESTRICT Statement” on page 1376.)

/*-- constrained nested logit estimation --*/
proc mdc data=newdata;

model decision = ttime /
type=nlogit
choice=(mode 1 2 3)
covest=hess;

id pid;
utility u(1,) = ttime;
nest level(1) = (1 2 @ 1, 3 @ 2),

level(2) = (1 2 @ 1);
restrict INC_L2G1C1 = 1, INC_L2G1C2 =1;

run;

The parameter estimates and the active linear constraints for the constrained nested logit model are displayed
in Figure 24.11.

Figure 24.11 Constrained Nested Logit Estimates

The MDC Procedure

Nested Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t| Parameter Label

ttime_L1 1 -0.3572 0.0776 -4.60 <.0001

INC_L2G1C1 0 1.0000 0

INC_L2G1C2 0 1.0000 0

Restrict1 1 -2.1706 8.4098 -0.26 0.7993* Linear EC [ 1 ]

Restrict2 1 3.6573 10.0001 0.37 0.7186* Linear EC [ 2 ]

* Probability computed using beta distribution.

Linearly Independent Active Linear Constraints

1 0 = -1.0000 + 1.0000 * INC_L2G1C1

2 0 = -1.0000 + 1.0000 * INC_L2G1C2
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Multivariate Normal Utility Function
Consider the random utility function

Uij D ttimeijˇ C �ij ; j D 1; 2; 3

where24 �i1
�i2
�i3

35 � N
0@0;

24 1 �21 0

�21 1 0

0 0 1

351A
The correlation coefficient (�21) between Ui1 and Ui2 represents commonly neglected attributes of public
transportation modes, 1 and 2. The following SAS statements estimate this trinomial probit model:

/*-- homoscedastic mprobit --*/
proc mdc data=newdata;

model decision = ttime /
type=mprobit
nchoice=3
unitvariance=(1 2 3)
covest=hess;

id pid;
run;

The UNITVARIANCE=(1 2 3) option specifies that the random component of utility for each of these
choices has unit variance. If the UNITVARIANCE= option is specified, it needs to include at least two
choices. The results of this constrained multinomial probit model estimation are displayed in Figure 24.12
and Figure 24.13. The test for ttime = 0 is rejected at the 1% significance level.

Figure 24.12 Constrained Probit Estimation Summary

The MDC Procedure

Multinomial Probit Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -33.88604

Log Likelihood Null (LogL(0)) -54.93061

Maximum Absolute Gradient 0.0002380

Number of Iterations 8

Optimization Method Dual Quasi-Newton

AIC 71.77209

Schwarz Criterion 75.59613

Number of Simulations 100

Starting Point of Halton Sequence 11
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Figure 24.13 Multinomial Probit Estimates with Unit Variances

The MDC Procedure

Multinomial Probit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime 1 -0.2307 0.0472 -4.89 <.0001

RHO_21 1 0.4820 0.3135 1.54 0.1242

HEV and Multinomial Probit: Heteroscedastic Utility Function
When the stochastic components of utility are heteroscedastic and independent, you can model the data by
using an HEV or a multinomial probit model. The HEV model assumes that the utility of alternative j for
each individual i has heteroscedastic random components,

Uij D Vij C �ij

where the cumulative distribution function of the Gumbel distributed �ij is

F.�ij / D exp.� exp.��ij =�j //

Note that the variance of �ij is 1
6
�2�2j . Therefore, the error variance is proportional to the square of the scale

parameter �j . For model identification, at least one of the scale parameters must be normalized to 1. The
following SAS statements estimate an HEV model under a unit scale restriction for mode “1” (�1 D 1):

/*-- hev with gauss-laguerre method --*/
proc mdc data=newdata;

model decision = ttime /
type=hev
nchoice=3
hev=(unitscale=1, integrate=laguerre)
covest=hess;

id pid;
run;

The results of computation are presented in Figure 24.14 and Figure 24.15.
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Figure 24.14 HEV Estimation Summary

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -33.41383

Maximum Absolute Gradient 0.0000218

Number of Iterations 11

Optimization Method Dual Quasi-Newton

AIC 72.82765

Schwarz Criterion 78.56372

Figure 24.15 HEV Parameter Estimates

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime 1 -0.4407 0.1798 -2.45 0.0143

SCALE2 1 0.7765 0.4348 1.79 0.0741

SCALE3 1 0.5753 0.2752 2.09 0.0366

The parameters SCALE2 and SCALE3 in the output correspond to the estimates of the scale parameters �2
and �3, respectively.

Note that the estimate of the HEV model is not always stable because computation of the log-likelihood
function requires numerical integration. Bhat (1995) proposed the Gauss-Laguerre method. In general, the
log-likelihood function value of HEV should be larger than that of conditional logit because HEV models
include the conditional logit as a special case. However, in this example the reverse is true (–33.414 for the
HEV model, which is less than –33.321 for the conditional logit model). (See Figure 24.14 and Figure 24.3.)
This indicates that the Gauss-Laguerre approximation to the true probability is too coarse. You can see how
well the Gauss-Laguerre method works by specifying a unit scale restriction for all modes, as in the following
statements, since the HEV model with the unit variance for all modes reduces to the conditional logit model:

/*-- hev with gauss-laguerre and unit scale --*/
proc mdc data=newdata;

model decision = ttime /
type=hev
nchoice=3
hev=(unitscale=1 2 3, integrate=laguerre)
covest=hess;

id pid;
run;
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Figure 24.16 shows that the ttime coefficient is not close to that of the conditional logit model.

Figure 24.16 HEV Estimates with All Unit Scale Parameters

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime 1 -0.2926 0.0438 -6.68 <.0001

There is another option of specifying the integration method. The INTEGRATE=HARDY option uses
the adaptive Romberg-type integration method. The adaptive integration produces much more accurate
probability and log-likelihood function values, but often it is not practical to use this method of analyzing
the HEV model because it requires excessive CPU time. The following SAS statements produce the HEV
estimates by using the adaptive Romberg-type integration method:

/*-- hev with adaptive integration --*/
proc mdc data=newdata;

model decision = ttime /
type=hev
nchoice=3
hev=(unitscale=1, integrate=hardy)
covest=hess;

id pid;
run;

The results are displayed in Figure 24.17 and Figure 24.18.

Figure 24.17 HEV Estimation Summary Using Alternative Integration Method

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -33.02598

Maximum Absolute Gradient 0.0001202

Number of Iterations 8

Optimization Method Dual Quasi-Newton

AIC 72.05197

Schwarz Criterion 77.78803
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Figure 24.18 HEV Estimates Using Alternative Integration Method

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime 1 -0.4580 0.1861 -2.46 0.0139

SCALE2 1 0.7757 0.4283 1.81 0.0701

SCALE3 1 0.6908 0.3384 2.04 0.0412

With the INTEGRATE=HARDY option, the log-likelihood function value of the HEV model, –33.026, is
greater than that of the conditional logit model, –33.321. (See Figure 24.17 and Figure 24.3.)

When you impose unit scale restrictions on all choices, as in the following statements, the HEV model gives
the same estimates as the conditional logit model. (See Figure 24.19 and Figure 24.6.)

/*-- hev with adaptive integration and unit scale --*/
proc mdc data=newdata;

model decision = ttime /
type=hev
nchoice=3
hev=(unitscale=1 2 3, integrate=hardy)
covest=hess;

id pid;
run;

Figure 24.19 Alternative HEV Estimates with Unit Scale Restrictions

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime 1 -0.3572 0.0776 -4.60 <.0001

For comparison, the following statements estimate a heteroscedastic multinomial probit model by imposing a
zero restriction on the correlation parameter, �31 D 0. The MDC procedure requires normalization of at least
two of the error variances in the multinomial probit model. Also, for identification, the correlation parameters
associated with a unit normalized variance are restricted to be zero. When the UNITVARIANCE= option is
specified, the zero restriction on correlation coefficients applies to the last choice of the list. In the following
statements, the variances of the first and second choices are normalized. The UNITVARIANCE=(1 2) option
imposes additional restrictions that �32 D �21 D 0. The default for the UNITVARIANCE= option is the last
two choices (which would have been equivalent to UNITVARIANCE=(2 3) for this example). The result is
presented in Figure 24.20.

The utility function can be defined as

Uij D Vij C �ij
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where

�i � N

0@0;
24 1 0 0

0 1 0

0 0 �23

351A
/*-- mprobit estimation --*/
proc mdc data=newdata;

model decision = ttime /
type=mprobit
nchoice=3
unitvariance=(1 2)
covest=hess;

id pid;
restrict RHO_31 = 0;

run;

Figure 24.20 Heteroscedastic Multinomial Probit Estimates

The MDC Procedure

Multinomial Probit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t| Parameter Label

ttime 1 -0.3206 0.0920 -3.49 0.0005

STD_3 1 1.6913 0.6906 2.45 0.0143

RHO_31 0 0 0

Restrict1 1 1.1854 1.5490 0.77 0.4499* Linear EC [ 1 ]

* Probability computed using beta distribution.

Note that in the output the estimates of standard errors and correlations are denoted by STD_i and RHO_ij,
respectively. In this particular case the first two variances (STD_1 and STD_2) are normalized to one, and
corresponding correlations (RHO_21 and RHO_32) are set to zero, so they are not listed among parameter
estimates.

Parameter Heterogeneity: Mixed Logit
One way of modeling unobserved heterogeneity across individuals in their sensitivity to observed exogenous
variables is to use the mixed logit model with a random parameters or random coefficients specification. The
probability of choosing alternative j is written as

Pi .j / D
exp.x0ijˇ/PJ
kD1 exp.x

0
ik
ˇ/

where ˇ is a vector of coefficients that varies across individuals and xij is a vector of exogenous attributes.

For example, you can specify the distribution of the parameter ˇ to be the normal distribution.

The mixed logit model uses a Monte Carlo simulation method to estimate the probabilities of choice. There
are two simulation methods available. If the RANDNUM=PSEUDO option is specified in the MODEL
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statement, pseudo-random numbers are generated; if the RANDNUM=HALTON option is specified, Halton
quasi-random sequences are used. The default value is RANDNUM=HALTON.

You can estimate the model with normally distributed random coefficients of ttime with the following SAS
statements:

/*-- mixed logit estimation --*/
proc mdc data=newdata type=mixedlogit;

model decision = ttime /
nchoice=3
mixed=(normalparm=ttime);

id pid;
run;

Let ˇm and ˇs be mean and scale parameters, respectively, for the random coefficient, ˇ. The relevant utility
function is

Uij D ttimeijˇ C �ij

where ˇ D ˇmC ˇs� (ˇm and ˇs are fixed mean and scale parameters, respectively). The stochastic compo-
nent, �, is assumed to be standard normal since the NORMALPARM= option is given. Alternatively, the
UNIFORMPARM= or LOGNORMALPARM= option can be specified. The LOGNORMALPARM= option
is useful when nonnegative parameters are being estimated. The NORMALPARM=, UNIFORMPARM=,
and LOGNORMALPARM= variables must be included in the right-hand side of the MODEL statement. For
more information, see the section “Mixed Logit Model” on page 1383. To estimate a mixed logit model by
using the transportation mode choice data, the MDC procedure requires the MIXED= option for random
components. Results of the mixed logit estimation are displayed in Figure 24.21.

Figure 24.21 Mixed Logit Model Parameter Estimates

The MDC Procedure

Mixed Multinomial Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

ttime_M 1 -0.5342 0.2184 -2.45 0.0144

ttime_S 1 0.2843 0.1911 1.49 0.1368

Note that the parameter ttime_M corresponds to the constant mean parameter ˇm and the parameter ttime_S
corresponds to the constant scale parameter ˇs of the random coefficient ˇ.
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Syntax: MDC Procedure
The MDC procedure is controlled by the following statements:

PROC MDC options ;
MDCDATA options ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variables ;
ID variable ;
MODEL dependent-variable = regressors / options ;
NEST LEVEL(level-number) = ((choices)@(choice), . . . , (choices)@(choice)) ;
NLOPTIONS options ;
OUTPUT options ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST options ;
UTILITY U() = variables, . . . , U() = variables ;

Functional Summary
Table 24.2 summarizes the statements and options used with the MDC procedure.

Table 24.2 PROC MDC Functional Summary

Description Statement Option

Data Set Options
Formats the data for use by PROC MDC MDCDATA
Specifies the input data set MDC DATA=
Specifies the output data set for CLASS
STATEMENT

CLASS OUT =

Writes parameter estimates to an output data set MDC OUTEST=
Includes covariances in the OUTEST= data set MDC COVOUT
Writes linear predictors and predicted probabilities
to an output data set

OUTPUT OUT=

Declaring the Role of Variables
Specifies the ID variable ID
Specifies BY-group processing variables BY

Printing Control Options
Requests all printing options MODEL ALL
Displays correlation matrix of the estimates MODEL CORRB
Displays covariance matrix of the estimates MODEL COVB
Displays detailed information about optimization
iterations

MODEL ITPRINT

Suppresses all displayed output MODEL NOPRINT
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Table 24.2 continued

Description Statement Option

Model Estimation Options
Specifies the choice variables MODEL CHOICE=()
Specifies the convergence criterion MODEL CONVERGE=
Specifies the type of covariance matrix MODEL COVEST=
Specifies the starting point of the Halton sequence MODEL HALTONSTART=
Specifies options specific to the HEV model MODEL HEV=()
Sets the initial values of parameters used by the
iterative optimization algorithm

MODEL INITIAL=()

Specifies the maximum number of iterations MODEL MAXITER=
Specifies the options specific to mixed logit MODEL MIXED=()
Specifies the number of choices for each person MODEL NCHOICE=
Specifies the number of simulations MODEL NSIMUL=
Specifies the optimization technique MODEL OPTMETHOD=
Specifies the type of random number generators MODEL RANDNUM=
Specifies that initial values are generated using
random numbers

MODEL RANDINIT

Specifies the rank dependent variable MODEL RANK
Specifies optimization restart options MODEL RESTART=()
Specifies a restriction on inclusive parameters MODEL SAMESCALE
Specifies a seed for pseudo-random number
generation

MODEL SEED=

Specifies a stated preference data restriction on
inclusive parameters

MODEL SPSCALE

Specifies the type of the model MODEL TYPE=
Specifies normalization restrictions on multinomial
probit error variances

MODEL UNITVARIANCE=()

Controlling the Optimization Process
Specifies upper and lower bounds for the parameter
estimates

BOUNDS

Specifies linear restrictions on the parameter
estimates

RESTRICT

Specifies nonlinear optimization options NLOPTIONS

Nested Logit Related Options
Specifies the tree structure NEST LEVEL()=
Specifies the type of utility function UTILITY U()=

Output Control Options
Outputs predicted probabilities OUTPUT P=
outputs estimated linear predictor OUTPUT XBETA=
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Table 24.2 continued

Description Statement Option

Test Request Options
Requests Wald, Lagrange multiplier, and likelihood
ratio tests

TEST ALL

Requests the Wald test TEST WALD
Requests the Lagrange multiplier test TEST LM
Requests the likelihood ratio test TEST LR

PROC MDC Statement
PROC MDC options ;

The following options can be used in the PROC MDC statement:

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC MDC uses the most
recently created SAS data set.

OUTEST=SAS-data-set
names the SAS data set that the parameter estimates are written to. For information about the contents
of this data set, see the section “OUTEST= Data Set” on page 1392.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

In addition, any of the following MODEL statement options can be specified in the PROC MDC statement,
which is equivalent to specifying the option for the MODEL statement: ALL, CONVERGE=, CORRB,
COVB, COVEST=, HALTONSTART=, ITPRINT, MAXITER=, NOPRINT, NSIMUL=, OPTMETHOD=,
RANDINIT, RANK, RESTART=, SAMESCALE, SEED=, SPSCALE, TYPE=, and UNITVARIANCE=.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters estimated by the MDC procedure. You can specify any number
of BOUNDS statements.

Each bound is composed of parameters, constants, and inequality operators:

item operator item < operator item < operator item . . . > > ;

Each item is a constant, parameter, or list of parameters. Parameters associated with a regressor variable are
referred to by the name of the corresponding regressor variable. Each operator is <, >, <=, or >=.
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You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. (See
also the section “RESTRICT Statement” on page 1376.)

Lagrange multipliers are reported for all the active boundary constraints. In the displayed output, the Lagrange
multiplier estimates are identified with the names Restrict1, Restrict2, and so on. The probability of the
Lagrange multipliers is computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) bounds
have no effect on the estimation results and are not noted in the output.

The following BOUNDS statement constrains the estimates of the coefficient of ttime to be negative and the
coefficients of x1 through x10 to be between zero and one. This example illustrates the use of parameter lists
to specify boundary constraints.

bounds ttime < 0,
0 < x1-x10 < 1;

BY Statement
BY variables ;

A BY statement can be used with PROC MDC to obtain separate analyses on observations in groups defined
by the BY variables.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

ID Statement
ID variable ;

The ID statement must be used with PROC MDC to specify the identification variable that controls multiple
choice-specific cases. The MDC procedure requires only one ID statement even with multiple MODEL
statements.
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MDCDATA Statement
MDCDATA options < / OUT=SAS-data-set > ;

The MDCDATA statement prepares data for use by PROC MDC when the choice-specific information is
stored in multiple variables (for example, see Figure 24.1 in the section “Conditional Logit: Estimation and
Prediction” on page 1347).

VARLIST (name1 = (var1 var2 . . . ) name2 = (var1 var2 . . . ) . . . )
creates name variables from a multiple-variable list of choice alternatives in parentheses. The choice-
specific dummy variables are created for the first set of multiple variables. At least one set of multiple
variables must be specified. The order of (var1 var2 . . . ) in the VARLIST option determines the
numbering of the alternative; that is, var1 corresponds to alternative 1, var2 corresponds to alternative
2, and so on.

SELECT=(variable)
specifies a variable that contains choices for each individual. The SELECT= variable needs to
be a character-type variable, with values that match variable names in the first VARLIST option:
name1=(var1 var2 . . . ).

ID=(name)
creates a variable that identifies each individual.

ALT=(name)
identifies selection alternatives for each individual.

DECVAR=(name)
creates a 0/1 variable that indicates the choice made for each individual.

OUT=SAS-data-set
specifies a SAS data set to which modified data are output.

MODEL Statement
MODEL dependent-variable = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. When the nested logit model is estimated, regressors in the UTILITY statement are used for estimation.

The following options can be used in the MODEL statement after a slash (/).

CHOICE=( variables )

CHOICE=( variable numbers )
specifies the variables that contain possible choices for each individual. Choice variables must have
integer values. Multiple choice variables are allowed only for nested logit models and must be
specified in order from the highest level to the lowest level. For example, CHOICE=(upmode, mode)
indicates that the nested logit model has two levels. The choices at the upper level are described by the
upmode variable, and the choices at the lower level are described by the mode variable. If all possible
alternatives are written with the variable name, the MDC procedure checks all values of the choice
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variable. CHOICE=(X 1 2 3) implies that the value of X should be 1, 2, or 3. On the other hand, the
CHOICE=(X) considers all distinctive nonmissing values of X as elements of the choice set.

CONVERGE=number
specifies the convergence criterion. The CONVERGE= option is the same as the ABSGCONV= option
in the NLOPTIONS statement. The ABSGCONV= option in the NLOPTIONS statement overrides the
CONVERGE= option. The default value is 1E–5.

HALTONSTART=number
specifies the starting point of the Halton sequence. The specified number must be a positive integer.
The default is HALTONSTART=11.

HEV=( option-list )
specifies options that are used to estimate the HEV model. The HEV model with a unit scale for the
alternative 1 is estimated using the following SAS statement:

model y = x1 x2 x3 / hev=(unitscale=1);

The following options can be used in the HEV= option. These options are listed within parentheses
and separated by commas.

INTORDER=number
specifies the number of summation terms for Gaussian quadrature integration. The default
is INTORDER=40. The maximum order is limited to 45. This option applies only to the
INTEGRATION=LAGUERRE method.

UNITSCALE=number-list
specifies restrictions on scale parameters of stochastic utility components.

INTEGRATE=LAGUERRE | HARDY
specifies the integration method. The INTEGRATE=HARDY option specifies an adaptive
integration method, while the INTEGRATE=LAGUERRE option specifies the Gauss-Laguerre
approximation method. The default is INTEGRATE=LAGUERRE.

MIXED=( option-list )
specifies options that are used for mixed logit estimation. The mixed logit model with normally
distributed random parameters is specified as follows:

model y = x1 x2 x3 / mixed=(normalparm=x1);

The following options can be used in the MIXED= option. The options are listed within parentheses
and separated by commas.

LOGNORMALPARM=variables
specifies the variables whose random coefficients are lognormally distributed. LOGNORMAL-
PARM= variables must be included on the right-hand side of the MODEL statement.

NORMALEC=variables
specifies the error component variables whose coefficients have a normal distribution N.0; �2/.
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NORMALPARM=variables
specifies the variables whose random coefficients are normally distributed. NORMALPARM=
variables must be included on the right-hand side of the MODEL statement.

UNIFORMEC=variables
specifies the error component variables whose coefficients have a uniform distribution
U.�
p
3�;
p
3�/.

UNIFORMPARM=variables
specifies the variables whose random coefficients are uniformly distributed. UNIFORMPARM=
variables must be included on the right-hand side of the MODEL statement.

NCHOICE=number
specifies the number of choices for multinomial choice models when all individuals have the same
choice set. When individuals have different number of choices, the NCHOICE= option is not allowed,
and the CHOICE= option should be used. The NCHOICE= and CHOICE= options must not be used
simultaneously, and the NCHOICE= option cannot be used for nested logit models.

NSIMUL=number
specifies the number of simulations when the mixed logit or multinomial probit model is estimated.
The default is NSIMUL=100. In general, you need a smaller number of simulations with RAND-
NUM=HALTON than with RANDNUM=PSEUDO.

RANDNUM=value
specifies the type of the random number generator used for simulation. RANDNUM=HALTON is the
default. The following option values are allowed:

PSEUDO specifies pseudo-random number generation.

HALTON specifies Halton sequence generation.

RANDINIT

RANDINIT=number
specifies that initial parameter values be perturbed by uniform pseudo-random numbers for numerical
optimization of the objective function. The default is U.�1; 1/. When the RANDINIT=r option is
specified, U.�r; r/ pseudo-random numbers are generated. The value r should be positive. With a
RANDINIT or RANDINIT= option, there are pure random searches for a given number of trials (1,000
for conditional or nested logit, and 500 for other models) to get a maximum (or minimum) value of
the objective function. For example, when there is a parameter estimate with an initial value of 1, the
RANDINIT option adds a generated random number u to the initial value and computes an objective
function value by using 1C u. This option is helpful in finding the initial value automatically if there
is no guidance in setting the initial estimate.

RANK
specifies that the dependent variable contain ranks. The numbers must be positive integers starting from
1. When the dependent variable has value 1, the corresponding alternative is chosen. This option is
provided only as a convenience to the user; the extra information contained in the ranks is not currently
used for estimation purposes.
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RESTART=( option-list )
specifies options that are used for reiteration of the optimization problem. When the ADDRANDOM
option is specified, the initial value of reiteration is computed using random grid searches around the
initial solution, as follows:

model y = x1 x2 / type=clogit
restart=(addvalue=(.01 .01));

The preceding SAS statement reestimates a conditional logit model by adding ADDVALUE= values.
If the ADDVALUE= option contains missing values, the RESTART= option uses the corresponding
estimate from the initial stage. If no ADDVALUE= value is specified for an estimate, a default value
equal to (|estimate| * 1e-3) is added to the corresponding estimate from the initial stage. If both the
ADDVALUE= and ADDRANDOM(=) options are specified, ADDVALUE= is ignored.

The following options can be used in the RESTART= option. The options are listed within parentheses.

ADDMAXIT=number
specifies the maximum number of iterations for the second stage of the estimation.
The default is ADDMAXIT=100.

ADDRANDOM | ADDRANDOM=value
specifies random added values to the estimates from the initial stage. With the
ADDRANDOM option, U.�1; 1/ random numbers are created and added to the
estimates obtained in the initial stage. When the ADDRANDOM=r option is
specified, U.�r; r/ random numbers are generated. The restart initial value is
determined based on the given number of random searches (1,000 for conditional
or nested logit, and 500 for other models).

ADDVALUE=( value-list )
specifies values added to the estimates from the initial stage. A missing value in
the list is considered as a zero value for the corresponding estimate. When the
ADDVALUE= option is not specified, default values equal to (|estimate| * 1e-3) are
added.

SAMESCALE
specifies that the parameters of the inclusive values be the same within a group at each level when the
nested logit is estimated.

SEED=number
specifies an initial seed for pseudo-random number generation. The SEED= value must be less than
231 � 1. If the SEED= value is negative or zero, the time of day from the computer’s clock is used to
obtain the initial seed. The default is SEED=0.

SPSCALE
specifies that the parameters of the inclusive values be the same for any choice with only one nested
choice within a group, for each level in a nested logit model. This option is useful in analyzing stated
preference data.
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TYPE=value
specifies the type of model to be analyzed. The following model types are supported:

CONDITIONLOGIT | CLOGIT | CL specifies a conditional logit model.

HEV specifies a heteroscedastic extreme-value model.

MIXEDLOGIT | MXL specifies a mixed logit model.

MULTINOMPROBIT | MPROBIT | MP specifies a multinomial probit model.

NESTEDLOGIT | NLOGIT | NL specifies a nested logit model.

UNITVARIANCE=( number-list )
specifies normalization restrictions on error variances of multinomial probit for the choices whose
numbers are given in the list. If the UNITVARIANCE= option is specified, it must include at least two
choices. Also, for identification, additional zero restrictions are placed on the correlation coefficients
for the last choice in the list.

COVEST=value
specifies the type of covariance matrix. The following types are supported:

OP specifies the covariance from the outer product matrix.

HESSIAN specifies the covariance from the Hessian matrix.

QML specifies the covariance from the outer product and Hessian matrices.

When COVEST=OP is specified, the outer product matrix is used to compute the covariance matrix of
the parameter estimates. The COVEST=HESSIAN option produces the covariance matrix by using the
inverse Hessian matrix. The quasi-maximum likelihood estimates are computed with COVEST=QML.
The default is COVEST=HESSIAN when the Newton-Raphson method is used. COVEST=OP is the
default when the OPTMETHOD=QN option is specified.

Printing Options

ALL
requests all printing options.

COVB
displays the estimated covariances of the parameter estimates.

CORRB
displays the estimated correlation matrix of the parameter estimates.

ITPRINT
displays the initial parameter estimates, convergence criteria, and constraints of the optimization.
At each iteration, the objective function value, the maximum absolute gradient element, the step
size, and the slope of search direction are printed. The objective function is the full negative log-
likelihood function for the maximum likelihood method. When the ITPRINT option is specified and
the NLOPTIONS statement is specified, all printing options in the NLOPTIONS statement are ignored.
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NOPRINT
suppresses all displayed output.

Estimation Control Options

You can also specify detailed optimization options in the NLOPTIONS statement. The OPTMETHOD=
option overrides the TECHNIQUE= option in the NLOPTIONS statement. The NLOPTIONS statement is
ignored if the OPTMETHOD= option is specified.

INITIAL=( initial-values )

START=( initial-values )
specifies initial values for some or all of the parameter estimates. The values specified are assigned
to model parameters in the same order in which the parameter estimates are displayed in the MDC
procedure output.

When you use the INITIAL= option, the initial values in the INITIAL= option must satisfy the
restrictions specified for the parameter estimates. If they do not, the initial values you specify are
adjusted to satisfy the restrictions.

MAXITER=number
sets the maximum number of iterations allowed. The MAXITER= option overrides the MAXITER=
option in the NLOPTIONS statement. The default is MAXITER=100.

OPTMETHOD=value
specifies the optimization technique when the estimation method uses nonlinear optimization. The
following techniques are supported:

QN specifies the quasi-Newton method.

NR specifies the Newton-Raphson method.

TR specifies the trust region method.

The OPTMETHOD=NR option is the same as the TECHNIQUE=NEWRAP option in the NLOPTIONS
statement. For the conditional and nested logit models, the default is OPTMETHOD=NR. For other
models, the default is OPTMETHOD=QN.

NEST Statement
NEST LEVEL ( level-number )= ( choices@choice, . . . ) ;

The NEST statement is used when one choice variable contains all possible alternatives and the
TYPE=NLOGIT option is specified. The decision tree is constructed based on the NEST statement. When
the choice set is specified using multiple CHOICE= variables in the MODEL statement, the NEST statement
is ignored.

Consider the following eight choices that are nested in a three-level tree structure:

Level 1 Level 2 Level 3 top
1 1 1 1
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2 1 1 1
3 1 1 1
4 2 1 1
5 2 1 1
6 2 1 1
7 3 2 1
8 3 2 1

You can use the following NEST statement to specify the tree structure displayed in Figure 24.22:

nest level(1) = (1 2 3 @ 1, 4 5 6 @ 2, 7 8 @ 3),
level(2) = (1 2 @ 1, 3 @ 2),
level(3) = (1 2 @ 1);

Figure 24.22 A Three-Level Tree

Note that the decision tree is constructed based on the sequence of first-level choice set specification.
Therefore, specifying another order at Level 1 builds a different tree. The following NEST statement builds
the tree displayed in Figure 24.23:

nest level(1) = (4 5 6 @ 2, 1 2 3 @ 1, 7 8 @ 3),
level(2) = (1 2 @ 1, 3 @ 2),
level(3) = (1 2 @ 1);
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Figure 24.23 An Alternative Three-Level Tree

However, the NEST statement with a different sequence of choice specification at higher levels builds the
same tree as displayed in Figure 24.22 if the sequence at the first level is the same:

nest level(1) = (1 2 3 @ 1, 4 5 6 @ 2, 7 8 @ 3),
level(2) = (3 @ 2, 1 2 @ 1),
level(3) = (1 2 @ 1);

The following specifications are equivalent:

nest level(2) = (3 @ 2, 1 2 @ 1)

nest level(2) = (3 @ 2, 1 @ 1, 2 @ 1)

nest level(2) = (1 @ 1, 2 @ 1, 3 @ 2)

Since the MDC procedure contains multiple cases for each individual, it is important to keep the data
sequence in the proper order. Consider the four-choice multinomial model with one explanatory variable
cost:

pid choice y cost
1 1 1 10
1 2 0 25
1 3 0 20
1 4 0 30
2 1 0 15
2 2 0 22
2 3 1 16
2 4 0 25

The order of data needs to correspond to the value of choice. Therefore, the following data set is equivalent
to the preceding data:
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pid choice y cost
1 2 0 25
1 3 0 20
1 1 1 10
1 4 0 30
2 3 1 16
2 4 0 25
2 1 0 15
2 2 0 22

The two-level nested model is estimated with a NEST statement, as follows:

proc mdc data=one type=nlogit;
model y = cost / choice=(choice);
id pid;
utility u(1,) = cost;
nest level(1) = (1 2 3 @ 1, 4 @ 2),

level(2) = (1 2 @ 1);
run;

The tree is constructed as in Figure 24.24.

Figure 24.24 A Two-Level Tree

Another model is estimated if you specify the decision tree as in Figure 24.25. The different nested tree
structure is specified in the following SAS statements:

proc mdc data=one type=nlogit;
model y = cost / choice=(choice);
id pid;
utility u(1,) = cost;
nest level(1) = (1 @ 1, 2 3 4 @ 2),

level(2) = (1 2 @ 1);
run;
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Figure 24.25 An Alternate Two-Level Tree

NLOPTIONS Statement
NLOPTIONS options ;

PROC MDC uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. The
NLOPTIONS statement specifies nonlinear optimization options. The NLOPTIONS statement must follow
the MODEL statement. For a list of all the options of the NLOPTIONS statement, see Chapter 7, “Nonlinear
Optimization Methods.”

OUTPUT Statement
OUTPUT options ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimated linear predictors (XBETA) and predicted probabilities (P). The input data set must
be sorted by the choice variables within each ID.

OUT=SAS-data-set
specifies the name of the output data set.

PRED=variable name

P=variable name
requests the predicted probabilities by naming the variable that contains the predicted probabilities in
the output data set.

XBETA=variable name
names the variable that contains the linear predictor (x0ˇ) values. However, the XBETA= option is not
supported in the nested logit model.
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RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

expression operator expression ;

The operator can be =, <, >, <= , or >=.

Restriction expressions can be composed of parameters; multiplication (�), summation (C), and subtraction
(�) operators; and constants. Parameters named in restriction expressions must be among the parameters
estimated by the model. Parameters associated with a regressor variable are referred to by the name of the
corresponding regressor variable. The restriction expressions must be a linear function of the parameters.

Lagrange multipliers are reported for all the active linear constraints. In the displayed output, the Lagrange
multiplier estimates are identified with the names Restrict1, Restrict2, and so on. The probability of the
Lagrange multipliers is computed using a beta distribution (LaMotte 1994).

The following are examples of using the RESTRICT statement:

proc mdc data=one;
model y = x1-x10 /

type=clogit
choice=(mode 1 2 3);

id pid;
restrict x1*2 <= x2 + x3, ;
run;

proc mdc data=newdata;
model decision = ttime /

type=mprobit
nchoice=3
unitvariance=(1 2)
covest=hess;

id pid;
restrict RHO_31 = 0, STD_3<=1;
run;
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TEST Statement
<‘label’:> TEST <‘string’:> equation <,equation. . . > </ options> ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to
be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must
correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the
corresponding regressor. The keyword INTERCEPT refers to the coefficient of the intercept.

The following options can be specified after the slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

WALD
requests the Wald test.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

The following statements illustrate the use of the TEST statement:

proc mdc;
model decision = x1 x2 / type=clogit

choice=(mode 1 2 3);
id pid;
test x1 = 0, 0.5 * x1 + 2 * x2 = 0;

run;

The test investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ1 C 2ˇ2 D 0

Only linear equality restrictions and tests are permitted in PROC MDC. Tests expressions can be composed
only of algebraic operations that use the addition symbol (+), subtraction symbol (–), and multiplication
symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. The TEST statement can be
labeled in two ways. A TEST statement can be preceded by a label followed by a colon. Alternatively, the
keyword TEST can be followed by a quoted string followed by a colon. If both are present, PROC MDC uses
the label that precedes the first colon. If no label is present, PROC MDC automatically labels the tests.
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UTILITY Statement
UTILITY U (level < , choices > )= variables ;

The UTILITY statement specifies a utility function that can be used in estimating a nested logit model. The
U()= option can have two arguments. The first argument contains level information, and the second argument
is related to choice information. The second argument can be omitted for the first level when all the choices
at the first level share the same variables and the same parameters. However, for any level above the first,
the second argument must be provided. The UTILITY statement specifies a utility function while the NEST
statement constructs the decision tree.

Consider a two-level nested logit model that has one explanatory variable at level 1. This model can be
specified as follows:

proc mdc data=one type=nlogit;
model y = cost / choice=(choice);
id pid;
utility u(1,2 3 4) = cost;
nest level(1) = (1 @ 1, 2 3 4 @ 2),

level(2) = (1 2 @ 1);
run;

You also can specify the following statement because all the variables at the first level share the same
explanatory variable, cost:

utility u(1,) = cost;

The variable, cost, must be listed in the MODEL statement. When the additional explanatory variable,
dummy, is included at level 2, another U()= option needs to be specified. Note that the U()= option must
specify choices within any level above the first. Thus, it is specified as U(2, 1 2) in the following statements:

proc mdc data=one type=nlogit;
model y = cost dummy / choice=(choice);
id pid;
utility u(1,) = cost,

u(2,1 2) = dummy;
nest level(1) = (1 @ 1, 2 3 4 @ 2),

level(2) = (1 2 @ 1);
run;
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Details: MDC Procedure

Multinomial Discrete Choice Modeling
When the dependent variable takes multiple discrete values, you can use multinomial discrete choice modeling
to analyze the data. This section considers models for unordered multinomial data.

Let the random utility function be defined by

Uij D Vij C �ij

where the subscript i is an index for the individual, the subscript j is an index for the alternative, Vij is a
nonstochastic utility function, and �ij is a random component (error) that captures unobserved characteristics
of alternatives or individuals or both. In multinomial discrete choice models, the utility function is assumed
to be linear, so that Vij D x0ijˇ.

In the conditional logit model, each �ij for all j 2 Ci is distributed independently and identically (iid) with
the Type I extreme-value distribution, exp.� exp.��ij //, also known as the Gumbel distribution.

The iid assumption on the random components of the utilities of the different alternatives can be relaxed to
overcome the well-known and restrictive independence from irrelevant alternatives (IIA) property of the
conditional logit model. This allows for more flexible substitution patterns among alternatives than the one
imposed by the conditional logit model. (See the section “Independence from Irrelevant Alternatives (IIA)”
on page 1381.)

The nested logit model is derived by allowing the random components to be identical but nonindependent.
Instead of independent Type I extreme-value errors, the errors are assumed to have a generalized extreme-
value distribution. This model generalizes the conditional logit model to allow for particular patterns of
correlation in unobserved utility (McFadden 1978).

Another generalization of the conditional logit model, the heteroscedastic extreme-value (HEV) model, is
obtained by allowing independent but nonidentical errors distributed with a Type I extreme-value distribution
(Bhat 1995). It permits different variances on the random components of utility across the alternatives.

Mixed logit models are also generalizations of the conditional logit model that can represent very general
patterns of substitution among alternatives. For more information, see the section “Mixed Logit Model” on
page 1383.

The multinomial probit (MNP) model is derived when the errors, .�i1; �i2; : : : ; �iJ /, have a multivariate
normal (MVN) distribution. Thus, this model accommodates a very general error structure.

The multinomial probit model requires burdensome computation compared to a family of multinomial choice
models derived from the Gumbel distributed utility function, since it involves multi-dimensional integration
(with dimension J � 1) in the estimation process. In addition, the multinomial probit model requires more
parameters than other multinomial choice models. As a result, conditional and nested logit models are used
more frequently, even though they are derived from a utility function whose random component is more
restrictively defined than the multinomial probit model.

The event of a choice being made, fyi D j g, can be expressed using a random utility function

Uij � maxk2Ci ;k¤jUik
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where Ci is the choice set of individual i. Individual i chooses alternative j if and only if it provides a level of
utility that is greater than or equal to that of any other alternative in his choice set. Then, the probability that
individual i chooses alternative j (from among the ni choices in his choice set Ci ) is

Pi .j / D Pij D P Œx0ijˇ C �ij � maxk2Ci .x
0
ikˇ C �ik/�

Multinomial Logit and Conditional Logit
When explanatory variables contain only individual characteristics, the multinomial logit model is defined as

P.yi D j / D Pij D
exp.x0iˇj /PJ
kD0 exp.x

0
iˇk/

forj D 0; : : : ; J

where yi is a random variable that indicates the choice made, xi is a vector of characteristics specific to the
ith individual, and ˇj is a vector of coefficients specific to the jth alternative. Thus, this model involves
choice-specific coefficients and only individual specific regressors. For model identification, it is often
assumed that ˇ0 D 0. The multinomial logit model reduces to the binary logit model if J D 1.

The ratio of the choice probabilities for alternatives j and l (the odds ratio of alternatives j and l) is

Pij

Pil
D

exp.x0iˇj /=
PJ
kD0 exp.x

0
iˇk/

exp.x0iˇl/=
PJ
kD0 exp.x

0
iˇk/

D expŒx0i .ˇj � ˇl/�

Note that the odds ratio of alternatives j and l does not depend on any alternatives other than j and l. For more
information, see the section “Independence from Irrelevant Alternatives (IIA)” on page 1381.

The log-likelihood function of the multinomial logit model is

L D
NX
iD1

JX
jD0

dij lnP.yi D j /

where

dij D

�
1 if individual i chooses alternative j
0 otherwise

This type of multinomial choice modeling has a couple of weaknesses: it has too many parameters (the
number of individual characteristics times J), and it is difficult to interpret. The multinomial logit model can
be used to predict the choice probabilities, among a given set of J C 1 alternatives, of an individual with
known vector of characteristics xi .

The parameters of the multinomial logit model can be estimated with the TYPE=CLOGIT option in the
MODEL statement; however, this requires modification of the conditional logit model to allow individual
specific effects.

The conditional logit model, sometimes called the multinomial logit model, is similarly defined when choice-
specific data are available. Using properties of Type I extreme-value (Gumbel) distribution, the probability
that individual i chooses alternative j from among the choices in his choice set Ci is

P.yi D j / D Pij D P Œx0ijˇ C �ij � maxk2Ci ;k¤j .x
0
ikˇ C �ik/� D

exp.x0ijˇ/P
k2Ci

exp.x0
ik
ˇ/
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where xij is a vector of attributes specific to the jth alternative as perceived by the ith individual. It is assumed
that there are ni choices in each individual’s choice set, Ci .

The log-likelihood function of the conditional logit model is

L D
NX
iD1

X
j2Ci

dij lnP.yi D j /

The conditional logit model can be used to predict the probability that an individual will choose a previously
unavailable alternative, given knowledge of ˇ and the vector xij of choice-specific characteristics.

Independence from Irrelevant Alternatives (IIA)

The problematic aspect of the conditional logit (and the multinomial logit) model lies in the property of
independence from irrelevant alternatives (IIA). The IIA property can be derived from the probability ratio of
any two choices. For the conditional logit model,

Pij

Pil
D

exp.x0ijˇ/=
P
k2Ci

exp.x0
ik
ˇ/

exp.x0
il
ˇ/=

P
k2Ci

exp.x0
ik
ˇ/
D expŒ.xij � xil/0ˇ�

It is evident that the ratio of the probabilities for alternatives j and l does not depend on any alternatives other
than j and l. This was also shown to be the case for the multinomial logit model. Thus, for the conditional and
multinomial logit models, the ratio of probabilities of any two alternatives is necessarily the same regardless
of what other alternatives are in the choice set or what the characteristics of the other alternatives are. This is
referred to as the IIA property.

The IIA property is useful from the point of view of estimation and forecasting. For example, it allows the
prediction of demand for currently unavailable alternatives. If the IIA property is appropriate for the choice
situation being considered, then estimation can be based on the set of currently available alternatives, and
then the estimated model can be used to calculate the probability that an individual would choose a new
alternative not considered in the estimation procedure. However, the IIA property is restrictive from the
point of view of choice behavior. Models that display the IIA property predict that a change in the attributes
of one alternative changes the probabilities of the other alternatives proportionately such that the ratios of
probabilities remain constant. Thus, cross elasticities due to a change in the attributes of an alternative j are
equal for all alternatives k ¤ j . This particular substitution pattern might be too restrictive in some choice
settings.

The IIA property of the conditional logit model follows from the assumption that the random components of
utility are identically and independently distributed. The other models in PROC MDC (namely, nested logit,
HEV, mixed logit, and multinomial probit) relax the IIA property in different ways.

For an example of Hausman’s specification test of IIA assumption, see “Example 24.6: Hausman’s Specifica-
tion Test” on page 1414.
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Heteroscedastic Extreme-Value Model
The heteroscedastic extreme-value (HEV) model (Bhat 1995) allows the random components of the utility
function to be nonidentical. Specifically, the HEV model assumes independent but nonidentical error terms
distributed with the Type I extreme-value distribution. The HEV model allows the variances of the random
components of utility to differ across alternatives. Bhat (1995) argues that the HEV model does not have the
IIA property. The HEV model contains the conditional logit model as a special case. The probability that an
individual i will choose alternative j from the set Ci of available alternatives is

Pi .j / D

Z 1
�1

Y
k2Ci ;k¤j

�

"
x0ijˇ � x0

ik
ˇ C �jw

�k

#
.w/dw

where the choice set Ci has ni elements and

�.x/ D exp.� exp.�x//

.x/ D exp.�x/�.x/

are the cumulative distribution function and probability density function of the Type I extreme-value distri-
bution. The variance of the error term for the jth alternative is 1

6
�2�2j . If the scale parameters, �j , of the

random components of utility of all alternatives are equal, then this choice probability is the same as that of
the conditional logit model. The log-likelihood function of the HEV model can be written as

L D
NX
iD1

X
j2Ci

dij lnŒPi .j /�

where

dij D

�
1 if individual i chooses alternative j
0 otherwise

Since the log-likelihood function contains an improper integral function, it is computationally difficult to get
a stable estimate. With the transformation u D exp.�w/, the probability can be written

Pi .j / D

Z 1
0

…k2Ci ;k¤j�

"
x0ijˇ � x0

ik
ˇ � �j ln.u/

�k

#
exp.�u/du

D

Z 1
0

Gij .u/ exp.�u/du

Using the Gauss-Laguerre weight function, W.x/ D exp.�u/, the integration of the log-likelihood function
can be replaced with a summation as follows:Z 1

0

Gij .u/ exp.�u/du D
KX
kD1

wkGij .xk/

Weights (wk) and abscissas (xk) are tabulated by Abramowitz and Stegun (1970).
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Mixed Logit Model
In mixed logit models, an individual’s utility from any alternative can be decomposed into a deterministic
component, x0ijˇ, which is a linear combination of observed variables, and a stochastic component, �ij C �ij ,

Uij D x0ijˇ C �ij C �ij

where xij is a vector of observed variables that relate to individual i and alternative j, ˇ is a vector of
parameters, �ij is an error component that can be correlated among alternatives and heteroscedastic for each
individual, and �ij is a random term with zero mean that is independently and identically distributed over
alternatives and individuals. The conditional logit model is derived if you assume �ij has an iid Gumbel
distribution and V.�ij / D 0.

The mixed logit model assumes a general distribution for �ij and an iid Gumbel distribution for �ij . Denote
the density function of the error component �ij as f .�ij j/, where  is a parameter vector of the distribution
of �ij . The choice probability of alternative j for individual i is written as

Pi .j / D

Z
Qi .j j�ij /f .�ij j/d�ij

where the conditional choice probability for a given value of �ij is the logit

Qi .j j�ij / D
exp.x0ijˇ C �ij /P

k2Ci
exp.x0

ik
ˇ C �ik/

Since �ij is not given, the unconditional choice probability, Pi .j /, is the integral of the conditional choice
probability, Qi .j j�ij /, over the distribution of �ij . This model is called “mixed logit” since the choice
probability is a mixture of logits with f .�ij j/ as the mixing distribution.

In general, the mixed logit model does not have an exact likelihood function because the probability Pi .j /
does not always have a closed form solution. Therefore, a simulation method is used for computing the
approximate probability,

QPi .j / D 1=S

SX
sD1

QQi .j j�
s
ij /

where S is the number of simulation replications and QPi .j / is a simulated probability. The simulated
log-likelihood function is computed as

QL D
NX
iD1

niX
jD1

dij ln. QPi .j //

where

dij D

�
1 if individual i chooses alternative j
0 otherwise

For simulation purposes, assume that the error component has a specific structure,

�ij D z0ij�C w0ijˇ
�
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where zij is a vector of observed data and � is a random vector with zero mean and density function  .�j/.
The observed data vector (zij ) of the error component can contain some or all elements of xij . The component
z0ij� induces heteroscedasticity and correlation across unobserved utility components of the alternatives.
This allows flexible substitution patterns among the alternatives. The kth element of vector � is distributed as

�k � .0; �
2
k /

Therefore, �k can be specified as

�k D �k��

where

�� � N.0; 1/

or

�� � U.�
p
3;
p
3/

In addition, ˇ� is a vector of random parameters (random coefficients). Random coefficients allow hetero-
geneity across individuals in their sensitivity to observed exogenous variables. The observed data vector, wij ,
is a subset of xij . The following three types of distributions for the random coefficients are supported, where
the mth element of ˇ� is denoted as ˇ�m:

� Normally distributed coefficient with the mean bm and spread sm being estimated.

ˇ�m D bm C sm�ˇ and �ˇ � N.0; 1/

� Uniformly distributed coefficient with the mean bm and spread sm being estimated. A uniform
distribution with mean b and spread s is U.b � s; b C s/.

ˇ�m D bm C sm�ˇ and �ˇ � U.�1; 1/

� Lognormally distributed coefficient. The coefficient is calculated as

ˇ�m D exp.bm C sm�ˇ / and �ˇ � N.0; 1/

where bm and sm are parameters that are estimated.

The estimate of spread for normally, uniformly, and lognormally distributed coefficients can be negative. The
absolute value of the estimated spread can be interpreted as an estimate of standard deviation for normally
distributed coefficients.

A detailed description of mixed logit models can be found, for example, in Brownstone and Train (1999).
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Multinomial Probit
The multinomial probit model allows the random components of the utility of the different alternatives to be
nonindependent and nonidentical. Thus, it does not have the IIA property. The increase in the flexibility of
the error structure comes at the expense of introducing several additional parameters in the covariance matrix
of the errors.

Consider the random utility function

Uij D x0ijˇ C �ij

where the joint distribution of .�i1; �i2; : : : ; �iJ / is multivariate normal:26664
�i1
�i2
:::

�iJ

37775 � N.0;†/
† D

�
�jk

�
j;kD1;:::;J

The dimension of the error covariance matrix is determined by the number of alternatives J. Given
.xi1; xi2; : : : ; xiJ /, the jth alternative is chosen if and only if Uij � Uik for all k ¤ j . Thus, the probability
that the jth alternative is chosen is

P.yi D j / D Pij D P Œ�i1 � �ij < .xij � xi1/0ˇ; : : : ; �iJ � �ij < .xij � xiJ /0ˇ�

where yi is a random variable that indicates the choice made. This is a cumulative probability from
a .J � 1/-variate normal distribution. Since evaluation of this probability involves multidimensional
integration, it is practical to use a simulation method to estimate the model. Many studies have shown that the
simulators proposed by the following authors (henceforth referred to as GHK) perform well: Geweke (1989);
Hajivassiliou (1993); Keane (1994). For example, Hajivassiliou, McFadden, and Ruud (1996) compare 13
simulators using 11 different simulation methods and conclude that the GHK simulation method is the most
reliable. To compute the probability of the multivariate normal distribution, the recursive simulation method
is used. For more information about GHK simulators, see Hajivassiliou (1993).

The log-likelihood function for the multinomial probit model can be written as

L D
NX
iD1

JX
jD1

dij lnP.yi D j /

where

dij D

�
1 if individual i chooses alternative j
0 otherwise

For identification of the multinomial probit model, two of the diagonal elements of † are normalized to 1,
and it is assumed that for one of the choices whose error variance is normalized to 1 (say, k), it is also true that
�jk D �kj D 0 for j D 1; : : : ; J and j ¤ k. Thus, a model with J alternatives has at most J.J � 1/=2 � 1
covariance parameters after normalization.
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Let D and R be defined as

D D

26664
�1 0 � � � 0

0 �2 � � � 0
:::

:::
:::

:::

0 0 � � � �J

37775

R D

26664
1 �12 � � � �1J
�21 1 � � � �2J
:::

:::
:::

:::

�J1 �J2 � � � 1

37775
where �2j D �jj and �jk D

�jk
�j�k

. Then, for identification, �J�1 D �J D 1 and �kJ D �Jk D 0, for all
k ¤ J can be imposed, and the error covariance matrix is † D DRD.

In the standard MDC output, the parameter estimates STD_j and RHO_jk correspond to �j and �jk .

In principle, the multinomial probit model is fully identified with the preceding normalizations. However, in
practice, convergence in applications of the model with more than three alternatives often requires additional
restrictions on the elements of †.

It must also be noted that the unrestricted structure of the error covariance matrix makes it impossible to
forecast demand for a new alternative without knowledge of the new .J C 1/ by .J C 1/ error covariance
matrix.

Nested Logit
The nested logit model (McFadden 1978, 1981) allows partial relaxation of the assumption of independence
of the stochastic components of utility of alternatives. In some choice situations, the IIA property holds for
some pairs of alternatives but not all. In these situations, the nested logit model can be used if the set of
alternatives faced by an individual can be partitioned into subsets such that the IIA property holds within
subsets but not across subsets.

In the nested logit model, the joint distribution of the errors is generalized extreme value (GEV). This is a
generalization of the Type I extreme-value distribution that gives rise to the conditional logit model. Note that
all �ij within each subset are correlated with each other. For more information, see McFadden (1978, 1981).

Nested logit models can be described analytically following the notation of McFadden (1981). Assume that
there are L levels, with 1 representing the lowest and L representing the highest level of the tree. The index of
a node at level h in the tree is a pair .jh; �h/, where �h D .jhC1; : : : ; jL/ is the index of the adjacent node
at level hC 1. Thus, the primitive alternatives, at level 1 in the tree, are indexed by vectors .j1; : : : ; jL/,
and the alternative nodes at level L are indexed by integers jL. The choice set C�h is the set of primitive
alternatives (at level 1) that belong to branches below the node �h. The notation C�h is also used to denote
a set of indices jh such that .jh; �h/ is a node immediately below �h. Note that C�0 is a set with a single
element, while C�L represents a choice set that contains all possible alternatives. As an example, consider the
circled node at level 1 in Figure 24.26. Since it stems from node 11, �h D 11, and since it is the second node
stemming from 11, jh D 2, its index is �h�1 D �0 D .jh; �h/ D 211. Similarly, C11 D f111; 211; 311g
contains all the possible choices below 11.
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Although this notation is useful for writing closed-form solutions for probabilities, the MDC procedure
allows a more flexible definition of indices. For more information about how to describe decision trees within
the MDC procedure, see the section “NEST Statement” on page 1371.

Figure 24.26 Node Indices for a Three-Level Tree

Let x.h/i Ijh�h denote the vector of observed variables for individual i common to the alternatives below node
jh�h. The probability of choice at level h has a closed-form solution and is written

Pi .jhj�h/ D
exp

h
x.h/0i Ijh�h

ˇ.h/ C
P
k2CiIjh�h

Ik;jh�h�k;jh�h

i
P
j2CiI�h

exp
h
x.h/0i Ij�h

ˇ.h/ C
P
k2CiIj�h

Ik;j�h�k;j�h

i ; h D 2; : : : ; L
where I�h is the inclusive value (at level hC 1) of the branch below node �h and is defined recursively as
follows:

I�h D ln

8<: X
j2CiI�h

exp

24x.h/0i Ij�h
ˇ.h/ C

X
k2CiIj�h

Ik;j�h�k;j�h

359=;
0 � �k;�1 � � � � � �k;�L�1

The inclusive value I�h denotes the average utility that the individual can expect from the branch below
�h. The dissimilarity parameters or inclusive value parameters (�k;j�h) are the coefficients of the inclusive
values and have values between 0 and 1 if nested logit is the correct model specification. When they all take
value 1, the nested logit model is equivalent to the conditional logit model.

At decision level 1, there is no inclusive value; that is, I�0 D 0. Therefore, the conditional probability is

Pi .j1j�1/ D
exp

h
x.1/0i Ij1�1

ˇ.1/
i

P
j2CiI�1

exp
h
x.1/0i Ij�1

ˇ.1/
i
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The log-likelihood function at level h can then be written

L.h/ D
NX
iD1

X
�h02Ci;�hC1

X
j2Ci;�h0

yi;j�h0 lnP.Ci;j�h0 jCi;�h0 /

where yi;j�h0 is an indicator variable that has the value of 1 for the selected choice. The full log-likelihood
function of the nested logit model is obtained by adding the conditional log-likelihood functions at each level:

L D
LX
hD1

L.h/

Note that the log-likelihood functions are computed from conditional probabilities when h < L. The nested
logit model is estimated using the full information maximum likelihood method.

Decision Tree and Nested Logit
You can view choices as a decision tree and model the decision tree by using the nested logit model. You
need to use either the NEST statement or the CHOICE= option of the MODEL statement to specify the
nested tree structure. Additionally, you need to identify which explanatory variables are used at each level of
the decision tree. These explanatory variables are arguments for what is called a utility function. The utility
function is specified using UTILITY statements. For example, consider a two-level decision tree. The tree
structure is displayed in Figure 24.27.

Figure 24.27 Two-Level Decision Tree

A nested logit model with two levels can be specified using the following SAS statements:

proc mdc data=one type=nlogit;
model decision = x1 x2 x3 x4 x5 /

choice=(upmode 1 2, mode 1 2 3 4 5);
id pid;
utility u(1, 3 4 5 @ 2) = x1 x2,

u(1, 1 2 @ 1) = x3 x4,
u(2, 1 2) = x5;

run;

The DATA=one data set should be arranged as follows:
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obs pid upmode mode x1 x2 x3 x4 x5 decision
1 1 1 1 # # # # # 1
2 1 1 2 # # # # # 0
3 1 2 3 # # # # # 0
4 1 2 4 # # # # # 0
5 1 2 5 # # # # # 0
6 2 1 1 # # # # # 0
7 2 1 2 # # # # # 0
8 2 2 3 # # # # # 0
9 2 2 4 # # # # # 0

10 2 2 5 # # # # # 1

All model variables, x1 through x5, are specified in the UTILITY statement. It is required that entries denoted
as # have values for model estimation and prediction. The values of the level 2 utility variable x5 should be
the same for all the primitive (level 1) alternatives below node 1 at level 2 and, similarly, for all the primitive
alternatives below node 2 at level 2. In other words, x5 should have the same value for primitive alternatives
1 and 2 and, similarly, it should have the same value for primitive alternatives 3, 4, and 5. More generally, the
values of any level 2 or higher utility function variables should be constant across primitive alternatives under
each node for which the utility function applies. Since PROC MDC expects this to be the case, it uses the
values of x5 only for the primitive alternatives 1 and 3, ignoring the values for the primitive alternatives 2, 4,
and 5. Thus, PROC MDC uses the values of the utility function variable only for the primitive alternatives
that come first under each node for which the utility function applies. This behavior applies to any utility
function variables that are specified above the first level. The choice variable for level 2 (upmode ) should be
placed before the first-level choice variable (mode ) when the CHOICE= option is specified. Alternatively,
the NEST statement can be used to specify the decision tree. The following SAS statements fit the same
nested logit model:

proc mdc data=a type=nlogit;
model decision = x1 x2 x3 x4 x5 /

choice=(mode 1 2 3 4 5);
id pid;
utility u(1, 3 4 5 @ 2) = x1 x2,

u(1, 1 2 @ 1) = x3 x4,
u(2, 1 2) = x5;

nest level(1) = (1 2 @ 1, 3 4 5 @ 2),
level(2) = (1 2 @ 1);

run;

The U(1, 3 4 5 @ 2)= option specifies three choices, 3, 4, and 5, at level 1 of the decision tree. They are
connected to the upper branch 2. The specified variables (x1 and x2) are used to model this utility function.
The bottom level of the decision tree is level 1. All variables in the UTILITY statement must be included
in the MODEL statement. When all choices at the first level share the same variables, you can omit the
second argument of the U()= option for that level. However, U(1, ) = x1 x2 is not equivalent to the following
statements:

u(1, 3 4 5 @ 2) = x1 x2;
u(1, 1 2 @ 1) = x1 x2;

The CHOICE= variables need to be specified from the top to the bottom level. To forecast demand for new
products, stated preference data are widely used. Stated preference data are attractive for market researchers
because attribute variations can be controlled. Hensher (1993) explores the advantage of combining revealed
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preference (market data) and stated preference data. The scale factor (Vrp=Vsp) can be estimated using the
nested logit model with the decision tree structure displayed in Figure 24.28.

Figure 24.28 Decision Tree for Revealed and Stated Preference Data

Example SAS statements are as follows:

proc mdc data=a type=nlogit;
model decision = x1 x2 x3 /

spscale
choice=(mode 1 2 3 4 5 6);

id pid;
utility u(1,) = x1 x2 x3;
nest level(1) = (1 2 3 @ 1, 4 @ 2, 5 @ 3, 6 @ 4),

level(2) = (1 2 3 4 @ 1);
run;

The SPSCALE option specifies that parameters of inclusive values for nodes 2, 3, and 4 at level 2 be the
same. When you specify the SAMESCALE option, the MDC procedure imposes the same coefficient of
inclusive values for choices 1–4.

Model Fit and Goodness-of-Fit Statistics
McFadden (1974) suggests a likelihood ratio index that is analogous to the R-square in the linear regression
model,

R2M D 1 �
lnL
lnL0

where L is the maximum of the log-likelihood function and L0 is the maximum of the log-likelihood function
when all coefficients, except for an intercept term, are zero. McFadden’s likelihood ratio index is bounded by
0 and 1.

Estrella (1998) proposes the following requirements for a goodness-of-fit measure to be desirable in discrete
choice modeling:

� The measure must take values in Œ0; 1�, where 0 represents no fit and 1 corresponds to perfect fit.

� The measure should be directly related to the valid test statistic for the significance of all slope
coefficients.
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� The derivative of the measure with respect to the test statistic should comply with corresponding
derivatives in a linear regression.

Estrella’s measure is written as

R2E1 D 1 �

�
lnL
lnL0

��.2=N/ lnL0
Estrella suggests an alternative measure,

R2E2 D 1 � Œ.lnL �K/= lnL0�
�.2=N/ lnL0

where lnL0 is computed with null parameter values, N is the number of observations used, and K represents
the number of estimated parameters.

Other goodness-of-fit measures are summarized as follows:

R2CU1 D 1 �
�
L0
L

� 2
N

.Cragg-Uhler 1/

R2CU2 D
1�.L0=L/

2
N

1�L
2
N
0

.Cragg-Uhler 2/

R2A D
2.lnL�lnL0/

2.lnL�lnL0/CN
.Aldrich-Nelson/

R2VZ D R2A
2 lnL0�N
2 lnL0

.Veall-Zimmermann/

The AIC and SBC are computed as follows,

AIC D �2 ln.L/C 2 k

SBC D �2 ln.L/C ln.n/ k

where ln.L/ is the log-likelihood value for the model, k is the number of parameters estimated, and n is the
number of observations (that is, the number of respondents).

Tests on Parameters
In general, the hypothesis to be tested can be written as

H0 W h.�/ D 0

where h.�/ is an r-by-1 vector-valued function of the parameters � given by the r expressions specified in
the TEST statement.

Let OV be the estimate of the covariance matrix of O� . Let O� be the unconstrained estimate of � and Q� be the
constrained estimate of � such that h. Q�/ D 0. Let

A.�/ D @h.�/=@� j O�

Using this notation, the test statistics for the three kinds of tests are computed as follows:
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� The Wald test statistic is defined as

W D h
0

. O�/
8:A. O�/ OV A0. O�/9;�1h. O�/

The Wald test is not invariant to reparameterization of the model (Gregory and Veall 1985; Gallant
1987, p. 219). For more information about the theoretical properties of the Wald test, see Phillips and
Park (1988).

� The Lagrange multiplier test statistic is

LM D �
0

A. Q�/ QV A
0

. Q�/�

where � is the vector of Lagrange multipliers from the computation of the restricted estimate Q� .

� The likelihood ratio test statistic is

LR D 2
�
L. O�/ � L. Q�/

�
where Q� represents the constrained estimate of � and L is the concentrated log-likelihood value.

For each kind of test, under the null hypothesis the test statistic is asymptotically distributed as a �2 random
variable with r degrees of freedom, where r is the number of expressions in the TEST statement. The p-values
reported for the tests are computed from the �2.r/ distribution and are only asymptotically valid.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation
to its small sample distribution than that of the other two tests. However, the Wald test has the lowest
computational cost, since it does not require computation of the constrained estimate Q� .

The following statements are an example of using the TEST statement to perform a likelihood ratio test:

proc mdc;
model decision = x1 x2 / type=clogit

choice=(mode 1 2 3);
id pid;
test 0.5 * x1 + 2 * x2 = 0 / lr;

run;

OUTEST= Data Set
The OUTEST= data set contains all the parameters that are estimated in a MODEL statement. The OUTEST=
option can be used when the PROC MDC call contains one MODEL statement. There are additional
restrictions. For the HEV and multinomial probit models, you need to specify exactly all possible elements
of the choice set, since additional parameters (for example, SCALE1 or STD1) are generated automatically
in the MDC procedure. Therefore, the following SAS statements are not valid when the OUTEST= option is
specified:

proc mdc data=a outest=e;
model y = x / type=hev choice=(alter);

run;

You need to specify all possible choices in the CHOICE= option since the OUTEST= option is specified as
follows:
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proc mdc data=a outest=e;
model y = x / type=hev choice=(alter 1 2 3);

run;

When the NCHOICE= option is specified, no additional information about possible choices is required.
Therefore, the following SAS statements are correct:

proc mdc data=a outest=e;
model y = x / type=mprobit nchoice=3;

run;

The nested logit model does not produce the OUTEST= data set unless the NEST statement is specified.

Each parameter contains the estimate for the corresponding parameter in the corresponding model. In
addition, the OUTEST= data set contains the following variables:

_DEPVAR_ the name of the dependent variable

_METHOD_ the estimation method

_MODEL_ the label of the MODEL statement if one is specified, or blank otherwise

_STATUS_ a character variable that indicates whether the optimization process reached convergence
or failed to converge: 0 indicates that the convergence was reached, 1 indicates that the
maximum number of iterations allowed was exceeded, 2 indicates a failure to improve the
function value, and 3 indicates a failure to converge because the objective function or its
derivatives could not be evaluated or improved, or linear constraints were dependent, or
the algorithm failed to return to feasible region, or the number of iterations was greater
than prespecified.

_NAME_ the name of the row of the covariance matrix for the parameter estimate, if the COVOUT
option is specified, or blank otherwise

_LIKLHD_ the log-likelihood value

_STDERR_ standard error of the parameter estimate, if the COVOUT option is specified

_TYPE_ PARMS for observations that contain parameter estimates, or COV for observations that
contain covariance matrix elements

The OUTEST= data set contains one observation for the MODEL statement giving the parameter estimates
for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations
for the MODEL statement giving the rows of the covariance matrix of parameter estimates. For covariance
observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter
associated with that row of the covariance matrix.
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ODS Table Names
PROC MDC assigns a name to each table it creates. You can use these names to denote the table when using
the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in the
Table 24.3.

Table 24.3 ODS Tables Produced in PROC MDC

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ResponseProfile Response profile Default
ClassLevels Class levels Default
FitSummary Summary of nonlinear estimation Default
GoodnessOfFit Pseudo-R-square measures Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
LinCon Linear constraints ITPRINT
InputOptions Input options ITPRINT
ProblemDescription Problem description ITPRINT
IterStart Optimization start ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ConvergenceStatus Convergence status ITPRINT
ParameterEstimatesResults Resulting parameters ITPRINT
LinConSol Linear constraints evaluated at solution ITPRINT

ODS Tables Created by the TEST Statement
TestResults Test results Default
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Examples: MDC Procedure

Example 24.1: Binary Data Modeling
The MDC procedure supports various multinomial choice models. However, you can also use PROC MDC
to estimate binary choice models such as binary logit and probit because these models are special cases of
multinomial models.

Spector and Mazzeo (1980) studied the effectiveness of a new teaching method on students’ performance in
an economics course. They reported grade point average (gpa), previous knowledge of the material (tuce),
a dummy variable for the new teaching method (psi), and the final course grade (grade). A value of 1 is
recorded for grade if a student earned the letter grade “A,” and 0 otherwise.

The binary logit can be estimated using the conditional logit model. In order to use the MDC procedure, the
data are converted as follows so that each possible choice corresponds to one observation:

data smdata;
input gpa tuce psi grade;

datalines;
2.66 20 0 0
2.89 22 0 0
3.28 24 0 0
2.92 12 0 0

... more lines ...

data smdata1;
set smdata;
retain id 0;
id + 1;

/*-- first choice --*/
choice1 = 1;
choice2 = 0;
decision = (grade = 0);
gpa_2 = 0;
tuce_2 = 0;
psi_2 = 0;
output;

/*-- second choice --*/
choice1 = 0;
choice2 = 1;
decision = (grade = 1);
gpa_2 = gpa;
tuce_2 = tuce;
psi_2 = psi;
output;

run;
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The first 10 observations are displayed in Output 24.1.1. The variables related to grade=0 are omitted since
these are not used for binary choice model estimation.

Output 24.1.1 Converted Binary Data

id decision choice2 gpa_2 tuce_2 psi_2

1 1 0 0.00 0 0

1 0 1 2.66 20 0

2 1 0 0.00 0 0

2 0 1 2.89 22 0

3 1 0 0.00 0 0

3 0 1 3.28 24 0

4 1 0 0.00 0 0

4 0 1 2.92 12 0

5 0 0 0.00 0 0

5 1 1 4.00 21 0

Consider the choice probability of the conditional logit model for binary choice:

Pi .j / D
exp.x0ijˇ/P2
kD1 exp.x

0
ik
ˇ/
; j D 1; 2

The choice probability of the binary logit model is computed based on normalization. The preceding
conditional logit model can be converted as

Pi .1/ D
1

1C exp..xi2 � xi1/0ˇ/

Pi .2/ D
exp..xi2 � xi1/0ˇ/

1C exp..xi2 � xi1/0ˇ/

Therefore, you can interpret the binary choice data as the difference between the first and second choice
characteristics. In the following statements, it is assumed that xi1 D 0. The binary logit model is estimated
and displayed in Output 24.1.2.

/*-- Conditional Logit --*/
proc mdc data=smdata1;

model decision = choice2 gpa_2 tuce_2 psi_2 /
type=clogit
nchoice=2
covest=hess;

id id;
run;



Example 24.1: Binary Data Modeling F 1397

Output 24.1.2 Binary Logit Estimates

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

choice2 1 -13.0213 4.9313 -2.64 0.0083

gpa_2 1 2.8261 1.2629 2.24 0.0252

tuce_2 1 0.0952 0.1416 0.67 0.5014

psi_2 1 2.3787 1.0646 2.23 0.0255

Consider the choice probability of the multinomial probit model:

Pi .j / D P Œ�i1 � �ij < .xij � xi1/0ˇ; : : : ; �iJ � �ij < .xij � xiJ /0ˇ�

The probabilities of choice of the two alternatives can be written as

Pi .1/ D P Œ�i2 � �i1 < .xi1 � xi2/0ˇ�

Pi .2/ D P Œ�i1 � �i2 < .xi2 � xi1/0ˇ�

where
�
�i1
�i2

�
� N

�
0;
�
�21 �12
�12 �22

��
. Assume that xi1 D 0 and �12 D 0. The binary probit model is

estimated and displayed in Output 24.1.3. You do not get the same estimates as that of the usual binary probit
model. The probabilities of choice in the binary probit model are

Pi .2/ D P Œ�i < x0iˇ�

Pi .1/ D 1 � P Œ�i < x0iˇ�

where �i � N.0; 1/. However, the multinomial probit model has the error variance Var.�i2� �i1/ D �21 C�
2
2

if �i1 and �i2 are independent (�12 D 0). In the following statements, unit variance restrictions are imposed
on choices 1 and 2 (�21 D �

2
2 D 1). Therefore, the usual binary probit estimates (and standard errors) can be

obtained by multiplying the multinomial probit estimates (and standard errors) in Output 24.1.3 by 1=
p
2.

/*-- Multinomial Probit --*/
proc mdc data=smdata1;

model decision = choice2 gpa_2 tuce_2 psi_2 /
type=mprobit
nchoice=2
covest=hess
unitvariance=(1 2);

id id;
run;
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Output 24.1.3 Binary Probit Estimates

The MDC Procedure

Multinomial Probit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

choice2 1 -10.5392 3.5956 -2.93 0.0034

gpa_2 1 2.2992 0.9813 2.34 0.0191

tuce_2 1 0.0732 0.1186 0.62 0.5375

psi_2 1 2.0171 0.8415 2.40 0.0165

Example 24.2: Conditional Logit and Data Conversion
In this example, data are prepared for use by the MDCDATA statement. Sometimes, choice-specific
information is stored in multiple variables. Since the MDC procedure requires multiple observations for
each decision maker, you need to arrange the data so that there is an observation for each subject-alternative
(individual-choice) combination. Simple binary choice data are obtained from Ben-Akiva and Lerman (1985).
The following statements create the SAS data set:

data travel;
length mode $ 8;
input auto transit mode $;

datalines;
52.9 4.4 Transit
4.1 28.5 Transit
4.1 86.9 Auto
56.2 31.6 Transit
51.8 20.2 Transit
0.2 91.2 Auto
27.6 79.7 Auto
89.9 2.2 Transit
41.5 24.5 Transit
95.0 43.5 Transit
99.1 8.4 Transit

... more lines ...

The travel time is stored in two variables, auto and transit. In addition, the chosen alternatives are stored in a
character variable, mode. The choice variable, mode, is converted to a numeric variable, decision, since the
MDC procedure supports only numeric variables. The following statements convert the original data set,
travel, and estimate the binary logit model. The first 10 observations of a relevant subset of the new data set
and the parameter estimates are displayed in Output 24.2.1 and Output 24.2.2, respectively.

data new;
set travel;
retain id 0;
id+1;
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/*-- create auto variable --*/
decision = (upcase(mode) = 'AUTO');
ttime = auto;
autodum = 1;
trandum = 0;
output;
/*-- create transit variable --*/
decision = (upcase(mode) = 'TRANSIT');
ttime = transit;
autodum = 0;
trandum = 1;
output;

run;

proc print data=new(obs=10);
var decision autodum trandum ttime;
id id;

run;

Output 24.2.1 Converted Data

id decision autodum trandum ttime

1 0 1 0 52.9

1 1 0 1 4.4

2 0 1 0 4.1

2 1 0 1 28.5

3 1 1 0 4.1

3 0 0 1 86.9

4 0 1 0 56.2

4 1 0 1 31.6

5 0 1 0 51.8

5 1 0 1 20.2

The following statements perform the binary logit estimation:

proc mdc data=new;
model decision = autodum ttime /

type=clogit
nchoice=2;

id id;
run;

Output 24.2.2 Binary Logit Estimation of Modal Choice Data

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

autodum 1 -0.2376 0.7505 -0.32 0.7516

ttime 1 -0.0531 0.0206 -2.57 0.0101
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In order to handle more general cases, you can use the MDCDATA statement. Choice-specific dummy
variables are generated and multiple observations for each individual are created. The following example
converts the original data set travel by using the MDCDATA statement and performs conditional logit analysis.
Interleaved data are output into the new data set new3. This data set has twice as many observations as the
original travel data set.

proc mdc data=travel;
mdcdata varlist( x1 = (auto transit) )

select=mode
id=id
alt=alternative
decvar=Decision / out=new3;

model decision = auto x1 /
nchoice=2
type=clogit;

id id;
run;

The first nine observations of the modified data set are shown in Output 24.2.3. The result of the preceding
program is listed in Output 24.2.4.

Output 24.2.3 Transformed Model Choice Data

Obs MODE AUTO TRANSIT X1 ID ALTERNATIVE DECISION

1 TRANSIT 1 0 52.9 1 1 0

2 TRANSIT 0 1 4.4 1 2 1

3 TRANSIT 1 0 4.1 2 1 0

4 TRANSIT 0 1 28.5 2 2 1

5 AUTO 1 0 4.1 3 1 1

6 AUTO 0 1 86.9 3 2 0

7 TRANSIT 1 0 56.2 4 1 0

8 TRANSIT 0 1 31.6 4 2 1

9 TRANSIT 1 0 51.8 5 1 0

Output 24.2.4 Results Using MDCDATA Statement

The MDC Procedure

Conditional Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

AUTO 1 -0.2376 0.7505 -0.32 0.7516

X1 1 -0.0531 0.0206 -2.57 0.0101
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Example 24.3: Correlated Choice Modeling
Often, it is not realistic to assume that the random components of utility for all choices are independent. This
example shows the solution to the problem of correlated random components by using multinomial probit
and nested logit.

To analyze correlated data, trinomial choice data (1,000 observations) are created using a pseudo-random
number generator by using the following statements. The random utility function is

Uij D Vij C �ij ; j D 1; 2; 3

where

�ij � N

0@0;
24 2 :6 0

:6 1 0

0 0 1

351A
/*-- generate simulated series --*/
%let ndim = 3;
%let nobs = 1000;

data trichoice;
array error{&ndim} e1-e3;
array vtemp{&ndim} _temporary_;
array lm{6} _temporary_ (1.4142136 0.4242641 1 0 0 1);
retain nseed 345678;

do id = 1 to &nobs;
index = 0;
/* generate independent normal variate */
do i = 1 to &ndim;

/* index of diagonal element */
vtemp{i} = rannor(nseed);

end;
/* get multivariate normal variate */
index = 0;
do i = 1 to &ndim;

error{i} = 0;
do j = 1 to i;

error{i} = error{i} + lm{index+j}*vtemp{j};
end;
index = index + i;

end;
x1 = 1.0 + 2.0 * ranuni(nseed);
x2 = 1.2 + 2.0 * ranuni(nseed);
x3 = 1.5 + 1.2 * ranuni(nseed);
util1 = 2.0 * x1 + e1;
util2 = 2.0 * x2 + e2;
util3 = 2.0 * x3 + e3;
do i = 1 to &ndim;

vtemp{i} = 0;
end;
if ( util1 > util2 & util1 > util3 ) then
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vtemp{1} = 1;
else if ( util2 > util1 & util2 > util3 ) then

vtemp{2} = 1;
else if ( util3 > util1 & util3 > util2 ) then

vtemp{3} = 1;
else continue;
/*-- first choice --*/
x = x1;
mode = 1;
decision = vtemp{1};
output;
/*-- second choice --*/
x = x2;
mode = 2;
decision = vtemp{2};
output;
/*-- third choice --*/
x = x3;
mode = 3;
decision = vtemp{3};
output;

end;
run;

First, the multinomial probit model is estimated (see the following statements). Results show that
the standard deviation, correlation, and slope estimates are close to the parameter values. Note that
�12 D

�12q
.�21 /.�

2
2 /
D

0:6p
.2/.1/

D 0:42, �1 D
p
2 D 1:41, �2 D

p
1 D 1, and the parameter value for

the variable x is 2.0. (See Output 24.3.1.)

/*-- Trinomial Probit --*/
proc mdc data=trichoice randnum=halton nsimul=100;

model decision = x /
type=mprobit
choice=(mode 1 2 3)
covest=op
optmethod=qn;

id id;
run;

Output 24.3.1 Trinomial Probit Model Estimation

The MDC Procedure

Multinomial Probit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

x 1 1.7685 0.1191 14.85 <.0001

STD_1 1 1.2514 0.1494 8.38 <.0001

RHO_21 1 0.3971 0.1087 3.65 0.0003

Figure 24.29 shows a two-level decision tree.



Example 24.3: Correlated Choice Modeling F 1403

Figure 24.29 Nested Tree Structure

The following statements estimate the nested model shown in Figure 24.29:

/*-- Two-Level Nested Logit --*/
proc mdc data=trichoice;

model decision = x /
type=nlogit
choice=(mode 1 2 3)
covest=op
optmethod=qn;

id id;
utility u(1,) = x;
nest level(1) = (1 2 @ 1, 3 @ 2),

level(2) = (1 2 @ 1);
run;

The estimated result (see Output 24.3.2) shows that the data support the nested tree model since the estimates
of the inclusive value parameters are significant and are less than 1.

Output 24.3.2 Two-Level Nested Logit

The MDC Procedure

Nested Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

x_L1 1 2.5907 0.1958 13.23 <.0001

INC_L2G1C1 1 0.8103 0.0859 9.43 <.0001

INC_L2G1C2 1 0.8189 0.0955 8.57 <.0001
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Example 24.4: Testing for Homoscedasticity of the Utility Function
The conditional logit model imposes equal variances on random components of utility of all alternatives. This
assumption can often be too restrictive and the calculated results misleading. This example shows several
approaches to testing the homoscedasticity assumption.

The section “Getting Started: MDC Procedure” on page 1347 analyzes an HEV model by using Daganzo’s
trinomial choice data and displays the HEV parameter estimates in Figure 24.15. The inverted scale estimates
for mode “2” and mode “3” suggest that the conditional logit model (which imposes equal variances on
random components of utility of all alternatives) might be misleading. The HEV estimation summary from
that analysis is repeated in Output 24.4.1.

Output 24.4.1 HEV Estimation Summary (�1 D 1)

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -33.41383

Maximum Absolute Gradient 0.0000218

Number of Iterations 11

Optimization Method Dual Quasi-Newton

AIC 72.82765

Schwarz Criterion 78.56372

You can estimate the HEV model with unit scale restrictions on all three alternatives (�1 D �2 D �3 D 1)
with the following statements.

/*-- HEV Estimation --*/
proc mdc data=newdata;

model decision = ttime /
type=hev
nchoice=3
hev=(unitscale=1 2 3, integrate=laguerre)
covest=hess;

id pid;
run;

Output 24.4.2 displays the estimation summary.
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Output 24.4.2 HEV Estimation Summary (�1 D �2 D �3 D 1)

The MDC Procedure

Heteroscedastic Extreme Value Model Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -34.12756

Maximum Absolute Gradient 6.7951E-9

Number of Iterations 5

Optimization Method Dual Quasi-Newton

AIC 70.25512

Schwarz Criterion 72.16714

The test for scale equivalence (SCALE2=SCALE3=1) is performed using a likelihood ratio test statistic. The
following SAS statements compute the test statistic (1.4276) and its p-value (0.4898) from the log-likelihood
values in Output 24.4.1 and Output 24.4.2:

data _null_;
/*-- test for H0: scale2 = scale3 = 1 --*/
/* ln L(max) = -34.1276 */
/* ln L(0) = -33.4138 */
stat = -2 * ( - 34.1276 + 33.4138 );
df = 2;
p_value = 1 - probchi(stat, df);
put stat= p_value=;

run;

The test statistic fails to reject the null hypothesis of equal scale parameters, which implies that the random
utility function is homoscedastic.

A multinomial probit model also allows heteroscedasticity of the random components of utility for different
alternatives. Consider the utility function

Uij D Vij C �ij

where

�i � N

0@0;
24 1 0 0

0 1 0

0 0 �23

351A
This multinomial probit model is estimated by using the following statements:

/*-- Heteroscedastic Multinomial Probit --*/
proc mdc data=newdata;

model decision = ttime /
type=mprobit
nchoice=3
unitvariance=(1 2)
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covest=hess;
id pid;
restrict RHO_31 = 0;

run;

The estimation summary is displayed in Output 24.4.3.

Output 24.4.3 Heteroscedastic Multinomial Probit Estimation Summary

The MDC Procedure

Multinomial Probit Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -33.88604

Log Likelihood Null (LogL(0)) -54.93061

Maximum Absolute Gradient 5.60276E-6

Number of Iterations 8

Optimization Method Dual Quasi-Newton

AIC 71.77209

Schwarz Criterion 75.59613

Number of Simulations 100

Starting Point of Halton Sequence 11

Next, the multinomial probit model with unit variances (�1 D �2 D �3 D 1) is estimated in the following
statements:

/*-- Homoscedastic Multinomial Probit --*/
proc mdc data=newdata;

model decision = ttime /
type=mprobit
nchoice=3
unitvariance=(1 2 3)
covest=hess;

id pid;
restrict RHO_21 = 0;

run;

The estimation summary is displayed in Output 24.4.4.
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Output 24.4.4 Homoscedastic Multinomial Probit Estimation Summary

The MDC Procedure

Multinomial Probit Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 50

Number of Cases 150

Log Likelihood -34.54252

Log Likelihood Null (LogL(0)) -54.93061

Maximum Absolute Gradient 1.37303E-7

Number of Iterations 5

Optimization Method Dual Quasi-Newton

AIC 71.08505

Schwarz Criterion 72.99707

Number of Simulations 100

Starting Point of Halton Sequence 11

The test for homoscedasticity (�3 = 1) under �1 D �2 D 1 shows that the error variance is not heteroscedastic
since the test statistic (1.313) is less than �20:05;1 D 3:84. The marginal probability or p-value computed in
the following statements from the PROBCHI function is 0.2519:

data _null_;
/*-- test for H0: sigma3 = 1 --*/
/* ln L(max) = -33.8860 */
/* ln L(0) = -34.5425 */
stat = -2 * ( -34.5425 + 33.8860 );
df = 1;
p_value = 1 - probchi(stat, df);
put stat= p_value=;

run;

Example 24.5: Choice of Time for Work Trips: Nested Logit Analysis
This example uses sample data of 527 automobile commuters in the San Francisco Bay Area to demonstrate
the use of the nested logit model.1

Brownstone and Small (1989) analyzed a two-level nested logit model that is displayed in Figure 24.30. The
probability of choosing j at level 2 is written as

Pi .j / D
exp.�j Ij /P3

j 0D1 exp.�j 0Ij 0/

1These data were provided by Professor Kenneth Small. They were collected for the urban travel demand forecasting project,
which was carried out by McFadden, Talvitie, and Associates (1977). The project was supported by the National Science Foundation,
Research Applied to National Needs Program, through grants GI-43740 and APR74-20392 and by the Alfred P. Sloan Foundation
through grant 74-21-8.
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where Ij 0 is an inclusive value and is computed as

Ij 0 D ln

24 X
k02Cj 0

exp.x0ik0ˇ/

35
The probability of choosing an alternative k is denoted as

Pi .kjj / D
exp.x0

ik
ˇ/P

k02Cj
exp.x0

ik0
ˇ/

The full information maximum likelihood (FIML) method maximizes the following log-likelihood function,

L D
NX
iD1

JX
jD1

dij Œln.Pi .kjj //C ln.Pi .j //�

where dij D 1 if a decision maker i chooses j, and 0 otherwise.

Figure 24.30 Decision Tree for Two-Level Nested Logit

Sample data of 527 automobile commuters in the San Francisco Bay Area have been analyzed by Small
(1982); Brownstone and Small (1989). The regular time of arrival is recorded as between 42.5 minutes
early and 17.5 minutes late, and indexed by 12 alternatives, using five-minute interval groups. For more
information about these data, see Small (1982). The following statements estimate the two-level nested logit
model:

/*-- Two-level Nested Logit --*/
proc mdc data=small maxit=200 outest=a;

model decision = r15 r10 ttime ttime_cp sde sde_cp
sdl sdlx d2l /

type=nlogit
choice=(alt);

id id;
utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l;
nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),

level(2) = (1 2 3 @ 1);
run;
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The following statements add the upalt variable, which describes the choice at the upper level of the nested
tree to the data set:

data small;
set small;
upalt=1;
if alt=9 then upalt=2;
if alt>9 then upalt=3;

run;

The following statements show and alternative specification, which uses the CHOICE= option with two
nested levels that are represented by upalt and alt:

proc mdc data=upalt maxit=200;
model decision = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l /
type=nlogit
choice=(upalt,alt);

id id;
utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l;
run;

The estimation summary, discrete response profile, and the FIML estimates are displayed in Output 24.5.1
through Output 24.5.3.

Output 24.5.1 Nested Logit Estimation Summary

The MDC Procedure

Nested Logit Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 527

Number of Cases 6324

Log Likelihood -990.81912

Log Likelihood Null (LogL(0)) -1310

Maximum Absolute Gradient 4.93868E-6

Number of Iterations 18

Optimization Method Newton-Raphson

AIC 2006

Schwarz Criterion 2057
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Output 24.5.2 Discrete Choice Characteristics

Discrete Response Profile

Index alt Frequency Percent

0 1 6 1.14

1 2 10 1.90

2 3 61 11.57

3 4 15 2.85

4 5 27 5.12

5 6 80 15.18

6 7 55 10.44

7 8 64 12.14

8 9 187 35.48

9 10 13 2.47

10 11 8 1.52

11 12 1 0.19

Output 24.5.3 Nested Logit Estimates

The MDC Procedure

Nested Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

r15_L1 1 1.1034 0.1221 9.04 <.0001

r10_L1 1 0.3931 0.1194 3.29 0.0010

ttime_L1 1 -0.0465 0.0235 -1.98 0.0474

ttime_cp_L1 1 -0.0498 0.0305 -1.63 0.1028

sde_L1 1 -0.6618 0.0833 -7.95 <.0001

sde_cp_L1 1 0.0519 0.1278 0.41 0.6850

sdl_L1 1 -2.1006 0.5062 -4.15 <.0001

sdlx_L1 1 -3.5240 1.5346 -2.30 0.0217

d2l_L1 1 -1.0941 0.3273 -3.34 0.0008

INC_L2G1C1 1 0.6762 0.2754 2.46 0.0141

INC_L2G1C2 1 1.0906 0.3090 3.53 0.0004

INC_L2G1C3 1 0.7622 0.1649 4.62 <.0001

Now policy makers are particularly interested in predicting shares of each alternative to be chosen by
population. One application of such predictions are market shares. Going even further, it is extremely useful
to predict choice probabilities out of sample; that is, under alternative policies.

Suppose that in this particular transportation example you are interested in projecting the effect of a new
program that indirectly shifts individual preferences with respect to late arrival to work. This means that you
manage to decrease the coefficient for the “late dummy” D2L, which is a penalty for violating some margin
of arriving on time. Suppose that you alter it from an estimated –1.0941 to almost twice that level, –2.0941.

But first, in order to have a benchmark share, you predict probabilities to choose each particular option and
output them to the new data set with the following additional statement:
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/*-- Create new data set with predicted probabilities --*/
output out=predicted1 p=probs;

Having these in sample predictions, you sort the data by alternative and aggregate across each of them as
shown in the following statements:

/*-- Sort the data by alternative --*/
proc sort data=predicted1;

by alt;
run;

/*-- Calculate average probabilities of each alternative --*/
proc means data=predicted1 nonobs mean;

var probs;
class alt;

run;

Output 24.5.4 shows the summary table that is produced by the preceding statements.

Output 24.5.4 Average Probabilities of Choosing Each Particular Alternative

The MEANS Procedure

Analysis
Variable : probs

alt Mean

1 0.0178197

2 0.0161712

3 0.0972584

4 0.0294659

5 0.0594076

6 0.1653871

7 0.1118181

8 0.1043445

9 0.3564940

10 0.0272324

11 0.0096334

12 0.0049677

Now you change the preference parameter for variable D2L. In order to fix all the parameters, you use the
MAXIT=0 option to prevent optimization and the START= option in MODEL statement to specify initial
parameters.

/*-- Two-level Nested Logit --*/
proc mdc data=small maxit=0 outest=a;

model decision = r15 r10 ttime ttime_cp sde sde_cp
sdl sdlx d2l /

type=nlogit
choice=(alt)
start=( 1.1034 0.3931 -0.0465 -0.0498

-0.6618 0.0519 -2.1006 -3.5240
-2.0941 0.6762 1.0906 0.7622);
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id id;
utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l;
nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),

level(2) = (1 2 3 @ 1);
output out=predicted2 p=probs;

run;

You apply the same SORT and MEANS procedures as applied earlier to obtain the following summary table
in Output 24.5.5.

Output 24.5.5 Average Probabilities of Choosing Each Particular Alternative after Changing the Preference
Parameter

The MEANS Procedure

Analysis
Variable : probs

alt Mean

1 0.0207766

2 0.0188966

3 0.1138816

4 0.0345654

5 0.0697830

6 0.1944572

7 0.1315588

8 0.1228049

9 0.2560674

10 0.0236178

11 0.0090781

12 0.0045128

Comparing the two tables shown in Output 24.5.4 and Output 24.5.5, you clearly see the effect of increased
dislike of late arrival. People shifted their choices towards earlier times (alternatives 1–8) from the on-time
option (alternative 9).

Brownstone and Small (1989) also estimate the two-level nested logit model with equal scale parameter
constraints, �1 D �2 D �3. Replication of their model estimation is shown in the following statements:

/*-- Nested Logit with Equal Dissimilarity Parameters --*/
proc mdc data=small maxit=200 outest=a;

model decision = r15 r10 ttime ttime_cp sde sde_cp
sdl sdlx d2l /

samescale
type=nlogit
choice=(alt);

id id;
utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l;
nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),

level(2) = (1 2 3 @ 1);
run;
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The parameter estimates and standard errors are almost identical to those in Brownstone and Small (1989, p.
69). Output 24.5.6 and Output 24.5.7 display the results.

Output 24.5.6 Nested Logit Estimation Summary with Equal Dissimilarity Parameters

The MDC Procedure

Nested Logit Estimates

Model Fit Summary

Dependent Variable decision

Number of Observations 527

Number of Cases 6324

Log Likelihood -994.39402

Log Likelihood Null (LogL(0)) -1310

Maximum Absolute Gradient 2.97172E-6

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 2009

Schwarz Criterion 2051

Output 24.5.7 Nested Logit Estimates with Equal Dissimilarity Parameters

The MDC Procedure

Nested Logit Estimates

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

r15_L1 1 1.1345 0.1092 10.39 <.0001

r10_L1 1 0.4194 0.1081 3.88 0.0001

ttime_L1 1 -0.1626 0.0609 -2.67 0.0076

ttime_cp_L1 1 0.1285 0.0853 1.51 0.1319

sde_L1 1 -0.7548 0.0669 -11.28 <.0001

sde_cp_L1 1 0.2292 0.0981 2.34 0.0195

sdl_L1 1 -2.0719 0.4860 -4.26 <.0001

sdlx_L1 1 -2.8216 1.2560 -2.25 0.0247

d2l_L1 1 -1.3164 0.3474 -3.79 0.0002

INC_L2G1 1 0.8059 0.1705 4.73 <.0001

However, the test statistic for H0 W �1 D �2 D �3 rejects the null hypothesis at the 5% significance level
since �2 � .lnL.0/ � lnL/ D 7:15 > �20:05;2 D 5:99. The p-value is computed in the following statements
and is equal to 0.0280:

data _null_;
/*-- test for H0: tau1 = tau2 = tau3 --*/
/* ln L(max) = -990.8191 */
/* ln L(0) = -994.3940 */
stat = -2 * ( -994.3940 + 990.8191 );
df = 2;
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p_value = 1 - probchi(stat, df);
put stat= p_value=;

run;

Example 24.6: Hausman’s Specification Test
As discussed under multinomial and conditional logits, the odds ratios in the multinomial or conditional
logits are independent of the other alternatives. (See the section “Multinomial Logit and Conditional Logit”
on page 1380.) This property of the logit models is often viewed as rather restrictive and provides substitution
patterns that do not represent the actual relationship among choice alternatives.

This independence assumption, called independence of irrelevant alternatives (IIA), can be tested with
Hausman’s specification test. According to Hausman and McFadden (1984), if a subset of choice alternatives
is irrelevant, it can be omitted from the sample without changing the remaining parameters systematically.

Under the null hypothesis (IIA holds), omitting the irrelevant alternatives leads to consistent and efficient
parameter estimates ˇR, while parameter estimates ˇU from the unrestricted model are consistent but
inefficient. Under the alternative, only the parameter estimates ˇU obtained from the unrestricted model are
consistent.

This example demonstrates the use of Hausman’s specification test to analyze the IIA assumption and decide
on an appropriate model that provides less restrictive substitution patterns (nested logit or multinomial probit).
A sample data set of 527 automobile commuters in the San Francisco Bay Area is used (Small 1982).2 The
regular time of arrival is recorded as between 42.5 minutes early and 17.5 minutes late, and is indexed by 12
alternatives, using five-minute interval groups. For more information about these data, see Small (1982).

The data can be divided into three groups: commuters who arrive early (alternatives 1–8), commuters who
arrive on time (alternative 9), and commuters who arrive late (alternatives 10–12). Suppose that you want to
test whether the IIA assumption holds for commuters who arrived on time (alternative 9).

Hausman’s specification test is distributed as �2 with k degrees of freedom (equal to the number of indepen-
dent variables) and can be written as

�2 D . ǑU � ǑR/
0Œ OVU � OVR�

�1. ǑU � ǑR/

where ǑR and OVR represent parameter estimates and the variance-covariance matrix, respectively, from
the model where the ninth alternative was omitted, and ǑU and OVU represent parameter estimates and the
variance-covariance matrix, respectively, from the full model. The following macro can be used to perform
the IIA test for the ninth alternative:

/*---------------------------------------------------------------

* name: %IIA

* note: This macro test the IIA hypothesis using the Hausman's

* specification test. Inputs into the macro are as follows:

* indata: input data set

* varlist: list of RHS variables

* nchoice: number of choices for each individual

2These data were provided by Professor Kenneth Small. They were collected for the urban travel demand forecasting project,
which was carried out by McFadden, Talvitie, and Associates (1977). The project was supported by the National Science Foundation,
Research Applied to National Needs Program, through grants GI-43740 and APR74-20392 and by the Alfred P. Sloan Foundation
through grant 74-21-8.
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* choice: list of choices

* nvar: number of independent variables

* nIIA: number of choice alternatives used to test IIA

* IIA: choice alternatives used to test IIA

* id: ID variable

* decision: 0-1 LHS variable representing nchoice choices

* purpose: Hausman's specification test

*--------------------------------------------------------------*/

%macro IIA(indata=, varlist=, nchoice=, choice= , nvar= , IIA= ,
nIIA=, id= , decision=);

%let n=%eval(&nchoice-&nIIA);

proc mdc data=&indata outest=cov covout ;
model &decision = &varlist /

type=clogit
nchoice=&nchoice;

id &id;
run;

data two;
set &indata;
if &choice in &IIA and &decision=1 then output;

run;

data two;
set two;
keep &id ind;
ind=1;

run;

data merged;
merge &indata two;
by &id;
if ind=1 or &choice in &IIA then delete;

run;

proc mdc data=merged outest=cov2 covout ;
model &decision = &varlist /

type=clogit
nchoice=&n;

id &id;
run;

proc IML;
use cov var{_TYPE_ &varlist};

read first into BetaU;
read all into CovVarU where(_TYPE_='COV');

close cov;

use cov2 var{_TYPE_ &varlist};
read first into BetaR;
read all into CovVarR where(_TYPE_='COV');
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close cov;

tmp = BetaU-BetaR;
ChiSq=tmp*ginv(CovVarR-CovVarU)*tmp`;
if ChiSq<0 then ChiSq=0;
Prob=1-Probchi(ChiSq, &nvar);
Print "Hausman Test for IIA for Variable &IIA";
Print ChiSq Prob;

run; quit;

%mend IIA;

The following statement invokes the %IIA macro to test IIA for commuters who arrive on time:

%IIA( indata=small,
varlist=r15 r10 ttime ttime_cp sde sde_cp sdl sdlx d2l,
nchoice=12,
choice=alt,
nvar=9,
nIIA=1,
IIA=(9),
id=id,
decision=decision );

The obtained �2 of 7.9 and the p-value of 0.54 indicate that IIA holds for commuters who arrive on time
(alternative 9). If the IIA assumption did not hold, the following model (nested logit), which reserves a
subcategory for alternative 9, might be more appropriate. (See Output 24.30.)

proc mdc data=small maxit=200 outest=a;
model decision = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l /
type=nlogit
choice=(alt);

id id;
utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l;
nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),

level(2) = (1 2 3 @ 1);
run;

Similarly, IIA could be tested for commuters who arrive approximately on time (alternative 8, 9, 10), as
follows:

%IIA( indata=small,
varlist=r15 r10 ttime ttime_cp sde sde_cp sdl sdlx d2l,
nchoice=12,
choice=alt,
nvar=9,
nIIA=3,
IIA=(8 9 10),
id=id,
decision=decision );

Based on this test, independence of irrelevant alternatives is not rejected for this subgroup (�2 D 10:3 and
p-value = 0.326), and it is concluded that a more complex nested logit model with commuters who arrive
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approximately on time in one subcategory is not needed. Since the two Hausman’s specification tests just
performed did not reject IIA, it might be a good idea to test whether the nested logit model is even needed.
This is done using the likelihood ratio test in the next example.

Example 24.7: Likelihood Ratio Test
This example is an extension of Example 24.6 and uses the same data.3 It performs another specification
test, the likelihood ratio test (LR). Suppose you are interested in testing whether the nested logit model
(Output 24.30) with three subgroups that represent commuters who arrive early, on time, and late is more
appropriate than the standard multinomial logit. This can be done by adding the TEST statement to the model
as follows:

/*-- Restricted Model with Inclusive Value Parameters
Constrained to One --*/

proc mdc data=small maxit=200 outest=a;
model decision = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l /
type=nlogit
choice=(alt);

id id;
utility u(1, ) = r15 r10 ttime ttime_cp sde sde_cp

sdl sdlx d2l;
nest level(1) = (1 2 3 4 5 6 7 8 @ 1, 9 @ 2, 10 11 12 @ 3),

level(2) = (1 2 3 @ 1);
test INC_L2G1C1=1, INC_L2G1C2=1, INC_L2G1C3=1 /LR;

run;

Output 24.7.1 Likelihood Ratio Test

The MDC Procedure

Nested Logit Estimates

Test Results

Test Type Statistic Pr > ChiSq Label

Test0 L.R. 8.11 0.0438 INC_L2G1C1  =  1 ,  INC_L2G1C2  =  1 ,  INC_L2G1C3  =  1

Based on this test, you can conclude that the inclusive values, INC_L2G1C1, INC_L2G1C2, and INC_L2G1C3
are jointly statistically different from the value 1 at the 5% level and therefore the nested logit is a more
appropriate model. The LR test can be used to test other types of restrictions in the nested logit setting as
long as one model can be nested within another.

3These data were provided by Professor Kenneth Small. They were collected for the urban travel demand forecasting project,
which was carried out by McFadden, Talvitie, and Associates (1977). The project was supported by the National Science Foundation,
Research Applied to National Needs Program, through grants GI-43740 and APR74-20392 and by the Alfred P. Sloan Foundation
through grant 74-21-8.
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Overview: MODEL Procedure
The MODEL procedure analyzes models in which the relationships among the variables form a system of
one or more nonlinear equations. Primary uses of the MODEL procedure are estimation, simulation, and
forecasting of nonlinear simultaneous equation models.

PROC MODEL features include the following:

� SAS programming statements to define simultaneous systems of nonlinear equations

� tools to analyze the structure of the simultaneous equation system

� ARIMA, PDL, and other dynamic modeling capabilities

� tools to specify and estimate the error covariance structure

� tools to estimate and solve ordinary differential equations

� the following methods of parameter estimation:

– ordinary least squares (OLS)

– two-stage least squares (2SLS)

– seemingly unrelated regression (SUR) and iterative SUR (ITSUR)

– three-stage least squares (3SLS) and iterative 3SLS (IT3SLS)

– generalized method of moments (GMM)

– simulated method of moments (SMM)

– full information maximum likelihood (FIML)

– general log-likelihood maximization

� simulation and forecasting capabilities

� Monte Carlo simulation

� goal-seeking solutions

A system of equations can be nonlinear in the parameters, nonlinear in the observed variables, or nonlinear in
both the parameters and the variables. Nonlinear in the parameters means that the mathematical relationship
between the variables and parameters is not required to have a linear form. (A linear model is a special case
of a nonlinear model.) A general nonlinear system of equations can be written as

q1.y1;t ; y2;t ; : : : ; yg;t ; x1;t ; x2;t ; : : : ; xm;t ; �1; �2; : : : ; �p/ D �1;t

q2.y1;t ; y2;t ; : : : ; yg;t ; x1;t ; x2;t ; : : : ; xm;t ; �1; �2; : : : ; �p/ D �2;t
:::

qg.y1;t ; y2;t ; : : : ; yg;t ; x1;t ; x2;t ; : : : ; xm;t ; �1; �2; : : : ; �p/ D �g;t



Overview: MODEL Procedure F 1425

where yi;t is an endogenous variable, xi;t is an exogenous variable, �i is a parameter, and �i is the unknown
error. The subscript t represents time or some index to the data.

In econometrics literature, the observed variables are either endogenous (dependent) variables or exogenous
(independent) variables. This system can be written more succinctly in vector form as

q.yt ; xt ;�/ D �t

This system of equations is in general form because the error term is by itself on one side of the equality.
Systems can also be written in normalized form by placing the endogenous variable on one side of the
equality, with each equation defining a predicted value for a unique endogenous variable. A normalized form
equation system can be written in vector notation as

yt D f.yt ; xt ;�/C �t

PROC MODEL handles equations written in both forms.

Econometric models often explain the current values of the endogenous variables as functions of past values
of exogenous and endogenous variables. These past values are referred to as lagged values, and the variable
xt�i is called lag i of the variable xt . Using lagged variables, you can create a dynamic, or time-dependent,
model. In the preceding model systems, the lagged exogenous and endogenous variables are included as part
of the exogenous variables.

If the data are time series, so that t indexes time (for more information about time series, see Chapter 4,
“Working with Time Series Data”), it is possible that �t depends on �t�i or, more generally, the �t ’s are not
identically and independently distributed. If the errors of a model system are autocorrelated, the standard
error of the estimates of the parameters of the system will be inflated.

Sometimes the �i ’s are not identically distributed because the variance of � is not constant. This is known
as heteroscedasticity. Heteroscedasticity in an estimated model can also inflate the standard error of the
estimates of the parameters. Using a weighted estimation can sometimes eliminate this problem. Alternately,
a variance model such as GARCH or EGARCH can be estimated to correct for heteroscedasticity. If the
proper weighting scheme and the form of the error model is difficult to determine, generalized methods of
moments (GMM) estimation can be used to determine parameter estimates with very few assumptions about
the form of the error process.

Other problems can also arise when estimating systems of equations. Consider the following system of
equations, which is nonlinear in its parameters and cannot be estimated with linear regression:

y1;t D �1 C .�2 C �3�
t
4/
�1
C �5y2;t C �1;t

y2;t D �6 C .�7 C �8�
t
9/
�1
C �10y1;t C �2;t

This system of equations represents a rudimentary predator-prey process with y1 as the prey and y2 as the
predator (the second term in both equations is a logistics curve). The two equations must be estimated
simultaneously because of the cross-dependency of y’s. This cross-dependency makes �1 and �2 violate the
assumption of independence. Nonlinear ordinary least squares estimation of these equations produce biased
and inconsistent parameter estimates. This is called simultaneous equation bias.

One method to remove simultaneous equation bias, in the linear case, is to replace the endogenous variables
on the right-hand side of the equations with predicted values that are uncorrelated with the error terms. These
predicted values can be obtained through a preliminary, or “first-stage,” instrumental variable regression.
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Instrumental variables, which are uncorrelated with the error term, are used as regressors to model the
predicted values. The parameter estimates are obtained by a second regression by using the predicted values
of the regressors. This process is called two-stage least squares.

In the nonlinear case, nonlinear ordinary least squares estimation is performed iteratively by using a lineariza-
tion of the model with respect to the parameters. The instrumental solution to simultaneous equation bias in
the nonlinear case is the same as the linear case, except the linearization of the model with respect to the
parameters is predicted by the instrumental regression. Nonlinear two-stage least squares is one of several
instrumental variables methods available in the MODEL procedure to handle simultaneous equation bias.

When you have a system of several regression equations, the random errors of the equations can be correlated.
In this case, the large-sample efficiency of the estimation can be improved by using a joint generalized least
squares method that takes the cross-equation correlations into account. If the equations are not simultaneous
(no dependent regressors), then seemingly unrelated regression (SUR) can be used. The SUR method requires
an estimate of the cross-equation error covariance matrix, †. The usual approach is to first fit the equations
by using OLS, compute an estimate O† from the OLS residuals, and then perform the SUR estimation based
on O†. The MODEL procedure estimates † by default, or you can supply your own estimate of †.

If the equation system is simultaneous, you can combine the 2SLS and SUR methods to take into account
both simultaneous equation bias and cross-equation correlation of the errors. This is called three-stage least
squares or 3SLS.

A different approach to the simultaneous equation bias problem is the full information maximum likelihood
(FIML) estimation method. FIML does not require instrumental variables, but it assumes that the equation
errors have a multivariate normal distribution. 2SLS and 3SLS estimation do not assume a particular
distribution for the errors.

Other nonnormal error distribution models can be estimated as well. The centered t distribution with estimated
degrees of freedom and nonconstant variance is an additional built-in likelihood function. If the distribution
of the equation errors is not normal or t but known, then the log likelihood can be specified by using the
ERRORMODEL statement.

Once a nonlinear model has been estimated, it can be used to obtain forecasts. If the model is linear in the
variables you want to forecast, a simple linear solve can generate the forecasts. If the system is nonlinear, an
iterative procedure must be used. The preceding example system is linear in its endogenous variables. The
MODEL procedure’s SOLVE statement is used to forecast nonlinear models.

One of the main purposes of creating models is to obtain an understanding of the relationship among the
variables. There are usually only a few variables in a model you can control (for example, the amount of
money spent on advertising). Often you want to determine how to change the variables under your control to
obtain some target goal. This process is called goal seeking. PROC MODEL allows you to solve for any
subset of the variables in a system of equations given values for the remaining variables.

The nonlinearity of a model creates two problems with the forecasts: the forecast errors are not normally
distributed with zero mean, and no formula exists to calculate the forecast confidence intervals. PROC
MODEL provides Monte Carlo techniques, which, when used with the covariance of the parameters and
error covariance matrix, can produce approximate error bounds on the forecasts. The following distributions
on the errors are supported for multivariate Monte Carlo simulation:

� Cauchy

� chi-squared
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� empirical

� F

� Poisson

� t

� uniform

A transformation technique is used to create a covariance matrix for generating the correct innovations in a
Monte Carlo simulation.

Getting Started: MODEL Procedure
This section introduces the MODEL procedure and shows how to use PROC MODEL for several kinds of
nonlinear regression analysis and nonlinear systems simulation problems.

Nonlinear Regression Analysis
One of the most important uses of PROC MODEL is to estimate unknown parameters in a nonlinear model.
A simple nonlinear model has the form

y D f .x;�/C �

where x is a vector of exogenous variables. To estimate unknown parameters by using PROC MODEL, do
the following:

1. Use the DATA= option in a PROC MODEL statement to specify the input SAS data set that contains y
and x, the observed values of the variables.

2. Write the equation for the model by using SAS programming statements, including all parameters and
arithmetic operators but leaving off the unobserved error component, �.

3. Use a FIT statement to fit the model equation to the input data to determine the unknown parameters,
� .

An Example

The SASHELP library contains the data set CITIMON, which contains the variable LHUR, the monthly
unemployment figures, and the variable IP, the monthly industrial production index. You suspect that the
unemployment rates are inversely proportional to the industrial production index. Assume that these variables
are related by the following nonlinear equation:

lhur D
1

a � ipC b
C cC �
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In this equation a, b, and c are unknown coefficients and � is an unobserved random error.

The following statements illustrate how to use PROC MODEL to estimate values for a, b, and c from the
data in SASHELP.CITIMON:

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;

run;

Notice that the model equation is written as a SAS assignment statement. The variable LHUR is assumed
to be the dependent variable because it is named in the FIT statement and is on the left-hand side of the
assignment.

PROC MODEL determines that LHUR and IP are observed variables because they are in the input data set.
A, B, and C are treated as unknown parameters to be estimated from the data because they are not in the
input data set. If the data set contained a variable named A, B, or C, you would need to explicitly declare the
parameters with a PARMS statement.

In response to the FIT statement, PROC MODEL estimates values for A, B, and C by using nonlinear least
squares and prints the results. The first part of the output is a “Model Summary” table, shown in Figure 25.1.

Figure 25.1 Model Summary Report

The MODEL Procedure

Model Summary

Model Variables 1

Parameters 3

Equations 1

Number of Statements 1

Model Variables LHUR

Parameters a b c

Equations LHUR

This table details the size of the model, including the number of programming statements that define the
model, and lists the dependent variables (LHUR in this case), the unknown parameters (A, B, and C), and the
model equations. In this case the equation is named for the dependent variable, LHUR.

PROC MODEL then prints a summary of the estimation problem, as shown in Figure 25.2.

Figure 25.2 Estimation Problem Report

The Equation to
Estimate is

LHUR = F(a, b, c(1))

The notation used in the summary of the estimation problem indicates that LHUR is a function of A, B, and
C, which are to be estimated by fitting the function to the data. If the partial derivative of the equation
with respect to a parameter is a simple variable or constant, the derivative is shown in parentheses after the
parameter name. In this case, the derivative with respect to the intercept C is 1. The derivatives with respect
to A and B are complex expressions and so are not shown.
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Next, PROC MODEL prints an estimation summary as shown in Figure 25.3.

Figure 25.3 Estimation Summary Report

The MODEL Procedure
OLS Estimation Summary

Data Set Options

DATA= SASHELP.CITIMON

Minimization Summary

Parameters Estimated 3

Method Gauss

Iterations 10

Final Convergence
Criteria

R 0.000737

PPC(b) 0.003943

RPC(b) 0.00968

Object 4.784E-6

Trace(S) 0.533325

Objective Value 0.522214

Observations
Processed

Read 145

Solved 145

Used 144

Missing 1

The estimation summary provides information on the iterative process used to compute the estimates. The
heading “OLS Estimation Summary” indicates that the nonlinear ordinary least squares (OLS) estimation
method is used. This table indicates that all three parameters were estimated successfully by using 144
nonmissing observations from the data set SASHELP.CITIMON. Calculating the estimates required 10
iterations of the GAUSS method. Various measures of how well the iterative process converged are also
shown. For example, the “RPC(B)” value 0.00968 means that on the final iteration the largest relative change
in any estimate was for parameter B, which changed by 0.968 percent. For more information, see the section
“Convergence Criteria” on page 1510.

PROC MODEL then prints the estimation results. The first part of this table is the summary of residual errors,
shown in Figure 25.4.

Figure 25.4 Summary of Residual Errors Report

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

LHUR 3 141 75.1989 0.5333 0.7303 0.7472 0.7436 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS
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This table lists the sum of squared errors (SSE), the mean squared error (MSE), the root mean squared error
(root MSE), and the R2 and adjusted R2 statistics. The R2 value of 0.7472 means that the estimated model
explains approximately 75% more of the variability in LHUR than a mean model explains.

Following the summary of residual errors is the parameter estimates table, shown in Figure 25.5.

Figure 25.5 Parameter Estimates

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 0.009046 0.00343 2.63 0.0094

b -0.57059 0.2617 -2.18 0.0309

c 3.337151 0.7297 4.57 <.0001

Because the model is nonlinear, the standard error of the estimate, the t value, and its significance level are
only approximate. These values are computed using asymptotic formulas that are correct for large sample
sizes but only approximately correct for smaller samples. Thus, you should use caution in interpreting these
statistics for nonlinear models, especially for small sample sizes. For linear models, these results are exact
and are the same as standard linear regression.

The last part of the output produced by the FIT statement is shown in Figure 25.6.

Figure 25.6 System Summary Statistics

Number of
Observations

Statistics for
System

Used 144 Objective 0.5222

Missing 1 Objective*N 75.1989

This table lists the objective value for the estimation of the nonlinear system. Since there is only a single
equation in this case, the objective value is the same as the residual MSE for LHUR except that the objective
value does not include a degrees-of-freedom correction. This can be seen in the fact that “Objective*N”
equals the residual SSE, 75.1989. N is 144, the number of observations used.

Convergence and Starting Values

Computing parameter estimates for nonlinear equations requires an iterative process. Starting with an initial
guess for the parameter values, PROC MODEL tries different parameter values until the objective function of
the estimation method is minimized. (The objective function of the estimation method is sometimes called
the fitting function.) This process does not always succeed, and whether it does succeed depends greatly on
the starting values used. By default, PROC MODEL uses the starting value 0.0001 for all parameters.

Consequently, in order to use PROC MODEL to achieve convergence of parameter estimates, you need to
know two things: how to recognize convergence failure by interpreting diagnostic output, and how to specify
reasonable starting values. The MODEL procedure includes alternate iterative techniques and grid search
capabilities to aid in finding estimates. For more information, see the section “Troubleshooting Convergence
Problems” on page 1512.
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Nonlinear Systems Regression
If a model has more than one endogenous variable, several facts need to be considered in the choice of an
estimation method. If the model has endogenous regressors, then an instrumental variables method such as
2SLS or 3SLS can be used to avoid simultaneous equation bias. Instrumental variables must be provided
to use these methods. A discussion of possible choices for instrumental variables is provided in the section
“Choice of Instruments” on page 1564 in this chapter.

The following is an example of the use of 2SLS and the INSTRUMENTS statement:

proc model data=test2;
exogenous x1 x2;
parms a1 a2 b2 2.5 c2 55 d1;

y1 = a1 * y2 + b2 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 2sls;
instruments b2 c2 _exog_;

run;

The estimation method selected is added after the slash (/) in the FIT statement. The INSTRUMENTS
statement follows the FIT statement and in this case selects all the exogenous variables as instruments with
the _EXOG_ keyword. The parameters B2 and C2 in the instruments list request that the derivatives with
respect to B2 and C2 be additional instruments.

Full information maximum likelihood (FIML) can also be used to avoid simultaneous equation bias. FIML
is computationally more expensive than an instrumental variables method and assumes that the errors are
normally distributed. On the other hand, FIML does not require the specification of instruments. FIML is
selected with the FIML option in the FIT statement.

The preceding example is estimated with FIML by using the following statements:

proc model data=test2;
exogenous x1 x2;
parms a1 a2 b2 2.5 c2 55 d1;

y1 = a1 * y2 + b2 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / fiml;
run;
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General Form Models
The single equation example shown in the preceding section was written in normalized form and specified
as an assignment of the regression function to the dependent variable LHUR. However, sometimes it is
impossible or inconvenient to write a nonlinear model in normalized form.

To write a general form equation, give the equation a name with the prefix “EQ.”. This EQ.-prefixed variable
represents the equation error. Write the equation as an assignment to this variable.

For example, suppose you have the following nonlinear model that relates the variables x and y:

� D aC b ln.cy C dx/

Naming this equation “one,” you can fit this model with the following statements:

proc model data=xydata;
eq.one = a + b * log( c * y + d * x );
fit one;

run;

The use of the EQ. prefix tells PROC MODEL that the variable is an error term and that it should not expect
actual values for the variable ONE in the input data set.

Supply and Demand Models

General form specifications are often useful when you have several equations for the same dependent variable.
This is common in supply and demand models, where both the supply equation and the demand equation are
written as predictions for quantity as functions of price.

For example, consider the following supply and demand system:

(supply) quantity D ˛1 C ˛2 priceC �1
(demand) quantity D ˇ1 C ˇ2 priceC ˇ3 incomeC �2

Assume the quantity of interest is the amount of energy consumed in the United States, the price is the price
of gasoline, and the income variable is the consumer debt. When the market is at equilibrium, these equations
determine the market price and the equilibrium quantity. These equations are written in general form as

�1 D quanti ty � .˛1 C ˛2 price/

�2 D quanti ty � .ˇ1 C ˇ2 price C ˇ3 income/

Note that the endogenous variables quantity and price depend on two error terms so that OLS should not be
used. The following example uses three-stage least squares estimation.

Data for this model are obtained from the SASHELP.CITIMON data set.

title1 'Supply-Demand Model Using General-Form Equations';
proc model data=sashelp.citimon;

endogenous eegp eec;
exogenous exvus cciutc;



General Form Models F 1433

parameters a1 a2 b1 b2 b3 ;
label eegp = 'Gasoline Retail Price'

eec = 'Energy Consumption'
cciutc = 'Consumer Debt';

/* -------- Supply equation ------------- */
eq.supply = eec - (a1 + a2 * eegp);

/* -------- Demand equation ------------- */
eq.demand = eec - (b1 + b2 * eegp + b3 * cciutc);

/* -------- Instrumental variables -------*/
lageegp = lag(eegp); lag2eegp=lag2(eegp);

/* -------- Estimate parameters --------- */
fit supply demand / n3sls fsrsq;
instruments _EXOG_ lageegp lag2eegp;

run;

The FIT statement specifies the two equations to estimate and the method of estimation, N3SLS. Note that
‘3SLS’ is an alias for N3SLS. The option FSRSQ is selected to get a report of the first stage R2 to determine
the acceptability of the selected instruments.

Since three-stage least squares is an instrumental variables method, instruments are specified with the
INSTRUMENTS statement. The instruments selected are all the exogenous variables, selected with the
_EXOG_ option, and two lags of the variable EEGP: LAGEEGP and LAG2EEGP.

The data set CITIMON has four observations that generate missing values because values for EEGP, EEC,
or CCIUTC are missing. This is revealed in the “Observations Processed” output shown in Figure 25.7.
Missing values are also generated when the equations cannot be computed for a given observation. Missing
observations are not used in the estimation.

Figure 25.7 Supply-Demand Observations Processed

Supply-Demand Model Using General-Form Equations

The MODEL Procedure
3SLS Estimation Summary

Observations
Processed

Read 145

Solved 145

First 1

Last 145

Used 139

Missing 6

Lagged 0

The lags used to create the instruments also reduce the number of observations used. In this case, the first
two observations were used to fill the lags of EEGP.

The data set has a total of 145 observations, of which four generated missing values and two were used to
fill lags, which left 139 observations for the estimation. In the estimation summary, in Figure 25.8, the total
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degrees of freedom for the model and error is 139.

Figure 25.8 Supply-Demand Parameter Estimates

Supply-Demand Model Using General-Form Equations

The MODEL Procedure

Nonlinear 3SLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

supply 2 137 43.2677 0.3158 0.5620

demand 3 136 39.5791 0.2910 0.5395

Nonlinear 3SLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

1st Stage
R-Square

a1 7.30952 0.3799 19.24 <.0001 1.0000

a2 -0.00853 0.00328 -2.60 0.0103 0.9617

b1 6.82196 0.3788 18.01 <.0001 1.0000

b2 -0.00614 0.00303 -2.02 0.0450 0.9617

b3 9E-7 3.165E-7 2.84 0.0051 1.0000

One disadvantage of specifying equations in general form is that there are no actual values associated with
the equation, so the R2 statistic cannot be computed.

Solving Simultaneous Nonlinear Equation Systems
You can use a SOLVE statement to solve the nonlinear equation system for some variables when the values
of other variables are given.

Consider the supply and demand model shown in the preceding example. The following statement computes
equilibrium price (EEGP) and quantity (EEC) values for given observed cost (CCIUTC) values and stores
them in the output data set EQUILIB:

title1 'Supply-Demand Model Using General-Form Equations';
proc model data=sashelp.citimon(where=(eec ne .));

endogenous eegp eec;
exogenous exvus cciutc;
parameters a1 a2 a3 b1 b2 ;
label eegp = 'Gasoline Retail Price'

eec = 'Energy Consumption'
cciutc = 'Consumer Debt';

/* -------- Supply equation ------------- */
eq.supply = eec - (a1 + a2 * eegp);

/* -------- Demand equation ------------- */
eq.demand = eec - (b1 + b2 * eegp + b3 * cciutc);

/* -------- Instrumental variables -------*/
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lageegp = lag(eegp); lag2eegp=lag2(eegp);

/* -------- Estimate parameters --------- */
instruments _EXOG_ lageegp lag2eegp;
fit supply demand / n3sls ;
solve eegp eec / out=equilib;

run;

As a second example, suppose you want to compute points of intersection between the square root function
and hyperbolas of the form aC b=x. That is, you want to solve the system:

(square root) y D
p
x

(hyperbola) y D aC
b

x

The following statements read parameters for several hyperbolas in the input data set TEST and solve the
nonlinear equations. The SOLVEPRINT option in the SOLVE statement prints the solution values. The ID
statement is used to include the values of A and B in the output of the SOLVEPRINT option.

title1 'Solving a Simultaneous System';
data test;

input a b @@;
datalines;

0 1 1 1 1 2
;

proc model data=test;
eq.sqrt = sqrt(x) - y;
eq.hyperbola = a + b / x - y;
solve x y / solveprint;
id a b;

run;

The printed output produced by this example consists of a model summary report, a listing of the solution
values for each observation, and a solution summary report. The model summary for this example is shown
in Figure 25.9.

Figure 25.9 Model Summary Report

Solving a Simultaneous System

The MODEL Procedure

Model Summary

Model Variables 2

ID Variables 2

Equations 2

Number of Statements 2

Model Variables x y

Equations sqrt hyperbola

The output produced by the SOLVEPRINT option is shown in Figure 25.10.
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Figure 25.10 Solution Values for Each Observation

Solving a Simultaneous System

The MODEL Procedure
Simultaneous Simulation

Observation 1 a 0 b 1.0000 eq.hyperbola 0.000000

Iterations 17 CC 0.000000

Solution Values

x y

1.000000 1.000000

Observation 2 a 1.0000 b 1.0000 eq.hyperbola 0.000000

Iterations 5 CC 0.000000

Solution Values

x y

2.147899 1.465571

Observation 3 a 1.0000 b 2.0000 eq.hyperbola 0.000000

Iterations 4 CC 0.000000

Solution Values

x y

2.875130 1.695621

For each observation, a heading line is printed that lists the values of the ID variables for the observation and
information about the iterative process used to compute the solution. The number of iterations required, and
the convergence measure (labeled CC) are printed. This convergence measure indicates the maximum error
by which solution values fail to satisfy the equations. When this error is small enough (as determined by the
CONVERGE= option), the iterations terminate. The equation with the largest error is indicated. For example,
for observation 3 the HYPERBOLA equation has an error of 4:42 � 10�13, while the error of the SQRT
equation is even smaller. Following the heading line for the observation, the solution values are printed.

The last part of the SOLVE statement output is the solution summary report shown in Figure 25.11. This
report summarizes the solution method used (Newton’s method by default), the iteration history, and the
observations processed.

Figure 25.11 Solution Summary Report

Solving a Simultaneous System

The MODEL Procedure
Simultaneous Simulation

Data Set
Options

DATA= TEST
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Figure 25.11 continued

Solution Summary

Variables Solved 2

Implicit Equations 2

Solution Method NEWTON

CONVERGE= 1E-8

Maximum CC 9.176E-9

Maximum Iterations 17

Total Iterations 26

Average Iterations 8.666667

Observations
Processed

Read 3

Solved 3

Variables Solved For x y

Equations Solved sqrt hyperbola

Working with Model Files
Model files enable you to save models that are specified in a PROC MODEL step to a SAS library file. Model
files store the SAS programming statements and variable declarations that constitute a model, and they make
those statements and declarations available for use in subsequent PROC MODEL steps. Typically you specify
the OUTMODEL= option in one PROC MODEL step to save a model specification to a model file, and later
you specify the MODEL= option in one or more other PROC MODEL steps to read one or more model files.
For more information, see the section “Storing Programs in Model Files” on page 1645.

Model files can help organize modeling efforts when many statements are required to specify, estimate,
and simulate models. For example, in the supply and demand model analyzed previously, the following
statements specify the system of equations once and save them to the model file SUPDEM:

proc model outmodel=supdem;
endogenous eegp eec;
exogenous exvus cciutc;
parameters a1 a2 b1 b2 b3 ;
label eegp = 'Gasoline Retail Price'

eec = 'Energy Consumption'
cciutc = 'Consumer Debt';

/* -------- Supply equation ------------- */
eq.supply = eec - (a1 + a2 * eegp );

/* -------- Demand equation ------------- */
eq.demand = eec - (b1 + b2 * eegp + b3 * cciutc);

quit;

When the model has been defined and saved, its parameters can be estimated in a separate PROC MODEL
step. The following estimation step defines the instruments LAGEEGP and LAG2EEGP (which do not
appear in the supply and demand model equations) and performs the three-stage least squares estimation:
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proc model data=sashelp.citimon model=supdem outmodel=supdem;
/* -------- Instrumental variables ------ */
lageegp = lag(eegp); lag2eegp=lag2(eegp);
/* -------- Estimate parameters --------- */
instruments _EXOG_ lageegp lag2eegp;
fit supply demand / n3sls;

quit;

Finally, the following statements use the supply and demand model together with its parameter estimates to
solve for equilibrium prices and quantities:

proc model data=sashelp.citimon(where=(eec ne .)) model=supdem;
solve eegp eec / out=equilib;

quit;

Monte Carlo Simulation
The RANDOM= option is used to request Monte Carlo (or stochastic) simulation to generate confidence
intervals for a forecast. The confidence intervals are implied by the model’s relationship to implicit random
error term � and the parameters.

The Monte Carlo simulation generates a random set of additive error values, one for each observation and
each equation, and computes one set of perturbations of the parameters. These new parameters, along with
the additive error terms, are then used to compute a new forecast that satisfies this new simultaneous system.
Then a new set of additive error values and parameter perturbations is computed, and the process is repeated
the requested number of times.

Consider the following exchange rate model for the U.S. dollar with the German mark and the Japanese yen,

rate_jp D a1 C b1im_jp C c1di_jpI

rate_wg D a2 C b2im_wg C c1di_wgI

where rate_jp and rate_wg are the exchange rate of the Japanese yen and the German mark versus the U.S.
dollar, respectively; im_jp and im_wg are the imports from Japan and Germany in 1984 dollars, respectively;
and di_jp and di_wg are the differences in inflation rate of Japan and the United States, and Germany and the
United States, respectively. The Monte Carlo capabilities of the MODEL procedure are used to generate
error bounds on a forecast by using this model.

proc model data=exchange;
endo im_jp im_wg;
exo di_jp di_wg;
parms a1 a2 b1 b2 c1 c2;
label rate_jp = 'Exchange Rate of Yen/$'

rate_wg = 'Exchange Rate of Gm/$'
im_jp = 'Imports to US from Japan in 1984 $'
im_wg = 'Imports to US from WG in 1984 $'
di_jp = 'Difference in Inflation Rates US-JP'
di_wg = 'Difference in Inflation Rates US-WG';

rate_jp = a1 + b1*im_jp + c1*di_jp;
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rate_wg = a2 + b2*im_wg + c2*di_wg;

/* Fit the EXCHANGE data */
fit rate_jp rate_wg / sur outest=xch_est outcov outs=s;

/* Solve using the WHATIF data set */
solve rate_jp rate_wg / data=whatif estdata=xch_est sdata=s

random=100 seed=123 out=monte forecast;
id yr;
range yr=1986;

run;

Data for the EXCHANGE data set were obtained from the U.S. Department of Commerce and the yearly
“Economic Report of the President.”

First, the parameters are estimated using SUR selected by the SUR option in the FIT statement. The
OUTEST= option is used to create the XCH_EST data set, which contains the estimates of the parameters.
The OUTCOV option adds the covariance matrix of the parameters to the XCH_EST data set. The OUTS=
option is used to save the covariance of the equation error in the data set S.

Next, Monte Carlo simulation is requested by using the RANDOM= option in the SOLVE statement. The
data set WHATIF is used to drive the forecasts. The ESTDATA= option reads in the XCH_EST data set, which
contains the parameter estimates and covariance matrix. Because the parameter covariance matrix is included,
perturbations of the parameters are performed. The SDATA= option causes the Monte Carlo simulation to
use the equation error covariance in the S data set to perturb the equation errors. The SEED= option selects
the number 123 as a seed value for the random number generator. The output of the Monte Carlo simulation
is written to the data set MONTE selected by the OUT= option.

To generate a confidence interval plot for the forecast, use PROC UNIVARIATE to generate percentile bounds
and use PROC SGPLOT to plot the graph. The following SAS statements produce the graph in Figure 25.12:

proc sort data=monte;
by yr;

run;

proc univariate data=monte noprint;
by yr;
var rate_jp rate_wg;
output out=bounds mean=mean p5=p5 p95=p95;

run;

title "Monte Carlo Generated Confidence Intervals on a Forecast";
proc sgplot data=bounds noautolegend;

series x=yr y=mean / markers;
series x=yr y=p5 / markers;
series x=yr y=p95 / markers;

run;
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Figure 25.12 Monte Carlo Confidence Interval Plot
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Syntax: MODEL Procedure
The following statements can be used with the MODEL procedure:

PROC MODEL options ;
ABORT ;
ARRAY arrayname variable-list . . . ;
ATTRIB variable-list1 attribute-list1 < variable-list2 attribute-list2 . . . > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variable-list ;
CALL name ;
CALL name(expression1 < , expression2 . . . > ) ;
CONTROL variable < value > . . . ;
DELETE ;
DO ;
DO variable = expression < TO expression > < BY expression > < , expression TO expression <

BY expression > . . . > < WHILE expression > < UNTIL expression > ;
END ;
DROP variable . . . ;
ENDOGENOUS variable < initial-values > . . . ;
ERRORMODEL equation-name Ï distribution < CDF=(CDF (options )) > ;
ESTIMATE item1 < , item2 . . . > < ,/ options > ;
EXOGENOUS variable < initial values > . . . ;
FIT equations < PARMS=(parameter values . . . ) > < START=(parameter values . . . ) >

< DROP=(parameters ) > < / options > ;
FORMAT variable-list < format > < DEFAULT= default-format > ;
GOTO statement-label ;
ID variable-list ;
IF expression ;
IF expression THEN programming-statement1 ; < ELSE programming-statement2 > ;
variable = expression ;
variable + expression ;
INCLUDE model-file . . . ;
INSTRUMENTS < instruments > < _EXOG_ > < EXCLUDE=(parameters ) > < / options > ;
KEEP variable . . . ;
LABEL variable ='label ' . . . ;
LENGTH variable-list < $ > length . . . < DEFAULT=length > ;
LINK statement-label ;
MOMENT variable-list = moment-specification . . . ;
OUTVARS variable . . . ;
PARAMETERS variable1 < value1 > < variable2 < value2 . . . > > ;
PUT print-item . . . < @ > < @@ > ;
RANGE variable < = first > < TO last > ;
RENAME old-name1 = new-name1 < . . . old-name2 = new-name2 > ;
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RESET options ;
RESTRICT restriction1 < , restriction2 . . . > ;
RETAIN variable-list1 value1 < variable-list2 value2 . . . > ;
RETURN ;
SOLVE variable-list < SATISFY=(equations) > < / options > ;
SUBSTR (variable, index, length )= expression ;
SELECT < (expression ) > ;
OTHERWISE programming-statement ;
STOP ;
TEST < "name" > test1 < , test2 . . . > < ,/ options > ;
VAR variable < initial-values > . . . ;
WEIGHT variable ;
WHEN (expression )programming-statement ;

Functional Summary
The statements and options in the MODEL procedure are summarized in Table 25.1.

Table 25.1 PROC MODEL Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set for the variables FIT, SOLVE DATA=
Specifies the input data set for parameters FIT, SOLVE ESTDATA=
Specifies the method for handling missing
values

FIT MISSING=

Specifies the input data set for parameters MODEL PARMSDATA=
Requests that the procedure produce graphics
via the Output Delivery System

MODEL PLOTS=

Specifies the output data set for residual,
predicted, or actual values

FIT OUT=

Specifies the output data set for solution mode
results

SOLVE OUT=

Writes the actual values to OUT= data set FIT OUTACTUAL
Selects all output options FIT OUTALL
Writes the covariance matrix of the estimates FIT OUTCOV
Writes the parameter estimates to a data set FIT OUTEST=
Writes the parameter estimates to a data set MODEL OUTPARMS=
Writes the observations used to start the lags SOLVE OUTLAGS
Writes the predicted values to the OUT= data
set

FIT OUTPREDICT

Writes the residual values to the OUT= data set FIT OUTRESID
Writes the covariance matrix of the equation
errors to a data set

FIT OUTS=

Writes the S matrix used in the objective
function definition to a data set

FIT OUTSUSED=
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Table 25.1 continued

Description Statement Option

Writes the estimate of the variance matrix of
the moment generating function

FIT OUTV=

Reads the covariance matrix of the equation
errors

FIT, SOLVE SDATA=

Reads the covariance matrix for GMM and
ITGMM

FIT VDATA=

Specifies the name of the time variable FIT, SOLVE, MODEL TIME=
Selects the estimation type to read FIT, SOLVE TYPE=

General ESTIMATE Statement Options
Specifies the name of the data set in which the
estimate of the functions of the parameters are
to be written

ESTIMATE OUTEST=

Writes the covariance matrix of the functions
of the parameters to the OUTEST= data set

ESTIMATE OUTCOV

Prints the covariance matrix of the functions of
the parameters

ESTIMATE COVB

Prints the correlation matrix of the functions of
the parameters

ESTIMATE CORRB

Printing Options for FIT Tasks
Prints the modified Breusch-Pagan test for
heteroscedasticity

FIT BREUSCH

Prints the Chow test for structural breaks FIT CHOW=
Prints collinearity diagnostics FIT COLLIN
Prints the correlation matrices FIT CORR
Prints the correlation matrix of the parameters FIT CORRB
Prints the correlation matrix of the residuals FIT CORRS
Prints the covariance matrices FIT COV
Prints the covariance matrix of the parameters FIT COVB
Prints the covariance matrix of the residuals FIT COVS
Prints Durbin-Watson d statistics FIT DW
Prints first-stage R2 statistics FIT FSRSQ
Prints Godfrey’s tests for autocorrelated
residuals for each equation

FIT GODFREY

Prints Hausman’s specification test FIT HAUSMAN
Prints tests of normality of the model residuals FIT NORMAL
Prints the predictive Chow test for structural
breaks

FIT PCHOW=

Specifies all the printing options FIT PRINTALL
Prints White’s test for heteroscedasticity FIT WHITE



1444 F Chapter 25: The MODEL Procedure

Table 25.1 continued

Description Statement Option

Options to Control FIT Iteration Output
Prints the inverse of the crossproducts
Jacobian matrix

FIT I

Prints a summary iteration listing FIT ITPRINT
Prints a detailed iteration listing FIT ITDETAILS
Prints the crossproduct Jacobian matrix FIT XPX
Specifies all the iteration printing-control
options

FIT ITALL

Options to Control the Minimization Process
Specifies the convergence criteria FIT CONVERGE=
Selects the Hessian approximation used for
FIML

FIT HESSIAN=

Specifies the local truncation error bound for
the integration

FIT, SOLVE, MODEL LTEBOUND=

Specifies the maximum number of iterations
allowed

FIT MAXITER=

Specifies the maximum number of
subiterations allowed

FIT MAXSUBITER=

Selects the iterative minimization method to
use

FIT METHOD=

Specifies the smallest allowed time step to be
used in the integration

FIT, SOLVE, MODEL MINTIMESTEP=

Modify the iterations for estimation methods
that iterate the S matrix or the V matrix

FIT NESTIT

Specifies the smallest pivot value MODEL, FIT, SOLVE SINGULAR
Specifies the number of minimization
iterations to perform at each grid point

FIT STARTITER=

Specifies a weight variable WEIGHT

Options to Read and Write Model Files
Deletes a model from a model file DELETEMODEL MODNAME=
Reads a model from one or more input model
files

INCLUDE MODEL=

Suppresses the default output of the model file MODEL, RESET NOSTORE
Specifies the name of an output model file MODEL, RESET OUTMODEL=
Deletes the current model RESET PURGE

Options to List or Analyze the Structure of the Model
Identifies equations in a dependency analysis EQGROUP
Identifies variables in a dependency analysis VARGROUP
Prints a dependency analysis of a simulation
model

SOLVE ANALYZEDEP=
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Table 25.1 continued

Description Statement Option

Prints a dependency structure of a normal form
model

MODEL BLOCK

Prints a graph of the dependency structure of a
normal form model

MODEL GRAPH

Prints the model program and variable lists MODEL LIST
Prints the derivative tables and compiled
model program code

MODEL LISTCODE

Prints a dependency list MODEL LISTDEP
Prints a table of derivatives MODEL LISTDER
Prints a cross-reference of the variables MODEL XREF

General Printing Control Options
Expands parts of the printed output FIT, SOLVE DETAILS
Prints a message for each statement as it is
executed

FIT, SOLVE FLOW

Selects the maximum number of execution
errors that can be printed

FIT, SOLVE MAXERRORS=

Requests a comprehensive memory usage
summary

FIT, SOLVE, MODEL,
RESET

MEMORYUSE

Selects the number of decimal places shown in
the printed output

FIT, SOLVE NDEC=

Suppresses the normal printed output FIT, SOLVE NOPRINT
Turns off the NOPRINT option RESET PRINT
Specifies all the noniteration printing options FIT, SOLVE PRINTALL
Prints tables which summarize missing value
calculations

FIT, SOLVE, MODEL REPORTMISSINGS

Prints the result of each operation as it is
executed

FIT, SOLVE TRACE

Statements That Declare Variables
Associates a name with a list of variables and
constants

ARRAY

Declares a variable to have a fixed value CONTROL
Declares a variable to be a dependent or
endogenous variable

ENDOGENOUS

Declares a variable to be an independent or
exogenous variable

EXOGENOUS

Specifies identifying variables ID
Assigns a label to a variable LABEL
Selects additional variables to be output OUTVARS
Declares a variable to be a parameter PARAMETERS
Forces a variable to hold its value from a
previous observation

RETAIN

Declares a model variable VAR
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Table 25.1 continued

Description Statement Option

Declares an instrumental variable INSTRUMENTS
Omits the default intercept term in the
instruments list

INSTRUMENTS NOINT

General FIT Statement Options
Omits parameters from the estimation FIT DROP=
Associates a variable with an initial value as a
parameter or a constant

FIT INITIAL=

Bypasses OLS to get initial parameter
estimates for GMM, ITGMM, or FIML

FIT NOOLS

Bypasses 2SLS to get initial parameter
estimates for GMM, ITGMM, or FIML

FIT NO2SLS

Specifies the parameters to estimate FIT PARMS=
Requests confidence intervals on estimated
parameters

FIT PRL=

Selects a grid search FIT START=

Options to Control the Estimation Method Used
Specifies nonlinear ordinary least squares FIT OLS
Specifies iterated nonlinear ordinary least
squares

FIT ITOLS

Specifies seemingly unrelated regression FIT SUR
Specifies iterated seemingly unrelated
regression

FIT ITSUR

Specifies two-stage least squares FIT 2SLS
Specifies iterated two-stage least squares FIT IT2SLS
Specifies three-stage least squares FIT 3SLS
Specifies iterated three-stage least squares FIT IT3SLS
Specifies full information maximum likelihood FIT FIML
Specifies simulated method of moments FIT NDRAW
Specifies number of draws for the V matrix FIT NDRAWV
Specifies number of initial observations for
SMM

FIT NPREOBS

Selects the variance-covariance estimator used
for FIML

FIT COVBEST=

Specifies generalized method of moments FIT GMM
Specifies the kernel for GMM and ITGMM FIT KERNEL=
Specifies iterated generalized method of
moments

FIT ITGMM

Specifies the type of generalized inverse used
for the covariance matrix

FIT GINV=

Specifies the denominator for computing
variances and covariances

FIT VARDEF=
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Table 25.1 continued

Description Statement Option

Specifies adding the variance adjustment for
SMM

FIT ADJSMMV

Specifies variance correction for
heteroscedasticity

FIT HCCME=

Specifies GMM variance under arbitrary
weighting matrix

FIT GENGMMV

Specifies GMM variance under optimal
weighting matrix

FIT NOGENGMMV

Solution Mode Options
Selects a subset of the model equations SOLVE SATISFY=
Solves only for missing variables SOLVE FORECAST
Solves for all solution variables SOLVE SIMULATE

Solution Mode Options: Lag Processing
Uses solved values in the lag functions SOLVE DYNAMIC
Uses actual values in the lag functions SOLVE STATIC
Produces successive forecasts to a fixed
forecast horizon

SOLVE NAHEAD=

Selects the observation to start dynamic
solutions

SOLVE START=

Solution Mode Options: Numerical Methods
Specifies the maximum number of iterations
allowed

SOLVE MAXITER=

Specifies the maximum number of
subiterations allowed

SOLVE MAXSUBITER=

Specifies the convergence criteria SOLVE CONVERGE=
Computes a simultaneous solution using a
Jacobi-like iteration

SOLVE JACOBI

Computes a simultaneous solution using a
Gauss-Seidel-like iteration

SOLVE SEIDEL

Computes a simultaneous solution using
Newton’s method

SOLVE NEWTON

Computes a nonsimultaneous solution SOLVE SINGLE

Monte Carlo Simulation Options
Specifies quasi-random number generator SOLVE QUASI=
Specifies pseudo-random number generator SOLVE PSEUDO=
Repeats the solution multiple times SOLVE RANDOM=
Initializes the pseudo-random number
generator

SOLVE SEED=

Specifies copula options SOLVE COPULA=
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Table 25.1 continued

Description Statement Option

Solution Mode Printing Options
Prints between data points integration values
for the DERT. variables and the auxiliary
variables

FIT, SOLVE, MODEL INTGPRINT

Prints the solution approximation and equation
errors

SOLVE ITPRINT

Prints the solution values and residuals at each
observation

SOLVE SOLVEPRINT

Prints various summary statistics SOLVE STATS
Prints tables of Theil inequality coefficients SOLVE THEIL
Specifies all printing control options SOLVE PRINTALL

General TEST Statement Options
Specifies that a Wald test be computed TEST WALD
Specifies that a Lagrange multiplier test be
computed

TEST LM

Specifies that a likelihood ratio test be
computed

TEST LR

Request all three types of tests TEST ALL
Specifies the name of an output SAS data set
that contains the test results

TEST OUT=

Miscellaneous Statements
Specifies the range of observations to be used RANGE
Subsets the data set with BY variables BY

PROC MODEL Statement
PROC MODEL options ;

The following options can be specified in the PROC MODEL statement. All of the nonassignment options
(the options that do not accept a value after an equal sign) can have NO prefixed to the option name in the
RESET statement to turn the option off. The default case is not explicitly indicated in the discussion that
follows. Thus, for example, the option DETAILS is documented in the following, but NODETAILS is not
documented since it is the default. Also, the NOSTORE option is documented because STORE is the default.



PROC MODEL Statement F 1449

Data Set Options

DATA=SAS-data-set
names the input data set. Variables in the model program are looked up in the DATA= data set and, if
found, their attributes (type, length, label, format) are set to be the same as those in the input data set
(if not previously defined otherwise). The values for the variables in the program are read from the
input data set when the model is estimated or simulated by FIT and SOLVE statements.

OUTPARMS=SAS-data-set
writes the parameter estimates to a SAS data set. For more information, see the section “Output Data
Sets” on page 1589.

PARMSDATA=SAS-data-set
names the SAS data set that contains the parameter estimates. In PROC MODEL, you have several
options to specify starting values for the parameters to be estimated. When more than one option
is specified, the options are implemented in the following order of precedence (from highest to
lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option, and
the PARMSDATA= option. If no options are specified for the starting value, the default value of 0.0001
is used. For more information, see the section “Input Data Sets” on page 1584.

PLOTS< (global-plot-options) > < =(plot-request . . . ) >
selects plots that the MODEL procedure produces via the Output Delivery System. For general
information about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s
Guide). The global-plot-options apply to all relevant plots generated by the MODEL procedure. The
global-plot-options and specific plot-request options supported by the MODEL procedure follow.

Global Plot Options

ONLY
suppresses the default plots. Only the plots specifically requested are produced.

UNPACKPANEL
displays each graph separately. (By default, some graphs can appear together in a single panel.)

Specific Plot Options

ALL
requests that all plots appropriate for the particular analysis be produced. This is the default.

ACF
produces the autocorrelation function plot.

DEPENDENCY< (OUTLINE=ON | OFF) >
produces the dependency analysis plots. Specifying the OUTLINE= option displays, or suppresses
outlines around the dependency cells.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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IACF
produces the inverse autocorrelation function plot of residuals.

PACF
produces the partial autocorrelation function plot of residuals.

FITPLOT
plots the predicted and actual values.

COOKSD
produces the Cook’s D plot.

QQ
produces a Q-Q plot of residuals.

RESIDUAL

RES
plots the residuals.

STUDENTRESIDUAL
plots the studentized residuals.

RESIDUALHISTOGRAM

RESIDHISTOGRAM
plots the histogram of residuals.

NONE
suppresses all plots.

Options to Read and Write Model Files

MODEL=model-name

MODEL=(model-list)
reads the model from one or more input model files that were created by specifying the OUTMODEL=
option in previous PROC MODEL executions.

NOSTORE
suppresses the default output of the model file. This option is applicable only when FIT or SOLVE
statements are not used, the MODEL= option is not used, and when a model is specified.

OUTCAT=(outcat-name MODNAME=model-key < outcat-options >)

SLIST=(outcat-name MODNAME=model-key < outcat-options >)
specifies the name and model-key for writing fitted model files. The model-key is a SAS name. Files
written using the OUTCAT= option are used by SAS Risk Dimensions. The OUTCAT= option only
applies to FIT statements. You can specify the following outcat-options:
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DIM=n
specifies the dimensionality of the model.

GROUP=group

MODGROUP=group
specifies a SAS name which is the group for the model.

INTERVAL=interval
specifies the time interval between observations.

MODLABEL=label
specifies a label for the model.

STARTDATE=date
specifies the starting date of the model.

OUTMODEL=model-name
specifies the name of an output model file to which the model is to be written. Starting with SAS 9.2,
model files are being stored as XML-based SAS data sets instead of being stored as members of a
SAS catalog as in earlier releases. This makes MODEL files more readily extendable in the future. To
change this behavior, use the SAS global-CMPMODEL-options. You can choose the format in which
the output model file is stored and read by using the CMPMODEL=global-CMPMODEL-options in an
OPTIONS statement as follows.

OPTIONS CMPMODEL=global-CMPMODEL-options;

You can specify the following global-CMPMODEL-options:

CATALOG specifies that model files be written and read from SAS catalogs only.

XML specifies that model files be written and read from XML data sets only.

BOTH specifies that model files be written to both XML and CATALOG formats. When
BOTH is specified, model files are read from the data set first and read from the
SAS catalog only if the data set is not found. This is the default.

Options to List or Analyze the Structure of the Model

These options produce reports on the structure of the model or list the programming statements that define
the models. These options are automatically reset (turned off) after the reports are printed. To turn these
options back on after a RUN statement has been entered, use the RESET statement or specify the options in a
FIT or SOLVE statement.

ANALYZEDEP=(dependency-plot1 < dependency-plot2 . . . >)
plots analyses of the dependencies among equations and solve variables. Each dependency-plot is one
of the following:

BLOCK specifies a block dependency matrix of the entire system.

BLOCK(eq-list ,var-list) specifies a block dependency matrix for a subset of equations and solve
variables.
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DETAILS specifies a dependency matrix of all equations and solve variables.

DETAILS(eq-list ,var-list) specifies a dependency matrix for a subset of equations and solve variables.

NOLISTBLOCK suppresses the listing of dependency blocks.

You can specify which equations and solve variables are included in the dependency analysis by
qualifying both the BLOCK and DETAILS dependency-plot options with a pair of lists. The first list
in the pair is the eq-list . It specifies which equations to include in the dependency analysis. You can
specify a mix of equation names and equation group labels in the eq-list . The MODEL procedure
replaces each equation group label in the eq-list with the list of equations that are specified in the
corresponding EQGROUP statement. The second list in the pair is the var-list . It specifies which
solve variables to include in the dependency analysis. You can specify a mix of variable names and
variable group labels in the var-list . The MODEL procedure replaces each variable group label in
the var-list with the list of variables that are specified in the corresponding VARGROUP statement.
By default, when you specify a BLOCK option, a listing of the equations and solve variables that
form each dependency block is generated. The NOLISTBLOCK option suppresses this listing. The
ANALYZEDEP= option applies only to SOLVE steps. For more information about the analyses
that are performed by the ANALYZEDEP= option, see the section “Diagnostics and Debugging” on
page 1647.

BLOCK
prints an analysis of the structure of the model given by the assignments to model variables that appear
in the model program. This analysis includes a classification of model variables into endogenous
(dependent) and exogenous (independent) groups based on the presence of the variable on the left side
of an assignment statement. The endogenous variables are grouped into simultaneously determined
blocks. The dependency structure of the simultaneous blocks and exogenous variables is also printed.
The BLOCK option cannot analyze dependencies implied by general form equations.

GRAPH
prints the graph of the dependency structure of the model. The GRAPH option also invokes the
BLOCK option and produces a graphical display of the information listed by the BLOCK option.

LIST
prints the model program and variable lists, including the statements added by PROC MODEL and
macros.

LISTALL
selects the LIST, LISTDEP, LISTDER, and LISTCODE options.

LISTCODE
prints the derivative tables and compiled model program code. LISTCODE is a debugging feature and
is not normally needed.

LISTDEP
prints a report that lists for each variable in the model program the variables that depend on it and that
it depends on. These lists are given separately for current-period values and for lagged values of the
variables.

The information displayed is the same as that used to construct the BLOCK report but differs in that the
information is listed for all variables (including parameters, control variables, and program variables),
not just for the model variables. Classification into endogenous and exogenous groups and analysis of
simultaneous structure is not done by the LISTDEP report.
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LISTDER
prints a table of derivatives for FIT and SOLVE tasks. (The LISTDER option is applicable only for
the default NEWTON method for SOLVE tasks.) The derivatives table shows each nonzero derivative
computed for the problem. The derivative listed can be a constant, a variable in the model program,
or a special derivative variable created to hold the result of the derivative expression. This option is
turned on by the LISTCODE and PRINTALL options.

XREF
prints a cross-reference of the variables in the model program that shows where each variable was
referenced or given a value. The XREF option is normally used in conjunction with the LIST option.
For a more detailed description, see the section “Diagnostics and Debugging” on page 1647.

General Printing Control Options

DETAILS
specifies the detailed printout. Parts of the printed output are expanded when the DETAILS option is
specified.

FLOW
prints a message for each statement in the model program as it is executed. This debugging option is
needed very rarely and produces voluminous output.

MAXERRORS=n
specifies the maximum number of execution errors that can be printed. The default is MAXER-
RORS=50.

MEMORYUSE
prints a report of the memory required for the various parts of the analysis.

NDEC=n
specifies the precision of the format that PROC MODEL uses when printing various numbers. The
default is NDEC=3, which means that PROC MODEL attempts to print values by using the D format
but ensures that at least three significant digits are shown. If the NDEC= value is greater than nine, the
BEST. format is used. The smallest value allowed is NDEC=2.

The NDEC= option affects the format of most, but not all, of the floating point numbers that PROC
MODEL can print. For some values (such as parameter estimates), a precision limit one or two digits
greater than the NDEC= value is used. This option does not apply to the precision of the variables in
the output data set.

NOPRINT
suppresses the normal printed output but does not suppress error listings. Using any other print option
turns the NOPRINT option off. The PRINT option can be used with the RESET statement to turn off
NOPRINT.

PRINTALL
turns on all the printing-control options. The options set by PRINTALL are DETAILS; the model
information options LIST, LISTDEP, LISTDER, XREF, BLOCK, and GRAPH; the FIT task printing
options FSRSQ, COVB, CORRB, COVS, CORRS, DW, and COLLIN; and the SOLVE task printing
options STATS, THEIL, SOLVEPRINT, and ITPRINT.
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REPORTMISSINGS
prints tables that summarize missing values that are encountered during a SOLVE or FIT task. The
missing values that are summarized in these tabular reports can be produced by missing values in the
DATA= data set or by calculations in the model program that generate missing values. The number of
missing values that are reported can be limited by using the MAXERRORS= option.

TRACE
prints the result of each operation in each statement in the model program as it is executed, in addition
to the information printed by the FLOW option. This debugging option is needed very rarely and
produces voluminous output.

FIT Task Options

The following options are used in the FIT statement (parameter estimation) and can also be used in the
PROC MODEL statement: COLLIN, CONVERGE=, CORR, CORRB, CORRS, COVB, COVBEST=,
COVS, DW, FIML, FSRSQ, GMM, HESSIAN=, I, INTGPRINT, ITALL, ITDETAILS, ITGMM, ITPRINT,
ITOLS, ITSUR, IT2SLS, IT3SLS, KERNEL=, LTEBOUND=, MAXITER=, MAXSUBITER=, METHOD=,
MINTIMESTEP=, NESTIT, N2SLS, N3SLS, OLS, OUTPREDICT, OUTRESID, OUTACTUAL, OUT-
LAGS, OUTALL, OUTCOV, SINGULAR=, STARTITER=, SUR, TIME=, VARDEF, and XPX. For descrip-
tions of these options, see the section “FIT Statement” on page 1464.

When used in the PROC MODEL or RESET statement, these are default options for subsequent FIT
statements. For example, the statement

proc model n2sls ... ;

makes two-stage least squares the default parameter estimation method for FIT statements that do not specify
an estimation method.

SOLVE Task Options

The following options for the SOLVE statement can also be used in the PROC MODEL statement: CON-
VERGE=, DYNAMIC, FORECAST, INTGPRINT, ITPRINT, JACOBI, LTEBOUND=, MAXITER=, MAX-
SUBITER=, MINTIMESTEP=, NAHEAD=, NEWTON, OUTPREDICT, OUTRESID, OUTACTUAL, OUT-
LAGS, OUTERRORS, OUTALL, SEED=, SEIDEL, SIMULATE, SINGLE, SINGULAR=, SOLVEPRINT,
START=, STATIC, STATS, THEIL, TIME=, and TYPE=. For more information about these options, see
section “SOLVE Statement” on page 1481.

When used in the PROC MODEL or RESET statement, these options provide default values for subsequent
SOLVE statements.
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BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints either on the parameters in an estimation or
on the solution variables specified in a solve operation. A BOUNDS statement that applies to parameters
constrains the parameters estimated in the preceding FIT statement or, in the absence of a preceding FIT
statement, in the following FIT statement. A BOUNDS statement that is applied to solution variables
constrains the solution of the preceding SOLVE statement or, in the absence of a preceding SOLVE statement,
of the following SOLVE statement. You can specify any number of BOUNDS statements.

Each bound is composed of either parameters or solution variables, constants, and inequality operators:

item operator item < operator item < operator item . . . > >

For BOUNDS statements that apply to FIT statements, each item is a constant, the name of an estimated
parameter, or a list of parameter names. For BOUNDS statements that apply to SOLVE statements, each item
is a constant, the name of a solution variable, or a list of solution variables. Each operator is <, >, <=, or >=.

You can use either the BOUNDS statement or the RESTRICT statement to impose boundary constraints
when estimating parameters or solving for solution variables.

The BOUNDS statement provides a simpler syntax for specifying boundary constraints than the RESTRICT
statement. For more information about the computational details of estimation and solutions with inequality
restrictions, see the section “RESTRICT Statement” on page 1479.

Parameter Estimates

Each active boundary constraint on estimated parameters is associated with a Lagrange multiplier. In the
printed output and in the OUTEST= data set, the Lagrange multiplier estimates are identified with the names
BOUND0, BOUND1, and so forth. The probabilities of the Lagrange multipliers are computed by using
a beta distribution (LaMotte 1994). To give the constraints more descriptive names, use the RESTRICT
statement instead of the BOUNDS statement.

The following BOUNDS statement constrains the estimates of the parameters A and B and the ten parameters
P1 through P10 to be between 0 and 1. This example illustrates the use of parameter lists to specify boundary
constraints.

bounds 0 < a b p1-p10 < 1;

The following statements show how to use the BOUNDS statement, and they produce the output shown in
Figure 25.13:

title 'Holzman Function (1969), Himmelblau No. 21, N=3';
data zero;

do i = 1 to 99;
output;

end;
run;

proc model data=zero;
parms x1= 100 x2= 12.5 x3= 3;
bounds .1 <= x1 <= 100,
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0 <= x2 <= 25.6,
0 <= x3 <= 5;

t = 2 / 3;
u = 25 + (-50 * log(0.01 * i )) ** t;
v = (u - x2) ** x3;
w = exp(-v / x1);
eq.foo = -.01 * i + w;

fit foo / method=marquardt;
run;

Figure 25.13 Output from Bounded Estimation

Holzman Function (1969), Himmelblau No. 21, N=3

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

x1 49.99999 0 . .

x2 25 0 . .

x3 1.5 0 . .

Solution Variables

Boundary constraints on solution variables can be used to specify which solution is reported when an equation
has multiple solutions. The BOUNDS statement in the following example causes its associated SOLVE
statement to compute only the negative value of the solution variable shown in Figure 25.14:

data d;
date = 0;

run;

proc model data=d;
endo x;
bounds x < 0;

eq.sqrt = x**2 - 4;

solve / optimize out=o;
run;

proc print data = o; run;

Figure 25.14 Listing of OUT= Data Set Created by a Bounded SOLVE Statement

Obs _TYPE_ _MODE_ _ERRORS_ x

1 PREDICT SIMULATE 0 -2
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BY Statement
BY variables ;

A BY statement is used with the FIT statement to obtain separate estimates for observations in groups defined
by the BY variables. If an output model file is written using the OUTMODEL= option, the parameter values
that are stored are those from the last BY group processed. To save parameter estimates for each BY group,
use the OUTEST= option in the FIT statement.

A BY statement is used with the SOLVE statement to obtain solutions for observations in groups defined by
the BY variables. If the BY variables in the DATA= data set and the ESTDATA= data set are identical, then
the two data sets are synchronized and the calculations are performed by using the data and parameters for
each BY group. This holds for BY variables in the SDATA= data set as well. If the BY variables do not match,
BY-group processing is abandoned in either the ESTDATA= data set or the SDATA= data set, whichever has
the missing BY value. If the DATA= data set does not contain BY variables and the ESTDATA= data set
or the SDATA= data set does, then BY-group processing is performed for the ESTDATA= data set and the
SDATA= data set by reusing the data in the DATA= data set for each BY group.

If both FIT and SOLVE tasks require BY-group processing, then two separate BY statements are needed. If
parameters for each BY group in the OUTEST = data set that is obtained from the FIT task are to be used for
the corresponding BY group for the SOLVE task, then one of the two BY statements must appear after the
SOLVE statement.

The following linear regression example illustrates the use of BY-group processing. Both the data sets A and
D to be used for fitting and solving, respectively, have three groups.

/*------ data set for fit task------ */
data a ;

do group = 1 to 3 ;
do i = 1 to 100 ;

x = normal(1);
y = 2 + 3*x + rannor(1) ;
output ;

end ;
end ;

run ;

/*------ data set for solve task------ */
data d ;

do group = 1 to 3 ;
x = normal(1) ;
output ;

end ;
run ;

/* ------ 2 BY statements, one of them appear after SOLVE statement ------ */
proc model data = a ;

by group ;
y = a0 + a1*x ;
fit y / outest = b1 ;
solve y / data = d estdata = b1 out = c1 ;
by group ;
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run;

proc print data = b1 ;run;
proc print data = c1 ; run;

Each of the parameter estimates obtained from the BY group processing in the FIT statement shown in
Figure 25.15 is used in the corresponding BY group variables in the SOLVE statement. The output data set is
shown in Figure 25.16.

Figure 25.15 Listing of OUTEST= Data Set Created in the FIT Statement with Two BY Statements

Obs group _NAME_ _TYPE_ _STATUS_ _NUSED_ a0 a1

1 1 OLS 0 Converged 100 2.00338 3.00298

2 2 OLS 0 Converged 100 2.05091 3.08808

3 3 OLS 0 Converged 100 2.15528 3.04290

Figure 25.16 Listing of OUT= Data Set Created in the SOLVE Statement with Two BY Statements

Obs group _TYPE_ _MODE_ _ERRORS_ y x

1 1 PREDICT SIMULATE 0 7.42322 1.80482

2 2 PREDICT SIMULATE 0 1.80413 -0.07992

3 3 PREDICT SIMULATE 0 3.36202 0.39658

If only one BY statement is used and it appears before the SOLVE statement, then parameters for the last BY
group in the OUTEST = data set are used for all BY groups for the SOLVE task.

/*------ 1 BY statement that appears before SOLVE statement------ */
proc model data = a ;

by group ;
y = a0 + a1*x ;
fit y / outest = b2 ;
solve y / data = d estdata = b2 out = c2 ;

run;

proc print data = b2 ; run;
proc print data = c2 ; run;

The estimates of the parameters are shown in Figure 25.17, and the output data set of the SOLVE statement is
shown in Figure 25.18. Hence, the estimates and the predicted values obtained in the last BY group variable
of both DATA C1 and C2 are the same while the others do not match.

Figure 25.17 Listing of OUTEST= Data Set Created in the FIT Statement with One BY Statement That
Appears before the SOLVE Statement

Obs group _NAME_ _TYPE_ _STATUS_ _NUSED_ a0 a1

1 1 OLS 0 Converged 100 2.00338 3.00298

2 2 OLS 0 Converged 100 2.05091 3.08808

3 3 OLS 0 Converged 100 2.15528 3.04290
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Figure 25.18 Listing of OUT= Data Set Created in the SOLVE Statement with One BY Statement That
Appears before the SOLVE Statement

Obs _TYPE_ _MODE_ _ERRORS_ y x

1 PREDICT SIMULATE 0 7.64717 1.80482

2 PREDICT SIMULATE 0 1.91211 -0.07992

3 PREDICT SIMULATE 0 3.36202 0.39658

If only one BY statement is used and it appears after the SOLVE statement, then BY group processing does
not apply to the FIT task. In this case, the OUTEST= data set does not contain the BY variable, and the single
set of parameter estimates obtained from the FIT task are used for all BY groups during the SOLVE task.

/*------ 1 BY statement that appears after SOLVE statement------*/
proc model data = a ;

y = a0 + a1*x ;
fit y / outest = b3 ;
solve y / data = d estdata = b3 out = c3 ;
by group ;

run;

proc print data = b3 ; run;
proc print data = c3 ; run;

The output data B3 and C3 are listed in Figure 25.19 and Figure 25.20, respectively.

Figure 25.19 Listing of OUTEST= Data Set Created in the FIT Statement with One BY Statement That
Appears after the SOLVE Statement

Obs _NAME_ _TYPE_ _STATUS_ _NUSED_ a0 a1

1 OLS 0 Converged 300 2.06624 3.04219

Figure 25.20 Listing of OUT= Data Set Created in the First SOLVE Statement with One BY Statement
That Appears after the SOLVE Statement

Obs group _TYPE_ _MODE_ _ERRORS_ y x

1 1 PREDICT SIMULATE 0 7.55686 1.80482

2 2 PREDICT SIMULATE 0 1.82312 -0.07992

3 3 PREDICT SIMULATE 0 3.27270 0.39658
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CONTROL Statement
CONTROL variable < value > . . . ;

The CONTROL statement declares control variables and specifies their values. A control variable is like a
parameter except that it has a fixed value and is not estimated from the data. You can use control variables for
constants in model equations that you might want to change in different solution cases. You can use control
variables to vary the program logic. Unlike the retained variables, these values are fixed across iterations.

DELETEMODEL Statement
DELETEMODEL model < MODNAME=model-name > ;

The DELETEMODEL statement deletes a model created using the OUTMODEL= option in a previous
PROC MODEL execution. The model argument specifies the catalog or XML-based data set containing the
model to be deleted, and the model-name argument specifies which model is to be deleted.

ENDOGENOUS Statement
ENDOGENOUS variable < initial-values > . . . ;

The ENDOGENOUS statement declares model variables and identifies them as endogenous. You can declare
model variables with an ENDOGENOUS statement instead of with a VAR statement to help document the
model or to indicate the default solution variables. The variables declared endogenous are solved when a
SOLVE statement does not indicate which variables to solve. Valid abbreviations for the ENDOGENOUS
statement are ENDOG and ENDO.

The DEPENDENT statement is equivalent to the ENDOGENOUS statement and is provided for the conve-
nience of noneconometric practitioners.

The ENDOGENOUS statement optionally provides initial values for lagged dependent variables. For more
information, see the section “Lag Logic” on page 1640.

EQGROUP Statement
EQGROUP label=equation. . . ;

The EQGROUP statement applies a group label to the specified list of equations in the model program.
Equation groups identify sets of related equations. The equation groups can be used by the ANALYZEDEP=
option in a subsequent SOLVE statement to help specify and understand the role of groups of equations in a
SOLVE step. If an equation appears in more than one EQGROUP statement, the label that is specified in the
last EQGROUP statement is applied to that equation.
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ERRORMODEL Statement
ERRORMODEL equation-name � distribution < CDF= CDF (options) > ;

The ERRORMODEL statement is the mechanism for specifying the distribution of the residuals. You must
specify the dependent/endogenous variables or general form model name, a tilde (Ï), and then a distribution
with its parameters. You can specify the following options:

Options to Specify the Distribution

CAUCHY( < location, scale > )
specifies the Cauchy distribution. This option is supported only for simulation. The arguments
correspond to the arguments of the SAS CDF function that computes the cumulative distribution
function (ignoring the random variable argument).

CHISQUARED ( df < , nc > )
specifies the �2 distribution. This option is supported only for simulation. The arguments correspond
to the arguments of the SAS CDF function (ignoring the random variable argument).

GENERAL(likelihood < , parm1, parm2, : : : parmn > )
specifies the negative of a general log-likelihood function that you construct by using SAS pro-
gramming statements. The procedure minimizes the negative log-likelihood function specified.
parm1; parm2; : : : parmn are optional parameters for this distribution and are used for documentation
purposes only.

F( ndf, ddf < , nc > )
specifies the F distribution. This option is supported only for simulation. The arguments correspond to
the arguments of the SAS CDF function (ignoring the random variable argument).

NORMAL( v1v2 : : : vn )
specifies a multivariate normal (Gaussian) distribution with mean 0 and variances v1 through vn.

POISSON( mean )
specifies the Poisson distribution. This option is supported only for simulation. The arguments
correspond to the arguments of the SAS CDF function (ignoring the random variable argument).

T( v1v2 : : : vn, df )
specifies a multivariate t distribution with noncentrality 0, variance v1 through vn, and common degrees
of freedom df .

UNIFORM( < left, right > )
specifies the uniform distribution. This option is supported only for simulation. The arguments
correspond to the arguments of the SAS CDF function (ignoring the random variable argument).
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Options to Specify the CDF for Simulation

CDF=( CDF (options) )
specifies the univariate distribution that is used for simulation so that the estimation can be done for
one set of distributional assumptions and the simulation for another. The CDF can be any of the
distributions from the previous section with the exception of the general likelihood. In addition, you
can specify the empirical distribution of the residuals.

EMPIRICAL= ( < TAILS=(options) > )
uses the sorted residual data to create an empirical CDF.

TAILS=( tail-options )
specifies how to handle the tails in computing the inverse CDF from an empirical distribution, where
the tail-options are as follows:

NORMAL specifies the normal distribution to extrapolate the tails.

T( df ) specifies the t distribution to extrapolate the tails.

PERCENT=p specifies the percentage of the observations to use in constructing each tail. The
default for the PERCENT= option is 10. A normal distribution or a t distribution
is used to extrapolate the tails to infinity. The variance for the tail distribution is
obtained from the data so that the empirical CDF is continuous.

ESTIMATE Statement
ESTIMATE item < , item . . . > < ,/ options > ;

The ESTIMATE statement computes estimates of functions of the parameters.

The ESTIMATE statement refers to the parameters estimated by the associated FIT statement (that is, to
either the preceding FIT statement or, in the absence of a preceding FIT statement, to the following FIT
statement). You can use any number of ESTIMATE statements.

Let h.�/ denote the function of parameters that needs to be estimated. Let O� denote the unconstrained
estimate of the parameter of interest, � . Let OV be the estimate of the covariance matrix of � . Denote

A.�/ D @h.�/=@� j O�

Then the standard error of the parameter function estimate is computed by obtaining the square root of
A. O�/ OVA

0

. O�/. This is the same as the variance needed for a Wald type test statistic with null hypothesis
h.�/ D 0.

If the expression of the function in the ESTIMATE statement includes a variable, then the value used in
computing the function estimate is the last observation of the variable in the DATA= data set.

If you specify options in the ESTIMATE statement, a comma is required before the “/” character that separates
the test expressions from the options, since the “/” character can also be used within test expressions to
indicate division. Each item is written as an optional name followed by an expression,
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< "name" > expression

where "name" is a string used to identify the estimate in the printed output and in the OUTEST= data set.

Expressions can be composed of parameter names, arithmetic operators, functions, and constants. Comparison
operators (such as = or <) and logical operators (such as &) cannot be used in ESTIMATE statement
expressions. Parameters named in ESTIMATE expressions must be among the parameters estimated by the
associated FIT statement.

You can use the following options in the ESTIMATE statement:

OUTEST=
specifies the name of the data set in which the estimate of the functions of the parameters are to be
written. The format for this data set is identical to the OUTEST= data set for the FIT statement.

If you specify a name in the ESTIMATE statement, that name is used as the parameter name for the
estimate in the OUTEST= data set. If no name is provided and the expression is just a symbol, the
symbol name is used; otherwise, the string “_Estimate #” is used, where “#” is the variable number in
the OUTEST= data set.

OUTCOV
writes the covariance matrix of the functions of the parameters to the OUTEST= data set in addition to
the parameter estimates.

COVB
prints the covariance matrix of the functions of the parameters.

CORRB
prints the correlation matrix of the functions of the parameters.

The following statements are an example of the use of the ESTIMATE statement in a segmented model and
produce the output shown in Figure 25.21:

data a;
input y x @@;

datalines;
.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7
.78 8 .70 9 .74 10 .77 11 .78 12 .74 13 .80 13
.80 15 .78 16

;

title 'Segmented Model -- Quadratic with Plateau';
proc model data=a;

x0 = -.5 * b / c;

if x < x0 then y = a + b*x + c*x*x;
else y = a + b*x0 + c*x0*x0;

fit y start=( a .45 b .5 c -.0025 );

estimate 'Join point' x0 ,
'plateau' a + b*x0 + c*x0**2 ;

run;
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Figure 25.21 ESTIMATE Statement Output

Segmented Model -- Quadratic with Plateau

The MODEL Procedure

Nonlinear OLS  Estimates

Term Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

Join point 12.7504 1.2785 9.97 <.0001 x0

plateau 0.777516 0.0123 63.10 <.0001 a + b*x0 + c*x0**2

EXOGENOUS Statement
EXOGENOUS variable < initial-values > . . . ;

The EXOGENOUS statement declares model variables and identifies them as exogenous. You can declare
model variables with an EXOGENOUS statement instead of with a VAR statement to help document the
model or to indicate the default instrumental variables. The variables declared exogenous are used as
instruments when an instrumental variables estimation method is requested (such as N2SLS or N3SLS) and
an INSTRUMENTS statement is not used. Valid abbreviations for the EXOGENOUS statement are EXOG
and EXO.

The INDEPENDENT statement is equivalent to the EXOGENOUS statement and is provided for the
convenience of non-econometric practitioners.

The EXOGENOUS statement optionally provides initial values for lagged exogenous variables. For more
information, see the section “Lag Logic” on page 1640.

FIT Statement
FIT < equations > < PARMS=(parameter < values > . . . ) > < START=(parameter values . . . ) > <

DROP=(parameter . . . ) > < INITIAL=(variable < = parameter | constant > . . . ) > < / options > ;

The FIT statement estimates model parameters by fitting the model equations to input data and optionally
selects the equations to be fit. If the list of equations is omitted, all model equations that contain parameters
are fitted.

The following options can be used in the FIT statement.

DROP= ( parameters . . . )
specifies that the named parameters not be estimated. All the parameters in the equations fit are
estimated except those listed in the DROP= option. The dropped parameters retain their previous
values and are not changed by the estimation.
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INITIAL= ( variable = < parameter | constant > . . . )
associates a variable with an initial value as a parameter or a constant . This option applies only to
ordinary differential equations. For more information, see the section “Ordinary Differential Equations”
on page 1545.

PARMS= ( parameters [values] . . . )
selects a subset of the parameters for estimation. When the PARMS= option is used, only the named
parameters are estimated. Any parameters not specified in the PARMS= list retain their previous values
and are not changed by the estimation.

In PROC MODEL, you have several options to specify starting values for the parameters to be
estimated. When more than one option is specified, the options are implemented in the following order
of precedence (from highest to lowest): the START= option, the PARMS statement initialization value,
the ESTDATA= option, and the PARMSDATA= option. If no options are specified for the starting
value, the default value of 0.0001 is used.

PRL= WALD | LR | BOTH
requests confidence intervals on estimated parameters. By default, the PRL option produces 95%
likelihood ratio confidence limits. The coverage of the confidence interval is controlled by the ALPHA=
option in the FIT statement.

START= ( parameter values . . . )
supplies starting values for the parameter estimates. In PROC MODEL, you have several options to
specify starting values for the parameters to be estimated. When more than one option is specified, the
options are implemented in the following order of precedence (from highest to lowest): the START=
option, the PARMS statement initialization value, the ESTDATA= option, and the PARMSDATA=
option. If no options are specified for the starting value, the default value of 0.0001 is used. If the
START= option specifies more than one starting value for one or more parameters, a grid search is
performed over all combinations of the values, and the best combination is used to start the iterations.
For more information, see the STARTITER= option.

Options to Control the Estimation Method Used

ADJSMMV
specifies adding the variance adjustment from simulating the moments to the variance-covariance
matrix of the parameter estimators. By default, no adjustment is made.

COVBEST=GLS | CROSS | FDA
specifies the variance-covariance estimator used for FIML. COVBEST=GLS selects the generalized
least squares estimator. COVBEST=CROSS selects the crossproducts estimator. COVBEST=FDA
selects the inverse of the finite difference approximation to the Hessian. The default is
COVBEST=CROSS.

DYNAMIC
specifies dynamic estimation of ordinary differential equations. For more information, see the section
“Ordinary Differential Equations” on page 1545.
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FIML
specifies full information maximum likelihood estimation.

GINV=G2 | G4
specifies the type of generalized inverse to be used when computing the covariance matrix. G4 selects
the Moore-Penrose generalized inverse. The default is GINV=G2.

Rather than deleting linearly related rows and columns of the covariance matrix, the Moore-Penrose
generalized inverse averages the variance effects between collinear rows. When the option GINV=G4
is used, the Moore-Penrose generalized inverse is used to calculate standard errors and the covariance
matrix of the parameters as well as the change vector for the optimization problem. For singular
systems, a normal G2 inverse is used to determine the singular rows so that the parameters can be
marked in the parameter estimates table. A G2 inverse is calculated by satisfying the first two properties
of the Moore-Penrose generalized inverse; that is, AACA D A and ACAAC D AC. Whether or not
you use a G4 inverse, if the covariance matrix is singular, the parameter estimates are not unique. For
more information about generalized inverses, see Noble and Daniel (1977, pp. 337–340).

GENGMMV
specify GMM variance under arbitrary weighting matrix. For more information, see the section
“Estimation Methods” on page 1489.

This is the default method for GMM estimation.

GMM
specifies generalized method of moments estimation.

HCCME=0 | 1 | 2 | 3 | NO
specifies the type of heteroscedasticity-consistent covariance matrix estimator to use for OLS, 2SLS,
3SLS, SUR, and the iterated versions of these estimation methods. The number corresponds to the
type of covariance matrix estimator to use as

HC0 W O�
2
t

HC1 W
n

n�df
O�2t

HC2 W O�
2
t =.1 �

Oht /

HC3 W O�
2
t =.1 �

Oht /
2

The default is NO.

ITGMM
specifies iterated generalized method of moments estimation.

ITOLS
specifies iterated ordinary least squares estimation. This is the same as OLS unless there are cross-
equation parameter restrictions.

ITSUR
specifies iterated seemingly unrelated regression estimation
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IT2SLS
specifies iterated two-stage least squares estimation. This is the same as 2SLS unless there are
cross-equation parameter restrictions.

IT3SLS
specifies iterated three-stage least squares estimation.

KERNEL=(PARZEN | BART | QS, < c > , < e > )

KERNEL=PARZEN | BART | QS
specifies the kernel to be used for GMM and ITGMM. PARZEN selects the Parzen kernel, BART
selects the Bartlett kernel, and QS selects the quadratic spectral kernel. e � 0 and c � 0 are used to
compute the bandwidth parameter. The default is KERNEL=(PARZEN, 1, 0.2). For more information,
see the section “Estimation Methods” on page 1489.

N2SLS | 2SLS
specifies nonlinear two-stage least squares estimation. This is the default when an INSTRUMENTS
statement is used.

N3SLS | 3SLS
specifies nonlinear three-stage least squares estimation.

NDRAW < =number-of-draws >
requests the simulation method for parameter estimation where the contribution of each observation
to the estimation is approximated by using number-of-draws evaluations of the model program. If
number-of-draws is not specified, the default value of 10 is used.

NOOLS

NO2SLS
specifies bypassing OLS or 2SLS to get initial parameter estimates for GMM, ITGMM, or FIML. This
is important for certain models that are poorly defined in OLS or 2SLS, or if good initial parameter
values are already provided. Note that for GMM, the V matrix is created by using the initial values
specified and this might not be consistently estimated.

NO3SLS
specifies not to use 3SLS automatically for FIML initial parameter starting values.

NOGENGMMV
specifies not to use GMM variance under arbitrary weighting matrix. Use GMM variance under optimal
weighting matrix instead. For more information, see the section “Estimation Methods” on page 1489.

NPREOBS=number-of-obs-to-initialize
specifies the initial number of observations to run the simulation before the simulated values are
compared to observed variables. This option is most useful in cases where the program statements
involve lag operations. Use this option to avoid the effect of the starting point on the simulation.

NVDRAW=number-of-draws-for-V-matrix
specifies H 0, the number of draws for V matrix. If this option is not specified, the default H 0 is set to
20.
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OLS
specifies ordinary least squares estimation. This is the default.

SUR
specifies seemingly unrelated regression estimation.

VARDEF=N | WGT | DF | WDF
specifies the denominator to be used in computing variances and covariances, MSE, root MSE measures,
and so on. VARDEF=N specifies that the number of nonmissing observations be used. VARDEF=WGT
specifies that the sum of the weights be used. VARDEF=DF specifies that the number of nonmissing
observations minus the model degrees of freedom (number of parameters) be used. VARDEF=WDF
specifies that the sum of the weights minus the model degrees of freedom be used. The default
is VARDEF=DF. For FIML estimation the VARDEF= option does not affect the calculation of the
parameter covariance matrix, which is determined by the COVBEST= option.

Data Set Options

DATA=SAS-data-set
specifies the input data set. Values for the variables in the program are read from this data set. If the
DATA= option is not specified in the FIT statement, the data set specified by the DATA= option in the
PROC MODEL statement is used.

ESTDATA=SAS-data-set
specifies a data set whose first observation provides initial values for some or all of the parameters.

MISSING=PAIRWISE | DELETE
specifies how missing values are handled. MISSING=PAIRWISE specifies that missing values are
tracked on an equation-by-equation basis. MISSING=DELETE specifies that the entire observation is
omitted from the analysis when any equation has a missing predicted or actual value for the equation.
The default is MISSING=DELETE.

OUT=SAS-data-set
names the SAS data set to contain the residuals, predicted values, or actual values from each estimation.
The residual values written to the OUT= data set are defined as the actual � predicted , which is the
negative of RESID.variable as defined in the section “Equation Translations” on page 1635. Only the
residuals are output by default.

OUTACTUAL
writes the actual values of the endogenous variables of the estimation to the OUT= data set. This
option is applicable only if the OUT= option is specified.

OUTALL
selects the OUTACTUAL, OUTERRORS, OUTLAGS, OUTPREDICT, and OUTRESID options.

OUTCOV

COVOUT
writes the covariance matrix of the estimates to the OUTEST= data set in addition to the parameter
estimates. The OUTCOV option is applicable only if the OUTEST= option is also specified.
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OUTEST=SAS-data-set
names the SAS data set to contain the parameter estimates and optionally the covariance of the
estimates.

OUTLAGS
writes the observations used to start the lags to the OUT= data set. This option is applicable only if the
OUT= option is specified.

OUTPREDICT
writes the predicted values to the OUT= data set. This option is applicable only if OUT= is specified.

OUTRESID
writes the residual values computed from the parameter estimates to the OUT= data set. The OUT-
RESID option is the default if neither OUTPREDICT nor OUTACTUAL is specified. This option is
applicable only if the OUT= option is specified. If the h.var equation is specified, the residual values
written to the OUT= data set are the normalized residuals, defined as actual � predicted , divided by
the square root of the h.var value. If the WEIGHT statement is used, the residual values are calculated
as actual � predicted multiplied by the square root of the WEIGHT variable.

OUTS=SAS-data-set
names the SAS data set to contain the estimated covariance matrix of the equation errors. This is the
covariance of the residuals computed from the parameter estimates.

OUTSN=SAS-data-set
names the SAS data set to contain the estimated normalized covariance matrix of the equation errors.
This is valid for multivariate t distribution estimation.

OUTSUSED=SAS-data-set
names the SAS data set to contain the S matrix used in the objective function definition. The
OUTSUSED= data set is the same as the OUTS= data set for the methods that iterate the S matrix.

OUTUNWGTRESID
writes the unweighted residual values computed from the parameter estimates to the OUT= data set.
These are residuals computed as actual � predicted with no accounting for the WEIGHT statement,
the _WEIGHT_ variable, or any variance expressions. This option is applicable only if the OUT=
option is specified.

OUTV=SAS-data-set
names the SAS data set to contain the estimate of the variance matrix for GMM and ITGMM.

SDATA=SAS-data-set
specifies a data set that provides the covariance matrix of the equation errors. The matrix read from
the SDATA= data set is used for the equation covariance matrix (S matrix) in the estimation. (The
SDATA= S matrix is used to provide only the initial estimate of S for the methods that iterate the S
matrix.)
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TIME=name
specifies the name of the time variable. This variable must be in the data set.

TYPE=name
specifies the estimation type to read from the SDATA= and ESTDATA= data sets. The name specified
in the TYPE= option is compared to the _TYPE_ variable in the ESTDATA= and SDATA= data sets to
select observations to use in constructing the covariance matrices. When the TYPE= option is omitted,
the last estimation type in the data set is used. Valid values are the estimation methods used in PROC
MODEL.

VDATA=SAS-data-set
specifies a data set that contains a variance matrix for GMM and ITGMM estimation. For more
information, see the section “Output Data Sets” on page 1589.

Printing Options for FIT Tasks

BREUSCH=( variable-list )
specifies the modified Breusch-Pagan test, where variable-list is a list of variables used to model the
error variance.

CHOW=obs

CHOW=(obs1 obs2 . . . obsn)
prints the Chow test for break points or structural changes in a model. The argument is the first
observation in the second sample or a parenthesized list of the first observations in each of the second
samples. If the size of one of the two groups in which the sample is partitioned is less than the number
of parameters, then a predictive Chow test is automatically used. For more information, see the section
“Chow Tests” on page 1559.

COLLIN
prints collinearity diagnostics for the Jacobian crossproducts matrix (XPX) after the parameters have
converged. Collinearity diagnostics are also automatically printed if the estimation fails to converge.

CORR
prints the correlation matrices of the residuals and parameters. Using CORR is the same as using both
CORRB and CORRS.

CORRB
prints the correlation matrix of the parameter estimates.

CORRS
prints the correlation matrix of the residuals.

COV
prints the covariance matrices of the residuals and parameters. Specifying COV is the same as
specifying both COVB and COVS.
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COVB
prints the covariance matrix of the parameter estimates.

COVS
prints the covariance matrix of the residuals.

DW < = >
prints Durbin-Watson d statistics, which measure autocorrelation of the residuals. When the residual
series is interrupted by missing observations, the Durbin-Watson statistic calculated is d 0 as suggested
by Savin and White (1978). This is the usual Durbin-Watson computed by ignoring the gaps. Savin
and White show that it has the same null distribution as the DW with no gaps in the series and can be
used to test for autocorrelation using the standard tables. The Durbin-Watson statistic is not valid for
models that contain lagged endogenous variables.

You can use the DW= option to request higher-order Durbin-Watson statistics. Since the ordinary
Durbin-Watson statistic tests only for first-order autocorrelation, the Durbin-Watson statistics for
higher-order autocorrelation are called generalized Durbin-Watson statistics.

DWPROB
prints the significance level (p-values) for the Durbin-Watson tests. Since the Durbin-Watson p-values
are computationally expensive, they are not reported by default. In the Durbin-Watson test, the null
hypothesis is that there is autocorrelation at a specific lag.

For limitations of the statistic, see the section “Generalized Durbin-Watson Tests” in Chapter 9, “The
AUTOREG Procedure.”

FSRSQ
prints the first-stage R2 statistics for instrumental estimation methods. These R2 statistics measure
the proportion of the variance retained when the Jacobian columns associated with the parameters are
projected through the instruments space.

GODFREY

GODFREY=n
performs Godfrey’s tests for autocorrelated residuals for each equation, where n is the maximum
autoregressive order, and specifies that Godfrey’s tests be computed for lags 1 through n. The default
number of lags is one.

HAUSMAN
performs Hausman’s specification test, or m-statistics.

NORMAL
performs tests of normality of the model residuals.

PCHOW=obs

PCHOW=(obs1 obs2 . . . obsn)
prints the predictive Chow test for break points or structural changes in a model. The argument is the
first observation in the second sample or a parenthesized list of the first observations in each of the
second samples. For more information, see the section “Chow Tests” on page 1559.
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PRINTALL
specifies the printing options COLLIN, CORRB, CORRS, COVB, COVS, DETAILS, DW, and FSRSQ.

WHITE
specifies White’s test.

Options to Control Iteration Output

For more information about the output produced, see the section “Iteration History” on page 1522.

I
prints the inverse of the crossproducts Jacobian matrix at each iteration.

ITALL
specifies all iteration printing-control options (I, ITDETAILS, ITPRINT, and XPX). ITALL also prints
the crossproducts matrix (labeled CROSS), the parameter change vector, and the estimate of the
cross-equation covariance of residuals matrix at each iteration.

ITDETAILS
prints a detailed iteration listing. This includes the ITPRINT information and additional statistics.

ITPRINT
prints the parameter estimates, objective function value, and convergence criteria at each iteration.

XPX
prints the crossproducts Jacobian matrix at each iteration.

Options to Control the Minimization Process

The following options can be helpful when you experience a convergence problem:

CONVERGE=value1

CONVERGE=(value1, value2)
specifies the convergence criteria. The convergence measure must be less than value1 before conver-
gence is assumed. value2 is the convergence criterion for the S and V matrices for S and V iterated
methods. value2 defaults to value1. For more information, see the section “Convergence Criteria” on
page 1510. The default value is CONVERGE=0.001.

HESSIAN=CROSS | GLS | FDA
specifies the Hessian approximation used for FIML. HESSIAN=CROSS selects the crossproducts
approximation to the Hessian, HESSIAN=GLS selects the generalized least squares approximation
to the Hessian, and HESSIAN=FDA selects the finite difference approximation to the Hessian. HES-
SIAN=GLS is the default.

LTEBOUND=n
specifies the local truncation error bound for the integration. This option is ignored if no ordinary
differential equations (ODEs) are specified.
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EPSILON=value
specifies the tolerance value used to transform strict inequalities into inequalities when restrictions
on parameters are imposed. By default, EPSILON=1E–8. For more information, see the section
“Restrictions and Bounds on Parameters” on page 1555.

MAXITER=n
specifies the maximum number of iterations allowed. The default is MAXITER=100.

MAXSUBITER=n
specifies the maximum number of subiterations allowed for an iteration. For the GAUSS method, the
MAXSUBITER= option limits the number of step halvings. For the MARQUARDT method, the MAX-
SUBITER= option limits the number of times � can be increased. The default is MAXSUBITER=30.
For more information, see the section “Minimization Methods” on page 1509.

METHOD=GAUSS | MARQUARDT
specifies the iterative minimization method to use. METHOD=GAUSS specifies the Gauss-Newton
method, and METHOD=MARQUARDT specifies the Marquardt-Levenberg method. The default is
METHOD=GAUSS. If the default GAUSS method fails to converge, the procedure switches to the
MARQUARDT method. For more information, see the section “Minimization Methods” on page 1509.

MINTIMESTEP=n
specifies the smallest allowed time step to be used in the integration. This option is ignored if no ODEs
are specified.

NESTIT
changes the way the iterations are performed for estimation methods that iterate the estimate of the
equation covariance (S matrix). The NESTIT option is relevant only for the methods that iterate
the estimate of the covariance matrix (ITGMM, ITOLS, ITSUR, IT2SLS, and IT3SLS). For more
information about NESTIT, see the section “Details about the Covariance of Equation Errors” on
page 1507.

SINGULAR=value
specifies the smallest pivot value allowed. The default is 1.0E–12.

STARTITER=n
specifies the number of minimization iterations to perform at each grid point. The default is STAR-
TITER=0, which implies that no minimization is performed at the grid points. For more information,
see the section “Using the STARTITER Option” on page 1516.

Other Options

Other options that can be used in the FIT statement include the following that list and analyze the model:
BLOCK, GRAPH, LIST, LISTCODE, LISTDEP, LISTDER, and XREF. The following printing control
options are also available: DETAILS, FLOW, INTGPRINT, MAXERRORS=, NOPRINT, PRINTALL, and
TRACE. For complete descriptions of these options, see the discussion of the PROC MODEL statement
options earlier in this chapter.
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ID Statement
ID variables ;

The ID statement specifies variables to identify observations in error messages or other listings and in the
OUT= data set. The ID variables are normally SAS date or datetime variables. If more than one ID variable
is used, the first variable is used to identify the observations; the remaining variables are added to the OUT=
data set.

INCLUDE Statement
INCLUDE model-names . . . ;

The INCLUDE statement reads model files and inserts their contents into the current model. However, instead
of replacing the current model as the RESET MODEL= option does, the contents of included model files are
inserted into the model program at the position that the INCLUDE statement appears.

INSTRUMENTS Statement
INSTRUMENTS variables < _EXOG_ > ;

INSTRUMENTS < variables-list > < _EXOG_ > < EXCLUDE=(parameters ) > < / options > ;

INSTRUMENTS (equation, variables)(equation, variables). . . ;

The INSTRUMENTS statement specifies the instrumental variables to be used in the N2SLS, N3SLS,
IT2SLS, IT3SLS, GMM, and ITGMM estimation methods.

There are three ways of specifying the INSTRUMENTS statement. The first form of the INSTRUMENTS
statement is declared before a FIT statement and defines the default instruments list. The items specified as
instruments can be variables or the special keyword _EXOG_. The keyword _EXOG_ indicates that all the
model variables declared EXOGENOUS are to be added to the instruments list. If a single INSTRUMENTS
statement of the first form is declared before multiple FIT statements, then it serves as the default instruments
list for each of the FIT statements. However, if any of these FIT statements are followed by separate
INSTRUMENTS statement, then the latter take precedence over the default list. Hence, in the case of
multiple FIT statements, the INSTRUMENTS statement for a particular FIT statement is written below the
FIT statement if instruments other than the default are required. For a single FIT statement, you can declare
the INSTRUMENTS statement of the first form either preceding or following the FIT statement.

The second form of the INSTRUMENTS statement is used only after the FIT statement and before the
next RUN statement. The items specified as instruments for the second form can be variables, names of
parameters to be estimated, or the special keyword _EXOG_. If you specify the name of a parameter in the
instruments list, the partial derivatives of the equations with respect to the parameter (that is, the columns of
the Jacobian matrix associated with the parameter) are used as instruments. The parameter itself is not used
as an instrument. These partial derivatives should not depend on any of the parameters to be estimated. Only
the names of parameters to be estimated can be specified.



INSTRUMENTS Statement F 1475

Note that an INSTRUMENTS statement of only the first form declared before multiple FIT statements serves
as the default instruments list. Hence, in the cases of multiple as well as single FIT statements, you can
declare the second form of INSTRUMENTS statements only following the FIT statements.

In the case where a FIT statement is preceded by an INSTRUMENTS statement of the second form in error
and not followed by any INSTRUMENTS statement, then the default list is used. This default list is given
by the INSTRUMENTS statement of the first form as explained above. If such a list is not declared, all the
model variables declared EXOGENOUS comprise the default.

A third form of the INSTRUMENTS statement is used to specify instruments for each equation. No explicit
intercept is added, parameters cannot be specified to represent instruments, and the _EXOG_ keyword is
not allowed. Equations not explicitly assigned instruments use all the instruments specified for the other
equations as well as instruments not assigned specific equations. In the following statements, z1, z2, and z3
are instruments used with equation y1, and z2, z3, and z4 are instruments used with equation y2.

proc model data=data_sim;
exogenous x1 x2;
parms a b c d e f;

y1 =a*x1**2 + b*x2**2 + c*x1*x2 ;
y2 =d*x1**2 + e*x2**2 + f*x1*x2**2;

fit y1 y2 / 3sls ;
instruments (y1, z1 z2 z3) (y2,z2 z3 z4);

run;

EXCLUDE=(parameters)
specifies that the derivatives of the equations with respect to all of the parameters to be estimated
(except the parameters listed in the EXCLUDE list) be used as instruments, in addition to the other
instruments specified. If you use the EXCLUDE= option, you should be sure that the derivatives with
respect to the nonexcluded parameters in the estimation are independent of the endogenous variables
and not functions of the parameters estimated.

The following options can be specified in the INSTRUMENTS statement following a slash (/):

NOINTERCEPT

NOINT
excludes the constant of 1.0 (intercept) from the instruments list. An intercept is included as an instru-
ment while using the first or second form of the INSTRUMENTS statement unless NOINTERCEPT is
specified.

When a FIT statement specifies an instrumental variables estimation method and no INSTRUMENTS
statement accompanies the FIT statement, the default instruments are used. If no default instruments
list has been specified, all the model variables declared EXOGENOUS are used as instruments. For
more information, see the section “Choice of Instruments” on page 1564.

INTONLY
specifies that only the intercept be used as an instrument. This option is used for GMM estimation
where the moments have been specified explicitly.
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LABEL Statement
LABEL variable='label ' . . . ;

The LABEL statement specifies a label of up to 255 characters for parameters and other variables used in the
model program. Labels are used to identify parts of the printout of FIT and SOLVE tasks. The labels are
displayed in the output if the LINESIZE= option is large enough.

MOMENT Statement
MOMENT variables=moment-specification ;

In many scenarios, endogenous variables are observed from data. From the models, you can simulate these
endogenous variables based on a fixed set of parameters. The goal of simulated method of moments (SMM)
is to find a set of parameters such that the moments of the simulated data match the moments of the observed
variables. If there are many moments to match, the code might be tedious. The following MOMENT
statement provides a way to generate some commonly used moments automatically. Multiple MOMENT
statements can be used.

variables can be one or more endogenous variables.

moment-specification can have the following four types:

� ( number-list ) specifies that the endogenous variable is raised to the power specified by each number
in number-list . For example,

moment y = (2 3);

adds the following two equations to be estimated:

eq._moment_1 = y**2 - pred.y**2;
eq._moment_2 = y**3 - pred.y**3;

� ABS( number-list ) specifies that the absolute value of the endogenous variable is raised to the power
specified by each number in number-list . For example,

moment y = ABS(3);

adds the following equation to be estimated:

eq._moment_2 = abs(y)**3 - abs(pred.y)**3;

� LAGn ( number-list ) specifies that the endogenous variable is multiplied by the nth lag of the
endogenous variable, and this product is raised to the power specified by each number in number-list .
For example,
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moment y = LAG4(3);

adds the following equation to be estimated:

eq._moment_3 = (y*lag4(y))**3 - (pred.y*lag4(pred.y))**3;

� ABS_LAGn ( number-list ) specifies that the endogenous variable is multiplied by the nth lag of the
endogenous variable, and the absolute value of this product is raised to the power specified by each
number in number-list . For example,

moment y = ABS_LAG4(3);

adds the following equation to be estimated:

eq._moment_4 = abs(y*lag4(y))**3 - abs(pred.y*lag4(pred.y))**3;

The following PROC MODEL statements use the MOMENT statement to generate 24 moments and fit these
moments using SMM:

proc model data=_tmpdata list;
parms a b .5 s 1;
instrument _exog_ / intonly;

u = rannor( 10091 );
z = rannor( 97631 );

lsigmasq = xlag(sigmasq,exp(a));

lnsigmasq = a + b * log(lsigmasq) + s * u;
sigmasq = exp( lnsigmasq );

y = sqrt(sigmasq) * z;

moment y = (2 4) abs(1 3) abs_lag1(1 2) abs_lag2(1 2);
moment y = abs_lag3(1 2) abs_lag4(1 2)

abs_lag5(1 2) abs_lag6(1 2)
abs_lag7(1 2) abs_lag8(1 2)
abs_lag9(1 2) abs_lag10(1 2);

fit y / gmm npreobs=20 ndraw=10;
bound s > 0, 1>b>0;

run;
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OUTVARS Statement
OUTVARS variables ;

The OUTVARS statement specifies additional variables defined in the model program to be output to the
OUT= data sets. The OUTVARS statement is not needed unless the variables to be added to the output data
set are not referred to by the model, or unless you want to include parameters or other special variables in
the OUT= data set. The OUTVARS statement includes additional variables, whereas the KEEP statement
excludes variables.

PARAMETERS Statement
PARAMETERS variable < value > < variable < value > > . . . ;

The PARAMETERS statement declares the parameters of a model and optionally sets their initial values.
Valid abbreviations are PARMS and PARM.

Each parameter has a single value associated with it, which is the same for all observations. Lagging is not
relevant for parameters. If a value is not specified in the PARMS statement (or by the PARMS= option of a
FIT statement), the value defaults to 0.0001 for FIT tasks and to a missing value for SOLVE tasks.

Programming Statements
To define the model, you can use most of the programming statements that are allowed in the SAS DATA
step. For more information, see the SAS DATA Step Statements: Reference.

RANGE Statement
RANGE variable < = first > < TO last > ;

The RANGE statement specifies the range of observations to be read from the DATA= data set. For FIT tasks,
the RANGE statement controls the period of fit for the estimation. For SOLVE tasks, the RANGE statement
controls the simulation period or forecast horizon.

The RANGE variable must be a numeric variable in the DATA= data set that identifies the observations, and
the data set must be sorted by the RANGE variable. The first observation in the range is identified by first ,
and the last observation is identified by last .

PROC MODEL uses the first l observations prior to first to initialize the lags, where l is the maximum number
of lags needed to evaluate any of the equations to be fit or solved, or the maximum number of lags needed to
compute any of the instruments when an instrumental variables estimation method is used. There should
be at least l observations in the data set before first . If last is not specified, all the nonmissing observations
starting with first are used.

If first is omitted, the first l observations are used to initialize the lags, and the rest of the data, until last , is
used. If a RANGE statement is used but both first and last are omitted, the RANGE statement variable is
used to report the range of observations processed.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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The RANGE variable should be nonmissing for all observations. Observations that contain missing RANGE
values are deleted.

The following are examples of RANGE statements:

range year = 1971 to 1988; /* yearly data */
range date = '1feb73'd to '1nov82'd; /* monthly data */
range time = 60.5; /* time in years */
range year to 1977; /* use all years through 1977 */
range date; /* use values of date to report period of fit */

If no RANGE statements follow multiple FIT statements and if a single RANGE statement is declared before
all the FIT statements, estimation in each of the multiple FIT statements is based on the data specified in the
single RANGE statement. A single RANGE statement that follows multiple FIT statements affects only the
fit immediately preceding it.

If the FIT statement is both followed by and preceded by RANGE statements, the following RANGE
statement takes precedence over the preceding RANGE statement.

In the case where a range of data is to be used for a particular SOLVE task, the RANGE statement should be
specified following the SOLVE statement in the case of either single or multiple SOLVE statements.

RESET Statement
RESET options ;

All the options of the PROC MODEL statement can be reset by the RESET statement. In addition, the
RESET statement supports one additional option:

PURGE
deletes the current model so that a new model can be defined.

When the MODEL= option is used in the RESET statement, the current model is deleted before the
new model is read.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement is used to impose linear and nonlinear restrictions either on the parameters in an
estimation or on the solution variables that are specified in a solve operation.

Each restriction is written as an optional name, followed by an expression, followed by an equality operator
(=) or an inequality operator (<, >, <=, >=), followed by a second expression:

< "name" > expression operator expression

The optional "name" is a string used to identify the restriction. The operator can be =, <, >, <= , or >=.
The operator and second expression are optional. When they are omitted, the default operator is > and the
default second expression is 0.
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Each RESTRICT statement is associated with the preceding FIT statement or SOLVE statement. When there
is no preceding FIT or SOLVE statement, the RESTRICT statement is associated with the following FIT or
SOLVE statement. You can specify any number of RESTRICT statements.

Parameter Estimates

Expressions in RESTRICT statements that apply to the parameters estimated by a FIT statement can be
composed of parameter names, arithmetic operators, functions, and constants. Comparison operators (such
as = or <) and logical operators (such as &) cannot be used in RESTRICT statement expressions; however,
comparison operators are used to compare the expressions within a RESTRICT statement. Parameters that
are named in restriction expressions must be among the parameters estimated by the associated FIT statement.
Expressions can refer to variables defined in the program.

The restriction expressions can be linear or nonlinear functions of the parameters.

The optional "name" is a string used to identify the restriction in the printed output and in the OUTEST=
data set.

The following example shows how to use the RESTRICT statement:

proc model data=one;
endogenous y1 y2;
exogenous x1 x2;
parms a b c;
restrict b*(b+c) <= a;

eq.one = -y1/c + a/x2 + b * x1**2 + c * x2**2;
eq.two = -y2 * y1 + b * x2**2 - c/(2 * x1);

fit one two / fiml;
run;

Solution Variables

Expressions in RESTRICT statements that apply to the solution variables in a SOLVE statement can be
composed of any variables in the model. Unlike restriction expressions that are used in parameter estimation,
exogenous model variables can be used in restriction expressions that involve solution variables because
each observation is solved independently in a SOLVE statement. To include constraints that are imposed by
RESTRICT inequalities in a solution, you must specify the OPTIMIZE option in the SOLVE statement.

The following example illustrates how multiple solutions to a nonlinear system of equations can be found by
using a RESTRICT expression that depends on exogenous variables. Two of the four possible solutions are
presented in Figure 25.22.

data d;
do i = 0 to 1;

date=i;
if i = 0 then r = -1;
else r = +1;
output;

end;
run;
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proc model data=d ;
endo x y;

eq.a = x*x - 4;
eq.b = y*y - 9;

restrict x*y*r > 1;

solve / optimize out=o outall;
quit;

proc print data = o; run;

Figure 25.22 Listing of OUT= Data Set Created by a Nonlinear Restriction

Obs _TYPE_ _MODE_ _ERRORS_ _OBJVAL_ x y r

1 ACTUAL SIMULATE 0 0 . . -1

2 PREDICT SIMULATE 0 0 2 -3 -1

3 RESIDUAL SIMULATE 0 0 . . -1

4 ERROR SIMULATE 0 0 . . -1

5 VIOL SIMULATE 0 0 . . -1

6 ACTUAL SIMULATE 0 0 . . 1

7 PREDICT SIMULATE 0 0 -2 -3 1

8 RESIDUAL SIMULATE 0 0 . . 1

9 ERROR SIMULATE 0 0 . . 1

10 VIOL SIMULATE 0 0 . . 1

SOLVE Statement
SOLVE variables < SATISFY= equations > < /options > ;

The SOLVE statement specifies that the model be simulated or forecast for input data values and, optionally,
selects the variables to be solved. If the list of variables is omitted, all of the model variables declared
ENDOGENOUS are solved. If no model variables are declared ENDOGENOUS, then all model variables
are solved.

The following specification can be used in the SOLVE statement:

SATISFY=equation

SATISFY=( equations )
specifies a subset of the model equations that the solution values are to satisfy. If the SATISFY=
option is not used, the solution is computed to satisfy all the model equations. Note that the number of
equations must equal the number of variables solved.
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Data Set Options

DATA=SAS-data-set
names the input data set. The model is solved for each observation read from the DATA= data set. If
the DATA= option is not specified in the SOLVE statement, the data set specified by the DATA= option
in the PROC MODEL statement is used.

ESTDATA=SAS-data-set
names a data set whose first observation provides values for some or all of the parameters and whose
additional observations (if any) give the covariance matrix of the parameter estimates. The covariance
matrix read from the ESTDATA= data set is used to generate multivariate normal pseudo-random
shocks to the model parameters when the RANDOM= option requests Monte Carlo simulation.

OUT=SAS-data-set
outputs the predicted (solution) values, residual values, actual values, or equation errors from the
solution to a data set. The residual values are the actual � predicted values, which is the negative of
RESID.variable as defined in the section “Equation Translations” on page 1635. Only the solution
values are output by default.

OUTACTUAL
outputs the actual values of the solved variables read from the input data set to the OUT= data set. This
option is applicable only if the OUT= option is specified.

OUTALL
specifies the OUTACTUAL, OUTERRORS, OUTLAGS, OUTPREDICT, and OUTRESID options.

OUTERRORS
writes the equation errors to the OUT= data set. These values are normally very close to 0 when a
simultaneous solution is computed; they can be used to double-check the accuracy of the solution
process. This option applies only if the OUT= option is specified.

OUTLAGS
writes the observations that are used to start the lags to the OUT= data set. This option applies only if
the OUT= option is specified.

OUTOBJVALS
writes the objective function value to the OBJVALS variable in the OUT= data set. The objective
function value is computed only when the OPTIMIZE solution method is specified. This value is close
to 0 when an unbounded simultaneous solution is computed and can be greater than 0 when bounds are
active in the solution. This option applies only if the OUT= option is specified.

OUTPREDICT
writes the solution values to the OUT= data set. This option applies only if the OUT= option is
specified.

The OUTPREDICT option is the default unless one of the other output options is specified.
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OUTRESID
writes the residual values that are computed as the actual � predicted values and is not the same as
the RESID.variable values. This option applies only if the OUT= option is specified.

OUTVIOLATIONS
writes the equation violations to the OUT= data set. The equation violations are computed only when
the OPTIMIZE solution method is specified. The violations provide information about how much each
equation contributes to the objective function value when bounds are active in the solution. This option
applies only if the OUT= option is specified.

PARMSDATA=SAS-data-set
specifies a data set that contains the parameter estimates. For more information, see the section “Input
Data Sets” on page 1584.

RESIDDATA=SAS-data-set
specifies a data set that contains the residuals to be used in the empirical distribution. This data set can
be created using the OUT= option in the FIT statement.

SDATA=SAS-data-set
specifies a data set that provides the covariance matrix of the equation errors. The covariance matrix
that is read from the SDATA= data set is used to generate multivariate normal pseudo-random shocks
to the equations when the RANDOM= option requests Monte Carlo simulation.

TIME=name
specifies the name of the time variable. This variable must be in the data set.

TYPE=name
specifies the estimation type. The name that is specified in the TYPE= option is compared to the
_TYPE_ variable in the ESTDATA= and SDATA= data sets to select observations to use in constructing
the covariance matrices. When TYPE= is omitted, the last estimation type in the data set is used.

Solution Mode Options: Lag Processing

DYNAMIC
specifies a dynamic solution. In the dynamic solution mode, solved values are used by the lagging
functions. DYNAMIC is the default.

NAHEAD=n
specifies a simulation of n-period-ahead dynamic forecasting. The NAHEAD= option is used to
simulate the process of using the model to produce successive forecasts to a fixed forecast horizon, in
which each forecast uses the historical data available at the time the forecast is made.

Note that NAHEAD=1 produces a static (one-step-ahead) solution. NAHEAD=2 produces a solution
that uses one-step-ahead solutions for the first lag (LAG1 functions return static predicted values) and
actual values for longer lags. NAHEAD=3 produces a solution that uses NAHEAD=2 solutions for
the first lags, NAHEAD=1 solutions for the second lags, and actual values for longer lags. In general,
NAHEAD=n solutions use NAHEAD=n–1 solutions for LAG1, NAHEAD=n–2 solutions for LAG2,
and so forth.
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START=s
specifies static solutions until the sth observation and then changes to dynamic solutions. If the
START=s option is specified, the first observation in the range in which LAGn delivers solved
predicted values is s+n, while LAGn returns actual values for earlier observations.

STATIC
specifies a static solution. In static solution mode, actual values of the solved variables from the input
data set are used by the lagging functions.

Solution Mode Options: Use of Available Data

FORECAST
specifies that the actual value of a solved variable is used as the solution value (instead of the predicted
value from the model equations) whenever nonmissing data are available in the input data set. That is,
in FORECAST mode, PROC MODEL solves only for those variables that are missing in the input data
set.

SIMULATE
specifies that PROC MODEL always solves for all solution variables as a function of the input values
of the other variables, even when actual data for some of the solution variables are available in the
input data set. SIMULATE is the default.

Solution Mode Options: Numerical Solution Method

JACOBI
computes a simultaneous solution using a Jacobi iteration.

NEWTON
computes a simultaneous solution by using Newton’s method. When the NEWTON option is selected,
the analytic derivatives of the equation errors with respect to the solution variables are computed, and
memory-efficient sparse matrix techniques are used for factoring the Jacobian matrix.

The NEWTON option can be used to solve both normalized-form and general-form equations and can
compute goal-seeking solutions. NEWTON is the default.

OPTIMIZE
computes a simultaneous solution by minimizing a norm of the equation errors with respect to the
solution variables. The OPTIMIZE method obeys constraints on the solution variables that are imposed
by the BOUNDS and RESTRICT statements.

SEIDEL
computes a simultaneous solution by using a Gauss-Seidel method.

SINGLE

ONEPASS
specifies a single-equation (nonsimultaneous) solution. The model is executed once to compute
predicted values for the variables from the actual values of the other endogenous variables. The
SINGLE option can be used only for normalized-form equations and cannot be used for goal-seeking
solutions.

For more information about these options, see the section “Solution Modes” on page 1595.
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Monte Carlo Simulation Options

COPULA=(copula-options)
specifies the copula to be used in the simulation. You can specify the following copula-options:

� CLAYTON(� ), where � is the Clayton copula parameter

� FRANK(� ), where � is the Frank copula parameter

� GUMBEL(� ), where � is the Gumbel copula parameter

� NORMAL

� NORMALMIX( n, p1 : : : pn, v1 : : : vn ), where pi are the probabilities and v i are the variances

� T(df ) < ASYM >, where df is the degrees-of-freedom parameter

The normal (Gaussian) copula is the default. The copula applies to covariance of equation errors.

PSEUDO=DEFAULT | TWISTER
specifies which pseudo-number generator to use in generating draws for Monte Carlo simulation. The
two pseudo-random number generators that are supported by the MODEL procedure are a default
congruential generator that has period 231�1 and a Mersenne twister pseudo-random number generator
that has an extraordinarily long period 219937 � 1.

QUASI=NONE | SOBOL | FAURE
specifies a pseudo- or quasi-random number generator. Two quasi-random number generators are
supported by the MODEL procedure: the Sobol sequence (QUASI=SOBOL) and the Faure sequence
(QUASI=FAURE). The default is QUASI=NONE, which is the pseudo-random number generator.

RANDOM=n
repeats the solution n times for each BY group, with different random perturbations of the equation
errors if the SDATA= option is specified; with different random perturbations of the parameters if the
ESTDATA= option is specified and the ESTDATA= data set contains a parameter covariance matrix;
and with different values returned from the random number generator functions, if any are used in the
model program. If RANDOM=0, the random number generator functions always return zero. For more
information, see the section “Monte Carlo Simulation” on page 1598. The default is RANDOM=0.

SEED=n
specifies an integer to use as the seed in generating pseudo-random numbers to shock the parameters
and equations when the ESTDATA= or SDATA= option is specified. If n is negative or 0, the time
of day from the computer’s clock is used as the seed. The SEED= option is relevant only if the
RANDOM= option is specified. The default is SEED=0.

WISHART=df
specifies that a Wishart distribution with degrees of freedom df be used in place of the normal error
covariance matrix. This option is used to model the variance of the error covariance matrix when
Monte Carlo simulation is selected.
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Options for Controlling the Numerical Solution Process

The following options are useful when you have difficulty converging to the simultaneous solution:

CONVERGE=value
specifies the convergence criterion for the simultaneous solution. Convergence of the solution is judged
by comparing the CONVERGE= value to the maximum over the equations of

j�i j

jyi j C 1E � 6

if they are computable; otherwise

j�i j

where �i represents the equation error and yi represents the solution variable that corresponds to the
ith equation for normalized-form equations. The default is CONVERGE=1E–8.

MAXITER=n
specifies the maximum number of iterations allowed for computing the simultaneous solution for any
observation. The default is MAXITER=50.

MAXSUBITER=n
specifies the maximum number of damping subiterations that are performed in solving a nonlinear
system when using the NEWTON solution method. Damping is disabled by setting MAXSUBITER=0.
The default is MAXSUBITER=10.

Printing Options

INTGPRINT
prints between data points integration values for the DERT. variables and the auxiliary variables. If
you specify the DETAILS option, the integrated derivative variables are printed as well.

ITPRINT
prints the solution approximation and equation errors at each iteration for each observation. This
option can produce voluminous output.

PRINTALL
specifies the printing control options DETAILS, ITPRINT, SOLVEPRINT, STATS, and THEIL.

SOLVEPRINT
prints the solution values and residuals at each observation.

STATS
prints various summary statistics for the solution values.

THEIL
prints tables of Theil inequality coefficients and Theil relative change forecast error measures for the
solution values. For more information, see the section “Summary Statistics” on page 1614.
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Other Options

Other options that can be used in the SOLVE statement include the following that list and analyze the
model: BLOCK, GRAPH, LIST, LISTCODE, LISTDEP, LISTDER, and XREF. The LTEBOUND= and
MINTIMESTEP= options can be used to control the integration process. The following printing-control
options are also available: DETAILS, FLOW, MAXERRORS=, NOPRINT, and TRACE. For complete
descriptions of these options, see the PROC MODEL and FIT statement options described earlier in this
chapter.

TEST Statement
TEST < "name" > test1 < , test2 . . . > < ,/ options > ;

The TEST statement performs tests of nonlinear hypotheses on the model parameters.

Each TEST statement applies to the parameters estimated by one FIT statement. TEST statements that
appear before or after the first FIT statement are associated with the first FIT statement. Subsequent TEST
statements are associated with the FIT statement that precedes them. TEST statements that are separated
from a FIT statement by an intervening RUN, SOLVE, or RESET statement are ignored. You can specify any
number of TEST statements.

If you specify options in the TEST statement, a comma is required before the “/” character that separates
the test expressions from the options, because the “/” character can also be used within test expressions to
indicate division.

The label lengths for tests and estimate statements are 256 characters. If the labels exceed this length, the
label is truncated to 256 characters with a note printed to the log.

Each test is written as an expression optionally followed by an equal sign (=) and a second expression:

< expression > < = expression >

Test expressions can be composed of parameter names, arithmetic operators, functions, and constants.
Comparison operators (such as =) and logical operators (such as &) cannot be used in TEST statement
expressions. Parameters named in test expressions must be among the parameters estimated by the associated
FIT statement.

If you specify only one expression in a test, that expression is tested against zero. For example, the following
two TEST statements are equivalent:

test a + b;

test a + b = 0;

When you specify multiple tests in the same TEST statement, a joint test is performed. For example, the
following TEST statement tests the joint hypothesis that both A and B are equal to zero:

test a, b;

To perform separate tests rather than a joint test, use separate TEST statements. For example, the following
TEST statements test the two separate hypotheses that A is equal to zero and that B is equal to zero:
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test a;
test b;

You can use the following options in the TEST statement:

WALD
specifies that a Wald test be computed. By default, the Wald test is computed.

LM

RAO

LAGRANGE
specifies that a Lagrange multiplier test be computed.

LR

LIKE
specifies that a likelihood ratio test be computed.

ALL
requests all three types of tests.

OUT=SAS-data-set
specifies the name of an output SAS data set that contains the test results. The format of the OUT=
data set that is produced by the TEST statement is similar to that of the OUTEST= data set produced
by the FIT statement.

VAR Statement
VAR variables < initial-values > . . . ;

The VAR statement declares model variables and optionally provides initial values for the lags of the variables.
For more information, see the section “Lag Logic” on page 1640.

VARGROUP Statement
VARGROUP label=variable. . . ;

The VARGROUP statement applies a group label to the specified list of variables in the model program.
Variable groups are used to identify sets of related solve variables. The variable groups can be used by the
ANALYZEDEP= option in a subsequent SOLVE statement to help specify and understand the role of groups
of solve variables in a SOLVE step. If a variable appears in more than one VARGROUP statement, the label
that is specified in the last VARGROUP statement is applied to that variable.
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WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters.

If the weight of an observation is nonpositive, that observation is not used for the estimation. The variable
must be a numeric variable in the input data set.

An alternative weighting method is to use an assignment statement to give values to the special variable
_WEIGHT_. The _WEIGHT_ variable must not depend on the parameters being estimated. If both weighting
specifications are given, the weights are multiplied together.

Details: Estimation by the MODEL Procedure

Estimation Methods
Consider the general nonlinear model:

�t D q.yt ; xt ;�/
zt D Z.xt /

where q 2Rg is a real vector valued function of yt 2 Rg , xt 2 Rl , �2Rp, where g is the number of
equations, l is the number of exogenous variables (lagged endogenous variables are considered exogenous
here), p is the number of parameters, and t ranges from 1 to n. zt 2 Rk is a vector of instruments. �t is an
unobservable disturbance vector with the following properties:

E.�t / D 0

E.�t�
0

t / D †

All of the methods implemented in PROC MODEL aim to minimize an objective function. Table 25.2 sum-
marizes the objective functions that define the estimators and the corresponding estimator of the covariance
of the parameter estimates for each method.

Table 25.2 Summary of PROC MODEL Estimation Methods

Method Instruments Objective Function Covariance of �

OLS No r0r=n .X0.diag.S/�1˝I/X/�1

ITOLS No r0.diag.S/�1˝I/r=n .X0.diag.S/�1˝I/X/�1

SUR No r0.S�1OLS˝I/r=n .X0.S�1˝I/X/�1

ITSUR No r0.S�1˝I/r=n .X0.S�1˝I/X/�1

N2SLS Yes r0.I˝W/r=n .X0.diag.S/�1˝W/X/�1

IT2SLS Yes r0.diag.S/�1˝W/r=n .X0.diag.S/�1˝W/X/�1
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Table 25.2 continued

Method Instruments Objective Function Covariance of �

N3SLS Yes r0.S�1N2SLS˝W/r=n .X0.S�1˝W/X/�1

IT3SLS Yes r0.S�1˝W/r=n .X0.S�1˝W/X/�1

GMM Yes Œnmn.�/�0 OV�1N2SLSŒnmn.�/�=n Œ.YX/0 OV�1.YX/��1

ITGMM Yes Œnmn.�/�0 OV�1Œnmn.�/�=n Œ.YX/0 OV�1.YX/��1

FIML No constant C n
2
ln.det.S// Œ OZ0.S�1˝I/ OZ��1

�
Pn
1 lnj.Jt /j

The Instruments column identifies the estimation methods that require instruments. The variables used in this
table and the remainder of this chapter are defined as follows:

n is the number of nonmissing observations.

g is the number of equations.

k is the number of instrumental variables.

r D

26664
r1
r2
:::

rg

37775 is the ng � 1 vector of residuals for the g equations stacked together.

ri D

26664
qi .y1; x1;�/
qi .y2; x2;�/

:::

qi .yn; xn;�/

37775 is the n � 1 column vector of residuals for the ith equation.

S is a g � g matrix that estimates†, the covariances of the errors across equations (referred
to as the S matrix).

X is an ng � p matrix of partial derivatives of the residual with respect to the parameters.

W is an n � n matrix, Z.Z0Z/�1Z0.

Z is an n � k matrix of instruments.

Y is a gk � ng matrix of instruments. Y D Ig˝Z0.

OZ OZ D . OZ1; OZ2; : : : ; OZp/ is an ng�p matrix. OZi is a ng�1 column vector obtained from
stacking the columns of

U
1

n

nX
tD1

�
@q.yt ; xt ;�/0

@yt

��1
@2q.yt ; xt ;�/0

@yt@�i
�Qi

U is an n�g matrix of residual errors. U D �1; �2; : : : ; �n0.

Q is the n�g matrix q.y1; x1;�/; q.y2; x2;�/; : : : ; q.yn; xn;�/.

Q i is an n�g matrix @Q
@�i

.

I is an n � n identity matrix.



Estimation Methods F 1491

J t is @q.yt ;xt ;�/
@y0t

, which is a g � g Jacobian matrix.

mn is first moment of the crossproduct q.yt ; xt ;�/˝zt ,

mn D
1
n

Pn
tD1 q.yt ; xt ;�/˝zt

z t is a k column vector of instruments for observation t . z0t is also the t th row of Z.
OV is the gk � gk matrix that represents the variance of the moment functions.

k is the number of instrumental variables used.

constant is the constant ng
2
.1C ln.2�//.

˝ is the notation for a Kronecker product.

All vectors are column vectors unless otherwise noted. Other estimates of the covariance matrix for FIML
are also available.

Dependent Regressors and Two-Stage Least Squares

Ordinary regression analysis is based on several assumptions. A key assumption is that the independent
variables are in fact statistically independent of the unobserved error component of the model. If this
assumption is not true (if the regressor varies systematically with the error), then ordinary regression produces
inconsistent results. The parameter estimates are biased.

Regressors might fail to be independent variables because they are dependent variables in a larger simultane-
ous system. For this reason, the problem of dependent regressors is often called simultaneous equation bias.
For example, consider the following two-equation system:

y1 D a1 C b1y2 C c1x1 C �1

y2 D a2 C b2y1 C c2x2 C �2

In the first equation, y2 is a dependent, or endogenous, variable. As shown by the second equation, y2 is a
function of y1, which by the first equation is a function of �1, and therefore y2 depends on �1. Likewise, y1
depends on �2 and is a dependent regressor in the second equation. This is an example of a simultaneous
equation system; y1 and y2 are a function of all the variables in the system.

Using the ordinary least squares (OLS) estimation method to estimate these equations produces biased
estimates. One solution to this problem is to replace y1 and y2 on the right-hand side of the equations with
predicted values, thus changing the regression problem to the following:

y1 D a1 C b1 Oy2 C c1x1 C �1

y2 D a2 C b2 Oy1 C c2x2 C �2

This method requires estimating the predicted values Oy1 and Oy2 through a preliminary, or “first stage,”
instrumental regression. An instrumental regression is a regression of the dependent regressors on a set of
instrumental variables, which can be any independent variables useful for predicting the dependent regressors.
In this example, the equations are linear and the exogenous variables for the whole system are known. Thus,
the best choice for instruments (of the variables in the model) are the variables x1 and x2.

This method is known as two-stage least squares or 2SLS, or more generally as the instrumental variables
method. The 2SLS method for linear models is discussed in Pindyck and Rubinfeld (1981, pp. 191–192). For
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nonlinear models this situation is more complex, but the idea is the same. In nonlinear 2SLS, the derivatives
of the model with respect to the parameters are replaced with predicted values. For further discussion of the
use of instrumental variables in nonlinear regression, see the section “Choice of Instruments” on page 1564.

To perform nonlinear 2SLS estimation with PROC MODEL, specify the instrumental variables with an
INSTRUMENTS statement and specify the 2SLS or N2SLS option in the FIT statement. The following
statements show how to estimate the first equation in the preceding example with PROC MODEL:

proc model data=in;
y1 = a1 + b1 * y2 + c1 * x1;
fit y1 / 2sls;
instruments x1 x2;

run;

The 2SLS or instrumental variables estimator can be computed by using a first-stage regression on the
instrumental variables as described previously. However, PROC MODEL actually uses the equivalent but
computationally more appropriate technique of projecting the regression problem into the linear space defined
by the instruments. Thus, PROC MODEL does not produce any “first stage” results when you use 2SLS. If
you specify the FSRSQ option in the FIT statement, PROC MODEL prints “First-Stage R2” statistic for each
parameter estimate.

Formally, the O� that minimizes

OSn D
1

n

 
nX
tD1

.q.yt ; xt ; �/˝zt /

!0  nX
tD1

I˝ztz0t

!�1  nX
tD1

.q.yt ; xt ;�/˝zt /

!

is the N2SLS estimator of the parameters. The estimate of † at the final iteration is used in the covariance of
the parameters given in Table 25.2. For more information about the properties of nonlinear two-stage least
squares, see Amemiya (1985, p. 250).

Seemingly Unrelated Regression

If the regression equations are not simultaneous (so there are no dependent regressors), seemingly unrelated
regression (SUR) can be used to estimate systems of equations with correlated random errors. The large-
sample efficiency of an estimation can be improved if these cross-equation correlations are taken into account.
SUR is also known as joint generalized least squares or Zellner regression. Formally, the O� that minimizes

OSn D
1

n

nX
tD1

q.yt ; xt ;�/0 O†�1q.yt ; xt ;�/

is the SUR estimator of the parameters.

The SUR method requires an estimate of the cross-equation covariance matrix, †. PROC MODEL first
performs an OLS estimation, computes an estimate, O†, from the OLS residuals, and then performs the SUR
estimation based on O†. The OLS results are not printed unless you specify the OLS option in addition to the
SUR option.

You can specify the O† to use for SUR by storing the matrix in a SAS data set and naming that data set in the
SDATA= option. You can also feed the O† computed from the SUR residuals back into the SUR estimation
process by specifying the ITSUR option. You can print the estimated covariance matrix O† by using the
COVS option in the FIT statement.
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The SUR method requires estimation of the † matrix, and this increases the sampling variability of the
estimator for small sample sizes. The efficiency gain that SUR has over OLS is a large sample property, and
you must have a reasonable amount of data to realize this gain. For a more detailed discussion of SUR, see
Pindyck and Rubinfeld (1981, pp. 331–333).

Three-Stage Least Squares Estimation

If the equation system is simultaneous, you can combine the 2SLS and SUR methods to take into account
both dependent regressors and cross-equation correlation of the errors. This is called three-stage least squares
(3SLS).

Formally, the O� that minimizes

OSn D
1

n

 
nX
tD1

.q.yt ; xt ;�/˝zt /

!0  
nX
tD1

. O†˝ztz0t /

!�1  nX
tD1

.q.yt ; xt ;�/˝zt /

!

is the 3SLS estimator of the parameters. For more information about 3SLS, see Gallant (1987, p. 435).

Residuals from the 2SLS method are used to estimate the † matrix required for 3SLS. The results of the
preliminary 2SLS step are not printed unless the 2SLS option is also specified.

To use the three-stage least squares method, specify an INSTRUMENTS statement and use the 3SLS or
N3SLS option in either the PROC MODEL statement or a FIT statement.

Generalized Method of Moments (GMM)

For systems of equations with heteroscedastic errors, generalized method of moments (GMM) can be used to
obtain efficient estimates of the parameters. For alternatives to GMM, see the section “Heteroscedasticity”
on page 1531.

Consider the nonlinear model

�t D q.yt ; xt ;�/
zt D Z.xt /

where zt is a vector of instruments and �t is an unobservable disturbance vector that can be serially correlated
and nonstationary.

In general, the following orthogonality condition is desired:

E.�t˝zt / D 0

This condition states that the expected crossproducts of the unobservable disturbances, �t , and functions of
the observable variables are set to 0. The first moment of the crossproducts is

mn D
1

n

nX
tD1

m.yt ; xt ;�/

m.yt ; xt ;�/ D q.yt ; xt ;�/˝zt

where m.yt ; xt ;�/2Rgk .
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The case where gk > p is considered here, where p is the number of parameters.

Estimate the true parameter vector �0 by the value of O� that minimizes

S.�;V/ D Œnmn.�/�0V�1Œnmn.�/�=n

where

V D Cov
�
Œnmn.�

0/�; Œnmn.�
0/�0

�
The parameter vector that minimizes this objective function is the GMM estimator. GMM estimation is
requested in the FIT statement with the GMM option.

The variance of the moment functions, V, can be expressed as

V D E

 
nX
tD1

�t˝zt

! 
nX
sD1

�s˝zs

!0

D

nX
tD1

nX
sD1

E
�
.�t˝zt /.�s˝zs/0

�
D nS0n

where S0n is estimated as

OSn D
1

n

nX
tD1

nX
sD1

.q.yt ; xt ;�/˝zt /.q.ys; xs;�/˝zs/0

Note that OSn is a gk � gk matrix. Because Var. OSn/ does not decrease with increasing n, you consider
estimators of S0n of the form

OSn.l.n// D
n�1X

�D�nC1

Ow.
�

l.n/
/D OSn;�D

OSn;� D

8̂<̂
:

nP
tD1C�

Œq.yt ; xt ;�#/˝zt �Œq.yt�� ; xt�� ;�#/˝zt�� �0 � � 0

. OSn;�� /0 � < 0

Ow.
�

l.n/
/ D

(
w. �

l.n/
/ l.n/ > 0

ı�;0 l.n/ D 0

where l.n/ is a scalar function that computes the bandwidth parameter, w.�/ is a scalar valued kernel, and
the Kronecker delta function, ıi;j , is 1 if i D j and 0 otherwise. The diagonal matrix D is used for a small
sample degrees of freedom correction (Gallant 1987). The initial �# used for the estimation of OSn is obtained
from a 2SLS estimation of the system. The degrees of freedom correction is handled by the VARDEF=
option as it is for the S matrix estimation.

The following kernels are supported by PROC MODEL. They are listed with their default bandwidth
functions.
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Bartlett: KERNEL=BART

w.x/ D

(
1 � jxj jxj � 1

0 otherwise

l.n/ D
1

2
n1=3

Parzen: KERNEL=PARZEN

w.x/ D

8̂<̂
:
1 � 6jxj2 C 6jxj3 0 � jxj � 1

2

2.1 � jxj/3 1
2
� jxj � 1

0 otherwise

l.n/ D n1=5

Quadratic spectral: KERNEL=QS

w.x/ D
25

12�2x2

�
sin.6�x=5/
6�x=5

� cos.6�x=5/
�

l.n/ D
1

2
n1=5
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Figure 25.23 Kernels for Smoothing

For more information about the properties of these and other kernels, see Andrews (1991). Kernels are
selected with the KERNEL= option; KERNEL=PARZEN is the default. The general form of the KERNEL=
option is

KERNEL=( PARZEN | QS | BART, c, e )

where the e � 0 and c � 0 are used to compute the bandwidth parameter as

l.n/ D cne

The bias of the standard error estimates increases for large bandwidth parameters. A warning message is
produced for bandwidth parameters greater than n

1
3 . For a discussion of the computation of the optimal l.n/,

see Andrews (1991).

The “Newey-West” kernel (Newey and West 1987) corresponds to the Bartlett kernel with bandwidth
parameter l.n/ D LC 1. That is, if the “lag length” for the Newey-West kernel is L, then the corresponding
MODEL procedure syntax is KERNEL=(bart, L+1, 0).

Andrews and Monahan (1992) show that using prewhitening in combination with GMM can improve
confidence interval coverage and reduce over rejection of t statistics at the cost of inflating the variance and
MSE of the estimator. Prewhitening can be performed by using the %AR macros.

For the special case that the errors are not serially correlated—that is,

E.et˝zt /.es˝zs/ D 0 t¤s
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the estimate for S0n reduces to

OSn D
1

n

nX
tD1

Œq.yt ; xt ;�/˝zt �Œq.yt ; xt ;�/˝zt �0

The option KERNEL=(kernel,0,) is used to select this type of estimation when using GMM.

Covariance of GMM estimators
The covariance of GMM estimators, given a general weighting matrix V�1G , is

Œ.YX/0V�1G .YX/��1.YX/0V�1G OVV�1G .YX/Œ.YX/0V�1G .YX/��1

By default or when GENGMMV is specified, this is the covariance of GMM estimators.

If the weighting matrix is the same as OV, then the covariance of GMM estimators becomes

Œ.YX/0 OV�1.YX/��1

If NOGENGMMV is specified, this is used as the covariance estimators.

Testing Overidentifying Restrictions
Let r be the number of unique instruments times the number of equations. The value r represents the
number of orthogonality conditions imposed by the GMM method. Under the assumptions of the GMM
method, r � p linearly independent combinations of the orthogonality should be close to zero. The GMM
estimates are computed by setting these combinations to zero. When r exceeds the number of parameters to
be estimated, the OBJECTIVE*N, reported at the end of the estimation, is an asymptotically valid statistic to
test the null hypothesis that the overidentifying restrictions of the model are valid. The OBJECTIVE*N is
distributed as a chi-square with r � p degrees of freedom (Hansen 1982, p. 1049). When the GMM method
is selected, the value of the overidentifying restrictions test statistic, also known as Hansen’s J test statistic,
and its associated number of degrees of freedom are reported together with the probability under the null
hypothesis.

Iterated Generalized Method of Moments (ITGMM)

Iterated generalized method of moments is similar to the iterated versions of 2SLS, SUR, and 3SLS. The
variance matrix for GMM estimation is reestimated at each iteration with the parameters determined by the
GMM estimation. The iteration terminates when the variance matrix for the equation errors change less
than the CONVERGE= value. Iterated generalized method of moments is selected by the ITGMM option in
the FIT statement. For some indication of the small sample properties of ITGMM, see Ferson and Foerster
(1993).

Simulated Method of Moments (SMM)

The SMM method uses simulation techniques in model inference and estimation. It is appropriate for
estimating models in which integrals appear in the objective function, and these integrals can be approximated
by simulation. There might be various reasons for integrals to appear in an objective function (for example,
transformation of a latent model into an observable model, missing data, random coefficients, heterogeneity,
and so on).

This simulation method can be used with all the estimation methods except full information maximum
likelihood (FIML) in PROC MODEL. SMM, also known as simulated generalized method of moments
(SGMM), is the default estimation method because of its nice properties.
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Estimation Details
A general nonlinear model can be described as

�t D q.yt ; xt ;�/

where q 2 Rg is a real vector valued function of yt 2 Rg , xt 2 Rl , � 2 Rp; g is the number of equations; l
is the number of exogenous variables (lagged endogenous variables are considered exogenous here); p is the
number of parameters; and t ranges from 1 to n. �t is an unobservable disturbance vector with the following
properties:

E.�t / D 0

E.�t�
0

t / D †

In many cases, it is not possible to write q.yt ; xt ;�/ in a closed form. Instead q is expressed as an integral of
a function f ; that is,

q.yt ; xt ;�/ D
Z

f.yt ; xt ;�; ut /dP.u/

where f2Rg is a real vector valued function of yt 2 Rg , xt 2 Rl , � 2 Rp , and ut 2 Rm, m is the number of
stochastic variables with a known distribution P.u/. Since the distribution of u is completely known, it is
possible to simulate artificial draws from this distribution. Using such independent draws uht , h D 1; : : : ;H ,
and the strong law of large numbers, q can be approximated by

1

H

HX
hD1

f.yt ; xt ;�; uht /:

Simulated Generalized Method of Moments (SGMM)
Generalized method of moments (GMM) is widely used to obtain efficient estimates for general model
systems. When the moment conditions are not readily available in closed forms but can be approximated by
simulation, simulated generalized method of moments (SGMM) can be used. The SGMM estimators have
the nice property of being asymptotically consistent and normally distributed even if the number of draws H
is fixed (see McFadden 1989; Pakes and Pollard 1989).

Consider the nonlinear model

�t D q.yt ; xt ;�/ D
1

H

HX
hD1

f.yt ; xt ;�;uht /

zt D Z.xt /

where zt2Rk is a vector of k instruments and �t is an unobservable disturbance vector that can be serially
correlated and nonstationary. In the case of no instrumental variables, zt is 1. q.yt ; xt ;�/ is the vector of
moment conditions, and it is approximated by simulation.

In general, theory suggests the following orthogonality condition,

E.�t˝zt / D 0
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which states that the expected crossproducts of the unobservable disturbances, �t , and functions of the
observable variables are set to 0. The sample means of the crossproducts are

mn D
1

n

nX
tD1

m.yt ; xt ;�/

m.yt ; xt ;�/ D q.yt ; xt ;�/˝zt

where m.yt ; xt ;�/2Rgk . The case where gk > p, where p is the number of parameters, is considered here.
An estimate of the true parameter vector �0 is the value of O� that minimizes

S.�; V / D Œnmn.�/�0V�1Œnmn.�/�=n

where

V D Cov
�
m.�0/;m.�0/0

�
:

The steps for SGMM are as follows:

1. Start with a positive definite OV matrix. This OV matrix can be estimated from a consistent estimator of � .
If O� is a consistent estimator, then ut for t D 1; : : : ; n can be simulated H 0 number of times. A consistent
estimator of V is obtained as

OV D
1

n

nX
tD1

Œ
1

H 0

H 0X
hD1

f.yt ; xt ; O�; uht /˝zt �Œ
1

H 0

H 0X
hD1

f.yt ; xt ; O�; uht /˝zt �0

H 0 must be large so that this is an consistent estimator of V.

2. Simulate H number of ut for t D 1; : : : ; n. As shown by Gourieroux and Monfort (1993), the number
of simulations H does not need to be very large. For H D 10, the SGMM estimator achieves 90% of the
efficiency of the corresponding GMM estimator. Find O� that minimizes the quadratic product of the moment
conditions again with the weight matrix being OV

�1
.

min
�
Œnmn.�/�0 OV

�1
Œnmn.�/�=n

3. The covariance matrix of
p
n� is given as (Gourieroux and Monfort 1993)

†�11 D OV
�1

V. O�/ OV
�1

D0†�11 C
1

H
†�11 D OV

�1
EŒz˝Var.f jx/˝z� OV

�1
D0†�11

where †1 D D OV
�1

D, D is the matrix of partial derivatives of the residuals with respect to the parameters,
V. O�/ is the covariance of moments from estimated parameters O� , and Var.f jx/ is the covariance of moments
for each observation from simulation. The first term is the variance-covariance matrix of the exact GMM
estimator, and the second term accounts for the variation contributed by simulating the moments.
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Implementation in PROC MODEL
In PROC MODEL, if the user specifies the GMM and NDRAW options in the FIT statement, PROC MODEL
first fits the model by using N2SLS and computes OV by using the estimates from N2SLS and H 0 simulation.
If NO2SLS is specified in the FIT statement, OV is read from the VDATA= data set. If the user does not
provide a OV matrix, the initial starting value of � is used as the estimator for computing the OV matrix in step
1. If ITGMM option is specified instead of GMM, then PROC MODEL iterates from step 1 to step 3 until the
V matrix converges.

The consistency of the parameter estimates is not affected by the variance correction shown in the second
term in step 3. The correction on the variance of parameter estimates is not computed by default. To add
the adjustment, use the ADJSMMV option in the FIT statement. This correction is of the order of 1

H
and is

small even for moderate H.

The following example illustrates how to use SMM to estimate a simple regression model. Suppose the
model is

y D aC bx C u; u � i id N.0; s2/:

First, consider the problem in a GMM context. The first two moments of y are easily derived:

E.y/ D aC bx

E.y2/ D .aC bx/2 C s2

Rewrite the moment conditions in the form similar to the preceding discussion:

�1t D yt � .aC bxt /

�2t D y2t � .aC bxt /
2
� s2

Then you can estimate this model by using GMM with the following statements:

proc model data=a;
parms a b s;
instrument x;
eq.m1 = y-(a+b*x);
eq.m2 = y*y - (a+b*x)**2 - s*s;
bound s > 0;
fit m1 m2 / gmm;

run;

Now suppose you do not have the closed form for the moment conditions. Instead you can simulate the
moment conditions by generating H number of simulated samples based on the parameters. Then the
simulated moment conditions are

�1t D
1

H

HX
hD1

fyt � .aC bxt C sut;h/g

�2t D
1

H

HX
hD1

fy2t � .aC bxt C sut;h/
2
g

This model can be estimated by using SGMM with the following statements:
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proc model data=_tmpdata;
parms a b s;
instrument x;
ysim = (a+b*x) + s * rannor( 98711 );
eq.m1 = y-ysim;
eq.m2 = y*y - ysim*ysim;
bound s > 0;
fit m1 m2 / gmm ndraw=10;

run;

You can use the following MOMENT statement instead of specifying the two moment equations shown
earlier:

moment ysim=(1, 2);

In cases where you require a large number of moment equations, using the MOMENT statement to specify
them is more efficient.

Note that the NDRAW= option tells PROC MODEL that this is a simulation-based estimation. Thus, the
random number function RANNOR returns random numbers in estimation process. During the simulation,
10 draws of m1 and m2 are generated for each observation, and the averages enter the objective functions
just as the equations specified previously.

Other Estimation Methods
The simulation method can be used not only with GMM and ITGMM, but also with OLS, ITOLS, SUR,
ITSUR, N2SLS, IT2SLS, N3SLS, and IT3SLS. These simulation-based methods are similar to the corre-
sponding methods in PROC MODEL; the only difference is that the objective functions include the average
of the H simulations.

Full Information Maximum Likelihood Estimation (FIML)

A different approach to the simultaneous equation bias problem is the full information maximum likelihood
(FIML) estimation method (Amemiya 1977).

Compared to the instrumental variables methods (2SLS and 3SLS), the FIML method has these advantages
and disadvantages:

� FIML does not require instrumental variables.

� FIML requires that the model include the full equation system, with as many equations as there are
endogenous variables. With 2SLS or 3SLS, you can estimate some of the equations without specifying
the complete system.

� FIML assumes that the equations errors have a multivariate normal distribution. If the errors are not
normally distributed, the FIML method might produce poor results. 2SLS and 3SLS do not assume a
specific distribution for the errors.

� The FIML method is computationally expensive.
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The full information maximum likelihood estimators of � and � are the O� and O� that minimize the negative
log-likelihood function:

ln.�; � / D ng
2

ln.2�/ �
nX
tD1

ln
�ˇ̌̌̌
@q.yt ; xt ;�/

@y0t

ˇ̌̌̌�
C
n

2
ln .j†.�/j/

C
1

2
tr

 
†.�/�1

nX
tD1

q.yt ; xt ;�/q
0.yt ; xt ;�/

!

The option FIML requests full information maximum likelihood estimation. If the errors are distributed
normally, FIML produces efficient estimators of the parameters. If instrumental variables are not provided,
the starting values for the estimation are obtained from a SUR estimation. If instrumental variables are
provided, then the starting values are obtained from a 3SLS estimation. The log-likelihood value and the l2
norm of the gradient of the negative log-likelihood function are shown in the estimation summary.

FIML Details
To compute the minimum of ln.�; � /, this function is concentrated using the relation

†.�/ D
1

n

nX
tD1

q.yt ; xt ;�/q0.yt ; xt ;�/

This results in the concentrated negative log-likelihood function discussed in Davidson and MacKinnon
(1993):

ln.�/ D
ng

2
.1C ln.2�// �

nX
tD1

ln
ˇ̌̌̌
@

@y0t
q.yt ; xt ;�/

ˇ̌̌̌
C
n

2
lnj†.�/j

The gradient of the negative log-likelihood function is

@

@�i
ln.�/ D

nX
tD1

ri .t/

ri .t/ D �tr

 �
@q.yt ; xt ;�/

@y0t

��1 @2q.yt ; xt ;�/
@y0t@�i

!

C
1

2
tr
�
†.�/�1

@†.�/

@�i�
I �†.�/�1q.yt ; xt ;�/q.yt ; xt ;�/

0
��

C q.yt ; xt ;�
0/†.�/�1

@q.yt ; xt ;�/
@�i

where

@†.�/

@�i
D
2

n

nX
tD1

q.yt ; xt ;�/
@q.yt ; xt ;�/0

@�i

The estimator of the variance-covariance of O� (COVB) for FIML can be selected with the COVBEST= option
with the following arguments:
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CROSS selects the crossproducts estimator of the covariance matrix (Gallant 1987, p. 473),

C D

 
1

n

nX
tD1

r.t/r 0.t/

!�1
where r.t/ D Œr1.t/;r2.t/; : : : ;rp.t/�0. This is the default.

GLS selects the generalized least squares estimator of the covariance matrix. This is computed
as (Dagenais 1978)

C D Œ OZ
0
.†.�/�1˝I / OZ��1

where OZ D . OZ1; OZ2; : : : ; OZp/ is ng � p and each OZi column vector is obtained from
stacking the columns of

U
1

n

nX
tD1

�
@q.yt ; xt ;�/0

@y

��1
@2q.yt ; xt ;�/0

@y0n@�i
�Qi

U is an n � g matrix of residuals and qi is an n � g matrix @Q
@�i

.

FDA selects the inverse of concentrated likelihood Hessian as an estimator of the covariance ma-
trix. The Hessian is computed numerically, so for a large problem this is computationally
expensive.

The HESSIAN= option controls which approximation to the Hessian is used in the minimization procedure.
Alternate approximations are used to improve convergence and execution time. The choices are as follows:

CROSS The crossproducts approximation is used.

GLS The generalized least squares approximation is used (default).

FDA The Hessian is computed numerically by finite differences.

HESSIAN=GLS has better convergence properties in general, but COVBEST=CROSS produces the most
pessimistic standard error bounds. When the HESSIAN= option is used, the default estimator of the
variance-covariance of O� is the inverse of the Hessian selected.

Multivariate t Distribution Estimation

The multivariate t distribution is specified by using the ERRORMODEL statement with the T option. Other
method specifications (FIML and OLS, for example ) are ignored when the ERRORMODEL statement is
used for a distribution other than normal.

The probability density function for the multivariate t distribution is

Pq D
�.dfCm

2
/

.� � df /
m
2 � �.df

2
/ j†.�/j

1
2

�

�
1C

q0.yt ; xt ;�/†.�/�1q.yt ; xt ;�/
df

��dfCm
2

where m is the number of equations and df is the degrees of freedom.
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The maximum likelihood estimators of � and � are the O� and O� that minimize the negative log-likelihood
function:

ln.�; � / D �

nX
tD1

ln

0@ �.dfCm
2

/

.� � df /
m
2 � �.df

2
/
�

�
1C

q0t†
�1qt

df

��dfCm
2

1A
C
n

2
� ln .j†j/ �

nX
tD1

ln
�ˇ̌̌̌
@qt

@y0t

ˇ̌̌̌�

The ERRORMODEL statement is used to request the t distribution maximum likelihood estimation. An OLS
estimation is done to obtain initial parameter estimates and MSE.var estimates. Use NOOLS to turn off this
initial estimation. If the errors are distributed normally, t distribution estimation produces results similar to
FIML.

The multivariate model has a single shared degrees-of-freedom parameter, which is estimated. The degrees-
of-freedom parameter can also be set to a fixed value. The log-likelihood value and the l2 norm of the
gradient of the negative log-likelihood function are shown in the estimation summary.

t Distribution Details

Since a variance term is explicitly specified by using the ERRORMODEL statement, †.�/ is estimated as a
correlation matrix and q.yt ; xt ;�/ is normalized by the variance. The gradient of the negative log-likelihood
function with respect to the degrees of freedom is

@ln

@df
D

nm

2 df
�
n

2

� 0.dfCm
2

/

�.dfCm
2

/
C
n

2

� 0.df
2
/

�.df
2
/
C

0:5 log.1C
q0†�1q
df

/ �
0:5.df Cm/

.1C
q0†�1q
df

/

q0†�1q
df 2

The gradient of the negative log-likelihood function with respect to the parameters is

@ln

@�i
D

0:5.df Cm/

.1C q0†�1q=df /

24.2 q0†�1 @q@�i /
df

C q0†�1
@†

@�i
†�1q

35 � n
2
trace.†�1

@†

@�i
/

where

@†.�/

@�i
D
2

n

nX
tD1

q.yt ; xt ;�/
@q.yt ; xt ;�/0

@�i

and

q.yt ; xt ;�/ D
�.�/p
h.�/

2 Rm�n

The estimator of the variance-covariance of O� (COVB) for the t distribution is the inverse of the likelihood
Hessian. The gradient is computed analytically, and the Hessian is computed numerically.
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Empirical Distribution Estimation and Simulation

The following SAS statements fit a model that uses least squares as the likelihood function, but represent
the distribution of the residuals with an empirical cumulative distribution function (CDF). The plot of the
empirical probability distribution is shown in Figure 25.24.

data t; /* Sum of two normals */
format date monyy.;
do t = 0 to 9.9 by 0.1;

date = intnx( 'month', '1jun90'd, (t*10)-1 );
y = 0.1 * (rannor(123)-10) +

.5 * (rannor(123)+10);
output;

end;
run;

ods select Model.Liklhood.ResidSummary
Model.Liklhood.ParameterEstimates;

proc model data=t time=t itprint;
dependent y;
parm a 5;

y = a;
obj = resid.y * resid.y;
errormodel y ~ general( obj )
cdf=(empirical=(tails=( normal percent=10)));

fit y / outsn=s out=r;
id date;

solve y / data=t(where=(date='1aug98'd))
residdata=r sdata=s
random=200 seed=6789 out=monte ;

run;

proc kde data=monte;
univar y / plots=density;

run;
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Figure 25.24 Empirical PDF Plot

For simulation, if the CDF for the model is not built in to the procedure, you can use the CDF=EMPIRICAL()
option. This uses the sorted residual data to create an empirical CDF. For computing the inverse CDF, the
program needs to know how to handle the tails. For continuous data, the tail distribution is generally poorly
determined. To counter this, the PERCENT= option specifies the percentage of the observations to use in
constructing each tail. The default for the PERCENT= option is 10.

A normal distribution or a t distribution is used to extrapolate the tails to infinity. The standard errors for this
extrapolation are obtained from the data so that the empirical CDF is continuous.
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Properties of the Estimates
All of the methods are consistent. Small sample properties might not be good for nonlinear models. The tests
and standard errors reported are based on the convergence of the distribution of the estimates to a normal
distribution in large samples.

These nonlinear estimation methods reduce to the corresponding linear systems regression methods if the
model is linear. If this is the case, PROC MODEL produces the same estimates as PROC SYSLIN.

Except for GMM, the estimation methods assume that the equation errors for each observation are identically
and independently distributed with a 0 mean vector and positive definite covariance matrix † consistently
estimated by S. For FIML, the errors need to be normally distributed. There are no other assumptions
concerning the distribution of the errors for the other estimation methods.

The consistency of the parameter estimates relies on the assumption that the S matrix is a consistent estimate
of †. These standard error estimates are asymptotically valid, but for nonlinear models they might not be
reliable for small samples.

The S matrix used for the calculation of the covariance of the parameter estimates is the best estimate
available for the estimation method selected. For S-iterated methods, this is the most recent estimation of
†. For OLS and 2SLS, an estimate of the S matrix is computed from OLS or 2SLS residuals and used for
the calculation of the covariance matrix. For a complete list of the S matrix used for the calculation of the
covariance of the parameter estimates, see Table 25.2.

Missing Values

An observation is excluded from the estimation if any variable used for FIT tasks is missing, if the weight for
the observation is not greater than 0 when weights are used, or if a DELETE statement is executed by the
model program. Variables used for FIT tasks include the equation errors for each equation, the instruments,
if any, and the derivatives of the equation errors with respect to the parameters estimated. Note that variables
can become missing as a result of computational errors or calculations with missing values.

The number of usable observations can change when different parameter values are used; some parameter
values can be invalid and cause execution errors for some observations. PROC MODEL keeps track of the
number of usable and missing observations at each pass through the data, and if the number of missing
observations counted during a pass exceeds the number that was obtained using the previous parameter vector,
the pass is terminated and the new parameter vector is considered infeasible. PROC MODEL never takes a
step that produces more missing observations than the current estimate does.

The values used to compute the Durbin-Watson, R2, and other statistics of fit are from the observations used
in calculating the objective function and do not include any observation for which any needed variable was
missing (residuals, derivatives, and instruments).

Details about the Covariance of Equation Errors

There are several S matrices that can be involved in the various estimation methods and in forming the
estimate of the covariance of parameter estimates. These S matrices are estimates of†, the true covariance of
the equation errors. Apart from the choice of instrumental or noninstrumental methods, many of the methods
provided by PROC MODEL differ in the way the various S matrices are formed and used.
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All of the estimation methods result in a final estimate of †, which is included in the output if the COVS
option is specified. The final S matrix of each method provides the initial S matrix for any subsequent
estimation.

This estimate of the covariance of equation errors is defined as

S D D.R0R/D

where R D .r1; : : : ; rg/ is composed of the equation residuals computed from the current parameter estimates
in an n � g matrix and D is a diagonal matrix that depends on the VARDEF= option.

For VARDEF=N, the diagonal elements of D are 1=
p
n, where n is the number of nonmissing observations.

For VARDEF=WGT, n is replaced with the sum of the weights. For VARDEF=WDF, n is replaced with the
sum of the weights minus the model degrees of freedom. For the default VARDEF=DF, the ith diagonal
element of D is 1=

p
n � dfi , where dfi is the degrees of freedom (number of parameters) for the ith equation.

Binkley and Nelson (1984) show the importance of using a degrees-of-freedom correction in estimating †.
Their results indicate that the DF method produces more accurate confidence intervals for N3SLS parameter
estimates in the linear case than the alternative approach they tested. VARDEF=N is always used for the
computation of the FIML estimates.

For the fixed S methods, the OUTSUSED= option writes the S matrix used in the estimation to a data set.
This S matrix is either the estimate of the covariance of equation errors matrix from the preceding estimation,
or a prior † estimate read in from a data set when the SDATA= option is specified. For the diagonal S
methods, all of the off-diagonal elements of the S matrix are set to 0 for the estimation of the parameters
and for the OUTSUSED= data set, but the output data set produced by the OUTS= option contains the
off-diagonal elements. For the OLS and N2SLS methods, there is no previous estimate of the covariance of
equation errors matrix, and the option OUTSUSED= saves an identity matrix unless a prior † estimate is
supplied by the SDATA= option. For FIML, the OUTSUSED= data set contains the S matrix computed with
VARDEF=N. The OUTS= data set contains the S matrix computed with the selected VARDEF= option. Both
versions of the S matrix appear in the printed output for FIML.

If the COVS option is used, the method is not S-iterated, S is not an identity, and the OUTSUSED= matrix is
included in the printed output.

For the methods that iterate the covariance of equation errors matrix, the S matrix is iteratively re-estimated
from the residuals produced by the current parameter estimates. This S matrix estimate iteratively replaces
the previous estimate until both the parameter estimates and the estimate of the covariance of equation errors
matrix converge. The final OUTS= matrix and OUTSUSED= matrix are thus identical for the S-iterated
methods.

Nested Iterations

By default, for S-iterated methods, the S matrix is held constant until the parameters converge once. Then the
S matrix is reestimated. One iteration of the parameter estimation algorithm is performed, and the S matrix is
again reestimated. This latter process is repeated until convergence of both the parameters and the S matrix.
Since the objective of the minimization depends on the S matrix, this has the effect of chasing a moving
target.

When the NESTIT option is specified, iterations are performed to convergence for the structural parameters
with a fixed S matrix. The S matrix is then reestimated, the parameter iterations are repeated to convergence,
and so on until both the parameters and the S matrix converge. This has the effect of fixing the objective
function for the inner parameter iterations. It is more reliable, but usually more expensive, to nest the
iterations.
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R-Square Statistic

For unrestricted linear models with an intercept successfully estimated by OLS, R2 is always between 0 and
1. However, nonlinear models do not necessarily encompass the dependent mean as a special case and can
produce negative R2 statistics. Negative R2 statistics can also be produced even for linear models when an
estimation method other than OLS is used and no intercept term is in the model.

R2 is defined for normalized equations as

R2 D 1 �
SSE

SSA � Ny2 � n

where SSA is the sum of the squares of the actual y’s and Ny are the actual means. R2 cannot be computed
for models in general form because of the need for an actual Y.

Minimization Methods
PROC MODEL currently supports two methods for minimizing the objective function. These methods are
described in the following sections.

GAUSS

The Gauss-Newton parameter-change vector for a system with g equations, n nonmissing observations, and p
unknown parameters is

� D .X0X/�1X0r

where� is the change vector, X is the stacked ng � p Jacobian matrix of partial derivatives of the residuals
with respect to the parameters, and r is an ng � 1vector of the stacked residuals. The components of X and r
are weighted by the S �1 matrix. When instrumental methods are used, X and r are the projections of the
Jacobian matrix and residuals vector in the instruments space and not the Jacobian and residuals themselves.
In the preceding formula, S and W are suppressed. If instrumental variables are used, then the change vector
becomes

� D .X0.S�1˝W/X/�1X0.S�1˝W/r

This vector is computed at the end of each iteration. The objective function is then computed at the changed
parameter values at the start of the next iteration. If the objective function is not improved by the change, the
� vector is reduced by one-half and the objective function is reevaluated. The change vector will be halved
up to MAXSUBITER= times until the objective function is improved. If the objective function cannot be
improved after MAXSUBITER= times, the procedure switches to the MARQUARDT method described in
the next section to further improve the objective function.

For FIML, the X0X matrix is substituted with one of three choices for approximations to the Hessian. (See
the section “Full Information Maximum Likelihood Estimation (FIML)” on page 1501.)
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MARQUARDT

The Marquardt-Levenberg parameter change vector is

� D .X0XC �diag.X0X//�1X0r

where � is the change vector, and X and r are the same as for the Gauss-Newton method, described in
the preceding section. Before the iterations start, � is set to a small value (1E–6). At each iteration, the
objective function is evaluated at the parameters changed by�. If the objective function is not improved, � is
increased to 10� and the step is tried again. � can be increased up to MAXSUBITER= times to a maximum
of 1E15 (whichever comes first) until the objective function is improved. For the start of the next iteration, �
is reduced to max(�/10,1E–10).

Convergence Criteria
There are a number of measures that could be used as convergence or stopping criteria. PROC MODEL
computes five convergence measures labeled R, S, PPC, RPC, and OBJECT.

When an estimation technique that iterates estimates of † is used (that is, IT3SLS), two convergence criteria
are used. The termination values can be specified with the CONVERGE=(p,s) option in the FIT statement. If
the second value, s, is not specified, it defaults to p. The criterion labeled S (described later in the section)
controls the convergence of the S matrix. When S is less than s, the S matrix has converged. The criterion
labeled R is compared to the p-value to test convergence of the parameters.

The R convergence measure cannot be computed accurately in the special case of singular residuals (when
all the residuals are close to 0) or in the case of a 0 objective value. When either the trace of the S matrix
computed from the current residuals (trace(S)) or the objective value is less than the value of the SINGULAR=
option, convergence is assumed.

The various convergence measures are explained in the following:

R is the primary convergence measure for the parameters. It measures the degree to which
the residuals are orthogonal to the Jacobian columns, and it approaches 0 as the gradient
of the objective function becomes small. R is defined as the square root of

.r 0.S�1˝W/X.X0.S�1˝W/X/�1X0.S�1˝W/r/

.r 0.S�1˝W/r/

where X is the Jacobian matrix and r is the residuals vector. R is similar to the relative
offset orthogonality convergence criterion proposed by Bates and Watts (1981).

In the univariate case, the R measure has several equivalent interpretations:

� the cosine of the angle between the residuals vector and the column space of the
Jacobian matrix. When this cosine is 0, the residuals are orthogonal to the partial
derivatives of the predicted values with respect to the parameters, and the gradient
of the objective function is 0.

� the square root of the R2 for the current linear pseudo-model in the residuals

� a norm of the gradient of the objective function, where the normalizing matrix is
proportional to the current estimate of the covariance of the parameter estimates.
Thus, using R, convergence is judged when the gradient becomes small in this norm.



Convergence Criteria F 1511

� the prospective relative change in the objective function value expected from the
next GAUSS step, assuming that the current linearization of the model is a good
local approximation.

In the multivariate case, R is somewhat more complicated but is designed to go to 0 as the
gradient of the objective becomes small and can still be given the previous interpretations
for the aggregation of the equations weighted by S �1.

PPC is the prospective parameter change measure. PPC measures the maximum relative change
in the parameters implied by the parameter-change vector computed for the next iteration.
At the kth iteration, PPC is the maximum over the parametersˇ̌̌

�kC1i � �ki

ˇ̌̌
ˇ̌̌
�ki

ˇ̌̌
C 10�6

where �ki is the current value of the ith parameter and �kC1i is the prospective value of this
parameter after adding the change vector computed for the next iteration. The parameter
with the maximum prospective relative change is printed with the value of PPC, unless
the PPC is nearly 0.

RPC is the retrospective parameter change measure. RPC measures the maximum relative
change in the parameters from the previous iteration. At the kth iteration, RPC is the
maximum over i ofˇ̌̌

�ki � �
k�1
i

ˇ̌̌
ˇ̌̌
�k�1i

ˇ̌̌
C 10�6

where �ki is the current value of the ith parameter and �k�1i is the previous value of this
parameter. The name of the parameter with the maximum retrospective relative change is
printed with the value of RPC, unless the RPC is nearly 0.

OBJECT measures the relative change in the objective function value between iterations,ˇ̌̌
Ok �Ok�1

ˇ̌̌
ˇ̌
Ok�1

ˇ̌
C 10�6

where Ok�1 is the value of the objective function (Ok) from the previous iteration.

S measures the relative change in the S matrix. S is computed as the maximum over i, j ofˇ̌̌
Skij � S

k�1
ij

ˇ̌̌
ˇ̌̌
Sk�1ij

ˇ̌̌
C 10�6

where Sk�1 is the previous S matrix. The S measure is relevant only for estimation
methods that iterate the S matrix.

An example of the convergence criteria output is shown in Figure 25.25.
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Figure 25.25 Convergence Criteria Output

Final Convergence
Criteria

R 0.000737

PPC(b) 0.003943

RPC(b) 0.00968

Object 4.784E-6

Trace(S) 0.533325

Objective Value 0.522214

The Trace(S) is the trace (the sum of the diagonal elements) of the S matrix computed from the current
residuals. This row is labeled MSE if there is only one equation.

Troubleshooting Convergence Problems
As with any nonlinear estimation routine, there is no guarantee that the estimation will be successful for a
given model and data. If the equations are linear with respect to the parameters, the parameter estimates
always converge in one iteration. The methods that iterate the S matrix must iterate further for the S matrix
to converge. Nonlinear models might not necessarily converge.

Convergence can be expected only with fully identified parameters, adequate data, and starting values
sufficiently close to solution estimates.

Convergence and the rate of convergence might depend primarily on the choice of starting values for the
estimates. This does not mean that a great deal of effort should be invested in choosing starting values. First,
try the default values. If the estimation fails with these starting values, examine the model and data and rerun
the estimation using reasonable starting values. It is usually not necessary that the starting values be very
good, just that they not be very bad; choose values that seem plausible for the model and data.

An Example of Requiring Starting Values

Suppose you want to regress a variable Y on a variable X, assuming that the variables are related by the
following nonlinear equation:

y D aC bxc C �

In this equation, Y is linearly related to a power transformation of X. The unknown parameters are a, b, and c.
� is an unobserved random error. The following SAS statements generate simulated data. In this simulation,
a D 10, b D 2, and the use of the SQRT function corresponds to c D :5.

data test;
do i = 1 to 20;

x = 5 * ranuni(1234);
y = 10 + 2 * sqrt(x) + .5 * rannor(1234);
output;
end;

run;

The following statements specify the model and give descriptive labels to the model parameters. Then the
FIT statement attempts to estimate a, b, and c by using the default starting value 0.0001.
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proc model data=test;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y;
run;

PROC MODEL prints model summary and estimation problem summary reports and then prints the output
shown in Figure 25.26.

Figure 25.26 Diagnostics for Convergence Failure

The MODEL Procedure
OLS Estimation

ERROR: The parameter estimates failed to converge for OLS after 100 iterations using CONVERGE=0.001 as the convergence
criteria.

The MODEL Procedure
OLS Estimation

Iteration N Obs R Objective
N

Subit a b c

OLS 100 20 0.9627 3.9678 2 137.3842 -126.535 -0.00213

Gauss Method
Parameter Change

Vector

a b c

-69375.62 69374.55 -1.16

By using the default starting values, PROC MODEL is unable to take even the first step in iterating to the
solution. The change in the parameters that the Gauss-Newton method computes is very extreme and makes
the objective values worse instead of better. Even when this step is shortened by a factor of a million, the
objective function is still worse, and PROC MODEL is unable to estimate the model parameters.

The problem is caused by the starting value of C. Using the default starting value C=0.0001, the first iteration
attempts to compute better values of A and B by what is, in effect, a linear regression of Y on the 10,000th
root of X, which is almost the same as the constant 1. Thus the matrix that is inverted to compute the changes
is nearly singular and affects the accuracy of the computed parameter changes.

This is also illustrated by the next part of the output, which displays collinearity diagnostics for the crossprod-
ucts matrix of the partial derivatives with respect to the parameters, shown in Figure 25.27.
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Figure 25.27 Collinearity Diagnostics

Collinearity Diagnostics

Proportion of
Variation

Number Eigenvalue
Condition

Number a b c

1 2.376793 1.0000 0.0000 0.0000 0.0000

2 0.623207 1.9529 0.0000 0.0000 0.0000

3 1.684601E-12 1187810 1.0000 1.0000 1.0000

This output shows that the matrix is singular and that the partials of A, B, and C with respect to the residual
are collinear at the point .0:0001; 0:0001; 0:0001/ in the parameter space. For a full explanation of the
collinearity diagnostics, see the section “Linear Dependencies” on page 1521.

The MODEL procedure next prints the note shown in Figure 25.28, which suggests that you try different
starting values.

Figure 25.28 Estimation Failure Note

Note: The parameter estimation is abandoned. Check your model and data. If the model is correct and the input data are appropriate,
try rerunning the parameter estimation using different starting values for the parameter estimates.

PROC MODEL continues as if the parameter estimates had converged.

PROC MODEL then produces the usual printout of results for the nonconverged parameter values. The
estimation summary is shown in Figure 25.29. The heading includes the reminder “(Not Converged).”

Figure 25.29 Nonconverged Estimation Summary

The MODEL Procedure
OLS Estimation Summary (Not Converged)

Data Set
Options

DATA= TEST

Minimization Summary

Parameters Estimated 3

Method Gauss

Iterations 100

Subiterations 239

Average Subiterations 2.39

Final Convergence
Criteria

R 0.962666

PPC(b) 548.2622

RPC(b) 540.272

Object 2.66E-6

Trace(S) 4.667947

Objective Value 3.967755



Troubleshooting Convergence Problems F 1515

Figure 25.29 continued

Observations
Processed

Read 20

Solved 20

The nonconverged estimation results are shown in Figure 25.30.

Figure 25.30 Nonconverged Results

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors
(Not Converged)

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

y 3 17 79.3551 4.6679 2.1605 -1.6812 -1.9966

Note that the R2 statistic is negative. An R2 < 0 results when the residual mean squared error for the model
is larger than the variance of the dependent variable. Negative R2 statistics might be produced either when
the parameter estimates fail to converge correctly, as in this case, or when the correctly estimated model fits
the data very poorly.

Controlling Starting Values

To fit the preceding model you must specify a better starting value for C. Avoid starting values of C that are
either very large or close to 0. For starting values of A and B, you can specify values, use the default, or have
PROC MODEL fit starting values for them conditional on the starting value for C.

Starting values are specified with the START= option of the FIT statement or in a PARMS statement. In
PROC MODEL, you have several options to specify starting values for the parameters to be estimated. When
more than one option is specified, the options are implemented in the following order of precedence (from
highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA= option,
and the PARMSDATA= option. When no starting values for the parameter estimates are specified with BY
group processing, the default start value 0.0001 is used for each by group. Again, when no starting values
are specified, and a model with a FIT statement is stored by the OUTMODEL=outmodel-filename option in
a previous step, the outmodel-filename can be invoked in a subsequent PROC MODEL step by using the
MODEL=outmodel-filename option with multiple estimation methods in the second step. In such a case,
the parameter estimates from the outmodel-filename are used directly as starting values for OLS, and OLS
results from the second step provide starting values for the subsequent estimation method such as 2SLS or
SUR, provided that NOOLS is not specified.

For example, the following statements estimate the model parameters by using the starting values A=0.0001,
B=0.0001, and C=5.

proc model data=test;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";
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fit y start=(c=5);
run;

Using these starting values, the estimates converge in 16 iterations. The results are shown in Figure 25.31.
Note that since the START= option explicitly declares parameters, the parameter C is placed first in the table.

Figure 25.31 Converged Results

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

y 3 17 5.7359 0.3374 0.5809 0.8062 0.7834

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

c 0.327079 0.2892 1.13 0.2738 Power Transformation Parameter

a 8.384311 3.3775 2.48 0.0238 Intercept

b 3.505391 3.4858 1.01 0.3287 Coefficient of Transformed X

Using the STARTITER Option

PROC MODEL can compute starting values for some parameters conditional on starting values you specify
for the other parameters. You supply starting values for some parameters and specify the STARTITER option
in the FIT statement.

For example, the following statements set C to 1 and compute starting values for A and B by estimating these
parameters conditional on the fixed value of C. With C=1, this is equivalent to computing A and B by linear
regression on X. A PARMS statement is used to declare the parameters in alphabetical order. The ITPRINT
option is used to print the parameter values at each iteration.

proc model data=test;
parms a b c;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y start=(c=1) / startiter itprint;
run;

With better starting values, the estimates converge in only 8 iterations. Counting the iteration required
to compute the starting values for A and B, this is 7 fewer than the 16 iterations required without the
STARTITER option. The iteration history listing is shown in Figure 25.32.
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Figure 25.32 ITPRINT Listing

The MODEL Procedure
OLS Estimation

Iteration N Obs R Objective
N

Subit a b c

GRID 0 20 0.9989 162.9 0 0.00010 0.00010 1.00000

GRID 1 20 0.0000 0.3464 0 10.96530 0.77007 1.00000

Iteration N Obs R Objective
N

Subit a b c

OLS 0 20 0.3873 0.3464 0 10.96530 0.77007 1.00000

OLS 1 20 0.3339 0.3282 2 10.75993 0.99433 0.83096

OLS 2 20 0.3244 0.3233 1 10.46894 1.31205 0.66810

OLS 3 20 0.3151 0.3197 1 10.11707 1.69149 0.54626

OLS 4 20 0.2764 0.3110 1 9.74691 2.08492 0.46615

OLS 5 20 0.2379 0.3040 0 9.06175 2.80546 0.36575

OLS 6 20 0.0612 0.2879 0 8.51825 3.36746 0.33201

OLS 7 20 0.0022 0.2868 0 8.39485 3.49449 0.32776

OLS 8 20 0.0001 0.2868 0 8.38467 3.50502 0.32711

NOTE: At OLS Iteration 8 CONVERGE=0.001 Criteria Met.

The results produced in this case are almost the same as the results shown in Figure 25.31, except that the
PARMS statement causes the parameter estimates table to be ordered A, B, C instead of C, A, B. They are not
exactly the same because the different starting values caused the iterations to converge at a slightly different
place. This effect is controlled by changing the convergence criterion with the CONVERGE= option.

By default, the STARTITER option performs one iteration to find starting values for the parameters that are
not given values. In this case, the model is linear in A and B, so only one iteration is needed. If A or B
were nonlinear, you could specify more than one “starting values” iteration by specifying a number for the
STARTITER= option.

Finding Starting Values by Grid Search

PROC MODEL can try various combinations of parameter values and use the combination that produces the
smallest objective function value as starting values. (For OLS the objective function is the residual mean
square.) This is known as a preliminary grid search. You can combine the STARTITER option with a grid
search.

For example, the following statements try five different starting values for C: 1, 0.7, 0.5, 0.3, and 0. For
each value of C, values for A and B are estimated. The combination of A, B, and C values that produce the
smallest residual mean square is then used to start the iterative process.

proc model data=test;
parms a b c;
y = a + b * x ** c;
label a = "Intercept"

b = "Coefficient of Transformed X"
c = "Power Transformation Parameter";

fit y start=(c=1 .7 .5 .3 0) / startiter itprint;
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run;

The iteration history listing is shown in Figure 25.33. Using the best starting values found by the grid search,
the OLS estimation only requires 2 iterations. However, since the grid search required 9 iterations, the total
iterations in this case is 11.

Figure 25.33 ITPRINT Listing

The MODEL Procedure
OLS Estimation

Iteration N Obs R Objective
N

Subit a b c

GRID 0 20 0.9989 162.9 0 0.00010 0.00010 1.00000

GRID 1 20 0.0000 0.3464 0 10.96530 0.77007 1.00000

GRID 0 20 0.7587 0.7242 0 10.96530 0.77007 0.70000

GRID 1 20 0.0000 0.3073 0 10.41027 1.36141 0.70000

GRID 0 20 0.7079 0.5843 0 10.41027 1.36141 0.50000

GRID 1 20 0.0000 0.2915 0 9.69319 2.13103 0.50000

GRID 0 20 0.7747 0.7175 0 9.69319 2.13103 0.30000

GRID 1 20 0.0000 0.2869 0 8.04397 3.85767 0.30000

GRID 0 20 0.5518 2.1277 0 8.04397 3.85767 0.00000

GRID 1 20 0.0000 1.4799 0 8.04397 4.66255 0.00000

Iteration N Obs R Objective
N

Subit a b c

OLS 0 20 0.0189 0.2869 0 8.04397 3.85767 0.30000

OLS 1 20 0.0158 0.2869 0 8.35023 3.54145 0.32233

OLS 2 20 0.0006 0.2868 0 8.37468 3.51540 0.32622

NOTE: At OLS Iteration 2 CONVERGE=0.001 Criteria Met.

Because no initial values for A or B were provided in the PARAMETERS statement or were read in with a
PARMSDATA= or ESTDATA= option, A and B were given the default value of 0.0001 for the first iteration.
At the second grid point, C=5, the values of A and B obtained from the previous iterations are used for the
initial iteration. If initial values are provided for parameters, the parameters start at those initial values at
each grid point.

Guessing Starting Values from the Logic of the Model

Example 25.1, which uses a logistic growth curve model of the U.S. population, illustrates the need for
reasonable starting values. This model can be written

pop D
a

1C exp.b � c.t � 1790//

where t is time in years. The model is estimated by using decennial census data of the U.S. population in
millions. If this simple but highly nonlinear model is estimated by using the default starting values, the
estimation fails to converge.

To find reasonable starting values, first consider the meaning of a and c. Taking the limit as time increases, a
is the limiting or maximum possible population. So, as a starting value for a, several times the most recent
population known can be used—for example, one billion (1,000 million).
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Dividing the time derivative by the function to find the growth rate and taking the limit as t moves into the
past, you can determine that c is the initial growth rate. You can examine the data and compute an estimate of
the growth rate for the first few decades, or you can pick a number that sounds like a plausible population
growth rate figure, such as 2%.

To find a starting value for b, let t equal the base year used, 1790, which causes c to drop out of the formula
for that year, and then solve for the value of b that is consistent with the known population in 1790 and with
the starting value of a. This yields b D ln.a=3:9 � 1/ or about 5.5, where a is 1,000 and 3.9 is roughly the
population for 1790 given in the data. The estimates converge using these starting values.

Convergence Problems

When estimating nonlinear models, you might encounter some of the following convergence problems.

Unable to Improve
The optimization algorithm might be unable to find a step that improves the objective function. If this
happens in the Gauss-Newton method, the step size is halved to find a change vector for which the objective
improves. In the Marquardt method, � is increased to find a change vector for which the objective improves.
If, after MAXSUBITER= step-size halvings or increases in �, the change vector still does not produce a
better objective value, the iterations are stopped and an error message is printed.

Failure of the algorithm to improve the objective value can be caused by a CONVERGE= value that is
too small. Look at the convergence measures reported at the point of failure. If the estimates appear to be
approximately converged, you can accept the NOT CONVERGED results reported, or you can try rerunning
the FIT task with a larger CONVERGE= value.

If the procedure fails to converge because it is unable to find a change vector that improves the objective
value, check your model and data to ensure that all parameters are identified and data values are reasonably
scaled. Then, rerun the model with different starting values. Also, consider using the Marquardt method if the
Gauss-Newton method fails; the Gauss-Newton method can get into trouble if the Jacobian matrix is nearly
singular or ill-conditioned. Keep in mind that a nonlinear model may be well-identified and well-conditioned
for parameter values close to the solution values but unidentified or numerically ill-conditioned for other
parameter values. The choice of starting values can make a big difference.

Nonconvergence
The estimates might diverge into areas where the program overflows or the estimates might go into areas
where function values are illegal or too badly scaled for accurate calculation. The estimation might also take
steps that are too small or that make only marginal improvement in the objective function and thus fail to
converge within the iteration limit.

When the estimates fail to converge, collinearity diagnostics for the Jacobian crossproducts matrix are printed
if there are 20 or fewer parameters estimated. For an explanation of these diagnostics, see the section “Linear
Dependencies” on page 1521.

Inadequate Convergence Criterion
If convergence is obtained, the resulting estimates approximate only a minimum point of the objective
function. The statistical validity of the results is based on the exact minimization of the objective function,
and for nonlinear models the quality of the results depends on the accuracy of the approximation of the
minimum. This is controlled by the convergence criterion used.
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There are many nonlinear functions for which the objective function is quite flat in a large region around the
minimum point so that many quite different parameter vectors might satisfy a weak convergence criterion.
By using different starting values, different convergence criteria, or different minimization methods, you can
produce very different estimates for such models.

You can guard against this by running the estimation with different starting values and different convergence
criteria and checking that the estimates produced are essentially the same. If they are not, use a smaller
CONVERGE= value.

Local Minimum
You might have converged to a local minimum rather than a global one. This problem is difficult to detect
because the procedure appears to have succeeded. You can guard against this by running the estimation with
different starting values or with a different minimization technique. The START= option can be used to
automatically perform a grid search to aid in the search for a global minimum.

Discontinuities
The computational methods assume that the model is a continuous and smooth function of the parameters. If
this is not the case, the methods might not work.

If the model equations or their derivatives contain discontinuities, the estimation usually succeeds, provided
that the final parameter estimates lie in a continuous interval and that the iterations do not produce parameter
values at points of discontinuity or parameter values that try to cross asymptotes.

One common case of discontinuities causing estimation failure is that of an asymptotic discontinuity between
the final estimates and the initial values. For example, consider the following model, which is basically linear
but is written with one parameter in reciprocal form:

y = a + b * x1 + x2 / c;

By placing the parameter C in the denominator, a singularity is introduced into the parameter space at C=0.
This is not necessarily a problem, but if the correct estimate of C is negative while the starting value is
positive (or vice versa), the asymptotic discontinuity at 0 will lie between the estimate and the starting value.
This means that the iterations have to pass through the singularity to get to the correct estimates. The situation
is shown in Figure 25.34.
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Figure 25.34 Asymptotic Discontinuity

Because of the incorrect sign of the starting value, the C estimate goes off towards positive infinity in a vain
effort to get past the asymptote and onto the correct arm of the hyperbola. As the computer is required to work
with ever closer approximations to infinity, the numerical calculations break down and an “objective function
was not improved” convergence failure message is printed. At this point, the iterations terminate with an
extremely large positive value for C. When the sign of the starting value for C is changed, the estimates
converge quickly to the correct values.

Linear Dependencies

In some cases, the Jacobian matrix might not be of full rank; parameters might not be fully identified for the
current parameter values with the current data. When linear dependencies occur among the derivatives of the
model, some parameters appear with a standard error of 0 and with the word BIASED printed in place of the
t statistic. When this happens, collinearity diagnostics for the Jacobian crossproducts matrix are printed if the
DETAILS option is specified and there are twenty or fewer parameters estimated. Collinearity diagnostics are
also printed out automatically when a minimization method fails, or when the COLLIN option is specified.

For each parameter, the proportion of the variance of the estimate accounted for by each principal component
is printed. The principal components are constructed from the eigenvalues and eigenvectors of the correlation
matrix (scaled covariance matrix). When collinearity exists, a principal component is associated with
proportion of the variance of more than one parameter. The numbers reported are proportions so they
remain between 0 and 1. If two or more parameters have large proportion values associated with the same
principal component, then two problems can occur: the computation of the parameter estimates are slow
or nonconvergent; and the parameter estimates have inflated variances (Belsley, Kuh, and Welsch 1980, pp.
105–117).
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For example, the following cubic model is fit to a quadratic data set:

proc model data=test3;
exogenous x1;
parms b1 a1 c1 ;
y1 = a1 * x1 + b1 * x1 * x1 + c1 * x1 * x1 *x1;
fit y1 / collin;

run;

The collinearity diagnostics are shown in Figure 25.35.

Figure 25.35 Collinearity Diagnostics

The MODEL Procedure

Collinearity Diagnostics

Proportion of
Variation

Number Eigenvalue
Condition

Number b1 a1 c1

1 2.942920 1.0000 0.0001 0.0004 0.0002

2 0.056638 7.2084 0.0001 0.0357 0.0148

3 0.000442 81.5801 0.9999 0.9639 0.9850

Notice that the proportions associated with the smallest eigenvalue are almost 1. For this model, removing
any of the parameters decreases the variances of the remaining parameters.

In many models, the collinearity might not be clear cut. Collinearity is not necessarily something you remove.
A model might need to be reformulated to remove the redundant parameterization, or the limitations on the
estimability of the model can be accepted. The GINV=G4 option can be helpful to avoid problems with
convergence for models containing collinearities.

Collinearity diagnostics are also useful when an estimation does not converge. The diagnostics provide
insight into the numerical problems and can suggest which parameters need better starting values. These
diagnostics are based on the approach of Belsley, Kuh, and Welsch (1980).

Iteration History
The options ITPRINT, ITDETAILS, XPX, I, and ITALL specify a detailed listing of each iteration of the
minimization process.

ITPRINT Option

The ITPRINT information is selected whenever any iteration information is requested.

The following information is displayed for each iteration:

N is the number of usable observations.

Objective is the corrected objective function value.

Trace(S) is the trace of the S matrix.
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subit is the number of subiterations required to find a � or a damping factor that reduces the
objective function.

R is the R convergence measure.

The estimates for the parameters at each iteration are also printed.

ITDETAILS Option

The additional values printed for the ITDETAILS option are as follows:

Theta is the angle in degrees between �, the parameter change vector, and the negative gradient
of the objective function.

Phi is the directional derivative of the objective function in the � direction scaled by the
objective function.

Stepsize is the value of the damping factor used to reduce � if the Gauss-Newton method is used.

Lambda is the value of � if the Marquardt method is used.

Rank(XPX) is the rank of the X0X matrix (output if the projected Jacobian crossproducts matrix is
singular).

The definitions of PPC and R are explained in the section “Convergence Criteria” on page 1510. When the
values of PPC are large, the parameter associated with the criteria is displayed in parentheses after the value.

XPX and I Options

The XPX and the I options select the printing of the augmented X0X matrix and the augmented X0X matrix
after a sweep operation (Goodnight 1979) has been performed on it. An example of the output from the
following statements is shown in Figure 25.36:

proc model data=test2;
y1 = a1 * x2 * x2 - exp( d1*x1);
y2 = a2 * x1 * x1 + b2 * exp( d2*x2);
fit y1 y2 / itall XPX I ;

run;

Figure 25.36 XPX and I Options Output

The MODEL Procedure
OLS Estimation

Cross Products for System  At OLS Iteration 0

a1 d1 a2 b2 d2 Residual

a1 1839468 -33818.35 0.0 0.00 0.000000 3879959

d1 -33818 1276.45 0.0 0.00 0.000000 -76928

a2 0 0.00 42925.0 1275.15 0.154739 470686

b2 0 0.00 1275.2 50.01 0.003867 16055

d2 0 0.00 0.2 0.00 0.000064 2

Residual 3879959 -76928.14 470686.3 16055.07 2.329718 24576144
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Figure 25.36 continued

XPX Inverse for System  At OLS Iteration 0

a1 d1 a2 b2 d2 Residual

a1 0.000001 0.000028 0.000000 0.0000 0.00 2

d1 0.000028 0.001527 0.000000 0.0000 0.00 -9

a2 0.000000 0.000000 0.000097 -0.0025 -0.08 6

b2 0.000000 0.000000 -0.002455 0.0825 0.95 172

d2 0.000000 0.000000 -0.084915 0.9476 15746.71 11931

Residual 1.952150 -8.546875 5.823969 171.6234 11930.89 10819902

The first matrix, labeled “Cross Products,” for OLS estimation is�
X0X X0r
r0X r0r

�

The column labeled Residual in the output is the vector X0r, which is the gradient of the objective function.
The diagonal scalar value r0r is the objective function uncorrected for degrees of freedom. The second matrix,
labeled “XPX Inverse,” is created through a sweep operation on the augmented X0X matrix to get�

.X0X/�1 .X0X/�1X0r
.X0r/0.X0X/�1 r0r � .X0r/0.X0X/�1X0r

�
Note that the residual column is the change vector used to update the parameter estimates at each iteration.
The corner scalar element is used to compute the R convergence criteria.

ITALL Option

The ITALL option, in addition to causing the output of all of the preceding options, outputs the S matrix, the
inverse of the S matrix, the CROSS matrix, and the swept CROSS matrix. An example of a portion of the
CROSS matrix for the preceding example is shown in Figure 25.37.
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Figure 25.37 ITALL Option Crossproducts Matrix Output

The MODEL Procedure
OLS Estimation

Crossproducts Matrix  At OLS Iteration 0

1 @PRED.y1/@a1 @PRED.y1/@d1 @PRED.y2/@a2 @PRED.y2/@b2

1 50.00 6409 -239.16 1275.0 50.00

@PRED.y1/@a1 6409.08 1839468 -33818.35 187766.1 6409.88

@PRED.y1/@d1 -239.16 -33818 1276.45 -7253.0 -239.19

@PRED.y2/@a2 1275.00 187766 -7253.00 42925.0 1275.15

@PRED.y2/@b2 50.00 6410 -239.19 1275.2 50.01

@PRED.y2/@d2 0.00 1 -0.03 0.2 0.00

RESID.y1 14699.97 3879959 -76928.14 420582.9 14701.77

RESID.y2 16052.76 4065028 -85083.68 470686.3 16055.07

Crossproducts Matrix  At OLS Iteration 0

@PRED.y2/@d2 RESID.y1 RESID.y2

1 0.003803 14700 16053

@PRED.y1/@a1 0.813934 3879959 4065028

@PRED.y1/@d1 -0.026177 -76928 -85084

@PRED.y2/@a2 0.154739 420583 470686

@PRED.y2/@b2 0.003867 14702 16055

@PRED.y2/@d2 0.000064 2 2

RESID.y1 1.820356 11827102 12234106

RESID.y2 2.329718 12234106 12749042

Computer Resource Requirements
If you are estimating large systems, you need to be aware of how PROC MODEL uses computer resources
(such as memory and the CPU) so they can be used most efficiently.

Saving Time with Large Data Sets

If your input data set has many observations, the FIT statement performs a large number of model program
executions. A pass through the data is made at least once for each iteration and the model program is executed
once for each observation in each pass. If you refine the starting estimates by using a smaller data set, the
final estimation with the full data set might require fewer iterations.

For example, you could use

proc model;
/* Model goes here */
fit / data=a(obs=25);
fit / data=a;

where OBS=25 selects the first 25 observations in A. The second FIT statement produces the final estimates
using the full data set and starting values from the first run.
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Fitting the Model in Sections to Save Space and Time

If you have a very large model (with several hundred parameters, for example), the procedure uses consider-
able space and time. You might be able to save resources by breaking the estimation process into several
steps and estimating the parameters in subsets.

You can use the FIT statement to select for estimation only the parameters for selected equations. Do not break
the estimation into too many small steps; the total computer time required is minimized by compromising
between the number of FIT statements that are executed and the size of the crossproducts matrices that must
be processed.

When the parameters are estimated for selected equations, the entire model program must be executed
even though only a part of the model program might be needed to compute the residuals for the equations
selected for estimation. If the model itself can be broken into sections for estimation (and later combined for
simulation and forecasting), then more resources can be saved.

For example, to estimate the following four-equation model in two steps, you could use these statements:

proc model data=a outmodel=part1;
parms a0-a2 b0-b2 c0-c3 d0-d3;
y1 = a0 + a1*y2 + a2*x1;
y2 = b0 + b1*y1 + b2*x2;
y3 = c0 + c1*y1 + c2*y4 + c3*x3;
y4 = d0 + d1*y1 + d2*y3 + d3*x4;
fit y1 y2;
fit y3 y4;
fit y1 y2 y3 y4;

run;

You should try estimating the model in pieces to save time only if there are more than 14 parameters; the
preceding example takes more time, not less, and the difference in memory required is trivial.

Memory Requirements for Parameter Estimation

PROC MODEL is a large program, and it requires much memory. Memory is also required for the SAS
System, various data areas, the model program and associated tables and data vectors, and a few crossproducts
matrices. For most models, the memory required for PROC MODEL itself is much larger than that required
for the model program, and the memory required for the model program is larger than that required for the
crossproducts matrices.

The number of bytes needed for two crossproducts matrices, four S matrices, and three parameter covariance
matrices is

8 � .2C k CmC g/2 C 16 � g2 C 12 � .p C 1/2

plus lower-order terms, where m is the number of unique nonzero derivatives of each residual with respect
to each parameter, g is the number of equations, k is the number of instruments, and p is the number of
parameters. This formula is for the memory required for 3SLS. If you are using OLS, a reasonable estimate
of the memory required for large problems (greater than 100 parameters) is to divide the value obtained from
the formula in half.

Consider the following model program:
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proc model data=test2 details;
exogenous x1 x2;
parms b1 100 a1 a2 b2 2.5 c2 55;
y1 = a1 * y2 + b1 * x1 * x1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2;
fit y1 y2 / n3sls memoryuse;
inst b1 b2 c2 x1 ;

run;

The DETAILS option prints the storage requirements information shown in Figure 25.38.

Figure 25.38 Storage Requirements Information

The MODEL Procedure

Storage Requirements for this
Problem

Order of XPX Matrix 6

Order of S Matrix 2

Order of Cross Matrix 13

Total Nonzero Derivatives 5

Distinct Variable Derivatives 5

Size of Cross matrix 728

The matrix X0X augmented by the residual vector is called the XPX matrix in the output, and it has the size
mC 1. The order of the S matrix, 2 for this example, is the value of g. The CROSS matrix is made up of
the k unique instruments, a constant column that represents the intercept terms, followed by the m unique
Jacobian variables plus a constant column that represents the parameters with constant derivatives, followed
by the g residuals.

The size of two CROSS matrices in bytes is

8 � .2C k CmC g/2 C 2C k CmC g

Note that the CROSS matrix is symmetric, so only the diagonal and the upper triangular part of the matrix is
stored. For examples of the CROSS and XPX matrices, see the section “Iteration History” on page 1522.

The MEMORYUSE Option

The MEMORYUSE option in the FIT, SOLVE, MODEL, or RESET statement can be used to request a
comprehensive memory usage summary.

Figure 25.39 shows an example of the output produced by the MEMORYUSE option.
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Figure 25.39 MEMORYUSE Option Output for FIT Task

Memory Usage Summary
(in bytes)

Symbols 36344

Strings 2587

Lists 5032

Arrays 4600

Statements 5536

Opcodes 3200

Parsing 7620

Executable 19861

Block option 0

Cross reference 0

Flow analysis 752

Derivatives 57220

Data vector 592

Cross matrix 1480

X'X matrix 610

S matrix 144

GMM memory 0

Jacobian 0

Work vectors 846

Overhead 18986

----------------------- --------------

Total 165410

Definitions of the memory components follow:

symbols memory used to store information about variables in the model
strings memory used to store the variable names and labels
lists space used to hold lists of variables
arrays memory used by ARRAY statements
statements memory used for the list of programming statements in the model
opcodes memory used to store the code compiled to evaluate the

expression in the model program
parsing memory used in parsing the SAS statements
executable the compiled model program size
block option memory used by the BLOCK option
cross ref. memory used by the XREF option
flow analysis memory used to compute the interdependencies of the variables
derivatives memory used to compute and store the analytical derivatives
data vector memory used for the program data vector
cross matrix memory used for one or more copies of the CROSS matrix
X0X matrix memory used for one or more copies of the X0X matrix
S matrix memory used for the covariance matrix
GMM memory additional memory used for the GMM and ITGMM methods
Jacobian memory used for the Jacobian matrix for SOLVE and FIML
work vectors memory used for miscellaneous work vectors
overhead other miscellaneous memory
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Testing for Normality
The NORMAL option in the FIT statement performs multivariate and univariate tests of normality.

The three multivariate tests provided are Mardia’s skewness test and kurtosis test (Mardia 1970) and the
Henze-Zirkler Tn;ˇ test (Henze and Zirkler 1990). The two univariate tests provided are the Shapiro-Wilk W
test and the Kolmogorov-Smirnov test. (For more information about the univariate tests, see the “Goodness-
of-Fit Tests” section of the “The UNIVARIATE Procedure” chapter in the Base SAS Procedures Guide.) The
null hypothesis for all these tests is that the residuals are normally distributed.

For a random sample X1; : : : ; Xn, Xi2Rd , where d is the dimension of Xi and n is the number of observa-
tions, a measure of multivariate skewness is

b1;d D
1

n2

nX
iD1

nX
jD1

Œ.Xi � �/
0S�1.Xj � �/�3

where S is the sample covariance matrix of X. For weighted regression, both S and .Xi � �/ are computed
by using the weights supplied by the WEIGHT statement or the _WEIGHT_ variable.

Mardia showed that under the null hypothesis n
6
b1;d is asymptotically distributed as �2.d.d C 1/.d C 2/=6/.

For small samples, Mardia’s skewness test statistic is calculated with a small sample correction formula, given
by nk

6
b1;d where the correction factor k is given by k D .d C 1/.nC 1/.nC 3/=n...nC 1/.d C 1// � 6/.

Mardia’s skewness test statistic in PROC MODEL uses this small sample corrected formula.

A measure of multivariate kurtosis is given by

b2;d D
1

n

nX
iD1

Œ.Xi � �/
0

S�1.Xi � �/�2

Mardia showed that under the null hypothesis, b2;d is asymptotically normally distributed with mean
d.d C 2/ and variance 8d.d C 2/=n.

The Henze-Zirkler test is based on a nonnegative functional D.:; :/ that measures the distance between two
distribution functions and has the property that

D.Nd .0; Id /;Q/ D 0

if and only if

Q D Nd .0; Id /

where Nd .�;†d / is a d-dimensional normal distribution.

The distance measure D.:; :/ can be written as

Dˇ .P;Q/ D

Z
Rd
j OP .t/ � OQ.t/j2'ˇ .t/dt

where OP .t/ and OQ.t/ are the Fourier transforms of P and Q, and 'ˇ .t/ is a weight or a kernel function. The
density of the normal distribution Nd .0; ˇ2Id / is used as 'ˇ .t/

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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'ˇ .t/ D .2�ˇ
2/
�d
2 exp.

�jt j2

2ˇ2
/; t 2 Rd

where jt j D .t
0

t /0:5.

The parameter ˇ depends on n as

ˇd .n/ D
1
p
2
.
2d C 1

4
/1=.dC4/n1=.dC4/

The test statistic computed is called Tˇ .d/ and is approximately distributed as a lognormal. The lognormal
distribution is used to compute the null hypothesis probability,

Tˇ .d/ D
1
n

nX
jD1

nX
kD1

exp.�
ˇ2

2
jYj � Ykj

2/

� 2.1C ˇ2/�d=2
nX
jD1

exp.�
ˇ2

2.1C ˇ2/
jYj j

2/C n.1C 2ˇ2/�d=2

where

jYj � Ykj
2
D .Xj �Xk/

0S�1.Xj �Xk/

jYj j
2
D .Xj � NX/

0S�1.Xj � NX/

Monte Carlo simulations suggest that Tˇ .d/ has good power against distributions with heavy tails.

The Shapiro-Wilk W test is computed only when the number of observations (n) is less than 2,000, while
computation of the Kolmogorov-Smirnov test statistic requires at least 2,000 observations.

The following is an example of the output produced by the NORMAL option:

proc model data=test2;
y1 = a1 * x2 * x2 - exp( d1*x1);
y2 = a2 * x1 * x1 + b2 * exp( d2*x2);
fit y1 y2 / normal ;

run;

Figure 25.40 Normality Test Output

The MODEL Procedure

Normality Test

Equation Test Statistic Value Prob

y1 Shapiro-Wilk W 0.34 <.0001

y2 Shapiro-Wilk W 0.82 <.0001

System Mardia Skewness 286.4 <.0001

Mardia Kurtosis 31.28 <.0001

Henze-Zirkler T 6.65 <.0001
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Heteroscedasticity
One of the key assumptions of regression is that the variance of the errors is constant across observations.
If the errors have constant variance, the errors are called homoscedastic. Typically, residuals are plotted to
assess this assumption. Standard estimation methods are inefficient when the errors are heteroscedastic or
have nonconstant variance.

Heteroscedasticity Tests

The MODEL procedure provides two tests for heteroscedasticity of the errors: White’s test and the modified
Breusch-Pagan test.

Both White’s test and the Breusch-Pagan are based on the residuals of the fitted model. For systems of
equations, these tests are computed separately for the residuals of each equation.

The residuals of an estimation are used to investigate the heteroscedasticity of the true disturbances.

The WHITE option tests the null hypothesis

H0 W �
2
i D �

2 for all i

White’s test is general because it makes no assumptions about the form of the heteroscedasticity (White
1980). Because of its generality, White’s test might identify specification errors other than heteroscedasticity
(Thursby 1982). Thus, White’s test might be significant when the errors are homoscedastic but the model is
misspecified in other ways.

White’s test is equivalent to obtaining the error sum of squares for the regression of squared residuals on a
constant and all the unique variables in J˝J, where the matrix J is composed of the partial derivatives of the
equation residual with respect to the estimated parameters. White’s test statistic W is computed as

W D nR2

where R2 is the correlation coefficient obtained from the preceding regression. The statistic is asymptotically
distributed as chi-squared withP�1 degrees of freedom, where P is the number of regressors in the regression,
including the constant, and n is the total number of observations. In the example that follows, the regressors
are constant, income, income*income, income*income*income, and income*income*income*income. The
regressor income*income occurs twice, and one is dropped. Hence, P D 5 with degrees of freedom
P � 1 D 4.

Note that White’s test in the MODEL procedure is different from White’s test in the REG procedure requested
by the SPEC option. The SPEC option produces the test from Theorem 2 on page 823 of White (1980). The
WHITE option, on the other hand, produces the statistic discussed in Greene (1993).

The null hypothesis for the modified Breusch-Pagan test is homoscedasticity. The alternate hypothesis is that
the error variance varies with a set of regressors, which are listed in the BREUSCH= option.

Define the matrix Z to be composed of the values of the variables listed in the BREUSCH= option, such that
zi;j is the value of the jth variable in the BREUSCH= option for the ith observation. The null hypothesis of
the Breusch-Pagan test is

�2i D �
2.˛0 C ˛

0

zi / H0 W ˛ D 0
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where �2i is the error variance for the ith observation and ˛0 and ˛ are regression coefficients.

The test statistic for the Breusch-Pagan test is

bp D
1

v
.u � Nui/

0

Z.Z
0

Z/�1Z
0

.u � Nui/

where u D .e21 ; e
2
2 ; : : : ; e

2
n/, i is an n � 1 vector of ones, and

v D
1

n

nX
iD1

.e2i �
e
0

e
n
/2

This is a modified version of the Breusch-Pagan test, which is less sensitive to the assumption of normality
than the original test (Greene 1993, p. 395).

The statements in the following example produce the output in Figure 25.41:

proc model data=schools;
parms const inc inc2;

exp = const + inc * income + inc2 * income * income;
incsq = income * income;

fit exp / white breusch=(1 income incsq);
run;

Figure 25.41 Output for Heteroscedasticity Tests

The MODEL Procedure

Heteroscedasticity Test

Equation Test Statistic DF Pr > ChiSq Variables

exp White's Test 21.16 4 0.0003 Cross of all vars

Breusch-Pagan 15.83 2 0.0004 1, income, incsq

Correcting for Heteroscedasticity

There are two methods for improving the efficiency of the parameter estimation in the presence of het-
eroscedastic errors. If the error variance relationships are known, weighted regression can be used or an
error model can be estimated. For more information about error model estimation, see the section “Error
Covariance Structure Specification” on page 1542. If the error variance relationship is unknown, GMM
estimation can be used.

Weighted Regression
The WEIGHT statement can be used to correct for the heteroscedasticity. Consider the following model,
which has a heteroscedastic error term:

yt D 250.e
�0:2t

� e�0:8t /C
p
.9=t/�t

The data for this model are generated with the following SAS statements:
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data test;
do t=1 to 25;

y = 250 * (exp( -0.2 * t ) - exp( -0.8 * t )) +
sqrt( 9 / t ) * rannor(1);

output;
end;

run;

If this model is estimated with OLS, as shown in the following statements, the estimates shown in Figure 25.42
are obtained for the parameters:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
fit y;

run;

Figure 25.42 Unweighted OLS Estimates

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b1 0.200977 0.00101 198.60 <.0001

b2 0.826236 0.00853 96.82 <.0001

If both sides of the model equation are multiplied by
p
t , the model has a homoscedastic error term. This

multiplication or weighting is done through the WEIGHT statement. The WEIGHT statement variable
operates on the squared residuals as

�
0

t�t D weight � q
0

tqt

so that the WEIGHT statement variable represents the square of the model multiplier. The following PROC
MODEL statements corrects the heteroscedasticity with a WEIGHT statement:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
fit y;
weight t;

run;

Note that the WEIGHT statement follows the FIT statement. The weighted estimates are shown in Fig-
ure 25.43.
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Figure 25.43 Weighted OLS Estimates

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b1 0.200503 0.000844 237.53 <.0001

b2 0.816701 0.0139 58.71 <.0001

The weighted OLS estimates are identical to the output produced by the following PROC MODEL example:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
_weight_ = t;
fit y;

run;

If the WEIGHT statement is used in conjunction with the _WEIGHT_ variable, the two values are multiplied
together to obtain the weight used.

The WEIGHT statement and the _WEIGHT_ variable operate on all the residuals in a system of equations. If
a subset of the equations needs to be weighted, the residuals for each equation can be modified through the
RESID. variable for each equation. The following example demonstrates the use of the RESID. variable to
make a homoscedastic error term:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
resid.y = resid.y * sqrt(t);
fit y;

run;

These statements produce estimates of the parameters and standard errors that are identical to the weighted
OLS estimates. The reassignment of the RESID.Y variable must be done after Y is assigned; otherwise it
would have no effect. Also, note that the residual (RESID.Y) is multiplied by

p
t . Here the multiplier is

acting on the residual before it is squared.

GMM Estimation
If the form of the heteroscedasticity is unknown, generalized method of moments estimation (GMM) can
be used. The following PROC MODEL statements use GMM to estimate the example model used in the
preceding section:

proc model data=test;
parms b1 0.1 b2 0.9;
y = 250 * ( exp( -b1 * t ) - exp( -b2 * t ) );
fit y / gmm;
instruments b1 b2;

run;

GMM is an instrumental method, so instrument variables must be provided.

GMM estimation generates estimates for the parameters shown in Figure 25.44.
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Figure 25.44 GMM Estimation for Heteroscedasticity

The MODEL Procedure

Nonlinear GMM Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b1 0.200487 0.000800 250.69 <.0001

b2 0.822148 0.0148 55.39 <.0001

Heteroscedasticity-Consistent Covariance Matrix Estimation

Homoscedasticity is required for ordinary least squares regression estimates to be efficient. A nonconstant
error variance, heteroscedasticity, causes the OLS estimates to be inefficient, and the usual OLS covariance
matrix, O†, is generally invalid:

O† D �2.X0X/�1

When the variance of the errors of a classical linear model

Y D Xˇ C �

is not constant across observations (heteroscedastic), so that �2i ¤ �2j for some j > 1, the OLS estimator

ǑOLS D .X0X/�1X0Y

is unbiased but it is inefficient. Models that take into account the changing variance can make more efficient
use of the data. When the variances, �2t , are known, generalized least squares (GLS) can be used and the
estimator

ǑGLS D .X0�X/�1X0��1Y

where

� D

26664
�21 0 0 0

0 �22 0 0

0 0
: : : 0

0 0 0 �2T

37775
is unbiased and efficient. However, GLS is unavailable when the variances, �2t , are unknown.

To solve this problem White (1980) proposed a heteroscedastic consistent-covariance matrix estimator
(HCCME)

O† D .X0X/�1X0 O�X.X0X/�1

that is consistent as well as unbiased, where

O�0 D

26664
�21 0 0 0

0 �22 0 0

0 0
: : : 0

0 0 0 �2T

37775
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and �t D Yt � Xt OˇOLS.

This estimator is considered somewhat unreliable in finite samples. Therefore, Davidson and MacKinnon
(1993) propose three different modifications to estimating O�. The first solution is to simply multiply �2t by
n

n�df
, where n is the number of observations and df is the number of explanatory variables, so that

O�1 D

266664
n

n�df
�21 0 0 0

0 n
n�df

�22 0 0

0 0
: : : 0

0 0 0 n
n�df

�2n

377775
The second solution is to define

O�2 D

26666664

�21

1� Oh1
0 0 0

0
�22

1� Oh2
0 0

0 0
: : : 0

0 0 0
�2n

1� Ohn

37777775
where Oht D Xt .X0X/�1X0t .

The third solution, called the “jackknife,” is to define

O�3 D

266666664

�21

.1� Oh1/2
0 0 0

0
�22

.1� Oh2/2
0 0

0 0
: : : 0

0 0 0
�2n

.1� OhT /2

377777775
MacKinnon and White (1985) investigated these three modified HCCMEs, including the original HCCME,
based on finite-sample performance of pseudo-t statistics. The original HCCME performed the worst. The
first modification performed better. The second modification performed even better than the first, and the
third modification performed the best. They concluded that the original HCCME should never be used in
finite sample estimation, and that the second and third modifications should be used over the first modification
if the diagonals of O� are available.

Seemingly Unrelated Regression HCCME
Extending the discussion to systems of g equations, the HCCME for SUR estimation is

. QX0 QX/�1 QX0 O� QX. QX0 QX/�1

where QX is a ng�k matrix with the first g rows representing the first observation, the next g rows representing
the second observation, and so on. O� is now a ng � ng block diagonal matrix with typical block g � g

O�i D

26664
 1;i  1;i  1;i  2;i : : :  1;i  g;i
 2;i  1;i  2;i  2;i : : :  2;i  g;i

:::
:::

:::
:::

 g;i  1;i  g;i  2;i : : :  g;i  g;i

37775
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where

 j;i D �j;i HC0

or

 j;i D

r
n

n � df
�j;i HC1

or

 j;i D �j;i=

q
1 � Ohi HC2

or

 j;i D �j;i=.1 � Ohi / HC3

Two- and Three-Stage Least Squares HCCME
For two- and three-stage least squares, the HCCME for a g equation system is

CovF. O�/Cov

where

Cov D
�
1

n
X0.I˝ Z.Z0Z/�1Z0/X

��1
is the normal covariance matrix without the S matrix and

F.�/ D
1

n

gX
i

gX
j

X0iZ.Z
0Z/�1Z0 O�ijZ.Z0Z/�1Z0Xj

where Xj is a n�p matrix with the jth equations regressors in the appropriate columns and zeros everywhere
else.

O�ij D

26664
 i;1 j;1 0 0 0

0  i;2 j;2 0 0

0 0
: : : 0

0 0 0  i;n j;n

37775
For 2SLS O�ij D 0 when i ¤ j . The �t used in O� is computed by using the parameter estimates obtained
from the instrumental variables estimation.

The leverage value for the ith equation used in the HCCME=2 and HCCME=3 methods is computed as
conditional on the first stage as

hti D Zt .Z0Z/�1Xi .X0.I˝ Z.Z0 � Z/�1Z0/X/�1X0iZ.Z
0Z/�1Z0t

for 2SLS and

hti D Zt .Z0Z/�1Xi .X0.S�1 ˝ Z.Z0 � Z/�1Z0/X/�1X0iZ.Z
0Z/�1Z0t=Si i

for 3SLS.
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Testing for Autocorrelation
The GODFREY= option in the FIT statement produces the Godfrey Lagrange multiplier test for serially
correlated residuals for each equation (Godfrey 1978a, b). n is the maximum autoregressive order, and
specifies that Godfrey’s tests be computed for lags 1 through n. The default number of lags is four.

The tests are performed separately for each equation estimated by the FIT statement. When a nonlinear
model is estimated, the test is computed by using a linearized model.

Figure 25.45 shows an example of the output produced by the GODFREY=3 option.

Figure 25.45 Autocorrelation Test Output

Godfrey Test Output

The MODEL Procedure

Godfrey's Serial Correlation Test

Equation Alternative LM Pr > LM

y 1 6.63 0.0100

2 6.89 0.0319

3 6.96 0.0732

The three variations of the test reported by the GODFREY=3 option are designed to have power against
different alternative hypothesis. Thus, if the residuals in fact have only first-order autocorrelation, the lag
1 test has the most power for rejecting the null hypothesis of uncorrelated residuals. If the residuals have
second- but not higher-order autocorrelation, the lag 2 test might be more likely to reject; the same is true for
third-order autocorrelation and the lag 3 test.

The null hypothesis of Godfrey’s tests is that the equation residuals are white noise. However, if the equation
includes autoregressive error model of order p (AR(p),) then the lag i test, when considered in terms of the
structural error, is for the null hypothesis that the structural errors are from an AR(p) process versus the
alternative hypothesis that the errors are from an AR(p C i ) process.

The alternative ARMA(p; i) process is locally equivalent to the alternative AR(p C i ) process with respect
to the null model AR(p). Thus, the GODFREY= option results are also a test of AR(p) errors against the
alternative hypothesis of ARMA(p; i) errors. For more detailed information, see Godfrey (1978a, b).

Transformation of Error Terms
In PROC MODEL you can control the form of the error term. By default, the error term is assumed to be
additive. This section demonstrates how to specify nonadditive error terms and discusses the effects of these
transformations.



Transformation of Error Terms F 1539

Models with Nonadditive Errors

The estimation methods used by PROC MODEL assume that the error terms of the equations are indepen-
dently and identically distributed with zero means and finite variances. Furthermore, the methods assume
that the RESID.name equation variable for normalized form equations or the EQ.name equation variable for
general form equations contains an estimate of the error term of the true stochastic model whose parameters
are being estimated. For more information about RESID.name and EQ.name equation variables, see the
section “Equation Translations” on page 1635.

To illustrate these points, consider the common loglinear model

y D ˛xˇ .1/

lny D aC bln.x/ .2/

where a D log.˛/ and b D ˇ. Equation (2) is called the log form of the equation in contrast to equation (1),
which is called the level form of the equation. Using the SYSLIN procedure, you can estimate equation (2)
by specifying

proc syslin data=in;
model logy=logx;

run;

where LOGY and LOGX are the logs of Y and X computed in a preceding DATA step. The resulting values
for INTERCEPT and LOGX correspond to a and b in equation (2).

Using the MODEL procedure, you can try to estimate the parameters in the level form (and avoid the DATA
step) by specifying

proc model data=in;
parms alpha beta;
y = alpha * x ** beta;
fit y;

run;

where ALPHA and BETA are the parameters in equation (1).

Unfortunately, at least one of the preceding is wrong; an ambiguity results because equations (1) and (2)
contain no explicit error term. The SYSLIN and MODEL procedures both deal with additive errors; the
residual used (the estimate of the error term in the equation) is the difference between the predicted and
actual values (of LOGY for PROC SYSLIN and of Y for PROC MODEL in this example). If you perform
the regressions discussed previously, PROC SYSLIN estimates equation (3) while PROC MODEL estimates
equation (4).

lny D aC bln.x/C � .3/

y D ˛xˇ C � .4/
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These are different statistical models. Equation (3) is the log form of equation (5),

y D ˛xˇ� .5/

where � D e� . Equation (4), on the other hand, cannot be linearized because the error term � (different from
�) is additive in the level form.

You must decide whether your model is equation (4) or (5). If the model is equation (4), you should use
PROC MODEL. If you linearize equation (1) without considering the error term and apply SYSLIN to
MODEL LOGY=LOGX, the results will be wrong. On the other hand, if your model is equation (5) (in
practice it usually is), and you want to use PROC MODEL to estimate the parameters in the level form, you
must do something to account for the multiplicative error.

PROC MODEL estimates parameters by minimizing an objective function. The objective function is
computed using either the RESID.-prefixed equation variable or the EQ.-prefixed equation variable. You
must make sure that these prefixed equation variables are assigned an appropriate error term. If the model
has additive errors that satisfy the assumptions, nothing needs to be done. In the case of equation (5), the
error is nonadditive and the equation is in normalized form, so you must alter the value of RESID.Y.

The following assigns a valid estimate of � to RESID.Y:

y = alpha * x ** beta;
resid.y = actual.y / pred.y;

However, � D e� , and therefore �, cannot have a mean of zero, and you cannot consistently estimate ˛ and
ˇ by minimizing the sum of squares of an estimate of �. Instead, you use � D ln�.

proc model data=in;
parms alpha beta;
y = alpha * x ** beta;
resid.y = log( actual.y / pred.y );
fit y;

run;

If the model was expressed in general form, this transformation becomes

proc model data=in;
parms alpha beta;
EQ.trans = log( y / (alpha * x ** beta));
fit trans;

run;

Both examples produce estimates of ˛ and ˇ of the level form that match the estimates of a and b of the
log form. That is, ALPHA=exp(INTERCEPT) and BETA=LOGX, where INTERCEPT and LOGX are
the PROC SYSLIN parameter estimates from the MODEL LOGY=LOGX. The standard error reported for
ALPHA is different from that for the INTERCEPT in the log form.

The preceding example is not intended to suggest that loglinear models should be estimated in level form but,
rather, to make the following points:

� Nonlinear transformations of equations involve the error term of the equation, and this should be taken
into account when transforming models.
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� The RESID.-prefixed and the EQ.-prefixed equation variables for models estimated by the MODEL
procedure must represent additive errors with zero means.

� You can use assignments to RESID.-prefixed and EQ.-prefixed equation variables to transform error
terms.

� Some models do not have additive errors or zero means, and many such models can be estimated using
the MODEL procedure. The preceding approach applies not only to multiplicative models but to any
model that can be manipulated to isolate the error term.

Predicted Values of Transformed Models

Nonadditive or transformed errors affect the distribution of the predicted values, as well as the estimates. For
the preceding loglinear example, the MODEL procedure produces consistent parameter estimates. However,
the predicted values for Y computed by PROC MODEL are not unbiased estimates of the expected values of
Y, although they do estimate the conditional median Y values.

In general, the predicted values produced for a model with nonadditive errors are not unbiased estimates of
the conditional means of the endogenous value. If the model can be transformed to a model with additive
errors by using a monotonic transformation, the predicted values estimate the conditional medians of the
endogenous variable.

For transformed models in which the biasing factor is known, you can use programming statements to correct
for the bias in the predicted values as estimates of the endogenous means. In the preceding log-linear case,
the predicted values are biased by the factor exp(�2=2). You can produce approximately unbiased predicted
values in this case by writing the model as

proc model data=in;
parms alpha beta;
y=alpha * x ** beta;
resid.y = log( actual.y / pred.y );
fit y;

run;

For a discussion of bias factors for predicted values of transformed models, see Miller (1984).

Note that models with transformed errors are not appropriate for Monte Carlo simulation that uses the
SDATA= option. PROC MODEL computes the OUTS= matrix from the transformed RESID.-prefixed
equation variables, while it uses the SDATA= matrix to generate multivariate normal errors, which are added
to the predicted values. This method of computing errors is inconsistent when the equation variables have
been transformed.
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Error Covariance Structure Specification
One of the key assumptions of regression is that the variance of the errors is constant across observations.
Correcting for heteroscedasticity improves the efficiency of the estimates.

Consider the following general form for models,

q.yt ; xt ; �/ D "t

"t D Ht � �t

Ht D

26664
p
ht;1 0 : : : 0

0
p
ht;2 : : : 0

: : :

0 0 : : :
p
ht;g

37775
ht D g.yt ; xt ; �/

where �t � N.0;†/.

For models that are homoscedastic,

ht D 1

If you have a model that is heteroscedastic with known form, you can improve the efficiency of the estimates
by performing a weighted regression. The weight variable, using this notation, would be 1=

p
ht .

If the errors for a model are heteroscedastic and the functional form of the variance is known, the model for
the variance can be estimated along with the regression function.

To specify a functional form for the variance, assign the function to an H.var variable, where var is the
equation variable. For example, if you want to estimate the scale parameter for the variance of a simple
regression model

y D a � x C b

you can specify

proc model data=s;
y = a * x + b;
h.y = sigma**2;

fit y;

Consider the same model with the following functional form for the variance:

ht D �
2
� x2�˛

This would be written as

proc model data=s;
y = a * x + b;
h.y = sigma**2 * x**(2*alpha);

fit y;

There are three ways to model the variance in the MODEL procedure: feasible generalized least squares,
generalized method of moments, and full information maximum likelihood.
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Feasible GLS

A simple approach to estimating a variance function is to estimate the mean parameters � by using some
auxiliary method, such as OLS, and then use the residuals of that estimation to estimate the parameters � of
the variance function. This scheme is called feasible GLS. It is possible to use the residuals from an auxiliary
method for the purpose of estimating � because in many cases the residuals consistently estimate the error
terms.

For all estimation methods except GMM and FIML, using the H.var syntax specifies that feasible GLS is
used in the estimation. For feasible GLS, the mean function is estimated by the usual method. The variance
function is then estimated using pseudo-likelihood (PL) function of the generated residuals. The objective
function for the PL estimation is

pn.�; �/ D

nX
iD1

 
.yi � f .xi ; Ǒ//

2

�2h.zi ; �/
C logŒ�2h.zi ; �/�

!

Once the variance function has been estimated, the mean function is reestimated by using the variance
function as weights. If an S-iterated method is selected, this process is repeated until convergence (iterated
feasible GLS).

Note that feasible GLS does not yield consistent estimates when one of the following is true:

� The variance is unbounded.

� There is too much serial dependence in the errors (the dependence does not fade with time).

� There is a combination of serial dependence and lag dependent variables.

The first two cases are unusual, but the third is much more common. Whether iterated feasible GLS
avoids consistency problems with the last case is an unanswered research question. For more information,
see Davidson and MacKinnon (1993, pp. 298–301); Gallant (1987, pp. 124–125); Amemiya (1985, pp.
202–203).

One limitation is that parameters cannot be shared between the mean equation and the variance equation. This
implies that certain GARCH models, cross-equation restrictions of parameters, or testing of combinations of
parameters in the mean and variance component are not allowed.

Generalized Method of Moments

In GMM, normally the first moment of the mean function is used in the objective function.

q.yt ; xt ; �/ D �t

E.�t / D 0

To add the second moment conditions to the estimation, add the equation

E."t � "t � ht / D 0

to the model. For example, if you want to estimate � for linear example above, you can write
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proc model data=s;
y = a * x + b;
eq.two = resid.y**2 - sigma**2;

fit y two/ gmm;
instruments x;
run;

This is a popular way to estimate a continuous-time interest rate processes (see Chan et al. 1992). The H.var
syntax automatically generates this system of equations.

To further take advantage of the information obtained about the variance, the moment equations can be
modified to

E."t=
p
ht / D 0

E."t � "t � ht / D 0

For the preceding example, this can be written as

proc model data=s;
y = a * x + b;
eq.two = resid.y**2 - sigma**2;
resid.y = resid.y / sigma;

fit y two/ gmm;
instruments x;
run;

Note that, if the error model is misspecified in this form of the GMM model, the parameter estimates might
be inconsistent.

Full Information Maximum Likelihood

For FIML estimation of variance functions, the concentrated likelihood below is used as the objective function.
That is, the mean function is coupled with the variance function and the system is solved simultaneously,

ln.�/ D
ng

2
.1C ln.2�// �

nX
tD1

ln
�ˇ̌̌̌
@q.yt ; xt ; �/

@yt

ˇ̌̌̌�

C
1

2

nX
tD1

gX
iD1

�
ln.ht;i /C qi .yt ; xt ; �/

2=ht;i
�

where g is the number of equations in the system.

The HESSIAN=GLS option is not available for FIML estimation that involves variance functions. The matrix
used when HESSIAN=CROSS is specified is a crossproducts matrix that has been enhanced by the dual
quasi-Newton approximation.
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Examples

You can specify a GARCH(1,1) model as follows:

proc model data=modloc.usd_jpy;

/* Mean model --------*/
jpyret = intercept ;

/* Variance model ----------------*/
h.jpyret = arch0

+ arch1 * xlag( resid.jpyret ** 2, mse.jpyret )
+ garch1 * xlag(h.jpyret, mse.jpyret) ;

bounds arch0 arch1 garch1 >= 0;

fit jpyret / method=marquardt fiml;
run;

Note that the BOUNDS statement is used to ensure that the parameters are positive, a requirement for
GARCH models.

EGARCH models are used because there are no restrictions on the parameters. You can specify an
EGARCH(1,1) model as follows:

proc model data=sasuser.usd_dem ;

/* Mean model ----------*/
demret = intercept ;

/* Variance model ----------------*/
if ( _OBS_ =1 ) then

h.demret = exp( earch0 + egarch1 * log(mse.demret) );
else

h.demret = exp( earch0 + earch1 * zlag( g)
+ egarch1 * log(zlag(h.demret)));

g = - theta * nresid.demret + abs( nresid.demret ) - sqrt(2/3.1415);

fit demret / method=marquardt fiml maxiter=100 converge=1.0e-6;
run;

Ordinary Differential Equations
Ordinary differential equations (ODEs) are also called initial value problems because a time zero value for
each first-order differential equation is needed. The following is an example of a first-order system of ODEs:

y0 D �0:1y C 2:5z2

z0 D �z

y0 D 0

z0 D 1
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Note that you must provide an initial value for each ODE.

As a reminder, any n-order differential equation can be modeled as a system of first-order differential
equations. For example, consider the differential equations

y
00

D by
0

C cy

y0 D 0

y
0

0 D 1

which can be written as the system of differential equations

y
0

D z

z
0

D by
0

C cy

y0 D 0

z0 D 1

This differential system can be simulated as follows:

data t;
time=0; output;
time=1; output;
time=2; output;

run;

proc model data=t ;
dependent y 0 z 1;
parm b -2 c -4;

dert.y = z;
dert.z = b * dert.y + c * y;

solve y z / dynamic solveprint;
run;

The preceding statements produce the output shown in Figure 25.46. These statements produce additional
output, which is not shown.

Figure 25.46 Simulation Results for Differential System

The MODEL Procedure
Simultaneous Simulation

Observation 1 Missing 2 CC -1.000000

Iterations 0

Solution Values

y z

0.000000 1.000000
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Figure 25.46 continued

Observation 2 Iterations 0 CC 0.000000 ERROR.y 0.000000

Solution Values

y z

0.2096398 -.2687053

Observation 3 Iterations 0 CC 9.464802 ERROR.y -0.234405

Solution Values

y z

-.0247649 -.1035929

The differential variables are distinguished by the derivative with respect to time (DERT.) prefix. Once
you define the DERT. variable, you can use it on the right-hand side of another equation. The differential
equations must be expressed in normal form; implicit differential equations are not allowed, and other terms
on the left-hand side are not allowed.

The TIME variable is the implied with respect to variable for all DERT. variables. The TIME variable is also
the only variable that must be in the input data set.

You can provide initial values for the differential equations in the data set, in the declaration statement (as in
the previous example), or in statements in the program. Using the previous example, you can specify the
initial values as follows:

proc model data=t ;
dependent y z ;
parm b -2 c -4;

if ( time=0 ) then
do;

y=0;
z=1;

end;
else

do;
dert.y = z;
dert.z = b * dert.y + c * y;

end;
end;

solve y z / dynamic solveprint;
run;

If you do not provide an initial value, 0 is used.
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DYNAMIC and STATIC Simulation

Note that, in the previous example, the DYNAMIC option is specified in the SOLVE statement. The
DYNAMIC and STATIC options work the same for differential equations as they do for dynamic systems. In
the differential equation case, the DYNAMIC option makes the initial value needed at each observation the
computed value from the previous iteration. For a static simulation, the data set must contain values for the
integrated variables. For example, if DERT.Y and DERT.Z are the differential variables, you must include Y
and Z in the input data set in order to do a static simulation of the model.

If the simulation is dynamic, the initial values for the differential equations are obtained from the data set,
if they are available. If the variable is not in the data set, you can specify the initial value in a declaration
statement. If you do not specify an initial value, the value of 0.0 is used.

A dynamic solution is obtained by solving one initial value problem for all the data. A graph of a simple
dynamic simulation is shown in Figure 25.47. If the time variable for the current observation is less than
the time variable for the previous observation, the integration is restarted from this point. This allows for
multiple samples in one data file.

Figure 25.47 Dynamic Solution

In a static solution, n � 1 initial value problems are solved using the first n � 1 data values as initial values.
The equations are integrated using the ith data value as an initial value to the i C 1 data value. Figure 25.48
displays a static simulation of noisy data from a simple differential equation. The static solution does not
propagate errors in initial values as the dynamic solution does.
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Figure 25.48 Static Solution

For estimation, the DYNAMIC and STATIC options in the FIT statement perform the same functions as
they do in the SOLVE statement. Components of differential systems that have missing values or are not in
the data set are simulated dynamically. For example, often in multiple compartment kinetic models, only
one compartment is monitored. The differential equations that describe the unmonitored compartments are
simulated dynamically.

For estimation, it is important to have accurate initial values for ODEs that are not in the data set. If an
accurate initial value is not known, the initial value can be made an unknown parameter and estimated. This
allows for errors in the initial values but increases the number of parameters to estimate by the number of
equations.

Estimation of Differential Equations

Consider the kinetic model for the accumulation of mercury (Hg) in mosquito fish (Matis, Miller, and
Allen 1991, p. 177). The model for this process is the one-compartment constant infusion model shown in
Figure 25.49.
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Figure 25.49 One-Compartment Constant Infusion Model

The differential equation that models this process is

dconc

dt
D ku � keconc

conc0 D 0

The analytical solution to the model is

conc D .ku=ke/.1 � exp.�ket //

The data for the model are as follows:

data fish;
input day conc;

datalines;
0.0 0.0
1.0 0.15
2.0 0.2
3.0 0.26
4.0 0.32
6.0 0.33
;

To fit this model in differential form, use the following statements:

proc model data=fish;
parm ku ke;

dert.conc = ku - ke * conc;

fit conc / time=day;
run;

The results from this estimation are shown in Figure 25.50.
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Figure 25.50 Static Estimation Results for Fish Model

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

ku 0.180159 0.0312 5.78 0.0044

ke 0.524661 0.1181 4.44 0.0113

To perform a dynamic estimation of the differential equation, add the DYNAMIC option to the FIT statement.

proc model data=fish;
parm ku .3 ke .3;

dert.conc = ku - ke * conc;

fit conc / time = day dynamic;
run;

The equation DERT.CONC is integrated from conc.0/ D 0. The results from this estimation are shown in
Figure 25.51.

Figure 25.51 Dynamic Estimation Results for Fish Model

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

ku 0.167109 0.0170 9.84 0.0006

ke 0.469033 0.0731 6.42 0.0030

To perform a dynamic estimation of the differential equation and estimate the initial value, use the following
statements:

proc model data=fish;
parm ku .3 ke .3 conc0 0;

dert.conc = ku - ke * conc;

fit conc initial=(conc = conc0) / time = day dynamic;
run;

The INITIAL= option in the FIT statement is used to associate the initial value of a differential equation with
a parameter. The results from this estimation are shown in Figure 25.52.
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Figure 25.52 Dynamic Estimation with Initial Value for Fish Model

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

ku 0.164408 0.0230 7.14 0.0057

ke 0.45949 0.0943 4.87 0.0165

conc0 0.003798 0.0174 0.22 0.8414

Finally, to estimate the fish model by using the analytical solution, use the following statements:

proc model data=fish;
parm ku .3 ke .3;

conc = (ku/ ke)*( 1 -exp(-ke * day));

fit conc;
run;

The results from this estimation are shown in Figure 25.53.

Figure 25.53 Analytical Estimation Results for Fish Model

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

ku 0.167109 0.0170 9.84 0.0006

ke 0.469033 0.0731 6.42 0.0030

A comparison of the results among the four estimations reveals that the two dynamic estimations and the
analytical estimation give nearly identical results (identical to the default precision). The two dynamic
estimations are identical because the estimated initial value (0.00013071) is very close to the initial value
used in the first dynamic estimation (0). Note also that the static model did not require an initial guess for the
parameter values. Static estimation, in general, is more forgiving of bad initial values.

The form of the estimation that is preferred depends mostly on the model and data. If a very accurate initial
value is known, then a dynamic estimation makes sense. If, additionally, the model can be written analytically,
then the analytical estimation is computationally simpler. If only an approximate initial value is known and
not modeled as an unknown parameter, the static estimation is less sensitive to errors in the initial value.

The form of the error in the model is also an important factor in choosing the form of the estimation. If the
error term is additive and independent of previous error, then the dynamic mode is appropriate. If, on the
other hand, the errors are cumulative, a static estimation is more appropriate. For an example, see the section
“Monte Carlo Simulation” on page 1598.
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Auxiliary Equations

Auxiliary equations can be used with differential equations. These are equations that need to be satisfied with
the differential equations at each point between each data value. They are automatically added to the system,
so you do not need to specify them in the SOLVE or FIT statement.

Consider the following example.

The Michaelis-Menten equations describe the kinetics of an enzyme-catalyzed reaction. The enzyme is E,
and S is called the substrate. The enzyme first reacts with the substrate to form the enzyme-substrate complex
ES, which then breaks down in a second step to form enzyme and products P.

The reaction rates are described by the following system of differential equations:

dŒES �
dt

D k1.ŒE � � ŒES �/ŒS � � k2ŒES � � k3ŒES �

d ŒS �
dt
D �k1.ŒE � � ŒES �/ŒS �C k2ŒES �

ŒE � D ŒE �tot � ŒES �

The first equation describes the rate of formation of ES from E + S. The rate of formation of ES from E + P
is very small and can be ignored. The enzyme is in either the complexed or the uncomplexed form. So if the
total (ŒE �tot ) concentration of enzyme and the amount bound to the substrate is known, ŒE � can be obtained
by conservation.

In this example, the conservation equation is an auxiliary equation and is coupled with the differential
equations for integration.

Time Variable

You must provide a time variable in the data set. The name of the time variable defaults to TIME. You can use
other variables as the time variable by specifying the TIME= option in the FIT or SOLVE statement. The
time intervals need not be evenly spaced. If the time variable for the current observation is less than the time
variable for the previous observation, the integration is restarted.

Differential Equations and Goal Seeking

Consider the differential equation

y
0

D a�x

and the data set

data t2;
y=0; time=0; output;
y=2; time=1; output;
y=3; time=2; output;

run;

The problem is to find values for X that satisfy the differential equation and the data in the data set. Problems
of this kind are sometimes referred to as goal-seeking problems because they require you to search for values
of X that satisfy the goal of Y.

This problem is solved with the following statements:
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proc model data=t2;
independent x 0;
dependent y;
parm a 5;
dert.y = a * x;
solve x / out=goaldata;

run;

proc print data=goaldata;
run;

The output from the PROC PRINT statement is shown in Figure 25.54.

Figure 25.54 Dynamic Solution

Obs _TYPE_ _MODE_ _ERRORS_ x y time

1 PREDICT SIMULATE 0 0.0 0 0

2 PREDICT SIMULATE 0 0.8 2 1

3 PREDICT SIMULATE 0 -0.4 3 2

Note that an initial value of 0 is provided for the X variable because it is undetermined at TIME = 0.

In the preceding goal-seeking example, X is treated as a linear function between each set of data points (see
Figure 25.55).

Figure 25.55 Form of X Used for Integration in Goal Seeking
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If you integrate y0 D ax manually, you have

x.t/ D
tf � t

tf � to
xo C

t � to

tf � to
xf

yf � yo D

Z tf

to

ax.t/ dt

D a
1

tf � to
.t.tf xo � toxf /C

1

2
t2.xf � xo//

ˇ̌̌̌tf
to

For observation 2, this reduces to

yf � yo D
1

2
a�xf

2 D 2:5�xf

So x D 0:8 for this observation.

Goal seeking for the TIME variable is not allowed.

Restrictions and Bounds on Parameters
Using the BOUNDS and RESTRICT statements, PROC MODEL can compute optimal estimates subject to
equality or inequality constraints on the parameter estimates.

Equality restrictions can be written as a vector function:

h.�/ D 0

Inequality restrictions are either active or inactive. When an inequality restriction is active, it is treated as an
equality restriction. All inactive inequality restrictions can be written as a vector function:

F.�/ � 0

Strict inequalities, such as .f .�/ > 0/, are transformed into inequalities as f .�/ � .1 � �/ � � � 0, where
the tolerance � is controlled by the EPSILON= option in the FIT statement and defaults to 10�8. The ith
inequality restriction becomes active if Fi < 0 and remains active until its Lagrange multiplier becomes
negative. Lagrange multipliers are computed for all the nonredundant equality restrictions and all the active
inequality restrictions.

For the following, assume the vector h.�/ contains all the current active restrictions. The constraint matrix A
is

A. O�/ D
@h. O�/

@ O�

The covariance matrix for the restricted parameter estimates is computed as

Z.Z0HZ/�1Z0
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where H is Hessian or approximation to the Hessian of the objective function (.X0.diag.S/�1˝I/X/ for
OLS), and Z is the last .np � nc/ columns of Q. Q is from an LQ factorization of the constraint matrix, nc
is the number of active constraints, and np is the number of parameters. For more information about LQ
factorization, see Gill, Murray, and Wright (1981). The covariance column in Table 25.2 summarizes the
Hessian approximation used for each estimation method.

The covariance matrix for the Lagrange multipliers is computed as

.AH�1A0/�1

The p-value reported for a restriction is computed from a beta distribution rather than a t distribution because
the numerator and the denominator of the t ratio for an estimated Lagrange multiplier are not independent.

The Lagrange multipliers for the active restrictions are printed with the parameter estimates. The Lagrange
multiplier estimates are computed using the relationship

A
0

� D g

where the dimensions of the constraint matrix A are the number of constraints by the number of parameters,
� is the vector of Lagrange multipliers, and g is the gradient of the objective function at the final estimates.

The final gradient includes the effects of the estimated S matrix. For example, for OLS the final gradient
would be

g D X0.diag.S/�1˝I/r

where r is the residual vector. Note that when nonlinear restrictions are imposed, the convergence measure R
might have values greater than one for some iterations.

Tests on Parameters
In general, the hypothesis tested can be written as

H0 W h.�/ D 0

where h.�/ is a vector-valued function of the parameters � given by the r expressions specified in the TEST
statement.

Let OV be the estimate of the covariance matrix of O� . Let O� be the unconstrained estimate of � and Q� be the
constrained estimate of � such that h. Q�/ D 0. Let

A.�/ D @h.�/=@� j O�

Let r be the dimension of h.�/ and n be the number of observations. Using this notation, the test statistics for
the three kinds of tests are computed as follows.

The Wald test statistic is defined as

W D h
0

. O�/
8:A. O�/ OVA

0

. O�/
9;�1h. O�/

The Wald test is not invariant to reparameterization of the model (Gregory and Veall 1985; Gallant 1987, p.
219). For more information about the theoretical properties of the Wald test, see Phillips and Park (1988).
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The Lagrange multiplier test statistic is

R D �
0

A. Q�/ QVA
0

. Q�/�

where � is the vector of Lagrange multipliers from the computation of the restricted estimate Q� .

The Lagrange multiplier test statistic is equivalent to Rao’s efficient score test statistic,

R D .@L. Q�/=@�/
0
QV.@L. Q�/=@�/

where L is the log-likelihood function for the estimation method used. For SUR, 3SLS, GMM, and iterated
versions of these methods, the likelihood function is computed as

L D Objective �Nobs=2

For OLS and 2SLS, the Lagrange multiplier test statistic is computed as

R D Œ.@ OS. Q�/=@�/
0
QV.@ OS. Q�/=@�/�= OS. Q�/

where OS. Q�/ is the corresponding objective function value at the constrained estimate.

The likelihood ratio test statistic is

T D 2
�
L. O�/ � L. Q�/

�
where Q� represents the constrained estimate of � and L is the concentrated log-likelihood value.

For OLS and 2SLS, the likelihood ratio test statistic is computed as

T D .n � nparms/ � . OS. Q�/ � OS. O�//= OS. O�/

This test statistic is an approximation from

T D n � log

�
1C

rF

n � nparms

�
when the value of rF=.n � nparms/ is small (Greene 2004, p. 421).

The likelihood ratio test is not appropriate for models with nonstationary serially correlated errors (Gallant
1987, p. 139). The likelihood ratio test should not be used for dynamic systems, for systems with lagged
dependent variables, or with the FIML estimation method unless certain conditions are met (see Gallant 1987,
p. 479).

For each kind of test, under the null hypothesis the test statistic is asymptotically distributed as a �2 random
variable with r degrees of freedom, where r is the number of expressions in the TEST statement. The p-values
reported for the tests are computed from the �2.r/ distribution and are only asymptotically valid. When both
RESTRICT and TEST statements are used in a PROC MODEL step, test statistics are computed by taking
into account the constraints imposed by the RESTRICT statement.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation
to its small sample distribution than the other two tests. However, the Wald test has the least computational
cost, since it does not require computation of the constrained estimate Q� .

The following is an example of using the TEST statement to perform a likelihood ratio test for a compound
hypothesis:
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test a*exp(-k) = 1-k, d = 0 ,/ lr;

It is important to keep in mind that although individual t tests for each parameter are printed by default
into the parameter estimates table, they are only asymptotically valid for nonlinear models. You should be
cautious in drawing any inferences from these t tests for small samples.

Hausman Specification Test
Hausman’s specification test, or m-statistic, can be used to test hypotheses in terms of bias or inconsistency
of an estimator. This test was also proposed by Wu (1973). Hausman’s m-statistic is as follows.

Given two estimators, Ǒ0 and Ǒ1, where under the null hypothesis both estimators are consistent but only Ǒ0
is asymptotically efficient and under the alternative hypothesis only Ǒ1 is consistent, the m-statistic is

m D Oq0. OV1 � OV0/� Oq

where OV1 and OV0 represent consistent estimates of the asymptotic covariance matrices of Ǒ1 and Ǒ0 respec-
tively, and

q D Ǒ1 � Ǒ0

The m-statistic is then distributed �2 with k degrees of freedom, where k is the rank of the matrix . OV1 � OV0/.
A generalized inverse is used, as recommended by Hausman and Taylor (1982).

In the MODEL procedure, Hausman’s m-statistic can be used to determine if it is necessary to use an
instrumental variables method rather than a more efficient OLS estimation. Hausman’s m-statistic can also
be used to compare 2SLS with 3SLS for a class of estimators for which 3SLS is asymptotically efficient
(similarly for OLS and SUR).

Hausman’s m-statistic can also be used, in principle, to test the null hypothesis of normality when comparing
3SLS to FIML. Because of the poor performance of this form of the test, it is not offered in the MODEL
procedure. For a discussion of why Hausman’s test fails for common econometric models, see Fair (1984, pp.
246–247).

To perform a Hausman’s specification test, specify the HAUSMAN option in the FIT statement. The selected
estimation methods are compared using Hausman’s m-statistic.

In the following example, Hausman’s test is used to check the presence of measurement error. Under H0 of
no measurement error, OLS is efficient, while under H1, 2SLS is consistent. In the following code, OLS and
2SLS are used to estimate the model, and Hausman’s test is requested:

proc model data=one out=fiml2;
endogenous y1 y2;

y1 = py2 * y2 + px1 * x1 + interc;
y2 = py1* y1 + pz1 * z1 + d2;

fit y1 y2 / ols 2sls hausman;
instruments x1 z1;

run;

The output specified by the HAUSMAN option produces the results shown in Figure 25.56.
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Figure 25.56 Hausman’s Specification Test Results

The MODEL Procedure

Hausman's Specification Test Results

Efficient under H0 Consistent under H1 DF Statistic Pr > ChiSq

OLS 2SLS 6 13.86 0.0313

Figure 25.56 indicates that 2SLS is preferred over OLS at 5% level of significance. In this case, the null
hypothesis of no measurement error is rejected. Hence, the instrumental variable estimator is required for
this example due to the presence of measurement error.

Chow Tests
The Chow test is used to test for break points or structural changes in a model. The problem is posed as a
partitioning of the data into two parts of size n1 and n2. The null hypothesis to be tested is

Ho W ˇ1 D ˇ2 D ˇ

where ˇ1 is estimated by using the first part of the data and ˇ2 is estimated by using the second part.

The test is performed as follows (see Davidson and MacKinnon 1993, p. 380):

1. The p parameters of the model are estimated.

2. A second linear regression is performed on the residuals, Ou, from the nonlinear estimation in step one,

Ou D OXb C residuals

where OX is Jacobian columns that are evaluated at the parameter estimates. If the estimation is an
instrumental variables estimation with matrix of instruments W, then the following regression is
performed,

Ou D PW � OXb C residuals

where PW � is the projection matrix.

3. The restricted SSE (RSSE) from this regression is obtained. An SSE for each subsample is then
obtained by using the same linear regression.

4. The F statistic is then

f D
.RSSE � SSE1 � SSE2/=p
.SSE1 C SSE2/=.n � 2p/

This test has p and n � 2p degrees of freedom.

Chow’s test is not applicable if min.n1; n2/ < p, since one of the two subsamples does not contain enough
data to estimate ˇ. In this instance, the predictive Chow test can be used. The predictive Chow test is defined
as

f D
.RSSE � SSE1/�.n1 � p/

SSE1�n2
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where n1 > p. This test can be derived from the Chow test by noting that the SSE2 D 0 when n2 <D p and
by adjusting the degrees of freedom appropriately.

You can select the Chow test and the predictive Chow test by specifying the CHOW=arg and the PCHOW=arg
options in the FIT statement, where arg is either the first observation in the second sample or a parenthesized
list of first observations in each of the second samples. If the size of the one of the two groups in which the
sample is partitioned is less than the number of parameters, then a predictive Chow test is automatically used.
These tests statistics are not produced for GMM and FIML estimations.

The following is an example of the use of the Chow test:

data exp;
x=0;
do time=1 to 100;

if time=50 then x=1;
y = 35 * exp( 0.01 * time ) + rannor( 123 ) + x * 5;
output;

end;
run;

proc model data=exp;
parm zo 35 b;

dert.z = b * z;
y=z;

fit y init=(z=zo) / chow =(40 50 60) pchow=90;
run;

The data set introduces an artificial structural change into the model (the structural change affects the intercept
parameter). The output from the requested Chow tests are shown in Figure 25.57.

Figure 25.57 Chow’s Test Results

The MODEL Procedure

Structural Change Test

Test
Break
Point Num DF Den DF F Value Pr > F

Chow 40 2 96 12.95 <.0001

Chow 50 2 96 101.37 <.0001

Chow 60 2 96 26.43 <.0001

Predictive Chow 90 11 87 1.86 0.0566
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Profile Likelihood Confidence Intervals
Wald-based and likelihood-ratio-based confidence intervals are available in the MODEL procedure for
computing a confidence interval on an estimated parameter. A confidence interval on a parameter � can be
constructed by inverting a Wald-based or a likelihood-ratio-based test.

The approximate 100.1 � ˛/ % Wald confidence interval for a parameter � is

O�˙z1�˛=2 O�

where zp is the 100pth percentile of the standard normal distribution, O� is the maximum likelihood estimate
of � , and O� is the standard error estimate of O� .

A likelihood-ratio-based confidence interval is derived from the �2 distribution of the generalized likelihood
ratio test. The approximate 1 � ˛ confidence interval for a parameter � is

� W 2Œl. O�/ � l.�/��q1;1�˛ D 2l
�

where q1;1�˛ is the .1 � ˛/ quantile of the �2 with one degree of freedom, and l.�/ is the log likelihood
as a function of one parameter. The endpoints of a confidence interval are the zeros of the function
l.�/ � l�. Computing a likelihood-ratio-based confidence interval is an iterative process. This process must
be performed twice for each parameter, so the computational cost is considerable. Using a modified form
of the algorithm recommended by Venzon and Moolgavkar (1988), you can determine that the cost of each
endpoint computation is approximately the cost of estimating the original system.

To request confidence intervals on estimated parameters, specify the PRL= option in the FIT statement. By
default, the PRL option produces 95% likelihood ratio confidence limits. The coverage of the confidence
interval is controlled by the ALPHA= option in the FIT statement.

The following is an example of the use of the confidence interval options:

data exp;
do time = 1 to 20;

y = 35 * exp( 0.01 * time ) + 5*rannor( 123 );
output;
end;

run;

proc model data=exp;
parm zo 35 b;

dert.z = b * z;
y=z;

fit y init=(z=zo) / prl=both;
test zo = 40.475437 ,/ lr;

run;

The output from the requested confidence intervals and the TEST statement are shown in Figure 25.58.
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Figure 25.58 Confidence Interval Estimation

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

zo 36.58933 1.9471 18.79 <.0001

b 0.006497 0.00464 1.40 0.1780

Test Results

Test Type Statistic Pr > ChiSq Label

Test0 L.R. 3.81 0.0509 zo = 40.475437

Parameter Wald
95% Confidence Intervals

Parameter Value Lower Upper

zo 36.5893 32.7730 40.4056

b 0.00650 -0.00259 0.0156

Parameter Likelihood Ratio
95% Confidence Intervals

Parameter Value Lower Upper

zo 36.5893 32.8381 40.4921

b 0.00650 -0.00264 0.0157

In this example the parameter value used in the likelihood ratio test, zo D 40:475437, is close to the upper
bound computed for the likelihood ratio confidence interval, zo � 40:4921. This coincidence is not germane
to the analysis however, since the likelihood ratio test is a test of the null hypothesis H0 W zo D 40:475437
and the confidence interval can be viewed as a test of the null hypothesis H0 W 32:8381 � zo � 40:4921.

Identity Equations
Identities are model equations that express relationships among variables in a model that must be satisfied
exactly. In contrast, the model equations that are used for estimation include implicit error terms to account
for expected deviations in the model data. Identities are useful in specifying models. For example, one
identity equation can define a quantity that is subsequently used to define multiple equations for estimation.

In PROC MODEL, you specify identity equations by using an assignment statement in which the left-hand-
side variable of the assignment appears neither in an ENDOGENOUS statement nor in the list of equations
to be estimated in the FIT statement.

Identity equations can also be useful in specifying the endogeneity of variables in a model. In the following
example from Arie ten Cate, the OLS and FIML estimates are identical because the dependence of Y on
CONS is not specified in the PROC MODEL program (Ten Cate 2017):

data a;
input inv cons;
y = cons + inv;
datalines;
1 10
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2 15
3 29
6 51
7 66
;

proc model data=a;
endogenous cons;
parameters a 0.9 b 0.1;
cons = a * y + b;
fit / ols fiml;

quit;

Figure 25.59 Estimations without an Identity Equation

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 0.902579 0.00600 150.46 <.0001

b -0.09799 0.2684 -0.37 0.7393

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 0.902579 0.00511 176.77 <.0001

b -0.09799 0.2458 -0.40 0.7168

You can represent the full endogenous character of CONS if you include the dependence of Y on CONS by
using the identity equation y D consC inv. The OLS and FIML estimates differ in the following estimation
because the FIML method captures the dependence of Y on CONS:

proc model data=a;
endogenous cons;
parameters a 0.9 b 0.1;
y = cons + inv;
cons = a * y + b;
fit / ols fiml;

quit;

Figure 25.60 Estimations with an Identity Equation

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 0.902579 0.00600 150.46 <.0001

b -0.09799 0.2684 -0.37 0.7393
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Figure 25.60 continued

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 0.901483 0.00504 178.72 <.0001

b -0.05636 0.2529 -0.22 0.8380

Choice of Instruments
Several of the estimation methods supported by PROC MODEL are instrumental variables methods. There is
no standard method for choosing instruments for nonlinear regression. Few econometric textbooks discuss
the selection of instruments for nonlinear models. For more information, see Bowden and Turkington (1984,
pp. 180–182).

The purpose of the instrumental projection is to purge the regressors of their correlation with the residual.
For nonlinear systems, the regressors are the partials of the residuals with respect to the parameters.

Possible instrumental variables include the following:

� any variable in the model that is independent of the errors

� lags of variables in the system

� derivatives with respect to the parameters, if the derivatives are independent of the errors

� low-degree polynomials in the exogenous variables

� variables from the data set or functions of variables from the data set

Selected instruments must not have any of the following characteristics:

� depend on any variable endogenous with respect to the equations estimated

� depend on any of the parameters estimated

� be lags of endogenous variables if there is serial correlation of the errors

If the preceding rules are satisfied and there are enough observations to support the number of instruments
used, the results should be consistent and the efficiency loss held to a minimum.

You need at least as many instruments as the maximum number of parameters in any equation, or some of the
parameters cannot be estimated. Note that number of instruments means linearly independent instruments. If
you add an instrument that is a linear combination of other instruments, it has no effect and does not increase
the effective number of instruments.

You can, however, use too many instruments. In order to get the benefit of instrumental variables, you must
have more observations than instruments. Thus, there is a trade-off; the instrumental variables technique
completely eliminates the simultaneous equation bias only in large samples. In finite samples, the larger
the excess of observations over instruments, the more the bias is reduced. Adding more instruments might
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improve the efficiency, but after some point efficiency declines as the excess of observations over instruments
becomes smaller and the bias grows.

The instruments used in an estimation are printed out at the beginning of the estimation. For example, the
following statements produce the instruments list shown in Figure 25.61:

proc model data=test2;
exogenous x1 x2;
parms b1 a1 a2 b2 2.5 c2 55;
y1 = a1 * y2 + b1 * exp(x1);
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2;
fit y1 y2 / n2sls;
inst b1 b2 c2 x1 ;

run;

Figure 25.61 Instruments Used Message

The MODEL Procedure

The 2 Equations to Estimate

y1 = F(b1, a1(y2))

y2 = F(a2(y1), b2, c2)

Instruments 1 x1 @y1/@b1 @y2/@b2 @y2/@c2

This states that an intercept term, the exogenous variable X1, and the partial derivatives of the equations with
respect to B1, B2, and C2, were used as instruments for the estimation.

Examples

Suppose that Y1 and Y2 are endogenous variables, that X1 and X2 are exogenous variables, and that A, B, C,
D, E, F, and G are parameters. Consider the following model:

y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1 y2;
instruments exclude=(c g);

The INSTRUMENTS statement produces X1, X2, LAG(Y1), and an intercept as instruments.

In order to estimate the Y1 equation by itself, it is necessary to include X2 explicitly in the instruments since
F, in this case, is not included in the following estimation:

y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1;
instruments x2 exclude=(c);

This produces the same instruments as before. You can list the parameter associated with the lagged variable
as an instrument instead of using the EXCLUDE= option. Thus, the following is equivalent to the previous
example:
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y1 = a + b * x1 + c * y2 + d * lag(y1);
y2 = e + f * x2 + g * y1;
fit y1;
instruments x1 x2 d;

For an example of declaring instruments when estimating a model involving identities, consider Klein’s
Model I:

proc model data=klien;
endogenous c p w i x wsum k y;
exogenous wp g t year;
parms c0-c3 i0-i3 w0-w3;
a: c = c0 + c1 * p + c2 * lag(p) + c3 * wsum;
b: i = i0 + i1 * p + i2 * lag(p) + i3 * lag(k);
c: w = w0 + w1 * x + w2 * lag(x) + w3 * year;
x = c + i + g;
y = c + i + g-t;
p = x-w-t;
k = lag(k) + i;
wsum = w + wp;

run;

The three equations to estimate are identified by the labels A, B, and C. The parameters associated with the
predetermined terms are C2, I2, I3, W2, and W3 (and the intercepts, which are automatically added to the
instruments). In addition, the system includes five identities that contain the predetermined variables G, T,
LAG(K), and WP. Thus, the INSTRUMENTS statement can be written as

lagk = lag(k);
instruments c2 i2 i3 w2 w3 g t wp lagk;

where LAGK is a program variable used to hold LAG(K). However, this is more complicated than it needs to
be. Except for LAG(K), all the predetermined terms in the identities are exogenous variables, and LAG(K)
is already included as the coefficient of I3. There are also more parameters for predetermined terms than
for endogenous terms, so you might prefer to use the EXCLUDE= option. Thus, you can specify the same
instruments list with the simpler statement

instruments _exog_ exclude=(c1 c3 i1 w1);

To illustrate the use of polynomial terms as instrumental variables, consider the following model:

y1 = a + b * exp( c * x1 ) + d * log( x2 ) + e * exp( f * y2 );

The parameters are A, B, C, D, E, and F, and the right-hand-side variables are X1, X2, and Y2. Assume that
X1 and X2 are exogenous (independent of the error), while Y2 is endogenous. The equation for Y2 is not
specified, but assume that it includes the variables X1, X3, and Y1, with X3 exogenous, so the exogenous
variables of the full system are X1, X2, and X3. Using as instruments quadratic terms in the exogenous
variables, the model is specified to PROC MODEL as follows:

proc model;
parms a b c d e f;
y1 = a + b * exp( c * x1 ) + d * log( x2 ) + e * exp( f * y2 );
instruments inst1-inst9;
inst1 = x1; inst2 = x2; inst3 = x3;
inst4 = x1 * x1; inst5 = x1 * x2; inst6 = x1 * x3;
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inst7 = x2 * x2; inst8 = x2 * x3; inst9 = x3 * x3;
fit y1 / 2sls;

run;

It is not clear what degree polynomial should be used. There is no way to know how good the approximation
is for any degree chosen, although the first-stage R2s might help the assessment.

First-Stage R-Squares

When the FSRSQ option is used in the FIT statement, the MODEL procedure prints a column of first-stage
R2 (FSRSQ) statistics along with the parameter estimates. The FSRSQ measures the fraction of the variation
of the derivative column associated with the parameter that remains after projection through the instruments.

Ideally, the FSRSQ should be very close to 1.00 for exogenous derivatives. If the FSRSQ is small for an
endogenous derivative, it is unclear whether this reflects a poor choice of instruments or a large influence
of the errors in the endogenous right-hand-side variables. When the FSRSQ for one or more parameters is
small, the standard errors of the parameter estimates are likely to be large.

Note that you can make all the FSRSQs larger (or 1.00) by including more instruments, because of the
disadvantage discussed previously. The FSRSQ statistics reported are unadjusted R2s and do not include a
degrees-of-freedom correction.

Autoregressive Moving-Average Error Processes
Autoregressive moving-average error processes (ARMA errors) and other models that involve lags of error
terms can be estimated by using FIT statements and simulated or forecast by using SOLVE statements.
ARMA models for the error process are often used for models with autocorrelated residuals. The %AR
macro can be used to specify models with autoregressive error processes. The %MA macro can be used to
specify models with moving-average error processes.

Autoregressive Errors

A model with first-order autoregressive errors, AR(1), has the form

yt D f .xt ; �/C �t

�t D ��t�1 C �t

while an AR(2) error process has the form

�t D �1�t�1 C �2�t�2 C �t

and so forth for higher-order processes. Note that the �t ’s are independent and identically distributed and
have an expected value of 0.

An example of a model with an AR(2) component is

y D ˛ C ˇx1 C �t

�t D �1�t�1 C �2�t�2 C �t

You would write this model as
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proc model data=in;
parms a b p1 p2;
y = a + b * x1 + p1 * zlag1(y - (a + b * x1)) +

p2 * zlag2(y - (a + b * x1));
fit y;

run;

or equivalently using the %AR macro as

proc model data=in;
parms a b;
y = a + b * x1;
%ar( y, 2 );
fit y;

run;

Moving-Average Models

A model with first-order moving-average errors, MA(1), has the form

yt D f .xt /C �t

�t D �t � �1�t�1

where �t is identically and independently distributed with mean zero. An MA(2) error process has the form

�t D �t � �1�t�1 � �2�t�2

and so forth for higher-order processes.

For example, you can write a simple linear regression model with MA(2) moving-average errors as

proc model data=inma2;
parms a b ma1 ma2;
y = a + b * x + ma1 * zlag1( resid.y ) +

ma2 * zlag2( resid.y );
fit;

run;

where MA1 and MA2 are the moving-average parameters.

Note that RESID.Y is automatically defined by PROC MODEL as

pred.y = a + b * x + ma1 * zlag1( resid.y ) +
ma2 * zlag2( resid.y );

resid.y = pred.y - actual.y;

Note that RESID.Y is negative of �t .

The ZLAG function must be used for MA models to truncate the recursion of the lags. This ensures that the
lagged errors start at zero in the lag-priming phase and do not propagate missing values when lag-priming
period variables are missing, and it ensures that the future errors are zero rather than missing during simulation
or forecasting. For more information about the lag functions, see the section “Lag Logic” on page 1640.

This model written using the %MA macro is as follows:
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proc model data=inma2;
parms a b;
y = a + b * x;
%ma(y, 2);
fit;

run;

General Form for ARMA Models

The general ARMA(p,q ) process has the following form:

�t D �1�t�1 C � � � C �p�t�p C �t � �1�t�1 � � � � � �q�t�q

An ARMA(p,q) model can be specified as follows,

yhat = ... compute structural predicted value here ... ;
yarma = ar1 * zlag1( y - yhat ) + ... /* ar part */

+ ar(p) * zlag(p)( y - yhat )
+ ma1 * zlag1( resid.y ) + ... /* ma part */

+ ma(q) * zlag(q)( resid.y );
y = yhat + yarma;

where ARi and MAj represent the autoregressive and moving-average parameters for the various lags. You
can use any names you want for these variables, and there are many equivalent ways that the specification
could be written.

Vector ARMA processes can also be estimated with PROC MODEL. For example, a two-variable AR(1)
process for the errors of the two endogenous variables Y1 and Y2 can be specified as follows:

y1hat = ... compute structural predicted value here ... ;

y1 = y1hat + ar1_1 * zlag1( y1 - y1hat ) /* ar part y1,y1 */
+ ar1_2 * zlag1( y2 - y2hat ); /* ar part y1,y2 */

y21hat = ... compute structural predicted value here ... ;

y2 = y2hat + ar2_2 * zlag1( y2 - y2hat ) /* ar part y2,y2 */
+ ar2_1 * zlag1( y1 - y1hat ); /* ar part y2,y1 */

Convergence Problems with ARMA Models

ARMA models can be difficult to estimate. If the parameter estimates are not within the appropriate range, a
moving-average model’s residual terms grow exponentially. The calculated residuals for later observations
can be very large or can overflow. This can happen either because improper starting values were used or
because the iterations moved away from reasonable values.

Care should be used in choosing starting values for ARMA parameters. Starting values of 0.001 for ARMA
parameters usually work if the model fits the data well and the problem is well-conditioned. Note that an
MA model can often be approximated by a high-order AR model, and vice versa. This can result in high
collinearity in mixed ARMA models, which in turn can cause serious ill-conditioning in the calculations and
instability of the parameter estimates.
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If you have convergence problems while estimating a model with ARMA error processes, try to estimate in
steps. First, use a FIT statement to estimate only the structural parameters with the ARMA parameters held
to zero (or to reasonable prior estimates if available). Next, use another FIT statement to estimate the ARMA
parameters only, using the structural parameter values from the first run. Since the values of the structural
parameters are likely to be close to their final estimates, the ARMA parameter estimates might now converge.
Finally, use another FIT statement to produce simultaneous estimates of all the parameters. Since the initial
values of the parameters are now likely to be quite close to their final joint estimates, the estimates should
converge quickly if the model is appropriate for the data.

AR Initial Conditions

The initial lags of the error terms of AR(p) models can be modeled in different ways. The autoregressive
error start-up methods supported by SAS/ETS procedures are the following:

CLS conditional least squares (ARIMA and MODEL procedures)

ULS unconditional least squares (AUTOREG, ARIMA, and MODEL procedures)

ML maximum likelihood (AUTOREG, ARIMA, and MODEL procedures)

YW Yule-Walker (AUTOREG procedure only)

HL Hildreth-Lu, which deletes the first p observations (MODEL procedure only)

For an explanation and discussion of the merits of various AR(p) start-up methods, see Chapter 9, “The
AUTOREG Procedure.”

The CLS, ULS, ML, and HL initializations can be performed by PROC MODEL. For AR(1) errors, these
initializations can be produced as shown in Table 25.3. These methods are equivalent in large samples.

Table 25.3 Initializations Performed by PROC MODEL: AR(1)
ERRORS

Method Formula

Conditional least squares Y=YHAT+AR1*ZLAG1(Y-YHAT);

Unconditional least squares Y=YHAT+AR1*ZLAG1(Y-YHAT);
IF _OBS_=1 THEN
RESID.Y=SQRT(1-AR1**2)*RESID.Y;

Maximum likelihood Y=YHAT+AR1*ZLAG1(Y-YHAT);
W=(1-AR1**2)**(-1/(2*_NUSED_));
IF _OBS_=1 THEN W=W*SQRT(1-AR1**2);
RESID.Y=W*RESID.Y;

Hildreth-Lu Y=YHAT+AR1*LAG1(Y-YHAT);
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MA Initial Conditions

The initial lags of the error terms of MA(q) models can also be modeled in different ways. The following
moving-average error start-up paradigms are supported by the ARIMA and MODEL procedures:

ULS unconditional least squares

CLS conditional least squares

ML maximum likelihood

The conditional least squares method of estimating moving-average error terms is not optimal because it
ignores the start-up problem. This reduces the efficiency of the estimates, although they remain unbiased.
The initial lagged residuals, extending before the start of the data, are assumed to be 0, their unconditional
expected value. This introduces a difference between these residuals and the generalized least squares
residuals for the moving-average covariance, which, unlike the autoregressive model, persists through
the data set. Usually this difference converges quickly to 0, but for nearly noninvertible moving-average
processes the convergence is quite slow. To minimize this problem, you should have plenty of data, and the
moving-average parameter estimates should be well within the invertible range.

This problem can be corrected at the expense of writing a more complex program. Unconditional least
squares estimates for the MA(1) process can be produced by specifying the model as follows:

yhat = ... compute structural predicted value here ... ;
if _obs_ = 1 then do;

h = sqrt( 1 + ma1 ** 2 );
y = yhat;
resid.y = ( y - yhat ) / h;
end;

else do;
g = ma1 / zlag1( h );
h = sqrt( 1 + ma1 ** 2 - g ** 2 );
y = yhat + g * zlag1( resid.y );
resid.y = ( ( y - yhat) - g * zlag1( resid.y ) ) / h;
end;

Moving-average errors can be difficult to estimate. You should consider using an AR(p) approximation to the
moving-average process. A moving-average process can usually be well approximated by an autoregressive
process if the data have not been smoothed or differenced.

The %AR Macro

The SAS macro %AR generates programming statements for PROC MODEL for autoregressive models.
The %AR macro is part of SAS/ETS software, and no special options need to be set to use the macro. The
autoregressive process can be applied to the structural equation errors or to the endogenous series themselves.

The %AR macro can be used for the following types of autoregression:

� univariate autoregression

� unrestricted vector autoregression

� restricted vector autoregression
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Univariate Autoregression

To model the error term of an equation as an autoregressive process, use the following statement after the
equation:

%ar( varname, nlags )

For example, suppose that Y is a linear function of X1, X2, and an AR(2) error. You would write this model
as follows:

proc model data=in;
parms a b c;
y = a + b * x1 + c * x2;
%ar( y, 2 )
fit y / list;

run;

The calls to %AR must come after all of the equations that the process applies to.

The preceding macro invocation, %AR(y,2), produces the statements shown in the LIST output in Fig-
ure 25.62.

Figure 25.62 LIST Option Output for an AR(2) Model

The MODEL Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 2621:4 PRED.y = a + b * x1 + c * x2;

1 2621:4 RESID.y = PRED.y - ACTUAL.y;

1 2621:4 ERROR.y = PRED.y - y;

2 2622:14 _PRED__y = PRED.y;

3 2622:15 _OLD_PRED.y = PRED.y + y_l1 * ZLAG1( y - _PRED__y ) + y_l2 * ZLAG2( y - _PRED__y );

3 2622:15 PRED.y = _OLD_PRED.y;

3 2622:15 RESID.y = PRED.y - ACTUAL.y;

3 2622:15 ERROR.y = PRED.y - y;

The _PRED__ prefixed variables are temporary program variables used so that the lags of the residuals are
the correct residuals and not the ones redefined by this equation. Note that this is equivalent to the statements
explicitly written in the section “General Form for ARMA Models” on page 1569.

You can also restrict the autoregressive parameters to zero at selected lags. For example, if you wanted
autoregressive parameters at lags 1, 12, and 13, you can use the following statements:

proc model data=in;
parms a b c;
y = a + b * x1 + c * x2;
%ar( y, 13, , 1 12 13 )
fit y / list;

run;

These statements generate the output shown in Figure 25.63.
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Figure 25.63 LIST Option Output for an AR Model with Lags at 1, 12, and 13

The MODEL Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 2630:4 PRED.y = a + b * x1 + c * x2;

1 2630:4 RESID.y = PRED.y - ACTUAL.y;

1 2630:4 ERROR.y = PRED.y - y;

2 2631:14 _PRED__y = PRED.y;

3 2631:15 _OLD_PRED.y = PRED.y + y_l1 * ZLAG1( y - _PRED__y ) + y_l12 * ZLAG12( y - _PRED__y ) + y_l13 * ZLAG13(
y - _PRED__y );

3 2631:15 PRED.y = _OLD_PRED.y;

3 2631:15 RESID.y = PRED.y - ACTUAL.y;

3 2631:15 ERROR.y = PRED.y - y;

There are variations on the conditional least squares method, depending on whether observations at the start
of the series are used to “warm up” the AR process. By default, the %AR conditional least squares method
uses all the observations and assumes zeros for the initial lags of autoregressive terms. By using the M=
option, you can request that %AR use the unconditional least squares (ULS) or maximum-likelihood (ML)
method instead. For example:

proc model data=in;
y = a + b * x1 + c * x2;
%ar( y, 2, m=uls )
fit y;

run;

Discussions of these methods is provided in the section “AR Initial Conditions” on page 1570.

By using the M=CLSn option, you can request that the first n observations be used to compute estimates of
the initial autoregressive lags. In this case, the analysis starts with observation nC 1. For example:

proc model data=in;
y = a + b * x1 + c * x2;
%ar( y, 2, m=cls2 )
fit y;

run;

You can use the %AR macro to apply an autoregressive model to the endogenous variable, instead of to
the error term, by using the TYPE=V option. For example, if you want to add the five past lags of Y to the
equation in the previous example, you could use %AR to generate the parameters and lags by using the
following statements:

proc model data=in;
parms a b c;
y = a + b * x1 + c * x2;
%ar( y, 5, type=v )
fit y / list;

run;

The preceding statements generate the output shown in Figure 25.64.
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Figure 25.64 LIST Option Output for an AR Model of Y

The MODEL Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 2653:4 PRED.y = a + b * x1 + c * x2;

1 2653:4 RESID.y = PRED.y - ACTUAL.y;

1 2653:4 ERROR.y = PRED.y - y;

2 2654:15 _OLD_PRED.y = PRED.y + y_l1 * ZLAG1( y ) + y_l2 * ZLAG2( y ) + y_l3 * ZLAG3( y ) + y_l4 * ZLAG4(
y ) + y_l5 * ZLAG5( y );

2 2654:15 PRED.y = _OLD_PRED.y;

2 2654:15 RESID.y = PRED.y - ACTUAL.y;

2 2654:15 ERROR.y = PRED.y - y;

This model predicts Y as a linear combination of X1, X2, an intercept, and the values of Y in the most recent
five periods.

Unrestricted Vector Autoregression

To model the error terms of a set of equations as a vector autoregressive process, use the following form of
the %AR macro after the equations:

%ar( process_name, nlags, variable_list )

The process_name value is any name that you supply for %AR to use in making names for the autoregressive
parameters. You can use the %AR macro to model several different AR processes for different sets of
equations by using different process names for each set. The process name ensures that the variable names
used are unique. Use a short process_name value for the process if parameter estimates are to be written to
an output data set. The %AR macro tries to construct parameter names less than or equal to eight characters,
but this is limited by the length of process_name, which is used as a prefix for the AR parameter names.

The variable_list value is the list of endogenous variables for the equations.

For example, suppose that errors for equations Y1, Y2, and Y3 are generated by a second-order vector
autoregressive process. You can use the following statements,

proc model data=in;
y1 = ... equation for y1 ...;
y2 = ... equation for y2 ...;
y3 = ... equation for y3 ...;
%ar( name, 2, y1 y2 y3 )
fit y1 y2 y3;

run;

which generate the following for Y1 and similar code for Y2 and Y3:

y1 = pred.y1 + name1_1_1*zlag1(y1-name_y1) +
name1_1_2*zlag1(y2-name_y2) +
name1_1_3*zlag1(y3-name_y3) +
name2_1_1*zlag2(y1-name_y1) +
name2_1_2*zlag2(y2-name_y2) +
name2_1_3*zlag2(y3-name_y3) ;
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Only the conditional least squares (M=CLS or M=CLSn) method can be used for vector processes.

You can also use the same form with restrictions that the coefficient matrix be 0 at selected lags. For example,
the following statements apply a third-order vector process to the equation errors with all the coefficients at
lag 2 restricted to 0 and with the coefficients at lags 1 and 3 unrestricted:

proc model data=in;
y1 = ... equation for y1 ...;
y2 = ... equation for y2 ...;
y3 = ... equation for y3 ...;
%ar( name, 3, y1 y2 y3, 1 3 )
fit y1 y2 y3;

You can model the three series Y1–Y3 as a vector autoregressive process in the variables instead of in the
errors by using the TYPE=V option. If you want to model Y1–Y3 as a function of past values of Y1–Y3
and some exogenous variables or constants, you can use %AR to generate the statements for the lag terms.
Write an equation for each variable for the nonautoregressive part of the model, and then call %AR with the
TYPE=V option. For example,

proc model data=in;
parms a1-a3 b1-b3;
y1 = a1 + b1 * x;
y2 = a2 + b2 * x;
y3 = a3 + b3 * x;
%ar( name, 2, y1 y2 y3, type=v )
fit y1 y2 y3;

run;

The nonautoregressive part of the model can be a function of exogenous variables, or it can be intercept
parameters. If there are no exogenous components to the vector autoregression model, including no intercepts,
then assign zero to each of the variables. There must be an assignment to each of the variables before %AR
is called.

proc model data=in;
y1=0;
y2=0;
y3=0;
%ar( name, 2, y1 y2 y3, type=v )
fit y1 y2 y3;

run;

This example models the vector Y=(Y1 Y2 Y3)0 as a linear function only of its value in the previous two
periods and a white noise error vector. The model has 18=(3 � 3 + 3 � 3) parameters.

Syntax of the %AR Macro

There are two cases of the syntax of the %AR macro. When restrictions on a vector AR process are not
needed, the syntax of the %AR macro has the general form

%AR ( name , nlag < ,endolist < , laglist > > < ,M=method > < ,TYPE=V > ) ;

where
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name specifies a prefix for %AR to use in constructing names of variables needed to define the
AR process. If the endolist is not specified, the endogenous list defaults to name, which
must be the name of the equation to which the AR error process is to be applied. The
name value cannot exceed 32 characters.

nlag is the order of the AR process.

endolist specifies the list of equations to which the AR process is to be applied. If more than one
name is given, an unrestricted vector process is created with the structural residuals of all
the equations included as regressors in each of the equations. If not specified, endolist
defaults to name.

laglist specifies the list of lags at which the AR terms are to be added. The coefficients of the
terms at lags not listed are set to 0. All of the listed lags must be less than or equal to nlag,
and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through
nlag.

M=method specifies the estimation method to implement. Valid values of M= are CLS (conditional
least squares estimates), ULS (unconditional least squares estimates), and ML (maximum
likelihood estimates). M=CLS is the default. Only M=CLS is allowed when more than
one equation is specified. The ULS and ML methods are not supported for vector AR
models by %AR.

TYPE=V specifies that the AR process is to be applied to the endogenous variables themselves
instead of to the structural residuals of the equations.

Restricted Vector Autoregression

You can control which parameters are included in the process, restricting to 0 those parameters that you do
not include. First, use %AR with the DEFER option to declare the variable list and define the dimension of
the process. Then, use additional %AR calls to generate terms for selected equations with selected variables
at selected lags. For example:

proc model data=d;
y1 = ... equation for y1 ...;
y2 = ... equation for y2 ...;
y3 = ... equation for y3 ...;
%ar( name, 2, y1 y2 y3, defer )
%ar( name, y1, y1 y2 )
%ar( name, y2 y3, , 1 )
fit y1 y2 y3;

run;

The error equations produced are as follows:

y1 = pred.y1 + name1_1_1*zlag1(y1-name_y1) +
name1_1_2*zlag1(y2-name_y2) + name2_1_1*zlag2(y1-name_y1) +
name2_1_2*zlag2(y2-name_y2) ;

y2 = pred.y2 + name1_2_1*zlag1(y1-name_y1) +
name1_2_2*zlag1(y2-name_y2) + name1_2_3*zlag1(y3-name_y3) ;

y3 = pred.y3 + name1_3_1*zlag1(y1-name_y1) +
name1_3_2*zlag1(y2-name_y2) + name1_3_3*zlag1(y3-name_y3) ;

This model states that the errors for Y1 depend on the errors of both Y1 and Y2 (but not Y3) at both lags 1 and
2, and that the errors for Y2 and Y3 depend on the previous errors for all three variables, but only at lag 1.



Autoregressive Moving-Average Error Processes F 1577

%AR Macro Syntax for Restricted Vector AR

An alternative use of %AR is allowed to impose restrictions on a vector AR process by calling %AR several
times to specify different AR terms and lags for different equations.

The first call has the general form

%AR( name, nlag, endolist , DEFER ) ;

where

name specifies a prefix for %AR to use in constructing names of variables needed to define the
vector AR process.

nlag specifies the order of the AR process.

endolist specifies the list of equations to which the AR process is to be applied.

DEFER specifies that %AR is not to generate the AR process but is to wait for further information
specified in later %AR calls for the same name value.

The subsequent calls have the general form

%AR( name, eqlist, varlist, laglist,TYPE= )

where

name is the same as in the first call.

eqlist specifies the list of equations to which the specifications in this %AR call are to be applied.
Only names specified in the endolist value of the first call for the name value can appear
in the list of equations in eqlist .

varlist specifies the list of equations whose lagged structural residuals are to be included as
regressors in the equations in eqlist . Only names in the endolist of the first call for the
name value can appear in varlist . If not specified, varlist defaults to endolist .

laglist specifies the list of lags at which the AR terms are to be added. The coefficients of the
terms at lags not listed are set to 0. All of the listed lags must be less than or equal to the
value of nlag, and there must be no duplicates. If not specified, laglist defaults to all lags
1 through nlag.

The %MA Macro

The SAS macro %MA generates programming statements for PROC MODEL for moving-average models.
The %MA macro is part of SAS/ETS software, and no special options are needed to use the macro. The
moving-average error process can be applied to the structural equation errors. The syntax of the %MA macro
is the same as the %AR macro except there is no TYPE= argument.

When you are using the %MA and %AR macros combined, the %MA macro must follow the %AR macro.
The following SAS/IML statements produce an ARMA(1, (1 3)) error process and save it in the data set
MADAT2:
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proc iml;
phi = { 1 .2 };
theta = { 1 .3 0 .5 };
y = armasim( phi, theta, 0, .1, 200, 32565 );
create madat2 from y[colname='y'];
append from y;

quit;

The following PROC MODEL statements are used to estimate the parameters of this model by using
maximum likelihood error structure:

title 'Maximum Likelihood ARMA(1, (1 3))';
proc model data=madat2;

y=0;
%ar( y, 1, , M=ml )
%ma( y, 3, , 1 3, M=ml ) /* %MA always after %AR */
fit y;

run;
title;

The estimates of the parameters produced by this run are shown in Figure 25.65.

Figure 25.65 Estimates from an ARMA(1, (1 3)) Process

Maximum Likelihood ARMA(1, (1 3))

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

y 3 197 2.6383 0.0134 0.1157 -0.0067 -0.0169

RESID.y 197 1.9957 0.0101 0.1007

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

y_l1 -0.10067 0.1187 -0.85 0.3973 AR(y) y lag1 parameter

y_m1 -0.1934 0.0939 -2.06 0.0408 MA(y) y lag1 parameter

y_m3 -0.59384 0.0601 -9.88 <.0001 MA(y) y lag3 parameter

Syntax of the %MA Macro

There are two cases of the syntax for the %MA macro. When restrictions on a vector MA process are not
needed, the syntax of the %MA macro has the general form

%MA ( name , nlag < , endolist < , laglist > > < ,M=method > ) ;

where

name specifies a prefix for %MA to use in constructing names of variables needed to define the
MA process and is the default endolist .

nlag is the order of the MA process.
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endolist specifies the equations to which the MA process is to be applied. If more than one name
is given, CLS estimation is used for the vector process.

laglist specifies the lags at which the MA terms are to be added. All of the listed lags must be
less than or equal to nlag, and there must be no duplicates. If not specified, the laglist
defaults to all lags 1 through nlag.

M=method specifies the estimation method to implement. Valid values of M= are CLS (conditional
least squares estimates), ULS (unconditional least squares estimates), and ML (maximum
likelihood estimates). M=CLS is the default. Only M=CLS is allowed when more than
one equation is specified in the endolist .

%MA Macro Syntax for Restricted Vector Moving-Average

An alternative use of %MA is allowed to impose restrictions on a vector MA process by calling %MA several
times to specify different MA terms and lags for different equations.

The first call has the general form

%MA( name , nlag , endolist , DEFER ) ;

where

name specifies a prefix for %MA to use in constructing names of variables needed to define the
vector MA process.

nlag specifies the order of the MA process.

endolist specifies the list of equations to which the MA process is to be applied.

DEFER specifies that %MA is not to generate the MA process but is to wait for further information
specified in later %MA calls for the same name value.

The subsequent calls have the general form

%MA( name, eqlist, varlist, laglist )

where

name is the same as in the first call.

eqlist specifies the list of equations to which the specifications in this %MA call are to be
applied.

varlist specifies the list of equations whose lagged structural residuals are to be included as
regressors in the equations in eqlist .

laglist specifies the list of lags at which the MA terms are to be added.
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The %EQAR and%EQMA Macros for General Form Equations

The %AR and %MA macros are not supported when the structural portion of a model is specified using
general form equations. When you want to include AR or MA error terms in a model that is specified using
general form equations, use the %EQAR or %EQMA macros.

The following code specifies an AR(2) error process for a normal form equation:

proc model data=in;
parms a b;
y = a + b * x1;
%ar( y, 2 );
fit y;

run;

You can use the %EQAR macro as follows to express the same model for a general form equation:

proc model data=in;
parms a b;
eq.y = y - (a + b * x1);
%eqar( y, 2, eq.y );
fit y;

run;

Like the %AR and %MA macros, the %EQAR and %EQMA macros support the following types of AR and
MA processes:

� univariate processes

� unrestricted vector processes

� restricted vector processes

The %EQAR and %EQMA macros also support the following initial conditions:

CLS conditional least squares

ULS unconditional least squares

ML maximum likelihood

Differences between models that are expressed using normal form equations and general form equations
lead to differences between the %EQAR and %EQMA macros and their %AR and %MA counterparts. The
syntax for the %EQAR macro is

%EQAR ( name , nlag , eqlist < , laglist > < ,M=method > ) ;

where

eqlist specifies the list of equations whose autoregressive errors use the EQ.var syntax. The
eqlist parameter takes the place of the endolist parameter in the %AR macro. The eqlist
parameter is required.

The name, nlag, nlaglist , and M=method parameters have the same meanings in the %EQAR macro as in
the %AR macro. Unlike the %AR macro, the %EQAR macro does not include a TYPE=V parameter.
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The syntax for the %EQMA macro is

%EQMA ( name , nlag , eqlist < , laglist > < ,M=method > ) ;

where

eqlist specifies the list of equations whose moving average errors use the EQ.var syntax. The
eqlist parameter takes the place of the endolist parameter in the %MA macro. The eqlist
parameter is required.

The name, nlag, nlaglist , and M=method parameters have the same meanings in the %EQMA macro as in
the %MA macro.

Both the %EQAR and %EQMA macros support use of the DEFER syntax for specifying restricted autore-
gressive and moving average vector processes.

Distributed Lag Models and the %PDL Macro
In the following example, the variable y is modeled as a linear function of x, the first lag of x, the second lag
of x, and so forth:

yt D aC b0xt C b1xt�1 C b2xt�2 C b3xt�3 C � � � C bnxt�n

Models of this sort can introduce a great many parameters for the lags, and there may not be enough data
to compute accurate independent estimates for them all. Often, the number of parameters is reduced by
assuming that the lag coefficients follow some pattern. One common assumption is that the lag coefficients
follow a polynomial in the lag length

bi D

dX
jD0

˛j .i/
j

where d is the degree of the polynomial used. Models of this kind are called Almon lag models, polynomial
distributed lag models, or PDLs for short. For example, Figure 25.66 shows the lag distribution that can be
modeled with a low-order polynomial. Endpoint restrictions can be imposed on a PDL to require that the lag
coefficients be 0 at the 0th lag, or at the final lag, or at both.
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Figure 25.66 Polynomial Distributed Lags

For linear single-equation models, SAS/ETS software includes the PDLREG procedure for estimating PDL
models. For a more detailed discussion of polynomial distributed lags and an explanation of endpoint
restrictions, see Chapter 27, “The PDLREG Procedure.”

Polynomial and other distributed lag models can be estimated and simulated or forecast with PROC MODEL.
For polynomial distributed lags, the %PDL macro can generate the needed programming statements automat-
ically.

The %PDL Macro

The SAS macro %PDL generates the programming statements to compute the lag coefficients of polynomial
distributed lag models and to apply them to the lags of variables or expressions.

To use the %PDL macro in a model program, you first call it to declare the lag distribution; later, you call
it again to apply the PDL to a variable or expression. The first call generates a PARMS statement for the
polynomial parameters and assignment statements to compute the lag coefficients. The second call generates
an expression that applies the lag coefficients to the lags of the specified variable or expression. A PDL can
be declared only once, but it can be used any number of times (that is, the second call can be repeated).

The initial declaratory call has the general form

%PDL ( pdlname, nlags, degree , R=code , OUTEST=dataset ) ;

where pdlname is a name (up to 32 characters) that you give to identify the PDL, nlags is the lag length,
and degree is the degree of the polynomial for the distribution. The R=code is optional for endpoint
restrictions. The value of code can be FIRST (for upper), LAST (for lower), or BOTH (for both upper and
lower endpoints). For a discussion of endpoint restrictions, see Chapter 27, “The PDLREG Procedure.” The
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option OUTEST=dataset creates a data set that contains the estimates of the parameters and their covariance
matrix.

The later calls to apply the PDL have the general form

%PDL( pdlname, expression )

where pdlname is the name of the PDL and expression is the variable or expression to which the PDL is to
be applied. The pdlname given must be the same as the name used to declare the PDL.

The following statements produce the output in Figure 25.67:

proc model data=in list;
parms int pz;
%pdl(xpdl,5,2);
y = int + pz * z + %pdl(xpdl,x);
%ar(y,2,M=ULS);
id i;

fit y / out=model1 outresid converge=1e-6;
run;

Figure 25.67 %PDL Macro Estimates

The MODEL Procedure

Nonlinear OLS  Estimates

Term Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

XPDL_L0 1.568788 0.0935 16.77 <.0001 PDL(XPDL,5,2) coefficient for lag0

XPDL_L1 0.564917 0.0328 17.22 <.0001 PDL(XPDL,5,2) coefficient for lag1

XPDL_L2 -0.05063 0.0593 -0.85 0.4155 PDL(XPDL,5,2) coefficient for lag2

XPDL_L3 -0.27785 0.0517 -5.37 0.0004 PDL(XPDL,5,2) coefficient for lag3

XPDL_L4 -0.11675 0.0368 -3.17 0.0113 PDL(XPDL,5,2) coefficient for lag4

XPDL_L5 0.43267 0.1362 3.18 0.0113 PDL(XPDL,5,2) coefficient for lag5

This second example models two variables, Y1 and Y2, and uses two PDLs:

proc model data=in;
parms int1 int2;
%pdl( logxpdl, 5, 3 )
%pdl( zpdl, 6, 4 )
y1 = int1 + %pdl( logxpdl, log(x) ) + %pdl( zpdl, z );
y2 = int2 + %pdl( zpdl, z );
fit y1 y2;

run;

A (5,3) PDL of the log of X is used in the equation for Y1. A (6,4) PDL of Z is used in the equations for both
Y1 and Y2. Since the same ZPDL is used in both equations, the lag coefficients for Z are the same for the Y1
and Y2 equations, and the polynomial parameters for ZPDL are shared by the two equations. For a complete
example and comparison with PDLREG, see Example 25.5.
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Input Data Sets

DATA= Input Data Set

For FIT tasks, the DATA= option specifies which input data set to use in estimating parameters. Variables in
the model program are looked up in the DATA= data set and, if found, their attributes (type, length, label,
and format) are set to be the same as those in the DATA= data set (if not defined otherwise within PROC
MODEL).

ESTDATA= Input Data Set

The ESTDATA= option specifies an input data set that contains an observation that gives values for some or
all of the model parameters. The data set can also contain observations that gives the rows of a covariance
matrix for the parameters.

Parameter values read from the ESTDATA= data set provide initial starting values for parameters estimated.
Observations that provide covariance values, if any are present in the ESTDATA= data set, are ignored.

The ESTDATA= data set is usually created by the OUTEST= option in a previous FIT statement. You can
also create an ESTDATA= data set with a SAS DATA step program. The data set must contain a numeric
variable for each parameter to be given a value or covariance column. The name of the variable in the
ESTDATA= data set must match the name of the parameter in the model. Parameters with names longer than
32 characters cannot be set from an ESTDATA= data set. The data set must also contain a character variable
_NAME_ of length 32. _NAME_ has a blank value for the observation that gives values to the parameters.
_NAME_ contains the name of a parameter for observations that define rows of the covariance matrix.

More than one set of parameter estimates and covariances can be stored in the ESTDATA= data set if the
observations for the different estimates are identified by the variable _TYPE_. _TYPE_ must be a character
variable of length 8. The TYPE= option is used to select for input the part of the ESTDATA= data set for
which the _TYPE_ value matches the value of the TYPE= option.

In PROC MODEL, you have several options to specify starting values for the parameters to be estimated.
When more than one option is specified, the options are implemented in the following order of precedence
(from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA=
option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of
0.0001 is used.

The following SAS statements generate the ESTDATA= data set shown in Figure 25.68. The second FIT
statement uses the TYPE= option to select the estimates from the GMM estimation as starting values for the
FIML estimation.

/* Generate test data */
data gmm2;

do t=1 to 50;
x1 = sqrt(t) ;
x2 = rannor(10) * 10;
y1 = -.002 * x2 * x2 - .05 / x2 - 0.001 * x1 * x1;
y2 = 0.002* y1 + 2 * x2 * x2 + 50 / x2 + 5 * rannor(1);
y1 = y1 + 5 * rannor(1);
z1 = 1; z2 = x1 * x1; z3 = x2 * x2; z4 = 1.0/x2;
output;

end;
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run;

proc model data=gmm2 ;
exogenous x1 x2;
parms a1 a2 b1 2.5 b2 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 3sls gmm kernel=(qs,1,0.2) outest=gmmest;

fit y1 y2 / fiml type=gmm estdata=gmmest;
run;

proc print data=gmmest;
run;

Figure 25.68 ESTDATA= Data Set

Obs _NAME_ _TYPE_ _STATUS_ _NUSED_ a1 a2 b1 b2 c2 d1

1 3SLS 0 Converged 50 -.002229607 -1.25002 0.025827 1.99609 49.8119 -0.44533

2 GMM 0 Converged 50 -.001772196 -1.02345 0.014025 1.99726 49.8648 -0.87573

MISSING=PAIRWISE | DELETE

When missing values are encountered for any one of the equations in a system of equations, the default
action is to drop that observation for all of the equations. The new MISSING=PAIRWISE option in the FIT
statement provides a different method of handling missing values that avoids losing data for nonmissing
equations for the observation. This is especially useful for SUR estimation on equations with unequal
numbers of observations.

The option MISSING=PAIRWISE specifies that missing values are tracked on an equation-by-equation basis.
The MISSING=DELETE option specifies that the entire observation is omitted from the analysis when any
equation has a missing predicted or actual value for the equation. The default is MISSING=DELETE.

When you specify the MISSING=PAIRWISE option, the S matrix is computed as

S D D.R0R/D

where D is a diagonal matrix that depends on the VARDEF= option, the matrix R is .r1; : : : ; rg/, and ri is
the vector of residuals for the ith equation with rij replaced with zero when rij is missing.

For MISSING=PAIRWISE, the calculation of the diagonal element di;i of D is based on ni , the number of
nonmissing observations for the ith equation, instead of on n. Similarly, for VARDEF=WGT or WDF, the
calculation is based on the sum of the weights for the nonmissing observations for the ith equation instead of
on the sum of the weights for all observations. For the definition of D, see the description of the VARDEF=
option.

The degrees-of-freedom correction for a shared parameter is computed by using the average number of
observations used in its estimation.

The MISSING=PAIRWISE option is not valid for the GMM and FIML estimation methods.

For the instrumental variables estimation methods (2SLS, 3SLS), when an instrument is missing for an
observation, that observation is dropped for all equations, regardless of the MISSING= option.
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PARMSDATA= Input Data Set

The option PARMSDATA= reads values for all parameters whose names match the names of variables in
the PARMSDATA= data set. Values for any or all of the parameters in the model can be reset by using the
PARMSDATA= option. The PARMSDATA= option goes in the PROC MODEL statement, and the data set is
read before any FIT or SOLVE statements are executed.

In PROC MODEL, you have several options to specify starting values for the parameters to be estimated.
When more than one option is specified, the options are implemented in the following order of precedence
(from highest to lowest): the START= option, the PARMS statement initialization value, the ESTDATA=
option, and the PARMSDATA= option. If no options are specified for the starting value, the default value of
0.0001 is used.

Together, the OUTPARMS= and PARMSDATA= options enable you to change part of a model and recompile
the new model program without the need to reestimate equations that were not changed.

Suppose you have a large model with parameters estimated and you now want to replace one equation, Y,
with a new specification. Although the model program must be recompiled with the new equation, you don’t
need to reestimate all the equations, just the one that changed.

Using the OUTPARMS= and PARMSDATA= options, you could do the following:

proc model model=oldmod outparms=temp; run;
proc model outmodel=newmod parmsdata=temp data=in;

... include new model definition with changed y eq. here ...
fit y;

run;

The model file NEWMOD then contains the new model and its estimated parameters plus the old models
with their original parameter values.

SDATA= Input Data Set

The SDATA= option allows a cross-equation covariance matrix to be input from a data set. The S matrix read
from the SDATA= data set, specified in the FIT statement, is used to define the objective function for the
OLS, N2SLS, SUR, and N3SLS estimation methods and is used as the initial S for the methods that iterate
the S matrix.

Most often, the SDATA= data set has been created by the OUTS= or OUTSUSED= option in a previous
FIT statement. The OUTS= and OUTSUSED= data sets from a FIT statement can be read back in by a FIT
statement in the same PROC MODEL step.

You can create an input SDATA= data set by using the DATA step. PROC MODEL expects to find a character
variable _NAME_ in the SDATA= data set as well as variables for the equations in the estimation or solution.
For each observation with a _NAME_ value that matches the name of an equation, PROC MODEL fills the
corresponding row of the S matrix with the values of the names of equations found in the data set. If a row or
column is omitted from the data set, a 1 is placed on the diagonal for the row or column. Missing values are
ignored, and since the S matrix is symmetric, you can include only a triangular part of the S matrix in the
SDATA= data set with the omitted part indicated by missing values. If the SDATA= data set contains multiple
observations with the same _NAME_, the last values supplied for the _NAME_ are used. The structure of the
expected data set is further described in the section “OUTS= Data Set” on page 1591.

Use the TYPE= option in the PROC MODEL or FIT statement to specify the type of estimation method used
to produce the S matrix you want to input.
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The following SAS statements are used to generate an S matrix from a GMM and a 3SLS estimation and to
store that estimate in the data set GMMS:

proc model data=gmm2 ;
exogenous x1 x2;
parms a1 a2 b1 2.5 b2 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 3sls gmm kernel=(qs,1,0.2)
outest=gmmest outs=gmms;

run;

proc print data=gmms;
run;

The data set GMMS is shown in Figure 25.69.

Figure 25.69 SDATA= Data Set

Obs _NAME_ _TYPE_ _NUSED_ y1 y2

1 y1 3SLS 50 27.1032 38.1599

2 y2 3SLS 50 38.1599 74.6253

3 y1 GMM 50 27.6248 32.2811

4 y2 GMM 50 32.2811 58.8387

VDATA= Input Data Set

The VDATA= option enables a variance matrix for GMM estimation to be input from a data set. When the
VDATA= option is used in the PROC MODEL or FIT statement, the matrix that is input is used to define the
objective function and is used as the initial V for the methods that iterate the V matrix.

Normally the VDATA= matrix is created from the OUTV= option in a previous FIT statement. Alternately
an input VDATA= data set can be created by using the DATA step. Each row and column of the V matrix is
associated with an equation and an instrument. The position of each element in the V matrix can then be
indicated by an equation name and an instrument name for the row of the element and an equation name and
an instrument name for the column. Each observation in the VDATA= data set is an element in the V matrix.
The row and column of the element are indicated by four variables (EQ_ROW, INST_ROW, EQ_COL, and
INST_COL) that contain the equation name or instrument name. The variable name for an element is VALUE.
Missing values are set to 0. Because the variance matrix is symmetric, only a triangular part of the matrix
needs to be input.

The following SAS statements are used to generate a V matrix estimation from GMM and to store that
estimate in the data set GMMV:

proc model data=gmm2;
exogenous x1 x2;
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parms a1 a2 b2 b1 2.5 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / gmm outv=gmmv;
run;

proc print data=gmmv(obs=15);
run;

The data set GMM2 was generated by the example in the preceding ESTDATA= section. The V matrix stored
in GMMV is selected for use in an additional GMM estimation by the following FIT statement:

fit y1 y2 / gmm vdata=gmmv;
run;

A partial listing of the GMMV data set is shown in Figure 25.70. There are a total of 78 observations in this
data set. The V matrix is 12 by 12 for this example.

Figure 25.70 The First 15 Observations in the VDATA= Data Set

Obs _TYPE_ EQ_ROW EQ_COL INST_ROW INST_COL VALUE

1 GMM y1 y1 1 1 1555.78

2 GMM y1 y1 x1 1 8565.80

3 GMM y1 y1 x1 x1 49932.47

4 GMM y1 y1 x2 1 8244.34

5 GMM y1 y1 x2 x1 51324.21

6 GMM y1 y1 x2 x2 159913.24

7 GMM y1 y1 @PRED.y1/@b1 1 49933.61

8 GMM y1 y1 @PRED.y1/@b1 x1 301270.02

9 GMM y1 y1 @PRED.y1/@b1 x2 317277.10

10 GMM y1 y1 @PRED.y1/@b1 @PRED.y1/@b1 1860095.90

11 GMM y1 y1 @PRED.y2/@b2 1 163855.31

12 GMM y1 y1 @PRED.y2/@b2 x1 900622.60

13 GMM y1 y1 @PRED.y2/@b2 x2 1285421.56

14 GMM y1 y1 @PRED.y2/@b2 @PRED.y1/@b1 5173744.58

15 GMM y1 y1 @PRED.y2/@b2 @PRED.y2/@b2 30307640.16
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Output Data Sets

OUT= Data Set

For normalized form equations, the OUT= data set specified in the FIT statement contains residuals, actuals,
and predicted values of the dependent variables computed from the parameter estimates. For general form
equations, actual values of the endogenous variables are copied for the residual and predicted values.

The variables in the data set are as follows:

� BY variables

� RANGE variable

� ID variables

� _ESTYPE_, a character variable of length 8 that identifies the estimation method: OLS, SUR, N2SLS,
N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, ITGMM, or FIML

� _TYPE_, a character variable of length 8 that identifies the type of observation: RESIDUAL, PREDICT,
or ACTUAL

� _WEIGHT_, the weight of the observation in the estimation. The _WEIGHT_ value is 0 if the
observation was not used. It is equal to the product of the _WEIGHT_ model program variable and the
variable named in the WEIGHT statement, if any, or 1 if weights were not used.

� the WEIGHT statement variable if used

� the model variables. The dependent variables for the normalized form equations in the estimation
contain residuals, actuals, or predicted values, depending on the _TYPE_ variable, whereas the model
variables that are not associated with estimated equations always contain actual values from the input
data set.

� any other variables named in the OUTVARS statement. These can be program variables computed by
the model program, CONTROL variables, parameters, or special variables in the model program.

The following SAS statements are used to generate and print an OUT= data set:

proc model data=gmm2;
exogenous x1 x2;
parms a1 a2 b2 b1 2.5 c2 55 d1;
inst b1 b2 c2 x1 x2;
y1 = a1 * y2 + b1 * x1 * x1 + d1;
y2 = a2 * y1 + b2 * x2 * x2 + c2 / x2 + d1;

fit y1 y2 / 3sls gmm out=resid outall ;
run;

proc print data=resid(obs=20);
run;

The data set GMM2 was generated by the example in the preceding ESTDATA= section. A partial listing of
the RESID data set is shown in Figure 25.71.
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Figure 25.71 The OUT= Data Set

Obs _ESTYPE_ _TYPE_ _WEIGHT_ x1 x2 y1 y2

1 3SLS ACTUAL 1 1.00000 -1.7339 -3.05812 -23.071

2 3SLS PREDICT 1 1.00000 -1.7339 -0.36806 -19.351

3 3SLS RESIDUAL 1 1.00000 -1.7339 -2.69006 -3.720

4 3SLS ACTUAL 1 1.41421 -5.3046 0.59405 43.866

5 3SLS PREDICT 1 1.41421 -5.3046 -0.49148 45.588

6 3SLS RESIDUAL 1 1.41421 -5.3046 1.08553 -1.722

7 3SLS ACTUAL 1 1.73205 -5.2826 3.17651 51.563

8 3SLS PREDICT 1 1.73205 -5.2826 -0.48281 41.857

9 3SLS RESIDUAL 1 1.73205 -5.2826 3.65933 9.707

10 3SLS ACTUAL 1 2.00000 -0.6878 3.66208 -70.011

11 3SLS PREDICT 1 2.00000 -0.6878 -0.18592 -76.502

12 3SLS RESIDUAL 1 2.00000 -0.6878 3.84800 6.491

13 3SLS ACTUAL 1 2.23607 -7.0797 0.29210 99.177

14 3SLS PREDICT 1 2.23607 -7.0797 -0.53732 92.201

15 3SLS RESIDUAL 1 2.23607 -7.0797 0.82942 6.976

16 3SLS ACTUAL 1 2.44949 14.5284 1.86898 423.634

17 3SLS PREDICT 1 2.44949 14.5284 -1.23490 421.969

18 3SLS RESIDUAL 1 2.44949 14.5284 3.10388 1.665

19 3SLS ACTUAL 1 2.64575 -0.6968 -1.03003 -72.214

20 3SLS PREDICT 1 2.64575 -0.6968 -0.10353 -69.680

OUTEST= Data Set

The OUTEST= data set contains parameter estimates and, if requested, estimates of the covariance of the
parameter estimates.

The variables in the data set are as follows:

� BY variables

� _NAME_, a character variable of length 32, blank for observations that contain parameter estimates or
a parameter name for observations that contain covariances

� _TYPE_, a character variable of length 8 that identifies the estimation method: OLS, SUR, N2SLS,
N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, ITGMM, or FIML

� _STATUS_, variable that gives the convergence status of estimation. _STATUS_ = 0 when convergence
criteria are met, 1 when estimation converges with a note, 2 when estimation converges with a warning,
and 3 when estimation fails to converge

� _NUSED_, the number of observations used in estimation

� the parameters estimated

If the COVOUT option is specified, an additional observation is written for each row of the estimate of the
covariance matrix of parameter estimates, with the _NAME_ values that contain the parameter names for the
rows. Parameter names longer than 32 characters are truncated.
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OUTPARMS= Data Set

The option OUTPARMS= writes all the parameter estimates to an output data set. This output data set
contains one observation and is similar to the OUTEST= data set, but it contains all the parameters, is not
associated with any FIT task, and contains no covariances. The OUTPARMS= option is used in the PROC
MODEL statement, and the data set is written at the end, after any FIT or SOLVE steps have been performed.

OUTS= Data Set

The OUTS= SAS data set contains the estimate of the covariance matrix of the residuals across equations.
This matrix is formed from the residuals that are computed by using the parameter estimates.

The variables in the OUTS= data set are as follows:

� BY variables

� _NAME_, a character variable that contains the name of the equation

� _TYPE_, a character variable of length 8 that identifies the estimation method: OLS, SUR, N2SLS,
N3SLS, ITOLS, ITSUR, IT2SLS, IT3SLS, GMM, ITGMM, or FIML

� variables with the names of the equations in the estimation

Each observation contains a row of the covariance matrix. The data set is suitable for use with the SDATA=
option in a subsequent FIT or SOLVE statement. (For an example of the SDATA= option, see the section
“Tests on Parameters” on page 1556.)

OUTSUSED= Data Set

The OUTSUSED= SAS data set contains the covariance matrix of the residuals across equations that is used
to define the objective function. The form of the OUTSUSED= data set is the same as that for the OUTS=
data set.

Note that OUTSUSED= is the same as OUTS= for the estimation methods that iterate the S matrix (ITOLS,
IT2SLS, ITSUR, and IT3SLS). If the SDATA= option is specified in the FIT statement, OUTSUSED= is the
same as the SDATA= matrix read in for the methods that do not iterate the S matrix (OLS, SUR, N2SLS, and
N3SLS).

OUTV= Data Set

The OUTV= data set contains the estimate of the variance matrix, V. This matrix is formed from the
instruments and the residuals that are computed by using the final parameter estimates obtained from the
estimation method chosen.

An estimate of V obtained from 2SLS is used in GMM estimation. Hence if you input the data set obtained
from the OUTV statement in 2SLS into the VDATA statement while fitting GMM, you get the same result by
fitting GMM directly without specifying the VDATA option.
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ODS Table Names
PROC MODEL assigns a name to each table it creates. You can use these names to reference the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 25.4.

Table 25.4 ODS Tables Produced in PROC MODEL

ODS Table Name Description Option

ODS Tables Created by the FIT Statement
AugGMMCovariance Crossproducts matrix GMM ITALL
ChowTest Structural change test CHOW=
CollinDiagnostics Collinearity diagnostics
ConfInterval Profile likelihood confidence intervals PRL=
ConvCrit Convergence criteria for estimation Default
ConvergenceStatus Convergence status Default
CorrB Correlations of parameters COVB/CORRB
CorrResiduals Correlations of residuals CORRS/COVS
CovB Covariance of parameters COVB/CORRB
CovResiduals Covariance of residuals CORRS/COVS
Crossproducts Crossproducts matrix ITALL/ITPRINT
DatasetOptions Data sets used Default
DetResidCov Determinant of the residuals DETAILS
DWTest Durbin-Watson test DW=
Equations Listing of equations to estimate Default
EstSummaryMiss Model summary statistics for PAIRWISE MISSING=
EstSummaryStats Objective, objective * N Default
FirstLagrMultEst First-order Lagrange multiplier estimates GMM ITALL
GMMCovariance Crossproducts matrix GMM DETAILS
GMMTestStats GMM test statistics GMM
Godfrey Godfrey’s serial correlation test GF=
HausmanTest Hausman’s test table HAUSMAN
HeteroTest Heteroscedasticity test tables BREUSCH/PAGEN
InvXPXMat X0X inverse for system I
IterInfo Iteration printing ITALL/ITPRINT
LagLength Model lag length Default
MinSummary Number of parameters, estimation kind Default
ModSummary Listing of all categorized variables Default
ModVars Listing of model variables and parameters Default
NormalityTest Normality test table NORMAL
ObsSummary Identifies observations with errors Default
ObsUsed Observations read, used, and missing Default
ParameterEstimates Parameter estimates Default
ParmChange Parameter change vector ITALL
ResidSummary Summary of the SSE, MSE for the equations Default
SecondLagrMultEst Second-order Lagrange multiplier estimates GMM ITALL
SizeInfo Storage requirement for estimation DETAILS
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Table 25.4 continued

ODS Table Name Description Option

TermEstimates Nonlinear OLS and ITOLS estimates OLS/ITOLS
TestResults Test statement table
WgtVar The name of the weight variable
XPXMat X0X for system XPX
YkVector Marquardt iteration vector GMM ITALL

ODS Tables Created by the SOLVE Statement
BlockEqsAndVars Dependency analysis block partitioning ANALYZEDEPS=
DatasetOptions Data sets used Default
DescriptiveStatistics Descriptive statistics STATS
FitStatistics Fit statistics for simulation STATS
LagLength Model lag length Default
ModSummary Listing of all categorized variables Default
ObsSummary Simulation trace output SOLVEPRINT
ObsUsed Observations read, used, and missing Default
SimulationSummary Number of variables solved for Default
SolutionVarList Solution variable lists Default
TheilRelStats Theil relative change error statistics THEIL
TheilStats Theil forecast error statistics THEIL
ErrorVec Iteration error vector ITPRINT
ResidualValues Iteration residual values ITPRINT
PredictedValues Iteration predicted values ITPRINT
SolutionValues Iteration solved for variable values ITPRINT

ODS Tables Created by the FIT and SOLVE Statements
AdjacencyMatrix Adjacency graph GRAPH
BlockAnalysis Block analysis BLOCK
BlockStructure Block structure BLOCK
CodeDependency Variable cross reference LISTDEP
CodeList Listing of programs statements LISTCODE
CrossReference Cross-reference listing for program
DepStructure Dependency structure of the system BLOCK
FirstDerivatives First derivative table LISTDER
IterIntg Integration iteration output INTGPRINT
MemUsage Memory usage statistics MEMORYUSE
MissingDependencies Missing values by dependency REPORTMISSINGS
MissingObservations Missing values by observation REPORTMISSINGS
MissingSymbols Missing values by symbol REPORTMISSINGS
ParmReadIn Parameter estimates read in ESTDATA=
ProgList Listing of compiled program code
RangeInfo RANGE statement specification
SortAdjacencyMatrix Sorted adjacency graph GRAPH
TransitiveClosure Transitive closure graph GRAPH



1594 F Chapter 25: The MODEL Procedure

The AugGMMCovariance table is the V matrix augmented with the moment vector at iteration zero, produced
when the ITALL option is used with the GMM option. If the V matrix to be used in GMM is read in by the
VDATA option, then AugGMMCovariance would be the same matrix augmented with the moment vectors.
The GMMCovariance ODS output is produced only when you read in a covariance matrix to be used in the
GMM method. This table is produced by using the DETAILS option with the GMM option.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the MODEL procedure.

ODS Graph Names

PROC MODEL assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when you use ODS. The names are listed in Table 25.5.

To request these graphs, ODS Graphics must be enabled.

Table 25.5 ODS Graphics Produced by PROC MODEL

ODS Graph Name Plot Description

ACFPlot Autocorrelation of residuals
ActualByPredicted Predicted versus actual plot
BlockDependencyPlot Simulation dependency analysis
CooksD Cook’s D plot
DiagnosticsPanel Panel of all plots
IACFPlot Inverse autocorrelation of residuals
QQPlot Q-Q plot of residuals
PACFPlot Partial autocorrelation of residuals
ResidualHistogram Histogram of the residuals
StudentResidualPlot Studentized residual plot

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Details: Simulation by the MODEL Procedure
The solution, given the vector k, of the following nonlinear system of equations is the vector u that satisfies
this equation:

q.u; k;�/ D 0

A simulation is a set of solutions u t for a specific sequence of vectors k t .

Model simulation can be performed to do the following:

� check how well the model predicts the actual values over the historical period

� investigate the sensitivity of the solution to changes in the input values or parameters

� examine the dynamic characteristics of the model

� check the stability of the simultaneous solution

� estimate the statistical distribution of the predicted values of the nonlinear model using Monte Carlo
methods

By combining the various solution modes with different input data sets, model simulation can answer many
different questions about the model. This section presents details of model simulation and solution.

Solution Modes
The following solution modes are commonly used:

� The dynamic simultaneous forecast mode is used for forecasting with the model. Collect the historical
data on the model variables, the future assumptions of the exogenous variables, and any prior infor-
mation on the future endogenous values, and combine them in a SAS data set. Use the FORECAST
option in the SOLVE statement.

� The dynamic simultaneous simulation mode is often called ex post simulation, historical simulation, or
ex post forecasting. Use the DYNAMIC option. This mode is the default.

� The static simultaneous simulation mode can be used to examine the within-period performance of the
model without the complications of previous period errors. Use the STATIC option.

� The NAHEAD=n dynamic simultaneous simulation mode can be used to see how well n-period-ahead
forecasting would have performed over the historical period. Use the NAHEAD=n option.

The different solution modes are explained in detail in the following sections.
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Dynamic and Static Simulations

In model simulation, either solved values or actual values from the data set can be used to supply lagged
values of an endogenous variable. A dynamic solution refers to a solution obtained by using only solved
values for the lagged values. Dynamic mode is used both for forecasting and for simulating the dynamic
properties of the model.

A static solution refers to a solution obtained by using the actual values when available for the lagged
endogenous values. Static mode is used to simulate the behavior of the model without the complication of
previous period errors. Dynamic simulation is the default.

If you want to use static values for lags only for the first n observations, and dynamic values thereafter,
specify the START=n option. For example, if you want a dynamic simulation to start after observation 24,
specify START=24 in the SOLVE statement. If the model being simulated had a value lagged for four time
periods, then this value would start using dynamic values when the simulation reached observation number
28.

n-Period-Ahead Forecasting

Suppose you want to regularly forecast 12 months ahead and produce a new forecast each month as more
data becomes available. You can use n-period-ahead forecasting to test how well you would have done over
time if you had been using your model to forecast one year ahead.

To see how well a model predicts n time periods in the future, perform an n-period-ahead forecast on real
data and compare the forecast values with the actual values.

n-period-ahead forecasting refers to using dynamic values for the lagged endogenous variables only for lags
1 through n � 1. For example, one-period-ahead forecasting, specified by the NAHEAD=1 option in the
SOLVE statement, is the same as if a static solution had been requested. Specifying NAHEAD=2 produces a
solution that uses dynamic values for lag one and static, actual, values for longer lags.

The following example is a two-year-ahead dynamic simulation. The output is shown in Figure 25.72.

data yearly;
input year x1 x2 x3 y1 y2 y3;
datalines;

84 4 9 0 7 4 5
85 5 6 1 1 27 4
86 3 8 2 5 8 2
87 2 10 3 0 10 10
88 4 7 6 20 60 40
89 5 4 8 40 40 40
90 3 2 10 50 60 60
91 2 5 11 40 50 60
;
run;

proc model data=yearly outmodel=yearlyModel;
endogenous y1 y2 y3;
exogenous x1 x2 x3;

y1 = 2 + 3*x1 - 2*x2 + 4*x3;
y2 = 4 + lag2( y3 ) + 2*y1 + x1;
y3 = lag3( y1 ) + y2 - x2;
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solve y1 y2 y3 / nahead=2 out=c;
run;

proc print data=c;
run;

Figure 25.72 NAHEAD Summary Report

The MODEL Procedure
Dynamic Simultaneous 2-Periods-Ahead Forecasting Simulation

Data Set
Options

DATA= YEARLY

OUT= C

Solution Summary

Variables Solved 3

Simulation Lag Length 3

Solution Method NEWTON

CONVERGE= 1E-8

Maximum CC 0

Maximum Iterations 1

Total Iterations 8

Average Iterations 1

Observations
Processed

Read 20

Lagged 12

Solved 8

First 5

Last 8

Variables Solved For y1 y2 y3

The C data set is shown in Figure 25.73.

Figure 25.73 C Data Set

Obs _TYPE_ _MODE_ _LAG_ _ERRORS_ y1 y2 y3 x1 x2 x3

1 PREDICT SIMULATE 0 0 0 10 7 2 10 3

2 PREDICT SIMULATE 1 0 24 58 52 4 7 6

3 PREDICT SIMULATE 1 0 41 101 102 5 4 8

4 PREDICT SIMULATE 1 0 47 141 139 3 2 10

5 PREDICT SIMULATE 1 0 42 130 145 2 5 11

The preceding two-year-ahead simulation can be emulated without using the NAHEAD= option by the
following PROC MODEL statements:
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proc model data=yearly model=yearlyModel;
range year = 87 to 88;
solve y1 y2 y3 / dynamic solveprint;

run;

range year = 88 to 89;
solve y1 y2 y3 / dynamic solveprint;

run;

range year = 89 to 90;
solve y1 y2 y3 / dynamic solveprint;

run;

range year = 90 to 91;
solve y1 y2 y3 / dynamic solveprint;

The totals shown under “Observations Processed” in Figure 25.72 are equal to the sum of the four individual
runs.

Simulation and Forecasting

You can perform a simulation of your model or use the model to produce forecasts. Simulation refers to the
determination of the endogenous or dependent variables as a function of the input values of the other variables,
even when actual data for some of the solution variables are available in the input data set. The simulation
mode is useful for verifying the fit of the model parameters. Simulation is selected by the SIMULATE option
in the SOLVE statement. Simulation mode is the default.

In forecast mode, PROC MODEL solves only for those endogenous variables that are missing in the data set.
The actual value of an endogenous variable is used as the solution value whenever nonmissing data for it is
available in the input data set. Forecasting is selected by the FORECAST option in the SOLVE statement.

For example, an econometric forecasting model can contain an equation to predict future tax rates, but tax
rates are usually set in advance by law. Thus, for the first year or so of the forecast, the predicted tax rate
should really be exogenous. Or, you might want to use a prior forecast of a certain variable from a short-run
forecasting model to provide the predicted values for the earlier periods of a longer-range forecast of a
long-run model. A common situation in forecasting is when historical data needed to fill the initial lags of
a dynamic model are available for some of the variables but have not yet been obtained for others. In this
case, the forecast must start in the past to supply the missing initial lags. Clearly, you should use the actual
data that are available for the lags. In all the preceding cases, the forecast should be produced by running the
model in the FORECAST mode; simulating the model over the future periods would not be appropriate.

Monte Carlo Simulation

The accuracy of the forecasts produced by PROC MODEL depends on four sources of error (Pindyck and
Rubinfeld 1981, pp. 405–406):

� The system of equations contains an implicit random error term �,

g.y; x; O�/ D �

where y, x, g, O� , and � are vector valued.
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� The estimated values of the parameters, O� , are themselves random variables.

� The exogenous variables might have been forecast themselves and therefore might contain errors.

� The system of equations might be incorrectly specified; the model only approximates the process
modeled.

The RANDOM= option is used to request Monte Carlo (or stochastic) simulations to generate confidence
intervals for errors that arise from the first two sources. The Monte Carlo simulations can be performed with
�, � , or both vectors represented as random variables. The SEED= option is used to control the random
number generator for the simulations. SEED=0 forces the random number generator to use the system clock
as its seed value.

In Monte Carlo simulations, repeated simulations are performed on the model for random perturbations of the
parameters and the additive error term. The random perturbations follow a multivariate normal distribution
with expected value of 0 and covariance described by a covariance matrix of the parameter estimates in the
case of � , or a covariance matrix of the equation residuals for the case of �. PROC MODEL can generate
both covariance matrices or you can provide them.

The ESTDATA= option specifies a data set that contains an estimate of the covariance matrix of the parameter
estimates to use for computing perturbations of the parameters. The ESTDATA= data set is usually created
by the FIT statement with the OUTEST= and OUTCOV options. When the ESTDATA= option is specified,
the matrix read from the ESTDATA= data set is used to compute vectors of random shocks or perturbations
for the parameters. These random perturbations are computed at the start of each repetition of the solution
and added to the parameter values. The perturbed parameters are fixed throughout the solution range. If the
covariance matrix of the parameter estimates is not provided, the parameters are not perturbed.

The SDATA= option specifies a data set that contains the covariance matrix of the residuals to use for
computing perturbations of the equations. The SDATA= data set is usually created by the FIT statement
with the OUTS= option. When SDATA= is specified, the matrix read from the SDATA= data set is used
to compute vectors of random shocks or perturbations for the equations. These random perturbations are
computed at each observation. The simultaneous solution satisfies the model equations plus the random
shocks. That is, the solution is not a perturbation of a simultaneous solution of the structural equations; rather,
it is a simultaneous solution of the stochastic equations by using the simulated errors. If the SDATA= option
is not specified, the random shocks are not used.

The different random solutions are identified by the _REP_ variable in the OUT= data set. An unperturbed
solution with _REP_ = 0 is also computed when the RANDOM= option is used. RANDOM=n produces
nC 1 solution observations for each input observation in the solution range. If the RANDOM= option is not
specified, the SDATA= and ESTDATA= options are ignored, and no Monte Carlo simulation is performed.

PROC MODEL does not have an automatic way of modeling the exogenous variables as random variables
for Monte Carlo simulation. If the exogenous variables have been forecast, the error bounds for these
variables should be included in the error bounds generated for the endogenous variables. If the models for
the exogenous variables are included in PROC MODEL, then the error bounds created from a Monte Carlo
simulation contain the uncertainty due to the exogenous variables.

Alternatively, if the distribution of the exogenous variables is known, the built-in random number generator
functions can be used to perturb these variables appropriately for the Monte Carlo simulation. For example,
if you know the forecast of an exogenous variable, X, has a standard error of 5.2 and the error is normally
distributed, then the following statements can be used to generate random values for X:
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x_new = x + 5.2 * rannor(456);

During a Monte Carlo simulation, the random number generator functions produce one value at each
observation. It is important to use a different seed value for all the random number generator functions in the
model program; otherwise, the perturbations will be correlated. For the unperturbed solution, _REP_ = 0, the
random number generator functions return 0.

PROC UNIVARIATE can be used to create confidence intervals for the simulation (see the Monte Carlo
simulation example in the section “Getting Started: MODEL Procedure” on page 1427).

Multivariate t Distribution Simulation
To perform a Monte Carlo analysis of models that have residuals distributed as a multivariate t, use the
ERRORMODEL statement with either the Ï t(variance, df ) option or with the CDF=t(variance, df ) option.
The CDF= option specifies the distribution that is used for simulation so that the estimation can be done for
one set of distributional assumptions and the simulation for another.

The following is an example of estimating and simulating a system of equations with t distributed errors by
using the ERRORMODEL statement:

/* generate simulation data set */
data five;

set xfrate end=last;
if last then do;

todate = date +5;
do date = date to todate;

output;
end;

end;
run;

The preceding DATA step generates the data set to request a five-days-ahead forecast. The following
statements estimate and forecast the three forward-rate models of the following form:

ratet D ratet�1 C � � ratet�1 C �

� D � � ratet�1 � �

� � N.0; 1/

title "Daily Multivariate Geometric Brownian Motion Model "
"of D-Mark/USDollar Forward Rates";

proc model data=xfrate;

parms df 15; /* Give initial value to df */

demusd1m = lag(demusd1m) + mu1m * lag(demusd1m);
var_demusd1m = sigma1m ** 2 * lag(demusd1m **2);
demusd3m = lag(demusd3m) + mu3m * lag(demusd3m);
var_demusd3m = sigma3m ** 2 * lag(demusd3m ** 2);
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demusd6m = lag(demusd6m) + mu6m * lag(demusd6m);
var_demusd6m = sigma6m ** 2 * lag(demusd6m ** 2);

/* Specify the error distribution */
errormodel demusd1m demusd3m demusd6m

~ t( var_demusd1m var_demusd3m var_demusd6m, df );

/* output normalized S matrix */
fit demusd1m demusd3m demusd6m / outsn=s;

run;
/* forecast five days in advance */

solve demusd1m demusd3m demusd6m /
data=five sdata=s seed=1 random=1500 out=monte;

id date;
run;

/* select out the last date ---*/
data monte; set monte;

if date = '10dec95'd then output;
run;

title "Distribution of demusd1m Five Days Ahead";
proc univariate data=monte noprint;

var demusd1m;
histogram demusd1m /

normal(noprint color=red)
kernel(noprint color=blue) cfill=ligr;

run;

The Monte Carlo simulation specified in the preceding example draws from a multivariate t distribution
with constant degrees of freedom and forecasted variance, and it computes future states of DEMUSD1M,
DEMUSD3M, and DEMUSD6M. The OUTSN= option in the FIT statement is used to specify the data set
for the normalized † matrix. That is, the † matrix is created by crossing the normally distributed residuals.
The normally distributed residuals are created from the t distributed residuals by using the normal inverse
CDF and the t CDF. This matrix is a correlation matrix.

The distribution of DEMUSD1M on the fifth day is shown in the Figure 25.74. The two curves overlaid on
the graph are a kernel density estimation and a normal distribution fit to the results.
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Figure 25.74 Distribution of DEMUSD1M

Alternate Distribution Simulation
As an alternate to the normal distribution, the ERRORMODEL statement can be used in a simulation to
specify other distributions. The distributions available for simulation are Cauchy, chi-squared, F, Poisson,
t, and uniform. An empirical distribution can also be used if the residuals are specified by using the
RESIDDATA= option in the SOLVE statement.

Except for the t distribution, all of these alternate distributions are univariate but can be used together in a
multivariate simulation. The ERRORMODEL statement applies to solved for equations only. That is, the
normal form or general form equation referred to by the ERRORMODEL statement must be one of the
equations you have selected in the SOLVE statement.

In the following example, two Poisson distributed variables are used to simulate the calls that arrive at and
leave a call center:
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data s; /* Covariance between arriving and leaving */
arriving = 1; leaving = 0.7; _name_= "arriving";
output;
arriving = 0.7; leaving = 1.0; _name_= "leaving";
output;

run;

data calls;
date = '20mar2001'd;
output;

run;

The first DATA step generates a data set that contains a covariance matrix for the ARRIVING and LEAVING
variables. The covariance isˇ̌̌̌

1 :7

:7 1

ˇ̌̌̌
The following statements create the number of waiting clients data:

proc model data=calls;
arriving = 0;
errormodel arriving ~ poisson( 10 );
leaving = 4;
errormodel leaving ~ poisson( 11 );

waiting = arriving - leaving;
if waiting < 0 then waiting=0;
outvars waiting;

solve arriving leaving / seed=1 random=500 sdata=s out=sim;
run;

title "Distribution of Clients Waiting";
proc univariate data=sim noprint;

var waiting ;
histogram waiting / cfill=ligr;

run;

The distribution of number of waiting clients is shown in Figure 25.75.
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Figure 25.75 Distribution of Number of Clients Waiting

Mixtures of Distributions—Copulas
The theory of copulas is what enables the MODEL procedure to combine and simulate multivariate distribu-
tions with different marginals. This section provides a brief overview of copulas.

Modeling a system of variables accurately is a difficult task. The underlying, ideal, distributional assumptions
for each variable are usually different from each other. An individual variable might be best modeled as a t
distribution or as a Poisson process. The correlation of the various variables are very important to estimate as
well. A joint estimation of a set of variables would make it possible to estimate a correlation structure but
would restrict the modeling to single, simple multivariate distribution (for example, the normal). Even with a
simple multivariate distribution, the joint estimation would be computationally difficult and would have to
deal with issues of missing data.

By using the MODEL procedure ERRORMODEL statement, you can combine and simulate from models of
different distributions. The covariance matrix for the combined model is constructed by using the copula
induced by the multivariate normal distribution. A copula is a function that couples joint distributions to their
marginal distributions.
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By default, the copula used in the MODEL procedure is based on the multivariate normal. This particular
multivariate normal has zero mean and covariance matrix R. The user provides R, which can be created by
using the following steps:

1. Each model is estimated separately and their residuals are saved.

2. The residuals for each model are converted to a normal distribution by using their CDFs, Fi .:/, using
the relationship ˆ�1.F.�it //.

3. These normal residuals are crossed to create a covariance matrix R.

If the model of interest can be estimated jointly, such as multivariate T, then the OUTSN= option can be used
to generate the correct covariance matrix.

A draw from this mixture of distributions is created by using the following steps that are performed automati-
cally by the MODEL procedure:

1. Independent N.0; 1/ variables are generated.

2. These variables are transformed to a correlated set by using the covariance matrix R.

3. These correlated normals are transformed to a uniform by using ˆ./.

4. F�1./ is used to compute the final sample value.

Alternate Copulas

The Gaussian, t, and the normal mixture copula are available in the MODEL procedure. These copulas
support asymmetric parameters and can use alternate estimation methods for creating the base covariance
matrix.

The normal (Gaussian) copula is the default. A draw from a Gaussian copula is obtained from

x D Az

where z 2 Rd is a vector of independent random normal.0; 1/ draws, A 2 Rd�d is the square root of the
covariance matrix, R. For the normal mixture and t copula, a draw is created as

x D w C
p
wAz

where w is a scalar random variable and  2 Rd is a vector of asymmetry parameters.  is specified in the
SDATA= data set. If W �inverse gamma.df=2; df=2/, then x is multivariate t or skewed t if  is provided.
When NORMALMIX is specified, w is distributed as a step function with each of the n positive variances, v1
. . .vn, having probability p1 . . .pn.

The covariance matrix R D A0A is specified with the SDATA= option. The vector of asymmetry parameters,
 , defaults to zero or is specified in the SDATA= data set with _TYPE_=ASYM. The ASYM option specifies
that the nonzero asymmetry vector,  , is to be used.

In the event the covariance matrix specified with the SDATA= option is not positive semidefinite the matrix is
modified to be positive semidefinite. For more information, see Rebonato and Jäckel (1999).
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The actual draw for an individual variable, yi , depends on the marginal distribution of the variable, QF , and
the chosen copula F as

yi D QF
�1
i .F.xi //

Archimedean Copulas

The three Archimedean copulas available in the MODEL procedure are the Clayton, Gumbel, and Frank
copulas. Archimedean copulas require only a single parameter, � , to define the joint distribution’s covariance
structure for a simulation problem, Therefore, a covariance matrix is not required to perform simulations that
use Archimedean copulas, and the SDATA= option does not have to be specified for these simulations. For
more information about Archimedean copulas, including the functional forms of the Clayton, Gumbel, and
Frank copulas, see the section “Archimedean Copulas” in Chapter 11, “The COPULA Procedure.”

Asymmetrical Copula Example

In this example, an asymmetrical t copula is used to correlate two uniform distributions. The asymmetrical
parameter is varied over a range of values to demonstrate its effect. The resulting graph is produced by using
ODS graphics.

data histdata;
do asym = -1.3 to 1.1 by .3;

date='01aug2007'd;
y = .5;
z = .5;
output;

end;
run ;

/* Add the asymmetric parameter to cov mat */
data asym;

do asym = -1.3 to 1.1 by .3;
y = asym;
z = 0;
_name_ = " ";
_type_ = "asym";
output;
y = 1;
z = .65;
_name_ = "y";
_type_ = "cov";
output;
y = .65;
z = 1;
_name_ = "z";
_type_ = "cov";
output;

end;
run;
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proc model out=sim(where=(_REP_ > 0)) data=histdata sdata=asym;
y = 0;
errormodel y ~ Uniform(0,1);

z = 0;
errormodel z ~ Uniform(0,1);

solve y z / random=500 seed=12345 copula=(t(5) asym );
by asym;

run;

To produce a panel plot of this joint distribution, use the following SAS/GRAPH statements:

ods graphics on / height=800 width=800;
proc template;

define statgraph myplot.panel;
BeginGraph;

entrytitle halign=left halign=center
textattrs=GRAPHTITLETEXT "t Copula with a Range of Asymmetry";

layout datapanel classvars=(asym) / rows=3 columns=3
order=rowmajor height=1024 width=1420
rowaxisopts=(griddisplay=on label=' ')
columnaxisopts=(griddisplay=on label=' ');

layout prototype;
scatterplot x=z y=y ;

endlayout;
endlayout;

EndGraph;
end;

run;

proc sgrender data=sim template='myplot.panel';
run;
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Figure 25.76 t Copula with Asymmetry
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Quasi-Random Number Generators

Traditionally high-discrepancy pseudo-random number generators are used to generate innovations in Monte
Carlo simulations. Loosely translated, a high-discrepancy pseudo-random number generator is one in which
there is very little correlation between the current number generated and the past numbers generated. This
property is ideal if indeed independence of the innovations is required. If, on the other hand, the efficient
spanning of a multidimensional space is desired, a low discrepancy, quasi-random number generator can be
used. A quasi-random number generator produces numbers that have no random component.

A simple one-dimensional quasi-random sequence is the van der Corput sequence. Given a prime number r (
r � 2 ), any integer has a unique representation in terms of base r. A number in the interval [0,1) can be
created by inverting the representation base power by base power. For example, consider r=3 and n=1, 1 in
base 3 is

110 D 1 � 3
0
D 13

When the powers of 3 are inverted,

�.1/ D
1

3

Also, 11 in base 3 is

1110 D 1 � 3
2
C 2 � 30 D 1023

When the powers of 3 are inverted,

�.11/ D
1

9
C 2 �

1

3
D
7

9

The first 10 numbers in this sequence �.1/ : : : �.10/ are as follows:

0;
1

3
;
2

3
;
1

9
;
4

9
;
7

9
;
2

9
;
5

9
;
8

9
;
1

27

As the sequence proceeds, it fills in the gaps in a uniform fashion.

Several authors have expanded this idea to many dimensions. Two versions supported by the MODEL
procedure are the Sobol sequence (QUASI=SOBOL) and the Faure sequence (QUASI=FAURE). The Sobol
sequence is based on binary numbers and is generally computationally faster than the Faure sequence. The
Faure sequence uses the dimensionality of the problem to determine the number base to use to generate the
sequence. The Faure sequence has better distributional properties than the Sobol sequence for dimensions
greater than 8.

As an example of the difference between a pseudo-random number and a quasi-random number, consider
simulating a bivariate normal with 100 draws.
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Figure 25.77 Kernel Density of a Bivariate Normal Produced by 100 Faure-Random Draws
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Figure 25.78 Kernel Density of a Bivariate Normal Produced by 100 Pseudo-Random Draws

Solution Mode Output
The following SAS statements dynamically forecast the solution to a nonlinear equation:

proc model data=sashelp.citimon;
parameters a 0.010708 b -0.478849 c 0.929304;
lhur = 1/(a * ip) + b + c * lag(lhur);
solve lhur / out=sim forecast dynamic;

run;

The first page of output produced by the SOLVE step is shown in Figure 25.79. This is the summary
description of the model. The error message states that the simulation was aborted at observation 144 because
of missing input values.
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Figure 25.79 Solve Step Summary Output

The MODEL Procedure

Model Summary

Model Variables 1

Parameters 3

Equations 1

Number of Statements 1

Program Lag Length 1

Model Variables LHUR

Parameters(Value) a(0.010708) b(-0.478849) c(0.929304)

Equations LHUR

The second page of output, shown in Figure 25.80, gives more information about the failed observation.

Figure 25.80 Solve Step Error Message

The MODEL Procedure
Dynamic Single-Equation Forecast

Error: Solution values are missing because of missing input values for observation 144 at NEWTON iteration 0.

Note: Additional information on the values of the variables at this observation, which may be helpful in determining the cause of the
failure of the solution process, is printed below.

Observation 144 Iteration 0 CC -1.000000

Missing 1

Iteration Errors - Missing.

                              The MODEL Procedure                               
                        Dynamic Single-Equation Forecast                        
                                                                                
                     --- Listing of Program Data Vector ---                     
_N_:                144     ACTUAL.LHUR:          .     ERROR.LHUR:           . 
IP:                   .     LHUR:           7.10000     PRED.LHUR:            . 
a:              0.01071     b:             -0.47885     c:              0.92930 
                                                                                

Note: Simulation aborted.

From the program data vector, you can see the variable IP is missing for observation 144. LHUR could not be
computed, so the simulation aborted.

The solution summary table is shown in Figure 25.81.
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Figure 25.81 Solution Summary Report

The MODEL Procedure
Dynamic Single-Equation Forecast

Data Set Options

DATA= SASHELP.CITIMON

OUT= SIM

Solution Summary

Variables Solved 1

Forecast Lag Length 1

Solution Method NEWTON

CONVERGE= 1E-8

Maximum CC 0

Maximum Iterations 1

Total Iterations 143

Average Iterations 1

Observations
Processed

Read 145

Lagged 1

Solved 143

First 2

Last 145

Failed 1

Variables Solved For LHUR

This solution summary table includes the names of the input data set and the output data set followed by a
description of the model. The table also indicates that the solution method defaulted to Newton’s method.
The remaining output is defined as follows:

Maximum CC is the maximum convergence value accepted by the Newton
procedure. This number is always less than the value
for the CONVERGE= option.

Maximum Iterations is the maximum number of Newton iterations performed
at each observation and each replication of Monte
Carlo simulations.

Total Iterations is the sum of the number of iterations required for each
observation and each Monte Carlo simulation.

Average Iterations is the average number of Newton iterations required to
solve the system at each step.

Solved is the number of observations used times the number of
random replications selected plus one, for Monte Carlo
simulations. The one additional simulation is the original
unperturbed solution. For simulations that do not involve Monte
Carlo, this number is the number of observations used.
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Summary Statistics

The STATS and THEIL options are used to select goodness-of-fit statistics. Actual values must be provided
in the input data set for these statistics to be printed. When the RANDOM= option is specified, the statistics
do not include the unperturbed (_REP_=0) solution.

STATS Option Output
The following statements show the addition of the STATS and THEIL options to the model in the previous
section:

proc model data=sashelp.citimon;
parameters a 0.010708 b -0.478849 c 0.929304;
lhur= 1/(a * ip) + b + c * lag(lhur) ;
solve lhur / out=sim dynamic stats theil;
range date to '01nov91'd;

run;

The STATS output in Figure 25.82 and the THEIL output in Figure 25.83 are generated.

Figure 25.82 STATS Output

The MODEL Procedure
Dynamic Single-Equation Simulation

Solution Range DATE = FEB1980 To NOV1991

Descriptive Statistics

Actual Predicted

Variable N Obs N Mean Std Dev Mean Std Dev Label

LHUR 142 142 7.0887 1.4509 7.2473 1.1465 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS

Statistics of fit

Variable N
Mean
Error Mean % Error

Mean
Abs

Error
Mean

Abs % Error
RMS

Error RMS % Error R-Square Label

LHUR 142 0.1585 3.5289 0.6937 10.0001 0.7854 11.2452 0.7049 UNEMPLOYMENT RATE: ALL
WORKERS, 16 YEARS

The number of observations (Nobs), the number of observations with both predicted and actual values
nonmissing (N), and the mean and standard deviation of the actual and predicted values of the determined
variables are printed first. The next set of columns in the output are defined as follows:
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Mean Error 1
N

PN
jD1 . Oyj � yj /

Mean % Error 100
N

PN
jD1 . Oyj � yj /=yj

Mean Abs Error 1
N

PN
jD1 j Oyj � yj j

Mean Abs % Error 100
N

PN
jD1 j. Oyj � yj /=yj j

RMS Error
q

1
N

PN
jD1 . Oyj � yj /

2

RMS % Error 100

q
1
N

PN
jD1 .. Oyj � yj /=yj /

2

R-square 1 � SSE=CSSA

SSE
PN
jD1 . Oyj � yj /

2

SSA
PN
jD1 .yj /

2

CSSA SSA �
�PN

jD1 yj

�2
Oy predicted value

y actual value

When the RANDOM= option is specified, the statistics do not include the unperturbed (_REP_=0) solution.

THEIL Option Output
The THEIL option specifies that Theil forecast error statistics be computed for the actual and predicted values
and for the relative changes from lagged values. Mathematically, the quantities are

Oyc D . Oy � lag.y//=lag.y/

yc D .y � lag.y//=lag.y/

where Oyc is the relative change for the predicted value and yc is the relative change for the actual value.

Figure 25.83 THEIL Output

Theil Forecast Error Statistics

MSE Decomposition
Proportions

Inequality
Coef

Variable N MSE
Corr

(R)
Bias
(UM)

Reg
(UR)

Dist
(UD)

Var
(US)

Covar
(UC) U1 U Label

LHUR 142 0.6168 0.85 0.04 0.01 0.95 0.15 0.81 0.1086 0.0539 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS
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Figure 25.83 continued

Theil Relative Change Forecast Error Statistics

Relative Change
MSE Decomposition

Proportions
Inequality

Coef

Variable N MSE
Corr

(R)
Bias
(UM)

Reg
(UR)

Dist
(UD)

Var
(US)

Covar
(UC) U1 U Label

LHUR 142 0.0126 -0.08 0.09 0.85 0.06 0.43 0.47 4.1226 0.8348 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS

The columns have the following meaning:

Corr (R) is the correlation coefficient, �, between the actual and predicted values.

� D
cov.y; Oy/
�a�p

where �p and �a are the standard deviations of the predicted and actual values.

Bias (UM) is an indication of systematic error and measures the extent to which the average values
of the actual and predicted deviate from each other.

.E.y/ � E. Oy//2
1
N

PN
tD1 .yt � Oyt /

2

Reg (UR) is defined as .�p � � � �a/2=MSE. Consider the regression

y D ˛ C ˇ Oy

If Ǒ D 1, UR will equal zero.

Dist (UD) is defined as .1 � �2/�a�a=MSE and represents the variance of the residuals obtained by
regressing yc on Oyc.

Var (US) is the variance proportion. US indicates the ability of the model to replicate the degree of
variability in the endogenous variable.

US D
.�p � �a/

2

MSE

Covar (UC) represents the remaining error after deviations from average values and average variabili-
ties have been accounted for.

UC D
2.1 � �/�p�a

MSE

U1 is a statistic that measures the accuracy of a forecast defined as follows:

U1 D
p
MSEq

1
N

PN
tD1 .yt /

2

U is the Theil’s inequality coefficient defined as follows:

U D
p
MSEq

1
N

PN
tD1 .yt /

2 C

q
1
N

PN
tD1 . Oyt /

2
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MSE is the mean square error. In the case of the relative change Theil statistics, the MSE is
computed as follows:

MSE D
1

N

NX
tD1

. Oyct � yct /
2

For more information about these statistics, see Maddala (1977, pp. 344–347) and Pindyck and Rubinfeld
(1981, pp. 364–365).

Goal Seeking: Solving for Right-Hand-Side Variables
The process of computing input values that are needed to produce target results is often called goal seeking.
To compute a goal-seeking solution, use a SOLVE statement that lists the variables you want to solve for and
provide a data set that contains values for the remaining variables.

Consider the following demand model for packaged rice,

quanti ty demanded D ˛1 C ˛2price
2=3
C ˛3income

where price is the price of the package and income is disposable personal income. The only variable the
company has control over is the price it charges for rice. This model is estimated by using the following
simulated data and PROC MODEL statements:

data demand;
do t=1 to 40;

price = (rannor(10) +5) * 10;
income = 8000 * t ** (1/8);
demand = 7200 - 1054 * price ** (2/3) +

7 * income + 100 * rannor(1);
output;

end;
run;

data goal;
demand = 85000;
income = 12686;

run;

The goal is to find the price the company would have to charge to meet a sales target of 85,000 units. To do
this, a data set is created with a DEMAND variable set to 85000 and with an INCOME variable set to 12686,
the last income value.

The desired price is then determined by using the following PROC MODEL statements:

proc model data=demand
outmodel=demandModel;

demand = a1 - a2 * price ** (2/3) + a3 * income;
fit demand / outest=demest;
solve price / estdata=demest data=goal solveprint;

run;

The SOLVEPRINT option prints the solution values, number of iterations, and final residuals at each
observation. The SOLVEPRINT output from this solve is shown in Figure 25.84.
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Figure 25.84 Goal Seeking, SOLVEPRINT Output

The MODEL Procedure
Single-Equation Simulation

Observation 1 Iterations 6 CC 0.000000 ERROR.demand 0.000000

Solution
Values

price

33.59016

The output indicates that it took six Newton iterations to determine the PRICE of 33.5902, which makes the
DEMAND value within 16E–11 of the goal of 85,000 units.

Consider a more ambitious goal of 100,000 units. The output shown in Figure 25.85 indicates that the sales
target of 100,000 units is not attainable according to this model.

data goal;
demand = 100000;
income = 12686;

run;

proc model model=demandModel;
solve price / estdata=demest data=goal solveprint;

run;

Figure 25.85 Goal Seeking, Convergence Failure

The MODEL Procedure
Single-Equation Simulation

Error: Could not reduce norm of residuals in 10 subiterations.

Error: The solution failed because 1 equations are missing or have extreme values for observation 1 at NEWTON iteration 1.

Observation 1 Iteration 1 CC -1.000000

Missing 1

                              The MODEL Procedure                               
                           Single-Equation Simulation                           
                                                                                
                     --- Listing of Program Data Vector ---                     
 _N_:                  12   ACTUAL.demand:    100000   ERROR.demand:          . 
 PRED.demand:           .   a1:          7126.437997   a2:          1040.841492 
 a3:             6.992694   demand:           100000   income:            12686 
 price:         -0.000172                                                       
 @PRED.demand/@pri:          .                                                  
                                                                                

The program data vector with the error note indicates that even after 10 subiterations, the norm of the residuals
could not be reduced. The sales target of 100,000 units are unattainable with the given model. You might
need to reformulate your model or collect more data to more accurately reflect the market response.
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Numerical Solution Methods
If the SINGLE option is not used, PROC MODEL computes values that simultaneously satisfy the model
equations for the variables named in the SOLVE statement. PROC MODEL provides three iterative methods,
Newton, Jacobi, and Seidel, for computing a simultaneous solution of the system of nonlinear equations.

Single-Equation Solution

For normalized form equation systems, the solution either can simultaneously satisfy all the equations or can
be computed for each equation separately, by using the actual values of the solution variables in the current
period to compute each predicted value. By default, PROC MODEL computes a simultaneous solution. The
SINGLE option in the SOLVE statement selects single-equation solutions.

Single-equation simulations are often used to produce residuals (which estimate the random terms of the
stochastic equations) rather than the predicted values themselves. If the input data and range are the same
as those used for parameter estimation, a static single-equation simulation reproduces the residuals of the
estimation.

Newton’s Method

The NEWTON option in the SOLVE statement requests Newton’s method to simultaneously solve the
equations for each observation. Newton’s method is the default solution method. Newton’s method is an
iterative scheme that uses the derivatives of the equations with respect to the solution variables, J, to compute
a change vector as

�yi D J�1q.yi ; x;�/

PROC MODEL builds and solves J by using efficient sparse matrix techniques. The solution variables yi at
the ith iteration are then updated as

yiC1 D yi C d ��yi

where d is a damping factor between 0 and 1 chosen iteratively so that

kq.yiC1; x;�/k < kq.yi ; x;�/k

The number of subiterations that are allowed for finding a suitable d is controlled by the MAXSUBITER=
option. The number of iterations of Newton’s method that are allowed for each observation is controlled by
MAXITER= option. For more information, see Ortega and Rheinbolt (1970).

Optimization Method

The OPTIMIZE option in the SOLVE statement requests that an optimization algorithm be used to minimize
a norm of the errors in equations subject to constraints on the solution variables. The OPTIMIZE method is
the only solution method that supports constraints on solution variables that are specified using the BOUNDS
and RESTRICT statements. Constraints are ignored by the other solution methods. The OPTIMIZE method
performs the following optimization:

minimize kq.y; x;�/k
subject to yl � y � yu

and f .y/ � 0/



1620 F Chapter 25: The MODEL Procedure

The norm used in the minimization process is

kq.y; x;�/k D q.y; x;�/0diag.S/�1q.y; x;�/

where the S matrix is the covariance of equation errors that is specified by the SDATA= option in the SOLVE
statement. If no SDATA= option is specified, the identity matrix is used. Both strict inequality and inequality
constraints on the solution variables can be imposed using the BOUNDS or RESTRICT statement. For
bounded problems, each lower and upper strict inequality is transformed into an inequality by using the
equations

yl D .ylower strict C �/=.1 � �/

yu D .yupper strict � �/=.1C �/

When strict inequality expressions are imposed using the RESTRICT statement, these expressions are
transformed into an inequality by using the equation

f .y/ D .fstrict.y/C �/=.1 � �/

where fstrict.y/ is a nonlinear strict inequality constraint. The tolerance � is controlled by the EPSILON=
option in the SOLVE statement and defaults to 10�8. To achieve the best performance from the minimization
algorithm, both the first and second analytic derivatives of the equation errors with respect to the solution
variables are used to compute the gradient and second derivatives of the objective function, kq.y; x;�/k.
Analytic derivatives of the restriction expressions that are used to specify constraints are also used in the
minimization. The gradient of the objective function is

rkq.y; x;�/k D 2 J0diag.S/�1q.y; x;�/

The matrix of second derivatives of the objective function with respect to the solution variables is

@2kq.y; x;�/k
@y2

D 2

0@J0diag.S/�1JC
dX
kD1

@2qk.y; x;�/
@y2

diag.S/�1qk.y; x;�/

1A
where d is the number of equations.

The algorithm that is used to find a minimum of kq.y; x;�/k subject to bounds on the solution variables
employs the interior point technique for nonlinear optimization problems. For further information about
this optimization method, see Chapter 11, “The Nonlinear Programming Solver” (SAS/OR User’s Guide:
Mathematical Programming).

When constraints are active in a solution, the minimum value of the objective function, kq.y; x;�/k, is
typically greater than 0. The diagnostic quantities that are produced by the OUTOBJVALS and OUTVIOLA-
TIONS options are available to help identify and characterize solutions that have active bounds constraints.
The following program contains a boundary constraint that becomes active in steps 6, 8, 10, 12, 13, and 16 of
a Monte Carlo simulation:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
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proc model data=d sdata=s;
dependent rate stock;
parms theta 0.2

kappa 0.002
sigma 0.4
sinit 1
vol .1;

id i;

bounds rate >= 0;

rate = zlag(rate) + kappa*(theta - zlag(rate));
h.rate = sigma**2 * zlag(rate);
eq.stock = log(stock/sinit) - (rate + vol*vol/2);
h.stock = vol**2;

solve / optimize converge=1e-6 seed=1 random=1 out=o outobjvals outviolations;
quit;

proc print data=o(where=(_objval_>1e-6));
run;

Figure 25.86 shows how the OUTOBJVALS option can be used to identify simulation steps with an active
bounds constraint, and how the OUTVIOLATIONS option can be used to determine that the RATE equation
is not satisfied for those steps.

Figure 25.86 Objective Function and Violation Values

Constrained SOLVE Variable

Obs i _TYPE_ _MODE_ _REP_ _ERRORS_ _OBJVAL_ rate stock

51 6 PREDICT SIMULATE 1 0 .000363194 0.000027 1.03050

52 6 VIOL SIMULATE 1 0 .000363194 -0.019067 0.00000

55 8 PREDICT SIMULATE 1 0 .000123876 0.000045 1.08828

56 8 VIOL SIMULATE 1 0 .000123876 -0.011152 0.00000

59 10 PREDICT SIMULATE 1 0 .000330755 0.000028 0.96248

60 10 VIOL SIMULATE 1 0 .000330755 -0.018206 -0.00000

63 12 PREDICT SIMULATE 1 0 .000034095 0.000086 0.85526

64 12 VIOL SIMULATE 1 0 .000034095 -0.005895 -0.00000

65 13 PREDICT SIMULATE 1 0 .000011997 0.000141 1.10514

66 13 VIOL SIMULATE 1 0 .000011997 -0.003573 -0.00000

71 16 PREDICT SIMULATE 1 0 .000118989 0.000046 1.07103

72 16 VIOL SIMULATE 1 0 .000118989 -0.010931 0.00000
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Jacobi Method

The JACOBI option in the SOLVE statement selects a matrix-free alternative to Newton’s method. This
method is the traditional nonlinear Jacobi method found in the literature. The Jacobi method as implemented
in PROC MODEL substitutes predicted values for the endogenous variables and iterates until a fixed point is
reached. Then necessary derivatives are computed only for the diagonal elements of the Jacobian, J.

If the normalized form equation is

y D f.y; x;�/

the Jacobi iteration has the form

yiC1 D f.yi ; x;�/

Seidel Method

The Seidel method is an order-dependent alternative to the Jacobi method. You select the Seidel method
by specifying the SEIDEL option in the SOLVE statement. The Seidel method is like the Jacobi method,
except that in the Seidel method the model is further edited to substitute the predicted values into the solution
variables immediately after they are computed. The Seidel method thus differs from the other methods in that
the values of the solution variables are not fixed within an iteration. With the other methods, the order of the
equations in the model program makes no difference, but the Seidel method might work much differently
when the equations are specified in a different sequence. This fixed-point method is the traditional nonlinear
Seidel method found in the literature.

The iteration has the form

yiC1j D f. Oyi ; x;�/

where yiC1j is the jth equation variable at the ith iteration and

Oyi D .yiC11 ; yiC12 ; yiC13 ; : : : ; yiC1j�1; y
i
j ; y

i
jC1; : : : ; y

i
g/
0

If the model is recursive, and if the equations are in recursive order, the Seidel method converges at once.
If the model is block-recursive, the Seidel method might converge faster if the equations are grouped by
block and the blocks are placed in block-recursive order. The BLOCK option can be used to determine the
block-recursive form.

Jacobi and Seidel Methods with General Form Equations

Jacobi and Seidel solution methods support general form equations.

There are two cases where derivatives are (automatically) computed. The first case is for equations with the
solution variable on the right-hand side and on the left-hand side of the equation

yi D f .x; yi /

In this case the derivative of ERROR.y with respect to y is computed, and the new y approximation is
computed as

yiC1 D yi �
f .x; yi / � yi

@.f .x; yi / � yi /=@y
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The second case is a system of equations that contains one or more EQ.var equations. In this case, the
MODEL procedure assigns a unique solution variable to each equation if such an assignment exists. Use the
DETAILS option in the SOLVE statement to print a listing of the assigned variables.

Once the assignment is made, the new y approximation is computed as

yiC1 D yi �
f .x; yi / � yi

@.f .x; yi / � yi /=@y

If k is the number of general form equations, then k derivatives are required.

The convergence properties of the Jacobi and Seidel solution methods remain significantly poorer than the
default Newton’s method.

Comparison of Methods

Newton’s method is the default and should work better than the others for most small- to medium-sized
models. The Seidel method is always faster than the Jacobi for recursive models with equations in recursive
order. For very large models and some highly nonlinear smaller models, the Jacobi or Seidel methods can
sometimes be faster. Newton’s method uses more memory than the Jacobi or Seidel methods.

Both the Newton’s method and the Jacobi method are order-invariant in the sense that the order in which
equations are specified in the model program has no effect on the operation of the iterative solution process.
In order-invariant methods, the values of the solution variables are fixed for the entire execution of the
model program. Assignments to model variables are automatically changed to assignments to corresponding
equation variables. Only after the model program has completed execution are the results used to compute
the new solution values for the next iteration.

Troubleshooting Problems

In solving a simultaneous nonlinear dynamic model, you might encounter some of the following problems.

Missing Values
For SOLVE tasks, there can be no missing parameter values. Missing right-hand-side variables result in
missing left-hand-side variables for that observation.

Unstable Solutions
A solution might exist but be unstable. An unstable system can cause the Jacobi and Seidel methods to
diverge.

Explosive Dynamic Systems
A model might have well-behaved solutions at each observation but be dynamically unstable. The solution
might oscillate wildly or grow rapidly with time.

Propagation of Errors
During the solution process, solution variables can take on values that cause computational errors. For
example, a solution variable that appears in a LOG function might be positive at the solution but might be
given a negative value during one of the iterations. When computational errors occur, missing values are
generated and propagated, and the solution process might collapse.
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Convergence Problems

The following items can cause convergence problems:

� There are illegal function values ( for example
p
�1 ).

� There are local minima in the model equation.

� No solution exists.

� Multiple solutions exist.

� Initial values are too far from the solution.

� The CONVERGE= value is too small.

When PROC MODEL fails to find a solution to the system, the current iteration information and the program
data vector are printed. The simulation halts if actual values are not available for the simulation to proceed.
Consider the following program, which produces the output shown in Figure 25.87:

data test1;
do t=1 to 50;

x1 = sqrt(t) ;
y = .;
output;

end;

proc model data=test1;
exogenous x1 ;
control a1 -1 b1 -29 c1 -4 ;
y = a1 * sqrt(y) + b1 * x1 * x1 + c1 * lag(x1);
solve y / out=sim forecast dynamic ;

run;

Figure 25.87 SOLVE Convergence Problems

The MODEL Procedure
Dynamic Single-Equation Forecast

Error: Could not reduce norm of residuals in 10 subiterations.

Error: The solution failed because 1 equations are missing or have extreme values for observation 1 at NEWTON iteration 1.

Note: Additional information on the values of the variables at this observation, which may be helpful in determining the cause of the
failure of the solution process, is printed below.

Observation 1 Iteration 1 CC -1.000000

Missing 1

Iteration Errors - Missing.
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Figure 25.87 continued

                              The MODEL Procedure                               
                        Dynamic Single-Equation Forecast                        
                                                                                
                     --- Listing of Program Data Vector ---                     
   _N_:               12     ACTUAL.x1:    1.41421     ACTUAL.y:           .    
   ERROR.y:            .     PRED.y:             .     a1:                -1    
   b1:               -29     c1:                -4     x1:           1.41421    
   y:           -0.00109                                                        
   @PRED.y/@y:           .   @ERROR.y/@y:          .                            
                                                                                

Note: Check for missing input data or uninitialized lags.

(Note that the LAG and DIF functions return missing values for the initial lag starting
observations. This is a change from the 1982 and earlier versions of SAS/ETS which returned
zero for uninitialized lags.)

Note: Simulation aborted.

At the first observation, a solution to the following equation is attempted:

y D �
p
y � 62

There is no solution to this problem. The iterative solution process got as close as it could to making Y
negative while still being able to evaluate the model. This problem can be avoided in this case by altering the
equation.

In other models, the problem of missing values can be avoided by either altering the data set to provide better
starting values for the solution variables or by altering the equations.

You should be aware that, in general, a nonlinear system can have any number of solutions and the solution
found might not be the one that you want. When multiple solutions exist, the solution that is found is usually
determined by the starting values for the iterations. If the value from the input data set for a solution variable
is missing, the starting value for it is taken from the solution of the last period (if nonmissing) or else the
solution estimate is started at 0.

Iteration Output
The iteration output, produced by the ITPRINT option, is useful in determining the cause of a convergence
problem. The ITPRINT option forces the printing of the solution approximation and equation errors at each
iteration for each observation. A portion of the ITPRINT output from the following statements is shown in
Figure 25.88:

proc model data=test1;
exogenous x1 ;
control a1 -1 b1 -29 c1 -4 ;
y = a1 * sqrt(abs(y)) + b1 * x1 * x1 + c1 * lag(x1);
solve y / out=sim forecast dynamic itprint;

run;

For each iteration, the equation with the largest error is listed in parentheses after the Newton convergence
criteria measure. From this output you can determine which equation or equations in the system are not
converging well.
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Figure 25.88 SOLVE, ITPRINT Output

The MODEL Procedure
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Numerical Integration
The differential equation system is numerically integrated to obtain a solution for the derivative variables at
each data point. The integration is performed by evaluating the provided model at multiple points between
each data point. The integration method used is a variable order, variable step-size backward difference
scheme; for more detailed information, see Aiken (1985); Byrne and Hindmarsh (1975). The step size or time
step is chosen to satisfy a local truncation error requirement. The term truncation error comes from the fact
that the integration scheme uses a truncated series expansion of the integrated function to do the integration.
Because the series is truncated, the integration scheme is within the truncation error of the true value.

To further improve the accuracy of the integration, the total integration time is broken up into small intervals
(time steps or step sizes), and the integration scheme is applied to those intervals. The integration at each time
step uses the values computed at the previous time step so that the truncation error tends to accumulate. It is
usually not possible to estimate the global error with much precision. The best that can be done is to monitor
and to control the local truncation error, which is the truncation error committed at each time step relative to

d D max
0�t�T

.ky.t/k1; 1/

where y.t/ is the integrated variable. Furthermore, the y.t/s are dynamically scaled to within two orders of
magnitude of one to keep the error monitoring well-behaved.

The local truncation error requirement defaults to 1.0E–9. You can specify the LTEBOUND= option to
modify that requirement. The LTEBOUND= option is a relative measure of accuracy, so a value smaller than
1.0E–10 is usually not practical. A larger bound increases the speed of the simulation and estimation but
decreases the accuracy of the results. If the LTEBOUND= option is set too small, the integrator is not able to
take time steps small enough to satisfy the local truncation error requirement and still have enough machine
precision to compute the results. Since the integrations are scaled to within 1.0E–2 of one, the simulated
values should be correct to at least seven decimal places.

There is a default minimum time step of 1.0E–14. This minimum time step is controlled by the
MINTIMESTEP= option and the machine epsilon. If the minimum time step is smaller than the machine
epsilon times the final time value, the minimum time step is increased automatically.

For the points between each observation in the data set, the values for nonintegrated variables in the data
set are obtained from a linear interpolation from the two closest points. Lagged variables can be used with
integrations, but their values are discrete and are not interpolated between points. Lagging, therefore, can
then be used to input step functions into the integration.

The derivatives necessary for estimation (the gradient with respect to the parameters) and goal seeking (the
Jacobian) are computed by numerically integrating analytical derivatives. The accuracy of the derivatives is
controlled by the same integration techniques mentioned previously.
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Limitations
There are limitations to the types of differential equations that can be solved or estimated. One type is an
explosive differential equation (finite escape velocity) for which the following differential equation is an
example:

y
0

D a�y; a > 0

If this differential equation is integrated too far in time, y exceeds the maximum value allowed on the
computer, and the integration terminates.

Likewise, differential systems that are singular cannot be solved or estimated in general. For example,
consider the following differential system:

x
0

D �y
0

C 2x C 4y C exp.t/

y
0

D �x
0

C y C exp.4�t /

This system has an analytical solution, but an accurate numerical solution is very difficult to obtain. The
reason is that y

0

and x
0

cannot be isolated on the left-hand side of the equation. If the equation is modified
slightly to

x
0

D �y
0

C 2x C 4y C exp.t/

y
0

D x
0

C y C exp.4t/

then the system is nonsingular, but the integration process could still fail or be extremely slow. If the MODEL
procedure encounters either system, a warning message is issued.

This system can be rewritten as the following recursive system, which can be estimated and simulated
successfully with the MODEL procedure:

x
0

D 0:5y C 0:5exp.4t/C x C 1:5y � 0:5exp.t/

y
0

D x
0

C y C exp.4t/

Petzold (1982) mentions a class of differential algebraic equations that, when integrated numerically, could
produce incorrect or misleading results. An example of such a system is

y
0

2.t/ D y1.t/C g1.t/

0 D y2.t/C g2.t/

The analytical solution to this system depends on g and its derivatives at the current time only and not on its
initial value or past history. You should avoid systems of this and other similar forms mentioned in Petzold
(1982).
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SOLVE Data Sets

SDATA= Input Data Set

The SDATA= option reads a cross-equation covariance matrix from a data set. The covariance matrix read
from the SDATA= data set specified in the SOLVE statement is used to generate random equation errors
when the RANDOM= option specifies Monte Carlo simulation.

Typically, the SDATA= data set is created by the OUTS= option in a previous FIT statement. (The OUTS=
data set from a FIT statement can be read back in by a SOLVE statement in the same PROC MODEL step.)

You can create an input SDATA= data set by using the DATA step. PROC MODEL expects to find a character
variable _NAME_ in the SDATA= data set as well as variables for the equations in the estimation or solution.
For each observation with a _NAME_ value that matches the name of an equation, PROC MODEL fills the
corresponding row of the S matrix with the values of the names of equations found in the data set. If a row or
column is omitted from the data set, an identity matrix row or column is assumed. Missing values are ignored.
Since the S matrix is symmetric, you can include only a triangular part of the S matrix in the SDATA= data
set with the omitted part indicated by missing values. If the SDATA= data set contains multiple observations
with the same _NAME_, the last values supplied for the _NAME_ variable are used. For more information
about the format of this data set, see the section “OUTS= Data Set” on page 1591.

Use the TYPE= option to specify the type of estimation method used to produce the S matrix you want to
input.

ESTDATA= Input Data Set

The ESTDATA= option specifies an input data set that contains an observation with values for some or
all of the model parameters. It can also contain observations with the rows of a covariance matrix for the
parameters.

When the ESTDATA= option is used, parameter values are set from the first observation. If the RANDOM=
option is used and the ESTDATA= data set contains a covariance matrix, the covariance matrix of the
parameter estimates is read and used to generate pseudo-random shocks to the model parameters for Monte
Carlo simulation. These random perturbations have a multivariate normal distribution with the covariance
matrix read from the ESTDATA= data set.

The ESTDATA= data set is usually created by the OUTEST= option in a FIT statement. The OUTEST=
data set contains the parameter estimates produced by the FIT statement and also contains the estimated
covariance of the parameter estimates if the OUTCOV option is used. This OUTEST= data set can be read in
by the ESTDATA= option in a SOLVE statement.

You can also create an ESTDATA= data set with a SAS DATA step program. The data set must contain a
numeric variable for each parameter to be given a value or covariance column. The name of the variable in the
ESTDATA= data set must match the name of the parameter in the model. Parameters with names longer than
32 characters cannot be set from an ESTDATA= data set. The data set must also contain a character variable
_NAME_ of length 32. _NAME_ has a blank value for the observation that gives values to the parameters.
_NAME_ contains the name of a parameter for observations that define rows of the covariance matrix.

More than one set of parameter estimates and covariances can be stored in the ESTDATA= data set if the
observations for the different estimates are identified by the variable _TYPE_. _TYPE_ must be a character
variable of length eight. The TYPE= option is used to select for input the part of the ESTDATA= data set for
which the value of the _TYPE_ variable matches the value of the TYPE= option.
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OUT= Data Set

The OUT= data set contains solution values, residual values, and actual values of the solution variables.

The OUT= data set contains the following variables:

� BY variables

� RANGE variable

� ID variables

� _TYPE_, a character variable of length eight that identifies the type of observation. The _TYPE_
variable can be PREDICT, RESIDUAL, ACTUAL, or ERROR.

� _MODE_, a character variable of length eight that identifies the solution mode. _MODE_ takes the
value FORECAST or SIMULATE.

� if lags are used, a numeric variable, _LAG_, that contains the number of dynamic lags that contribute
to the solution. The value of _LAG_ is always zero for STATIC mode solutions. _LAG_ is set to a
missing value for lag-starting observations.

� if the RANDOM= option is used, _REP_, a numeric variable that contains the replication number.
For example, if RANDOM=10, each input observation results in eleven output observations with
_REP_ values 0 through 10. The observations with _REP_ = 0 are from the unperturbed solution. (The
random-number generator functions are suppressed, and the parameter and endogenous perturbations
are zero when _REP_ = 0.)

� _ERRORS_, a numeric variable that contains the number of errors that occurred during the execution
of the program for the last iteration for the observation. If the solution failed to converge, this is
counted as one error, and the _ERRORS_ variable is made negative.

� solution and other variables. The solution variables contain solution or predicted values for
_TYPE_=PREDICT observations, residuals for _TYPE_=RESIDUAL observations, or actual values
for _TYPE_=ACTUAL observations. The other model variables, and any other variables read from the
input data set, are always actual values from the input data set.

� any other variables named in the OUTVARS statement. These can be program variables computed
by the model program, CONTROL variables, parameters, or special variables in the model program.
Compound variable names longer than 32 characters are truncated in the OUT= data set.

By default, only the predicted values are written to the OUT= data set. The OUTRESID, OUTACTUAL, and
OUTERROR options are used to add the residual, actual, and ERROR. values, respectively, to the data set.

For examples of the OUT= data set, see Example 25.6.
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DATA= Input Data Set

The input data set should contain all of the exogenous variables and should supply nonmissing values for
them for each period to be solved.

Solution variables can be supplied in the input data set and are used as follows:

� to supply initial lags. For example, if the lag length of the model is three, three observations are read in
to feed the lags before any solutions are computed.

� to evaluate the goodness of fit. Goodness-of-fit measures are computed based on the difference between
the solved values and the actual values supplied from the data set.

� to supply starting values for the iterative solution. If the value from the input data set for a solution
variable is missing, the starting value for it is taken from the solution of the last period (if nonmissing)
or else the solution estimate is started at zero.

� for STATIC mode solutions, actual values from the data set are used by the lagging functions for the
solution variables.

� for FORECAST mode solutions, actual values from the data set are used as the solution values when
nonmissing.

Programming Language Overview: MODEL Procedure

Variables in the Model Program
Variable names are alphanumeric but must start with a letter. The length is limited to 32 characters.

PROC MODEL uses several classes of variables, and different variable classes are treated differently. The
variable class is controlled by declaration statements: the VAR, ENDOGENOUS, and EXOGENOUS
statements for model variables, the PARAMETERS statement for parameters, and the CONTROL statement
for control class variables. These declaration statements have several valid abbreviations. Various internal
variables are also made available to the model program to allow communication between the model program
and the procedure. RANGE, ID, and BY variables are also available to the model program. Those variables
not declared as any of the preceding classes are program variables.

Some classes of variables can be lagged; that is, their value at each observation is remembered, and previous
values can be referred to by the lagging functions. Other classes have only a single value and are not affected
by lagging functions. For example, parameters have only one value and are not affected by lagging functions;
therefore, if P is a parameter, DIFn (P) is always 0, and LAGn (P) is always the same as P for all values of n.

The different variable classes and their roles in the model are described in the following sections.
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Model Variables

Model variables are declared by VAR, ENDOGENOUS, or EXOGENOUS statements, or by FIT and SOLVE
statements. The model variables are the variables that the model is intended to explain or predict.

PROC MODEL enables you to use expressions on the left-hand side of the equal sign to define model
equations. For example, a log-linear model for Y can be written as

log( y ) = a + b * x;

Previously, only a variable name was allowed on the left-hand side of the equal sign.

The text on the left-hand side of the equation serves as the equation name used to identify the equation in
printed output, in the OUT= data sets, and in FIT or SOLVE statements. To refer to equations specified by
using left-hand side expressions (in the FIT statement, for example), place the left-hand side expression in
quotes. For example, the following statements fit a log-linear model to the dependent variable Y:

proc model data=in;
log( y ) = a + b * x;
fit "log(y)";

run;

The estimation and simulation is performed by transforming the models into general form equations. No
actual or predicted value is available for general form equations, so no R2 or adjusted R2 is computed.

Equation Variables

An equation variable is one of several special variables used by PROC MODEL to control the evaluation of
model equations. An equation variable name consists of one of the prefixes EQ, RESID, ERROR, PRED, or
ACTUAL, followed by a period and the name of a model equation.

Equation variable names can appear in parts of the PROC MODEL printed output, and they can be used in the
model program. For example, RESID-prefixed variables can be used in LAG functions to define equations
with moving-average error terms. For more information, see the section “Autoregressive Moving-Average
Error Processes” on page 1567.

For more information about the meaning of these prefixes, see the section “Equation Translations” on
page 1635.

Parameters

Parameters are variables that have the same value for each observation. Parameters can be given values or
can be estimated by fitting the model to data. During the SOLVE stage, parameters are treated as constants.
If no estimation is performed, the SOLVE stage uses the initial value provided in the ESTDATA= data set,
the MODEL= file, or in the PARAMETER statement, as the value of the parameter.

The PARAMETERS statement declares the parameters of the model. Parameters are not lagged, and they
cannot be changed by the model program.
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Control Variables

Control variables supply constant values to the model program that can be used to control the model in
various ways. The CONTROL statement declares control variables and specifies their values. A control
variable is like a parameter except that it has a fixed value and is not estimated from the data.

Control variables are not reinitialized before each pass through the data and can thus be used to retain values
between passes. You can use control variables to vary the program logic. Control variables are not affected
by lagging functions.

For example, if you have two versions of an equation for a variable Y, you could put both versions in the
model and, by using a CONTROL statement to select one of them, produce two different solutions to explore
the effect the choice of equation has on the model, as shown in the following statements:

select (case);
when (1) y = ...first version of equation... ;
when (2) y = ...second version of equation... ;

end;

control case 1;
solve / out=case1;
run;

control case 2;
solve / out=case2;
run;

RANGE, ID, and BY Variables

The RANGE statement controls the range of observations in the input data set that is processed by PROC
MODEL. The ID statement lists variables in the input data set that are used to identify observations in the
printout and in the output data set. The BY statement can be used to make PROC MODEL perform a separate
analysis for each BY group. The variable in the RANGE statement, the ID variables, and the BY variables
are available for the model program to examine, but their values should not be changed by the program. The
BY variables are not affected by lagging functions.

Internal Variables

You can use several internal variables in the model program to communicate with the procedure. For example,
if you want PROC MODEL to list the values of all the variables when more than 10 iterations are performed
and the procedure is past the 20th observation, you can write

if _obs_ > 20 then if _iter_ > 10 then _list_ = 1;

Internal variables are not affected by lagging functions, and they cannot be changed by the model program
except as noted. The following internal variables are available. The variables are all numeric except where
noted.

_ERRORS_ is a flag that is set to 0 at the start of program execution and is set to a nonzero value
whenever an error occurs. The program can also set the _ERRORS_ variable.

_ITER_ is the iteration number. For FIT tasks, the value of _ITER_ is negative for preliminary
grid-search passes. The iterative phase of the estimation starts with iteration 0. After the
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estimates have converged, a final pass is made to collect statistics with _ITER_ set to
a missing value. Note that at least one pass, and perhaps several subiteration passes as
well, is made for each iteration. For SOLVE tasks, _ITER_ counts the iterations used to
compute the simultaneous solution of the system.

_LAG_ is the number of dynamic lags that contribute to the solution at the current observation.
_LAG_ is always 0 for FIT tasks and for STATIC solutions. _LAG_ is set to a missing
value during the lag starting phase.

_LIST_ is a list flag that is set to 0 at the start of program execution. The program can set _LIST_
to a nonzero value to request a listing of the values of all the variables in the program after
the program has finished executing.

_METHOD_ is the solution method in use for SOLVE tasks. _METHOD_ is set to a blank value for
FIT tasks. _METHOD_ is a character-valued variable. Values are NEWTON, JACOBI,
SIEDEL, or ONEPASS.

_MODE_ takes the value ESTIMATE for FIT tasks and the value SIMULATE or FORECAST for
SOLVE tasks. _MODE_ is a character-valued variable.

_NMISS_ is the number of missing or otherwise unusable observations during the model estimation.
For FIT tasks, _NMISS_ is initially set to 0; at the start of each iteration, _NMISS_ is
set to the number of unusable observations for the previous iteration. For SOLVE tasks,
_NMISS_ is set to a missing value.

_NUSED_ is the number of nonmissing observations used in the estimation. For FIT tasks, PROC
MODEL initially sets _NUSED_ to the number of parameters; at the start of each iteration,
_NUSED_ is reset to the number of observations used in the previous iteration. For
SOLVE tasks, _NUSED_ is set to a missing value.

_OBS_ counts the observations being processed. _OBS_ is negative or 0 for observations in the
lag starting phase.

_REP_ is the replication number for Monte Carlo simulation when the RANDOM= option is
specified in the SOLVE statement. _REP_ is 0 when the RANDOM= option is not used
and for FIT tasks. When _REP_ = 0, the random-number generator functions always
return 0.

_WEIGHT_ is the weight of the observation. For FIT tasks, _WEIGHT_ provides a weight for the
observation in the estimation. _WEIGHT_ is initialized to 1.0 at the start of execution for
FIT tasks. For SOLVE tasks, _WEIGHT_ is ignored.

Program Variables

Variables not in any of the other classes are called program variables. Program variables are used to hold
intermediate results of calculations. Program variables are reinitialized to missing values before each
observation is processed. Program variables can be lagged. The RETAIN statement can be used to give
program variables initial values and enable them to keep their values between observations.
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Character Variables

PROC MODEL supports both numeric and character variables. Character variables are not involved in the
model specification but can be used to label observations, to write debugging messages, or for documentation
purposes. All variables are numeric unless they are the following:

� character variables in a DATA= SAS data set

� program variables assigned a character value

� declared to be character by a LENGTH or ATTRIB statement

Equation Translations
Equations written in normalized form are always automatically converted to general form equations. For
example, when a normalized form equation such as

y = a + b*x;

is encountered, it is translated into the equations

PRED.y = a + b*x;
RESID.y = PRED.y - ACTUAL.y;
ERROR.y = PRED.y - y;

If the same system is expressed as the following general form equation, then this equation is used unchanged:

EQ.y = y - (a + b*x);

This makes it easy to solve for arbitrary variables and to modify the error terms for autoregressive or moving
average models.

Use the LIST option to see how this transformation is performed. For example, the following statements
produce the listing shown in Figure 25.89:

proc model data=line list;
y = a1 + b1*x1 + c1*x2;
fit y;

run;

Figure 25.89 LIST Output

Equations Translation in PROC MODEL

The MODEL Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 4417:4 PRED.y = a1 + b1 * x1 + c1 * x2;

1 4417:4 RESID.y = PRED.y - ACTUAL.y;

1 4417:4 ERROR.y = PRED.y - y;
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PRED.Y is the predicted value of Y, and ACTUAL.Y is the value of Y in the data set. The predicted value
minus the actual value, RESID.Y, is then the error term, �, for the original Y equation. Note that the residuals
obtained from the OUTRESID option in the OUT= data set for both the FIT and SOLVE statements are
defined as actual � predicted , the negative of RESID.Y. For more information, see the section “Syntax:
MODEL Procedure” on page 1441. ACTUAL.Y and Y have the same value for parameter estimation. For
solve tasks, ACTUAL.Y is still the value of Y in the data set, but Y becomes the solved value—the value that
satisfies PRED.Y – Y = 0.

The following are the equation variable definitions:

EQ. The value of an EQ.-prefixed equation variable (normally used to define a general form
equation) represents the failure of the equation to hold. When the EQ.name variable is 0,
the name equation is satisfied.

RESID. The RESID.name variables represent the stochastic parts of the equations and are used
to define the objective function for the estimation process. A RESID.-prefixed equation
variable is like an EQ.-prefixed variable but makes it possible to use or transform the
stochastic part of the equation. The RESID. equation is used in place of the ERROR.
equation for model solutions if it has been reassigned or used in the equation.

ERROR. An ERROR.name variable is like an EQ.-prefixed variable, except that it is used only for
model solution and does not affect parameter estimation.

PRED. For a normalized form equation (specified by assignment to a model variable), the
PRED.name equation variable holds the predicted value, where name is the name of both
the model variable and the corresponding equation. (PRED.-prefixed variables are not
created for general form equations.)

ACTUAL. For a normalized form equation (specified by assignment to a model variable), the
ACTUAL.name equation variable holds the value of the name model variable read from
the input data set.

DERT. The DERT.name variable defines a differential equation. Once defined, it might be used
on the right-hand side of another equation.

H. The H.name variable specifies the functional form for the variance of the named equation.

GMM_H. This is created for H.vars and is the moment equation for the variance for GMM. This
variable is used only for GMM.

GMM_H.name = RESID.name**2 - H.name;

MSE. The MSE.y variable contains the value of the mean squared error for y at each iteration.
An MSE. variable is created for each dependent/endogenous variable in the model. These
variables can be used to specify the missing lagged values in the estimation and simulation
of GARCH type models.

demret = intercept ;
h.demret = arch0 +

arch1 * xlag( resid.demret ** 2, mse.demret) +
garch1 * xlag(h.demret, mse.demret) ;

NRESID. This is created for H.vars and is the normalized residual of the variable <name >. The
formula is
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NRESID.name = RESID.name/ sqrt(H.name);

The three equation variable prefixes, RESID., ERROR., and EQ. allow for control over the objective function
for the FIT, the SOLVE, or both the FIT and the SOLVE stages. For FIT tasks, PROC MODEL looks first
for a RESID.name variable for each equation. If defined, the RESID.-prefixed equation variable is used to
define the objective function for the parameter estimation process. Otherwise, PROC MODEL looks for an
EQ.-prefixed variable for the equation and uses it instead.

For SOLVE tasks, PROC MODEL looks first for an ERROR.name variable for each equation. If defined, the
ERROR.-prefixed equation variable is used for the solution process. Otherwise, PROC MODEL looks for an
EQ.-prefixed variable for the equation and uses it instead. To solve the simultaneous equation system, PROC
MODEL computes values of the solution variables (the model variables being solved for) that make all of the
ERROR.name and EQ.name variables close to 0.

Derivatives
Nonlinear modeling techniques require the calculation of derivatives of certain variables with respect to other
variables. The MODEL procedure includes an analytic differentiator that determines the model derivatives
and generates program code to compute these derivatives. When parameters are estimated, the MODEL
procedure takes the derivatives of the equation with respect to the parameters. When the model is solved,
Newton’s method requires the derivatives of the equations with respect to the variables solved for.

PROC MODEL uses exact mathematical formulas for derivatives of non-user-defined functions. For other
functions, numerical derivatives are computed and used.

The differentiator differentiates the entire model program, including the conditional logic and flow of control
statements. Delayed definitions, as when the LAG of a program variable is referred to before the variable is
assigned a value, are also differentiated correctly.

The differentiator includes optimization features that produce efficient code for the calculation of derivatives.
However, when flow of control statements such as GOTO statements are used, the optimization process
is impeded, and less efficient code for derivatives might be produced. Optimization is also reduced by
conditional statements, iterative DO loops, and multiple assignments to the same variable.

The table of derivatives is printed with the LISTDER option. The code generated for the computation of the
derivatives is printed with the LISTCODE option.

Derivative Variables

When the differentiator needs to generate code to evaluate the expression for the derivative of a variable,
the result is stored in a special derivative variable. Derivative variables are not created when the derivative
expression reduces to a previously computed result, a variable, or a constant. The names of derivative
variables, which might sometimes appear in the printed output, have the form @obj /@wrt, where obj is the
variable whose derivative is being taken and wrt is the variable that the differentiation is with respect to. For
example, the derivative variable for the derivative of Y with respect to X is named @Y/@X.

The derivative variables can be accessed or used as part of the model program using the GETDER() function.
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GETDER(x, a ) the derivative of x with respect to a

GETDER(x, a, b ) the second derivative of x with respect to a and b

The main purpose of the GETDER() function is for surfacing the derivatives so they can be stored in a data
set for further processing. Only derivatives that are implied by the problem are available to the GETDER()
function. When derivatives are requested that aren’t already created, a missing value will be returned. The
derivative of the GETDER() function is always zero so the results of the GETDER() function shouldn’t be
used in any of the equations in the FIT or the SOLVE statement.

The following example adds the gradient of the PRED.y value with respect to the parameters to the OUT=
data set:

proc model data=line ;
y = a1 + b1**2 *x1 + c1*x2;
Dy_a1 = getder(PRED.y,a1);
Dy_b1 = getder(PRED.y,b1);
Dy_c1 = getder(PRED.y,c1);
outvars Dy_a1 Dy_b1 Dy_c1;
fit y / out=grad;

run;

Mathematical Functions
The following is a brief summary of SAS functions that are useful for defining models. For additional
functions and details, see SAS Functions and CALL Routines: Reference. For information about creating new
functions, see the chapter “The FCMP Procedure” in the Base SAS Procedures Guide.

ABS(x) the absolute value of x

ARCOS(x) the arccosine in radians of x; x should be between –1 and 1.

ARSIN(x) the arcsine in radians of x; x should be between –1 and 1.

ATAN(x) the arctangent in radians of x

COS(x) the cosine of x; x is in radians.

COSH(x) the hyperbolic cosine of x

EXP(x) ex

LOG(x) the natural logarithm of x

LOG10(x) the log base ten of x

LOG2(x) the log base two of x

SIN(x) the sine of x; x is in radians.

SINH(x) the hyperbolic sine of x

SQRT(x) the square root of x

TAN(x) the tangent of x; x is in radians and is not an odd multiple of �=2.

TANH(x) the hyperbolic tangent of x

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Random-Number Functions

The MODEL procedure provides several functions for generating random numbers for Monte Carlo simula-
tion. These functions use the same generators as the corresponding SAS DATA step functions.

The following random number functions are supported: RANBIN, RANCAU, RAND, RANEXP, RANGAM,
RANNOR, RANPOI, RANTBL, RANTRI, and RANUNI. For more information, see SAS Functions and
CALL Routines: Reference.

Each reference to a random number function sets up a separate pseudo-random sequence. Note that this
means that two calls to the same random function with the same seed produce identical results. This is
different from the behavior of the random number functions used in the SAS DATA step. For example, the
following statements produce identical values for X and Y, but Z is from an independent pseudo-random
sequence:

x=rannor(123);
y=rannor(123);
z=rannor(567);
q=rand('BETA', 1, 12 );

For FIT tasks, all random number functions always return 0. For SOLVE tasks, when Monte Carlo simulation
is requested, a random number function computes a new random number on the first iteration for an
observation (if it is executed on that iteration) and returns that same value for all later iterations of that
observation. When Monte Carlo simulation is not requested, random number functions always return 0.

Functions across Time
PROC MODEL provides four types of special built-in functions that refer to the values of variables and
expressions in previous time periods. These functions have the following forms, where n represents the
number of periods, x is any expression, and the argument i is a variable or expression that gives the lag length
(0 <D i <D n). If the index value i is omitted, the maximum lag length n is used.

LAGn ( < i, > x ) returns the ith lag of x, where n is the maximum lag.

DIFn (x ) is the difference of x at lag n.

ZLAGn ( < i, > x ) returns the ith lag of x, where n is the maximum lag, with missing lags replaced with
zero.

XLAGn ( x, y ) returns the nth lag of x if x is nonmissing, or y if x is missing.

ZDIFn (x ) is the difference with lag length truncated and missing values converted to zero; x is the
variable or expression to compute the moving average of.

MOVAVGn( x ) is the moving average if Xt denotes the observation at time point t, to ensure compatibility
with the number n of observations used to calculate the moving average MOVAVGn, the
following definition is used:

MOVAVGn.Xt / D
Xt CXt�1 CXt�2 C � � � CXt�nC1

n

The moving average calculation for SAS 9.1 and earlier releases is as follows:

MOVAVGn.Xt / D
Xt CXt�1 CXt�2 C � � � CXt�n

nC 1

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lefunctionsref&docsetTarget=titlepage.htm
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Missing values of x are omitted in computing the average.

If you do not specify n, the number of periods is assumed to be one. For example, LAG(X) is the same as
LAG1(X). No more than four digits can be used with a lagging function; that is, LAG9999 is the greatest
LAG function, ZDIF9999 is the greatest ZDIF function, and so on.

The LAG functions get values from previous observations and make them available to the program. For
example, LAG(X) returns the value of the variable X as it was computed in the execution of the program
for the preceding observation. The expression LAG2(X+2*Y) returns the value of the expression X+2*Y,
computed by using the values of the variables X and Y that were computed by the execution of the program
for the observation two periods ago.

The DIF functions return the difference between the current value of a variable or expression and the value of
its LAG. For example, DIF2(X) is a short way of writing X–LAG2(X), and DIF15(SQRT(2*Z)) is a short
way of writing SQRT(2*Z)–LAG15(SQRT(2*Z)).

The ZLAG and ZDIF functions are like the LAG and DIF functions, but they are not counted in the
determination of the program lag length, and they replace missing values with 0s. The ZLAG function returns
the lagged value if the lagged value is nonmissing, or 0 if the lagged value is missing. The ZDIF function
returns the differenced value if the differenced value is nonmissing, or 0 if the value of the differenced value
is missing. The ZLAG function is especially useful for models with ARMA error processes. For more
information, see the next section.

Lag Logic

The LAG and DIF lagging functions in the MODEL procedure are different from the queuing functions
with the same names in the DATA step. Lags are determined by the final values that are set for the program
variables by the execution of the model program for the observation. This can have upsetting consequences
for programs that take lags of program variables that are given different values at various places in the
program, as shown in the following statements:

temp = x + w;
t = lag( temp );
temp = q - r;
s = lag( temp );

The expression LAG(TEMP) always refers to LAG(Q–R), never to LAG(X+W), since Q–R is the final value
assigned to the variable TEMP by the model program. If LAG(X+W) is wanted for T, it should be computed
as T=LAG(X+W) and not T=LAG(TEMP), as in the preceding example.

Care should also be exercised in using the DIF functions with program variables that might be reassigned
later in the program. For example, the program

temp = x ;
s = dif( temp );
temp = 3 * y;

computes values for S equivalent to

s = x - lag( 3 * y );

Note that in the preceding examples, TEMP is a program variable, not a model variable. If it were a model
variable, the assignments to it would be changed to assignments to a corresponding equation variable.
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Note that whereas LAG1(LAG1(X)) is the same as LAG2(X), DIF1(DIF1(X)) is not the same as DIF2(X). The
DIF2 function is the difference between the current period value at the point in the program where the function
is executed and the final value at the end of execution two periods ago; DIF2 is not the second difference.
In contrast, DIF1(DIF1(X)) is equal to DIF1(X)-LAG1(DIF1(X)), which equals X–2*LAG1(X)+LAG2(X),
which is the second difference of X.

More information about the differences between PROC MODEL and the DATA step LAG and DIF functions
is found in Chapter 4, “Working with Time Series Data.”

Lag Lengths

The lag length of the model program is the number of lags needed for any relevant equation. The program
lag length controls the number of observations used to initialize the lags.

PROC MODEL keeps track of the use of lags in the model program and automatically determines the lag
length of each equation and of the model as a whole. PROC MODEL sets the program lag length to the
maximum number of lags needed to compute any equation to be estimated, solved, or needed to compute any
instrument variable used.

In determining the lag length, the ZLAG and ZDIF functions are treated as always having a lag length of 0.
For example, if Y is computed as

y = lag2( x + zdif3( temp ) );

then Y has a lag length of 2 (regardless of how TEMP is defined). If Y is computed as

y = zlag2( x + dif3( temp ) );

then Y has a lag length of 0.

This is so that ARMA errors can be specified without causing the loss of additional observations to the lag
starting phase and so that recursive lag specifications, such as moving-average error terms, can be used.
Recursive lags are not permitted unless the ZLAG or ZDIF functions are used to truncate the lag length. For
example, the following statement produces an error message:

t = a + b * lag( t );

The program variable T depends recursively on its own lag, and the lag length of T is therefore undefined.

In the following equation, RESID.Y depends on the predicted value for the Y equation but the predicted value
for the Y equation depends on the LAG of RESID.Y, and thus the predicted value for the Y equation depends
recursively on its own lag:

y = yhat + ma * lag( resid.y );

The lag length is infinite, and PROC MODEL prints an error message and stops. Since this kind of
specification is allowed, the recursion must be truncated at some point. The ZLAG and ZDIF functions do
this.

The following equation is valid and results in a lag length for the Y equation equal to the lag length of YHAT:

y = yhat + ma * zlag( resid.y );

Initially, the lags of RESID.Y are missing, and the ZLAG function replaces the missing residuals with 0s,
their unconditional expected values.
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The ZLAG0 function can be used to zero out the lag length of an expression. ZLAG0(x ) returns the current
period value of the expression x, if nonmissing, or else returns 0, and prevents the lag length of x from
contributing to the lag length of the current statement.

Initializing Lags

At the start of each pass through the data set or BY group, the lag variables are set to missing values and an
initialization is performed to fill the lags. During this phase, observations are read from the data set, and
the model variables are given values from the data. If necessary, the model is executed to assign values to
program variables that are used in lagging functions. The results for variables used in lag functions are saved.
These observations are not included in the estimation or solution.

If, during the execution of the program for the lag starting phase, a lag function refers to lags that are missing,
the lag function returns missing. Execution errors that occur while starting the lags are not reported unless
requested. The modeling system automatically determines whether the program needs to be executed during
the lag starting phase.

If L is the maximum lag length of any equation being fit or solved, then the first L observations are used to
prime the lags. If a BY statement is used, the first L observations in the BY group are used to prime the lags.
If a RANGE statement is used, the first L observations prior to the first observation requested in the RANGE
statement are used to prime the lags. Therefore, there should be at least L observations in the data set.

Initial values for the lags of model variables can also be supplied in VAR, ENDOGENOUS, and EXOGE-
NOUS statements. This feature provides initial lags of solution variables for dynamic solution when initial
values for the solution variable are not available in the input data set. For example, the statement

var x 2 3 y 4 5 z 1;

feeds the initial lags exactly like these values in an input data set:

Lag X Y Z

2 3 5 .
1 2 4 1

If initial values for lags are available in the input data set and initial lag values are also given in a declaration
statement, the values in the VAR, ENDOGENOUS, or EXOGENOUS statements take priority.

The RANGE statement is used to control the range of observations in the input data set that are processed
by PROC MODEL. In the following statement, ‘01jan1924’ specifies the starting period of the range, and
‘01dec1943’ specifies the ending period:

range date = '01jan1924'd to '01dec1943'd;

The observations in the data set immediately prior to the start of the range are used to initialize the lags.
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Language Differences
For the most part, PROC MODEL programming statements work the same as they do in the DATA step as
documented in SAS DATA Step Statements: Reference. However, there are several differences that should be
noted.

DO Statement Differences

The DO statement in PROC MODEL does not allow a character index variable. Thus, the following DO
statement is not valid in PROC MODEL, although it is supported in the DATA step:

do i = 'A', 'B', 'C'; /* invalid PROC MODEL code */

IF Statement Differences

The IF statement in PROC MODEL does not allow a character-valued condition. For example, the following
IF statement is not supported by PROC MODEL:

if 'this' then statement;

Comparisons of character values are supported in IF statements, so the following IF statement is acceptable:

if 'this' < 'that' then statement;

PROC MODEL allows for embedded conditionals in expressions. For example the following two statements
are equivalent:

flag = if time = 1 or time = 2 then conc+30/5 + dose*time
else if time > 5 then (0=1) else (patient * flag);

if time = 1 or time = 2 then flag= conc+30/5 + dose*time;
else if time > 5 then flag=(0=1); else flag=patient*flag;

Note that the ELSE operator involves only the first object or token after it so that the following assignments
are not equivalent:

total = if sum > 0 then sum else sum + reserve;
total = if sum > 0 then sum else (sum + reserve);

The first assignment makes TOTAL always equal to SUM plus RESERVE.

PUT Statement Differences

The PUT statement, mostly used in PROC MODEL for program debugging, supports only some of the
features of the DATA step PUT statement. It also has some new features that the DATA step PUT statement
does not support.

The PROC MODEL PUT statement does not support line pointers, factored lists, iteration factors, overprinting,
the _INFILE_ option, or the colon (:) format modifier.

The PROC MODEL PUT statement does support expressions, but an expression must be enclosed in
parentheses. For example, the following statement prints the square root of x:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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put (sqrt(x));

Subscripted array names must be enclosed in parentheses. For example, the following statement prints the ith
element of the array A:

put (a i);

However, the following statement is an error:

put a i;

The PROC MODEL PUT statement supports the print item _PDV_ to print a formatted listing of all the
variables in the program. For example, the following statement prints a much more readable listing of the
variables than does the _ALL_ print item:

put _pdv_;

To print all the elements of the array A, use the following statement:

put a;

To print all the elements of A with each value labeled by the name of the element variable, use the following
statement:

put a=;

ABORT Statement Difference

In the MODEL procedure, the ABORT statement does not allow any arguments.

SELECT/WHEN/OTHERWISE Statement Differences

The WHEN and OTHERWISE statements allow more than one target statement. That is, DO groups are not
necessary for multiple statement WHENs. For example, in PROC MODEL, the following syntax is valid:

select;
when(exp1)

stmt1;
stmt2;

when(exp2)
stmt3;
stmt4;

end;

The ARRAY Statement

ARRAY arrayname < {dimensions} > < $ [length] > < variables and constants > ; ;

The ARRAY statement is used to associate a name with a list of variables and constants. The array name can
then be used with subscripts in the model program to refer to the items in the list.

In PROC MODEL, the ARRAY statement does not support all the features of the DATA step ARRAY
statement. Implicit indexing cannot be used; all array references must have explicit subscript expressions.
Only exact array dimensions are allowed; lower-bound specifications are not supported. A maximum of six
dimensions is allowed.
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On the other hand, the ARRAY statement supported by PROC MODEL does allow both variables and
constants to be used as array elements. You cannot make assignments to constant array elements. Both
dimension specification and the list of elements are optional, but at least one must be supplied. When the list
of elements is not given or fewer elements than the size of the array are listed, array variables are created by
suffixing element numbers to the array name to complete the element list.

The following are valid PROC MODEL array statements:

array x[120]; /* array X of length 120 */
array q[2,2]; /* Two dimensional array Q */
array b[4] va vb vc vd; /* B[2] = VB, B[4] = VD */
array x x1-x30; /* array X of length 30, X[7] = X7 */
array a[5] (1 2 3 4 5); /* array A initialized to 1,2,3,4,5 */

RETAIN Statement

RETAIN variables initial-values ;

The RETAIN statement causes a program variable to hold its value from a previous observation until the
variable is reassigned. The RETAIN statement can be used to initialize program variables.

The RETAIN statement does not work for model variables, parameters, or control variables because the values
of these variables are under the control of PROC MODEL and not programming statements. Use the PARMS
and CONTROL statements to initialize parameters and control variables. Use the VAR, ENDOGENOUS, or
EXOGENOUS statement to initialize model variables.

Storing Programs in Model Files
Models can be saved in and recalled from SAS catalog files as well as XML-based data sets. SAS catalogs
are special files that can store many kinds of data structures as separate units in one SAS file. Each separate
unit is called an entry, and each entry has an entry type that identifies its structure to the SAS system. Starting
with SAS 9.2, model files are being stored as SAS data sets instead of being stored as members of a SAS
catalog as in earlier releases. This makes MODEL files more readily extendable in the future and enables
Java-based applications to read the MODEL files directly. You can choose between the two formats by
specifying a global CMPMODEL option in an OPTIONS statement. Details are given below.

In general, to save a model, use the OUTMODEL=name option in the PROC MODEL statement, where
name is specified as libref.catalog.entry, libref.entry, or entry for catalog entry and, starting with SAS 9.2,
libref.datasetname or datasetname for XML-based SAS data sets. The libref, catalog, datasetnames and
entry names must be valid SAS names no more than 32 characters long. The catalog name is restricted to
seven characters on the CMS operating system. If not given, the catalog name defaults to MODELS, and the
libref defaults to WORK. The entry type is always MODEL. Thus, OUTMODEL=X writes the model to
the file WORK.MODELS.X.MODEL in the SAS catalog or creates a WORK.X XML-based data set in the
WORK library depending on the format chosen by using the CMPMODEL= option. By default, both these
formats are chosen.

The CMPMODEL= option can be used in an OPTIONS statement to modify the behavior when reading and
writing MODEL files. The values allowed are CMPMODEL= BOTH | XML | CATALOG. For example, the
following statements restore the previous behavior:
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options cmpmodel=catalog;

The CMPMODEL= option defaults to BOTH in SAS 9.2 and is intended for transitional use. If CMP-
MODEL=BOTH, the MODEL procedure writes both formats; when loading model files PROC MODEL
attempts to load the XML version first and the CATALOG version second (if the XML version is not
found). If CMPMODEL=XML, the MODEL procedure reads and writes only the XML format. If CMP-
MODEL=CATALOG, only the catalog format is used.

The MODEL= option is used to read in a model. A list of model files can be specified in the MODEL=
option, and a range of names with numeric suffixes can be given, as in MODEL=(MODEL1–MODEL10).
When more than one model file is given, the list must be placed in parentheses, as in MODEL=(A B C),
except in case of a single name. If more than one model file is specified, the files are combined in the order
listed in the MODEL= option.

The MODEL procedure continues to read and write catalog MODEL files, and model files created by previous
releases of SAS/ETS continue to work, so you should experience no direct impact from this change.

When the MODEL= option is specified in the PROC MODEL statement and model definition statements are
also given later in the PROC MODEL step, the model files are read in first, in the order listed, and the model
program specified in the PROC MODEL step is appended after the model program read from the MODEL=
files. The class that is assigned to a variable, when multiple model files are used, is the last declaration of that
variable. For example, if Y1 is declared endogenous in the model file M1 and exogenous in the model file
M2, the following statement causes Y1 to be declared exogenous:

proc model model=(m1 m2);

The INCLUDE statement can be used to append model code to the current model code. In contrast, when the
MODEL= option is specified in the RESET statement, the current model is deleted before the new model is
read.

By default, no model file is output if the PROC MODEL step performs any FIT or SOLVE tasks, or if the
MODEL= option or the NOSTORE option is specified. However, to ensure compatibility with previous
versions of SAS/ETS software, if the PROC MODEL step does nothing but compile the model program, no
input model file is read, and the NOSTORE option is not used, then a model file is written. This model file is
the default input file for a later PROC SYSLIN or PROC SIMLIN step. The default output model file name
in this case is WORK.MODELS._MODEL_.MODEL.

If FIT statements are used to estimate model parameters, the parameter estimates that are written to the output
model file are the estimates from the last estimation performed for each parameter.
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Macro Return Codes (SYSINFO)
The MODEL procedure stores a return code in the automatic macro variable SYSINFO upon completion of
the PROC MODEL step. In the event any FIT or SOLVE task fails to converge during the completion of a
PROC MODEL step, the value 1 is stored in the SYSINFO macro variable. Any subsequent SAS step resets
the value of SYSINFO.

Diagnostics and Debugging
PROC MODEL provides several features to aid in finding errors in the model program. These debugging
features are not usually needed; most models can be developed without them.

The example model program that follows is used in the following sections to illustrate the diagnostic and
debugging capabilities. This example is the estimation of a segmented model.

/*--- Diagnostics and Debugging ---*/

*---------Fitting a Segmented Model using MODEL----*
| | |
| y | quadratic plateau |
| | y=a+b*x+c*x*x y=p |
| | ..................... |
| | . : |
| | . : |
| | . : |
| | . : |
| | . : |
| +-----------------------------------------X |
| x0 |
| |
| continuity restriction: p=a+b*x0+c*x0**2 |
| smoothness restriction: 0=b+2*c*x0 so x0=-b/(2*c)|

*--------------------------------------------------*;
title 'QUADRATIC MODEL WITH PLATEAU';
data a;

input y x @@;
datalines;
.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7
.78 8 .70 9 .74 10 .77 11 .78 12 .74 13 .80 13
.80 15 .78 16
;

proc model data=a list xref listcode;
parms a 0.45 b 0.5 c -0.0025;

x0 = -.5*b / c; /* join point */
if x < x0 then /* Quadratic part of model */

y = a + b*x + c*x*x;
else /* Plateau part of model */

y = a + b*x0 + c*x0*x0;
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fit y;
run;

Program Listing

The LIST option produces a listing of the model program. The statements are printed one per line with the
original line number and column position of the statement.

The program listing from the example program is shown in Figure 25.90.

Figure 25.90 LIST Output for Segmented Model

QUADRATIC MODEL WITH PLATEAU

The MODEL Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 4464:4 x0 = (-0.5 * b) / c;

2 4465:4 if x < x0 then

3 4466:7 PRED.y = a + b * x + c * x * x;

3 4466:7 RESID.y = PRED.y - ACTUAL.y;

3 4466:7 ERROR.y = PRED.y - y;

4 4467:4 else

5 4468:7 PRED.y = a + b * x0 + c * x0 * x0;

5 4468:7 RESID.y = PRED.y - ACTUAL.y;

5 4468:7 ERROR.y = PRED.y - y;

The LIST option also shows the model translations that PROC MODEL performs. LIST output is useful for
understanding the code generated by the %AR and the %MA macros.

Cross-Reference

The XREF option produces a cross-reference listing of the variables in the model program. The XREF
listing is usually used in conjunction with the LIST option. The XREF listing does not include derivative
(@-prefixed) variables. The XREF listing does not include generated assignments to equation variables,
PRED., RESID., and ERROR.-prefixed variables, unless the DETAILS option is used.

The cross-reference from the example program is shown in Figure 25.91.
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Figure 25.91 XREF Output for Segmented Model

QUADRATIC MODEL WITH PLATEAU

The MODEL Procedure

Cross Reference Listing For Program

Symbol----------- Kind Type References (statement)/(line):(col)

a Var Num Used: 3/68492:13 5/68494:13

b Var Num Used: 1/68490:12 3/68492:16 5/68494:16

c Var Num Used: 1/68490:15 3/68492:22 5/68494:23

x0 Var Num Assigned: 1/68490:15

Used: 2/68491:11 5/68494:16 5/68494:23 5/68494:26

x Var Num Used: 2/68491:11 3/68492:16 3/68492:22 3/68492:24

PRED.y Var Num Assigned: 3/68492:19 5/68494:20

Compiler Listing

The LISTCODE option lists the model code and derivatives tables produced by the compiler. This listing is
useful only for debugging and should not normally be needed.

LISTCODE prints the operator and operands of each operation generated by the compiler for each model
program statement. Many of the operands are temporary variables generated by the compiler and given
names such as #temp1. When derivatives are taken, the code listing includes the operations generated for the
derivatives calculations. The derivatives tables are also listed.

A LISTCODE option prints the transformed equations from the example shown in Figure 25.92 and Fig-
ure 25.93.

Figure 25.92 LISTCODE Output for Segmented Model—Statements as Parsed

Derivatives

WRT-Variable Object-Variable Derivative-Variable

a RESID.y @RESID.y/@a

b RESID.y @RESID.y/@b

c RESID.y @RESID.y/@c
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Figure 25.92 continued

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 4464:4 x0 = (-0.5 * b) / c;

1 4464:4 @x0/@b = -0.5 / c;

1 4464:4 @x0/@c = - x0 / c;

2 4465:4 if x < x0 then

3 4466:7 PRED.y = a + b * x + c * x * x;

3 4466:7 @PRED.y/@a = 1;

3 4466:7 @PRED.y/@b = x;

3 4466:7 @PRED.y/@c = x * x;

3 4466:7 RESID.y = PRED.y - ACTUAL.y;

3 4466:7 @RESID.y/@a = @PRED.y/@a;

3 4466:7 @RESID.y/@b = @PRED.y/@b;

3 4466:7 @RESID.y/@c = @PRED.y/@c;

3 4466:7 ERROR.y = PRED.y - y;

4 4467:4 else

5 4468:7 PRED.y = a + b * x0 + c * x0 * x0;

5 4468:7 @PRED.y/@a = 1;

5 4468:7 @PRED.y/@b = x0 + b * @x0/@b + (c * @x0/@b * x0 + c * x0 * @x0/@b);

5 4468:7 @PRED.y/@c = b * @x0/@c + ((x0 + c * @x0/@c) * x0 + c * x0 * @x0/@c);

5 4468:7 RESID.y = PRED.y - ACTUAL.y;

5 4468:7 @RESID.y/@a = @PRED.y/@a;

5 4468:7 @RESID.y/@b = @PRED.y/@b;

5 4468:7 @RESID.y/@c = @PRED.y/@c;

5 4468:7 ERROR.y = PRED.y - y;
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Figure 25.93 LISTCODE Output for Segmented Model—Compiled Code

1 Stmt ASSIGN line 4464 column 4. (1) arg=x0 argsave=x0

Source Text: x0 = -.5*b / c;

Oper * at 4464:12 (30,0,2). * : ##dbl1 <- -0.5 b

Oper / at 4464:15 (31,0,2). / : x0 <- ##dbl1 c

Oper eeocf at 4464:15 (18,0,1). eeocf : _DER_ <- _DER_

Oper / at 4464:15 (31,0,2). / : @x0/@b <- -0.5 c

Oper - at 4464:15 (24,0,1). - : @1dt1_2 <- x0

Oper / at 4464:15 (31,0,2). / : @x0/@c <- @1dt1_2 c

2 Stmt IF line 4465 column 4. (2) arg=##dbl1 argsave=##dbl1 ref.st=ASSIGN stmt number 5 at 4468:7

Source Text: if x < x0 then

Oper < at 4465:11 (36,0,2). < : ##dbl1 <- x x0

3 Stmt ASSIGN line 4466 column 7. (1) arg=PRED.y argsave=y

Source Text: /* Quadratic part of model */ y = a + b*x + c*x*x;

Oper * at 4466:16 (30,0,2). * : ##dbl1 <- b x

Oper + at 4466:13 (32,0,2). + : ##dbl2 <- a ##dbl1

Oper * at 4466:22 (30,0,2). * : ##dbl3 <- c x

Oper * at 4466:24 (30,0,2). * : ##dbl4 <- ##dbl3 x

Oper + at 4466:19 (32,0,2). + : PRED.y <- ##dbl2 ##dbl4

Oper eeocf at 4466:19 (18,0,1). eeocf : _DER_ <- _DER_

Oper = at 4466:19 (1,0,1). = : @PRED.y/@a <- 1

Oper = at 4466:19 (1,0,1). = : @PRED.y/@b <- x

Oper * at 4466:24 (30,0,2). * : @1dt1_1 <- x x

Oper = at 4466:19 (1,0,1). = : @PRED.y/@c <- @1dt1_1

3 Stmt Assign line 4466 column 7. (1) arg=RESID.y argsave=y

Oper - at 4466:7 (33,0,2). - : RESID.y <- PRED.y ACTUAL.y

Oper eeocf at 4466:7 (18,0,1). eeocf : _DER_ <- _DER_

Oper = at 4466:7 (1,0,1). = : @RESID.y/@a <- @PRED.y/@a

Oper = at 4466:7 (1,0,1). = : @RESID.y/@b <- @PRED.y/@b

Oper = at 4466:7 (1,0,1). = : @RESID.y/@c <- @PRED.y/@c

3 Stmt Assign line 4466 column 7. (1) arg=ERROR.y argsave=y

Oper - at 4466:7 (33,0,2). - : ERROR.y <- PRED.y y

4 Stmt ELSE line 4467 column 4. (9) ref.st=FIT stmt number 5 at 4470:4

Source Text: else

5 Stmt ASSIGN line 4468 column 7. (1) arg=PRED.y argsave=y

Source Text: /* Plateau part of model */ y = a + b*x0 + c*x0*x0;

Oper * at 4468:16 (30,0,2). * : ##dbl1 <- b x0

Oper + at 4468:13 (32,0,2). + : ##dbl2 <- a ##dbl1

Oper * at 4468:23 (30,0,2). * : ##dbl3 <- c x0

Oper * at 4468:26 (30,0,2). * : ##dbl4 <- ##dbl3 x0

Oper + at 4468:20 (32,0,2). + : PRED.y <- ##dbl2 ##dbl4

Oper eeocf at 4468:20 (18,0,1). eeocf : _DER_ <- _DER_

Oper = at 4468:20 (1,0,1). = : @PRED.y/@a <- 1
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Figure 25.93 continued

Oper * at 4468:16 (30,0,2). * : @1dt1_1 <- b @x0/@b

Oper + at 4468:16 (32,0,2). + : @1dt1_2 <- x0 @1dt1_1

Oper * at 4468:23 (30,0,2). * : @1dt1_3 <- c @x0/@b

Oper * at 4468:26 (30,0,2). * : @1dt1_4 <- @1dt1_3 x0

Oper * at 4468:26 (30,0,2). * : @1dt1_5 <- ##dbl3 @x0/@b

Oper + at 4468:26 (32,0,2). + : @1dt1_6 <- @1dt1_4 @1dt1_5

Oper + at 4468:20 (32,0,2). + : @PRED.y/@b <- @1dt1_2 @1dt1_6

Oper * at 4468:16 (30,0,2). * : @1dt1_8 <- b @x0/@c

Oper * at 4468:23 (30,0,2). * : @1dt1_9 <- c @x0/@c

Oper + at 4468:23 (32,0,2). + : @1dt1_10 <- x0 @1dt1_9

Oper * at 4468:26 (30,0,2). * : @1dt1_11 <- @1dt1_10 x0

Oper * at 4468:26 (30,0,2). * : @1dt1_12 <- ##dbl3 @x0/@c

Oper + at 4468:26 (32,0,2). + : @1dt1_13 <- @1dt1_11 @1dt1_12

Oper + at 4468:20 (32,0,2). + : @PRED.y/@c <- @1dt1_8 @1dt1_13

5 Stmt Assign line 4468 column 7. (1) arg=RESID.y argsave=y

Oper - at 4468:7 (33,0,2). - : RESID.y <- PRED.y ACTUAL.y

Oper eeocf at 4468:7 (18,0,1). eeocf : _DER_ <- _DER_

Oper = at 4468:7 (1,0,1). = : @RESID.y/@a <- @PRED.y/@a

Oper = at 4468:7 (1,0,1). = : @RESID.y/@b <- @PRED.y/@b

Oper = at 4468:7 (1,0,1). = : @RESID.y/@c <- @PRED.y/@c

5 Stmt Assign line 4468 column 7. (1) arg=ERROR.y argsave=y

Oper - at 4468:7 (33,0,2). - : ERROR.y <- PRED.y y

Analyzing the Structure of Large Models
PROC MODEL provides several features to aid in analyzing the structure of the model program. These
features summarize properties of the model in various forms.

Simulation Dependency Analysis

During the development of model programs for simulation, misspecification of the equations or variables
that compose the systems of nonlinear equations is common. These misspecification errors can occur both
in the original formulation of the model and in the encoding of the model into PROC MODEL statements.
For large systems these errors can be difficult and time consuming to isolate and repair. Similarly, the
process of becoming familiar with an existing simulation model that is encoded in PROC MODEL can be
laborious when available documentation is insufficient to understand the model’s implementation. To address
these issues, the ANALYZEDEP= option can be applied to SOLVE steps to produce graphical analyses of a
model’s structure.

The graphical output that is produced by the ANALYZEDEP= option displays the results of two separate,
hierarchical analyses that are both based on the dependence of equations on solve variables in the nonlinear
system of equations. First, the system is partitioned to identify which equations overdetermine solve variables,
which equations underdetermine solve variables, and which equations consistently determine solve variables.
These three partitions of equations and their corresponding three partitions of solve variables are identified
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in the graphical output and listing produced by the ANALYZEDEP= option. Second, each partition from
the first analysis is analyzed to identify subpartitions of equations and solve variables such that all the solve
variables within each subpartition depend either directly or indirectly on one another. In the graphical output
the subpartitions are represented as blocks in a dependency matrix. The subpartition blocks are ordered so
that the matrix of dependencies has a block upper-triangular form.

The first-level partitioning of the system into underdetermined, overdetermined, and consistent systems of
equations and variables uses a Dulmage-Mendelsohn (DM) decomposition to define the three partitions,
following the work by Dulmage and Mendelsohn (1958); Pothen and Fan (1990). The overdetermining
equations in a DM decomposition are the set of all equations that do not have dependent variables on the
diagonal of any dependency matrix that contains the maximum possible number of entries on the diagonal.
The dependency matrices for a problem consist of the set of pairs of orderings of the problem’s equations and
solve variables. Correspondingly, the DM decomposition defines underdetermined variables as the set of all
variables that do not appear on the diagonal of any dependency matrix that contains the maximum number of
entries on the diagonal. Therefore, the DM decomposition is canonical in the sense that its partitioning of the
system is invariant to the order equations and variables are specified in the model program. The following
PROC MODEL statements illustrate how to partition a simple model with five equations and five unknowns:

proc model data=_null_;
endo a b c d e;

f(a) = 0;
g(a,b) = 0;
h(a,b) = 0;
i(b,d) = 0;
j(c,d,e) = 0;

solve / analyzedep=(block);
quit;
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Figure 25.94 Block Dependency Analysis

Figure 25.95 Block Partitions

Equation and Variable Blocks

Type Block Symbols

Underdetermined Eq 1
Var 1

j(c,d,e)
c e

Consistent Eq 2
Var 2

i(b,d)
d

Overdetermined Eq 3
Var 3

f(a) g(a,b) h(a,b)
a b

Figure 25.94 and Figure 25.95 illustrate which equations and variables belong to each block and which
blocks are in each partition. The cells that are marked “Nonzero” in the plot represent a dependency between
blocks that are above the diagonal in the dependency matrix. The exact functional forms of the equations in
this example are not shown; however, the dependency analysis here reveals that this model is structurally
singular because it contains overdetermined and underdetermined components. Some modification of the
model specification is necessary before a SOLVE step can be executed.

For large systems of equations, the graphical output that the ANALYZEDEP= option produces can be
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used as a starting point to explore dependency relationships when the models’ programming statement
listings and dependency tables are too long to read and comprehend. For example, one econometric model
of U.S. agriculture involves thousands of equation and variable dependencies whose structure is difficult
to interpret in textual listings of the model. If you examine the block triangular form of its dependency
matrix in Figure 25.96, one pattern of dependencies that becomes apparent is the vertical grouping of
block dependencies in the middle of the plot. Figure 25.97 shows the dependency matrix for this important
subpartition of equations and variables responsible for coupling the vertical grouping of blocks.

Figure 25.96 Block Triangular Form of U.S. Agriculture Model
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Figure 25.97 Important Component in U.S. Agriculture Model

Compared to the BLOCK and GRAPH options, the ANALYZEDEP= option has the following advantages:

� shows which equations and solve variables are overdetermined, consistent, and underdetermined

� works with any combination of normal form and general form equations

� can display dependency matrices involving many more equations and variables

� can be limited to a subset of the equations and variables in the model

The following Klein’s model program is used to introduce the LISTDEP, BLOCK, and GRAPH options:

proc model out=m data=klein listdep graph block;
endogenous c p w i x wsum k y;
exogenous wp g t year;
parms c0-c3 i0-i3 w0-w3;
a: c = c0 + c1 * p + c2 * lag(p) + c3 * wsum;
b: i = i0 + i1 * p + i2 * lag(p) + i3 * lag(k);
c: w = w0 + w1 * x + w2 * lag(x) + w3 * year;
x = c + i + g;
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y = c + i + g-t;
p = x-w-t;
k = lag(k) + i;
wsum = w + wp;
id year;

quit;

Dependency List

The LISTDEP option produces a dependency list for each variable in the model program. For each variable, a
list of variables that depend on it and a list of variables it depends on is given. The dependency list produced
by the example program is shown in Figure 25.98.
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Figure 25.98 A Portion of the LISTDEP Output for Klein’s Model

The MODEL Procedure

Dependency Listing For Program

Symbol----------- Dependencies

c Current values affect: RESID.c ERROR.c PRED.x RESID.x ERROR.x PRED.y RESID.y ERROR.y

p Current values affect: PRED.c RESID.c ERROR.c PRED.i RESID.i ERROR.i RESID.p ERROR.p

Lagged values affect: PRED.c PRED.i

w Current values affect: RESID.w ERROR.w PRED.p RESID.p ERROR.p PRED.wsum RESID.wsum ERROR.wsum

i Current values affect: RESID.i ERROR.i PRED.x RESID.x ERROR.x PRED.y RESID.y ERROR.y PRED.k RESID.k
ERROR.k

x Current values affect: PRED.w RESID.w ERROR.w RESID.x ERROR.x PRED.p RESID.p ERROR.p

Lagged values affect: PRED.w

wsum Current values affect: PRED.c RESID.c ERROR.c RESID.wsum ERROR.wsum

k Current values affect: RESID.k ERROR.k

Lagged values affect: PRED.i RESID.i ERROR.i PRED.k

y Current values affect: RESID.y ERROR.y

wp Current values affect: PRED.wsum RESID.wsum ERROR.wsum

g Current values affect: PRED.x RESID.x ERROR.x PRED.y RESID.y ERROR.y

t Current values affect: PRED.y RESID.y ERROR.y PRED.p RESID.p ERROR.p

year Current values affect: PRED.w RESID.w ERROR.w

c0 Current values affect: PRED.c RESID.c ERROR.c

c1 Current values affect: PRED.c RESID.c ERROR.c

c2 Current values affect: PRED.c RESID.c ERROR.c

c3 Current values affect: PRED.c RESID.c ERROR.c

i0 Current values affect: PRED.i RESID.i ERROR.i

i1 Current values affect: PRED.i RESID.i ERROR.i

i2 Current values affect: PRED.i RESID.i ERROR.i

i3 Current values affect: PRED.i RESID.i ERROR.i

w0 Current values affect: PRED.w RESID.w ERROR.w

w1 Current values affect: PRED.w RESID.w ERROR.w

w2 Current values affect: PRED.w RESID.w ERROR.w

w3 Current values affect: PRED.w RESID.w ERROR.w

PRED.c Depends on current values of: p wsum c0 c1 c2 c3

Depends on lagged values of: p

Current values affect: RESID.c ERROR.c

RESID.c Depends on current values of: PRED.c c p wsum c0 c1 c2 c3

ERROR.c Depends on current values of: PRED.c c p wsum c0 c1 c2 c3

ACTUAL.c Current values affect: RESID.c ERROR.c PRED.x RESID.x ERROR.x PRED.y RESID.y ERROR.y

PRED.i Depends on current values of: p i0 i1 i2 i3

Depends on lagged values of: p k

Current values affect: RESID.i ERROR.i

RESID.i Depends on current values of: PRED.i p i i0 i1 i2 i3

Depends on lagged values of: k

ERROR.i Depends on current values of: PRED.i p i i0 i1 i2 i3

Depends on lagged values of: k

ACTUAL.i Current values affect: RESID.i ERROR.i PRED.x RESID.x ERROR.x PRED.y RESID.y ERROR.y PRED.k RESID.k
ERROR.k

PRED.w Depends on current values of: x year w0 w1 w2 w3

Depends on lagged values of: x

Current values affect: RESID.w ERROR.w
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Figure 25.98 continued

The MODEL Procedure

Dependency Listing For Program

Symbol----------- Dependencies

RESID.w Depends on current values of: PRED.w w x year w0 w1 w2 w3

ERROR.w Depends on current values of: PRED.w w x year w0 w1 w2 w3

ACTUAL.w Current values affect: RESID.w ERROR.w PRED.p RESID.p ERROR.p PRED.wsum RESID.wsum ERROR.wsum

PRED.x Depends on current values of: c i g

Current values affect: RESID.x ERROR.x

RESID.x Depends on current values of: PRED.x c i x g

ERROR.x Depends on current values of: PRED.x c i x g

ACTUAL.x Current values affect: PRED.w RESID.w ERROR.w RESID.x ERROR.x PRED.p RESID.p ERROR.p

Lagged values affect: PRED.w

PRED.y Depends on current values of: c i g t

Current values affect: RESID.y ERROR.y

RESID.y Depends on current values of: PRED.y c i y g t

ERROR.y Depends on current values of: PRED.y c i y g t

ACTUAL.y Current values affect: RESID.y ERROR.y

PRED.p Depends on current values of: w x t

Current values affect: RESID.p ERROR.p

RESID.p Depends on current values of: PRED.p p w x t

ERROR.p Depends on current values of: PRED.p p w x t

ACTUAL.p Current values affect: PRED.c RESID.c ERROR.c PRED.i RESID.i ERROR.i RESID.p ERROR.p

Lagged values affect: PRED.c PRED.i

PRED.k Depends on current values of: i

Depends on lagged values of: k

Current values affect: RESID.k ERROR.k

RESID.k Depends on current values of: PRED.k i k

ERROR.k Depends on current values of: PRED.k i k

ACTUAL.k Current values affect: RESID.k ERROR.k

Lagged values affect: PRED.i RESID.i ERROR.i PRED.k

PRED.wsum Depends on current values of: w wp

Current values affect: RESID.wsum ERROR.wsum

RESID.wsum Depends on current values of: PRED.wsum w wsum wp

ERROR.wsum Depends on current values of: PRED.wsum w wsum wp

ACTUAL.wsum Current values affect: PRED.c RESID.c ERROR.c RESID.wsum ERROR.wsum

BLOCK Listing

The BLOCK option prints an analysis of the program variables based on the assignments in the model
program. The output produced by the example is shown in Figure 25.99.
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Figure 25.99 The BLOCK Output for Klein’s Model

The MODEL Procedure
Model Structure Analysis

(Based on Assignments to Endogenous Model Variables)

Exogenous Variables wp g t year

Endogenous Variables c p w i x wsum k y

Block Structure of
the System

Block 1 c p w i x wsum

Dependency Structure of the System

Block 1 Depends On All_Exogenous

k Depends On Block 1 All_Exogenous

y Depends On Block 1 All_Exogenous

One use for the block output is to put a model in recursive form. Simulations of the model can be done with
the SEIDEL method, which is efficient if the model is recursive and if the equations are in recursive order.
By examining the block output, you can determine how to reorder the model equations for the most efficient
simulation.

Adjacency Graph

The GRAPH option displays the same information as the BLOCK option with the addition of an adjacency
graph. An X in a column in an adjacency graph indicates that the variable associated with the row depends
on the variable associated with the column. The output produced by the example is shown in Figure 25.100.

The first and last graphs are straightforward. The middle graph represents the dependencies of the nonexoge-
nous variables after transitive closure has been performed (that is, A depends on B, and B depends on C, so A
depends on C). The preceding transitive closure matrix indicates that K and Y do not directly or indirectly
depend on each other.
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Figure 25.100 The GRAPH Output for Klein’s Model

Adjacency Matrix for Graph of System

Variable c p w i x wsum k y wp g t year

* * * *

c X X . . . X . . . . . .

p . X X . X . . . . . X .

w . . X . X . . . . . . X

i . X . X . . . . . . . .

x X . . X X . . . . X . .

wsum . . X . . X . . X . . .

k . . . X . . X . . . . .

y X . . X . . . X . X X .

wp * . . . . . . . . X . . .

g * . . . . . . . . . X . .

t * . . . . . . . . . . X .

year * . . . . . . . . . . . X

(Note: * = Exogenous Variable.)

Transitive Closure Matrix of Sorted
System

Block Variable c p w i x wsum k y

1 c X X X X X X . .

1 p X X X X X X . .

1 w X X X X X X . .

1 i X X X X X X . .

1 x X X X X X X . .

1 wsum X X X X X X . .

k X X X X X X X .

y X X X X X X . X

Adjacency Matrix for Graph of System Including Lagged
Impacts

Block Variable c p w i x wsum k y wp g t year

* * * *

1 c X L . . . X . . . . . .

1 p . X X . X . . . . . X .

1 w . . X . L . . . . . . X

1 i . L . X . . L . . . . .

1 x X . . X X . . . . X . .

1 wsum . . X . . X . . X . . .

k . . . X . . L . . . . .

y X . . X . . . X . X X .

wp * . . . . . . . . X . . .

g * . . . . . . . . . X . .

t * . . . . . . . . . . X .

year * . . . . . . . . . . . X

(Note: * = Exogenous Variable.)
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Examples: MODEL Procedure

Example 25.1: OLS Single Nonlinear Equation
This example illustrates the use of the MODEL procedure for nonlinear ordinary least squares (OLS)
regression. The model is a logistic growth curve for the population of the United States. The data are the
population in millions recorded at ten-year intervals starting in 1790 and ending in 2000. For an explanation
of the starting values given by the START= option, see the section “Troubleshooting Convergence Problems”
on page 1512. Portions of the output from the following statements are shown in Output 25.1.1 through
Output 25.1.3:

title 'Logistic Growth Curve Model of U.S. Population';
data uspop;

input pop :6.3 @@;
retain year 1780;
year=year+10;
label pop='U.S. Population in Millions';
datalines;

3929 5308 7239 9638 12866 17069 23191 31443 39818 50155
62947 75994 91972 105710 122775 131669 151325 179323 203211
226542 248710
;

proc model data=uspop;
label a = 'Maximum Population'

b = 'Location Parameter'
c = 'Initial Growth Rate';

pop = a / ( 1 + exp( b - c * (year-1790) ) );
fit pop start=(a 1000 b 5.5 c .02) / out=resid outresid;

run;

Output 25.1.1 Logistic Growth Curve Model Summary

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure

Model Summary

Model Variables 1

Parameters 3

Equations 1

Number of Statements 1

Model Variables pop

Parameters(Value) a(1000) b(5.5) c(0.02)

Equations pop

The Equation
to Estimate is

pop = F(a, b, c)
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Output 25.1.2 Logistic Growth Curve Estimation Summary

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure
OLS Estimation Summary

Data Set
Options

DATA= USPOP

OUT= RESID

Minimization Summary

Parameters Estimated 3

Method Gauss

Iterations 7

Subiterations 6

Average Subiterations 0.857143

Final Convergence
Criteria

R 0.00068

PPC(a) 0.000145

RPC(a) 0.001507

Object 0.000065

Trace(S) 19.20198

Objective Value 16.45884

Observations
Processed

Read 21

Solved 21

Output 25.1.3 Logistic Growth Curve Estimates

Logistic Growth Curve Model of U.S. Population

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

pop 3 18 345.6 19.2020 4.3820 0.9972 0.9969 U.S. Population in Millions

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

a 387.9307 30.0404 12.91 <.0001 Maximum Population

b 3.990385 0.0695 57.44 <.0001 Location Parameter

c 0.022703 0.00107 21.22 <.0001 Initial Growth Rate

The adjusted R2 value indicates the model fits the data well. There are only 21 observations and the model is
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nonlinear, so significance tests on the parameters are only approximate. The significance tests and associated
approximate probabilities indicate that all the parameters are significantly different from 0.

The FIT statement included the options OUT=RESID and OUTRESID so that the residuals from the
estimation are saved to the data set RESID. The residuals are plotted to check for heteroscedasticity by using
PROC SGPLOT as follows:

title2 "Residuals Plot";
proc sgplot data=resid;

refline 0;
scatter x=year y=pop / markerattrs=(symbol=circlefilled);
xaxis values=(1780 to 2000 by 20);

run;

The plot is shown in Output 25.1.4.

Output 25.1.4 Residual for Population Model (Actual–Predicted)

The residuals do not appear to be independent, and the model could be modified to explain the remaining
nonrandom errors.
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Example 25.2: A Consumer Demand Model
This example shows the estimation of a system of nonlinear consumer demand equations based on the translog
functional form by using seemingly unrelated regression (SUR). Expenditure shares and corresponding
normalized prices are given for three goods.

Since the shares add up to one, the system is singular; therefore, one equation is omitted from the estimation
process. The choice of which equation to omit is arbitrary. The nonlinear system is first estimated in
unrestricted form by the following statements:

title1 'Consumer Demand--Translog Functional Form';
title2 'Asymmetric Model';

proc model data=tlog1;
endogenous share1 share2;
parms a1 a2 b11 b12 b13 b21 b22 b23 b31 b32 b33;

bm1 = b11 + b21 + b31;
bm2 = b12 + b22 + b32;
bm3 = b13 + b23 + b33;
lp1 = log(p1);
lp2 = log(p2);
lp3 = log(p3);
share1 = ( a1 + b11 * lp1 + b12 * lp2 + b13 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
share2 = ( a2 + b21 * lp1 + b22 * lp2 + b23 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );

fit share1 share2
start=( a1 -.14 a2 -.45 b11 .03 b12 .47 b22 .98 b31 .20

b32 1.11 b33 .71 ) / outsused=smatrix sur;
run;

A portion of the printed output produced by this example is shown in Output 25.2.1 through Output 25.2.3.

Output 25.2.1 Translog Demand Model Summary

Consumer Demand--Translog Functional Form
Asymmetric Model

The MODEL Procedure

Model Summary

Model Variables 2

Endogenous 2

Parameters 11

Equations 2

Number of Statements 8

Model Variables share1 share2

Parameters(Value) a1(-0.14) a2(-0.45) b11(0.03) b12(0.47) b13 b21 b22(0.98) b23 b31(0.2) b32(1.11) b33(0.71)

Equations share1 share2
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Output 25.2.1 continued

The 2 Equations to Estimate

share1 = F(a1, b11, b12, b13, b21, b22, b23, b31, b32, b33)

share2 = F(a2, b11, b12, b13, b21, b22, b23, b31, b32, b33)

Output 25.2.2 Estimation Summary for the Unrestricted Model

NOTE: At SUR Iteration 2 CONVERGE=0.001 Criteria Met.

Consumer Demand--Translog Functional Form
Asymmetric Model

The MODEL Procedure
SUR Estimation Summary

Data Set Options

DATA= TLOG1

OUTSUSED= SMATRIX

Minimization Summary

Parameters Estimated 11

Method Gauss

Iterations 2

Final Convergence
Criteria

R 0.00016

PPC(b11) 0.00116

RPC(b11) 0.012106

Object 2.921E-6

Trace(S) 0.000078

Objective Value 1.749312

Observations
Processed

Read 44

Solved 44

Output 25.2.3 Estimation Results for the Unrestricted Model

Consumer Demand--Translog Functional Form
Asymmetric Model

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

share1 5.5 38.5 0.00166 0.000043 0.00656 0.8067 0.7841

share2 5.5 38.5 0.00135 0.000035 0.00592 0.9445 0.9380
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Output 25.2.3 continued

Nonlinear SUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a1 -0.14881 0.00225 -66.08 <.0001

a2 -0.45776 0.00297 -154.29 <.0001

b11 0.048382 0.0498 0.97 0.3379

b12 0.43655 0.0502 8.70 <.0001

b13 0.248588 0.0516 4.82 <.0001

b21 0.586326 0.2089 2.81 0.0079

b22 0.759776 0.2565 2.96 0.0052

b23 1.303821 0.2328 5.60 <.0001

b31 0.297808 0.1504 1.98 0.0550

b32 0.961551 0.1633 5.89 <.0001

b33 0.8291 0.1556 5.33 <.0001

Number of
Observations

Statistics for
System

Used 44 Objective 1.7493

Missing 0 Objective*N 76.9697

The model is then estimated under the restriction of symmetry (bij D bj i ), as shown in the following
statements:

title2 'Symmetric Model';
proc model data=tlog1;

var share1 share2 p1 p2 p3;
parms a1 a2 b11 b12 b22 b31 b32 b33;
bm1 = b11 + b12 + b31;
bm2 = b12 + b22 + b32;
bm3 = b31 + b32 + b33;
lp1 = log(p1);
lp2 = log(p2);
lp3 = log(p3);
share1 = ( a1 + b11 * lp1 + b12 * lp2 + b31 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
share2 = ( a2 + b12 * lp1 + b22 * lp2 + b32 * lp3 ) /

( -1 + bm1 * lp1 + bm2 * lp2 + bm3 * lp3 );
fit share1 share2

start=( a1 -.14 a2 -.45 b11 .03 b12 .47 b22 .98 b31 .20
b32 1.11 b33 .71 ) / sdata=smatrix sur;

run;

A portion of the printed output produced for the symmetry restricted model is shown in Output 25.2.4 and
Output 25.2.5.
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Output 25.2.4 Model Summary from the Restricted Model

Consumer Demand--Translog Functional Form
Symmetric Model

The MODEL Procedure

The 2 Equations to Estimate

share1 = F(a1, b11, b12, b22, b31, b32, b33)

share2 = F(a2, b11, b12, b22, b31, b32, b33)

Output 25.2.5 Estimation Results for the Restricted Model

Consumer Demand--Translog Functional Form
Symmetric Model

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

share1 4 40 0.00166 0.000041 0.00644 0.8066 0.7920

share2 4 40 0.00139 0.000035 0.00590 0.9428 0.9385

Nonlinear SUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a1 -0.14684 0.00135 -108.99 <.0001

a2 -0.4597 0.00167 -275.34 <.0001

b11 0.02886 0.00741 3.89 0.0004

b12 0.467827 0.0115 40.57 <.0001

b22 0.970079 0.0177 54.87 <.0001

b31 0.208143 0.00614 33.88 <.0001

b32 1.102415 0.0127 86.51 <.0001

b33 0.694245 0.0168 41.38 <.0001

Number of
Observations

Statistics for
System

Used 44 Objective 1.7820

Missing 0 Objective*N 78.4097

Hypothesis testing requires that the S matrix from the unrestricted model be imposed on the restricted model,
as explained in the section “Tests on Parameters” on page 1556. The S matrix saved in the data set SMATRIX
is requested by the SDATA= option.

A chi-square test is used to see if the hypothesis of symmetry is accepted or rejected. (Oc–Ou) has a chi-
square distribution asymptotically, where Oc is the constrained OBJECTIVE*N and Ou is the unconstrained
OBJECTIVE*N. The degrees of freedom is equal to the difference in the number of free parameters in the
two models.

In this example, Ou is 76.9697 and Oc is 78.4097, resulting in a difference of 1.44 with 3 degrees of freedom.
You can obtain the probability value by using the following statements:
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data _null_;
/* probchi( reduced-full, n-restrictions )*/
p = 1-probchi( 1.44, 3 );
put p=;

run;

The output from this DATA step run is p D 0:6961858724. With this p-value you cannot reject the hypothesis
of symmetry. This test is asymptotically valid.

Example 25.3: Vector AR(1) Estimation
This example shows the estimation of a two-variable vector AR(1) error process for the Grunfeld model
(Grunfeld and Griliches 1960) by using the %AR macro. First, the full model is estimated. Second, the
model is estimated with the restriction that the errors are univariate AR(1) instead of a vector process. The
following statements produce Output 25.3.1 through Output 25.3.5:

data grunfeld;
input year gei gef gec whi whf whc;
label gei = 'Gross Investment GE'

gec = 'Capital Stock Lagged GE'
gef = 'Value of Outstanding Shares GE Lagged'
whi = 'Gross Investment WH'
whc = 'Capital Stock Lagged WH'
whf = 'Value of Outstanding Shares Lagged WH';

datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8

... more lines ...

title1 'Example of Vector AR(1) Error Process Using Grunfeld''s Model';
/* Note: GE stands for General Electric

WH stands for Westinghouse */

proc model outmodel=grunmod;
var gei whi gef gec whf whc;
parms ge_int ge_f ge_c wh_int wh_f wh_c;
label ge_int = 'GE Intercept'

ge_f = 'GE Lagged Share Value Coef'
ge_c = 'GE Lagged Capital Stock Coef'
wh_int = 'WH Intercept'
wh_f = 'WH Lagged Share Value Coef'
wh_c = 'WH Lagged Capital Stock Coef';

gei = ge_int + ge_f * gef + ge_c * gec;
whi = wh_int + wh_f * whf + wh_c * whc;

run;

The preceding PROC MODEL step defines the structural model and stores it in the model file named
GRUNMOD.
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The following PROC MODEL step reads in the model, adds the vector autoregressive terms using %AR, and
requests SUR estimation by using the FIT statement:

title2 'With Unrestricted Vector AR(1) Error Process';

proc model data=grunfeld model=grunmod;
%ar( ar, 1, gei whi )
fit gei whi / sur;

run;

The final PROC MODEL step estimates the restricted model, as shown in the following statements:

title2 'With restricted AR(1) Error Process';

proc model data=grunfeld model=grunmod;
%ar( gei, 1 )
%ar( whi, 1)
fit gei whi / sur;

run;

Output 25.3.1 Model Summary for the Unrestricted Model

Example of Vector AR(1) Error Process Using Grunfeld's Model
With Unrestricted Vector AR(1) Error Process

The MODEL Procedure

Model Summary

Model Variables 6

Parameters 10

Equations 2

Number of Statements 7

Model Variables gei whi gef gec whf whc

Parameters(Value) ge_int ge_f ge_c wh_int wh_f wh_c ar_l1_1_1(0) ar_l1_1_2(0) ar_l1_2_1(0) ar_l1_2_2(0)

Equations gei whi

The 2 Equations to Estimate

gei = F(ge_int, ge_f, ge_c, wh_int, wh_f, wh_c, ar_l1_1_1, ar_l1_1_2)

whi = F(ge_int, ge_f, ge_c, wh_int, wh_f, wh_c, ar_l1_2_1, ar_l1_2_2)

NOTE: At SUR Iteration 9 CONVERGE=0.001 Criteria Met.

Output 25.3.2 Estimation Summary for the Unrestricted Model

Example of Vector AR(1) Error Process Using Grunfeld's Model
With Unrestricted Vector AR(1) Error Process

The MODEL Procedure
SUR Estimation Summary

Data Set Options

DATA= GRUNFELD
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Output 25.3.2 continued

Minimization Summary

Parameters Estimated 10

Method Gauss

Iterations 9

Final Convergence
Criteria

R 0.000609

PPC(wh_int) 0.002798

RPC(wh_int) 0.005411

Object 6.243E-7

Trace(S) 720.2454

Objective Value 1.374476

Observations
Processed

Read 20

Solved 20

Output 25.3.3 Estimation Results for the Unrestricted Model

Example of Vector AR(1) Error Process Using Grunfeld's Model
With Unrestricted Vector AR(1) Error Process

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

gei 5 15 9374.5 625.0 24.9993 0.7910 0.7352 Gross Investment GE

whi 5 15 1429.2 95.2807 9.7612 0.7940 0.7391 Gross Investment WH

Nonlinear SUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ge_int -42.2858 30.5284 -1.39 0.1863 GE Intercept

ge_f 0.049894 0.0153 3.27 0.0051 GE Lagged Share Value Coef

ge_c 0.123946 0.0458 2.70 0.0163 GE Lagged Capital Stock Coef

wh_int -4.68931 8.9678 -0.52 0.6087 WH Intercept

wh_f 0.068979 0.0182 3.80 0.0018 WH Lagged Share Value Coef

wh_c 0.019308 0.0754 0.26 0.8015 WH Lagged Capital Stock Coef

ar_l1_1_1 0.990902 0.3923 2.53 0.0233 AR(ar) gei: LAG1 parameter for gei

ar_l1_1_2 -1.56252 1.0882 -1.44 0.1716 AR(ar) gei: LAG1 parameter for whi

ar_l1_2_1 0.244161 0.1783 1.37 0.1910 AR(ar) whi: LAG1 parameter for gei

ar_l1_2_2 -0.23864 0.4957 -0.48 0.6372 AR(ar) whi: LAG1 parameter for whi
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Output 25.3.4 Model Summary for the Restricted Model

Example of Vector AR(1) Error Process Using Grunfeld's Model
With restricted AR(1) Error Process

The MODEL Procedure

Model Summary

Model Variables 6

Parameters 8

Equations 2

Number of Statements 7

Model Variables gei whi gef gec whf whc

Parameters(Value) ge_int ge_f ge_c wh_int wh_f wh_c gei_l1(0) whi_l1(0)

Equations gei whi

Output 25.3.5 Estimation Results for the Restricted Model

Example of Vector AR(1) Error Process Using Grunfeld's Model
With restricted AR(1) Error Process

The MODEL Procedure

Nonlinear SUR Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

gei 4 16 10558.8 659.9 25.6890 0.7646 0.7204 Gross Investment GE

whi 4 16 1669.8 104.4 10.2157 0.7594 0.7142 Gross Investment WH

Nonlinear SUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ge_int -30.1239 29.7227 -1.01 0.3259 GE Intercept

ge_f 0.043527 0.0149 2.93 0.0099 GE Lagged Share Value Coef

ge_c 0.119206 0.0423 2.82 0.0124 GE Lagged Capital Stock Coef

wh_int 3.112671 9.2765 0.34 0.7416 WH Intercept

wh_f 0.053932 0.0154 3.50 0.0029 WH Lagged Share Value Coef

wh_c 0.038246 0.0805 0.48 0.6410 WH Lagged Capital Stock Coef

gei_l1 0.482397 0.2149 2.24 0.0393 AR(gei) gei lag1 parameter

whi_l1 0.455711 0.2424 1.88 0.0784 AR(whi) whi lag1 parameter
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Example 25.4: MA(1) Estimation
This example estimates parameters for an MA(1) error process for the Grunfeld model, using both the
unconditional least squares and the maximum likelihood methods. The ARIMA procedure estimates for
Westinghouse equation are shown for comparison. The output of the following statements is summarized in
Output 25.4.1:

proc model outmodel=grunmod;
var gei whi gef gec whf whc;
parms ge_int ge_f ge_c wh_int wh_f wh_c;
label ge_int = 'GE Intercept'

ge_f = 'GE Lagged Share Value Coef'
ge_c = 'GE Lagged Capital Stock Coef'
wh_int = 'WH Intercept'
wh_f = 'WH Lagged Share Value Coef'
wh_c = 'WH Lagged Capital Stock Coef';

gei = ge_int + ge_f * gef + ge_c * gec;
whi = wh_int + wh_f * whf + wh_c * whc;

run;

title1 'Example of MA(1) Error Process Using Grunfeld''s Model';
title2 'MA(1) Error Process Using Unconditional Least Squares';

proc model data=grunfeld model=grunmod;
%ma(gei,1, m=uls);
%ma(whi,1, m=uls);
fit whi gei start=( gei_m1 0.8 -0.8) / startiter=2;

run;

Output 25.4.1 PROC MODEL Results by Using ULS Estimation

Example of MA(1) Error Process Using Grunfeld's Model
MA(1) Error Process Using Unconditional Least Squares

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

whi 4 16 1874.0 117.1 10.8224 0.7299 0.6793 Gross Investment WH

resid.whi 16 1295.6 80.9754 8.9986 Gross Investment WH

gei 4 16 13835.0 864.7 29.4055 0.6915 0.6337 Gross Investment GE

resid.gei 16 7646.2 477.9 21.8607 Gross Investment GE
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Output 25.4.1 continued

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ge_int -26.839 32.0908 -0.84 0.4153 GE Intercept

ge_f 0.038226 0.0150 2.54 0.0217 GE Lagged Share Value Coef

ge_c 0.137099 0.0352 3.90 0.0013 GE Lagged Capital Stock Coef

wh_int 3.680835 9.5448 0.39 0.7048 WH Intercept

wh_f 0.049156 0.0172 2.85 0.0115 WH Lagged Share Value Coef

wh_c 0.067271 0.0708 0.95 0.3559 WH Lagged Capital Stock Coef

gei_m1 -0.87615 0.1614 -5.43 <.0001 MA(gei) gei lag1 parameter

whi_m1 -0.75001 0.2368 -3.17 0.0060 MA(whi) whi lag1 parameter

The estimation summary from the following PROC ARIMA statements is shown in Output 25.4.2:

title2 'PROC ARIMA Using Unconditional Least Squares';

proc arima data=grunfeld;
identify var=whi cross=(whf whc ) noprint;
estimate q=1 input=(whf whc) method=uls maxiter=40;

run;

Output 25.4.2 PROC ARIMA Results by Using ULS Estimation

Example of MA(1) Error Process Using Grunfeld's Model
PROC ARIMA Using Unconditional Least Squares

The ARIMA Procedure

Unconditional Least Squares Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag Variable Shift

MU 3.68608 9.54425 0.39 0.7044 0 whi 0

MA1,1 -0.75005 0.23704 -3.16 0.0060 1 whi 0

NUM1 0.04914 0.01723 2.85 0.0115 0 whf 0

NUM2 0.06731 0.07077 0.95 0.3557 0 whc 0

Constant Estimate 3.686077

Variance Estimate 80.97535

Std Error Estimate 8.998631

AIC 149.0044

SBC 152.9873

Number of Residuals 20

The model stored in Example 25.3 is read in by using the MODEL= option and the moving-average terms
are added using the %MA macro.

The MA(1) model using maximum likelihood is estimated by using the following statements:
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title2 'MA(1) Error Process Using Maximum Likelihood ';

proc model data=grunfeld model=grunmod;
%ma(gei,1, m=ml);
%ma(whi,1, m=ml);
fit whi gei;

run;

For comparison, the model is estimated by using PROC ARIMA as follows:

title2 'PROC ARIMA Using Maximum Likelihood ';

proc arima data=grunfeld;
identify var=whi cross=(whf whc) noprint;
estimate q=1 input=(whf whc) method=ml;

run;

PROC ARIMA does not estimate systems, so only one equation is evaluated.

The estimation results are shown in Output 25.4.3 and Output 25.4.4. The small differences in the parameter
values between PROC MODEL and PROC ARIMA can be eliminated by tightening the convergence criteria
for both procedures.

Output 25.4.3 PROC MODEL Results by Using ML Estimation

Example of MA(1) Error Process Using Grunfeld's Model
MA(1) Error Process Using Maximum Likelihood

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

whi 4 16 1857.5 116.1 10.7746 0.7323 0.6821 Gross Investment WH

resid.whi 16 1344.0 84.0012 9.1652 Gross Investment WH

gei 4 16 13742.5 858.9 29.3071 0.6936 0.6361 Gross Investment GE

resid.gei 16 8095.3 506.0 22.4935 Gross Investment GE

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

ge_int -25.002 34.2933 -0.73 0.4765 GE Intercept

ge_f 0.03712 0.0161 2.30 0.0351 GE Lagged Share Value Coef

ge_c 0.137788 0.0380 3.63 0.0023 GE Lagged Capital Stock Coef

wh_int 2.946761 9.5638 0.31 0.7620 WH Intercept

wh_f 0.050395 0.0174 2.89 0.0106 WH Lagged Share Value Coef

wh_c 0.066531 0.0729 0.91 0.3749 WH Lagged Capital Stock Coef

gei_m1 -0.78516 0.1942 -4.04 0.0009 MA(gei) gei lag1 parameter

whi_m1 -0.69389 0.2540 -2.73 0.0148 MA(whi) whi lag1 parameter
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Output 25.4.4 PROC ARIMA Results by Using ML Estimation

Example of MA(1) Error Process Using Grunfeld's Model
PROC ARIMA Using Maximum Likelihood

The ARIMA Procedure

Maximum Likelihood Estimation

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t| Lag Variable Shift

MU 2.95645 9.20752 0.32 0.7481 0 whi 0

MA1,1 -0.69305 0.25307 -2.74 0.0062 1 whi 0

NUM1 0.05036 0.01686 2.99 0.0028 0 whf 0

NUM2 0.06672 0.06939 0.96 0.3363 0 whc 0

Constant Estimate 2.956449

Variance Estimate 81.29645

Std Error Estimate 9.016455

AIC 148.9113

SBC 152.8942

Number of Residuals 20

Example 25.5: Polynomial Distributed Lags by Using %PDL
This example shows the use of the %PDL macro for polynomial distributed lag models. Simulated data
are generated so that Y is a linear function of six lags of X, with the lag coefficients following a quadratic
polynomial. The model is estimated by using a fourth-degree polynomial, both with and without endpoint
constraints. The example uses simulated data generated from the following model:

yt D 10C

6X
zD0

f .z/xt�z C �

f .z/ D �5z2 C 1:5z

The LIST option prints the model statements added by the %PDL macro. The following statements generate
simulated data as shown:

/*--------------------------------------------------------------*/
/* Generate Simulated Data for a Linear Model with a PDL on X */
/* y = 10 + x(6,2) + e */
/* pdl(x) = -5.*(lg)**2 + 1.5*(lg) + 0. */
/*--------------------------------------------------------------*/
data pdl;

pdl2=-5.; pdl1=1.5; pdl0=0;
array zz(i) z0-z6;
do i=1 to 7;

z=i-1;
zz=pdl2*z**2 + pdl1*z + pdl0;
end;

do n=-11 to 30;
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x =10*ranuni(1234567)-5;
pdl=z0*x + z1*xl1 + z2*xl2 + z3*xl3 + z4*xl4 + z5*xl5 + z6*xl6;
e =10*rannor(1234567);
y =10+pdl+e;
if n>=1 then output;
xl6=xl5; xl5=xl4; xl4=xl3; xl3=xl2; xl2=xl1; xl1=x;
end;

run;

title1 'Polynomial Distributed Lag Example';
title3 'Estimation of PDL(6,4) Model-- No Endpoint Restrictions';

proc model data=pdl;
parms int; /* declare the intercept parameter */
%pdl( xpdl, 6, 4 ) /* declare the lag distribution */
y = int + %pdl( xpdl, x ); /* define the model equation */
fit y / list; /* estimate the parameters */

run;

The LIST output for the model without endpoint restrictions is shown in Output 25.5.1. The first seven
statements in the generated program are the polynomial expressions for lag parameters XPDL_L0 through
XPDL_L6. The estimated parameters are INT, XPDL_0, XPDL_1, XPDL_2, XPDL_3, and XPDL_4.

Output 25.5.1 PROC MODEL Listing of Generated Program

Polynomial Distributed Lag Example

Estimation of PDL(6,4) Model-- No Endpoint Restrictions

The MODEL Procedure

Listing of Compiled Program Code

Stmt Line:Col Statement as Parsed

1 4945:14 XPDL_L0 = XPDL_0;

2 4945:14 XPDL_L1 = XPDL_0 + XPDL_1 + XPDL_2 + XPDL_3 + XPDL_4;

3 4945:14 XPDL_L2 = XPDL_0 + XPDL_1 * 2 + XPDL_2 * 2 ** 2 + XPDL_3 * 2 ** 3 + XPDL_4 * 2 ** 4;

4 4945:14 XPDL_L3 = XPDL_0 + XPDL_1 * 3 + XPDL_2 * 3 ** 2 + XPDL_3 * 3 ** 3 + XPDL_4 * 3 ** 4;

5 4945:14 XPDL_L4 = XPDL_0 + XPDL_1 * 4 + XPDL_2 * 4 ** 2 + XPDL_3 * 4 ** 3 + XPDL_4 * 4 ** 4;

6 4945:14 XPDL_L5 = XPDL_0 + XPDL_1 * 5 + XPDL_2 * 5 ** 2 + XPDL_3 * 5 ** 3 + XPDL_4 * 5 ** 4;

7 4945:14 XPDL_L6 = XPDL_0 + XPDL_1 * 6 + XPDL_2 * 6 ** 2 + XPDL_3 * 6 ** 3 + XPDL_4 * 6 ** 4;

8 4946:4 PRED.y = int + XPDL_L0 * x + XPDL_L1 * LAG1( x ) + XPDL_L2 * LAG2( x ) + XPDL_L3 * LAG3(
x ) + XPDL_L4 * LAG4( x ) + XPDL_L5 * LAG5( x ) + XPDL_L6 * LAG6( x );

8 4946:4 RESID.y = PRED.y - ACTUAL.y;

8 4946:4 ERROR.y = PRED.y - y;

9 4945:15 ESTIMATE XPDL_L0, XPDL_L1, XPDL_L2, XPDL_L3, XPDL_L4, XPDL_L5, XPDL_L6;

10 4945:15 _est0 = XPDL_L0;

11 4945:15 _est1 = XPDL_L1;

12 4945:15 _est2 = XPDL_L2;

13 4945:15 _est3 = XPDL_L3;

14 4945:15 _est4 = XPDL_L4;

15 4945:15 _est5 = XPDL_L5;

16 4945:14 _est6 = XPDL_L6;
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The FIT results for the model without endpoint restrictions are shown in Output 25.5.2.

Output 25.5.2 PROC MODEL Results That Specify No Endpoint Restrictions

Polynomial Distributed Lag Example

Estimation of PDL(6,4) Model-- No Endpoint Restrictions

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

y 6 18 2070.8 115.0 10.7259 0.9998 0.9998

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

int 9.621969 2.3238 4.14 0.0006

XPDL_0 0.084374 0.7587 0.11 0.9127 PDL(XPDL,6,4) parameter for (L)**0

XPDL_1 0.749956 2.0936 0.36 0.7244 PDL(XPDL,6,4) parameter for (L)**1

XPDL_2 -4.196 1.6215 -2.59 0.0186 PDL(XPDL,6,4) parameter for (L)**2

XPDL_3 -0.21489 0.4253 -0.51 0.6195 PDL(XPDL,6,4) parameter for (L)**3

XPDL_4 0.016133 0.0353 0.46 0.6528 PDL(XPDL,6,4) parameter for (L)**4

Portions of the output produced by the following PDL model with endpoints of the model restricted to zero
are presented in Output 25.5.3:

title3 'Estimation of PDL(6,4) Model-- Both Endpoint Restrictions';

proc model data=pdl ;
parms int; /* declare the intercept parameter */
%pdl( xpdl, 6, 4, r=both ) /* declare the lag distribution */
y = int + %pdl( xpdl, x ); /* define the model equation */
fit y /list; /* estimate the parameters */

run;

Output 25.5.3 PROC MODEL Results Specifying Both Endpoint Restrictions

Polynomial Distributed Lag Example

Estimation of PDL(6,4) Model-- Both Endpoint Restrictions

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

y 4 20 449868 22493.4 150.0 0.9596 0.9535
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Output 25.5.3 continued

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

int 17.08581 32.4032 0.53 0.6038

XPDL_2 13.88433 5.4361 2.55 0.0189 PDL(XPDL,6,4) parameter for (L)**2

XPDL_3 -9.3535 1.7602 -5.31 <.0001 PDL(XPDL,6,4) parameter for (L)**3

XPDL_4 1.032421 0.1471 7.02 <.0001 PDL(XPDL,6,4) parameter for (L)**4

Note that XPDL_0 and XPDL_1 are not shown in the estimate summary. They were used to satisfy the
endpoint restrictions analytically by the generated %PDL macro code. Their values can be determined by
back substitution.

To estimate the PDL model with one or more of the polynomial terms dropped, specify the largest degree of
the polynomial desired with the %PDL macro and use the DROP= option in the FIT statement to remove
the unwanted terms. The dropped parameters should be set to 0. The following PROC MODEL statements
demonstrate estimation with a PDL of degree 2 without the 0th order term:

title3 'Estimation of PDL(6,2) Model -- With XPDL_0 Dropped';

proc model data=pdl list;
parms int; /* declare the intercept parameter */
%pdl( xpdl, 6, 2 ) /* declare the lag distribution */
y = int + %pdl( xpdl, x ); /* define the model equation */
xpdl_0 =0;
fit y drop=xpdl_0; /* estimate the parameters */

run;

The results from this estimation are shown in Output 25.5.4.

Output 25.5.4 PROC MODEL Results That Specify %PDL( XPDL, 6, 2)

Polynomial Distributed Lag Example

Estimation of PDL(6,2) Model -- With XPDL_0 Dropped

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

y 3 21 2114.1 100.7 10.0335 0.9998 0.9998

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

int 9.536382 2.1685 4.40 0.0003

XPDL_1 1.883315 0.3159 5.96 <.0001 PDL(XPDL,6,2) parameter for (L)**1

XPDL_2 -5.08827 0.0656 -77.56 <.0001 PDL(XPDL,6,2) parameter for (L)**2
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Example 25.6: General Form Equations
Data for this example are generated. General form equations are estimated and forecast by using PROC
MODEL. The system is a basic supply and demand model.

The following statements specify the form of the model:

title1 "General Form Equations for Supply-Demand Model";

proc model outmodel=model;
var price quantity income unitcost;
parms d0-d2 s0-s2;
eq.demand=d0+d1*price+d2*income-quantity;
eq.supply=s0+s1*price+s2*unitcost-quantity;

run;

Three data sets are used in this example. The first data set, HISTORY, is used to estimate the parameters
of the model. The ASSUME data set is used to produce a forecast of price and quantity. Notice that the
ASSUME data set does not need to contain the variables PRICE and QUANTITY. The HISTORY data set is
shown as follows:

data history;
input year income unitcost price quantity;

datalines;
1976 2221.87 3.31220 0.17903 266.714
1977 2254.77 3.61647 0.06757 276.049
1978 2285.16 2.21601 0.82916 285.858

... more lines ...

The ASSUME data set is shown as follows:

data assume;
input year income unitcost;

datalines;
1986 2571.87 2.31220
1987 2609.12 2.45633
1988 2639.77 2.51647
1989 2667.77 1.65617
1990 2705.16 1.01601
;

The third data set, GOAL, used in a forecast of PRICE and UNITCOST as a function of INCOME and
QUANTITY is as follows:

data goal;
input year income quantity;

datalines;
1986 2571.87 371.4
1987 2721.08 416.5
1988 3327.05 597.3
1989 3885.85 764.1
1990 3650.98 694.3
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;

The following statements fit the model to the HISTORY data set and solve the fitted model for the ASSUME
data set:

proc model model=model outmodel=model;

/* estimate the model parameters */
fit supply demand / data=history outest=est n2sls;
instruments income unitcost year;

run;

/* produce forecasts for income and unitcost assumptions */
solve price quantity / data=assume out=pq;

run;

title2 "Parameter Estimates for the System";
proc print data=est;
run;

title2 "Price Quantity Solution";
proc print data=pq;
run;

The model summary of the supply and demand model is shown in Output 25.6.1.

Output 25.6.1 Model Summary

General Form Equations for Supply-Demand Model

The MODEL Procedure

Model Summary

Model Variables 4

Parameters 6

Equations 2

Number of Statements 3

Model Variables price quantity income unitcost

Parameters d0 d1 d2 s0 s1 s2

Equations demand supply

The 2 Equations to Estimate

supply = F(s0(1), s1(price), s2(unitcost))

demand = F(d0(1), d1(price), d2(income))

Instruments 1 income unitcost year

The estimation results are shown in Output 25.6.2 and the OUTEST= data set is show in Output 25.6.3. The
output data set produced by the SOLVE statement is shown in Output 25.6.4.
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Output 25.6.2 Output from the FIT Statement

General Form Equations for Supply-Demand Model

The MODEL Procedure

Nonlinear 2SLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

supply 3 7 3.3240 0.4749 0.6891

demand 3 7 1.0829 0.1547 0.3933

Nonlinear 2SLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

d0 -395.887 4.1841 -94.62 <.0001

d1 0.717328 0.5673 1.26 0.2466

d2 0.298061 0.00187 159.65 <.0001

s0 -107.62 4.1780 -25.76 <.0001

s1 201.5711 1.5977 126.16 <.0001

s2 102.2116 1.1217 91.12 <.0001

Output 25.6.3 Listing of OUTEST= Data Set Created in the FIT Statement

General Form Equations for Supply-Demand Model
Parameter Estimates for the System

Obs _NAME_ _TYPE_ _STATUS_ _NUSED_ d0 d1 d2 s0 s1 s2

1 2SLS 0 Converged 10 -395.887 0.71733 0.29806 -107.620 201.571 102.212

Output 25.6.4 Listing of OUT= Data Set Created in the First SOLVE Statement

General Form Equations for Supply-Demand Model
Price Quantity Solution

Obs _TYPE_ _MODE_ _ERRORS_ price quantity income unitcost year

1 PREDICT SIMULATE 0 1.20473 371.552 2571.87 2.31220 1986

2 PREDICT SIMULATE 0 1.18666 382.642 2609.12 2.45633 1987

3 PREDICT SIMULATE 0 1.20154 391.788 2639.77 2.51647 1988

4 PREDICT SIMULATE 0 1.68089 400.478 2667.77 1.65617 1989

5 PREDICT SIMULATE 0 2.06214 411.896 2705.16 1.01601 1990

The following statements produce the goal-seeking solutions for PRICE and UNITCOST by using the GOAL
data set:

title2 "Price Unitcost Solution";

/* produce goal-seeking solutions for
income and quantity assumptions*/

proc model model=model;
solve price unitcost / data=goal out=pc;
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run;

proc print data=pc;
run;

The output data set produced by the final SOLVE statement is shown in Output 25.6.5.

Output 25.6.5 Listing of OUT= Data Set Created in the Second SOLVE Statement

General Form Equations for Supply-Demand Model
Price Unitcost Solution

Obs _TYPE_ _MODE_ _ERRORS_ price quantity income unitcost year

1 PREDICT SIMULATE 0 0.99284 371.4 2571.87 2.72857 1986

2 PREDICT SIMULATE 0 1.86594 416.5 2721.08 1.44798 1987

3 PREDICT SIMULATE 0 2.12230 597.3 3327.05 2.71130 1988

4 PREDICT SIMULATE 0 2.46166 764.1 3885.85 3.67395 1989

5 PREDICT SIMULATE 0 2.74831 694.3 3650.98 2.42576 1990

Example 25.7: Spring and Damper Continuous System
This model simulates the mechanical behavior of a spring and damper system shown in Figure 25.101.

Figure 25.101 Spring and Damper System Model

A mass is hung from a spring with spring constant K. The motion is slowed by a damper with damper
constant C. The damping force is proportional to the velocity, while the spring force is proportional to the
displacement.
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This is actually a continuous system; however, the behavior can be approximated by a discrete time model.
We approximate the differential equation

@ disp

@ time
D velocity

with the difference equation

� disp

� time
D velocity

This is rewritten as

disp � LAG.d isp/
dt

D velocity

where dt is the time step used. In PROC MODEL, this is expressed with the program statement

disp = lag(disp) + vel * dt;

or

dert.disp = vel;

The first statement is simply a computing formula for Euler’s approximation for the integral

disp D

Z
velocity dt

If the time step is small enough with respect to the changes in the system, the approximation is good.
Although PROC MODEL does not have the variable step-size and error-monitoring features of simulators
designed for continuous systems, the procedure is a good tool to use for less challenging continuous models.

The second form instructs the MODEL procedure to do the integration for you.

This model is unusual because there are no exogenous variables, and endogenous data are not needed.
Although you still need a SAS data set to count the simulation periods, no actual data are brought in.

Since the variables DISP and VEL are lagged, initial values specified in the VAR statement determine the
starting state of the system. The mass, time step, spring constant, and damper constant are declared and
initialized by a CONTROL statement as shown in the following statements:

title1 'Simulation of Spring-Mass-Damper System';

/*- Data to drive the simulation time periods ---*/
data one;

do n=1 to 100;
output;

end;
run;

proc model data=one outmodel=spring;
var force -200 disp 10 vel 0 accel -20 time 0;
control mass 9.2 c 1.5 dt .1 k 20;
force = -k * disp -c * vel;
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disp = lag(disp) + vel * dt;
vel = lag(vel) + accel * dt;
accel = force / mass;
time = lag(time) + dt;

run;

The displacement scale is zeroed at the point where the force of gravity is offset, so the acceleration of the
gravity constant is omitted from the force equation. The control variables C and K represent the damper and
the spring constants respectively.

The model is simulated three times, and the simulation results are written to output data sets. The first run
uses the original initial conditions specified in the VAR statement. In the second run, the initial displacement
is doubled; the results show that the period of the motion is unaffected by the amplitude. In the third run, the
DERT. syntax is used to do the integration. Notice that the path of the displacement is close to the old path,
indicating that the original time step is short enough to yield an accurate solution. These simulations are
performed by the following statements:

proc model data=one model=spring;
title2 "Simulation of the model for the base case";
control run '1';
solve / out=a;

run;

title2 "Simulation of the model with twice the initial displacement";
control run '2';
var disp 20;
solve / out=b;

run;

data two;
do time = 0 to 10 by .2; output;end;

run;

title2 "Simulation of the model using the dert. syntax";
proc model data=two;

var force -200 disp 10 vel 0 accel -20 time 0;
control mass 9.2 c 1.5 dt .1 k 20;
control run '3' ;
force = -k * disp -c * vel;
dert.disp = vel ;
dert.vel = accel;
accel = force / mass;
solve / out=c;
id time ;

run;

The output SAS data sets that contain the solution results are merged and the displacement time paths for the
three simulations are plotted. The three runs are identified on the plot as 1, 2, and 3. The following statements
produce Output 25.7.1 through Output 25.7.5:

data p;
set a b c;

run;
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title2 'Overlay Plot of All Three Simulations';
proc sgplot data=p;

series x=time y=disp / group=run lineattrs=(pattern=1);
xaxis values=(0 to 10 by 1);
yaxis values=(-20 to 20 by 10);

run;

Output 25.7.1 Model Summary

Simulation of Spring-Mass-Damper System
Simulation of the model for the base case

The MODEL Procedure

Model Summary

Model Variables 5

Control Variables 5

Equations 5

Number of Statements 6

Program Lag Length 1

Model Variables force(-200) disp(10) vel(0) accel(-20) time(0)

Control Variables mass(9.2) c(1.5) dt(0.1) k(20) run(1)

Equations force disp vel accel time

Output 25.7.2 Printed Output Produced by PROC MODEL SOLVE Statements

Simulation of Spring-Mass-Damper System
Simulation of the model for the base case

The MODEL Procedure
Dynamic Simultaneous Simulation

Data Set
Options

DATA= ONE

OUT= A

Solution Summary

Variables Solved 5

Simulation Lag Length 1

Solution Method NEWTON

CONVERGE= 1E-8

Maximum CC 8.68E-15

Maximum Iterations 1

Total Iterations 99

Average Iterations 1
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Output 25.7.2 continued

Observations
Processed

Read 100

Lagged 1

Solved 99

First 2

Last 100

Variables Solved For force disp vel accel time

Output 25.7.3 Printed Output Produced by PROC MODEL SOLVE Statements

Simulation of Spring-Mass-Damper System
Simulation of the model with twice the initial displacement

The MODEL Procedure
Dynamic Simultaneous Simulation

Data Set
Options

DATA= ONE

OUT= B

Solution Summary

Variables Solved 5

Simulation Lag Length 1

Solution Method NEWTON

CONVERGE= 1E-8

Maximum CC 2.64E-14

Maximum Iterations 1

Total Iterations 99

Average Iterations 1

Observations
Processed

Read 100

Lagged 1

Solved 99

First 2

Last 100

Variables Solved For force disp vel accel time
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Output 25.7.4 Printed Output Produced by PROC MODEL SOLVE Statements

Simulation of Spring-Mass-Damper System
Simulation of the model using the dert. syntax

The MODEL Procedure
Simultaneous Simulation

Data Set
Options

DATA= TWO

OUT= C

Solution Summary

Variables Solved 4

Solution Method NEWTON

Maximum Iterations 0

Observations
Processed

Read 51

Solved 51

Variables Solved For force disp vel accel

ODE's dert.disp dert.vel

Auxiliary Equations force accel



Example 25.8: Nonlinear FIML Estimation F 1689

Output 25.7.5 Overlay Plot of Three Simulations

Example 25.8: Nonlinear FIML Estimation
The data and model for this example were obtained from Bard (1974, pp. 133–138). The example is a two-
equation econometric model used by Bodkin and Klein to fit U.S. production data for the years 1909–1949.
The model is

g1 D c110
c2z4.c5z

�c4
1 C .1 � c5/z

�c4
2 /�c3=c4 � z3 D 0

g2 D Œc5=.1 � c5/�.z1=z2/
.�1�c4/ � z5 D 0

where z1 is capital input, z2 is labor input, z3 is real output, z4 is time in years with 1929 as year zero, and
z5 is the ratio of price of capital services to wage scale. The ci ’s are the unknown parameters. z1 and z2 are
considered endogenous variables. A FIML estimation is performed by using the following statements:
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data bodkin;
input z1 z2 z3 z4 z5;

datalines;
1.33135 0.64629 0.4026 -20 0.24447
1.39235 0.66302 0.4084 -19 0.23454
1.41640 0.65272 0.4223 -18 0.23206

... more lines ...

title1 "Nonlinear FIML Estimation";

proc model data=bodkin;
parms c1-c5;
endogenous z1 z2;
exogenous z3 z4 z5;

eq.g1 = c1 * 10 **(c2 * z4) * (c5*z1**(-c4)+
(1-c5)*z2**(-c4))**(-c3/c4) - z3;

eq.g2 = (c5/(1-c5))*(z1/z2)**(-1-c4) -z5;

fit g1 g2 / fiml ;
run;

When FIML estimation is selected, the log likelihood of the system is output as the objective value. The
results of the estimation are shown in Output 25.8.1.

Output 25.8.1 FIML Estimation Results for U.S. Production Data

Nonlinear FIML Estimation

The MODEL Procedure

Nonlinear FIML Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

g1 4 37 0.0529 0.00143 0.0378

g2 1 40 0.0173 0.000431 0.0208

Nonlinear FIML Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

c1 0.58395 0.0218 26.76 <.0001

c2 0.005877 0.000673 8.74 <.0001

c3 1.3636 0.1148 11.87 <.0001

c4 0.473688 0.2699 1.75 0.0873

c5 0.446748 0.0596 7.49 <.0001

Number of
Observations Statistics for System

Used 41 Log Likelihood 110.7773

Missing 0
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Example 25.9: Circuit Estimation
Consider the nonlinear circuit shown in Figure 25.102.

Figure 25.102 Nonlinear Resistor Capacitor Circuit

The theory of electric circuits is governed by Kirchhoff’s laws: the sum of the currents flowing to a node
is zero, and the net voltage drop around a closed loop is zero. In addition to Kirchhoff’s laws, there are
relationships between the current I through each element and the voltage drop V across the elements. For the
circuit in Figure 25.102, the relationships are

C
dV
dt
D I

for the capacitor and

V D .R1 C R2.1 � exp.�V ///I

for the nonlinear resistor. The following differential equation describes the current at node 2 as a function of
time and voltage for this circuit:

C
dV2
dt
�

V1 � V2
R1 C R2.1 � exp.�V //

D 0

This equation can be written in the form

dV2
dt
D

V1 � V2
.R1 C R2.1 � exp.�V ///C

Consider the following data:

data circ;
input v2 v1 time@@;

datalines;
-0.00007 0.0 0.0000000001 0.00912 0.5 0.0000000002
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0.03091 1.0 0.0000000003 0.06419 1.5 0.0000000004
0.11019 2.0 0.0000000005 0.16398 2.5 0.0000000006
0.23048 3.0 0.0000000007 0.30529 3.5 0.0000000008
0.39394 4.0 0.0000000009 0.49121 4.5 0.0000000010
0.59476 5.0 0.0000000011 0.70285 5.0 0.0000000012
0.81315 5.0 0.0000000013 0.90929 5.0 0.0000000014
1.01412 5.0 0.0000000015 1.11386 5.0 0.0000000016
1.21106 5.0 0.0000000017 1.30237 5.0 0.0000000018
1.40461 5.0 0.0000000019 1.48624 5.0 0.0000000020
1.57894 5.0 0.0000000021 1.66471 5.0 0.0000000022

;

You can estimate the parameters in the preceding equation by using the following SAS statements:

title1 'Circuit Model Estimation Example';

proc model data=circ mintimestep=1.0e-23;
parm R2 2000 R1 4000 C 5.0e-13;
dert.v2 = (v1-v2)/((r1 + r2*(1-exp( -(v1-v2)))) * C);
fit v2;

run;

The results of the estimation are shown in Output 25.9.1.

Output 25.9.1 Circuit Estimation

Circuit Model Estimation Example

The MODEL Procedure

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

R2 3002.471 1517.1 <------ Biased

R1 4984.842 1466.8 <------ Biased

C 5E-13 0 <------ Biased

Note: The model was singular. Some estimates are marked 'Biased'.

In this case, the model equation is such that there is linear dependency that causes biased results and inflated
variances. The Jacobian matrix is singular or nearly singular, but eliminating one of the parameters is not a
solution in this case.
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Example 25.10: Systems of Differential Equations
Figure 25.103 shows a simplified reaction scheme for the competitive inhibitors with recombinant human
renin (Morelock et al. 1995).

Figure 25.103 Competitive Inhibition of Recombinant Human Renin

In Figure 25.103, E D enzyme, D D probe, and I D inhibitor.

The differential equations that describe this reaction scheme are as follows:

dD
dt
D k1r�ED � k1f �E�D

dED
dt
D k1f �E�D � k1r�ED

dE
dt
D k1r�ED � k1f �E�D C k2r�EI � k2f �E�I

dEI
dt
D k2f �E�I � k2r�EI

d I
dt
D k2r�EI � k2f �E�I

For this system, the initial values for the concentrations are derived from equilibrium considerations (as a
function of parameters) or are provided as known values.

The experiment used to collect the data was carried out in two ways; preincubation (type=‘disassoc’) and
no preincubation (type=‘assoc’). The data also contain repeated measurements. The data contain values for
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fluorescence F, which is a function of concentration. Since there are no direct data for the concentrations, all
the differential equations are simulated dynamically.

The SAS statements used to fit this model are as follows:

title1 'Systems of Differential Equations Example';

proc sort data=fit;
by type time;

run;

%let k1f = 6.85e6 ;
%let k1r = 3.43e-4 ;
%let k2f = 1.8e7 ;
%let k2r = 2.1e-2 ;

%let qf = 2.1e8 ;
%let qb = 4.0e9 ;

%let dt = 5.0e-7 ;
%let et = 5.0e-8 ;
%let it = 8.05e-6 ;

proc model data=fit;

parameters qf = 2.1e8
qb = 4.0e9
k2f = 1.8e5
k2r = 2.1e-3
l = 0;

k1f = 6.85e6;
k1r = 3.43e-4;

/* Initial values for concentrations */
control dt 5.0e-7

et 5.0e-8
it 8.05e-6;

/* Association initial values --------------*/
if type = 'assoc' and time=0 then do;

ed = 0;
/* solve quadratic equation ----------*/
a = 1;
b = -(&it+&et+(k2r/k2f));
c = &it*&et;
ei = (-b-(((b**2)-(4*a*c))**.5))/(2*a);
d = &dt-ed;
i = &it-ei;
e = &et-ed-ei;
end;

/* Disassociation initial values ----------*/
if type = 'disassoc' and time=0 then do;
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ei = 0;
a = 1;
b = -(&dt+&et+(&k1r/&k1f));
c = &dt*&et;
ed = (-b-(((b**2)-(4*a*c))**.5))/(2*a);
d = &dt-ed;
i = &it-ei;
e = &et-ed-ei;

end;

if time ne 0 then do;

dert.d = k1r* ed - k1f *e *d;

dert.ed = k1f* e *d - k1r*ed;

dert.e = k1r* ed - k1f* e * d + k2r * ei - k2f * e *i;

dert.ei = k2f* e *i - k2r * ei;

dert.i = k2r * ei - k2f* e *i;

end;

/* L - offset between curves */
if type = 'disassoc' then

F = (qf*(d-ed)) + (qb*ed) -L;
else

F = (qf*(d-ed)) + (qb*ed);

fit F / method=marquardt;
run;

This estimation requires the repeated simulation of a system of 41 differential equations (5 base differential
equations and 36 differential equations to compute the partials with respect to the parameters).

The results of the estimation are shown in Output 25.10.1.

Output 25.10.1 Kinetics Estimation

Systems of Differential Equations Example

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

f 5 797 2525.0 3.1681 1.7799 0.9980 0.9980
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Output 25.10.1 continued

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

qf 2.0413E8 681443 299.55 <.0001

qb 4.2263E9 9133195 462.74 <.0001

k2f 6451186 866998 7.44 <.0001

k2r 0.007808 0.00103 7.55 <.0001

l -5.76974 0.4138 -13.94 <.0001

Example 25.11: Monte Carlo Simulation
This example illustrates how the form of the error in a ODE model affects the results from a static and
dynamic estimation. The differential equation studied is

dy

dt
D a � ay

The analytical solution to this differential equation is

y D 1 � exp.�at/

The first data set contains errors that are strictly additive and independent. The data for this estimation are
generated by the following DATA step:

data drive1;
a = 0.5;
do iter=1 to 100;

do time = 0 to 50;
y = 1 - exp(-a*time) + 0.1 *rannor(123);
output;

end;
end;

run;

The second data set contains errors that are cumulative in form:

data drive2;
a = 0.5;
yp = 1.0 + 0.01 *rannor(123);
do iter=1 to 100;

do time = 0 to 50;
y = 1 - exp(-a)*(1 - yp);
yp = y + 0.01 *rannor(123);
output;

end;
end;

run;

The following statements perform the 100 static estimations for each data set:
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title1 'Monte Carlo Simulation of ODE';

proc model data=drive1 noprint;
parm a 0.5;
dert.y = a - a * y;
fit y / outest=est;
by iter;

run;

Similar statements are used to produce 100 dynamic estimations with a fixed and an unknown initial
value. The first value in the data set is used to simulate an error in the initial value. The following PROC
UNIVARIATE statements process the estimations:

proc univariate data=est noprint;
var a;
output out=monte mean=mean p5=p5 p95=p95;

run;

proc print data=monte;
run;

The results of these estimations are summarized in Table 25.6.

Table 25.6 Monte Carlo Summary, A=0.5

Estimation Additive Error Cumulative Error
Type mean p95 p5 mean p95 p5

Static 0.77885 1.03524 0.54733 0.57863 1.16112 0.31334
Dynamic fixed 0.48785 0.63273 0.37644 3.8546E24 8.88E10 -51.9249
Dynamic unknown 0.48518 0.62452 0.36754 641704.51 1940.42 -25.6054

For this example model, it is evident that the static estimation is the least sensitive to misspecification.

Example 25.12: Cauchy Distribution Estimation
In this example a nonlinear model is estimated by using the Cauchy distribution. Then a simulation is done
for one observation in the data.

The following DATA step creates the data for the model:

/* Generate a Cauchy distributed Y */
data c;

format date monyy.;
call streaminit(156789);
do t=0 to 20 by 0.1;

date=intnx('month','01jun90'd,(t*10)-1);
x=rand('normal');
e=rand('cauchy') + 10 ;
y=exp(4*x)+e;
output;
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end;
run;

The model to be estimated is

y D e�a x C �

� � Cauchy.nc/

That is, the residuals of the model are distributed as a Cauchy distribution with noncentrality parameter nc.

The log likelihood for the Cauchy distribution is

ll D � log�.1C .x � nc/2/

The following SAS statements specify the model and the log-likelihood function:

title1 'Cauchy Distribution';

proc model data=c ;
dependent y;
parm a -2 nc 4;
y=exp(-a*x);

/* Likelihood function for the residuals */
obj = log(constant('pi')*(1+(-resid.y-nc)**2));

errormodel y ~ general(obj) cdf=cauchy(nc);

fit y / outsn=s1 method=marquardt;
solve y / sdata=s1 data=c(obs=1) random=1000

seed=256789 out=out1;
run;

title 'Distribution of Y';
proc sgplot data=out1;

histogram y;
run;

The FIT statement uses the OUTSN= option to output the† matrix for residuals from the normal distribution.
The † matrix is 1 � 1 and has value 1.0 because it is a correlation matrix. The OUTS= matrix is the scalar
2989.0. Because the distribution is univariate (no covariances), the OUTS= option would produce the same
simulation results. The simulation is performed by using the SOLVE statement.

The distribution of y is shown in Output 25.12.1.
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Output 25.12.1 Distribution of Y

Example 25.13: Switching Regression Example
Take the usual linear regression problem

y D Xˇ C u

where Y denotes the n column vector of the dependent variable, X denotes the (n � k) matrix of independent
variables, ˇ denotes the k column vector of coefficients to be estimated, n denotes the number of observations
(i D 1; 2; : : : ; n), and k denotes the number of independent variables.

You can take this basic equation and split it into two regimes, where the ith observation on y is generated by
one regime or the other,

yi D

kX
jD1

ˇ1jXj i C u1i D x0iˇ1 C u1i

yi D

kX
jD1

ˇ2jXj i C u2i D x0iˇ2 C u2i



1700 F Chapter 25: The MODEL Procedure

where xhi and xhj are the ith and jth observations, respectively, on xh. The errors, u1i and u2i , are assumed
to be distributed normally and independently with mean zero and constant variance. The variance for the first
regime is �21 , and the variance for the second regime is �22 . If �21 ¤ �

2
2 and ˇ1 ¤ ˇ2, the regression system

given previously is thought to be switching between the two regimes.

The problem is to estimate ˇ1, ˇ2, �1, and �2 without knowing a priori which of the n values of the dependent
variable, y, was generated by which regime. If it is known a priori which observations belong to which
regime, a simple Chow test can be used to test �21 D �

2
2 and ˇ1 D ˇ2.

Using Goldfeld and Quandt’s D-method for switching regression, you can solve this problem. Assume
that observations exist on some exogenous variables z1i ; z2i ; : : : ; zpi , where z determines whether the ith
observation is generated from one equation or the other. The equations are given as

yi D x0iˇ1 C u1i if
pX
jD1

�j zj i � 0

yi D x0iˇ2 C u2i if
pX
jD1

�j zj i > 0

where �j are unknown coefficients to be estimated. Define d.zi / as a continuous approximation to a step
function. Replacing the unit step function with a continuous approximation by using the cumulative normal
integral enables a more practical method that produces consistent estimates.

d.zi / D
1

p
2��

Z P
�j zji

�1

exp

�
�
1

2

�2

�2

�
d�

D is the n dimensional diagonal matrix consisting of d.zi /:

D D

26664
d.z1/ 0 0 0

0 d.z2/ 0 0

0 0
: : : 0

0 0 0 d.zn/

37775
The parameters to estimate are now the k ˇ1’s, the k ˇ2’s, �21 , �22 , p �’s, and the � introduced in the d.zi /
equation. The � can be considered as given a priori, or it can be estimated, in which case, the estimated
magnitude provides an estimate of the success in discriminating between the two regimes (Goldfeld and
Quandt 1976). Given the preceding equations, the model can be written as

Y D .I � D/Xˇ1 C DXˇ2 CW

where W D .I � D/U1 C DU2, and W is a vector of unobservable and heteroscedastic error terms. The
covariance matrix of W is denoted by �, where � D .I � D/2�21 C D2�22 . The maximum likelihood
parameter estimates maximize the following log-likelihood function:

logL D �
n

2
log 2� �

1

2
log j � j �

1

2
�
�
ŒY � .I � D/Xˇ1 � DXˇ2�0��1 ŒY � .I � D/Xˇ1 � DXˇ2�

�
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As an example, you now can use this switching regression likelihood to develop a model of housing starts as
a function of changes in mortgage interest rates. The data for this example are from the U.S. Census Bureau
and cover the period from January 1973 to March 1999. The hypothesis is that there are different coefficients
on your model based on whether the interest rates are going up or down.

So the model for zi is

zi D p � .ratei � ratei�1/

where ratei is the mortgage interest rate at time i and p is a scale parameter to be estimated.

The regression model is

startsi D intercept1 C ar1 � startsi�1 C djf1 � decjanfeb zi < 0

startsi D intercept2 C ar2 � startsi�1 C djf2 � decjanfeb zi >D 0

where startsi is the number of housing starts at month i and decjanfeb is a dummy variable that indicates
that the current month is one of December, January, or February.

This model is written by using the following SAS statements:

title1 'Switching Regression Example';

proc model data=switch;
parms sig1=10 sig2=10 int1 b11 b13 int2 b21 b23 p;
bounds 0.0001 < sig1 sig2;

decjanfeb = ( month(date) = 12 | month(date) <= 2 );

a = p*dif(rate); /* Upper bound of integral */
d = probnorm(a); /* Normal CDF as an approx of switch */

/* Regime 1 */
y1 = int1 + zlag(starts)*b11 + decjanfeb *b13 ;

/* Regime 2 */
y2 = int2 + zlag(starts)*b21 + decjanfeb *b23 ;

/* Composite regression equation */
starts = (1 - d)*y1 + d*y2;

/* Resulting log-likelihood function */
logL = (1/2)*( (log(2*3.1415)) +

log( (sig1**2)*((1-d)**2)+(sig2**2)*(d**2) )
+ (resid.starts*( 1/( (sig1**2)*((1-d)**2)+
(sig2**2)*(d**2) ) )*resid.starts) ) ;

errormodel starts ~ general(logL);

fit starts / method=marquardt converge=1.0e-5;

/* Test for significant differences in the parms */
test int1 = int2 ,/ lm;
test b11 = b21 ,/ lm;
test b13 = b23 ,/ lm;
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test sig1 = sig2 ,/ lm;

run;

Four TEST statements are added to test the hypothesis that the parameters are the same in both regimes. The
parameter estimates and ANOVA table from this run are shown in Output 25.13.1.

Output 25.13.1 Parameter Estimates from the Switching Regression

Switching Regression Example

The MODEL Procedure

Nonlinear Liklhood Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

starts 9 304 85878.0 282.5 16.8075 0.7806 0.7748 Housing Starts

Nonlinear Liklhood Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

sig1 15.47484 0.9476 16.33 <.0001

sig2 19.77808 1.2711 15.56 <.0001

int1 32.82221 5.9103 5.55 <.0001

b11 0.73952 0.0445 16.64 <.0001

b13 -15.4556 3.1916 -4.84 <.0001

int2 42.73348 6.8151 6.27 <.0001

b21 0.734117 0.0477 15.38 <.0001

b23 -22.5184 4.2978 -5.24 <.0001

p 25.94712 8.5212 3.04 0.0025

The test results shown in Output 25.13.2 suggest that the variance of the housing starts, SIG1 and SIG2, are
significantly different in the two regimes. The tests also show a significant difference in the AR term on the
housing starts.

Output 25.13.2 Test Results for Switching Regression

Test Results

Test Type Statistic Pr > ChiSq Label

Test0 L.M. 1.00 0.3184 int1 = int2

Test1 L.M. 15634 <.0001 b11 = b21

Test2 L.M. 1.45 0.2280 b13 = b23

Test3 L.M. 4.39 0.0361 sig1 = sig2
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Example 25.14: Simulating from a Mixture of Distributions
This example illustrates how to perform a multivariate simulation by using models that have different error
distributions. Three models are used. The first model has t distributed errors. The second model is a
GARCH(1,1) model with normally distributed errors. The third model has a noncentral Cauchy distribution.

The following SAS statements generate the data for this example. The t and CAUCHY data sets use a common
seed so that those two series are correlated.

/* set distribution parameters */
%let df = 7.5;
%let sig1 = .5;
%let var2 = 2.5;

data t;
format date monyy.;
do date='1jun2001'd to '1nov2002'd;

/* t-distribution with df,sig1 */
t = .05 * date + 5000 + &sig1*tinv(ranuni(1234),&df);
output;

end;
run;

data normal;
format date monyy.;
le = &var2;
lv = &var2;
do date='1jun2001'd to '1nov2002'd;

/* Normal with GARCH error structure */
v = 0.0001 + 0.2 * le**2 + .75 * lv;
e = sqrt( v) * rannor(12345) ;
normal = 25 + e;
le = e;
lv = v;
output;

end;
run;

data cauchy;
format date monyy.;
PI = 3.1415926;
do date='1jun2001'd to '1nov2002'd;

cauchy = -4 + tan((ranuni(1234) - 0.5) * PI);
output;

end;
run;

Since the multivariate joint likelihood is unknown, the models must be estimated separately. The residuals
for each model are saved by using the OUT= option. Also, each model is saved by using the OUTMODEL=
option. The ID statement is used to provide a variable in the residual data set to merge by. The XLAG
function is used to model the GARCH(1,1) process. The XLAG function returns the lag of the first argument
if it is nonmissing; otherwise it returns the second argument.
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title1 't-distributed Errors Example';

proc model data=t outmod=tModel;
parms df 10 vt 4;
t = a * date + c;
errormodel t ~ t( vt, df );
fit t / out=tresid;
id date;

run;

title1 'GARCH-distributed Errors Example';

proc model data=normal outmodel=normalModel;
normal = b0 ;
h.normal = arch0 + arch1 * xlag(resid.normal **2 , mse.normal)

+ GARCH1 * xlag(h.normal, mse.normal);

fit normal /fiml out=nresid;
id date;

run;

title1 'Cauchy-distributed Errors Example';

proc model data=cauchy outmod=cauchyModel;
parms nc = 1;
/* nc is noncentrality parm to Cauchy dist */
cauchy = nc;
obj = log(1+resid.cauchy**2 * 3.1415926);
errormodel cauchy ~ general(obj) cdf=cauchy(nc);

fit cauchy / out=cresid;
id date;

run;

The simulation requires a covariance matrix created from normal residuals. The following DATA step
statements use the inverse CDFs of the t and Cauchy distributions to convert the residuals to the normal
distribution. The CORR procedure is used to create a correlation matrix that uses the converted residuals.

/* Merge and normalize the 3 residual data sets */
data c; merge tresid nresid cresid; by date;

t = probit(cdf("T", t/sqrt(0.2789), 16.58 ));
cauchy = probit(cdf("CAUCHY", cauchy, -4.0623));

run;

proc corr data=c out=s;
var t normal cauchy;

run;

Now the models can be simulated together by using the SOLVE statement in the MODEL procedure. The
data set created by the CORR procedure is used as the correlation matrix.
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title1 'Simulating Equations with Different Error Distributions';

/* Create one observation driver data set */
data sim; merge t normal cauchy; by date;
data sim; set sim(firstobs = 519 );

proc model data=sim model=( tModel normalModel cauchyModel );
errormodel t ~ t( vt, df );
errormodel cauchy ~ cauchy(nc);
solve t cauchy normal / random=2000 seed=1962 out=monte

sdata=s(where=(_type_="CORR"));
run;

An estimation of the joint density of the t and Cauchy distribution is created by using the KDE procedure.
Bounds are placed on the Cauchy dimension because of its fat tail behavior. The joint PDF is shown in
Output 25.14.1.

title "T and Cauchy Distribution";

proc kde data=monte;
univar t / out=t_dens;
univar cauchy / out=cauchy_dens;
bivar t cauchy / out=density

plots=all;
run;
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Output 25.14.1 Bivariate Density of t and Cauchy, Distribution of t by Cauchy
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Output 25.14.2 Bivariate Density of t and Cauchy, Kernel Density for t and Cauchy
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Output 25.14.3 Bivariate Density of t and Cauchy, Distribution and Kernel Density for t and Cauchy
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Output 25.14.4 Bivariate Density of t and Cauchy, Distribution of t by Cauchy
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Output 25.14.5 Bivariate Density of t and Cauchy, Kernel Density for t and Cauchy
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Output 25.14.6 Bivariate Density of t and Cauchy, Distribution and Kernel Density for t and Cauchy

Example 25.15: Simulated Method of Moments—Simple Linear Regression
This example illustrates how to use SMM to estimate a simple linear regression model for the following
process:

y D aC bx C �; � � i id N.0; s2/

In the following SAS statements, ysim is simulated, and the first moment and second moment of ysim are
compared with those of the observed endogenous variable y:

title "Simple regression model";

data regdata;
do i=1 to 500;

x = rannor( 1013 );
Y = 2 + 1.5 * x + 1.5 * rannor( 1013 );
output;

end;
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run;

proc model data=regdata;
parms a b s;
instrument x;

ysim = (a+b*x) + s * rannor( 8003 );
y = ysim;
eq.ysq = y*y - ysim*ysim;

fit y ysq / gmm ndraw;
bound s > 0;

run;

Alternatively, the MOMENT statement can be used to specify the moments using the following syntax:

proc model data=regdata;
parms a b s;
instrument x;

ysim = (a+b*x) + s * rannor( 8003 );
y = ysim;
moment y = (2);

fit y / gmm ndraw;
bound s > 0;

run;

The output of the MODEL procedure is shown in Output 25.15.1.

Output 25.15.1 PROC MODEL Output

Simple regression model

The MODEL Procedure

Model Summary

Model Variables 1

Parameters 3

Equations 2

Number of Statements 4

Model Variables Y

Parameters a b s

Equations ysq Y

The 2 Equations to
Estimate

Y = F(a(1), b(x), s)

ysq = F(a, b, s)

Instruments 1 x
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Output 25.15.1 continued

Nonlinear GMM Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 2.065983 0.0657 31.45 <.0001

b 1.511075 0.0565 26.73 <.0001

s 1.483358 0.0498 29.78 <.0001

Example 25.16: Simulated Method of Moments—AR(1) Process
This example illustrates how to use SMM to estimate an AR(1) regression model for the following process:

yt D aC bxt C ut

ut D ˛ut�1 C �t

�t � i id N.0; s2/

In the following SAS statements, ysim is simulated by using this model, and the endogenous variable y is
set to be equal to ysim. The MOMENT statement creates two more moments for the estimation. One is
the second moment, and the other is the first-order autocovariance. The NPREOBS=10 option instructs
PROC MODEL to run the simulation 10 times before ysim is compared to the first observation of y. Because
the initial zlag.u/ is zero, the first ysim is a C b � x C s � rannor.8003/. Without the NPREOBS option,
this ysim is matched with the first observation of y. With NPREOBS, this ysim and the next nine ysim are
thrown away, and the moment match starts with the eleventh ysim with the first observation of y. This way,
the initial values do not exert a large influence on the simulated endogenous variables.

%let nobs=500;
data ardata;

lu =0;
do i=-10 to &nobs;

x = rannor( 1011 );
e = rannor( 1011 );
u = .6 * lu + 1.5 * e;
Y = 2 + 1.5 * x + u;
lu = u;
if i > 0 then output;

end;
run;

title1 'Simulated Method of Moments for AR(1) Process';

proc model data=ardata ;
parms a b s 1 alpha .5;
instrument x;

u = alpha * zlag(u) + s * rannor( 8003 );
ysim = a + b * x + u;
y = ysim;
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moment y = (2) lag1(1);

fit y / gmm npreobs=10 ndraw=10;
bound s > 0, 1 > alpha > 0;

run;

The output of the MODEL procedure is shown in Output 25.16.1.

Output 25.16.1 PROC MODEL Output

Simulated Method of Moments for AR(1) Process

The MODEL Procedure

Model Summary

Model Variables 1

Parameters 4

Equations 3

Number of Statements 8

Program Lag Length 1

Model Variables Y

Parameters(Value) a b s(1) alpha(0.5)

Equations _moment_2 _moment_1 Y

The 3 Equations to Estimate

_moment_2 = F(a, b, s, alpha)

_moment_1 = F(a, b, s, alpha)

Y = F(a(1), b(x), s, alpha)

Instruments 1 x

Nonlinear GMM Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a 1.632798 0.1038 15.73 <.0001

b 1.513197 0.0698 21.67 <.0001

s 1.427888 0.0984 14.52 <.0001

alpha 0.543985 0.0809 6.72 <.0001
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Example 25.17: Simulated Method of Moments—Stochastic Volatility Model
This example illustrates how to use SMM to estimate a stochastic volatility model as in Andersen and
Sorensen (1996):

yt D �tzt

log.�2t / D aC b log.�2t�1/C sut

.zt ; ut / � i id N.0; I2/

This model is widely used in modeling the return process of stock prices and foreign exchange rates. This is
called the stochastic volatility model because the volatility is stochastic as the random variable ut appears in
the volatility equation. The following SAS statements use three moments: absolute value, the second-order
moment, and absolute value of the first-order autoregressive moment. Note the ADJSMMV option in the FIT
statement to request the SMM covariance adjustment for the parameter estimates. Although these moments
have a closed form solution as shown by Andersen and Sorensen (1996), the simulation approach significantly
simplifies the moment conditions.

%let nobs=1000;
data _tmpdata;

a = -0.736; b=0.9; s=0.363;
ll=sqrt( exp(a/(1-b)));;
do i=-10 to &nobs;

u = rannor( 101 );
z = rannor( 101 );
lnssq = a+b*log(ll**2) +s*u;
st = sqrt(exp(lnssq));
ll = st;
y = st * z;
if i > 0 then output;

end;
run;

title1 'Simulated Method of Moments for Stochastic Volatility Model';

proc model data=_tmpdata ;
parms a b .5 s 1;
instrument / intonly;

u = rannor( 8801 );
z = rannor( 9701 );
lsigmasq = xlag(sigmasq,exp(a));
lnsigmasq = a + b * log(lsigmasq) + s * u;
sigmasq = exp( lnsigmasq );

ysim = sqrt(sigmasq) * z;
eq.m1 = abs(y) - abs(ysim);
eq.m2 = y**2 - ysim**2;
eq.m5 = abs(y*lag(y))-abs(ysim*lag(ysim));

fit m1 m2 m5 / gmm npreobs=10 ndraw=10 adjsmmv;
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bound s > 0, 1 > b > 0;
run;

The output of the MODEL procedure is shown in Output 25.17.1.

Output 25.17.1 PROC MODEL Output

Simulated Method of Moments for Stochastic Volatility Model

The MODEL Procedure

Model Summary

Parameters 3

Equations 3

Number of Statements 10

Program Lag Length 1

Parameters(Value) a b(0.5) s(1)

Equations m1 m2 m5

The 3 Equations to
Estimate

m1 = F(a, b, s)

m2 = F(a, b, s)

m5 = F(a, b, s)

Instruments 1

Nonlinear GMM Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

a -2.2299 1.1357 -1.96 0.0499

b 0.695469 0.1554 4.47 <.0001

s 0.747779 0.1648 4.54 <.0001

Example 25.18: Duration Data Model with Unobserved Heterogeneity
All of the previous three models actually have closed-form moment conditions, so the simulation approach is
not necessarily required for the estimation. This example illustrates how to use SMM to estimate a model for
which there is no closed-form solution for the moments and thus the traditional GMM method does not apply.
The model is the duration data model with unobserved heterogeneity in Gourieroux and Monfort (1993):

yi D �exp.�bxi � �ui /log.vi /

ui � N.0; 1/ vi � UŒ0;1�

The SAS statements are as follows:

title1 'SMM for Duration Model with Unobserved Heterogeneity';

%let nobs=1000;
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data durationdata;
b=0.9; s=0.5;
do i=1 to &nobs;

u = rannor( 1011 );
v = ranuni( 1011 );
x = 2 * ranuni( 1011 );
y = -exp(-b * x + s * u) * log(v);
output;

end;
run;

proc model data=durationdata;
parms b .5 s 1;
instrument x;

u = rannor( 1011 );
v = ranuni( 1011 );
y = -exp(-b * x + s * u) * log(v);

moment y = (2 3 4);
fit y / gmm ndraw=10 ;* maxiter=500;
bound s > 0, b > 0;

run;

The output of the MODEL procedure is shown in Output 25.18.1.

Output 25.18.1 PROC MODEL Output

SMM for Duration Model with Unobserved Heterogeneity

The MODEL Procedure

Model Summary

Model Variables 1

Parameters 2

Equations 4

Number of Statements 9

Model Variables y

Parameters(Value) b(0.5) s(1)

Equations _moment_3 _moment_2 _moment_1 y

The 4 Equations to
Estimate

_moment_3 = F(b, s)

_moment_2 = F(b, s)

_moment_1 = F(b, s)

y = F(b, s)

Instruments 1 x
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Output 25.18.1 continued

Nonlinear GMM Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b 0.92983 0.0331 28.08 <.0001

s 0.341825 0.0608 5.62 <.0001

Example 25.19: EMM Estimation of a Stochastic Volatility Model
The efficient method of moments (EMM) (Bansal et al. 1993, 1995; Gallant and Tauchen 2001), can be
considered a variant of SMM. The idea is to match the efficiency of the maximum likelihood (ML) estimation
with the flexibility of the SMM procedure. ML itself can be interpreted as a method of moments procedure,
where the score vector, the vector of derivatives of the log-likelihood function with respect to the parameters,
provides the exactly identifying moment conditions. EMM employs an auxiliary (or pseudo) model that
closely matches the true model. The score vector of the auxiliary model provides the moment conditions in
the SMM step.

This example uses the SMM feature of PROC MODEL to estimate the simple stochastic volatility (SV)
model of Example 25.17 with the EMM method.

Suppose that your data are the time series fy1; y2; : : : ; yng, and the model that you want to estimate, or the
structural model, is characterized by the vector of parameters � . For the SV model, � is given by .a; b; s/.

The first step of the EMM method is to fit the data with an auxiliary model (or score generator) that has
transition density f .yt jYt�1;�/, parameterized by the pseudo parameter �, where Yt�1 D fyt�1; : : : ; y1g.
The auxiliary model must approximate the true data-generating process as closely as possible and be such
that ML estimation is feasible.

The only identification requirement is that the dimension of the pseudo parameter � be greater than or equal
to that of the structural parameter � .

Andersen, Chung, and Sorensen (1999) showed that the GARCH(1,1) is an appropriate auxiliary model that
leads to a good performance of the EMM estimator for the SV model.

The analytical expression for the GARCH(1,1) model with mean zero is

yt D �tzt

�2t D ! C ˛yt�1 C ˇ�
2
t�1

The pseudo parameter vector � is given by .!; ˛; ˇ/.

One advantage of such a class of models is that the conditional density of yt is Gaussian—that is,

f .yt jYt�1;�/ /
1

�t
exp

�
�
y2t

2�2t

�
Therefore the score vector can easily be computed analytically.

The AUTOREG procedure provides the ML estimates, O�n. The estimates are stored in the garchest data set.
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title1 'Efficient Method of Moments for Stochastic Volatility Model';

/* estimate GARCH(1,1) model */
proc autoreg data=svdata(keep=y)

outest=garchest
noprint covout;

model y = / noint garch=(q=1,p=1,type=nonneg);
run;

If the pseudo model is close enough to the structural model, in a suitable sense, Gallant and Long (1997)
showed that a consistent estimator of the asymptotic covariance matrix of the sample pseudo-score vector
can be obtained from the formula

OVn D
1

n

nX
tD1

sf .Yt ; O�n/sf .Yt ; O�n/
0

where sf .Yt ; O�n/ D .@=@�n/ log f .yt jYt�1; O�n/ denotes the score function of the auxiliary model computed
at the ML estimates.

The ML estimates of the GARCH(1,1) model are used in the following SAS statements to compute the
variance-covariance matrix OVn:

/* compute the V matrix */
data vvalues;

set scores;

array score{*} dlldw dllda dlldb;
array v_t{*} v_t_1-v_t_6;
array v{*} v_1-v_6;

/* compute external product of score vector */
do i=1 to 3;

do j=i to 3;
v_t{j*(j-1)/2 + i} = score{i}*score{j};

end;
end;

/* average them over t */
do s=1 to 6;

v{s}+ v_t{s}/&nobs;
end;

run;

The OV matrix must be formatted to be used with the VDATA= option of the MODEL procedure. For more
information about the VDATA= data set, see the section “VDATA= Input Data Set” on page 1587.

/* Create a VDATA data set acceptable to PROC MODEL */

/* Transpose the last obs in the data set */
proc transpose data=vvalues(firstobs=&nobs keep=v_1-v_6)

out=tempv;
run;



1720 F Chapter 25: The MODEL Procedure

/* Add eq and inst labels */
data vhat;

set tempv(drop=_name_);
value = col1;
drop col1;
input _type_ $ eq_row $ eq_col $ inst_row $ inst_col $; *$;
datalines;

gmm m1 m1 1 1 /* intcpt is the only inst we use */
gmm m1 m2 1 1
gmm m2 m2 1 1
gmm m1 m3 1 1
gmm m2 m3 1 1
gmm m3 m3 1 1

;

The last step of the EMM procedure is to estimate � by using SMM, where the moment conditions are given
by the scores of the auxiliary model.

Given a fixed value of the parameter vector � and an arbitrarily large T, one can simulate a series
f Oy1.�/; Oy2.�/; : : : ; OyT .�/g from the structural model. The EMM estimator is the value O�n that minimizes
the quantity

mT .�; O�n/
0 OV
�1

n mT .�; O�n/

where

mT .�; O�n/ D
1

T

TX
kD1

sf . OYk.�/; O�n/

is the sample moment condition evaluated at the fixed estimated pseudo parameter O�n. Note that the target
function depends on the parameter � only through the simulated series Oyk .

The following statements generate a data set that contains T D 20;000 replicates of the estimated pseudo
parameter O�n and that is then input to the MODEL procedure. The EMM estimates are found by using the
SMM option of the FIT statement. The OVn matrix computed above serves as weighting matrix by using the
VDATA= option, and the scores of the GARCH(1,1) auxiliary model evaluated at the ML estimates are the
moment conditions in the GMM step.

Since the number of structural parameters to estimate (3) is equal to the number of moment equations (3)
times the number of instruments (1), the model is exactly identified and the objective function has value zero
at the minimum.

For simplicity, the starting values are set to the true values of the parameters.

/* USE SMM TO FIND EMM ESTIMATES */

/* Generate data set of length T */
data emm;

set garchest(where=(_type_="PARM") rename=(_ah_0=w _ah_1=a _gh_1=b _mse_=mse)
keep=_type_ _ah_0 _ah_1 _gh_1 _mse_);

do i=1 to 20000;
output;

end;
drop i;
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run;

title2 'EMM estimates';
/* Find the EMM estimates */
proc model data=emm maxiter=1000 plot=none;

parms aa -0.736 bb 0.9 ss 0.363;
instruments _exog_ / intonly;

/* Describe the structural model */
u = rannor( 8801 );
z = rannor( 9701 );
lsigmasq = xlag(sigmasq,exp(aa));
lnsigmasq = aa + bb * log(lsigmasq) + ss * u;
sigmasq = exp( lnsigmasq );
ysim = sqrt(sigmasq) * z;

/* Compute scores of GARCH(1,1) */
/* derivative of loglik wrt sigma-sq */
ysim2 = ysim*ysim;
lagvar = w + a*xlag(ysim2,mse) + xlag(lagvar,0)*b;
var = lagvar + mse*b**_n_;
dlldv = (-1 + ysim2/var)/var/2;

/* arch 0 */
dvdw = b*xlag(dvdw,0) + 1;
dlldw = dlldv*dvdw;

/* arch 1 */
dvda = b*xlag(dvda,0) + xlag(ysim2,mse);
dllda = dlldv*dvda;

/* garch 1 */
currdvdb = w + a*xlag(ysim2,mse);
dvdb = - b*b*xlag2(dvdb,0) + 2*b*xlag(dvdb,0) + xlag(currdvdb,0);
dlldb = dlldv*(dvdb + _n_*b**(_n_-1)*mse);

/* Use scores of the GARCH model as moment conditions */
eq.m1 = dlldw;
eq.m2 = dllda;
eq.m3 = dlldb;

/* Fit scores using SMM and estimated Vhat */
fit m1 m2 m3 / gmm npreobs=10 ndraw=1 /* smm options */

vdata=vhat /* use estimated Vhat */
kernel=(bart,0,) /* turn smoothing off */;

bounds ss > 0, 0 < bb < 1;
quit;

The output of the MODEL procedure is shown in Output 25.19.1.
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Output 25.19.1 PROC MODEL Output

Efficient Method of Moments for Stochastic Volatility Model
EMM estimates

The MODEL Procedure

Model Summary

Parameters 3

Equations 3

Number of Statements 21

Parameters(Value) aa(-0.736) bb(0.9) ss(0.363)

Equations m1 m2 m3

The 3 Equations to
Estimate

m1 = F(aa, bb, ss)

m2 = F(aa, bb, ss)

m3 = F(aa, bb, ss)

Instruments 1

Nonlinear GMM Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

aa -0.49702 0.0101 -49.40 <.0001

bb 0.930294 0.00137 677.59 <.0001

ss 0.316689 0.00395 80.14 <.0001

Example 25.20: Illustration of ODS Graphics
This example illustrates graphical output from PROC MODEL. This is a continuation of the section “Non-
linear Regression Analysis” on page 1427. For information about the graphics available in the MODEL
procedure, see the section “ODS Graphics” on page 1594.

The following statements show how to generate ODS Graphics plots with the MODEL procedure. The plots
are displayed in Output 25.20.1 and Output 25.20.2. Note that the variable DATE in the ID statement is used
to define the horizontal tick mark values when appropriate.

title1 'Example of Graphical Output from PROC MODEL';

proc model data=sashelp.citimon;
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;
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Output 25.20.1 Diagnostics Plots
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Output 25.20.2 Diagnostics Plots

You can also obtain the plots in the diagnostics panel as separate graphs by specifying the PLOTS(UNPACK)
option. These plots are displayed in Output 25.20.3 through Output 25.20.10.

title1 'Unpacked Graphical Output from PROC MODEL';

proc model data=sashelp.citimon plots(unpack);
lhur = 1/(a * ip + b) + c;
fit lhur;
id date;

run;
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Output 25.20.3 Studentized Residuals Plot
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Output 25.20.4 Cook’s D Plot
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Output 25.20.5 Predicted versus Actual Plot
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Output 25.20.6 Autocorrelation of Residuals Plot
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Output 25.20.7 Partial Autocorrelation of Residuals Plot
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Output 25.20.8 Inverse Autocorrelation of Residuals Plot
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Output 25.20.9 Q-Q Plot of Residuals
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Output 25.20.10 Histogram of Residuals

Example 25.21: A Translog Cost Function and Derived Demands
This example shows the use of iterated seemingly unrelated regression (ITSUR) to estimate a system of
nonlinear derived demand equations that are based on a translog cost function. Data pertain to the United
States textile manufacturing sector (standard industrial classification code 22). The series runs from 1949
to 2001 and contains real quantity indices, price indices, and cost measures for a single aggregate industry
output and five aggregate inputs: capital (K), labor (L), energy (E), materials (M), and services (S). The
original data and information about other industrial sectors can be obtained from the Multifactor Productivity
home page of the Bureau of Labor Statistics at http://www.bls.gov/mfp/.

The demand equations that are derived from the translog cost function are expressed by using a cost share as
the endogenous variable. Because these data do not contain explicit information about cost shares, the shares
must be formed by taking the ratio of the value of each input and the cost measure. The following statements
compute the cost share for each input:

http://www.bls.gov/mfp/
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data klems;
set klems;

array values {5} vk vl ve vm vs;
array costshares {5} sk sl se sm ss;
cost = sum(vk,vl,ve,vm,vs);
do i = 1 to 5;

costshares{i} = values{i}/cost;
end;

run;

The following statements produce a time series plot of quantity indices and generate further plots of price
indices and cost shares:

proc sgplot data = klems;
series x = year y = k / markers markerattrs =(symbol=circle);
series x = year y = l / markers markerattrs =(symbol=square);
series x = year y = e / markers markerattrs =(symbol=star);
series x = year y = m / markers markerattrs =(symbol=diamond);
series x = year y = s / markers markerattrs =(symbol=hash);
title 'Factor Quantities';
yaxis label = 'Quantity';

run;

Output 25.21.1 shows time series plots of quantity indices, price indices, and cost shares over time, indicating
the dynamics of the US textile sector.
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Output 25.21.1 Changes in Variables over Time
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Output 25.21.1 continued
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Output 25.21.1 continued

Textile manufacturing was once a significant part of total manufacturing output in the United States. As
international trade increased, many textile mills moved overseas, where labor costs are lower than they are
in the United States. The first graph in Output 25.21.1 shows that labor use has steadily declined while use
of other inputs has grown. Perhaps the textile industry adjusted to foreign competition by increasing use of
inputs besides labor. The price of energy increased rapidly in the 1970s, reflecting what has commonly been
called the “energy crisis.” As energy prices increased, energy use remained flat or declined. The result of
these two movements is a higher cost share for energy in general. As labor use and cost shares declined in the
sector, there were nearly coincident increases in the quantity indices and cost shares of capital and purchased
services. This relationship suggests that capital and services can substitute for labor in the production of
textiles.

Output 25.21.1 does not provide quantifiable measures of the relationship between input use and price or of
input substitution. Price elasticities and substitution elasticities must be calculated from the parameters of the
cost function or from factor demands. One benefit of the translog form is that the system of factor demands
produces nearly the same information as the cost function. The only parameter of the cost function that is not
captured by the derived demand system is the intercept term, which is not used in calculating the desired
elasticities. Often, only the system of derived demands is estimated. In this example, the MODEL procedure
is used to fit four derived demand equations. One of the equations (the derived demand equation for services)
has been arbitrarily dropped from estimation; only N � 1 of the factor demands are linearly independent
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because the dependent variables are cost shares, which must sum to one. The parameters of the dropped
derived demand equation can be recovered after estimation through homogeneity and symmetry restrictions.

The following statements estimate the system of derived demand equations without imposing any restrictions.
Likelihood ratio tests are performed to determine whether homogeneity and symmetry restrictions hold both
singularly and jointly.

proc model data = klems;
parameters a_k gkk gkl gke gkm gks gky

a_l glk gll gle glm gls gly
a_e gek gel gee gem ges gey
a_m gmk gml gme gmm gms gmy;

endogenous sk sl se sm;
exogenous pk pl pe pm ps y;

/*System of Derived Demand Equations*/
sk = a_k + gkk*log(pk) + gkl*log(pl) + gke*log(pe) + gkm*log(pm) + gks*log(ps)

+ gky*log(y);
sl = a_l + glk*log(pk) + gll*log(pl) + gle*log(pe) + glm*log(pm) + gls*log(ps)

+ gly*log(y);
se = a_e + gek*log(pk) + gel*log(pl) + gee*log(pe) + gem*log(pm) + ges*log(ps)

+ gey*log(y);
sm = a_m + gmk*log(pk) + gml*log(pl) + gme*log(pe) + gmm*log(pm) + gms*log(ps)

+ gmy*log(y);

fit sk sl se sm / itsur;

test "Homogeneity"
gkk+gkl+gke+gkm+gks=0,
glk+gll+gle+glm+gls=0,
gek+gel+gee+gem+ges=0,
gmk+gml+gme+gmm+gms=0, / lr;

test "Symmetry"
gkl=glk,
gke=gek,
gkm=gmk,
glm=gml,
gle=gel,
gem=gme, / lr;

test "Joint Homogeneity and Symmetry"
gkk+gkl+gke+gkm+gks=0,
glk+gll+gle+glm+gls=0,
gek+gel+gee+gem+ges=0,
gmk+gml+gme+gmm+gms=0,
gkl=glk,
gke=gek,
gkm=gmk,
glm=gml,
gle=gel,
gem=gme, / lr;

run;
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The summary of residual errors provides fit statistics for each of the estimated demand equations and is
shown in Output 25.21.2. In this case, the model fits the data well based on R-squared values.

Output 25.21.2 Residual Summary

The MODEL Procedure

Nonlinear ITSUR Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq Label

sk 7 46 0.00118 0.000026 0.00506 0.9519 0.9457 Capital Share

sl 7 46 0.00449 0.000098 0.00988 0.9565 0.9508 Labor Share

se 7 46 0.000079 1.724E-6 0.00131 0.9847 0.9827 Energy Share

sm 7 46 0.00436 0.000095 0.00973 0.9146 0.9035 Materials Share

Because the form of the elasticities is somewhat complicated, it can be difficult to interpret the values
and signs of parameter estimates. It is far easier to compute the elasticities directly. The test results in
Output 25.21.3 indicate that both symmetry and homogeneity are rejected. A common practice is to assume
that such restrictions hold and to impose them in estimation.

Output 25.21.3 Tests of Symmetry and Homogeneity

Test Results

Test Type Statistic Pr > ChiSq Label

Homogeneity L.R. 114.22 <.0001 gkk+gkl+gke+gkm+gks=0, glk+gll+gle+glm+gls=0, gek+gel+gee+gem+ges=0,
gmk+gml+gme+gmm+gms=0

Symmetry L.R. 109.72 <.0001 gkl=glk, gke=gek, gkm=gmk, glm=gml, gle=gel, gem=gme

Joint Homogeneity
and Symmetry

L.R. 240.80 <.0001 gkk+gkl+gke+gkm+gks=0, glk+gll+gle+glm+gls=0, gek+gel+gee+gem+ges=0,
gmk+gml+gme+gmm+gms=0, gkl=glk, gke=gek, gkm=gmk, glm=gml, gle=gel,
gem=gme

The following code imposes both symmetry and homogeneity restrictions on the underlying model:

proc model data = klems;
parameters a_k gkk gkl gke gkm gks gky

a_l glk gll gle glm gls gly
a_e gek gel gee gem ges gey
a_m gmk gml gme gmm gms gmy;

endogenous sk sl se sm;
exogenous pk pl pe pm ps y;
restrict /*Homogeneity Restrictions*/

gks+gkk+gkl+gke+gkm=0,
gls+gkl+gll+gle+glm=0,
ges+gke+gle+gee+gem=0,
gms+gkm+glm+gem+gmm=0,
/*Symmetry Restrictions*/
gkl=glk, gke=gek, gkm=gmk, gle=gel, glm=gml, gem=gme;

/*System of Derived Demand Equations*/
sk = a_k + gkk*log(pk) + gkl*log(pl) + gke*log(pe) + gkm*log(pm) + gks*log(ps)

+ gky*log(y);
sl = a_l + glk*log(pk) + gll*log(pl) + gle*log(pe) + glm*log(pm) + gls*log(ps)

+ gly*log(y);
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se = a_e + gek*log(pk) + gel*log(pl) + gee*log(pe) + gem*log(pm) + ges*log(ps)
+ gey*log(y);

sm = a_m + gmk*log(pk) + gml*log(pl) + gme*log(pe) + gmm*log(pm) + gms*log(ps)
+ gmy*log(y);

fit sk sl se sm / itsur chow = (24) outest=est;

test "Constant Returns to Scale"
gky=0,
gly=0,
gey=0,
gmy=0, / lr;

run;

The symmetry restriction shrinks the number of parameters of the model considerably. This shrinkage is par-
ticularly useful when the time series is not long and degrees of freedom need to be conserved. Output 25.21.4
shows the parameter estimates of the MODEL procedure.
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Output 25.21.4 Restricted Model

The MODEL Procedure

Nonlinear ITSUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

a_k 0.109996 0.0219 5.02 <.0001 SK Intercept

gkk 0.062014 0.00357 17.38 <.0001 SK K Price

gkl -0.01898 0.00725 -2.62 0.0118 SK L Price

gke -0.00179 0.000836 -2.15 0.0369 SK E Price

gkm -0.03872 0.00610 -6.35 <.0001 SK M Price

gks -0.00252 0.00342 -0.74 0.4648 SK S Price

gky -0.00104 0.00496 -0.21 0.8354 SK Output

a_l 0.865473 0.0903 9.58 <.0001 SL Intercept

glk -0.01898 0.00725 -2.62 0.0118 SL K Price

gll -0.00999 0.0360 -0.28 0.7826 SL L Price

gle -0.00106 0.00420 -0.25 0.8013 SL E Price

glm -0.06766 0.0248 -2.73 0.0087 SL M Price

gls 0.097692 0.0214 4.57 <.0001 SL S Price

gly -0.11488 0.0200 -5.74 <.0001 SL Output

a_e 0.012747 0.00984 1.30 0.2013 SE Intercept

gek -0.00179 0.000836 -2.15 0.0370 SE K Price

gel -0.00106 0.00420 -0.25 0.8013 SE L Price

gee 0.029876 0.00112 26.76 <.0001 SE E Price

gem -0.01954 0.00275 -7.12 <.0001 SE M Price

ges -0.00748 0.00325 -2.30 0.0257 SE S Price

gey 0.005808 0.00217 2.68 0.0101 SE Output

a_m -0.08173 0.0701 -1.17 0.2492 SM Intercept

gmk -0.03872 0.00610 -6.35 <.0001 SM K Price

gml -0.06766 0.0248 -2.73 0.0087 SM L Price

gme -0.01954 0.00275 -7.12 <.0001 SM E Price

gmm 0.146849 0.0222 6.62 <.0001 SM M Price

gms -0.02092 0.0103 -2.03 0.0477 SM S Price

gmy 0.113729 0.0157 7.27 <.0001 SM Output

Restrict0 -563.453 242.8 -2.32 0.0187 gks+gkk+gkl+gke+gkm=0

Restrict1 82.23307 193.0 0.43 0.6747 gls+gkl+gll+gle+glm=0

Restrict2 321.7446 689.2 0.47 0.6455 ges+gke+gle+gee+gem=0

Restrict3 -279.71 211.0 -1.33 0.1879 gms+gkm+glm+gem+gmm=0

Restrict4 -261.228 196.3 -1.33 0.1860 gkl=glk

Restrict5 -1041.84 755.0 -1.38 0.1700 gke=gek

Restrict6 -27.855 219.3 -0.13 0.9005 gkm=gmk

Restrict7 -880.821 742.7 -1.19 0.2396 gle=gel

Restrict8 259.513 215.6 1.20 0.2326 glm=gml

Restrict9 1103.343 320.8 3.44 0.0003 gem=gme

The majority of the parameter estimates are significant, and insignificant parameters are statistically equivalent
to 0. When the gij are all 0, the translog cost function reduces to the Cobb-Douglas cost function. Statistically
insignificant parameter estimates imply that corresponding elasticities of substitution are equal to the Cobb-
Douglas value of 1.
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A TEST statement is used to determine whether this industry exhibits constant returns to scale in the range
of the sample. The CHOW option in the FIT statement performs a Chow test for a structural break at the
24th year of the sample (1973). In October of that year the Organization of Petroleum Exporting Countries
(OPEC) declared an oil embargo. Markets were affected by significant shocks to oil prices, and gasoline in
the United States was rationed. Output 25.21.5 shows the results of the two tests.

Output 25.21.5 CRS and Chow Test Results

Test Results

Test Type Statistic Pr > ChiSq Label

Constant Returns to Scale L.R. 74.27 <.0001 gky=0, gly=0, gey=0, gmy=0

Structural Change Test

Test
Break
Point Num DF Den DF F Value Pr > F

Chow 24 23 2 0.28 0.9560

The null hypothesis of constant returns to scale is rejected. The null hypothesis of the Chow test cannot be
rejected. Even with the turmoil of the oil embargo, there is no evidence of a structural break in 1973.

Derivations of the Hicks-Allen elasticity of substitution, the Morishima elasticity of substitution, and the
price elasticity of demand for the translog cost function can be found in Chambers (1988). The elasticities
are evaluated at the sample mean, so the MEANS procedure is used in the following statements to produce
data that contain the sample means of the cost shares:

proc means data = klems noprint mean;
variables sk sl se sm ss;
output out = meanshares mean = sk sl se sm ss;

run;

Because some of the parameters are not estimated, their values must be backed out through application of
homogeneity and symmetry restrictions. The IML procedure is used in the following statements to read in
parameter estimates and then calculate elasticities:

proc iml;
/*Read in parameter estimates*/
use est;
read all var {gkk gkl gke gkm gks};
read all var {gll gle glm gls};
read all var {gee gem ges};
read all var {gmm gms};
close est;

/*Calculate S parameter based on homogeneity constraint*/
gss=0-gks-gls-ges-gms;

/*Read in mean cost shares and construct vector*/
use meanshares;
read all var {sk sl se sm ss};
close meanshares;

w = sk//sl//se//sm//ss;
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print w;

/*Construct matrix of parameter estimates*/
gij = (gkk||gkl||gke||gkm||gks)//

(gkl||gll||gle||glm||gls)//
(gke||gle||gee||gem||ges)//
(gkm||glm||gem||gmm||gms)//
(gks||gls||ges||gms||gss);

print gij;

nk=ncol(gij);
mi = -1#I(nk); /*Initialize negative identity matrix*/
eos = j(nk,nk,0); /*Initialize Marshallian EOS Matrix*/
mos = j(nk,nk,0); /*Initialize Morishima EOS Matrix*/
ep = j(nk,nk,0); /*Initialize Price EOD Matrix*/

/*Calculate Marshallian EOS and Price EOD Matrices*/
i=1;
do i=1 to nk;
j=1;
do j=1 to nk;

eos[i,j] = (gij[i,j]+w[i]#w[j]+mi[i,j]#w[i])/(w[i]#w[j]);
ep[i,j] = w[j]#eos[i,j];

end;
end;

/*Calculate Morishima EOS Matrix*/
i=1;
do i=1 to nk;
j=1;
do j=1 to nk;

mos[i,j] = ep[i,j]-ep[j,j];
end;
end;

run;

Output 25.21.6 shows the elasticity matrices that are generated by the IML procedure.

Output 25.21.6 Elasticity Matrices

Price Elasticities of Demand

Capital Labor Energy Materials Services

Capital -0.338 0.227 0.0183 0.0593 0.0335

Labor 0.0650 -0.630 0.0315 0.231 0.303

Energy 0.0606 0.364 -0.0915 -0.170 -0.163

Materials 0.0167 0.227 -0.0145 -0.233 0.00367

Services 0.0679 2.148 -0.1000 0.0265 -2.142
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Output 25.21.6 continued

Hicks-Allen Elasticities of Substitution

Capital Labor Energy Materials Services

Capital -2.993 0.575 0.536 0.148 0.600

Labor 0.575 -1.594 0.921 0.574 5.435

Energy 0.536 0.921 -2.679 -0.423 -2.925

Materials 0.148 0.574 -0.423 -0.579 0.0658

Services 0.600 5.435 -2.925 0.0658 -38.437

Morishima Elasticities of Substitution

Capital Labor Energy Materials Services

Capital 0 0.857 0.110 0.292 2.176

Labor 0.403 0 0.123 0.463 2.445

Energy 0.399 0.994 0 0.0627 1.979

Materials 0.355 0.857 0.0771 0 2.146

Services 0.406 2.778 -0.0084 0.259 0

Own price elasticities are all negative as expected. Based on the price elasticity of demand, all pairs of inputs
are substitutes except energy and services and energy and materials. The matrix of Hicks-Allen elasticities
is symmetric by design. In general, most of the elasticities are less than 1 in absolute value and the degree
of substitution is low. However, the elasticity between labor and services is high, indicating that the textile
industry might have responded to increased competition from foreign firms that have low labor cost by
shifting away from labor to greater use of services. The Morishima elasticities support this interpretation, but
there are subtle differences between the two measures. The relationship between capital and services is more
elastic when the Morishima elasticity is used. The estimation of elasticities thoroughly describes production
in this industry and produces quantifiable measures of the relationships between inputs.

Example 25.22: Reducing Parameter Variance in a Tree Biomass Model
This example uses various dimensions of willow oak trees to model their biomass. Unlike a tree’s biomass,
a tree’s dimensions can be measured noninvasively. The model and data for this example are taken from
Parresol (1999). This biomass model uses four equations to model the bole wood, bole bark, crown, and total
mass of the trees,

ywood D b10 C b11D
2H

ybark D b20 C b21D
2H

ycrown D b30 C b31
D2HL

1000
C b32H

ytotal D b40 C b41D
2H C b42

D2HL

1000
C b43H

where ywood, ybark, and ycrown are the three components of a tree’s total biomass, ytotal; D is the tree’s diameter
at breast height; H is the tree’s height; and L is the tree’s live crown length. The efficiency of parameter
estimates in this model is improved by taking into account the correlations between errors in the equations
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for the four components of the trees’ biomass. Also, the efficiency of estimates is improved by taking into
account heteroscedasticity in the sample of 39 trees that is used to develop the model.

In an initial OLS estimation of this model’s parameters, some general properties of the model and data can be
quantified using the following statements:

proc model data=trees;
endo wood bark crown total;

vol = dbh**2*height;
cvol = vol*lcl/1000;

wood = b10 + b11*vol;
bark = b20 + b21*vol;
crown = b30 + b31*cvol + b32*height;
total = b40 + b41*vol + b42*cvol + b43*height;

fit / ols outs=stree out=otree outresid;
quit;

Here the covariance of equation errors is saved to the data set STREE, and the residuals are saved to the data
set OTREE for later analysis.

The covariance matrix of equation errors that is computed in the OLS estimation can be used in a seemingly
unrelated regression (SUR) estimation of the model to improve the efficiency of parameter estimates. The
total biomass of trees is restricted to equal the other three biomass components in the following SUR
estimation:

proc model data=trees;
endo wood bark crown total;

vol = dbh**2*height;
cvol = vol*lcl/1000;

wood = b10 + b11*vol;
bark = b20 + b21*vol;
crown = b30 + b31*cvol + b32*height;
total = b40 + b41*vol + b42*cvol + b43*height;

fit / nools sur sdata=stree;

restrict b10 + b20 + b30 = b40,
b11 + b21 = b41,
b42 = b31,
b43 = b32;

quit;

Output 25.22.1 shows the parameters and standard errors for the restricted SUR tree biomass model.
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Output 25.22.1 SUR Parameter Estimates for Willow Oak Model

The MODEL Procedure

Nonlinear SUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

b10 59.18653 48.2435 1.23 0.2274

b11 0.026598 0.000558 47.67 <.0001

b20 29.65101 10.3839 2.86 0.0069

b21 0.003225 0.000120 26.79 <.0001

b30 133.1066 26.6246 5.00 <.0001

b31 0.061543 0.00508 12.11 <.0001

b32 -5.33604 1.1141 -4.79 <.0001

b40 221.9441 62.1834 3.57 0.0010

b41 0.029824 0.000623 47.91 <.0001

b42 0.061543 0.00508 12.11 <.0001

b43 -5.33604 1.1141 -4.79 <.0001

Restrict0 4.15E-11 0.1316 0.00 1.0000 b10 + b20 + b30 = b40

Restrict1 148.5607 11355.0 0.01 0.9898 b11 + b21 = b41

Restrict2 68.66564 178.8 0.38 0.7067 b42 = b31

Restrict3 0.388714 3.5449 0.11 0.9145 b43 = b32

An analysis of heteroscedasticity in the unrestricted OLS model suggests that the efficiency of the estimation
could be improved further by weighting the observations using the following variance model,

�2wood D exp.w1 C w2 lnD2H/

�2bark D exp.k1 C k2 lnD2H/

�2crown D exp.c1 C c2 ln
D2HL

1000
� c3H

2/

�2total D exp.t1 C t2 lnD2H/

where �2i is the variance of the ith component of the biomass and the parameters w1, w2, k1, k2, c1, c2, c3,
t1, and t2 are determined by regressing the square of the residuals from the unrestricted OLS estimation
against the tree dimensions. Estimates of the parameters in the variance model can be determined using the
following statements:

proc model data=otree;
vol = dbh**2*height;
cvol = vol*lcl/1000;

eq.varwood = log(wood*wood) - (w1 + w2*log(vol));
eq.varbark = log(bark*bark) - (k1 + k2*log(vol));
eq.varcrown = log(crown*crown) - (c1 + c2*log(cvol) - c3*height**2);
eq.vartotal = log(total*total) - (t1 + t2*log(vol));

fit varwood varbark varcrown vartotal;
quit;

The biomass component variance model can be used to account for heteroscedasticity and improve the effi-
ciency of parameter estimates by weighting observations in the biomass model. The following PROC MODEL
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statements accommodate both the covariance among the biomass equations’ errors and the heteroscedasticity
that is observed in each component of the trees’ biomass:

proc model data=trees;
endo wood bark crown total;

vol = dbh**2*height;
cvol = vol*lcl/1000;

wood = b10 + b11*vol;
bark = b20 + b21*vol;
crown = b30 + b31*cvol + b32*height;
total = b40 + b41*vol + b42*cvol + b43*height;

h.wood = exp(&w1)*vol**&w2;
h.bark = exp(&k1)*vol**&k2;
h.crown = exp(&c1)*cvol**&c2 * exp (-&c3*height*height);
h.total = exp(&t1)*vol**&t2;

fit / sur;

restrict b10 + b20 + b30 = b40,
b11 + b21 = b41,
b42 = b31,
b43 = b32;

quit;

Output 25.22.2 shows the parameters and standard errors for the heteroscedastic tree biomass model.

Output 25.22.2 SUR Parameter Estimates for Heteroscedastic Willow Oak Model

The MODEL Procedure

Nonlinear SUR Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t| Label

b10 10.22253 14.2208 0.72 0.4766

b11 0.027515 0.000534 51.48 <.0001

b20 15.66358 4.8173 3.25 0.0024

b21 0.003476 0.000138 25.13 <.0001

b30 103.8782 10.6122 9.79 <.0001

b31 0.055226 0.00306 18.02 <.0001

b32 -4.05163 0.4603 -8.80 <.0001

b40 129.7643 21.5621 6.02 <.0001

b41 0.030991 0.000614 50.47 <.0001

b42 0.055226 0.00306 18.02 <.0001

b43 -4.05163 0.4603 -8.80 <.0001

Restrict0 -0.28369 1.1969 -0.24 0.8164 b10 + b20 + b30 = b40

Restrict1 -56046.2 49194.0 -1.14 0.2603 b11 + b21 = b41

Restrict2 539.3854 697.4 0.77 0.4471 b42 = b31

Restrict3 4.374001 29.6959 0.15 0.8853 b43 = b32

Output 25.22.3 shows the improved efficiency of estimates in the heteroscedastic model as compared to
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the homoscedastic model. For most of the parameters, the standard errors are reduced significantly in the
heteroscedastic estimation.

Output 25.22.3 Standard Error Reduction

Parameter

StdErr
Rel.

Change

b10 ( 71%)

b11 (  4%)

b20 ( 54%)

b21 15%

b30 ( 60%)

b31 ( 40%)

b32 ( 59%)

b40 ( 65%)

b41 (  1%)

b42 ( 40%)

b43 ( 59%)
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Overview: PANEL Procedure
The PANEL procedure analyzes a class of linear econometric models that commonly arise when time series
and cross-sectional data are combined. This type of pooled data on time series cross-sectional bases is
often referred to as panel data. Typical examples of panel data include observations over time on people,
households, countries, firms, and so on. For example, in the case of survey data on household income, the
panel is created by repeatedly surveying the same households over several years.

Regression models of panel data are characterized by an error structure that can be divided into a cross-
sectional component, a time component, and an observation-level component. These models can be grouped
into several categories, depending on the exact structure of the error term. The PANEL procedure uses the
following error structures and the corresponding methods to analyze data:

� one-way and two-way models

� fixed-effects, random-effects, and hybrid models
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� autoregressive models

� moving average models

� dynamic panel models

A one-way model depends only on the cross section to which the observation belongs. A two-way model
depends on both the cross section and the time period to which the observation belongs.

Apart from the possible one-way or two-way nature of the effect, the other source of disparity between the
possible specifications is the nature of the cross-sectional or time series effect. The models are referred to as
fixed-effects models if the effects are nonrandom and as random-effects models otherwise.

If the effects are fixed, the models are essentially regression models with dummy variables that correspond
to the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is the best linear
unbiased estimator. Random-effects models use a two-stage approach. In the first stage, variance components
are calculated by using methods described by Fuller and Battese (1974); Wansbeek and Kapteyn (1989);
Wallace and Hussain (1969); Nerlove (1971). In the second stage, variance components are used to standardize
the data, and OLS regression is performed.

Random-effects models are more efficient than fixed-effects models, and they have the ability to estimate
effects for variables that do not vary within cross sections. The cost of these added features is that random-
effects models carry much more stringent assumptions than their fixed-effects counterparts. The PANEL
procedure supports models that blend the desirable features of both random and fixed effects. These hybrid
models are those by Hausman and Taylor (1981) and Amemiya and MaCurdy (1986).

Two types of models in the PANEL procedure accommodate an autoregressive structure: the Parks method
estimates a first-order autoregressive model with contemporaneous correlation, and the dynamic panel
estimator estimates an autoregressive model with lagged dependent variables as regressors.

The Da Silva method estimates a mixed variance-component moving average error process. The regression
parameters are estimated by two-step generalized least squares (GLS).

The PANEL procedure enhances the features that were previously implemented in the TSCSREG procedure.
The most important additions follow:

� You can fit models for dynamic panel data by using the generalized method of moments (GMM).

� The Hausman-Taylor and Amemiya-MaCurdy estimators offer a compromise between fixed- and
random-effects estimation in models where some variables are correlated with individual effects.

� The MODEL statement supports between and pooled estimation.

� The variance components for random-effects models can be calculated for both balanced and unbal-
anced panels by using the methods described by Fuller and Battese (1974); Wansbeek and Kapteyn
(1989); Wallace and Hussain (1969); Nerlove (1971).

� The CLASS statement allows classification variables (and their interactions) directly in the analysis.

� The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests.

� The RESTRICT statement specifies linear restrictions on the parameters.

� The FLATDATA statement processes data in compressed (wide) form.
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� Several methods that produce heteroscedasticity-consistent (HCCME) and heteroscedasticity- and
autocorrelation-consistent (HAC) covariance matrices are supported, because the presence of het-
eroscedasticity and autocorrelation can result in inefficient and biased estimates of the covariance
matrix in an OLS framework.

� Tests are added for poolability, panel stationarity, the existence of cross-sectional and time effects,
autocorrelation, and cross-sectional dependence.

� The LAG statement and related statements provide functionality for creating lagged variables from
within the PANEL procedure. Using these statements is preferable to using the DATA step because
creating lagged variables in a panel setting can prove difficult, often requiring multiple loops and
careful consideration of missing values.

Working within the PANEL procedure makes the creation of lagged values easy. The LAG statement
leaves missing values as is. Alternatively, missing values can be replaced with zeros, overall mean, time
mean, or cross-sectional mean by using the ZLAG, XLAG, SLAG, or CLAG statement, respectively.

� The OUTPUT statement enables you to output data and estimates for use in other analyses.

� The COMPARE statement constructs tables that enable you to easily compare parameters across
multiple models and estimators.

Getting Started: PANEL Procedure
The following DATA step creates the data set Electricity from the cost function data in Greene (1990). The
variable Production is the log of output in millions of kilowatt-hours, and the variable Cost is the log of cost
in millions of dollars.

data Electricity;
input firm year production cost @@;

datalines;
1 1955 5.36598 1.14867 1 1960 6.03787 1.45185
1 1965 6.37673 1.52257 1 1970 6.93245 1.76627
2 1955 6.54535 1.35041 2 1960 6.69827 1.71109
2 1965 7.40245 2.09519 2 1970 7.82644 2.39480
3 1955 8.07153 2.94628 3 1960 8.47679 3.25967
3 1965 8.66923 3.47952 3 1970 9.13508 3.71795
4 1955 8.64259 3.56187 4 1960 8.93748 3.93400
4 1965 9.23073 4.11161 4 1970 9.52530 4.35523
5 1955 8.69951 3.50116 5 1960 9.01457 3.68998
5 1965 9.04594 3.76410 5 1970 9.21074 4.05573
6 1955 9.37552 4.29114 6 1960 9.65188 4.59356
6 1965 10.21163 4.93361 6 1970 10.34039 5.25520
;

Consider the model

Cit D ˇ0 C ˇ1Pit C vi C eit for i D 1; : : : ;N and t D 1; : : : ;T

where Cit represents cost, Pit represents production, vi is the cross-sectional error component, and eit is the
error variance component.
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The first step is to make sure the data are sorted by firms and years within firms:

proc sort data = Electricity;
by firm year;

run;

If you assume that the cross-sectional effects are random, four possible estimators are available for the
variance components. The VCOMP=FB option in the following statements uses the Fuller and Battese (1974)
estimator to fit the model:

proc panel data = Electricity;
id firm year;
model cost = production / ranone vcomp = fb;

run;

The output of these statements is shown in Output 26.1.

Figure 26.1 One-Way Random-Effects Estimation Results

The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: cost

Model Description

Estimation Method RanOne

Number of Cross Sections 6

Time Series Length 4

Fit Statistics

SSE 0.4143 DFE 22

MSE 0.0188 Root MSE 0.1372

R-Square 0.9164

Variance Component Estimates

Variance Component for Cross Sections 0.04109

Variance Component for Error 0.015533

Hausman Test for Random
Effects

Coefficients DF m Value Pr > m

1 1 9.08 0.0026

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 -3.27307 0.4277 -7.65 <.0001 Intercept

production 1 0.779469 0.0502 15.53 <.0001

Printed first is a report that provides the estimation method and various data counts. Fit statistics and variance
components estimates are printed next. A Hausman specification test compares this model to its fixed-effects
counterpart. Finally, the table of regression parameter estimates shows the estimates, standard errors, and t
tests.
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Syntax: PANEL Procedure
The following statements are available in the PANEL procedure:

PROC PANEL options ;
BY variables ;
CLASS variables < / options > ;
COMPARE < model-list > < / options > ;
FLATDATA options < / OUT=SAS-data-set > ;
ID cross-section-id time-series-id ;
INSTRUMENTS options ;
LAG lag-specifications / OUT=SAS-data-set ;
MODEL response = regressors < / options > ;
OUTPUT < options > ;
RESTRICT equation1 < ,equation2. . . > ;
TEST equation1 < ,equation2. . . > ;

Functional Summary
The statements and options available in the PANEL procedure are summarized in Table 26.1.

Table 26.1 Functional Summary

Description Statement Option

Data Set Options
Includes correlations in the OUTEST= data set PROC PANEL CORROUT
Includes covariances in the OUTEST= data set PROC PANEL COVOUT
Specifies the input data set PROC PANEL DATA=
Specifies variables to keep but not transform FLATDATA KEEP=
Specifies the output data set for the CLASS
statement

CLASS OUT=

Specifies the output data set FLATDATA OUT=
Specifies the name of an output SAS data set OUTPUT OUT=
Writes parameter estimates to an output
data set

PROC PANEL OUTEST=

Writes the transformed series to an output
data set

PROC PANEL OUTTRANS=

Requests that the procedure produce graphics
via the Output Delivery System

PROC PANEL PLOTS

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies the classification variables CLASS
Converts the data to uncompressed form FLATDATA
Specifies the cross-sectional and time ID
variables

ID
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Table 26.1 continued

Description Statement Option

Declares instrumental variables INSTRUMENTS

Lag Generation
Specifies output data set for lags whose
missing values are replaced by the
cross-sectional mean

CLAG OUT=

Specifies output data set for lags that leave
missing values unchanged

LAG OUT=

Specifies output data set for lags whose
missing values are replaced by the time period
mean

SLAG OUT=

Specifies output data set for lags whose
missing values are replaced by the overall
mean

XLAG OUT=

Specifies output data set for lags whose
missing values are replaced by zero

ZLAG OUT=

Printing Control Options
Prints correlations of the estimates MODEL CORRB
Prints covariances of the estimates MODEL COVB
Suppresses printed output MODEL NOPRINT
Requests that the procedure produce graphics
via the Output Delivery System

MODEL PLOTS

Prints fixed effects MODEL PRINTFIXED
Performs tests of linear hypotheses TEST

Model Estimation Options
Specifies the Amemiya-MaCurdy model MODEL AMACURDY
Requests the R� statistic for serial correlation
under fixed effects

MODEL BFN

Requests the Baltagi and Li joint Lagrange
multiplier (LM) test for serial correlation and
random cross-sectional effects

MODEL BL91

Requests the Baltagi and Li LM test for
first-order correlation under fixed effects

MODEL BL95

Requests the Breusch-Pagan test for one-way
random effects

MODEL BP

Requests the Breusch-Pagan test for two-way
random effects

MODEL BP2

Requests the Bera, Sosa Escudero, and Yoon
modified Rao’s score test

MODEL BSY

Specifies the between-groups model MODEL BTWNG
Specifies the between-time-periods model MODEL BTWNT
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Table 26.1 continued

Description Statement Option

Requests the Berenblut-Webb statistic for
serial correlation under fixed effects

MODEL BW

Requests cross-sectional dependence tests MODEL CDTEST
Requests the clustered HCCME estimator for
the covariance matrix

MODEL CLUSTER

Specifies the Da Silva method MODEL DASILVA
Requests the Durbin-Watson statistic for serial
correlation under fixed effects

MODEL DW

Specifies the first-differences dynamic panel
model

MODEL DYNDIFF

Specifies the system dynamic panel model MODEL DYNSYS
Specifies the one-way fixed-effects model MODEL FIXONE
Specifies the one-way fixed-effects model with
respect to time

MODEL FIXONETIME

Specifies the two-way fixed-effects model MODEL FIXTWO
Specifies the first-difference models for
one-way models

MODEL FDONE

Specifies the first-difference models for
one-way models with respect to time

MODEL FDONETIME

Specifies the first-difference models for
two-way models

MODEL FDTWO

Specifies the Moore-Penrose generalized
inverse

MODEL GINV=G4

Requests the Gourieroux, Holly, and Monfort
test for two-way random effects

MODEL GHM

Requests the HAC estimator for the
variance-covariance matrix

MODEL HAC

Requests the HCCME estimator for the
covariance matrix

MODEL HCCME=

Requests the Honda test for one-way random
effects

MODEL HONDA

Requests the Honda test for two-way random
effects

MODEL HONDA2

Specifies the Hausman-Taylor model MODEL HTAYLOR
Requests the King and Wu test for two-way
random effects

MODEL KW

Specifies the order of the moving average error
process for the Da Silva method

MODEL M=

Suppresses the intercept term MODEL NOINT
Specifies the Parks method MODEL PARKS
Prints the ˆ matrix for the Parks method MODEL PHI
Specifies the pooled model MODEL POOLED
Requests poolability tests for one-way fixed
effects and the pooled model

MODEL POOLTEST
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Table 26.1 continued

Description Statement Option

Specifies the one-way random-effects model MODEL RANONE
Specifies the two-way random-effects model MODEL RANTWO
Prints autocorrelation coefficients for the Parks
method

MODEL RHO

Controls the check for singularity MODEL SINGULAR=
Specifies the method for the panel unit
root/stationarity test

MODEL UROOTTEST=

Specifies the method for the variance
components estimator

MODEL VCOMP=

Specifies linear equality restrictions on the
parameters

RESTRICT

Performs tests of linear hypotheses TEST WALD, LM, LR
Requests the Wooldridge (2002) test for the
presence of unobserved effects

MODEL WOOLDRIDGE02

Comparing Models
Create tables that display side-by-side model
comparisons

COMPARE

PROC PANEL Statement
PROC PANEL options ;

The PROC PANEL statement invokes the PANEL procedure. You can specify the following options:

DATA=SAS-data-set
names the input data set. The input data set must be sorted by cross section and by time period within
each cross section. If you omit this option, the most recently created SAS data set is used.

OUTCOV

COVOUT
writes the standard errors and covariance matrix of the parameter estimates to the OUTEST= data set.
For more information, see the section “OUTEST= Data Set” on page 1850.

OUTCORR

CORROUT
writes the correlation matrix of the parameter estimates to the OUTEST= data set. For more information,
see the section “OUTEST= Data Set” on page 1850.
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OUTEST=SAS-data-set
names an output data set to contain the parameter estimates. If you omit this option, the OUTEST=
data set is not created. For more information about the structure of the OUTEST= data set, see the
section “OUTEST= Data Set” on page 1850.

OUTTRANS=SAS-data-set
names an output data set to contain the transformed data. Several models that the PANEL procedure
supports are estimated by first transforming the data and then applying standard regression techniques
to the transformed data. This option enables you to access the transformed data. For more information
about the structure of the OUTTRANS= data set, see the section “OUTTRANS= Data Set” on
page 1851.

PLOTS < (global-plot-options < (NCROSS=value) > ) > < = (specific-plot-options) >
selects plots to be produced via the Output Delivery System. For general information about ODS
Graphics, see Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide). The global-
plot-options apply to all relevant plots that the PANEL procedure generates.

Global Plot Options

The following global-plot-options are supported:

NCROSS=value
specifies the number of cross sections to be combined into one time series plot.

ONLY
suppresses the default plots. Only the plots that you specifically request are produced.

UNPACKPANEL

UNPACK
displays each graph separately. By default, some graphs can appear together in a single panel.

Specific Plot Options

The following specific-plot-options are supported:

ACTSURFACE produces a surface plot of actual values.

ALL produces all appropriate plots.

FITPLOT plots the predicted and actual values.

NONE suppresses all plots.

PREDSURFACE produces a surface plot of predicted values.

QQ produces a Q-Q plot of residuals.

RESIDSTACK | RESSTACK produces a stacked plot of residuals.

RESIDSURFACE produces a surface plot of residual values.

RESIDUAL | RES plots the residuals.

RESIDUALHISTOGRAM | RESIDHISTOGRAM plots the histogram of residuals.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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For more information, see the section “Creating ODS Graphics” on page 1848.

In addition, you can specify any of the following MODEL statement options in the PROC PANEL statement:
AMACURDY, BTWNG, BTWNT, CORRB, COVB, DASILVA, DYNDIFF, DYNSYS, FDONE, FDONE-
TIME, FDTWO, FIXONE, FIXONETIME, FIXTWO, HTAYLOR, M=, NOINT, NOPRINT, PARKS, PHI,
POOLED, PRINTFIXED, RANONE, RANTWO, RHO, SINGULAR=, and VCOMP=. When you specify
these options in the PROC PANEL statement, they apply globally to every MODEL statement. For a complete
description of each of these options, see the section “MODEL Statement” on page 1770.

BY Statement
BY variables ;

A BY statement obtains separate analyses of observations in groups that are defined by the BY variables.
When a BY statement appears, the input data set must be sorted both by the BY variables and by cross section
and time period within the BY groups.

The following statements show an example:

proc sort data=a;
by byvar1 byvar2 csid tsid;

run;

proc panel data=a;
by byvar1 byvar2;
id csid tsid;
...

run;

CLASS Statement
CLASS variables < / OUT=SAS-data-set > ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

The OUT=SAS-data=set option enables you to output the regression dummy variables that are used to
represent the classification variables, augmented by a copy of the original data.
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COMPARE Statement
COMPARE < model-list > < / options > ;

A COMPARE statement creates tables of side-by-side comparisons of parameter estimates and other model
statistics. You can fit multiple models simultaneously by specifying multiple MODEL statements, and you
can use a COMPARE statement to create tables that compare the models.

The COMPARE statement creates two tables: the first table compares model fit statistics such as R-square and
mean square error; the second table compares regression coefficients, their standard errors, and (optionally) t
tests.

By default, comparison tables are created for all fitted models, but you can use the optional model-list to limit
the comparison to a subset of the fitted models. The model-list consists of a set of model labels, as specified
in the MODEL statement; for more information, see the section “MODEL Statement” on page 1770. If a
model does not have a label, you refer to it generically as “Model i,” where the corresponding model is the ith
MODEL statement specified. If model labels are longer than 16 characters, then only the first 16 characters
of the labels in the model-list are used to determine a match.

You can specify one or more COMPARE statements. The following code illustrates the use of the COMPARE
statement:

proc panel data=a;
id csid tsid;
mod_one: model y = x1 x2 x3 / fixone;
model "Second Model" y = x1 x2 / fixone;
model y = x1 x2 x3 x4 / fixone;
compare;
compare "Second Model" "Model 3";

run;

The first COMPARE statement compares all three fitted models. The second COMPARE statement compares
the second and third models and uses the generic “Model 3” to identify the third model.

You can specify the following options in the COMPARE statement after a slash (/):

MSTAT(mstat-list)
specifies a list of model fit statistics to be displayed. A set of statistics is displayed by default, but you
can use this option to specify a custom set of model statistics.

The mstat-list can contain one or more of the following keywords:

ALL
displays all model fit statistics. Not all statistics are appropriate for all models, and thus not every
statistic is always calculated. A blank cell in the table indicates that a particular statistic is not
appropriate for that model.

DFE
displays the error degrees of freedom. This statistic is displayed by default.
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F
displays the F statistic of the overall test for no fixed effects.

FDENDF
displays the denominator degrees of freedom of the overall test for no fixed effects.

FNUMDF
displays the numerator degrees of freedom of the overall test for no fixed effects.

M
displays the Hausman test m statistic.

MDF
displays the Hausman test degrees of freedom.

MSE
displays the model mean square error. This statistic is displayed by default.

NCS
displays the number of cross sections. This statistic is displayed by default.

NONE
suppresses the table of model fit statistics.

NTS
displays the maximum time series length. This statistic is displayed by default.

PROBF
displays the significance level of the overall test for no fixed effects.

PROBM
displays the significance level of the Hausman test.

RMSE
displays the model root mean square error.

RSQUARE
displays the model R-square fit statistic. This statistic is displayed by default.

SSE
displays the model sum of squares.

VARCS
displays the variance component due to cross sections in random-effects models.

VARERR
displays the error variance component in random-effects models.
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VARTS
displays the variance component due to time series in random-effects models.

OUTPARM=SAS-data-set
names an output data set to contain the data from the comparison table for parameter estimates, standard
errors, and t tests.

OUTSTAT=SAS-data-set
names an output data set to contain the data from the comparison table for model fit statistics, such as
R-square and mean square error.

PSTAT(pstat-list)
specifies a list of parameter statistics to be displayed. By default, estimated regression coefficients and
their standard errors are displayed. Use this option to specify a custom set of parameter statistics.

The pstat-list can contain one or more of the following keywords:

ALL
displays all parameter statistics.

ESTIMATE
displays the estimated regression coefficient. This statistic is displayed by default.

NONE
suppresses the table of parameter statistics.

PROBT
displays the significance level of the t test.

STDERR
displays the standard error. This statistic is displayed by default.

T
displays the t statistic.

See Example 26.3 for a demonstration of the COMPARE statement.

FLATDATA Statement
FLATDATA options < / OUT=SAS-data-set > ;

The FLATDATA statement enables you to use PROC PANEL when you have data in flat (or wide) format,
where all measurements for a particular cross section are contained within one observation. See Example 26.6
for a demonstration. If you have flat data, you should issue the FLATDATA statement first in PROC PANEL,
before you reference any variables that you create using this statement.

You must specify the following options:
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BASE=(basename basename . . . basename)
specifies the variables to be transformed into a proper PROC PANEL format. All variables to be
transformed must be named according to the convention basename_timeperiod. You supply only the
base names, and the procedure extracts the appropriate variables to transform. If some year’s data are
missing for a variable, then PROC PANEL detects this and fills in missing values.

INDID=variable
names the variable in the input data set that uniquely identifies each individual. The variable can be a
character or numeric variable.

TSNAME=name
specifies a name for the generated time identifier. The name must satisfy the requirements for the
name of a SAS variable. The name can be quoted, but it must not be the name of a variable in the input
data set.

You can also specify the following option:

KEEP=(variable variable . . . variable)
specifies the variables to be copied without any transformation. These variables remain constant with
respect to time when the data are converted to PROC PANEL format.

You can also specify the following option after a slash (/):

OUT=SAS-data-set
saves the converted flat data set to a data set in PROC PANEL format.

ID Statement
ID cross-section-id time-series-id ;

The ID statement is used to specify variables in the input data set that identify the cross section and time
period for each observation.

It is vitally important that you sort your data by cross sections and by time periods within cross sections. As
PROC PANEL steps through the observations in the data, it treats any change in the value of the cross section
ID variable as a new cross section, regardless of whether it has encountered that value previously. If you do
not sort your data, the results might not be what you expect.

To make sure that the input data set is correctly sorted, use PROC SORT to sort the input data set, and use a
BY statement to list the variables exactly as they are listed in the ID statement, as in the following example:

proc sort data=a;
by csid tsid;

run;

proc panel data=a;
id csid tsid;
...

run;
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INSTRUMENTS Statement
INSTRUMENTS options ;

The INSTRUMENTS statement is used in dynamic panel estimation (which you request via the DYNDIFF
or DYNSYS option in the MODEL statement) to forgo the default set of instruments in favor of a custom set.

The INSTRUMENTS statement is also used to specify variables that are correlated with individual ef-
fects during Hausman-Taylor or Amemiya-MaCurdy estimation (which you request via the HTAYLOR or
AMACURDY option, respectively, in the MODEL statement).

You can specify the following options:

CONSTANT
includes an intercept (column of ones) as an instrument in dynamic panel estimation.

CORRELATED=(variable variable . . . variable)
specifies a list of variables that are treated as correlated with the unobserved individual effects when
you are fitting a Hausman-Taylor or Amemiya-MaCurdy model.

DEPVAR<(DIFF | LEVEL | BOTH )>
specifies instruments that are related to the dependent variable. You can specify the following values:

DIFF creates instruments based on the dependent variable for the difference equations.

LEVEL creates instruments based on the dependent variable for the level equations.

BOTH creates instruments based on the dependent variable for the whole system.

The default is BOTH.

DIFFEND=(variable variable . . . variable)
specifies a list of variables that are treated as endogenous when you are creating GMM-style instruments
for the difference equations in dynamic panel estimation.

DIFFEQ=(variable variable . . . variable)
specifies a list of variables that can be used as standard instruments for the difference equations in
dynamic panel estimation.

DIFFPRE=(variable variable . . . variable)
specifies a list of variables that are treated as predetermined when you are creating instruments for the
difference equations in dynamic panel estimation.

LEVELEND=(variable variable . . . variable)
specifies a list of variables that are treated as endogenous when you are creating instruments for the
level equations in dynamic panel estimation.

LEVELEQ=(variable variable . . . variable)
specifies a list of variables that can be used as standard instruments for the level equations in dynamic
panel estimation.
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LEVELPRE=(variable variable . . . variable)
specifies a list of variables that are treated as predetermined when you are creating instruments for the
level equations in dynamic panel estimation.

MAXBAND=integer
if specified, sets the maximum number of GMM-style instruments per observation, for each variable.

For a detailed discussion of the model setup and the use of the INSTRUMENTS statement for dynamic panel
estimation, see the section “Dynamic Panel Estimation (DYNDIFF and DYNSYS Options)” on page 1809.

For Hausman-Taylor or Amemiya-MaCurdy estimation, you specify which variables are correlated with the
individual effects by using the CORRELATED= option. All other options are ignored. For these estimators,
the specified variables are not instruments; they are merely designated as correlated. The instruments are
determined by the method; for more information, see the section “Hausman-Taylor Estimation (HTAYLOR
Option)” on page 1807.

When you specify multiple INSTRUMENT statements, each is paired with the MODEL statement that
immediately follows. For example, the following statements fit two dynamic panel models that have custom
instrumentation:

proc panel data=test;
id cs ts;
instruments depvar diffeq = (x1);
model y = x1 x2 / dyndiff;
instruments depvar(level) diffeq = (x2);
model y = x2 / dynsys;

run;

LAG, CLAG, SLAG, XLAG, and ZLAG Statements
LAG var1(lag1 lag2 . . . lagT ) . . . varN (lag1 lag2 . . . lagT ) / OUT=SAS-data-set ;

Generally, creating lags of variables in a panel setting is a tedious process that requires many DATA step
statements. The PANEL procedure enables you to generate lags of any series without stepping through
individual time series. The LAG statement is a data set generation tool. You can specify more than one LAG
statement. Analyzing the generated lagged data requires a subsequent call to PROC PANEL.

The OUT= option is required. The output data set includes all variables in the input set, plus the generated
lags, which are named using the convention varname_lag. The LAG statement tends to generate many
missing values in the data. This can be problematic because the number of usable observations decreases
with the lag length. Therefore, PROC PANEL offers several alternatives to the LAG statement. You can use
the following statements in place of the LAG statement with otherwise identical syntax:

CLAG replaces missing values with the cross-sectional mean for that variable.

SLAG replaces missing values with the time mean for that variable.

XLAG replaces missing values with the overall mean for that variable.

ZLAG replaces missing values with 0 for that variable.

For all these alternative statements, missing values are replaced only if they are in the generated (lagged)
series. Missing variables in the original variables remain unchanged.



1770 F Chapter 26: The PANEL Procedure

Assume that data set A has been sorted by cross section and by time period within cross section and that the
variables are Y, X1, X2, and X3. The following PROC PANEL statements generate a series with lags 1 and 3
of the X1 variable; lags 3, 6, and 9 of the X2 variable; and lag 2 of the X3 variable:

proc panel data=A;
id i t;
lag X1(1 3) X2(3 6 9) X3(2) / out=A_lag;

run;

If you want zeroing instead of missing values, then use the ZLAG statement in place of the LAG statement:

proc panel data=A;
id i t;
zlag X1(1 3) X2(3 6 9) X3(2) / out=A_zlag;

run;

Similarly, you can use the XLAG statement to replace missing values with overall means, the SLAG statement
to replace them with time means, and the CLAG statement to replace them with cross-sectional means.

MODEL Statement
MODEL < "string" > response = regressors < / options > ;

The MODEL statement specifies the regression model, the error structure that is assumed for the regression
residuals, and the estimation technique to be used. The response variable (response) on the left side of the
equal sign is regressed on the independent variables (regressors), which are listed after the equal sign. You
can specify any number of MODEL statements. For each MODEL statement, you can specify only one
response.

You can label models. Model labels are used in the printed output to identify the results for different models.
If you do not specify a label, the model is referred to by numerical order wherever necessary. You can label
the models in two ways:

First, you can prefix the MODEL statement by a label followed by a colon. For example:

label: MODEL . . . ;

Second, you can add a quoted string after the MODEL keyword. For example:

MODEL "label" . . . ;

Quoted-string labels are preferable because they allow spaces and special characters and because these labels
are case-sensitive. If you specify both types of label, PROC PANEL uses the quoted string.

The MODEL statement supports a multitude of options, some more specific than others. Table 26.2
summarizes the options available in the MODEL statement. These are subsequently discussed in detail in the
order in which the table presents them.
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Table 26.2 Summary of MODEL Statement Options

Option Description

Estimation Technique Options
AMACURDY Fits a one-way model by using the Amemiya-MaCurdy estimator

BTWNG Fits the between-groups model

BTWNT Fits the between-time-periods model

DASILVA Fits a moving average model by using the Da Silva method

DYNDIFF Fits a dynamic panel model by using GMM on the difference
equations

DYNSYS Fits a dynamic panel model by using system GMM

FDONE Fits a one-way model by using first-difference models

FDONETIME Fits a one-way model for time effects by using first-differenced
methods

FDTWO Fits a two-way model by using first-difference models

FIXONE Fits a one-way fixed-effects model

FIXONETIME Fits a one-way fixed-effects model for time effects

FIXTWO Fits a two-way fixed-effects model

HTAYLOR Fits a one-way model by using the Hausman-Taylor estimator

PARKS Fits an autoregressive model by using the Parks method

POOLED Fits the pooled regression model

RANONE Fits a one-way random-effects model

RANTWO Fits a two-way random-effects model

Estimation Control Options
M= Specifies the moving average order

NOESTIM Limits estimation to only transforming the data

NOINT Suppresses the intercept

SINGULAR= Specifies a matrix inverse singularity criterion

VCOMP= Specifies the type of variance component estimation for
random-effects estimation

Dynamic Panel Estimation Control Options
ARTEST= Specifies the maximum order of the autoregression (AR) test

ATOL= Specifies the convergence criterion of iterated GMM, with respect
to the weighting matrix

BIASCORRECTED Requests bias-corrected variances for two-step GMM

BTOL= Specifies the convergence criterion of iterated GMM, with respect
to the parameter matrix
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Table 26.2 continued

Option Description

DLAGS= Specifies the number of dependent variables to be used as
regressors

GINV= Specifies the type of generalized matrix inverse

GMM1 Estimates by one-step GMM, the default

GMM2 Estimates by two-step GMM

ITGMM Estimates by iterative GMM

MAXITER= Specifies the maximum iterations for iterative GMM

ROBUST Specifies the robust covariance matrix

TIME Includes time dummy variables in the model

Alternative Variances Options
CLUSTER Corrects covariance for intracluster correlation

HAC(options) Specifies a heteroscedasticity- and autocorrelation-consistent
(HAC) covariance

HCCME= Specifies a heteroscedasticity-corrected covariance matrix
estimator (HCCME)

NEWEYWEST(options) Specifies the Newey-West covariance, a special case of the HAC
covariance

Unit Root Test Options
UROOTTEST(test-
options)

Requests one or more panel data unit root and stationarity tests;
specify test-options ALL through lLC within this option.

STATIONARITY(test-
options)

Synonym for the UROOTTEST option

ALL Requests that all unit root tests be performed

BREITUNG(options) Specifies Breitung’s tests that are robust to cross-sectional
dependence

COMBINATION(options) Specifies one or more unit root tests that combine over all cross
sections

FISHER(options) Synonym for the COMBINATION option

HADRI(options) Specifies Hadri’s (2000) stationarity test

HT Specifies the Harris and Tzavalis (1999) panel unit root test

IPS(options) Specifies the Im, Pesaran, and Shin (2003) panel unit root test

LLC(options) Specifies the Levin, Lin, and Chu (2002) panel unit root test

Model Specification Test Options
BFN Requests the R� statistic for serial correlation under fixed effects
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Table 26.2 continued

Option Description

BL91 Requests the Baltagi and Li (1991) Lagrange multiplier (LM) test
for serial correlation and random effects

BL95 Requests the Baltagi and Li (1995) LM test for first-order
correlation under fixed effects

BP Requests the Breusch-Pagan one-way test for random effects

BP2 Requests the Breusch-Pagan two-way test for random effects

BSY Requests the Bera, Sosa Escudero, and Yoon modified Rao’s score
test

BW Requests the Berenblut-Webb statistic for serial correlation under
fixed effects

CDTEST(options) Requests a battery of cross-sectional dependence tests

DW Requests the Durbin-Watson statistic for serial correlation under
fixed effects

GHM Requests the Gourieroux, Holly, and Monfort test for two-way
random effects

HONDA Requests the Honda one-way test for random effects

HONDA2 Requests the Honda two-way test for random effects

KW Requests the King and Wu two-way test for random effects

POOLTEST Requests poolability tests for one-way fixed effects and pooled
models

WOOLDRIDGE02 Requests the Wooldridge (2002) test for unobserved effects

Printed Output Options
CORR Prints the parameter correlation matrix

CORRB Synonym for the CORR option

COVB Prints the parameter covariance matrix

ITPRINT Prints the iteration history

NOPRINT Suppresses normally printed output

PHI Prints the ˆ covariance matrix for the Parks method

PRINTFIXED Estimates and prints the fixed effects

RHO Prints the autocorrelation coefficients for the Parks method

VAR Synonym for the COVB option

You can specify the following options in the MODEL statement after a slash (/).
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Estimation Technique Options

Estimation technique options specify the assumed error structure and estimation method. You can specify
more than one option, in which case the analysis is repeated for each. The default is RANTWO (two-way
random effects).

All estimation methods are described in the section “Details: PANEL Procedure” and its subsections.

AMACURDY
requests Amemiya-MaCurdy estimation for a model that has correlated individual (cross-sectional)
effects. This option requires you to specify the CORRELATED= option in the INSTRUMENTS
statement.

BTWNG
estimates a between-groups model.

BTWNT
estimates a between-time-periods model.

DASILVA
estimates the model by using the Da Silva method, which assumes a mixed variance-component
moving average model for the error structure.

DYNDIFF
estimates a dynamic panel model by the generalized method of moments (GMM), performed on the
difference equations. A default set of instruments is assumed. You can optionally specify your own
instruments by using an INSTRUMENTS statement.

DYNSYS
estimates a dynamic panel model by the generalized method of moments (GMM), performed on the
system of both the differenced and level equations. A default set of instruments is assumed. You can
optionally specify your own instruments by using an INSTRUMENTS statement.

FDONE
estimates a one-way model by using first-difference models.

FDONETIME
estimates a one-way model that corresponds to time effects by using first-difference models.

FDTWO
estimates a two-way model by using first-difference models.

FIXONE
estimates a one-way fixed-effects model that corresponds to cross-sectional effects only.

FIXONETIME
estimates a one-way fixed-effects model that corresponds to time effects only.
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FIXTWO
estimates a two-way fixed-effects model. This option is not supported when the number of time periods
exceeds 2000.

HTAYLOR
requests Hausman-Taylor estimation for a model that has correlated individual (cross-sectional) effects.
This option requires you to specify the CORRELATED= option in the INSTRUMENTS statement.

PARKS
estimates the model by using the Parks method, which assumes a first-order autoregressive model for
the error structure.

POOLED
estimates a pooled (OLS) model.

RANONE
estimates a one-way random-effects model.

RANTWO
estimates a two-way random-effects model.

Estimation Control Options

Estimation control options define parameters that control the estimation and can be specific to the chosen
technique (for example, how to estimate variance components in a random-effects model).

M=number
specifies the order of the moving average process in the Da Silva method. The value of number must
be less than T � 1, where T is the number of time periods. By default, M=1.

NOESTIM
limits the estimation of a FIXONE, FIXONETIME, FDONE, FDONETIME, or RANONE model to
the generation of the transformed series. This option is intended for use with an OUTTRANS= data
set.

NOINT
suppresses the intercept parameter from the model.

SINGULAR=number
specifies a singularity criterion for the inversion of the matrix. The default depends on the precision of
the computer system.

VCOMP=FB | NL | WH | WK
specifies the type of variance component estimate to use. You can specify the following values:

FB uses the Fuller-Battese method.

NL uses the Nerlove method.

WH uses the Wallace-Hussain method.

WK uses the Wansbeek-Kapteyn method.



1776 F Chapter 26: The PANEL Procedure

By default, VCOMP=FB for balanced data and VCOMP=WK for unbalanced data. For more infor-
mation, see the sections “One-Way Random-Effects Model (RANONE Option)” on page 1797 and
“Two-Way Random-Effects Model (RANTWO Option)” on page 1799.

Dynamic Panel Estimation Control Options

Dynamic panel estimation control options are specific to dynamic panels, where the estimation technique
is specified as DYNDIFF or DYNSYS. For more information, see the section “Dynamic Panel Estimation
(DYNDIFF and DYNSYS Options)” on page 1809.

ARTEST=integer
specifies the maximum order of the test for the presence of autoregression (AR) effects in the residual
in the dynamic panel model. The value of integer must be between 1 and T � 3, inclusive, where T is
the number of time periods.

ATOL=number
specifies the convergence criterion for the iterated generalized method of moments (GMM) when
convergence of the method is determined by convergence in the weighting matrix. The convergence
criterion (number ) must be positive. If you do not specify this option, then the BTOL= option (or its
default) is used.

BIASCORRECTED
computes the bias-corrected covariance matrix of the two-step dynamic panel estimator. When you
specify this option, the ROBUST option is disabled for the two-step GMM estimator.

BTOL=number
specifies the convergence criterion for iterated GMM when convergence of the method is determined
by convergence in the parameter matrix. The convergence criterion (number ) must be positive. By
default, BTOL=1E–8.

DLAGS=number
specifies the number of dependent-variable lags to use as regressors. By default, DLAGS=1.

GINV=G2 | G4
specifies what type of generalized inverse to use. You can specify the following values:

G2 uses the G2 generalized inverse.

G4 uses the G4 generalized inverse.

The difference between G2 and G4 becomes evident when you invert singular matrices. The G2
generalized inverse drops rows and columns from singular matrices to produce a viable inverse.
The G4 inverse, on the other hand, is the Moore-Penrose generalized inverse. The Moore-Penrose
generalized inverse averages the variance effects between collinear rows. The G4 inverse is usually
more stable, but it is computationally intensive. By default, GINV=G2. If you have trouble reproducing
published results, often the solution is to switch to GINV=G4.
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GMM1
estimates the dynamic panel regression by the one-step generalized method of moments (GMM). This
is the default estimation method.

GMM2
estimates the dynamic panel regression by two-step GMM.

ITGMM
estimates the dynamic panel regression by iterative GMM.

MAXITER=integer
specifies the maximum number of iterations for the ITGMM option. By default, MAXITER=200.

ROBUST
uses the robust weighting matrix in the calculation of the covariance matrix of the one-step, two-step,
and iterated GMM dynamic panel estimators.

TIME
estimates the model by using the dynamic panel estimator method but includes time dummy variables
to model any time effects in the data.

Alternative Variances Options

Alternative variance options specify variance estimation other than conventional model-based variance
estimation. They include the robust, cluster robust, HAC, HCCME, and Newey-West techniques.

CLUSTER
specifies the cluster correction for the covariance matrix. You can specify this option when you specify
HCCME=0, 1, 2, or 3.

HAC < (options) >
specifies the heteroscedasticity- and autocorrelation-consistent (HAC) covariance matrix estimator.
This option is not available for between models and cannot be combined with the HCCME= option.

For more information, see the section “Heteroscedasticity- and Autocorrelation-Consistent Covariance
Matrices” on page 1824.

You can specify the following options within parentheses and separated by spaces:

ADJUSTDF
makes a small-sample adjustment to the degrees of freedom in the covariance calculation.

BANDWIDTH=number | method
specifies the fixed bandwidth value or bandwidth selection method to be used in the kernel
function. You can specify either a fixed value (number ) or one of the methods listed after
number .
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number
specifies a fixed value of the bandwidth parameter.

ANDREWS91 | ANDREWS
specifies the Andrews (1991) bandwidth selection method.

NEWEYWEST94<(C=number )>

NW94 <(C=number )>
specifies the bandwidth selection method of Newey and West (1994) You can also specify
C=number for the calculation of lag selection parameter; by default, C=12.

SAMPLESIZE<(options)>

SS<(options)>
calculates the bandwidth according to the following equation based on the sample size,

b D T r C c

where b is the bandwidth parameter; T is the sample size; and  , r, and c are values that you
specify using the following options within parentheses and separated by commas:

CONSTANT=number
specifies the constant c in the equation. By default, CONSTANT=0.5.

GAMMA=number
specifies the coefficient  in the equation. By default, GAMMA=0.75.

INT
specifies that the bandwidth parameter must be integer; that is, b D bT r C cc, where
bxc denotes the largest integer less than or equal to x.

RATE=number
specifies the growth rate r in the equation. By default, RATE=0.3333.

By default, BANDWIDTH=ANDREWS91.

KERNEL=BARTLETT | PARZEN | QS | TH | TRUNCATED
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QS specifies the quadratic spectral kernel function.

TH specifies the Tukey-Hanning kernel function.

TRUNCATED specifies the truncated kernel function.

By default, KERNEL=TRUNCATED.
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KERNELLB=number
specifies the lower bound of the kernel weight value. Any kernel weight less than number is
regarded as 0, which accelerates the calculation in large samples, especially for the quadratic
spectral kernel function. By default, KERNELLB=0.

PREWHITENING
requests prewhitening in the covariance calculation.

HCCME=NO | number
specifies the type of HCCME covariance matrix. You can specify one of the following:

NO does not correct the covariance matrix.

number specifies the type of covariance adjustment. The value of number can be any integer
from 0 to 4, inclusive.

For more information, see the section “Heteroscedasticity-Corrected Covariance Matrices” on
page 1821. By default, HCCME=NO.

NEWEYWEST<(options)>
specifies the well-known Newey-West estimator, a special HAC estimator that uses (1) the Bartlett
kernel; (2) a bandwidth that is determined by the equation based on the sample size, b D bT r C cc;
and (3) no adjustment to degrees of freedom and no prewhitening. By default, the bandwidth parameter
for the Newey-West estimator is

�
0:75T 0:3333 C 0:5

˘
, as shown in equation 15.17 in Stock and Watson

(2002). You can specify the following options in parentheses and separated by commas:

CONSTANT=number
specifies the constant c in the equation. By default, CONSTANT=0.5.

GAMMA=number
specifies the coefficient  in the equation. By default, GAMMA=0.75.

RATE=number
specifies the growth rate r in the equation. By default, RATE=0.3333.

To specify a Newey-West bandwidth directly (and not as a function of time series length), set
GAMMA=0 and CONSTANT=b, where b is the bandwidth that you want. For example, the two
variance specifications in the following statements are equivalent:

proc panel data=A;
id i t;
model y = x1 x2 x3 / ranone hac(kernel = bartlett bandwidth = 3);
model y = x1 x2 x3 / ranone neweywest(gamma = 0, constant = 3);

run;
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Unit Root Test Options

Unit root test options request unit root tests on the dependent variable. You begin with the UROOTTEST (or
its synonym, STATIONARITY) option and specify everything else within parentheses after the UROOTTEST
(or STATIONARITY) keyword. The BREITUNG, COMBINATION (or FISHER), HADRI, HT, IPS, and
LLC options produce the corresponding tests. You can request them all by specifying the ALL option.

UROOTTEST(test1< (test-options), test2< (test-options) >. . . > < options >)

STATIONARITY(test1< (test-options), test2< (test-options) >. . . > < options >)
specifies tests of stationarity or unit root for panel data, and specifies options for each test. These
tests apply only to the dependent variable. Six tests are available; their corresponding options are
BREITUNG, COMBINATION (or FISHER), HADRI, HT, IPS, and LLC. You can specify one or more
of these tests, separated by commas. You can also request all tests by specifying UROOTTEST(ALL)
or STATIONARITY(ALL). If you specify one or more test-options (separated by spaces) inside the
parentheses after a particular test, they apply only to that test. If you specify one or more options
separated by spaces after you specify the tests, they apply to all the tests. If you specify both test-options
and options, the test-options override the options.

You can specify the following tests and test-options:

BREITUNG< (test-options) >
performs Breitung’s unbiased test, t test, and generalized least squares (GLS) t test that are robust
to cross-sectional dependence. The tests are described in Breitung and Meyer (1994); Breitung
(2000); Breitung and Das (2005). You can specify one or more of the following test-options
within parentheses and separated by spaces:

DETAIL
prints intermediate results (lag order).

LAG=type | value
specifies the method to choose the lag order for the augmented Dickey-Fuller (ADF) regres-
sions. You can specify a value or one of the types listed after value.

value
specifies the lag order. If the lag order is too big to run linear regression (value > T � k,
where T is the number of time periods and k is the number of parameters), then the lag
order is set to

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller.

AIC
selects the order of lags by Akaike’s information criterion (AIC).

GS
selects the order of lags by Hall’s (1994) sequential testing method, beginning with the
most general model (maximum lags) and then reducing lag orders sequentially.

HQIC
selects the order of lags by the Hannan-Quinn information criterion.
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MAIC
selects the order of lags by the modified AIC proposed by Ng and Perron (2001).

SBC

SIC

SBIC
selects the order of lags by the Bayesian information criterion (Schwarz criterion).

SG
selects the order of lags by Hall’s (1994) sequential testing method, beginning with no
lag terms and then increasing lag orders sequentially.

By default, LAG=MAIC.

MAXLAG=value
specifies the maximum lag order that the model allows. The default value is

j
12.T=100/1=4

k
.

If value is larger than 0 and larger than T � k, then the maximum lag order is set to the
default value of

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller. This option is ignored

if you specify LAG=value.

COMBINATION < (test-options) >

FISHER < (test-options) >
specifies combination tests that are proposed by Choi (2001); Maddala and Wu (1999). You can
specify one or more of the following test-options within parentheses and separated by spaces:

TEST=ADF | PP
selects the time series unit root test for combination tests. You can specify the following
values:

ADF specifies the augmented Dickey-Fuller (ADF) test. The BANDWIDTH
and KERNEL options are ignored because they do not pertain to ADF
tests.

PP specifies the Phillips and Perron (1988) unit root test. The LAG and
MAXLAG options are ignored because they do not pertain to PP tests.

By default, TEST=PP.

KERNEL=BARTLETT | PARZEN | QS | TH | TRUNCATED
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QS specifies the quadratic spectral kernel function.

TH specifies the Tukey-Hanning kernel function.

TRUNCATED specifies the truncated kernel function.

By default, KERNEL=QS.
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BANDWIDTH=ANDREWS | number
specifies the bandwidth for the kernel. You can specify one of the following values:

ANDREWS selects the bandwidth by the Andrews method.

number sets the bandwidth to number , which must be nonnegative.

By default, BANDWIDTH=ANDREWS.

DETAIL
prints intermediate results (lag order and long-run variance for each cross section).

LAG=type | value
specifies the method to choose the lag order for the augmented Dickey-Fuller (ADF) regres-
sions. You can specify a value or one of the types listed after value.

value
specifies the lag order. If the lag order is too big to run linear regression (value > T � k,
where T is the number of time periods and k is the number of parameters), then the lag
order is set to

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller.

AIC
selects the order of lags by Akaike’s information criterion (AIC).

GS
selects the order of lags by Hall’s (1994) sequential testing method, beginning with the
most general model (maximum lags) and then reducing lag orders sequentially.

HQIC
selects the order of lags by the Hannan-Quinn information criterion.

MAIC
selects the order of lags by the modified AIC proposed by Ng and Perron (2001).

SBC

SIC

SBIC
selects the order of lags by the Bayesian information criterion (Schwarz criterion).

SG
selects the order of lags by Hall’s (1994) sequential testing method, beginning with no
lag terms and then increasing lag orders sequentially.

By default, LAG=MAIC.

MAXLAG=value
specifies the maximum lag order that the model allows. The default value is

j
12.T=100/1=4

k
.

If value is larger than 0 and larger than T � k, then the maximum lag order is set to the
default value of

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller. This option is ignored

if you specify LAG=value.
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HADRI < (test-options) >
specifies Hadri’s (2000) panel stationarity test. You can specify the following test-options:

KERNEL=BARTLETT | PARZEN | QS | TH | TRUNCATED
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QS specifies the quadratic spectral kernel function.

TH specifies the Tukey-Hanning kernel function.

TRUNCATED specifies the truncated kernel function.

By default, KERNEL=QS.

BANDWIDTH=ANDREWS | number
specifies the bandwidth for the kernel. You can specify one of the following values:

ANDREWS selects the bandwidth by the Andrews method.

number sets the bandwidth to number , which must be nonnegative.

By default, BANDWIDTH=ANDREWS.

DETAIL
prints intermediate results (lag order and long-run variance for each cross section).

HT
specifies the Harris and Tzavalis (1999) panel unit root test. No options are available for this test.

IPS < (test-options) >
specifies the Im, Pesaran, and Shin (2003) panel unit root test. You can specify one or more of
the following test-options within parentheses and separated by spaces:

DETAIL
prints intermediate results (lag order).

LAG=type | value
specifies the method to choose the lag order for the augmented Dickey-Fuller (ADF) regres-
sions. You can specify a value or one of the types listed after value.

value
specifies the lag order. If the lag order is too big to run linear regression (value > T � k,
where T is the number of time periods and k is the number of parameters), then the lag
order is set to

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller.
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AIC
selects the order of lags by Akaike’s information criterion (AIC).

GS
selects the order of lags by Hall’s (1994) sequential testing method, beginning with the
most general model (maximum lags) and then reducing lag orders sequentially.

HQIC
selects the order of lags by the Hannan-Quinn information criterion.

MAIC
selects the order of lags by the modified AIC proposed by Ng and Perron (2001).

SBC

SIC

SBIC
selects the order of lags by the Bayesian information criterion (Schwarz criterion).

SG
selects the order of lags by Hall’s (1994) sequential testing method, beginning with no
lag terms and then increasing lag orders sequentially.

By default, LAG=MAIC.

MAXLAG=value
specifies the maximum lag order that the model allows. The default value is

j
12.T=100/1=4

k
.

If value is larger than 0 and larger than T � k, then the maximum lag order is set to the
default value of

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller. This option is ignored

if you specify LAG=value.

LLC < (test-options) >
specifies the Levin, Lin, and Chu (2002) panel unit root test. You can specify one or more of the
following test-options within parentheses and separated by spaces:

KERNEL=BARTLETT | PARZEN | QS | TH | TRUNCATED
specifies the type of kernel function. You can specify the following values:

BARTLETT specifies the Bartlett kernel function.

PARZEN specifies the Parzen kernel function.

QS specifies the quadratic spectral kernel function.

TH specifies the Tukey-Hanning kernel function.

TRUNCATED specifies the truncated kernel function.

By default, KERNEL=QS.
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BANDWIDTH=ANDREWS | number
specifies the bandwidth for the kernel. You can specify one of the following values:

ANDREWS selects the bandwidth by the Andrews method.

number sets the bandwidth to number , which must be nonnegative. By default,
BANDWIDTH=ANDREWS.

DETAIL
prints intermediate results (lag order and long-run variance for each cross section).

LAG=type | value
specifies the method to choose the lag order for the augmented Dickey-Fuller (ADF) regres-
sions. You can specify a value or one of the types listed after value.

value
specifies the lag order. If the lag order is too big to run linear regression (value > T � k,
where T is the number of time periods and k is the number of parameters), then the lag
order is set to

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller.

AIC
selects the order of lags by Akaike’s information criterion (AIC).

GS
selects the order of lags by Hall’s (1994) sequential testing method, beginning with the
most general model (maximum lags) and then reducing lag orders sequentially.

HQIC
selects the order of lags by the Hannan-Quinn information criterion.

MAIC
selects the order of lags by the modified AIC proposed by Ng and Perron (2001).

SBC
SIC
SBIC

selects the order of lags by the Bayesian information criterion (Schwarz criterion).

SG
selects the order of lags by Hall’s (1994) sequential testing method, beginning with no
lag terms and then increasing lag orders sequentially.

By default, LAG=MAIC.

MAXLAG=value
specifies the maximum lag order that the model allows. The default value is

j
12.T=100/1=4

k
.

If value is larger than 0 and larger than T � k, then the maximum lag order is set to the
default value of

j
12.T=100/1=4

k
or T � k � 1, whichever is smaller. This option is ignored

if you specify LAG=value.

Consider the following example, which requests two tests (LLC and BREITUNG options) on the dependent
variable:
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proc panel data=A;
id i t;
model y = x1 x2 x3 / unitroot(llc(kernel = parzen lag = aic),

breitung(lag = gs)
maxlag = 2
kernel = bartlett);

run;

For the LLC test, the lag order is selected by AIC with maximum lag order 2, and the kernel is specified as
Parzen (overriding Bartlett). For the Breitung test, the lag order is GS with a maximum lag order 2. The
KERNEL option is ignored by the Breitung test because it is not relevant to that test.

Model Specification Test Options

The options in this category request model specification tests, such as a test for poolability in one-way
models. These tests depend on the model specifications of dependent and independent variables, but not on
the estimation technique that is used to fit the model. For example, a one-way test for random effects does
not require you to fit a random-effects model, or even a one-way model for that matter. The model fits that
are required for the selected tests are performed internally.

BFN
requests the R� statistic for serial correlation under cross-sectional fixed effects.

BL91
requests the Baltagi and Li (1991) joint Lagrange multiplier (LM) test for serial correlation and random
cross-sectional effects.

BL95
requests the Baltagi and Li (1995) LM test for first-order correlation under fixed effects.

BP
requests the Breusch-Pagan one-way test for random effects.

BP2
requests the Breusch-Pagan two-way test for random effects.

BSY
requests the Bera, Sosa Escudero, and Yoon modified Rao’s score test for random cross-sectional
effects or serial correlation or both.

BW
requests the Berenblut-Webb statistic for serial correlation under cross-sectional fixed effects.

CDTEST < (P=value) >
requests cross-sectional dependence tests. These include the Breusch and Pagan (1980) LM test, the
scaled version of the Breusch and Pagan (1980) test, and the Pesaran (2004) CD test. When you specify
P=value, the CD test for local cross-sectional dependence is performed using the order value, where
value is an integer greater than 0.
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DW
requests the Durbin-Watson statistic for serial correlation under cross-sectional fixed effects.

GHM
requests the Gourieroux, Holly, and Monfort two-way test for random effects.

HONDA
requests the Honda one-way test for random effects.

HONDA2
requests the Honda two-way test for random effects.

KW
requests the King and Wu two-way test for random effects.

POOLTEST
requests poolability tests for one-way fixed effects and pooled models.

WOOLDRIDGE02
requests the Wooldridge (2002) test for the presence of unobserved effects.

Printed Output Options

Printed output options change how results are presented.

CORRB

CORR
prints the matrix of estimated correlations between the parameter estimates.

COVB

VAR
prints the matrix of estimated covariances between the parameter estimates.

ITPRINT
prints the iteration history of the parameter and transformed sum of squared errors.

NOPRINT
suppresses the normal printed output.

PHI
prints the ˆ matrix of estimated covariances of the observations for the Parks method. The PHI option
is relevant only when you specify the PARKS option. For more information, see the section “Parks
Method for Autoregressive Models (PARKS Option)” on page 1802.

PRINTFIXED
estimates and prints the fixed effects in models where they would normally be absorbed within the
estimation.
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RHO
prints the estimated autocorrelation coefficients for the Parks method.

OUTPUT Statement
OUTPUT < options > ;

The OUTPUT statement creates an output SAS data set as specified by the following options:

OUT=SAS-data-set
names the output SAS data set to contain the predicted and transformed values. If you do not specify
this option, the new data set is named according to the DATAn convention.

PREDICTED=name
P=name

writes the predicted values to the output data set.

RESIDUAL=name
R=name

writes the residuals to the output data set.

RESTRICT Statement
RESTRICT < "string" > equation < ,equation2. . . > ;

The RESTRICT statement specifies linear equality restrictions on the parameters in the preceding MODEL
statement. There can be as many unique restrictions as the number of parameters in the preceding MODEL
statement. Multiple RESTRICT statements are understood as joint restrictions on a model’s parameters.
Restrictions on the intercept are obtained by the use of the keyword INTERCEPT. RESTRICT statements
before the first MODEL statement are automatically associated with the first MODEL statement, as are any
RESTRICT statements that follow it but precede subsequent MODEL statements.

Currently, only linear equality restrictions are permitted in PROC PANEL. Tests and restriction expressions
can be composed only of algebraic operations that involve the addition symbol (+), subtraction symbol (–),
and multiplication symbol (*).

The RESTRICT statement accepts labels that are produced in the printed output. A RESTRICT statement
can be labeled in two ways. It can be preceded by a label followed by a colon. This is illustrated in rest1

in the example that follows. Alternatively, the keyword RESTRICT can be followed by a quoted string, as
illustrated by "rest2" in the example.

The following statements illustrate the use of the RESTRICT statement:

proc panel;
model y = x1 x2 x3;
restrict x1 = 0, x2 * .5 + 2 * x3= 0;
rest1: restrict x2 = 0, x3 = 0;
restrict "rest2" intercept=1;

run;
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If you are fitting a dynamic panel model, you can place restrictions on lags of the dependent variable by
referencing the name of the dependent variable followed by an underscore and the lag order. For example,

proc panel;
model sales = price / dyndiff;
restrict sales_1 = 0.5;

run;

Note that a RESTRICT statement cannot include a division sign in its formulation.

TEST Statement
TEST < "string" > equation < ,equation2. . . >< / options > ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the preceding MODEL statement. Like RESTRICT statements, TEST statements
before the first MODEL statement are automatically associated with the first MODEL statement, as are
any TEST statements that follow it but precede subsequent MODEL statements. Each equation specifies a
linear hypothesis to be tested. All hypotheses in one TEST statement are tested jointly. Variable names in
the equations must correspond to regressors in the preceding MODEL statement, and each name represents
the coefficient of the corresponding regressor. The keyword INTERCEPT refers to the coefficient of the
intercept.

You can specify the following options in the TEST statement after a slash (/):

ALL
specifies Wald, Lagrange multiplier, and likelihood ratio tests.

LM
specifies the Lagrange multiplier test.

LR
specifies the likelihood ratio test.

WALD
specifies the Wald test.

The Wald test is performed by default.

The following statements illustrate the use of the TEST statement:

proc panel;
id csid tsid;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test_int: test intercept = 0, x3 = 0;

run;

The first test investigates the joint hypothesis that

ˇ1 D 0
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and

0:5ˇ2 C 2ˇ3 D 0

Currently, only linear equality restrictions and tests are permitted in PROC PANEL. Tests and restriction
expressions can be composed only of algebraic operations that involve the addition symbol (+), subtraction
symbol (–), and multiplication symbol (*).

The TEST statement accepts labels that are produced in the printed output. A TEST statement can be labeled
in two ways. It can be preceded by a label followed by a colon. Alternatively, the keyword TEST can be
followed by a quoted string. If both are present, PROC PANEL uses the quoted string. If you do not supply a
label, PROC PANEL automatically labels the test. If both a TEST and a RESTRICT statement are specified,
the test is run with the restrictions applied.

If you are fitting a dynamic panel model, you can perform tests on lags of the dependent variable by
referencing the name of the dependent variable followed by an underscore and the lag order. For example,

proc panel;
model sales = price / dyndiff;
test sales_1 = 0.5 / wald;

run;

For the Da Silva, Hausman-Taylor, Amemiya-MaCurdy, and dynamic panel methods, only the Wald test is
available.

Details: PANEL Procedure

Specifying the Input Data
Panel data are identified by both a cross section identification (ID) variable and a time variable. Suppose that
you have a data set Sample, where cross sections are identified by the variable State and time periods are
identified by the variable Date. The input data set that PROC PANEL uses must be sorted by cross section
and by time within each cross section. As PROC PANEL steps through the observations in the data, it treats
any change in the value of the cross section ID variable as a new cross section, regardless of whether it has
encountered that value previously. If you do not sort your data, the results might not be what you expect.
Therefore, the first step in PROC PANEL is to make sure that the input data set is sorted. The following
statements sort the data set Sample appropriately:

proc sort data=sample;
by state date;

run;

The next step is to invoke the PANEL procedure and specify the cross-sectional and time series variables in
an ID statement. The following statements show the correct syntax:
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proc panel data=sample;
id state date;
model y = x1 x2;

run;

Alternatively, PROC PANEL has the capability to read flat (or wide) data. Suppose you are using the data set
Flat, which has observations on states. Specifically, the data are composed of observations on Y, X1, and X2.
Unlike the data in the Sample data set, these data are not long. Instead, you have all of a state’s information
in a single row. The time observations for the Y variable are recorded horizontally. So the variable Y_1 is the
first period’s time observation, and the variable Y_10 is the tenth period’s observation for some state. The
same is true of the other variables. You have the variables X1_1 through X1_10 and X2_1 through X2_10.
For such data, use the following syntax:

proc panel data=a;
flatdata indid = state base = (Y X1 X2) tsname = t;
id state t;
model Y = X1 X2;

run;

For more information about the FLATDATA statement, see the section “FLATDATA Statement” on page 1766
and Example 26.6.

Specifying the Regression Model
The PANEL procedure is similar to other regression procedures in SAS software. Suppose you want to
regress the variable Y on the regressors X1 and X2. You specify the dependent variable first, followed by an
equal sign, followed by the list of regression variables, as shown in the following statements:

proc panel data=sample;
id state date;
model y = x1 x2;

run;

One advantage of using PROC PANEL is that you can incorporate a model for the structure of the error terms.
It is important to consider what type of model is appropriate for your data and to specify the corresponding
option in the MODEL statement. The following model estimation options are supported: POOLED, BTWNG,
BTWNT, FIXONE, FIXONETIME, FIXTWO, FDONE, FDONETIME, FDTWO, RANONE, RANTWO,
PARKS, DASILVA, HTAYLOR, AMACURDY, DYNDIFF, and DYNSYS. The methods that underlie these
estimation options are described in this same order, beginning with the section “Pooled Regression (POOLED
Option)” on page 1793.

The following statements fit a one-way random-effects model with variance components estimated by the
Fuller-Battese (FB) method:

proc panel data=sample;
id State Date;
model Y = X1 X2 / ranone vcomp = fb;

run;
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You can specify more than one estimation option in the MODEL statement, and the analysis is repeated for
each specified method. You can use multiple MODEL statements to estimate different regression models or
to estimate the same model by different methods.

The DYNDIFF and DYNSYS options cannot be combined with other estimation options in the MODEL
statement. If you want to fit a dynamic panel model and perform some other estimation (such as one-way
random effects), specify multiple MODEL statements.

Missing Values
Any observation in the input data set that has a missing value for the cross section ID, time series ID,
dependent variable, or any model effect is ignored by PROC PANEL when it fits the model.

If your data contain observations in which only the dependent variable is missing, you can still compute
predicted values for these observations and store them in an output data set by using the OUTPUT statement.

Unbalanced Data
Unbalanced data occur when not all time values are observed for all cross sections or, if time is not part of
the estimation, when the cross sections are not all the same size.

Whether the data are unbalanced by design or because of missing values, almost all the methods that
the PANEL procedure supports take proper account of the unbalanced data. The lone exceptions are the
Amemiya-MaCurdy, Da Silva, and Parks methods, which are suitable only for balanced data.

Common Notation
This section presents notation that is common to all subsequent sections. Consider the panel regression:

yit D ˛ C

KX
kD1

xitkˇk C uit i D 1; : : : ; N I t D 1; : : : ; Ti

The total number of observations is M D
PN
iD1Ti . For balanced data, Ti D T for all i . For unbalanced

data, define T to be the number of unique time periods.

The exact representation of uit and the underlying assumptions depend on the estimation method.

In matrix notation the model is

yit D ˛ C xitˇ C uit

where xit is a 1 �K row vector of independent variables and ˇ is the K � 1 vector of coefficients. Let y
and X be matrices that are formed by arranging the dependent and independent variables by cross section,
and by time within each cross section. Let X˛ be the X matrix augmented by a first column of ones, which
corresponds to the intercept term ˛.

Define the following utility matrices:
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Ip is an identity matrix of dimension p.

jp is a p � 1 column vector of ones.

Jp D jpj
0

p is a matrix of ones of dimension p.

NJp D p�1Jp.

Ep D Ip � NJp.

In the following sections, the panel data are assumed to be unbalanced unless otherwise indicated. If the data
are balanced, the formulas reduce appropriately.

Pooled Regression (POOLED Option)
You perform pooled regression by specifying the POOLED option in the MODEL statement. Pooled
regression is standard ordinary least squares (OLS) regression without any cross-sectional or time effects.
The error structure is simply uit D eit , where the eit are independently and identically distributed (iid) with
zero mean and variance �2e .

Between-Groups Regression (BTWNG and BTWNT Options)
You perform between-groups regression by specifying the BTWNG option in the MODEL statement.
Between-groups regression is ordinary least squares (OLS) regression performed on data that have been
collapsed into cross-sectional means.

The BTWNT option works similarly, except that the data are collapsed by time period instead of by cross
section.

One-Way Fixed-Effects Model (FIXONE and FIXONETIME Options)
You perform one-way fixed-effects estimation by specifying the FIXONE option in the MODEL statement.
The error structure for the one-way fixed-effects model is

uit D �i C eit

where the �i are nonrandom parameters that are restricted to sum to 0, and the eit are iid with zero mean and
variance �2e .

The fixed-effects model can be estimated by ordinary least squares (OLS), treating the �i as coefficients on
dummy variables that identify the cross sections. However, when N is large, you might want to estimate only
ˇ and not �i .

Let Q0 D diag.ETi /. The matrix Q0 represents the within transformation, the conversion of the raw data to
deviations from a cross section’s mean. Let Xw D Q0X and yw D Q0y. The within estimator of ˇ is

Ǒ
w D .X

0

wXw/
�1X

0

wyw
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The previous estimation does not involve the intercept term because Ǒw is the same whether or not the
intercept ˛ is included in the model.

Standard errors, t statistics, and fit statistics such as mean square error (MSE) are all equivalent to those
obtained from OLS regression of yw on Xw . The only exception is the error degrees of freedom, which
equals M �N �K to account for the tacit estimation of the N fixed effects.

Each fixed effect is estimated as

O�i D Nyi: � Nxi: Ǒw

where Nyi: and Nxi: are cross-sectional means.

The fixed-effects model is parameterized so that the intercept is the fixed effect for the last cross section. That
is,

Ǫ D O�N D NyN: � NxN: Ǒw

Fixed effects are by default not displayed as part of the regression, but you can obtain them by specifying
the PRINTFIXED option in the MODEL statement. In models that have an intercept, the printed fixed
effects are the deviations O�i � O�N . To display the untransformed fixed effects, specify both the NOINT and
PRINTFIXED options.

Variance estimates of Ǫ , O�i , and O�i � O�N are obtained by the delta method.

The FIXONETIME option works similarly, except that the data are grouped by time period instead of by
cross section.

Two-Way Fixed-Effects Model (FIXTWO Option)
You perform two-way fixed-effects estimation by specifying the FIXTWO option in the MODEL statement.
The error specification for the two-way fixed-effects model is

uit D �i C �t C eit

where the �i and �t are nonrandom parameters to be estimated.

Estimation is similar to that for one-way fixed effects, for which a within transformation is used to convert
the problem to OLS regression. For two-way models under the general case of unbalanced data, the within
transformation is more complex.

Following Wansbeek and Kapteyn (1989) and Baltagi (2013, sec. 9.4), let X� and y� be versions of X and y
whose rows are sorted by time period, and by cross section within each time period. With the data sorted
in this manner, define DN to be the M � N design matrix for cross sections. Each row of DN contains
a 1 in the column that corresponds to that observation’s cross section, and 0s in the remaining columns.
Similarly, define DT to be the M � T design matrix for time periods. In balanced data, DN D jT ˝ IN and
DT D IT ˝ jN .
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Define the following:

�N D D
0

NDN .N �N/

�T D D
0

TDT .T � T /

A D D
0

TDN .T �N/

ND D DT �DN��1N A
0

.M � T /

Q D �T �A��1N A
0

.T � T /

P D IM �DN��1N D
0

N �
NDQ�1 ND

0

.M �M/

The matrix P provides the two-way within transformation. If the data are balanced, this amounts to
transforming any data value zit to zit � Nzi: � Nz:t C Nz::.

Applying the two-way within transformation means that you can use OLS regression of Py� on PX� to
obtain Ǒf , Var. Ǒf /, and fit statistics such as mean square error (MSE), provided that you adjust the error
degrees of freedom to equal M �N � T �K C 1.

Define the residual vector r� D y� �X� Ǒf . Estimates of the time effects are O� D Q�1 ND
0

r�, and estimates
of the cross-sectional effects are O� D .‚1 �‚2 C‚3/ r�, where

‚1 D �
�1
N D

0

N

‚2 D �
�1
N A

0

Q�1D
0

T

‚3 D �
�1
N A

0

Q�1A��1N D
0

N

The full model that contains the intercept, N cross-sectional effects, and T time effects is overidentified,
and simultaneous estimation of these quantities is not possible without restrictions. If you specify the
PRINTFIXED option, the printed fixed effects reflect these restrictions.

If the model has an intercept, then the PRINTFIXED option output is parameterized as follows:

� Intercept: O�N C O�T

� Cross section i: O�i � O�N

� Time period t: O�t � O�T

If the model does not include an intercept, then the PRINTFIXED option output is parameterized as follows:

� Cross section i: O�i C O�T

� Time period t: O�t � O�T

Variance and covariance estimates for the intercept and printed fixed effects are obtained by the delta method,
because each of these quantities is a linear transformation of y� and Ǒf .
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One-Way Fixed-Effects Model, First Differencing (FDONE and FDONETIME
Options)
You perform one-way fixed-effects estimation via first differencing by specifying the FDONE option in
the MODEL statement. The method of first differencing offers an alternative to the within estimator Ǒw .
Consider the following one-way fixed-effects model:

yit D ˛ C xitˇ C �i C eit

For this model, the fixed effects are removed by subtracting first-order lags from both sides of the equation:

yit � yi; t�1 D
�
xit � xi; t�1

�
ˇ C

�
eit � ei; t�1

�
Define �yit D yit � yi; t�1 and �xit D xit � xi; t�1, for i D 1; : : : ; N and t D 2; : : : ; Ti . You obtain the
first-differenced estimator, Ǒd , and its variance by performing OLS regression of �yit on �xit .

The estimation and parameterization of .˛; �i / are identical to that described in the section “One-Way
Fixed-Effects Model (FIXONE and FIXONETIME Options)” on page 1793, with Ǒw replaced by Ǒd .

The FDONETIME option works similarly, switching the roles of cross sections and time periods in the
methodology described previously.

Two-Way Fixed-Effects Model, First Differencing (FDTWO Option)
You perform two-way fixed-effects estimation via first differencing by specifying the FDTWO option in
the MODEL statement. The method of first differencing offers an alternative to the within estimator Ǒf .
Consider the following two-way fixed-effects model:

yit D ˛ C xitˇ C �i C �t C eit

For this model, the fixed effects are removed by the transformations�yit D yit�yi�1; t�yi; t�1Cyi�1; t�1
and �xit D xit � xi�1; t � xi; t�1 C xi�1; t�1. You obtain the two-way first-differenced estimator, Ǒfd ,
and its variance by performing OLS regression of �yit on �xit .

The estimation and parameterization of .˛; �i ; �t / are identical to that described in the section “Two-Way
Fixed-Effects Model (FIXTWO Option)” on page 1794, with Ǒf replaced by Ǒfd .
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One-Way Random-Effects Model (RANONE Option)
You perform one-way random-effects estimation by specifying the RANONE option in the MODEL statement.
The specification for the one-way random-effects model is

uit D �i C eit

where the �i are iid with zero mean and variance �2� , and the eit are iid with zero mean and variance �2e .
Furthermore, a random-effects specification assumes that the error terms are mutually uncorrelated and that
each error term is uncorrelated with X.

Estimation proceeds in two steps. First, you obtain estimates of the variance components �2� and �2e . Second,
with the variance components in hand, you form a weight for each cross section,

O�i D 1 � O�e= Owi

where Ow2i D Ti O�
2
� C O�

2
e . Taking O�i , you form the partial deviations:

Qyit D yit � O�i Nyi �

Qx˛;it D x˛;it � O�i Nx˛;i �

The random-effects estimation is then the result of OLS regression on the transformed data.

The PANEL procedure provides four methods of estimating variance components, as described in the
following subsections.

Wallace-Hussain Method

You can use the Wallace-Hussain (1969) method of estimating variance components by specifying the
VCOMP=WH option in the MODEL statement. The Wallace-Hussain method is part of a class of methods
known as analysis of variance (ANOVA) estimators.

ANOVA estimators obtain variance components by solving a system of equations that is based on expected
sums of squares. The following quadratic forms correspond to the within and between sums of squares,
respectively:

qe D u
0

Q0u

q� D u
0

P0u

In these equations, Q0 D diag.ETi /, P0 D diag.NJTi /, and u is the vector of true residuals.

The ANOVA methods differ only in how they estimate u. The Wallace-Hussain method uses the residuals
from pooled (OLS) regression, Oup, in both quadratic forms.

The expected values of the quadratic forms are

E
�
Ou
0

pQ0 Oup
�
D .d1 � d3/�

2
� C .M �N �K � 1C d2/�

2
e

E
�
Ou
0

pP0 Oup
�
D .M � 2d1 C d3/�

2
� C .N � d2/�

2
e
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where

d1 D tr
��

X
0

˛X˛
��1

X
0

˛Z0Z
0

0X˛

�

d2 D tr
��

X
0

˛X˛
��1

X
0

˛P0X˛

�
d3 D tr

��
X
0

˛X˛
��1

X
0

˛P0X˛
�
X
0

˛X˛
��1

X
0

˛Z0Z
0

0X˛

�

Wansbeek-Kapteyn Method

You can use the Wansbeek-Kapteyn method of estimating variance components by specifying the
VCOMP=WK option in the MODEL statement. The method is a specialization (Baltagi and Chang 1994) of
the approach used by Wansbeek and Kapteyn (1989) for unbalanced two-way models. The method was also
suggested by Amemiya (1971) for balanced data.

The Wansbeek-Kapteyn method is an ANOVA method that uses the within residuals from one-way fixed
effects, Ouw , in both quadratic forms.

The expected values of the quadratic forms are

E
�
Ou
0

wQ0 Ouw
�
D .M �N �K/�2e

E
�
Ou
0

wP0 Ouw
�
D .N � 1C d/�2e C

 
M �M�1

NX
iD1

T 2i

!
�2�

where

d D tr
n
.X
0

Q0X/�1X
0

P0X
o
� tr

n
.X
0

Q0X/�1X
0
NJMX

o

Fuller-Battese Method

You can use the Fuller-Battese (1974) method of estimating variance components by specifying the
VCOMP=FB option in the MODEL statement. Following Baltagi (2013, sec. 9.2), you obtain O�2e as
the mean square error (MSE) from one-way fixed effects. The cross-sectional variance is

O�2� D
R.�jˇ/ � .N � 1/ O�2e

M � trfZ00X˛.X
0

˛X˛/�1X
0

˛Z0g

where

R.�jˇ/ D R.ˇj�/C R.�/ � R.ˇ/

for

R.�/ D y
0

Z0.Z
0

0Z0/
�1Z

0

0y

R.ˇj�/ D y
0

wX
0

w.X
0

wXw/
�1X

0

wyw

R.ˇ/ D y
0

X
0

˛.X
0

˛X˛/
�1X

0

˛y
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Nerlove Method

You can use the Nerlove (1971) method of estimating variance components by specifying the VCOMP=NL
option in the MODEL statement. The Nerlove method provides a simple alternative to the previous three
estimation strategies. You estimate �2� as the sample variance of the cross-sectional effects, estimated from
a one-way fixed-effects regression. Specifically, O�2� D .N � 1/

�1
PN
iD1 . O�i � N�/

2, where N� is the mean of
the estimated fixed effects. You estimate �2e by taking the error sum of squares from one-way fixed-effects
regression and then dividing by M.

Selecting the Appropriate Variance Component Method

By default, variance components are estimated by the Fuller-Battese method (VCOMP=FB) when the data
are balanced, and by the Wansbeek-Kapteyn method (VCOMP=WK) when the data are unbalanced.

Baltagi and Chang (1994) conducted an extensive simulation study of the finite-sample properties of the
variance estimators that the PANEL procedure supports. The choice of method has little bearing on estimates
of regression coefficients, their standard errors, and estimation of the error variance �2e . If your goal is
inference on ˇ, then the variance-component method will matter little.

The methods have varying performance in how they estimate �2� , the cross-sectional variance. All four
methods tend to perform poorly if either the data are severely unbalanced or the ratio �2� =�

2
e is much greater

than 1.

Of these four methods, the Nerlove method is the only one that guarantees a nonnegative estimate of �2� ; the
other three methods reset a negative estimate to 0. However, the Nerlove method is particularly unsuitable
for unbalanced data because the sample variance that it computes is not weighted by Ti .

Two-Way Random-Effects Model (RANTWO Option)
You perform two-way random-effects estimation by specifying the RANTWO option in the MODEL statement
(or by specifying nothing, because RANTWO is the default). The specification for the two-way random-
effects model is

uit D �i C �t C eit

where the �i are iid with zero mean and variance �2� , the �t are iid with zero mean and variance �2
�

, and the
eit are iid with zero mean and variance �2e . Furthermore, a random-effects specification assumes that the
error terms are mutually uncorrelated and that each error term is uncorrelated with X.

Estimation proceeds in two steps. First, you obtain estimates of the variance components �2� , �2
�

, and �2e . The
PANEL procedure provides four methods of estimating variance components; these methods are described in
the following subsections.

Second, with the variance-component estimates in hand, you transform the data in such a way that estimation
can take place using ordinary least squares (OLS). In two-way models with unbalanced data, the transforma-
tion is quite complex. Throughout this section, y and X are treated as being sorted first by time, and then by
cross section within time. For the definitions of the design matrices DN and DT , see the section “Two-Way
Fixed-Effects Model (FIXTWO Option)” on page 1794. The variance of y is

� D �2e IM C �
2
�DND

0

N C �
2
�DTD

0

T



1800 F Chapter 26: The PANEL Procedure

and estimation proceeds as OLS regression of O�e O��1=2y on O�e O��1=2X˛.

Rather than invert theM �M matrix O� directly, Wansbeek and Kapteyn (1989) provide the more convenient
form

O�2e
O��1 D V �VDT QP�1D

0

TV

where

V D IM �DN Q��1N D0N
QP D Q�T �D

0

TDN Q�
�1
N D

0

NDT

with Q�N D D
0

NDN C
�
O�2e = O�

2
�

�
IN and Q�T D D

0

TDT C
�
O�2e = O�

2
�

�
IT .

If the data are balanced, then the calculations are simplified considerably—the data are transformed from zit
to zit � O�1 Nzi: � O�2 Nz:t C O�3 Nz::, where

O�1 D 1 � O�e
�
T O�2� C O�

2
e

��1=2
O�2 D 1 � O�e

�
N O�2� C O�

2
e

��1=2
O�3 D O�1 C O�2 C O�e

�
T O�2� CN O�

2
� C O�

2
e

��1=2
� 1

The PANEL procedure provides four methods of estimating variance components, as described in the
following subsections.

Wallace-Hussain Method

You can use the Wallace-Hussain (1969) method of estimating variance components by specifying the
VCOMP=WH option in the MODEL statement. The Wallace-Hussain method is part of a class of methods
known as analysis of variance (ANOVA) estimators.

ANOVA estimators obtain variance components by solving a system of equations that is based on expected
sums of squares. The following quadratic forms correspond to the two-way within sum of squares, the sum
of squares between time periods, and the sum of squares between cross sections, respectively:

qe D u
0

Pu

q� D u
0

DT��1T D
0

T u

q� D u
0

DN��1N D
0

Nu

The matrix P is the two-way within transformation defined in the section “Two-Way Fixed-Effects Model
(FIXTWO Option)” on page 1794, �T D D

0

TDT , �N D D
0

NDN , and u is the vector of true residuals.

The ANOVA methods differ only in how they estimate u. The Wallace-Hussain method is an ANOVA method
that uses the residuals from pooled (OLS) regression, Oup, in all three quadratic forms.

The expected values of the quadratic forms are

E
�
Ou
0

pP Oup
�
D d11�

2
e C d12�

2
� C d13�

2
�

E
�
Ou
0

pP� Oup
�
D d21�

2
e C d22�

2
� C d23�

2
�

E
�
Ou
0

pP� Oup
�
D d31�

2
e C d32�

2
� C d33�

2
�



Two-Way Random-Effects Model (RANTWO Option) F 1801

Define † D .X
0

˛X˛/
�1, which is the inverse crossproducts matrix from pooled regression. Also define

S� D X
0

˛DND
0

NX˛ and S� D X
0

˛DTD
0

TX˛, which are the individual-level sum of squares and the time-
level sum of squares, respectively. The coefficients are

d11 DM �N � T C 1 � tr
�
X
0

˛PX˛†
�

d12 D tr
�
S�†X

0

˛PX˛†
�

d13 D tr
�
S�†X

0

˛PX˛†
�

d21 D T � tr
�
X
0

˛P�X˛†
�

d22 D T � 2tr
�
X
0

˛P�DND
0

NX˛†
�
C tr

�
X
0

˛P�X˛†S�†
�

d23 DM � 2tr .S�†/C tr
�
X
0

˛P�X˛†S�†
�

d31 D N � tr
�
X
0

˛P�X˛†
�

d32 DM � 2tr .S�†/C tr
�
X
0

˛P�X˛†S�†
�

d33 D N � 2tr
�
X
0

˛P�DTD
0

TX˛†
�
C tr

�
X
0

˛P�X˛†S�†
�

Wansbeek-Kapteyn Method

You can use the Wansbeek-Kapteyn method of estimating variance components by specifying the
VCOMP=WK option in the MODEL statement. The method is a specialization (Baltagi and Chang 1994) of
the approach used by Wansbeek and Kapteyn (1989) for unbalanced two-way models.

The Wansbeek-Kapteyn method is an ANOVA method that uses the within residuals from two-way fixed
effects, Ouf , in all three quadratic forms.

The expected values of the quadratic forms are

E
�
Ou
0

f P Ouf
�
D .M �N � T �K C 1/�2e

E
�
Ou
0

f P� Ouf
�
D .T C kN � k0/ �

2
e C .T � ıN /�

2
� C .M � ıT /�

2
�

E
�
Ou
0

f P� Ouf
�
D .N C kT � k0/ �

2
e C .M � ıN /�

2
� C .N � ıT /�

2
�

where ıN DM�1
PN
iD1 T

2
i and ıT DM�1

PT
tD1N

2
t . The other constants are defined by

k0 D 1CM
�1j
0

MX.X
0

PX/�1X
0

jM

kN D trf.X
0

PX/�1X
0

P�Xg

kT D trf.X
0

PX/�1X
0

P�Xg

When the NOINT option is specified, the variance-component equations change slightly: k0, ıN , and ıT are
all replaced by 0.

The Wansbeek-Kapteyn method is the default method when the data are unbalanced.
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Fuller-Battese Method

You can use the Fuller-Battese (1974) method of estimating variance components by specifying the
VCOMP=FB option in the MODEL statement. Following the discussion in Baltagi, Song, and Jung (2002),
the Fuller-Battese method is a variation of the two ANOVA methods discussed previously in this section.

The quadratic form, qe, is the same as in the previous methods, and u is estimated by the two-way within
residuals Ouf . The other two quadratic forms, q� and q� , are replaced by the error sums of squares from
one-way fixed-effects estimations.

The resulting system of equations is

E
�
Ou
0

f P Ouf
�
D .M �N � T �K C 1/�2e

E
�
Qu
0

� Qu�
�
D .M � T �K/�2e C

�
M � T � tr

�
X
0

W�DND
0

NW�X
�
X
0

W�X
��1��

�2�

E
�
Qu
0

� Qu�
�
D .M �N �K/�2e C

�
M �N � tr

�
X
0

W�DTD
0

TW�X
�
X
0

W�X
��1��

�2�

where W� D IM � P�, W� D IM � P� , Qu� are the residuals from a one-way model with time fixed effects,
and Qu� are the residuals from a one-way model with individual fixed effects.

The Fuller-Battese method is the default method when the data are balanced.

Nerlove Method

You can use the Nerlove (1971) method of estimating variance components by specifying the VCOMP=NL
option in the MODEL statement.

You begin by fitting a two-way fixed-effects model. The estimator of the error variance is

O�2e DM
�1
Ou
0

f P Ouf

You obtain O�2� as the sample variance of the N estimated individual effects, and O�2
�

as the sample variance of
the T estimated time effects.

Parks Method for Autoregressive Models (PARKS Option)
Parks (1967) considered the first-order autoregressive model in which the random errors uit , i D 1; 2; : : : ;N ,
and t D 1; 2; : : : ;T have the structure

E.u2it / D �i i (heteroscedasticity)

E.uitujt / D �ij (contemporaneously correlated)

uit D �iui;t�1 C �it (autoregression)
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where

E.�it / D 0

E.ui;t�1�jt / D 0

E.�it�jt / D �ij

E.�it�js/ D 0.s¤t /

E.ui0/ D 0

E.ui0uj0/ D �ij D �ij =.1 � �i�j /

The model assumed is first-order autoregressive with contemporaneous correlation between cross sections.
In this model, the covariance matrix for the vector of random errors u can be expressed as

E.uu
0

/ D V D

26664
�11P11 �12P12 : : : �1NP1N
�21P21 �22P22 : : : �2NP2N
:::

:::
:::

:::

�N1PN1 �N2PN2 : : : �NNPNN

37775
where

Pij D

26666664
1 �j �2j : : : �T�1j

�i 1 �j : : : �T�2j

�2i �i 1 : : : �T�3j
:::

:::
:::

:::
:::

�T�1i �T�2i �T�3i : : : 1

37777775
The matrix V is estimated by a two-stage procedure, and ˇ is then estimated by generalized least squares.
The first step in estimating V involves the use of ordinary least squares to estimate ˇ and obtain the fitted
residuals, as follows:

Ou D y �X ǑOLS

A consistent estimator of the first-order autoregressive parameter is then obtained in the usual manner, as
follows:

O�i D

 
TX
tD2

Ouit Oui;t�1

! �  
TX
tD2

Ou2i;t�1

!
i D 1; 2; : : : ;N

Finally, the autoregressive characteristic of the data is removed (asymptotically) by the usual transformation
of taking weighted differences. That is, for i D 1; 2; : : : ; N ,

yi1

q
1 � O�2i D

pX
kD1

Xi1k˛k
q
1 � O�2i C ui1

q
1 � O�2i

yit � O�iyi;t�1 D

pX
kD1

.Xitk � O�iXi;t�1;k/ˇk C uit � O�iui;t�1t D 2; : : : ;T
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which is written

y�it D

pX
kD1

X�itkˇk C u
�
it i D 1; 2; : : : ;N I t D 1; 2; : : : ;T

Notice that the transformed model has not lost any observations (Seely and Zyskind 1971).

The second step in estimating the covariance matrix V is applying ordinary least squares to the preceding
transformed model, obtaining

Ou� D y� �X�ˇ�OLS

from which the consistent estimator of �ij is calculated as

sij D
O�ij

.1 � O�i O�j /

where

O�ij D
1

.T � p/

TX
tD1

Ou�it Ou
�
jt

Estimated generalized least squares (EGLS) then proceeds in the usual manner,

Ǒ
P D .X0 OV�1X/�1X0 OV�1y

where OV is the derived consistent estimator of V. For computational purposes, ǑP is obtained directly from
the transformed model,

Ǒ
P D .X�

0

. Ô �1˝IT /X�/�1X�
0

. Ô �1˝IT /y�

where Ô D Œ O�ij �i;jD1;:::;N .

The preceding procedure is equivalent to Zellner’s two-stage methodology applied to the transformed model
(Zellner 1962).

The variance estimate is

Var. ǑP / D .X0V�1X/�1

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section.
Let � be the N � 1 vector of true parameters and R D .r1; : : : ; rN /0 be the corresponding vector of estimates.
Then, to ensure that only range-preserving estimates are used in PROC PANEL, the following modification
for R is made:

ri D

8̂<̂
:
ri if jri j < 1
max.:95; rmax/ if ri�1

min.�:95; rmin/ if ri� � 1
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where

rmax D

8<:0 if ri < 0 or ri�1 8i

max
j
Œrj W 0�rj < 1� otherwise

and

rmin D

8<:0 if ri > 0 or ri� � 1 8i

min
j
Œrj W �1 < rj�0� otherwise

Whenever this correction is made, a warning message is printed.

Da Silva Method for Moving Average Models (DASILVA Option)
The Da Silva method assumes that the observed value of the dependent variable at the tth time point on the
ith cross-sectional unit can be expressed as

yit D x
0

itˇ C ai C bt C eit i D 1; : : : ;N I t D 1; : : : ;T

where

x
0

it D .xit1; : : : ; xitp/ is a vector of explanatory variables for the tth time point and ith cross-sectional
unit

ˇ D .ˇ1; : : : ; ˇp/
0 is the vector of parameters

ai is a time-invariant, cross-sectional unit effect

bt is a cross-sectionally invariant time effect

eit is a residual effect unaccounted for by the explanatory variables and the specific time and cross-
sectional unit effects

Since the observations are arranged first by cross sections, then by time periods within cross sections, these
equations can be written in matrix notation as

y D Xˇ C u

where

u D .a˝1T /C .1N˝b/C e

y D .y11; : : : ; y1T ; y21; : : : ; yNT /0

X D .x11; : : : ; x1T ; x21; : : : ; xNT /0

a D .a1 : : : aN /0

b D .b1 : : : bT /0

e D .e11; : : : ; e1T ; e21; : : : ; eNT /0

Here 1 N is an N � 1 vector with all elements equal to 1, and˝ denotes the Kronecker product.

The following conditions are assumed:
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1. xit is a sequence of nonstochastic, known p�1 vectors in <p whose elements are uniformly bounded
in <p. The matrix X has a full column rank p.

2. ˇ is a p � 1 constant vector of unknown parameters.

3. a is a vector of uncorrelated random variables such that E.ai / D 0 and var.ai / D �2a ,
�2a > 0; i D 1; : : : ;N .

4. b is a vector of uncorrelated random variables such that E.bt / D 0 and var.bt / D �2b where �2
b
> 0

and t D 1; : : : ;T .

5. ei D .ei1; : : : ; eiT /0 is a sample of a realization of a finite moving-average time series of order
m < T � 1 for each i ; hence,

eit D ˛0�it C ˛1�it�1 C � � � C ˛m�it�m t D 1; : : : ;T I i D 1; : : : ;N

where ˛0; ˛1; : : : ; ˛m are unknown constants such that ˛0¤0 and ˛m¤0, and f�ij g
jD1
jD�1 is

a white noise process for each i—that is, a sequence of uncorrelated random variables with
E.�t / D 0;E.�

2
t / D �

2
� , and �2� > 0. f�ij g

jD1
jD�1 for i D 1; : : : ;N are mutually uncorrelated.

6. The sets of random variables faigNiD1, fbtgTtD1, and feitgTtD1 for i D 1; : : : ;N are mutually uncorre-
lated.

7. The random terms have normal distributions ai�N.0; �2a /; bt�N.0; �
2
b
/; and �t�k�N.0; �2� /; for

i D 1; : : : ;N I t D 1; : : : ;T I and k D 1; : : : ; m.

If assumptions 1–6 are satisfied, then

E.y/ D Xˇ

and

var.y/ D �2a .IN˝JT /C �
2
b .JN˝IT /C .IN˝‰T /

where ‰T is a T � T matrix with elements  ts ,

Cov.eiteis/ D

(
 .jt � sj/ if jt � sj�m
0 if jt � sj > m

where  .k/ D �2�
Pm�k
jD0 ˛j˛jCk for k D jt � sj. For the definition of IN , IT , JN , and JT , see the section

“Fuller-Battese Method” on page 1798.

The covariance matrix, denoted by V, can be written in the form

V D �2a .IN˝JT /C �
2
b .JN˝IT /C

mX
kD0

 .k/.IN˝‰
.k/
T /

where ‰.0/T D IT , and, for k D 1; : : : ; m, ‰.k/T is a band matrix whose kth off-diagonal elements are 1’s and
all other elements are 0’s.
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Thus, the covariance matrix of the vector of observations y has the form

Var.y/ D
mC3X
kD1

�kVk

where

�1 D �2a

�2 D �2b

�k D  .k � 3/k D 3; : : : ; mC 3

V1 D IN˝JT

V2 D JN˝IT

Vk D IN˝‰
.k�3/
T k D 3; : : : ; mC 3

The estimator of ˇ is a two-step GLS-type estimator—that is, GLS with the unknown covariance matrix
replaced by a suitable estimator of V. It is obtained by substituting Seely estimates for the scalar multiples
�k; k D 1; 2; : : : ; mC 3.

Seely (1969) presents a general theory of unbiased estimation when the choice of estimators is restricted to
finite dimensional vector spaces, with a special emphasis on quadratic estimation of functions of the formPn
iD1 ıi�i .

The parameters �i (i D 1; : : : ; n) are associated with a linear model E.y/ D Xˇ with covariance matrixPn
iD1 �iVi where Vi (i D 1; : : : ; n) are real symmetric matrices. The method is also discussed by Seely

(1970b, a); Seely and Zyskind (1971). Seely and Soong (1971) consider the MINQUE principle, using an
approach along the lines of Seely (1969).

Hausman-Taylor Estimation (HTAYLOR Option)
You perform Hausman-Taylor estimation by specifying the HTAYLOR option in the MODEL statement. The
Hausman and Taylor (1981) model is a hybrid that combines the consistency of a fixed-effects model with the
efficiency and applicability of a random-effects model. One-way random-effects models assume exogeneity
of the regressors; that is, they are independent of both the cross-sectional and observation-level errors. When
some regressors are correlated with the cross-sectional errors, you can adjust the random-effects model to
deal with this form of endogeneity.

Consider the one-way model:

yit D x1itˇ1 C x2itˇ2 C z1i1 C z2i2 C �i C eit

The regressors are subdivided so that x1it and x2it vary within cross sections, whereas z1i and z2i do
not and would otherwise be dropped from a fixed-effects model. The subscript 1 denotes variables that
are independent of both error terms (exogenous variables), and the subscript 2 denotes variables that are
independent of the observation-level errors eit but correlated with cross-sectional errors �i . The intercept
term (if your model has one) is included as part of z1i .

The Hausman-Taylor estimator is a two-stage least squares (2SLS) regression on data that are weighted simi-
larly to data for random-effects estimation. The weights are functions of the estimated variance components.
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The observation-level variance is estimated from a one-way fixed-effects model fit. Obtain yw , Xw , and Ǒw
from the section “One-Way Fixed-Effects Model (FIXONE and FIXONETIME Options)” on page 1793.
Then O�2e D SSE=.M �N/, where

SSE D
�
yw �Xw Ǒw

�0 �
yw �Xw Ǒw

�
To estimate the cross-sectional error variance, form the mean-residual vector r D P00.y � Xw Ǒw/, where
P0 D diag.NJTi /. You can use the mean residuals to obtain intermediate estimates of the coefficients for
z1 and z2 via two-stage least squares (2SLS) estimation. At the first stage, use x1 and z1 as instrumental
variables to predict z2. At the second stage, regress r on both z1 and the predicted z2 to obtain Om1 and Om2 .

To estimate the cross-sectional variance, compute O�2� D fR.�/=N � O�
2
e g=
NT , where NT D N=.

PN
iD1 T

�1
i /

and

R.�/ D
�
r � Z1 Om1 � Z2 Om2

�0 �r � Z1 Om1 � Z2 Om2
�

The design matrices Z1 and Z2 are formed by stacking the data observations of z1i and z2i , respectively.

After variance-component estimation, transform the dependent variable into partial deviations: y�it D
yit � O�i Nyi:. Likewise, transform the regressors to form x�1it , x

�
2it , z

�
1i , and z�2i . The partial weights O�i are

determined by O�i D 1 � O�e= Owi , with Ow2i D Ti O�
2
� C O�

2
e .

Finally, you obtain the Hausman-Taylor estimates by performing 2SLS regression of y�it on x�1it , x
�
2it , z

�
1i ,

and z�2i . For the first-stage regression, use the following instruments:

� Qxit , the deviations from cross-sectional means for all time-varying variables (correlated and uncorre-
lated) for the ith cross section during time period t

� .1� O�i /Nx1i:, where Nx1i: are the means of the time-varying exogenous variables for the ith cross section

� .1 � O�i /z1i

Multiplication by the factor .1 � O�i / is redundant in balanced data but necessary in the unbalanced case to
produce accurate instrumentation; see Gardner (1998).

Let k1 equal the number of regressors in x1, and let g2 equal the number of regressors in z2. Then the
Hausman-Taylor model is identified only if k1 � g2; otherwise, no estimation takes place.

Hausman and Taylor (1981) describe a specification test that compares their model to a fixed-effects model.
For a null hypothesis of fixed effects, Hausman’s m statistic is calculated by comparing the parameter
estimates and variance matrices for both models, which is identical to how it is calculated for one-way
random-effects models; for more information, see the section “Hausman Test” on page 1828. However, the
number of degrees of freedom of the test is not based on matrix rank but instead is equal to k1 � g2.
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Amemiya-MaCurdy Estimation (AMACURDY Option)
You perform Amemiya-MaCurdy estimation by specifying the AMACURDY option in the MODEL statement.
The Amemiya-MaCurdy (1986) model is similar to the Hausman-Taylor model. Following the development
in the section “Hausman-Taylor Estimation (HTAYLOR Option)” on page 1807, estimation is identical up to
the final 2SLS instrumental variables regression. In addition to the set of instruments that the Hausman-Taylor
estimator uses, you use the following:

x1i1; x1i2; : : : ; x1iT

For each observation in the ith cross section, you use the data on the time-varying exogenous regressors for
the entire cross section. Because of the structure of the added instruments, the Amemiya-MaCurdy estimator
can be applied only to balanced data.

The Amemiya-MaCurdy model attempts to gain efficiency over the Hausman-Taylor model by adding
instruments. This comes at a price of a more stringent assumption on the exogeneity of the x1 variables.
Although the Hausman-Taylor model requires only that the cross-sectional means of x1 be orthogonal to �i ,
the Amemiya-MaCurdy estimation requires orthogonality at every point in time; see Baltagi (2013, sec. 7.4).

A Hausman specification test is provided to test the validity of the added assumption. Define ˛0 D
.ˇ01;ˇ

0
2;
0
1;
0
2/, its Hausman-Taylor estimate as ǪHT, and its Amemiya-MaCurdy estimate as ǪAM. Under

the null hypothesis, both estimators are consistent and ǪAM is efficient. The Hausman test statistic is

m D . ǪHT � ǪAM/
0
�
O†HT � O†AM

��1
. ǪHT � ǪAM/

where O†HT and O†AM are variance-covariance estimates of ǪHT and ǪAM, respectively. Under the null
hypothesis, m follows a �2 distributed with degrees of freedom equal to the rank of . O†HT � O†AM/

�1.

Dynamic Panel Estimation (DYNDIFF and DYNSYS Options)
You perform dynamic panel estimation that uses first differences by specifying the DYNDIFF option in the
MODEL statement. For dynamic panel estimation that uses a full system of difference and level equations,
specify the DYNSYS option. For an example of dynamic panel estimation, see Example 26.5.

Dynamic panel models are regression models that include lagged versions of the dependent variable as
covariates. Consider the following panel regression, which includes L lags of the dependent variable:

yit D

LX
jD1

�jyi; t�j C

KX
kD1

xitkˇk C �i C �it

Because the effect �i is common to all observations for that individual, it is correlated with any lagged y
because it played a role in its realization. As such, lagged dependent variables are endogenous regressors and
require special consideration.
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First Differencing

For ease of notation, consider the special case L D K D 1. A first attempt to remove the source of the
correlation would be to take first differences, which removes �i . That is,

�yit D ��yi; t�1 C�xitˇ C �it

where �yit D yi;t � yi; t�1, �xit D xi;t � xi; t�1, and �it D �i;t � �i; t�1. Even though the individual
effects are removed, the problem of endogeneity persists because �yi; t�1 is correlated with the differenced
error term �it . That is because �i; t�1 is a component of yi; t�1 (Nickell 1981).

Arellano and Bond (1991) show that you can use the generalized method of moments (GMM) to obtain
a consistent estimator. In GMM parlance, the moment condition that Ef.�yi; t�1/�itg D 0 is violated.
Estimation requires a set of instrumental variables that do meet their moment conditions and that can
adequately predict �yi; t�1. A natural set of instruments is yi; t�2 and all other previous realizations of
y. These lags of y are not correlated with �i; t�1 because they occurred before time t � 1. Given the
autoregressive nature of the model, yi; t�1 (and hence �yi; t�1) is well predicted by its previous values.

Begin with t D 3, the first time period where the differenced model holds. The dynamic regression model for
individual i can be expressed as

ydi D Xdi  C �
d
i

where

ydi D

0BBB@
�yi3
�yi4
:::

�yiT

1CCCA Xdi D

0BBB@
�yi2 �xi3
�yi3 �xi4
:::

:::

�yi;T�1 �xiT

1CCCA  D

�
�

ˇ

�
�di D

0BBB@
�i3
�i4
:::

�iT

1CCCA
Proceeding with the idea that you can use .yi1; : : : ; yi; t�1/ as instruments for �yit , the instrument matrix
for the lagged dependent variables is

Zdi D

0BBBBB@
yi1 0 0 0 0 0 � � � 0 0 0

0 yi1 yi2 0 0 0 � � � 0 0 0

0 0 0 yi1 yi2 yi3 0 � � � 0 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

:::

0 0 0 0 0 0 0 yi1 � � � yi; T�2

1CCCCCA
This extends naturally to L > 1 and K > 1; simply add columns to Xdi and elements to  as appropriate.
When an observation is either missing or lost because of missing lags, delete the corresponding rows of ydi ,
Xdi , �di , and Zdi . Even if an observation is not missing with respect to the regression model, some of the
lagged instruments might not be available because previous observations are missing. When that occurs,
replace any missing instrument with 0.

When you specify the DYNDIFF option in the MODEL statement, PROC PANEL by default treats x variables
as exogenous and uses a projection that leaves these variables unchanged in the differenced regression. The
full instrument matrix is then Zi D .Zdi ;Di /, where

Di D

0BBB@
�xi31 �xi32 � � � �xi3K
�xi41 �xi42 � � � �xi4K
:::

:::
:::

:::

�xiT1 �xiT 2 � � � �xiTK

1CCCA
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When L D 1, the default Zi has .T � 1/.T � 2/=2CK columns. Each column zc of Zi satisfies the moment
condition E.z

0

c�
d
i / D 0.

System GMM

Blundell and Bond (1998) proposed a system GMM estimator that uses additional moment conditions to
increase efficiency. The efficiency gain can be substantial when there is strong serial correlation in the
dependent variable.

When either � is near 1 or �2� =�
2
� is large, the lagged dependent variables yi; t�1 are weak instruments for the

differenced variables �yit . System GMM solves the weak instrument problem by augmenting the difference
equations described previously with a set of level equations. When L D K D 1, the level equations are

y`i D X`i  C �
`
i

where

y`i D

0BBB@
yi2
yi3
:::

yiT

1CCCA X`i D

0BBB@
yi1 xi2
yi2 xi3
:::

:::

yi;T�1 xiT

1CCCA �`i D

0BBB@
�i C �i2
�i C �i3

:::

�i C �iT

1CCCA
Blundell and Bond (1998) note that you can use lagged differences of y as instruments for the levels of y.
The main instrument matrix for the level equations is then

Z`i D

0BBBBB@
0 0 0 � � � 0

0 �yi2 0 � � � 0

0 0 �yi3 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � �yi; T�1

1CCCCCA
where the first row corresponds to time t D 2. You can extend this to L > 1 and K > 1 by adding columns
to X`i and elements to  as appropriate. Higher-order lags require deletion of the leading rows of y`i , X

`
i , �

`
i ,

and Z`i .

Regression on the full system is obtained by stacking ydi and y`i to form ysi , stacking Xdi and X`i to form Xsi ,
and stacking �di and �`i to form �si .

When you specify the DYNSYS model option, the default instrument matrix for the full system is

Zi D
�

Zdi 0 Di
0 Z`i 0

�
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Estimation

The estimation in this section assumes system GMM. To obtain difference GMM, restrict estimation to the
rows that correspond to the difference equations.

The initial moment matrix is derived from the theoretical variance of the combined residuals and is expressed
as H1i D diag.G1i ;G2i /, where

G1i D

0BBBBBBBBB@

1 �0:5 0 � � � 0 0 0

�0:5 1 �0:5 � � � 0 0 0

0 �0:5 1 � � � 0 0 0
:::

:::
:::
: : :

:::
:::

:::

0 0 0 � � � 1 �0:5 0

0 0 0 � � � �0:5 1 �0:5

0 0 0 � � � 0 �0:5 1

1CCCCCCCCCA
and G2i is 0.5 times the identity matrix.

Define the weighting matrix as

W1 D

 
NX
iD1

Z0iH1iZi

!�1

and the projections as

Py D
NX
iD1

Z0iy
s
i I Px D

NX
iD1

Z0iX
s
i

The one-step GMM estimate of  is the weighted OLS estimator

O1 D
�
P
0

xW1Px
��1

P
0

xW1Py

The variance of O1 is

Var . O1/ D O�2�
�
P
0

xW1Px
��1

where O�2� is the mean square error (MSE) derived solely from the difference equations, namely

O�2� D .M �K/
�1

NX
iD1

�
ydi �Xdi O1

�0 �
ydi �Xdi O1

�
The total number of observations, M, is equal to the number of observations for which the difference equations
hold.

A disadvantage of O1 is its reliance on the theoretical basis of H1i . The two-step GMM estimate of  replaces
H1i with a version that is obtained from the observed one-step residuals. Let H2i be the outer product of
O�si D ysi �Xsi O1. Then

O2 D
�
P
0

xW2Px
��1

P
0

xW2Py



Dynamic Panel Estimation (DYNDIFF and DYNSYS Options) F 1813

where

W2 D

 
NX
iD1

Z0iH2iZi

!�1

The variance of O2 is

Var . O2/ D
�
P
0

xW2Px
��1

The iterated GMM estimator of  continues this pattern: First, use the current estimate Oc to form the
residuals that compose HcC1; i . Second, use HcC1; i to form the weighting matrix WcC1. Third, use WcC1

to update the estimate OcC1.

There are two criteria by which convergence is achieved. The first (and default) criterion is met when the
magnitude of Oc changes by a relative amount smaller than b, as specified in the BTOL= option in the
MODEL statement. The second criterion is met when the magnitude of the variance matrix changes by a
relative amount smaller than a, as specified in the ATOL= option in the MODEL statement.

Robust variances are calculated by the sandwich method. The robust variance of O1 is

Varr. O1/ D
�
P
0

xW1Px
��1

P
0

xW1W�12 W1Px
�
P
0

xW1Px
��1

The robust variance of O2 is

Varr. O2/ D
�
P
0

xW2Px
��1

P
0

xW2W�13 W2Px
�
P
0

xW2Px
��1

and so on as you iterate Oc .

Arellano and Bond (1991), among others, note that robust two-step variance estimators are biased. Wind-
meijer (2005) derived a bias-corrected variance of O2, and you can obtain this correction by specifying the
BIASCORRECTED option in the MODEL statement.

Define the one-step and two-step residuals as Oe1i D ysi � Xsi O1 and Oe2i D ysi � Xsi O2. Also define the
projected two-step residual as

Pe D
NX
iD1

Z0i Oe2i

Formulate the matrix D such that its kth column is Dk D V2P
0

xW2FkW2Pe, where V2 D Var. O2/. The
matrix Fk is the quadratic form

Fk D
NX
iD1

Z0i
�
xik Oe

0

1i C Oe1ix
0

ik

�
Zi

where xik is the kth column of Xsi .

The Windmeijer (2005) bias-corrected variance is

Varw. O2/ D V2 CDV2 CV2D0 CDVr1D
0

where Vr1 is the robust variance estimate of O1.
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Estimating the Intercept

The intercept term vanishes when you take first differences and is thus identified only in the level equations.
If you specify the DYNDIFF option in the MODEL statement and your model includes an intercept, then
PROC PANEL will fit the model by using system GMM with the following (default) instrumentation,

Zi D
�

Zdi Di 0
0 0 ji

�
where ji is a column of ones. Because all the level instruments are zero except the constant, parameter
estimates other than the intercept are unaffected by the added level equations.

If you specify the DYNDIFF option in the MODEL statement and your model does not include an intercept,
then the level equations are excluded from the estimation.

If you specify the DYNSYS option in the MODEL statement, then there is no issue regarding the intercept.
Under the default instrument specification, if X`i includes an intercept, then the level instruments include an
added column of ones. That is,

Zi D
�

Zdi 0 Di 0
0 Z`i 0 ji

�

Customizing Instruments

When you specify the DYNSYS option for performing system GMM, the default instrument matrix is

Zi D
�

Zdi 0 Di 0
0 Z`i 0 ci

�
where ci is either a column of ones, or 0 if you specify the NOINT option.

You can override the default set of instruments by specifying an INSTRUMENTS statement. You can choose
which instrument sets to include as components of Zi . The INSTRUMENTS statement provides options to
generate the appropriate instruments when variables are either endogenous, predetermined, or exogenous.

The following discussion assumes that you are performing system GMM by using the DYNSYS option in the
MODEL statement. When you specify the DYNDIFF option instead, any specification (except the constant
ci ) that pertains to the level equations is ignored.

Dependent Variable

The DEPVAR option in the INSTRUMENTS statement adds instruments for the dependent variable and its
lags. Specifying DEPVAR(DIFF) includes the lagged levels of the dependent variable (the matrix Zdi ) in the
difference equations. Specifying DEPVAR(LEVEL) includes the first differences of the dependent variable
(the matrix Z`i ) in the level equations. Specifying DEPVAR(BOTH) (or simply DEPVAR) includes both Zdi
and Z`i .

You should at a minimum include instruments for the dependent variable when you perform dynamic panel
estimation. For example:
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proc panel data=a;
id State Year;
instruments depvar;
model Sales = Price PopDensity / dynsys;

run;

Constant (or Intercept)

Specifying the keyword CONSTANT includes the constant vector ci in the level equations.

Endogenous Variables

A variable xit is endogenous if E .xit�is/ ¤ 0 for s � t and 0 otherwise.

The DIFFEND= option specifies a list of endogenous variables that form instrument matrices for the difference
equations. The instruments are “GMM-style” and mirror the form used for the dependent variable. Suppose
that the model includes one lag of the dependent variable (L D 1). Specifying DIFFEND=(X) adds the
following instruments to the difference equations:

Gdi D

0BBBBB@
xi1 0 0 0 0 0 � � � 0 0 0

0 xi1 xi2 0 0 0 � � � 0 0 0

0 0 0 xi1 xi2 xi3 0 � � � 0 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

:::

0 0 0 0 0 0 0 xi1 � � � xi; T�2

1CCCCCA
The first row corresponds to time t D 3. The instruments are in lagged levels.

The LEVELEND= option specifies a list of endogenous variables that form instrument matrices for the level
equations. The instruments mirror the form used for the dependent variable. Suppose that the model includes
one lag of the dependent variable (L D 1). Specifying LEVELEND=(X) adds the following instruments to
the level equations:

G`i D

0BBBBB@
0 0 0 � � � 0

0 �xi2 0 � � � 0

0 0 �xi3 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � �xi; T�1

1CCCCCA
The first row corresponds to time t D 2. Because the instruments are used for the level equations, they are in
lagged differences.

The following code fits a dynamic panel model by using difference equations. It includes GMM-style
instruments for both the dependent variable Sales and the variable Price:

proc panel data=a;
id State Year;
instruments depvar diffend = (Price);
model Sales = Price PopDensity / dyndiff;

run;

Predetermined Variables

A variable xit is predetermined if E .xit�is/ ¤ 0 for s < t and 0 otherwise.
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The DIFFPRE= option specifies a list of variables that are considered to be predetermined in the difference
equations. The DIFFPRE= option works similarly to the DIFFEND= option, except that each observation
contains an extra instrument that reflects orthogonality in the current time period. If L D 1, specifying
DIFFPRE=(X) adds the following instruments to the difference equations:

Pdi D

0BBB@
xi1 xi2 0 0 0 0 � � � 0 0 0

0 0 xi1 xi2 xi3 0 � � � 0 0 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

:::

0 0 0 0 0 0 0 xi1 � � � xi; T�1

1CCCA
The first row corresponds to time t D 3.

The LEVELPRE= option specifies a list of variables that are considered to be predetermined in the level
equations. The LEVELPRE= option works similarly to the LEVELEND= option, except that the lag is
shifted up to reflect orthogonality in the current time period. If L D 1, specifying LEVELPRE=(X) adds the
following instruments to the level equations:

P`i D

0BBBBB@
�xi2 0 0 � � � 0

0 �xi3 0 � � � 0

0 0 �xi4 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � �xi;T

1CCCCCA
The first row corresponds to time t D 2.

The following code fits a dynamic panel model by using difference equations. The instrument set includes
GMM-style instruments for the dependent variable Sales and GMM-style instruments that correspond to the
predetermined variable Price:

proc panel data=a;
id State Year;
instruments depvar diffpre = (Price);
model Sales = Price PopDensity / dyndiff;

run;

Exogenous Variables

Exogenous variables are uncorrelated with both the level residuals and the differenced residuals. If a
regression variable is exogenous, you might want to include that variable in the instrument set as a standard
instrument. The DIFFEQ= option specifies a list of variables that compose the matrix of standard instruments
Di for the difference equations; for an example of how Di is formed, see the section “First Differencing” on
page 1810. These variables are usually exogenous regressors that you want to preserve under the projection
to the instrument space. Because these instruments belong to the difference equations, the variables are
automatically differenced.

The LEVELEQ= option specifies a list of variables that form a matrix of standard instruments that is included
in the level equations. You can use this option to specify external instruments that are not part of the main
regression but that can be used as instruments for the regression variables in levels.
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If L D 1, specifying LEVELEQ=(X1 X2) adds the following instruments to the level equations:

Li D

0BBB@
xi21 xi22
xi31 xi32
:::

:::

xiT1 xiT 2

1CCCA
The first row corresponds to time t D 2.

The following example illustrates how you would use an INSTRUMENTS statement to obtain the default set
of instruments for system GMM:

proc panel data=a;
id State Year;
instruments depvar(both) constant diffeq = (Price PopDensity);
model Sales = Price PopDensity / dynsys;

run;

Limiting the Number of Instruments

Arellano and Bond’s (1991) technique of expanding instruments is a useful method of dealing with auto-
correlation in the response variable. However, too many instruments can bias the estimator. The number
of instruments grows quadratically with the number of time periods, making computations less feasible for
larger T.

By default, PROC PANEL uses all available lags. You can limit the number of instruments by specifying
the MAXBAND= option in the INSTRUMENTS statement. For example, specifying MAXBAND=5 limits
the number of GMM-style instruments to five per observation, for each variable. The MAXBAND= option
applies to all GMM-style instruments: those for the dependent variable, those from the DIFFEND= option,
and those from the DIFFPRE= option.

Sargan Test of Overidentifying Restrictions

A Sargan test is a referendum on your choice of instruments in a dynamic panel model. The Sargan test
statistic for one-step GMM is

J D
1

O�2�

 
NX
iD1

Z0i Oe1i

!0
W1

 
NX
iD1

Z0i Oe1i

!

The Sargan test statistic for two-step GMM is

J D

 
NX
iD1

Z0i Oe2i

!0
W2

 
NX
iD1

Z0i Oe2i

!

It is similarly incremented for further iterations of GMM.

The null hypothesis of the Sargan test is that the moment conditions (as defined by the columns Zi ) hold,
and thus Zi form an adequate set of instruments. Under the null, J is distributed as �2 with degrees of
freedom equal to the rank of Wc minus the number of parameters K. The nominal rank of Wc is equal to the
number of instruments. However, this number can be reduced because of collinearity and redundancy in the
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instrument specification. Furthermore, when c > 1, the maximum rank of Wc is N, regardless of the number
of instruments.

You should treat Sargan tests with caution when robust variances are used in the estimation. The theoretical
distribution of J does not hold under conditions that favor robust variances.

AR(m ) Tests

An AR(m) test is a test for autocorrelation of order m in the model residuals. Let Rsi be the working variance
of the residuals from the full system. The precise definition of Rsi depends on the GMM stage and whether
robust variances are specified; see Table 26.3.

Table 26.3 Definition of the Working Residual Variance

Estimator Rsi
One-step O�2�H1i
One-step, robust H2i
Two-step H2i
Two-step, robust H3i
Iteration c Hci
Iteration c, robust HcC1;i

Define the residual vector

Oei D
�
O�di
0

�
where O�di D ydi � Xdi Oc are the residuals from the difference equations, evaluated at the final estimate of
Oc . The trailing zeros correspond to the level equations. Define O!mi as a lagged version of Oei such that the
following are true:

1. The first m elements of O!mi are 0.

2. The next p�m elements of O!mi are the first p�m elements of Oei , where p is the number of difference
equations.

3. The trailing elements of O!mi that correspond to the level equations are 0.

Define the following:

Pm D

NX
iD1

Z
0

iR
s
i O!mi

Qm D

NX
iD1

O!
0

miX
s
i
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The AR(m) test statistic is Zm D k0m fk1m C k2m C k3mg�1=2, where

k0m D

NX
iD1

O!
0

mi Oei

k1m D

NX
iD1

O!
0

miR
s
i O!mi

k2m D �2Qm
�
P0xWcPx

��1 P0xWcPm

k3m D QmVQ
0

m

The matrix V is the estimated variance matrix of the parameters, corresponding to the GMM stage specified,
and either model-based, robust, or bias-corrected.

Under the null hypothesis of no autocorrelation, Zm follows a standard normal distribution. Because
of the differencing in the errors, well-specified models present autocorrelation of order m D 1, but any
autocorrelation at higher orders indicates a violation of assumptions.

Restricted Estimation
The PANEL procedure can fit models that have linear restrictions, producing a Lagrange multiplier (LM) test
for each restriction. Consider a set of J linear restrictions Rˇ D q, where R is J �K and q is J � 1.

The restricted regression is performed by minimizing the error sum of squares subject to the restrictions. In
matrix terms, the Lagrangian for this problem is

L D .y �Xˇ/0.y �Xˇ/C 2�.Rˇ � q/

The Lagrangian is minimized by the restricted estimator ˇ�, and it can be shown that

ˇ� D Ǒ � .X
0

X/�1R
0

�

where Ǒ is the unrestricted estimator.

Because Rˇ� D q, you can solve for � to obtain the Lagrange multipliers

�� D
h
R.X

0

X/�1R
0
i�1

.R Ǒ � q/

The standard errors of the Lagrange multipliers are the square roots of the diagonal elements of the variance
matrix

Var.��/ D O�2e
h
R.X

0

X/�1R
0
i�1

where O�2e is the mean square error (MSE) under the null hypothesis. A significant Lagrange multiplier
indicates a restriction that is binding.
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Linear Hypothesis Testing
Consider a linear hypothesis of the form Rˇ D q, where R is J �K and q is J � 1. The Wald test statistic is

�2W D .R Ǒ � q/
0
�
R OVR0

��1
.R Ǒ � q/

where OV is the estimated variance of Ǒ.

In simple linear models, the Wald test statistic is equal to the F test statistic

F D
.SSEr � SSEu/=J

SSEu=dfe

where SSEr is the restricted error sum of squares, SSEu is the unrestricted error sum of squares, and dfe is
the unrestricted error degrees of freedom.

The F statistic represents a more direct comparison of the restricted model to the unrestricted model.
Comparing error sums of squares is appealing in complex models for which restrictions are applied not only
during the final regression but also during intermediate calculations.

The likelihood ratio (LR) test and the Lagrange multiplier (LM) test are derived from the F statistic. The LR
test statistic is

�2LR D M ln
�
1C

JF

M �K

�

The LM test statistic is

�2LM D M
�

JF
M �K C JF

�

The distribution of these test statistics is �2 with J degrees of freedom. The three tests are asymptotically
equivalent, but they possess different small-sample properties. For more information, see Greene (2000, p.
392) and Davidson and MacKinnon (1993, pp. 456–458).

Only the Wald is changed when a heteroscedasticity-corrected covariance matrix estimator (HCCME) is
selected. The LR and LM tests are unchanged.
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Heteroscedasticity-Corrected Covariance Matrices
The HCCME= option in the MODEL statement selects the type of heteroscedasticity-consistent covariance
matrix. In the presence of heteroscedasticity, the covariance matrix has a complicated structure that can
result in inefficiencies in the OLS estimates and biased estimates of the covariance matrix. The variances
for cross-sectional and time dummy variables and the covariances with or between the dummy variables are
not corrected for heteroscedasticity in the one-way and two-way models. Whether or not the HCCME= is
specified, these variances are the same. For the two-way models, the variance and the covariances for the
intercept are not corrected.1

Consider the simple linear model:

y D Xˇ C �

This discussion parallels the discussion in Davidson and MacKinnon (1993, pp. 548–562). For panel data
models, heteroscedasticity-corrected covariance matrix estimation (HCCME) is applied to the transformed
data ( Qy and QX). In other words, first the random or fixed effects are removed through transforming the
data,2 and then the heteroscedasticity (also autocorrelation with the HAC option) is corrected in the residual.
The assumptions that make the linear regression best linear unbiased estimator (BLUE) are E.�/ D 0 and
E.��

0

/ D �, where � has the simple structure �2I. Heteroscedasticity results in a general covariance
structure, and it is not possible to simplify �. The result is the following:

Q̌ D .X
0

X/�1X
0

y D .X
0

X/�1X
0

.Xˇ C �/ D ˇ C .X
0

X/�1X
0

�

As long as the following is true, then you are assured that the OLS estimate is consistent and unbiased:

plimn!1

�
1

n
X
0

�

�
D 0

If the regressors are nonrandom, then it is possible to write the variance of the estimated ˇ as

Var
�
ˇ � Q̌

�
D .X

0

X/�1X
0

�X.X
0

X/�1

You can ameliorate the effect of structure in the covariance matrix by using generalized least squares (GLS),
provided that ��1 can be calculated. Using ��1, you premultiply both sides of the regression equation,

L�1y D L�1X˛C L�1�

where L denotes the Cholesky root of � (that is, � D LL0 with L lower triangular).

The resulting GLS ˇ is

Ǒ D .X
0

��1X/�1X
0

��1y
1The dummy variables are removed by the within transformations, so their variances and covariances cannot be calculated the

same way as the other regressors. They are recovered by the formulas in the sections “One-Way Fixed-Effects Model (FIXONE
and FIXONETIME Options)” on page 1793 and “Two-Way Fixed-Effects Model (FIXTWO Option)” on page 1794. The formulas
assume homoscedasticity, so they do not apply when HCCME is used. Therefore, standard errors, variances, and covariances are
reported only when the HCCME= option is ignored. HCCME standard errors for dummy variables and intercept can be calculated
by the dummy variable approach with the pooled model.

2For more information about transforming the data, see the sections “One-Way Fixed-Effects Model (FIXONE and FIXONE-
TIME Options)” on page 1793, “Two-Way Fixed-Effects Model (FIXTWO Option)” on page 1794, “One-Way Random-Effects
Model (RANONE Option)” on page 1797, and “Two-Way Random-Effects Model (RANTWO Option)” on page 1799.



1822 F Chapter 26: The PANEL Procedure

Using the GLS ˇ, you can write

Ǒ D .X
0

��1X/�1X
0

��1y
D .X

0

��1X/�1X
0

.��1X˛C��1�/
D ˇ C .X

0

��1X/�1X
0

��1�

The resulting variance expression for the GLS estimator is

Var
�
ˇ � Ǒ

�
D .X

0

��1X/�1X
0

��1��0��1X.X
0

��1X/�1

D .X
0

��1X/�1X
0

��1���1X.X
0

��1X/�1

D .X
0

��1X/�1

The difference in variance between the OLS estimator and the GLS estimator can be written as

.X
0

X/�1X
0

�X.X
0

X/�1 � .X
0

��1X/�1

By the Gauss-Markov theorem, the difference matrix must be positive definite under most circumstances
(zero if OLS and GLS are the same, when the usual classical regression assumptions are met). Thus, OLS is
not efficient under a general error structure. It is crucial to realize that OLS does not produce biased results.
It would suffice if you had a method of estimating a consistent covariance matrix and you used the OLS ˇ.
Estimation of the � matrix is certainly not simple. The matrix is square and has M 2 elements; unless some
sort of structure is assumed, it becomes an impossible problem to solve. However, the heteroscedasticity can
have quite a general structure. White (1980) shows that it is not necessary to have a consistent estimate of �.
On the contrary, it suffices to calculate an estimate of the middle expression. That is, you need an estimate of

ƒ D X
0

�X

This matrix, ƒ, is easier to estimate because its dimension is K. PROC PANEL provides the following
classical HCCME estimators for ƒ.

The matrix is approximated as follows:

� HCCME=N0:

�2X
0

X

This is the simple OLS estimator. If you do not specify the HCCME= option, PROC PANEL defaults
to this estimator.

� HCCME=0:

NX
iD1

TiX
tD1

O�2itxitx
0

it

Here N is the number of cross sections and Ti is the number of observations in the ith cross section.
The x

0

it is from the tth observation in the ith cross section, constituting the .
Pi�1
jD1 Tj C t /th row of
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the matrix X. If the CLUSTER option is specified, one extra term is added to the preceding equation
so that the estimator of matrix ƒ is

NX
iD1

TiX
tD1

O�2itxitx
0

it C

NX
iD1

TiX
tD1

t�1X
sD1

O�it O�is

�
xitx

0

is C xisx
0

it

�
The formula is the same as the robust variance matrix estimator in Wooldridge (2002, p. 152), and it is
derived under the assumptions of section 7.3.2 of Wooldridge (2002).

� HCCME=1:

M

M �K

NX
iD1

TiX
tD1

O�2itxitx
0

it

Here M is the total number of observations,
PN
jD1 Tj , and K is the number of parameters. If the

CLUSTER option is specified, the estimator becomes

M

M �K

NX
iD1

TiX
tD1

O�2itxitx
0

it C
M

M �K

NX
iD1

TiX
tD1

t�1X
sD1

O�it O�is

�
xitx

0

is C xisx
0

it

�
The formula is similar to the robust variance matrix estimator in Wooldridge (2002, p. 152) with the
heteroscedasticity adjustment term M=.M �K/.

� HCCME=2:

NX
iD1

TiX
tD1

O�2it

1 � Ohit
xitx

0

it

The Ohit term is the .
Pi�1
jD1 Tj C t /th diagonal element of the hat matrix. The expression for Ohit

is x
0

it .X
0

X/�1xit . The hat matrix attempts to adjust the estimates for the presence of influence or
leverage points. If the CLUSTER option is specified, the estimator becomes

NX
iD1

TiX
tD1

O�2it

1 � Ohit
xitx

0

it C 2

NX
iD1

TiX
tD1

t�1X
sD1

O�itq
1 � Ohit

O�isq
1 � Ohis

�
xitx

0

is C xisx
0

it

�
The formula is similar to the robust variance matrix estimator in Wooldridge (2002, p. 152) with the
heteroscedasticity adjustment.

� HCCME=3:

NX
iD1

TiX
tD1

O�2it

.1 � Ohit /2
xitx

0

it

If the CLUSTER option is specified, the estimator becomes

NX
iD1

TiX
tD1

O�2it

.1 � Ohit /2
xitx

0

it C 2

NX
iD1

TiX
tD1

t�1X
sD1

O�it

1 � Ohit

O�is

1 � Ohis

�
xitx

0

is C xisx
0

it

�
The formula is similar to the robust variance matrix estimator in Wooldridge (2002, p. 152) with the
heteroscedasticity adjustment.
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� HCCME=4: PROC PANEL includes this option for the calculation of the Arellano (1987) version
of the White (1980) HCCME in the panel setting. Arellano’s insight is that there are N covariance
matrices in a panel, and each matrix corresponds to a cross section. Forming the White HCCME
for each cross section, you need to take only the average of those N estimators. The details of the
estimation follow. First, you arrange the data such that the first cross section occupies the first Ti
observations. Then, you treat the cross sections as separate regressions with the form

yi D ˛i iCXis Q̌ C �i

where the parameter estimates Q̌ and ˛i are the result of least squares dummy variables (LSDV) or
within estimator regressions, and i is a vector of ones of length Ti . The estimate of the ith cross
section’s X

0

�X matrix (where the s subscript indicates that no constant column has been suppressed
to avoid confusion) is X

0

i�Xi . The estimate for the whole sample is

X
0

s�Xs D

NX
iD1

X
0

i�Xi

The Arellano standard error is in fact a White-Newey-West estimator with constant and equal weight
on each component. In the between estimators, specifying HCCME=4 returns the HCCME=0 result
because there is no “other” variable to group by.

In their discussion, Davidson and MacKinnon (1993, p. 554) argue that HCCME=1 should always be
preferred to HCCME=0. Although an HCCME= option value of 3 is generally preferred to 2 and 2 is
preferred to 1, the calculation of HCCME=1 is as simple as the calculation of HCCME=0. Therefore,
HCCME=1 is preferred when the calculation of the hat matrix is too tedious.

All HCCMEs have well-defined asymptotic properties. The small-sample properties are not well known, and
care must exercised when sample sizes are small.

The HCCME of Var.ˇ/ is used to drive the covariance matrices for the fixed effects and the Lagrange
multiplier standard errors. Robust estimates of the covariance matrix for ˇ imply robust covariance matrices
for all other parameters.

Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrices
The HAC option in the MODEL statement selects the type of heteroscedasticity- and autocorrelation-
consistent covariance matrix. As with the HCCME= option, an estimator of the middle expression ƒ in
sandwich form is needed. With the HAC option, it is estimated as

ƒHAC D a

NX
iD1

TiX
tD1

O�2itxitx
0

it C a

NX
iD1

TiX
tD1

t�1X
sD1

k.
s � t

b
/O�it O�is

�
xitx

0

is C xisx
0

it

�
where k.:/ is the real-valued kernel function,3 b is the bandwidth parameter, and a is the adjustment factor of
small-sample degrees of freedom (that is, a D 1 if the ADJUSTDF option is not specified and otherwise
a D NT=.NT � k/, where k is the number of parameters including dummy variables). The types of kernel
functions are listed in Table 26.4.

3Specifying HCCME=0 with the CLUSTER option sets k.:/ D 1.
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Table 26.4 Kernel Functions

Kernel Name Equation

Bartlett k.x/ D

�
1 � jxj jxj � 1

0 otherwise

Parzen k.x/ D

8<:
1 � 6x2 C 6jxj3 0 � jxj � 1=2

2.1 � jxj/3 1=2 � jxj � 1

0 otherwise

Quadratic spectral k.x/ D 25
12�2x2

�
sin .6�x=5/
6�x=5

� cos .6�x=5/
�

Truncated k.x/ D

�
1 jxj � 1

0 otherwise

Tukey-Hanning k.x/ D

�
.1C cos .�x// =2 jxj � 1
0 otherwise

When you specify the BANDWIDTH=ANDREWS option, the bandwidth parameter is estimated as shown in
Table 26.5.

Table 26.5 Bandwidth Parameter Estimation

Kernel Name Bandwidth Parameter

Bartlett b D 1:1447.˛.1/T /1=3

Parzen b D 2:6614.˛.2/T /1=5

Quadratic spectral b D 1:3221.˛.2/T /1=5

Truncated b D 0:6611.˛.2/T /1=5

Tukey-Hanning b D 1:7462.˛.2/T /1=5

Let fgaitg denote each series in fgit D O�itxitg, and let .�a; �2a / denote the corresponding estimates of the
autoregressive and innovation variance parameters of the AR(1) model on fgaitg, a D 1; : : : ; k, where the
AR(1) model is parameterized as gait D �gait�1 C �ait with Var.�ait / D �2a . The terms ˛.1/ and ˛.2/ are
estimated by the formulas

˛.1/ D

Pk
aD1

4�2a�
4
a

.1��a/6.1C�a/2Pk
aD1

�4a
.1��a/4

˛.2/ D

Pk
aD1

4�2a�
4
a

.1��a/8Pk
aD1

�4a
.1��a/4

When you specify BANDWIDTH=NEWEYWEST94, according to Newey and West (1994) the bandwidth
parameter is estimated as shown in Table 26.6.

Table 26.6 Bandwidth Parameter Estimation

Kernel Name Bandwidth Parameter

Bartlett b D 1:1447.fs1=s0g
2T /1=3

Parzen b D 2:6614.fs1=s0g
2T /1=5

Quadratic spectral b D 1:3221.fs1=s0g
2T /1=5
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Table 26.6 continued

Kernel Name Bandwidth Parameter

Truncated b D 0:6611.fs1=s0g
2T /1=5

Tukey-Hanning b D 1:7462.fs1=s0g
2T /1=5

The terms s0 and s1 are estimated by the formulas

s0 D �0 C 2

nX
jD1

�j s1 D 2

nX
jD1

j�j

where n is the lag selection parameter and is determined by kernels, as listed in Table 26.7.

Table 26.7 Lag Selection Parameter Estimation

Kernel Name Lag Selection Parameter

Bartlett n D c.T=100/2=9

Parzen n D c.T=100/4=25

Quadratic spectral n D c.T=100/2=25

Truncated n D c.T=100/1=5

Tukey-Hanning n D c.T=100/1=5

The c in Table 26.7 is specified by the C= option; by default, C=12.

The �j are estimated by the equation

�j D T
�1

TX
tDjC1

0@ kX
aDi

gat

kX
aDi

gat�j

1A; j D 0; : : : ; n

where gat is the same as in the Andrews method and i is 1 if the NOINT option is specified in the MODEL
statement, and 2 otherwise.

When you specify BANDWIDTH=SAMPLESIZE, the bandwidth parameter is estimated by the equation

b D

�
bT r C cc if the BANDWIDTH=SAMPLESIZE(INT) option is specified
T r C c otherwise

where T is the sample size; bxc is the largest integer less than or equal to x; and  , r, and c are values
specified by the BANDWIDTH=SAMPLESIZE(GAMMA=, RATE=, CONSTANT=) options, respectively.

If the PREWHITENING option is specified in the MODEL statement, git is prewhitened by the VAR(1)
model,

git D Aigi;t�1 C wit

Then ƒHAC is calculated by

ƒHAC D a

NX
iD1

8<:
0@ TiX
tD1

witw
0
it C

TiX
tD1

t�1X
sD1

k.
s � t

b
/
�
witw

0
is C wisw

0
it

�1A .I � Ai /�1..I � Ai /�1/0
9=;



R-Square F 1827

R-Square
The R-square statistic is the proportion of variability in the dependent variable that is attributed to the
independent variables. Because of the transformations that are used prior to fitting the final regression model,
the conventional R-square measure is not appropriate for most models that the PANEL procedure supports.
In random-effects models that use a GLS transform, PROC PANEL calculates the modified R-square statistic
proposed by Buse (1973),

R2 D 1 �
SSE

y0D0 O��1Dy

where SSE is the error sum of squares from the final model fit, O��1=2 represents the GLS transform, and
D D IM � a�1JM O��1; for a D j0M O�

�1jM .

In GLS models that do not have an intercept, the alternate R-square measure, which is attributed to Theil
(1961), is calculated as follows:

R2 D 1 �
SSE

y0 O��1y

In fixed-effects models, the R-square measure is

R2 D 1 �
SSE
y0wyw

where yw is the within-transformed dependent variable.

In the case of pooled OLS estimation, all three of the R-square formulas reduce to the usual R-square statistic
for linear models.

F Test for No Fixed Effects
When you fit a fixed-effects model, you obtain an F test for no fixed effects as part of the output. The null
hypothesis of that test is that all fixed effects are jointly 0; it is obtained by comparing fixed-effects estimates
to those from pooled regression. The F statistic is

F D
.SSEr � SSEu/ =df1

SSEu=df2
� F.df1; df2/

where SSEr is the error sum of squares from the restricted model (pooled regression) and SSEu is the error
sum of squares from the unrestricted fixed-effects model.

The numerator degrees of freedom, df1, equals N � 1 for one-way models and .N � 1/ C .T � 1/ for
two-way models. The denominator degrees of freedom, df2, is equal to the error degrees of freedom from the
fixed-effects estimation. If you specify the NOINT option, add 1 to df1 to account for the added restriction
to the pooled regression.
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Tests for Random Effects

Hausman Test

For models that include random effects, the PANEL procedure outputs the results of the Hausman (1978)
specification test, which provides guidance of choosing random-effect model or fixed-effect model. This test
was also proposed by Wu (1973) and further extended in Hausman and Taylor (1982).

Consider two estimators, Ǒe and Ǒc , which under the null hypothesis are both consistent, but only Ǒe is
asymptotically efficient. Under the alternative hypothesis, only Ǒc is consistent. The m statistic is

m D . Ǒc � Ǒe/
0

. O†c � O†e/
�1. Ǒc � Ǒe/

where O†c and O†e are estimates of the asymptotic covariance matrices of Ǒc and Ǒe . The statistic m follows
a �2 distribution with k degrees of freedom, where k is the rank of . O†c � O†e/�1. This rank is normally
equal to the dimension of Ǒc � Ǒe, but it is reduced when regressors that are constant within cross sections
are dropped from the fixed-effects model.

The null hypothesis is that the effects are independent of the regressors. Under the null hypothesis, the
fixed-effects estimator is consistent but inefficient, whereas the random-effects estimator is both consistent
and efficient. Failure to reject the null hypothesis favors the random-effects specification.

Breusch and Pagan Test for Random Effects

Breusch and Pagan (1980) developed a Lagrange multiplier test for random effects. The null hypothesis of
this test is that the variance of the random effect is zero. The test helps you choose between random-effects
model regression and pooled OLS regression, and it is based on the pooled OLS estimator. If Ouit is the i t th
residual from the pooled OLS regression, then the Breusch-Pagan (BP) test for one-way random effects is

BP D
NT

2.T � 1 /

264
PN

iD1

hPT
tD1 Ouit

i2
PN

iD1
PT

tD1 Ou
2
it

� 1

375
2

The BP test generalizes to the case of a two-way random-effects model (Greene 2000, p. 589). Specifically,

BP2 D
NT

2.T � 1/

264
Pn

i = 1

hPT
t = 1 Ouit

i2
PN

i = 1
PT

t = 1 Ou
2
it

� 1

375
2

C
NT

2.N � 1/

264
PT

t = 1

hPN
i = 1 Ouit

i2
PN

i = 1
PT

t = 1 Ou
2
it

� 1

375
2

is distributed as a �2 statistic with two degrees of freedom.

Because a two-way model generalizes a one-way model, failure to reject the null hypothesis of no random
effects with BP2 usually implies a failure reject with BP as well. For both the BP and BP2 tests, the residuals
are obtained from a pooled regression. There is very little extra cost in selecting both the BP and BP2
tests. Notice that in the case of only groupwise heteroscedasticity, the BP2 test approximates the BP test. In



Tests of Poolability F 1829

the case of time-based heteroscedasticity, the BP2 test reduces to a BP test of time effects. In the case of
unbalanced panels, neither the BP nor BP2 statistics are valid.

Finally, you should be aware that the BP option generates different results, depending on whether the
estimation option is FIXONE or FIXONETIME. When you specify the FIXONE option, the BP option
requests a test for cross-sectional random effects. When you specify the FIXONETIME option, the BP option
requests a test for time random effects.

Although the Hausman test is automatically provided, you can request the Breusch-Pagan tests via the BP
and BP2 options in the MODEL statement.

For more information about the Breusch and Pagan tests, see Baltagi (2013, sec. 4.2).

Tests of Poolability
You can obtain tests for poolability across cross sections by specifying the POOLTEST option in the MODEL
statement. The null hypothesis of poolability assumes homogeneous slope coefficients.

F Test

For the unrestricted model, run a regression for each cross section and save the sum of squared residuals as
SSEui . Sum over all cross sections to obtain SSEu D

PN
iD1 SSEui . For the restricted model, save the sum of

squared residuals for each cross section as SSEri . Sum over all cross sections to obtain SSEr D
PN
iD1 SSEri .

If the test applies to all coefficients (including the constant), then the restricted model is the pooled model
(OLS); if the test applies to coefficients other than the constant, then the restricted model is the fixed one-way
model with cross-sectional fixed effects. Let k be the number of regressors except the constant. The degrees
of freedom for the unrestricted model is dfu D M � N.k C 1/. If the constant is restricted to be the
same, the degrees of freedom for the restricted model is dfr D M � k � 1 and the number of restrictions
is q D .N � 1/.k C 1/. If the restricted model is the fixed one-way model, the degrees of freedom is
dfr DM � k �N and the number of restrictions is q D .N � 1/k. So the F test is

F D
.SSEr � SSEu/ =q

SSEu=dfu
� F.q; dfu/

For large N and T, you can use a chi-square distribution to approximate the limiting distribution, namely,
qF ! �2 .q/. The test is the same as the Chow test (Chow 1960) extended to N linear regressions.

Likelihood Ratio (LR) Test

Zellner (1962) also proved that the likelihood ratio test for null hypothesis of poolability can be based on
the F statistic. The likelihood ratio can be expressed as LR D �2 log

n
.1C qF=dfu/

�M=2
o
. Because

LR D qF CO
�
n�1

�
, under the null hypothesis LR is asymptotically distributed as chi-square with q degrees

of freedom.
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Tests for Cross-Sectional Dependence

Breusch-Pagan LM Test

Breusch and Pagan (1980) propose a Lagrange multiplier (LM) statistic to test the null hypothesis of zero
cross-sectional error correlations. Let eit be the OLS estimate of the error term uit under the null hypothesis.
Then the pairwise cross-sectional correlations can be estimated by the sample counterparts O�ij ,

O�ij D O�j i D

PT ij
tDT ij

eitejtrPT ij
tDT ij

e2it

rPT ij
tDT ij

e2jt

where T ij and T ij are the lower bound and upper bound, respectively, which mark the overlap time periods
for the cross sections i and j. If the panel is balanced, T ij D 1 and T ij D T . Let Tij denote the number of
overlapped time periods (Tij D T ij �T ij C 1). Then the Breusch-Pagan LM test statistic can be constructed
as

BP D

NX
iD1

NX
jDiC1

Tij O�
2
ij

When N is fixed and Tij !1, BP ! �2 .N .N � 1/ =2/. So the test is not applicable as N !1.

Because O�2ij ; i D 1; : : : ; N � 1; j D i C 1; : : : ; N , are asymptotically independent under the null hypothesis
of zero cross-sectional correlation, Tij O�2ij ! �2 .1/. Then the following modified Breusch-Pagan LM
statistic can be considered to test for cross-sectional dependence:

BP.s/ D

s
1

N .N � 1/

NX
iD1

NX
jDiC1

�
Tij O�

2
ij � 1

�

Under the null hypothesis, BP.s/! N .0; 1/ as Tij !1, and then N !1. But because E
�
Tij O�

2
ij � 1

�
is not correctly centered at zero for finite Tij , the test is likely to exhibit substantial size distortion for large N
and small Tij .

Pesaran CD and CDp Test

Pesaran (2004) proposes a cross-sectional dependence test that is also based on the pairwise correlation
coefficients O�ij ,

CD D

s
2

N .N � 1/

NX
iD1

NX
jDiC1

p
Tij O�ij

The test statistic has a zero mean for fixed N and Tij under a wide class of panel data models, including
stationary or unit root heterogeneous dynamic models that are subject to multiple breaks. For each i ¤ j ,
as Tij ! 1,

p
Tij O�ij H) N .0; 1/. Therefore, for N and Tij tending to infinity in any order, CD H)

N .0; 1/.

To enhance the power against the alternative hypothesis of local dependence, Pesaran (2004) proposes the
CD(p) test. Local dependence is defined with respect to a weight matrix, W D

�
wij

�
. Therefore, the test can
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be applied only if the cross-sectional units can be given an ordering that remains immutable over time. Under
the alternative hypothesis of a pth-order local dependence, the CD statistic can be generalized to a local CD
test, CD(p),

CD.p/ D
h

2
p.2N�p�1/

i1=2Pp
sD1

PN
iDsC1

p
Ti;i�s O�i;i�s

D

h
2

p.2N�p�1/

i1=2Pp
sD1

PN�s
iD1

p
Ti;iCs O�i;iCs

where p D 1; : : : ; N �1. When p D N �1, CD(p) reduces to the original CD test. Under the null hypothesis
of zero cross-sectional dependence, the CD(p) statistic is centered at zero for fixed N and Ti;i�s > k C 1,
and CD.p/ H) N .0; 1/ as N !1 and Ti;iCs !1.

Panel Data Unit Root Tests
Unit roots are a big concern in dynamic processes because they have important implications for the stationarity
of a process and hence for estimation. Using regular estimation techniques while ignoring the presence of
unit roots can lead to spurious regressions and hence produce nonsensical results. Therefore, detecting unit
roots in order to be able to analyze stationary processes is of vital concern for dynamic processes. One of the
most widely used tests in the time series literature is the augmented Dickey-Fuller (ADF) test. This section
introduces and briefly reviews the background information about the tests developed for dynamic panel data,
which in most cases are enhancements of the ADF test.

Levin, Lin, and Chu Test

Levin, Lin, and Chu (2002) propose a panel data unit root test for the null hypothesis of a unit root against a
hypothesis of homogeneous stationarity. The model is specified as

�yit D ıyit�1 C

piX
LD1

�iL�yit�L C ˛midmt C "it m D 1; 2; 3

The panel data unit root test evaluates the null hypothesis of H0 W ı D 0, for all i, against the alternative
hypothesisH1 W ı < 0, for all i. Three models are considered: (1) d1t D � (the empty set) with no individual
effects; (2) d2t D f1g, in which the series yit has an individual-specific mean but no time trend; and (3)
d3t D f1; tg, in which the series yit has an individual-specific mean and a linear and individual-specific
time trend. The lag order pi is unknown and is allowed to vary across individuals. It can be selected by the
methods that are described in the section “Lag Order Selection in the ADF Regression” on page 1833. The
selected lag order is denoted as Opi . The necessary condition for the test is that

p
N
T
! 0. An important

assumption is that the errors, "it , are iid.0; �2i;t /. In other words, cross-sectional independence is assumed.
The test is implemented in the following three steps:

Step 1 The ADF regressions are implemented for each individual i, and then the orthogonalized residuals
are generated and normalized. That is, the following model is estimated:

�yit D ıiyit�1 C

OpiX
LD1

�iL�yit�L C ˛midmt C "it m D 1; 2; 3
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Then, two orthogonalized residuals are generated by the following two auxiliary regressions:

�yit D

OpiX
LD1

�iL�yit�L C ˛midmi C eit

yit�1 D

OpiX
LD1

�iL�yit�L C ˛midmi C vit�1

The residuals are then saved as Oeit and Ovit�1, respectively, and normalized using the regression standard
error from the ADF regression in order to remove heteroscedasticity. Let O�"i denote the standard error

from each of the previous ADF regressions, where O�2"i D
PT
tD OpiC2

�
Oeit � Oıi Ovit�1

�2
= .T � pi � 1/.

The normalized residuals are then

Qeit D
Oeit

O�"i
; Qvit�1 D

Ovit�1

O�"i

Step 2 The ratios of long-run to short-run standard deviations of �yit are estimated. Denote the ratios
and the long-run variances as si and �yi , respectively. The long-run variances are estimated by
the heteroscedasticity- and autocorrelation-consistent (HAC) estimators, which are described in
the section “Long-Run Variance Estimation” on page 1833. Then the ratios are estimated by
Osi D O�yi= O�"i . Let the average standard deviation ratio be SN D .1=N /

PN
iD1 si , and let its estimator

be OSN D .1=N /
PN
iD1 Osi . As the authors note in their paper (Levin, Lin, and Chu 2002), use of the

long-run variance based on first differences results in lower bias in finite samples.

Step 3 The panel test statistics are calculated. To calculate the t statistic and the adjusted t statistic, the
following equation is estimated:

Qeit D ı Qvit�1 C Q"it

The total number of observations is N QT , with NOp D
PN
iD1 Opi=N;

QT D T � NOp � 1. The standard t
statistic for testing H0 Wı D 0 is tı D Oı= O�ı , with the OLS estimator Oı and standard deviation O�ı ,

Oı D

PN
iD1

PT
tD2C Opi

Qeit Qvit�1PN
iD1

PT
tD2C Opi

Qv2it�1

O�ı D O�Q"Œ

NX
iD1

TX
tD2C Opi

Qv2it�1�
� 1
2

where O�2
Q"

is the root mean square error from the step 3 regression

O�2
Q" D

1

N QT

NX
iD1

TX
tD2C Opi

. Qeit � Oı Qvit�1/
2
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However, the standard t statistic diverges to negative infinity for models (2) and (3). Levin, Lin, and
Chu (2002) therefore propose the following adjusted t statistic:

t�ı D
tı �N QT OSN O�

�2
Q"
O�ı�
�

m QT

��
m QT

The mean and standard deviation adjustments (��
m QT
; ��
m QT

) depend on the time series dimension QT and
model specification m, which can be found in Table 2 of Levin, Lin, and Chu (2002). The adjusted t
statistic converges to the standard normal distribution. Therefore, the standard normal critical values
are used in hypothesis testing.

Lag Order Selection in the ADF Regression
The methods of selecting the individual lag orders in the ADF regressions can be divided into two categories:
selection based on information criteria and selection via sequential testing.

Lag Selection Based on Information Criteria In this method, the following information criteria can
be applied to lag order selection: Akaike’s information criterion (AIC), the Schwarz Bayesian criterion
(SBC), the Hannan-Quinn information criterion (HQIC or HQC), and the modified AIC. As with other model
selection applications, the lag order is selected from 0 to the maximum pmax to minimize the objective
function, plus a penalty term, which is a function of the number of parameters in the regression. Let k be the
number of parameters and To be the number of effective observations. For regression models, the objective
function is To log.SSR=To/, where SSR is the sum of squared residuals. For AIC, the penalty term equals
2k. For SBC, this term is k log.To/. For HQIC, it is 2ck log Œlog.To/�, where c is a constant greater than 1.4

For MAIC, the penalty term equals 2.�T .k/C k/, where

�T .k/ D .SSR=To/�1 Oı2
TX

tDpmaxC2

y2t�1

and Oı is the estimated coefficient of the lagged dependent variable yt�1 in the ADF regression.

Lag Selection via Sequential Testing In this method, the lag order estimation is based on the statistical
significance of the estimated AR coefficients. Hall (1994) proposed general-to-specific (GS) and specific-
to-general (SG) modeling strategies. Levin, Lin, and Chu (2002) recommend the GS strategy, following
Campbell and Perron (1991). In the GS modeling strategy, starting with the maximum lag order pmax,
the t test for the largest lag order in O�i is performed to determine whether a smaller lag order is preferred.
Specifically, when the null of O�iL D 0 is not rejected given the significance level (5%), a smaller lag order is
preferred. This procedure continues until a statistically significant lag order is reached. On the other hand,
the SG modeling strategy starts with lag order 0 and moves toward the maximum lag order, pmax.

Long-Run Variance Estimation
The long-run variance of�yit is estimated by an HAC-type estimator. For model (1), given the lag truncation
parameter NK and kernel weights w NKL, the formula is

O�2yi D
1

T � 1

TX
tD2

�y2it C 2

NKX
LD1

w NKL

24 1

T � 1

TX
tD2CL

�yit�yit�L

35
4In practice c is set to 1, following the literature (Hannan and Quinn 1979; Hall 1994).
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To achieve consistency, the lag truncation parameter must satisfy NK=T ! 0 and NK !1 as T !1. Levin,
Lin, and Chu (2002) suggest NK D

j
3:21T 1=3

k
. The weights w NKL depend on the kernel function. Andrews

(1991) proposes data-driven bandwidth (lag truncation parameter + 1 if integer-valued) selection procedures to
minimize the asymptotic mean square error (MSE) criterion. For more information about the kernel functions
and Andrews’s (1991) data-driven bandwidth selection procedure, see the section “Heteroscedasticity- and
Autocorrelation-Consistent Covariance Matrices” on page 1824. Because Levin, Lin, and Chu (2002) truncate
the bandwidth as an integer, when LLCBAND is specified as the BANDWIDTH option, it corresponds
to BANDWIDTH D

j
3:21T 1=3

k
C 1. Furthermore, kernel weights w NKL D k.L=. NK C 1// with kernel

function k.�/.

For model (2), first the series �yit is de-meaned individual by individual. Therefore, �yit is replaced by
�yit ��yit , where�yit is the mean of�yit for individual i. For model (3) with individual fixed effects and
time trend, both the individual mean and trend should be removed before the long-run variance is estimated.
That is, first you regress �yit on f1; tg for each individual and save the residual e�yit , and then you replace
�yit with the residual.

Cross-Sectional Dependence via Time-Specific Aggregate Effects
The Levin, Lin, and Chu (2002) testing procedure is based on the assumption of cross-sectional independence.
It is possible to relax this assumption and allow for a limited degree of dependence via time-specific aggregate
effects. Let �t denote the time-specific aggregate effects; then the data generating process becomes

�yit D ıyit�1 C

piX
LD1

�iL�yit�L C ˛midmt C �t C "it m D 4; 5

Two more models are considered: (4) d1t D � (the empty set), with no individual effects but with time
effects; and (5) d2t D f1g, in which the series yit has an individual-specific mean and a time-specific mean.

By subtracting the time averages Nyt D
PN
iD1 yit from the observed dependent variable yit , or equivalently,

by including the time-specific intercepts �t in the ADF regression, the cross-sectional dependence is removed.
The impact of a single aggregate common factor that has an identical impact on all individuals but changes
over time can also be removed in this way. After cross-sectional dependence is removed, the three-step
procedure is applied to calculate the Levin, Lin, and Chu (2002) adjusted t statistic.

Deterministic Variables
Three deterministic variables can be included in the model for the first-stage estimation: CS_FixedEffects
(cross-sectional fixed effects), TS_FixedEffects (time series fixed effects), and TimeTrend (individual linear
time trend). When a linear time trend is included, the individual fixed effects are also included. Otherwise
the time trend is not identified. Moreover, if the time series fixed effects are included, the time trend is
not identified either. Therefore, there are five identified models: model (1), no deterministic variables;
model (2), CS_FixedEffects; model (3), CS_FixedEffects and TimeTrend; model (4), TS_FixedEffects; and
model (5), CS_FixedEffects and TS_FixedEffects. PROC PANEL outputs the test results for all five model
specifications.
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Im, Pesaran, and Shin Test

To test for the unit root in heterogeneous panels, Im, Pesaran, and Shin (2003) propose a standardized t-bar
test statistic based on averaging the (augmented) Dickey-Fuller statistics across the groups. The limiting
distribution is standard normal. The stochastic process yit is generated by the first-order autoregressive
process. If �yit D yit � yi;t�1, the data generating process can be expressed as in the Levin, Lin, and Chu
(LLC) test,

�yit D ˇiyit�1 C

piX
jD1

�ij�yi;t�j C ˛midmt C "it m D 1; 2; 3

where pi is the lag order in the ADF regression, as in the LLC test. In contrast with the data generating
process in the LLC test, ˇi is allowed to differ across groups. The null hypothesis of unit roots is

H0 W ˇi D 0 for all i

against the heterogeneous alternative,

H1 W ˇi < 0 for i D 1; : : : ; N1; ˇi D 0 for i D N1 C 1; : : : ; N

The Im, Pesaran, and Shin (2003) test also allows for some (but not all) of the individual series to have
unit roots under the alternative hypothesis. But the fraction of the individual processes that are stationary is
positive, limN!1N1=N D ı 2 .0; 1�. The t-bar statistic, denoted by NtNT , is formed as a simple average of
the individual t statistics for testing the null hypothesis of ˇi D 0. If tiT .pi ; ˇi / is the standard t statistic,
then

NtNT D N
�1

NX
iD1

tiT .pi ; ˇi /

If T !1, then for each i the t statistic (without time trend) converges to the Dickey-Fuller distribution, �i ,
defined by

�i D

1
2
fŒWi .1/�

2 � 1g �Wi .1/
R 1
0 Wi .u/duR 1

0 ŒWi .u/�
2du � Œ

R 1
0 Wi .u/du�

2

whereWi is the standard Brownian motion. The limiting distribution is different when a time trend is included
in the regression (Hamilton 1994, p. 499). The mean and variance of the limiting distributions are reported in
Nabeya (1999). The standardized t-bar statistic satisfies

ZNt .p; ˇ/ D

p
N fNtNT �E.�/gp

Var.�/
H) N .0; 1/

where the standard normal is the sequential limit with T !1 followed by N !1. To obtain better finite
sample approximations, Im, Pesaran, and Shin (2003) propose standardizing the t-bar statistic by means and
variances of tiT .pi ; 0/ under the null hypothesis ˇi D 0. The alternative standardized t-bar statistic is

WNt .p; ˇ/ D

p
N fNtNT �N

�1
PN
iD1EŒtiT .pi ; 0/ j ˇi D 0�g

fN�1
PN
iD1VarŒtiT .pi ; 0/ j ˇi D 0�g1=2

H) N .0; 1/

Im, Pesaran, and Shin (2003) simulate the values of EŒtiT .pi ; 0/ j ˇi D 0� and VarŒtiT .pi ; 0/ j ˇi D 0�

for different values of T and p. The lag order in the ADF regression can be selected by the same method
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as in Levin, Lin, and Chu (2002). For more information, see the section “Lag Order Selection in the ADF
Regression” on page 1833.

When T is fixed, Im, Pesaran, and Shin (2003) assume serially uncorrelated errors, pi D 0; tiT is likely to
have finite second moment, which is not established in the paper. The t statistic is modified by imposing
the null hypothesis of a unit root. Denote Q�iT as the estimated standard error from the restricted regression
(ˇi D 0),

QNtNT D N
�1

NX
iD1

Qtit D N
�1

NX
iD1

h
Ǒ
iT

�
y 0i;�1M�yi;�1

�1=2
= Q�iT

i
where ǑiT is the OLS estimator of ˇi (unrestricted model), �T D .1; 1; : : : ; 1/0, M� D IT � �T

�
� 0T �T

�
� 0T ,

and yi;�1 D
�
yi0; yi1; : : : ; yi;T�1

�0, where yi0 is a given initial value (fixed or random). Under the null
hypothesis, the standardized Qt -bar statistic converges to a standard normal variate,

ZQNt D

p
N fQNtNT �E

�
QtT
�
gq

Var
�
QtT
� H) N .0; 1/

where E
�
QtT
�

and Var
�
QtT
�

are the mean and variance of QtiT , respectively. The limit is taken as N !1, and
T is fixed. Their values are simulated for finite samples without a time trend. ZQNt is also likely to converge to
standard normal.

When N and T are both finite, an exact test that assumes no serial correlation can be used. The critical values
of NtNT and QNtNT are simulated.

As in the section “Levin, Lin, and Chu Test” on page 1831, it is possible to relax this assumption of
cross-sectional independence and allow for a limited degree of dependence via time-specific aggregate
effects. In that section, two more models (model 4 and model 5) with time fixed effects are considered. For
more information, see the section “Cross-Sectional Dependence via Time-Specific Aggregate Effects” on
page 1834.

Combination Tests

Combining the observed significance levels (p-values) from N independent tests of the unit root null
hypothesis was proposed by Maddala and Wu (1999) and Choi (2001). Suppose Gi is the test statistic to test
the unit root null hypothesis for individual i D 1; : : : ; N , and F.�/ is the cumulative distribution function
(CDF) of the asymptotic distribution as T !1. Then the asymptotic p-value is defined as

pi D F .Gi /

There are different ways to combine these p-values. The first way is the inverse chi-square test (Fisher 1932);
this test is referred to as the P test in Choi (2001) and the � test in Maddala and Wu (1999):

P D �2

NX
iD1

ln .pi /

When the test statistics fGigiD1;:::;N are continuous, fpigiD1;:::;N are independent uniform .0; 1/ variables.
Therefore, P ) �22N as T ! 1 and N is fixed. But as N ! 1, P diverges to infinity in probability.
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Therefore, it is not applicable for large N. To derive a nondegenerate limiting distribution, the P test (Fisher
test with N !1) should be modified to

Pm D

NX
iD1

.�2ln .pi / � 2/ =2
p
N D �

NX
iD1

.ln .pi /C 1/ =
p
N

Under the null as Ti !1,5 and then N !1, Pm) N .0; 1/.6

The second way of combining individual p-values is the inverse normal test,

Z D

NX
iD1

ˆ�1 .pi /

where ˆ.�/ is the standard normal CDF. When Ti !1, Z ) N .0; 1/ as N is fixed. When N and Ti are
both large, the sequential limit is also standard normal if Ti !1 first and N !1 next.

The third way of combining p-values is the logit test,

L� D
p
kL D

p
k

NX
iD1

ln
�

pi

1 � pi

�
where k D 3 .5N C 4/ =

�
�2N .5N C 2/

�
. When Ti ! 1 and N is fixed, L� ) t5NC4. In other

words, the limiting distribution is the t distribution with degree of freedom 5N C 4. The sequential limit
is L�) N .0; 1/ as Ti !1 and then N !1. Simulation results in Choi (2001) suggest that the Z test
outperforms other combination tests. For the time series unit root test Gi , Maddala and Wu (1999) apply
the augmented Dickey-Fuller test. According to Choi (2006), the Elliott, Rothenberg, and Stock (1996)
Dickey-Fuller generalized least squares (DF-GLS) test offers significant size and power advantages in finite
samples.

As in the section “Levin, Lin, and Chu Test” on page 1831, it is possible to relax this assumption of
cross-sectional independence and allow for a limited degree of dependence via time-specific aggregate
effects. In that section, two more models (model 4 and model 5) with time fixed effects are considered. For
more information, see the section “Cross-Sectional Dependence via Time-Specific Aggregate Effects” on
page 1834.

Breitung’s Unbiased Tests

To account for the nonzero mean of the t statistic in the OLS detrending case, bias-adjusted t statistics were
proposed by Levin, Lin, and Chu (2002) and Im, Pesaran, and Shin (2003). The bias corrections imply
a severe loss of power. Breitung and associates take an alternative approach to avoid the bias, by using
alternative estimates of the deterministic terms (Breitung and Meyer 1994; Breitung 2000; Breitung and Das
2005). The data generating process is the same as in the Im, Pesaran, and Shin (IPS) test (2003). Three
models are considered, as described in the section “Levin, Lin, and Chu Test” on page 1831. When serial
correlation is absent, for model (2) with individual specific means, the constant terms are estimated by the
initial values yi1. Therefore, the series yit is adjusted by subtracting the initial value. The equation becomes

�yit D ı
�
�
yi;t�1 � yi1

�
C vit

5The time series length T is subindexed by i D 1; : : : ; N because the panel can be unbalanced.
6Choi (2001) also points out that the joint limit result where N and fTi giD1;:::;N go to infinity simultaneously is the same as the

sequential limit, but it requires more moment conditions.
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For model (3) with individual specific means and time trends, the time trend can be estimated by Ǒi D
.yiT � yi1/ = .T � 1/. The levels can be transformed as

Qyit D yit � yi1 � Ǒi t D yit � yi1 � t .yiT � yi1/ = .T � 1/

The Helmert transformation is applied to the dependent variable to remove the mean of the differenced
variable:

�y�it D

r
T � t

T � t C 1

�
�yit �

�yi;tC1 C � � � C�yiT

T � t

�
The transformed model is

�y�it D ı
�
Qyi;t�1 C vit

The pooled t statistic has a standard normal distribution. Therefore, no adjustment is needed for the t statistic.
To adjust for heteroscedasticity across cross sections, Breitung (2000) proposes a UB (unbiased) statistic
based on the transformed data,

UB D

PN
iD1

PT
tD2�y

�
it Qyi;t�1=�

2
i�PN

iD1

PT
tD2 Qy

2
i;t�1=�

2
i

�1=2
where �2i D E .�yit � ˇi /

2. When �2i is unknown, it can be estimated as

O�2i D

TX
tD2

 
�yit �

PT
tD2�yit

T � 1

!2
= .T � 2/

The UB statistic has a standard normal limiting distribution as T !1 followed by N !1 sequentially.
To account for the short-run dynamics, Breitung and Das (2005) suggest applying the test to the prewhitened
series, Oyit . For model (1) and model (2) (constant-only case), they suggest the same method as in step
1 of the Levin, Lin, and Chu (LLC) test (2002).7 For model (3) (with a constant and linear time trend),
the prewhitened series can be obtained by running the following restricted ADF regression under the null
hypothesis of a unit root ( ı D 0 ) and no intercept and linear time trend (�i D 0; ˇi D 0),

�yit D

OpiX
LD1

�iL�yit�L C �i C "it

where Opi is a consistent estimator of the true lag order pi and can be estimated by the procedures listed in
the section “Lag Order Selection in the ADF Regression” on page 1833. For the LLC and IPS tests, the lag
orders are selected by running the ADF regressions. But for Breitung and his associates’ tests, the restricted
ADF regressions are used to be consistent with the prewhitening method. Let

�
O�i ; O�iL

�
be the estimated

coefficients.8 The prewhitened series can be obtained by

� Oyit D �yit �

OpiX
LD1

O�iL�yit�L

7For more information, see the section “Levin, Lin, and Chu Test” on page 1831. The only difference is the standard error
estimate O�2"i . Breitung suggests using T � pi � 2 instead of T � pi � 1 as in the LLC test to normalize the standard error.

8Breitung (2000) suggests the approach in step 1 of Levin, Lin, and Chu (2002), whereas Breitung and Das (2005) suggest
the prewhitening method as described in this section. In Breitung’s code, to be consistent with the papers, different approaches are
adopted for model (2) and model (3). Meanwhile, for the order of variable transformation and prewhitening, in model (2), the initial
values are deducted (variable transformation) first, and then the prewhitening is applied. In model (3), the order is reversed: the
series is prewhitened and then transformed to remove the mean and linear time trend.
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and

Oyit D yit �

OpiX
LD1

O�iLyit�L

The transformed series are random walks under the null hypothesis,

� Oyit D ı Oyi;t�1 C vit

where yis D 0 for s < 0. When the cross-sectional units are independent, the t statistic converges to standard
normal under the null, as T !1 followed by N !1,

tOLS D

PN
iD1

PT
tD2 yi;t�1�yit

O�

qPN
iD1

PT
tD2 y

2
i;t�1

H) N .0; 1/

where O�2 D
PN
iD1

PT
tD2

�
�yit � Oıyi;t�1

�2
=N .T � 1/ with the OLS estimator Oı.

To account for cross-sectional dependence, Breitung and Das (2005) propose the robust t statistic and a
GLS version of the test statistic. Let vt D .v1t ; : : : ; vNt /

0 be the error vector for time t, and let � D
E
�
vtv
0
t

�
be a positive definite matrix with eigenvalues �1 � � � � � �N . Let yt D .y1t ; : : : ; yNt /

0 and
�yt D .�y1t ; : : : ; �yNt /

0. The model can be written as a system of equations of the seemingly unrelated
regressions (SUR) type:

�yt D ıyt�1 C vt

The unknown covariance matrix � can be estimated by its sample counterpart,

O� D

TX
tD2

�
�yt � Oıyt�1

� �
�yt � Oıyt�1

�0
= .T � 1/

The sequential limit T ! 1 followed by N ! 1 of the standard t statistic tOLS is normal with mean
0 and variance v� D limN!1tr

�
�2=N

�
= .tr�=N/2. The variance v� can be consistently estimated by

Ov Oı D
�PT

tD2 y
0
t�1
O�yt�1

�
=
�PT

tD2 y
0
t�1yt�1

�2
. Thus the robust t statistic can be calculated as

trob D
ı

Ov Oı
D

PT
tD2 y

0
t�1�ytqPT

tD2 y
0
t�1
O�yt�1

H) N .0; 1/

as T ! 1 followed by N ! 1 under the null hypothesis of random walk. Because the finite sample
distribution can be quite different, Breitung and Das (2005) list the 1%, 5%, and 10% critical values for
different N’s.

When T > N , a (feasible) GLS estimator is applied; it is asymptotically more efficient than the OLS
estimator. The data are transformed by multiplying O��1=2 as defined before, Ozt D O��1=2yt . Thus the model
is transformed into

� Ozt D ı Ozt�1 C et

The feasible GLS (FGLS) estimator of ı and the corresponding t statistic are obtained by estimating the
transformed model by OLS and denoted by OıGLS and tGLS, respectively:

tGLS D

PT
tD2 y

0
t�1
O��1�ytqPT

tD2 y
0
t�1
O��1yt�1

H) N .0; 1/
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As in the section “Levin, Lin, and Chu Test” on page 1831, it is possible to relax this assumption of
cross-sectional independence and allow for a limited degree of dependence via time-specific aggregate
effects. In that section, two more models (model 4 and model 5) with time fixed effects are considered. For
more information, see the section “Cross-Sectional Dependence via Time-Specific Aggregate Effects” on
page 1834.

Hadri Stationarity Test

Hadri (2000) adopts a component representation where an individual time series is written as a sum of
a deterministic trend, a random walk, and a white-noise disturbance term. Under the null hypothesis of
stationarity, the variance of the random walk equals 0. Specifically, two models are considered:

� For model (1), the time series yit is stationary around a level ri0,

yit D rit C �it i D 1; : : : ; N; t D 1; : : : ; T

� For model (2), yit is trend stationary,

yit D rit C ˇi t C �it i D 1; : : : ; N; t D 1; : : : ; T

where rit is the random walk component,

rit D rit�1 C uit i D 1; : : : ; N; t D 1; : : : ; T

The initial values of the random walks, fri0giD1;:::;N , are assumed to be fixed unknowns and can
be considered as heterogeneous intercepts. The errors �it and uit satisfy �it � iidN

�
0; �2�

�
, uit �

iidN
�
0; �2u

�
and are mutually independent.

The null hypothesis of stationarity is H0 W �2u D 0 against the alternative random walk hypothesis H1 W �2u >
0.

In matrix form, the models can be written as

yi D Xiˇi C ei

where y0i D .yi1; : : : ; yiT /; e
0
i D .ei1; : : : ; eiT /, where eit D

Pt
jD1 uij C �it ; and Xi D .�T ; aT /, where

�T is a T � 1 vector of ones, a0T D .1; : : : ; T /, and ˇ0i D .ri0; ˇi /.

Let O�it be the residuals from the regression of yi on Xi ; then the LM statistic is

LM D

PN
iD1

1
T 2

PT
tD1 S

2
it

N O�2�

where Sit D
Pt
jD1 O�ij is the partial sum of the residuals and O�2� is a consistent estimator of �2� under the

null hypothesis of stationarity. With some regularity conditions,

LM
p
�! E

�Z 1

0

V 2 .r/ dr

�
where V .r/ is a standard Brownian bridge in model (1) and a second-level Brownian bridge in model (2).
Let W .r/ be a standard Wiener process (Brownian motion),

V .r/ D

�
W .r/ � rW .1/ for model (1)
W .r/C

�
2r � 3r2

�
W .1/C 6r .r � 1/

R 1
0 W .s/ ds for model (2)
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The mean and variance of the random variable
R
V 2 can be calculated by using the characteristic functions,

� D E

�Z 1

0

V 2 .r/ dr

�
D

�
1
6

for model (1)
1
15

for model (2)

and

�2 D Var
�Z 1

0

V 2 .r/ dr

�
D

�
1
45

for model (1)
11
6300

for model (2)

The LM statistics can be standardized to obtain the standard normal limiting distribution,

Z D

p
N .LM � �/

�
H) N .0; 1/

Consistent Estimator of �2�
Hadri’s (2000) test can be applied to the general case of heteroscedasticity and serially correlated disturbance
errors. Under homoscedasticity and serially uncorrelated errors, �2� can be estimated as

O�2� D

PN
iD1

PT
tD1 O�

2
it

N .T � k/

where k is the number of regressors. Therefore, k D 1 formodel (1) and k D 2 for model (2).

When errors are heteroscedastic across individuals, the standard errors �2�;i can be estimated by O�2�;i DPT
tD1 O�

2
it= .T � k/ for each individual i and the LM statistic needs to be modified to

LM D
1

N

NX
iD1

 
1
T 2

PT
tD1 S

2
it

O�2�;i

!

To allow for temporal dependence over t, �2� has to be replaced by the long-run variance of �it , which is
defined as �2 D

PN
iD1 limT!1T �1

�
S2iT

�
=N . An HAC estimator can be used to consistently estimate the

long-run variance �2. For more information, see the section “Long-Run Variance Estimation” on page 1833.

As in the section “Levin, Lin, and Chu Test” on page 1831, it is possible to relax this assumption of
cross-sectional independence and allow for a limited degree of dependence via time-specific aggregate
effects. In that section, two more models (model 4 and model 5) with time fixed effects are considered. For
more information, see the section “Cross-Sectional Dependence via Time-Specific Aggregate Effects” on
page 1834.

Harris and Tzavalis Panel Unit Root Test

Harris and Tzavalis (1999) derive the panel unit root test under fixed T and large N. Five models are
considered, as in Levin, Lin, and Chu (2002). Model (1) is the homogeneous panel,

yit D 'yit�1 C vit

Under the null hypothesis, ' D 1. For model (2), each series is a unit root process with a heterogeneous drift,

yit D ˛i C 'yit�1 C vit
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Model (3) includes heterogeneous drifts and linear time trends,

yit D ˛i C ˇi t C 'yit�1 C vit

As in the section “Levin, Lin, and Chu Test” on page 1831, it is possible to relax this assumption of
cross-sectional independence and allow for a limited degree of dependence via time-specific aggregate
effects. In that section, two more models (model 4 and model 5) with time fixed effects are considered. For
more information, see the section “Cross-Sectional Dependence via Time-Specific Aggregate Effects” on
page 1834.

Let O' be the OLS estimator of '; then

O' � 1 D

"
NX
iD1

y0i;�1QT yi;�1

#�1
�

"
NX
iD1

y0i;�1QT vi

#

where yi;�1 D .yi0; : : : ; yiT�1/, v0i D .vi1; : : : ; viT /, and QT is the projection matrix. Formodel (1), there
are no regressors other than the lagged dependent value, so QT is the identity matrix IT . For model (2),
a constant is included, so QT D IT � eT e

0
T =T , where eT is a T � 1 column of ones. For model (3), a

constant and time trend are included. Thus QT D IT � ZT
�
Z0TZT

��1
Z0T , where ZT D .eT ; �T / and

�T D .1; : : : ; T /
0.

When yi0 D 0 in model (1) under the null hypothesis, as N !1p
NT .T � 1/ =2 . O' � 1/

yi0D0;H0
�������! N .0; 1/

As T !1, it becomes T
p
N . O' � 1/

H0
H) N .0; 2/.

When the drift is absent in model (2), ˛i D 0, under the null hypothesis, as N !1s
5N .T C 1/3 .T � 1/

3
�
17T 2 � 20T C 17

� � O' � 1C 3

.T C 1/

�
˛iD0;H0
������! N .0; 1/

As T !1,
�
T
p
N . O' � 1/C 3

p
N
�
=
p
51=5

H0
H) N .0; 1/.

When the time trend is absent in model (3), ˇi D 0, under the null hypothesis, as N !1s
112N .T C 2/3 .T � 2/

15
�
193T 2 � 728T C 1147

� � O' � 1C 15

2 .T C 2/

�
ˇiD0;H0
������! N .0; 1/

When T !1,
�
T
p
N . O' � 1/C 7:5

p
N
�
=
p
2895=112

H0
H) N .0; 1/.
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Lagrange Multiplier (LM) Test for Cross-Sectional and Time Effects
For random one-way and two-way error component models, the Lagrange multiplier (LM) test for the
existence of cross-sectional or time effects or both is based on the residuals from the restricted model (that
is, the pooled model). For more information about the Breusch-Pagan LM test, see the section “Tests for
Random Effects” on page 1828.

Honda UMP Test and Moulton and Randolph SLM Test

The Breusch-Pagan LM test is two-sided when the variance components are nonnegative. For a one-
sided alternative hypothesis, Honda (1985) suggests a uniformly most powerful (UMP) LM test for H 1

0 W

�2 D 0 (no cross-sectional effects) that is based on the pooled estimator. The alternative is the one-
sided H 1

1 W �
2
 > 0. Let Ouit be the residual from the simple pooled OLS regression, and let d D�PN

iD1

hPT
tD1 Ouit

i2�
=
�PN

iD1

PT
tD1 Ou

2
it

�
. Then the test statistic is defined as

J �

s
NT

2.T � 1/
Œd � 1�

H1
0
��! N .0; 1/

The square of J is equivalent to the Breusch and Pagan (1980) LM test statistic. Moulton and Randolph (1989)
suggest an alternative standardized Lagrange multiplier (SLM) test to improve the asymptotic approximation
of Honda’s one-sided LM statistic. The SLM test’s asymptotic critical values are usually closer to the exact
critical values than are those of the LM test. The SLM test statistic standardizes Honda’s statistic by its mean
and standard deviation. The SLM test statistic is

S �
J �E.J /p

Var.J /
D
d �E.d/p

Var.d/
! N .0; 1/

Let D D IN
N
JT , where JT is the T � T square matrix of 1s. The mean and variance can be calculated by

the formulas

E.d/ D
Tr.DMZ/

n � k

Var.d/ D 2
.n � k/Tr .DMZ/

2
� ŒTr .DMZ/�

2

.n � k/2.n � k C 2/

where Tr denotes the trace of a particular matrix, Z represents the regressors in the pooled model, n D NT
is the number of observations, k is the number of regressors, and MZ D In �Z.Z

0Z/�1Z0. To calculate
Tr.DMZ/, let Z D

�
Z01; Z

0
2; : : : ; ZN

�0. Then

Tr.DMZ/ D NT � Tr

0B@JT NX
iD1

264Zi
0@ NX
jD1

Z0jZj

1A�1Z0i
375
1CA

Honda (1991) further develops a new SLM test for two-way layout. To test forH 2
0 W �

2
˛ D 0 (no time effects),

define d2 D
�PT

tD1

hPN
iD1 Ouit

i2�
=
�PT

tD1

PN
iD1 Ou

2
it

�
. Then the test statistic is modified as

J2 �

s
NT

2.N � 1/
Œd2 � 1�

H2
0
��! N .0; 1/
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J2 can be standardized by D D JN
N
IT , and other parameters are unchanged. Therefore,

S2 �
J2 �E.J2/p

Var.J 2/
D
d2 �E.d2/p

Var.d2/
! N .0; 1/

To test for H 3
0 W �

2
 D 0; �

2
˛ D 0 (no cross-sectional and time effects), the test statistic is

J3 D
J C J2
p
2

D D

r
n

T � 1

IN
N
JT

2
C

r
n

N � 1

JN
N
IT

2

To standardize, define d3 D
p
n= .T � 1/d=2C

p
n= .N � 1/.d2/=2, then

S3 �
J3 �E.J3/p

Var.J 3/
D
d3 �E.d3/p

Var.d3/
! N .0; 1/

King and Wu LMMP Test and the SLM Test

King and Wu (1997) derive the locally mean most powerful (LMMP) one-sided test for H 1
0 and H 2

0 , which
coincides with the Honda (1985) UMP test. Baltagi, Chang, and Li (1992) extend the King and Wu (1997)
test for H 3

0 as follows:

KW �

p
T � 1

p
N C T � 2

J C

p
N � 1

p
N C T � 2

J 2
H3
0
��! N .0; 1/

For the standardization, use D D IN
N
JT C JN

N
IT . Define dKW D d C d2; then

SKW �
KW �E.KW /p

Var.KW /
D
dKW �E.dKW /p

Var.dKW /
! N .0; 1/

Gourieroux, Holly, and Monfort LM Test

If one or both variance components (�2 and �2˛ ) are small and close to 0, the test statistics J and J2 can
be negative. Baltagi, Chang, and Li (1992) follow Gourieroux, Holly, and Monfort (1982) and propose a
one-sided LM test for H 3

0 , which is immune to the possible negative values of J and J2. The test statistic is

GHM �

8̂̂<̂
:̂
J 2 C .J 2/2 if J > 0, J2 > 0
J 2 if J > 0, J2 � 0
.J 2/2 if J � 0, J2 > 0
0 if J � 0, J2 � 0

H3
0
��!

�
1

4

�
�2 .0/C

�
1

2

�
�2 .1/C

�
1

4

�
�2 .2/

where �2 .0/ is the unit mass at the origin.
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Tests for Serial Correlation and Cross-Sectional Effects
The presence of cross-sectional effects causes serial correlation in the errors. Therefore, serial correlation is
often tested jointly with cross-sectional effects. Joint and conditional tests for both serial correlation and
cross-sectional effects have been covered extensively in the literature.

Baltagi and Li Joint LM Test for Serial Correlation and Random Cross-Sectional Effects

Baltagi and Li (1991) derive the LM test statistic, which jointly tests for zero first-order serial correlation
and random cross-sectional effects under normality and homoscedasticity. The test statistic is independent
of the form of serial correlation, so it can be used with either AR.1/ or MA.1/ error terms. The null
hypothesis is a white-noise component: H 1

0 W �
2
 D 0; � D 0 for MA.1/ with the MA coefficient � or

H 2
0 W �

2
 D 0; � D 0 for AR.1/ with the AR coefficient �. The alternative is either a one-way random-effects

model (cross-sectional) or first-order serial correlation AR.1/ or MA.1/ in errors, or both. Under the null
hypothesis, the model can be estimated by the pooled estimation (OLS). Denote the residuals as Ouit . The test
statistic is

BL91 D
NT 2

2 .T � 1/ .T � 2/

�
A2 � 4AB C 2TB2

� H1;2
0
���! �2 .2/

where

A D

PN
iD1

�PT
tD1 Ouit

�2
PN
iD1

PT
tD1 Ou

2
it

� 1; B D

PN
iD1

PT
tD2 Ouit Oui;t�1PN

iD1

PT
tD1 Ou

2
it

Wooldridge Test for the Presence of Unobserved Effects

Wooldridge (2002, sec. 10.4.4) suggests a test for the absence of an unobserved effect. Under the null
hypothesis H0 W �2 D 0, the errors uit are serially uncorrelated. To test H0 W �2 D 0, Wooldridge (2002)
proposes to test for AR(1) serial correlation. The test statistic that he proposes is

W D

PN
iD1

PT�1
tD1

PT
sDtC1 Ouit Ouis�PN

iD1

�PT�1
tD1

PT
sDtC1 Ouit Ouis

�2�1=2 ! N .0; 1/

where Ouit are the pooled OLS residuals. The test statistic W can detect many types of serial correlation in the
error term u, so it has power against both the one-way random-effects specification and the serial correlation
in error terms.

Bera, Sosa Escudero, and Yoon Modified Rao’s Score Test in the Presence of Local
Misspecification

Bera, Sosa Escudero, and Yoon (2001) point out that the standard specification tests, such as the Honda
(1985) test described in the section “Honda UMP Test and Moulton and Randolph SLM Test” on page 1843,
are not valid when they test for either cross-sectional random effects or serial correlation without considering
the presence of the other effects. They suggest a modified Rao’s score (RS) test. When A and B are defined as
in Baltagi and Li (1991), the test statistic for testing serial correlation under random cross-sectional effects is

RS�� D
NT 2 .B � A=T /2

.T � 1/ .1 � 2=T /
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Baltagi and Li (1991, 1995) derive the conventional RS test when the cross-sectional random effects is
assumed to be absent:

RS� D
NT 2B2

T � 1

Symmetrically, to test for the cross-sectional random effects in the presence of serial correlation, the modified
Rao’s score test statistic is

RS�� D
NT .A � 2B/2

2 .T � 1/ .1 � 2=T /

and the conventional Rao’s score test statistic is given in Breusch and Pagan (1980). The test statistics are
asymptotically distributed as �2 .1/.

Because �2 > 0, the one-sided test is expected to lead to more powerful tests. The one-sided test can be
derived by taking the signed square root of the two-sided statistics:

RSO�� D

s
NT

2 .T � 1/ .1 � 2=T /
.A � 2B/! N .0; 1/

Baltagi and Li LM Test for First-Order Correlation under Fixed Effects

Baltagi and Li (1995) propose the two-sided LM test statistic for testing a white-noise component in a fixed
one-way model (H 5

0 W � D 0 or H 6
0 W � D 0, given that i are fixed effects)

BL95 D
NT 2

T � 1

 PN
iD1

PT
tD2 Ouit Oui;t�1PN

iD1

PT
tD1 Ou

2
it

!2
where Ouit are the residuals from the fixed one-way model (FIXONE). The LM test statistic is asymptotically
distributed as �21 under the null hypothesis. The one-sided LM test with alternative hypothesis � > 0 is

BL952 D

s
NT 2

T � 1

PN
iD1

PT
tD2 Ouit Oui;t�1PN

iD1

PT
tD1 Ou

2
it

which is asymptotically distributed as standard normal.

Durbin-Watson Test

Bhargava, Franzini, and Narendranathan (1982) propose a test of serial correlation by using the Durbin-
Watson statistic,

d� D

PN
iD1

PT
tD2

�
Oeit � Oei; t�1

�2PN
iD1

PT
tD1 Oe

2
it

where Oeit are the residuals from the fixed one-way model (FIXONE).

The test statistic d� ranges from 0 to 4, where d� D 2 indicates no serial correlation. Values closer to 0
indicate positive serial correlation, and values closer to 4 indicate negative serial correlation. A value of 0
indicates a random walk.

The PANEL procedure outputs three Durbin-Watson tests for serial correlation:
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� white noise versus positive correlation: H0W � D 0 vs. H1W � > 0

� random walk versus stationary: H0W � D 1 vs. H1W � < 1

� white noise versus negative correlation: H0W � D 0 vs. H1W � < 0

The first two tests report d� as the test statistic, and the third test reports 4� d�, where values of 4� d� close
to 0 indicate negative correlation. In finite samples, the mechanics of the Durbin-Watson test produce an
indeterminate region, which is a region of uncertainty about whether to reject the null hypothesis. Because of
this ambiguity, all three tests report two p-values. The first test and the third test produce Pr < DWLower and
Pr < DWUpper. The second test produces Pr > DWLower and Pr > DWUpper. For more information about
the second test, see the section “BFN R� Statistic” on page 1847.

For the first and the third test, Pr < DWLower is always greater than or equal to Pr < DWUpper. If Pr <
DWLower is less than or equal to the significance level, then the null hypothesis that � D 0 is rejected. If Pr
< DWUpper is greater than or equal to the significance level, then the null hypothesis is accepted. These two
p-values get closer when N increases.

Berenblut-Webb Statistic

Bhargava, Franzini, and Narendranathan (1982) also suggest using the Berenblut-Webb statistic, which is a
locally most powerful invariant test in the neighborhood of � D 1. The test statistic is

g� D

PN
iD1

PT
tD2� Qu

2
i;tPN

iD1

PT
tD1 Ou

2
it

where � Quit are the residuals from the first-difference estimation. The tests for the Berenblut-Webb statistic
are the same as the three tests that are produced for the Durbin-Watson Statistic. All three tests produce two
p-values, and the interpretation of these p-values is the same as that for the Durbin-Watson statistic.

BFN R� Statistic

Bhargava, Franzini, and Narendranathan (1982) suggest using the R� statistic to test whether residuals
are from a random walk. You can also use the Durbin-Watson and Berenblut-Webb statistics to test the
random walk null hypothesis on the basis of the lower bound and upper bound generated by the R� statistic.
The null hypothesis is � D 1, and the alternative hypothesis is j�j < 1. Let F� D IN ˝ F, where F is a
.T � 1/ .T � 1/ symmetric matrix that has the following elements:

Ft t 0 D
�
T � t 0

�
t=T if t 0 � t

�
t; t 0 D 1; : : : ; T � 1

�
The test statistic is

R� D � QU 0� QU

� QU 0F �� QU

D
T
PN
iD1

PT
tD2� Qu

2
i;tPN

iD1

PT
tD2.t�1/.T�tC1/� Qu

2
i;t
C2

PN
iD1

PT�1
tD2

PT
t0DtC1.T�t

0C1/.t�1/� Qui;t� Qui;t0

Bhargava, Franzini, and Narendranathan (1982) generate the upper and lower bounds of R�. The statistics
g� and d� can be used with the same bounds. They satisfy R� � g� � d�, and they are equivalent for large
panels. Therefore, you can also use the R� statistic to test the white noise null hypothesis. PROC PANEL
produces two p-values for the random walk test: Pr > BFNLower and Pr > BFNUpper. Pr > BFNLower is
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always smaller than or equal to Pr > BFNUpper. If Pr > BFNUpper is less than or equal to the significance
level, the null hypothesis that � D 1 is rejected. If Pr > BFNLower is greater than or equal to the significance
level, the null hypothesis is accepted.

The p-values that are reported by the Durbin-Watson statistic, the Berenblut-Webb statistic, and the BFN
R� statistic are generated on the basis of simulation of lower bounds and upper bounds. Bhargava, Franzini,
and Narendranathan (1982) use the Imhof routine with numerical integration and provide lower bounds and
upper bounds only at the 5% significance level. Modern techniques enable you to simulate lower bounds
and upper bounds at different percentiles; therefore, you can test against different significance levels. To
conclude, using the bounds and using the p-values to interpret test results are essentially the same.

Troubleshooting
In general, there must be at least one cross section that has more than one time series observation. Some
estimation methods might have more stringent requirements; for example, the Amemiya-MaCurdy estimator
requires data that are balanced. Some estimators require that there be more cross sections than time series
values. When the data are insufficient for an estimator, check the log for error messages that provide further
details.

If you are using the Parks method (by specifying the PARKS option in the MODEL statement) and the
number of cross sections is greater than the number of time series observations per cross section, then PROC
PANEL produces an error message that states that the � matrix is singular. This is analogous to a seemingly
unrelated regression that has fewer observations than equations in the model. To avoid this problem, reduce
the number of cross sections.

It is vitally important that you sort your data by cross sections and by time periods within cross sections. As
PROC PANEL steps through the observations in the data, it treats any change in the value of the cross section
ID variable as a new cross section, regardless of whether it has encountered that value previously. If you do
not sort your data, the results might not be what you expect.

PROC PANEL is not supported for data sets that have duplicated time values within cross sections. If data
with such duplication are encountered, PROC PANEL issues an error message such as the following:

“The data set is not sorted in ascending sequence with respect to time series ID. The current time period has
year=1955 and the previous time period has year=1955 in cross section firm=1.”

Creating ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the PANEL procedure. Table 26.8 lists the
graph names, the plot descriptions, and the options used.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 26.8 ODS Graphics Produced by PROC PANEL

ODS Graph Name Plot Description PLOTS= Options

DiagnosticsPanel All applicable plots listed below
ResidualPlot Plot of the residuals RESIDUAL, RESID
FitPlot Predicted versus actual plot FITPLOT
QQPlot Plot of the quantiles of the residuals QQ
ResidSurfacePlot Surface plot of the residuals RESIDSURFACE
PredSurfacePlot Surface plot of the predicted values PREDSURFACE
ActSurfacePlot Surface plot of the actual values ACTSURFACE
ResidStackPlot Stack plot of the residuals RESIDSTACK,

RESSTACK
ResidHistogram Plot of the histogram of residuals RESIDUALHISTOGRAM,

RESIDHISTOGRAM

OUTPUT OUT= Data Set
PROC PANEL writes the initial data of the estimated model, predicted values, and residuals to an output data
set when you specify the OUT= option in the OUTPUT statement. The OUT= data set contains the following
variables:

_MODELL_ is a character variable that contains the label for the MODEL statement if a label is
specified.

_METHOD_ is a character variable that identifies the estimation method.

_MODLNO_ is the number of the model estimated.

_ACTUAL_ contains the value of the dependent variable.

_WEIGHT_ contains the weighting variable.

_CSID_ is the value of the cross section ID.

_TSID_ is the value of the time period in the dynamic model.

regressors are the values of regressor variables specified in the MODEL statement.

name if PRED=name1 and/or RESIDUAL=name2 options are specified, then name1 and
name2 are the columns of predicted values of dependent variable and residuals of the
regression, respectively.
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OUTEST= Data Set
PROC PANEL writes the parameter estimates to an output data set when you specify the OUTEST= option
in the PROC PANEL statement. The OUTEST= data set contains the following variables:

_MODEL_ is a character variable that contains the label for the MODEL statement if a label is
specified.

_METHOD_ is a character variable that identifies the estimation method.

_TYPE_ is a character variable that identifies the type of observation. Values of this variable
are CORRB, COVB, CSPARMS, STD, and the type of model estimated. The CORRB
observation contains correlations of the parameter estimates, the COVB observation
contains covariances of the parameter estimates, the CSPARMS observation contains
cross-sectional parameter estimates, the STD observation indicates the row of standard
deviations of the corresponding coefficients, and the type of model estimated observation
contains the parameter estimates.

_NAME_ is a character variable that contains the name of a regressor variable for COVB and
CORRB observations and is left blank for other observations. This variable is used in
conjunction with the _TYPE_ variable values COVB and CORRB to identify rows of the
correlation or covariance matrix.

_DEPVAR_ is a character variable that contains the name of the response variable.

_MSE_ is the mean square error of the transformed model.

_CSID_ is the value of the cross section ID for CSPARMS observations. This variable is used
with the _TYPE_ variable value CSPARMS to identify the cross section for the first-order
autoregressive parameter estimate contained in the observation. The _CSID_ variable is
missing for observations with other _TYPE_ values. (Currently, only the _A_1 variable
contains values for CSPARMS observations.)

_VARCS_ is the variance component estimate due to cross sections. This variable is included in the
OUTEST= data set when a one-way or two-way random-effects model is estimated.

_VARTS_ is the variance component estimate due to time series. This variable is included in the
OUTEST= data set when a two-way random-effects model is estimated.

_VARERR_ is the variance component estimate due to error. This variable is included in the OUTEST=
data set when a one-way or two-way random-effects model is estimated.

_A_1 is the first-order autoregressive parameter estimate. This variable is included in the
OUTEST= data set when the PARKS option is specified. The values of _A_1 are cross-
sectional parameters, meaning that they are estimated for each cross section separately.
The _A_1 variable has a value only for _TYPE_=CSPARMS observations. The cross
section to which the estimate belongs is indicated by the _CSID_ variable.

Intercept is the intercept parameter estimate. (Intercept is missing for models when the NOINT
option is specified.)

regressors are the regressor variables specified in the MODEL statement. The regressor variables in
the OUTEST= data set contain the corresponding parameter estimates for the model iden-
tified by _MODEL_ for _TYPE_=PARMS observations, and the corresponding covariance
or correlation matrix elements for _TYPE_=COVB and _TYPE_=CORRB observations.
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If the model is a dynamic panel model, the lagged dependent variables are included in
regressors with the name of the dependent variable followed by an underscore and the lag
order. The response variable contains the value–1 for the _TYPE_=PARMS observation
for its model.

OUTTRANS= Data Set
If you specify the FIXONE, FIXONETIME, FDONE, FDONETIME, or RANONE option and the OUT-
TRANS= option, the transformed dependent variable and independent variables are written to a SAS data set;
other variables in the input data set are copied unchanged.

Suppose your data set contains the variables y, x1, x2, x3, and z2. The following statements create a SAS
data set that contains the transformed data:

proc panel data=datain outtrans=dataout;
id cs ts;
model y = x1 x2 x3 / fixone;

run;

First, z2 is copied over. Then _Int, x1, x2, y, and x3 are replaced by their deviations from the cross-sectional
means. Furthermore, the following new variables are created:

_MODELL_ is the model’s label (if it exists).

_METHOD_ is the model’s transformation type. This variable reflects the estimation method and, in
the case of random effects, the variance-component method.

Printed Output
For each MODEL statement, the printed output from PROC PANEL includes the following:

� a model description, which gives the estimation method used, the model statement label if specified,
the number of cross sections and number of observations in each cross section, and the order of the
moving average error process for the DASILVA option. For fixed-effects model analysis, an F test for
the absence of fixed effects is produced, and for random-effects model analysis, a Hausman test is used
for the appropriateness of the random-effects specification.

� the estimates of the underlying error structure parameters

� the regression parameter estimates and analysis. For each regressor, these include the name of the
regressor, the degrees of freedom, the parameter estimate, the standard error of the estimate, a t statistic
for testing whether the estimate is significantly different from 0, and the significance probability of the
t statistic.

Optionally, PROC PANEL prints the following:

� the covariance and correlation of the resulting regression parameter estimates for each model and
assumed error structure
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� the Ô matrix that is the estimated contemporaneous covariance matrix for the PARKS option

ODS Table Names
PROC PANEL assigns a name to each table that it creates. You can use this name to refer to the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 26.9.

Table 26.9 ODS Tables Produced in PROC PANEL

ODS Table Name Description Options

ODS Tables Created by the MODEL Statement
ModelDescription Model description Default
FitStatistics Fit statistics Default
FixedEffectsTest F test for no fixed effects FIXONE, FIXTWO,

FIXONETIME
ParameterEstimates Parameter estimates Default
CovB Covariances of parameter estimates COVB
CorrB Correlations of parameter estimates CORRB
VarianceComponents Variance component estimates RANONE, RANTWO,

DASILVA
RandomEffectsTest Hausman test for random effects RANONE, RANTWO
HausmanTest Hausman specification test HTAYLOR, AMACURDY
AR1Estimates First-order autoregressive parameter

estimates
RHO(PARKS)

BFNTest R� statistic for serial correlation BFN
BL91Test Baltagi and Li joint LM test BL91
BL95Test Baltagi and Li (1995) LM test BL95
BreuschPaganTest Breusch-Pagan one-way test BP
BreuschPaganTest2 Breusch-Pagan two-way test BP2
BSYTest Bera, Sosa Escudero, and Yoon

modified Rao score test
BSY

BWTest Berenblut-Webb statistic for serial
correlation

BW

DWTest Durbin-Watson statistic for serial
correlation

DW

GHMTest Gourieroux, Holly, and Monfort
two-way test

GHM

HondaTest Honda one-way test HONDA
HondaTest2 Honda two-way test HONDA2
KingWuTest King and Wu two-way test KW
WOOLDTest Wooldridge (2002) test for

unobserved effects
WOOLDRIDGE02

CDTestResults Cross-sectional dependence test CDTEST
CDpTestResults Local cross-sectional dependence test CDTEST
Sargan Sargan’s test for overidentification DYNDIFF, DYNSYS
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Table 26.9 continued

ODS Table Name Description Options

ARTest Autoregression test for the residuals DYNDIFF, DYNSYS
IterHist Iteration history ITPRINT(ITGMM)
ConvergenceStatus Convergence status of iterated GMM

estimator
ITGMM

EstimatedPhiMatrix Estimated phi matrix PARKS
EstimatedAutocovariances Estimates of autocovariances DASILVA
LLCResults LLC panel unit root test UROOTTEST
IPSResults IPS panel unit root test UROOTTEST
CTResults Combination test for panel unit root UROOTTEST
HadriResults Hadri panel stationarity test UROOTTEST
HTResults Harris and Tzavalis panel unit

root test
UROOTTEST

BRResults Breitung panel unit root test UROOTTEST
URootDetail Panel unit root test intermediate

results
UROOTTEST

PTestResults Poolability test for panel data POOLTEST

ODS Tables Created by the COMPARE Statement
StatComparisonTable Comparison of model fit statistics
ParameterComparisonTable Comparison of model parameter

estimates, standard errors, and t tests

ODS Tables Created by the TEST Statement
TestResults Test results

Examples: PANEL Procedure

Example 26.1: The Airline Cost Data: Fixed Effects
The Christenson Associates airline data are a frequently cited data set (Greene 2000). The data measure the
costs, prices of inputs, and utilization rates for six airlines from 1970 to 1984. This example analyzes the cost
(variable C), quantity (variable Q), and price (variable PF) and the untransformed load factor (variable LF).
Because (1) all the variables vary over time, (2) the focus is on how these variables influence cost within each
company, and (3) there is no strong reason to believe that the error terms are correlated among companies, a
fixed-effects model would be the natural candidate. You propose the following model,

log .Cit/ D ˛ C ˇ1 log .Qit/C ˇ2 log .PFit/C ˇ3LFit C �i C �it
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where the �i are airline effects. The actual model in the original, untransformed variables is highly nonlinear:

Cit D exp .˛ C ˇ3LFit C �i C �it/Qˇ1it PFˇ2it

The following statements create the data set and perform the necessary log transformations:

data Airline;
input Obs AirlineID T C Q PF LF;
Year = T + 1969;
lC = log(C);
lQ = log(Q);
lPF = log(PF);
label lC = "Log Transformation of Costs";
label lQ = "Log Transformation of Quantity";
label lPF = "Log Transformation of Price of Fuel";
label LF = "Load Factor (utilization index)";

datalines;
1 1 1 1140640 0.95276 106650 0.53449
2 1 2 1215690 0.98676 110307 0.53233
3 1 3 1309570 1.09198 110574 0.54774
4 1 4 1511530 1.17578 121974 0.54085
5 1 5 1676730 1.16017 196606 0.59117

... more lines ...

At the beginning of the analysis, it is natural to start with the most basic model, the pooled OLS model. The
following statements run pooled OLS and check for fixed effects:

proc sort data = Airline;
by AirlineID Year;

run;

proc panel data = Airline;
id AirlineID Year;
model lC = lQ lPF LF / pooled pooltest;

run;

Output 26.1.1 provides a description of the model and data. There are six cross sections and 15 time points.

Output 26.1.1 Airline Cost Data, Model Description

The PANEL Procedure
Pooled (OLS) Estimates

Dependent Variable: lC (Log Transformation of Costs)

Model Description

Estimation Method Pooled

Number of Cross Sections 6

Time Series Length 15

The R-square statistic and degrees of freedom are shown in Output 26.1.2. The R-square statistic is fairly
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high, indicating a good fit.

Output 26.1.2 Airline Cost Data, Pooled OLS Fit Statistics

Fit Statistics

SSE 1.3354 DFE 86

MSE 0.0155 Root MSE 0.1246

R-Square 0.9883

You could still run the poolability test to check whether the model has any fixed effects. The POOLTEST
option provides the poolability test; the results are shown in Output 26.1.3.

Output 26.1.3 Airline Cost Data, Poolability Test Results

The PANEL Procedure
Panel Poolability Tests

Dependent Variable: lC (Log Transformation of Costs)

Poolability Test Results

Restricted Model F Pr > F LR Pr > LR

FIXONE 8.39 <.0001 96.04 <.0001

POOLED 40.49 <.0001 232.68 <.0001

The Restricted Model column lists two models, FIXONE and POOLED. For the FIXONE model, the null
hypothesis is a one-way fixed-effects model and the alternative hypothesis is a two-way fixed-effects model.
The POOLED model tests the null hypothesis of a pooled OLS model against the alternative hypothesis of a
one-way fixed-effects model. There are two types of poolability tests: an F test, as in the F column, and a
likelihood ratio test, as in the LR column. Both the F test and the likelihood ratio test reject the one-way
fixed-effects model and the pooled OLS model, as shown in Output 26.1.3, suggesting that a two-way
fixed-effects model would be best. Before fitting a two-way fixed-effects model, you might want to fit a
one-way fixed-effects model by using the following statements:

proc panel data = Airline;
id AirlineID Year;
model lC = lQ lPF LF / fixone printfixed;

run;

The R-square statistic and degrees of freedom are shown in Output 26.1.4. The R-square statistic is nearly 1
and higher than in the pooled OLS model, indicating a more reasonable fit. The error degrees of freedom is
derived from 90 observations minus 5 cross sections minus 4 regressors.
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Output 26.1.4 Airline Cost Data, Fixone Fit Statistics

The PANEL Procedure
Fixed One-Way Estimates

Dependent Variable: lC (Log Transformation of Costs)

Fit Statistics

SSE 0.2926 DFE 81

MSE 0.0036 Root MSE 0.0601

R-Square 0.9974

The results of the F test for fixed effects are shown in Output 26.1.5. These test results also easily reject
the null hypothesis of the pooled OLS model. There are significant effects due to airlines, and it would be
unreasonable to perform a pooled OLS regression that ignores these effects.

Output 26.1.5 Airline Cost Data, Test for Fixed Effects

F Test for No Fixed Effects

Num DF Den DF F Value Pr > F

5 81 57.74 <.0001

The PRINTFIXED option in the MODEL statement provides estimates of the airline effects (which are not
displayed by default). The intercept is parameterized as the fixed effect for Airline 6. The other fixed effects
are differences from that base category. Quantity and fuel price have positive effects on cost, but load factors
negatively affect costs. Because cost, quantity, and fuel price are log-transformed, the coefficients for quantity
and price are interpreted as elasticities of cost. The coefficient for (log) fuel price is 0.417, meaning that you
would associate a 10% increase in fuel price with a 4.17% increase in costs.

Output 26.1.6 Airline Cost Data, Parameter Estimates

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

CS1 1 -0.08708 0.0842 -1.03 0.3041 Cross Sectional Effect    1

CS2 1 -0.12832 0.0757 -1.69 0.0940 Cross Sectional Effect    2

CS3 1 -0.29599 0.0500 -5.92 <.0001 Cross Sectional Effect    3

CS4 1 0.097487 0.0330 2.95 0.0041 Cross Sectional Effect    4

CS5 1 -0.06301 0.0239 -2.64 0.0100 Cross Sectional Effect    5

Intercept 1 9.79304 0.2636 37.15 <.0001 Intercept

lQ 1 0.919293 0.0299 30.76 <.0001 Log Transformation of Quantity

lPF 1 0.417492 0.0152 27.47 <.0001 Log Transformation of Price of Fuel

LF 1 -1.07044 0.2017 -5.31 <.0001 Load Factor (utilization index)

As suggested by the poolability test results in Output 26.1.3, you suspect that there might be other factors
at play, so you augment your model to include time effects. The following statements fit a two-way model,
which is a model that has both airline effects and time effects:
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proc panel data = Airline;
id AirlineID Year;
model lC = lQ lPF LF / fixtwo printfixed;

run;

The fit statistics, F test, and parameter estimates for the two-way model are provided in Output 26.1.7.

Output 26.1.7 Airline Cost Data, Two-Way Fixed Effects

The PANEL Procedure
Fixed Two-Way Estimates

Dependent Variable: lC (Log Transformation of Costs)

Fit Statistics

SSE 0.1768 DFE 67

MSE 0.0026 Root MSE 0.0514

R-Square 0.9984

F Test for No Fixed Effects

Num DF Den DF F Value Pr > F

19 67 23.10 <.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

CS1 1 0.174237 0.0861 2.02 0.0470 Cross Sectional Effect    1

CS2 1 0.111412 0.0780 1.43 0.1576 Cross Sectional Effect    2

CS3 1 -0.14354 0.0519 -2.77 0.0073 Cross Sectional Effect    3

CS4 1 0.18019 0.0321 5.61 <.0001 Cross Sectional Effect    4

CS5 1 -0.04671 0.0225 -2.08 0.0415 Cross Sectional Effect    5

TS1 1 -0.69286 0.3378 -2.05 0.0442 Time Series Effect    1

TS2 1 -0.63816 0.3321 -1.92 0.0589 Time Series Effect    2

TS3 1 -0.59554 0.3294 -1.81 0.0751 Time Series Effect    3

TS4 1 -0.54192 0.3189 -1.70 0.0939 Time Series Effect    4

TS5 1 -0.47288 0.2319 -2.04 0.0454 Time Series Effect    5

TS6 1 -0.42705 0.1884 -2.27 0.0267 Time Series Effect    6

TS7 1 -0.39586 0.1733 -2.28 0.0255 Time Series Effect    7

TS8 1 -0.33972 0.1501 -2.26 0.0269 Time Series Effect    8

TS9 1 -0.2718 0.1348 -2.02 0.0478 Time Series Effect    9

TS10 1 -0.22734 0.0763 -2.98 0.0040 Time Series Effect   10

TS11 1 -0.1118 0.0319 -3.50 0.0008 Time Series Effect   11

TS12 1 -0.03366 0.0429 -0.78 0.4354 Time Series Effect   12

TS13 1 -0.01775 0.0363 -0.49 0.6261 Time Series Effect   13

TS14 1 -0.01865 0.0305 -0.61 0.5430 Time Series Effect   14

Intercept 1 12.93834 2.2181 5.83 <.0001 Intercept

lQ 1 0.817264 0.0318 25.66 <.0001 Log Transformation of Quantity

lPF 1 0.168732 0.1635 1.03 0.3057 Log Transformation of Price of Fuel

LF 1 -0.88267 0.2617 -3.37 0.0012 Load Factor (utilization index)

There is an overall time trend of increasing costs. The time period of the data spans the OPEC oil embargoes
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and the dissolution of the Civil Aeronautics Board (CAB). These are two possible explanations for the rising
costs.

A surprising result is that the fuel cost is not significant in the two-way model. If the time effects are proxies
for the effect of the oil embargoes, then the effect of fuel price might be subsumed by the time effects. If
the time dummy variables are proxies for the dissolution of the CAB, then the effect of load factors is not
precisely estimated.

ODS Graphics Plots

PROC PANEL can generate ODS plots to graphically analyze the results and perform diagnostics. The
following statements show how to use the PLOTS=ALL option to generate all available plots. For a complete
list of options, see the section “Creating ODS Graphics” on page 1848.

ods graphics on;
proc panel data = Airline;

id AirlineID Year;
model lC = lQ lPF LF / fixtwo plots = all;

run;

Specifying PLOTS=ALL produces two panels of plots, shown in Output 26.1.8 and Output 26.1.9.

Output 26.1.8 Airline Cost Data, Diagnostic Panel 1
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Output 26.1.9 Airline Cost Data, Diagnostic Panel 2

The following statements demonstrate how to use the UNPACK option to unpack the panels into single plots,
and how to use the ONLY option to select only a surface plot of residuals:

proc panel data = Airline;
id AirlineID Year;
model lC = lQ lPF LF / fixtwo plots(unpack only) = residsurface;

run;

The unpacked residual-surface plot is shown in Output 26.1.10.
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Output 26.1.10 Airline Cost Data, Surface Plot of the Residuals

Example 26.2: The Airline Cost Data: First Difference or Fixed Effects
Example 26.1 fits the airline data by using a two-way fixed-effects model, as suggested by the poolability
test results in Output 26.1.3. However, you might wonder why you should not use a first-difference model,
considering that both first-difference models and fixed-effects models can be used for data that have fixed
effects. The answer is that you could, but the first-difference model does not provide as good a fit as
the fixed-effects model in this case. This example illustrates how to fit the airline cost data by using a
first-difference model. It also gives you some guidance about when to use a first-difference model and when
to use a fixed-effects model.

When there are only two time periods, the two methods are identical. When there are more than two time
periods, the two models are different. Under the stick exogeneity assumption, both models provide unbiased
and consistent estimates; however, the efficiency is different between the two models. The efficiency depends
on the serial correlation of errors in the original model. Consider the following one-way fixed-effects model:

yit D ˛ C xitˇ C �i C eit



Example 26.2: The Airline Cost Data: First Difference or Fixed Effects F 1861

The fixed effects can be removed by subtracting first-order lags (first differences) or by subtracting the mean
of the series (fixed effects) from both sides of the equation. The regression error is �eit � eit � ei;t�1
for the first-difference model and Qeit � eit � Nei for the fixed-effects model, where Nei is the mean of
the eit series. If the original error term eit is uncorrelated over time (that is, cov.eit ; ei;t�1/ D 0), then
cov.�eit ; �ei;t�1/ D �var.�ei;t�1/ and corr.�ei;t�1/ D �0:5. This means that the first-difference model
is not efficient in this case, and that the fixed-effects model would be more efficient and thus preferred.
On the other hand, if eit follows a random walk process (that is, eit D ei;t�1 C �it and �it is a white
noise process), then �eit D �it is a white noise process. In this case, the first-difference model is efficient
and the fixed-effects model is not. Every so often you might see that the error term is between these two
extremes, meaning that eit follows an AR(1) process and eit D �ei;t�1 C �it . In such cases, the choice of
model depends on where � is. If � is close to 0, the fixed-effects model is preferred. If � is close to 1, the
first-difference model is preferred. Hence you need to check the autocorrelation of the regression errors. Run
the first-difference model or fixed-effects model first, and then check the autocorrelation of the regression
errors (�eit and Qeit ). For example, if the covariance of the regression errors from the first-difference model
is negative and significant, this suggests that original errors are more likely to be uncorrelated, and the
fixed-effects model is preferred. Of course, you might also get positive correlation, which makes it harder to
make a decision. A common practice is to run both models and use the model that provides more efficient
estimates.

First, you create the Airline data set and log-transform the variables, as in the following DATA step:

data Airline;
input Obs AirlineID T C Q PF LF;
Year = T + 1969;
lC = log(C);
lQ = log(Q);
lPF = log(PF);
label lC = "Log Transformation of Costs";
label lQ = "Log Transformation of Quantity";
label lPF = "Log Transformation of Price of Fuel";
label LF = "Load Factor (utilization index)";

datalines;
1 1 1 1140640 0.95276 106650 0.53449
2 1 2 1215690 0.98676 110307 0.53233
3 1 3 1309570 1.09198 110574 0.54774
4 1 4 1511530 1.17578 121974 0.54085
5 1 5 1676730 1.16017 196606 0.59117

... more lines ...

Example 26.1 shows how to fit the airline data by using a fixed-effects model. The following statements fit a
two-way fixed-effects model and test the autocorrelation of the regression errors:

proc sort data = Airline;
by AirlineID Year;

run;

proc panel data = Airline;
id AirlineID Year;
model lC = lQ lPF LF / fixtwo printfixed DW;

run;
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The estimation results are the same as in Output 26.1.7 and so are not listed here. The DW option provides a
test of serial correlation by using the Durbin-Watson statistic. The test results are shown in Output 26.2.1.

Output 26.2.1 Durbin-Watson Statistic for Two-Way Fixed-Effects Model

The PANEL Procedure
Fixed Two-Way Estimates

Dependent Variable: lC (Log Transformation of Costs)

Durbin-Watson Statistic for First-Order Correlation in a Fixed Effects Model

White Noise vs.
Positive Correlation

Random Walk vs.
Stationary

White Noise vs.
Negative Correlation

DF Statistic
Pr <

DWLower
Pr <

DWUpper
Pr >

DWLower
Pr >

DWUpper Statistic
Pr <

DWLower
Pr <

DWUpper

1 0.69 <.0001 <.0001 0.0323 0.4344 3.31 1.0000 1.0000

As shown in Output 26.2.1, the test statistic is 0.69, indicating positive correlation among regression errors.
The white noise versus positive correlation test result also rejects the null hypothesis of white noise and
suggests positive correlation at the 1% significance level. The DWLower and DWUpper values for the random
walk versus stationary test can be treated as bounds on the exact p-value. The results show that the exact
p-value is from 0.0323 to 0.4344, making it uncertain whether the regression errors follow a random walk. In
such cases, you should probably also run the first-difference model and compare the estimation results from
the two models. For more information about the Durbin-Watson test, see the section “Durbin-Watson Test”
on page 1846.

The following statements fit a two-way first-difference model and test the autocorrelation of the regression
errors:

proc panel data = Airline;
id AirlineID Year;
model lC = lQ lPF LF / fdtwo printfixed BW;

run;

Output 26.2.2 provides a model description, a data description, and fit statistics. The fit statistics are very
close to the fit statistics of the fixed-effects model shown in Output 26.1.7, indicating that the two models
have a close fit.

Output 26.2.2 Airline Cost Data, First-Difference, Model Description

The PANEL Procedure
First Difference Estimates for Two-Way

Dependent Variable: lC (Log Transformation of Costs)

Model Description

Estimation Method FDTwo

Number of Cross Sections 6

Time Series Length 15
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Output 26.2.2 continued

Fit Statistics

SSE 0.1562 DFE 67

MSE 0.0023 Root MSE 0.0483

R-Square 0.9986

The first-difference model also supports the PRINTFIXED option. The BW option provides a test of serial
correlation for the first-difference model by using the Berenblut-Webb statistic. The test results are shown in
Output 26.2.3.

Output 26.2.3 Berenblut-Webb Statistic for Two-Way First-Difference Model

Berenblut-Webb Statistic for First-Order Correlation in a Fixed Effects Model

White Noise vs.
Positive Correlation Random Walk vs. Stationary White Noise vs. Negative Correlation

DF Statistic Pr < BWLower Pr < BWUpper Pr > BWLower Pr > BWUpper Statistic Pr < BWLower Pr < BWUpper

1 0.60 <.0001 <.0001 0.0837 0.6094 3.40 1.0000 1.0000

As for the fixed-effects model, Output 26.2.3 also indicates a positive correlation among the regression errors,
and it is not clear whether the random walk hypothesis could be rejected at the 10% significance level. You
need to compare the standard errors of the two models. The estimation results are shown in Output 26.2.4.
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Output 26.2.4 continued

Output 26.2.4 Airline Cost Data, Two-Way First-Difference

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

CS1 1 0.345321 0.1499 2.30 0.0243 Cross Sectional Effect    1

CS2 1 0.241374 0.1332 1.81 0.0745 Cross Sectional Effect    2

CS3 1 -0.03271 0.0852 -0.38 0.7021 Cross Sectional Effect    3

CS4 1 0.236073 0.0488 4.84 <.0001 Cross Sectional Effect    4

CS5 1 -0.01092 0.0221 -0.49 0.6226 Cross Sectional Effect    5

TS1 1 -0.99065 0.1923 -5.15 <.0001 Time Series Effect    1

TS2 1 -0.92656 0.1886 -4.91 <.0001 Time Series Effect    2

TS3 1 -0.85624 0.1843 -4.65 <.0001 Time Series Effect    3

TS4 1 -0.79041 0.1773 -4.46 <.0001 Time Series Effect    4

TS5 1 -0.64882 0.1322 -4.91 <.0001 Time Series Effect    5

TS6 1 -0.58245 0.1110 -5.25 <.0001 Time Series Effect    6

TS7 1 -0.5352 0.1020 -5.25 <.0001 Time Series Effect    7

TS8 1 -0.45887 0.0894 -5.13 <.0001 Time Series Effect    8

TS9 1 -0.34829 0.0794 -4.39 <.0001 Time Series Effect    9

TS10 1 -0.2585 0.0503 -5.14 <.0001 Time Series Effect   10

TS11 1 -0.12613 0.0343 -3.67 0.0005 Time Series Effect   11

TS12 1 -0.02751 0.0365 -0.75 0.4543 Time Series Effect   12

TS13 1 -0.01682 0.0326 -0.52 0.6072 Time Series Effect   13

TS14 1 -0.01848 0.0285 -0.65 0.5194 Time Series Effect   14

Intercept 1 0.309139 1.2077 0.26 0.7988 Intercept

lQ 1 0.769304 0.0542 14.19 <.0001 Log Transformation of Quantity

lPF 1 0.075482 0.0871 0.87 0.3893 Log Transformation of Price of Fuel

LF 1 -1.40326 0.2173 -6.46 <.0001 Load Factor (utilization index)

As shown in Output 26.2.4, most parameter estimation results of two-way first-difference models are close to
the results of the two-way fixed-effects model in Output 26.1.7. The estimation of the intercept is the one
item that is very different between the two methods, but it is not significant in the first-difference method. As
in the two-way fixed-effects model, the estimation of the log transformation of fuel price is not significant
here, because the change in it is mostly captured by the time effect. Comparing the results of the two models,
the fixed-effects model works slightly better for the airline cost data, because there are more estimates at the
5% significance level in this model. If you are interested, you can run the one-way fixed effects by using both
methods, and you will find that the estimation results are even more similar than for the two-way model.
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Example 26.3: Analyzing Demand for Liquid Assets: Random Effects
Feige (1964) provides data on the demand for liquid assets. The data are for six states and the District of
Columbia (CA, DC, FL, IL, NY, TX, and WA) and were collected each year from 1949 to 1959. All variables
are log-transformed.

The following statements create the Assets data set:

data Assets;
length state $ 2;
input state $ year d t s y rd rt rs;
label d = 'Per Capita Demand Deposits'

t = 'Per Capita Time Deposits'
s = 'Per Capita S&L Association Shares'
y = 'Permanent Per Capita Personal Income'
rd = 'Service Charge on Demand Deposits'
rt = 'Interest on Time Deposits'
rs = 'Interest on S&L Association Shares';

datalines;
CA 1949 6.2785 6.1924 4.4998 7.2056 -1.0700 0.1080 1.0664
CA 1950 6.4019 6.2106 4.6821 7.2889 -1.0106 0.1501 1.0767
CA 1951 6.5058 6.2729 4.8598 7.3827 -1.0024 0.4008 1.1291
CA 1952 6.4785 6.2729 5.0039 7.4000 -0.9970 0.4492 1.1227
CA 1953 6.4118 6.2538 5.1761 7.4200 -0.8916 0.4662 1.2110
CA 1954 6.4520 6.2971 5.3613 7.4478 -0.6951 0.4756 1.1924

... more lines ...

The data contain per capita consumptions for three liquid assets: demand deposits such as checking, time
deposits, and savings and loan (S&L) shares. Because all variables vary over time, you can use a fixed-effects
model. However, the demand of liquid assets is likely to be influenced by many macro variables that are not
specific to a particular state, and therefore the errors might be correlated between states. As a result, you
posit a linear model for per capita demand deposits, with random effects for states.

The following statements fit a one-way random-effects model:

proc sort data = Assets;
by state year;

run;

proc panel data = Assets;
id state year;
model d = y rd rt rs / ranone;

run;

The regression results are provided in Output 26.3.1.

The “Variance Component Estimates” table provides the estimated variance of the cross-sectional (state)
effects and the variance of the observation-level errors. A majority of the overall error variance can be
attributed to differences between states, not differences within states.

The “Hausman Test for Random Effects” table shows the result of a Hausman specification test. The null
hypothesis is that state effects can be treated as random (random-effects model) and that they do not need to
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be estimated directly (fixed-effects model). The test results favor the random-effects specification that is used
to generate this output.

Output 26.3.1 Demand for Demand Deposits, One-Way Random-Effects Model

The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: d (Per Capita Demand Deposits)

Model Description

Estimation Method RanOne

Number of Cross Sections 7

Time Series Length 11

Fit Statistics

SSE 0.0968 DFE 72

MSE 0.0013 Root MSE 0.0367

R-Square 0.7669

Variance Component Estimates

Variance Component for Cross Sections 0.029067

Variance Component for Error 0.00134

Hausman Test for Random
Effects

Coefficients DF m Value Pr > m

4 4 3.21 0.5227

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 -1.74258 0.6805 -2.56 0.0125 Intercept

y 1 1.148051 0.0998 11.51 <.0001 Permanent Per Capita Personal Income

rd 1 -0.27514 0.0514 -5.36 <.0001 Service Charge on Demand Deposits

rt 1 0.033718 0.0295 1.14 0.2566 Interest on Time Deposits

rs 1 -0.41036 0.1202 -3.42 0.0011 Interest on S&L Association Shares

The parameter estimate for the variable Y is greater than 1, indicating that demand is elastic to income—
income has a more than proportional positive association with the demand for demand deposits. The
coefficient on the variable RD indicates that demand deposits increase significantly as the service charge is
reduced.

The variables RT and RS represent positive aspects of competing products, and you would expect these
variables to affect demand negatively. The coefficient for RS meets that expectation, but the coefficient for
RT is not significant.

The previous analysis used the default Fuller-Battese method to estimate the variance components. The
PANEL procedure supports three other methods, and you might be interested in how use of the different
methods affects the analysis.

The following statements fit the model by using all four methods and include a COMPARE statement to
compare the results:
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proc panel data = Assets;
id state year;
wh: model d = y rd rt rs / ranone vcomp = wh;
wk: model d = y rd rt rs / ranone vcomp = wk;
fb: model d = y rd rt rs / ranone vcomp = fb;
nl: model d = y rd rt rs / ranone vcomp = nl;
compare / mstat(varcs varerr);

run;

The tables that the COMPARE statement produces are shown in Output 26.3.2.

Output 26.3.2 One-Way versus Two-Way Random Effects, Assets Data

The PANEL Procedure
Model Comparison

Dependent Variable: d (Per Capita Demand Deposits)

Comparison of Model Statistics

Statistic
WH

RanOne
WK

RanOne
FB

RanOne
NL

RanOne

Var due to Cross Sections 0.0315 0.0315 0.0291 0.0327

Var due to Error 0.000107 0.001340 0.001340 0.001149

Comparison of Model Parameter Estimates

Variable
WH

RanOne
WK

RanOne
FB

RanOne
NL

RanOne

Intercept Estimate
Std Err

-1.472425
0.719067

-1.723092
0.681184

-1.742581
0.680541

-1.680406
0.682676

y Estimate
Std Err

1.117252
0.099799

1.145844
0.099776

1.148051
0.099761

1.141001
0.099802

rd Estimate
Std Err

-0.245861
0.052260

-0.272995
0.051445

-0.275135
0.051372

-0.268325
0.051600

rt Estimate
Std Err

0.029227
0.028570

0.033397
0.029416

0.033718
0.029485

0.032692
0.029266

rs Estimate
Std Err

-0.414540
0.117486

-0.410731
0.119968

-0.410361
0.120160

-0.411500
0.119548

You conclude that how you estimate variance components has little bearing on the regression results.

It is possible that there are time random effects in addition to random effects for states. To explore this
possibility, you fit a two-way random-effects model and again use a COMPARE statement to conveniently
compare the one- and two-way models:

proc panel data = Assets;
id state year;
model d = y rd rt rs / ranone rantwo;
compare;

run;

The model comparison table is shown in Output 26.3.3. Although the parameter estimates differ somewhat,
your interpretation of the effects on demand remains unchanged.
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Output 26.3.3 Comparison of Variance-Component Methods, Assets Data

The PANEL Procedure
Model Comparison

Dependent Variable: d (Per Capita Demand Deposits)

Comparison of Model Parameter
Estimates

Variable
Model 1
RanOne

Model 1
RanTwo

Intercept Estimate
Std Err

-1.742581
0.680541

-1.236056
0.725222

y Estimate
Std Err

1.148051
0.099761

1.064058
0.104018

rd Estimate
Std Err

-0.275135
0.051372

-0.290940
0.052646

rt Estimate
Std Err

0.033718
0.029485

0.039388
0.027761

rs Estimate
Std Err

-0.410361
0.120160

-0.326618
0.114046

Example 26.4: Panel Study of Income Dynamics (PSID): Hausman-Taylor
Models

Cornwell and Rupert (1988) analyze data from the Panel Study of Income Dynamics (PSID), an income study
of 595 individuals over the seven-year period 1976–1982. Of particular interest is the effect of additional
schooling on wages. The analysis here replicates that of Baltagi (2013, sec. 7.5), where it is concluded that
covariate correlation with individual effects makes a standard random-effects model inadequate.

The following statements create the PSID data set:

data psid;
input id t lwage wks south smsa ms exp exp2 occ ind union fem blk ed;
label id = 'Person ID'

t = 'Time'
lwage = 'Log(wages)'
wks = 'Weeks worked'
south = '1 if resides in the South'
smsa = '1 if resides in SMSA'
ms = '1 if married'
exp = 'Years full-time experience'
exp2 = 'exp squared'
occ = '1 if blue-collar occupation'
ind = '1 if manufacturing'
union = '1 if union contract'
fem = '1 if female'
blk = '1 if black'
ed = 'Years of education';

datalines;
1 1 5.5606799126 32 1 0 1 3 9 0 0 0 0 0 9
1 2 5.7203102112 43 1 0 1 4 16 0 0 0 0 0 9
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1 3 5.9964499474 40 1 0 1 5 25 0 0 0 0 0 9
1 4 5.9964499474 39 1 0 1 6 36 0 0 0 0 0 9
1 5 6.0614600182 42 1 0 1 7 49 0 1 0 0 0 9
1 6 6.1737899780 35 1 0 1 8 64 0 1 0 0 0 9
1 7 6.2441701889 32 1 0 1 9 81 0 1 0 0 0 9
2 1 6.1633100510 34 0 0 1 30 900 1 0 0 0 0 11
2 2 6.2146100998 27 0 0 1 31 961 1 0 0 0 0 11
2 3 6.2634000778 33 0 0 1 32 1024 1 1 1 0 0 11
2 4 6.5439100266 30 0 0 1 33 1089 1 1 0 0 0 11
2 5 6.6970300674 30 0 0 1 34 1156 1 1 0 0 0 11
2 6 6.7912201881 37 0 0 1 35 1225 1 1 0 0 0 11
2 7 6.8156399727 30 0 0 1 36 1296 1 1 0 0 0 11

... more lines ...

You begin by fitting a one-way random-effects model:

proc sort data=psid;
by id t;

run;

proc panel data=psid;
id id t;
model lwage = wks south smsa ms exp exp2 occ

ind union fem blk ed / ranone;
run;

The output is shown in Output 26.4.1. The coefficient on the variable ED (which represents years of education)
estimates that an additional year of schooling is associated with about a 10.7% increase in wages. However,
the results of the Hausman test for random effects show a serious violation of the random-effects assumptions,
namely that the regressors are independent of both error components.

Output 26.4.1 One-Way Random-Effects Estimation

The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: lwage (Log(wages))

Model Description

Estimation Method RanOne

Number of Cross Sections 595

Time Series Length 7

Variance Component Estimates

Variance Component for Cross Sections 0.100553

Variance Component for Error 0.023102

Hausman Test for Random
Effects

Coefficients DF m Value Pr > m

9 9 5288.98 <.0001
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Output 26.4.1 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 4.030811 0.1044 38.59 <.0001 Intercept

wks 1 0.000954 0.000740 1.29 0.1971 Weeks worked

south 1 -0.00788 0.0281 -0.28 0.7795 1 if resides in the South

smsa 1 -0.02898 0.0202 -1.43 0.1517 1 if resides in SMSA

ms 1 -0.07067 0.0224 -3.16 0.0016 1 if married

exp 1 0.087726 0.00281 31.27 <.0001 Years full-time experience

exp2 1 -0.00076 0.000062 -12.31 <.0001 exp squared

occ 1 -0.04293 0.0162 -2.65 0.0081 1 if blue-collar occupation

ind 1 0.00381 0.0172 0.22 0.8242 1 if manufacturing

union 1 0.058121 0.0169 3.45 0.0006 1 if union contract

fem 1 -0.30791 0.0572 -5.38 <.0001 1 if female

blk 1 -0.21995 0.0660 -3.33 0.0009 1 if black

ed 1 0.10742 0.00642 16.73 <.0001 Years of education

An alternative could be a fixed-effects (FIXONE option) model, but that would not permit estimation of the
coefficient for ED, which does not vary within individuals. A compromise is the Hausman-Taylor model,
for which you stipulate a set of covariates that are correlated with the individual effects (but uncorrelated
with the observation-level errors). You specify the correlated variables in the CORRELATED= option in the
INSTRUMENTS statement:

proc panel data=psid;
id id t;
instruments correlated = (wks ms exp exp2 union ed);
model lwage = wks south smsa ms exp exp2 occ

ind union fem blk ed / htaylor;
run;

The results are shown in Output 26.4.2. The table of parameter estimates has an added column, Type, that
identifies which regressors are assumed to be correlated with individual effects (C) and which regressors do
not vary within cross sections (TI). It was stated previously that the Hausman-Taylor model is a compromise
between fixed-effects and random-effects models, and you can think of the compromise this way: You want
to fit a random-effects model, but the correlated (C) variables make that model invalid. So you revert to the
consistent fixed-effects model, but then the time-invariant (TI) variables are the problem because they will be
dropped from that model. The solution is to use the Hausman-Taylor estimator.

The estimation results show that an additional year of schooling is now associated with a 13.8% increase in
wages. Also presented is a Hausman test that compares this model to the fixed-effects model. As was the
case previously when you fit the random-effects model, you can think of the Hausman test as a referendum
on the assumptions that you are making. For this estimation, it seems that your choice of variables to treat as
correlated is adequate. It also seems to be true that any correlation is with the individual-level effects, not the
observation-level errors.
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Output 26.4.2 Hausman-Taylor Estimation

The PANEL Procedure
Hausman and Taylor Model for Correlated Individual Effects (HTaylor)

Dependent Variable: lwage (Log(wages))

Variance Component Estimates

Variance Component for Cross Sections 0.886993

Variance Component for Error 0.023044

Hausman Test against Fixed
Effects

Coefficients DF m Value Pr > m

9 3 5.26 0.1539

Parameter Estimates

Variable Type DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 2.912726 0.2837 10.27 <.0001 Intercept

wks C 1 0.000837 0.000600 1.40 0.1627 Weeks worked

south 1 0.00744 0.0320 0.23 0.8159 1 if resides in the South

smsa 1 -0.04183 0.0190 -2.21 0.0274 1 if resides in SMSA

ms C 1 -0.02985 0.0190 -1.57 0.1159 1 if married

exp C 1 0.113133 0.00247 45.79 <.0001 Years full-time experience

exp2 C 1 -0.00042 0.000055 -7.67 <.0001 exp squared

occ 1 -0.0207 0.0138 -1.50 0.1331 1 if blue-collar occupation

ind 1 0.013604 0.0152 0.89 0.3720 1 if manufacturing

union C 1 0.032771 0.0149 2.20 0.0280 1 if union contract

fem TI 1 -0.13092 0.1267 -1.03 0.3014 1 if female

blk TI 1 -0.28575 0.1557 -1.84 0.0665 1 if black

ed C TI 1 0.137944 0.0212 6.49 <.0001 Years of education

C: correlated with the individual effects
TI: constant (time-invariant) within cross sections

At its core, the Hausman-Taylor estimator is an instrumental variables regression, where the instruments are
derived from regressors that are assumed to be uncorrelated with the individual effects. Technically, it is the
cross-sectional means of these variables that need to be uncorrelated, not the variables themselves.

The Amemiya-MaCurdy model is a close relative of the Hausman-Taylor model. The only difference between
the two is that the Amemiya-MaCurdy model makes the added assumption that the regressors (and not just
their means) are uncorrelated with the individual effects. By making that assumption, the Amemiya-MaCurdy
model can take advantage of a more efficient set of instrumental variables.

The following statements fit the Amemiya-MaCurdy model:

proc panel data=psid;
id id t;
instruments correlated = (wks ms exp exp2 union ed);
model lwage = wks south smsa ms exp exp2 occ

ind union fem blk ed / amacurdy;
run;
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The results are shown in Output 26.4.3. Little is changed from the Hausman-Taylor model. The Hausman
test compares the Amemiya-MaCurdy model to the Hausman-Taylor model and shows that the one additional
assumption is acceptable. You even gain a bit of efficiency in the process: compare the standard deviations of
the coefficient on the variable ED from both models.

Output 26.4.3 Amemiya-MaCurdy Estimation

The PANEL Procedure
Amemiya and MaCurdy Model for Correlated Individual Effects (AMaCurdy)

Dependent Variable: lwage (Log(wages))

Variance Component Estimates

Variance Component for Cross Sections 0.886993

Variance Component for Error 0.023044

Hausman Test against
Hausman-Taylor

Coefficients DF m Value Pr > m

13 13 14.67 0.3287

Parameter Estimates

Variable Type DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 2.927338 0.2751 10.64 <.0001 Intercept

wks C 1 0.000838 0.000599 1.40 0.1622 Weeks worked

south 1 0.007282 0.0319 0.23 0.8197 1 if resides in the South

smsa 1 -0.04195 0.0189 -2.21 0.0269 1 if resides in SMSA

ms C 1 -0.03009 0.0190 -1.59 0.1127 1 if married

exp C 1 0.11297 0.00247 45.76 <.0001 Years full-time experience

exp2 C 1 -0.00042 0.000055 -7.72 <.0001 exp squared

occ 1 -0.02085 0.0138 -1.51 0.1299 1 if blue-collar occupation

ind 1 0.013629 0.0152 0.89 0.3709 1 if manufacturing

union C 1 0.032475 0.0149 2.18 0.0293 1 if union contract

fem TI 1 -0.13201 0.1266 -1.04 0.2972 1 if female

blk TI 1 -0.2859 0.1555 -1.84 0.0660 1 if black

ed C TI 1 0.137205 0.0206 6.67 <.0001 Years of education

C: correlated with the individual effects
TI: constant (time-invariant) within cross sections

Finally, you should realize that the Hausman-Taylor and Amemiya-MaCurdy estimators are not cure-alls
for correlated individual effects. Estimation tacitly relies on the uncorrelated regressors being sufficient to
predict the correlated regressors. Otherwise, you run into the problem of weak instruments. If you have weak
instruments, you will obtain biased estimates that have very large standard errors. However, that does not
seem to be the case here.
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Example 26.5: Cigarette Sales Data: Dynamic Panel Estimation
Consider a dynamic panel demand model for cigarette sales that illustrates the methods described in the
section “Dynamic Panel Estimation (DYNDIFF and DYNSYS Options)” on page 1809. The data are from
a panel of 46 American states over the period 1963–1992. The dependent variable is the logarithm of per
capita cigarette sales (variable LSales). Other factors that were measured include the log of price (LPrice),
the log of disposable income (LDisp), and the log of minimum price in adjoining states (LMin). For a full
description of the data, see Baltagi (2013, sec. 8.9).

The following statements create the Cigar data set:

data Cigar;
input State Year Price Pop Pop_16 Cpi Disp Sales Min;
LSales = log(Sales);
LPrice = log(Price);
LDisp = log(Disp);
LMin = log(Min);
label
State = 'State abbreviation'
Year = 'Year'
LSales = 'Log cigarette sales in packs per capita'
LPrice = 'Log price per pack of cigarettes'
LDisp = 'Log per capita disposable income'
LMin = 'Log minimum price in adjoining states per pack of cigarettes';

datalines;
1 63 28.6 3383 2236.5 30.6 1558.3045298 93.9 26.1
1 64 29.8 3431 2276.7 31.0 1684.0732025 95.4 27.5
1 65 29.8 3486 2327.5 31.5 1809.8418752 98.5 28.9
1 66 31.5 3524 2369.7 32.4 1915.1603572 96.4 29.5
1 67 31.6 3533 2393.7 33.4 2023.5463678 95.5 29.6
1 68 35.6 3522 2405.2 34.8 2202.4855362 88.4 32
1 69 36.6 3531 2411.9 36.7 2377.3346665 90.1 32.8
1 70 39.6 3444 2394.6 38.8 2591.0391591 89.8 34.3
1 71 42.7 3481 2443.5 40.5 2785.3159706 95.4 35.8

... more lines ...

You posit a panel model for cigarette sales that contains fixed effects for states. Because you believe that the
data are insufficient to explain all possible shocks in yearly sales, you include lagged sales in the model as a
regressor. By construction, lagged sales are an endogenous regressor, and you thus specify dynamic panel
estimation by using the DYNDIFF option. The following statements fit the model:

proc sort data=Cigar;
by State Year;

run;

proc panel data=Cigar;
id State Year;
model LSales = LPrice LDisp LMin / dyndiff;

run;

The results are shown in Output 26.5.1. Note that it was not necessary to explicitly include lagged sales on
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the right-hand side of the model; PROC PANEL generated it for you. The coefficient on lagged sales is 0.732,
indicating a high degree of autocorrelation in the dependent variable. When cigarette sales are unusually
high or low because of unforeseen circumstances, the effects tend to linger for several years. The results also
show that demand is highly elastic to price.

Output 26.5.1 Dynamic Panel Estimation for Cigarette Sales

The PANEL Procedure
Dynamic Panel Estimation by First-Differences GMM

Dependent Variable: LSales (Log cigarette sales in packs per capita)

Model Description

Estimation Method DynDiff

Number of Cross Sections 46

Time Series Length 30

GMM Stage 1

GMM Bandwidth 30

Number of Instruments 410

Variance Estimation GMM

Fit Statistics

SSE 3.1373 DFE 1283

MSE 0.0024 Root MSE 0.0494

Sargan Test

DF Statistic Prob > ChiSq

405 712.45 <.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 0.769092 0.0658 11.69 <.0001 Intercept

LSales (Lag 1) 1 0.732212 0.0178 41.07 <.0001 Log cigarette sales in packs per capita, Lag 1

LPrice 1 -0.26328 0.0255 -10.31 <.0001 Log price per pack of cigarettes

LDisp 1 0.166116 0.0105 15.88 <.0001 Log per capita disposable income

LMin 1 0.032726 0.0233 1.40 0.1604 Log minimum price in adjoining states per pack of cigarettes

AR(m) Test

Lag Statistic Pr > |Statistic|

1 -15.44 <.0001

2 2.47 0.0134

Included in Output 26.5.1 are two diagnostic measures. The first, a Sargan test, is a test of the validity of the
moment conditions that are conferred by the GMM instruments that were used. The p-value indicates that the
moment conditions are not valid and that you should probably look for a set of instruments other than the
default set provided by PROC PANEL.

The second diagnostic test is the AR(m) test for autocorrelation in the residuals. In well-fitting dynamic panel
models, you expect to see some autocorrelation of lag 1, but any autocorrelation at higher lags indicates a
poor fit. The autocorrelation at lag 2 is significant, leading you to seek a better-fitting alternative.
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One possible explanation for the poor fit is that, by default, PROC PANEL uses the one-step generalized
method of moments (GMM). One-step GMM is known for being too reliant on the assumption that the
residuals from the difference equations are not serially correlated. An alternative is two-step GMM, which
instead uses a data-driven variance matrix for the differenced residuals.

The following statements fit the model by two-step GMM:

proc panel data=Cigar;
id State Year;
instruments constant depvar diffeq=(LPrice LDisp LMin);
model lSales = LPrice LDisp LMin / dyndiff gmm2 biascorrected;

run;

The code includes an INSTRUMENTS statement that, for demonstration purposes, reproduces the default
instrument set. That set includes the following:

� a constant (keyword CONSTANT)

� GMM-style instruments based on the dependent variable, LSales (keyword DEPVAR)

� standard instruments for the exogenous regressors LPrice, LDisp, and LMin (DIFFEQ= option)

The code also includes the BIASCORRECTED option, which produces bias-corrected standard errors
according to the method of Windmeijer (2005).

The results are shown in Output 26.5.2. The coefficients do not change much, but the standard errors are
now more reliable. The model diagnostic tests indicate a better fit, although you should use caution when
interpreting Sargan test results. Sargan tests lack power when the number of instruments is large, and
their distributional properties come into question under conditions that favor either robust or bias-corrected
standard errors.

Output 26.5.2 Dynamic Panel Estimation by Two-Step GMM

The PANEL Procedure
Dynamic Panel Estimation by First-Differences GMM

Dependent Variable: LSales (Log cigarette sales in packs per capita)

Model Description

Estimation Method DynDiff

Number of Cross Sections 46

Time Series Length 30

GMM Stage 2

GMM Bandwidth 30

Number of Instruments 410

Variance Estimation Bias-corrected

Fit Statistics

SSE 3.1348 DFE 1283

MSE 0.0024 Root MSE 0.0494

Sargan Test

DF Statistic Prob > ChiSq

41 45.45 0.2920
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Output 26.5.2 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 0.770726 0.1538 5.01 <.0001 Intercept

LSales (Lag 1) 1 0.730839 0.0523 13.97 <.0001 Log cigarette sales in packs per capita, Lag 1

LPrice 1 -0.25942 0.0418 -6.21 <.0001 Log price per pack of cigarettes

LDisp 1 0.166895 0.0266 6.27 <.0001 Log per capita disposable income

LMin 1 0.028106 0.0410 0.69 0.4934 Log minimum price in adjoining states per pack of cigarettes

AR(m) Test

Lag Statistic Pr > |Statistic|

1 -4.97 <.0001

2 1.89 0.0587

The previous estimation treats regressors such as LPrice as exogenous. If you believe that price is endogenous,
you can create GMM-style instruments for LPrice to replace the default standard instruments.

The following statements fit the model by using GMM-style instruments for LPrice:

proc panel data=Cigar;
id State Year;
instruments constant depvar diffeq=(LDisp LMin) diffend=(LPrice);
model lSales = LPrice LDisp LMin / dyndiff gmm2 biascorrected;

run;

The results are shown in Output 26.5.3. Treating LPrice as endogenous greatly increases the number of
instruments. Although this is not the case here, when the number of instruments is so large that it makes
estimation infeasible, you can limit the number of instruments by specifying the MAXBAND= option in the
INSTRUMENTS statement.

Output 26.5.3 Dynamic Panel Estimation, Custom Instrument Set

The PANEL Procedure
Dynamic Panel Estimation by First-Differences GMM

Dependent Variable: LSales (Log cigarette sales in packs per capita)

Model Description

Estimation Method DynDiff

Number of Cross Sections 46

Time Series Length 30

GMM Stage 2

GMM Bandwidth 30

Number of Instruments 815

Variance Estimation Bias-corrected

Fit Statistics

SSE 3.4193 DFE 1283

MSE 0.0027 Root MSE 0.0516
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Output 26.5.3 continued

Sargan Test

DF Statistic Prob > ChiSq

41 45.48 0.2909

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 0.510851 0.1232 4.15 <.0001 Intercept

LSales (Lag 1) 1 0.8046 0.0410 19.63 <.0001 Log cigarette sales in packs per capita, Lag 1

LPrice 1 -0.21878 0.0397 -5.51 <.0001 Log price per pack of cigarettes

LDisp 1 0.138748 0.0208 6.66 <.0001 Log per capita disposable income

LMin 1 0.024775 0.0407 0.61 0.5427 Log minimum price in adjoining states per pack of cigarettes

AR(m) Test

Lag Statistic Pr > |Statistic|

1 -5.04 <.0001

2 1.95 0.0509

Example 26.6: Using the FLATDATA Statement
Sometimes data sets are stored in compressed (or wide) form, where each record contains all observations
for the entire cross section. Although the PANEL procedure requires data in uncompressed (long) form,
sometimes it is easier to create new variables or summary statistics if the data are in wide form.

To illustrate, suppose you have a simulated data set that contains 20 cross sections measured over six time
periods. Each time period has values for dependent and independent variables, Y1, . . . , Y6 and X1, . . . , X6.
The cs and num variables are constant across each cross section.

The observations for the first five cross sections along with other variables are shown in Output 26.6.1. In this
example, i represents the cross section. The time period is identified by the subscript of the Y and X variables,
which ranges from 1 to 6.

Output 26.6.1 Compressed Data Set

Obs i cs num X_1 X_2 X_3 X_4 X_5 X_6 Y_1 Y_2

1 1 CS1 -1.56058 0.40268 0.91951 0.69482 -2.28899 -1.32762 1.92348 2.30418 2.11850

2 2 CS2 0.30989 1.01950 -0.04699 -0.96695 -1.08345 -0.05180 0.30266 4.50982 3.73887

3 3 CS3 0.85054 0.60325 0.71154 0.66168 -0.66823 -1.87550 0.55065 4.07276 4.89621

4 4 CS4 -0.18885 -0.64946 -1.23355 0.04554 -0.24996 0.09685 -0.92771 2.40304 1.48182

5 5 CS5 -0.04761 -0.79692 0.63445 -2.23539 -0.37629 -0.82212 -0.70566 3.58092 6.08917

Obs Y_3 Y_4 Y_5 Y_6

1 2.66009 -4.94104 -0.83053 5.01359

2 1.44984 -1.02996 2.78260 1.73856

3 3.90470 1.03437 0.54598 5.01460

4 2.70579 3.82672 4.01117 1.97639

5 3.08249 4.26605 3.65452 0.81826
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When the data are in this form, it is easy to create other variables that are combinations of the existing
variables. For example, you can calculate the within-cross-section mean of X by simply summing across the
X_i variables and dividing by six. It is easier to perform this kind of data manipulation when the data are in
compressed (wide) form instead of uncompressed (long) form.

On the other hand, the PANEL procedure cannot work directly with the data in wide form. You can use the
FLATDATA statement to transform wide data into long form “on the fly” for performing a panel data analysis.
You can also use the OUT= option to output the transformed data to a new data set, to use for further analysis.

The following code reshapes the data and performs fixed-effects estimation:

proc panel data=flattest;
flatdata indid=i tsname="t" base=(X Y)

keep=( cs num seed ) / out=flat_out;
id i t;
model y = x / fixone noint;

run;

The first six observations in the uncompressed (long) data set and the results for the one-way fixed-effects
model are shown in Output 26.6.2 and Output 26.6.3, respectively.

Output 26.6.2 Uncompressed Data Set

Obs I t X Y CS NUM

1 1 1 0.40268 2.30418 CS1 -1.56058

2 1 2 0.91951 2.11850 CS1 -1.56058

3 1 3 0.69482 2.66009 CS1 -1.56058

4 1 4 -2.28899 -4.94104 CS1 -1.56058

5 1 5 -1.32762 -0.83053 CS1 -1.56058

6 1 6 1.92348 5.01359 CS1 -1.56058

Output 26.6.3 Estimation with the FLATDATA Statement

The PANEL Procedure
Fixed One-Way Estimates

Dependent Variable: Y

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

X 1 2.010753 0.1217 16.52 <.0001

Now, suppose you have long data that you want to reshape into wide form. The following DATA step
performs this task:

data wide;
set flat_out;
by i;
keep i num cs X_1-X_6 Y_1-Y_6;
retain X_1-X_6 Y_1-Y_6;
array ax(1:6) X_1-X_6;
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array ay(1:6) Y_1-Y_6;
if first.i then do;

do j = 1 to 6;
ax(j) = 0;
ay(j) = 0;

end;
end;
ax(t) = X;
ay(t) = Y;
if last.i then output;

run;

As a check, Output 26.6.4 lists the newly compressed data, which match the original data from this example.

Output 26.6.4 Recompressed Data Set

Obs I CS NUM X_1 X_2 X_3 X_4 X_5 X_6 Y_1 Y_2

1 1 CS1 -1.56058 0.40268 0.91951 0.69482 -2.28899 -1.32762 1.92348 2.30418 2.11850

2 2 CS2 0.30989 1.01950 -0.04699 -0.96695 -1.08345 -0.05180 0.30266 4.50982 3.73887

3 3 CS3 0.85054 0.60325 0.71154 0.66168 -0.66823 -1.87550 0.55065 4.07276 4.89621

4 4 CS4 -0.18885 -0.64946 -1.23355 0.04554 -0.24996 0.09685 -0.92771 2.40304 1.48182

5 5 CS5 -0.04761 -0.79692 0.63445 -2.23539 -0.37629 -0.82212 -0.70566 3.58092 6.08917

Obs Y_3 Y_4 Y_5 Y_6

1 2.66009 -4.94104 -0.83053 5.01359

2 1.44984 -1.02996 2.78260 1.73856

3 3.90470 1.03437 0.54598 5.01460

4 2.70579 3.82672 4.01117 1.97639

5 3.08249 4.26605 3.65452 0.81826
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Overview: PDLREG Procedure
The PDLREG procedure estimates regression models for time series data in which the effects of some of the
regressor variables are distributed across time. The distributed lag model assumes that the effect of an input
variable X on an output Y is distributed over time. If you change the value of X at time t, Y will experience
some immediate effect at time t, and it will also experience a delayed effect at times t C 1, t C 2, and so on
up to time t C p for some limit p.

The regression model supported by PROC PDLREG can include any number of regressors with distribution
lags and any number of covariates. (Simple regressors without lag distributions are called covariates.) For
example, the two-regressor model with a distributed lag effect for one regressor is written

yt D ˛ C

pX
iD0

ˇixt�i C zt C ut

Here, xt is the regressor with a distributed lag effect, zt is a simple covariate, and ut is an error term.

The distribution of the lagged effects is modeled by Almon lag polynomials. The coefficients bi of the lagged
values of the regressor are assumed to lie on a polynomial curve. That is,

bi D ˛
�
0 C

dX
jD1

˛�j i
j

where d.� p/ is the degree of the polynomial. For the numerically efficient estimation, the PDLREG proce-
dure uses orthogonal polynomials. The preceding equation can be transformed into orthogonal polynomials,

bi D ˛0 C

dX
jD1

˛jfj .i/

where fj .i/ is a polynomial of degree j in the lag length i, and ˛j is a coefficient estimated from the data.

The PDLREG procedure supports endpoint restrictions for the polynomial. That is, you can constrain the
estimated polynomial lag distribution curve so that b�1 D 0 or bpC1 D 0, or both. You can also impose
linear restrictions on the parameter estimates for the covariates.

You can specify a minimum degree and a maximum degree for the lag distribution polynomial, and the
procedure fits polynomials for all degrees in the specified range. (However, if distributed lags are specified
for more that one regressor, you can specify a range of degrees for only one of them.)

The PDLREG procedure can also test for autocorrelated residuals and perform autocorrelated error correction
by using the autoregressive error model. You can specify any order autoregressive error model and can specify
several different estimation methods for the autoregressive model, including exact maximum likelihood.

The PDLREG procedure computes generalized Durbin-Watson statistics to test for autocorrelated residuals.
For models with lagged dependent variables, the procedure can produce Durbin h and Durbin t statistics. You
can request significance level p-values for the Durbin-Watson, Durbin h, and Durbin t statistics. For more
information about these statistics, see Chapter 9, “The AUTOREG Procedure.”

The PDLREG procedure assumes that the input observations form a time series. Thus, the PDLREG
procedure should be used only for ordered and equally spaced time series data.
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Getting Started: PDLREG Procedure
Use the MODEL statement to specify the regression model. The PDLREG procedure’s MODEL statement is
written like MODEL statements in other SAS regression procedures, except that a regressor can be followed
by a lag distribution specification enclosed in parentheses.

For example, the following MODEL statement regresses Y on X and Z and specifies a distributed lag for X:

model y = x(4,2) z;

The notation X(4,2) specifies that the model includes X and 4 lags of X, with the coefficients of X and its lags
constrained to follow a second-degree (quadratic) polynomial. Thus, the regression model specified by this
MODEL statement is

yt D aC b0xt C b1xt�1 C b2xt�2 C b3xt�3 C b4xt�4 C czt C ut

bi D ˛0 C ˛1f1.i/C ˛2f2.i/

where f1.i/ is a polynomial of degree 1 in i and f2.i/ is a polynomial of degree 2 in i.

Lag distribution specifications are enclosed in parentheses and follow the name of the regressor variable. The
general form of the lag distribution specification is

regressor-name ( length, degree, minimum-degree, end-constraint )

where

length is the length of the lag distribution—that is, the number of lags of the regressor to use.

degree is the degree of the distribution polynomial.

minimum-degree is an optional minimum degree for the distribution polynomial.

end-constraint is an optional endpoint restriction specification, which can have the value FIRST,
LAST, or BOTH.

If the minimum-degree option is specified, the PDLREG procedure estimates models for all degrees between
minimum-degree and degree.

Introductory Example
The following statements generate simulated data for variables Y and X. Y depends on the first three lags of
X, with coefficients .25, .5, and .25. Thus, the effect of changes of X on Y takes effect 25% after one period,
75% after two periods, and 100% after three periods.

data test;
xl1 = 0; xl2 = 0; xl3 = 0;
do t = -3 to 100;

x = ranuni(1234);
y = 10 + .25 * xl1 + .5 * xl2 + .25 * xl3

+ .1 * rannor(1234);
if t > 0 then output;
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xl3 = xl2; xl2 = xl1; xl1 = x;
end;

run;

The following statements use the PDLREG procedure to regress Y on a distributed lag of X. The length of the
lag distribution is 4, and the degree of the distribution polynomial is specified as 3.

proc pdlreg data=test;
model y = x( 4, 3 );

run;

The PDLREG procedure first prints a table of statistics for the residuals of the model, as shown in Figure 27.1.
For an explanation of these statistics, see Chapter 9, “The AUTOREG Procedure.”

Figure 27.1 Residual Statistics

The PDLREG Procedure

Dependent Variable y

Ordinary Least Squares Estimates

SSE 0.86604442 DFE 91

MSE 0.00952 Root MSE 0.09755

SBC -156.72612 AIC -169.54786

MAE 0.07761107 AICC -168.88119

MAPE 0.73971576 HQC -164.3651

Durbin-Watson 1.9920 Total R-Square 0.7711

The PDLREG procedure next prints a table of parameter estimates, standard errors, and t tests, as shown in
Figure 27.2.

Figure 27.2 Parameter Estimates

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 10.0030 0.0431 231.87 <.0001

x**0 1 0.4406 0.0378 11.66 <.0001

x**1 1 0.0113 0.0336 0.34 0.7377

x**2 1 -0.4108 0.0322 -12.75 <.0001

x**3 1 0.0331 0.0392 0.84 0.4007

The table in Figure 27.2 shows the model intercept and the estimated parameters of the lag distribution
polynomial. The parameter labeled X**0 is the constant term, ˛0, of the distribution polynomial. X**1 is
the linear coefficient, ˛1; X**2 is the quadratic coefficient, ˛2; and X**3 is the cubic coefficient, ˛3.

The parameter estimates for the distribution polynomial are not of interest in themselves. Since the PDLREG
procedure does not print the orthogonal polynomial basis that it constructs to represent the distribution
polynomial, these coefficient values cannot be interpreted.

However, because these estimates are for an orthogonal basis, you can use these results to test the degree of
the polynomial. For example, this table shows that the X**3 estimate is not significant; the p-value for its t
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ratio is 0.4007, while the X**2 estimate is highly significant (p < :0001). This indicates that a second-degree
polynomial might be more appropriate for this data set.

The PDLREG procedure next prints the lag distribution coefficients and a graphical display of these coeffi-
cients, as shown in Figure 27.3.

Figure 27.3 Coefficients and Graph of Estimated Lag Distribution

Estimate of Lag Distribution

Variable Estimate
Standard

Error t Value
Approx
Pr > |t| -0.04 0.4167

x(0) -0.040150 0.0360 -1.12 0.2677 |***|                                     |

x(1) 0.324241 0.0307 10.55 <.0001 |   |*****************************        |

x(2) 0.416661 0.0239 17.45 <.0001 |   |*************************************|

x(3) 0.289482 0.0315 9.20 <.0001 |   |**************************           |

x(4) -0.004926 0.0365 -0.13 0.8929 |   |                                     |

The lag distribution coefficients are the coefficients of the lagged values of X in the regression model. These
coefficients lie on the polynomial curve defined by the parameters shown in Figure 27.2. Note that the
estimated values for X(1), X(2), and X(3) are highly significant, while X(0) and X(4) are not significantly
different from 0. These estimates are reasonably close to the true values used to generate the simulated data.

The graphical display of the lag distribution coefficients plots the estimated lag distribution polynomial
reported in Figure 27.2. The roughly quadratic shape of this plot is another indication that a third-degree
distribution curve is not needed for this data set.

Syntax: PDLREG Procedure
The following statements can be used with the PDLREG procedure:

PROC PDLREG option ;
BY variables ;
MODEL dependent = effects / options ;
OUTPUT OUT= SAS-data-set keyword = variables ;
RESTRICT restrictions ;
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Functional Summary
The statements and options used with the PDLREG procedure are summarized in Table 27.1.

Table 27.1 Functional Summary

Description Statement Option

Data Set Options
Specify the input data set PROC PDLREG DATA=
Write predicted values to an output data set OUTPUT OUT=

BY-Group Processing
Specify BY-group processing BY

Printing Control Options
Request all print options MODEL ALL
Print transformed coefficients MODEL COEF
Print correlations of the estimates MODEL CORRB
Print covariances of the estimates MODEL COVB
Print DW statistics up to order j MODEL DW=j
Print the marginal probability of DW statistics MODEL DWPROB
Print inverse of Toeplitz matrix MODEL GINV
Print inverse of the crossproducts matrix MODEL I
Print details at each iteration step MODEL ITPRINT
Print Durbin t statistic MODEL LAGDEP
Print Durbin h statistic MODEL LAGDEP=
Suppress printed output MODEL NOPRINT
Print partial autocorrelations MODEL PARTIAL
Print standardized parameter estimates MODEL STB
Print crossproducts matrix MODEL XPX

Model Estimation Options
Specify order of autoregressive process MODEL NLAG=
Suppress intercept parameter MODEL NOINT
Specify convergence criterion MODEL CONVERGE=
Specify maximum number of iterations MODEL MAXITER=
Specify estimation method MODEL METHOD=

Output Control Options
Specify confidence limit size OUTPUT ALPHACLI=
Specify confidence limit size for structural
predicted values

OUTPUT ALPHACLM=

Output transformed intercept variable OUTPUT CONSTANT=
Output lower confidence limit for predicted
values

OUTPUT LCL=

Output lower confidence limit for structural
predicted values

OUTPUT LCLM=
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Table 27.1 continued

Description Statement Option

Output predicted values OUTPUT P=
Output predicted values of the structural part OUTPUT PM=
Output residuals from the predicted values OUTPUT R=
Output residuals from the structural predicted
values

OUTPUT RM=

Output transformed variables OUTPUT TRANSFORM=
Output upper confidence limit for the
predicted values

OUTPUT UCL=

Output upper confidence limit for the
structural predicted values

OUTPUT UCLM=

PROC PDLREG Statement
PROC PDLREG option ;

The PROC PDLREG statement has the following option:

DATA=SAS-data-set
specifies the name of the SAS data set containing the input data. If you do not specify the DATA=
option, the most recently created SAS data set is used.

In addition, you can place any of the following MODEL statement options in the PROC PDLREG statement,
which is equivalent to specifying the option for every MODEL statement: ALL, COEF, CONVERGE=,
CORRB, COVB, DW=, DWPROB, GINV, ITPRINT, MAXITER=, METHOD=, NOINT, NOPRINT, and
PARTIAL.

BY Statement
BY variables ;

A BY statement can be used with PROC PDLREG to obtain separate analyses on observations in groups
defined by the BY variables.
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MODEL Statement
MODEL dependent = effects / options ;

The MODEL statement specifies the regression model. The keyword MODEL is followed by the dependent
variable name, an equal sign, and a list of independent effects. Only one MODEL statement is allowed.

Every variable in the model must be a numeric variable in the input data set. Specify an independent effect
with a variable name optionally followed by a polynomial lag distribution specification.

Specifying Independent Effects

The general form of an effect is

variable (length, degree, minimum-degree, constraint )

The term in parentheses following the variable name specifies a polynomial distributed lag (PDL) for the
variable. The PDL specification is as follows:

length specifies the number of lags of the variable to include in the lag distribution.

degree specifies the maximum degree of the distribution polynomial. If not specified, the
degree defaults to the lag length.

minimum-degree specifies the minimum degree of the polynomial. By default minimum-degree is the
same as degree.

constraint specifies endpoint restrictions on the polynomial. The value of constraint can be
FIRST, LAST, or BOTH. If a value is not specified, there are no endpoint restrictions.

If you do not specify the degree or minimum-degree parameter, but you do specify endpoint restrictions, you
must use commas to show which parameter, degree or minimum-degree, is left out.

MODEL Statement Options

The following options can appear in the MODEL statement after a slash (/).

ALL
prints all the matrices computed during the analysis of the model.

COEF
prints the transformation coefficients for the first p observations. These coefficients are formed from a
scalar multiplied by the inverse of the Cholesky root of the Toeplitz matrix of autocovariances.

CORRB
prints the matrix of estimated correlations between the parameter estimates.

COVB
prints the matrix of estimated covariances between the parameter estimates.
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DW=j
prints the generalized Durbin-Watson statistics up to the order of j . The default is DW=1. When you
specify the LAGDEP or LAGDEP=name option, the Durbin-Watson statistic is not printed unless you
specify the DW= option.

DWPROB
prints the marginal probability of the Durbin-Watson statistic.

CONVERGE=value
sets the convergence criterion. If the maximum absolute value of the change in the autoregressive
parameter estimates between iterations is less than this amount, then convergence is assumed. The
default is CONVERGE=0.001.

GINV
prints the inverse of the Toeplitz matrix of autocovariances for the Yule-Walker solution.

I
prints .X0X/�1, the inverse of the crossproducts matrix for the model; or, if restrictions are specified, it
prints .X0X/�1 adjusted for the restrictions.

ITPRINT
prints information on each iteration.

LAGDEP

LAGDV
prints the t statistic for testing residual autocorrelation when regressors contain lagged dependent
variables.

LAGDEP=name

LAGDV=name
prints the Durbin h statistic for testing the presence of first-order autocorrelation when regressors
contain the lagged dependent variable whose name is specified as LAGDEP=name. When the h
statistic cannot be computed, the asymptotically equivalent t statistic is given.

MAXITER=number
sets the maximum number of iterations allowed. The default is MAXITER=50.

METHOD=value
specifies the type of estimates for the autoregressive component. The values of the METHOD= option
are as follows:

ML specifies the maximum likelihood method.

ULS specifies unconditional least squares.

YW specifies the Yule-Walker method.

ITYW specifies iterative Yule-Walker estimates.

The default is METHOD=ML if you specified the LAGDEP or LAGDEP= option; otherwise,
METHOD=YW is the default.



1894 F Chapter 27: The PDLREG Procedure

NLAG=m

NLAG=(number-list )
specifies the order of the autoregressive process or the subset of autoregressive lags to be fit. If you do
not specify the NLAG= option, PROC PDLREG does not fit an autoregressive model.

NOINT
suppresses the intercept parameter from the model.

NOPRINT
suppresses the printed output.

PARTIAL
prints partial autocorrelations if the NLAG= option is specified.

STB
prints standardized parameter estimates. Sometimes known as a standard partial regression coefficient,
a standardized parameter estimate is a parameter estimate multiplied by the standard deviation of the
associated regressor and divided by the standard deviation of the regressed variable.

XPX
prints the crossproducts matrix, X0X, used for the model. X refers to the transformed matrix of
regressors for the regression.

OUTPUT Statement
OUTPUT OUT=SAS-data-set keyword=option . . . ;

The OUTPUT statement creates an output SAS data set that contains variables as specified by the following
keyword options. For a description of the associated computations for these options, see the section “Predicted
Values” in Chapter 9, “The AUTOREG Procedure.”

ALPHACLI=number
sets the confidence limit size for the estimates of future values of the current realization of the response
time series to number , where number is less than one and greater than zero. The resulting confidence
interval has 1–number confidence. The default value for number is 0.05, corresponding to a 95%
confidence interval.

ALPHACLM=number
sets the confidence limit size for the estimates of the structural or regression part of the model to
number , where number is less than one and greater than zero. The resulting confidence interval has
1–number confidence. The default value for number is 0.05, corresponding to a 95% confidence
interval.

OUT=SAS-data-set
names the output data.

The following specifications are of the form keyword=names, where keyword specifies the statistic to
include in the output data set and names gives names to the variables that contain the statistics.
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CONSTANT=variable
writes the transformed intercept to the output data set.

LCL=name
requests that the lower confidence limit for the predicted value (specified in the PREDICTED= option)
be added to the output data set under name.

LCLM=name
requests that the lower confidence limit for the structural predicted value (specified in the PREDICT-
EDM= option) be added to the output data set under name.

PREDICTED=name

P=name
stores the predicted values in the output data set under name.

PREDICTEDM=name

PM=name
stores the structural predicted values in the output data set under name. These values are formed from
only the structural part of the model.

RESIDUAL=name

R=name
stores the residuals from the predicted values based on both the structural and time series parts of the
model in the output data set under name.

RESIDUALM=name

RM=name
requests that the residuals from the structural prediction be given.

TRANSFORM=variables
requests that the specified variables from the input data set be transformed by the autoregressive model
and put in the output data set. If you need to reproduce the data suitable for reestimation, you must
also transform an intercept variable. To do this, transform a variable that only takes the value 1 or use
the CONSTANT= option.

UCL=name
stores the upper confidence limit for the predicted value (specified in the PREDICTED= option) in the
output data set under name.

UCLM=name
stores the upper confidence limit for the structural predicted value (specified in the PREDICTEDM=
option) in the output data set under name.

For example, the SAS statements

proc pdlreg data=a;
model y=x1 x2;
output out=b p=yhat r=resid;

run;
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create an output data set named B. In addition to the input data set variables, the data set B contains
the variable YHAT, whose values are predicted values of the dependent variable Y, and RESID, whose
values are the residual values of Y.

RESTRICT Statement
RESTRICT equation , . . . , equation ;

The RESTRICT statement places restrictions on the parameter estimates for covariates in the preceding
MODEL statement. A parameter produced by a distributed lag cannot be restricted with the RESTRICT
statement.

Each restriction is written as a linear equation. If you specify more than one restriction in a RESTRICT
statement, the restrictions are separated by commas.

You can refer to parameters by the name of the corresponding regressor variable. Each name used in the
equation must be a regressor in the preceding MODEL statement. Use the keyword INTERCEPT to refer to
the intercept parameter in the model.

RESTRICT statements can be given labels. You can use labels to distinguish results for different restrictions
in the printed output. Labels are specified as follows:

label : RESTRICT . . .

The following is an example of the use of the RESTRICT statement, in which the coefficients of the regressors
X1 and X2 are required to sum to 1:

proc pdlreg data=a;
model y = x1 x2;
restrict x1 + x2 = 1;

run;

Parameter names can be multiplied by constants. When no equal sign appears, the linear combination is set
equal to 0. Note that the parameters associated with the variables are restricted, not the variables themselves.
Here are some examples of valid RESTRICT statements:

restrict x1 + x2 = 1;
restrict x1 + x2 - 1;
restrict 2 * x1 = x2 + x3 , intercept + x4 = 0;
restrict x1 = x2 = x3 = 1;
restrict 2 * x1 - x2;

Restricted parameter estimates are computed by introducing a Lagrangian parameter � for each restriction
(Pringle and Rayner 1971). The estimates of these Lagrangian parameters are printed in the parameter
estimates table. If a restriction cannot be applied, its parameter value and degrees of freedom are listed as 0.

The Lagrangian parameter, �, measures the sensitivity of the SSE to the restriction. If the restriction is
changed by a small amount �, the SSE is changed by 2��.

The t ratio tests the significance of the restrictions. If � is zero, the restricted estimates are the same as the
unrestricted ones.
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You can specify any number of restrictions in a RESTRICT statement, and you can use any number of
RESTRICT statements. The estimates are computed subject to all restrictions specified. However, restrictions
should be consistent and not redundant.

Details: PDLREG Procedure

Missing Values
The PDLREG procedure skips any observations at the beginning of the data set that have missing values.
The procedure uses all observations with nonmissing values for all the independent and dependent variables
such that the lag distribution has sufficient nonmissing lagged independent variables.

Polynomial Distributed Lag Estimation
The simple finite distributed lag model is expressed in the form

yt D ˛ C

pX
iD0

ˇixt�i C �t

When the lag length (p) is long, severe multicollinearity can occur. Use the Almon or polynomial distributed
lag model to avoid this problem, since the relatively low-degree d (�p) polynomials can capture the true lag
distribution. The lag coefficient can be written in the Almon polynomial lag

ˇi D ˛
�
0 C

dX
jD1

˛�j i
j

Emerson (1968) proposed an efficient method of constructing orthogonal polynomials from the preceding
polynomial equation as

ˇi D ˛0 C

dX
jD1

˛jfj .i/

where fj .i/ is a polynomial of degree j in the lag length i. The polynomials fj .i/ are chosen so that they are
orthogonal,

nX
iD1

wifj .i/fk.i/ D

(
1 ifj D k
0 ifj¤k

where wi is the weighting factor, and n D p C 1. PROC PDLREG uses the equal weights (wi D 1) for all i.
To construct the orthogonal polynomials, the following recursive relation is used:

fj .i/ D .Aj i C Bj /fj�1.i/ � Cjfj�2.i/j D 1; : : : ; d
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The constants Aj ; Bj , and Cj are determined as follows,

Aj D

8<:
nX
iD1

wi i
2f 2j�1.i/ �

 
nX
iD1

wi if
2
j�1.i/

!2

�

 
nX
iD1

wi ifj�1.i/fj�2.i/

!29=;
�1=2

Bj D �Aj

nX
iD1

wi if
2
j�1.i/

Cj D Aj

nX
iD1

wi ifj�1.i/fj�2.i/

where f�1.i/ D 0 and f0.i/ D 1=
qPn

iD1wi .

PROC PDLREG estimates the orthogonal polynomial coefficients, ˛0; : : : ; ˛d , to compute the coefficient
estimate of each independent variable (X) with distributed lags. For example, if an independent variable
is specified as X(9,3), a third-degree polynomial is used to specify the distributed lag coefficients. The
third-degree polynomial is fit as a constant term, a linear term, a quadratic term, and a cubic term. The four
terms are constructed to be orthogonal. In the output produced by the PDLREG procedure for this case,
parameter estimates with names X**0, X**1, X**2, and X**3 correspond to Ǫ0; Ǫ1; Ǫ2, and Ǫ3, respectively.
A test using the t statistic and the approximate p-value (“Approx Pr > jt j”) associated with X**3 can
determine whether a second-degree polynomial rather than a third-degree polynomial is appropriate. The
estimates of the 10 lag coefficients associated with the specification X(9,3) are labeled X(0), X(1), X(2),
X(3), X(4), X(5), X(6), X(7), X(8), and X(9).

Autoregressive Error Model Estimation
The PDLREG procedure uses the same autoregressive error model estimation methods as the AUTOREG
procedure. These two procedures share the same computational resources for computing estimates. For
more information about estimation methods for autoregressive error models, see Chapter 9, “The AUTOREG
Procedure.”
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OUT= Data Set
The OUT= data set produced by the PDLREG procedure’s OUTPUT statement is similar in form to the
OUT= data set produced by the AUTOREG procedure. For more information about the OUT= data set, see
Chapter 9, “The AUTOREG Procedure.”

Printed Output
The PDLREG procedure prints the following items:

1. the name of the dependent variable

2. the ordinary least squares (OLS) estimates

3. the estimates of autocorrelations and of the autocovariance, and if line size permits, a graph of the
autocorrelation at each lag. The autocorrelation for lag 0 is 1. These items are printed if you specify
the NLAG= option.

4. the partial autocorrelations if the PARTIAL and NLAG= options are specified. The first partial
autocorrelation is the autocorrelation for lag 1.

5. the preliminary mean square error, which results from solving the Yule-Walker equations if you specify
the NLAG= option

6. the estimates of the autoregressive parameters, their standard errors, and the ratios of estimates to
standard errors (t) if you specify the NLAG= option

7. the statistics of fit for the final model if you specify the NLAG= option. These include the error sum of
squares (SSE), the degrees of freedom for error (DFE), the mean square error (MSE), the root mean
square error (Root MSE), the mean absolute error (MAE), the mean absolute percentage error (MAPE),
the Schwarz information criterion (SBC), Akaike’s information criterion (AIC), Akaike’s information
criterion corrected (AICC), the regression R2 (Regress R-Square), the total R2 (Total R-Square), and
the Durbin-Watson statistic (Durbin-Watson). For more information about the regression R2 and the
total R2, see Chapter 9, “The AUTOREG Procedure.”

8. the parameter estimates for the structural model (B), a standard error estimate, the ratio of estimate
to standard error (t), and an approximation to the significance probability for the parameter being 0
(“Approx Pr > jt j”)

9. a plot of the lag distribution (estimate of lag distribution)

10. the covariance matrix of the parameter estimates if the COVB option is specified
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

PROC PDLREG assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 27.2.

Table 27.2 ODS Tables Produced in PROC PDLREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ARParameterEstimates Estimates of autoregressive

parameters
NLAG=

CholeskyFactor Cholesky root of gamma NLAG= and ALL
Coefficients Coefficients for first NLAG

observations
NLAG= and
(COEF or ALL)

ConvergenceStatus Convergence status table Default
CorrB Correlation of parameter estimates CORRB
CorrGraph Estimates of autocorrelations NLAG=
CovB Covariance of parameter estimates COVB
DependenceEquations Linear dependence equation
Dependent Dependent variable Default
DWTest Durbin-Watson statistics DW=
DWTestProb Durbin-Watson statistics and DW=

p-values DWPROB
ExpAutocorr Expected autocorrelations {NLAG= and

(COEF or ALL)}
or
{NLAG=(l1 : : : lm)
where lm > m}

FitSummary Summary of regression Default
GammaInverse Gamma inverse NLAG= and

(GINV or ALL)
IterHistory Iteration history ITPRINT
LagDist Lag distribution Default
ParameterEstimates Parameter estimates Default
ParameterEstimatesGivenAR Parameter estimates assuming AR

parameters are given
NLAG=

PartialAutoCorr Partial autocorrelation PARTIAL

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 27.2 continued

ODS Table Name Description Option

PreMSE Preliminary MSE NLAG=
XPXIMatrix .X0X/�1 matrix XPX
XPXMatrix X0X matrix XPX
YWIterSSE Yule-Walker iteration sum of squared

error
METHOD=ITYW

ODS Tables Created by the RESTRICT Statement
Restrict Restriction table Default

Examples: PDLREG Procedure

Example 27.1: Industrial Conference Board Data
In this example, a second-degree Almon polynomial lag model is fit to a model with a five-period lag, and
dummy variables are used for quarter effects. The PDL model is estimated using capital appropriations data
series for the period 1952 to 1967. The estimation model is written

CEt D a0 C b1Q1t C b2Q2t C b3Q3t C c0CAt C c1CAt�1 C � � � C c5CAt�5

where CE represents capital expenditures and CA represents capital appropriations.

title 'National Industrial Conference Board Data';
title2 'Quarterly Series - 1952Q1 to 1967Q4';

data a;
input ce ca @@;
qtr = mod( _n_-1, 4 ) + 1;
q1 = qtr=1;
q2 = qtr=2;
q3 = qtr=3;

datalines;
2072 1660 2077 1926 2078 2181 2043 1897 2062 1695

... more lines ...

proc pdlreg data=a;
model ce = q1 q2 q3 ca(5,2) / dwprob;

run;

The printed output produced by the PDLREG procedure is shown in Output 27.1.1. The small Durbin-Watson
test indicates autoregressive errors.
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Output 27.1.1 Printed Output Produced by PROC PDLREG

National Industrial Conference Board Data
Quarterly Series - 1952Q1 to 1967Q4

The PDLREG Procedure

Dependent Variable ce

Ordinary Least Squares Estimates

SSE 1205186.4 DFE 48

MSE 25108 Root MSE 158.45520

SBC 733.84921 AIC 719.797878

MAE 107.777378 AICC 722.180856

MAPE 3.71653891 HQC 725.231641

Durbin-Watson 0.6157 Total R-Square 0.9834

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 210.0109 73.2524 2.87 0.0061

q1 1 -10.5515 61.0634 -0.17 0.8635

q2 1 -20.9887 59.9386 -0.35 0.7277

q3 1 -30.4337 59.9004 -0.51 0.6137

ca**0 1 0.3760 0.007318 51.38 <.0001

ca**1 1 0.1297 0.0251 5.16 <.0001

ca**2 1 0.0247 0.0593 0.42 0.6794

Estimate of Lag Distribution

Variable Estimate
Standard

Error t Value
Approx
Pr > |t| 0 0.2444

ca(0) 0.089467 0.0360 2.49 0.0165 |***************                          |

ca(1) 0.104317 0.0109 9.56 <.0001 |*****************                        |

ca(2) 0.127237 0.0255 5.00 <.0001 |*********************                    |

ca(3) 0.158230 0.0254 6.24 <.0001 |***************************              |

ca(4) 0.197294 0.0112 17.69 <.0001 |*********************************        |

ca(5) 0.244429 0.0370 6.60 <.0001 |*****************************************|

The following statements use the REG procedure to fit the same polynomial distributed lag model. A DATA
step computes lagged values of the regressor X, and RESTRICT statements are used to impose the polynomial
lag distribution. For the restricted least squares estimation of the Almon distributed lag model, see Judge
et al. (1985, pp. 357–359).

data b;
set a;
ca_1 = lag( ca );
ca_2 = lag2( ca );
ca_3 = lag3( ca );
ca_4 = lag4( ca );
ca_5 = lag5( ca );

run;
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proc reg data=b;
model ce = q1 q2 q3 ca ca_1 ca_2 ca_3 ca_4 ca_5;
restrict - ca + 5*ca_1 - 10*ca_2 + 10*ca_3 - 5*ca_4 + ca_5;
restrict ca - 3*ca_1 + 2*ca_2 + 2*ca_3 - 3*ca_4 + ca_5;
restrict -5*ca + 7*ca_1 + 4*ca_2 - 4*ca_3 - 7*ca_4 + 5*ca_5;

run;

The REG procedure output is shown in Output 27.1.2.

Output 27.1.2 Printed Output Produced by PROC REG

National Industrial Conference Board Data
Quarterly Series - 1952Q1 to 1967Q4

The REG Procedure
Model: MODEL1

Dependent Variable: ce

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 6 71343377 11890563 473.58 <.0001

Error 48 1205186 25108

Corrected Total 54 72548564

Root MSE 158.45520 R-Square 0.9834

Dependent Mean 3185.69091 Adj R-Sq 0.9813

Coeff Var 4.97397

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 210.01094 73.25236 2.87 0.0061

q1 1 -10.55151 61.06341 -0.17 0.8635

q2 1 -20.98869 59.93860 -0.35 0.7277

q3 1 -30.43374 59.90045 -0.51 0.6137

ca 1 0.08947 0.03599 2.49 0.0165

ca_1 1 0.10432 0.01091 9.56 <.0001

ca_2 1 0.12724 0.02547 5.00 <.0001

ca_3 1 0.15823 0.02537 6.24 <.0001

ca_4 1 0.19729 0.01115 17.69 <.0001

ca_5 1 0.24443 0.03704 6.60 <.0001

RESTRICT -1 623.63242 12697 0.05 0.9614*

RESTRICT -1 18933 44803 0.42 0.6772*

RESTRICT -1 10303 18422 0.56 0.5814*

* Probability computed using beta distribution.
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Example 27.2: Money Demand Model
This example estimates the demand for money by using the dynamic specification

mt D a0 C b0mt�1 C

5X
iD0

ciyt�i C

2X
iD0

dirt�i C

3X
iD0

fipt�i C ut

where

mt D log of real money stock (M1)

yt D log of real GNP

rt D interest rate (commercial paper rate)

pt D inflation rate

ci ; di ; and fi .i > 0/ are coefficients for the lagged variables

The following DATA step reads the data and transforms the real money and real GNP variables using the
natural logarithm. For a description of the data, see Balke and Gordon (1986).

title 'Money Demand Estimation using Distributed Lag Model';
title2 'Quarterly Data - 1968Q2 to 1983Q4';

data a;
input m1 gnp gdf r @@;
m = log( 100 * m1 / gdf );
lagm = lag( m );
y = log( gnp );
p = log( gdf / lag( gdf ) );
date = intnx( 'qtr', '1jan1968'd, _n_-1 );
format date yyqc6.;
label m = 'Real Money Stock (M1)'

lagm = 'Lagged Real Money Stock'
y = 'Real GNP'
r = 'Commercial Paper Rate'

... more lines ...

Output 27.2.1 shows a partial list of the data set.
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Output 27.2.1 Partial List of the Data Set A

Money Demand Estimation using Distributed Lag Model
Quarterly Data - 1968Q2 to 1983Q4

Obs date m lagm y r p

1 1968:1 5.44041 . 6.94333 5.58 .

2 1968:2 5.44732 5.44041 6.96226 6.08 0.011513

3 1968:3 5.45815 5.44732 6.97422 5.96 0.008246

4 1968:4 5.46492 5.45815 6.97661 5.96 0.014865

5 1969:1 5.46980 5.46492 6.98855 6.66 0.011005

The regression model is written for the PDLREG procedure with a MODEL statement. The LAGDEP= option
is specified to test for the serial correlation in disturbances since regressors contain the lagged dependent
variable LAGM.

proc pdlreg data=a;
model m = lagm y(5,3) r(2, , ,first) p(3,2) / lagdep=lagm;

run;

The estimated model is shown in Output 27.2.2 and Output 27.2.3.

Output 27.2.2 Parameter Estimates

Money Demand Estimation using Distributed Lag Model
Quarterly Data - 1968Q2 to 1983Q4

The PDLREG Procedure

Dependent Variable m

Real Money Stock (M1)

Ordinary Least Squares Estimates

SSE 0.00169815 DFE 48

MSE 0.0000354 Root MSE 0.00595

SBC -404.60169 AIC -427.4546

MAE 0.00383648 AICC -421.83758

MAPE 0.07051345 HQC -418.53375

Total R-Square 0.9712
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Output 27.2.2 continued

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -0.1407 0.2625 -0.54 0.5943

lagm 1 0.9875 0.0425 23.21 <.0001

y**0 1 0.0132 0.004531 2.91 0.0055

y**1 1 -0.0704 0.0528 -1.33 0.1891

y**2 1 0.1261 0.0786 1.60 0.1154

y**3 1 -0.4089 0.1265 -3.23 0.0022

r**0 1 -0.000186 0.000336 -0.55 0.5816

r**1 1 0.002200 0.000774 2.84 0.0065

r**2 1 0.000788 0.000249 3.16 0.0027

p**0 1 -0.6602 0.1132 -5.83 <.0001

p**1 1 0.4036 0.2321 1.74 0.0885

p**2 1 -1.0064 0.2288 -4.40 <.0001

Restriction DF L Value
Standard

Error t Value
Approx
Pr > |t|

r(-1) -1 0.0164 0.007275 2.26 0.0223

Output 27.2.3 Estimates for Lagged Variables

Estimate of Lag Distribution

Variable Estimate
Standard

Error t Value
Approx
Pr > |t| -0.196 0 0.2686

y(0) 0.268619 0.0910 2.95 0.0049 |                |************************|

y(1) -0.196484 0.0612 -3.21 0.0024 |****************|                        |

y(2) -0.163148 0.0537 -3.04 0.0038 |   *************|                        |

y(3) 0.063850 0.0451 1.42 0.1632 |                |******                  |

y(4) 0.179733 0.0588 3.06 0.0036 |                |****************        |

y(5) -0.120276 0.0679 -1.77 0.0827 |       *********|                        |

Estimate of Lag Distribution

Variable Estimate
Standard

Error t Value
Approx
Pr > |t| -0.001 0 0.0018

r(0) -0.001341 0.000388 -3.45 0.0012 |*****************|                       |

r(1) -0.000751 0.000234 -3.22 0.0023 |        *********|                       |

r(2) 0.001770 0.000754 2.35 0.0230 |                 |***********************|

Estimate of Lag Distribution

Variable Estimate
Standard

Error t Value
Approx
Pr > |t| -1.104 0 0.2634

p(0) -1.104051 0.2027 -5.45 <.0001 |********************************|        |

p(1) 0.082892 0.1257 0.66 0.5128 |                                |***     |

p(2) 0.263391 0.1381 1.91 0.0624 |                                |********|

p(3) -0.562556 0.2076 -2.71 0.0093 |                ****************|        |
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Overview: QLIM Procedure
The QLIM (qualitative and limited dependent variable model) procedure analyzes univariate and multivariate
limited dependent variable models in which dependent variables take discrete values or in which dependent
variables are observed only in a limited range of values. These models include logit, probit, tobit, selection,
and multivariate models. The multivariate model can contain discrete choice and limited endogenous variables
in addition to continuous endogenous variables.

The QLIM procedure supports the following models:

� linear regression model with heteroscedasticity

� Box-Cox regression with heteroscedasticity

� probit with heteroscedasticity

� logit with heteroscedasticity

� tobit (censored and truncated) with heteroscedasticity

� bivariate probit

� bivariate tobit

� sample selection and switching regression models
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� multivariate limited dependent variables

� stochastic frontier production and cost models

In the linear regression models with heteroscedasticity, the assumption that error variance is constant across
observations is relaxed. The QLIM procedure allows for a number of different linear and nonlinear variance
specifications. Another way to make the linear model more appropriate to fit the data and reduce skewness
is to apply Box-Cox transformation. If the nature of the data is such that the dependent variable is discrete
and it takes only two possible values, ordinary least squares (OLS) estimates are inconsistent. The QLIM
procedure offers probit and logit models to overcome these estimation problems. Assumptions about the
error variance can also be relaxed in order to estimate probit or logit with heteroscedasticity.

The QLIM procedure also offers a class of models in which the dependent variable is censored or truncated
from below or above or both. When a continuous dependent variable is observed only within a certain range
and values outside this range are not available, the QLIM procedure offers a class of models that adjust for
truncation. In some cases, the dependent variable is continuous only in a certain range and all values outside
this range are reported as being on its boundary. For example, if it is not possible to observe negative values,
the value of the dependent variable is reported as equal to 0. Because the data are censored, OLS results are
inconsistent, and it cannot be guaranteed that the predicted values from the model fall in the appropriate
region.

Most of the models in the QLIM procedure can be extended to accommodate bivariate and multivariate
scenarios. The assumption that one variable is observed only if another variable takes on certain values
lead to the introduction of sample selection models. If the dependent variables are mutually exclusive and
observed only for certain ranges of the selection variable, the sample selection can be extended to include
cases of switching regression. Stochastic frontier production and cost models allow for random shocks
of the production or cost. They include a systematic positive component in the error term that adjusts for
technological or cost inefficiency.

The QLIM procedure can use the maximum likelihood method and the Bayesian method for both univariate
and multivariate models. Initial starting values for the nonlinear optimizations are typically calculated by
OLS.
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Getting Started: QLIM Procedure
The QLIM procedure is similar in use to the other regression or simultaneous equations model procedures in
the SAS System. For example, the following statements are used to estimate a binary choice model by using
the probit probability function:

proc qlim data=a;
model y = x1;
endogenous y ~ discrete;

run;

The response variable, y, is numeric and has discrete values. PROC QLIM enables the user to specify the type
of endogenous variables in the ENDOGENOUS statement. The binary probit model can be also specified as
follows:

model y = x1 / discrete;

When multiple endogenous variables are specified in the QLIM procedure, these equations are estimated as a
system. Multiple endogenous variables can be specified with one MODEL statement in the QLIM procedure
when these models have the same exogenous variables:

model y1 y2 = x1 x2 / discrete;

The preceding specification is equivalent to the following statements:

proc qlim data=a;
model y1 = x1 x2;
model y2 = x1 x2;
endogenous y1 y2 ~ discrete;

run;

Some equations in multivariate models can be continuous while other equations can be discrete. A bivariate
model with a discrete and a continuous equation is specified as follows:

proc qlim data=a;
model y1 = x1 x2;
model y2 = x3 x4;
endogenous y1 ~ discrete;

run;

The standard tobit model is estimated by specifying the endogenous variable to be truncated or censored.
The limits of the dependent variable can be specified with the CENSORED or TRUNCATED option in
the ENDOGENOUS or MODEL statement when the data are limited by specific values or variables. For
example, the two-limit censored model requires two variables that contain the lower (bottom) and upper (top)
bound:

proc qlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=bottom ub=top);

run;

The bounds can be numbers if they are fixed for all observations in the data set. For example, the standard
tobit model can be specified as follows:
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proc qlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=0);

run;

Introductory Example: Binary Probit and Logit Models
The following example illustrates the use of PROC QLIM. The data were originally published by Mroz
(1987) and downloaded from Wooldridge (2002). This data set is based on a sample of 753 married white
women. The dependent variable is a discrete variable of labor force participation (inlf ). Explanatory variables
are the number of children ages 5 or younger (kidslt6 ), the number of children ages 6 to 18 (kidsge6 ), the
woman’s age (age ), the woman’s years of schooling (educ ), wife’s labor experience (exper ), square of
experience (expersq ), and the family income excluding the wife’s wage (nwifeinc ). The program (with data
values omitted) is as follows:

/*-- Binary Probit --*/
proc qlim data=mroz plots=predicted;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 / discrete;

run;

Results of this analysis are shown in the following four figures. In the first table, shown in Figure 28.1, PROC
QLIM provides frequency information about each choice. In this example, 428 women participate in the
labor force (inlf = 1).

Figure 28.1 Choice Frequency Summary

Estimating a Binary Response Model

The QLIM Procedure

Discrete Response
Profile of inlf

Index Value
Total

Frequency

1 0 325

2 1 428

The second table is the estimation summary table shown in Figure 28.2. Included are the number of dependent
variables, names of dependent variables, the number of observations, the log-likelihood function value, the
maximum absolute gradient, the number of iterations, the optimization method, AIC, and Schwarz criterion.
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Figure 28.2 Fit Summary Table of Binary Probit

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable inlf

Number of Observations 753

Log Likelihood -401.30219

Maximum Absolute Gradient 0.0000169

Number of Iterations 15

Optimization Method Quasi-Newton

AIC 818.60439

Schwarz Criterion 855.59691

Goodness-of-fit measures are displayed in Figure 28.3. All measures except McKelvey-Zavoina’s definition
are based on the log-likelihood function value. The likelihood ratio test statistic has chi-square distribution
conditional on the null hypothesis that all slope coefficients are zero. In this example, the likelihood ratio
statistic is used to test the hypothesis that kidslt6 = kidge6 = age = educ = exper = expersqD nwifeinc = 0.

Figure 28.3 Goodness of Fit

Goodness-of-Fit Measures

Measure Value Formula

Likelihood Ratio (R) 227.14 2 * (LogL - LogL0)

Upper Bound of R (U) 1029.7 - 2 * LogL0

Aldrich-Nelson 0.2317 R / (R+N)

Cragg-Uhler 1 0.2604 1 - exp(-R/N)

Cragg-Uhler 2 0.3494 (1-exp(-R/N)) / (1-exp(-U/N))

Estrella 0.2888 1 - (1-R/U)^(U/N)

Adjusted Estrella 0.2693 1 - ((LogL-K)/LogL0)^(-2/N*LogL0)

McFadden's LRI 0.2206 R / U

Veall-Zimmermann 0.4012 (R * (U+N)) / (U * (R+N))

McKelvey-Zavoina 0.4025

N = # of observations, K = # of regressors

The parameter estimates and standard errors are shown in Figure 28.4.

Figure 28.4 Parameter Estimates of Binary Probit

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.270077 0.508590 0.53 0.5954

nwifeinc 1 -0.012024 0.004840 -2.48 0.0130

educ 1 0.130905 0.025255 5.18 <.0001

exper 1 0.123348 0.018720 6.59 <.0001

expersq 1 -0.001887 0.000600 -3.14 0.0017

age 1 -0.052853 0.008477 -6.24 <.0001

kidslt6 1 -0.868329 0.118519 -7.33 <.0001

kidsge6 1 0.036005 0.043477 0.83 0.4076
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Finally, the QLIM procedure profiles the predicted outcome with respect to the regressors. For example,
Output 28.5 shows the predicted values profiled with respect to nwifeinc, educ, exper, expersq, age, and
kidslt6.

Figure 28.5 Predictions by Regressors: nwifeinc, educ, exper, expersq, age, and kidslt6

When the error term has a logistic distribution, the binary logit model is estimated. To specify a logistic
distribution, add the D=LOGIT option as follows:

/*-- Binary Logit --*/
proc qlim data=mroz;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 / discrete(d=logit);

run;

The estimated parameters are shown in Figure 28.6.
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Figure 28.6 Parameter Estimates of Binary Logit

Estimating a Binary Response Model

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.425452 0.860365 0.49 0.6210

nwifeinc 1 -0.021345 0.008421 -2.53 0.0113

educ 1 0.221170 0.043441 5.09 <.0001

exper 1 0.205870 0.032070 6.42 <.0001

expersq 1 -0.003154 0.001017 -3.10 0.0019

age 1 -0.088024 0.014572 -6.04 <.0001

kidslt6 1 -1.443354 0.203575 -7.09 <.0001

kidsge6 1 0.060112 0.074791 0.80 0.4215

The heteroscedastic logit model can be estimated using the HETERO statement. If the variance of the logit
model is a function of the family income level excluding wife’s income (nwifeinc), the variance can be
specified as

Var.�i / D �2 exp.*nwifeinci /

where �2 is normalized to 1 because the dependent variable is discrete. The following SAS statements
estimate the heteroscedastic logit model:

/*-- Binary Logit with Heteroscedasticity --*/
proc qlim data=mroz;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 / discrete(d=logit);

hetero inlf ~ nwifeinc / noconst;
run;

The parameter estimate,  , of the heteroscedasticity variable is listed as _H.nwifeinc; see Figure 28.7.
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Figure 28.7 Parameter Estimates of Binary Logit with Heteroscedasticity

Estimating a Binary Response Model

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.510445 0.983538 0.52 0.6038

nwifeinc 1 -0.026778 0.012108 -2.21 0.0270

educ 1 0.255547 0.061728 4.14 <.0001

exper 1 0.234105 0.046639 5.02 <.0001

expersq 1 -0.003613 0.001236 -2.92 0.0035

age 1 -0.100878 0.021491 -4.69 <.0001

kidslt6 1 -1.645206 0.311296 -5.29 <.0001

kidsge6 1 0.066941 0.085633 0.78 0.4344

_H.nwifeinc 1 0.013280 0.013606 0.98 0.3291

Syntax: QLIM Procedure
The following statements are available in the QLIM procedure:

PROC QLIM < options > ;
BAYES < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variables ;
FREQ variable ;
ENDOGENOUS variables Ï options ;
HETERO dependent-variables Ï exogenous-variables / options ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent-variable = regressors / options ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set > < output-options > ;
PRIOR parameter-list Ï distribution ;
RANDOM regressors < / options > ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST options ;
WEIGHT variable < / options > ;

At least one MODEL statement is required. If more than one MODEL statement is used, the QLIM procedure
estimates a system of models. If a FREQ or WEIGHT statement is specified more than once, the variable
specified in the first instance is used. Main effects and higher-order terms can be specified in the MODEL
statement, as in the GLM procedure and PROBIT procedure in SAS/STAT. If a CLASS statement is used, it
must precede the MODEL statement.
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Functional Summary
Table 28.1 summarizes the statements and options used with the QLIM procedure.

Table 28.1 PROC QLIM Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set PROC QLIM DATA=
Writes parameter estimates to an output data set PROC QLIM OUTEST=
Writes predictions to an output data set OUTPUT OUT=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies classification variables CLASS
Specifies a frequency variable FREQ
Specifies a weight variable WEIGHT NONORMALIZE

Printing Control Options
Requests all printing options PROC QLIM PRINTALL
Prints correlation matrix of the estimates PROC QLIM CORRB
Prints covariance matrix of the estimates PROC QLIM COVB
Prints a summary iteration listing PROC QLIM ITPRINT
Suppresses the normal printed output PROC QLIM NOPRINT

Plotting Options
Displays plots PROC QLIM PLOTS=

Options to Control the Optimization Process
Specifies the optimization method PROC QLIM METHOD=
Specifies the optimization options NLOPTIONS See Chapter 7, “Nonlinear

Optimization Methods.”
Sets initial values for parameters INIT
Specifies upper and lower bounds for the parameter
estimates

BOUNDS

Specifies linear restrictions on the parameter
estimates

RESTRICT

Model Estimation Options
Specifies options specific to Box-Cox
transformation

MODEL BOXCOX()

Suppresses the intercept parameter MODEL NOINT
Specifies variable selection MODEL SELECTVAR=( )
Specifies the type of random number generators MODEL RANDNUM=
Specifies that initial values are generated using
random numbers

MODEL RANDOMINIT
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Table 28.1 continued

Description Statement Option

Specifies a seed for pseudorandom number
generation

PROC QLIM SEED=

Specifies the number of draws for Monte Carlo
integration

PROC QLIM NDRAW=

Specifies the method to calculate parameter
covariance

PROC QLIM COVEST=

Requests estimation by Heckman’s two-step method PROC QLIM HECKIT

Options for the Estimation of Random-Parameters Models
Specifies the ID variable for the parameter
heterogeneity

RANDOM SUBJECT=

Requests the MC simulation method of integration RANDOM METHOD=SIMULATION()
Requests the Halton sequence method of integration RANDOM METHOD=HALTON()
Requests the Gauss-Hermite quadrature method of
integration

RANDOM METHOD=HERMITE()

Requests that random parameters be uncorrelated RANDOM NOCORRELATION

Bayesian MCMC Options
Controls the aggregation of multiple posterior
chains

BAYES AGGREGATION=

Automates the initialization of the MCMC
algorithm

BAYES AUTOMCMC()

Specifies the initial values of the MCMC INIT
Evaluates the marginal likelihood BAYES MARGINLIKE
Specifies the maximum number of tuning phases BAYES MAXTUNE=
Specifies the minimum number of tuning phases BAYES MINTUNE=
Specifies the number of burn-in iterations BAYES NBI=
Specifies the number of iterations during the
sampling phase

BAYES NMC=

Specifies the number of samples for the prior
predictive analysis

BAYES NMCPRIOR=

Specifies the number of threads to use during the
sampling phase

BAYES NTRDS=

Specifies the number of iterations during the tuning
phase

BAYES NTU=

Controls options for constructing the initial
proposal covariance matrix

BAYES PROPCOV=

Specifies the sampling scheme BAYES SAMPLING=
Specifies the random number generator seed BAYES SEED=
Prints the time required for the MCMC sampling BAYES SIMTIME
Controls the thinning of the Markov chain BAYES THIN=

Bayesian Summary Statistics and Convergence Diagnostics
Displays convergence diagnostics BAYES DIAGNOSTICS=
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Table 28.1 continued

Description Statement Option

Displays summary statistics of the posterior
samples

BAYES STATISTICS=

Bayesian Prior and Posterior Samples
Specifies a SAS data set for the posterior samples BAYES OUTPOST=
Specifies a SAS data set for the prior samples BAYES OUTPRIOR=

Bayesian Analysis
Specifies normal prior distribution PRIOR NORMAL(MEAN=, VAR=)
Specifies gamma prior distribution PRIOR GAMMA(SHAPE=, SCALE=)
Specifies square root gamma prior distribution PRIOR SQGAMMA(SHAPE=,

SCALE=)
Specifies inverse gamma prior distribution PRIOR IGAMMA(SHAPE=, SCALE=)
Specifies square root inverse gamma prior
distribution

PRIOR SQIGAMMA(SHAPE=,
SCALE=)

Specifies uniform prior distribution PRIOR UNIFORM(MIN=, MAX=)
Specifies beta prior distribution PRIOR BETA(SHAPE1=, SHAPE2=,

MIN=, MAX=)
Specifies t prior distribution PRIOR T(LOCATION=, DF=)

Endogenous Variable Options
Specifies discrete variable ENDOGENOUS DISCRETE()
Specifies censored variable ENDOGENOUS CENSORED()
Specifies truncated variable ENDOGENOUS TRUNCATED()
Specifies variable selection condition ENDOGENOUS SELECT()
Specifies stochastic frontier variable ENDOGENOUS FRONTIER()

Endogeneity and Overidentification Test Options
Requests the variable addition test for endogeneity ENDOGENOUS ENDOTEST()
Requests the overidentification test ENDOGENOUS OVERID()

Heteroscedasticity Model Options
Specifies the function for heteroscedasticity models HETERO LINK=
Squares the function for heteroscedasticity models HETERO SQUARE
Specifies no constant for heteroscedasticity models HETERO NOCONST

Output Control Options
Outputs predicted values OUTPUT PREDICTED
Outputs structured part OUTPUT XBETA
Outputs residuals OUTPUT RESIDUAL
Outputs error standard deviation OUTPUT ERRSTD
Outputs marginal effects OUTPUT MARGINAL
Outputs probability for the current response OUTPUT PROB
Outputs probability for all responses OUTPUT PROBALL
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Table 28.1 continued

Description Statement Option

Outputs expected value OUTPUT EXPECTED
Outputs conditional expected value OUTPUT CONDITIONAL
Outputs inverse Mills ratio OUTPUT MILLS
Outputs technical efficiency measures OUTPUT TE1

OUTPUT TE2
Includes covariances in the OUTEST= data set PROC QLIM COVOUT
Includes correlations in the OUTEST= data set PROC QLIM CORROUT

Test Request Options
Requests Wald, Lagrange multiplier, and likelihood
ratio tests

TEST ALL

Requests the Wald test TEST WALD
Requests the Lagrange multiplier test TEST LM
Requests the likelihood ratio test TEST LR

PROC QLIM Statement
PROC QLIM < options > ;

You can specify the following options in the PROC QLIM statement.

Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If this option is not specified, PROC QLIM uses the most recently
created SAS data set.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to the specified SAS-data-set .

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

CORROUT
writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.
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Printing Options

NOPRINT
suppresses the normal printed output but does not suppress error listings. If you specify the NOPRINT
option, then any other print option is turned off.

PRINTALL
turns on all the printing-control options. The options set by PRINTALL are COVB and CORRB.

CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

ITPRINT
prints the initial parameter estimates, convergence criteria, and all constraints of the optimization. At
each iteration, objective function value, step size, maximum gradient, and slope of search direction are
printed as well.

Model Estimation Options

COVEST=OP | HESSIAN | QML
specifies the method for calculating the covariance matrix of parameter estimates. You can specify the
following covariance-options:

OP calculates the covariance from the outer product matrix.

HESSIAN calculates the covariance from the inverse Hessian matrix.

QML calculates the covariance from the outer product and Hessian matrices (the quasi-
maximum likelihood estimates).

By default, COVEST=HESSIAN.

HECKIT < (heckit-options) >
uses Heckman’s two-step estimation method to estimate the selection model. You must specify exactly
two MODEL statements when you use the HECKIT option. One of the models must be a binary
probit model; therefore, you must specify the DISCRETE option in the MODEL or ENDOGENOUS
statement. You base the selection on the binary probit model for the second model; therefore, you must
specify the SELECT option for this model.

You can specify one or both of the following heckit-options:

SECONDSTAGE=OLS | ML
specifies the estimation method of the second stage of Heckman’s two-step method. You can
specify the following values:

OLS requests the ordinary least squares method for the second stage. If you specify
SECONDSTAGE=OLS, then the model of interest—that is, the model that uses the
SELECT option—must be linear and contain a continuous dependent variable. There-
fore, you cannot specify the DISCRETE, CENSORED, or TRUNCATED option
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along with the SELECT option for the model of interest. When you specify SEC-
ONDSTAGE=OLS, you cannot test or restrict the parameters of the model of interest.
However, you can test or restrict the parameters of the selection model—that is, the
model that defines the selection rule.

ML requests that PROC QLIM use the maximum likelihood method in the second stage,
as it does in the first stage. When you specify SECONDSTAGE=ML, the model
of interest can be nonlinear. Moreover, you can also use the TEST or RESTRICT
statement to test or restrict the parameters of the model of interest.

By default, SECONDSTAGE=OLS.

UNCORRECTED
requests the conventional OLS standard errors when the second-stage estimation method is the
ordinary least squares method. If you do not specify the UNCORRECTED option, PROC QLIM
reports the corrected OLS standard errors. For more information about the corrected standard
errors, see the section “Heckman’s Two-Step Selection Method” on page 1963.

If you specify both the UNCORRECTED and SECONDSTAGE=ML options, PROC QLIM
ignores the UNCORRECTED option, because the UNCORRECTED option is related to the OLS
standard errors.

NDRAW=value
specifies the number of draws for Monte Carlo integration.

SEED=value
specifies a seed for pseudorandom number generation in Monte Carlo integration.

Optimization Process Control Options

PROC QLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks.
You can use any of the NLO options in the NLOPTIONS statement. For more information, see Chapter 7,
“Nonlinear Optimization Methods.”

METHOD=value
specifies the optimization method. If this option is specified, it overwrites the TECH= option in the
NLOPTIONS statement. You can specify the following values:

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization, combining a line-search algorithm with
ridging.

NMSIMP performs a Nelder-Mead simplex optimization.

NONE specifies that no optimization be performed beyond using the ordinary least squares
method to compute the parameter estimates.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a quasi-Newton optimization.

TRUREG performs a trust region optimization.
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By default, METHOD=QUANEW.

Plotting Options

PLOTS< (global-plot-options) > = plot-request | (plot-requests)
controls the display of plots. By default, the plots are displayed in panels unless the UNPACK global-
plot-option is specified. When you specify only one plot-request , you can omit the parentheses around
the plot-request .

Global Plot Options
You can specify the following global-plot-options:

ONLY
displays only the requested plot.

PRIOR
displays the prior predictive graph that is associated with the requested posterior predictive plot
BAYESPRED. This option is available only for Bayesian analysis.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed separately.

Plot Requests
You can specify the following plot-requests:

ALL
specifies all types of available plots.

AUTOCORR< (LAGS=n) >
displays the autocorrelation function plots for the parameters. This plot-request is available only for
Bayesian analysis. The optional LAGS= suboption specifies the number (up to lag n) of autocorrelations
to be plotted in the AUTOCORR plot. If this suboption is not specified, autocorrelations are plotted up
to lag 50.

BAYESDIAG
displays the TRACE, AUTOCORR, and DENSITY plots. This plot-request is available only for
Bayesian analysis.

BAYESPRED
displays the predictive analysis. The predictive analysis takes into account the variability of the error
term, whereas the PREDICTED plot-request does not. The BAYESPRED plot-request is available
only for Bayesian analysis.

BAYESSUM
displays the posterior distribution, the prior distribution, and the maximum likelihood estimates. This
plot-request is available only for Bayesian analysis.
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CONDITIONAL
displays the conditional expected values for continuous endogenous variables. Each contributing
regressor is set equal to its mean, except for the parameter that is reported on the X axis. This
plot-request is not available for Bayesian analysis.

DENSITY< (FRINGE) >
displays the kernel density plots for the parameters. This plot-request is available only for Bayesian
analysis. If you specify the FRINGE suboption, a fringe plot is created on the X axis of the kernel
density plot. This plot-request is available only for Bayesian analysis.

ERRSTD
displays the error standard deviation versus observed regressors when you also specify a HETERO
statement. This plot-request is not available for Bayesian analysis.

EXPECTED
displays the expected values for continuous endogenous variables. Each contributing regressor is set
equal to its mean, except for the parameter that is reported on the X axis. This plot-request is not
available for Bayesian analysis.

MARGINAL
displays the marginal effects. Each contributing regressor is set equal to its mean, except for the
parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

MILLS
displays the inverse Mills ratio. Each contributing regressor is set equal to its mean, except for the
parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

NONE
suppresses all diagnostic plots.

PREDICTED
displays the model predicted values. Each contributing regressor is set equal to its mean, except for the
parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

PROB
displays the predicted response probability. Each contributing regressor is set equal to its mean, except
for the parameter that is reported on the X axis. This plot-request is not available for Bayesian analysis.

PROBALL
displays the predicted probabilities for each level of the response. Each contributing regressor is set
equal to its mean, except for the parameter that is reported on the X axis. This plot-request is not
available for Bayesian analysis.

PROFLIK
displays the profiled log likelihood. Each profiled graph is obtained by setting all the parameters to their
maximum likelihood estimate except for the profiling parameter. The profiling parameter takes values
on a predefined grid that is determined by the maximum likelihood estimate of the corresponding
standard deviation. When a restricted optimization is requested, the profiled log likelihood plots depict
the behavior of the profiled log likelihood around the restricted MLE without imposing the actual
restrictions.
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RESIDUAL
displays the residuals versus observed regressors. This plot-request is not available for Bayesian
analysis.

TE1
displays the technical efficiency for the stochastic frontier model as suggested by Battese and Coelli
(1988). Each contributing regressor is set equal to its mean, except for the parameter that is reported
on the X axis. This plot-request is not available for Bayesian analysis.

TE2
displays the technical efficiency for the stochastic frontier model as suggested by Jondrow et al. (1982).
Each contributing regressor is set equal to its mean, except for the parameter that is reported on the X
axis. This plot-request is not available for Bayesian analysis.

TRACE< (SMOOTH) >
displays the trace plots for the parameters. This plot-request is available only for Bayesian analysis.
The SMOOTH suboption displays a fitted penalized B-spline curve for each TRACE plot.

XBETA
displays the structural part on the right-hand side of the model. Each contributing regressor is set equal
to its mean, except for the parameter that is reported on the X axis. This is not available for Bayesian
analysis.

BAYES Statement
BAYES < options > ;

The BAYES statement controls the Metropolis sampling scheme that is used to obtain samples from the
posterior distribution of the underlying model and data.

AGGREGATION=WEIGHTED | UNWEIGHTED (Experimental )
specifies how multiple posterior samples should be aggregated. You can specify the following values:

WEIGHTED implements a weighted resampling scheme for the aggregation of multiple posterior
chains. You can use this option when the posterior distribution is characterized by
several very distinct posterior modes.

UNWEIGHTED aggregates multiple posterior chains without any adjustment. You can use this
option when the posterior distribution is characterized by one or few relatively close
posterior modes.

By default, AGGREGATION=UNWEIGHTED. For more information, see the section “Aggregation
of Multiple Chains” on page 1982.

AUTOMCMC< =(automcmc-options) >
specifies an algorithm for the auto-initialization of the MCMC sampling algorithm. For more informa-
tion, see the section “Automated Initialization of MCMC” on page 1983.
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ACCURACY=(accuracy-options)
customizes the behavior of the AUTOMCMC algorithm when you are searching for an accurate
representation of the posterior distribution. You can specify the following accuracy-options:

ATTEMPTS=number
specifies the maximum number of attempts that is required in order to obtain accurate
samples from the posterior distribution. By default, ATTEMPTS=10.

TARGETESS=number
requests that the accuracy search be based on the effective sample size (ESS) analysis. If
you specify this option, you must also specify the minimum number of effective samples.

TARGETSTATS<=(targetstats-option)>
requests that the accuracy search be based on the analysis of the posterior mean and a
posterior quantile of interest. You can customize the behavior of the analysis of the posterior
mean by adjusting HEIDELBERGER sub-options. You can customize the behavior of the
analysis of the posterior quantile by adjusting the RAFTERY sub-options. If you specify
TARGETSTATS, you can also specify how the Raftery-Lewis test should be interpreted by
using the following targetstats-option:

RLLIMITS=(LB=number UB=number )
specifies a region where the search for the optimal sample size depends directly on the
Raftery-Lewis test. By default, RLLIMITS (LB=10000 UB=300000).

TOL=value
specifies the proportion of parameters that are required to be accurate. By default, TOL=0.95.

MAXNMC=number
specifies the maximum number of posterior samples that the AUTOMCMC option allows. By
default, MAXNMC=700000.

RANDINIT< =(randinit-options) >
specifies random starting points for the MCMC algorithm. The starting points can be sampled
around the maximum likelihood estimate and around the prior mean. You can specify the
following randinit-options:

MULTIPLIER=(value)
specifies the radius of the area where the starting points are sampled. For the starting points
that are sampled around the maximum likelihood estimate, the radius equals the standard
deviation of the maximum likelihood estimate multiplied by the multiplier value. For the
starting points that are sampled around the prior mean, the radius equals the standard devia-
tion of the prior distribution multiplied by the multiplier value. By default, MULTIPLIER=2.

PROPORTION=(value)
specifies the proportion of starting points that are sampled around the maximum likelihood
estimate and around the prior mean. By default, PROPORTION=0, which implies that all
the initial points are sampled around the maximum likelihood estimate. If you use choose
to sample starting points around the prior mean, the convergence of the MCMC algorithm
could be very slow.
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STATIONARITY=(stationarity-options)
customizes the behavior of the AUTOMCMC algorithm when you are trying to sample from the
posterior distribution. You can specify the following stationarity-options:

ATTEMPTS=number
specifies the maximum number of attempts that are required in order to obtain stationary
samples from the posterior distribution. By default, ATTEMPTS=10.

TOL=value
specifies the proportion of parameter whose samples must to be stationary. By default,
TOL=0.95.

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls which diagnostics are produced. All the following diagnostics are produced with DIAGNOS-
TICS=ALL. If you do not want any of these diagnostics, specify DIAGNOSTICS=NONE. If you
want some but not all of the diagnostics, or if you want to change certain settings of these diagnostics,
specify a subset of the following keywords. By default, DIAGNOSTICS=NONE.

AUTOCORR < (LAGS=numeric-list) >
computes the autocorrelations at lags that are specified in the numeric-list . Elements in the
numeric-list are truncated to integers, and repeated values are removed. If the LAGS= option is
not specified, autocorrelations of lags 1, 5, 10, and are computed.

AUTOMCMCSUM
produces a summary table for the AUTOMCMC (automatic MCMC) sampling tool is used.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:
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SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Carlo standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size.

RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile ( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when
the chain is allowed to run for a long time. The computation is stopped when the estimated
probability OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with probability S; that is,
Pr.Q �R � OPQ � QCR/ D S . The following raftery-options enable you to specify Q;R; S ,
and a precision level � for the test:

QUANTILE=value

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.

PROBABILITY=value

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON=value

EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.



1930 F Chapter 28: The QLIM Procedure

DELTA=value
specifies the target acceptance rate during the tuning process of the No-U-Turn Sampler (NUTS)
algorithm. By default, DELTA=0.6. Increasing the value can often improve mixing, but it can also
significantly slow down the sampling.

MARGINLIKE< (NSIM=number ) >
evaluates of the logarithm of the marginal likelihood. Two estimates are produced: the cross entropy
estimate and the harmonic mean. The cross entropy estimate is based on an importance sampling
algorithm. You can specify the number of importance samples in the NSIM=number option. By
default NSIM=10000. For more information, see the section “Marginal Likelihood” on page 1993.

MAXHEIGHT=value
specifies the maximum height of the NUTS algorithm tree. The taller the tree, the more gradient
evaluations per iteration the procedure calculates. The number of evaluations is 2height. By default,
MAXHEIGHT=10. Usually, the height of a tree should be no more than 7 or 8 during the sampling
stage, but it can be higher during the tuning stage. A larger height indicates that the algorithm is having
difficulty converging.

MAXTUNE=number
specifies the maximum number of tuning phases. The default is 24.

MINTUNE=number
specifies the minimum number of tuning phases. The default is 2.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 1,000.

NMC=number
specifies the number of iterations after the burn-in for both Metropolis and Hamiltonian sampling
schemes. For more information, see the SAMPLING= option. The default is 1,000. specifies the
number of iterations after the burn-in for Metropolis sampling scheme. The default is 1,000.

NMCPRIOR=number
specifies the number of samples for the prior predictive analysis when PLOTS(PRIOR)=BAYESPRED
is requested. The default is 10,000.

NTRDS=number

THREADS=number
specifies the number of threads to be used. The number of threads cannot exceed the number of
computer cores available. Each core samples the number of iterations that is specified by the NMC
option. The default is 1.

NTU=number
specifies the number of samples for each tuning phase for both Metropolis and Hamiltonian sampling
schemes. For more information, see the SAMPLING= option. The default is 500.
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OUTPOST=SAS-data-set
names the SAS data set to contain the posterior samples. Alternatively, you can create the output data
set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE = < SAS-data-set > ;

OUTPRIOR=SAS-data-set
names the SAS data set to contain the prior samples used to generate the prior predictive analysis when
you request the prior predictive plots. Alternatively, you can create the output data set by specifying an
ODS OUTPUT statement as follows:

ODS OUTPUT PRIORSAMPLE = < SAS-data-set > ;

PROPCOV=value
specifies the method used in constructing the initial covariance matrix for the Metropolis-Hastings
algorithm. The QUANEW and NMSIMP methods find numerically approximated covariance matrices
at the optimum of the posterior density function with respect to all continuous parameters. The
tuning phase starts at the optimized values; in some problems, this can greatly increase convergence
performance. If the approximated covariance matrix is not positive definite, then an identity matrix is
used instead. You can specify the following values:

CONGRA performs a conjugate-gradient optimization.

DBLDOG performs a version of double-dogleg optimization.

NEWRAP performs a Newton-Raphson optimization that combines a line-search algorithm
with ridging.

NMSIMP performs a Nelder-Mead simplex optimization.

NRRIDG performs a Newton-Raphson optimization with ridging.

QUANEW performs a quasi-Newton optimization.

TRUREG performs a trust-region optimization.

SAMPLING=value
specifies how to sample from the posterior distribution. You can specify the following values:

MODELMETROPOLIS
implements a Metropolis sampling scheme on multiple blocks: one block for each model (all the
parameters of the model) plus a block for all the correlation parameters across the models.

MULTIHAMILTONIAN (Experimental )
implements a Hamiltonian sampling scheme on a single block that contains all the parameters
of the model. For more information, see the sections “Hamiltonian Monte Carlo Sampler”
(Chapter 8, SAS/STAT User’s Guide) and “Hamiltonian MC: Parameter Transformation” on
page 1990.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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MULTIMETROPOLIS
implements a Metropolis sampling scheme on a single block that contains all the parameters of
the model. SAMPLING=MULTIMETROPOLIS is the default option.

UNIMETROPOLIS
implements a Metropolis sampling scheme on multiple blocks, one for each parameter of the
model.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If you
do not specify the SEED= option, or if you specify a nonpositive seed, a random seed is derived from
the time of day.

SIMTIME
prints the time required for the MCMC sampling.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent
to specifying STATISTICS= (CORR COV INTERVAL PRIOR SUMMARY). If you do not want
any posterior statistics, specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY
INTERVAL). You can specify the following global-options:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and
1. Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for
each parameter. The default is ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th percentile
points, respectively, for each parameter.

You can specify the following keywords:

CORR produces the posterior correlation matrix.

COV produces the posterior covariance matrix.

INTERVAL produces equal-tail credible intervals and HPD intervals. The default is to produce
the 95% equal-tail credible intervals and 95% HPD intervals, but you can use the
ALPHA= global-option to request intervals of any probabilities.

NONE suppresses printing of all summary statistics.

PRIOR produces a summary table of the prior distributions used in the Bayesian analysis.

SUMMARY produces the means, standard deviations, and percentile points (25th, 50th, and
75th) for the posterior samples. You can use the global PERCENT= global-option
to request specific percentile points.
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THIN=number

THINNING=number
controls the thinning of the Markov chain. Only one in every k samples is used when THIN=k, and if
NBI=n0 and NMC=n, the number of samples that are kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THIN=1.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters estimated by the QLIM procedure. Any number of BOUNDS
statements can be specified.

Each bound is composed of parameters and constants and inequality operators. Parameters associated with
regressor variables are referred to by the names of the corresponding regressor variables:

item operator item < operator item < operator item . . . > >

Each item is a constant, the name of a parameter, or a list of parameter names. For more information about
how parameters are named in the QLIM procedure, see the section “Naming of Parameters” on page 2002.
Each operator is ’<’, ’>’, ’<=’, or ’>=’.

Both the BOUNDS statement and the RESTRICT statement can be used to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. For
more information, see the section “RESTRICT Statement” on page 1947.

The following BOUNDS statement constrains the estimates of the parameters associated with the variable
ttime and the variables x1 through x10 to be between 0 and 1. This example illustrates the use of parameter
lists to specify boundary constraints.

bounds 0 < ttime x1-x10 < 1;

The following BOUNDS statement constrains the estimates of the correlation (_RHO) and sigma (_SIGMA)
in the bivariate model:

bounds _rho >= 0, _sigma.y1 > 1, _sigma.y2 < 5;

The BOUNDS statement is not supported if a BAYES statement is also specified. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.
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BY Statement
BY variables ;

A BY statement can be used with PROC QLIM to obtain separate analyses on observations in groups defined
by the BY variables.

CLASS Statement
CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. Classification variables
can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats to
group values into levels. For more information, see the discussion of the FORMAT procedure in Base SAS
Procedures Guide.

ENDOGENOUS Statement
ENDOGENOUS variables Ï options ;

The ENDOGENOUS statement specifies the type of dependent variables that appear on the left-hand side of
the equation. Endogenous variables listed refer to the dependent variables that appear on the left-hand side of
the equation.

Discrete Variable Options

DISCRETE < (discrete-options ) >
specifies that the endogenous variables in this statement are discrete. Valid discrete-options are as
follows:

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sorting order for the levels of the discrete variables specified in the ENDOGENOUS
statement. This ordering determines which parameters in the model correspond to each level in the
data. The following table shows how PROC QLIM interprets values of the ORDER= option:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED Formatted value
FREQ Descending frequency count; levels with the

most observations come first in the order
INTERNAL Unformatted value

By default, ORDER=FORMATTED. For the values FORMATTED and INTERNAL, the sort order is
machine dependent. For more information about sorting order, see the chapter on the SORT procedure
in the Base SAS Procedures Guide.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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DISTRIBUTION=NORMAL | LOGISTIC

DIST=NORMAL | LOGISTIC

D=NORMAL | LOGISTIC
specifies the cumulative distribution function used to model the response probabilities. You can specify
the following values:

NORMAL specifies the normal distribution for the probit model.

LOGISTIC specifies the logistic distribution for the logit model.

By default, DISTRIBUTION=NORMAL.

If a multivariate model is specified, logistic distribution is not allowed. Only normal distribution is
supported.

Censored Variable Options

CENSORED (censored-options )
specifies that the endogenous variables in this statement be censored. Valid censored-options are as
follows:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Truncated Variable Options

TRUNCATED (truncated-options )
specifies that the endogenous variables in this statement be truncated. Valid truncated-options are as
follows:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.
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Stochastic Frontier Variable Options

FRONTIER < (frontier-options ) >
specifies that the endogenous variable in this statement follow a production or cost frontier. You can
specify the following frontier-options:

TYPE=HALF | EXPONENTIAL | TRUNCATED
specifies the model type. You can specify the following values:

HALF specifies a half-normal model.

EXPONENTIAL specifies an exponential model.

TRUNCATED specifies a truncated normal model.

PRODUCTION
specifies that the model estimated be a production function.

COST
specifies that the model estimated be a cost function.

If neither the PRODUCTION option nor the COST option is specified, production function is estimated by
default.

Selection Options

SELECT (select-option )
specifies selection criteria for sample selection model. The BAYES statement does not support the
SELECT option. The select-option specifies the condition for the endogenous variable to be selected.
It is written as a variable name, followed by an equality operator (=) or an inequality operator (<, >,
<=, >=), followed by a number:

variable operator number

The variable is the endogenous variable that the selection is based on. The operator can be =, <, >, <= ,
or >=. Multiple select-options can be combined with the logic operators: AND, OR. The following
example illustrates the use of the SELECT option:

endogenous y1 ~ select(z=0);
endogenous y2 ~ select(z=1 or z=2);

The SELECT option can be used together with the DISCRETE, CENSORED, or TRUNCATED option.
For example:

endogenous y1 ~ select(z=0) discrete;
endogenous y2 ~ select(z=1) censored (lb=0);
endogenous y3 ~ select(z=1 or z=2) truncated (ub=10);

For more information about selection models with censoring or truncation, see the section “Selection
Models” on page 1961.



ENDOGENOUS Statement F 1937

Endogeneity and Overidentification Test Options

ENDOTEST (regressors)
requests the test of endogeneity for a list of regressors in the model. More specifically, this option tests
the null hypothesis that the specified regressors are exogenous. Each of these regressors must also have
a model of its own. The former model is considered the structural model, and the latter models are
considered reduced form models.

The following example illustrates the use of the ENDOTEST option by testing whether the regressors
y2 and y3 are endogenous in the model for y1:

proc qlim;
model y1 = y2 y3 x1;
model y2 = x1 x2 x3 x4 x5;
model y3 = x1 x2 x3 x4 x5;
endogenous y1 ~ endotest(y2 y3);

run;

The ENDOTEST option is not available when you specify the SELECT or FRONTIER option. You
can specify the ENDOTEST option only once for each ENDOGENOUS statement.

For more information about the test for endogeneity, see the section “Test for Endogeneity” on
page 1971.

OVERID (variables)
requests the overidentification test for a list of variables. These variables are the overidentifying
instrumental variables that you provide from the reduced form models. For more information, see the
section “Overidentification Test” on page 1972.

The following example illustrates the use of the OVERID option:

proc qlim;
model y1 = y2 y3 x1;
model y2 = x1 x2 x3 x4 x5;
model y3 = x1 x2 x3 x4 x5;
endogenous y1 ~ overid(y2.x4 y3.x5);

run;

The regressors y2 and y3 in the model for y1 are the endogenous variables. Therefore, each of
these variables has its own models, which are considered reduced form models. The overidentifying
instrumental variables are x4 and x5. If you specify the OVERID option as

endogenous y1 ~ overid(y2.x4 y2.x5);

then you consider only the regressor y2 to be endogenous, and the model for y3 is ignored during the
testing process.

The OVERID option is not available when you specify the SELECT or FRONTIER option. You can
specify the OVERID option only once for each ENDOGENOUS statement.
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FREQ Statement
FREQ variable ;

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation.
PROC QLIM treats each observation as if it appears n times, where n is the value of the FREQ variable for
the observation. If it is not an integer, the frequency value is truncated to an integer. If the frequency value
is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement, then
the first FREQ statement is used.

HETERO Statement
HETERO dependent variables Ï exogenous variables < / options > ;

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and the
way these variables are used to model the error variance. The heteroscedastic regression model supported by
PROC QLIM is

yi D x0iˇ C �i

�i � N.0; �2i /

For more information about the specification of functional forms, see the section “Heteroscedasticity” on
page 1958. You can specify the following options after a slash (/):

LINK=EXP | LINEAR
specifies the functional form. You can specify the following values:

EXP specifies the exponential link function,

�2i D �2.1C exp.z
0

i//

LINEAR specifies the linear link function,

�2i D �2.1C z
0

i/

By default, LINK=EXP.

NOCONST
specifies that there be no constant in the exponential heteroscedasticity model.

�2i D �2exp.z
0

i/
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SQUARE
estimates the model by using the square of linear heteroscedasticity function. For example, you can
specify the following heteroscedasticity function:

�2i D �
2.1C .z

0

i/
2/

model y = x1 x2 / discrete;
hetero y ~ z1 / link=linear square;

The option SQUARE does not apply to exponential heteroscedasticity function because the square of
an exponential function of z

0

i is the same as the exponential of 2z
0

i . Hence the only difference is
that all  estimates are divided by two.

You can use the HETERO statement within a Bayesian framework, but you should do this carefully because
convergence can be slower than in the homoscedastic case. For more information, see the section “Priors for
Heteroscedastic Models” on page 1988.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization. You can specify any number of
INIT statements.

Each initvalue is written as a parameter or parameter list, followed by an optional equality operator (=),
followed by a number:

parameter <=> number

If you also specify the BAYES statement, the INIT statement also initializes the Markov chain Monte Carlo
(MCMC) algorithm. In particular, the INIT statement does one of the following:

� It initializes the tuning phase (this also includes the PROPCOV option).

� It initializes the sampling phase, if there is no tuning phase.



1940 F Chapter 28: The QLIM Procedure

MODEL Statement
MODEL dependent-variable = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model.

You can specify the following options after a slash (/):

LIMIT1=ZERO | VARYING
specifies the restriction of the threshold value of the first category when the ordinal probit or logit
model is estimated. LIMIT1=ZERO is the default option. When LIMIT1=VARYING is specified, the
threshold value is estimated.

NOINT
suppresses the intercept parameter.

Endogenous Variable Options

The endogenous variable options are the same as the options that you can specify in the ENDOGENOUS
statement. If you specify an ENDOGENOUS statement, all endogenous options in the MODEL statement
are ignored.

Endogeneity and Overidentification Test Options

The endogeneity and overidentification test options are the same as the options that you can specify in the EN-
DOGENOUS statement. If you specify an ENDOGENOUS statement, all endogeneity and overidentification
test options in the MODEL statement are ignored.

BOXCOX Estimation Options

BOXCOX (option-list )
specifies options that are used for Box-Cox regression or regressor transformation. For example, the
Box-Cox regression is specified as

model y = x1 x2 / boxcox(y=lambda,x1 x2)

PROC QLIM estimates the following Box-Cox regression model:

y
.�/
i D ˇ0 C ˇ1x

.�2/
1i C ˇ2x

.�2/
2i C �i

The option-list takes the form variable-list < = varname > separated by commas. The variable-list
specifies that the list of variables have the same Box-Cox transformation; varname specifies the name
of this Box-Cox coefficient. If varname is not specified, the coefficient is called _Lambdai, where i
increments sequentially.
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Variable Selection Options

SELECTVAR <=(selectvar-option)>
enables variable selection. The selectvar-option specifies a variable selection method based on an
information criterion. For more information, see the section “Variable Selection” on page 1965. You
can specify the following selectvar-options:

DIRECTION=FORWARD | BACKWARD
specifies the searching algorithm to use in the variable selection method. By default, DIREC-
TION=FORWARD.

CRITER=AIC | SBC
specifies the information criterion to use for the variable selection. By default, CRITER=AIC.

MAXSTEPS=value
specifies the maximum number of steps that are allowed in the search algorithm. The default is
100.

LSTOP=value
specifies the stopping criterion. The value represents the percentage of decrease or increase in
the AIC or SBC that is required for the algorithm to proceed; it must be a positive number less
than 1. The default is 0.

RETAIN(regressors)
specifies a list of regressors that are to be retained in any model that the variable selection process
considers.

The following rules apply to how regressors are handled when you specify more than one MODEL
statement and you use the SELECTVAR option:

� If you do not specify the SELECTVAR option in a particular MODEL statement, then all
regressors in the original model are included in any model that the variable selection algorithm
considers. In other words, omitting the SELECTVAR option is equivalent to providing the option:
SELECTVAR=(RETAIN(all-regressors)).

� If you specify the SELECTVAR option without any =(option) clause in a MODEL statement,
then all regressors in that model (other than the intercept, if present) are eligible for potential
exclusion as the variable selection process is executed.

The following example specifies 10 possible regressor candidates, 5 of which are selected using the
AIC:

proc qlim data=one;
model y = x1-x10 /selectvar=(direction=forward criter=AIC maxsteps=5);

run;
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NLOPTIONS Statement
NLOPTIONS < options > ;

PROC QLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks. For
a list of all the options of the NLOPTIONS statement, see Chapter 7, “Nonlinear Optimization Methods.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a new SAS data set containing all variables in the input data set and,
optionally, the estimates of x0ˇ, predicted value, residual, marginal effects, probability, standard deviation
of the error, expected value, conditional expected value, technical efficiency measures, and inverse Mills
ratio. When the response values are missing for the observation, all output estimates except residual are
still computed as long as none of the explanatory variables is missing. This enables you to compute these
statistics for prediction. You can specify only one OUTPUT statement.

Details about the specifications in the OUTPUT statement are as follows:

CONDITIONAL
outputs estimates of conditional expected values of continuous endogenous variables.

ERRSTD
outputs estimates of �j , the standard deviation of the error term.

EXPECTED
outputs estimates of expected values of continuous endogenous variables.

MARGINAL
outputs marginal effects.

MILLS
outputs estimates of inverse Mills ratios of censored or truncated continuous, binary discrete, and
selection endogenous variables.

OUT=SAS-data-set
names the output data set.

PREDICTED
outputs estimates of predicted endogenous variables.

PROB
outputs estimates of probability of discrete endogenous variables taking the current observed responses.
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PROBALL
outputs estimates of probability of discrete endogenous variables for all possible responses.

RESIDUAL
outputs estimates of residuals of continuous endogenous variables.

XBETA
outputs estimates of x0ˇ.

TE1
outputs estimates of technical efficiency for each producer in the stochastic frontier model suggested
by Battese and Coelli (1988).

TE2
outputs estimates of technical efficiency for each producer in the stochastic frontier model suggested
by Jondrow et al. (1982).

PRIOR Statement
PRIOR parameter-list Ï distribution ;

PRIOR _REGRESSORS ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify a single
parameter or a list of parameters, a tilde Ï, and then a distribution with its parameters. Alternately, you
can specify the special keyword REGRESSORS to select all the parameters used in the linear regression
component of the model. Multiple PRIOR statements are allowed.

You can specify the following distributions:

NORMAL(MEAN=�, VAR=�2)
specifies a normal distribution with parameters MEAN and VAR.

GAMMA(SHAPE=a, SCALE=b)
specifies a gamma distribution with parameters SHAPE and SCALE.

SQGAMMA(SHAPE=a, SCALE=b)
specifies a square root gamma distribution with parameters SHAPE and SCALE.

IGAMMA(SHAPE=a, SCALE=b)
specifies an inverse gamma distribution with parameters SHAPE and SCALE.

SQIGAMMA(SHAPE=a, SCALE=b)
specifies a square root inverse gamma distribution with parameters SHAPE and SCALE.

UNIFORM(MIN=m, MAX=M)
specifies a uniform distribution that is defined between MIN and MAX.
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BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)
specifies a beta distribution with parameters SHAPE1 and SHAPE2 and defined between MIN and
MAX.

T(LOCATION=�, DF=�)
specifies a noncentral t distribution with DF degrees of freedom and location parameter equal to
LOCATION.

For information about how to specify distributions, see the section “Standard Distributions” on page 1995.

RANDOM Statement
RANDOM regressors < / options > ;

The RANDOM statement defines the regressors of the model, including the intercept, that have random
coefficients in a random-parameters model. If you have a panel data set, you can use the RANDOM statement
to estimate random-parameters models that include binomial probit, binomial logit, ordinal probit, ordinal
logit, linear regression, Tobit, truncated regression, and stochastic frontier models. You do not have to have
the observations collected in a panel data setting to model the parameter heterogeneity. Random-parameters
models can also be applied to cross-sectional data.

If you only have a group heterogeneity in your error term, or individual specific constant terms as randomly
distributed across the groups, then you have a random-effects model and in this case you specify regressors
as INTERCEPT (or INT) only.

You can specify only a single RANDOM statement, and if you specify a RANDOM statement, you can
specify only one MODEL statement. The RANDOM statement is not supported if a BAYES statement is
also specified.

You can specify the following options after a slash (/).

SUBJECT=variable

S=variable
determines the variable that specifies the ID of the individuals or groups across which the parameter
heterogeneity occurs. In panel data, the variable identifies the cross-sectional units. For example, in
panel data, the variable might be household or country.

If you do not specify this option, then variable is assumed to have a single realization; that is, there
is no variation in the random effects. You should specify this option in order to have a true random-
parameters model.

The following statement illustrates this option:

random int / subject=id;
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METHOD=method-options

M=method-options
specifies the method of approximation to the integral that appears in the likelihood function. For
more information about the integral and the integration methods, see the section “Random-Parameters
Models and Panel Data Analysis” on page 1973 and its subsections.

You can specify the following method-options:

HALTON < (halton-options) >

HALT < (halton-options) >

QMC < (halton-options) >
requests a quasi–Monte Carlo integration method that uses the Halton sequences that are defined
by the prime numbers starting from 2. For information about how this series is generated, see the
section “QMC Method Using the Halton Sequence” on page 1978.

You can specify the following halton-options:

NDRAW=value
determines the number of elements that the Halton series has for each unique value of
the subject variable. Therefore, the total number of elements in the Halton sequence is
value times the number of unique values of the variable that you specify in the SUBJECT=
option. For more information, see the section “QMC Method Using the Halton Sequence”
on page 1978.

The default value of the NDRAW= option is the number of unique values of the variable
that you specify in the SUBJECT= option. For example, if you have a panel data set, the
total number of terms in the Halton sequence is the square of the number of cross sections.

START=value
specifies the starting point of the Halton sequence, where value must be a positive integer.
When you specify this option, value–1 extra draws are created and the initial value–1
elements are discarded. By default, START=11.

The following statement estimates a random-effects model and requests a Halton sequence that
has 100 draws for each country and does not discard any draws:

random int / subject=country method=halton(ndraw=100 start=1);

The following statements estimate a random-parameters probit model by specifying a random
intercept and unobserved heterogeneity in the coefficients for x1 and x2. The statements request
500 Halton draws and discard the first 50 elements for each of the three sequences.

proc qlim data=a;
model y = x1 x2 x3 / discrete;
random int x1 x2 / subject=id

method=halton(ndraw=500 start=51);
run;
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HERMITE < (QPOINTS=value) >

HERM < (QPOINTS=value) >

GAUSS < (QPOINTS=value) >
requests the Gauss-Hermite quadrature integration method. You can use this method if your
model has only one random parameter—that is, if you have a random-effects model or if your
model has a single random coefficient. For more information about this method, see the section
“Approximation by Hermite Quadrature” on page 1979.

QPOINTS=value specifies the number of quadrature points to be used during evaluation of the
integral. By default, QPOINTS=20.

The following statements illustrate this option for a random-effects model and a random-
parameters model with a single random coefficient on x1:

random int / subject=states method=hermite(qpoints=4);

random x1 / subject=id method=hermite(qpoints=32);

SIMULATION < (simulation-options) >

SIM < (simulation-options) >
requests Monte Carlo simulation as the method of integration. For more information, see the
section “Monte Carlo Integration” on page 1977.

You can specify the following simulation-options:

NDRAW=value
specifies the number of draws for the simulation. You can also specify the number of draws
in the NDRAW= option in the PROC QLIM statement. If you specify this option in both
statements, PROC QLIM uses the value in the RANDOM statement. If you do not specify
this option in either statement, the default value is set to N 3=2, where N is the number of
unique values of the subject variable. For example, for a panel data set, N is the number of
cross sections.

SEED=value
specifies the seed of the random draws, where value must be less than 231 � 1. You can
also specify the seed in the SEED= option in the PROC QLIM statement. If you specify
this option in both statements, PROC QLIM uses the value in the RANDOM statement. If
you do not specify a seed, or if you specify a value less than or equal to zero, the seed is
generated randomly.

The following statement illustrates this option:

random int x1 / subject=id method=simulation(ndraw=1000 seed=12345);

By default, METHOD=HALTON.
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NOCORRELATION

NOCORR
requests that the random parameters be uncorrelated with one another. If you specify this option, only
the diagonal elements of the covariance matrix of the random parameters are estimated.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement is used to impose linear restrictions on the parameter estimates. Any number of
RESTRICT statements can be specified, but the number of restrictions imposed is limited by the number of
regressors.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <= , or >=. The operator and second expression are optional.

Restriction expressions can be composed of parameter names, multiplication (�), addition (C) and substitution
(�) operators, and constants. Parameters named in restriction expressions must be among the parameters
estimated by the model. Parameters associated with a regressor variable are referred to by the name of the
corresponding regressor variable. The restriction expressions must be a linear function of the parameters.

The following is an example of the use of the RESTRICT statement:

proc qlim data=one;
model y = x1-x10 / discrete;
restrict x1*2 <= x2 + x3;

run;

The RESTRICT statement can also be used to impose cross-equation restrictions in multivariate models. The
following RESTRICT statement imposes an equality restriction on coefficients of x1 in equation y1 and x1
in equation y2:

proc qlim data=one;
model y1 = x1-x10;
model y2 = x1-x4;
endogenous y1 y2 ~ discrete;
restrict y1.x1=y2.x1;

run;

The RESTRICT statement is not supported if a BAYES statement is also specified. In Bayesian analysis, the
restrictions on parameters are usually introduced through the prior distribution.
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TEST Statement
<’label’:> TEST <’string’:> equation [,equation. . . ] / options ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to
be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must
correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the
corresponding regressor. The keyword INTERCEPT refers to the coefficient of the intercept.

You cannot specify both the TEST statement and the BAYES statement.

You can specify the following options after a slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

WALD
requests the Wald test.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

The following illustrates the use of the TEST statement:

proc qlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test_int: test intercept = 0, x3 = 0;

run;

The first test investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ2 C 2ˇ3 D 0

In case there is more than one MODEL statement in one QLIM procedure, then TEST statement is capable
of testing cross-equation restrictions. Each parameter reference should be preceded by the name of the
dependent variable of the particular model and the dot sign. For example:

proc qlim;
model y1 = x1 x2 x3;
model y2 = x3 x5 x6;
test y1.x1 + y2.x6 = 1;

run;
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This cross-equation test investigates the null hypothesis that

ˇ1;1 C ˇ2;3 D 1

in the system of equations

y1;i D ˛1 C ˇ1;1x1;i C ˇ1;2x2;i C ˇ1;3x3;i

y2;i D ˛2 C ˇ2;1x3;i C ˇ2;2x5;i C ˇ2;3x6;i

Only linear equality restrictions and tests are permitted in PROC QLIM. Tests expressions can be composed
only of algebraic operations involving the addition symbol (+), subtraction symbol (-), and multiplication
symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. TEST statement can be labeled
in two ways. A TEST statement can be preceded by a label followed by a colon. Alternatively, the keyword
TEST can be followed by a quoted string. If both are present, PROC QLIM uses the label preceding the
colon. In the event no label is present, PROC QLIM automatically labels the tests.

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

You can specify the following option after a slash (/):

NONORMALIZE
specifies that the weights are required to be used as is. When this option is not specified, the weights
are normalized so that they add up to the actual sample size. Weights wi are normalized by multiplying
them by nPn

iD1wi
, where n is the sample size.
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Details: QLIM Procedure

Ordinal Discrete Choice Modeling

Binary Probit and Logit Model

The binary choice model is

y�i D x0iˇ C �i

where value of the latent dependent variable, y�i , is observed only as follows:

yi D 1 if y�i > 0

D 0 otherwise

The disturbance, �i , of the probit model has standard normal distribution with the distribution function (CDF)

ˆ.x/ D

Z x

�1

1
p
2�

exp.�t2=2/dt

The disturbance of the logit model has standard logistic distribution with the CDF

ƒ.x/ D
exp.x/

1C exp.x/
D

1

1C exp.�x/
The binary discrete choice model has the following probability that the event fyi D 1g occurs:

P.yi D 1/ D F.x0iˇ/ D
�
ˆ.x0iˇ/ .probit/
ƒ.x0iˇ/ .logit/

The log-likelihood function is

` D

NX
iD1

˚
yi logŒF .x0iˇ/�C .1 � yi / logŒ1 � F.x

0
iˇ/�

	
where the CDF F.x/ is defined as ˆ.x/ for the probit model while F.x/ D ƒ.x/ for logit. The first-order
derivatives of the logit model are

@`

@ˇ
D

NX
iD1

.yi �ƒ.x0iˇ//xi

The probit model has more complicated derivatives

@`

@ˇ
D

NX
iD1

(
.2yi � 1/�

�
.2yi � 1/x0iˇ

�
ˆ
�
.2yi � 1/x0iˇ

� )
xi D

NX
iD1

rixi

where

ri D
.2yi � 1/�

�
.2yi � 1/x0iˇ

�
ˆ
�
.2yi � 1/x0iˇ

�
Note that the logit maximum likelihood estimates are �p

3
times greater than probit maximum likelihood esti-

mates, since the probit parameter estimates, ˇ, are standardized, and the error term with logistic distribution
has a variance of �

2

3
.



Ordinal Discrete Choice Modeling F 1951

Ordinal Probit/Logit

When the dependent variable is observed in sequence with M categories, binary discrete choice modeling is
not appropriate for data analysis. McKelvey and Zavoina (1975) proposed the ordinal (or ordered) probit
model.

Consider the regression equation

y�i D x0iˇ C �i

where error disturbances, �i , have the distribution function F. The unobserved continuous random variable,
y�i , is identified as M categories. Suppose there are M C 1 real numbers, �0; : : : ; �M , where �0 D �1,
�1 D 0, �M D1, and �0 � �1 � � � � � �M . Define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

The log-likelihood function is

` D

NX
iD1

MX
jD1

dij log
�
F.Ri;j / � F.Ri;j�1/

�
where

dij D

�
1 if �j�1 < yi � �j
0 otherwise

The first derivatives are written as

@`

@ˇ
D

NX
iD1

MX
jD1

dij

�
f .Ri;j�1/ � f .Ri;j /

F.Ri;j / � F.Ri;j�1/
xi

�

@`

@�k
D

NX
iD1

MX
jD1

dij

�
ıj;kf .Ri;j / � ıj�1;kf .Ri;j�1/

F.Ri;j / � F.Ri;j�1/

�

where f .x/ D dF .x/
dx

and ıj;k D 1 if j D k, and ıj;k D 0 otherwise. When the ordinal probit is estimated,
it is assumed that F.Ri;j / D ˆ.Ri;j /. The ordinal logit model is estimated if F.Ri;j / D ƒ.Ri;j /. The
first threshold parameter, �1, is estimated when the LIMIT1=VARYING option is specified. By default
(LIMIT1=ZERO), so that M � 2 threshold parameters (�2; : : : ; �M�1) are estimated.

The ordered probit models are analyzed by Aitchison and Silvey (1957), and Cox (1970) discussed ordered
response data by using the logit model. They defined the probability that y�i belongs to jth category as

P Œ�j�1 < yi � �j � D F.�j C x0i�/ � F.�j�1 C x0i�/

where �0 D �1 and �M D1. Therefore, the ordered response model analyzed by Aitchison and Silvey
can be estimated if the LIMIT1=VARYING option is specified. Note that � D �ˇ.
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Goodness-of-Fit Measures

The goodness-of-fit measures discussed in this section apply only to discrete dependent variable models.

McFadden (1974) suggested a likelihood ratio index that is analogous to the R2 in the linear regression
model,

R2M D 1 �
lnL
lnL0

where L is the value of the maximum likelihood function and L0 is the value of a likelihood function when
regression coefficients except an intercept term are zero. It can be shown that L0 can be written as

L0 D

MX
jD1

Nj ln.
Nj

N
/

where Nj is the number of responses in category j.

Estrella (1998) proposes the following requirements for a goodness-of-fit measure to be desirable in discrete
choice modeling:

� The measure must take values in Œ0; 1�, where 0 represents no fit and 1 corresponds to perfect fit.

� The measure should be directly related to the valid test statistic for significance of all slope coefficients.

� The derivative of the measure with respect to the test statistic should comply with corresponding
derivatives in a linear regression.

Estrella’s (1998) measure is written

R2E1 D 1 �

�
lnL
lnL0

�� 2
N

lnL0

An alternative measure suggested by Estrella (1998) is

R2E2 D 1 � Œ.lnL �K/= lnL0�
� 2
N

lnL0

where lnL0 is computed with null slope parameter values, N is the number observations used, and K
represents the number of estimated parameters.

Other goodness-of-fit measures are summarized as follows,

R2CU1 D 1 �

�
L0

L

� 2
N

.Cragg-Uhler 1/

R2CU2 D
1 � .L0=L/

2
N

1 � L
2
N

0

.Cragg-Uhler 2/

R2A D
2.lnL � lnL0/

2.lnL � lnL0/CN
.Aldrich-Nelson/

R2VZ D R
2
A

2 lnL0 �N
2 lnL0

.Veall-Zimmermann/

R2MZ D

PN
iD1. Oyi �

NOyi /
2

N C
PN
iD1. Oyi �

NOyi /2
.McKelvey-Zavoina/

where Oyi D x0i Ǒ and NOyi D
PN
iD1 Oyi=N .
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Limited Dependent Variable Models

Censored Regression Models

When the dependent variable is censored, values in a certain range are all transformed to a single value. For
example, the standard tobit model can be defined as

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � iidN.0; �2/. The log-likelihood function of the standard censored regression model is

` D
X

i2fyiD0g

lnŒ1 �ˆ.x0iˇ=�/�C
X

i2fyi>0g

ln
�
�.
yi � x0iˇ

�
/=�

�

where ˆ.�/ is the cumulative density function of the standard normal distribution and �.�/ is the probability
density function of the standard normal distribution.

The tobit model can be generalized to handle observation-by-observation censoring. The censored model on
both of the lower and upper limits can be defined as

yi D

8<:
Ri if y�i � Ri
y�i if Li < y�i < Ri
Li if y�i � Li

The log-likelihood function can be written as

` D
X

i2fLi<yi<Ri g

ln
�
�.
yi � x0iˇ

�
/=�

�
C

X
i2fyiDRi g

ln
�
ˆ.�

Ri � x0iˇ
�

/

�
C

X
i2fyiDLi g

ln
�
ˆ.
Li � x0iˇ

�
/

�

Log-likelihood functions of the lower- or upper-limit censored model are easily derived from the two-limit
censored model. The log-likelihood function of the lower-limit censored model is

` D
X

i2fyi>Li g

ln
�
�.
yi � x0iˇ

�
/=�

�
C

X
i2fyiDLi g

ln
�
ˆ.
Li � x0iˇ

�
/

�

The log-likelihood function of the upper-limit censored model is

` D
X

i2fyi<Ri g

ln
�
�.
yi � x0iˇ

�
/=�

�
C

X
i2fyiDRi g

ln
�
1 �ˆ.

Ri � x0iˇ
�

/

�
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Types of Tobit Models

Amemiya (1984) classified Tobit models into five types based on characteristics of the likelihood function.
For notational convenience, let P denote a distribution or density function, y�j i is assumed to be normally
distributed with mean x0j iˇj and variance �2j .

Type 1 Tobit

The Type 1 Tobit model was already discussed in the preceding section.

y�1i D x01iˇ1 C u1i
y1i D y�1i if y�1i > 0

D 0 if y�1i � 0

The likelihood function is characterized as P.y1 < 0/P.y1/.

Type 2 Tobit

The Type 2 Tobit model is defined as

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y1i D 1 if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

where .u1i ; u2i / � N.0;†/. The likelihood function is described as P.y1 < 0/P.y1 > 0; y2/.

Type 3 Tobit

The Type 3 Tobit model is different from the Type 2 Tobit in that y�1i of the Type 3 Tobit is observed when
y�1i > 0.

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y1i D y�1i if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

where .u1i ; u2i /0 � iidN.0;†/.

The likelihood function is characterized as P.y1 < 0/P.y1; y2/.

Type 4 Tobit
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The Type 4 Tobit model consists of three equations,

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y�3i D x03iˇ3 C u3i
y1i D y�1i if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

y3i D y�3i if y�1i � 0

D 0 if y�1i > 0

where .u1i ; u2i ; u3i /0 � iidN.0;†/. The likelihood function of the Type 4 Tobit model is characterized as
P.y1 < 0; y3/P.y1; y2/.

Type 5 Tobit

The Type 5 Tobit model is defined as follows,

y�1i D x01iˇ1 C u1i
y�2i D x02iˇ2 C u2i
y�3i D x03iˇ3 C u3i
y1i D 1 if y�1i > 0

D 0 if y�1i � 0

y2i D y�2i if y�1i > 0

D 0 if y�1i � 0

y3i D y�3i if y�1i � 0

D 0 if y�1i > 0

where .u1i ; u2i ; u3i /0 are from iid trivariate normal distribution. The likelihood function of the Type 5 Tobit
model is characterized as P.y1 < 0; y3/P.y1 > 0; y2/.

Code examples for these models can be found in “Example 28.6: Types of Tobit Models” on page 2016.

Truncated Regression Models

In a truncated model, the observed sample is a subset of the population where the dependent variable falls in
a certain range. For example, when neither a dependent variable nor exogenous variables are observed for
y�i < 0, the truncated regression model can be specified.

` D
X

i2fyi�0g

�
� lnˆ.x0iˇ=�/C ln

�
�..yi � x0iˇ/=�/

�

��

Two-limit truncation model is defined as

yi D y
�
i if Li � y

�
i � Ri
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The log-likelihood function of the two-limit truncated regression model is

` D

NX
iD1

�
ln
�
�.
yi � x0iˇ

�
/=�

�
� ln

�
ˆ.
Ri � x0iˇ

�
/ �ˆ.

Li � x0iˇ
�

/

��

The log-likelihood functions of the lower- and upper-limit truncation model are

` D

NX
iD1

�
ln
�
�.
yi � x0iˇ

�
/=�

�
� ln

�
1 �ˆ.

Li � x0iˇ
�

/

��
(lower)

` D

NX
iD1

�
ln
�
�.
yi � x0iˇ

�
/=�

�
� ln

�
ˆ.
Ri � x0iˇ

�
/

��
(upper)

Stochastic Frontier Production and Cost Models
Stochastic frontier production models were first developed by Aigner, Lovell, and Schmidt (1977); Meeusen
and van den Broeck (1977). Specification of these models allows for random shocks of the production or cost
but also includes a term for technological or cost inefficiency. Assuming that the production function takes a
log-linear Cobb-Douglas form, the stochastic frontier production model can be written as

ln.yi / D ˇ0 C
X
n

ˇn ln.xni /C �i

where �i D vi � ui . The vi term represents the stochastic error component and ui is the nonnegative,
technology inefficiency error component. The vi error component is assumed to be distributed iid normal and
independently from ui . Given that ui > 0, the error term, �i , is negatively skewed and represents technology
inefficiency. For the stochastic frontier cost model, �i D vi C ui . The vi term represents the stochastic error
component and ui is the nonnegative, cost inefficiency error component. Given that ui > 0, the error term,
�i , is positively skewed and represents cost inefficiency. PROC QLIM models the ui error component as a
half normal, exponential, or truncated normal distribution.

The Normal–Half Normal Model

In case of the normal–half normal model, vi is iid N.0; �2v /, ui is iid NC.0; �2u/ with vi and ui independent
of each other. Given the independence of error terms, the joint density of v and u can be written as

f .u; v/ D
2

2��u�v
exp

�
�
u2

2�2u
�
v2

2�2v

�

Substituting v D � C u into the preceding equation gives

f .u; �/ D
2

2��u�v
exp

�
�
u2

2�2u
�
.� C u/2

2�2v

�
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Integrating u out to obtain the marginal density function of � results in the form

f .�/ D

Z 1
0

f .u; �/du

D
2

p
2��

�
1 �ˆ

�
��

�

��
exp

�
�
�2

2�2

�
D

2

�
�
� �
�

�
ˆ

�
�
��

�

�

where � D �u=�v and � D
p
�2u C �

2
v .

In the case of a stochastic frontier cost model, v D � � u and

f .�/ D
2

�
�
� �
�

�
ˆ

�
��

�

�

The log-likelihood function for the production model with N producers is written as

lnL D constant �N ln � C
X
i

lnˆ
�
�
�i�

�

�
�

1

2�2

X
i

�2i

The Normal-Exponential Model

Under the normal-exponential model, vi is iid N.0; �2v / and ui is iid exponential with scale parameter �u.
Given the independence of error term components ui and vi , the joint density of v and u can be written as

f .u; v/ D
1

p
2��u�v

exp
�
�
u

�u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D

Z 1
0

f .u; �/du

D

�
1

�u

�
ˆ

�
�
�

�v
�
�v

�u

�
exp

�
�

�u
C

�2v
2�2u

�
and the marginal density function for the cost function is equal to

f .�/ D

�
1

�u

�
ˆ

�
�

�v
�
�v

�u

�
exp

�
�
�

�u
C

�2v
2�2u

�

The log-likelihood function for the normal-exponential production model with N producers is

lnL D constant �N ln �u CN
�
�2v
2�2u

�
C

X
i

�i

�u
C

X
i

lnˆ
�
�
�i

�v
�
�v

�u

�
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The Normal–Truncated Normal Model

The normal–truncated normal model is a generalization of the normal–half normal model by allowing the
mean of ui to differ from zero. Under the normal–truncated normal model, the error term component vi is
iid N.0; �2v / and ui is iid NC.�; �2u/. The joint density of vi and ui can be written as

f .u; v/ D
1

2��u�vˆ.�=�u/
exp

�
�
.u � �/2

2�2u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D

Z 1
0

f .u; �/du

D
1

p
2��ˆ .�=�u/

ˆ

�
�

��
�
��

�

�
exp

�
�
.� C �/2

2�2

�
D

1

�
�

�
� C �

�

�
ˆ

�
�

��
�
��

�

��
ˆ

�
�

�u

���1
and the marginal density function for the cost function is

f .�/ D
1

�
�
�� � �

�

�
ˆ

�
�

��
C
��

�

��
ˆ

�
�

�u

���1

The log-likelihood function for the normal–truncated normal production model with N producers is

lnL D constant �N ln � �N lnˆ
�
�

�u

�
C

X
i

lnˆ
�
�

��
�
�i�

�

�

�
1

2

X
i

�
�i C �

�

�2

For more information about normal–half normal, normal-exponential, and normal-truncated models, see
Kumbhakar and Lovell (2000); Coelli, Prasada Rao, and Battese (1998).

Heteroscedasticity and Box-Cox Transformation

Heteroscedasticity

If the variance of regression disturbance, (�i ), is heteroscedastic, the variance can be specified as a function
of variables

E.�2i / D �
2
i D f .z

0
i/

The following table shows various functional forms of heteroscedasticity and the corresponding options to
request each model:
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No. Model Options

1 f .z0i/ D �
2.1C exp.z0i// LINK=EXP (default)

2 f .z0i/ D �
2 exp.z0i/ LINK=EXP NOCONST

3 f .z0i/ D �
2.1C

PL
lD1 lzli / LINK=LINEAR

4 f .z0i/ D �
2.1C .

PL
lD1 lzli /

2/ LINK=LINEAR SQUARE

For discrete choice models, �2 is normalized (�2 D 1) since this parameter is not identified. Note that in
models 3 and 5, it may be possible that variances of some observations are negative. Although the QLIM
procedure assigns a large penalty to move the optimization away from such region, it is possible that the
optimization cannot improve the objective function value and gets locked in the region. Signs of such
outcome include extremely small likelihood values or missing standard errors in the estimates. In models 2
and 6, variances are guaranteed to be greater or equal to zero, but it may be possible that variances of some
observations are very close to zero. In these scenarios, standard errors may be missing. Models 1 and 4 do
not have such problems. Variances in these models are always positive and never close to zero.

The heteroscedastic regression model is estimated using the log-likelihood function

` D �
N

2
ln.2�/ �

NX
iD1

1

2
ln.�2i / �

1

2

NX
iD1

.
ei

�i
/2

where ei D yi � x0iˇ.

Box-Cox Modeling

The Box-Cox transformation on x is defined as

x.�/ D

(
x��1
�

if� ¤ 0
ln.x/ if� D 0

The Box-Cox regression model with heteroscedasticity is written as

y
.�0/
i D ˇ0 C

KX
kD1

ˇkx
.�k/

ki
C �i

D �i C �i

where �i � N.0; �2i / and transformed variables must be positive. In practice, too many transformation
parameters cause numerical problems in model fitting. It is common to have the same Box-Cox transformation
performed on all the variables—that is, �0 D �1 D � � � D �K . It is required for the magnitude of transformed
variables to be in the tolerable range if the corresponding transformation parameters are j�j > 1.

The log-likelihood function of the Box-Cox regression model is written as

` D �
N

2
ln.2�/ �

NX
iD1

ln.�i / �
1

2�2i

NX
iD1

e2i C .�0 � 1/

NX
iD1

ln.yi /

where ei D y
.�0/
i � �i .

When the dependent variable is discrete, censored, or truncated, the Box-Cox transformation can be applied
only to explanatory variables.
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Bivariate Censored Dependent Variable Modeling
The generic form of a bivariate censored dependent variable model is

y�1i D x01iˇ1 C �1i
y�2i D x02iˇ2 C �2i

where the disturbances, �1i and �2i , have a joint normal distribution with zero mean, standard deviations �1
and �2, and correlation �. y�1 and y�2 are latent variables. The dependent variables y1 and y2 might or might
not be censored at the edges of the bivariate interval fŒL1; R1�; ŒL2; R2�g, depending on the behavior of the
latent variables y�1 and y�2 :

y1i D

8<:
R1 if R1 < y�1i
y�1i if L1 � y�1i � R1
L1 if y�1i < L1

y2i D

8<:
R2 if R2 < y�2i
y�2i if L2 � y�2i � R2
L2 if y�2i < L2

There are three cases for the log likelihood of .y1i ; y2i /. The first case is where y1i D y�1i and y2i D y�2i .
That is, both observations are uncensored. The log likelihood is computed from a bivariate normal density,

`i D ln
�
pdf

�
y�1i ; y

�
2i

��
D ln

�
�2.

y1i � x1i
0ˇ1

�1
;
y2i � x2i

0ˇ2

�2
; �/

�
� ln �1 � ln �2

where �2.u; v; �/ is the density function for a standardized bivariate normal distribution with correlation �,

�2.u; v; �/ D
e�.1=2/.u

2Cv2�2�uv/=.1��2/

2�.1 � �2/1=2

The second case is where one variable is censored and one is not. For example, if y1i D y�1i and y2i D L2,
then the log likelihood is computed as

`i D ln

24 L2Z
�1

pdf.y�1i ; y
�
2i /dy

�
2i

35 D ln

24 L2Z
�1

pdf.y�2i jy
�
1i /pdf.y�1i /dy

�
2i

35
D ln

�
�

�
y�1i � x1

0ˇ1

�1

��
� ln �1 C ln

24ˆ
0@L2 � x2

0ˇ2 � �2�
y�
1i
�x1
0ˇ1

�1

�2
p
1 � �2

1A35



Selection Models F 1961

where � and ˆ are the density function and the cumulative probability function for a standardized univariate
normal distribution, respectively.

The third case is where both dependent variables are censored. For example, if y1i D R1 and y2i D L2,
then the log likelihood is

`i D ln

26664
1Z

uD
R1�x10ˇ1

�1

L2�x20ˇ2
�2Z

vD�1

�2.u; v; �/ du dv

37775

Selection Models
In sample selection models, one or several dependent variables are observed when another variable takes
certain values. For example, the standard Heckman selection model can be defined as

z�i D w0i C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

yi D x0iˇ C �i if zi D 1

where ui and �i are jointly normal with 0 mean, standard deviations of 1 and � , respectively, and correlation
of �. Selection is based on the variable z, and y is observed when z has a value of 1. Least squares regression
that uses the observed data of y produces inconsistent estimates of ˇ. The maximum likelihood method is
used to estimate selection models. It is also possible to estimate these models by using Heckman’s method,
which is more computationally efficient. But it can be shown that the resulting estimates, although consistent,
are not asymptotically efficient under a normality assumption. Moreover, this method often violates the
constraint on the correlation coefficient j�j � 1.

The log-likelihood function of the Heckman selection model is written as

` D
X

i2fziD0g

lnŒ1 �ˆ.w0i/�

C

X
i2fziD1g

(
ln�.

yi � xi
0ˇ

�
/ � ln � C lnˆ

 
w0i C �

yi�xi
0ˇ

�p
1 � �2

!)

The selection can be based on only one variable, but the selection can lead to several variables. For example,
selection is based on the variable z in the following switching regression model:

z�i D w0i C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

y1i D x01iˇ1 C �1i if zi D 0

y2i D x02iˇ2 C �2i if zi D 1
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If z D 0, then y1 is observed. If z D 1, then y2 is observed. Because y1 and y2 are never observed at the
same time, the correlation between y1 and y2 cannot be estimated. Only the correlation between z and y1
and the correlation between z and y2 can be estimated. This estimation uses the maximum likelihood method.

A brief example of the SAS statements for this model can be found in “Example 28.4: Sample Selection
Model” on page 2013.

The Heckman selection model can be extended to include censoring or truncation. For a brief example of
the SAS statements for these models, see “Example 28.5: Sample Selection Model with Truncation and
Censoring” on page 2014. The following example shows a variable yi that is censored from below at zero:

z�i D w0i C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

y�i D x0iˇ C �i if zi D 1

yi D

�
y�i ify�i > 0
0 ify�i � 0

In this case, the log-likelihood function of the Heckman selection model needs to be modified as follows to
include the censored region:

` D
X
fi jziD0g

lnŒ1 �ˆ.w0i/�

C

X
fi jziD1;yiDy

�
i
g

(
ln
�
�.
yi � xi

0ˇ

�
/

�
� ln � C ln

"
ˆ

 
w0i C �

yi�xi
0ˇ

�p
1 � �2

!#)

C

X
fi jziD1;yiD0g

ln
Z �xi0ˇ

�

�1

Z 1
�wi0

�2.u; v; �/ du dv

In case yi is truncated from below at 0 instead of censored, the likelihood function can be written as

` D
X
fi jziD0g

lnŒ1 �ˆ.w0i/�

C

X
fi jziD1g

(
ln
�
�.
yi � xi

0ˇ

�
/

�
� ln � C ln

"
ˆ

 
w0i C �

yi�xi
0ˇ

�p
1 � �2

!#
� ln

�
ˆ.x0iˇ=�/

�)

The basic selection model can also be extended to include the treatment effects models. You can find the
details for treatment effects models in the section “Endogenous Dummy Variable Models—Treatment Effects
Regression” on page 1970.
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Heckman’s Two-Step Selection Method

Sample selection bias arises from nonrandom selection of the sample from the population. A classic example
is using a sample of market wages for working women to estimate female labor supply function. This sample
is nonrandom because it includes only the wages of women whose market wage exceeds their home wage at
zero hours of work.

A simple selection model can be written as the latent model

z�i D w0i C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

yi D x0iˇ C �i if zi D 1

where ui and �i are jointly normal with 0 mean, standard deviations of 1 and � , respectively, and correlation
of �. The dependent variable yi (wage) is observed if the latent variable z�i (the difference between market
wage and reservation wage) is positive or if the indicator variable zi (labor force participation) is 1.

The model of interest that applies to the observations in the selected sample can be written as

E.yi jxi ; zi D 1/ D x0iˇ C ���.w
0
i/

where �.w0i/ D �.w
0
i/=ˆ.w

0
i/. Hence, the following regression equation is valid for the observations

for which zi D 1:

yi D x0iˇ C ���.w
0
i/C vi

Therefore, estimates of ˇ that are obtained from the OLS regression of y on x by using the selected sample
(that is, the sample for which zi D 1) suffer from omitted variable bias if selection bias is really the case.
Although maximum likelihood estimation of ˇ is consistent and efficient, Heckman’s two-step method is
more frequently used. Heckman’s two-step method can be requested by specifying the HECKIT option of
the QLIM statement.

Heckman’s two-step method is as follows:

1. Obtain O , the estimate of the parameters of the probability that z�i > 0, by using regressors wi and the
binary dependent variable zi by probit analysis for the full sample. Compute O�i D �.w0i O/.

2. Obtain Ǒ and Ǒ�, the estimates of ˇ and �� , by least squares regression of yi on xi and O�i by using
observations on the selected subsample.

The standard least squares estimators of the population variance �2 and the variances of the estimated
coefficients are incorrect. To test hypotheses, the correct ones need to be calculated. An estimator of �2 is

O�2 D
1

N1

N1X
iD1

e2i C
Ǒ2
�

1

N1

N1X
iD1

Oıi

where N1 is the selected subsample size, ei is the residual for the ith observation obtained from step 2, and
Oıi D O�

2
i C
O�iw0i O . Let X� be an N1 � .K C 1/ matrix with ith row Œx0i �i �, and define W similarly with ith

row w0i . Then the estimator of the asymptotic covariance of Œ Ǒ; Ǒ�� is

EstAsyVarŒ Ǒ; Ǒ�� D O�
2ŒX0�X��

�1ŒX0�.I � O�
2 O�/X� CQ�ŒX0�X��

�1
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where O�2 D Ǒ2
�
= O�2, O� D diag. Oıi /, and

Q D O�2.X0� O�W/Est.Asy.Var. O/.W0 O�X�/

where Est.Asy.Var. O/ is the estimator of the asymptotic covariance of the probit coefficients that are obtained
in step 1. When you specify the HECKIT option, PROC QLIM uses a numerical estimated asymptotic
variance.

When the HECKIT option is specified, PROC QLIM reports the corrected standard errors for Œ Ǒ; Ǒ��
automatically. However, if you need the conventional OLS standard errors, you can specify the
HECKIT(UNCORRECTED) option.

In the selected regression model, when the coefficient of �.w0i/ is 0, you do not need Heckman’s two-step
estimation method; a simple regression of y on x produces consistent estimates for ˇ, and the OLS standard
errors are correct. Thus, a standard t test on Ǒ� (which uses the estimate from step 2 and the uncorrected
standard errors) is a valid test of the null hypothesis of no selection bias.

Although Heckman’s two-step method uses the OLS method in the second stage, you can request the ML
method by specifying the HECKIT(SECONDSTAGE=ML) option. When the second-stage method is the
ML method, the model for yi can be nonlinear.

Multivariate Limited Dependent Models
The multivariate model is similar to bivariate models. The generic form of the multivariate limited dependent
variable model is

y�1i D x01iˇ1 C �1i
y�2i D x02iˇ2 C �2i

: : :

y�mi D x0miˇm C �mi

where m is the number of models to be estimated. The vector � has multivariate normal distribution with
mean 0 and variance-covariance matrix †. Similar to bivariate models, the likelihood may involve computing
multivariate normal integrations. This is done using Monte Carlo integration. (See Genz 1992; Hajivassiliou
and McFadden 1998.)

When the number of equations, N, increases in a system, the number of parameters increases at the rate of
N 2 because of the correlation matrix. When the number of parameters is large, sometimes the optimization
converges but some of the standard deviations are missing. This usually means that the model is over-
parameterized. The default method for computing the covariance is to use the inverse Hessian matrix. The
Hessian is computed by finite differences, and in over-parameterized cases, the inverse cannot be computed.
It is recommended that you reduce the number of parameters in such cases. Sometimes using the outer
product covariance matrix (COVEST=OP option) might also help.
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Variable Selection

Variable Selection

Variable selection uses either Akaike’s information criterion (AIC) or the Schwartz Bayesian criterion (SBC)
and either a forward selection method or a backward elimination method.

Forward selection starts from a small subset of variables. In each step, the variable that gives the largest
decrease in the value of the information criterion specified in the CRITER= option (AIC or SBC) is added.
The process stops when the next candidate to be added does not reduce the value of the information criterion
by more than the amount specified in the LSTOP= option in the MODEL statement.

Backward elimination starts from a larger subset of variables. In each step, one variable is dropped based on
the information criterion that is chosen.

Tests on Parameters

Tests on Parameters

In general, the hypothesis tested can be written as

H0 W h.�/ D 0

where h.�/ is an r by 1 vector valued function of the parameters � given by the r expressions specified in the
TEST statement.

Let OV be the estimate of the covariance matrix of O� . Let O� be the unconstrained estimate of � and Q� be the
constrained estimate of � such that h. Q�/ D 0. Let

A.�/ D @h.�/=@� j O�

Using this notation, the test statistics for the three kinds of tests are computed as follows.

The Wald test statistic is defined as

W D h
0

. O�/
8:A. O�/ OV A0. O�/9;�1h. O�/

The Wald test is not invariant to reparameterization of the model (Gregory and Veall 1985, Gallant 1987, p.
219). For more information about the theoretical properties of the Wald test, see Phillips and Park (1988).

The Lagrange multiplier test statistic is

LM D �
0

A. Q�/ QV A
0

. Q�/�

where � is the vector of Lagrange multipliers from the computation of the restricted estimate Q� .

The likelihood ratio test statistic is

LR D 2
�
L. O�/ � L. Q�/

�
where Q� represents the constrained estimate of � and L is the concentrated log-likelihood value.
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For each kind of test, under the null hypothesis the test statistic is asymptotically distributed as a �2 random
variable with r degrees of freedom, where r is the number of expressions in the TEST statement. The p-values
reported for the tests are computed from the �2.r/ distribution and are only asymptotically valid.

Monte Carlo simulations suggest that the asymptotic distribution of the Wald test is a poorer approximation
to its small sample distribution than that of the other two tests. However, the Wald test has the lowest
computational cost, since it does not require computation of the constrained estimate Q� .

The following is an example of using the TEST statement to perform a likelihood ratio test:

proc qlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0 /lr;

run;

Endogeneity and Instrumental Variables
The PROC QLIM models such as qualitative response or limited dependent variable models assume that the
errors are independent of the explanatory variables. If this assumption fails to hold, the distributional form
that the likelihood is based on is misspecified and the obtained coefficients are inconsistent.

To begin, consider a linear model

yi D y
�
i D ˇ0 C ˇ1x1i C � � � C ˇkxki C ui

Assume that E.u/ D 0, Cov.xj ; u/ D 0 for j D 1; : : : ; k � 1, and Cov.xk; u/ D � ¤ 0. Therefore, xk is
endogenous. The endogeneity comes from many sources, such as xk having measurement error or omitting
a variable that is correlated with xk . If you ignore the endogeneity, you can estimate this model in PROC
QLIM as follows (assuming k D 4):

proc qlim data=a;
model y = x1 x2 x3 x4;

run;

However, this approach produces inconsistent maximum likelihood estimates. To obtain consistent maximum
likelihood estimates, you should consider the joint density of the dependent variable and the endogenous
variables. To do this in PROC QLIM, you need at least one instrument—that is, an observable variable, z1—
that is not in the structural equation and that satisfies two conditions: z1 is exogenous (that is, Cov.z1; u/ D 0),
and z1 must be correlated with the endogenous regressor xk . Then, you can model xk as

xki D �0 C �1x1i C � � � C �k�1x.k�1/i C �z1i C �i

You can now write this reduced form equation along with the structural equation to obtain the consistent
maximum likelihood estimates as follows:

proc qlim data=a;
model y = x1 x2 x3 x4;
model x4 = x1 x2 x3 z1;

run;

Estimating the structural model together with the reduced form models for the endogenous explanatory
variables gives you the full information maximum likelihood (FIML) estimates. Because of the linearity of
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the structural model, you can estimate it efficiently and more simply by using the two-stage least squares
estimator. However, PROC QLIM handles nonlinear models such as qualitative response and limited
dependent variable models, and in their estimation it maximizes the corresponding joint likelihood function
(for more information and an application, see Wooldridge 2010, Section 15.7.3). In the case of endogeneity,
when the reduced form models for the endogenous explanatory variables are written along with the structural
model, PROC QLIM maximizes the likelihood function that is obtained from the joint density of the response
variable and the endogenous explanatory variables. For example, consider the following censored regression
model in which one of the explanatory variables is a continuous endogenous variable:

y�1i D ˛y2i C z01iˇ C ui
y2i D z0i� C �i

y1i D

�
y�1i if y�1i > 0
0 if y�1i � 0

The exogenous explanatory variables are z1i , and the continuous endogenous explanatory variable is y2i .

The likelihood function to maximize is

L D
Y

i2fy1i>0g

f .y1i ; y2i / �
Y

i2fy1iD0g

Z 0

�1

f .y�1i ; y2i /dy
�
1i

where f .y�1i ; y2i / is the joint density of y�1i and y2i . Note that y1i is substituted for y�1i when y1i > 0. If

you assume .ui ; �i /
i id
� N.0;†/ with† D

�
�2u �

� �2�

�
, then, by using f .y�1i ; y2i / D f .y

�
1i jy2i / � f .y2i /,

you can write the likelihood function for each i as a multiplication of two parts. The first part is the probability
density function of the normal distribution with mean z0i� and variance �2� , and the second part follows
a Tobit model that has latent mean ˛y2i C z01i� C .�=�

2
� /.y2i � z0i�/ and variance �2u � .�

2=�2� /. Then,
you can obtain the log-likelihood function by taking the log of this multiplication and summing over i (for
more information, see Wooldridge 2002, Section 16.6.2). This is the log-likelihood function that PROC
QLIM maximizes. The parameters . Ǫ ; Ǒ; O�; O�2u ; O�

2
� ; O�/ that are obtained from this maximization are the

FIML estimators. Assuming that the latent model includes two instrumental variables and two exogenous
explanatory variables, you can estimate this model in PROC QLIM as follows:

proc qlim data=a;
model y1 = y2 z11 z12 / censored(lb=0);
model y2 = z11 z12 z21 z22;

run;

For simple examples like the preceding ones, you can derive the likelihood function easily. However, as the
number of endogenous explanatory variables increases, if these variables have a discontinuous nature, if
simultaneity among equations exists, or if a combination of these occurs, then the derivation of the likelihood
function becomes cumbersome, or, in some cases, the likelihood function does not even have a closed
analytical form.

PROC QLIM can handle endogeneity regardless of the nature of the endogenous explanatory variables for
a single structural model. In the case of one endogenous explanatory variable, PROC QLIM reports the
FIML estimates that are calculated by using the analytical likelihood function that is obtained from the joint
distribution of the dependent variable and the endogenous variable. When there is more than one endogenous
explanatory variable, the analytical form of the likelihood function is usually not available; in this case
PROC QLIM reports the simulated maximum likelihood estimates. For the simulated maximum likelihood
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estimation method, PROC QLIM uses the Geweke-Hajivassiliou-Keane (GHK) simulator (see, among others,
Hajivassiliou, McFadden, and Ruud 1996) to simulate the joint distribution of the dependent variable and the
endogenous variables. The simulation is facilitated by assuming that the error terms in the latent models for
the dependent variable and the endogenous explanatory variables are distributed as multivariate normal.

When you estimate a model in PROC QLIM, you can take the endogeneity into account by writing the
structural model along with the reduced form models for each endogenous variable. Examples are provided
in the following sections.

Probit Model with a Continuous Endogenous Explanatory Variable

Consider a probit model that contains a single endogenous explanatory variable in addition to two instruments
and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y2i D y�2i

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4;

run;

Probit Model with a Binary Endogenous Explanatory Variable

Consider a probit model that contains a single binary endogenous explanatory variable in addition to two
instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y2i D

�
1 if y�2i > 0
0 if y�2i � 0

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4 / discrete;

run;

Probit Model with a Censored Endogenous Explanatory Variable
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Consider a probit model that contains a single censored (below zero) endogenous explanatory variable in
addition to two instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y2i D

�
y�2i ify�2i > 0
0 ify�2i � 0

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4 / censored(lb=0);

run;

Censored Regression Model with a Binary Endogenous Explanatory Variable

Consider a Type 1 Tobit model that contains a single binary endogenous explanatory variable in addition to
two instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ui

y�2i D �1z1i C �2z2i C �3z3i C �4z4i C �i

y1i D

�
y�1i ify�1i > 0
0 ify�1i � 0

y2i D

�
1 if y�2i > 0
0 if y�2i � 0

where Cov.u; �/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y2 z1 z2 / censored(lb=0);
model y2 = z1 z2 z3 z4 / discrete;

run;

Censored Regression Model with Binary and Continuous Endogenous Explanatory Variables

Consider a Type 1 Tobit model that contain binary and continuous endogenous explanatory variables in
addition to two instruments and two exogenous explanatory variables. The model is

y�1i D ˛1y21i C ˛2y22i C ˇ1z1i C ˇ2z2i C ui

y�21i D �11z1i C �12z2i C �13z3i C �14z4i C �1i

y�22i D �21z1i C �22z2i C �23z3i C �24z4i C �2i

y1i D

�
y�1i if y�1i > 0
0 if y�1i � 0

y21i D

�
1 if y�21i > 0
0 if y�21i � 0

y22i D y�22i
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where Cov.u; �1; �2/ D �. You can estimate this model by using the following statements:

proc qlim data=a;
model y1 = y21 y22 z1 z2 / censored(lb=0);
model y21 = z1 z2 z3 z4 / discrete;
model y22 = z1 z2 z3 z4;

run;

Probit Model with Binary, Censored, and Truncated Endogenous Explanatory Variables

Consider a probit model that contains binary, censored (below zero), and truncated (below zero) endogenous
explanatory variables. The model is

y�1i D ˛1y21i C ˛2y22i C ˛3y23i C ui

y�21i D �11z1i C �12z2i C �13z3i C �14z4i C �1i

y�22i D �21z1i C �22z2i C �23z3i C �24z4i C �2i

y�23i D �31z1i C �32z2i C �33z3i C �34z4i C �3i

y1i D

�
1 if y�1i > 0
0 if y�1i � 0

y21i D

�
1 if y�21i > 0
0 if y�21i � 0

y22i D

�
y�22i ify�22i > 0
0 if y�22i � 0

y23i D y�23i if y�23i > 0

where z1; : : : ; z4 are the instrumental variables that are independent of the errors. You can estimate this
model by using the following statements:

proc qlim data=a;
model y1 = y21 y22 y23 / discrete;
model y21 = z1 z2 z3 z4 / discrete;
model y22 = z1 z2 z3 z4 / censored(lb=0);
model y23 = z1 z2 z3 z4 / truncated(lb=0);

run;

Note that the dependent variable y1 should not occur in the models for the endogenous explanatory variables,
because this causes inconsistent coefficient estimates. In other words, you should write the models for the
endogenous explanatory variables as reduced form models. PROC QLIM does not handle simultaneous
equations models.

Endogenous Dummy Variable Models—Treatment Effects Regression

Often, the effect of participation in a treatment on a particular outcome is the main focus. For example, you
might be interested in explaining the effect of attending a college on individuals’ earnings. A model of only
the earnings that includes an indicator for college attendance as an explanatory variable ignores the possible
endogeneity of the indicator variable. Most likely, the factors that motivate an individual to get a college
degree also motivate his or her earnings. In this case, you can estimate the earnings consistently by modeling
the earnings equation along with the probit equation for the college attendance. This can be formalized as
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yi D ˛zi C x0iˇ C �i

z�i D w0i C ui

zi D

�
1 if z�i > 0
0 if z�i � 0

where ui and �i are correlated. In the preceding formulation, earnings is represented by yi and the college
degree indicator by zi . The parameters of interest are ˛ and ˇ. Note that modeling yi along with the probit
model for zi is very similar to the Heckman selection model that is covered in section “Selection Models” on
page 1961. This model is a specification of the selection, known as a treatment effects model. The difference
is that z itself appears in the equation of interest.

You can estimate this model in the QLIM procedure as follows:

proc qlim data=a;
model y = z x1 x2;
model z = x1 x2 x3 x4/ discrete;

run;

In these statements, x0 is specified as x1 x2 in the first MODEL statement and w0 is specified as x1 x2 x3 x4
in the second MODEL statement. The estimation is done using the entire sample.

Test for Endogeneity

PROC QLIM has two ways to test the null hypothesis that an endogenous explanatory variable (EEV) is
in fact exogenous. In the case of a single EEV, the first testing method involves a likelihood ratio test of
H0 W _rho D 0. For example, consider the probit model with a binary endogenous explanatory variable that
was considered earlier; y2 is exogenous if the error term in the model for y�1 is uncorrelated with the error
term in the model for y�2 . Therefore, testing to determine whether this correlation is 0 or not provides an
endogeneity test for y2. You can do this in PROC QLIM as follows:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete;
model y2 = z1 z2 z3 z4 / discrete;
test _rho = 0 / LR;

run;

Failing to reject the null hypothesis favors the decision that y2 is exogenous in the model for y1.

When there are two or more EEVs, the test becomes the joint likelihood ratio test of whether corresponding
correlations are 0 or not.

The second testing method is similar to the approach of Rivers and Vuong (1988). Considering the same
model, you can write

ui D ��i C ei

where � D �=�2� and e is independent of zs and �. You can now write

y�1i D ˛1y2i C ˇ1z1i C ˇ2z2i C ��i C ei



1972 F Chapter 28: The QLIM Procedure

Testing H0 W � D 0 is the same as testing whether ui is correlated with �i or testing whether y2i is
endogenous or not. Because �i are unobserved, you can replace them with the OLS residuals from the model
for y�2i and apply a robust t test. Note that even though y2i is binary (or censored), the test is still correct
under H0.

This approach can be summarized as a two-step procedure. In the first step, generated regressors—that is,
the OLS residuals from the models for each of the EEVs—are obtained. In the second step, the structural
model that includes the generated regressors as additional explanatory variables is estimated by the maximum
likelihood method and the joint significance of these generated regressors is tested by the Wald test.

In PROC QLIM, you can apply the second method for the same test that was considered previously as
follows:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete endotest(y2);
model y2 = z1 z2 z3 z4 / discrete;

run;

Overidentification Test

In PROC QLIM you can test the validity of instrumental variables (IVs) by specifying the OVERID option
in the ENDOGENOUS or MODEL statement. The OVERID test is a maximum likelihood version of
the overidentifying restrictions test in the IV framework. If you have more IVs than are necessary for
identification—that is, overidentifying IVs—you can use them to test the validity of your IVs. When you
use the OVERID option to specify the overidentifying IVs, it applies the likelihood ratio test of the joint
significance of these IVs, included as additional explanatory variables in the structural model that it estimates
by the MLE jointly with the reduced form models. In effect, you test whether the overidentifying IVs are
correlated with the error term in the structural model. You specify the reduced form models through the
overidentifying IVs. The structural model is the model that includes the OVERID option. For example,
consider the probit model that contains a continuous endogenous explanatory variable. You can consider z3
or z4 in the model for y2 as an overidentifying IV; therefore, you can specify the OVERID test as follows:

proc qlim data=a;
model y1 = y2 z1 z2 / discrete overid(y2.z4);
model y2 = z1 z2 z3 z4;

run;

In this case, PROC QLIM estimates the structural model y1, including the overidentifying IV z4 as an
additional explanatory variable in this model, jointly with the reduced form model y2. Then it uses the
likelihood ratio test to test the hypothesis that the overidentifying IV is insignificant. Rejecting this hypothesis
raises doubts about the validity of the instruments z3 and z4.

Note that, as long as you have continuous endogenous explanatory variables, the test result is invariant to
which overidentifying IVs you specify in the test.
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Random-Parameters Models and Panel Data Analysis
Consider the effect of age on an individual’s health self-assessment that is recorded using the values
0; 1; : : : ; 10, where 0 indicates the poorest health. You can model the self-assessment outcome by an ordered
probit or logit in PROC QLIM by using the option DISCRETE(D=NORMAL) or DISCRETE(D=LOGISTIC)
in the MODEL or ENDOGENOUS statement.

One important shortcoming of this traditional way of modeling is the underlying assumption that, for all
individuals, the explanatory variables have fixed constant coefficients. This assumption implies that the
impact of the explanatory variables on the dependent variable is the same for all the individuals. However, the
assumption might not be realistic, because individuals are usually heterogeneous and hence the coefficient
values are expected to vary across the individual observations. In the health self-assessment example, it is
expected that aging involves cognitive and physical decline, so on average the relationship between age and
health is expected to be negative. However, believing that this negative relationship is the same for every
individual ignores the fact that for some individuals aging brings wiser life choices, including a healthier
lifestyle and improved emotional well-being, and hence even improved health. Thus, enforcing a negative
relationship can cause misleading inferences for this subgroup of individuals with a positive coefficient.
Similarly, the effect might be negative for every individual, but its magnitude can vary across observations.
In any case, if you are modeling such a behavior, then taking into account the unobserved heterogeneity,
where parameter values vary across the observations because of unobserved factors, is more likely to give
you more realistic results.

Random-parameters models accommodate such a heterogeneity by allowing the coefficients to vary randomly
across individuals based on some prespecified distribution, h.�/. The set of parameters � defines the
unobserved heterogeneity. Therefore, the goal is to estimate those parameters to define the individual
heterogeneity.

If you have panel data, you can include random parameters by using the RANDOM statement for all the
single-equation models of PROC QLIM—binary probit or logit, ordered probit or logit, Tobit (censored and
truncated), stochastic frontier production and cost, and linear regression models—to generalize these models
further in order to obtain more realistic results. However, you do not have to have the observations collected
in a panel data setting to apply random-parameters models in PROC QLIM. The random-parameters models
can also be applied in cross-sectional data as long as you specify the group or subject variable across which
the parameter heterogeneity occurs.

General Models with Random Parameters

Random-parameters models allow individual heterogeneity in the coefficients in the latent process,

y�it D x0itˇi C vit

where y�it is a latent variable, xit is a vector of covariates, and vit is the error term. In the applications for a
panel data set, the subscript i represents individuals and t represents the time period.

The model assumes that parameters are randomly distributed with mean

E.ˇi / D ˇ

and variance

Var.ˇi / D �
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� is a positive definite matrix. If the random parameters are not correlated with one another, then� becomes
a diagonal matrix. Let � be the Cholesky factorization of the covariance matrix of the random parameters,
� D �� 0. In other words, � is the lower triangular matrix that produces�. By construction,

ˇi D ˇ C �!i

where !i is a random vector with zero means and unit standard deviations. In the no-correlation case, � is
also a diagonal matrix with the standard deviations of !i on the diagonal.

PROC QLIM assumes that !i are normally distributed; hence ˇi is normally distributed with mean vector ˇ
and covariance matrix�.

Some of the explanatory variables in the latent model might have fixed (nonrandom) coefficients. In this case
ˇi can be written conveniently as

ˇi D

�
ˇ1

ˇ2 C �!i

�
where ˇ1 is the vector of nonrandom (fixed) coefficients and ˇ2 is the vector of the means of the random
coefficients.

The general form of the conditional density for the observed response can be written as

f .yit jxit ;!i / D g.yit ; xit ;!i I�/

where � is the parameter vector that includes the elements of ˇ and � ; the standard deviation of vit , � ; and
other parameters specified by the model.

The joint density for the ith group conditional on ! and xi is

f .yi1; yi2; : : : ; yiTi jxi ;!i I�/ D
TiY
tD1

g.yit ; xit ;!i I�/

Because !i is unobserved, it is necessary to obtain the unconditional likelihood by taking the expectation of
this likelihood over the distribution of !i . Thus

Li D f .yi1; yi2; : : : ; yiTi jxi I�/ D
Z
!

24 TiY
tD1

g.yit ; xit ;!i I�/

35 h.!i I�/d!
where h.!i I�/ is the probability density function of!i . Under the normality assumption, h.!i I�/ D �.!i /,
where �.�/ is the probability density function of the standard normal distribution. The true log-likelihood
function is obtained by summing lnLi , the log of the contribution of the ith individual to the total, over the
individuals:

lnL D
NX
iD1

lnLi D
NX
iD1

ln

24Z
!

0@ TiY
tD1

g.yit ; xit ;!i I�/

1A�.!i /d!
35

The integral in the square brackets does not have a closed form, so it is difficult to perform maximum
likelihood estimation. However, this integration can be approximated and likelihood estimation is still
possible. The subsection “Estimation” on page 1977 discusses various methods of approximation for this
integral.
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The nature of the dependent variable specifies the log-likelihood function. For example, if the dependent
variable is binary and its probability is defined by a normal distribution (a probit model), then

g.yit ; xit ;!i I�/ D ˆŒ.2yit � 1/.x0itˇi /�

where ˆ.�/ is the cumulative density function of the standard normal distribution. If the dependent variable is
modeled by a logit, then

g.yit ; xit ;!i I�/ D ƒŒ.2yit � 1/.x0itˇi /�

where ƒ.�/ is the cumulative density function of the standard logistic distribution.

The likelihood function is maximized by solving the likelihood equations

@ lnL
@�

D

NX
iD1

@ lnLi
@�

These derivatives involve integration. The integration is approximated by the same method that is used to
calculate the likelihood.

When you use one of the simulation methods that are described in the subsections “Monte Carlo Integration”
on page 1977 and “QMC Method Using the Halton Sequence” on page 1978, the log likelihood to be
optimized becomes

lnLsimulated D

NX
iD1

ln

24 1
R

RX
rD1

0@ TiY
tD1

g.yit ; xit ;!i I�/

1A35
The general formulation of the gradients is

@ lnLsimulated

@�
D

NX
iD1

1
R

PR
rD1

@
QTi
tD1 g.yit ;xit ;!i I�/

@�

1
R

PR
rD1

QTi
tD1 g.yit ; xit ;!i I�/

The formulation of the derivatives with respect to each type of parameter differs from model to model.

Note that � includes the elements of � rather than �. That is, the optimization is performed with respect
to elements of � . Therefore, when you use the ITPRINT option, the resulting output is based on the
parameters that construct the lower triangular matrix from the Cholesky factorization of the covariance matrix
of the random parameters. These parameters are labeled starting with _CHOL. For example, if two of the
explanatory variables, x1 and x2, in your model have random coefficients, then the parameters that construct
the diagonal of � are _CHOL.x1.x1 and _CHOL.x2.x2 and the lower part of � is _CHOL.x1.x2. If you use
the NOCORR option, then the optimization is based on only the diagonal elements of � , and in this case
_CHOL.x1.x1 and _CHOL.x2.x2 are the standard deviations of the coefficients of x1 and x2, respectively.
Although the optimization is performed with respect to � , which includes the elements of � rather than�,
the results are transformed to obtain the elements of� and their corresponding standard errors.
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Random-Effects Models

Random-effects models are a special case in which only the constant term is random. For these models, the
parameter heterogeneity across individuals can be formulated as

ˇi D

�
ˇ0i
ˇ1

�
D

�
ˇ0 C �i
ˇ1

�
where �i has mean 0 and variance �2�.

In most applications of random-effects models, this type of parameter heterogeneity is modeled as a group-
specific unobservable heterogeneity in the error term as

y�it D x0itˇ C �it

where

�it D �i C vit

The density of an observed random variable, yit , is

f .yit jxit ; �i / D g.yit ; xit ; �i I�/

The density of the group-specific heterogeneity is

f .�i / D h.�i I�/

For example, in the case of a random-effects Tobit model, yit is specified as

y�it D x0itˇ C �it ; t D 1; : : : ; Ti ; i D 1; : : : ; N

yit D

�
y�it ify�it > 0
0 ify�it � 0

where

�it D �i C vit

vit j.xi ; �i / � N.0; �2/

�i jxi � N.0; �2�/

where xi contains xit for all t and � consists of � and ��. Therefore, for this model,

f .yit jxit ; �i / D f1 �ˆŒ.x0itˇ C �i /=��g
1ŒyitD0�f.1=�/�Œ.yit � x0itˇ � �i /=��g

1Œyit>0�

and

f .�i / D �.�i=��/

where ˆ.�/ is the cumulative density function of the standard normal distribution, �.!i / is the probability
density function of the standard normal distribution, and 1Œ�� is the indicator function.
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For random-effects models, the unobserved component, �i , must be integrated out in order to form the
likelihood function for the observed data. For individual i,

Li D f .yi1; yi2; : : : ; yiTi jxi ;ˇI�/ D
Z
�

24 TiY
tD1

g.yit ; x0itˇ; �i I�/

35 h.�i I�/d�i
Therefore, the log-likelihood function for the observed data becomes

lnL D
NX
iD1

ln

24Z
�

0@ TiY
tD1

g.yit ; x0itˇ; �i I�/

1A h.�i I�/d�i
35

The notation for the likelihood function of a random-effects model is not much different from that of the
random-parameters model discussed in the section “General Models with Random Parameters” on page 1973.
However, there is a substantial difference in the formulation of the likelihood function of the random-
parameters model. The integration in lnL is a multidimensional integral. More specifically, if the number of
random parameters is K, then it is a K-dimensional integral.

Estimation

The integral in the log-likelihood function for random-parameters models does not have a closed form; that
is, it is difficult to integrate out the random parameters. However, the integral can be approximated, and
the usual likelihood estimation can be pursued based on the approximated log-likelihood function. PROC
QLIM offers three methods of approximation: Monte Carlo (MC) integration, the quasi–Monte Carlo (QMC)
method using the Halton sequences, and approximation by Hermite quadrature. The first two methods are
simulation methods, and hence the likelihood method based on the resulting simulated log-likelihood function
is called the simulated maximum likelihood. The third method fails to provide a good approximation when
the dimensionality of the random parameters, K, is high. The Hermite quadrature method can be used only for
random-effects models or random-parameters models that have a single random coefficient (that is, K D 1).

Monte Carlo Integration
Consider the random-effects model defined in the section “Random-Effects Models” on page 1976. First,
note thatZ

�

0@ TiY
tD1

g.yit ; xit ; �i I�/

1A h.�i I�/d�i D EŒF.�i I�/�
The function is smooth, continuous, and continuously differentiable. By the law of large numbers, if
.�i1; �i2; : : : ; �iR/ is a sample of iid draws from h.�i I�/, then

plim
1

R

RX
rD1

F.�ir I�/ D EŒF.�i I�/�

This operation is implemented by simulation that uses a random number generator. PROC QLIM inserts the
simulated integral in the log likelihood to obtain the simulated log likelihood

lnLsimulated D

NX
iD1

ln

24 1
R

RX
rD1

0@ TiY
tD1

g.yit ; xit ; �ir I�/

1A35
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and maximizes the simulated log likelihood with respect to the parameter set � that includes ˇ and ��.

Under certain assumptions (Greene 2001), the simulated likelihood estimator and the maximum likelihood
estimator are equivalent. For this equivalence result to hold, the number of draws, R, must increase faster
than the number of observations, N. For this reason, if the NDRAW= option is not specified, then by default,
it is tied to the sample size by using the rule R D N 1Cı , where ı D 1=2.

Generalization of the log-likelihood function for random-parameters models is

lnLsimulated D

NX
iD1

ln

24 1
R

RX
rD1

0@ TiY
tD1

g.yit ;ˇir ; xit I�/

1A35
where

ˇir D

�
ˇ1

ˇ2 C �!ir

�
In this more general case, !ir is the rth K-variate vector of random draws for individual i. The random draws
come from the distribution with the probability density function h.!I�/. PROC QLIM specifies h.!I�/ as
the probability density function of the standard normal distribution.

The use of independent random draws in simulation is conceptually straightforward, and the statistical
properties of the simulated maximum likelihood estimator are easy to derive. However, simulation is a very
computationally intensive technique. Moreover, the simulation method itself contributes to the variation of
the simulated maximum likelihood estimator (see, for example, Geweke 1995). There are other ways to
take draws that can provide greater accuracy by covering the domain of the integral more uniformly and by
lowering the simulation variance (Train 2009, section 9.3). For example, quasi–Monte Carlo methods are
based on an integration technique that replaces the pseudorandom draws of MC integration with a sequence
of judiciously selected nonrandom points that provide more uniform coverage of the domain of the integral.
Therefore, the advantage of QMC integration over MC integration is that for some types of sequences, the
accuracy is far greater, convergence is much faster, and the simulation variance is smaller. QMC methods are
surveyed in Bhat (2001), Sloan and Woźniakowski (1998), and Morokoff and Caflisch (1995). In addition to
MC simulation, PROC QLIM offers the QMC integration method that uses Halton sequences.

QMC Method Using the Halton Sequence
Halton sequences (Halton 1960) provide uniform coverage for each observation’s integral, and they decrease
the simulation variance by inducing a negative correlation over the draws for each observation. A Halton
sequence is constructed deterministically in terms of a prime number as its base. For example, the following
sequence is the Halton sequence for 2:

1=2; 1=4; 3=4; 1=8; 5=8; 3=8; 7=8; 1=16; 9=16; : : :

For more information about how to generate a Halton sequence, see Train (2009), section 9.3.3.

If you use the QMC method, first, K Halton sequences are created—that is, one Halton sequence for each
random parameter, with each sequence corresponding to a different prime number between 2 and the Kth
prime number. Then for each sequence, part of the sequence (or the whole sequence, depending on whether
you decide to discard the initial elements of the sequences1) is used in groups. For a given sequence, each

1When sequences are created in multiple dimensions, the initial part of the series is usually eliminated because the initial terms
of multiple Halton sequences are highly correlated. However, there is no such correlation for a single dimension.
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group of consequent elements constitutes the “draws” for each cross-sectional observation. This way, each
sub-sequence fills in the gaps for the previous sub-sequences, and the draws for one observation tend to be
negatively correlated with those for the previous observation.

When the number of draws that are used for each observation rises, the coverage for each observation
improves. This improvement in turn improves the accuracy; however, the negative covariance across
observations diminishes. Because Halton draws are far more effective than random draws in Monte Carlo
simulation, a small number of Halton draws provide relatively good integration (Spanier and Maize 1991).

The Halton draws are for a uniform density. PROC QLIM obtains !ir by evaluating the inverse cumulative
standard normal density for each element of the rth K-variate draw for the ith group.

Approximation by Hermite Quadrature
Consider the random-effects model that is defined in the section “Random-Effects Models” on page 1976.
This method is the Butler and Moffitt (1982) approach, which is based on models in which �i has a normal
distribution. If �i is normally distributed with zero mean, then

Z
�

0@ TiY
tD1

g.yit ; x0itˇ; �i I�/

1A h.�i I�/d�i
D

1

��
p
2�

Z C1
�1

TiY
tD1

g.yit ; x0itˇ; �i I�/ exp

 
��2i
2�2�

!
d�i

Let ri D �i=.��
p
2/. Then �i D .��

p
2/ri and d�i D .��

p
2/dri . Making the change of variable and

letting the error effects be additive produce

Li D
1
p
�

Z C1
�1

exp.�r2i /

24 TiY
tD1

g.yit ; x0itˇ C .��
p
2/ri I�/

35 dri
This likelihood function is in a form that can be approximated accurately by using Gauss-Hermite quadrature,
which eliminates the integration. Thus, the log-likelihood function can be approximated with

lnLh D
NX
iD1

ln

24 1
p
�

HX
hD1

wh

TiY
tD1

g.yit ; x0itˇ C .��
p
2/rhI�/

35
where wh and rh are the weights and nodes for the Hermite quadrature of degree H. PROC QLIM maximizes
lnLh when the Hermite quadrature option is specified (METHOD=HERMITE in the RANDOM statement).
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Bayesian Analysis
To perform Bayesian analysis, you must specify a BAYES statement. Unless otherwise stated, all options in
this section are options in the BAYES statement.

By default, PROC QLIM uses the random walk Metropolis algorithm to obtain posterior samples. For the
implementation details of the Metropolis algorithm in PROC QLIM, such as the blocking of the parameters
and tuning of the covariance matrices, see the sections “Blocking of Parameters” on page 1980 and “Tuning
the Proposal Distribution” on page 1980.

The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a parameter or a vector of parameters and �.�/ is the product of the prior densities that are
specified in the PRIOR statement. The term L.yj�/ is the likelihood associated with the MODEL statement.

Blocking of Parameters

In a multivariate parameter model, all the parameters are updated in one single block (by default or when
you specify the SAMPLING=MULTIMETROPOLIS option). This could be inefficient, especially when
parameters have vastly different scales. As an alternative, you could update the parameters one at the time
(by specifying SAMPLING=UNIMETROPOLIS).

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is called tuning. The tuning phase consists of a
number of loops controlled by the options MINTUNE and MAXTUNE. The MINTUNE= option controls
the minimum number of tuning loops and has a default value of 2. The MAXTUNE= option controls the
maximum number of tuning loops and has a default value of 24. Each loop is iterated the number of times
specified by the NTU= option, which has a default of 500. At the end of every loop, PROC QLIM examines
the acceptance probability for each block. The acceptance probability is the percentage of NTU proposed
values that have been accepted. If this probability does not fall within the acceptance tolerance range (see the
following section), the proposal distribution is modified before the next tuning loop.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large
sample theory states that the posterior distribution of the parameters approaches a multivariate normal
distribution (see Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal
proposal distribution often works well in practice. The default proposal distribution in PROC QLIM is the
normal distribution.

Scale Tuning
The acceptance rate is closely related to the sampling efficiency of a Metropolis chain. For a random walk
Metropolis, a high acceptance rate means that most new samples occur right around the current data point.
Their frequent acceptance means that the Markov chain is moving rather slowly and not exploring the
parameter space fully. A low acceptance rate means that the proposed samples are often rejected; hence the
chain is not moving much. An efficient Metropolis sampler has an acceptance rate that is neither too high
nor too low. The scale c in the proposal distribution q.�j�/ effectively controls this acceptance probability.
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Roberts, Gelman, and Gilks (1997) show that if both the target and proposal densities are normal, the optimal
acceptance probability for the Markov chain should be around 0.45 in a one-dimension problem and should
asymptotically approach 0.234 in higher-dimension problems. The corresponding optimal scale is 2.38,
which is the initial scale that is set for each block.

Because of the nature of stochastic simulations, it is impossible to fine-tune a set of variables so that the
Metropolis chain has exactly the desired acceptance rate that you want. In addition, Roberts and Rosenthal
(2001) empirically demonstrate that an acceptance rate between 0.15 and 0.5 is at least 80% efficient, so there
is really no need to fine-tune the algorithms to reach an acceptance probability that is within a small tolerance
of the optimal values. PROC QLIM works with a probability range, determined by TargetAcceptance˙0:075.
If the observed acceptance rate in a given tuning loop is less than the lower bound of the range, the scale is
reduced; if the observed acceptance rate is greater than the upper bound of the range, the scale is increased.
During the tuning phase, a scale parameter in the normal distribution is adjusted as a function of the observed
acceptance rate and the target acceptance rate. PROC QLIM uses the following updating scheme,2

cnew D
ccur �ˆ�1.popt=2/

ˆ�1.pcur=2/

where ccur is the current scale, pcur is the current acceptance rate, and popt is the optimal acceptance
probability.

Covariance Tuning
To tune a covariance matrix, PROC QLIM takes a weighted average of the old proposal covariance matrix
and the recent observed covariance matrix, based on the number samples (as specified by the NTU= option)
NTU samples in the current loop. The formula to update the covariance matrix is

COVnew D 0:75 COVcur C 0:25 COVold

There are two ways to initialize the covariance matrix:

� The default is an identity matrix that is multiplied by the initial scale of 2.38 and divided by the square
root of the number of estimated parameters in the model. A number of tuning phases might be required
before the proposal distribution is tuned to its optimal stage, because the Markov chain needs to spend
time to learn about the posterior covariance structure. If the posterior variances of your parameters vary
by more than a few orders of magnitude, if the variances of your parameters are much different from
1, or if the posterior correlations are high, then the proposal tuning algorithm might have difficulty
forming an acceptable proposal distribution.

� Alternatively, you can use a numerical optimization routine, such as the quasi-Newton method, to find
a starting covariance matrix. The optimization is performed on the joint posterior distribution, and the
covariance matrix is a quadratic approximation at the posterior mode. In some cases this is a better
and more efficient way of initializing the covariance matrix. However, there are cases, such as when
the number of parameters is large, where the optimization could fail to find a matrix that is positive
definite. In those cases, the tuning covariance matrix is reset to the identity matrix.

2 Roberts and associates demonstrate that the relationship between acceptance probability and scale in a random walk Metropolis
scheme is p D 2ˆ

�
�
p
Ic=2

�
, where c is the scale, p is the acceptance rate, ˆ is the CDF of a standard normal, and I �

Ef Œ.f
0.x/=f .x//2�, f .x/ is the density function of samples (Roberts, Gelman, and Gilks 1997; Roberts and Rosenthal 2001).

This relationship determines the updating scheme, with I replaced by the identity matrix to simplify calculation.
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A by-product of the optimization routine is that it also finds the maximum a posteriori (MAP) estimates with
respect to the posterior distribution. The MAP estimates are used as the initial values of the Markov chain.

For more information, see the INIT statement.

Initial Values of the Markov Chains

You can assign initial values to any parameters. (For more information, see the INIT statement.) If you use
the optimization option PROPCOV=, then PROC QLIM starts the tuning at the optimized values. This option
overwrites the provided initial values. If you specify the RANDINIT option, the information that the INIT
statement provides is overwritten.

Aggregation of Multiple Chains

When you want to exploit the possibility of running several MCMC instances at the same time (NTRDS=n>1),
you face the problem of aggregating the chains. In ordinary applications, each MCMC instance can easily
obtain stationary samples from the entire posterior distribution. In these applications, you can use the option
AGGREGATION=UNWEIGHTED. This option piles up one chain on top of another and makes no particular
adjustment. However, when the posterior distribution is characterized by multiple distinct posterior modes,
some of the MCMC instances fail to obtain stationary samples from the entire posterior distribution. You
can use the option AGGREGATION=WEIGHTED when the posterior samples from each MCMC instance
approximate well only a part of the posterior distribution.

The main idea behind the option AGGREGATION=WEIGHTED is to consider the entire posterior distribution
to be similar to a mixture distribution. When you are sampling with multiple threads, each MCMC instance
samples from one of the mixture components. Then the samples from each mixture component are aggregated
together using a resampling scheme in which weights are proportional to the nonnormalized posterior
distribution.

Description of the Algorithm
The preliminary step of the aggregation that is implied by the option AGGREGATION=WEIGHTED is to
run several (K) independent instances of the MCMC algorithm. Each instance searches for a set of stationary
samples. Notice that the concept of stationarity is weaker: each instance might be able to explore not the
entire posterior but only portions of it. In the next equation, each column represents the output from one
MCMC instance:

0BB@
x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA � globally/locally sampled from the posterior

If the length of each chain is less than n, you can augment the corresponding chain by subsampling the chain
itself. Each chain is then sorted with respect to the nonnormalized posterior density: �.xŒ1�:/ � �.xŒ2�:/ �
� � ��.xŒn�:/. Therefore,0BB@

x11
x21
: : :

xn1

1CCA
0BB@
x12
x22
: : :

xn2

1CCA : : :
0BB@
x1K
x2K
: : :

xnK

1CCA!
0BB@
xŒ1�1
xŒ2�1
: : :

xŒn�1

1CCA
0BB@
xŒ1�2
xŒ2�2
: : :

xŒn�2

1CCA : : :
0BB@
xŒ1�K
xŒ2�K
: : :

xŒn�K

1CCA



Bayesian Analysis F 1983

The final step is to use a multinomial sampler to resample each row i with weights proportional to the
nonnormalized posterior densities:

ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK � Multinom
�
xŒi�1; xŒi�2; : : : ; xŒi�K I�.xŒi�1/; �.xŒi�2/; : : : ; �.xŒi�K/

�
The resulting posterior sample,

ex1;ex2; : : : ;exK ; : : : ;ex.i�1/KC1;ex.i�1/KC2; : : : ;ex.i�1/KCK ; : : : ;ex.n�1/KC1;ex.n�1/KC2; : : : ;exnK
is a good approximation of the posterior distribution that is characterized by multiple modes.

Automated Initialization of MCMC

The MCMC methods can generate samples from the posterior distribution. The correct implementation of
these methods often requires the stationarity analysis, the convergence analysis and the accuracy analysis of
the posterior samples. These analyses usually imply the following:

� initialization of the proposal distribution

� initialization of the chains (starting values)

� determination of the burn-in

� determination of the length of the chains.

In more general terms, this determination is equivalent to deciding whether the samples are drawn from the
posterior distribution (stationarity analysis), and whether the number of samples is large enough to accurately
approximate the posterior distribution (accuracy analysis). You can use the AUTOMCMC option to automate
and facilitate the stationary analysis and the accuracy analysis.

Description of the Algorithm
The algorithm consists of two phases. In the first phase, the stationarity phase, the algorithm tries to generate
stationary samples from the posterior distribution. In the second phase, the accuracy phase, the algorithm
searches for an accurate representation of the posterior distribution. The algorithm implements the following
tools:

� Geweke test to check stationarity

� Heidelberger-Welch test to check stationarity and provide a proxy for the burn-in

� Heidelberger-Welch half-test to check the accuracy of the posterior mean

� Raftery-Lewis test to check the accuracy of a given percentile (indirectly proving a proxy for the
number of required samples)

� effective sample size analysis to determine a proxy of the number of required samples

During the stationarity phase, the algorithm searches for stationarity. The number of attempts that the
algorithm makes is determined by the option ATTEMPTS=number . During each attempt, a preliminary
tuning stage chooses a proposal distribution for the MCMC sampler. At the end of the preliminary tuning
phase, the algorithm analyzes tests for the stationarity of the samples. If the percentage of successful
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stationary tests is equal to or greater than the percentage that is indicated by the option TOL=value, then
the posterior sample is considered to be stationary. If the sample cannot be considered stationary, then the
algorithm attempts to achieve stationarity by changing some of the initialization parameters as follows:

� increasing the number of tuning samples (NTU)

� increasing the number of posterior samples (NMC)

� increasing the burn-in (NBI)

Figure 28.8 shows a flowchart of the algorithm as it searches for stationarity.

Figure 28.8 Flowchart of the AUTOMCMC Algorithm: Stationarity Analysis

You can initialize NMC=M, NBI=B, and NTU=T during the stationarity phase by specifying NMC, NBI,
and NTU as options in the BAYES statement. You can also change the minimum stationarity acceptance
ratio of successful stationarity tests that are needed to exit the stationarity phase. By default, TOL=0.95. For
example:

proc qlim data=dataset;
...;
bayes nmc=M nbi=B ntu=T automcmc=( stationarity=(tol=0.95) );
...;

run;
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During the accuracy phase, the algorithm attempts to determine how many posterior samples are needed.
The number of attempts is determined by the option ATTEMPTS=number . You can choose between two
different approaches to study the accuracy:

� accuracy analysis based on the effective sample size (ESS)

� accuracy analysis based on the Heidelberger-Welch half-test and the Raftery-Lewis test

If you choose the effective sample size approach, you must provide the minimum number of effective samples
that are needed. You can also change the tolerance for the ESS accuracy analysis (by default, TOL=0.95).
For example:

proc qlim data=dataset;
...;
bayes automcmc=(targetess=N accuracy=(tol=0.95));
...;

run;

Figure 28.9 shows a flowchart of the algorithm based on the effective sample size approach to determine
whether the samples provide an accurate representation of the posterior distribution.

Figure 28.9 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the ESS

If you choose the accuracy analysis based on the Heidelberger-Welch half-test and the Raftery-Lewis test
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(the default option), then you might want to choose a posterior quantile of interest for the Raftery-Lewis test
(by default, 0.025). You can also change the tolerance for the accuracy analysis (by default, TOL=0.95).
Notice that the Raftery-Lewis test produces a proxy of the number of posterior sample required. In each
attempt, the current number of posterior samples is compared to this proxy. If the proxy is greater than the
current nmc, then the algorithm reinitializes itself. To control this reinitialization, you can use the option
RLLIMITS=(LB=lb UB=ub). In particular, there are three cases:

� If the proxy is greater than ub, then NMC is set equal to ub.

� If the proxy is less than lb, then NMC is set equal to lb.

� If lb is less than the proxy, which is less than ub, then NMC is set equal to the proxy.

For example:

proc qlim data=dataset;
...;
bayes automcmc=( accuracy=(tol=0.95 targetstats=(rllimits=(lb=k1 ub=k2))) )

raftery(q=0.025);
...;

run;

Figure 28.10 shows a flowchart of the algorithm based on the Heidelberger-Welch half-test and the Raftery-
Lewis test approach to determine whether the posterior samples provide an accurate representation of the
posterior distribution.
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Figure 28.10 Flowchart of the AUTOMCMC Algorithm: Accuracy Analysis Based on the Heidelberger-Welch
Half-Test and the Raftery-Lewis Test

Prior Distributions
The PRIOR statement is used to specify the prior distribution of the model parameters. You must specify a
list of parameters, a tilde Ï, and then a distribution with its parameters. You can specify multiple PRIOR
statements to define independent priors. Parameters that are associated with a regressor variable are referred
to by the name of the corresponding regressor variable.

You can specify the special keyword _REGRESSORS to consider all the regressors of a model. If multiple
prior statements affect the same parameter, the prior that is specified is used. For example, in a regression with
three regressors (X1, X2, X3) the following statements imply that the prior on X1 is NORMAL(MEAN=0,
VAR=1), the prior on X2 is GAMMA(SHAPE=3, SCALE=4), and the prior on X3 is UNIFORM(MIN=0,
MAX=1):

...
prior _Regressors ~ uniform(min=0, max=1);
prior X1 X2 ~ gamma(shape=3, scale=4);
prior X1 ~ normal(mean=0, var=1);
...
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If a parameter is not associated with a PRIOR statement or if some of the prior hyperparameters are missing,
then the default choices shown in Table 28.2 are considered.

Table 28.2 Default Values for Prior Distributions

PRIOR distribution Hyperparameter1 Hyperparameter2 Min Max Parameters Default Choice

NORMAL MEAN=0 VAR=1E6 �1 1 Regression-Location-Threshold
IGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale

SQIGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale
GAMMA SHAPE=1 SCALE=1 0 1

SQGAMMA SHAPE=1 SCALE=1 0 1

UNIFORM �1 1

UNIFORM > �1 < 1 Cross-correlation
BETA SHAPE1=1 SHAPE2=1 �1 1

T LOCATION=0 DF=3 �1 1

For density specification, see the section “Standard Distributions” on page 1995.

Priors for Heteroscedastic Models

The choice of the prior distribution for a heteroscedastic model is particularly interesting. Based on the
notation provided in section “HETERO Statement” on page 1938, you need to provide a prior for  . This
prior is enough to induce different �2i into the analysis. The resulting inference is a compromise between two
cases: the inference based on the entire sample and the inference based on a single unit zi . The degree of
compromise is determined by �./.

This type of modeling is similar to a method called “hierarchical Bayes,” in which the prior is characterized
by two levels: one for each individual �.�2i j/ and one for the entire population �./. In this scenario the
degree of compromise between the information provided by a unit and the information provided by the entire
sample is determined by the data.

The choice of the prior might not be straightforward, and it can heavily affect sampling performance.
Depending on how the heteroscedastic effects are modeled, the default priors are

if
h
1C exp.z

0

i/
i
; �.j / D normal

(
mean D

1

NzjJ

�
log

�
"4

1C "2

��
; var D

1

Nz2jJ

�
log

�
1C "2

"2

��)

if
h
exp.z

0

i/
i
; �.j / D normal

(
mean D

1

NzjJ

�
log

�
1

2

��
; var D

1

Nz2jJ
Œlog .2/�

)

if
�
1C z

0

i
�
; �.j / D normal

(
mean D 0; var D

1

Nz2jJ

)

if
h
1C .z

0

i/
2
i
; �.j / D normal

(
mean D

."2 � 1=2/1=4

NzjJ
; var D

" � ."2 � 1=2/1=2

Nz2jJ

)

where Nzj D 1
n

Pn
iD1 zij , 8j , and " is a small number (by default, " D 0:1 for the EXPONENTIAL link

function and " D 0:71 for the QUADRATIC link function).
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The priors for the EXPONENTIAL and QUADRATIC link functions are not straightforward. To understand
the choices, do the following:

1. Assume that

z
0

i D zi11 C � � � C ziJ J � Nz11 C � � � C NzJ J ; 8i

2. Set the priors according to the link function type:

� For the EXPONENTIAL link function, set

E
h
exp.z

0

i/
i
� E Œexp. Nz11/� � � � � � E Œexp. NzJ J /� D "

V
h
exp.z

0

i/
i
� E Œexp.2 Nz11/� � � � � � E Œexp.2 NzJ J /� � "2 D 1

Assume a normal prior for �.j /, and set

E
�
exp. Nzj j /

�
D "

1
J ;8j

E
�
exp.2 Nzj j /

�
D .1C "2/

1
J ;8j

Based on the properties of the lognormal distribution, the prior hyperparameters for j can be
derived. Notice that J is the number of regressors that are used in the heterogeneous regression.
If the intercept is excluded, then " D 1.

� For the QUADRATIC link function, set

E
h
.z
0

i/
2
i
� ŒE . Nz11 C � � � C NzJ J /�2 C V Œ Nz11 C � � � C NzJ J � D "

V
h
.z
0

i/
2
i
� E

�
. Nz11 C � � � C NzJ J /

4
�
� "2 D 1

Assume a normal prior for �.j /. Based on the properties of the normal distribution, the
preceding expressions return

E Œ Nz11 C � � � C NzJ J � D ."2 � 1=2/1=4

V Œ Nz11 C � � � C NzJ J � D " � ."2 � 1=2/1=2

" > .1=2/1=2

The prior hyperparameters for j can be derived by setting

E
�
Nzj j

�
D

."2 � 1=2/1=4

J
;8j

V
�
Nzj j

�
D

" � ."2 � 1=2/1=2

J
;8j

Notice that J is the number of regressors that are used in the heterogeneous regression. It is
important to emphasize that the restriction " > .1=2/1=2 � 0:71 is likely to introduce some
distortion because " cannot be any “small” number.
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Hamiltonian MC: Parameter Transformation
The QLIM procedure implements the Hamiltonian Monte Carlo No-U-Turn Sampler (NUTS) with transfor-
mation of the bounded parameters. For more information about NUTS and more in general about Hamiltonian
Monte Carlo, see the section “Hamiltonian Monte Carlo Sampler” (Chapter 8, SAS/STAT User’s Guide).

The Bayesian analysis is primarily interested in the properties of the posterior distribution,

p.� jy/;

where � D .�1; : : : ; �k/0 is the parameter vector associated with the model and y represents the data. The
properties of the model and the properties of the prior distribution can impose restrictions on the domain of
� . These restrictions can reduce the efficiency of the common sampling methods. One way to improve the
efficiency is to perform a parameter transformation, which maps the bounded parameters � to the unbounded
parameter u. In a simplified scenario, four cases can be identified:

ui D

8̂̂̂̂
<̂
ˆ̂̂:
�i if �1 < �i <1

ln.�i �min/ if �1 < min � �i <1
ln.max��i / if �1 < �i � max <1
ln.�i �min/ � ln.max��i / if �1 < min � �i � max <1

The corresponding inverse transformations are

�i D

8̂̂̂̂
<̂
ˆ̂̂:
ui if �1 < �i <1

minCeui if �1 < min � �i <1
max�eui if �1 < �i � max <1
max euiCmin

euiC1
if �1 < min � �i � max <1

with partial derivatives

ı�i

ıui
D

8̂̂̂̂
<̂
ˆ̂̂:
1 if �1 < �i <1

eui if �1 < min � �i <1
�eui if �1 < �i � max <1
.max�min/eui
.euiC1/2

if �1 < min � �i � max <1

Given the independent nature of the transformation, the corresponding Jacobian is a diagonal matrix

Du D

2664
ı�1
ıu1

: : :
ı�k
ıuk

3775
which in turn implies that

p.ujy/ D p.� jy/jDet.Du/j D p.� jy/
kY
iD1

ˇ̌̌̌
ı�i

ıui

ˇ̌̌̌

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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It is usually convenient to work on the logarithmic scale,

ln Œp.ujy/� D ln Œp.� jy/�C
kX
iD1

ln
�ˇ̌̌̌
ı�i

ıui

ˇ̌̌̌�
ı ln Œp.ui jy/�

ıui
D

ı ln fpŒ�i .ui /jy�g
ıui

C
ı ln .jı�i=ıui j/

ıui
�
ı ln fp.�i jy/g

ı�i

ı�i

ıui
C
ı ln .jı�i=ıui j/

ıui

where

ı ln .jı�i=ıui j/
ıui

D

8̂̂̂̂
<̂
ˆ̂̂:
0 if �1 < �i <1

1 if �1 < min � �i <1
1 if �1 < �i � max <1
1 � 2eui

euiC1
if �1 < min � �i � max <1

Automated MCMC
The main purpose is to provide the user with the opportunity of obtaining a good approximation of the
posterior distribution without initializing the MCMC algorithm: initial values, proposal distributions, burn-in
and number of samples.

The automated algorithm is composed of two phases: tuning and sampling. In the tuning phase, there are
two main concerns: the choice of a good proposal distribution and the search for the stationary region of the
posterior distribution. In the sampling phase, the algorithm will decide how many samples are necessary to
obtain good approximations of the posterior mean and some quantiles of interest.

Stationarity Phase

During the stationarity phase, the algorithm tries to search for a good proposal distribution and, at the same
time, to reach the stationary region of the posterior. The choice of the proposal distribution is based on the
analysis of the acceptance rates. This is similar to what is done in PROC MCMC; for more information, see
the section “Tuning the Proposal Distribution” (Chapter 80, SAS/STAT User’s Guide). For the stationarity
analysis, the main idea is to run two tests, Geweke (Ge) and Heidelberger-Welch (HW), on the posterior
chains at the end of each attempt. For more information, see the sections “Geweke Diagnostics” (Chapter 8,
SAS/STAT User’s Guide) and “Heidelberger and Welch Diagnostics” (Chapter 8, SAS/STAT User’s Guide).
If the stationarity hypothesis is rejected, then the tuning samples are increased and the tests repeated in the
next attempt. After 10 attempts, the stationarity phase will be ended regardless of the results. The tuning
parameters for the first attempt are fixed:

1000 burn-in (nbi)

500 tuning samples (ntu)

1000 MCMC samples (nmc)

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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For the remaining attempts, the tuning parameters will be adjusted dynamically. More specifically, each
parameter will be assigned an acceptance ratio (AR) of the stationarity hypothesis,

ARi D 0 if both tests reject the stationarity hypothesis

ARi D 0:5 if one tests rejects and the other does not

ARi D 1 if both tests do not reject the stationarity hypothesis

for i D 1; : : : ; k. For the Geweke test, the implemented significance level is 0.05. Then, an overall stationarity
average (SA) for all parameters ratios is evaluated,

SA D

kX
iD1

ARi

k

and the number of tuning samples is updated accordingly:

ntu D ntuC 2000 if SA < 70%
ntu D ntuC 1000 if 70% � SA < 100%
ntu D ntu if SA D 100%

The burn-in is also updated whenever stationarity is not achieved:

nbi D nbiC 1000

Moreover, the Heidelberger-Welch test also provides an indications of how much burn-in should be used.
The algorithm requires this burn-in to be nbi.HW/ D 0. If that is not the case, the burn-in will updated
accordingly,

nbi D maxŒnbi; nbi.HW/�

and a new attempt searching for stationarity will be implemented. This choice is motivated by the fact that
the burn-in must be discarded in order to reach the stationary region of the posterior distribution.

The number of samples is updated at each attempt. However, in order to exit the stationarity phase, it will
not be required nmc.RL/ D 0. The default update is nmc D nmcC 1000. Depending on the outcome of
the Raftery-Lewis diagnostics, if nmc < min fLB Œnmc.RL/� ; nmc.RL/g, the number of sampling is further
updated to nmc D LB Œnmc.RL/�. By default, LB Œnmc.RL/� D 10000. Finally, if the number of projected
samples is not sufficient to perform a stable evaluation of the Raftery-Lewis test, the number of samples is
updated to nmc D min Œnmc.RL/�. For more information, see the section “AUTOMCMC< =(automcmc-
options) >” on page 1926 and Chapter 8.4, “Raftery and Lewis Diagnostics” (SAS/STAT User’s Guide).

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Accuracy Phase

The main idea of the accuracy phase is to make sure that the mean and a quantile of interest are evaluated
accurately. This can be tested by implementing the half-width test by Heidelberger-Welch and by analyzing
the Raftery-Lewis diagnostic tool. In addition, the requirements defined in the stationarity phase will also
be checked: the Geweke and the Heidelberger-Welch tests must not reject the stationary hypothesis and the
burn-in predicted by the Heidelberger-Welch test must be zero.

The accuracy phase is characterized by a maximum of 10 attempts. If the algorithm exceeds this limit,
the accuracy phase will end and indications on how to improve sampling will be given. The search of
accuracy can be performed using two different method. The first method (the default) is triggered by the
option TARGETSTATS and it is based on the accuracy analysis of the mean and a percentile of interest.
The second method is triggered by the option TARGETESS and it targets a minimum number of effective
samples. The accuracy phase will first update the burn-in with the information provided by the HW
test: nbi D nbi C nbi.HW/. Then, it determines the difference between the actual number of samples
and the number of samples predicted by either the RL test or the ESS: �Œnmc� D nmc.RL/ � nmc; or
�Œnmc� D nmc.ESS/ � nmc: The new number of samples will be updated accordingly:

nmc D nmcC LB Œnmc.RL/� if 0 < �Œnmc� � LB Œnmc.RL/�

nmc D nmcC�Œnmc� if LB Œnmc.RL/� < �Œnmc� � UB Œnmc.RL/�

nmc D nmcC UB Œnmc.RL/� if UB Œnmc.RL/� < �Œnmc�

By default, LB Œnmc.RL/� D 10000 and UB Œnmc.RL/� D 300000.

In addition, the accuracy search triggered by the option TARGETSTATS also implements the HW half-width
test to checks whether the sample mean is accurate. If the mean of any parameters is not considered to be
accurate and the number of samples has not been updated based on �Œnmc�, then the number of samples is
increased:

nmc D nmcC 5000 if �Œnmc� � 0

Marginal Likelihood
The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a vector of parameters and �.�/ is the product of the prior densities that are specified in the
PRIOR statement. The term L.yj�/ is the likelihood that is associated with the MODEL statement. The
function �.�/L.yj�/ is the nonnormalized posterior distribution over the parameter vector � . The normalized
posterior distribution (simply, the posterior distribution) is

p.� jy/ D
�.�/L.yj�/R

� �.�/L.yj�/d�

The denominator m.y/ D
R
� �.�/L.yj�/d� (also called the “marginal likelihood”) is a quantity of interest

because it represents the probability of the data after the effect of the parameter vector has been averaged out.
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Because of its interpretation, the marginal likelihood can be used in various applications, including model
averaging, variable selection, and model selection.

A natural estimate of the marginal likelihood is provided by the harmonic mean,

m.y/ D

(
1

n

nX
iD1

1

L.yj�i /

)�1
where �i is a sample draw from the posterior distribution. In practical applications, this estimator has proven
to be unstable.

An alternative and more stable estimator can be obtained with an importance sampling scheme. The auxiliary
distribution for the importance sampler can be chosen through the cross entropy theory (Chan and Eisenstat
2015). In particular, given a parametric family of distributions, the auxiliary density function is chosen to be
the one closest, in terms of the Kullback-Leibler divergence, to the probability density that would give a zero
variance estimate of the marginal likelihood. In practical terms, this is equivalent to the following algorithm:

1. Choose a parametric family, f .:; ˇ/, for the parameters of the model: f .� jˇ/.

2. Evaluate the maximum likelihood estimator of ˇ by using the posterior samples �1; : : : ; �n as data.

3. Use f .��j Ǒmle/ to generate the importance samples ��1 ; : : : ; �
�
n� .

4. Estimate the marginal likelihood:

m.y/ D
1

n�

n�X
jD1

L.yj��j /�.�
�
j /

f .��j j
Ǒ
mle/

The parametric family for the auxiliary distribution is chosen to be Gaussian. The parameters that are subject
to bounds are transformed accordingly:

� If �1 < � <1, then p D � .

� If m � � <1, then q D log.� �m/.

� If �1 < � �M , then r D log.M � �/.

� If m � � �M , then s D log.� �m/ � log.M � �/.

Assuming independence for the parameters that are subject to bounds, the auxiliary distribution to generate
importance samples is0BB@

p
q
r
s

1CCA � N

2664
0BB@
�p
�q
�r
�s

1CCA ;
0BB@
†p 0 0 0

0 †q 0 0

0 0 †r 0

0 0 0 †r

1CCA
3775

where p, q, r, and s are vectors that contain the transformations of the unbounded, bounded-below, bounded-
above, and bounded-above-and-below parameters. Also, given the imposed independence structure, †p can
be a nondiagonal matrix, but †q , †r , and †s are assumed to be diagonal matrices.
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Standard Distributions
Table 28.3 through Table 28.10 show all the distribution density functions that PROC QLIM recognizes. You
specify these distribution densities in the PRIOR statement.

Table 28.3 Beta Distribution

PRIOR statement BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

Note: Commonly m D 0 and M D 1.

Density .��m/a�1.M��/b�1

B.a;b/.M�m/aCb�1

Parameter restriction a > 0, b > 0, �1 < m < M <1

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œm;M� when a D 1; b D 1

Œm;M/ when a D 1; b ¤ 1

.m;M� when a ¤ 1; b D 1

.m;M/ otherwise

Mean a
aCb
� .M �m/Cm

Variance ab
.aCb/2.aCbC1/

� .M �m/2

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

�M C b�1
aCb�2

�m a > 1; b > 1

m and M a < 1; b < 1

m

(
a < 1; b � 1

a D 1; b > 1

M

(
a � 1; b < 1

a > 1; b D 1

not unique a D b D 1

Defaults SHAPE1=SHAPE2=1, MIN! �1, MAX!1

Table 28.4 Gamma Distribution

PRIOR statement GAMMA(SHAPE=a, SCALE=b )

Density 1
ba�.a/

�a�1e��=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean ab

Variance ab2

Mode .a � 1/b

Defaults SHAPE=SCALE=1
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Table 28.5 Inverse Gamma Distribution

PRIOR statement IGAMMA(SHAPE=a, SCALE=b)

Density ba

�.a/
��.aC1/e�b=�

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean b
a�1

; a > 1

Variance b2

.a�1/2.a�2/
; a > 2

Mode b
aC1

Defaults SHAPE=2.000001, SCALE=1

Table 28.6 Normal Distribution

PRIOR statement NORMAL(MEAN=�, VAR=�2)

Density 1

�
p
2�

exp
�
�
.���/2

2�2

�
Parameter restriction �2 > 0

Range �1 < � <1

Mean �

Variance �2

Mode �

Defaults MEAN=0, VAR=1000000

Table 28.7 Square Root Gamma Distribution

PRIOR statement SQGAMMA(SHAPE=a, SCALE=b )

Density 2
ba�.a/

�2a�1e��
2=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean �.aC 1
2
/

�.a/

p
b

Variance

(
a �

�
�.aC 1

2
/

�.a/

�2)
b

Mode
q
.a � 1

2
/b; a � 1

2

Defaults SHAPE=SCALE=1

For more information, see Stacy (1962).
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Table 28.8 Square Root Inverse Gamma Distribution

PRIOR statement SQIGAMMA(SHAPE=a, SCALE=b)

Density 2ba

�.a/
��.2aC1/e�b=�

2

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean �.a� 1
2
/

�.a/

p
b; a > 1

2

Variance

(
1
a�1
�

�
�.a� 1

2
/

�.a/

�2)
b; a > 1

Mode
r

b

aC 1
2

Defaults SHAPE=2.000001, SCALE=1

For more information, see Stacy (1962).

Table 28.9 t Distribution

PRIOR statement T(LOCATION=�, DF=�)

Density
�
�
�C1
2

�
�.�2 /

p
��

h
1C .���/2

�

i��C1
2

Parameter restriction � > 0

Range �1 < � <1

Mean �; for � > 1

Variance �
��2

; for � > 2

Mode �

Defaults LOCATION=0, DF=3

Table 28.10 Uniform Distribution

PRIOR statement UNIFORM(MIN=m, MAX=M)

Density 1
M�m

Parameter restriction �1 < m < M <1

Range � 2 Œm;M�

Mean mCM
2

Variance .M�m/2

12

Mode Not unique

Defaults MIN! �1, MAX!1
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Output to SAS Data Set

XBeta, Predicted, Residual

Xbeta is the structural part on the right-hand side of the model. Predicted value is the predicted dependent
variable value. For censored variables, if the predicted value is outside the boundaries, it is reported as the
closest boundary. For discrete variables, it is the level whose boundaries Xbeta falls between. Residual is
defined only for continuous variables and is defined as

Residual D Observed � Predicted

Error Standard Deviation

Error standard deviation is �i in the model. It varies only when the HETERO statement is used.

Marginal Effects

Marginal effect is defined as a contribution of one control variable to the response variable. For the binary
choice model with two response categories, �0 D �1, �1 D 0, �2 D1; and ordinal response model with
M response categories, �0; : : : ; �M , define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

The marginal effect of changes in the regressors on the probability of yi D j is then

@ProbŒyi D j �
@x

D Œf .�j�1 � x0iˇ/ � f .�j � x0iˇ/�ˇ

where f .x/ D dF .x/
dx

. In particular,

f .x/ D
dF.x/

dx
D

(
1p
2�
e�x

2=2 .probit/
e�x

Œ1Ce.�x/�2
.logit/

The marginal effects in the Box-Cox regression model are

@EŒyi �

@x
D ˇ

x�k�1

y�0�1

The marginal effects in the truncated regression model are

@EŒyi jLi < y
�
i < Ri �

@x
D ˇ

�
1 �

.�.ai / � �.bi //
2

.ˆ.bi / �ˆ.ai //2
C
ai�.ai / � bi�.bi /

ˆ.bi / �ˆ.ai /

�
where ai D

Li�x0
i
ˇ

�i
and bi D

Ri�x0
i
ˇ

�i
.
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The marginal effects in the censored regression model are

@EŒyjxi �
@x

D ˇ � ProbŒLi < y�i < Ri �

For models that involve higher-order or interaction variables, the marginal effects are calculated by treating
these variables as independent explanatory variables. Therefore, the marginal effects of the higher-order or
interaction variables ignore the polynomial nature of these variables.

Inverse Mills Ratio, Expected and Conditionally Expected Values

Expected and conditionally expected values are computed only for continuous variables. The inverse Mills
ratio is computed for censored or truncated continuous, binary discrete, and selection endogenous variables.

Let Li and Ri be the lower boundary and upper boundary, respectively, for the yi . Define ai D
Li�x0

i
ˇ

�i
and

bi D
Ri�x0

i
ˇ

�i
. Then the inverse Mills ratio is defined as

� D
.�.ai / � �.bi //

.ˆ.bi / �ˆ.ai //

for a continuous variable and defined as

� D
�.x0iˇ/
ˆ.x0iˇ/

for a binary discrete variable.

The expected value is the unconditional expectation of the dependent variable. For a censored variable, it is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.ˆ.bi / �ˆ.ai //C .1 �ˆ.bi //Ri

For a left-censored variable (Ri D1), this formula is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.1 �ˆ.ai //

where � D �.ai /
1�ˆ.ai /

.

For a right-censored variable (Li D �1), this formula is

EŒyi � D .x0iˇ C ��i /ˆ.bi /C .1 �ˆ.bi //Ri

where � D � �.bi /
ˆ.bi /

.

For a noncensored variable, this formula is

EŒyi � D x0iˇ

The conditional expected value is the expectation given that the variable is inside the boundaries:

EŒyi jLi < yi < Ri � D x0iˇ C ��i
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Probability

Probability applies only to discrete responses. It is the marginal probability that the discrete response is
taking the value of the observation. If the PROBALL option is specified, then the probability for all of the
possible responses of the discrete variables is computed.

Technical Efficiency

Technical efficiency for each producer is computed only for stochastic frontier models.

In general, the stochastic production frontier can be written as

yi D f .xi Iˇ/ expfvigTEi

where yi denotes producer i’s actual output, f .�/ is the deterministic part of production frontier, expfvig is a
producer-specific error term, and TEi is the technical efficiency coefficient, which can be written as

TEi D
yi

f .xi Iˇ/ expfvig
:

In the case of a Cobb-Douglas production function, TEi D expf�uig. See the section “Stochastic Frontier
Production and Cost Models” on page 1956.

Cost frontier can be written in general as

Ei D c.yi ; wi Iˇ/ expfvig=CEi

where wi denotes producer i’s input prices, c.�/ is the deterministic part of cost frontier, expfvig is a
producer-specific error term, and CEi is the cost efficiency coefficient, which can be written as

CEi D
c.xi ; wi Iˇ/ expfvig

Ei

In the case of a Cobb-Douglas cost function, CEi D expf�uig. See the section “Stochastic Frontier
Production and Cost Models” on page 1956. Hence, both technical and cost efficiency coefficients are the
same. The estimates of technical efficiency are provided in the following subsections.

Normal–Half Normal Model

Define �� D ���2u=�
2 and �2� D �2u�

2
v =�

2. Then, as it is shown by Jondrow et al. (1982), conditional
density is as follows:

f .uj�/ D
f .u; �/

f .�/
D

1
p
2���

exp
�
�
.u � ��/

2

2�2�

���
1 �ˆ

�
�
��

��

��
Hence, f .uj�/ is the density for NC.��; �2�/.

Using this result, it follows that the estimate of technical efficiency (Battese and Coelli 1988) is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�� � ��i=��/

1 �ˆ.���i=��/

�
exp

�
���i C

1

2
�2�

�
The second version of the estimate (Jondrow et al. 1982) is

TE2i D expf�E.ui j�i /g
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where

E.ui j�i / D ��i C ��

�
�.���i=��/

1 �ˆ.���i=��/

�
D ��

�
�.�i�=�/

1 �ˆ.�i�=�/
�

�
�i�

�

��

Normal-Exponential Model

DefineA D � Q�=�v and Q� D ����2v =�u. Then, as it is shown by Kumbhakar and Lovell (2000), conditional
density is as follows:

f .uj�/ D
1

p
2��vˆ.� Q�=�v/

exp
�
�
.u � Q�/2

2�2

�
Hence, f .uj�/ is the density for NC. Q�; �2v /.

Using this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�v � Q�i=�v/

1 �ˆ.� Q�i=�v/

�
exp

�
� Q�i C

1

2
�2v

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C �v

�
�.� Q�i=�v/

1 �ˆ.� Q�i=�v/

�
D �v

�
�.A/

ˆ.�A/
� A

�

Normal–Truncated Normal Model

Define Q� D .��2u�i C��
2
v /=�

2 and �2� D �
2
u�

2
v =�

2. Then, as it is shown by Kumbhakar and Lovell (2000),
conditional density is as follows:

f .uj�/ D
1

p
2���Œ1 �ˆ.� Q�=��/�

exp
�
�
.u � Q�/2

2�2�

�
Hence, f .uj�/ is the density for NC. Q�; �2�/.

Using this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
1 �ˆ.�� � Q�i=��/

1 �ˆ.� Q�i=��/
exp

�
� Q�i C

1

2
�2�

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C ��

�
�. Q�i=��/

1 �ˆ.� Q�i=��/

�
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OUTEST= Data Set
The OUTEST= data set contains all the parameters estimated in a MODEL statement. The OUTEST= option
can be used when the PROC QLIM call contains one MODEL statement:

proc qlim data=a outest=e;
model y = x1 x2 x3;
endogenous y ~ censored(lb=0);

run;

Each parameter contains the estimate for the corresponding parameter in the corresponding model. In
addition, the OUTEST= data set contains the following variables:

_NAME_ the name of the independent variable

_TYPE_ type of observation. PARM indicates the row of coefficients; STD indicates the row of
standard deviations of the corresponding coefficients.

_STATUS_ convergence status for optimization

The rest of the columns correspond to the explanatory variables.

The OUTEST= data set contains one observation for the MODEL statement, giving the parameter estimates
for that model. If the COVOUT option is specified, the OUTEST= data set includes additional observations
for the MODEL statement, giving the rows of the covariance matrix of parameter estimates. For covariance
observations, the value of the _TYPE_ variable is COV, and the _NAME_ variable identifies the parameter
associated with that row of the covariance matrix. If the CORROUT option is specified, the OUTEST= data
set includes additional observations for the MODEL statement, giving the rows of the correlation matrix
of parameter estimates. For correlation observations, the value of the _TYPE_ variable is CORR, and the
_NAME_ variable identifies the parameter associated with that row of the correlation matrix.

Naming

Naming of Parameters

When there is only one equation in the estimation, parameters are named in the same way as in other SAS
procedures such as REG, PROBIT, and so on. The constant in the regression equation is called Intercept. The
coefficients on independent variables are named by the independent variables. The standard deviation of the
errors is called _Sigma. If there are Box-Cox transformations, the coefficients are named _Lambdai, where
i increments from 1, or as specified by the user. The limits for the discrete dependent variable are named
_Limiti. If the LIMIT=varying option is specified, then _Limiti starts from 1. If the LIMIT=varying option is
not specified, then _Limit1 is set to 0 and the limit parameters start from i D 2. If the HETERO statement is
included, the coefficients of the independent variables in the hetero equation are called _H.x, where x is the
name of the independent variable. You can form the name of the parameter associated with an interaction
regressor by concatenating the interacting variables with an underscore. The following example restricts the
parameter that includes the interaction term to be greater than zero:
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proc qlim data=a;
model y = x1|x2;
endogenous y ~ discrete;
restrict x1_x2>0;

run;

When there are multiple equations in the estimation, the parameters in the main equation are named in the
format of y.x, where y is the name of the dependent variable and x is the name of the independent variable. The
standard deviation of the errors is called _Sigma.y. The correlation of the errors is called _Rho for bivariate
model. For the model with three variables it is _Rho.y1.y2, _Rho.y1.y3, _Rho.y2.y3. The construction of
correlation names for multivariate models is analogous. Box-Cox parameters are called _Lambdai.y and limit
variables are called _Limiti.y. Parameters in the HETERO statement are named as _H.y.x. In the OUTEST=
data set, all variables are changed from ‘.’ to ‘_’.

Naming of Output Variables

Table 28.11 shows the option in the OUTPUT statement, with the corresponding variable names and their
explanation.

Table 28.11 OUTPUT Statement Options and Variable Names

Option Name Explanation

PREDICTED P_y Predicted value of y
RESIDUAL RESID_y Residual of y, (y-PredictedY)
XBETA XBETA_y Structure part (x0ˇ) of y equation
ERRSTD ERRSTD_y Standard deviation of error term
PROB PROB_y Probability that y is taking the observed

value in this observation (discrete y only)
PROBALL PROBi_y Probability that y is taking the ith value

(discrete y only)
MILLS MILLS_y Inverse Mills ratio for y
EXPECTED EXPCT_y Unconditional expected value of y
CONDITIONAL CEXPCT_y Conditional expected value of y,

condition on the truncation.
MARGINAL MEFF_x Marginal effect of x on y (@y

@x
) with single

equation
MEFF_y_x Marginal effect of x on y (@y

@x
) with

multiple equations
MEFF_Pi_x Marginal effect of x on y (@Prob.yDi/

@x
)

with single equation and discrete y
MEFF_Pi_y_x Marginal effect of x on y (@Prob.yDi/

@x
)

with multiple equations and discrete y
TE1 TE1 Technical efficiency estimate for each

producer proposed by Battese and Coelli
(1988)

TE2 TE2 Technical efficiency estimate for each
producer proposed by Jondrow et al.
(1982)
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If you prefer to name the output variables differently, you can use the RENAME option in the data set. For
example, the following statements rename the residual of y as Resid:

proc qlim data=one;
model y = x1-x10 / censored;
output out=outds(rename=(resid_y=resid)) residual;

run;

ODS Table Names
PROC QLIM assigns a name to each table it creates. You can use these names to denote the table when using
the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in
Table 28.12.

Table 28.12 ODS Tables Produced in PROC QLIM by the
MODEL Statement and TEST Statement

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement and TEST Statement
ResponseProfile Response profile Default
ClassLevels Class levels Default
FitSummary Summary of nonlinear estimation Default
GoodnessOfFit Pseudo-R-square measures Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
SummaryContResponse Summary of continuous response Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
FitSummaryHeckman1 Heckman First Step Model Fit Summary HECKIT
FitSummaryHeckman2 Heckman Second Model Fit Summary HECKIT
LinCon Linear constraints ITPRINT
InputOptions Input options ITPRINT
ProblemDescription Problem description ITPRINT
IterStart Optimization start summary ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ConvergenceStatus Convergence status ITPRINT
ParameterEstimatesStart Optimization start ITPRINT
ParameterEstimatesResults Resulting parameters ITPRINT
LinConSol Linear constraints evaluated at solution ITPRINT
VariableSelection Variable selection summary SELECTVAR

ODS Tables Created by the TEST Statement
TestResults Test results Default

ODS Tables Created by the BAYES Statement
AutoMcmcSummary Automatic MCMC summary DIAGNOSTICS=AUTOSUM
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Table 28.12 continued

ODS Table Name Description Option

AutoCorr Autocorrelation statistics for each parameter Default
Corr Correlation matrix of the posterior samples STATS=COR
Cov Covariance matrix of the posterior samples STATS=COV
ESS Effective sample size for each parameter Default
MCSE Monte Carlo standard error for each parameter Default
Geweke Geweke diagnostics for each parameter Default
Heidelberger Heidelberger-Welch diagnostics for each

parameter
DIAGNOSTICS=HEIDEL

LogMarginLike Marginal likelihood MARGINLIKE
PostIntervals Equal-tail and HPD intervals for each

parameter
Default

PosteriorSample Posterior samples (ODS output data set only)
PostSummaries Posterior summaries Default
PriorSample Prior samples used for prior predictive analysis (ODS output data set only)
PriorSummaries Prior summaries STATS=PRIOR
Raftery Raftery-Lewis diagnostics for each parameter DIAGNOSTICS=RAFTER

ODS Tables Created by the RANDOM Statement
RandParmsModelSummary Random-parameters model summary Default
RandParmsCovEstimates Random-parameters covariance estimates Default

ODS Graphics
You can reference every graph that is produced through ODS Graphics with a name. The names of the graphs
that PROC QLIM generates are listed in Table 28.13 for the frequentist approach and in Table 28.14 for the
Bayesian approach.

Table 28.13 Graphs Produced by PROC QLIM without a BAYES
Statement

ODS Graph Name Plot Description Statement and Option

Frequentist Output Plots
ResidPlot Frequentist analysis of residuals PLOTS=RESIDUAL
XbetaPlot Frequentist analysis of xbeta PLOTS=XBETA
PredPlot Frequentist analysis of predictions PLOTS=PREDICTED
MarginalPlot Frequentist analysis of marginal effects PLOTS=MARGINAL
ErrStdPlot Frequentist analysis of the error standard

deviation (meaningful only with a HETERO
statement)

PLOTS=ERRSTD

MillsPlot Frequentist analysis of Mills ratio PLOTS=MILLS
ExpctPlot Frequentist analysis of expected values for

continuous endogenous variables
PLOTS=EXPECTED



2006 F Chapter 28: The QLIM Procedure

Table 28.13 continued

ODS Graph Name Plot Description Statement and Option

TE1Plot Frequentist analysis of technical efficiency
(only in stochastic frontier model) suggested
by Battese and Coelli (1988)

PLOTS=TE1

TE2Plot Frequentist analysis of technical efficiency
(only in stochastic frontier model) suggested
by Jondrow et al. (1982)

PLOTS=TE2

CExpctPlot Frequentist analysis of conditional expected
values for continuous endogenous variables

PLOTS=CONDITIONAL

ProbPlot Frequentist analysis of probability of discrete
endogenous variables that take the current
observed responses

PLOTS=PROB

ProbAllPlot Frequentist analysis of probability of discrete
endogenous variables for all responses

PLOTS=PROBALL

ProfLikPlot Profile log-likelihood plot PLOTS=PROFLIK

Table 28.14 Graphs Produced by PROC QLIM When a BAYES
Statement Is Included

ODS Graph Name Plot Description Statement and Option

Bayesian Diagnostic Plots
ADPanel Autocorrelation function and

density panel
PLOTS=(AUTOCORR
DENSITY)

AutocorrPanel Autocorrelation function panel PLOTS=AUTOCORR
AutocorrPlot Autocorrelation function plot PLOTS(UNPACK)=AUTOCORR
DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
ProfLikPlot Profile log-likelihood plot PLOTS=PROFLIK
TAPanel Trace and autocorrelation

function panel
PLOTS=(TRACE AUTOCORR)

TADPanel Trace, density, and
autocorrelation function panel

PLOTS=(TRACE AUTOCORR
DENSITY)
PLOTS=BAYESDIAG

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Bayesian Summary Plots
BayesSumPlot Prior/posterior densities and

MLE
PLOTS=BAYESSUM
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Table 28.14 continued

ODS Graph Name Plot Description Statement and Option

Bayesian Output Plots
PredictiveByObsNumPlot Predictive analysis by

observation number
PLOTS(PRIOR)=BAYESPRED

PredictivePlot Predictive analysis by regressor PLOTS(PRIOR)=BAYESPRED

The ODS Graphics is not supported for the random-parameters models.

Examples: QLIM Procedure

Example 28.1: Ordered Data Modeling
Cameron and Trivedi (1986, 1998) studied the number of doctor visits from the Australian Health Survey,
1977–1978. In the following data set, the dependent variable, DVISITS, contains the number of doctor visits in
the past 2 weeks (0, 1, or more than 2). The explanatory variables are as follows: SEX indicates if the patient
is female; AGE is the age in years divided by 100; INCOME is the annual income ($10,000); LEVYPLUS
indicates if the patient has private health insurance; FREEPOOR indicates free government health insurance
due to low income; FREEREPA indicates free government health insurance for other reasons; ILLNESS is the
number of illnesses in the past 2 weeks; ACTDAYS is the number of days the illness caused reduced activity;
HSCORE is a questionnaire score; CHCOND1 indicates a chronic condition that does not limit activity; and
CHCOND2 indicates a chronic condition that limits activity.

title1 'Estimating an Ordinal Probit Model';

data docvisit;
input sex age agesq income levyplus freepoor freerepa

illness actdays hscore chcond1 chcond2 dvisits;
y = (dvisits > 0);
if ( dvisits > 8 ) then dvisits = 8;

datalines;

... more lines ...

1 0.37 0.1369 0.25 0 0 1 1 0 1 0 0 0
1 0.52 0.2704 0.65 0 0 0 0 0 0 0 0 0
0 0.72 0.5184 0.25 0 0 1 0 0 0 0 0 0
;

The dependent variable, DVISITS, has nine ordered values. The following SAS statements estimate the
ordinal probit model:
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/*-- Ordered Discrete Responses --*/
proc qlim data=docvisit;

model dvisits = sex age agesq income levyplus
freepoor freerepa illness actdays hscore
chcond1 chcond2 / discrete;

run;

The output of the QLIM procedure for ordered data modeling is shown in Output 28.1.1.

Output 28.1.1 Ordered Data Modeling

Estimating an Ordinal Probit Model

The QLIM Procedure

Discrete Response
Profile of dvisits

Index Value
Total

Frequency

1 0 4141

2 1 782

3 2 174

4 3 30

5 4 24

6 5 9

7 6 12

8 7 12

9 8 6

Output 28.1.1 continued

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable dvisits

Number of Observations 5190

Log Likelihood -3138

Maximum Absolute Gradient 0.00553

Number of Iterations 80

Optimization Method Quasi-Newton

AIC 6316

Schwarz Criterion 6447
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Output 28.1.1 continued

Goodness-of-Fit Measures

Measure Value Formula

Likelihood Ratio (R) 789.73 2 * (LogL - LogL0)

Upper Bound of R (U) 7065.9 - 2 * LogL0

Aldrich-Nelson 0.1321 R / (R+N)

Cragg-Uhler 1 0.1412 1 - exp(-R/N)

Cragg-Uhler 2 0.1898 (1-exp(-R/N)) / (1-exp(-U/N))

Estrella 0.149 1 - (1-R/U)^(U/N)

Adjusted Estrella 0.1416 1 - ((LogL-K)/LogL0)^(-2/N*LogL0)

McFadden's LRI 0.1118 R / U

Veall-Zimmermann 0.2291 (R * (U+N)) / (U * (R+N))

McKelvey-Zavoina 0.2036

N = # of observations, K = # of regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -1.378713 0.147413 -9.35 <.0001

sex 1 0.131885 0.043785 3.01 0.0026

age 1 -0.534139 0.815907 -0.65 0.5127

agesq 1 0.857252 0.898364 0.95 0.3400

income 1 -0.062213 0.068017 -0.91 0.3604

levyplus 1 0.137031 0.053262 2.57 0.0101

freepoor 1 -0.346044 0.129638 -2.67 0.0076

freerepa 1 0.178383 0.074348 2.40 0.0164

illness 1 0.150485 0.015747 9.56 <.0001

actdays 1 0.100575 0.005850 17.19 <.0001

hscore 1 0.031862 0.009201 3.46 0.0005

chcond1 1 0.061601 0.049024 1.26 0.2089

chcond2 1 0.135322 0.067711 2.00 0.0457

_Limit2 1 0.938885 0.031219 30.07 <.0001

_Limit3 1 1.514289 0.049329 30.70 <.0001

_Limit4 1 1.711662 0.058151 29.43 <.0001

_Limit5 1 1.952862 0.072014 27.12 <.0001

_Limit6 1 2.087424 0.081655 25.56 <.0001

_Limit7 1 2.333789 0.101760 22.93 <.0001

_Limit8 1 2.789795 0.156188 17.86 <.0001

By default, ordinal probit/logit models are estimated assuming that the first threshold or limit parameter (�1)
is 0. However, this parameter can also be estimated when the LIMIT1=VARYING option is specified. The
probability that y�i belongs to the jth category is defined as

P Œ�j�1 < y
�
i < �j � D F.�j � x0iˇ/ � F.�j�1 � x0iˇ/

where F.�/ is the logistic or standard normal CDF, �0 D �1 and �9 D 1. Output 28.1.2 lists ordinal
probit estimates computed in the following program. Note that the intercept term is suppressed for model
identification when �1 is estimated.
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/*-- Ordered Probit --*/
proc qlim data=docvisit;

model dvisits = sex age agesq income levyplus
freepoor freerepa illness actdays hscore
chcond1 chcond2 / discrete(d=normal) limit1=varying;

run;

Output 28.1.2 Ordinal Probit Parameter Estimates with LIMIT1=VARYING

Estimating an Ordinal Probit Model

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

sex 1 0.131885 0.043785 3.01 0.0026

age 1 -0.534182 0.815915 -0.65 0.5127

agesq 1 0.857299 0.898371 0.95 0.3399

income 1 -0.062211 0.068017 -0.91 0.3604

levyplus 1 0.137031 0.053262 2.57 0.0101

freepoor 1 -0.346045 0.129638 -2.67 0.0076

freerepa 1 0.178382 0.074348 2.40 0.0164

illness 1 0.150485 0.015747 9.56 <.0001

actdays 1 0.100575 0.005850 17.19 <.0001

hscore 1 0.031862 0.009201 3.46 0.0005

chcond1 1 0.061602 0.049024 1.26 0.2089

chcond2 1 0.135321 0.067711 2.00 0.0457

_Limit1 1 1.378706 0.147415 9.35 <.0001

_Limit2 1 2.317590 0.150206 15.43 <.0001

_Limit3 1 2.892994 0.155198 18.64 <.0001

_Limit4 1 3.090366 0.158263 19.53 <.0001

_Limit5 1 3.331566 0.164065 20.31 <.0001

_Limit6 1 3.466128 0.168799 20.53 <.0001

_Limit7 1 3.712493 0.179756 20.65 <.0001

_Limit8 1 4.168501 0.215737 19.32 <.0001

Example 28.2: Tobit Analysis
The following statements show a subset of the Mroz (1987) data set. In these data, Hours is the number of
hours the wife worked outside the household in a given year, Yrs_Ed is the years of education, and Yrs_Exp
is the years of work experience. A Tobit model will be fit to the hours worked with years of education and
experience as covariates.

By the nature of the data, it is clear that there are a number of women who committed some positive number
of hours to outside work (yi > 0 is observed). There are also a number of women who did not work at all
(yi D 0 is observed). This produces the model

y�i D x0iˇ C �i
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yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � iidN.0; �2/. The set of explanatory variables is denoted by xi .

title1 'Estimating a Tobit Model';

data subset;
input Hours Yrs_Ed Yrs_Exp @@;
if Hours eq 0 then Lower=.;

else Lower=Hours;
datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;

/*-- Tobit Model --*/
proc qlim data=subset;

model hours = yrs_ed yrs_exp;
endogenous hours ~ censored(lb=0);

run;

The output of the QLIM procedure is shown in Output 28.2.1.

Output 28.2.1 Tobit Analysis Results

Estimating a Tobit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable Hours

Number of Observations 17

Log Likelihood -74.93700

Maximum Absolute Gradient 1.18953E-6

Number of Iterations 23

Optimization Method Quasi-Newton

AIC 157.87400

Schwarz Criterion 161.20685

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -5598.295129 27.692220 -202.16 <.0001

Yrs_Ed 1 373.123254 53.988877 6.91 <.0001

Yrs_Exp 1 63.336247 36.551299 1.73 0.0831

_Sigma 1 1582.859635 390.076480 4.06 <.0001

The “Parameter Estimates” table has four rows. The first three of these rows correspond to the vector estimate
of the regression coefficients ˇ. The last one is called _Sigma, which corresponds to the estimate of the error
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variance � .

Example 28.3: Bivariate Probit Analysis
This example shows how to estimate a bivariate probit model. Note the INIT statement in the following
program, which sets the initial values for some parameters in the optimization:

title1 'Estimating a Bivariate Probit Model';

data a;
keep y1 y2 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( y1l > 0 ) then y1 = 1;
else y1 = 0;
if ( y2l > 0 ) then y2 = 1;
else y2 = 0;
output;

end;
run;

/*-- Bivariate Probit --*/
proc qlim data=a method=qn;

init y1.x1 2.8, y1.x2 2.1, _rho .1;
model y1 = x1 x2;
model y2 = x1 x2;
endogenous y1 y2 ~ discrete;

run;

The output of the QLIM procedure is shown in Output 28.3.1.

Output 28.3.1 Bivariate Probit Analysis Results

Estimating a Bivariate Probit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable y1 y2

Number of Observations 500

Log Likelihood -134.90796

Maximum Absolute Gradient 3.23517E-7

Number of Iterations 17

Optimization Method Quasi-Newton

AIC 283.81592

Schwarz Criterion 313.31817
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Output 28.3.1 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y1.Intercept 1 1.003639 0.153678 6.53 <.0001

y1.x1 1 2.244374 0.256062 8.76 <.0001

y1.x2 1 3.273441 0.341581 9.58 <.0001

y2.Intercept 1 3.621164 0.457173 7.92 <.0001

y2.x1 1 4.551525 0.576547 7.89 <.0001

y2.x2 1 -2.442769 0.332295 -7.35 <.0001

_Rho 1 0.144097 0.336459 0.43 0.6685

Example 28.4: Sample Selection Model
This example illustrates the use of PROC QLIM for sample selection models. The data set is the one from
Mroz (1987). The goal is to estimate a wage offer function for married women, accounting for potential
selection bias. Of the 753 women, the wage is observed for 428 working women. The labor force participation
equation estimated in the introductory example is used for selection. The wage equation uses log wage
(lwage) as the dependent variable. The explanatory variables in the wage equation are the woman’s years of
schooling (educ), wife’s labor experience (exper), and square of experience (expersq). The program is as
follows:

/*-- Sample Selection --*/
proc qlim data=mroz;

model inlf = nwifeinc educ exper expersq
age kidslt6 kidsge6 /discrete;

model lwage = educ exper expersq / select(inlf=1);
run;

The output of the QLIM procedure is shown in Output 28.4.1.

Output 28.4.1 Sample Selection

Estimating a Heckman Selection Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable inlf lwage

Number of Observations 753

Log Likelihood -832.88509

Maximum Absolute Gradient 0.0007809

Number of Iterations 73

Optimization Method Quasi-Newton

AIC 1694

Schwarz Criterion 1759
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Output 28.4.1 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

lwage.Intercept 1 -0.552697 0.260373 -2.12 0.0338

lwage.educ 1 0.108350 0.014861 7.29 <.0001

lwage.exper 1 0.042837 0.014878 2.88 0.0040

lwage.expersq 1 -0.000837 0.000417 -2.01 0.0449

_Sigma.lwage 1 0.663398 0.022706 29.22 <.0001

inlf.Intercept 1 0.266449 0.508954 0.52 0.6006

inlf.nwifeinc 1 -0.012132 0.004877 -2.49 0.0129

inlf.educ 1 0.131341 0.025383 5.17 <.0001

inlf.exper 1 0.123282 0.018728 6.58 <.0001

inlf.expersq 1 -0.001886 0.000601 -3.14 0.0017

inlf.age 1 -0.052829 0.008479 -6.23 <.0001

inlf.kidslt6 1 -0.867399 0.118647 -7.31 <.0001

inlf.kidsge6 1 0.035872 0.043476 0.83 0.4093

_Rho 1 0.026608 0.147075 0.18 0.8564

Note the correlation estimate is insignificant. This indicates that selection bias is not a big problem in the
estimation of wage equation.

Example 28.5: Sample Selection Model with Truncation and Censoring
In this example the data are generated such that the selection variable is discrete and the variable Y is truncated
from below by zero. The program follows, with the results shown in Output 28.5.1:

title1 'Estimating a Sample Selection Model with Truncation';

data trunc;
keep z y x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
zl = 1 + 2 * x1 + 3 * x2 + u1;
y = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( zl > 0 ) then z = 1;
else z = 0;
if y>=0 then output;

end;
run;

/*-- Sample Selection with Truncation --*/
proc qlim data=trunc method=qn;

model z = x1 x2 / discrete;
model y = x1 x2 / select(z=1) truncated(lb=0);

run;



Example 28.5: Sample Selection Model with Truncation and Censoring F 2015

Output 28.5.1 Sample Selection with Truncation

Estimating a Sample Selection Model with Truncation

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable z y

Number of Observations 379

Log Likelihood -344.10722

Maximum Absolute Gradient 4.95178E-6

Number of Iterations 17

Optimization Method Quasi-Newton

AIC 704.21444

Schwarz Criterion 735.71473

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y.Intercept 1 3.014158 0.128548 23.45 <.0001

y.x1 1 3.995671 0.099599 40.12 <.0001

y.x2 1 -1.972697 0.096385 -20.47 <.0001

_Sigma.y 1 0.923428 0.047233 19.55 <.0001

z.Intercept 1 0.949444 0.190265 4.99 <.0001

z.x1 1 2.163928 0.288384 7.50 <.0001

z.x2 1 3.134213 0.379251 8.26 <.0001

_Rho 1 0.494356 0.176542 2.80 0.0051

In the following statements the data are generated such that the selection variable is discrete and the variable
Y is censored from below by zero. The results are shown in Output 28.5.2.

title1 'Estimating a Sample Selection Model with Censoring';

data cens;
keep z y x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
zl = 1 + 2 * x1 + 3 * x2 + u1;
yl = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( zl > 0 ) then z = 1;
else z = 0;
if ( yl > 0 ) then y = yl;
else y = 0;
output;

end;
run;
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/*-- Sample Selection with Censoring --*/
proc qlim data=cens method=qn;

model z = x1 x2 / discrete;
model y = x1 x2 / select(z=1) censored(lb=0);

run;

Output 28.5.2 Sample Selection with Censoring

Estimating a Sample Selection Model with Censoring

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable z y

Number of Observations 500

Log Likelihood -399.78508

Maximum Absolute Gradient 2.30443E-6

Number of Iterations 19

Optimization Method Quasi-Newton

AIC 815.57015

Schwarz Criterion 849.28702

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y.Intercept 1 3.074276 0.111617 27.54 <.0001

y.x1 1 3.963619 0.085796 46.20 <.0001

y.x2 1 -2.023548 0.088714 -22.81 <.0001

_Sigma.y 1 0.920860 0.043278 21.28 <.0001

z.Intercept 1 1.013610 0.154081 6.58 <.0001

z.x1 1 2.256922 0.255999 8.82 <.0001

z.x2 1 3.302692 0.342168 9.65 <.0001

_Rho 1 0.350776 0.197093 1.78 0.0751

Example 28.6: Types of Tobit Models
The following five examples show how to estimate different types of Tobit models (see the section “Types of
Tobit Models” on page 1954). Output 28.6.1 through Output 28.6.5 show the results of the corresponding
programs.

Type 1 Tobit

title1 'Estimating a Type 1 Tobit Model';

data a1;
keep y x;
do i = 1 to 500;

x = rannor( 19283 );
u = rannor( 19283 );
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yl = 1 + 2 * x + u;
if ( yl > 0 ) then y = yl;
else y = 0;
output;

end;
run;

/*-- Type 1 Tobit --*/
proc qlim data=a1 method=qn;

model y = x;
endogenous y ~ censored(lb=0);

run;

Output 28.6.1 Type 1 Tobit

Estimating a Type 1 Tobit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable y

Number of Observations 500

Log Likelihood -554.17696

Maximum Absolute Gradient 4.65556E-7

Number of Iterations 9

Optimization Method Quasi-Newton

AIC 1114

Schwarz Criterion 1127

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.942734 0.056784 16.60 <.0001

x 1 2.049571 0.066979 30.60 <.0001

_Sigma 1 1.016571 0.039035 26.04 <.0001

Type 2 Tobit

title1 'Estimating a Type 2 Tobit Model';

data a2;
keep y1 y2 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
if ( y1l > 0 ) then y1 = 1;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
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else y2 = 0;
output;

end;
run;

/*-- Type 2 Tobit --*/
proc qlim data=a2 method=qn;

model y1 = x1 x2 / discrete;
model y2 = x1 x2 / select(y1=1);

run;

Output 28.6.2 Type 2 Tobit

Estimating a Type 2 Tobit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable y1 y2

Number of Observations 500

Log Likelihood -476.12328

Maximum Absolute Gradient 8.67623E-7

Number of Iterations 17

Optimization Method Quasi-Newton

AIC 968.24655

Schwarz Criterion 1002

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 3.066992 0.106903 28.69 <.0001

y2.x1 1 4.004874 0.072043 55.59 <.0001

y2.x2 1 -2.079352 0.087544 -23.75 <.0001

_Sigma.y2 1 0.940559 0.039321 23.92 <.0001

y1.Intercept 1 1.017140 0.154975 6.56 <.0001

y1.x1 1 2.253080 0.256097 8.80 <.0001

y1.x2 1 3.305140 0.343695 9.62 <.0001

_Rho 1 0.292992 0.210073 1.39 0.1631

Type 3 Tobit

title1 'Estimating a Type 3 Tobit Model';

data a3;
keep y1 y2 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
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if ( y1l > 0 ) then y1 = y1l;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
else y2 = 0;
output;

end;
run;

/*-- Type 3 Tobit --*/
proc qlim data=a3 method=qn;

model y1 = x1 x2 / censored(lb=0);
model y2 = x1 x2 / select(y1>0);

run;

Output 28.6.3 Type 3 Tobit

Estimating a Type 3 Tobit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 2

Endogenous Variable y1 y2

Number of Observations 500

Log Likelihood -838.94087

Maximum Absolute Gradient 9.70554E-6

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 1696

Schwarz Criterion 1734

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 3.081206 0.080121 38.46 <.0001

y2.x1 1 3.998361 0.063734 62.73 <.0001

y2.x2 1 -2.088280 0.072876 -28.66 <.0001

_Sigma.y2 1 0.939799 0.039047 24.07 <.0001

y1.Intercept 1 0.981975 0.067351 14.58 <.0001

y1.x1 1 2.032675 0.059363 34.24 <.0001

y1.x2 1 2.976609 0.065584 45.39 <.0001

_Sigma.y1 1 0.969968 0.039795 24.37 <.0001

_Rho 1 0.226281 0.057672 3.92 <.0001

Type 4 Tobit

title1 'Estimating a Type 4 Tobit Model';

data a4;
keep y1 y2 y3 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
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u1 = rannor( 19283 );
u2 = rannor( 19283 );
u3 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
y3l = 0 - 1 * x1 + 1 * x2 + u1*.1 - u2*.5 + u3*.5;
if ( y1l > 0 ) then y1 = y1l;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
else y2 = 0;
if ( y1l <= 0 ) then y3 = y3l;
else y3 = 0;
output;

end;
run;

/*-- Type 4 Tobit --*/
proc qlim data=a4 method=qn;

model y1 = x1 x2 / censored(lb=0);
model y2 = x1 x2 / select(y1>0);
model y3 = x1 x2 / select(y1<=0);

run;

Output 28.6.4 Type 4 Tobit

Estimating a Type 4 Tobit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 3

Endogenous Variable y1 y2 y3

Number of Observations 500

Log Likelihood -1128

Maximum Absolute Gradient 0.0000161

Number of Iterations 21

Optimization Method Quasi-Newton

AIC 2285

Schwarz Criterion 2344
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Output 28.6.4 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 2.894656 0.076079 38.05 <.0001

y2.x1 1 4.072704 0.062675 64.98 <.0001

y2.x2 1 -1.901163 0.076874 -24.73 <.0001

_Sigma.y2 1 0.981655 0.039564 24.81 <.0001

y3.Intercept 1 0.064594 0.179441 0.36 0.7189

y3.x1 1 -0.938384 0.096570 -9.72 <.0001

y3.x2 1 1.035798 0.123104 8.41 <.0001

_Sigma.y3 1 0.743124 0.038240 19.43 <.0001

y1.Intercept 1 0.987370 0.067861 14.55 <.0001

y1.x1 1 2.050408 0.060819 33.71 <.0001

y1.x2 1 2.982190 0.072552 41.10 <.0001

_Sigma.y1 1 1.032473 0.040971 25.20 <.0001

_Rho.y1.y2 1 0.291587 0.053436 5.46 <.0001

_Rho.y1.y3 1 -0.031665 0.260057 -0.12 0.9031

Type 5 Tobit

title1 'Estimating a Type 5 Tobit Model';

data a5;
keep y1 y2 y3 x1 x2;
do i = 1 to 500;

x1 = rannor( 19283 );
x2 = rannor( 19283 );
u1 = rannor( 19283 );
u2 = rannor( 19283 );
u3 = rannor( 19283 );
y1l = 1 + 2 * x1 + 3 * x2 + u1;
y2l = 3 + 4 * x1 - 2 * x2 + u1*.2 + u2;
y3l = 0 - 1 * x1 + 1 * x2 + u1*.1 - u2*.5 + u3*.5;
if ( y1l > 0 ) then y1 = 1;
else y1 = 0;
if ( y1l > 0 ) then y2 = y2l;
else y2 = 0;
if ( y1l <= 0 ) then y3 = y3l;
else y3 = 0;
output;

end;
run;

/*-- Type 5 Tobit --*/
proc qlim data=a5 method=qn;

model y1 = x1 x2 / discrete;
model y2 = x1 x2 / select(y1>0);
model y3 = x1 x2 / select(y1<=0);

run;
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Output 28.6.5 Type 5 Tobit

Estimating a Type 5 Tobit Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 3

Endogenous Variable y1 y2 y3

Number of Observations 500

Log Likelihood -734.50612

Maximum Absolute Gradient 3.32148E-7

Number of Iterations 20

Optimization Method Quasi-Newton

AIC 1495

Schwarz Criterion 1550

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

y2.Intercept 1 2.887523 0.095193 30.33 <.0001

y2.x1 1 4.078926 0.069623 58.59 <.0001

y2.x2 1 -1.898898 0.086578 -21.93 <.0001

_Sigma.y2 1 0.983059 0.039987 24.58 <.0001

y3.Intercept 1 0.071764 0.171522 0.42 0.6757

y3.x1 1 -0.935299 0.092843 -10.07 <.0001

y3.x2 1 1.039954 0.120697 8.62 <.0001

_Sigma.y3 1 0.743083 0.038225 19.44 <.0001

y1.Intercept 1 1.067578 0.142789 7.48 <.0001

y1.x1 1 2.068376 0.226020 9.15 <.0001

y1.x2 1 3.157385 0.314743 10.03 <.0001

_Rho.y1.y2 1 0.312369 0.177010 1.76 0.0776

_Rho.y1.y3 1 -0.018225 0.234886 -0.08 0.9382

Example 28.7: Stochastic Frontier Models
This example illustrates the estimation of stochastic frontier production and cost models.

First, a production function model is estimated. The data for this example were collected by Christensen
Associates; they represent a sample of 125 observations on inputs and output for 10 airlines between 1970
and 1984. The explanatory variables (inputs) are fuel (LF), materials (LM), equipment (LE), labor (LL), and
property (LP), and (LQ) is an index that represents passengers, charter, mail, and freight transported.

The following statements create the data set:

title1 'Estimating a Stochastic Frontier Production Model';

data airlines;
input TS FIRM NI LQ LF LM LE LL LP;

datalines;
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1 1 15 -0.0484 0.2473 0.2335 0.2294 0.2246 0.2124
1 1 15 -0.0133 0.2603 0.2492 0.241 0.2216 0.1069
2 1 15 0.088 0.2666 0.3273 0.3365 0.2039 0.0865

... more lines ...

The following statements estimate a stochastic frontier exponential production model that uses Christensen
Associates data:

/*-- Stochastic Frontier Production Model --*/
proc qlim data=airlines;

model LQ=LF LM LE LL LP;
endogenous LQ ~ frontier (type=exponential production);

run;

Figure 28.7.1 shows the results from this production model.

Output 28.7.1 Stochastic Frontier Production Model

Estimating a Stochastic Frontier Production Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable LQ

Number of Observations 125

Log Likelihood 83.27815

Maximum Absolute Gradient 9.92881E-7

Number of Iterations 25

Optimization Method Quasi-Newton

AIC -150.55630

Schwarz Criterion -127.92979

Sigma 0.12445

Lambda 0.55766

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -0.085048 0.024528 -3.47 0.0005

LF 1 -0.115802 0.124178 -0.93 0.3511

LM 1 0.756253 0.078755 9.60 <.0001

LE 1 0.424916 0.081893 5.19 <.0001

LL 1 -0.136421 0.089702 -1.52 0.1283

LP 1 0.098967 0.042776 2.31 0.0207

_Sigma_v 1 0.108688 0.010063 10.80 <.0001

_Sigma_u 1 0.060611 0.017603 3.44 0.0006

Similarly, the stochastic frontier production function can be estimated with TYPE=HALF or
TYPE=TRUNCATED options that represent half-normal and truncated normal production models.

In the next step, stochastic frontier cost function is estimated. The data for the cost model are provided
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by Christensen and Greene (1976). The data describe costs and production inputs of 145 U.S. electricity
producers in 1955. The model being estimated follows the nonhomogeneous version of the Cobb-Douglas
cost function:

log
�

Cost
FPrice

�
D ˇ0Cˇ1 log

�
KPrice
FPrice

�
Cˇ2 log

�
LPrice
FPrice

�
Cˇ3 log.Output/Cˇ4

1

2
log.Output/2C�

All dollar values are normalized by fuel price. The quadratic log of the output is added to capture nonlinearities
due to scale effects in cost functions. New variables, log_C_PF, log_PK_PF, log_PL_PF, log_y, and log_y_sq,
are created to reflect transformations. The following statements create the data set and transformed variables:

title1 'Estimating a Stochastic Frontier Cost Model';

data electricity;
input Firm Year Cost Output LPrice LShare KPrice KShare FPrice FShare;

datalines;
1 1955 .0820 2.0 2.090 .3164 183.000 .4521 17.9000 .2315
2 1955 .6610 3.0 2.050 .2073 174.000 .6676 35.1000 .1251
3 1955 .9900 4.0 2.050 .2349 171.000 .5799 35.1000 .1852

... more lines ...

/* Data transformations */
data electricity;

set electricity;
label Firm="firm index"

Year="1955 for all observations"
Cost="Total cost"
Output="Total output"
LPrice="Wage rate"
LShare="Cost share for labor"
KPrice="Capital price index"
KShare="Cost share for capital"
FPrice="Fuel price"
FShare"Cost share for fuel";

log_C_PF=log(Cost/FPrice);
log_PK_PF=log(KPrice/FPrice);
log_PL_PF=log(LPrice/FPrice);
log_y=log(Output);
log_y_sq=log_y**2/2;

run;

The following statements estimate a stochastic frontier exponential cost model that uses Christensen and
Greene (1976) data:

/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;

model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
endogenous log_C_PF ~ frontier (type=exponential cost);

run;

Output 28.7.2 shows the results.
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Output 28.7.2 Exponential Distribution

Estimating a Stochastic Frontier Cost Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable log_C_PF

Number of Observations 159

Log Likelihood -23.30430

Maximum Absolute Gradient 0.0000131

Number of Iterations 21

Optimization Method Quasi-Newton

AIC 60.60860

Schwarz Criterion 82.09093

Sigma 0.30750

Lambda 1.71345

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -4.983211 0.543328 -9.17 <.0001

log_PK_PF 1 0.090242 0.109202 0.83 0.4086

log_PL_PF 1 0.504299 0.118263 4.26 <.0001

log_y 1 0.427182 0.066680 6.41 <.0001

log_y_sq 1 0.066120 0.010079 6.56 <.0001

_Sigma_v 1 0.154998 0.020271 7.65 <.0001

_Sigma_u 1 0.265581 0.033614 7.90 <.0001

Similarly, the stochastic frontier cost model can be estimated with TYPE=HALF or TYPE=TRUNCATED
options that represent half-normal and truncated normal errors.

The following statements illustrate the half-normal option:

/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;

model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
endogenous log_C_PF ~ frontier (type=half cost);

run;

Output 28.7.3 shows the result.
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Output 28.7.3 Half-Normal Distribution

Estimating a Stochastic Frontier Cost Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable log_C_PF

Number of Observations 159

Log Likelihood -34.95304

Maximum Absolute Gradient 0.0001108

Number of Iterations 22

Optimization Method Quasi-Newton

AIC 83.90607

Schwarz Criterion 105.38840

Sigma 0.42761

Lambda 1.80031

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -4.434634 0.690197 -6.43 <.0001

log_PK_PF 1 0.069624 0.136250 0.51 0.6093

log_PL_PF 1 0.474578 0.146812 3.23 0.0012

log_y 1 0.256874 0.080777 3.18 0.0015

log_y_sq 1 0.088051 0.011817 7.45 <.0001

_Sigma_v 1 0.207637 0.039222 5.29 <.0001

_Sigma_u 1 0.373810 0.073605 5.08 <.0001

The following statements illustrate the truncated normal option:

/*-- Stochastic Frontier Cost Model --*/
proc qlim data=electricity;

model log_C_PF = log_PK_PF log_PL_PF log_y log_y_sq;
endogenous log_C_PF ~ frontier (type=truncated cost);

run;

Output 28.7.4 shows the results.
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Output 28.7.4 Truncated Normal Distribution

Estimating a Stochastic Frontier Cost Model

The QLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable log_C_PF

Number of Observations 159

Log Likelihood -36.87279

Maximum Absolute Gradient 271.78546

Number of Iterations 9

Optimization Method Quasi-Newton

AIC 89.74557

Schwarz Criterion 114.29681

Sigma 0.30309

Lambda 1.04294E-7

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -3.772132 0.338518 -11.14 <.0001

log_PK_PF 1 -0.030841 0.143593 -0.21 0.8299

log_PL_PF 1 0.574626 0.155390 3.70 0.0002

log_y 1 0.133254 0.058093 2.29 0.0218

log_y_sq 1 0.103028 0.009912 10.39 <.0001

_Sigma_v 1 0.303087 0.016898 17.94 <.0001

_Sigma_u 1 3.1610138E-8 . . .

_Mu 1 0.531720 0.338538 1.57 0.1163

If no PRODUCTION or COST option is specified, the stochastic frontier production model is estimated by
default.

Example 28.8: Bayesian Modeling
This example illustrates how to use the QLIM procedure to perform Bayesian analysis. The generated data
mimic a hypothetical scenario in which you study the number of tickets sold for a sports event given the
probability of the hosting team winning and the price of the tickets. The following statements create the data
set:

title1 'Bayesian Analysis';

ods graphics on;

data test;
do i=1 to 200;

e1 = rannor(8726)*2000;
WinChance = ranuni(8772);
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Price = 10+ranexp(8773)*4;
y = 48000 + 5000*WinChance - 100 * price + e1;
if y>50000 then TicketSales = 50000;
if y<=50000 then TicketSales = y;
output;

end;
keep WinChance price y TicketSales;

run;

The following statements perform Bayesian analysis of a Tobit model:

proc qlim data=test plots(prior)=all;
model TicketSales = WinChance price;
endogenous TicketSales ~ censored(lb=0 ub= 50000);
prior intercept~normal(mean=48000);
prior WinChance~normal(mean=5000);
prior Price~normal(mean=-100);
bayes NBI=10000 NMC=30000 THIN=1 ntrds=1 DIAG=ALL STATS=ALL seed=2;

run;

Output 28.8.1 shows the results from the maximum likelihood estimation and the Bayesian analysis with
diffuse prior of this Tobit model.

Output 28.8.1 Bayesian Tobit Model

Bayesian Analysis

The QLIM Procedure

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 48119 623.565045 77.17 <.0001

WinChance 1 5242.083501 559.151222 9.38 <.0001

Price 1 -106.731665 40.660795 -2.62 0.0087

_Sigma 1 1939.607207 134.348772 14.44 <.0001

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 30000 48109.4 535.0 47750.5 48102.6 48460.1

WinChance 30000 5212.9 483.4 4878.8 5205.2 5533.0

Price 30000 -104.7 36.5224 -128.6 -104.2 -79.4191

_Sigma 30000 1950.9 132.9 1858.4 1945.0 2034.0

Output 28.8.2 shows a graphical representation of MLE, prior, and posterior distributions.
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Output 28.8.2 Predictive Analysis by Observation Number



2030 F Chapter 28: The QLIM Procedure

Output 28.8.2 continued

The validity of the MCMC sampling phase can be monitored with Output 28.8.3.
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Output 28.8.3 Predictive Analysis by Observation Number
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Output 28.8.3 continued

Finally the prior and the posterior predictive analyses are represented in Output 28.8.4.
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Overview: SEVERITY Procedure
The SEVERITY procedure estimates parameters of any arbitrary continuous probability distribution that is
used to model the magnitude (severity) of a continuous-valued event of interest. Some examples of such
events are loss amounts paid by an insurance company and demand of a product as depicted by its sales.
PROC SEVERITY is especially useful when the severity of an event does not follow typical distributions
(such as the normal distribution) that are often assumed by standard statistical methods.

PROC SEVERITY provides a default set of probability distribution models that includes the Burr, exponential,
gamma, generalized Pareto, inverse Gaussian (Wald), lognormal, Pareto (Type II), Tweedie, and Weibull
distributions. In the simplest form, you can estimate the parameters of any of these distributions by using a
list of severity values that are recorded in a SAS data set. You can optionally group the values by a set of BY
variables. PROC SEVERITY computes the estimates of the model parameters, their standard errors, and
their covariance structure by using the maximum likelihood method for each of the BY groups.

PROC SEVERITY can fit multiple distributions at the same time and choose the best distribution according
to a selection criterion that you specify. You can use seven different statistics of fit as selection criteria. They
are log likelihood, Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICC),
Schwarz Bayesian information criterion (BIC), Kolmogorov-Smirnov statistic (KS), Anderson-Darling
statistic (AD), and Cramér–von Mises statistic (CvM).

You can request the procedure to output the status of the estimation process, the parameter estimates and their
standard errors, the estimated covariance structure of the parameters, the statistics of fit, estimated cumulative
distribution function (CDF) for each of the specified distributions, and the empirical distribution function
(EDF) estimate (which is used to compute the KS, AD, and CvM statistics of fit).

A high-performance version of PROC SEVERITY is available as the HPSEVERITY procedure in the SAS
High-Performance Econometrics product. The following key features make PROC SEVERITY and PROC
HPSEVERITY unique among SAS procedures that can estimate continuous probability distributions:

� Both procedures enable you to fit a distribution model when the severity values are truncated or
censored or both. You can specify any combination of the following types of censoring and truncation
effects: left-censoring, right-censoring, left-truncation, or right-truncation. This is especially useful
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in applications with an insurance-type model where a severity (loss) is reported and recorded only
if it is greater than the deductible amount (left-truncation) and where a severity value greater than
or equal to the policy limit is recorded at the limit (right-censoring). Another useful application is
that of interval-censored data, where you know both the lower limit (right-censoring) and upper limit
(left-censoring) on the severity, but you do not know the exact value.

PROC SEVERITY also enables you to specify a probability of observability for the left-truncated data,
which is a probability of observing values greater than the left-truncation threshold. This additional
information can be useful in certain applications to more correctly model the distribution of the severity
of events.

Both procedures use an appropriate estimator of the empirical distribution function (EDF). EDF is
required to compute the KS, AD, and CvM statistics-of-fit. The procedures also provide the EDF
estimates to your custom parameter initialization method. When you specify truncation or censoring,
the EDF is estimated by using either Kaplan-Meier’s product-limit estimator or Turnbull’s estimator.
The former is used by default when you specify only one form of censoring effect (right-censoring
or left-censoring), whereas the latter is used by default when you specify both left-censoring and
right-censoring effects. Both procedures compute the standard errors for all EDF estimators.

� Both procedures enable you to define any arbitrary continuous parametric distribution model and to
estimate its parameters. You just need to define the key components of the distribution, such as its
probability density function (PDF) and cumulative distribution function (CDF), as a set of functions
and subroutines written with the FCMP procedure, which is part of Base SAS software. As long as the
functions and subroutines follow certain rules, the SEVERITY and HPSEVERITY procedures can fit
the distribution model defined by them.

� Both procedures can model the influence of exogenous or regressor variables on a probability distribu-
tion, as long as the distribution has a scale parameter. A linear combination of regression effects is
assumed to affect the scale parameter via an exponential link function.

If a distribution does not have a scale parameter, then either it needs to have another parameter that can
be derived from a scale parameter by using a supported transformation or it needs to be reparameterized
to have a scale parameter. If neither of these is possible, then regression effects cannot be modeled.

You can easily construct many types of regression effects by using various operators on a set of classifi-
cation and continuous variables. You can specify classification variables in the CLASS statement.

� Both procedures enable you to specify your own objective function to be optimized for estimating the
parameters of a model. You can write SAS programming statements to specify the contribution of each
observation to the objective function. You can use keyword functions such as _PDF_ and _CDF_ to
generalize the objective function to any distribution. If you do not specify your own objective function,
then the parameters of a model are estimated by maximizing the likelihood function of the data.

� Both procedures enable you to create scoring functions that offer a convenient way to evaluate any
distribution function, such as PDF, CDF, QUANTILE, or your custom distribution function, for a fitted
model on new observations.

� Both procedures use multithreading to significantly reduce the time it takes to fit a distribution model.
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Getting Started: SEVERITY Procedure
This section outlines the use of the SEVERITY procedure to fit continuous probability distribution models.
Three examples illustrate different features of the procedure.

A Simple Example of Fitting Predefined Distributions
The simplest way to use PROC SEVERITY is to fit all the predefined distributions to a set of values and let
the procedure identify the best fitting distribution.

Consider a lognormal distribution, whose probability density function (PDF) f and cumulative distribution
function (CDF) F are as follows, respectively, where ˆ denotes the CDF of the standard normal distribution:

f .xI�; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2
and F.xI�; �/ D ˆ

�
log.x/ � �

�

�
The following DATA step statements simulate a sample from a lognormal distribution with population
parameters � D 1:5 and � D 0:25, and store the sample in the variable Y of a data set Work.Test_sev1:

/*------------- Simple Lognormal Example -------------*/
data test_sev1(keep=y label='Simple Lognormal Sample');

call streaminit(45678);
label y='Response Variable';
Mu = 1.5;
Sigma = 0.25;
do n = 1 to 100;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;

The following statements fit all the predefined distribution models to the values of Y and identify the best
distribution according to the corrected Akaike’s information criterion (AICC):

proc severity data=test_sev1 crit=aicc;
loss y;
dist _predefined_;

run;

The PROC SEVERITY statement specifies the input data set along with the model selection criterion, the
LOSS statement specifies the variable to be modeled, and the DIST statement with the _PREDEFINED_
keyword specifies that all the predefined distribution models be fitted.

Some of the default output displayed by this step is shown in Figure 29.1 through Figure 29.5. First,
information about the input data set is displayed followed by the “Model Selection” table, as shown in
Figure 29.1. The model selection table displays the convergence status, the value of the selection criterion,
and the selection status for each of the candidate models. The Converged column indicates whether the
estimation process for a given distribution model has converged, might have converged, or failed. The
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Selected column indicates whether a given distribution has the best fit for the data according to the selection
criterion. For this example, the lognormal distribution model is selected, because it has the lowest value for
the selection criterion.

Figure 29.1 Data Set Information and Model Selection Table

The SEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV1

Label Simple Lognormal Sample

Model Selection

Distribution Converged AICC Selected

Burr Yes 322.50845 No

Exp Yes 508.12287 No

Gamma Yes 320.50264 No

Igauss Yes 319.61652 No

Logn Yes 319.56579 Yes

Pareto Yes 510.28172 No

Gpd Yes 510.20576 No

Weibull Yes 334.82373 No

Next, two comparative plots are prepared. These plots enable you to visually verify how the models differ
from each other and from the nonparametric estimates. The plot in Figure 29.2 displays the cumulative
distribution function (CDF) estimates of all the models and the estimates of the empirical distribution function
(EDF). The CDF plot indicates that the Exp (exponential), Pareto, and Gpd (generalized Pareto) distributions
are a poor fit as compared to the EDF estimate. The Weibull distribution is also a poor fit, although not as
poor as exponential, Pareto, and Gpd. The other four distributions seem to be quite close to each other and to
the EDF estimate.
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Figure 29.2 Comparison of EDF and CDF Estimates of the Fitted Models

The plot in Figure 29.3 displays the probability density function (PDF) estimates of all the models and the
nonparametric kernel and histogram estimates. The PDF plot enables better visual comparison between
the Burr, Gamma, Igauss (inverse Gaussian), and Logn (lognormal) models. The Burr and Gamma differ
significantly from the Igauss and Logn distributions in the central portion of the range of Y values, while the
latter two fit the data almost identically. This provides a visual confirmation of the information in the “Model
Selection” table of Figure 29.1, which indicates that the AICC values of Igauss and Logn distributions are
very close.
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Figure 29.3 Comparison of PDF Estimates of the Fitted Models

The comparative plots are followed by the estimation information for each of the candidate models. The
information for the lognormal model, which is the best fitting model, is shown in Figure 29.4. The first table
displays a summary of the distribution. The second table displays the convergence status. This is followed
by a summary of the optimization process which indicates the technique used, the number of iterations,
the number of times the objective function was evaluated, and the log likelihood attained at the end of the
optimization. Since the model with lognormal distribution has converged, PROC SEVERITY displays its
statistics of fit and parameter estimates. The estimates of Mu=1.49605 and Sigma=0.26243 are quite close to
the population parameters of Mu=1.5 and Sigma=0.25 from which the sample was generated. The p-value
for each estimate indicates the rejection of the null hypothesis that the estimate is 0, implying that both the
estimates are significantly different from 0.
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Figure 29.4 Estimation Details for the Lognormal Model

The SEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn

Description Lognormal Distribution

Distribution Parameters 2

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 2

Function Calls 8

Log Likelihood -157.72104

Fit Statistics

-2 Log Likelihood 315.44208

AIC 319.44208

AICC 319.56579

BIC 324.65242

Kolmogorov-Smirnov 0.50641

Anderson-Darling 0.31240

Cramer-von Mises 0.04353

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 1.49605 0.02651 56.43 <.0001

Sigma 1 0.26243 0.01874 14.00 <.0001

The parameter estimates of the Burr distribution are shown in Figure 29.5. These estimates are used in the
next example.

Figure 29.5 Parameter Estimates for the Burr Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 4.62348 0.46181 10.01 <.0001

Alpha 1 1.15706 0.47493 2.44 0.0167

Gamma 1 6.41227 0.99039 6.47 <.0001
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An Example with Left-Truncation and Right-Censoring
PROC SEVERITY enables you to specify that the response variable values are left-truncated or right-censored.
The following DATA step expands the data set of the previous example to simulate a scenario that is typically
encountered by an automobile insurance company. The values of the variable Y represent the loss values on
claims that are reported to an auto insurance company. The variable THRESHOLD records the deductible on
the insurance policy. If the actual value of Y is less than or equal to the deductible, then it is unobservable
and does not get recorded. In other words, THRESHOLD specifies the left-truncation of Y. LIMIT records
the policy limit. If the value of Y is equal to or greater than the recorded value, then the observation is
right-censored.

/*----- Lognormal Model with left-truncation and censoring -----*/
data test_sev2(keep=y threshold limit

label='A Lognormal Sample With Censoring and Truncation');
set test_sev1;
label y='Censored & Truncated Response';
if _n_ = 1 then call streaminit(45679);

/* make about 20% of the observations left-truncated */
if (rand('UNIFORM') < 0.2) then

threshold = y * (1 - rand('UNIFORM'));
else

threshold = .;
/* make about 15% of the observations right-censored */
iscens = (rand('UNIFORM') < 0.15);
if (iscens) then

limit = y;
else

limit = .;
run;

The following statements use the AICC criterion to analyze which of the four predefined distributions
(lognormal, Burr, gamma, and Weibull) has the best fit for the data:

proc severity data=test_sev2 crit=aicc
print=all plots=(cdfperdist pp qq);

loss y / lt=threshold rc=limit;

dist logn burr gamma weibull;
run;

The LOSS statement specifies the left-truncation and right-censoring variables. The DIST statement specifies
the candidate distributions. The PRINT= option in the PROC SEVERITY statement requests that all the
displayed output be prepared. The PLOTS= option in the PROC SEVERITY statement requests that the CDF
plot, P-P plot, and Q-Q plot be prepared for each candidate distribution in addition to the default plots.

Some of the key results prepared by PROC SEVERITY are shown in Figure 29.6 through Figure 29.13. In
addition to the estimates of the range, mean, and standard deviation of Y, the “Descriptive Statistics for y”
table shown in Figure 29.6 also indicates the number of observations that are left-truncated or right-censored.
The “Model Selection” table in Figure 29.6 shows that models with all the candidate distributions have
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converged and that the Logn (lognormal) model has the best fit for the data according to the AICC criterion.

Figure 29.6 Summary Results for the Truncated and Censored Data

The SEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV2

Label A Lognormal Sample With Censoring and Truncation

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 2.30264

Maximum 8.34116

Mean 4.62007

Standard Deviation 1.23627

Left Truncated Observations 23

Right Censored Observations 14

Model Selection

Distribution Converged AICC Selected

Logn Yes 298.92672 Yes

Burr Yes 302.66229 No

Gamma Yes 299.45293 No

Weibull Yes 309.26779 No

PROC SEVERITY also prepares a table that shows all the fit statistics for all the candidate models. It is
useful to see which model would be the best fit according to each of the criteria. The “All Fit Statistics” table
prepared for this example is shown in Figure 29.7. It indicates that the lognormal model is chosen by all the
criteria.

Figure 29.7 Comparing All Statistics of Fit for the Truncated and Censored Data

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Logn 294.80301 * 298.80301 * 298.92672 * 304.01335 * 0.51824 * 0.34736 * 0.05159 *

Burr 296.41229 302.41229 302.66229 310.22780 0.66984 0.36712 0.05726

Gamma 295.32921 299.32921 299.45293 304.53955 0.62511 0.42921 0.05526

Weibull 305.14408 309.14408 309.26779 314.35442 0.93307 1.40699 0.17465

Note: The asterisk (*) marks the best model according to each column's criterion.

The plot that compares EDF and CDF estimates is shown in Figure 29.8. When you specify left-truncation,
both the EDF and CDF estimates are conditional on the response variable being greater than the smallest
left-truncation threshold in the sample.
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Figure 29.8 EDF and CDF Estimates for the Truncated and Censored Data

When you specify the PLOTS=CDFPERDIST option, PROC SEVERITY prepares a plot that compares
the nonparametric EDF estimates with the parametric CDF estimates for each distribution. These plots for
lognormal and Weibull distributions are shown in Figure 29.9. These plots also contain the lower and upper
confidence limits of EDF for the specified confidence level. Because no confidence level is specified in the
EDFALPHA= option in the PROC SEVERITY statement, a default confidence level of 95% is used, which is
equivalent to specifying EDFALPHA=0.05. If the CDF estimates lie entirely within the EDF confidence
interval, then you can be 95% confident that the parametric and nonparametric estimates are in agreement.
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Figure 29.9 Comparing EDF and CDF Estimates for Lognormal and Weibull Models Fitted to Truncated
and Censored Data

There are two additional ways to compare nonparametric (empirical) and parametric estimates for each model
that has not failed to converge:

� A P-P plot is a scatter plot of the EDF and the CDF estimates. The model for which the points are
scattered closer to the unit-slope reference line is a better fit. The P-P plot for the lognormal distribution
is shown in Figure 29.10. It indicates that the EDF and the CDF match very closely. In contrast, the
P-P plot for the Weibull distribution, also shown in Figure 29.10, indicates a poor fit.

Figure 29.10 P-P Plots for Lognormal and Weibull Models Fitted to Truncated and Censored Data

� A Q-Q plot is a scatter plot of empirical quantiles and the quantiles of a parametric distribution. Like
the P-P plot, points scattered closer to the unit-slope reference line indicate a better fit. The Q-Q plots
of lognormal and Weibull distributions are shown in Figure 29.11, which confirm the conclusions
arrived at by comparing the P-P plots.
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Figure 29.11 Q-Q Plots for Lognormal and Weibull Models Fitted to Truncated and Censored Data

Specifying Initial Values for Parameters

All the predefined distributions have parameter initialization functions built into them. For the current
example, Figure 29.12 shows the initial values that are obtained by the predefined method for the Burr
distribution. It also shows the summary of the optimization process and the final parameter estimates.

Figure 29.12 Burr Model Summary for the Truncated and Censored Data

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Theta 4.78102 1.05367E-8 Infty

Alpha 2.00000 1.05367E-8 Infty

Gamma 2.00000 1.05367E-8 Infty

Optimization Summary

Optimization Technique Trust Region

Iterations 8

Function Calls 23

Log Likelihood -148.20614

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 4.76980 0.62492 7.63 <.0001

Alpha 1 1.16363 0.58859 1.98 0.0509

Gamma 1 5.94081 1.05004 5.66 <.0001

You can specify a different set of initial values if estimates are available from fitting the distribution to similar
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data. For this example, the parameters of the Burr distribution can be initialized with the final parameter
estimates of the Burr distribution that were obtained in the first example (shown in Figure 29.5). One of the
ways in which you can specify the initial values is as follows:

/*------ Specifying initial values using INIT= option -------*/
proc severity data=test_sev2 crit=aicc print=all plots=none;

loss y / lt=threshold rc=limit;

dist burr(init=(theta=4.62348 alpha=1.15706 gamma=6.41227));
run;

The names of the parameters that are specified in the INIT option must match the parameter names in the
definition of the distribution. The results obtained with these initial values are shown in Figure 29.13. These
results indicate that new set of initial values causes the optimizer to reach the same solution with fewer
iterations and function evaluations as compared to the default initialization.

Figure 29.13 Burr Model Optimization Summary for the Truncated and Censored Data

The SEVERITY Procedure
Burr Distribution

Optimization Summary

Optimization Technique Trust Region

Iterations 5

Function Calls 16

Log Likelihood -148.20614

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 4.76980 0.62492 7.63 <.0001

Alpha 1 1.16363 0.58859 1.98 0.0509

Gamma 1 5.94081 1.05004 5.66 <.0001

An Example of Modeling Regression Effects
Consider a scenario in which the magnitude of the response variable might be affected by some regressor
(exogenous or independent) variables. The SEVERITY procedure enables you to model the effect of such
variables on the distribution of the response variable via an exponential link function. In particular, if you
have k random regressor variables denoted by xj (j D 1; : : : ; k), then the distribution of the response
variable Y is assumed to have the form

Y � exp.
kX
jD1

ˇjxj / � F.‚/

where F denotes the distribution of Y with parameters ‚ and ˇj .j D 1; : : : ; k/ denote the regression
parameters (coefficients). For the effective distribution of Y to be a valid distribution from the same
parametric family as F , it is necessary for F to have a scale parameter. The effective distribution of Y can be



An Example of Modeling Regression Effects F 2053

written as

Y � F.�;�/

where � denotes the scale parameter and � denotes the set of nonscale parameters. The scale � is affected by
the regressors as

� D �0 � exp.
kX
jD1

ˇjxj /

where �0 denotes a base value of the scale parameter.

Given this form of the model, PROC SEVERITY allows a distribution to be a candidate for modeling
regression effects only if it has an untransformed or a log-transformed scale parameter.

All the predefined distributions, except the lognormal distribution, have a direct scale parameter (that is, a
parameter that is a scale parameter without any transformation). For the lognormal distribution, the parameter
� is a log-transformed scale parameter. This can be verified by replacing � with a parameter � D e�, which
results in the following expressions for the PDF f and the CDF F in terms of � and � , respectively, where ˆ
denotes the CDF of the standard normal distribution:

f .xI �; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/�log.�/

�

�2
and F.xI �; �/ D ˆ

�
log.x/ � log.�/

�

�

With this parameterization, the PDF satisfies the f .xI �; �/ D 1
�
f .x

�
I 1; �/ condition and the CDF satisfies

the F.xI �; �/ D F.x
�
I 1; �/ condition. This makes � a scale parameter. Hence, � D log.�/ is a log-

transformed scale parameter and the lognormal distribution is eligible for modeling regression effects.

The following DATA step simulates a lognormal sample whose scale is decided by the values of the three
regressors X1, X2, and X3 as follows:

� D log.�/ D 1C 0:75 X1 � X2C 0:25 X3

/*----------- Lognormal Model with Regressors ------------*/
data test_sev3(keep=y x1-x3

label='A Lognormal Sample Affected by Regressors');
array x{*} x1-x3;
array b{4} _TEMPORARY_ (1 0.75 -1 0.25);
call streaminit(45678);
label y='Response Influenced by Regressors';
Sigma = 0.25;
do n = 1 to 100;

Mu = b(1); /* log of base value of scale */
do i = 1 to dim(x);

x(i) = rand('UNIFORM');
Mu = Mu + b(i+1) * x(i);

end;
y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;
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The following PROC SEVERITY step fits the lognormal, Burr, and gamma distribution models to these
data. The regressors are specified in the SCALEMODEL statement. The DFMIXTURE= option in the
SCALEMODEL statement specifies the method of computing the CDF estimates that are used to compute
the EDF-based statistics of fit.

proc severity data=test_sev3 crit=aicc print=all;
loss y;
scalemodel x1-x3 / dfmixture=full;

dist logn burr gamma;
run;

Some of the key results prepared by PROC SEVERITY are shown in Figure 29.14 through Figure 29.18.
The descriptive statistics of all the variables are shown in Figure 29.14.

Figure 29.14 Summary Results for the Regression Example

The SEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV3

Label A Lognormal Sample Affected by Regressors

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 1.17863

Maximum 6.65269

Mean 2.99859

Standard Deviation 1.12845

Descriptive Statistics for Regressors

Variable N Minimum Maximum Mean
Standard
Deviation

x1 100 0.0005115 0.97971 0.51689 0.28206

x2 100 0.01883 0.99937 0.47345 0.28885

x3 100 0.00255 0.97558 0.48301 0.29709

The comparison of the fit statistics of all the models is shown in Figure 29.15. It indicates that the lognormal
model is the best model according to each of the likelihood-based statistics, whereas the gamma model is the
best model according to two of the three EDF-based statistics.

Figure 29.15 Comparison of Statistics of Fit for the Regression Example

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Logn 187.49609 * 197.49609 * 198.13439 * 210.52194 * 0.68991 * 0.74299 0.11044

Burr 190.69154 202.69154 203.59476 218.32256 0.72348 0.73064 0.11332

Gamma 188.91483 198.91483 199.55313 211.94069 0.69101 0.72219 * 0.10546 *

Note: The asterisk (*) marks the best model according to each column's criterion.
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The distribution information and the convergence results of the lognormal model are shown in Figure 29.16.
The iteration history gives you a summary of how the optimizer is traversing the surface of the log-likelihood
function in its attempt to reach the optimum. Both the change in the log likelihood and the maximum gradient
of the objective function with respect to any of the parameters typically approach 0 if the optimizer converges.

Figure 29.16 Convergence Results for the Lognormal Model with Regressors

The SEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn

Description Lognormal Distribution

Distribution Parameters 2

Regression Parameters 3

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Iteration History

Iter
Function

Calls
-Log

Likelihood Change
Maximum
Gradient

0 2 93.75285 6.16002

1 4 93.74805 -0.0048055 0.11031

2 6 93.74805 -1.5017E-6 0.00003376

3 10 93.74805 -1.421E-13 3.1832E-12

Optimization Summary

Optimization Technique Trust Region

Iterations 3

Function Calls 10

Log Likelihood -93.74805

The final parameter estimates of the lognormal model are shown in Figure 29.17. All the estimates are
significantly different from 0. The estimate that is reported for the parameter Mu is the base value for the
log-transformed scale parameter �. Let xi .1 � i � 3/ denote the observed value for regressor Xi. If the
lognormal distribution is chosen to model Y, then the effective value of the parameter � varies with the
observed values of regressors as

� D 1:04047C 0:65221 x1 � 0:91116 x2 C 0:16243 x3

These estimated coefficients are reasonably close to the population parameters (that is, within one or two
standard errors).
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Figure 29.17 Parameter Estimates for the Lognormal Model with Regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 1.04047 0.07614 13.66 <.0001

Sigma 1 0.22177 0.01609 13.78 <.0001

x1 1 0.65221 0.08167 7.99 <.0001

x2 1 -0.91116 0.07946 -11.47 <.0001

x3 1 0.16243 0.07782 2.09 0.0395

The estimates of the gamma distribution model, which is the best model according to a majority of the
EDF-based statistics, are shown in Figure 29.18. The estimate that is reported for the parameter Theta is the
base value for the scale parameter � . If the gamma distribution is chosen to model Y, then the effective value
of the scale parameter is � D 0:14293 exp.0:64562 x1 � 0:89831 x2 C 0:14901 x3/.

Figure 29.18 Parameter Estimates for the Gamma Model with Regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 0.14293 0.02329 6.14 <.0001

Alpha 1 20.37726 2.93277 6.95 <.0001

x1 1 0.64562 0.08224 7.85 <.0001

x2 1 -0.89831 0.07962 -11.28 <.0001

x3 1 0.14901 0.07870 1.89 0.0613

Syntax: SEVERITY Procedure
The following statements are available in the SEVERITY procedure:

PROC SEVERITY options ;
BY variable-list ;
LOSS < response-variable > < / censoring-truncation-options > ;
WEIGHT weight-variable ;
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;
SCALEMODEL regression-effect-list < / scalemodel-options > ;
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword

< (distribution-option) > > . . . > < / preprocess-options > ;
OUTPUT < OUT=SAS-data-set > output-options ;
OUTSCORELIB < OUTLIB= > fcmp-library-name options ;
NLOPTIONS options ;
Programming statements ;



Functional Summary F 2057

Functional Summary
Table 29.1 summarizes the statements and options that control the SEVERITY procedure.

Table 29.1 PROC SEVERITY Functional Summary

Description Statement Option

Statements
Specifies BY-group processing BY
Specifies the response variable to model along
with censoring and truncation effects

LOSS

Specifies the weight variable WEIGHT
Specifies the classification variables CLASS
Specifies the regression effects to model SCALEMODEL
Specifies distributions to fit DIST
Specifies the scoring functions and quantiles to
write

OUTPUT

Specifies the library to write scoring functions to OUTSCORELIB
Specifies optimization options NLOPTIONS
Specifies programming statements that define an
objective function

Programming statements

Input and Output Options
Specifies that the OUTEST= data set contain
covariance estimates

PROC SEVERITY COVOUT

Specifies the input data set PROC SEVERITY DATA=
Specifies the input data set for parameter estimates PROC SEVERITY INEST=
Specifies the input item store for parameter
initialization

PROC SEVERITY INSTORE=

Limits the length of effect names PROC SEVERITY NAMELEN=
Specifies the output data set for estimates of
scoring functions and quantiles

OUTPUT OUT=

Specifies the output data set for CDF estimates PROC SEVERITY OUTCDF=
Specifies the output data set for parameter
estimates

PROC SEVERITY OUTEST=

Specifies the output data set for model information PROC SEVERITY OUTMODELINFO=
Specifies the output data set for statistics of fit PROC SEVERITY OUTSTAT=
Specifies the output item store for context and
estimation results

PROC SEVERITY OUTSTORE=

Data Interpretation Options
Specifies left-censoring LOSS LEFTCENSORED=
Specifies left-truncation LOSS LEFTTRUNCATED=
Specifies the probability of observability LOSS PROBOBSERVED=
Specifies right-censoring LOSS RIGHTCENSORED=
Specifies right-truncation LOSS RIGHTTRUNCATED=
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Table 29.1 continued

Description Statement Option

Model Estimation Options
Specifies the model selection criterion PROC SEVERITY CRITERION=
Specifies the method for computing mixture
distribution

SCALEMODEL DFMIXTURE=

Specifies initial values for model parameters DIST INIT=
Specifies role of constant distribution parameters
in fit statistic calculations

PROC SEVERITY NOCONSTFITSTATS

Specifies the objective function symbol PROC SEVERITY OBJECTIVE=
Specifies the offset variable in the scale regression
model

SCALEMODEL OFFSET=

Specifies the denominator for computing
covariance estimates

PROC SEVERITY VARDEF=

Empirical Distribution Function (EDF) Estimation Options
Specifies the confidence level for reporting the
confidence interval for EDF estimates

PROC SEVERITY EDFALPHA=

Specifies the nonparametric method of CDF
estimation

PROC SEVERITY EMPIRICALCDF=

Specifies the sample to be used for computing the
EDF estimates

PROC SEVERITY INITSAMPLE

EMPIRICALCDF=MODIFIEDKM Options
Specifies the ˛ value for the lower bound on risk
set size

PROC SEVERITY ALPHA=

Specifies the c value for the lower bound on risk
set size

PROC SEVERITY C=

Specifies the absolute lower bound on risk set size PROC SEVERITY RSLB=

EMPIRICALCDF=TURNBULL Options
Specifies that the final EDF estimates be
maximum likelihood estimates

PROC SEVERITY ENSUREMLE

Specifies the relative convergence criterion PROC SEVERITY EPS=
Specifies the maximum number of iterations PROC SEVERITY MAXITER=
Specifies the threshold below which an EDF
estimate is deemed to be 0

PROC SEVERITY ZEROPROB=

OUT= Data Set Generation Options
Specifies the variables to copy from the DATA=
data set to the OUT= data set

OUTPUT COPYVARS=

Specifies the scoring functions to estimate OUTPUT FUNCTIONS=
Specifies the quantiles to estimate OUTPUT QUANTILES=
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Table 29.1 continued

Description Statement Option

Scoring Function Generation Options
Specifies that scoring functions of all models be
written to one package

OUTSCORELIB COMMONPACKAGE

Specifies the output data set for BY-group
identifiers

OUTSCORELIB OUTBYID=

Specifies the output library for scoring functions OUTSCORELIB OUTLIB=

Displayed Output and Plotting Options
Specifies that distributions be listed to the log
without estimating any models that use them

DIST LISTONLY

Limits or suppresses the display of class levels PROC SEVERITY NOCLPRINT
Suppresses all displayed and graphical output PROC SEVERITY NOPRINT
Specifies which graphical output to prepare PROC SEVERITY PLOTS=
Specifies which output to display PROC SEVERITY PRINT=
Specifies that distributions be validated without
estimating any models that use them

DIST VALIDATEONLY

PROC SEVERITY Statement
PROC SEVERITY options ;

The PROC SEVERITY statement invokes the procedure. You can specify two types of options in the PROC
SEVERITY statement. One set of options controls input and output. The other set of options controls the
model estimation and selection process.

The following options control the input data sets used by PROC SEVERITY and various forms of output
generated by PROC SEVERITY. The options are listed in alphabetical order.

COVOUT
specifies that the OUTEST= data set contain the estimate of the covariance structure of the parameters.
This option has no effect if you do not specify the OUTEST= option. For more information about
how the covariance is reported in the OUTEST= data set, see the section “OUTEST= Data Set” on
page 2157.

DATA=SAS-data-set
names the input data set. If you do not specify the DATA= option, then the most recently created SAS
data set is used.

EDFALPHA=confidence-level
specifies the confidence level in the (0,1) range that is used for computing the confidence intervals for
the EDF estimates. The lower and upper confidence limits that correspond to this level are reported in
the OUTCDF= data set, if specified, and are displayed in the plot that is created when you specify the
PLOTS=CDFPERDIST option.

If you do not specify the EDFALPHA= option, then PROC SEVERITY uses a default value of 0.05.
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INEST=SAS-data-set
names the input data set that contains the initial values of the parameter estimates to start the opti-
mization process. The initial values that you specify in the INIT= option in the DIST statement take
precedence over any initial values that you specify in the INEST= data set. For more information about
the variables in this data set, see the section “INEST= Data Set” on page 2154.

If you specify the SCALEMODEL statement, then PROC SEVERITY reads the INEST= data set only
if the SCALEMODEL statement contains singleton continuous effects. For more generic regression
effects, you should save the estimates by specifying the OUTSTORE= item store in a step and then use
the INSTORE= option to read those estimates. The INSTORE= option is the newer and more flexible
method of specifying initial values for distribution and regression parameters.

INITSAMPLE (initsample-option)

INITSAMPLE (initsample-option . . . initsample-option)
specifies that a sample of the input data be used for initializing the distribution parameters. If you
specify more than one initsample-option, then separate them with spaces.

When you do not specify initial values for the distribution parameters, PROC SEVERITY needs to
compute the empirical distribution function (EDF) estimates as part of the default method for parameter
initialization. The EDF estimation process can be expensive, especially when you specify censoring
or truncation effects for the loss variable. Furthermore, it is not amenable to parallelism due to the
sequential nature of the algorithm for truncation effects. You can use the INITSAMPLE option to
specify that only a fraction of the input data be used in order to reduce the time taken to compute the
EDF estimates. PROC SEVERITY uses the uniform random sampling method to select the sample,
the size and randomness of which are controlled by the following initsample-options:

FRACTION=number
specifies the fraction, between 0 and 1, of the input data to be used for sampling.

SEED=number
specifies the seed to be used for the uniform random number generator. This option enables you
to select the same sample from the same input data across different runs of PROC SEVERITY,
which can be useful for replicating the results across different runs. If you do not specify the seed
value, PROC SEVERITY generates a seed that is based on the system clock.

SIZE=number
specifies the size of the sample. If the data are distributed across different nodes, then this size
applies to the sample that is prepared at each node. For example, let the input data set of size
100,000 observations be distributed across 10 nodes such that each node has 10,000 observations.
If you specify SIZE=1000, then each node computes a local EDF estimate by using a sample
of size 1,000 selected randomly from its 10,000 observations. If you specify both of the SIZE=
and FRACTION= options, then the value that you specify in the SIZE= option is used and the
FRACTION= option is ignored.

If you do not specify the INITSAMPLE option, then PROC SEVERITY computes the EDF estimates
by using all valid observations in the DATA= data set, or by using all valid observations in the current
BY group if you specify a BY statement.
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INSTORE=store-name
names the item store that contains the context and results of the severity model estimation process. An
item store has a binary file format that cannot be modified. You must specify an item store that you
have created in another PROC SEVERITY step by using the OUTSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then PROC SEVERITY reads the item store from the WORK library. If you specify a two-level
name of the form libname.membername, then PROC SEVERITY reads the item store from the libname
library.

This option is more flexible than the INEST= option, because it can read estimates of any type of scale
regression model; the INEST= option can read only scale regression models that contain singleton
continuous effects.

For more information about how the input item store is used for parameter initialization, see the
sections “Parameter Initialization” on page 2099 and “Parameter Initialization for Regression Models”
on page 2101.

NAMELEN=number
specifies the length to which long regression effect names are shortened. The default and minimum
value is 20.

This option does not apply to the names of singleton continuous effects if you have not specified any
CLASS variables.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , the values of the classification variables are displayed for only those variables whose
number of levels is less than number . Specifying a number helps to reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels. This option has no
effect if you do not specify the CLASS statement.

NOPRINT
turns off all displayed and graphical output. If you specify this option, then any value that you specify
for the PRINT= and PLOTS= options is ignored.

OUTCDF=SAS-data-set
names the output data set to contain estimates of the cumulative distribution function (CDF) value
at each of the observations. The information is output for each specified model whose parameter
estimation process converges. The data set also contains the estimates of the empirical distribution
function (EDF). For more information about the variables in this data set, see the section “OUTCDF=
Data Set” on page 2156.

OUTEST=SAS-data-set
names the output data set to contain estimates of the parameter values and their standard errors for
each model whose parameter estimation process converges. For more information about the variables
in this data set, see the section “OUTEST= Data Set” on page 2157.

If you specify the SCALEMODEL statement such that it contains at least one effect that is not a
singleton continuous effect, then the OUTEST= data set that this option creates cannot be used as an
INEST= data set in a subsequent PROC SEVERITY step. In such cases, it is recommended that you
use the newer OUTSTORE= option to save the estimates and specify those estimates in a subsequent
PROC SEVERITY step by using the INSTORE= option.
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OUTMODELINFO=SAS-data-set
names the output data set to contain the information about each candidate distribution. For more
information about the variables in this data set, see the section “OUTMODELINFO= Data Set” on
page 2159.

OUTSTAT=SAS-data-set
names the output data set to contain the values of statistics of fit for each model whose parameter
estimation process converges. For more information about the variables in this data set, see the section
“OUTSTAT= Data Set” on page 2159.

OUTSTORE=store-name
names the item store to contain the context and results of the severity model estimation process. The
resulting item store has a binary file format that cannot be modified. You can specify this item store in
a subsequent PROC SEVERITY step by using the INSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then the item store resides in the WORK library and is deleted at the end of the SAS session.
Because item stores are meant to be consumed by a subsequent PROC SEVERITY step for parameter
initialization, typical usage specifies a two-level name of the form libname.membername.

This option is more useful than the OUTEST= option, especially when you specify a scale regression
model that contains interaction effects or effects that have CLASS variables. You can initialize such
scale regression models in a subsequent PROC SEVERITY step only by specifying the item store that
this option creates as an INSTORE= item store in that step.

PLOTS < (global-plot-options) > < =plot-request-option >

PLOTS < (global-plot-options) > < =(plot-request-option . . . plot-request-option) >
specifies the desired graphical output. If you specify more than one global-plot-option, then separate
them with spaces and enclose them in parentheses. If you specify more than one plot-request-option,
then separate them with spaces and enclose them in parentheses.

You can specify the following global-plot-options:

HISTOGRAM
plots the histogram of the response variable on the PDF plots.

KERNEL
plots the kernel estimate of the probability density of the response variable on the PDF plots.

ONLY
turns off the default graphical output and creates only the requested plots.

You can specify the following plot-request-options:

ALL
creates all the graphical output.



PROC SEVERITY Statement F 2063

CDF
creates a plot that compares the cumulative distribution function (CDF) estimates of all the
candidate distribution models to the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge.

CDFPERDIST
creates a plot of the CDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

CONDITIONALPDF < (cpdf-options) >

CONDPDF < (cpdf-options) >
creates a plot that compares the conditional PDF estimates of all the candidate distribution models.
The plot does not contain conditional PDF estimates for models whose parameter estimation
process does not converge.

A conditional PDF of a loss random variable Y in an interval .Yl ; Yr � is the probability that a
specific loss value is observed, given that the loss values belong to that interval. Formally, the
conditional PDF of y, denoted by f c.y/, for the .Yl ; Yr � interval is defined as f c.y/ D PrŒY D
yjYl < Y � Yr �. If f .y/ and F.y/ denote the PDF and CDF at loss value y, respectively, then
f c.y/ for the .Yl ; Yr � interval is computed as f c.y/ D f .y/=.F.Yr/ � F.Yl//. The scaling
factor of 1=.F.Yr/ � F.Yl// ensures that the conditional PDF is a true PDF that integrates to 1
in the .Yl ; Yr � interval.

PROC SEVERITY prepares a conditional PDF comparison plot that contains at most three
regions (intervals) of mutually exclusive ranges of the loss variable’s value:

� left-tail: .ymin � �; L�
� center: .L;R�
� right-tail: .R; ymax�

where ymin and ymax denote the smallest and largest values of the loss variable in the DATA=
data set, respectively, and � denotes a small machine-precision constant for a double-precision
value.

You can specify the following cpdf-options to control how the values of L and R are computed
and which regions are displayed:

LEFTQ | LEFT | L=number
specifies the CDF value, between 0 and 1, to mark the end of the left-tail region. The left-tail
region always starts at the minimum loss variable value in the DATA= data set. The value
of L, the end of the left-tail region, is determined by the number that you specify. Let
the number be pl . If you do not specify the QUANTILEBOUNDS option, then PROC
SEVERITY sets L equal to the 100pl th percentile. If you specify the QUANTILEBOUNDS
option, then for a distribution D with an estimated quantile function OQD , LD D OQD.pl/
marks the end of the left-tail region. LD can be different for each distribution, so the left-tail
region ends at different values for different distributions.
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RIGHTQ | RIGHT | R=number
specifies the CDF value, between 0 and 1, to mark the start of the right-tail region. The
right-tail region always ends at the maximum loss variable value in the DATA= data set. The
value of R, the start of the right-tail region, is determined by the number that you specify.
Let the number be pr . If you do not specify the QUANTILEBOUNDS option, then PROC
SEVERITY sets R equal to the 100pr th percentile. If you specify the QUANTILEBOUNDS
option, then for a distribution D with an estimated quantile function OQD , RD D OQD.pr/
marks the start of the right-tail region. RD can be different for each distribution, so the
right-tail region starts at different values for different distributions.

QUANTILEBOUNDS
specifies that the region boundaries be computed by using the estimated quantile functions of
individual distributions. If you do not specify this option, then the boundaries are computed
by using the percentiles, which are quantiles from the empirical distribution.

When you specify this option, the left-tail region of different distributions can end at different
values and the right-tail region of different distributions can start at different values, because
the quantile function of different distributions can produce different values for the same CDF
value.

SHOWREGION | SHOW=region-option

SHOWREGION | SHOW=(region-options)
specifies the regions to display in the plot. You can specify any combination of the following
region-options:

CENTER | C
specifies that the center region of the plot, which is the region between the end of the
left-tail region and the beginning of the right-tail region, be shown. If you specify this
option, you must also specify valid values for both the LEFTQ= and RIGHTQ= options.

LEFT | L
specifies that the left-tail region of the plot be shown. If you specify this option, you
must also specify a valid value for the LEFTQ= option.

RIGHT | R
specifies that the right-tail region of the plot be shown. If you specify this option, you
must also specify a valid value for the RIGHTQ= option.

If you do not specify the SHOWREGION option, then PROC SEVERITY determines the
default displayed regions as follows:

� If you do not specify either the LEFTQ= or RIGHTQ= option, then this is equivalent to
specifying (LEFTQ=0.25 RIGHTQ=0.75), and PROC SEVERITY displays all three
regions (left-tail, center, and right-tail).

� If you specify valid values for both the LEFTQ= and RIGHTQ= options, then PROC
SEVERITY displays all three regions (left-tail, center, and right-tail).

� If you specify a valid value for the LEFTQ= option but do not specify the RIGHTQ=
option, then PROC SEVERITY displays two regions: left-tail and the remaining region
that combines the center and right-tail regions.
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� If you specify a valid value for the RIGHTQ= option but do not specify the LEFTQ=
option, then PROC SEVERITY displays two regions: right-tail and the remaining region
that combines the center and left-tail regions.

Whether you specify the SHOWREGION option or not, PROC SEVERITY does not display a
region if the region contains fewer than five observations, and it issues a corresponding warning
in the SAS log.

For an illustration of the CONDITIONALPDF option, see “Example 29.3: Defining a Model for
Mixed-Tail Distributions” on page 2176.

CONDITIONALPDFPERDIST < (cpdf-options) >

CONDPDFDIST < (cpdf-options) >
creates a plot of the conditional PDF estimates of each candidate distribution model. A plot is
not created for models whose parameter estimation process does not converge.

The cpdf-options are identical to those listed for the CONDITIONALPDF plot option, except that
they are interpreted in the context of each candidate distribution individually. You can specify a
different set of values for the cpdf-options in the CONDITIONALPDFPERDIST option than you
specify in the CONDITIONALPDF option.

For an illustration of the CONDITIONALPDFPERDIST option, see “Example 29.4: Estimating
Parameters Using the Cramér–von Mises Estimator” on page 2185.

NONE
creates none of the graphical output. If you specify this option, then it overrides all the other
plot-request-options. The default graphical output is also suppressed.

PDF
creates a plot that compares the probability density function (PDF) estimates of all the candidate
distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge.

PDFPERDIST
creates a plot of the PDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

PP
creates the probability-probability plot (known as the P-P plot), which compares the CDF estimate
of each candidate distribution model to the empirical distribution function (EDF). The data that
are shown in this plot are used for computing the EDF-based statistics of fit.

QQ
creates the quantile-quantile plot (known as the Q-Q plot), which compares the empirical quantiles
to the quantiles of each candidate distribution model.

If you do not specify the PLOTS= option or if you do not specify the ONLY global-plot-option, then
the default graphical output is equivalent to specifying PLOTS(HISTOGRAM KERNEL)=(CDF PDF).



2066 F Chapter 29: The SEVERITY Procedure

PRINT < (global-display-option) > < =display-option >

PRINT < (global-display-option) > < = (display-option . . . display-option) >
specifies the desired displayed output. If you specify more than one display-option, then separate them
with spaces and enclose them in parentheses.

You can specify the following global-display-option:

ONLY
turns off the default displayed output and displays only the requested output.

You can specify the following display-options:

ALL
displays all the output.

ALLFITSTATS
displays the comparison of all the statistics of fit for all the models in one table. The table does
not include the models whose parameter estimation process does not converge.

CONVSTATUS
displays the convergence status of the parameter estimation process.

DESCSTATS
displays the descriptive statistics for the response variable. If you specify the SCALEMODEL
statement, then this option also displays the descriptive statistics for the regression effects that do
not contain a CLASS variable.

DISTINFO
displays the information about each specified distribution. For each distribution, the information
includes the name, description, validity status, and number of distribution parameters.

ESTIMATES | PARMEST
displays the final estimates of parameters. The estimates are not displayed for models whose
parameter estimation process does not converge.

INITIALVALUES
displays the initial values and bounds used for estimating each model.

NLOHISTORY
displays the iteration history of the nonlinear optimization process used for estimating the
parameters.

NLOSUMMARY
displays the summary of the nonlinear optimization process used for estimating the parameters.

NONE
displays none of the output. If you specify this option, then it overrides all other display options.
The default displayed output is also suppressed.



PROC SEVERITY Statement F 2067

SELECTION | SELECT
displays the model selection table.

STATISTICS | FITSTATS
displays the statistics of fit for each model. The statistics of fit are not displayed for models
whose parameter estimation process does not converge.

If you do not specify the PRINT= option or if you do not specify the ONLY global-display-option,
then the default displayed output is equivalent to specifying PRINT=(SELECTION CONVSTATUS
NLOSUMMARY STATISTICS ESTIMATES).

VARDEF=DF | N
specifies the denominator to use for computing the covariance estimates. You can specify one of the
following values:

DF specifies that the number of nonmissing observations minus the model degrees of freedom
(number of parameters) be used.

N specifies that the number of nonmissing observations be used.

For more information about the covariance estimation, see the section “Estimating Covariance and
Standard Errors” on page 2099.

The following options control the model estimation and selection process:

CRITERION | CRITERIA | CRIT=criterion-option
specifies the model selection criterion.

If you specify two or more candidate models for estimation, then the one with the best value for the
selection criterion is chosen as the best model. If you specify the OUTSTAT= data set, then the best
model’s observation has a value of 1 for the _SELECTED_ variable.

You can specify one of the following criterion-options:

AD
specifies the Anderson-Darling (AD) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

AIC
specifies Akaike’s information criterion (AIC) as the selection criterion. A lower value is deemed
better.

AICC
specifies the finite-sample corrected Akaike’s information criterion (AICC) as the selection
criterion. A lower value is deemed better.

BIC
specifies the Schwarz Bayesian information criterion (BIC) as the selection criterion. A lower
value is deemed better.
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CUSTOM
specifies the custom objective function as the selection criterion. You can specify this only if you
also specify the OBJECTIVE= option. A lower value is deemed better.

CVM
specifies the Craḿer–von Mises (CvM) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

KS
specifies the Kolmogorov-Smirnov (KS) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

LOGLIKELIHOOD | LL
specifies �2 � log.L/ as the selection criterion, where L is the likelihood of the data. A lower
value is deemed better. This is the default.

For more information about these criterion-options, see the section “Statistics of Fit” on page 2121.

EMPIRICALCDF | EDF=method
specifies the method to use for computing the nonparametric or empirical estimate of the cumulative
distribution function of the data. You can specify one of the following values for method :

AUTOMATIC | AUTO
specifies that the method be chosen automatically based on the data specification. This option is
the default.

If you do not specify any censoring or truncation, then the standard empirical estimation method
(STANDARD) is chosen. If you specify both right-censoring and left-censoring, then Turnbull’s
estimation method (TURNBULL) is chosen. For all other combinations of censoring and
truncation, the Kaplan-Meier method (KAPLANMEIER) is chosen.

KAPLANMEIER | KM
specifies that the product limit estimator proposed by Kaplan and Meier (1958) be used. Specifi-
cation of this method has no effect when you specify both right-censoring and left-censoring.

MODIFIEDKM | MKM <(options)>
specifies that the modified product limit estimator be used. Specification of this method has no
effect when you specify both right-censoring and left-censoring.

This method allows Kaplan-Meier’s product limit estimates to be more robust by ignoring the
contributions to the estimate due to small risk-set sizes. The risk set is the set of observations at
the risk of failing, where an observation is said to fail if it has not been processed yet and might
experience censoring or truncation. You can specify the minimum risk-set size that makes it
eligible to be included in the estimation either as an absolute lower bound on the size (RSLB=
option) or a relative lower bound determined by the formula cn˛ proposed by Lai and Ying
(1991). You can specify the values of c and ˛ by using the C= and ALPHA= options, respectively.
By default, the relative lower bound is used with values of c = 1 and ˛ = 0.5. However, you can
modify the default by using the following options:
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ALPHA | A=number
specifies the value to use for ˛ when the lower bound on the risk set size is defined as cn˛.
This value must satisfy 0 < ˛ < 1.

C=number
specifies the value to use for c when the lower bound on the risk set size is defined as cn˛.
This value must satisfy c > 0.

RSLB=number
specifies the absolute lower bound on the risk set size to be included in the estimate.

STANDARD | STD
specifies that the standard empirical estimation method be used. If you specify both right-
censoring and left-censoring, then the specification of this method has no effect. If you specify
any other combination of censoring or truncation effects, then this method ignores such effects,
and can thus result in estimates that are more biased than those obtained with other methods that
are more suitable for censored or truncated data.

TURNBULL | EM <(options)>
specifies that the Turnbull’s method be used. This method is used when you specify both right-
censoring and left-censoring. An iterative expectation-maximization (EM) algorithm proposed
by Turnbull (1976) is used to compute the empirical estimates. If you also specify truncation,
then the modification suggested by Frydman (1994) is used. You can modify the default behavior
of the EM algorithm by using the following options:

ENSUREMLE
specifies that the final EDF estimates be maximum likelihood estimates. The Kuhn-Tucker
conditions are computed for the likelihood maximization problem and checked to ensure
that EM algorithm converges to maximum likelihood estimates. The method generalizes
the method proposed by Gentleman and Geyer (1994) by taking into account any truncation
information that you might specify.

EPS=number
specifies the maximum relative error to be allowed between estimates of two consecutive
iterations. This criterion is used to check the convergence of the algorithm. If you do not
specify this option, then PROC SEVERITY uses a default value of 1.0E–8.

MAXITER=number
specifies the maximum number of iterations to attempt to find the empirical estimates. If
you do not specify this option, then PROC SEVERITY uses a default value of 500.

ZEROPROB=number
specifies the threshold below which an empirical estimate of the probability is considered
zero. This option is used to decide if the final estimate is a maximum likelihood estimate.
This option does not have an effect if you do not specify the ENSUREMLE option. If you
specify the ENSUREMLE option, but do not specify this option, then PROC SEVERITY
uses a default value of 1.0E–8.

For more information about each of the methods, see the section “Empirical Distribution Function
Estimation Methods” on page 2115.
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NOCONSTFITSTATS

NOCONSTSOF
excludes the constant distribution parameters, if any are specified, from the calculations of likelihood-
based fit statistics (AIC, AICC, and SBC) that depend on the number of model parameters.

By default, constant distribution parameters are assumed to be estimable (even if PROC SEVERITY
does not estimate them) and are included in the calculations of the likelihood-based fit statistics.

OBJECTIVE=symbol-name
names the symbol that represents the objective function in the SAS programming statements that you
specify. For each model to be estimated, PROC SEVERITY executes the programming statements to
compute the value of this symbol for each observation. The values are added across all observations to
obtain the value of the objective function. The optimization algorithm estimates the model parameters
such that the objective function value is minimized. A separate optimization problem is solved for each
candidate distribution. If you specify a BY statement, then a separate optimization problem is solved
for each candidate distribution within each BY group.

For more information about writing SAS programming statements to define your own objective
function, see the section “Custom Objective Functions” on page 2150.

BY Statement
BY variable-list ;

A BY statement can be used in the SEVERITY procedure to process the input data set in groups of
observations defined by the BY variables.

If you specify the BY statement, then PROC SEVERITY expects the input data set to be sorted in the order
of the BY variables unless you specify the NOTSORTED option.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the scale regression model. These
variables enter the analysis not through their values, but through levels to which the unique values are mapped.
For more information about these mappings, see the section “Levelization of Classification Variables” on
page 2106.

If you specify a CLASS statement, then it must precede the SCALEMODEL statement.

You can specify options either as individual variable options or as global-options. You can specify options
for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that you specify in the CLASS statement. If you specify more than one CLASS statement, the
global-options that are specified in any one CLASS statement apply to all CLASS statements. However,
individual CLASS variable options override the global-options.

You can specify the following values for either an option or a global-option:
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DESCENDING

DESC
reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, the SEVERITY procedure orders the levels of classification variables according to
the ORDER= option and then reverses that order.

ORDER=DATA | FORMATTED | INTERNAL

ORDER=FREQ | FREQDATA | FREQFORMATTED | FREQINTERNAL
specifies the sort order for the levels of classification variables. This order is used by the parame-
terization method to create the parameters in the model. By default, ORDER=FORMATTED. For
ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent. When
ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit
format, the levels are ordered by their internal values.

Table 29.2 shows how the SEVERITY procedure interprets values of the ORDER= option.

Table 29.2 Interpretation of ORDER= Option Values

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric variables

that have no explicit format, which are sorted by their
unformatted (internal) values

FREQ Descending frequency count (levels that have more
observations come earlier in the order)

FREQDATA Order of descending frequency count, and within counts
by order of appearance in the input data set when counts
are tied

FREQFORMATTED Order of descending frequency count, and within counts
by formatted value when counts are tied

FREQINTERNAL Order of descending frequency count, and within counts
by unformatted (internal) value when counts are tied

INTERNAL Unformatted value

For more information about sort order, see the chapter about the SORT procedure in Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Programmers Guide: Essentials.

REF=’level’ | keyword

REFERENCE=’level’ | keyword
specifies the reference level that is used when you specify PARAM=REFERENCE. For an individual
(but not a global) variable REF= option, you can specify the level of the variable to use as the reference
level. Specify the formatted value of the variable if a format is assigned. For a REF= option or
global-option, you can use one of the following keywords:

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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By default, REF=LAST.

If you choose a reference level for any CLASS variable, all variables are parameterized in the reference
parameterization for computational efficiency. In other words, the SEVERITY procedure applies a
single parameterization method to all classification variables.

Suppose that the variable temp has three levels ('hot', 'warm', and 'cold') and that the variable
gender has two levels ('M' and 'F'). The following statements fit a scale regression model:

proc severity;
loss y;
class gender(ref='F') temp;
scalemodel gender*temp gender;

run;

Both CLASS variables are in reference parameterization in this model. The reference levels are 'F'
for the variable gender and 'warm' for the variable temp, because the statements are equivalent to the
following statements:

proc severity;
loss y;
class gender(ref='F') temp(ref=last);
scalemodel gender*temp gender;

run;

You can specify the following global-options:

MISSING
treats missing values (“.”, “.A”, . . . , “.Z” for numeric variables and blanks for character variables) as
valid values for the CLASS variable.

If you do not specify the MISSING option, observations that have missing values for CLASS variables
are removed from the analysis, even if the CLASS variables are not used in the model formulation.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify the
following keywords:

GLM specifies a less-than-full-rank reference cell coding.

REFERENCE specifies a reference cell encoding. You can choose the reference value by specifying
an option for a specific variable or set of variables in the CLASS statement, or you
can designate the first- or last-ordered value by specifying a global-option. By default,
REFERENCE=LAST.

The GLM parameterization is the default. For more information about how parameterization of
classification variables affects the construction and interpretation of model effects, see the section
“Specification and Parameterization of Model Effects” on page 2108.



DIST Statement F 2073

TRUNCATE< =n >
specifies the truncation width of formatted values of CLASS variables when the optional n is specified.

If n is not specified, the TRUNCATE option requests that classification levels be determined by using
no more than the first 16 characters of the formatted values of CLASS variables.

DIST Statement
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword < (distribution-

option) > > . . . > < / preprocess-options > ;

The DIST statement specifies candidate distributions to be estimated by the SEVERITY procedure. You can
specify multiple DIST statements, and each statement can contain one or more distribution specifications.

For your convenience, PROC SEVERITY provides the following 10 different predefined distributions (the
name in parentheses is the name to use in the DIST statement): Burr (BURR), exponential (EXP), gamma
(GAMMA), generalized Pareto (GPD), inverse Gaussian or Wald (IGAUSS), lognormal (LOGN), Pareto
(PARETO), Tweedie (TWEEDIE), scaled Tweedie (STWEEDIE), and Weibull (WEIBULL). These are
described in detail in the section “Predefined Distributions” on page 2085.

You can specify any of the predefined distributions or any distribution that you have defined. If a distribution
that you specify is not a predefined distribution, then you must submit the CMPLIB= system option with
appropriate libraries before you submit the PROC SEVERITY step to enable the procedure to find the
functions associated with your distribution. The predefined distributions are defined in the Sashelp.Svrtdist
library. However, you are not required to specify this library in the CMPLIB= system option. For more
information about defining your own distributions, see the section “Defining a Severity Distribution Model
with the FCMP Procedure” on page 2126.

As a convenience, you can also use a shortcut keyword to indicate a list of distributions. You can specify one
or more of the following keywords:

_ALL_
specifies all the predefined distributions and the distributions that you have defined in the libraries that
you specify in the CMPLIB= system option. In addition to the eight predefined distributions included
by the _PREDEFINED_ keyword, this list also includes the Tweedie and scaled Tweedie distributions
that are defined in the Sashelp.Svrtdist library.

_PREDEFINED_
specifies the list of eight predefined distributions: BURR, EXP, GAMMA, GPD, IGAUSS, LOGN,
PARETO, and WEIBULL. Although the TWEEDIE and STWEEDIE distributions are available in the
Sashelp.Svrtdist library along with these eight distributions, they are not included by this keyword. If
you want to fit the TWEEDIE and STWEEDIE distributions, then you must specify them explicitly or
use the _ALL_ keyword.

_USER_
specifies the list of all the distributions that you have defined in the libraries that you specify in the
CMPLIB= system option. This list does not include the distributions defined in the Sashelp.Svrtdist
library, even if you specify the Sashelp.Svrtdist library in the CMPLIB= option.
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The use of these keywords, especially _ALL_, can result in a large list of distributions, which might take a
longer time to estimate. A warning is printed to the SAS log if the number of total distribution models to
estimate exceeds 10.

If you specify the OUTCDF= option or request a CDF plot and you do not specify any DIST statement, then
PROC SEVERITY does not fit any distributions and produces the empirical estimates of the cumulative
distribution function.

The following distribution-option values can be used in the DIST statement for a distribution name that is not
a shortcut keyword:

INIT=(name=value . . . name=value)
specifies the initial values to be used for the distribution parameters to start the parameter estimation
process. You must specify the values by parameter names, and the parameter names must match
the names used in the model definition. For example, let a model M’s definition contain an M_PDF
function with the following signature:

function M_PDF(x, alpha, beta);

For this model, the names alpha and beta must be used for the INIT option. The names are case-
insensitive. If you do not specify initial values for some parameters in the INIT statement, then a
default value of 0.001 is assumed for those parameters. If you specify an incorrect parameter, PROC
SEVERITY prints a warning to the SAS log and does not fit the model. All specified values must be
nonmissing.

If you are modeling regression effects, then the initial value of the first distribution parameter (alpha
in the preceding example) should be the initial base value of the scale parameter or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects” on page 2100.

The use of INIT= option is one of the three methods available for initializing the parameters. For
more information, see the section “Parameter Initialization” on page 2099. If none of the initialization
methods is used, then PROC SEVERITY initializes all parameters to 0.001.

You can specify the following preprocess-options in the DIST statement:

LISTONLY
specifies that the list of all candidate distributions be printed to the SAS log without doing any further
processing on them. This option is especially useful when you use a shortcut keyword to include a list
of distributions. It enables you to find out which distributions are included by the keyword.

VALIDATEONLY
specifies that all candidate distributions be checked for validity without doing any further processing
on them. If a distribution is invalid, the reason for invalidity is written to the SAS log. If all
distributions are valid, then the distribution information is written to the SAS log. The information
includes name, description, validity status (valid or invalid), and number of distribution parameters.
The information is not written to the SAS log if you specify an OUTMODELINFO= data set or
the PRINT=DISTINFO or PRINT=ALL option in the PROC SEVERITY statement. This option is
especially useful when you specify your own distributions or when you specify the _USER_ or _ALL_
keywords in the DIST statement. It enables you to check whether your custom distribution definitions
satisfy PROC SEVERITY’s requirements for the specified modeling task. It is recommended that you
specify the SCALEMODEL statement if you intend to fit a model with regression effects, because
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the SCALEMODEL statement instructs PROC SEVERITY to perform additional checks to validate
whether regression effects can be modeled on each candidate distribution.

LOSS Statement
LOSS < response-variable-name > < / censoring-truncation-options > ;

The LOSS statement specifies the name of the response or loss variable whose distribution needs to be
modeled. You can also specify additional options to indicate any truncation or censoring of the response. The
specification of response variable is optional if you specify at least one type of censoring. You must specify a
response variable if you do not specify any censoring. If you specify more than one LOSS statement, then
the first statement is used.

All the analysis variables that you specify in this statement must be present in the input data set that you
specify by using the DATA= option in the PROC SEVERITY statement. The response variable is expected to
have nonmissing values. If the variable has a missing value in an observation, then a warning is written to the
SAS log and that observation is ignored.

The following censoring-truncation-options can be used in the LOSS statement:

LEFTCENSORED | LC=variable-name

LEFTCENSORED | LC=number
specifies the left-censoring variable or a global left-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the left-censoring
limit. If the value of this variable is missing, then PROC SEVERITY assumes that such observations
are not left-censored.

Alternatively, you can use the number argument to specify a left-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of left-censoring, an exact value of the response is not known when it is less than or
equal to the left-censoring limit. If you specify the response variable and the value of that variable is
less than or equal to the value of the left-censoring limit for some observations, then PROC SEVERITY
treats such observations as left-censored and the value of the response variable is ignored. If you specify
the response variable and the value of that variable is greater than the value of the left-censoring limit
for some observations, then PROC SEVERITY assumes that such observations are not left-censored
and the value of the left-censoring limit is ignored.

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about left-censoring, see the section “Censoring and Truncation” on page 2095.

LEFTTRUNCATED | LT=variable-name < (left-truncation-option) >

LEFTTRUNCATED | LT=number < (left-truncation-option) >
specifies the left-truncation variable or a global left-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the left-truncation
threshold. If the value of this variable is missing or 0 for some observations, then PROC SEVERITY
assumes that such observations are not left-truncated.
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Alternatively, you can use the number argument to specify a left-truncation threshold that applies to all
the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of left-truncation,
you can observe only a value that is greater than the left-truncation threshold. If a response variable
value is less than or equal to the left-truncation threshold, a warning is printed to the SAS log, and the
observation is ignored. For more information about left-truncation, see the section “Censoring and
Truncation” on page 2095.

You can specify the following left-truncation-option for an alternative interpretation of the left-truncation
threshold:

PROBOBSERVED | POBS=number
specifies the probability of observability, which is defined as the probability that the underlying
severity event is observed (and recorded) for the specified left-threshold value.

The specified number must lie in the (0.0, 1.0] interval. A value of 1.0 is equivalent to specifying
that there is no left-truncation, because it means that no severity events can occur with a value less
than or equal to the threshold. If you specify value of 1.0, PROC SEVERITY prints a warning to
the SAS log and proceeds by assuming that LEFTTRUNCATED= option is not specified.

For more information, see the section “Probability of Observability” on page 2096.

RIGHTCENSORED | RC=variable-name

RIGHTCENSORED | RC=number
specifies the right-censoring variable or a global right-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the right-censoring
limit. If the value of this variable is missing, then PROC SEVERITY assumes that such observations
are not right-censored.

Alternatively, you can use the number argument to specify a right-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of right-censoring, an exact value of the response is not known when it is greater
than or equal to the right-censoring limit. If you specify the response variable and the value of that
variable is greater than or equal to the value of the right-censoring limit for some observations, then
PROC SEVERITY treats such observations as right-censored and the value of the response variable is
ignored. If you specify the response variable and the value of that variable is less than the value of the
right-censoring limit for some observations, then PROC SEVERITY assumes that such observations
are not right-censored and the value of the right-censoring limit is ignored.

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about right-censoring, see the section “Censoring and Truncation” on page 2095.
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RIGHTTRUNCATED | RT=variable-name

RIGHTTRUNCATED | RT=number
specifies the right-truncation variable or a global right-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the right-truncation
threshold. If the value of this variable is missing for some observations, then PROC SEVERITY
assumes that such observations are not right-truncated.

Alternatively, you can use the number argument to specify a right-truncation threshold that applies to
all the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of right-
truncation, you can observe only a value that is less than or equal to the right-truncation threshold.
If a response variable value is greater than the right-truncation threshold, a warning is printed to the
SAS log, and the observation is ignored. For more information about right-truncation, see the section
“Censoring and Truncation” on page 2095.

NLOPTIONS Statement
NLOPTIONS options ;

The SEVERITY procedure uses the nonlinear optimization (NLO) subsystem to perform the nonlinear
optimization of the likelihood function to obtain the estimates of distribution and regression parameters.
You can use the NLOPTIONS statement to control different aspects of this optimization process. For most
problems, the default settings of the optimization process are adequate. However, in some cases it might be
useful to change the optimization technique or to change the maximum number of iterations. The following
statement uses the MAXITER= option to set the maximum number of iterations to 200 and uses the TECH=
option to change the optimization technique to the double-dogleg optimization (DBLDOG) rather than the
default technique, the trust region optimization (TRUREG), that is used in the SEVERITY procedure:

nloptions tech=dbldog maxiter=200;

A discussion of the full range of options that can be used in the NLOPTIONS statement is given in Chapter 7,
“Nonlinear Optimization Methods.” The SEVERITY procedure supports all those options except the options
that are related to displaying the optimization information. You can use the PRINT= option in the PROC
SEVERITY statement to request the optimization summary and iteration history. If you specify more than
one NLOPTIONS statement, then the first statement is used.
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OUTPUT Statement
OUTPUT < OUT=SAS-data-set > output-options ;

The OUTPUT statement specifies the data set to write the estimates of scoring functions and quantiles to. To
specify the name of the output data set, use the following option:

OUT=SAS-data-set
specifies the name of the output data set. If you do not specify this option, then PROC SEVERITY
names the output data set by using the DATAn convention.

To control the contents of the OUT= data set, specify the following output-options:

COPYVARS=variable-list
specifies the names of the variables that you want to copy from the input DATA= data set to the OUT=
data set. If you want to specify more than one name, then separate them by spaces.

If you specify the BY statement, then the BY variables are not automatically copied to the OUT= data
set, so you must specify the BY variables in the COPYVARS= option.

FUNCTIONS=(function< (arg) >< =variable > < function< (arg) >< =variable > > . . . )
specifies the scoring functions that you want to estimate. For each scoring function that you want to
estimate, specify the suffix of the scoring function as the function. For each function that you specify
in this option and for each distribution D that you specify in the DIST statement, the FCMP function
D_function must be defined in the search path that you specify by using the CMPLIB= system option.

If you want to evaluate the scoring function at a specific value of the response variable, then specify a
number arg, which is enclosed in parentheses immediately after the function. If you do not specify
arg or if you specify a missing value as arg, then for each observation in the DATA= data set, PROC
SEVERITY computes the value v by using the following table and evaluates the scoring function at v,
where y, r, and l denote the values of the response variable, right-censoring limit, and left-censoring
limit, respectively:

Right-Censored Left-Censored v

No No y
No Yes l
Yes No r
Yes Yes .l C r/=2

You can specify the suffix of the variable that contains the estimate of the scoring function by specifying
a valid SAS name as a variable. If you do not specify a variable, then PROC SEVERITY uses function
as the suffix of the variable name.

To illustrate the FUNCTIONS= option with an example, assume that you specify the following DIST
and OUTPUT statements:

dist exp logn;
output out=score functions=(cdf pdf(1000)=f1000 mean);
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Let both exponential (EXP) and lognormal (LOGN) distributions converge. If O� is the final estimate of
the scale parameter of the exponential distribution, then PROC SEVERITY creates the following three
scoring function variables for the exponential (EXP) distribution in the Work.Score data set:

EXP_CDF contains the CDF estimate Fexp.v; O�/, where Fexp denotes the CDF of the expo-
nential distribution and v is the value that is determined by the preceding table.

EXP_F1000 contains the PDF estimate fexp.1000; O�/, where fexp denotes the PDF of the
exponential distribution.

EXP_MEAN contains the mean of the exponential distribution for the scale parameter O� .

Similarly, if O� and O� are the final estimates of the log-scale and shape parameters of the lognormal
distribution, respectively, then PROC SEVERITY creates the following three scoring function variables
for the lognormal (LOGN) distribution in the Work.Score data set:

LOGN_CDF contains the CDF estimate Flogn.v; O�; O�/, where Flogn denotes the CDF of the
lognormal distribution and v is the value that is determined by the preceding table.

LOGN_F1000 contains the probability density function (PDF) estimate flogn.1000; O�; O�/, where
flogn denotes the PDF of the lognormal distribution.

LOGN_MEAN contains the mean of the lognormal distribution for the parameters O� and O� .

If you specify the SCALEMODEL statement, then the value of the scale parameter of a distribution
depends on the values of the regression parameters. So it might be different for different observations.
In this example, the values of O� and O� might vary by observation, which might cause the values of the
EXP_F1000, EXP_MEAN, LOGN_F1000, and LOGN_MEAN variables to vary by observation. The
values of the EXP_CDF and LOGN_CDF variables might vary not only because of the varying values
of v but also because of the varying values of O� and O�.

If you do not specify the SCALEMODEL statement, then the values of scoring functions for which
you specify a nonmissing argument arg and scoring functions that do not depend on the response
variable value do not vary by observation. In this example, the values of the EXP_F1000, EXP_MEAN,
LOGN_F1000, and LOGN_MEAN variables do not vary by observation.

If a distribution does not converge, then the scoring function variables for that distribution contain
missing values in all observations.

For more information about scoring functions, see the section “Scoring Functions” on page 2143.

QUANTILES=quantile-options
specifies the quantiles that you want to estimate. To use this option, for each distribution that you
specify in the DIST statement, the FCMP function D_QUANTILE must be defined in the search path
that you specify by using the CMPLIB= system option.

You can specify the following quantile-options:
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CDF=CDF-values

POINTS=CDF-values
specifies the CDF values at which you want to estimate the quantiles. CDF-values can be one or
more numbers, separated by spaces. Each number must be in the interval (0,1).

NAMES=variable-names
specifies the suffixes of the names of the variables for each of the quantile estimates. If you
specify n (n � 0) names in the variable-names option and k values in the CDF= option, and
if n < k, then PROC SEVERITY uses the n names to name the variables that correspond to
the first n CDF values. For each of the remaining k � n CDF values, pi (n < i � k), PROC
SEVERITY creates a variable name Pt , where t is the text representation of 100pi that is formed
by retaining at most NDECIMAL= digits after the decimal point and replacing the decimal point
with an underscore (‘_’).

NDECIMAL=number
specifies the number of digits to keep after the decimal point when PROC SEVERITY creates the
name of the quantile estimate variable. If you do not specify this option, then the default value is
3.

For example, assume that you specify the following DIST and OUTPUT statements:

dist burr;
output out=score quantiles=(cdf=0.9 0.975 0.995 names=ninety var);

PROC SEVERITY creates three quantile estimate variables, BURR_NINETY, BURR_VAR, and
BURR_P99_5, in the Work.Score data set for the Burr distribution. These variables contain the
estimates of QBurr.p; O�; Ǫ ; O/, for p = 0.9, 0.975, and 0.995, respectively, where QBurr denotes the
quantile function and O� , Ǫ , and O denote the parameter estimates of the Burr distribution.

If you specify the SCALEMODEL statement, then the quantile estimate might vary by observation,
because the scale parameter of a distribution depends on the values of the regression parameters.

If you do not specify the SCALEMODEL statement, then the quantile estimates do not vary by
observation, and if you do not specify any scoring functions in the FUNCTIONS= option whose
estimates vary by observation, then the OUT= data set contains only one observation per BY group.

If a distribution does not converge, then the quantile estimate variables for that distribution contain
missing values for all observations.

For more information about the variables and observations in the OUT= data set, see the section “OUT=
Data Set” on page 2156.
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OUTSCORELIB Statement
OUTSCORELIB < OUTLIB= > fcmp-library-name options ;

The OUTSCORELIB statement specifies the library to write scoring functions to. Scoring functions enable
you to easily compute a distribution function on the fitted parameters of the distribution without going
through a potentially complex process of extracting the fitted parameter estimates from other output such as
the OUTEST= data set that is created by PROC SEVERITY.

If you specify the SCALEMODEL statement and if you specify interaction or classification effects, then
PROC SEVERITY ignores the OUTSCORELIB statement and does not generate scoring functions. In other
words, if you specify the SCALEMODEL statement, then PROC SEVERITY generates scoring functions if
you specify only singleton continuous effects in the SCALEMODEL statement.

You must specify the following option as the first option in the statement:

OUTLIB=fcmp-library-name
names the FCMP library to contain the scoring functions. PROC SEVERITY writes the scoring
functions to the FCMP library named fcmp-library-name. If a library or data set named fcmp-library-
name already exists, PROC SEVERITY deletes it before proceeding.

This option is similar to the OUTLIB= option that you would specify in a PROC FCMP statement,
except that fcmp-library-name must be a two-level name whereas the OUTLIB= option in the PROC
FCMP statement requires a three-level name. The third level of a three-level name specifies the package
to which the functions belong. You do not need to specify the package name in the fcmp-library-name,
because PROC SEVERITY automatically creates the package for you. By default, a separate package
is created for each distribution that has not failed to converge. Each package is named for a distribution.

For example, if you define and fit a distribution named mydist , and if mydist does not fail to con-
verge, then PROC SEVERITY creates a package named mydist in the OUTLIB= library that you
specify. Further, let the definition of the mydist distribution contain three distribution functions,
mydist_PDF(x,Parm1,Parm2), mydist_LOGCDF(x,Parm1,Parm2), and mydist_XYZ(x,Parm1,Parm2).
If you specify the OUTSCORELIB statement

outscorelib outlib=sasuser.scorefunc;

then the Sasuser.Scorefunc library contains the following three functions in a package named mydist :
SEV_PDF(x), SEV_LOGCDF(x), and SEV_XYZ(x).

The key feature of scoring functions is that they do not require the parameter arguments (Parm1 and
Parm2 in this example). The fitted parameter estimates are encoded inside the scoring function so
that you can compute or score the value of each function for a given value of the loss variable without
having to know or extract the parameter estimates through some other means.

For convenience, you can omit the OUTLIB= portion of the specification and just specify the name, as
in the following example:

outscorelib sasuser.scorefunc;
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When the SEVERITY procedure runs successfully, the fcmp-library-name is appended to the CMPLIB
system option, so you can immediately start using the scoring functions in a DATA step or PROC FCMP step.

You can specify the following options in the OUTSCORELIB statement:

COMMONPACKAGE

ONEPACKAGE
requests that only one common package be created to contain all the scoring functions.

If you specify this option, then all the scoring functions are created in a package called sevfit . For
each distribution function that has the name distribution_suffix , the name of the corresponding scoring
function is formed as SEV_suffix_distribution. For example, the scoring function of the distribution
function ‘MYDIST_BAR’ is named ‘SEV_BAR_MYDIST’.

If you do not specify this option, then all scoring functions for a distribution are created in a package
that has the same name as the distribution, and for each distribution function that has the name
distribution_suffix , the name of the corresponding scoring function is formed as SEV_suffix . For
example, the scoring function of the distribution function ‘MYDIST_BAR’ is named ‘SEV_BAR’.

OUTBYID=SAS-data-set
names the output data set to contain the unique identifier for each BY group. This unique identifier is
used as part of the name of the package or scoring function for each distribution. This is a required
option when you specify a BY statement in PROC SEVERITY.

The OUTBYID= data set contains one observation per BY group and a variable named _ID_ in addition
to the BY variables that you specify in the BY statement. The _ID_ variable contains the unique
identifier for each BY group. The identifier of the BY group is the decimal representation of the
sequence number of the BY group. The first BY group has an identifier of 1, the second BY group has
an identifier of 2, the tenth BY group has an identifier of 10, and so on.

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution, PROC SEVERITY creates as many packages as the number of BY groups. The
unique BY-group identifier is used as a suffix for the package name. For example, if your DATA= data
set has three BY groups and if you specify the OUTSCORELIB statement

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid;

then for the distribution ‘MYDIST’, the Sasuser.Byscorefunc library contains the three packages
‘MYDIST1’, ‘MYDIST2’, and ‘MYDIST3’, and each package contains one scoring function named
‘SEV_BAR’ for each distribution function named ‘MYDIST_BAR’.

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, PROC SEVERITY
creates as many versions of the distribution function as the number of BY groups. The unique BY-group
identifier is used as a suffix for the function name. Extending the previous example, if you specify the
OUTSCORELIB statement with the COMMONPACKAGE option,

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid commonpackage;

then for the distribution function ‘MYDIST_BAR’ of the distribution ‘MYDIST’, the
Sasuser.Byscorefunc library contains the following three scoring functions: ‘SEV_BAR_MYDIST1’,
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‘SEV_BAR_MYDIST2’, and ‘SEV_BAR_MYDIST3’. All the scoring functions are created in one
common package named sevfit .

For both the preceding examples, the Sasuser.Byid data set contains three observations, one for each
BY group. The value of the _ID_ variable is 1 for the first BY group, 2 for the second BY group, and 3
for the third BY group.

For more information about scoring functions, see the section “Scoring Functions” on page 2143.

SCALEMODEL Statement
SCALEMODEL regression-effect-list < / scalemodel-options > ;

The SCALEMODEL statement specifies regression effects. A regression effect is formed from one or more
regressor variables according to effect construction rules. Each regression effect forms one element of X
in the linear model structure Xˇ that affects the scale parameter of the distribution. The SCALEMODEL
statement in conjunction with the CLASS statement supports a rich set of effects. Effects are specified by a
special notation that uses regressor variable names and operators. There are two types of regressor variables:
classification (or CLASS) variables and continuous variables. Classification variables can be either numeric
or character and are specified in a CLASS statement. To include CLASS variables in regression effects, you
must specify the CLASS statement so that it appears before the SCALEMODEL statement. A regressor
variable that is not declared in the CLASS statement is assumed to be continuous. For more information
about effect construction rules, see the section “Specification and Parameterization of Model Effects” on
page 2108.

All the regressor variables must be present in the input data set that you specify by using the DATA= option
in the PROC SEVERITY statement. The scale parameter of each candidate distribution is linked to the linear
predictor Xˇ that includes an intercept. If a distribution does not have a scale parameter, then a model based
on that distribution is not estimated. If you specify more than one SCALEMODEL statement, then the first
statement is used.

The regressor variables are expected to have nonmissing values. If any of the variables has a missing value in
an observation, then a warning is written to the SAS log and that observation is ignored.

For more information about modeling regression effects, see the section “Estimating Regression Effects” on
page 2100.

You can specify the following scalemodel-options in the SCALEMODEL statement:

DFMIXTURE=method-name < (method-options) >
specifies the method for computing representative estimates of the cumulative distribution function
(CDF) and the probability density function (PDF).

When you specify regression effects, the scale of the distribution depends on the values of the regressors.
For a given distribution family, each observation in the input data set implies a different scaled version
of the distribution. To compute estimates of CDF and PDF that are comparable across different
distribution families, PROC SEVERITY needs to construct a single representative distribution from all
such distributions. You can specify one of the following method-name values to specify the method
that is used to construct the representative distribution. For more information about each of the methods,
see the section “CDF and PDF Estimates with Regression Effects” on page 2104.
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FULL
specifies that the representative distribution be the mixture of N distributions such that each
distribution has a scale value that is implied by each of the N observations that are used for
estimation. This method is the slowest.

MEAN
specifies that the representative distribution be the one-point mixture of the distribution whose
scale value is computed by using the mean of the N values of the linear predictor that are implied
by the N observations that are used for estimation. If you do not specify the DFMIXTURE=
option, then this method is used by default. This is also the fastest method.

QUANTILE < (K=q) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the quantiles from the sample of N values of the linear
predictor that are implied by the N observations that are used for estimation.

You can use the K= option to specify the number of distributions in the mixture. If you specify
K=q, then the mixture contains .q � 1/ distributions such that each distribution has as its scale
one of the .q � 1/-quantiles.

If you do not specify the K= option, then PROC SEVERITY uses the default of 2, which implies
the use of a one-point mixture with a distribution whose scale value is the median of all scale
values.

RANDOM < (random-method-options) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the values of the linear predictor that are implied by
a randomly chosen subset of the set of all observations that are used for estimation. The same
subset of observations is used for each distribution family.

You can specify the following random-method-options to specify how the subset is chosen:

K=r
specifies the number of distributions to include in the mixture. If you do not specify this
option, then PROC SEVERITY uses the default of 15.

SEED=number
specifies the seed that is used to generate the uniform random sample of observation indices.
If you do not specify this option, then PROC SEVERITY generates a seed internally that is
based on the current value of the system clock.

OFFSET=offset-variable-name
specifies the name of the offset variable in the scale regression model. An offset variable is a regressor
variable whose regression coefficient is known to be 1. For more information, see the section “Offset
Variable” on page 2101.



WEIGHT Statement F 2085

WEIGHT Statement
WEIGHT variable-name ;

The WEIGHT statement specifies the name of a variable whose values represent the weight of each ob-
servation. PROC SEVERITY associates a weight of w to each observation, where w is the value of the
WEIGHT variable for the observation. If the weight value is missing or less than or equal to 0, then the
observation is ignored and a warning is written to the SAS log. When you do not specify the WEIGHT
statement, each observation is assigned a weight of 1. If you specify more than one WEIGHT statement, then
the last statement is used.

The weights are normalized so that they add up to the actual sample size. In particular, the weight of
each observation is multiplied by NPN

iD1wi
, where N is the sample size. All computations, including the

computations of the EDF-based statistics of fit, use normalized weights.

Programming Statements
You can use a series of programming statements that use variables in the input data set that you specify in
the DATA= option in the PROC SEVERITY statement to assign a value to an objective function symbol.
You must specify the objective function symbol by using the OBJECTIVE= option in the PROC SEVERITY
statement. If you do not specify the OBJECTIVE= option in the PROC SEVERITY statement, then the
programming statements are ignored and models are estimated using the maximum likelihood method.

You can use most DATA step statements and functions in your program. Any additional functions, restrictions,
and differences are listed in the section “Custom Objective Functions” on page 2150.

Details: SEVERITY Procedure

Predefined Distributions
For the response variable Y, PROC SEVERITY assumes the model

Y � F.‚/

where F is a continuous probability distribution with parameters ‚. The model hypothesizes that the
observed response is generated from a stochastic process that is governed by the distribution F . This model
is usually referred to as the error model. Given a representative input sample of response variable values,
PROC SEVERITY estimates the model parameters for any distribution F and computes the statistics of fit
for each model. This enables you to find the distribution that is most likely to generate the observed sample.

A set of predefined distributions is provided with the SEVERITY procedure. A summary of the distributions
is provided in Table 29.3. For each distribution, the table lists the name of the distribution that should be
used in the DIST statement, the parameters of the distribution along with their bounds, and the mathematical
expressions for the probability density function (PDF) and cumulative distribution function (CDF) of the
distribution.
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All the predefined distributions, except LOGN and TWEEDIE, are parameterized such that their first
parameter is the scale parameter. For LOGN, the first parameter � is a log-transformed scale parameter.
TWEEDIE does not have a scale parameter. The presence of scale parameter or a log-transformed scale
parameter enables you to use all of the predefined distributions, except TWEEDIE, as a candidate for
estimating regression effects.

A distribution model is associated with each predefined distribution. You can also define your own distribution
model, which is a set of functions and subroutines that you define by using the FCMP procedure. For more
information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on page 2126.

Table 29.3 Predefined PROC SEVERITY Distributions

TheadName Distribution Parameters PDF (f ) and CDF (F)

BURR Burr (Type XII) � > 0, ˛ > 0, f .x/ D ˛z

x.1Cz /.˛C1/

 > 0 F.x/ D 1 �
�

1
1Cz

�˛
EXP Exponential � > 0 f .x/ D 1

�
e�z

F.x/ D 1 � e�z

GAMMA Gamma � > 0, ˛ > 0 f .x/ D z˛e�z

x�.˛/

F.x/ D .˛;z/
�.˛/

GPD Generalized � > 0, � > 0 f .x/ D 1
�
.1C �z/�1�1=�

Pareto F.x/ D 1 � .1C �z/�1=�

IGAUSS Inverse Gaussian � > 0, ˛ > 0 f .x/ D 1
�

q
˛

2�z3
e
�˛.z�1/2

2z

(Wald) F.x/ D ˆ
�
.z � 1/

q
˛
z

�
C

ˆ
�
�.z C 1/

q
˛
z

�
e2˛

LOGN Lognormal � (no bounds), f .x/ D 1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2
� > 0 F.x/ D ˆ

�
log.x/��

�

�
PARETO Pareto (Type II) � > 0, ˛ > 0 f .x/ D ˛�˛

.xC�/˛C1

F.x/ D 1 �
�

�
xC�

�˛
TWEEDIE Tweedie** p > 1, � > 0, f .x/ D a.x; �/ exp

h
1
�

�
x�1�p

1�p
� �.�; p/

�i
� > 0 F.x/ D

R x
0 f .t/dt

STWEEDIE Scaled Tweedie** � > 0, � > 0, f .x/ D a.x; �; �; p/ exp
�
�
x
�
� �

�
1 < p < 2 F.x/ D

R x
0 f .t/dt

WEIBULL Weibull � > 0, � > 0 f .x/ D 1
x
�z�e�z

�

F.x/ D 1 � e�z
�



Predefined Distributions F 2087

Table 29.3 continued

Name Distribution Parameters PDF (f ) and CDF (F)

**For more information, see the section “Tweedie Distributions” on page 2087.
Notes:
1. z D x=� , wherever z is used.
2. � denotes the scale parameter for all the distributions. For LOGN, log.�/ D �.
3. Parameters are listed in the order in which they are defined in the distribution model.
4. .a; b/ D

R b
0 t

a�1e�tdt is the lower incomplete gamma function.

5. ˆ.y/ D 1
2

�
1C erf

�
y
p
2

��
is the standard normal CDF.

Tweedie Distributions

Tweedie distributions are a special case of the exponential dispersion family (Jørgensen 1987) with a property
that the variance of the distribution is equal to ��p , where � is the mean of the distribution, � is a dispersion
parameter, and p is an index parameter as discovered by Tweedie (1984). The distribution is defined for all
values of p except for values of p in the open interval .0; 1/. Many important known distributions are a special
case of Tweedie distributions including normal (p=0), Poisson (p=1), gamma (p=2), and the inverse Gaussian
(p=3). Apart from these special cases, the probability density function (PDF) of the Tweedie distribution
does not have an analytic expression. For p > 1, it has the form (Dunn and Smyth 2005),

f .xI�; �; p/ D a.x; �/ exp
�
1

�

�
x�1�p

1 � p
� �.�; p/

��
where �.�; p/ D �2�p=.2 � p/ for p ¤ 2 and �.�; p/ D log.�/ for p = 2. The function a.x; �/ does not
have an analytical expression. It is typically evaluated using series expansion methods described in Dunn and
Smyth (2005).

For 1 < p < 2, the Tweedie distribution is a compound Poisson-gamma mixture distribution, which is the
distribution of S defined as

S D

NX
iD1

Xi

where N � Poisson.�/ and Xi � gamma.˛; �/ are independent and identically distributed gamma random
variables with shape parameter ˛ and scale parameter � . At X = 0, the density is a probability mass that
is governed by the Poisson distribution, and for values of X > 0, it is a mixture of gamma variates with
Poisson mixing probability. The parameters �, ˛, and � are related to the natural parameters �, �, and p of
the Tweedie distribution as

� D
�2�p

�.2 � p/

˛ D
2 � p

p � 1

� D �.p � 1/�p�1

The mean of a Tweedie distribution is positive for p > 1.
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Two predefined versions of the Tweedie distribution are provided with the SEVERITY procedure. The first
version, named TWEEDIE and defined for p > 1, has the natural parameterization with parameters �, �, and
p. The second version, named STWEEDIE and defined for 1 < p < 2, is the version with a scale parameter.
It corresponds to the compound Poisson-gamma distribution with gamma scale parameter � , Poisson mean
parameter �, and the index parameter p. The index parameter decides the shape parameter ˛ of the gamma
distribution as

˛ D
2 � p

p � 1

The parameters � and � of the STWEEDIE distribution are related to the parameters� and � of the TWEEDIE
distribution as

� D ��˛

� D
.��˛/2�p

�.2 � p/
D

�

.p � 1/.��˛/p�1

You can fit either version when there are no regression variables. Each version has its own merits. If you
fit the TWEEDIE version, you have the direct estimate of the overall mean of the distribution. If you are
interested in the most practical range of the index parameter 1 < p < 2, then you can fit the STWEEDIE
version, which provides you direct estimates of the Poisson and gamma components that comprise the
distribution (an estimate of the gamma shape parameter ˛ is easily obtained from the estimate of p).

If you want to estimate the effect of exogenous (regression) variables on the distribution, then you must use
the STWEEDIE version, because PROC SEVERITY requires a distribution to have a scale parameter in
order to estimate regression effects. For more information, see the section “Estimating Regression Effects”
on page 2100. The gamma scale parameter � is the scale parameter of the STWEEDIE distribution. If you
are interested in determining the effect of regression variables on the mean of the distribution, you can do so
by first fitting the STWEEDIE distribution to determine the effect of the regression variables on the scale
parameter � . Then, you can easily estimate how the mean of the distribution � is affected by the regression
variables using the relationship � D c� , where c D �˛ D �.2�p/=.p� 1/. The estimates of the regression
parameters remain the same, whereas the estimate of the intercept parameter is adjusted by the estimates of
the � and p parameters.

Parameter Initialization for Predefined Distributions

The parameters are initialized by using the method of moments for all the distributions, except for the gamma
and the Weibull distributions. For the gamma distribution, approximate maximum likelihood estimates are
used. For the Weibull distribution, the method of percentile matching is used.

Given n observations of the severity value yi (1 � i � n), the estimate of kth raw moment is denoted by mk
and computed as

mk D
1

n

nX
iD1

yki

The 100pth percentile is denoted by �p (0 � p � 1). By definition, �p satisfies

F.�p�/ � p � F.�p/

where F.�p�/ D limh#0 F.�p � h/. PROC SEVERITY uses the following practical method of computing
�p . Let OFn.y/ denote the empirical distribution function (EDF) estimate at a severity value y. Let y�p and yCp
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denote two consecutive values in the ascending sequence of y values such that OFn.y�p / < p and OFn.yCp / � p.
Then, the estimate O�p is computed as

O�p D y
�
p C

p � OFn.y
�
p /

OFn.y
C
p / � OFn.y

�
p /
.yCp � y

�
p /

Let � denote the smallest double-precision floating-point number such that 1C � > 1. This machine precision
constant can be obtained by using the CONSTANT function in Base SAS software.

The details of how parameters are initialized for each predefined distribution are as follows:

BURR Burr proposed 12 types of families of continuous distributions (Burr 1942; Rodriguez 2006).
The predefined BURR distribution in PROC SEVERITY implements Burr’s Type XII distri-
bution. The parameters are initialized by using the method of moments. The kth raw moment
of the Burr distribution of Type XII is

EŒXk� D
�k�.1C k=/�.˛ � k=/

�.˛/
; � < k < ˛

Three moment equations EŒXk� D mk (k D 1; 2; 3) need to be solved for initializing the
three parameters of the distribution. In order to get an approximate closed form solution, the
second shape parameter O is initialized to a value of 2. If 2m3�3m1m2 > 0, then simplifying
and solving the moment equations yields the following feasible set of initial values:

O� D

r
m2m3

2m3 � 3m1m2
; Ǫ D 1C

m3

2m3 � 3m1m2
; O D 2

If 2m3 � 3m1m2 < �, then the parameters are initialized as follows:

O� D
p
m2; Ǫ D 2; O D 2

EXP The parameters are initialized by using the method of moments. The kth raw moment of the
exponential distribution is

EŒXk� D �k�.k C 1/; k > �1

Solving EŒX� D m1 yields the initial value of O� D m1.

GAMMA The parameter ˛ is initialized by using its approximate maximum likelihood (ML) estimate.
For a set of n independent and identically distributed observations yi (1 � i � n) drawn from
a gamma distribution, the log likelihood l is defined as follows:

l D

nX
iD1

log

 
y˛�1i

e�yi=�

�˛�.˛/

!

D .˛ � 1/

nX
iD1

log.yi / �
1

�

nX
iD1

yi � n˛ log.�/ � n log.�.˛//

Using a shorter notation of
P

to denote
Pn
iD1 and solving the equation @l=@� D 0 yields the

following ML estimate of � :

O� D

P
yi

n˛
D
m1

˛
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Substituting this estimate in the expression of l and simplifying gives

l D .˛ � 1/
X

log.yi / � n˛ � n˛ log.m1/C n˛ log.˛/ � n log.�.˛//

Let d be defined as follows:

d D log.m1/ �
1

n

X
log.yi /

Solving the equation @l=@˛ D 0 yields the following expression in terms of the digamma
function,  .˛/:

log.˛/ �  .˛/ D d

The digamma function can be approximated as follows:

O .˛/ � log.˛/ �
1

˛

�
0:5C

1

12˛ C 2

�
This approximation is within 1.4% of the true value for all the values of ˛ > 0 except when
˛ is arbitrarily close to the positive root of the digamma function (which is approximately
1.461632). Even for the values of ˛ that are close to the positive root, the absolute error
between true and approximate values is still acceptable (j O .˛/� .˛/j < 0:005 for ˛ > 1:07).
Solving the equation that arises from this approximation yields the following estimate of ˛:

Ǫ D
3 � d C

p
.d � 3/2 C 24d

12d

If this approximate ML estimate is infeasible, then the method of moments is used. The kth
raw moment of the gamma distribution is

EŒXk� D �k
�.˛ C k/

�.˛/
; k > �˛

Solving EŒX� D m1 and EŒX2� D m2 yields the following initial value for ˛:

Ǫ D
m21

m2 �m
2
1

If m2 �m21 < � (almost zero sample variance), then ˛ is initialized as follows:

Ǫ D 1

After computing the estimate of ˛, the estimate of � is computed as follows:

O� D
m1

Ǫ

Both the maximum likelihood method and the method of moments arrive at the same relation-
ship between Ǫ and O� .
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GPD The parameters are initialized by using the method of moments. Notice that for � > 0, the
CDF of the generalized Pareto distribution (GPD) is:

F.x/ D 1 �

�
1C

�x

�

��1=�
D 1 �

�
�=�

x C �=�

�1=�
This is equivalent to a Pareto distribution with scale parameter �1 D �=� and shape pa-
rameter ˛ D 1=�. Using this relationship, the parameter initialization method used for the
PARETO distribution is used to get the following initial values for the parameters of the GPD
distribution:

O� D
m1m2

2.m2 �m
2
1/
; O� D

m2 � 2m
2
1

2.m2 �m
2
1/

If m2 � m21 < � (almost zero sample variance) or m2 � 2m21 < �, then the parameters are
initialized as follows:

O� D
m1

2
; O� D

1

2

IGAUSS The parameters are initialized by using the method of moments. The standard parameterization
of the inverse Gaussian distribution (also known as the Wald distribution), in terms of the
location parameter � and shape parameter �, is as follows (Klugman, Panjer, and Willmot
1998, p. 583):

f .x/ D

r
�

2�x3
exp

�
��.x � �/2

2�2x

�
F.x/ D ˆ

 �
x

�
� 1

�r
�

x

!
Cˆ

 
�

�
x

�
C 1

�r
�

x

!
exp

�
2�

�

�
For this parameterization, it is known that the mean is EŒX� D � and the variance is
VarŒX� D �3=�, which yields the second raw moment as EŒX2� D �2.1C�=�/ (computed
by using EŒX2� D VarŒX�C .EŒX�/2).

The predefined IGAUSS distribution in PROC SEVERITY uses the following alternate
parameterization to allow the distribution to have a scale parameter, � :

f .x/ D

r
˛�

2�x3
exp

�
�˛.x � �/2

2x�

�
F.x/ D ˆ

 �x
�
� 1

�r˛�

x

!
Cˆ

 
�

�x
�
C 1

�r˛�

x

!
exp .2˛/

The parameters � (scale) and ˛ (shape) of this alternate form are related to the parameters �
and � of the preceding form such that � D � and ˛ D �=�. Using this relationship, the first
and second raw moments of the IGAUSS distribution are

EŒX� D �

EŒX2� D �2
�
1C

1

˛

�
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Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D m1; Ǫ D
m21

m2 �m
2
1

If m2 �m21 < � (almost zero sample variance), then the parameters are initialized as follows:

O� D m1; Ǫ D 1

LOGN The parameters are initialized by using the method of moments. The kth raw moment of the
lognormal distribution is

EŒXk� D exp
�
k�C

k2�2

2

�
Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D 2 log.m1/ �
log.m2/

2
; O� D

p
log.m2/ � 2 log.m1/

PARETO The predefined PARETO distribution in PROC SEVERITY implements the Type II Pareto
distribution with the location parameter set to 0. This predefined PARETO distribution is
also known as the Lomax distribution. The parameters are initialized by using the method of
moments. The kth raw moment of the Pareto distribution is

EŒXk� D
�k�.k C 1/�.˛ � k/

�.˛/
;�1 < k < ˛

Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D
m1m2

m2 � 2m
2
1

; Ǫ D
2.m2 �m

2
1/

m2 � 2m
2
1

If m2 � m21 < � (almost zero sample variance) or m2 � 2m21 < �, then the parameters are
initialized as follows:

O� D m1; Ǫ D 2

TWEEDIE The parameter p is initialized by assuming that the sample is generated from a gamma
distribution with shape parameter ˛ and by computing Op D ǪC2

ǪC1
. The initial value Ǫ is

obtained from using the method previously described for the GAMMA distribution. The
parameter � is the mean of the distribution. Hence, it is initialized to the sample mean as

O� D m1

Variance of a Tweedie distribution is equal to ��p. Thus, the sample variance is used to
initialize the value of � as

O� D
m2 �m

2
1

O� Op
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STWEEDIE STWEEDIE is a compound Poisson-gamma mixture distribution with mean � D ��˛, where
˛ is the shape parameter of the gamma random variables in the mixture and the parameter p is
determined solely by ˛. First, the parameter p is initialized by assuming that the sample is
generated from a gamma distribution with shape parameter ˛ and by computing Op D ǪC2

ǪC1
.

The initial value Ǫ is obtained from using the method previously described for the GAMMA
distribution. As done for initializing the parameters of the TWEEDIE distribution, the sample
mean and variance are used to compute the values O� and O� as

O� D m1

O� D
m2 �m

2
1

O� Op

Based on the relationship between the parameters of TWEEDIE and STWEEDIE distributions
described in the section “Tweedie Distributions” on page 2087, values of � and � are initialized
as

O� D O�. Op � 1/ O�p�1

O� D
O�

O� Ǫ

WEIBULL The parameters are initialized by using the percentile matching method. Let q1 and q3 denote
the estimates of the 25th and 75th percentiles, respectively. Using the formula for the CDF of
Weibull distribution, they can be written as

1 � exp.�.q1=�/� / D 0:25
1 � exp.�.q3=�/� / D 0:75

Simplifying and solving these two equations yields the following initial values,

O� D exp
�
r log.q1/ � log.q3/

r � 1

�
; O� D

log.log.4//

log.q3/ � log. O�/

where r D log.log.4//= log.log.4=3//. These initial values agree with those suggested in
Klugman, Panjer, and Willmot (1998).

A summary of the initial values of all the parameters for all the predefined distributions is given in Table 29.4.
The table also provides the names of the parameters to use in the INIT= option in the DIST statement if you
want to provide a different initial value.
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Table 29.4 Parameter Initialization for Predefined Distributions

Distribution Parameter Name for INIT Option Default Initial Value

BURR � theta
q

m2m3
2m3�3m1m2

˛ alpha 1C m3
2m3�3m1m2

 gamma 2

EXP � theta m1

GAMMA � theta m1=˛

˛ alpha 3�dC
p
.d�3/2C24d

12d

GPD � theta m1m2=.2.m2 �m
2
1//

� xi .m2 � 2m
2
1/=.2.m2 �m

2
1//

IGAUSS � theta m1
˛ alpha m21=.m2 �m

2
1/

LOGN � mu 2 log.m1/ � log.m2/=2
� sigma

p
log.m2/ � 2 log.m1/

PARETO � theta m1m2=.m2 � 2m
2
1/

˛ alpha 2.m2 �m
2
1/=.m2 � 2m

2
1/

TWEEDIE � mu m1
� phi .m2 �m

2
1/=m

p
1

p p .˛ C 2/=.˛ C 1/

where ˛ D 3�dC
p
.d�3/2C24d

12d

STWEEDIE � theta .m2 �m
2
1/.p � 1/=m1

� lambda m21=.˛.m2 �m
2
1/.p � 1//

p p .˛ C 2/=.˛ C 1/

where ˛ D 3�dC
p
.d�3/2C24d

12d

WEIBULL � theta exp
�
r log.q1/�log.q3/

r�1

�
� tau log.log.4//=.log.q3/ � log. O�//

Notes:
1. mk denotes the kth raw moment.
2. d D log.m1/ � .

P
log.yi //=n

3. q1 and q3 denote the 25th and 75th percentiles, respectively.
4. r D log.log.4//= log.log.4=3//
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Censoring and Truncation
One of the key features of PROC SEVERITY is that it enables you to specify whether the severity event’s
magnitude is observable and if it is observable, then whether the exact value of the magnitude is known. If an
event is unobservable when the magnitude is in certain intervals, then it is referred to as a truncation effect. If
the exact magnitude of the event is not known, but it is known to have a value in a certain interval, then it is
referred to as a censoring effect.

PROC SEVERITY allows a severity event to be subject to any combination of the following four censoring
and truncation effects:

� Left-truncation: An event is said to be left-truncated if it is observed only when Y > T l , where
Y denotes the random variable for the magnitude and T l denotes a random variable for the trunca-
tion threshold. You can specify left-truncation using the LEFTTRUNCATED= option in the LOSS
statement.

� Right-truncation: An event is said to be right-truncated if it is observed only when Y � T r , where Y
denotes the random variable for the magnitude and T r denotes a random variable for the truncation
threshold. You can specify right-truncation using the RIGHTTRUNCATED= option in the LOSS
statement.

� Left-censoring: An event is said to be left-censored if it is known that the magnitude is Y � C l , but
the exact value of Y is not known. C l is a random variable for the censoring limit. You can specify
left-censoring using the LEFTCENSORED= option in the LOSS statement.

� Right-censoring: An event is said to be right-censored if it is known that the magnitude is Y > C r ,
but the exact value of Y is not known. C r is a random variable for the censoring limit. You can specify
right-censoring using the RIGHTCENSORED= option in the LOSS statement.

For each effect, you can specify a different threshold or limit for each observation or specify a single threshold
or limit that applies to all the observations.

If all four types of effects are present on an event, then the following relationship holds: T l < C r � C l � T r .
PROC SEVERITY checks these relationships and writes a warning to the SAS log if any relationship is
violated.

If you specify the response variable in the LOSS statement, then PROC SEVERITY also checks whether
each observation satisfies the definitions of the specified censoring and truncation effects. If you specify
left-truncation, then PROC SEVERITY ignores observations where Y � T l , because such observations
are not observable by definition. Similarly, if you specify right-truncation, then PROC SEVERITY ignores
observations where Y > T r . If you specify left-censoring, then PROC SEVERITY treats an observation
with Y > C l as uncensored and ignores the value of C l . The observations with Y � C l are considered
as left-censored, and the value of Y is ignored. If you specify right-censoring, then PROC SEVERITY
treats an observation with Y � C r as uncensored and ignores the value of C r . The observations with
Y > C r are considered as right-censored, and the value of Y is ignored. If you specify both left-censoring
and right-censoring, it is referred to as interval-censoring. If C r < C l is satisfied for an observation, then
it is considered as interval-censored and the value of the response variable is ignored. If C r D C l for an
observation, then PROC SEVERITY assumes that observation to be uncensored. If all the observations in a
data set are censored in some form, then the specification of the response variable in the LOSS statement is
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optional, because the actual value of the response variable is not required for the purposes of estimating a
model.

Specification of censoring and truncation affects the likelihood of the data (see the section “Likelihood
Function” on page 2097) and how the empirical distribution function (EDF) is estimated (see the section
“Empirical Distribution Function Estimation Methods” on page 2115).

Probability of Observability

For left-truncated data, PROC SEVERITY also enables you to provide additional information in the form of
probability of observability by using the PROBOBSERVED= option. It is defined as the probability that the
underlying severity event gets observed (and recorded) for the specified left-truncation threshold value. For
example, if you specify a value of 0.75, then for every 75 observations recorded above a specified threshold,
25 more events have happened with a severity value less than or equal to the specified threshold. Although
the exact severity value of those 25 events is not known, PROC SEVERITY can use the information about
the number of those events.

In particular, for each left-truncated observation, PROC SEVERITY assumes a presence of .1 � p/=p
additional observations with yi D ti . These additional observations are then used for computing the
likelihood (see the section “Probability of Observability and Likelihood” on page 2098) and an unconditional
estimate of the empirical distribution function (see the section “EDF Estimates and Truncation” on page 2120).

Truncation and Conditional CDF Estimates

If you specify left-truncation without the probability of observability or if you specify right-truncation,
then the EDF estimates that are computed by all methods except the STANDARD method are conditional
on the truncation information. For more information, see the section “EDF Estimates and Truncation” on
page 2120. In such cases, PROC SEVERITY uses conditional estimates of the CDF whenever they are used
for computational or visual comparison with the EDF estimates.

Let t lmin D minift li g be the smallest value of the left-truncation threshold (t li is the left-truncation threshold
for observation i) and trmax D maxiftri g be the largest value of the right-truncation threshold (tri is the
right-truncation threshold for observation i). If OF .y/ denotes the unconditional estimate of the CDF at y,
then the conditional estimate OF c.y/ is computed as follows:

� If you do not specify the probability of observability, then the EDF estimates are conditional on the
left-truncation information. If an observation is both left-truncated and right-truncated, then

OF c.y/ D
OF .y/ � OF .t lmin/

OF .trmax/ �
OF .t lmin/

If an observation is left-truncated but not right-truncated, then

OF c.y/ D
OF .y/ � OF .t lmin/

1 � OF .t lmin/

If an observation is right-truncated but not left-truncated, then

OF c.y/ D
OF .y/

OF .trmax/
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� If you specify the probability of observability, then EDF estimates are not conditional on the left-
truncation information. If an observation is not right-truncated, then the conditional estimate is the
same as the unconditional estimate. If an observation is right-truncated, then the conditional estimate
is computed as

OF c.y/ D
OF .y/

OF .trmax/

If you specify regression effects, then OF .y/, OF .t lmin/, and OF .trmax/ are all computed from a mixture distribu-
tion, as described in the section “CDF and PDF Estimates with Regression Effects” on page 2104.

Parameter Estimation Method
If you do not specify a custom objective function by specifying programming statements and the OBJEC-
TIVE= option in the PROC SEVERITY statement, then PROC SEVERITY uses the maximum likelihood
(ML) method to estimate the parameters of each model. A nonlinear optimization process is used to maximize
the log of the likelihood function. If you specify a custom objective function, then PROC SEVERITY uses
a nonlinear optimization algorithm to estimate the parameters of each model that minimize the value of
your specified objective function. For more information, see the section “Custom Objective Functions” on
page 2150.

Likelihood Function

Let f‚.x/ and F‚.x/ denote the PDF and CDF, respectively, evaluated at x for a set of parameter values ‚.
Let Y denote the random response variable, and let y denote its value recorded in an observation in the input
data set. Let T l and T r denote the random variables for the left-truncation and right-truncation threshold,
respectively, and let t l and tr denote their values for an observation, respectively. If there is no left-truncation,
then t l D � l , where � l is the smallest value in the support of the distribution; so F.t l/ D 0. If there is no
right-truncation, then tr D �h, where �h is the largest value in the support of the distribution; so F.tr/ D 1.
Let C l and C r denote the random variables for the left-censoring and right-censoring limit, respectively, and
let cl and cr denote their values for an observation, respectively. If there is no left-censoring, then cl D �h;
so F.cl/ D 1. If there is no right-censoring, then cr D � l ; so F.cr/ D 0.

The set of input observations can be categorized into the following four subsets within each BY group:

� E is the set of uncensored and untruncated observations. The likelihood of an observation in E is

lE D Pr.Y D y/ D f‚.y/

� Et is the set of uncensored observations that are truncated. The likelihood of an observation in Et is

lEt D Pr.Y D yjt l < Y � tr/ D
f‚.y/

F‚.tr/ � F‚.t l/

� C is the set of censored observations that are not truncated. The likelihood of an observation C is

lC D Pr.cr < Y � cl/ D F‚.cl/ � F‚.cr/



2098 F Chapter 29: The SEVERITY Procedure

� Ct is the set of censored observations that are truncated. The likelihood of an observation Ct is

lCt D Pr.cr < Y � cl jt l < Y � tr/ D
F‚.c

l/ � F‚.c
r/

F‚.tr/ � F‚.t l/

Note that .E [Et /\ .C [Ct / D ;. Also, the sets Et and Ct are empty when you do not specify truncation,
and the sets C and Ct are empty when you do not specify censoring.

Given this, the likelihood of the data L is as follows:

L D
Y
E

f‚.y/
Y
Et

f‚.y/

F‚.tr/ � F‚.t l/

Y
C

F‚.c
l/ � F‚.c

r/
Y
Ct

F‚.c
l/ � F‚.c

r/

F‚.tr/ � F‚.t l/

The maximum likelihood procedure used by PROC SEVERITY finds an optimal set of parameter values
O‚ that maximizes log.L/ subject to the boundary constraints on parameter values. For a distribution dist ,

you can specify such boundary constraints by using the dist_LOWERBOUNDS and dist_UPPERBOUNDS
subroutines. For more information, see the section “Defining a Severity Distribution Model with the
FCMP Procedure” on page 2126. Some aspects of the optimization process can be controlled by using the
NLOPTIONS statement.

Probability of Observability and Likelihood

If you specify the probability of observability for the left-truncation, then PROC SEVERITY uses a modified
likelihood function for each truncated observation. If the probability of observability is p 2 .0:0; 1:0�, then for
each left-truncated observation with truncation threshold t l , there exist .1�p/=p observations with a response
variable value less than or equal to t l . Each such observation has a probability of Pr.Y � t l/ D F‚.t l/. The
right-truncation and censoring information does not apply to these added observations. Thus, following the
notation of the section “Likelihood Function” on page 2097, the likelihood of the data is as follows:

L D
Y
E

f‚.y/
Y

Et ;t lD� l

f‚.y/

F‚.tr/

Y
Et ;t l>� l

f‚.y/

F‚.tr/
F‚.t

l/
1�p
p

Y
C

F‚.c
l/ � F‚.c

r/
Y

Ct ;t lD� l

F‚.c
l/ � F‚.c

r/

F‚.tr/

Y
Ct ;t l>� l

F‚.c
l/ � F‚.c

r/

F‚.tr/
F‚.t

l/
1�p
p

Note that the likelihood of the observations that are not left-truncated (observations in sets E and C, and
observations in sets Et and Ct for which t l D � l ) is not affected.

If you specify a custom objective function, then PROC SEVERITY accounts for the probability of observabil-
ity only while computing the empirical distribution function estimate. The parameter estimates are affected
only by your custom objective function.
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Estimating Covariance and Standard Errors

PROC SEVERITY computes an estimate of the covariance matrix of the parameters by using the asymptotic
theory of the maximum likelihood estimators (MLE). If N denotes the number of observations used for
estimating a parameter vector ��� , then the theory states that as N !1, the distribution of O��� , the estimate
of ��� , converges to a normal distribution with mean ��� and covariance OC such that I.���/ � OC ! 1, where
I.���/ D �E

�
r2 log.L.���//

�
is the information matrix for the likelihood of the data, L.���/. The covariance

estimate is obtained by using the inverse of the information matrix.

In particular, if G D r2.� log.L.���/// denotes the Hessian matrix of the negative of log likelihood, then the
covariance estimate is computed as

OC D
N

d
G�1

where d is a denominator that is determined by the VARDEF= option. If VARDEF=N, then d D N ,
which yields the asymptotic covariance estimate. If VARDEF=DF, then d D N � k, where k is number of
parameters (the model’s degrees of freedom). The VARDEF=DF option is the default, because it attempts to
correct the potential bias introduced by the finite sample.

The standard error si of the parameter �i is computed as the square root of the ith diagonal element of the

estimated covariance matrix; that is, si D
q
OCi i .

If you specify a custom objective function, then the covariance matrix of the parameters is still computed by
inverting the information matrix, except that the Hessian matrix G is computed as G D r2 log.U.���//, where
U denotes your custom objective function that is minimized by the optimizer.

Covariance and standard error estimates might not be available if the Hessian matrix is found to be singular
at the end of the optimization process. This can especially happen if the optimization process stops without
converging.

Parameter Initialization
PROC SEVERITY enables you to initialize parameters of a model in different ways. A model can have two
kinds of parameters: distribution parameters and regression parameters.

The distribution parameters can be initialized by using one of the following three methods:

INIT= option You can use the INIT= option in the DIST statement.

INEST= or INSTORE= option You can use either the INEST= data set or the INSTORE= item store, but
not both.

PARMINIT subroutine You can define a dist_PARMINIT subroutine in the distribution model.
For more information, see the section “Defining a Severity Distribution
Model with the FCMP Procedure” on page 2126.

Note that only one of the initialization methods is used. You cannot combine them. They are used in the
following order:

� The method that uses the INIT= option takes the highest precedence. If you use the INIT= option
to provide an initial value for at least one parameter, then other initialization methods (INEST=,
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INSTORE=, or PARMINIT) are not used. If you specify initial values for some but not all the
parameters by using the INIT= option, then the uninitialized parameters are initialized to the default
value of 0.001.

If you use this option and if you specify the regression effects, then the value of the first distribution
parameter must be related to the initial value for the base value of the scale or log-transformed scale
parameter. For more information, see the section “Estimating Regression Effects” on page 2100.

� The method that uses the INEST= data set or INSTORE= item store takes second precedence. If
the INEST= data set or INSTORE= item store contains a nonmissing value for even one distribution
parameter, then the PARMINIT method is not used and any uninitialized parameters are initialized to
the default value of 0.001.

� If none of the distribution parameters are initialized by using the INIT= option, the INEST= data
set, or the INSTORE= item store, but the distribution model defines a PARMINIT subroutine, then
PROC SEVERITY invokes that subroutine with appropriate inputs to initialize the parameters. If
the PARMINIT subroutine returns missing values for some parameters, then those parameters are
initialized to the default value of 0.001.

� If none of the initialization methods are used, each distribution parameter is initialized to the default
value of 0.001.

For more information about regression models and initialization of regression parameters, see the section
“Estimating Regression Effects” on page 2100.

Estimating Regression Effects
The SEVERITY procedure enables you to estimate the influence of regression (exogenous) effects while
fitting a distribution if the distribution has a scale parameter or a log-transformed scale parameter.

Let xj , j D 1; : : : ; k, denote the k regression effects. Let ˇj denote the regression parameter that corresponds
to the effect xj . If you do not specify regression effects, then the model for the response variable Y is of the
form

Y � F.‚/

where F is the distribution of Y with parameters ‚. This model is usually referred to as the error model. The
regression effects are modeled by extending the error model to the following form:

Y � exp.
kX
jD1

ˇjxj / � F.‚/

Under this model, the distribution of Y is valid and belongs to the same parametric family as F if and only
if F has a scale parameter. Let � denote the scale parameter and � denote the set of nonscale distribution
parameters of F . Then the model can be rewritten as

Y � F.�;�/
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such that � is modeled by the regression effects as

� D �0 � exp.
kX
jD1

ˇjxj /

where �0 is the base value of the scale parameter. Thus, the scale regression model consists of the following
parameters: �0, �, and ˇj .j D 1; : : : ; k/.

Given this form of the model, distributions without a scale parameter cannot be considered when regression
effects are to be modeled. If a distribution does not have a direct scale parameter, then PROC SEVERITY
accepts it only if it has a log-transformed scale parameter—that is, if it has a parameter p D log.�/.

Offset Variable

You can specify that an offset variable be included in the scale regression model by specifying it in the
OFFSET= option of the SCALEMODEL statement. The offset variable is a regressor whose regression
coefficient is known to be 1. If xo denotes the offset variable, then the scale regression model becomes

� D �0 � exp.xo C
kX
jD1

ˇjxj /

The regression coefficient of the offset variable is fixed at 1 and not estimated, so it is not reported in
the ParameterEstimates ODS table. However, if you specify the OUTEST= data set, then the regression
coefficient is added as a variable to that data set. The value of the offset variable in OUTEST= data set is
equal to 1 for the estimates row (_TYPE_=‘EST’) and is equal to a special missing value (.F) for the standard
error (_TYPE_=‘STDERR’) and covariance (_TYPE_=‘COV’) rows.

An offset variable is useful to model the scale parameter per unit of some measure of exposure. For example,
in the automobile insurance context, measure of exposure can be the number of car-years insured or the total
number of miles driven by a fleet of cars at a rental car company. For worker’s compensation insurance,
if you want to model the expected loss per enterprise, then you can use the number of employees or total
employee salary as the measure of exposure. For epidemiological data, measure of exposure can be the
number of people who are exposed to a certain pathogen when you are modeling the loss associated with an
epidemic. In general, if e denotes the value of the exposure measure and if you specify xo D log.e/ as the
offset variable, then you are modeling the influence of other regression effects (xj ) on the size of the scale of
the distribution per unit of exposure.

Another use for an offset variable is when you have a priori knowledge of the influence of some exogenous
variables that cannot be included in the SCALEMODEL statement. You can model the combined influence
of such variables as an offset variable in order to correct for the omitted variable bias.

Parameter Initialization for Regression Models

The regression parameters are initialized either by using the values that you specify or by the default method.

� If you provide initial values for the regression parameters, then you must provide valid, nonmissing
initial values for �0 and ˇj parameters for all j.

You can specify the initial value for �0 by using either the INEST= data set, the INSTORE= item
store, or the INIT= option in the DIST statement. If the distribution has a direct scale parameter (no
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transformation), then the initial value for the first parameter of the distribution is used as an initial
value for �0. If the distribution has a log-transformed scale parameter, then the initial value for the first
parameter of the distribution is used as an initial value for log.�0/.

You can use only the INEST= data set or the INSTORE= item store, but not both, to specify the initial
values for ˇj . The requirements for each option are as follows:

– If you use the INEST= data set, then it must contain nonmissing initial values for all the regressors
that you specify in the SCALEMODEL statement. The only missing value that is allowed is
the special missing value .R, which indicates that the regressor is linearly dependent on other
regressors. If you specify .R for a regressor for one distribution in a BY group, you must specify
it the same way for all the distributions in that BY group.
Note that you cannot specify INEST= data set if the regression model contains effects that have
CLASS variables or interaction effects.

– The parameter estimates in the INSTORE= item store are used to initialize the parameters of a
model if the item store contains a model specification that matches the model specification in the
current PROC SEVERITY step according to the following rules:

� The distribution name and the number and names of the distribution parameters must match.
� The model in the item store must include a scale regression model whose regression parame-

ters match as follows:
� If the regression model in the item store does not contain any redundant parameters,

then at least one regression parameter must match. Initial values of the parameters that
match are set equal to the estimates that are read from the item store, and initial values
of the other regression parameters are set equal to the default value of 0.001.
� If the regression model in the item store contains any redundant parameters, then all the

regression parameters must match, and the initial values of all parameters are set equal
to the estimates that are read from the item store.

Note that a regression parameter is defined by the variables that form the underlying re-
gression effect and by the levels of the CLASS variables if the effect contains any CLASS
variables.

� If you do not specify valid initial values for �0 or ˇj parameters for all j, then PROC SEVERITY
initializes those parameters by using the following method:

Let a random variable Y be distributed as F.�;�/, where � is the scale parameter. By the definition of
the scale parameter, a random variable W D Y=� is distributed as G.�/ such that G.�/ D F.1;�/.
Given a random error term e that is generated from a distribution G.�/, a value y from the distribution
of Y can be generated as

y D � � e

Taking the logarithm of both sides and using the relationship of � with the regression effects yields

log.y/ D log.�0/C
kX
jD1

ˇjxj C log.e/

PROC SEVERITY makes use of the preceding relationship to initialize parameters of a regression
model with distribution dist as follows:
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1. The following linear regression problem is solved to obtain initial estimates of ˇ0 and ˇj :

log.y/ D ˇ0 C
kX
jD1

ˇjxj

The estimates of ˇj .j D 1; : : : ; k/ in the solution of this regression problem are used to initialize
the respective regression parameters of the model. The estimate of ˇ0 is later used to initialize
the value of �0.
The results of this regression are also used to detect whether any regression parameters are
linearly dependent on the other regression parameters. If any such parameters are found, then a
warning is written to the SAS log and the corresponding parameter is eliminated from further
analysis. The estimates for linearly dependent parameters are denoted by a special missing value
of .R in the OUTEST= data set and in any displayed output.

2. Let s0 denote the initial value of the scale parameter.
If the distribution model of dist does not contain the dist_PARMINIT subroutine, then s0 and all
the nonscale distribution parameters are initialized to the default value of 0.001.
However, it is strongly recommended that each distribution’s model contain the dist_PARMINIT
subroutine. For more information, see the section “Defining a Severity Distribution Model with
the FCMP Procedure” on page 2126. If that subroutine is defined, then s0 is initialized as follows:
Each input value yi of the response variable is transformed to its scale-normalized version wi as

wi D
yi

exp.ˇ0 C
Pk
jD1 ˇjxij /

where xij denotes the value of jth regression effect in the ith input observation. These wi values
are used to compute the input arguments for the dist_PARMINIT subroutine. The values that are
computed by the subroutine for nonscale parameters are used as their respective initial values.
If the distribution has an untransformed scale parameter, then s0 is set to the value of the scale
parameter that is computed by the subroutine. If the distribution has a log-transformed scale
parameter P, then s0 is computed as s0 D exp.l0/, where l0 is the value of P computed by the
subroutine.

3. The value of �0 is initialized as

�0 D s0 � exp.ˇ0/

Reporting Estimates of Regression Parameters

When you request estimates to be written to the output (either ODS displayed output or in the OUTEST= data
set), the estimate of the base value of the first distribution parameter is reported. If the first parameter is the log-
transformed scale parameter, then the estimate of log.�0/ is reported; otherwise, the estimate of �0 is reported.
The transform of the first parameter of a distribution dist is controlled by the dist_SCALETRANSFORM
function that is defined for it.
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CDF and PDF Estimates with Regression Effects

When regression effects are estimated, the estimate of the scale parameter depends on the values of the
regressors and the estimates of the regression parameters. This dependency results in a potentially different
distribution for each observation. To make estimates of the cumulative distribution function (CDF) and prob-
ability density function (PDF) comparable across distributions and comparable to the empirical distribution
function (EDF), PROC SEVERITY computes and reports the CDF and PDF estimates from a representative
distribution. The representative distribution is a mixture of a certain number of distributions, where each
distribution differs only in the value of the scale parameter. You can specify the number of distributions in
the mixture and how their scale values are chosen by using the DFMIXTURE= option in the SCALEMODEL
statement.

Let N denote the number of observations that are used for estimation, K denote the number of components
in the mixture distribution, sk denote the scale parameter of the kth mixture component, and dk denote the
weight associated with kth mixture component.

Let f .yI sk; O�/ and F.yI sk; O�/ denote the PDF and CDF, respectively, of the kth component distribution,
where O� denotes the set of estimates of all parameters of the distribution other than the scale parameter. Then,
the PDF and CDF estimates, f �.y/ and F �.y/, respectively, of the mixture distribution at y are computed as

f �.y/ D
1

D

KX
kD1

dkf .yI sk; O�/

F �.y/ D
1

D

KX
kD1

dkF.yI sk; O�/

where D is the normalization factor (D D
PK
kD1 dk).

PROC SEVERITY uses the F �.y/ values to compute the EDF-based statistics of fit and to create the
OUTCDF= data set and the CDF plots. The PDF estimates that is plots in PDF plots are the f �.y/ values.

The scale values sk for the K mixture components are derived from the set fO�ig (i D 1; : : : ; N ) of N linear
predictor values, where O�i denotes the estimate of the linear predictor due to observation i. It is computed as

O�i D log. O�0/C
kX
jD1

Ǒ
jxij

where O�0 is an estimate of the base value of the scale parameter, Ǒj are the estimates of regression coefficients,
and xij is the value of jth regression effect in observation i.

Let wi denote the weight of observation i. If you specify the WEIGHT statement, then the weight is equal to
the value of the specified weight variable for the corresponding observation in the DATA= data set; otherwise,
the weight is set to 1.

You can specify one of the following method-names in the DFMIXTURE= option in the SCALEMODEL
statement to specify the method of choosing K and the corresponding sk and dk values:

FULL In this method, there are as many mixture components as the number of observations that
are used for estimation. In other words, K = N, sk D O�k , and dk D wk (k D 1; : : : ; N ).
This is the slowest method, because it requires O.N/ computations to compute the
mixture CDF F �.yi / or the mixture PDF f �.yi / of one observation. For N observations,
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the computational complexity in terms of number of CDF or PDF evaluations is O.N 2/.
Even for moderately large values of N, the time that is taken to compute the mixture CDF
and PDF can significantly exceed the time that is taken to estimate the model parameters.
So it is recommended that you use the FULL method only for small data sets.

MEAN In this method, the mixture contains only one distribution, whose scale value is determined
by the mean of the linear predictor values that are implied by all the observations. In other
words, s1 is computed as

s1 D exp

 
1

N

NX
iD1

O�i

!

The component’s weight d1 is set to 1.

This method is the fastest because it requires only one CDF or PDF evaluation per
observation. The computational complexity is O.N/ for N observations.

If you do not specify the DFMIXTURE= option in the SCALEMODEL statement, then
this is the default method.

QUANTILE In this method, a certain number of quantiles are chosen from the set of all linear predictor
values. If you specify a value of q for the K= option when specifying this method, then
K D q � 1 and sk (k D 1; : : : ; K) is computed as sk D exp. O�k/, where O�k is the kth
q-quantile from the set fO�ig (i D 1; : : : ; N ). The weight of each of the components (dk)
is assumed to be 1 for this method.

The default value of q is 2, which implies a one-point mixture that has a distribution
whose scale value is equal to the median scale value.

For this method, PROC SEVERITY needs to sort the N linear predictor values in the
set fO�ig; the sorting requires O.N log.N // computations. Then, computing the mixture
estimate of one observation requires .q � 1/ CDF or PDF evaluations. Hence, the
computational complexity of this method is O.qN/ C O.N log.N // for computing a
mixture CDF or PDF of N observations. For q << N , the QUANTILE method is
significantly faster than the FULL method.

RANDOM In this method, a uniform random sample of observations is chosen, and the mixture
contains the distributions that are implied by those observations. If you specify a value of
r for the K= option when specifying this method, then the size of the sample is r . Hence,
K D r . If lj denotes the index of jth observation in the sample (j D 1; : : : ; r ), such that
1 � lj � N , then the scale of kth component distribution in the mixture is sk D exp. O�lk /.
The weight of each of the components (dk) is assumed to be 1 for this method.

You can also specify the seed to be used for generating the random sample by using the
SEED= option for this method. The same sample of observations is used for all models.

Computing a mixture estimate of one observation requires r CDF or PDF evaluations.
Hence, the computational complexity of this method is O.rN/ for computing a mixture
CDF or PDF of N observations. For r << N , the RANDOM method is significantly
faster than the FULL method.
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Levelization of Classification Variables
A classification variable enters the statistical analysis or model not through its values but through its levels.
The process of associating values of a variable with levels is called levelization.

During the process of levelization, observations that share the same value are assigned to the same level. The
manner in which values are grouped can be affected by the inclusion of formats. You can determine the sort
order of the levels by specifying the ORDER= option in the CLASS statement. You can also control the sort
order separately for each variable in the CLASS statement.

Consider the data on nine observations in Table 29.5. The variable A is integer-valued, and the variable X is
a continuous variable that has a missing value for the fourth observation. The fourth and fifth columns of
Table 29.5 apply two different formats to the variable X.

Table 29.5 Example Data for Levelization

Obs A X FORMAT
X 3.0

FORMAT
X 3.1

1 2 1.09 1 1.1
2 2 1.13 1 1.1
3 2 1.27 1 1.3
4 3 . . .
5 3 2.26 2 2.3
6 3 2.48 2 2.5
7 4 3.34 3 3.3
8 4 3.34 3 3.3
9 4 3.14 3 3.1

By default, levelization of the variables groups the observations by the formatted value of the variable, except
for numerical variables for which no explicit format is provided. Those numerical variables are sorted by their
internal value. The levelization of the four columns in Table 29.5 leads to the level assignment in Table 29.6.

Table 29.6 Values and Levels

A X FORMAT X 3.0 FORMAT X 3.1

Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 1 1 1 1.1 1
2 2 1 1.13 2 1 1 1.1 1
3 2 1 1.27 3 1 1 1.3 2
4 3 2 . . . . . .
5 3 2 2.26 4 2 2 2.3 3
6 3 2 2.48 5 2 2 2.5 4
7 4 3 3.34 7 3 3 3.3 6
8 4 3 3.34 7 3 3 3.3 6
9 4 3 3.14 6 3 3 3.1 5
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You can specify the sort order for the levels of CLASS variables in the ORDER= option in the CLASS
statement.

When ORDER=FORMATTED (which is the default) is in effect for numeric variables for which you have
supplied no explicit format, the levels are ordered by their internal values. To order numeric class levels that
have no explicit format by their BEST12. formatted values, you can specify the BEST12. format explicitly
for the CLASS variables.

Table 29.7 shows how values of the ORDER= option are interpreted.

Table 29.7 Interpretation of Values of ORDER= Option

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables that
have no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count (levels that have the most
observations come first in the order)

INTERNAL Unformatted value

FREQDATA Order of descending frequency count, and within counts
by order of appearance in the input data set when counts
are tied

FREQFORMATTED Order of descending frequency count, and within counts
by formatted value when counts are tied

FREQINTERNAL Order of descending frequency count, and within counts
by unformatted (internal) value when counts are tied

For FORMATTED, FREQFORMATTED, FREQINTERNAL, and INTERNAL values, the sort order is
machine-dependent. For more information about sort order, see the chapter about the SORT procedure in
the Base SAS Procedures Guide and the discussion of BY-group processing in SAS Programmers Guide:
Essentials.

When you specify the MISSING option in the CLASS statement, the missing values (‘.’ for a numeric variable
and blanks for a character variable) are included in the levelization and are assigned a level. Table 29.8
displays the results of levelizing the values in Table 29.5 when the MISSING option is in effect.

Table 29.8 Values and Levels with the MISSING Option

A X FORMAT x 3.0 FORMAT x 3.1

Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 2 1 2 1.1 2
2 2 1 1.13 3 1 2 1.1 2
3 2 1 1.27 4 1 2 1.3 3
4 3 2 . 1 . 1 . 1

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Table 29.8 continued

A X FORMAT x 3.0 FORMAT x 3.1

Obs Value Level Value Level Value Level Value Level

5 3 2 2.26 5 2 3 2.3 4
6 3 2 2.48 6 2 3 2.5 5
7 4 3 3.34 8 3 4 3.3 7
8 4 3 3.34 8 3 4 3.3 7
9 4 3 3.14 7 3 4 3.1 6

When you do not specify the MISSING option, it is important to understand the implications of missing
values for your statistical analysis. When PROC SEVERITY levelizes the CLASS variables, any observations
for which a CLASS variable has a missing value are excluded from the analysis. This is true regardless of
whether the variable is used to form the statistical model. For example, consider the case in which some
observations contain missing values for variable A but the records for these observations are otherwise
complete with respect to all other variables in the model. The analysis results that come from the following
statements do not include any observations for which variable A contains missing values, even though A is
not specified in the SCALEMODEL statement:

class A B;
scalemodel B x B*x;

You can request PROC SEVERITY to print the “Descriptive Statistics” table, which shows the number of
observations that are read from the data set and the number of observations that are used in the analysis. Pay
careful attention to this table—especially when your data set contains missing values—to ensure that no
observations are unintentionally excluded from the analysis.

Specification and Parameterization of Model Effects
PROC SEVERITY supports formation of regression effects in the SCALEMODEL statement. A regression
effect is formed from one or more regressor variables according to effect construction rules (parameterization).
Each regression effect forms one element of X in the linear model structure Xˇ that affects the scale parameter.
The SCALEMODEL statement in conjunction with the CLASS statement supports a rich set of effects. In
order to correctly interpret the results, you need to understand the specification and parameterization of
effects that are discussed in this section.

Effects are specified by a special notation that uses variable names and operators. There are two types of
regressor variables: classification (or CLASS) variables and continuous variables. Classification variables
can be either numeric or character and are specified in a CLASS statement. For more information, see the
section “Levelization of Classification Variables” on page 2106. A regressor variable that is not declared in
the CLASS statement is assumed to be continuous.

Two primary operators (crossing and nesting) are used for combining the variables, and several additional
operators are used to simplify effect specification. Operators are discussed in the section “Effect Operators”
on page 2109.

If you specify the CLASS statement, then PROC SEVERITY supports a general linear model (GLM)
parameterization and a reference parameterization for the classification variables. The GLM parameterization
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is the default. For more information, see the sections “GLM Parameterization of Classification Variables and
Effects” on page 2111 and “Reference Parameterization” on page 2115.

Effect Operators

Table 29.9 summarizes the operators that are available for selecting and constructing effects. These operators
are discussed in the following sections.

Table 29.9 Available Effect Operators

Operator Example Description

Interaction A*B Crosses the levels of the effects
Nesting A(B) Nests A levels within B levels
Bar operator A | B | C Specifies all interactions
At sign operator A | B | C@2 Reduces interactions in bar effects
Dash operator A1-A10 Specifies sequentially numbered variables
Colon operator A: Specifies variables that have a common prefix
Double dash operator A- -C Specifies sequential variables in data set order

Bar and At Sign Operators
You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

scalemodel A B C A*B A*C B*C A*B*C;

scalemodel A|B|C;

When you use the bar (|), the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 from Searle
(1971, p. 390).

� Multiple bars are evaluated from left to right. For example, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

� Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

� Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

� Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For example,
A(B) | B(D E) generates A*B(B D E), but this effect is eliminated immediately.
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You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an at sign (@), at the end of the bar effect. For example,
the following specification selects only those effects that contain two or fewer variables:

scalemodel A|B|C@2;

The preceding example is equivalent to the following SCALEMODEL statement:

scalemodel A B C A*B A*C B*C;

More examples of using the bar and at sign operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

NOTE: The preceding examples assume the following CLASS statement specification:

class A B C D;

Colon, Dash, and Double Dash Operators
You can simplify the specification of a large model when some of your variables have a common prefix by
using the colon (:) operator and the dash (-) operator. The colon operator selects all variables that have a
particular prefix, and the dash operator enables you to list variables that are numbered sequentially. For
example, if your data set contains the variables X1 through X9, the following SCALEMODEL statements are
equivalent:

scalemodel X1 X2 X3 X4 X5 X6 X7 X8 X9;

scalemodel X1-X9;

scalemodel X:;

If your data set contains only the three covariates X1, X2, and X9, then the colon operator selects all three
variables:

scalemodel X:;

However, the following specification returns an error because X3 through X8 are not in the data set:

scalemodel X1-X9;

The double dash (- -) operator enables you to select variables that are stored sequentially in the SAS data
set, whether or not they have a common prefix. You can use the CONTENTS procedure (see Base SAS
Procedures Guide) to determine your variable ordering. For example, if you replace the dash in the preceding
SCALEMODEL statement with a double dash, as follows, then all three variables are selected:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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scalemodel X1--X9;

If your data set contains the variables A, B, and C, then you can use the double dash operator to select these
variables by specifying the following:

scalemodel A--C;

GLM Parameterization of Classification Variables and Effects

Table 29.10 shows the types of effects that are available in the SEVERITY procedure; they are discussed
in more detail in the following sections. Let A, B, and C represent classification variables, and let X and Z
represent continuous variables.

Table 29.10 Available Types of Effects

Effect Example Description

Singleton continuous X Z Continuous variables
Polynomial continuous X*Z Interaction of continuous variables
Main A B CLASS variables
Interaction A*B Crossing of CLASS variables
Nested A(B) Main effect A nested within CLASS effect B
Continuous-by-class X*A Crossing of continuous and CLASS variables
Continuous-nesting-class X(A) Continuous variable X nested within CLASS variable A
General X*Z*A(B) Combinations of different types of effects

Continuous Effects
Continuous variables or polynomial terms that involve them can be included in the model as continuous
effects. An effect that contains a single continuous variable is referred to as a singleton continuous effect, and
an effect that contains an interaction of only continuous variables is referred to as a polynomial continuous
effect. The actual values of such terms are included as columns of the relevant model matrices. You can
use the bar operator along with a continuous variable to generate polynomial effects. For example, X | X | X
expands to X X*X X*X*X, which is a cubic model.

Main Effects
If a classification variable has m levels, the GLM parameterization generates m columns for its main effect in
the model matrix. Each column is an indicator variable for a given level. The order of the columns is the sort
order of the values of their levels and can be controlled by the ORDER= option in the CLASS statement.

Table 29.11 is an example where ˇ0 denotes the intercept and A and B are classification variables that have
two and three levels, respectively.

Table 29.11 Example of Main Effects

Data I A B

A B ˇ0 A1 A2 B1 B2 B3
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Table 29.11 continued

Data I A B

1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

There are usually more columns for these effects than there are degrees of freedom to estimate them. In other
words, the GLM parameterization of main effects is singular.

Interaction Effects
Often a regression model includes interaction (crossed) effects to account for how the effect of a variable
changes along with the values of other variables. In an interaction, the terms are first reordered to correspond
to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A precedes B in the CLASS
statement. Then, the GLM parameterization generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the interaction change faster than
the leftmost variables, as illustrated in Table 29.12.

Table 29.12 Example of Interaction Effects

Data I A B A*B

A B ˇ0 A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the matrix in Table 29.12, main-effects columns are not linearly independent of crossed-effects columns.
In fact, the column space for the crossed effects contains the space of the main effect.

When your regression model contains many interaction effects, you might be able to code them more
parsimoniously by using the bar operator ( | ). The bar operator generates all possible interaction effects. For
example, A | B | C expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use
the at sign (@) in conjunction with the bar operator. For example, A | B | C | D@2 expands to A B A*B C A*C
B*C D A*D B*D C*D.

Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design columns that are
generated by the following two statements are the same (but the ordering of the columns is different):
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scalemodel A B(A);

scalemodel A A*B;

The nesting operator in PROC SEVERITY is more of a notational convenience than an operation that is
distinct from crossing. Nested effects are usually characterized by the property that the nested variables do
not appear as main effects. The order of the variables within nesting parentheses is made to correspond to the
order of these variables in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested variables index faster
than the leftmost variables, as illustrated in Table 29.13.

Table 29.13 Example of Nested Effects

Data I A B(A)

A B ˇ0 A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Continuous-Nesting-Class Effects
When a continuous variable nests or crosses with a classification variable, the design columns are constructed
by multiplying the continuous values into the design columns for the classification effect, as illustrated in
Table 29.14.

Table 29.14 Example of Continuous-Nesting-Class Effects

Data I A X(A)

X A ˇ0 A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

Continuous-by-Class Effects
Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. Ta-
ble 29.15 shows the construction of the X*A effect. The two columns for this effect are the same as the
columns for the X(A) effect in Table 29.14.
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Table 29.15 Example of Continuous-by-Class Effects

Data I X A X*A

X A ˇ0 X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

General Effects
An example that combines all the effects is X1*X2*A*B*C(D E). The continuous list comes first, followed
by the crossed list, followed by the nested list in parentheses. PROC SEVERITY might rename effects to
correspond to ordering rules. For example, B*A(E D) might be renamed A*B(D E) to satisfy the following:

� Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.

� Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS
statement.

The sequencing of the parameters that are generated by an effect is determined by the variables whose levels
are indexed faster:

� Variables in the crossed list index faster than variables in the nested list.

� Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each of which has two levels, 1 and 2.
Assume the CLASS statement is

class A B C D;

Then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A1B1C1D1 ! A1B2C1D1 ! A2B1C1D1 ! A2B2C1D1 !

A1B1C1D2 ! A1B2C1D2 ! A2B1C1D2 ! A2B2C1D2 !

A1B1C2D1 ! A1B2C2D1 ! A2B1C2D1 ! A2B2C2D1 !

A1B1C2D2 ! A1B2C2D2 ! A2B1C2D2 ! A2B2C2D2

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect changes fastest because it is rightmost in the cross list. Then A
changes next fastest, and D changes next fastest after that. The C effect changes most slowly because it is
leftmost in the nested list.
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Reference Parameterization

Classification variables can be represented in the reference parameterization. Consider the classification
variable A that has four values, 1, 2, 5, and 7. The reference parameterization generates three columns (one
less than the number of variable levels). The columns indicate group membership of the nonreference levels.
For the reference level, the three dummy variables have a value of 0. If the reference level is 7 (REF=’7’), the
design columns for variable A are as shown in Table 29.16.

Table 29.16 Reference Coding

Design Matrix

A A1 A2 A5

1 1 0 0
2 0 1 0
* 5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects that use the reference coding scheme estimate the difference in
the effect of each nonreference level compared to the effect of the reference level.

Empirical Distribution Function Estimation Methods
The empirical distribution function (EDF) is a nonparametric estimate of the cumulative distribution function
(CDF) of the distribution. PROC SEVERITY computes EDF estimates for two purposes: to send the estimates
to a distribution’s PARMINIT subroutine in order to initialize the distribution parameters, and to compute the
EDF-based statistics of fit.

To reduce the time that it takes to compute the EDF estimates, you can use the INITSAMPLE option to
specify that only a fraction of the input data be used. If you do not specify the INITSAMPLE option, then
PROC SEVERITY computes the EDF estimates by using all valid observations in the DATA= data set, or by
using all valid observations in the current BY group if you specify a BY statement.

This section describes the methods that are used for computing EDF estimates.

Notation

Let there be a set of N observations, each containing a quintuplet of values .yi ; t li ; t
r
i ; c

r
i ; c

l
i /; i D 1; : : : ; N ,

where yi is the value of the response variable, t li is the value of the left-truncation threshold, tri is the value
of the right-truncation threshold, cri is the value of the right-censoring limit, and cli is the value of the
left-censoring limit.

If an observation is not left-truncated, then t li D � l , where � l is the smallest value in the support of the
distribution; so F.t li / D 0. If an observation is not right-truncated, then tri D �h, where �h is the largest
value in the support of the distribution; so F.tri / D 1. If an observation is not right-censored, then cri D �

l ;
so F.cri / D 0. If an observation is not left-censored, then cli D �h; so F.cli / D 1.
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Let wi denote the weight associated with ith observation. If you specify the WEIGHT statement, then wi is
the normalized value of the weight variable; otherwise, it is set to 1. The weights are normalized such that
they sum up to N.

An indicator function I Œe� takes a value of 1 or 0 if the expression e is true or false, respectively.

Estimation Methods

If the response variable is subject to both left-censoring and right-censoring effects, then PROC SEVERITY
uses the Turnbull’s method. This section describes methods other than Turnbull’s method. For Turnbull’s
method, see the next section “Turnbull’s EDF Estimation Method” on page 2118.

The method descriptions assume that all observations are either uncensored or right-censored; that is, each
observation is of the form .yi ; t

l
i ; t

r
i ; �

l ; �h/ or .yi ; t li ; t
r
i ; c

r
i ; �h/.

If all observations are either uncensored or left-censored, then each observation is of the form
.yi ; t

l
i ; t

r
i ; �l ; c

l
i /. It is converted to an observation .�yi ;�tri ;�t

l
i ;�c

l
i ; �h/; that is, the signs of all the

response variable values are reversed, the new left-truncation threshold is equal to the negative of the original
right-truncation threshold, the new right-truncation threshold is equal to the negative of the original left-
truncation threshold, and the negative of the original left-censoring limit becomes the new right-censoring
limit. With this transformation, each observation is either uncensored or right-censored. The methods
described for handling uncensored or right-censored data are now applicable. After the EDF estimates are
computed, the observations are transformed back to the original form and EDF estimates are adjusted such
Fn.yi / D 1 � Fn.�yi�/, where Fn.�yi�/ denotes the EDF estimate of the value slightly less than the
transformed value �yi .

Further, a set of uncensored or right-censored observations can be converted to a set of observations of
the form .yi ; t

l
i ; t

r
i ; ıi /, where ıi is the indicator of right-censoring. ıi D 0 indicates a right-censored

observation, in which case yi is assumed to record the right-censoring limit cri . ıi D 1 indicates an
uncensored observation, and yi records the exact observed value. In other words, ıi D I ŒY � C r � and
yi D min.yi ; cri /.

Given this notation, the EDF is estimated as

Fn.y/ D

8<:
0 if y < y.1/
OFn.y

.k// if y.k/ � y < y.kC1/; k D 1; : : : ; N � 1
OFn.y

.N// if y.N/ � y

where y.k/ denotes the kth-order statistic of the set fyig and OFn.y.k// is the estimate computed at that value.
The definition of OFn depends on the estimation method. You can specify a particular method or let PROC
SEVERITY choose an appropriate method by using the EMPIRICALCDF= option in the PROC SEVERITY
statement. Each method computes OFn as follows:

STANDARD This method is the standard way of computing EDF. The EDF estimate at observation
i is computed as follows:

OFn.yi / D
1

N

NX
jD1

wj � I Œyj � yi �

If you do not specify any censoring or truncation information, then this method is
chosen. If you explicitly specify this method, then PROC SEVERITY ignores any
censoring and truncation information that you specify in the LOSS statement.



Empirical Distribution Function Estimation Methods F 2117

The standard error of OFn.yi / is computed by using the normal approximation method:

O�n.yi / D

q
OFn.yi /.1 � OFn.yi //=N

KAPLANMEIER The Kaplan-Meier (KM) estimator, also known as the product-limit estimator, was first
introduced by Kaplan and Meier (1958) for censored data. Lynden-Bell (1971) derived
a similar estimator for left-truncated data. PROC SEVERITY uses the definition that
combines both censoring and truncation information (Klein and Moeschberger 1997;
Lai and Ying 1991).

The EDF estimate at observation i is computed as

OFn.yi / D 1 �
Y
��yi

�
1 �

n.�/

Rn.�/

�
where n.�/ and Rn.�/ are defined as follows:

� n.�/ D
PN
kD1wk � I Œyk D � and � � tr

k
and ık D 1�, which is the number

of uncensored observations (ık D 1) for which the response variable value is
equal to � and � is observable according to the right-truncation threshold of that
observation (� � tr

k
).

� Rn.�/ D
PN
kD1wk � I Œyk � � > t

l
k
�, which is the size (cardinality) of the risk

set at � . The term risk set has its origins in survival analysis; it contains the
events that are at risk of failure at a given time, � . In other words, it contains
the events that have survived up to time � and might fail at or after � . For
PROC SEVERITY, time is equivalent to the magnitude of the event and failure
is equivalent to an uncensored and observable event, where observable means it
satisfies the truncation thresholds.

This method is chosen when you specify at least one form of censoring or truncation.

The standard error of OFn.yi / is computed by using Greenwood’s formula (Greenwood
1926):

O�n.yi / D

vuut.1 � OFn.yi //2 �
X
��yi

�
n.�/

Rn.�/.Rn.�/ � n.�//

�

MODIFIEDKM The product-limit estimator used by the KAPLANMEIER method does not work well
if the risk set size becomes very small. For right-censored data, the size can become
small towards the right tail. For left-truncated data, the size can become small at the
left tail and can remain so for the entire range of data. This was demonstrated by
Lai and Ying (1991). They proposed a modification to the estimator that ignores the
effects due to small risk set sizes.

The EDF estimate at observation i is computed as

OFn.yi / D 1 �
Y
��yi

�
1 �

n.�/

Rn.�/
� I ŒRn.�/ � cN

˛�

�
where the definitions of n.�/ and Rn.�/ are identical to those used for the KAPLAN-
MEIER method described previously.
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You can specify the values of c and ˛ by using the C= and ALPHA= options. If you
do not specify a value for c, the default value used is c = 1. If you do not specify a
value for ˛, the default value used is ˛ D 0:5.

As an alternative, you can also specify an absolute lower bound, say L, on the risk
set size by using the RSLB= option, in which case I ŒRn.�/ � cN ˛� is replaced by
I ŒRn.�/ � L� in the definition.

The standard error of OFn.yi / is computed by using Greenwood’s formula (Greenwood
1926):

O�n.yi / D

vuut.1 � OFn.yi //2 �
X
��yi

�
n.�/

Rn.�/.Rn.�/ � n.�//
� I ŒRn.�/ � cN ˛�

�

Turnbull’s EDF Estimation Method

If the response variable is subject to both left-censoring and right-censoring effects, then the SEVERITY
procedure uses a method proposed by Turnbull (1976) to compute the nonparametric estimates of the
cumulative distribution function. The original Turnbull’s method is modified using the suggestions made by
Frydman (1994) when truncation effects are present.

Let the input data consist of N observations in the form of quintuplets of values .yi ; t li ; t
r
i ; c

r
i ; c

l
i /; i D

1; : : : ; N with notation described in the section “Notation” on page 2115. For each observation, let Ai D
.cri ; c

l
i � be the censoring interval; that is, the response variable value is known to lie in the interval Ai , but

the exact value is not known. If an observation is uncensored, then Ai D .yi � �; yi � for any arbitrarily small
value of � > 0. If an observation is censored, then the value yi is ignored. Similarly, for each observation,
let Bi D .t li ; t

r
i � be the truncation interval; that is, the observation is drawn from a truncated (conditional)

distribution F.y;Bi / D P.Y � yjY 2 Bi /.

Two sets, L and R, are formed using Ai and Bi as follows:

L D fcri ; 1 � i � N g [ ft
r
i ; 1 � i � N g

R D fcli ; 1 � i � N g [ ft
l
i ; 1 � i � N g

The sets L and R represent the left endpoints and right endpoints, respectively. A set of disjoint intervals
Cj D Œqj ; pj �, 1 � j � M is formed such that qj 2 L and pj 2 R and qj � pj and pj < qjC1. The
value of M is dependent on the nature of censoring and truncation intervals in the input data. Turnbull (1976)
showed that the maximum likelihood estimate (MLE) of the EDF can increase only inside intervals Cj . In
other words, the MLE estimate is constant in the interval .pj ; qjC1/. The likelihood is independent of the
behavior of Fn inside any of the intervals Cj . Let sj denote the increase in Fn inside an interval Cj . Then,
the EDF estimate is as follows:

Fn.y/ D

8<:
0 if y < q1Pj

kD1
sk if pj < y < qjC1; 1 � j �M � 1

1 if y > pM

PROC SEVERITY computes the estimates Fn.pjC/ D Fn.qjC1�/ D
Pj

kD1
sk at points pj and qjC1

and computes Fn.q1�/ D 0 at point q1, where Fn.xC/ denotes the limiting estimate at a point that is
infinitesimally larger than x when approaching x from values larger than x and where Fn.x�/ denotes the
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limiting estimate at a point that is infinitesimally smaller than x when approaching x from values smaller than
x.

PROC SEVERITY uses the expectation-maximization (EM) algorithm proposed by Turnbull (1976), who
referred to the algorithm as the self-consistency algorithm. By default, the algorithm runs until one of the
following criteria is met:

� Relative-error criterion: The maximum relative error between the two consecutive estimates of sj falls
below a threshold �. If l indicates an index of the current iteration, then this can be formally stated as

arg max
1�j�M

(
jslj � s

l�1
j j

sl�1j

)
� �

You can control the value of � by specifying the EPS= suboption of the EDF=TURNBULL option in
the PROC SEVERITY statement. The default value is 1.0E–8.

� Maximum-iteration criterion: The number of iterations exceeds an upper limit that you specify for the
MAXITER= suboption of the EDF=TURNBULL option in the PROC SEVERITY statement. The
default number of maximum iterations is 500.

The self-consistent estimates obtained in this manner might not be maximum likelihood estimates. Gentleman
and Geyer (1994) suggested the use of the Kuhn-Tucker conditions for the maximum likelihood problem to
ensure that the estimates are MLE. If you specify the ENSUREMLE suboption of the EDF=TURNBULL
option in the PROC SEVERITY statement, then PROC SEVERITY computes the Kuhn-Tucker conditions
at the end of each iteration to determine whether the estimates {sj } are MLE. If you do not specify any
truncation effects, then the Kuhn-Tucker conditions derived by Gentleman and Geyer (1994) are used. If you
specify any truncation effects, then PROC SEVERITY uses modified Kuhn-Tucker conditions that account
for the truncation effects. An integral part of checking the conditions is to determine whether an estimate sj is
zero or whether an estimate of the Lagrange multiplier or the reduced gradient associated with the estimate sj
is zero. PROC SEVERITY declares these values to be zero if they are less than or equal to a threshold ı. You
can control the value of ı by specifying the ZEROPROB= suboption of the EDF=TURNBULL option in the
PROC SEVERITY statement. The default value is 1.0E–8. The algorithm continues until the Kuhn-Tucker
conditions are satisfied or the number of iterations exceeds the upper limit. The relative-error criterion stated
previously is not used when you specify the ENSUREMLE option.

The standard errors for Turnbull’s EDF estimates are computed by using the asymptotic theory of the
maximum likelihood estimators (MLE), even though the final estimates might not be MLE. Turnbull’s
estimator essentially attempts to maximize the likelihood L, which depends on the parameters sj (j D
1; : : : ;M ). Let sss D fsj g denote the set of these parameters. If G.sss/ D r2.� log.L.sss/// denotes the
Hessian matrix of the negative of log likelihood, then the variance-covariance matrix of sss is estimated as
OC.sss/ D G�1.sss/. Given this matrix, the standard error of Fn.y/ is computed as

�n.y/ D

vuuut jX
kD1

0@ OCkk C 2 � k�1X
lD1

OCkl

1A, if pj < y < qjC1; 1 � j �M � 1

The standard error is undefined outside of these intervals.
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EDF Estimates and Truncation

If you specify truncation, then the estimate OFn.y/ that is computed by any method other than the STANDARD
method is a conditional estimate. In other words, OFn.y/ D Pr.Y � yj�G < Y � �H /, where G and
H denote the (unknown) distribution functions of the left-truncation threshold variable T l and the right-
truncation threshold variable T r , respectively, �G denotes the smallest left-truncation threshold with a nonzero
cumulative probability, and �H denotes the largest right-truncation threshold with a nonzero cumulative
probability. Formally, �G D inffs W G.s/ > 0g and �H D supfs W H.s/ > 0g. For computational purposes,
PROC SEVERITY estimates �G and �H by t lmin and trmax, respectively, defined as

t lmin D minft lk W 1 � k � N g

trmax D maxftrk W 1 � k � N g

These estimates of t lmin and trmax are used to compute the conditional estimates of the CDF as described in the
section “Truncation and Conditional CDF Estimates” on page 2096.

If you specify left-truncation with the probability of observability p, then PROC SEVERITY uses the
additional information provided by p to compute an estimate of the EDF that is not conditional on the
left-truncation information. In particular, for each left-truncated observation i with response variable value
yi and truncation threshold t li , an observation j is added with weight wj D .1 � p/=p and yj D t lj . Each
added observation is assumed to be uncensored and untruncated. Then, your specified EDF method is used
by assuming no left-truncation. The EDF estimate that is obtained using this method is not conditional on
the left-truncation information. For the KAPLANMEIER and MODIFIEDKM methods with uncensored
or right-censored data, definitions of n.�/ and Rn.�/ are modified to account for the added observations.
If N a denotes the total number of observations including the added observations, then n.�/ is defined as
n.�/ D

PNa

kD1wkI Œyk D � and � � tr
k

and ık D 1�, andRn.�/ is defined asRn.�/ D
PNa

kD1wkI Œyk � ��.
In the definition of Rn.�/, the left-truncation information is not used, because it was used along with p to
add the observations.

If the original data are a combination of left- and right-censored data, then Turnbull’s method is applied to
the appended set that contains no left-truncated observations.

Supplying EDF Estimates to Functions and Subroutines

The parameter initialization subroutines in distribution models and some predefined utility functions require
EDF estimates. For more information, see the sections “Defining a Severity Distribution Model with the
FCMP Procedure” on page 2126 and “Predefined Utility Functions” on page 2138.

PROC SEVERITY supplies the EDF estimates to these subroutines and functions by using two arrays, x and
F, the dimension of each array, and a type of the EDF estimates. The type identifies how the EDF estimates
are computed and stored. They are as follows:

Type 1 specifies that EDF estimates are computed using the STANDARD method; that is, the data that
are used for estimation are neither censored nor truncated.

Type 2 specifies that EDF estimates are computed using either the KAPLANMEIER or the MODI-
FIEDKM method; that is, the data that are used for estimation are subject to truncation and one
type of censoring (left or right, but not both).

Type 3 specifies that EDF estimates are computed using the TURNBULL method; that is, the data that
are used for estimation are subject to both left- and right-censoring. The data might or might not
be truncated.
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For Types 1 and 2, the EDF estimates are stored in arrays x and F of dimension N such that the following
holds,

Fn.y/ D

8<:
0 if y < xŒ1�
F Œk� if xŒk� � y < xŒk C 1�; k D 1; : : : ; N � 1
F ŒN � if xŒN � � y

where Œk� denotes kth element of the array ([1] denotes the first element of the array).

For Type 3, the EDF estimates are stored in arrays x and F of dimension N such that the following holds:

Fn.y/ D

8̂̂<̂
:̂
0 if y < xŒ1�
undefined if xŒ2k � 1� � y < xŒ2k�; k D 1; : : : ; .N � 1/=2
F Œ2k� D F Œ2k C 1� if xŒ2k� � y < xŒ2k C 1�; k D 1; : : : ; .N � 1/=2
F ŒN � if xŒN � � y

Although the behavior of EDF is theoretically undefined for the interval ŒxŒ2k� 1�; xŒ2k�/, for computational
purposes, all predefined functions and subroutines assume that the EDF increases linearly from F Œ2k � 1�

to F Œ2k� in that interval if xŒ2k � 1� < xŒ2k�. If xŒ2k � 1� D xŒ2k�, which can happen when the EDF
is estimated from a combination of uncensored and interval-censored data, the predefined functions and
subroutines assume that Fn.xŒ2k � 1�/ D Fn.xŒ2k�/ D F Œ2k�.

Statistics of Fit
PROC SEVERITY computes and reports various statistics of fit to indicate how well the estimated model
fits the data. The statistics belong to two categories: likelihood-based statistics and EDF-based statistics.
Neg2LogLike, AIC, AICC, and BIC are likelihood-based statistics, and KS, AD, and CvM are EDF-based
statistics. The following subsections provide definitions of each.

Likelihood-Based Statistics of Fit

Let yi ; i D 1; : : : ; N , denote the response variable values. Let L be the likelihood as defined in the section
“Likelihood Function” on page 2097. Let p denote the number of model parameters that are estimated. Note
that p D pd C .k � kr/, where pd is the number of distribution parameters, k is the number of all regression
parameters, and kr is the number of regression parameters that are found to be linearly dependent (redundant)
on other regression parameters. By default, the value of pd includes the distribution parameters that you have
defined as constant by using the dist_CONSTANTPARM subroutine. You can exclude them by specifying the
NOCONSTFITSTATS option in the PROC SEVERITY statement. Given this notation, the likelihood-based
statistics are defined as follows:

Neg2LogLike The log likelihood is reported as

Neg2LogLike D �2 log.L/

The multiplying factor �2 makes it easy to compare it to the other likelihood-based
statistics. A model that has a smaller value of Neg2LogLike is deemed better.

AIC Akaike’s information criterion (AIC) is defined as

AIC D �2 log.L/C 2p

A model that has a smaller AIC value is deemed better.
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AICC The corrected Akaike’s information criterion (AICC) is defined as

AICC D �2 log.L/C
2Np

N � p � 1

A model that has a smaller AICC value is deemed better. It corrects the finite-sample bias
that AIC has when N is small compared to p. AICC is related to AIC as

AICC D AICC
2p.p C 1/

N � p � 1

As N becomes large compared to p, AICC converges to AIC. AICC is usually recom-
mended over AIC as a model selection criterion.

BIC The Schwarz Bayesian information criterion (BIC) is defined as

BIC D �2 log.L/C p log.N /

A model that has a smaller BIC value is deemed better.

EDF-Based Statistics

This class of statistics is based on the difference between the estimate of the cumulative distribution function
(CDF) and the estimate of the empirical distribution function (EDF). A model that has a smaller value of the
chosen EDF-based statistic is deemed better.

Let yi ; i D 1; : : : ; N; denote the sample of N values of the response variable. Let wi denote the normalized
weight of the ith observation. If woi denotes the original, unnormalized weight of the ith observation, then
wi D Nw

o
i =.
PN
iD1w

o
i /. Let Nu denote the number of observations with unique (nonduplicate) values of

the response variable. Let Wi D
PN
jD1wj I Œyj D yi � denote the total weight of observations with a value

yi , where I is an indicator function. Let ri D
PN
jD1wj I Œyj � yi � denote the total weight of observations

with a value less than or equal to yi . Let W D
PNu
iD1Wi denote the total weight of all observations. Use of

normalized weights implies that W D N .

Let Fn.yi / denote the EDF estimate that is computed by using the method that you specify in the EMPIRI-
CALCDF= option. Let Zi D OF .yi / denote the estimate of the CDF. Let Fn.Zi / denote the EDF estimate of
Zi values that are computed using the same method that is used to compute the EDF of yi values. Using the
probability integral transformation, if F.y/ is the true distribution of the random variable Y, then the random
variable Z D F.y/ is uniformly distributed between 0 and 1 (D’Agostino and Stephens 1986, Ch. 4). Thus,
comparing Fn.yi / with OF .yi / is equivalent to comparing Fn.Zi / with OF .Zi / D Zi (uniform distribution).

Note the following two points regarding which CDF estimates are used for computing the test statistics:

� If you specify regression effects, then the CDF estimates Zi that are used for computing the EDF
test statistics are from a mixture distribution. For more information, see the section “CDF and PDF
Estimates with Regression Effects” on page 2104.

� If the EDF estimates are conditional because of the truncation information, then each unconditional
estimateZi is converted to a conditional estimate using the method described in the section “Truncation
and Conditional CDF Estimates” on page 2096.

In the following, it is assumed that Zi denotes an appropriate estimate of the CDF if you specify any
truncation or regression effects. Given this, the EDF-based statistics of fit are defined as follows:
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KS The Kolmogorov-Smirnov (KS) statistic computes the largest vertical distance between the CDF
and the EDF. It is formally defined as follows:

KS D sup
y
jFn.y/ � F.y/j

If the STANDARD method is used to compute the EDF, then the following formula is used:

DC D maxi .
ri

W
�Zi /

D� D maxi .Zi �
ri�1

W
/

KS D
p
W max.DC;D�/C

0:19
p
W

Note that r0 is assumed to be 0.

If the method used to compute the EDF is any method other than the STANDARD method, then
the following formula is used:

DC D maxi .Fn.Zi / �Zi /; if Fn.Zi / � Zi
D� D maxi .Zi � Fn.Zi //; if Fn.Zi / < Zi

KS D
p
W max.DC;D�/C

0:19
p
W

AD The Anderson-Darling (AD) statistic is a quadratic EDF statistic that is proportional to the expected
value of the weighted squared difference between the EDF and CDF. It is formally defined as
follows:

AD D N
Z 1
�1

.Fn.y/ � F.y//
2

F.y/.1 � F.y//
dF.y/

If the STANDARD method is used to compute the EDF, then PROC SEVERITY uses the following
formula:

AD D �W �
1

W

NuX
iD1

Wi Œ.2ri � 1/ log.Zi /C .2W C 1 � 2ri / log.1 �Zi /�

If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:

� If the EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM methods,
then EDF is a step function such that the estimate Fn.z/ is a constant equal to Fn.Zi�1/ in
interval ŒZi�1; Zi �. If the EDF estimates are computed using the TURNBULL method, then
there are two types of intervals: one in which the EDF curve is constant and the other in
which the EDF curve is theoretically undefined. For computational purposes, it is assumed
that the EDF curve is linear for the latter type of the interval. For each method, the EDF
estimate Fn.y/ at y can be written as

Fn.z/ D Fn.Zi�1/C Si .z �Zi�1/; for z 2 ŒZi�1; Zi �

where Si is the slope of the line defined as

Si D
Fn.Zi / � Fn.Zi�1/

Zi �Zi�1

For the KAPLANMEIER or MODIFIEDKM method, Si D 0 in each interval.
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� Using the probability integral transform z D F.y/, the formula simplifies to

AD D N
Z 1
�1

.Fn.z/ � z/
2

z.1 � z/
dz

The computation formula can then be derived from the approximation,

AD D N
KC1X
iD1

Z Zi

Zi�1

.Fn.z/ � z/
2

z.1 � z/
dz

D N

KC1X
iD1

Z Zi

Zi�1

.Fn.Zi�1/C Si .z �Zi�1/ � z/
2

z.1 � z/
dz

D N

KC1X
iD1

Z Zi

Zi�1

.Pi �Qiz/
2

z.1 � z/
dz

where Pi D Fn.Zi�1/ � SiZi�1, Qi D 1 � Si , and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K D 2k for some k.

Assuming Z0 D 0, ZKC1 D 1, Fn.0/ D 0, and Fn.ZK/ D 1 yields the computation formula,

AD D�N.Z1 C log.1 �Z1/C log.ZK/C .1 �ZK//

CN

KX
iD2

�
P 2i Ai � .Qi � Pi /

2Bi �Q
2
i Ci

�
where Ai D log.Zi / � log.Zi�1/, Bi D log.1 �Zi / � log.1 �Zi�1/, and Ci D Zi �Zi�1.

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
Pi D Fn.Zi�1/ and Qi D 1, which simplifies the formula as

AD D�N.1C log.1 �Z1/C log.ZK//

CN

KX
iD2

�
Fn.Zi�1/

2Ai � .1 � Fn.Zi�1//
2Bi

�
CvM The Cramér–von Mises (CvM) statistic is a quadratic EDF statistic that is proportional to the

expected value of the squared difference between the EDF and CDF. It is formally defined as
follows:

CvM D N
Z 1
�1

.Fn.y/ � F.y//
2dF.y/

If the STANDARD method is used to compute the EDF, then the following formula is used:

CvM D
1

12W
C

NuX
iD1

Wi

�
Zi �

.2ri � 1/

2W

�2
If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:
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� As described previously for the AD statistic, the EDF estimates are assumed to be piecewise
linear such that the estimate Fn.y/ at y is

Fn.z/ D Fn.Zi�1/C Si .z �Zi�1/; for z 2 ŒZi�1; Zi �

where Si is the slope of the line defined as

Si D
Fn.Zi / � Fn.Zi�1/

Zi �Zi�1

For the KAPLANMEIER or MODIFIEDKM method, Si D 0 in each interval.

� Using the probability integral transform z D F.y/, the formula simplifies to

CvM D N
Z 1
�1

.Fn.z/ � z/
2dz

The computation formula can then be derived from the following approximation,

CvM D N
KC1X
iD1

Z Zi

Zi�1

.Fn.z/ � z/
2dz

D N

KC1X
iD1

Z Zi

Zi�1

.Fn.Zi�1/C Si .z �Zi�1/ � z/
2dz

D N

KC1X
iD1

Z Zi

Zi�1

.Pi �Qiz/
2dz

where Pi D Fn.Zi�1/ � SiZi�1, Qi D 1 � Si , and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K D 2k for some k.

Assuming Z0 D 0, ZKC1 D 1, and Fn.0/ D 0 yields the following computation formula,

CvM D N
Z31
3
CN

KC1X
iD2

"
P 2i Ai � PiQiBi �

Q2i
3
Ci

#

where Ai D Zi �Zi�1, Bi D Z2i �Z
2
i�1, and Ci D Z3i �Z

3
i�1.

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
Pi D Fn.Zi�1/ and Qi D 1, which simplifies the formula as

CvM D
N

3
CN

KC1X
iD2

�
Fn.Zi�1/

2.Zi �Zi�1/ � Fn.Zi�1/.Z
2
i �Z

2
i�1/

�
which is similar to the formula proposed by Koziol and Green (1976).
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Defining a Severity Distribution Model with the FCMP Procedure
A severity distribution model consists of a set of functions and subroutines that are defined using the FCMP
procedure. The FCMP procedure is part of Base SAS software. Each function or subroutine must be named as
<distribution-name>_<keyword>, where distribution-name is the identifying short name of the distribution
and keyword identifies one of the functions or subroutines. The total length of the name should not exceed
32. Each function or subroutine must have a specific signature, which consists of the number of arguments,
sequence and types of arguments, and return value type. The summary of all the recognized function and
subroutine names and their expected behavior is given in Table 29.17.

Consider the following points when you define a distribution model:

� When you define a function or subroutine requiring parameter arguments, the names and order of those
arguments must be the same. Arguments other than the parameter arguments can have any name, but
they must satisfy the requirements on their type and order.

� When the SEVERITY procedure invokes any function or subroutine, it provides the necessary input
values according to the specified signature, and expects the function or subroutine to prepare the output
and return it according to the specification of the return values in the signature.

� You can use most of the SAS programming statements and SAS functions that you can use in a DATA
step for defining the FCMP functions and subroutines. However, there are a few differences in the
capabilities of the DATA step and the FCMP procedure. To learn more, see the documentation of the
FCMP procedure in the Base SAS Procedures Guide.

� You must specify either the PDF or the LOGPDF function. Similarly, you must specify either the
CDF or the LOGCDF function. All other functions are optional, except when necessary for correct
definition of the distribution. It is strongly recommended that you define the PARMINIT subroutine
to provide a good set of initial values for the parameters. The information that PROC SEVERITY
provides to the PARMINIT subroutine enables you to use popular initialization approaches based on
the method of moments and the method of percentile matching, but you can implement any algorithm
to initialize the parameters by using the values of the response variable and the estimate of its empirical
distribution function.

� The LOWERBOUNDS subroutines should be defined if the lower bound on at least one distribution
parameter is different from the default lower bound of 0. If you define a LOWERBOUNDS subroutine
but do not set a lower bound for some parameter inside the subroutine, then that parameter is assumed
to have no lower bound (or a lower bound of �1). Hence, it is recommended that you explicitly return
the lower bound for each parameter when you define the LOWERBOUNDS subroutine.

� The UPPERBOUNDS subroutines should be defined if the upper bound on at least one distribution
parameter is different from the default upper bound of1. If you define an UPPERBOUNDS subroutine
but do not set an upper bound for some parameter inside the subroutine, then that parameter is assumed
to have no upper bound (or a upper bound of1). Hence, it is recommended that you explicitly return
the upper bound for each parameter when you define the UPPERBOUNDS subroutine.

� If you want to use the distribution in a model with regression effects, then make sure that the first
parameter of the distribution is the scale parameter itself or a log-transformed scale parameter. If the
first parameter is a log-transformed scale parameter, then you must define the SCALETRANSFORM
function.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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� In general, it is not necessary to define the gradient and Hessian functions, because the SEVERITY
procedure uses an internal system to evaluate the required derivatives. The internal system typically
computes the derivatives analytically. But it might not be able to do so if your function definitions use
other functions that it cannot differentiate analytically. In such cases, derivatives are approximated
using a finite difference method and a note is written to the SAS log to indicate the components that are
differentiated using such approximations. PROC SEVERITY does reasonably well with these finite
difference approximations. But, if you know of a way to compute the derivatives of such components
analytically, then you should define the gradient and Hessian functions.

In order to use your distribution with PROC SEVERITY, you need to record the FCMP library that contains
the functions and subroutines for your distribution and other FCMP libraries that contain FCMP functions
or subroutines used within your distribution’s functions and subroutines. Specify all those libraries in the
CMPLIB= system option by using the OPTIONS global statement. For more information about the OPTIONS
statement, see SAS Global Statements: Reference. For more information about the CMPLIB= system option,
see SAS System Options: Reference.

Each predefined distribution mentioned in the section “Predefined Distributions” on page 2085 has a
distribution model associated with it. The functions and subroutines of all those models are available in the
Sashelp.Svrtdist library. The order of the parameters in the signatures of the functions and subroutines is
the same as listed in Table 29.3. You do not need to use the CMPLIB= option in order to use the predefined
distributions with PROC SEVERITY. However, if you need to use the functions or subroutines of the
predefined distributions in SAS statements other than the PROC SEVERITY step (such as in a DATA step),
then specify the Sashelp.Svrtdist library in the CMPLIB= system option by using the OPTIONS global
statement prior to using them.

Table 29.17 shows functions and subroutines that define a distribution model, and subsections after the table
provide more detail. The functions are listed in alphabetical order of the keyword suffix.

Table 29.17 List of Functions and Subroutines That Define a
Distribution Model

Name Type Required Expected to Return

dist_CDF Function YES1 Cumulative distribution
function value

dist_CDFGRADIENT Subroutine NO Gradient of the CDF
dist_CDFHESSIAN Subroutine NO Hessian of the CDF
dist_CONSTANTPARM Subroutine NO Constant parameters
dist_DESCRIPTION Function NO Description of the distribution
dist_LOGCDF Function YES1 Log of cumulative distribution

function value
dist_LOGCDFGRADIENT Subroutine NO Gradient of the LOGCDF
dist_LOGCDFHESSIAN Subroutine NO Hessian of the LOGCDF
dist_LOGPDF Function YES2 Log of probability density

function value
dist_LOGPDFGRADIENT Subroutine NO Gradient of the LOGPDF
dist_LOGPDFHESSIAN Subroutine NO Hessian of the LOGPDF
dist_LOGSDF Function NO Log of survival

function value

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsglobal&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lesysoptsref&docsetTarget=titlepage.htm
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Table 29.17 continued

Name Type Required Expected to Return

dist_LOGSDFGRADIENT Subroutine NO Gradient of the LOGSDF
dist_LOGSDFHESSIAN Subroutine NO Hessian of the LOGSDF
dist_LOWERBOUNDS Subroutine NO Lower bounds on parameters
dist_PARMINIT Subroutine NO Initial values

for parameters
dist_PDF Function YES2 Probability density

function value
dist_PDFGRADIENT Subroutine NO Gradient of the PDF
dist_PDFHESSIAN Subroutine NO Hessian of the PDF
dist_QUANTILE Function NO Quantile for a given CDF value
dist_SCALETRANSFORM Function NO Type of relationship between

the first distribution parameter
and the scale parameter

dist_SDF Function NO Survival function value
dist_SDFGRADIENT Subroutine NO Gradient of the SDF
dist_SDFHESSIAN Subroutine NO Hessian of the SDF
dist_UPPERBOUNDS Subroutine NO Upper bounds on parameters

Notes:
1. Either the dist_CDF or the dist_LOGCDF function must be defined.
2. Either the dist_PDF or the dist_LOGPDF function must be defined.

The signature syntax and semantics of each function or subroutine are as follows:

dist_CDF
defines a function that returns the value of the cumulative distribution function (CDF) of the distribution
at the specified values of the random variable and distribution parameters.

� Type: Function

� Required: YES

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the CDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the CDF value F.xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
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parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

F.xIp1; p2; : : : ; pm/ D F.
x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

F.xIp1; p2; : : : ; pm/ D F.
x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_CDF(x, P1, P2);
/* Code to compute CDF by using x, P1, and P2 */

F = <computed CDF>;
return (F);

endsub;

dist_CONSTANTPARM
defines a subroutine that specifies constant parameters. A parameter is constant if it is required for
defining a distribution but is not subject to optimization in PROC SEVERITY. Constant parameters are
required to be part of the model in order to compute the PDF or the CDF of the distribution. Typically,
values of these parameters are known a priori or estimated using some means other than the maximum
likelihood method used by PROC SEVERITY. You can estimate them inside the dist_PARMINIT
subroutine. Once initialized, the parameters remain constant in the context of PROC SEVERITY; that
is, they retain their initial value. PROC SEVERITY estimates only the nonconstant parameters.

� Type: Subroutine

� Required: NO

� Number of arguments: k, where k is the number of constant parameters

� Sequence and type of arguments:

constant parameter 1 Name of the first constant parameter
. . .

constant parameter k Name of the kth constant parameter

� Return value: None

Here is a sample structure of the subroutine for a distribution named ‘FOO’ that has P3 and P5 as its
constant parameters, assuming that distribution has at least three parameters:

subroutine FOO_CONSTANTPARM(p5, p3);
endsub;

Note the following points when you specify the constant parameters:

� At least one distribution parameter must be free to be optimized; that is, if a distribution has total
m parameters, then k must be strictly less than m.
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� If you want to use this distribution for modeling regression effects, then the first parameter must
not be a constant parameter.

� The order of arguments in the signature of this subroutine does not matter as long as each
argument’s name matches the name of one of the parameters that are defined in the signature of
the dist_PDF function.

� The constant parameters must be specified in signatures of all the functions and subroutines that
accept distribution parameters as their arguments.

� You must provide a nonmissing initial value for each constant parameter by using one of the
supported parameter initialization methods.

dist_DESCRIPTION
defines a function that returns a description of the distribution.

� Type: Function

� Required: NO

� Number of arguments: None

� Sequence and type of arguments: Not applicable

� Return value: Character value containing a description of the distribution

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_DESCRIPTION() $48;
length desc $48;
desc = "A model for a continuous distribution named foo";
return (desc);

endsub;

There is no restriction on the length of the description (the length of 48 used in the previous example is
for illustration purposes only). However, if the length is greater than 256, then only the first 256 char-
acters appear in the displayed output and in the _DESCRIPTION_ variable of the OUTMODELINFO=
data set. Hence, the recommended length of the description is less than or equal to 256.

dist_LOGcore
defines a function that returns the natural logarithm of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, or SDF.

� Type: Function

� Required: YES only if core is PDF or CDF and you have not defined that core function; otherwise,
NO

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the natural logarithm of the core function
should be evaluated

p1 Numeric value of the first parameter
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p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the natural logarithm of the core function

Here is a sample structure of the function for the core function PDF of a distribution named ‘FOO’:

function FOO_LOGPDF(x, P1, P2);
/* Code to compute LOGPDF by using x, P1, and P2 */

l = <computed LOGPDF>;
return (l);

endsub;

dist_LOWERBOUNDS
defines a subroutine that returns lower bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the SEVERITY procedure assumes a lower bound of 0 for
each parameter. If a lower bound of li is returned for a parameter pi , then the SEVERITY procedure
assumes that li < pi (strict inequality). If a missing value is returned for some parameter, then the
SEVERITY procedure assumes that there is no lower bound for that parameter (equivalent to a lower
bound of �1).

� Type: Subroutine

� Required: NO

� Number of arguments: m, where m is the number of distribution parameters

� Sequence and type of arguments:

p1 Output argument that returns the lower bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the lower bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the lower bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

� Return value: The results, lower bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_LOWERBOUNDS(p1, p2);
outargs p1, p2;

p1 = <lower bound for P1>;
p2 = <lower bound for P2>;

endsub;
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dist_PARMINIT
defines a subroutine that returns the initial values for the distribution’s parameters given an empirical
distribution function (EDF) estimate.

� Type: Subroutine

� Required: NO

� Number of arguments: mC 4, where m is the number of distribution parameters

� Sequence and type of arguments:

dim Input numeric value that contains the dimension of the x, nx, and F array arguments.

x{*} Input numeric array of dimension dim that contains values of the random variables
at which the EDF estimate is available. It can be assumed that x contains values in
an increasing order. In other words, if i < j , then x[i] < x[j].

nx{*} Input numeric array of dimension dim. Each nx[i] contains the number of observa-
tions in the original data that have the value x[i].

F{*} Input numeric array of dimension dim. Each F[i] contains the EDF estimate for x[i].
This estimate is computed by the SEVERITY procedure based on the options that
you specify in the LOSS statement and the EMPIRICALCDF= option.

Ftype Input numeric value that contains the type of the EDF estimate that is stored in x and
F. For definitions of types, see the section “Supplying EDF Estimates to Functions
and Subroutines” on page 2120.

p1 Output argument that returns the initial value of the first parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the initial value of the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the initial value of the mth parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

� Return value: The results, initial values of the parameters, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_PARMINIT(dim, x{*}, nx{*}, F{*}, Ftype, p1, p2);
outargs p1, p2;

/* Code to initialize values of P1 and P2 by using
dim, x, nx, and F */

p1 = <initial value for p1>;
p2 = <initial value for p2>;

endsub;
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dist_PDF
defines a function that returns the value of the probability density function (PDF) of the distribution at
the specified values of the random variable and distribution parameters.

� Type: Function

� Required: YES

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the PDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the PDF value f .xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

f .xIp1; p2; : : : ; pm/ D
1

p1
f .

x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

f .xIp1; p2; : : : ; pm/ D
1

exp.p1/
f .

x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_PDF(x, P1, P2);
/* Code to compute PDF by using x, P1, and P2 */

f = <computed PDF>;
return (f);

endsub;

dist_QUANTILE
defines a function that returns the quantile of the distribution at the specified value of the CDF for the
specified values of distribution parameters.

� Type: Function

� Required: NO

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:
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cdf Numeric value of the cumulative distribution function (CDF) for which the quantile should
be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the quantile F�1.cdfIp1; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_QUANTILE(c, P1, P2);
/* Code to compute quantile by using c, P1, and P2 */

Q = <computed quantile>;
return (Q);

endsub;

dist_SCALETRANSFORM
defines a function that returns a keyword to identify the transform that needs to be applied to the scale
parameter to convert it to the first parameter of the distribution.

If you want to use this distribution for modeling regression effects, then the first parameter of this
distribution must be a scale parameter. However, for some distributions, a typical or convenient
parameterization might not have a scale parameter, but one of the parameters can be a simple transform
of the scale parameter. As an example, consider a typical parameterization of the lognormal distribution
with two parameters, location � and shape � , for which the PDF is defined as follows:

f .xI�; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2

You can reparameterize this distribution to contain a parameter � instead of the parameter � such
that � D log.�/. The parameter � would then be a scale parameter. However, if you want to specify
the distribution in terms of � and � (which is a more recognized form of the lognormal distribution)
and still allow it as a candidate distribution for estimating regression effects, then instead of writing
another distribution with parameters � and � , you can simply define the distribution with � as the first
parameter and specify that it is the logarithm of the scale parameter.

� Type: Function

� Required: NO

� Number of arguments: None

� Sequence and type of arguments: Not applicable

� Return value: Character value that contains one of the following keywords:
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LOG specifies that the first parameter is the logarithm of the scale parameter.

IDENTITY specifies that the first parameter is a scale parameter without any transforma-
tion.

If you do not specify this function, then the IDENTITY transform is assumed.

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_SCALETRANSFORM() $8;
length xform $8;
xform = "IDENTITY";
return (xform);

endsub;

dist_SDF
defines a function that returns the value of the survival distribution function (SDF) of the distribution
at the specified values of the random variable and distribution parameters.

� Type: Function

� Required: NO

� Number of arguments: mC 1, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the SDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

� Return value: Numeric value that contains the SDF value S.xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when estimating a response variable
model with regression effects, then the first parameter of this distribution must be a scale parameter
or log-transformed scale parameter. In other words, if the distribution has a scale parameter, then the
following equation must be satisfied:

S.xIp1; p2; : : : ; pm/ D S.
x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

S.xIp1; p2; : : : ; pm/ D S.
x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:
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function FOO_SDF(x, P1, P2);
/* Code to compute SDF by using x, P1, and P2 */

S = <computed SDF>;
return (S);

endsub;

dist_UPPERBOUNDS
defines a subroutine that returns upper bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the SEVERITY procedure assumes that there is no upper
bound for any of the parameters. If an upper bound of ui is returned for a parameter pi , then the
SEVERITY procedure assumes that pi < ui (strict inequality). If a missing value is returned for some
parameter, then the SEVERITY procedure assumes that there is no upper bound for that parameter
(equivalent to an upper bound of1).

� Type: Subroutine

� Required: NO

� Number of arguments: m, where m is the number of distribution parameters

� Sequence and type of arguments:

p1 Output argument that returns the upper bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the upper bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the upper bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

� Return value: The results, upper bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_UPPERBOUNDS(p1, p2);
outargs p1, p2;

p1 = <upper bound for P1>;
p2 = <upper bound for P2>;

endsub;

dist_coreGRADIENT
defines a subroutine that returns the gradient vector of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

� Type: Subroutine

� Required: NO
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� Number of arguments: mC 2, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the gradient should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

grad{*} Output numeric array of size m that contains the gradient vector evaluated at the
specified values. If h denotes the value of the core function, then the expected order
of the values in the array is as follows: @h

@p1

@h
@p2
� � �

@h
@pm

� Return value: Numeric array that contains the gradient evaluated at x for the parameter values
.p1; p2; : : : ; pm/

Here is a sample structure of the function for the core function CDF of a distribution named ‘FOO’:

subroutine FOO_CDFGRADIENT(x, P1, P2, grad{*});
outargs grad;

/* Code to compute gradient by using x, P1, and P2 */
grad[1] = <partial derivative of CDF w.r.t. P1

evaluated at x, P1, P2>;
grad[2] = <partial derivative of CDF w.r.t. P2

evaluated at x, P1, P2>;
endsub;

dist_coreHESSIAN
defines a subroutine that returns the Hessian matrix of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

� Type: Subroutine

� Required: NO

� Number of arguments: mC 2, where m is the number of distribution parameters

� Sequence and type of arguments:

x Numeric value of the random variable at which the Hessian matrix should be evalu-
ated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

hess{*} Output numeric array of size m.mC 1/=2 that contains the lower triangular portion
of the Hessian matrix in a packed vector form, evaluated at the specified values. If h
denotes the value of the core function, then the expected order of the values in the
array is as follows: @

2h

@p21
j

@2h
@p1@p2

@2h

@p22
j � � � j

@2h
@p1@pm

@2h
@p2@pm

� � �
@2h

@p2m
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� Return value: Numeric array that contains the lower triangular portion of the Hessian matrix
evaluated at x for the parameter values .p1; p2; : : : ; pm/

Here is a sample structure of the subroutine for the core function LOGSDF of a distribution named
‘FOO’:

subroutine FOO_LOGSDFHESSIAN(x, P1, P2, hess{*});
outargs hess;

/* Code to compute Hessian by using x, P1, and P2 */
hess[1] = <second order partial derivative of LOGSDF

w.r.t. P1 evaluated at x, P1, P2>;
hess[2] = <second order partial derivative of LOGSDF

w.r.t. P1 and P2 evaluated at x, P1, P2>;
hess[3] = <second order partial derivative of LOGSDF

w.r.t. P2 evaluated at x, P1, P2>;
endsub;

Predefined Utility Functions
The following predefined utility functions are provided with the SEVERITY procedure and are available in
the Sashelp.Svrtdist library:

SVRTUTIL_EDF
This function computes the empirical distribution function (EDF) estimate at the specified value of the
random variable given the EDF estimate for a sample.

� Type: Function

� Signature: SVRTUTIL_EDF(y, n, x{*}, F{*}, Ftype)

� Argument description:

y Value of the random variable at which the EDF estimate is desired

n Dimension of the x and F input arrays

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. For definitions of
types, see the section “Supplying EDF Estimates to Functions and Subroutines” on
page 2120.

� Return value: The EDF estimate at y

The type of the sample EDF estimate determines how the EDF estimate at y is computed. For more
information, see the section “Supplying EDF Estimates to Functions and Subroutines” on page 2120.
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SVRTUTIL_EMPLIMMOMENT
This function computes the empirical estimate of the limited moment of specified order for the specified
upper limit, given the EDF estimate for a sample.

� Type: Function

� Signature: SVRTUTIL_EMPLIMMOMENT(k, u, n, x{*}, F{*}, Ftype)

� Argument description:

k Order of the desired empirical limited moment

u Upper limit on the value of the random variable to be used in the computation of the
desired empirical limited moment

n Dimension of the x and F input arrays

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. For definitions of
types, see the section “Supplying EDF Estimates to Functions and Subroutines” on
page 2120.

� Return value: The desired empirical limited moment

The empirical limited moment is computed by using the empirical estimate of the CDF. If Fn.x/
denotes the EDF at x, then the empirical limited moment of order k with upper limit u is defined as

EnŒ.X ^ u/
k� D k

Z u

0

.1 � Fn.x//x
k�1dx

The SVRTUTIL_EMPLIMMOMENT function uses the piecewise linear nature of Fn.x/ as described
in the section “Supplying EDF Estimates to Functions and Subroutines” on page 2120 to compute the
integration.

SVRTUTIL_HILLCUTOFF
This function computes an estimate of the value where the right tail of a distribution is expected to
begin. The function implements the algorithm described in Danielsson et al. 2001. The description of
the algorithm uses the following notation:

n Number of observations in the original sample

B Number of bootstrap samples to draw

m1 Size of the bootstrap sample in the first step of the algorithm (m1 < n)

x
j;m

.i/
ith order statistic of jth bootstrap sample of size m (1 � i � m; 1 � j � B)

x.i/ ith order statistic of the original sample (1 � i � n)

Given the input sample x and values of B and m1, the steps of the algorithm are as follows:

1. Take B bootstrap samples of size m1 from the original sample.
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2. Find the integer k1 that minimizes the bootstrap estimate of the mean squared error:

k1 D arg min
1�k<m1

Q.m1; k/

3. Take B bootstrap samples of size m2 D m21=n from the original sample.

4. Find the integer k2 that minimizes the bootstrap estimate of the mean squared error:

k2 D arg min
1�k<m2

Q.m2; k/

5. Compute the integer kopt, which is used for computing the cutoff point:

kopt D
k21
k2

�
log.k1/

2 log.m1/ � log.k1/

�2�2 log.k1/= log.m1/
6. Set the cutoff point equal to x.koptC1/.

The bootstrap estimate of the mean squared error is computed as

Q.m; k/ D
1

B

BX
jD1

MSEj .m; k/

The mean squared error of jth bootstrap sample is computed as

MSEj .m; k/ D .Mj .m; k/ � 2.j .m; k//
2/2

where Mj .m; k/ is a control variate proposed by Danielsson et al. 2001,

Mj .m; k/ D
1

k

kX
iD1

�
log.xj;m

.m�iC1/
/ � log.xj;m

.m�k/
/
�2

and j .m; k/ is the Hill’s estimator of the tail index (Hill 1975),

j .m; k/ D
1

k

kX
iD1

log.xj;m
.m�iC1/

/ � log.xj;m
.m�k/

/

This algorithm has two tuning parameters, B and m1. The number of bootstrap samples B is chosen
based on the availability of computational resources. The optimal value of m1 is chosen such that the
following ratio, R.m1/, is minimized:

R.m1/ D
.Q.m1; k1//

2

Q.m2; k2/

The SVRTUTIL_HILLCUTOFF utility function implements the preceding algorithm. It uses the grid
search method to compute the optimal value of m1.

� Type: Function

� Signature: SVRTUTIL_HILLCUTOFF(n, x{*}, b, s, status)

� Argument description:
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n Dimension of the array x

x{*} Input numeric array of dimension n that contains the sample

b Number of bootstrap samples used to estimate the mean squared error. If b is less
than 10, then a default value of 50 is used.

s Approximate number of steps used to search the optimal value of m1 in the range
Œn0:75; n � 1�. If s is less than or equal to 1, then a default value of 10 is used.

status Output argument that contains the status of the algorithm. If the algorithm succeeds
in computing a valid cutoff point, then status is set to 0. If the algorithm fails, then
status is set to 1.

� Return value: The cutoff value where the right tail is estimated to start. If the size of the input
sample is inadequate (n � 5), then a missing value is returned and status is set to a missing
value. If the algorithm fails to estimate a valid cutoff value (status = 1), then the fifth-largest
value in the input sample is returned.

SVRTUTIL_PERCENTILE
This function computes the specified empirical percentile given the EDF estimates.

� Type: Function

� Signature: SVRTUTIL_PERCENTILE(p, n, x{*}, F{*}, Ftype)

� Argument description:

p Desired percentile. The value must be in the interval (0,1). The function returns the
100pth percentile.

n Dimension of the x and F input arrays

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. For definitions of
types, see the section “Supplying EDF Estimates to Functions and Subroutines” on
page 2120.

� Return value: The 100pth percentile of the input sample

The method used to compute the percentile depends on the type of the EDF estimate (Ftype argument).

Ftype = 1 Smoothed empirical estimates are computed using the method described in Klug-
man, Panjer, and Willmot (1998). Let bxc denote the greatest integer less than or
equal to x. Define g D bp.nC 1/c and h D p.nC 1/ � g. Then the empirical
percentile O�p is defined as

O�p D .1 � h/xŒg�C hxŒg C 1�

This method does not work if p < 1=.nC 1/ or p > n=.nC 1/. If p < 1=.nC 1/,
then the function returns O�p D xŒ1�=2, which assumes that the EDF is 0 in the
interval Œ0; xŒ1�/. If p > n=.nC 1/, then O�p D xŒn�.
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Ftype = 2 If p < F Œ1�, then O�p D xŒ1�=2, which assumes that the EDF is 0 in the interval
Œ0; xŒ1�/. If jp � F Œi�j < � for some value of i and i < n, then O�p is computed as

O�p D
xŒi �C xŒi C 1�

2

where � is a machine-precision constant as returned by the SAS function CON-
STANT(‘MACEPS’). If F Œi � 1� < p < F Œi�, then O�p is computed as

O�p D xŒi �

If p � F Œn� , then O�p D xŒn�.

Ftype = 3 If p < F Œ1�, then O�p D xŒ1�=2, which assumes that the EDF is 0 in the interval
Œ0; xŒ1�/. If jp � F Œi�j < � for some value of i and i < n, then O�p is computed as

O�p D
xŒi �C xŒi C 1�

2

where � is a machine-precision constant as returned by the SAS function CON-
STANT(’MACEPS’). If F Œi � 1� < p < F Œi�, then O�p is computed as

O�p D xŒi � 1�C .p � F Œi � 1�/
xŒi � � xŒi � 1�

F Œi � � F Œi � 1�

If p � F Œn� , then O�p D xŒn�.

SVRTUTIL_RAWMOMENTS
This subroutine computes the raw moments of a sample.

� Type: Subroutine

� Signature: SVRTUTIL_RAWMOMENTS(n, x{*}, nx{*}, nRaw, raw{*})

� Argument description:

n Dimension of the x and nx input arrays

x{*} Input numeric array of dimension n that contains distinct values of the random variable
that are observed in the sample

nx{*} Input numeric array of dimension n in which each nx[i] contains the number of
observations in the sample that have the value x[i]

nRaw Desired number of raw moments. The output array raw contains the first nRaw raw
moments.

raw{*} Output array of raw moments. The kth element in the array (raw{k}) contains the kth
raw moment, where 1 � k � nRaw.

� Return value: Numeric array raw that contains the first nRaw raw moments. The array contains
missing values if the sample has no observations (that is, if all the values in the nx array add up
to zero).

SVRTUTIL_SORT
This function sorts the given array of numeric values in an ascending or descending order.

� Type: Subroutine

� Signature: SVRTUTIL_SORT(n, x{*}, flag)

� Argument description:
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n Dimension of the input array x

x{*} Numeric array that contains the values to be sorted at input. The subroutine uses the
same array to return the sorted values.

flag A numeric value that controls the sort order. If flag is 0, then the values are sorted in
an ascending order. If flag has any value other than 0, then the values are sorted in
descending order.

� Return value: Numeric array x , which is sorted in place (that is, the sorted array is stored in the
same storage area occupied by the input array x)

You can use the following predefined functions when you use the FCMP procedure to define functions and
subroutines. They are summarized here for your information. For more information, see the FCMP procedure
documentation in Base SAS Procedures Guide.

INVCDF
This function computes the quantile from any continuous probability distribution by numerically
inverting the CDF of that distribution. You need to specify the CDF function of the distribution, the
values of its parameters, and the cumulative probability to compute the quantile.

LIMMOMENT
This function computes the limited moment of order k with upper limit u for any continuous probability
distribution. The limited moment is defined as

EŒ.X ^ u/k� D

Z u

0

xkf .x/dx C

Z 1
u

ukf .x/dx

D

Z u

0

xkf .x/dx C uk.1 � F.u//

where f .x/ and F.x/ denote the PDF and the CDF of the distribution, respectively. The LIMMO-
MENT function uses the following alternate definition, which can be derived using integration-by-parts:

EŒ.X ^ u/k� D k

Z u

0

.1 � F.x//xk�1dx

You need to specify the CDF function of the distribution, the values of its parameters, and the values
of k and u to compute the limited moment.

Scoring Functions
Scoring refers to the act of evaluating a distribution function, such as LOGPDF, SDF, or QUANTILE, on an
observation by using the fitted parameter estimates of that distribution. You can do scoring in a DATA step by
using the OUTEST= data set that you create with PROC SEVERITY. However, that approach requires some
cumbersome programming. In order to simplify the scoring process, you can specify that PROC SEVERITY
create scoring functions for each fitted distribution.

As an example, assume that you have fitted the Pareto distribution by using PROC SEVERITY and that it
converges. Further assume that you want to use the fitted distribution to evaluate the probability of observing
a loss value greater than some set of regulatory limits {L} that are encoded in a data set. You can simplify
this scoring process as follows. First, in the PROC SEVERITY step that fits your distributions, you create the
scoring functions library by specifying the OUTSCORELIB statement as illustrated in the following steps:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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proc severity data=input;
loss lossclaim;
dist pareto;
outscorelib outlib=sasuser.fitdist;

run;

Upon successful completion, if the Pareto distribution model has converged, then the Sasuser.Fitdist li-
brary contains the SEV_SDF scoring function in addition to other scoring functions, such as SEV_PDF ,
SEV_LOGPDF , and so on. Further, PROC SEVERITY also sets the CMPLIB system option to include
the Sasuser.Fitdist library. If the set of limits {L} is recorded in the variable Limit in the scoring data set
Work.Limits, then you can submit the following DATA step to compute the probability of seeing a loss greater
than each limit:

data prob;
set work.limits;
exceedance_probability = sev_sdf(limit);

run;

Without the use of scoring functions, you can still perform this scoring task, but the DATA step that you need
to write to accomplish it becomes more complicated and less flexible. For example, you would need to read
the parameter estimates from some output created by PROC SEVERITY. To do that, you would need to know
the parameter names, which are different for different distributions; this in turn would require you to write a
specific DATA step for each distribution or to write a SAS macro. With the use of scoring functions, you can
accomplish that task much more easily.

If you fit multiple distributions, then you can specify the COMMONPACKAGE option in the OUTSCORELIB
statement as follows:

proc severity data=input;
loss lossclaim;
dist exp pareto weibull;
outscorelib outlib=sasuser.fitdist commonpackage;

run;

The preceding step creates scoring functions such as SEV_SDF_Exp, SEV_SDF_Pareto, and
SEV_SDF_Weibull . You can use them to compare the probabilities of exceeding the limit for differ-
ent distributions by using the following DATA step:

data prob;
set work.limits;
exceedance_exp = sev_sdf_exp(limit);
exceedance_pareto = sev_sdf_pareto(limit);
exceedance_weibull = sev_sdf_weibull(limit);

run;

Formal Description

PROC SEVERITY creates a scoring function for each distribution function. A distribution function is defined
as any function named dist_suffix , where dist is the name of a distribution that you specify in the DIST
statement and the function’s signature is identical to the signature of the required distribution function such
as dist_CDF or dist_LOGCDF. For example, for the function ‘FOO_BAR’ to be a distribution function, you
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must specify the distribution ‘FOO’ in the DIST statement and you must define ‘FOO_BAR’ in the following
manner if the distribution ‘FOO’ has parameters named ‘P1’ and ‘P2’:

function FOO_BAR(y, P1, P2);
/* Code to compute BAR by using y, P1, and P2 */
R = <computed BAR>;
return (R);

endsub;

For more information about the signature that defines a distribution function, see the description of the
dist_CDF function in the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 2126.

The name and package of the scoring function of a distribution function depend on whether you specify the
COMMONPACKAGE option in the OUTSCORELIB statement.

When you do not specify the COMMONPACKAGE option, the scoring function that corresponds to the
distribution function dist_suffix is named SEV_suffix , where SEV_ is the standard prefix of all scoring
functions. The scoring function is created in a package named dist . Each scoring function accepts only one
argument, the value of the loss variable, and returns the same value as the value returned by the corresponding
distribution function for the final estimates of the distribution’s parameters. For example, for the preceding
‘FOO_BAR’ distribution function, the scoring function named ‘SEV_BAR’ is created in the package named
‘FOO’ and ‘SEV_BAR’ has the following signature:

function SEV_BAR(y);
/* returns value of FOO_BAR for the supplied value

of y and fitted values of P1, P2 */
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then the scoring function
that corresponds to the distribution function dist_suffix is named SEV_suffix_dist , where SEV_ is the standard
prefix of all scoring functions. The scoring function is created in a package named sevfit . For example, for
the preceding ‘FOO_BAR’ distribution function, if you specify the COMMONPACKAGE option, the scoring
function named ‘SEV_BAR_FOO’ is created in the sevfit package and ‘SEV_BAR_FOO’ has the following
signature:

function SEV_BAR_FOO(y);
/* returns value of FOO_BAR for the supplied value

of y and fitted values of P1, P2 */
endsub;

Scoring Functions for the Scale Regression Model

If you use the SCALEMODEL statement to specify a scale regression model, then PROC SEVERITY
generates the scoring functions when you specify only singleton continuous effects. If you specify interaction
or classification effects, then scoring functions are not generated.

For a scale regression model, the estimate of the scale parameter or the log-transformed scale parameter of
the distribution depends on the values of the regressors. So PROC SEVERITY creates a scoring function that
has the following signature, where x{*} represents the array of regressors:
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function SEV_BAR(y, x{*});
/* returns value of FOO_BAR for the supplied value of x and fitted values of P1, P2 */

endsub;

As an illustration of using this form, assume that you submit the following PROC SEVERITY step to create
the scoring library Sasuser.Scalescore:

proc severity data=input;
loss lossclaim;
scalemodel x1-x3;
dist pareto;
outscorelib outlib=sasuser.scalescore;

run;

Your scoring data set must contain all the regressors that you specify in the SCALEMODEL statement. You
can submit the following DATA step to score observations by using the scale regression model:

data prob;
array regvals{*} x1-x3;
set work.limits;
exceedance_probability = sev_sdf(limit, regvals);

run;

PROC SEVERITY creates two utility functions, SEV_NUMREG and SEV_REGNAME, in the OUTLIB=
library that return the number of regressors and name of a given regressor, respectively. They are described in
detail in the next section. These utility functions are useful when you do not have easy access to the regressor
names in the SCALEMODEL statement. You can use the utility functions as follows:

data prob;
array regvals{10} _temporary_;
set work.limits;
do i = 1 to sev_numreg();

regvals(i) = input(vvaluex(sev_regname(i)), best12.);
end;
exceedance_probability = sev_sdf(limit, regvals);

run;

The dimension of the regressor values array that you supply to the scoring function must be equal to K C L,
where K is the number of regressors that you specify in the SCALEMODEL statement irrespective of whether
PROC SEVERITY deems any of those regressors to be redundant. L is 1 if you specify an OFFSET= variable
in the SCALEMODEL statement, and 0 otherwise.

Utility Functions and Subroutines in the OUTLIB= Library

In addition to creating the scoring functions for all distribution functions, PROC SEVERITY creates the
following utility functions and subroutines in the OUTLIB= library.

SEV_NUMPARM | SEV_NUMPARM_dist
is a function that returns the number of distribution parameters and has the following signature:

� Type: Function

� Number of arguments: 0

� Sequence and type of arguments: Not applicable
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� Return value: Numeric value that contains the number of distribution parameters

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_NUMPARM is created in the package of each distribution. Here is a sample
structure of the code that PROC SEVERITY uses to define the function:

function SEV_NUMPARM();
n = <number of distribution parameters>;
return (n);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , the function named SEV_NUMPARM_dist is created in the sevfit package.
SEV_NUMPARM_dist has the same structure as the SEV_NUMPARM function that is described
previously.

SEV_PARMEST | SEV_PARMEST_dist
is a subroutine that returns the estimate and standard error of a specified distribution parameter and has
the following signature:

� Type: Subroutine

� Number of arguments: 3

� Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this subroutine belongs.

est specifies the output argument that returns the estimate of the requested parameter.

stderr specifies the output argument that returns the standard error of the requested parameter.

� Return value: Estimate and standard error of the requested distribution parameter that are returned
in the output arguments est and stderr , respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_PARMEST is created in the package of each distribution. Here is a sample
structure of the code that PROC SEVERITY uses to define the subroutine:

subroutine SEV_PARMEST(index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the distribution parameter

at position 'index'>;
stderr = <value of the standard error for distribution parameter

at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , the subroutine named SEV_PARMEST_dist is created in the sevfit package.
SEV_PARMEST_dist has the same structure as the SEV_PARMEST subroutine that is described
previously.
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If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then for index=1, the returned estimates are of �0, the base value of the
scale parameter, or log.�0/ if the distribution has a log-scale parameter. For more information about
�0, see the section “Estimating Regression Effects” on page 2100.

SEV_PARMNAME | SEV_PARMNAME_dist
is a function that returns the name of a specified distribution parameter and has the following signature:

� Type: Function

� Number of arguments: 1

� Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this function belongs.

� Return value: Character value that contains the name of the distribution parameter that appears at
the position index in the distribution’s definition

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_PARMNAME is created in the package of each distribution. Here is a sample
structure of the code that PROC SEVERITY uses to define the function:

function SEV_PARMNAME(index) $32;
name = <name of the distribution parameter at position 'index'>;
return (name);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , a function named SEV_PARMNAME_dist is created in the sevfit package.
SEV_PARMNAME_dist has the same structure as the SEV_PARMNAME function that is described
previously.

If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then the following helper functions and subroutines are also created in the
OUTLIB= library.

SEV_NUMREG
is a function that returns the number of regressors and has the following signature:

� Type: Function

� Number of arguments: 0

� Sequence and type of arguments: Not applicable

� Return value: Numeric value that contains the number of regressors that you specify in the
SCALEMODEL statement. If you specify an OFFSET= variable in the SCALEMODEL state-
ment, then the returned value is equal to 1 plus the number of regressors that you specify in the
SCALEMODEL statement.

Here is a sample structure of the code that PROC SEVERITY uses to define the function:



Scoring Functions F 2149

function SEV_NUMREG();
m = <number of regressors>;
if (<offset variable is specified>) then m = m + 1;
return (m);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

SEV_REGEST | SEV_REGEST_dist
is a subroutine that returns the estimate and standard error of a specified regression parameter and has
the following signature:

� Type: Subroutine

� Number of arguments: 3

� Sequence and type of arguments:

index specifies the numeric value of the index of the regression parameter for which you want
the information. The value of index must be in the interval [1,K], where K is the number
of regressors as returned by the SEV_NUMREG function. If you specify an OFFSET=
variable in the SCALEMODEL statement, then an index value of K corresponds to the
offset variable.

est specifies the output argument that returns the estimate of the requested regression param-
eter.

stderr specifies the output argument that returns the standard error of the requested regression
parameter.

� Return value: Estimate and standard error of the requested regression parameter that are returned
in the output arguments est and stderr , respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_REGEST is created in the package of each distribution. Here is a sample
structure of the code that PROC SEVERITY uses to define the subroutine:

subroutine SEV_REGEST(index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the regression parameter

at position 'index'>;
stderr = <value of the standard error for regression parameter

at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution dist , the subroutine named SEV_REGEST_dist is created in the sevfit package.
SEV_REGEST_dist has the same structure as the SEV_REGEST subroutine that is described previ-
ously.

If the regressor that corresponds to the specified index value is a redundant regressor, the returned
values of both est and stderr are equal to the special missing value of .R. If you specify an OFFSET=
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variable in the SCALEMODEL statement and if the index value corresponds to the offset variable—that
is, it is equal to the value that the SEV_NUMREG function returns—then the returned value of est is
equal to 1 and the returned value of stderr is equal to the special missing value of .F.

SEV_REGNAME
is a function that returns the name of a specified regressor and has the following signature:

� Type: Function

� Number of arguments: 1

� Sequence and type of arguments:

index specifies the numeric value of the index of the regressor for which you want the name.
The value of index must be in the interval [1,K], where K is the number of regressors as
returned by the SEV_NUMREG function. If you specify an OFFSET= variable in the
SCALEMODEL statement, then an index value of K corresponds to the offset variable.

� Return value: Character value that contains the name of the regressor that appears at the position
index in the SCALEMODEL statement. If you specify an OFFSET= variable in the SCALE-
MODEL statement, then for an index value of K, the returned value contains the name of the
offset variable.

Here is a sample structure of the code that PROC SEVERITY uses to define the function:

function SEV_REGNAME(index) $32;
name = <name of regressor at position 'index'>;
return (name);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

Custom Objective Functions
You can use a series of programming statements that use variables in the DATA= data set to assign a value to
an objective function symbol. You must specify the objective function symbol by using the OBJECTIVE=
option in the PROC SEVERITY statement.

The objective function can be programmed such that it is applicable to any distribution that is used in the
model. For that purpose, PROC SEVERITY recognizes the following keyword functions in the programming
statements:

_PDF_(x) returns the probability density function (PDF) of a distribution evaluated at the current
value of a data set variable x.

_CDF_(x) returns the cumulative distribution function (CDF) of a distribution evaluated at the current
value of a data set variable x.

_SDF_(x) returns the survival distribution function (SDF) of a distribution evaluated at the current
value of a data set variable x.
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_LOGPDF_(x) returns the natural logarithm of the PDF of a distribution evaluated at the current value of
a data set variable x.

_LOGCDF_(x) returns the natural logarithm of the CDF of a distribution evaluated at the current value of
a data set variable x.

_LOGSDF_(x) returns the natural logarithm of the SDF of a distribution evaluated at the current value of
a data set variable x.

_EDF_(x) returns the empirical distribution function (EDF) estimate evaluated at the current value
of a data set variable x. Internally, PROC SEVERITY computes the estimate using the
SVRTUTIL_EDF function as described in the section “Predefined Utility Functions”
on page 2138. The EDF estimate that is required by the SVRTUTIL_EDF function is
computed by using the response variable values in the current BY group or in the entire
input data set if you do not specify the BY statement.

_EMPLIMMOMENT_(k, u)
returns the empirical limited moment of order k evaluated at the current value of a data
set variable u that represents the upper limit of the limited moment. The order k can
also be a data set variable. Internally, PROC SEVERITY computes the moment using
the SVRTUTIL_EMPLIMMOMENT function as described in the section “Predefined
Utility Functions” on page 2138. The EDF estimate that is required by the SVRTU-
TIL_EMPLIMMOMENT function is computed by using the response variable values in
the current BY group or in the entire input data set if you do not specify the BY statement.

_LIMMOMENT_(k, u)
returns the limited moment of order k evaluated at the current value of a data set variable
u that represents the upper limit of the limited moment. The order k can be a data set
variable or a constant. Internally, for each candidate distribution, PROC SEVERITY
computes the moment using the LIMMOMENT function as described in the section
“Predefined Utility Functions” on page 2138.

All the preceding functions are right-hand side functions. They act as placeholders for distribution-specific
functions, with the exception of _EDF_ and _EMPLIMMOMENT_ functions.

As an example, let the data set Work.Test contain a response variable Y and a left-truncation threshold variable
T. The following statements use the values in this data set to fit a model with distribution D such that the
parameters of the model minimize the value of the objective function symbol MYOBJ:

options cmplib=(work.mydist);
proc severity data=work.test objective=myobj;

loss y / lt=t;

myobj = -_LOGPDF_(y);
if (not(missing(t))) then

myobj = myobj + log(1-_CDF_(t));

dist d;
run;

The symbol MYOBJ is designated as an objective function symbol by using the OBJECTIVE= option in the
PROC SEVERITY statement. The response variable Y and left-truncation variable T are specified in the
LOSS statement. The distribution D is specified in the DIST statement. The remaining statements constitute
a program that computes the value of the MYOBJ symbol.
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Let the distribution D have parameters P1 and P2. In order to estimate the model for this distribution, PROC
SEVERITY internally converts the generic program to the following program specific to distribution D:

myobj = -D_LOGPDF(y, p1, p2);
if (not(missing(t))) then

myobj = myobj + log(1-D_CDF(t, p1, p2));

Note that the generic keyword functions _LOGPDF_ and _CDF_ have been replaced with distribution-specific
functions D_LOGPDF and D_CDF, respectively, with appropriate distribution parameters. The D_LOGPDF
and D_CDF functions must have been defined previously and are assumed to be available in the Work.Mydist
library that you specify in the CMPLIB= option.

The program is executed for each observation in Work.Test to compute the value of MYOBJ by using the
values of variables Y and T in that observation and internally computed values of the model parameters
P1 and P2. The values of MYOBJ are then added over all the observations of the data set or over all the
observations of the current BY group if you specify the BY statement. The resulting aggregate value is
the value of the objective function, and it is supplied to the optimizer. If the optimizer requires derivatives
of the objective function, then PROC SEVERITY automatically differentiates MYOBJ with respect to the
parameters P1 and P2. The optimizer iterates over various combinations of the values of parameters P1 and
P2, each time computing a new value of the objective function and the needed derivatives of it, until it finds a
combination that minimizes the objective function.

Note the following points when you define your own program to compute the custom objective function:

� The value of the objective function is always minimized by PROC SEVERITY. If you want to maximize
the value of a certain objective, then add a statement that assigns the negated value of the maximization
objective to the objective function symbol that you specify in the OBJECTIVE= option. Minimization
of the negated objective is equivalent to the maximization of the original objective.

� The contributions of individual observations are always added to compute the overall objective function
in a given iteration of the optimizer. If you specify the WEIGHT statement, then the contribution of
each observation is weighted by multiplying it with the normalized value of the weight variable for
that observation.

� If you are fitting multiple distributions in one PROC SEVERITY step and use any of the keyword
functions in your program, then it is recommended that you do not explicitly use the parameters of any
of the specified distributions in your programming statements.

� If you use a specific keyword function in your programming statements, then the corresponding
distribution functions must be defined in a library that you specify in the CMPLIB= system option
or in Sashelp.Svrtdist, the predefined functions library. In the preceding example, it is assumed that
the functions D_LOGPDF and D_CDF are defined in the Work.Mydist library that is specified in the
CMPLIB= option.

� You can use most DATA step statements and functions in your program. The DATA step file and the
data set I/O statements (for example, INPUT, FILE, SET, and MERGE) are not available. However,
some functionality of the PUT statement is supported. For more information, see the section “PROC
FCMP and DATA Step Differences” in Base SAS Procedures Guide. In addition to the differences
listed in that section, the following differences exist:

– Only numeric-valued variables can be used in PROC SEVERITY programming statements.
This restriction also implies that you cannot use SAS functions or call routines that require

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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character-valued arguments, unless you pass those arguments as constant (literal) strings or
characters.

– You cannot use functions that create lagged versions of a variable in PROC SEVERITY program-
ming statements. If you need lagged versions, then you can use a DATA step prior to the PROC
SEVERITY step to add those versions to the input data set.

� When coding your programming statements, avoid defining variables that begin with an underscore
(_), because they might conflict with internal variables created by PROC SEVERITY.

Custom Objective Functions and Regression Effects

If you specify regression effects by using the SCALEMODEL statement, then PROC SEVERITY automati-
cally adds a statement prior to your programming statements to compute the value of the scale parameter
or the log-transformed scale parameter of the distribution using the values of the regression variables and
internally created regression parameters. For example, if your specification of the SCALEMODEL statement
results in three regression effects x1, x2, and x3, then for a model that contains the distribution D with
scale parameter S, PROC SEVERITY adds a statement that is equivalent to the following statement to the
beginning of your program:

S = _SEVTHETA0 * exp(_SEVBETA1 * x1 + _SEVBETA2 * x2 + _SEVBETA3 * x3);

If a model contains a distribution D1 with a log-transformed scale parameter M, PROC SEVERITY adds a
statement that is equivalent to the following statement to the beginning of your program:

M = _SEVTHETA0 + _SEVBETA1 * x1 + _SEVBETA2 * x2 + _SEVBETA3 * x3;

The _SEVTHETA0, _SEVBETA1, _SEVBETA2, and _SEVBETA3 are the internal regression parameters
associated with the intercept and the regression effects x1, x2, and x3, respectively.

Since the names of the internal regression parameters start with a prefix _SEV, if you use a variable in your
program with a name that begins with _SEV, then PROC SEVERITY writes an error message to the SAS log
and stops processing.

Multithreaded Computation
PROC SEVERITY attempts to use all the computational resources of the machine where SAS is running in
order to complete the estimation tasks as fast as possible. This section describes the options that control the
use of multithreading by PROC SEVERITY.

Threading refers to the organization of computational work into multiple tasks (processing units that can
be scheduled by the operating system). A task is associated with a thread. Multithreading refers to the
concurrent execution of threads. When multithreading is possible, substantial performance gains can be
realized compared to sequential (single-threaded) execution.

The number of threads spawned by the SEVERITY procedure is determined by the number of CPUs on a
machine. You can control the number of threads by specifying either the CPUCOUNT= or the NOTHREADS
SAS system option.
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� You can specify the CPU count with the CPUCOUNT= SAS system option. For example, if you
specify the following statement, then PROC SEVERITY schedules threads as if it executed on a system
with four CPUs, regardless of the actual CPU count:

options cpucount=4;

On most systems, the default value of the CPUCOUNT= system option is set to the number of actual
CPU cores available for processing.

� If you do not want PROC SEVERITY to use multithreading, then you can turn off the THREADS
SAS system option by specifying the following statement:

options nothreads;

On most systems, the THREADS option is turned on by default.

You can examine the current settings of these system options in the SAS log by submitting the following
PROC OPTIONS step:

proc options option=(threads cpucount);
run;

Input Data Sets
PROC SEVERITY accepts DATA= and INEST= data sets as input data sets. This section details the
information they are expected to contain.

DATA= Data Set

The DATA= data set is expected to contain the values of the analysis variables that you specify in the LOSS
statement and the SCALEMODEL statement.

If you specify the BY statement, then the DATA= data set must contain all the BY variables that you specify
in the BY statement and the data set must be sorted by the BY variables unless you specify the NOTSORTED
option in the BY statement.

INEST= Data Set

The INEST= data set is expected to contain the initial values of the parameters for the parameter estimation
process.

If you specify the SCALEMODEL statement, then you can use the INEST= data set only if the SCALE-
MODEL statement contains singleton continuous effects.

If you specify the BY statement, then the INEST= data set must contain all the BY variables that you specify
in the BY statement. If you do not specify the NOTSORTED option in the BY statement, then the INEST=
data set must be sorted by the BY variables. However, it is not required to contain all the BY groups present
in the DATA= data set. For the BY groups that are not present in the INEST= data set, the default parameter
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initialization method is used. If you specify the NOTSORTED option in the BY statement, then the INEST=
data set must contain all the BY groups that are present in the DATA= data set and they must appear in the
same order as they appear in the DATA= data set.

In addition to any variables that you specify in the BY statement, the data set must contain the following
variables:

_MODEL_ identifying name of the distribution for which the estimates are provided.

_TYPE_ type of the estimate. The value of this variable must be EST for an observation to be valid.

<Parameter 1> . . . <Parameter M>
M variables, named after the parameters of all candidate distributions, that contain initial
values of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are read only
from variables for parameters that correspond to the distribution that is indicated by the
_MODEL_ variable.

If you specify a missing value for some parameters, then default initial values are used
unless the parameter is initialized by using the INIT= option in the DIST statement. If
you want to use the dist_PARMINIT subroutine for initializing the parameters of a model,
then you should either not specify the model in the INEST= data set or specify missing
values for all the distribution parameters in the INEST= data set and not use the INIT=
option in the DIST statement.

If you specify regressors, then the initial value that you provide for the first parameter of
each distribution must be the base value of the scale or log-transformed scale parameter.
For more information, see the section “Estimating Regression Effects” on page 2100.

<Regressor 1> . . . <Regressor K>
If you specify K regressors in the SCALEMODEL statement, then the INEST= data set
must contain K variables that are named for each regressor. The variables contain initial
values of the respective regression coefficients. If a regressor is linearly dependent on
other regressors for a given BY group, then you can indicate this by providing a special
missing value of .R for the respective variable. In a given BY group, if you mark a
variable as linearly dependent for one model, then you must mark that variable as linearly
dependent for all the models. Similarly, in a given BY group, if you do not mark a variable
as linearly dependent for one model, then you must not mark that variable as linearly
dependent for all the models.
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Output Data Sets
PROC SEVERITY writes the OUTCDF=, OUTEST=, OUTMODELINFO=, and OUTSTAT= data sets when
requested by their respective options in the PROC SEVERITY statement. It also writes the OUT= data set
when you specify the OUTPUT statement. The data sets and their contents are described in the following
sections.

OUT= Data Set

The OUT= data set that you specify in the OUTPUT statement records the estimates of the scoring functions
and quantiles that you specify in the OUTPUT statement.

For each distribution that you specify in the DIST statement, the OUT= data set contains one variable for
each scoring function that you specify in the FUNCTIONS= option and one variable for each quantile that
you specify in the QUANTILES= option. The prefix of the variable’s name is <distribution-name>_, whereas
the suffix of the variable’s name is determined by the information that you specify in the respective option
or by the default method that PROC SEVERITY uses. For more information about variable names, see the
description of the OUTPUT statement.

The OUT= data set also contains the variables that you specify in the COPYVARS= option. If you specify
the BY statement and if you want PROC SEVERITY to copy the BY variables from the DATA= data set to
the OUT= data set, then you must specify them in the COPYVARS= option.

The number of observations in the OUT= data set depends on the options that you specify in the OUTPUT
statement and whether or not you specify the SCALEMODEL statement.

If either of the following conditions is met, then the number of observations in the OUT= data set is equal to
the number of observations in the DATA= data set:

� You specify the SCALEMODEL statement.

� You specify the FUNCTIONS= option in the OUTPUT statement such that at least one scoring function
does not have a constant, nonmissing argument.

If neither of the preceding conditions is met, then the number of observations in the OUT= data set is equal
to the number of BY groups, which is equal to 1 if you do not specify the BY statement.

OUTCDF= Data Set

The OUTCDF= data set records the estimates of the cumulative distribution function (CDF) of each of the
specified model distributions and an estimate of the empirical distribution function (EDF).

If you specify BY variables, then the data are organized in BY groups and the data set contains variables that
you specify in the BY statement. In addition, the data set contains the following variables:

<response variable>
value of the response variable. The values are sorted. If there are multiple BY groups, the
values are sorted within each BY group.

_OBSNUM_ observation number in the DATA= data set. This is a sequence number that indicates the
order in which the procedure accesses the observation; it does not necessarily reflect the
actual observation number in the data set.
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_EDF_ estimate of the empirical distribution function (EDF). This estimate is computed by using
the EMPIRICALCDF= option that you specify in the PROC SEVERITY statement.

_EDF_STD estimate of the standard error of EDF. This estimate is computed by using a method that is
appropriate for the EMPIRICALCDF= option that you specify in the PROC SEVERITY
statement.

_EDF_LOWER estimate of the lower confidence limit of EDF for a pointwise 100.1 � ˛/% confidence
interval, where ˛ is the value of the EDFALPHA= option that you specify in the PROC
SEVERITY statement (default is ˛ D 0:05). For an EDF estimate Fn that has standard
error �n, it is computed as MAX.0; Fn � z.1�˛=2/�n/, where zp is the pth quantile from
the standard normal distribution.

_EDF_UPPER estimate of the upper confidence limit of EDF for a pointwise 100.1 � ˛/% confidence
interval, where ˛ is the value of the EDFALPHA= option that you specify in the PROC
SEVERITY statement (default is ˛ D 0:05). For an EDF estimate Fn that has standard
error �n, it is computed as MIN.1; Fn C z.1�˛=2/�n/, where zp is the pth quantile from
the standard normal distribution.

<distribution1>_CDF . . . <distributionD>_CDF
estimate of the cumulative distribution function (CDF) for each of the D candidate
distributions, computed by using the final parameter estimates for that distribution. This
value is missing if the parameter estimation process does not converge for the given
distribution.

If you specify regression effects, then the reported estimates are from a mixture distribu-
tion. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 2104.

If you specify truncation, then the data set contains the following additional variables:

<distribution1>_COND_CDF . . . <distributionD>_COND_CDF
estimate of the conditional CDF for each of the D candidate distributions, computed
by using the final parameter estimates for that distribution. This value is missing if the
parameter estimation process does not converge for the distribution. The conditional
estimates are computed by using the method that is described in the section “Truncation
and Conditional CDF Estimates” on page 2096.

OUTEST= Data Set

The OUTEST= data set records the estimates of the model parameters. It also contains estimates of their
standard errors and optionally their covariance structure. If you specify BY variables, then the data are
organized in BY groups and the data set contains variables that you specify in the BY statement.

If you do not specify the COVOUT option, then the data set contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information about
this distribution.

_TYPE_ type of the estimates reported in this observation. It can take one of the following two
values:
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EST point estimates of model parameters

STDERR standard error estimates of model parameters

_STATUS_ status of the reported estimates. The possible values are listed in the section “_STATUS_
Variable Values” on page 2160.

<Parameter 1> . . . <Parameter M>
M variables, named after the parameters of all candidate distributions, that contain
estimates of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are populated
only for parameters that correspond to the distribution that is indicated by the _MODEL_
variable. If _TYPE_ is EST, then the estimates are missing if the model does not
converge. If _TYPE_ is STDERR, then the estimates are missing if covariance estimates
cannot be obtained.

If you specify regression effects, then the estimate that is reported for the first parameter
of each distribution is the estimate of the base value of the scale or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects”
on page 2100.

<Regression Effect 1> . . . <Regression Effect K>
If your effect specification in the SCALEMODEL statement results in K regression
effects, then the OUTEST= data set contains K regression variables. The name of each
variable is formed by using the name of the effect and the names of the levels of the
CLASS variables that the effect might contain. If the effect name or level names are
too long, then the variable name is constructed by using partial effect name and integer
identifiers for BY groups and CLASS variable levels. The label of the variable is more
descriptive than the name of the variable. The variables contain estimates for their
respective regression coefficients. If an effect is deemed to be linearly dependent on
other effects for a given BY group, then a warning message is written to the SAS log
and a special missing value of .R is written in the respective variable. If _TYPE_ is EST,
then the estimates are missing if the model does not converge. If _TYPE_ is STDERR,
then the estimates are missing if covariance estimates cannot be obtained.

<Offset Variable>
If you specify an OFFSET= variable in the SCALEMODEL statement, then the OUT-
EST= data set contains a variable that is named after the offset variable. If _TYPE_ is
EST, then the value of this variable is 1. If _TYPE_ is STDERR, then the value of this
variable is a special missing value of .F.

If you specify the COVOUT option in the PROC SEVERITY statement, then the OUTEST= data set contains
additional observations that contain the estimates of the covariance structure. Given the symmetric nature
of the covariance structure, only the lower triangular portion is reported. In addition to the variables listed
and described previously, the data set contains the following variables that are either new or have a modified
description:

_TYPE_ type of the estimates reported in this observation. For observations that contain rows of
the covariance structure, the value is COV.

_STATUS_ status of the reported estimates. For observations that contain rows of the covariance
structure, the status is 0 if covariance estimation was successful. If estimation fails, the
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status is 1 and a single observation is reported with _TYPE_=COV and missing values for
all the parameter variables.

_NAME_ name of the parameter for the row of covariance matrix that is reported in the current
observation.

OUTMODELINFO= Data Set

The OUTMODELINFO= data set records the information about each candidate distribution that you specify
in the DIST statement. It contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information
about this distribution.

_DEPVAR_ name of the loss variable.

_DESCRIPTION_ descriptive name of the model. This has a nonmissing value only if the DESCRIP-
TION function has been defined for this model.

_VALID_ validity of the distribution definition. This has a value of 1 for valid definitions
and a value of 0 for invalid definitions. If the definition is invalid, then PROC
SEVERITY writes the reason for invalidity to the SAS log.

_PARMNAME1 . . . _PARMNAMEM
M variables that contain names of parameters of the distribution model, where M
is the maximum number of parameters across all the specified distribution models.
For a given distribution with m parameters, values of variables _PARMNAMEj
(j > m) are missing.

OUTSTAT= Data Set

The OUTSTAT= data set records statistics of fit and model selection information. If you specify BY variables,
then the data are organized in BY groups and the data set contains variables that you specify in the BY
statement. The data set contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information
about this distribution.

_NMODELPARM_ number of parameters in the distribution.

_NESTPARM_ number of estimated parameters. This includes the regression parameters, if you
specify any regression effects.

_NOBS_ number of nonmissing observations used for parameter estimation.

_STATUS_ status of the parameter estimation process for this model. The possible values are
listed in the section “_STATUS_ Variable Values” on page 2160.

_SELECTED_ indicator of the best distribution model. If the value is 1, then this model is the
best model for the current BY group according to the specified model selection
criterion. This value is missing if the parameter estimation process does not
converge for this model.
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Neg2LogLike value of the log likelihood, multiplied by –2, that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AIC value of the Akaike’s information criterion (AIC) that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AICC value of the corrected Akaike’s information criterion (AICC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

BIC value of the Schwarz Bayesian information criterion (BIC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

KS value of the Kolmogorov-Smirnov (KS) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AD value of the Anderson-Darling (AD) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

CVM value of the Craḿer–von Mises (CvM) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

_STATUS_ Variable Values

The _STATUS_ variable in the OUTEST= and OUTSTAT= data sets contains a value that indicates the status
of the parameter estimation process for the respective distribution model. The variable can take the following
values in the OUTEST= data set for _TYPE_=EST observations and in the OUTSTAT= data set:

0 The parameter estimation process converged for this model.

301 The parameter estimation process might not have converged for this model because there is no
improvement in the objective function value. This might indicate that the initial values of the
parameters are optimal, or you can try different convergence criteria in the NLOPTIONS statement.

302 The parameter estimation process might not have converged for this model because the number of
iterations exceeded the maximum allowed value. You can try setting a larger value for the MAXITER=
options in the NLOPTIONS statement.

303 The parameter estimation process might not have converged for this model because the number of
objective function evaluations exceeded the maximum allowed value. You can try setting a larger
value for the MAXFUNC= options in the NLOPTIONS statement.

304 The parameter estimation process might not have converged for this model because the time taken
by the process exceeded the maximum allowed value. You can try setting a larger value for the
MAXTIME= option in the NLOPTIONS statement.

400 The parameter estimation process did not converge for this model.

The _STATUS_ variable can take the following values in the OUTEST= data set for _TYPE_=STDERR and
_TYPE_=COV observations:
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0 The covariance and standard error estimates are available and valid.

1 The covariance and standard error estimates are not available, because the process of computing
covariance estimates failed.

Displayed Output
The SEVERITY procedure optionally produces displayed output by using the Output Delivery System (ODS).
All output is controlled by the PRINT= option in the PROC SEVERITY statement. Table 29.18 relates the
ODS tables to PRINT= options.

Table 29.18 ODS Tables Produced in PROC SEVERITY

ODS Table Name Description Option

AllFitStatistics Statistics of fit for all the
distribution models

PRINT=ALLFITSTATS

ConvergenceStatus Convergence status of
parameter estimation process

PRINT=CONVSTATUS

DescStats Descriptive statistics for the
response variable

PRINT=DESCSTATS

DistributionInfo Distribution information PRINT=DISTINFO
InitialValues Initial parameter values and

bounds
PRINT=INITIALVALUES

IterationHistory Optimization iteration
history

PRINT=NLOHISTORY

ModelSelection Model selection summary PRINT=SELECTION
OptimizationSummary Optimization summary PRINT=NLOSUMMARY
ParameterEstimates Final parameter estimates PRINT=ESTIMATES
RegDescStats Descriptive statistics for the

regression effects that do not
contain a CLASS variable

PRINT=DESCSTATS

StatisticsOfFit Statistics of fit PRINT=STATISTICS
Timing Timing information for

various computational stages
of the procedure

PRINT=ALL

TurnbullSummary Turnbull EDF estimation
summary

PRINT=ALL

If you do not specify the PRINT= option, then by default PROC SEVERITY produces ModelSelection,
ConvergenceStatus, OptimizationSummary, StatisticsOfFit, and ParameterEstimates ODS tables.

The following describes the content that is displayed in each table:
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AllFitStatistics (PRINT=ALLFITSTATS)
displays the comparison of all the statistics of fit for all the models in one table. The table does not
include the models whose parameter estimation process does not converge. If all the models fail to
converge, then this table is not produced. If the table contains more than one model, then the best
model according to each statistic is indicated with an asterisk (*) in that statistic’s column.

ConvergenceStatus (PRINT=CONVSTATUS)
displays the convergence status of the parameter estimation process.

DescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the response variable.

DistributionInfo (PRINT=DISTINFO)
displays the information about all the candidate distribution. It includes the name, the description, the
number of distribution parameters, and whether the distribution is valid for the specified modeling task.

InitialValues (PRINT=INITIALVALUES)
displays the initial values and bounds used for estimating each model.

IterationHistory (PRINT=NLOHISTORY)
displays the iteration history of the nonlinear optimization process used for estimating the parameters.

ModelSelection (PRINT=SELECTION)
displays the model selection table. The table shows the convergence status of each candidate model,
and the value of the selection criterion along with an indication of the selected model.

OptimizationSummary (PRINT=NLOSUMMARY)
displays the summary of the nonlinear optimization process used for estimating the parameters.

ParameterEstimates (PRINT=ESTIMATES)
displays the final estimates of parameters. The estimates are not displayed for models whose parameter
estimation process does not converge.

RegDescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the regression effects in the SCALEMODEL statement that do
not contain a CLASS variable.

StatisticsOfFit (PRINT=STATISTICS)
displays the statistics of fit for each model. The statistics of fit are not displayed for models whose
parameter estimation process does not converge.

Timing (PRINT=ALL)
displays elapsed times (absolute and relative) for the main tasks of the procedure.

TurnbullSummary (PRINT=ALL)
displays the summary of Turnbull’s estimation process if Turnbull’s method is used for computing
EDF estimates. The summary includes whether the nonlinear optimization converged, the number of
iterations, the maximum absolute relative error, the maximum absolute reduced gradient, and whether
the final estimates are maximum likelihood estimates. This table is produced only if you specify
PRINT=ALL and Turnbull’s method is used for computing EDF estimates.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the SEVERITY procedure.

ODS Graph Names

PROC SEVERITY assigns a name to each graph that it creates by using ODS. You can use these names to
selectively reference the graphs. The names are listed in Table 29.19.

Table 29.19 ODS Graphics Produced by PROC SEVERITY

ODS Graph Name Plot Description PLOTS= Option

CDFPlot Comparative CDF plot CDF
CDFDistPlot CDF plot per distribution CDFPERDIST
PDFPlot Comparative PDF plot PDF
PDFDistPlot PDF plot per distribution PDFPERDIST
PPPlot P-P plot of CDF and EDF PP
QQPlot Q-Q plot QQ

Comparative CDF Plot

The comparative CDF plot helps you visually compare the cumulative distribution function (CDF) estimates
of all the candidate distribution models and the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge. The horizontal
axis represents the values of the response variable. The vertical axis represents the values of the CDF or EDF
estimates.

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 2096.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 2104.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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CDF Plot per Distribution

The CDF plot per distribution shows the CDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The plot also contains estimates of the EDF. The
horizontal axis represents the values of the response variable. The vertical axis represents the values of the
CDF or EDF estimates.

This plot shows the lower and upper pointwise confidence limits for the EDF estimates. For an EDF estimate
Fn with standard error �n, they are computed as MAX.0; Fn � z.1�˛=2/�n/ and MIN.1; Fn C z.1�˛=2/�n/,
respectively, where zp is the pth quantile from the standard normal distribution and ˛ denotes the confidence
level that you specify in the EDFALPHA= option (the default is ˛ D 0:05).

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 2096.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 2104.

Comparative PDF Plot

The comparative PDF plot helps you visually compare the probability density function (PDF) estimates of all
the candidate distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge. The horizontal axis represents the values of the response variable. The
vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 2104.

PDF Plot per Distribution

The PDF plot per distribution shows the PDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The horizontal axis represents the values of the
response variable. The vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 2104.
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P-P Plot of CDF and EDF

The P-P plot of CDF and EDF is the probability-probability plot that compares the CDF estimates of a
distribution to the EDF estimates. A plot is not prepared for models whose parameter estimation process does
not converge. The horizontal axis represents the CDF estimates of a candidate distribution, and the vertical
axis represents the EDF estimates.

This plot can be interpreted as displaying the data that are used for computing the EDF-based statistics of
fit for the given candidate distribution. As described in the section “EDF-Based Statistics” on page 2122,
these statistics are computed by comparing the EDF, denoted by Fn.y/, to the CDF, denoted by F.y/, at
each of the response variable values y. Using the probability inverse transform z D F.y/, this is equivalent
to comparing the EDF of the z, denoted by Fn.z/, to the CDF of z, denoted by F.z/ (D’Agostino and
Stephens 1986, Ch. 4). Because the CDF of z is a uniform distribution (F.z/ D z), the EDF-based statistics
can be computed by comparing the EDF estimate of z to the estimate of z. The horizontal axis of the plot
represents the estimated CDF Oz D OF .y/. The vertical axis represents the estimated EDF of z, OFn.z/. The
plot contains a scatter plot of ( Oz, OFn.z/) points and a reference line Fn.z/ D z that represents the expected
uniform distribution of z. Points that are scattered closer to the reference line indicate a better fit than the
points that are scattered farther away from the reference line.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 2120. So conditional estimates of CDF are displayed, which are computed by using
the method that is described in the section “Truncation and Conditional CDF Estimates” on page 2096.

If you specify regression effects, then the displayed CDF estimates, both unconditional and conditional, are
from a mixture distribution. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 2104.

Q-Q Plot

The Q-Q plot is a quantile-quantile scatter plot that compares the empirical quantiles to the quantiles from
a candidate distribution. A plot is not prepared for models whose parameter estimation process does not
converge. The horizontal axis represents the quantiles from a candidate distribution, and the vertical axis
represents the empirical quantiles.

Each point in the plot corresponds to a specific value of the EDF estimate, Fn. The Y coordinate is the value
of the response variable for which Fn is computed. The X coordinate is computed by using one of the two
following methods for a candidate distribution named dist:

� If you have defined the dist_QUANTILE function that satisfies the requirements listed in the section
“dist_QUANTILE” on page 2133, then that function is invoked by using Fn and estimated distribution
parameters as arguments. The QUANTILE function is defined in the Sashelp.Svrtdist library for all
the predefined distributions.

� If the dist_QUANTILE function is not defined, then PROC SEVERITY numerically inverts the
dist_CDF function at the CDF value of Fn for the estimated distribution parameters. If the dist_CDF
function is not defined, then the exp(dist_LOGCDF) function is inverted. If the inversion fails, the
corresponding point is not plotted in the Q-Q plot.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 2120. The CDF inversion process, whether done numerically or by evaluating the
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dist_QUANTILE function, needs to accept an unconditional CDF value. So the Fn value is first transformed
to an unconditional estimate F un as

F un D Fn � .
OF .trmax/ �

OF .t lmin//C
OF .t lmin/

where OF .trmax/ and OF .t lmin/ are as defined in the section “Truncation and Conditional CDF Estimates” on
page 2096.

If you specify regression effects, then the value of the first distribution parameter is determined by using the
DFMIXTURE=MEAN method that is described in the section “CDF and PDF Estimates with Regression
Effects” on page 2104.

Examples: SEVERITY Procedure

Example 29.1: Defining a Model for Gaussian Distribution
Suppose you want to fit a distribution model other than one of the predefined ones available to you. Suppose
you want to define a model for the Gaussian distribution with the following typical parameterization of the
PDF (f ) and CDF (F):
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For PROC SEVERITY, a distribution model consists of a set of functions and subroutines that are defined
with the FCMP procedure. Each function and subroutine should be written following certain rules. For
more information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 2126.

NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the process of defining your own distribution models. Although the distribution has a
support over the entire real line, you can fit the distribution with PROC SEVERITY only if the input sample
contains nonnegative values.

The following SAS statements define a distribution model named NORMAL for the Gaussian distribution.
The OUTLIB= option in the PROC FCMP statement stores the compiled versions of the functions and
subroutines in the ‘models’ package of the Work.Sevexmpl library. The LIBRARY= option in the PROC
FCMP statement enables this PROC FCMP step to use the SVRTUTIL_RAWMOMENTS utility subroutine
that is available in the Sashelp.Svrtdist library. The subroutine is described in the section “Predefined Utility
Functions” on page 2138.

/*-------- Define Normal Distribution with PROC FCMP ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function normal_pdf(x,Mu,Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
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return ( exp(-(x-Mu)**2/(2 * Sigma**2)) /
(Sigma * sqrt(2*constant('PI'))) );

endsub;

function normal_cdf(x,Mu,Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
z = (x-Mu)/Sigma;
return (0.5 + 0.5*erf(z/sqrt(2)));

endsub;

subroutine normal_parminit(dim, x[*], nx[*], F[*], Ftype, Mu, Sigma);
outargs Mu, Sigma;
array m[2] / nosymbols;

/* Compute estimates by using method of moments */
call svrtutil_rawmoments(dim, x, nx, 2, m);
Mu = m[1];
Sigma = sqrt(m[2] - m[1]**2);

endsub;

subroutine normal_lowerbounds(Mu, Sigma);
outargs Mu, Sigma;
Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */

endsub;
quit;

The statements define the two functions required of any distribution model (NORMAL_PDF and NOR-
MAL_CDF) and two optional subroutines (NORMAL_PARMINIT and NORMAL_LOWERBOUNDS). The
name of each function or subroutine must follow a specific structure. It should start with the model’s short or
identifying name, which is ‘NORMAL’ in this case, followed by an underscore ‘_’, followed by a keyword
suffix such as ‘PDF’. Each function or subroutine has a specific purpose. For more information about all the
functions and subroutines that you can define for a distribution model, see the section “Defining a Severity
Distribution Model with the FCMP Procedure” on page 2126. Following is the description of each function
and subroutine defined in this example:

� The PDF and CDF suffixes define functions that return the probability density function and cumulative
distribution function values, respectively, given the values of the random variable and the distribution
parameters.

� The PARMINIT suffix defines a subroutine that returns the initial values for the parameters by using the
sample data or the empirical distribution function (EDF) estimate computed from it. In this example,
the parameters are initialized by using the method of moments. Hence, you do not need to use the EDF
estimates, which are available in the F array. The first two raw moments of the Gaussian distribution
are as follows:

EŒx� D �; EŒx2� D �2 C �2

Given the sample estimates, m1 and m2, of these two raw moments, you can solve the equations
EŒx� D m1 and EŒx2� D m2 to get the following estimates for the parameters: O� D m1 and
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O� D

q
m2 �m

2
1. The NORMAL_PARMINIT subroutine implements this solution. It uses the

SVRTUTIL_RAWMOMENTS utility subroutine to compute the first two raw moments.

� The LOWERBOUNDS suffix defines a subroutine that returns the lower bounds on the parameters.
PROC SEVERITY assumes a default lower bound of 0 for all the parameters when a LOWERBOUNDS
subroutine is not defined. For the parameter � (Mu), there is no lower bound, so you need to define
the NORMAL_LOWERBOUNDS subroutine. It is recommended that you assign bounds for all the
parameters when you define the LOWERBOUNDS subroutine or its counterpart, the UPPERBOUNDS
subroutine. Any unassigned value is returned as a missing value, which PROC SEVERITY interprets
to mean that the parameter is unbounded, and that might not be what you want.

You can now use this distribution model with PROC SEVERITY. Let the following DATA step statements
simulate a normal sample with � D 10 and � D 2:5:

/*-------- Simulate a Normal sample ----------*/
data testnorm(keep=y);

call streaminit(12345);
do i=1 to 100;

y = rand('NORMAL', 10, 2.5);
output;

end;
run;

Prior to using your distribution with PROC SEVERITY, you must communicate the location of the library
that contains the definition of the distribution and the locations of libraries that contain any functions and
subroutines used by your distribution model. The following OPTIONS statement sets the CMPLIB= system
option to include the FCMP library Work.Sevexmpl in the search path used by PROC SEVERITY to find
FCMP functions and subroutines:

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

Now, you are ready to fit the NORMAL distribution model with PROC SEVERITY. The following statements
fit the model to the values of Y in the Work.Testnorm data set:

/*--- Fit models with PROC SEVERITY ---*/
proc severity data=testnorm print=all;

loss y;
dist Normal;

run;

The DIST statement specifies the identifying name of the distribution model, which is ‘NORMAL’. Neither
the INEST= option nor the INSTORE= option is specified in the PROC SEVERITY statement, and the INIT=
option is not specified in the DIST statement. So PROC SEVERITY initializes the parameters by invoking
the NORMAL_PARMINIT subroutine.

Some of the results prepared by the preceding PROC SEVERITY step are shown in Output 29.1.1 and
Output 29.1.2. The descriptive statistics of variable Y and the “Model Selection” table, which includes just
the normal distribution, are shown in Output 29.1.1.
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Output 29.1.1 Summary of Results for Fitting the Normal Distribution

The SEVERITY Procedure

Input Data Set

Name WORK.TESTNORM

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 3.88249

Maximum 16.00864

Mean 10.02059

Standard Deviation 2.37730

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal Yes 455.97541 Yes

The initial values for the parameters, the optimization summary, and the final parameter estimates are shown
in Output 29.1.2. No iterations are required to arrive at the final parameter estimates, which are identical to
the initial values. This confirms the fact that the maximum likelihood estimates for the Gaussian distribution
are identical to the estimates obtained by the method of moments that was used to initialize the parameters in
the NORMAL_PARMINIT subroutine.

Output 29.1.2 Details of the Fitted Normal Distribution Model

The SEVERITY Procedure
Normal Distribution

Distribution Information

Name Normal

Distribution Parameters 2

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 10.02059 -Infty Infty

Sigma 2.36538 1.05367E-8 Infty

Optimization Summary

Optimization Technique Trust Region

Iterations 0

Function Calls 4

Log Likelihood -227.98770

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 10.02059 0.23894 41.94 <.0001

Sigma 1 2.36538 0.16896 14.00 <.0001
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The NORMAL distribution defined and illustrated here has no scale parameter, because all the following
inequalities are true:
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This implies that you cannot estimate the influence of regression effects on a model for the response variable
based on this distribution.

Example 29.2: Defining a Model for the Gaussian Distribution with a Scale
Parameter

If you want to estimate the influence of regression effects, then the model needs to be parameterized to have
a scale parameter. Although this might not be always possible, it is possible for the Gaussian distribution by
replacing the location parameter � with another parameter, ˛ D �=� , and defining the PDF (f ) and the CDF
(F) as follows:
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You can verify that � is the scale parameter, because both of the following equalities are true:
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NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the concept of parameterizing a distribution such that it has a scale parameter. Although
the distribution has a support over the entire real line, you can fit the distribution with PROC SEVERITY
only if the input sample contains nonnegative values.

The following statements use the alternate parameterization to define a new model named NORMAL_S. The
definition is stored in the Work.Sevexmpl library.
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/*-------- Define Normal Distribution With Scale Parameter ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function normal_s_pdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
return ( exp(-(x/Sigma - Alpha)**2/2) /

(Sigma * sqrt(2*constant('PI'))) );
endsub;

function normal_s_cdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
z = x/Sigma - Alpha;
return (0.5 + 0.5*erf(z/sqrt(2)));

endsub;

subroutine normal_s_parminit(dim, x[*], nx[*], F[*], Ftype, Sigma, Alpha);
outargs Sigma, Alpha;
array m[2] / nosymbols;

/* Compute estimates by using method of moments */
call svrtutil_rawmoments(dim, x, nx, 2, m);
Sigma = sqrt(m[2] - m[1]**2);
Alpha = m[1]/Sigma;

endsub;

subroutine normal_s_lowerbounds(Sigma, Alpha);
outargs Sigma, Alpha;
Alpha = .; /* Alpha has no lower bound */
Sigma = 0; /* Sigma > 0 */

endsub;
quit;

An important point to note is that the scale parameter Sigma is the first distribution parameter (after the
‘x’ argument) listed in the signatures of NORMAL_S_PDF and NORMAL_S_CDF functions. Sigma is
also the first distribution parameter listed in the signatures of other subroutines. This is required by PROC
SEVERITY, so that it can identify which is the scale parameter. When you specify regression effects, PROC
SEVERITY checks whether the first parameter of each candidate distribution is a scale parameter (or a
log-transformed scale parameter if dist_SCALETRANSFORM subroutine is defined for the distribution with
LOG as the transform). If it is not, then an appropriate message is written the SAS log and that distribution is
not fitted.

Let the following DATA step statements simulate a sample from the normal distribution where the parameter
� is affected by the regressors as follows:

� D exp.1C 0:5 X1C 0:75 X3 � 2 X4C X5/

The sample is simulated such that the regressor X2 is linearly dependent on regressors X1 and X3.
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/*--- Simulate a Normal sample affected by Regressors ---*/
data testnorm_reg(keep=y x1-x5 Sigma);

array x{*} x1-x5;
array b{6} _TEMPORARY_ (1 0.5 . 0.75 -2 1);
call streaminit(34567);
label y='Normal Response Influenced by Regressors';

do n = 1 to 100;
/* simulate regressors */
do i = 1 to dim(x);

x(i) = rand('UNIFORM');
end;
/* make x2 linearly dependent on x1 and x3 */
x(2) = x(1) + 5 * x(3);

/* compute log of the scale parameter */
logSigma = b(1);
do i = 1 to dim(x);

if (i ne 2) then
logSigma = logSigma + b(i+1) * x(i);

end;

Sigma = exp(logSigma);
y = rand('NORMAL', 25, Sigma);
output;

end;
run;

The following statements use PROC SEVERITY to fit the NORMAL_S distribution model along with some
of the predefined distributions to the simulated sample:

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit models with PROC SEVERITY --------*/
proc severity data=testnorm_reg print=all plots=none;

loss y;
scalemodel x1-x5;
dist Normal_s burr logn pareto weibull;

run;

The “Model Selection” table in Output 29.2.1 indicates that all the models, except the Burr distribution
model, have converged. Also, only three models, Normal_s, Burr, and Weibull, seem to have a good fit for
the data. The table that compares all the fit statistics indicates that Normal_s model is the best according to
the likelihood-based statistics; however, the Burr model is the best according to the EDF-based statistics.

Output 29.2.1 Summary of Results for Fitting the Normal Distribution with Regressors

The SEVERITY Procedure

Input Data Set

Name WORK.TESTNORM_REG
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Output 29.2.1 continued

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal_s Yes 603.95786 Yes

Burr Maybe 612.81685 No

Logn Yes 749.20125 No

Pareto Yes 841.07022 No

Weibull Yes 612.77496 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152 0.70769

Burr 612.81685 626.81685 628.03424 645.05304 1.50448 * 3.90072 * 0.63399 *

Logn 749.20125 761.20125 762.10448 776.83227 2.88110 16.20558 3.04825

Pareto 841.07022 853.07022 853.97345 868.70124 4.83810 31.60568 6.84046

Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559 0.63458

Note: The asterisk (*) marks the best model according to each column's criterion.

This prompts you to further evaluate why the model with Burr distribution has not converged. The initial
values, convergence status, and the optimization summary for the Burr distribution are shown in Output 29.2.2.
The initial values table indicates that the regressor X2 is redundant, which is expected. More importantly,
the convergence status indicates that it requires more than 50 iterations. PROC SEVERITY enables you to
change several settings of the optimizer by using the NLOPTIONS statement. In this case, you can increase
the limit of 50 on the iterations, change the convergence criterion, or change the technique to something other
than the default trust-region technique.

Output 29.2.2 Details of the Fitted Burr Distribution Model

The SEVERITY Procedure
Burr Distribution

Distribution Information

Name Burr

Description Burr Distribution (Type XII Family)

Distribution Parameters 3

Regression Parameters 4

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Theta 25.75198 1.05367E-8 Infty

Alpha 2.00000 1.05367E-8 Infty

Gamma 2.00000 1.05367E-8 Infty

x1 0.07345 -709.78271 709.78271

x2 Redundant

x3 -0.14056 -709.78271 709.78271

x4 0.27064 -709.78271 709.78271

x5 -0.23230 -709.78271 709.78271
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Output 29.2.2 continued

Convergence Status

Needs more than 50 iterations.

Optimization Summary

Optimization Technique Trust Region

Iterations 50

Function Calls 137

Log Likelihood -306.40842

The following PROC SEVERITY step uses the NLOPTIONS statement to change the convergence criterion
and the limits on the iterations and function evaluations, exclude the lognormal and Pareto distributions that
have been confirmed previously to fit the data poorly, and exclude the redundant regressor X2 from the model:

/*--- Refit and compare models with higher limit on iterations ---*/
proc severity data=testnorm_reg print=all plots=pp;

loss y;
scalemodel x1 x3-x5;
dist Normal_s burr weibull;
nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500;

run;

The results shown in Output 29.2.3 indicate that the Burr distribution has now converged and that the Burr
and Weibull distributions have an almost identical fit for the data. The NORMAL_S distribution is still the
best distribution according to the likelihood-based criteria.

Output 29.2.3 Summary of Results after Changing Maximum Number of Iterations

The SEVERITY Procedure

Input Data Set

Name WORK.TESTNORM_REG

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal_s Yes 603.95786 Yes

Burr Yes 612.79276 No

Weibull Yes 612.77496 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152 0.70769

Burr 612.79276 626.79276 628.01015 645.02895 1.50472 * 3.90351 * 0.63433 *

Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559 0.63458

Note: The asterisk (*) marks the best model according to each column's criterion.

The comparison of the PDF estimates of all the candidates is shown in Output 29.2.4. Each plotted PDF
estimate is an average computed over the N PDF estimates that are obtained with the scale parameter
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determined by each of the N observations in the input data set. The PDF plot shows that the Burr and Weibull
models result in almost identical estimates. All the estimates have a slight left skew with the mode closer to
Y=25, which is the mean of the simulated sample.

Output 29.2.4 Comparison of EDF and CDF Estimates of the Fitted Models

The P-P plots for the Normal_s and Burr distributions are shown in Output 29.2.5. These plots show how the
EDF estimates compare against the CDF estimates. Each plotted CDF estimate is an average computed over
the N CDF estimates that are obtained with the scale parameter determined by each of the N observations in
the input data set. Comparing the P-P plots of Normal_s and Burr distributions indicates that both fit the data
almost similarly, but the Burr distribution fits the right tail slightly better, which explains why the EDF-based
statistics prefer it over the Normal_s distribution.
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Output 29.2.5 Comparison of EDF and CDF Estimates of NORMAL_S and BURR Models

Example 29.3: Defining a Model for Mixed-Tail Distributions
In some applications, a few severity values tend to be extreme as compared to the typical values. The extreme
values represent the worst case scenarios and cannot be discarded as outliers. Instead, their distribution must
be modeled to prepare for their occurrences. In such cases, it is often useful to fit one distribution to the
non-extreme values and another distribution to the extreme values. The mixed-tail distribution mixes two
distributions: one for the body region, which contains the non-extreme values, and another for the tail region,
which contains the extreme values. The tail distribution is usually a generalized Pareto distribution (GPD),
because it is good for modeling the conditional excess severity above a threshold. The body distribution can
be any distribution. The following definitions are used in describing a generic formulation of a mixed-tail
distribution:

g.x/ PDF of the body distribution

G.x/ CDF of the body distribution

h.x/ PDF of the tail distribution

H.x/ CDF of the tail distribution

� scale parameter for the body distribution

� set of nonscale parameters for the body distribution

� shape parameter for the GPD tail distribution

xr normalized value of the response variable at which the tail starts

pn mixing probability

Given these notations, the PDF f .x/ and the CDF F.x/ of the mixed-tail distribution are defined as

f .x/ D

� pn
G.xb/

g.x/ if x � xb
.1 � pn/h.x � xb/ if x > xb
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F.x/ D

� pn
G.xb/

G.x/ if x � xb
pn C .1 � pn/H.x � xb/ if x > xb

where xb D �xr is the value of the response variable at which the tail starts.

These definitions indicate the following:

� The body distribution is conditional on X � xb , where X denotes the random response variable.

� The tail distribution is the generalized Pareto distribution of the .X � xb/ values.

� The probability that a response variable value belongs to the body is pn. Consequently the probability
that the value belongs to the tail is .1 � pn/.

The parameters of this distribution are � , �, �, xr , and pn. The scale of the GPD tail distribution �t is
computed as

�t D
G.xbI �;�/

g.xbI �;�/

.1 � pn/

pn
D �

G.xr I � D 1;�/

g.xr I � D 1;�/

.1 � pn/

pn

The parameter xr is usually initialized using a tail index estimation algorithm. One such algorithm is
Hill’s algorithm (Danielsson et al. 2001), which is implemented by the predefined utility function SVRTU-
TIL_HILLCUTOFF available to you in the Sashelp.Svrtdist library. The algorithm and the utility function
are described in detail in the section “Predefined Utility Functions” on page 2138. The function computes an
estimate of xb , which can be used to compute an initial estimate of xr as xr D xb= O� , where O� is the estimate
of the scale parameter of the body distribution.

The parameter pn is usually determined by the domain expert based on the fraction of losses that are expected
to belong to the tail.

The following SAS statements define the LOGNGPD distribution model for a mixed-tail distribution with the
lognormal distribution as the body distribution and GPD as the tail distribution:

/*------- Define Lognormal Body-GPD Tail Mixed Distribution -------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function LOGNGPD_DESCRIPTION() $256;
length desc $256;
desc1 = "Lognormal Body-GPD Tail Distribution.";
desc2 = " Mu, Sigma, Xi, and Xr are free parameters.";
desc3 = " Pn is a constant parameter.";
desc = desc1 || desc2 || desc3;
return(desc);

endsub;

function LOGNGPD_SCALETRANSFORM() $3;
length xform $3;
xform = "LOG";
return (xform);

endsub;

subroutine LOGNGPD_CONSTANTPARM(Pn);
endsub;
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function LOGNGPD_PDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then do;

return ((Pn/p)*PDF('LOGN', x, Mu, Sigma));
end;
else do;

gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
h = (1+Xi*(x-cutoff)/gpd_scale)**(-1-(1/Xi))/gpd_scale;
return ((1-Pn)*h);

end;
endsub;

function LOGNGPD_CDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then do;

return ((Pn/p)*CDF('LOGN', x, Mu, Sigma));
end;
else do;

gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
H = 1 - (1 + Xi*((x-cutoff)/gpd_scale))**(-1/Xi);
return (Pn + (1-Pn)*H);

end;
endsub;

subroutine LOGNGPD_PARMINIT(dim,x[*],nx[*],F[*],Ftype,
Mu,Sigma,Xi,Xr,Pn);

outargs Mu,Sigma,Xi,Xr,Pn;
array xe[1] / nosymbols;
array nxe[1] / nosymbols;

eps = constant('MACEPS');

Pn = 0.8; /* Set mixing probability */
_status_ = .;
call streaminit(56789);
Xb = svrtutil_hillcutoff(dim, x, 100, 25, _status_);
if (missing(_status_) or _status_ = 1) then

Xb = svrtutil_percentile(Pn, dim, x, F, Ftype);

/* Initialize lognormal parameters */
call logn_parminit(dim, x, nx, F, Ftype, Mu, Sigma);
if (not(missing(Mu))) then

Xr = Xb/exp(Mu);
else

Xr = .;

/* prepare arrays for excess values */
i = 1;
do while (i <= dim and x[i] < Xb+eps);

i = i + 1;
end;
dime = dim-i+1;
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if (dime > 0) then do;
call dynamic_array(xe, dime);
call dynamic_array(nxe, dime);
j = 1;
do while(i <= dim);

xe[j] = x[i] - Xb;
nxe[j] = nx[i];
i = i + 1;
j = j + 1;

end;

/* Initialize GPD's shape parameter using excess values */
call gpd_parminit(dime, xe, nxe, F, Ftype, theta_gpd, Xi);

end;
else do;

Xi = .;
end;

endsub;

subroutine LOGNGPD_LOWERBOUNDS(Mu,Sigma,Xi,Xr,Pn);
outargs Mu,Sigma,Xi,Xr,Pn;

Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */
Xi = 0; /* Xi > 0 */
Xr = 0; /* Xr > 0 */

endsub;
quit;

Note the following points about the LOGNGPD definition:

� The parameter pn is not estimated with the maximum likelihood method used by PROC SEVERITY,
so you need to specify it as a constant parameter by defining the dist_CONSTANTPARM subroutine.
The signature of the LOGNGPD_CONSTANTPARM subroutine lists only the constant parameter Pn.

� The LOGNGPD_PARMINIT subroutine initializes the parameter xr by first using the SVRTU-
TIL_HILLCUTOFF utility function to compute an estimate of the cutoff point Oxb and then computing
xr D Oxb=e

O�. If SVRTUTIL_HILLCUTOFF fails to compute a valid estimate, then the SVRTU-
TIL_PERCENTILE utility function is used to set Oxb to the pnth percentile of the data. The parameter
pn is fixed to 0.8.

� The Sashelp.Svrtdist library is specified with the LIBRARY= option in the PROC FCMP state-
ment to enable the LOGNGPD_PARMINIT subroutine to use the predefined utility functions (SVR-
TUTIL_HILLCUTOFF and SVRTUTIL_PERCENTILE) and parameter initialization subroutines
(LOGN_PARMINIT and GPD_PARMINIT).

� The LOGNGPD_LOWERBOUNDS subroutine defines the lower bounds for all parameters. This
subroutine is required because the parameter Mu has a non-default lower bound. The bounds for Sigma,
Xr , and Xi must be specified. If they are not specified, they are returned as missing values, which
PROC SEVERITY interprets as having no lower bound. You do not need to specify any bounds for the
constant parameter Pn, because it is not subject to optimization.
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The following DATA step statements simulate a sample from a mixed-tail distribution with a lognormal
body and GPD tail. The parameter pn is fixed to 0.8, the same value used in the LOGNGPD_PARMINIT
subroutine defined previously.

/*----- Simulate a sample for the mixed-tail distribution -----*/
data testmixdist(keep=y label='Lognormal Body-GPD Tail Sample');

call streaminit(45678);
label y='Response Variable';
N = 1000;
Mu = 1.5;
Sigma = 0.25;
Xi = 0.7;
Pn = 0.8;

/* Generate data comprising the lognormal body */
Nbody = N*Pn;
do i=1 to Nbody;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;

/* Generate data comprising the GPD tail */
cutoff = quantile('LOGNORMAL', Pn, Mu, Sigma);
gpd_scale = (1-Pn) / pdf('LOGNORMAL', cutoff, Mu, Sigma);
do i=Nbody+1 to N;

y = cutoff + ((1-rand('UNIFORM'))**(-Xi) - 1)*gpd_scale/Xi;
output;

end;
run;

The following statements use PROC SEVERITY to fit the LOGNGPD distribution model to the simulated
sample. They also fit three other predefined distributions (BURR, LOGN, and GPD). The final parameter
estimates are written to the Work.Parmest data set.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit LOGNGPD model with PROC SEVERITY --------*/
proc severity data=testmixdist print=all outest=parmest

plots(histogram kernel)=(all conditionalpdf(leftq=0.7 rightq=0.95));
loss y;
dist logngpd burr logn gpd;

run;

The PLOTS=CONDITIONALPDF option specifies that the PDF plot be split into three regions that are
separated by the 70th and 95th percentiles.

Some of the results prepared by PROC SEVERITY are shown in Output 29.3.1 through Output 29.3.5. The
“Model Selection” table in Output 29.3.1 indicates that all models converged. The last table in Output 29.3.1
shows that the model with LOGNGPD distribution has the best fit according to all the statistics of fit. The
Burr distribution model is the closest contender to the LOGNGPD model, but the GPD distribution model
fits the data poorly.
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Output 29.3.1 Summary of Fitting Mixed-Tail Distribution

The SEVERITY Procedure

Input Data Set

Name WORK.TESTMIXDIST

Label Lognormal Body-GPD Tail Sample

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

logngpd Yes 3640 Yes

Burr Yes 3687 No

Logn Yes 3862 No

Gpd Yes 5344 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

logngpd 3640 * 3650 * 3650 * 3674 * 1.22054 * 1.12053 * 0.21314 *

Burr 3687 3693 3693 3708 1.33323 2.34704 0.39000

Logn 3862 3866 3866 3875 2.20231 7.31780 0.94769

Gpd 5344 5348 5348 5358 12.27970 218.30354 44.54186

Note: The asterisk (*) marks the best model according to each column's criterion.

Output 29.3.2 Comparison of the CDF and PDF Estimates of the Fitted Models

The plots in Output 29.3.2 confirm that the GPD distribution fits the data poorly. It is difficult to compare the
other three distributions based on the CDF and PDF comparison plots because of the heaviness of the tail.
However, the conditional PDF plot in Output 29.3.3 helps you compare the distributions by zooming in on
certain regions of the PDF comparison plot.

The conditional PDF plot of the left region (‘� 70th Percentile’) shows that Burr and lognormal distributions
do not fit the data as well as the LOGNGPD distribution in the body portion. The plot of the center region
shows that Burr and lognormal distributions also have a poorer fit in the tail portion than the LOGNGPD
distribution. The downward dip in the PDF of the LOGNGPD distribution around y = 6.0 in the center
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plot shows the approximate location of xb , where the tail portion of the mixture distribution begins. This
illustrates the LOGNGPD distribution’s ability to adapt to the tail.

Output 29.3.3 Comparison of the Conditional PDF Estimates of the Fitted Models

The Burr distribution is the closest contender to the LOGNGPD distribution. The P-P plots in Output 29.3.4
provide more visual confirmation that the LOGNGPD distribution fits the tail region better than the Burr
distribution.
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Output 29.3.4 P-P Plots for the LOGNGPD and BURR Distribution Models

The detailed results for the LOGNGPD distribution are shown in Output 29.3.5. The initial values table
shows the fixed value of the Pn parameter that the LOGNGPD_PARMINIT subroutine sets. The table uses
the bounds columns to indicate that it is a constant parameter. The last table in the figure shows the final
parameter estimates. The estimates of all free parameters are significantly different from 0. As expected, the
final estimate of the constant parameter Pn has not changed from its initial value.

Output 29.3.5 Detailed Results for the LOGNGPD Distribution

The SEVERITY Procedure
logngpd Distribution

Distribution Information

Name logngpd

Description Lognormal Body-GPD Tail Distribution. Mu, Sigma, Xi, and Xr are free parameters. Pn is a constant
parameter.

Distribution
Parameters

5

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 1.14149 -Infty Infty

Sigma 1.03316 1.05367E-8 Infty

Xi 0.48188 1.05367E-8 Infty

Xr 1.62621 1.05367E-8 Infty

Pn 0.80000 Constant Constant

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 29.3.5 continued

Optimization Summary

Optimization Technique Trust Region

Iterations 26

Function Calls 81

Failed Function Calls 1

Log Likelihood -1819.8

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 1.61374 0.02509 64.31 <.0001

Sigma 1 0.31716 0.01541 20.59 <.0001

Xi 1 0.53177 0.08867 6.00 <.0001

Xr 1 1.19816 0.03925 30.52 <.0001

Pn 1 0.80000 Constant . .

The following SAS statements use the parameter estimates to compute the value where the tail region is
estimated to start (xb D e O� Oxr ) and the scale of the GPD tail distribution (�t D

G.xb/
g.xb/

.1�pn/
pn

):

/*-------- Compute tail cutoff and tail distribution's scale --------*/
data xb_thetat(keep=x_b theta_t);

set parmest(where=(_MODEL_='logngpd' and _TYPE_='EST'));
x_b = exp(Mu) * Xr;
theta_t = (CDF('LOGN',x_b,Mu,Sigma)/PDF('LOGN',x_b,Mu,Sigma)) *

((1-Pn)/Pn);
run;

proc print data=xb_thetat noobs;
run;

Output 29.3.6 Start of the Tail and Scale of the GPD Tail Distribution

x_b theta_t

6.01665 1.00677

The computed values of xb and �t are shown as x_b and theta_t in Output 29.3.6. Equipped with this
additional derived information, you can now interpret the results of fitting the mixed-tail distribution as
follows:

� The tail starts at y � 6:02. Optimizing the scale-normalized relative cutoff (xr ) in addition to
optimizing the scale of the body region (� D e�) gives you more flexibility in optimizing the absolute
cutoff (xb). If Xr is declared as a constant parameter, then xb is optimized by virtue of optimizing the
scale of the body region (� D e�), and you must rely on Hill’s tail index estimator to yield an initial
estimate of xb that is close to an optimal estimate. By keeping Xr as a free parameter, you account for
the possibility that Hill’s estimator can yield a suboptimal estimate.

� The values y � 6:02 follow the lognormal distribution with parameters � � 1:61 and � � 0:32.
These parameter estimates are reasonably close to the parameters of the body distribution that is used
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for simulating the sample.

� If Xt denotes the loss random variable for the tail defined as Xt D X � xb , where X is the original loss
variable, then for this example, PrŒXt D X � 6:02jXt > 0� follows the GPD density function with
scale �t � 1:01 and shape � � 0:53.

Example 29.4: Estimating Parameters Using the Cramér–von Mises Estimator
PROC SEVERITY enables you to estimate model parameters by minimizing your own objective function.
This example illustrates how you can use PROC SEVERITY to implement the Cramér–von Mises estimator.
Let F.yi I‚/ denote the estimate of CDF at yi for a distribution with parameters ‚, and let Fn.yi / denote
the empirical estimate of CDF (EDF) at yi that is computed from a sample yi , 1 � i � N . Then, the
Cramér–von Mises estimator of the parameters is defined as

O‚ D argmin
‚

NX
iD1

.F.yi I‚/ � Fn.yi //
2

This estimator belongs to the class of minimum distance estimators. It attempts to estimate the parameters
such that the squared distance between the CDF and EDF estimates is minimized.

The following PROC SEVERITY step uses the Cramér–von Mises estimator to fit four candidate distribution
models, including the LOGNGPD mixed-tail distribution model that was defined in “Example 29.3: Defining
a Model for Mixed-Tail Distributions” on page 2176. The input sample is the same as is used in that example.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit LOGNGPD model with PROC SEVERITY by using -------
-------- the Cramer-von Mises minimum distance estimator -------*/

proc severity data=testmixdist obj=cvmobj print=all outest=est
plots(histogram)=(pp conditionalpdf(rightq=0.8));

loss y;
dist logngpd burr logn gpd;

* Cramer-von Mises estimator (minimizes the distance *
* between parametric and nonparametric estimates) *;
cvmobj = _cdf_(y);
cvmobj = (cvmobj -_edf_(y))**2;

run;

The OBJ= option in the PROC SEVERITY statement specifies that the objective function cvmobj should be
minimized. The programming statements compute the contribution of each observation in the input data set
to the objective function cvmobj. The use of the keyword functions _CDF_ and _EDF_ makes the program
applicable to all the distributions. In addition to requesting the P-P plot, the PLOTS= option requests the
conditional PDF plots of the body and tail regions. The CONDITIONALPDF option with the RIGHTQ=0.8
suboption specifies that the comparative conditional PDF plot be prepared for two regions:

� the body region for loss values that are less than or equal to the 80th percentile
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� the right-tail region for loss values that are greater than the 80th percentile

Some of the key results prepared by PROC SEVERITY are shown in Output 29.4.1. The “Model Selection”
table indicates that all models converged. When you specify a custom objective function, the default selection
criterion is the value of the custom objective function. The “All Fit Statistics” table indicates that LOGNGPD
is the best distribution according to all the statistics of fit. Comparing the fit statistics of Output 29.4.1 with
those of Output 29.3.1 indicates that the use of the Cramér–von Mises estimator has resulted in smaller
values for all the EDF-based statistics of fit for all the models, which is expected from a minimum distance
estimator.

Output 29.4.1 Summary of Cramér–von Mises Estimation

The SEVERITY Procedure

Input Data Set

Name WORK.TESTMIXDIST

Label Lognormal Body-GPD Tail Sample

Model Selection

Distribution Converged cvmobj Selected

logngpd Yes 0.12846 Yes

Burr Yes 0.22681 No

Logn Yes 0.16928 No

Gpd Yes 35.98574 No

All Fit Statistics

Distribution cvmobj
-2 Log

Likelihood AIC AICC BIC KS AD CvM

logngpd 0.12846 * 3657 * 3667 * 3667 * 3691 * 0.86572 * 1.04025 * 0.12957 *

Burr 0.22681 3724 3730 3730 3744 1.01660 2.27060 0.22826

Logn 0.16928 3908 3912 3912 3922 0.92926 2.01192 0.16956

Gpd 35.98574 5401 5405 5405 5415 9.85292 188.93299 35.99968

Note: The asterisk (*) marks the best model according to each column's criterion.

The P-P plots in Output 29.4.2 provide a visual confirmation that the CDF estimates match the EDF estimates
more closely when compared to the estimates that are obtained with the maximum likelihood estimator.
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Output 29.4.2 P-P Plots for LOGNGPD Model with Maximum Likelihood (Left) and Cramér–von Mises
(Right) Estimators

The comparative conditional PDF plot in Output 29.4.3 shows how the scaled density functions of different
distributions compare in the body and right-tail regions. The scaling factor of each region reflects the
probability that a loss value falls in that region. For the RIGHTQ=0.8 option, in the body region, the PDF
values are scaled by a factor of 1.25 (D 1=0:8), and in the right-tail region, the PDF values are scaled by a
factor of 5 (D 1=.1 � 0:8/). Scaling makes the PDF plot in each region a true density function plot.
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Output 29.4.3 Comparison of the Conditional PDF Estimates of the Fitted Models

The right-tail plot in Output 29.4.3 shows that the tail is heavy, but it is difficult to see the differences in the
distributions because of the wide range of values in the tail. You can zoom in on specific portions of the tail
by specifying the appropriate LEFTQ=, RIGHTQ=, and SHOWREGION= options. The following PROC
SEVERITY step illustrates this:

proc severity data=testmixdist obj=cvmobj print=all inest=est
plots=(conditionalpdf(leftq=0.75 rightq=0.975)

conditionalpdfperdist(quantilebounds leftq=0.75 rightq=0.99
showregion=(center right)));

loss y;
dist logngpd burr logn gpd;

* Cramer-von Mises estimator (minimizes the distance *
* between parametric and nonparametric estimates) *;
cvmobj = _cdf_(y);
cvmobj = (cvmobj -_edf_(y))**2;

run;

The CONDITIONALPDF option specifies that the comparative conditional PDF plots be prepared for three
regions: Y <D 75th percentile, 75th percentile < Y <D 97.5th percentile, and Y > 97.5th percentile.
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The suboptions of the CONDITIONALPDFPERDIST option specify that conditional PDF plots of individual
distributions be prepared as follows:

� The QUANTILEBOUNDS option specifies that the region boundaries be computed by using the
quantile function of each distribution instead of the default of using percentiles. If you do not specify
the QUANTILEBOUNDS option, then by default, PROC SEVERITY computes the region boundaries
by using percentiles, which are empirical estimates of the quantile function.

� The LEFTQ= and RIGHTQ= options specify that the plots be prepared for three regions: Y <D

Quantile(0.75), Quantile(0.75) < Y <D Quantile(0.99), and Y > Quantile(0.99). Note that the
estimated quantile function might produce different values for different distributions, so the regions
start and end at different values for different distributions.

� The SHOWREGION= option specifies that only the center and right-tail regions be plotted. The
region between the LEFTQ= and RIGHTQ= values defines the center region. So in this example, the
SHOW=CENTER option specifies that the region between Quantile(0.75) and Quantile(0.99) be shown.
The SHOW=RIGHT option specifies that the right-tail region of values greater than Quantile(0.99) be
shown. The example does not use the SHOW=LEFT option, so the left-tail region of values less than
or equal to Quantile(0.75) is not shown.

The Work.Est data set is created by specifying the OUTEST= option in the first PROC SEVERITY step of
this example. The use of that data set as the INEST= data set helps speed up the parameter initialization and
estimation process significantly and enables you to explore different plotting options quickly.

The comparative conditional PDF plot that is prepared by the preceding PROC SEVERITY step is shown in
Output 29.4.4. It clearly shows the difference between different distributions in the three regions.

The “All Fit Statistics” table in Output 29.4.1 indicates that lognormal distribution is the best contender to
the LOGNGPD distribution according to the EDF-based statistics of fit. The individual conditional PDF
plots of the LOGNGPD and lognormal models are shown in Output 29.4.5. Comparing the two plots shows
that the LOGNGPD distribution has a better fit than the lognormal distribution in the right-tail region. The
information in the insets of each plot indicates that although the Quantile(0.75) values of both distributions
are closer to each other, the Quantile(0.99) values are significantly different. The larger Quantile(0.99) value
of the LOGNGPD distribution confirms that it has a heavier tail than the lognormal distribution.
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Output 29.4.4 Comparative Conditional PDF Plots with Zoomed-In Tail Portions

Output 29.4.5 Conditional PDF Plots for Right-Tail Regions of LOGNGPD (Left) and Lognormal (Right)
Models
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Example 29.5: Fitting a Scaled Tweedie Model with Regressors
The Tweedie distribution is often used in the insurance industry to explain the influence of regression
effects on the distribution of losses. PROC SEVERITY provides a predefined scaled Tweedie distribution
(STWEEDIE) that enables you to model the influence of regression effects on the scale parameter. The
scale regression model has its own advantages such as the ability to easily account for inflation effects. This
example illustrates how that model can be used to evaluate the influence of regression effects on the mean of
the Tweedie distribution, which is useful in problems such rate-making and pure premium modeling.

Assume a Tweedie process, whose mean � is affected by k regression effects xj , j D 1; : : : ; k, as follows,

� D �0 exp

0@ kX
jD1

ˇjxj

1A
where �0 represents the base value of the mean (you can think of �0 as exp.ˇ0/, where ˇ0 is the intercept).
This model for the mean is identical to the popular generalized linear model for the mean with a logarithmic
link function.

More interestingly, it parallels the model used by PROC SEVERITY for the scale parameter � ,

� D �0 exp

0@ kX
jD1

ˇjxj

1A
where �0 represents the base value of the scale parameter. As described in the section “Tweedie Distributions”
on page 2087, for the parameter range p 2 .1; 2/, the mean of the Tweedie distribution is given by

� D ��
2 � p

p � 1

where � is the Poisson mean parameter of the scaled Tweedie distribution. This relationship enables you to
use the scale regression model to infer the influence of regression effects on the mean of the distribution.

Let the data set Work.Test_Sevtw contain a sample generated from a Tweedie distribution with dispersion
parameter � D 0:5, index parameter p D 1:75, and the mean parameter that is affected by three regression
variables x1, x2, and x3 as follows:

� D 5 exp.0:25 x1 � x2C 3 x3/

Thus, the population values of regression parameters are �0 D 5, ˇ1 D 0:25, ˇ2 D �1, and ˇ3 D 3. You
can find the code used to generate the sample in the PROC SEVERITY sample program sevex05.sas.

The following PROC SEVERITY step uses the sample in Work.Test_Sevtw data set to estimate the parameters
of the scale regression model for the predefined scaled Tweedie distribution (STWEEDIE) with the dual
quasi-Newton (QUANEW) optimization technique:

/*--- Fit the scale parameter version of the Tweedie distribution ---*/
proc severity data=test_sevtw outest=estw covout print=all plots=none;

loss y;
scalemodel x1-x3;
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dist stweedie;
nloptions tech=quanew;

run;

The dual quasi-Newton technique is used because it requires only the first-order derivatives of the objective
function, and it is harder to compute reasonably accurate estimates of the second-order derivatives of Tweedie
distribution’s PDF with respect to the parameters.

Some of the key results prepared by PROC SEVERITY are shown in Output 29.5.1 and Output 29.5.2. The
distribution information and the convergence results are shown in Output 29.5.1.

Output 29.5.1 Convergence Results for the STWEEDIE Model with Regressors

The SEVERITY Procedure
stweedie Distribution

Distribution Information

Name stweedie

Description Tweedie Distribution with Scale Parameter

Distribution Parameters 3

Regression Parameters 3

Convergence Status

Convergence criterion (FCONV=2.220446E-16) satisfied.

Optimization Summary

Optimization Technique Dual Quasi-Newton

Iterations 40

Function Calls 145

Log Likelihood -1044.3

The final parameter estimates of the STWEEDIE regression model are shown in Output 29.5.2. The estimate
that is reported for the parameter Theta is the estimate of the base value �0. The estimates of regression
coefficients ˇ1, ˇ2, and ˇ3 are indicated by the rows of x1, x2, and x3, respectively.

Output 29.5.2 Parameter Estimates for the STWEEDIE Model with Regressors

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 1 0.82477 0.25220 3.27 0.0012

Lambda 1 16.38294 12.04294 1.36 0.1748

P 1 1.75148 0.18965 9.24 <.0001

x1 1 0.27987 0.09871 2.84 0.0049

x2 1 -0.76646 0.10306 -7.44 <.0001

x3 1 3.03270 0.10136 29.92 <.0001

If your goal is to explain the influence of regression effects on the scale parameter, then the output displayed
in Output 29.5.2 is sufficient. But, if you want to compute the influence of regression effects on the mean of
the distribution, then you need to do some postprocessing. Using the relationship between � and � , � can be
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written in terms of the parameters of the STWEEDIE model as

� D �0 exp

0@ kX
jD1

ˇjxj

1A�2 � p
p � 1

This shows that the parameters ˇj are identical for the mean and the scale model, and the base value �0 of
the mean model is

�0 D �0�
2 � p

p � 1

The estimate of �0 and the standard error associated with it can be computed by using the property of the
functions of maximum likelihood estimators (MLE). If g.�/ represents a totally differentiable function of
parameters �, then the MLE of g has an asymptotic normal distribution with mean g. O�/ and covariance
C D .@g/0†.@g/, where O� is the MLE of �, † is the estimate of covariance matrix of �, and @g is the
gradient vector of g with respect to � evaluated at O�. For �0, the function is g.�/ D �0�.2 � p/=.p � 1/.
The gradient vector is

@g D
�
@g

@�0

@g

@�

@g

@p

@g

@ˇ1
: : :

@g

@ˇk

�
D

�
�0

�0

�0

�

��0

.p � 1/.2 � p/
0 : : : 0

�

You can write a DATA step that implements these computations by using the parameter and covariance
estimates prepared by PROC SEVERITY step. The DATA step program is available in the sample program
sevex05.sas. The estimates of �0 prepared by that program are shown in Output 29.5.3. These estimates and
the estimates of ˇj as shown in Output 29.5.2 are reasonably close (that is, within one or two standard errors)
to the parameters of the population from which the sample in Work.Test_Sevtw data set was drawn.

Output 29.5.3 Estimate of the Base Value Mu0 of the Mean Parameter

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu0 4.46857 0.42160 10.5991 0

Another outcome of using the scaled Tweedie distribution to model the influence of regression effects is that
the regression effects also influence the variance V of the Tweedie distribution. The variance is related to
the mean as V D ��p , where � is the dispersion parameter. Using the relationship between the parameters
TWEEDIE and STWEEDIE distributions as described in the section “Tweedie Distributions” on page 2087,
the regression model for the dispersion parameter is

log.�/ D .2 � p/ log.�/ � log.�.2 � p//

D ..2 � p/ log.�0/ � log.�.2 � p///C .2 � p/
kX
jD1

ˇjxj



2194 F Chapter 29: The SEVERITY Procedure

Subsequently, the regression model for the variance is

log.V / D 2 log.�/ � log.�.2 � p//

D .2 log.�0/ � log.�.2 � p///C 2
kX
jD1

ˇjxj

In summary, PROC SEVERITY enables you to estimate regression effects on various parameters and statistics
of the Tweedie model.

Example 29.6: Fitting Distributions to Interval-Censored Data
In some applications, the data available for modeling might not be exact. A commonly encountered scenario
is the use of grouped data from an external agency, which for several reasons, including privacy, does not
provide information about individual loss events. The losses are grouped into disjoint bins, and you know
only the range and number of values in each bin. Each group is essentially interval-censored, because you
know that a loss magnitude is in certain interval, but you do not know the exact magnitude. This example
illustrates how you can use PROC SEVERITY to model such data.

The following DATA step generates sample grouped data for dental insurance claims, which is taken from
Klugman, Panjer, and Willmot (1998):

/* Grouped dental insurance claims data
(Klugman, Panjer, and Willmot, 1998) */

data gdental;
input lowerbd upperbd count @@;
datalines;

0 25 30 25 50 31 50 100 57 100 150 42 150 250 65 250 500 84
500 1000 45 1000 1500 10 1500 2500 11 2500 4000 3
;
run;

Often, when you do not know the nature of the data, it is recommended that you first explore the nature of
the sample distribution by examining the nonparametric estimates of PDF and CDF. The following PROC
SEVERITY step prepares the nonparametric estimates, but it does not fit any distribution because there is no
DIST statement specified:

/* Prepare nonparametric estimates */
proc severity data=gdental print=all plots(histogram kernel)=all;

loss / rc=lowerbd lc=upperbd;
weight count;

run;

The LOSS statement specifies the left and right boundary of each group as the right-censoring and left-
censoring limits, respectively. The variable count records the number of losses in each group and is specified
in the WEIGHT statement. Note that there is no response or loss variable specified in the LOSS statement,
which is allowed as long as each observation in the input data set is censored. The nonparametric estimates
prepared by this step are shown in Output 29.6.1. The histogram, kernel density, and EDF plots all indicate
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that the data are heavy-tailed. For interval-censored data, PROC SEVERITY uses Turnbull’s algorithm
to compute the EDF estimates. The plot of Turnbull’s EDF estimates is shown to be linear between the
endpoints of a censored group. The linear relationship is chosen for convenient visualization and ease of
computation of EDF-based statistics, but you should note that theoretically the behavior of Turnbull’s EDF
estimates is undefined within a group.

Output 29.6.1 Nonparametric Distribution Estimates for Interval-Censored Data

With the PRINT=ALL option, PROC SEVERITY prints the summary of the Turnbull EDF estimation process
as shown in Output 29.6.2. It indicates that the final EDF estimates have converged and are in fact maximum
likelihood (ML) estimates. If they were not ML estimates, then you could have used the ENSUREMLE
option to force the algorithm to search for ML estimates.

Output 29.6.2 Turnbull EDF Estimation Summary for Interval-Censored Data

Turnbull EDF Estimation Summary

Technique EM with Maximum Likelihood Check

Convergence Status Converged

Iterations 2

Maximum Absolute Relative Error 1.8406E-16

Maximum Absolute Reduced Gradient 1.7764E-15

Estimates Maximum Likelihood

After exploring the nature of the data, you can now fit a set of heavy-tailed distributions to these data. The
following PROC SEVERITY step fits all the predefined distributions to the data in the Work.Gdental data set:

/* Fit all predefined distributions */
proc severity data=gdental print=all plots(histogram kernel)=all

criterion=ad;
loss / rc=lowerbd lc=upperbd;
weight count;
dist _predef_;

run;

Some of the key results prepared by PROC SEVERITY are shown in Output 29.6.3 through Output 29.6.4.
According to the “Model Selection” table in Output 29.6.3, all distribution models have converged. The “All
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Fit Statistics” table in Output 29.6.3 indicates that the exponential distribution (EXP) has the best fit for data
according to a majority of the likelihood-based statistics and that the Burr distribution (BURR) has the best
fit according to all the EDF-based statistics.

Output 29.6.3 Statistics of Fit for Interval-Censored Data

The SEVERITY Procedure

Input Data Set

Name WORK.GDENTAL

Model Selection

Distribution Converged AD Selected

Burr Yes 0.00103 Yes

Exp Yes 0.09936 No

Gamma Yes 0.04608 No

Igauss Yes 0.12301 No

Logn Yes 0.01884 No

Pareto Yes 0.00739 No

Gpd Yes 0.00739 No

Weibull Yes 0.03293 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Burr 41.41112 * 47.41112 51.41112 48.31888 0.08974 * 0.00103 * 0.0000816 *

Exp 42.14768 44.14768 * 44.64768 * 44.45026 * 0.26412 0.09936 0.01866

Gamma 41.92541 45.92541 47.63969 46.53058 0.19569 0.04608 0.00759

Igauss 42.34445 46.34445 48.05874 46.94962 0.34514 0.12301 0.02562

Logn 41.62598 45.62598 47.34027 46.23115 0.16853 0.01884 0.00333

Pareto 41.45480 45.45480 47.16908 46.05997 0.11423 0.00739 0.0009084

Gpd 41.45480 45.45480 47.16908 46.05997 0.11423 0.00739 0.0009084

Weibull 41.76272 45.76272 47.47700 46.36789 0.17238 0.03293 0.00472

Note: The asterisk (*) marks the best model according to each column's criterion.

The P-P plots in Output 29.6.4 show that the Burr distribution clearly has a better fit between EDF and CDF
estimates, confirming the information that is reported by the EDF-based statistics. When the best distributions
that are chosen by the likelihood-based and EDF-based statistics are different, you need to decide which fit
statistic best represents your objective. In this example, if your objective is to minimize the distance between
EDF and CDF values, then you should choose the Burr distribution. On the other hand, if your objective is
to maximize the likelihood of the observed data while minimizing the model complexity, then you should
choose the exponential distribution. Note that the exponential distribution has worse (lower) raw likelihood
than the Burr distribution, but it has better AIC, AICC, and BIC statistics than the Burr distribution because
the exponential distribution has only one parameter compared to the three parameters of the Burr distribution.
Further, the small sample size of 10 helps accentuate the role of model complexity in the AIC, AICC, and
BIC statistics. If the sample size would have been larger, the exponential distribution might not have won
according to the likelihood-based statistics.
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Output 29.6.4 P-P Plots of Burr and Exponential Distributions for Interval-Censored Data

Example 29.7: Defining a Finite Mixture Model That Has a Scale Parameter
A finite mixture model is a stochastic model that postulates that the probability distribution of the data
generation process is a mixture of a finite number of probability distributions. For example, when an
insurance company analyzes loss data from multiple policies that are underwritten in different geographic
regions, some regions might behave similarly, but the distribution that governs some regions might be
different from the distribution that governs other regions. Further, it might not be known which regions
behave similarly. Also, the larger amounts of losses might follow a different stochastic process from the
stochastic process that governs the smaller amounts of losses. It helps to model all policies together in order
to pool the data together and exploit any commonalities among the regions, and the use of a finite mixture
model can help capture the differences in distributions across regions and ranges of loss amounts.

Formally, if fi and Fi denote the PDF and CDF, respectively, of component distribution i and pi represents
the mixing probability that is associated with component i, then the PDF and CDF of the finite mixture of K
distribution components are

f .xI‚; p/ D
KX
iD1

pifi .xI‚i /

F.xI‚; p/ D
KX
iD1

piFi .xI‚i /

where ‚i denotes the parameters of component distribution i and ‚ denotes the parameters of the mixture
distribution, which is a union of all the ‚i parameters. p denotes the set of mixing probabilities. All mixing
probabilities must add up to 1 (

PK
iD1 pi D 1).

You can define the finite mixture of a specific number of components and specific distributions for each of
the components by defining the FCMP functions for the PDF and CDF. However, in general, it is not possible
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to fit a scale regression model by using any finite mixture distribution unless you take special care to ensure
that the mixture distribution has a scale parameter. This example provides a formulation of a two-component
finite mixture model that has a scale parameter.

To start with, each component distribution must have either a scale parameter or a log-transformed scale
parameter. Let �1 and �2 denote the scale parameters of the first and second components, respectively. Let
p1 D p be the mixing probability, which makes p2 D 1 � p by using the constraint on p. The PDF of the
mixture of these two distributions can be written as

f .xI �1; �2; ˆ; p/ D
p

�1
f1.

x

�1
Iˆ1/C

1 � p

�2
f2.

x

�2
Iˆ2/

where ˆ1 and ˆ2 denote the sets of nonscale parameters of the first and second components, respectively,
and ˆ denotes a union of ˆ1 and ˆ2. For the mixture to have the scale parameter � , the PDF must be of the
form

f .xI �;ˆ0; p/ D
1

�

�
pf1.

x

�
Iˆ01/C .1 � p/f2.

x

�
Iˆ02/

�
where ˆ0, ˆ01, and ˆ02 denote the modified sets of nonscale parameters. One simple way to achieve this is
to make �1 D �2 D � and ˆ0 D ˆ; that is, you simply equate the scale parameters of both components
and keep the set of nonscale parameters unchanged. However, forcing the scale parameters to be equal in
both components is restrictive, because the mixture cannot model potential differences in the scales of the
two components. A better approach is to tie the scale parameters of the two components by a ratio such
that �1 D � and �2 D �� . If the ratio parameter � is estimated along with the other parameters, then the
mixture distribution becomes flexible enough to model the variations across the scale parameters of individual
components.

To summarize, the PDF and CDF are of the following form for the two-component mixture that has a scale
parameter:

f .xI �; �;ˆ; p/ D
1

�

�
pf1.

x

�
Iˆ1/C .1 � p/f2.

x

�
I �;ˆ2/

�
F.xI �; �;ˆ; p/ D pF1.

x

�
Iˆ1/C .1 � p/F2.

x

�
I �;ˆ2/

This can be generalized to a mixture of K components by introducing the K � 1 ratio parameters �i that
relate the scale parameters of each of the K components to the scale parameter � of the mixture distribution
as follows:

�1 D �

�i D �i� I i 2 Œ2;K�

In order to illustrate this approach, define a mixture of two lognormal distributions by using the following
PDF function:

f .xI�; �1; p2; �2; �2/ D
.1 � p2/

�1x
p
2�

exp

 
�.log.x/ � �/2

2�21

!
C

p2

�2x
p
2�

exp

 
�.log.x/ � � � log.�2//2

2�22

!
You can verify that � serves as the log of the scale parameter � (� D log.�/). The following PROC FCMP
steps encode this formulation in a distribution named SLOGNMIX2 for use with PROC SEVERITY:
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/*- Define Mixture of 2 Lognormal Distributions with a Log-Scale Parameter -*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function slognmix2_description() $128;
return ("Mixture of two lognormals with a log-scale parameter Mu");

endsub;

function slognmix2_scaletransform() $8;
return ("LOG");

endsub;

function slognmix2_pdf(x, Mu, Sigma1, p2, Rho2, Sigma2);
Mu1 = Mu;
Mu2 = Mu + log(Rho2);
pdf1 = logn_pdf(x, Mu1, Sigma1);
pdf2 = logn_pdf(x, Mu2, Sigma2);
return ((1-p2)*pdf1 + p2*pdf2);

endsub;

function slognmix2_cdf(x, Mu, Sigma1, p2, Rho2, Sigma2);
Mu1 = Mu;
Mu2 = Mu + log(Rho2);
cdf1 = logn_cdf(x, Mu1, Sigma1);
cdf2 = logn_cdf(x, Mu2, Sigma2);
return ((1-p2)*cdf1 + p2*cdf2);

endsub;

subroutine slognmix2_parminit(dim, x[*], nx[*], F[*], Ftype,
Mu, Sigma1, p2, Rho2, Sigma2);

outargs Mu, Sigma1, p2, Rho2, Sigma2;
array m[1] / nosymbols;
p2 = 0.5;
Rho2 = 0.5;
median = svrtutil_percentile(0.5, dim, x, F, Ftype);
Mu = log(2*median/1.5);
call svrtutil_rawmoments(dim, x, nx, 1, m);
lm1 = log(m[1]);

/* Search Rho2 that makes log(sample mean) > Mu */
do while (lm1 <= Mu and Rho2 < 1);

Rho2 = Rho2 + 0.01;
Mu = log(2*median/(1+Rho2));

end;
if (Rho2 >= 1) then

/* If Mu cannot be decreased enough to make it less
than log(sample mean), then revert to Rho2=0.5.
That will set Sigma1 and possibly Sigma2 to missing.
PROC SEVERITY replaces missing initial values with 0.001. */

Mu = log(2*median/1.5);

Sigma1 = sqrt(2.0*(log(m[1])-Mu));
Sigma2 = sqrt(2.0*(log(m[1])-Mu-log(Rho2)));

endsub;
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subroutine slognmix2_lowerbounds(Mu, Sigma1, p2, Rho2, Sigma2);
outargs Mu, Sigma1, p2, Rho2, Sigma2;
Mu = .; /* Mu has no lower bound */
Sigma1 = 0; /* Sigma1 > 0 */
p2 = 0; /* p2 > 0 */
Rho2 = 0; /* Rho2 > 0 */
Sigma2 = 0; /* Sigma2 > 0 */

endsub;

subroutine slognmix2_upperbounds(Mu, Sigma1, p2, Rho2, Sigma2);
outargs Mu, Sigma1, p2, Rho2, Sigma2;
Mu = .; /* Mu has no upper bound */
Sigma1 = .; /* Sigma1 has no upper bound */
p2 = 1; /* p2 < 1 */
Rho2 = 1; /* Rho2 < 1 */
Sigma2 = .; /* Sigma2 has no upper bound */

endsub;
quit;

As shown in previous examples, an important aspect of defining a distribution for use with PROC SEVERITY
is the definition of the PARMINIT subroutine that initializes the parameters. For mixture distributions, in
general, the parameter initialization is a nontrivial task. For a two-component mixture, some simplifying
assumptions make the problem easier to handle. For the initialization of SLOGNMIX2, the initial values of
p2 and �2 are fixed at 0.5, and the following two simplifying assumptions are made:

� The median of the mixture is the average of the medians of the two components:

F�1.0:5/ D .exp.�1/C exp.�2//=2 D exp.�/.1C �2/=2

Solution of this equation yields the value of � in terms of �2 and the sample median.

� Each component has the same mean, which implies the following:

exp.�C �21=2/ D exp.�C log.�2/C �22=2/

If Xi represents the random variable of component distribution i and X represents the random variable
of the mixture distribution, then the following equation holds for the raw moment of any order k:

EŒXk� D

KX
iD1

piEŒX
k
i �

This, in conjunction with the assumption on component means, leads to the equations

log.m1/ D �C
�21
2

log.m1/ D �C log.�2/C
�22
2

where m1 denotes the first raw moment of the sample. Solving these equations leads to the following
values of �1 and �2:

�21 D 2.log.m1/ � �/

�22 D 2.log.m1/ � � � log.�2//
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Note that �1 has a valid value only if log.m1/ > �. Among the many possible methods of ensuring
this condition, the SLOGNMIX2_PARMINIT subroutine uses the method of doing a linear search over
�2.

Even when the preceding assumptions are not true for a given problem, they produce reasonable initial values
to help guide the nonlinear optimizer to an acceptable optimum if the mixture of two lognormal distributions
is indeed a good fit for your input data. This is illustrated by the results of the following steps that fit the
SLOGNMIX2 distribution to simulated data, which have different means for the two components (12.18 and
22.76, respectively), and the median of the sample (15.94) is not equal to the average of the medians of the
two components (7.39 and 20.09, respectively):

/*-------- Simulate a lognormal mixture sample ----------*/
data testlognmix(keep=y);

call streaminit(12345);
Mu1 = 2;
Sigma1 = 1;
i = 0;
do j=1 to 2000;

y = exp(Mu1) * rand('LOGNORMAL')**Sigma1;
output;

end;
Mu2 = 3;
Sigma2 = 0.5;
do j=1 to 3000;

y = exp(Mu2) * rand('LOGNORMAL')**Sigma2;
output;

end;
run;

/*-- Fit and compare scale regression models with 2-component --*/
/*-- lognormal mixture and the standard lognormal distribution --*/
options cmplib=(work.sevexmpl);

proc severity data=testlognmix print=all plots(histogram kernel)=all;
loss y;
dist slognmix2 logn;

run;

The comparison of the fit statistics of SLOGNMIX2 and LOGN, as shown in Output 29.7.1, confirms that
the two-component mixture is certainly a better fit to these data than the single lognormal distribution.

Output 29.7.1 Comparison of Fitting One versus Two Lognormal Components to Mixture Data

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

slognmix2 38343 * 38353 * 38353 * 38386 * 0.52221 * 0.19843 * 0.02728 *

Logn 39073 39077 39077 39090 5.86522 66.93414 11.72703

Note: The asterisk (*) marks the best model according to each column's criterion.

The comparative plot of probability densities in Output 29.7.2 shows that the density function of the mixture
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distribution is bimodal. In fact, one of the key motivations for using mixture distributions is to find better-
fitting models for multimodal data.

The P-P and Q-Q plots in Output 29.7.3 visually confirm that SLOGNMIX2 fits the data very well.

Output 29.7.2 Comparison of PDF Estimates of the Fitted Models
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Output 29.7.3 P-P and Q-Q Plots to Evaluate SLOGNMIX2 Fit

The detailed results for the SLOGNMIX2 distribution are shown in Output 29.7.4. According to the “Initial
Parameter Values and Bounds” table, the initial value of �2 is not 0.5, indicating that a linear search was
conducted to ensure log.m1/ > �.

Output 29.7.4 Detailed Estimation Results for the SLOGNMIX2 Distribution

The SEVERITY Procedure
slognmix2 Distribution

Distribution Information

Name slognmix2

Description Mixture of two lognormals with a log-scale parameter Mu

Distribution Parameters 5

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 2.92006 -Infty Infty

Sigma1 0.10455 1.05367E-8 Infty

P2 0.50000 1.05367E-8 1.00000

Rho2 0.72000 1.05367E-8 1.00000

Sigma2 0.81728 1.05367E-8 Infty

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Output 29.7.4 continued

Optimization Summary

Optimization Technique Trust Region

Iterations 7

Function Calls 18

Log Likelihood -19171.5

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 3.00922 0.01554 193.68 <.0001

Sigma1 1 0.49516 0.01451 34.13 <.0001

P2 1 0.40619 0.02600 15.62 <.0001

Rho2 1 0.37212 0.02038 18.26 <.0001

Sigma2 1 1.00019 0.02124 47.09 <.0001

By using the relationship that �2 D �C log.�2/, you can see that the final parameter estimates are indeed
close to the true parameter values that were used to simulate the input sample.

Example 29.8: Predicting Mean and Value-at-Risk by Using Scoring Functions
If you work in the risk management department of an insurance company or a bank, then one of your primary
applications of severity loss distribution models is to predict the value-at-risk (VaR) so that there is a very
low probability of experiencing a loss value that is greater than the VaR. The probability level at which VaR
is measured is prescribed by industry regulations such as Basel III and Solvency II. The VaR level is usually
specified in terms of .1 � ˛/, where ˛ 2 .0; 1/ is the probability that a loss value exceeds the VaR. Typical
VaR levels are 0.95, 0.975, and 0.995.

In addition to predicting the VaR, which is regarded as an estimate of the worst-case loss, businesses are
often interested in predicting the average loss by estimating either the mean or median of the distribution.

The estimation of the mean and VaR combined with the scale regression model is very potent tool for
analyzing worst-case and average losses for various scenarios. For example, if the regressors that are used in
a scale regression model represent some key macroeconomic and operational indicators, which are widely
referred to as key risk indicators (KRIs), then you can analyze the VaR and mean loss estimates over various
values for the KRIs to get a more comprehensive picture of the risk profile of your organization across various
market and internal conditions.

This example illustrates the use of scoring functions to simplify the process of predicting the mean and VaR
of scale regression models.

To compute the mean, you need to ensure that the function to compute the mean of a distribution is available
in the function library. If you define and fit your own distribution and you want to compute its mean, then you
need to use the FCMP procedure to define that function and you need to use the CMPLIB= system option to
specify the location of that function. For your convenience, the dist_MEAN function (which computes the
mean of the dist distribution) is already defined in the Sashelp.Svrtdist library for each of the 10 predefined
distributions. The following statements display the definitions of MEAN functions of all distributions. Note
that the MEAN functions for the Burr, Pareto, and generalized Pareto distributions check the existence of the
first moment for specified parameter values.
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/*--------- Define distribution functions that compute the mean ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.means.scalemod;

function BURR_MEAN(x, Theta, Alpha, Gamma);
if not(Alpha * Gamma > 1) then

return (.); /* first moment does not exist */
return (Theta*gamma(1 + 1/Gamma)*gamma(Alpha - 1/Gamma)/gamma(Alpha));

endsub;
function EXP_MEAN(x, Theta);

return (Theta);
endsub;
function GAMMA_MEAN(x, Theta, Alpha);

return (Theta*Alpha);
endsub;
function GPD_MEAN(x, Theta, Xi);

if not(Xi < 1) then
return (.); /* first moment does not exist */

return (Theta/(1 - Xi));
endsub;
function IGAUSS_MEAN(x, Theta, Alpha);

return (Theta);
endsub;
function LOGN_MEAN(x, Mu, Sigma);

return (exp(Mu + Sigma*Sigma/2.0));
endsub;

function PARETO_MEAN(x, Theta, Alpha);
if not(Alpha > 1) then

return (.); /* first moment does not exist */
return (Theta/(Alpha - 1));

endsub;
function STWEEDIE_MEAN(x, Theta, Lambda, P);

return (Theta* Lambda * (2 - P) / (P - 1));
endsub;
function TWEEDIE_MEAN(x, P, Mu, Phi);

return (Mu);
endsub;
function WEIBULL_MEAN(x, Theta, Tau);

return (Theta*gamma(1 + 1/Tau));
endsub;

quit;

For your further convenience, the dist_QUANTILE function (which computes the quantile of the dist
distribution) is also defined in the Sashelp.Svrtdist library for each of the 10 predefined distributions.
Because the MEAN and QUANTILE functions satisfy the definition of a distribution function as described in
the section “Formal Description” on page 2144, you can submit the following PROC SEVERITY step to fit all
regression-friendly predefined distributions and generate the scoring functions for the MEAN, QUANTILE,
and other distribution functions:

/*----- Fit all distributions and generate scoring functions ------*/
proc severity data=test_sev8 outest=est print=all plots=none;

loss y;
scalemodel x1-x5;
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dist _predefined_ stweedie;
outscorelib outlib=scorefuncs commonpackage;

run;

The SAS statements that simulate the sample in the Work.Test_sev8 data set are available in the PROC
SEVERITY sample program sevex08.sas. The OUTLIB= option in the OUTSCORELIB statement requests
that the scoring functions be written to the Work.Scorefuncs library, and the COMMONPACKAGE option
in the OUTSCORELIB statement requests that all the functions be written to the same package. Upon
completion, PROC SEVERITY sets the CMPLIB system option to the following value:

(sashelp.svrtdist work.scorefuncs)

The “All Fit Statistics” table in Output 29.8.1 shows that the lognormal distribution’s scale model is the best
and the inverse Gaussian’s scale model is a close second according to the likelihood-based statistics.

Output 29.8.1 Comparison of Fitted Scale Models for Mean and VaR Illustration

The SEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

stweedie 449.73901 465.73901 466.03229 499.45587 10.42929 5969 37.18803

Burr 451.42238 467.42238 467.71565 501.13924 10.32782 4431 37.19808

Exp 1515 1527 1527 1552 8.85827 2062 23.98267

Gamma 448.28222 462.28222 462.50986 491.78448 10.42272 6068 37.19450

Igauss 444.44512 458.44512 458.67276 487.94738 10.33028 6257 37.30880

Logn 444.43670 * 458.43670 * 458.66434 * 487.93895 * 10.37035 6155 37.18553

Pareto 1515 1529 1529 1559 8.85775 * 2061 * 23.98149 *

Gpd 1515 1529 1529 1559 8.85827 2062 23.98267

Weibull 527.28676 541.28676 541.51440 570.78902 10.48084 4947 36.36039

Note: The asterisk (*) marks the best model according to each column's criterion.

You can examine the scoring functions that are written to the Work.Scorefuncs library by using the FCMP
Function Editor, which is available in the Display Manager session of Base SAS when you select So-
lutions!Analysis from the main menu. For example, PROC SEVERITY automatically generates and
submits the following PROC FCMP statements to define the scoring functions SEV_MEAN_LOGN and
SEV_QUANTILE_IGAUSS:

proc fcmp library=(sashelp.svrtdist) outlib=work.scorefuncs.sevfit;
function SEV_MEAN_LOGN(y, x{*});

_logscale_=0;
_logscale_ = _logscale_ + ( 7.64722278930350E-01 * x{1});
_logscale_ = _logscale_ + ( 2.99209540369860E+00 * x{2});
_logscale_ = _logscale_ + (-1.00788916253430E+00 * x{3});
_logscale_ = _logscale_ + ( 2.58883602184890E-01 * x{4});
_logscale_ = _logscale_ + ( 5.00927479793970E+00 * x{5});
_logscale_ = _logscale_ + ( 9.95078833050690E-01);
return (LOGN_MEAN(y, _logscale_, 2.31592981635590E-01));

endsub;

function SEV_QUANTILE_IGAUSS(y, x{*});
_logscale_=0;
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_logscale_ = _logscale_ + ( 7.64581738373520E-01 * x{1});
_logscale_ = _logscale_ + ( 2.99159055015310E+00 * x{2});
_logscale_ = _logscale_ + (-1.00793496641510E+00 * x{3});
_logscale_ = _logscale_ + ( 2.58870460543840E-01 * x{4});
_logscale_ = _logscale_ + ( 5.00996884646730E+00 * x{5});
_scale_ = 2.77854870591020E+00 * exp(_logscale_);
return (IGAUSS_QUANTILE(y, _scale_, 1.81511227238720E+01));

endsub;
quit;

PROC SEVERITY detects all the distribution functions that are available in the current CMPLIB= search
path (which always includes the Sashelp.Svrtdist library) for the distributions that you specify in the DIST
statement, and it creates the corresponding scoring functions. You can define any distribution function that
has the desired signature to compute an estimate of your choice, include its library in the CMPLIB= system
option, and then specify the OUTSCORELIB statement to generate the corresponding scoring functions.
Specifying the COMMONPACKAGE option in the OUTSCORELIB statement causes the name of the
scoring function to take the form SEV_function-suffix_dist . If you do not specify the COMMONPACKAGE
option, PROC SEVERITY creates a scoring function named SEV_function-suffix in a package named dist .
You can invoke functions from a specific package only inside the FCMP procedure. If you want to invoke the
scoring functions from a DATA step, then it is recommended that you specify the COMMONPACKAGE
option when you specify multiple distributions in the DIST statement.

To illustrate the use of scoring functions, let Work.Reginput contain the scoring data, where the values of
regressors in each observation define one scenario. Scoring functions make it very easy to compute the mean
and VaR of each distribution’s scale model for each of the scenarios, as the following steps illustrate for the
lognormal and inverse Gaussian distributions by using a VaR level of 97.5%:

/*--- Set VaR level ---*/
%let varLevel=0.975;

/*--- Compute scores (mean and var) for the ---
--- scoring data by using the scoring functions ---*/

data scores;
array x{*} x1-x5;
set reginput;

igauss_mean = sev_mean_igauss(., x);
igauss_var = sev_quantile_igauss(&varLevel, x);
logn_mean = sev_mean_logn(., x);
logn_var = sev_quantile_logn(&varLevel, x);

run;

The following DATA step accomplishes the same task by reading the parameter estimates that were written
to the Work.Est data set by the previous PROC SEVERITY step:

/*--- Compute scores (mean and var) for the ---
--- scoring data by using the OUTEST= data set ---*/

data scoresWithOutest(keep=x1-x5 igauss_mean igauss_var logn_mean logn_var);
array _x_{*} x1-x5;
array _xparmIgauss_{5} _temporary_;
array _xparmLogn_{5} _temporary_;
retain _Theta0_ Alpha0;
retain _Mu0_ Sigma0;
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*--- read parameter estimates for igauss and logn models ---*;
if (_n_ = 1) then do;

set est(where=(upcase(_MODEL_)='IGAUSS' and _TYPE_='EST'));
_Theta0_ = Theta; Alpha0 = Alpha;
do _i_=1 to dim(_x_);

if (_x_(_i_) = .R) then _xparmIgauss_(_i_) = 0;
else _xparmIgauss_(_i_) = _x_(_i_);

end;
set est(where=(upcase(_MODEL_)='LOGN' and _TYPE_='EST'));
_Mu0_ = Mu; Sigma0 = Sigma;
do _i_=1 to dim(_x_);

if (_x_(_i_) = .R) then _xparmLogn_(_i_) = 0;
else _xparmLogn_(_i_) = _x_(_i_);

end;
end;
set reginput;

*--- predict mean and VaR for inverse Gaussian ---*;

* first compute X'*beta for inverse Gaussian *;
_xbeta_ = 0.0;
do _i_ = 1 to dim(_x_);

_xbeta_ = _xbeta_ + _xparmIgauss_(_i_) * _x_(_i_);
end;

* now compute scale for inverse Gaussian *;
_SCALE_ = _Theta0_ * exp(_xbeta_);
igauss_mean = igauss_mean(., _SCALE_, Alpha0);
igauss_var = igauss_quantile(&varLevel, _SCALE_, Alpha0);

*--- predict mean and VaR for lognormal ---*;

* first compute X'*beta for lognormal*;
_xbeta_ = 0.0;
do _i_ = 1 to dim(_x_);

_xbeta_ = _xbeta_ + _xparmLogn_(_i_) * _x_(_i_);
end;

* now compute Mu=log(scale) for lognormal *;
_MU_ = _Mu0_ + _xbeta_;
logn_mean = logn_mean(., _MU_, Sigma0);
logn_var = logn_quantile(&varLevel, _MU_, Sigma0);

run;

The “Values Comparison Summary” table in Output 29.8.2 shows that the difference between the estimates
that are produced by both methods is within the acceptable machine precision. However, the comparison
of the DATA step complexity of each method clearly shows that the method that uses the scoring functions
is much easier because it saves a lot of programming effort. Further, new distribution functions, such as
the dist_MEAN functions that are illustrated here, are automatically discovered and converted to scoring
functions by PROC SEVERITY. That enables you to focus your efforts on writing the distribution function
that computes your desired score, which needs to be done only once. Then, you can create and use the
corresponding scoring functions multiple times with much less effort.
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Output 29.8.2 Comparison of Mean and VaR Estimates of Two Scoring Methods
                                                                                
                                                                                
                              Observation Summary                               
                                                                                
                         Observation      Base  Compare                         
                                                                                
                         First Obs           1        1                         
                         Last  Obs          10       10                         
                                                                                
       Number of Observations in Common: 10.                                    
       Total Number of Observations Read from WORK.SCORESWITHOUTEST: 10.        
       Total Number of Observations Read from WORK.SCORES: 10.                  
                                                                                
       Number of Observations with Some Compared Variables Unequal: 0.          
       Number of Observations with All Compared Variables Equal: 10.            
                                                                                
                                                                                
                           Values Comparison Summary                            
                                                                                
        Number of Variables Compared with All Observations Equal: 9.            
        Number of Variables Compared with Some Observations Unequal: 0.         
        Total Number of Values which Compare Unequal: 0.                        
        Total Number of Values not EXACTLY Equal: 40.                           
        Maximum Difference Criterion Value: 2.078E-13.                          
                                                                                
                                                                                

Example 29.9: Scale Regression with Rich Regression Effects
This example illustrates the use of regression effects that include CLASS variables and interaction effects.

Consider that you, as an actuary at an automobile insurance company, want to evaluate the effect of certain
external factors on the distribution of the severity of the losses that your policyholders incur. Such analysis
can help you determine the relative differences in premiums that you should charge to policyholders who
have different characteristics. Assume that when you collect and record the information about each claim,
you also collect and record some key characteristics of the policyholder and the vehicle that is involved in
the claim. This example focuses on the following five factors: type of car, safety rating of the car, gender
of the policyholder, education level of the policyholder, and annual household income of the policyholder
(which can be thought of as a proxy for the luxury level of the car). Let these regressors be recorded in the
variables CarType (1: sedan, 2: sport utility vehicle), CarSafety (scaled to be between 0 and 1, the safest
being 1), Gender (1: female, 2: male), Education (1: high school graduate, 2: college graduate, 3: advanced
degree holder), and Income (scaled by a factor of 1/100,000), respectively. Let the historical data about the
severity of each loss be recorded in the LossAmount variable of the Work.Losses data set. Let the data set
also contain two additional variables, Deductible and Limit, that record the deductible and ground-up loss
limit provisions, respectively, of the insurance policy that the policyholder has. The limit on ground-up loss
is usually derived from the payment limit that a typical insurance policy states. Deductible serves as the
left-truncation variable, and Limit serves as the right-censoring variable. The SAS statements that simulate an
example of the Work.Losses data set are available in the PROC SEVERITY sample program sevex09.sas.

The variables CarType, Education, and Gender each contain a known, finite set of discrete values. By
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specifying such variables as classification variables, you can separately identify the effect of each level of the
variable on the severity distribution. For example, you might be interested in finding out how the magnitude
of loss for a sport utility vehicle (SUV) differs from that for a sedan. This is an example of a main effect.
You might also want to evaluate how the distribution of losses that are incurred by a policyholder with a
college degree who drives a SUV differs from that of a policyholder with an advanced degree who drives
a sedan. This is an example of an interaction effect. You can include various such types of effects in the
scale regression model. For more information about the effect types, see the section “Specification and
Parameterization of Model Effects” on page 2108. Analyzing such a rich set of regression effects can help
you make more accurate predictions about the losses that a new applicant with certain characteristics might
incur when he or she requests insurance for a specific vehicle, which can further help you with ratemaking
decisions.

The following PROC SEVERITY step fits the scale regression model with a lognormal distribution to data in
the Work.Losses data set, and stores the model and parameter estimate information in the Work.EstStore
item store:

/* Fit scale regression model with different types of regression effects */
proc severity data=losses outstore=eststore

print=all plots=none;
loss lossAmount / lt=deductible rc=limit;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn;

run;

The SCALEMODEL statement in the preceding PROC SEVERITY step includes two main effects
(carType and gender), two singleton continuous effects (carSafety and income), one interaction effect
(education*carType), one continuous-by-class effect (income*gender), and one polynomial continuous effect
(carSafety*income). For more information about effect types, see Table 29.10, “GLM Parameterization of
Classification Variables and Effects,” on page 2111.

When you specify a CLASS statement, it is recommended that you observe the “Class Level Information”
table. For this example, the table is shown in Output 29.9.1. Note that if you specify BY-group processing,
then the class level information might change from one BY group to the next, potentially resulting in a
different parameterization for each BY group.

Output 29.9.1 Class Level Information Table

The SEVERITY Procedure

Class Level Information

Class Levels Values

carType 2 SUV Sedan

gender 2 Female Male

education 3 AdvancedDegree College High School

The regression modeling results for the lognormal distribution are shown in Output 29.9.2. The “Initial
Parameter Values and Bounds” table is important especially because the preceding PROC SEVERITY step
uses the default GLM parameterization, which is a singular parameterization—that is, it results in some
redundant parameters. As shown in the table, the redundant parameters correspond to the last level of each
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classification variable; this correspondence is a defining characteristic of a GLM parameterization. An
alternative would be to use the reference parameterization by specifying the PARAM=REFERENCE option
in the CLASS statement, which does not generate redundant parameters for effects that contain CLASS
variables and enables you to specify a reference level for each CLASS variable.

Output 29.9.2 Initial Values for the Scale Regression Model with Class and Interaction Effects

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 4.88526 -709.78271 709.78271

Sigma 0.51283 1.05367E-8 Infty

carType SUV 0.56953 -709.78271 709.78271

carType Sedan Redundant

gender Female 0.41154 -709.78271 709.78271

gender Male Redundant

carSafety -0.72742 -709.78271 709.78271

income -0.33216 -709.78271 709.78271

carType*education SUV AdvancedDegree 0.31686 -709.78271 709.78271

carType*education SUV College 0.66361 -709.78271 709.78271

carType*education SUV High School Redundant

carType*education Sedan AdvancedDegree -0.47841 -709.78271 709.78271

carType*education Sedan College -0.25968 -709.78271 709.78271

carType*education Sedan High School Redundant

income*gender Female -0.02112 -709.78271 709.78271

income*gender Male Redundant

carSafety*income 0.13084 -709.78271 709.78271

The convergence and optimization summary information in Output 29.9.3 indicates that the scale regression
model for the lognormal distribution has converged with the default optimization technique in five iterations.

Output 29.9.3 Optimization Summary for the Scale Regression Model with Class and Interaction Effects

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 5

Function Calls 14

Log Likelihood -8286.8

The “Parameter Estimates” table in Output 29.9.4 shows the distribution parameter estimates and estimates
for various regression effects. You can use the estimates for effects that contain CLASS variables to infer the
relative influence of various CLASS variable levels. For example, on average, the magnitude of losses that
are incurred by the female drivers is exp.0:44145/ � 1:56 times greater than that of male drivers, and an
SUV driver with an advanced degree incurs a loss that is on average exp.0:39393/= exp.�0:35210/ � 2:11
times greater than the loss that a college-educated sedan driver incurs. Neither the continuous-by-class effect
income*gender nor the polynomial continuous effect carSafety*income is significant in this example.
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Output 29.9.4 Parameter Estimates for the Scale Regression with Class and Interaction Effects

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1 5.08874 0.05768 88.23 <.0001

Sigma 1 0.55774 0.01119 49.86 <.0001

carType SUV 1 0.62459 0.04452 14.03 <.0001

carType Sedan 0 0 . . .

gender Female 1 0.44145 0.04885 9.04 <.0001

gender Male 0 0 . . .

carSafety 1 -0.82942 0.08371 -9.91 <.0001

income 1 -0.35212 0.07657 -4.60 <.0001

carType*education SUV AdvancedDegree 1 0.39393 0.07351 5.36 <.0001

carType*education SUV College 1 0.76532 0.05723 13.37 <.0001

carType*education SUV High School 0 0 . . .

carType*education Sedan AdvancedDegree 1 -0.61064 0.05387 -11.34 <.0001

carType*education Sedan College 1 -0.35210 0.03942 -8.93 <.0001

carType*education Sedan High School 0 0 . . .

income*gender Female 1 -0.01486 0.06629 -0.22 0.8226

income*gender Male 0 0 . . .

carSafety*income 1 0.07045 0.11447 0.62 0.5383

If you want to update the model when new claims data arrive, then you can potentially speed up the estimation
process by specifying the OUTSTORE= item store that is created by the preceding PROC SEVERITY step
as an INSTORE= item store in a new PROC SEVERITY step as follows:

/* Refit scale regression model on new data different types of regression effects */
proc severity data=withNewLosses instore=eststore

print=all plots=all;
loss lossAmount / lt=deductible rc=limit;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn;

run;

PROC SEVERITY uses the parameter estimates in the INSTORE= item store to initialize the distribution
and regression parameters.
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Overview: SIMILARITY Procedure
The SIMILARITY procedure computes similarity measures associated with time-stamped data, time series,
and other sequentially ordered numeric data. PROC SIMILARITY computes similarity measures for time-
stamped transactional data (transactions) with respect to time by accumulating the data into a time series
format, and it computes similarity measures for sequentially ordered numeric data (sequences) by respecting
the ordering of the data.

Given two ordered numeric sequences (input and target), a similarity measure is a metric that measures the
distance between the input and target sequences while taking into account the ordering of the data. The
SIMILARITY procedure computes similarity measures between an input sequence and a target sequence,
in addition to similarity measures that “slide” the target sequence with respect to the input sequence. The
“slides” can be by observation index (sliding-sequence similarity measures) or by seasonal index (seasonal-
sliding-sequence similarity measures).

In order to compare the raw input and the raw target time-stamped data, the raw data must be accumulated to
a time series format. After the input and target time series are formed, the two accumulated time series can
be compared as two ordered numeric sequences.

For raw time-stamped data, after the transactional data are accumulated to form time series and any missing
values are interpreted, each accumulated time series can be functionally transformed, if desired. Transfor-
mations are useful when you want to stabilize the time series before computing the similarity measures.
Transformations performed by the SIMILARITY procedure include the following:

� log (LOG)

� square-root (SQRT)

� logistic (LOGISTIC)

� Box-Cox (BOXCOX)

� user-defined transformations

Each time series can be transformed further by using simple differencing or seasonal differencing or both.
Additional time series transformations can be performed by using various time series transformation and
analysis techniques provided by this procedure or other SAS/ETS procedures.

After optionally transforming each time series, the accumulated and transformed time series can be stored in
an output data set (OUT= data set).
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After optional accumulation and transformation, each of these time series are the “working series,” which
can now be analyzed as sequences of numeric data. Each of these sequences can be a target sequence, an
input sequence, or both a target and an input sequence. Throughout the remainder of this chapter, the term
“original sequence” applies to both the original input and target sequence. The term “working sequence”
applies to a version of both the original input and target sequence under investigation.

Each original sequence can be normalized prior to similarity analysis. Normalizations are useful when you
want to compare the “shape” or “profile” of the time series. Normalizations performed by the SIMILARITY
procedure include the following:

� standard (STANDARD)

� absolute (ABSOLUTE)

� user-defined normalizations

After each original sequence is optionally normalized, each working input sequence can be scaled to the
target sequence prior to similarity analysis. Scaling is useful when you want to compare the input sequence to
the target sequence while discounting the variation of the target sequence. Input sequence scaling performed
by the SIMILARITY procedure include the following:

� standard (STANDARD)

� absolute (ABSOLUTE)

� user-defined scaling

After the working input sequence is optionally scaled to the target sequence, similarity measures can be
computed. Similarity measures computed by the SIMILARITY procedure include the following:

� squared deviation (SQRDEV)

� absolute deviation (ABSDEV)

� mean square deviation (MSQRDEV)

� mean absolute deviation (MABSDEV)

� user-defined similarity measures

In computing the similarity measure between two time series, tasks are needed for transforming time series,
normalizing sequences, scaling sequences, and computing metrics or measures. The SIMILARITY procedure
provides built-in routines to perform these tasks. The SIMILARITY procedure also enables you to extend
the procedure with user-defined routines.

All results of the similarity analysis can be stored in output data sets, printed, or graphed using the Output
Delivery System (ODS).

The SIMILARITY procedure can process large amounts of time-stamped transactional data, time series, or
sequential data. Therefore, the analysis results are useful for large-scale time series analysis, analogous time
series forecasting, new product forecasting, or time series (temporal) data mining.
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The SAS/ETS EXPAND procedure can be used for frequency conversion and transformations of time
series. The TIMESERIES procedure can be used for large-scale time series analysis. The SAS/STAT
DISTANCE procedure can be used to compute various measures of distance, dissimilarity, or similarity
between observations (rows) of a SAS data set.

Getting Started: SIMILARITY Procedure
This section outlines the use of the SIMILARITY procedure and gives a cursory description of some of the
analysis techniques that can be performed on time-stamped transactional data, time series, or sequentially
ordered numeric data.

Given an input data set that contains numerous transaction variables recorded over time at no specific
frequency, the SIMILARITY procedure can form equally spaced input and target time series as follows:

PROC SIMILARITY DATA=<input-data-set>
OUT=<output-data-set>
OUTSUM=<summary-data-set>;

ID <time-ID-variable> INTERVAL=<frequency>
ACCUMULATE=<statistic>;

INPUT <input-time-stamp-variables>;
TARGET <target-time-stamp-variables>;

RUN;

The SIMILARITY procedure forms time series from the input time-stamped transactional data. It can provide
results in output data sets or in other output formats using the Output Delivery System (ODS). The examples
in this section are more fully illustrated in the section “Examples: SIMILARITY Procedure” on page 2257.

Time-stamped transactional data are often recorded at no fixed interval. Analysts often want to use time series
analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated
to form a fixed-interval time series.

Suppose that a bank wants to analyze the transactions that are associated with each of its customers over time.
Further, suppose that the data set WORK.TRANSACTIONS contains three variables that are related to the
customer transactions (CUSTOMER, DATE, and WITHDRAWAL) and one variable that contains an example
fraudulent behavior (FRAUD).

The following statements illustrate how to use the SIMILARITY procedure to accumulate time-stamped
transactional data to form a daily time series based on the accumulated daily totals of each type of transaction
(WITHDRAWALS and FRAUD):

proc similarity data=transactions out=timedata;
by customer;
id date interval=day accumulate=total;
input withdrawals;
target fraud;

run;

The OUT=TIMEDATA option specifies that the resulting time series data for each customer are to be stored
in the data set WORK.TIMEDATA. The INTERVAL=DAY option specifies that the transactions are to be
accumulated on a daily basis. The ACCUMULATE=TOTAL option specifies that the sum of the transactions
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are to be accumulated. After the transactional data are accumulated into a time series format, the time series
data can be normalized so that the “shape” or “profile” is analyzed.

For example, the following statements build on the previous statements and demonstrate normalization of the
accumulated time series:

proc similarity data=transactions out=timedata;
by customer;
id date interval=day accumulate=total;
input withdrawals / NORMALIZE=STANDARD;
target fraud / NORMALIZE=STANDARD;

run;

The NORMALIZE=STANDARD option specifies that each accumulated time series observation is normalized
by subtracting the mean and then dividing by the standard deviation of the accumulated time series. The
WORK.TIMEDATA data set now contains the accumulated and normalized time series data for each customer.

After the transactional data are accumulated into a time series format and normalized to a mean of zero and
standard deviation of one, similarity analysis can be performed on the accumulated and normalized time
series.

For example, the following statements build on the previous statements and demonstrate similarity analysis
of the accumulated and normalized time series:

proc similarity data=transactions
out=timedata OUTSUM=SUMMARY;

by customer;
id date interval=day accumulate=total;
input withdrawals / normalize=standard;
target fraud / normalize=standard MEASURE=MABSDEV;

run;

The MEASURE=MABSDEV option specifies the accumulated and normalized time series data that are
associated with the variables WITHDRAWALS and FRAUD are to be compared by using mean absolute
deviation. The OUTSUM=SUMMARY option specifies that the similarity analysis summary for each
customer is to be stored in the data set WORK.SUMMARY.
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Syntax: SIMILARITY Procedure
The following statements are used with the SIMILARITY procedure:

PROC SIMILARITY options ;
BY variables ;
ID variable INTERVAL= interval options ;
FCMPOPT options ;
INPUT variable-list / options ;
TARGET variable-list / options ;

Functional Summary
The statements and options that control the SIMILARITY procedure are summarized in Table 30.1.

Table 30.1 Functional Summary

Description Statement Option

Statements
Specifies BY-group processing BY
Specifies the time ID variable ID
Specifies the FCMP options FCMPOPT
Specifies input variables to analyze INPUT
Specifies target variables to analyze TARGET

Data Set Options
Specifies the input data set PROC SIMILARITY DATA=
Specifies the time series output data set PROC SIMILARITY OUT=
Specifies the measure summary output
data set

PROC SIMILARITY OUTMEASURE=

Specifies the path output data set PROC SIMILARITY OUTPATH=
Specifies the sequence output data set PROC SIMILARITY OUTSEQUENCE=
Specifies the summary output data set PROC SIMILARITY OUTSUM=

User-Defined Functions and Subroutine Options
Specifies FCMP quiet mode FCMPOPT QUIET=
Specifies FCMP trace mode FCMPOPT TRACE=

Accumulation and Seasonality Options
Specifies the accumulation frequency ID INTERVAL=
Specifies the length of seasonal cycle PROC SIMILARITY SEASONALITY=
Specifies the interval alignment ID ALIGN=
Specifies that the time ID variable values
are not sorted

ID NOTSORTED

Specifies the starting time ID value ID START=
Specifies the ending time ID value ID END=
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Description Statement Option

Specifies the accumulation statistic ID, INPUT, TARGET ACCUMULATE=
Specifies the missing value interpretation ID, INPUT, TARGET SETMISS=
Specifies the zero value interpretation ID, INPUT, TARGET ZEROMISS=
Specifies the type of missing value
trimming

INPUT, TARGET TRIMMISS=

Time Series Transformation Options
Specifies simple differencing INPUT, TARGET DIF=
Specifies seasonal differencing INPUT, TARGET SDIF=
Specifies the transformation INPUT, TARGET TRANSFORM=

Input Sequence Options
Specifies normalization INPUT NORMALIZE=
Specifies scaling INPUT SCALE=

Target Sequence Options
Specifies normalization TARGET NORMALIZE=

Similarity Measure Options
Specifies the compression limits TARGET COMPRESS=
Specifies the expansion limits TARGET EXPAND=
Specifies the similarity measure TARGET MEASURE=
Specifies the similarity measure and path TARGET PATH=
Specifies the sequence slide TARGET SLIDE=

Printing and Graphical Control Options
Specifies the time ID format ID FORMAT=
Specifies printed output PROC SIMILARITY PRINT=
Specifies detailed printed output PROC SIMILARITY PRINTDETAILS
Specifies graphical output PROC SIMILARITY PLOTS=

Miscellaneous Options
Specifies that analysis variables are
processed in ascending order

PROC SIMILARITY SORTNAMES

Specifies the ordering of the processing of
the input and target variables

PROC SIMILARITY ORDER=
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PROC SIMILARITY Statement
PROC SIMILARITY options ;

The following options can be used in the PROC SIMILARITY statement.

DATA=SAS-data-set
names the SAS data set that contains the time series, transactional, or sequence input data for the
procedure. If the DATA= option is not specified, the most recently created SAS data set is used.

ORDER=order-option
specifies the order in which the variables listed in the INPUT and TARGET statements are to be
processed. This ordering affects the OUTSEQUENCE=, OUTPATH=, OUTMEASURE=, and OUT-
SUM= data sets, in addition to the printed and graphical output. The SORTNAMES option also affects
the ordering of the analysis. You must specify one of the following order-options:

INPUT specifies that each INPUT variable be processed and then the TARGET variables
be processed. The results are stored and printed based only on the INPUT
variables.

INPUTTARGET specifies that each INPUT variable be processed and then the TARGET variables
be processed. The results are stored and printed based on both the INPUT and
TARGET variables. This is the default.

TARGET specifies that each TARGET variable be processed and then the INPUT variables
be processed. The results are stored and printed based only on the TARGET
variables.

TARGETINPUT specifies that each TARGET variable be processed and then the INPUT variables
be processed. The results are stored and printed based on both the TARGET and
INPUT variables.

OUT=SAS-data-set
names the output data set to contain the time series variables specified in the subsequent INPUT and
TARGET statements. If an ID variable is specified in the ID statement, it is also included in the
OUT= data set. The values are accumulated based on the ID statement INTERVAL= option or the
ACCUMULATE= options or both. The values are transformed based on the INPUT or TARGET
statement TRANSFORM=, DIF=, and SDIF= options in this order. The OUT= data set is particularly
useful when you want to further analyze, model, or forecast the resulting time series with other
SAS/ETS procedures.

OUTMEASURE=SAS-data-set
names the output data set to contain the detailed similarity measures by time ID value. The form of the
OUTMEASURE= data set is determined by the PROC SIMILARITY statement SORTNAMES and
ORDER= options.
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OUTPATH=SAS-data-set
names the output data set to contain the path used to compute the similarity measures for each slide
and warp. The form of the OUTPATH= data set is determined by the PROC SIMILARITY statement
SORTNAMES and ORDER= options. If a user-defined similarity measure is specified, the path cannot
be determined; therefore, the OUTPATH= data set does not contain information related to this measure.

OUTSEQUENCE=SAS-data-set
names the output data set to contain the sequences used to compute the similarity measures for each
slide and warp. The form of the OUTSEQUENCE= data set is determined by the PROC SIMILARITY
statement SORTNAMES and ORDER= options.

OUTSUM=SAS-data-set
names the output data set to contain the similarity measure summary. The OUTSUM= data set is
particularly useful when analyzing large numbers of series and only the summary of the results are
needed. The form of the OUTSUM= data set is determined by the PROC SIMILARITY statement
SORTNAMES and ORDER= options.

PLOTS=option

PLOTS=( options . . . )
specifies the graphical output desired. To specify multiple options, separate them by spaces and enclose
the group in parentheses. By default, the SIMILARITY procedure produces no graphical output. The
following graphical options are available:

COSTS plots graphics for time warp costs.

DISTANCES plots graphics for similarity absolute and relative distances (OUTPATH= data set).

INPUTS plots graphics for input variable time series (OUT= data set).

MAPS plots graphics for time warp maps (OUTPATH= data set).

MEASURES plots graphics for similarity measures (OUTMEASURE= data set).

NORMALIZED plots graphics for both the input and target variable normalized sequence. These
plots are displayed only when the INPUT or TARGET statement NORMALIZE=
option is specified.

PATHS plots time warp paths graphics (OUTPATH= data set).

SCALED plots graphics for both the input variable scaled sequence. These plots are displayed
only when the INPUT statement SCALE= option is specified.

SEQUENCES plots graphics for both the input and target variable sequence (OUTSEQUENCE=
data set).

TARGETS plots graphics for the target variable time series (OUT= data set).

WARPS plots graphics for time warps (OUTPATH= data set).

ALL is the same as PLOTS=(INPUTS TARGETS SEQUENCES NORMALIZED
SCALED DISTANCES PATHS MAPS WARPS COST MEASURES).
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PRINT=option

PRINT=(options . . . )
specifies the printed output desired. To specify multiple options, separate them by spaces and enclose
the group in parentheses. By default, the SIMILARITY procedure produces no printed output. The
following printing options are available:

DESCSTATS prints the descriptive statistics for the working time series.

PATHS prints the path statistics table. If a user-defined similarity measure is specified, the
path cannot be determined; therefore, the PRINT=PATHS table is not printed for
this measure.

COSTS prints the cost statistics table.

WARPS prints the warp summary table.

SLIDES prints the slides summary table.

SUMMARY prints the similarity measure summary table.

ALL is the same as PRINT=(DESCSTATS PATHS COSTS WARPS SLIDES SUM-
MARY).

PRINTDETAILS
specifies that the output requested with the PRINT= option be printed in greater detail.

SEASONALITY=integer
specifies the length of the seasonal cycle where integer ranges from one to 10,000. For example,
SEASONALITY=3 means that every group of three time periods forms a seasonal cycle. By default,
the length of the seasonal cycle is 1 (no seasonality) or the length implied by the INTERVAL= option
specified in the ID statement. For example, INTERVAL=MONTH implies that the length of the
seasonal cycle is 12.

SORTNAMES
specifies that the variables specified in the INPUT and TARGET statements be processed in alphabetical
order of the variable names. By default, the SIMILARITY procedure processes the variables in the
order in which they are listed. The ORDER= option also affects the ordering in which the analysis is
performed.

BY Statement
A BY statement can be used with PROC SIMILARITY to obtain separate dummy variable definitions for
groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.
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� Specify the option NOTSORTED or DESCENDING in the BY statement for the SIMILARITY
procedure. The NOTSORTED option does not mean that the data are unsorted, but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY-group processing, see SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FCMPOPT Statement
FCMPOPT options ;

The FCMPOPT statement specifies the following options that are related to user-defined functions and
subroutines:

QUIET=ON | OFF
specifies whether the nonfatal errors and warnings that are generated by the user-defined SAS language
functions and subroutines are printed to the log. Nonfatal errors are usually associated with operations
with missing values. The default is QUIET=ON.

TRACE=ON | OFF
specifies whether the user-defined SAS language functions and subroutines tracings are printed to the
log. Tracings are the results of every operation executed. This option is generally used for debugging.
The default is TRACE=OFF.

ID Statement
ID variable INTERVAL= interval options ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date, time, or datetime values. In addition, the ID statement
specifies the (desired) frequency associated with the time series. The ID statement options also specify how
the observations are accumulated and how the time ID values are aligned to form the time series. The options
specified affect all variables listed in subsequent INPUT and TARGET statements. If an ID statement is
specified, the INTERVAL= option must also be specified. The other ID statement options are optional. If an
ID statement is not specified, the observation number, with respect to the BY group, is used as the time ID.

The following options can be used with the ID statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period. The frequency (width
of each time interval) is specified by the INTERVAL= option. The ID variable contains the time ID
values. Each time ID variable value corresponds to a specific time period. The accumulated values
form the time series, which is used in subsequent analysis.
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The ACCUMULATE= option is particularly useful when there are zero or more than one input
observations that coincide with a particular time period (for example, time-stamped transactional data).
The EXPAND procedure offers additional frequency conversions and transformations that can also be
useful in creating a time series.

The following options determine how the observations are accumulated within each time period based
on the ID variable and the frequency specified by the INTERVAL= option:

NONE No accumulation occurs; the ID variable values must be equally spaced with
respect to the frequency. This is the default option.

TOTAL Observations are accumulated based on the total sum of their values.

AVERAGE | AVG Observations are accumulated based on the average of their values.

MINIMUM | MIN Observations are accumulated based on the minimum of their values.

MEDIAN | MED Observations are accumulated based on the median of their values.

MAXIMUM | MAX Observations are accumulated based on the maximum of their values.

N Observations are accumulated based on the number of nonmissing observations.

NMISS Observations are accumulated based on the number of missing observations.

NOBS Observations are accumulated based on the number of observations.

FIRST Observations are accumulated based on the first of their values.

LAST Observations are accumulated based on the last of their values.

STDDEV | STD Observations are accumulated based on the standard deviation of their values.

CSS Observations are accumulated based on the corrected sum of squares of their
values.

USS Observations are accumulated based on the uncorrected sum of squares of their
values.

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying
how accumulated missing values are treated. If missing values should be interpreted as zero, then
SETMISSING=0 should be used. The section “Details: SIMILARITY Procedure” on page 2235
describes accumulation in greater detail.

ALIGN=option
controls the alignment of SAS dates that are used to identify output observations. The ALIGN= option
accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
ALIGN=BEGINNING is the default.

END=option
specifies a SAS date, datetime, or time value that represents the end of the data. If the last time ID
variable value is less than the END= value, the series is extended with missing values. If the last time ID
variable value is greater than the END= value, the series is truncated. For example, END=“&sysdate”D
uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. The
START= and END= options can be used to ensure that data that are associated within each BY group
contain the same number of observations.
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FORMAT=format
specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default
format is implied by the INTERVAL= option. For example, FORMAT=DATE9. specifies that the
DATE9. SAS format be used. Notice that the terminating “.” is required when specifying a SAS
format.

INTERVAL=interval
specifies the frequency of the accumulated time series. For example, if the input data set consists
of quarterly observations, then INTERVAL=QTR should be used. If the SEASONALITY= option is
not specified, the length of the seasonal cycle is implied from the INTERVAL= option. For example,
INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE= option is also specified,
the INTERVAL= option determines the time periods for the accumulation of observations.

NOTSORTED
specifies that the time ID values are not in sorted order. The SIMILARITY procedure sorts the data
with respect to the time ID prior to analysis if the NOTSORTED option is specified.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are interpreted in the accumulated time
series. If a number is specified, missing values are set to that number. If a missing value indicates
an unknown value, the SETMISSING= option should not be used. If a missing value indicates no
value, then SETMISSING=0 should be used. You typically use SETMISSING=0 for transactional
data, because no recorded data usually implies no activity. The following options can also be used to
determine how missing values are assigned:

MISSING Missing values are set to missing. This is the default option.

AVERAGE | AVG Missing values are set to the accumulated average value.

MINIMUM | MIN Missing values are set to the accumulated minimum value.

MEDIAN | MED Missing values are set to the accumulated median value.

MAXIMUM | MAX Missing values are set to the accumulated maximum value.

FIRST Missing values are set to the accumulated first nonmissing value.

LAST Missing values are set to the accumulated last nonmissing value.

PREVIOUS | PREV Missing values are set to the previous period’s accumulated nonmissing
value. Missing values at the beginning of the accumulated series remain
missing.

NEXT Missing values are set to the next period’s accumulated nonmissing value.
Missing values at the end of the accumulated series remain missing.

START=option
specifies a SAS date, datetime, or time value that represents the beginning of the data. If the first time
ID variable value is greater than the START= value, missing values are added to the beginning of the
series. If the first time ID variable value is less than the START= value, the series is truncated. The
START= and END= options can be used to ensure that data that are associated with each BY group
contain the same number of observations.
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ZEROMISS=option
specifies how beginning and ending zero values (either actual or accumulated) are interpreted in the
accumulated time series. The following options can also be used to determine how beginning and
ending zero values are assigned:

NONE Beginning and ending zeros are unchanged. This is the default.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.

If the accumulated series is all missing or zero, the series is not changed.

INPUT Statement
INPUT variable-list < / options > ;

The INPUT statement lists the input numeric variables in the DATA= data set whose values are to be
accumulated to form the time series or represent ordered numeric sequences (when no ID statement is
specified).

An input data set variable can be specified in only one INPUT or TARGET statement. Any number of INPUT
statements can be used. The following options can be used with an INPUT statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period for the variables listed
in the INPUT statement. If the ACCUMULATE= option is not specified in the INPUT statement, accu-
mulation is determined by the ACCUMULATE= option of the ID statement. If the ACCUMULATE=
option is not specified in the ID statement or the INPUT statement, no accumulation is performed. For
more information, see the ACCUMULATE= option in the ID statement.

DIF=(numlist)
specifies the differencing to be applied to the accumulated time series. The list of differencing orders
must be separated by spaces or commas. For example, DIF=(1,3) specifies first, then third order,
differencing. Differencing is applied after time series transformation. The TRANSFORM= option is
applied before the DIF= option. Simple differencing is useful when you want to detrend the time series
before computing the similarity measures.

NORMALIZE=option
specifies the sequence normalization to be applied to the working input sequence. The following
normalization options are provided:

NONE No normalization is applied. This option is the default.

ABSOLUTE Absolute normalization is applied.

STANDARD Standard normalization is applied.

User-Defined Normalization is computed by a user-defined subroutine that is created using the
FCMP procedure, where User-Defined is the subroutine name.
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Normalization is applied to the working input sequence, which can be a subset of the working input
time series if the SLIDE=INDEX or SLIDE=SEASON option is specified.

SCALE=option
specifies the scaling of the working input sequence with respect to the working target sequence. Scaling
is performed after normalization. The following scaling options are provided:

NONE No scaling is applied. This option is the default.

ABSOLUTE Absolute scaling is applied.

STANDARD Standard scaling is applied.

User-Defined Scaling is computed by a user-defined subroutine that is created using the FCMP
procedure, where User-Defined is the subroutine name.

Scaling is applied to the working input sequence, which can be a subset of the working input time
series if the SLIDE=INDEX or SLIDE=SEASON option is specified.

SDIF=(numlist)
specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal
differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first,
then third, order seasonal differencing. Differencing is applied after time series transformation. The
TRANSFORM= option is applied before the SDIF= option. Seasonal differencing is useful when you
want to deseasonalize the time series before computing the similarity measures.

SETMISSING=option | number

SETMISS=option | number
specifies how missing values (either actual or accumulated) are interpreted in the accumulated time
series or ordered sequence for variables listed in the INPUT statement. If the SETMISSING= option
is not specified in the INPUT statement, missing values are set based on the SETMISSING= option
in the ID statement. If the SETMISSING= option is not specified in the ID statement or the INPUT
statement, no missing value interpretation is performed. For more information, see the SETMISSING=
option in the ID statement.

TRANSFORM=option
specifies the time series transformation to be applied to the accumulated time series. The following
transformations are provided:

NONE No transformation is applied. This option is the default.

LOG Logarithmic transformation is applied.

SQRT Square-root transformation is applied.

LOGISTIC Logistic transformation is applied.

BOXCOX(number ) Box-Cox transformation with parameter is applied, where the real number is
between –5 and 5.

User-Defined Transformation is computed by a user-defined subroutine that is created using
the FCMP procedure, where User-Defined is the subroutine name.

When the TRANSFORM= option is specified, the time series must be strictly positive unless a
user-defined function is used.
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TRIMMISSING=option

TRIMMISSING=option
specifies how missing values (either actual or accumulated) are trimmed from the accumulated time
series or ordered sequence for variables that are listed in the INPUT statement. The following trimming
options are provided:

NONE No missing value trimming is applied.

LEFT Beginning missing values are trimmed.

RIGHT Ending missing values are trimmed.

BOTH Both beginning and ending missing value are trimmed. This is the default.

ZEROMISS=option
specifies how beginning and ending zero values (either actual or accumulated) are interpreted in
the accumulated time series or ordered sequence for variables listed in the INPUT statement. If the
ZEROMISS= option is not specified in the INPUT statement, beginning and ending zero values are set
based on the ZEROMISS= option of the ID statement. If the ZERO= option is not specified in the ID
statement or the INPUT statement, no zero value interpretation is performed. For more information,
see the ZEROMISS= option in the ID statement.

TARGET Statement
TARGET variable-list < / options > ;

The TARGET statement lists the numeric target variables in the DATA= data set whose values are to be
accumulated to form the time series or represent ordered numeric sequences (when no ID statement is
specified).

An input data set variable can be specified in only one INPUT or TARGET statement. Any number of
TARGET statements can be used. The following options can be used with a TARGET statement:

ACCUMULATE=option
specifies how the data set observations are accumulated within each time period for the variables
listed in the TARGET statement. If the ACCUMULATE= option is not specified in the TARGET
statement, accumulation is determined by the ACCUMULATE= option in the ID statement. If
the ACCUMULATE= option is not specified in the ID statement or the TARGET statement, no
accumulation is performed. For more information, see the ACCUMULATE= option in the ID statement.

COMPRESS=option | (options)
specifies the sliding sequence (global) and warping (local) compression range of the target sequence
with respect to the input sequence. Compression of the target sequence is the same as expansion of the
input sequence and vice versa. The compression limits are defined based on the length of the target
sequence and are imposed on the target sequence. The following compression options are provided:

GLOBALABS=integer specifies the absolute global compression, where integer ranges from zero
to 10,000. GLOBALABS=0 implies no global compression, which is the
default unless the GLOBALPCT= option is specified.
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GLOBALPCT=number specifies global compression as a percentage of the length of the target
sequence, where number ranges from zero to 100. GLOBALPCT=0 implies
no global compression, which is the default. GLOBALPCT=100 implies
maximum allowable compression.

LOCALABS=integer specifies the absolute local compression, where integer ranges from zero
to 10,000. The default is maximum allowable absolute local compression
unless the LOCALPCT= option is specified.

LOCALPCT=number specifies local compression as a percentage of the length of the target
sequence, where number ranges from zero to 100. The percentage specified
by the LOCALPCT= option must be less than the GLOBALPCT= option.
LOCALPCT=0 implies no local compression. LOCALPCT=100 implies
maximum allowable local compression. The default is LOCALPCT=100.

If the SLIDE=NONE or SLIDE=SEASON option is specified in the TARGET statement, the
global compression options are ignored. To disallow local compression, use the option COM-
PRESS=(LOCALPCT=0 LOCALABS=0).

If the SLIDE=INDEX option is specified, the global compression options are not ignored. To com-
pletely disallow both global and local compression, use the option COMPRESS=(GLOBALPCT=0
LOCALPCT=0) or COMPRESS=(GLOBALABS=0 LOCALABS=0). To allow only local com-
pression, use the option COMPRESS=(GLOBALPCT=0 GLOBALABS=0). These are the default
compression options.

The preceding options can be used in combination to specify the desired amount of global and local
compression as the following examples illustrate, where Lc denotes the global compression limit and
lc denotes the local compression limit:

� COMPRESS=(GLOBALPCT=20) allows the global and local compression to range from zero to
Lc D min

��
0:2Ny

˘
;
�
Ny � 1

��
.

� COMPRESS=(GLOBALPCT=20 GLOBALABS=10) allows the global and local compression to
range from zero to Lc D min

��
0:2Ny

˘
;min

��
Ny � 1

�
; 10

��
.

� COMPRESS=(LOCALPCT=10) allows the local compression to range from zero to lc D
min

��
0:1Ny

˘
;
�
Ny � 1

��
.

� COMPRESS=(LOCALPCT=20 LOCALABS=5) allows the local compression to range from
zero to lc D min

��
0:2Ny

˘
;min

��
Ny � 1

�
; 5
��

.

� COMPRESS=(GLOBALPCT=20 LOCALPCT=20) allows the global compression to range from
zero to Lc D min

��
0:2Ny

˘
;
�
Ny � 1

��
and allows the local compression to range from zero to

lc D min
��
0:2Ny

˘
;
�
Ny � 1

��
.

� COMPRESS=(GLOBALPCT=20 GLOBALABS=10 LOCALPCT=10 LOCALABS=5) allows
the global compression to range from zero to Lc D min

��
0:2Ny

˘
;min

��
Ny � 1

�
; 10

��
and

allows the local compression to range from zero to lc D min
��
0:1Ny

˘
;min

��
Ny � 1

�
; 5
��

.

Suppose Tz is the length of the input time series and Ny is the length of the target sequence. The valid
global compression limit, Lc , is always limited by the length of the target sequence: 0 � Lc < Ny .

Suppose Nx is the length of the input sequence and Ny is the length of the target sequence. The
valid local compression limit, lc , is always limited by the lengths of the input and target sequence:
max

�
0;
�
Ny �Nx

��
� lc < Ny .
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DIF=(numlist)
specifies the differencing to be applied to the accumulated time series. The list of differencing orders
must be separated by spaces or commas. For example, DIF=(1,3) specifies first, then third, order
differencing. Differencing is applied after time series transformation. The TRANSFORM= option is
applied before the DIF= option. Simple differencing is useful when you want to detrend the time series
before computing the similarity measures.

EXPAND=option | (options)
specifies the sliding sequence (global) and warping (local) expansion range of the target sequence with
respect to the input sequence. Expansion of the target sequence is the same as compression of the input
sequence and vice versa. The expansion limits are defined based on the length of the input sequence,
but are imposed on the target sequence. The following expansion options are provided:

GLOBALABS=integer specifies the absolute global expansion, where integer ranges from zero to
10,000. GLOBALABS=0 implies no global expansion, which is the default
unless the GLOBALPCT= option is specified.

GLOBALPCT=number specifies global expansion as a percentage of the length of the target se-
quence, where number ranges from zero to 100. GLOBALPCT=0 implies
no global expansion, which is the default unless the GLOBALABS= op-
tion is specified. GLOBALPCT=100 implies maximum allowable global
expansion.

LOCALABS=integer specifies the absolute local expansion, where integer ranges from zero to
10,000. The default is the maximum allowable absolute local expansion
unless the LOCALPCT= option is specified.

LOCALPCT=number specifies local expansion as a percentage of the length of the target sequence,
where number ranges from zero to 100. LOCALPCT=0 implies no local
expansion. LOCALPCT=100 implies maximum allowable local expansion.
The default is LOCALPCT=100.

If the SLIDE=NONE or SLIDE=SEASON option is specified in the TARGET statement, the global
expansion options are ignored. To disallow local expansion, use the option EXPAND=(LOCALPCT=0
LOCALABS=0).

If the SLIDE=INDEX option is specified, the global expansion options are not ignored. To completely
disallow both global and local expansion, use the option EXPAND=(GLOBALPCT=0 LOCALPCT=0)
or EXPAND=(GLOBALABS=0 LOCALABS=0). To allow only local expansion, use the option
EXPAND=(GLOBALPCT=0 GLOBALABS=0). These are the default expansion options.

The preceding options can be used in combination to specify the desired amount of global and local
expansion as the following examples illustrate, where Le denotes the global expansion limit and le
denotes the local expansion limit:

� EXPAND=(GLOBALPCT=20) allows the global and local expansion to range from zero to
Le D min

��
0:2Ny

˘
;
�
Ny � 1

��
.

� EXPAND=(GLOBALPCT=20 GLOBALABS=10) allows the global and local expansion to range
from zero to Le D min

��
0:2Ny

˘
;min

��
Ny � 1

�
; 10

��
.

� EXPAND=(LOCALPCT=10) allows the local expansion to range from zero to le D

min
��
0:1Ny

˘
;
�
Ny � 1

��
.
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� EXPAND=(LOCALPCT=10 LOCALABS=5) allows the local expansion to range from zero to
le D min

��
0:1Ny

˘
;min

��
Ny � 1

�
; 5
��

.

� EXPAND=(GLOBALPCT=20 LOCALPCT=10) allows the global expansion to range from
zero to Le D min

��
0:2Ny

˘
;
�
Ny � 1

��
and allows the local expansion to range from zero to

le D min
��
0:1Ny

˘
;
�
Ny � 1

��
.

� EXPAND=(GLOBALPCT=20 GLOBALABS=10 LOCALPCT=10 LOCALABS=5) allows the
global expansion to range from zero to Le D min

��
0:2Ny

˘
;min

��
Ny � 1

�
; 10

��
and allows

the local expansion to range from zero to le D min
��
0:1Ny

˘
;min

��
Ny � 1

�
; 5
��

.

Suppose Tz is the length of the input time series and Ny is the length of the target sequence. The valid
global expansion limit, Le, is always limited by the length of the input time series: 0 � Le < Tz .

Suppose Nx is the length of the input sequence and Ny is the length of the target sequence. The
valid local expansion limit, le, is always limited by the lengths of the input and target sequence:
max

�
0;
�
Nx �Ny

��
� le < Nx .

MEASURE=option
specifies the similarity measure to be computed by using the working input and target sequences. The
following similarity measures are provided:

SQRDEV squared deviation. This option is the default.

ABSDEV absolute deviation

MSQRDEV mean squared deviation

MSQRDEVINP mean squared deviation relative to the length of the input sequence

MSQRDEVTAR mean squared deviation relative to the length of the target sequence

MSQRDEVMIN mean squared deviation relative to the minimum valid path length

MSQRDEVMAX mean squared deviation relative to the maximum valid path length

MABSDEV mean absolute deviation

MABSDEVINP mean absolute deviation relative to the length of the input sequence

MABSDEVTAR mean absolute deviation relative to the length of the target sequence

MABSDEVMIN mean absolute deviation relative to the minimum valid path length

MABSDEVMAX mean absolute deviation relative to the maximum valid path length

User-Defined The measure is computed by a user-defined function created by using the FCMP
procedure, where User-Defined is the function name.

NORMALIZE=option
specifies the sequence normalization to be applied to the working target sequence. The following
normalization options are provided:

NONE No normalization is applied. This option is the default.

ABSOLUTE Absolute normalization is applied.

STANDARD Standard normalization is applied.

User-Defined Normalization is computed by a user-defined subroutine that is created by using the
FCMP procedure, where User-Defined is the subroutine name.
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PATH=option
specifies the similarity measure and warping path information to be computed using the working input
and target sequences. The following similarity measures and warping path are provided:

User-Defined The measure and path are computed by a user-defined subroutine that is created by
using the FCMP procedure, where User-Defined is the subroutine name.

For computational efficiency, the PATH= option should be only used when you want to compute both
the similarity measure and the warping path information. If only the similarity measure is needed, use
the MEASURE= option. If you specify both the MEASURE= and PATH= option in the TARGET
statement, the PATH= option takes precedence.

SDIF=(numlist)
specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal
differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first,
then third, order seasonal differencing. Differencing is applied after time series transformation. The
TRANSFORM= option is applied before the SDIF= option. Seasonal differencing is useful when you
want to deseasonalize the time series before computing the similarity measures.

SETMISSING=option | number

SETMISS=option | number
option specifies how missing values (either actual or accumulated) are interpreted in the accumulated
time series for variables that are listed in the TARGET statement. If the SETMISSING= option is not
specified in the TARGET statement, missing values are set based on the SETMISSING= option in
the ID statement. If the SETMISSING= option is not specified in the ID statement or the TARGET
statement, no missing value interpretation is performed. For more information, see the SETMISSING=
option in the ID statement.

SLIDE=option
specifies the sliding of the target sequence with respect to the input sequence. The following slides are
provided:

NONE No sequence sliding. The input time series is compared with the target sequence
directly with no sliding. This option is the default.

INDEX Slide by time index. The input time series is compared with the target sequence by
observation index.

SEASON Slide by seasonal index. The input time series is compared with the target sequence
by seasonal index.

The SLIDE= option takes precedence over the COMPRESS= and EXPAND= options.

TRANSFORM=option
specifies the time series transformation to be applied to the accumulated time series. The following
transformations are provided:

NONE No transformation is applied. This option is the default.

LOG Logarithmic transformation is applied.

SQRT Square-root transformation is applied.
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LOGISTIC Logistic transformation is applied.

BOXCOX(number ) Box-Cox transformation with parameter is applied, where the real number is
between –5 and 5

User-Defined Transformation is computed by a user-defined subroutine that is created by
using the FCMP procedure, where User-Defined is the subroutine name.

When the TRANSFORM= option is specified, the time series must be strictly positive unless a
user-defined function is used.

TRIMMISSING=option

TRIMMISS= option
specifies how missing values (either actual or accumulated) are trimmed from the accumulated time
series or ordered sequence for variables that are listed in the TARGET statement. The following
trimming options are provided:

NONE No missing value trimming is applied.

LEFT Beginning missing values are trimmed.

RIGHT Ending missing values are trimmed.

BOTH Both beginning and ending missing values are trimmed. This is the default.

ZEROMISS=option
specifies how beginning and ending zero values (either actual or accumulated) are interpreted in the
accumulated time series or ordered sequence for variables listed in the TARGET statement. If the
ZEROMISS= option is not specified in the TARGET statement, beginning and ending values are set
based on the ZEROMISS= option in the ID statement. For more information, see the ZEROMISS=
option in the ID statement.

Details: SIMILARITY Procedure
You can use the SIMILARITY procedure to do the following functions, which are done in the order shown.
First, you can form time series data from transactional data with the options shown:

1. accumulation ACCUMULATE= option

2. missing value interpretation SETMISSING= option

3. zero value interpretation ZEROMISS= option

Next, you can transform the accumulated time series to form the working time series with the following
options. Transformations are useful when you want to stabilize the time series before computing the similarity
measures. Simple and seasonal differencing are useful when you want to detrend or deseasonalize the time
series before computing the similarity measures. Often, but not always, the TRANSFORM=, DIF=, and
SDIF= options should be specified in the same way for both the target and input variables.
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4. time series transformation TRANSFORM= option

5. time series differencing DIF= and SDIF= options

6. time series missing value trimming TRIMMISSING= option

7. time series descriptive statistics PRINT=DESCSTATS option

After the working series is formed, you can treat it as an ordered sequence that can be normalized or scaled.
Normalizations are useful when you want to compare the “shape” or “profile” of the time series. Scaling is
useful when you want to compare the input sequence to the target sequence while discounting the variation
of the target sequence.

8. normalization NORMALIZE= option

9. scaling SCALE= option

After the working sequences are formed, you can compute similarity measures between input and target
sequences:

10. sliding SLIDE= option

11. warping COMPRESS= and EXPAND= options

12. similarity measure MEASURE= and PATH= options

The SLIDE= option specifies observation-index sliding, seasonal-index sliding, or no sliding. The COM-
PRESS= and EXPAND= options specify the warping limits. The MEASURE= and PATH= options specify
how the similarity measures are computed.

Accumulation
If the ACCUMULATE= option is specified in the ID, INPUT, or TARGET statement, data set observations
are accumulated within each time period. The frequency (width of each time interval) is specified by the
INTERVAL= option in the ID statement. The ID variable contains the time ID values. Each time ID value
corresponds to a specific time period. Accumulation is particularly useful when the input data set contains
transactional data, whose observations are not spaced with respect to any particular time interval. The
accumulated values form the time series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20
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If the INTERVAL=MONTH option is specified, all of the preceding observations fall within three time
periods of March 1999, April 1999, and May 1999. The observations are accumulated within each time
period as follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are
not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the data are accumulated as follows:

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified, the data are accumulated as follows:

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified, the data are accumulated as follows:

O1MAR1999 10
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MEDIAN option is specified, the data are accumulated as follows:

O1MAR1999 20
01APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified, the data are accumulated as follows:

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified, the data are accumulated as follows:

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified, the data are accumulated as follows:

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified, the data are accumulated as follows:

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the preceding examples, even though the data set observations contain no missing values,
the accumulated time series can have missing values.
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Missing Value Interpretation
Sometimes missing values should be interpreted as unknown values. But sometimes missing values are
known, such as when missing values are created from accumulation and no observations should be interpreted
as no (zero) value. In the former case, the SETMISSING= option in the ID, INPUT, or TARGET statement
can be used to interpret how missing values are treated. The SETMISSING=0 option should be used when
missing observations are to be treated as no (zero) values. In other cases, missing values should be interpreted
as global values, such as minimum or maximum values of the accumulated series. The accumulated and
interpreted time series is used in subsequent analyses.

The SETMISSING=0 option should be used with missing observations are to be treated as a zero value. In
other cases, missing values should be interpreted as global values, such as minimum or maximum values of
the accumulated series. The accumulated and interpreted time series is then used in subsequent analyses.

Zero Value Interpretation
When querying certain databases for time-stamped data based on a particular time range, time periods that
contain no data are sometimes assigned zero values. For certain analyses, it is more desirable to assign these
values to missing. Often, these beginning or ending zero values need to be interpreted as missing values. The
ZEROMISS= option in the ID, INPUT, or TARGET statement specifies that the beginning, ending, or both
the beginning and ending values are to be interpreted as zero values.

Time Series Transformation
Transformations are useful when you want to stabilize the time series before computing the similarity
measures. There are four transformations available, for strictly positive series only. Let yt > 0 be the original
time series, and let wt be the transformed series. The transformations are defined as follows:

Log is the logarithmic transformation,

wt D ln.yt /

Logistic is the logistic transformation,

wt D ln.cyt=.1 � cyt //

where the scaling factor c is

c D .1 � e�6/10�ceil.log10.max.yt ///

and ceil.x/ is the smallest integer greater than or equal to x.

Square root is the square root transformation,

wt D
p
yt
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Box-Cox is the Box-Cox transformation,

wt D

(
y�t �1

�
�¤0

ln.yt / � D 0

User-Defined is the transformation computed by a user-defined subroutine that is created by using the
FCMP procedure, where User-Defined is the subroutine name.

Other time series transformations can be performed prior to invoking the SIMILARITY procedure by using
the SAS/ETS EXPAND procedure or the DATA step.

Time Series Differencing
After optionally transforming the series, the accumulated series can be simply or seasonally differenced using
the INPUT or TARGET statement DIF= and SDIF= options. Simple and seasonal differencing are useful
when you want to detrend or deseasonalize the time series before computing the similarity measures.

For example, suppose yt is a monthly time series. The following examples of the DIF= and SDIF= options
demonstrate how to simply and seasonally difference the time series: DIF=(1,3) specifies first, then third,
order differencing; SDIF=(1,3) specifies first, then third, order seasonal differencing.

Additionally, assuming that yt is strictly positive, the INPUT or TARGET statement TRANSFORM= option
and the DIF= and SDIF= options can be combined.

Time Series Missing Value Trimming
In some instances, missing values should be interpreted as an unknown observation, but other times, missing
values are known and should be interpreted as a zero value. This is the case when missing values are created
from accumulation, and a missing observation should be interpreted as having no value (meaning a value
of zero). In the former case, the SETMISSING=option in the ID, INPUT, or TARGET, statement can be
used to interpret how missing observations should be treated. By default, missing values, at the beginning
and ending of the data set, are trimmed from the data set prior to analysis. This can be performed using
TRIMMISS=both.

Time Series Descriptive Statistics
After a series has been optionally accumulated and transformed with missing values interpreted, descriptive
statistics can be computed for the resulting working series by specifying the PRINT=DESCSTATS option.
This option produces an ODS table that contains the sum, mean, minimum, maximum, and standard deviation
of the working series.
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Input and Target Sequences
After the input and target working series are formed, they can be treated as two ordered sequences. Given an
input time sequence, xi , for i D 1 to Nx , where i is the input sequence index, and a target time sequence, yj ,
for j D 1 to Ny , where j is the target sequence index, these sequences are analyzed for similarity.

Sliding Sequences
Similarity measures can be computed between the target sequence and any contiguous subsequences of the
input time series.

There are three types of sequence sliding:

� no sliding

� slide by time index

� slide by season index

For more information, see Leonard et al. (2008).

Time Warping
Time warping allows for the comparison between target and input sequences of differing lengths by com-
pressing or expanding the input sequence with respect the target sequence while respecting the order of the
sequence elements.

For more information, see Leonard et al. (2008).

Sequence Normalization
The working (input or target) sequence can be normalized prior to further analysis. Let qi be the original
sequence with mean �q and standard deviation �q , and let rt be the normalized sequence. The normalizations
are defined as follows:

� Standard is the standard normalization

ri D .qi � �q/=�q

� Absolute is the absolute normalization

ri D .qi �min.qi //=.max.qi / �min.qi //

� User-defined is a user-defined normalization created by the FCMP procedure.
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Sequence Scaling
The working input sequence can be scaled to the working target sequence. Sequence scaling is applied after
normalization. Let yj be the working target sequence with mean �y and standard deviation �y . Let xi be
the working input sequence and let qi be the scaled sequence. The scaling is defined as follows:

� Standard is the standard normalization

qi D .xi � �y/=�y

� Absolute is the absolute scaling

qi D .xi �min.yj //=.max.yj / �min.yj //

� User-defined is a user-defined scaling created by the FCMP procedure.

Similarity Measures
The working input sequence can be compared to the working target sequence to create a similarity. For more
information, see Leonard et al. (2008).

User-Defined Functions and Subroutines
A user-defined routine can be written in the SAS language by using the FCMP procedure or in the C language
by using both the FCMP procedure and the PROTO procedure, respectively. The SIMILARITY procedure
cannot use C language routines directly. The procedure can use only SAS language routines that might or
might not call C language routines. Creating user-defined routines is more completely described in the FCMP
procedure and the PROTO procedure documentation. The FCMP and PROTO procedures are part of Base
SAS software.

The SAS language provides integrated memory management and exception handling such as operations
on missing values. The C language provides flexibility and allows the integration of existing C language
libraries. However, proper memory management and exception handling are solely the responsibility of
the user. Additionally, the support for standard C libraries is restricted. If you have a choice, it is highly
recommended that you write user-defined functions and subroutines in the SAS language using the FCMP
procedure.

For each of the tasks previously described, the following sections describe the required subroutine or function
signature and provide examples of using a user-defined routine with the SIMILARITY procedure.
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Time Series Transformations

A user-defined transformation subroutine has the subroutine signature

SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*] );

where the array-name is the time series to be transformed.

For example, to duplicate the functionality of the built-in TRANSFORM=LOG option in the INPUT and
TARGET statement, the following SAS statements create a user-defined version of this transformation called
MYTRANSFORM and store this subroutine in the catalog SASUSER.MYSIMILAR:

proc fcmp outlib=sasuser.mysimilar.package;

subroutine mytransform( series[*] );

outargs series;

length = DIM(series);

do i = 1 to length;
value = series[i];
if value > 0 then do;

series[i] = log( value );
end;
else do;

series[i] = .;
end;

end;

endsub;

run;

This user-defined subroutine can be specified in the TRANSFORM= option in the INPUT or TARGET
statement as follows:

options cmplib = sasuser.mysimilar;

proc similarity ...;
...
input myinput / transform=mytransform;
target mytarget / transform=mytransform;
...
run;

Sequence Normalizations

A user-defined normalization subroutine has the signature

SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*] );

where the array-name is the sequence to be normalized.

For example, to duplicate the functionality of the built-in NORMALIZE=ABSOLUTE option in the INPUT
and TARGET statement, the following SAS statements create a user-defined version of this normalization
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called MYNORMALIZE and store this subroutine in the catalog SASUSER.MYSIMILAR:

proc fcmp outlib=sasuser.mysimilar.package;

subroutine mynormalize( sequence[*] );

outargs sequence;

length = DIM(sequence);
minimum = .; maximum = .;

do i = 1 to length;
value = sequence[i];
if nmiss(minimum) | nmiss(maximum) then do;

minimum = value;
maximum = value;

end;
if nmiss(value) = 0 then do;

if value < minimum then minimum = value;
if value > maximum then maximum = value;

end;
end;

do i = 1 to length;
value = sequence[i];
if nmiss( value ) | minimum > maximum then do;

sequence[i] = .;
end;
else do;

sequence[i] = (value - minimum) / (maximum - minimum);
end;

end;

endsub;

run;

This user-defined subroutine can be specified in the NORMALIZE= option in the INPUT or TARGET
statement as follows:

options cmplib = sasuser.mysimilar;

proc similarity ...;
...
input myinput / normalize=mynormalize;
target mytarget / normalize=mynormalize;
...

run;
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Sequence Scaling

A user-defined scaling subroutine has the signature

SUBROUTINE <SUBROUTINE-NAME> ( <ARRAY-NAME>[*], <ARRAY-NAME>[*] );

where the first array-name is the target sequence and the second array-name is the input sequence to be
scaled.

For example, to duplicate the functionality of the built-in SCALE=ABSOLUTE option in the INPUT
statement, the following SAS statements create a user-defined version of this scaling called MYSCALE and
store this subroutine in the catalog SASUSER.MYSIMILAR:

proc fcmp outlib=sasuser.mysimilar.package;

subroutine myscale( target[*], input[*] );

outargs input;

length = DIM(target);
minimum = .; maximum = .;

do i = 1 to length;
value = target[i];
if nmiss(minimum) | nmiss(maximum) then do;

minimum = value;
maximum = value;

end;
if nmiss(value) = 0 then do;

if value < minimum then minimum = value;
if value > maximum then maximum = value;

end;
end;

do i = 1 to length;
value = input[i];
if nmiss( value ) | minimum > maximum then do;

input[i] = .;
end;
else do;

input[i] = (value - minimum) / (maximum - minimum);
end;

end;

endsub;

run;

This user-defined subroutine can be specified in the SCALE= option in the INPUT statement as follows:

options cmplib=sasuser.mysimilar;

proc similarity ...;
...
input myinput / scale=myscale;
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...
run;

Similarity Measures

A user-defined similarity measure function has the signature

FUNCTION <FUNCTION-NAME> ( <ARRAY-NAME>[*], <ARRAY-NAME>[*] );

where the first array-name is the target sequence and the second array-name is the input sequence. The return
value of the function is the similarity measure associated with the target sequence and the input sequence.

For example, to duplicate the functionality of the built-in MEASURE=ABSDEV option in the TARGET
statement with no warping, the following SAS statements create a user-defined version of this measure called
MYMEASURE and store this subroutine in the catalog SASUSER.MYSIMILAR:

proc fcmp outlib=sasuser.mysimilar.package;

function mymeasure( target[*], input[*] );

length = min(DIM(target), DIM(input));
sum = 0; num = 0;

do i = 1 to length;
x = input[i];
w = target[i];
if nmiss(x) = 0 & nmiss(w) = 0 then do;

d = x - w;
sum = sum + abs(d);
num = num + 1;

end;
end;

if num <= 0 then return(.);

return(sum);

endsub;

run;

This user-defined function can be specified in the MEASURE= option in the TARGET statement as follows:

options cmplib=sasuser.mysimilar;

proc similarity ...;
...
target mytarget / measure=mymeasure;
...

run;

For another example, to duplicate the functionality of the built-in MEASURE=SQRDEV and MEA-
SURE=ABSDEV options by using the C language, the following SAS statements create a user-defined
C language version of these measures called DTW_SQRDEV_C and DTW_ABSDEV_C and store these
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functions in the catalog SASUSER.CSIMIL.CFUNCS. DTW refers to dynamic time warping. These C
language functions can then be called by SAS language functions and subroutines.

proc proto package=sasuser.csimil.cfuncs;

mapmiss double = 999999999;

double dtw_sqrdev_c( double * target / iotype=input,
int targetLength,
double * input / iotype=input,
int inputLength );

externc dtw_sqrdev_c;
double dtw_sqrdev_c( double * target,

int targetLength,
double * input,
int inputLength )

{
int i,j;
double x,w,d;
double * prev = (double *)malloc( sizeof(double)*targetLength);
double * curr = (double *)malloc( sizeof(double)*inputLength);
if ( prev == 0 || curr == 0 ) return 999999999;

x = input[0];
for ( j=0; j<targetLength; j++ ) {

w = target[j];
d = x - w;
d = d*d;
if ( j == 0 ) prev[j] = d;
else prev[j] = d + prev[j-1];

}

for (i=1; i<inputLength; i++ ) {
x = input[i];

j = 0;
w = target[j];
d = x - w;
d = d*d;
curr[j] = d + prev[j];

for (j=1; j<targetLength; j++ ) {
w = target[j];
d = x - w;
d = d*d;
curr[j] = d + fmin( prev[j],

fmin( prev[j-1], curr[j]));
}

if ( i < targetLength ) {
for( j=0; j<inputLength; j++ )

prev[j] = curr[j];
}
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}

d = curr[inputLength-1];
free( (char*) prev);
free( (char*) curr);
return( d );

}
externcend;

double dtw_absdev_c( double * target / iotype=input,
int targetLength,
double * input / iotype=input,
int inputLength );

externc dtw_absdev_c;
double dtw_absdev_c( double * target,

int targetLength,
double * input,
int inputLength )

{
int i,j;
double x,w,d;
double * prev = (double *)malloc( sizeof(double)*targetLength);
double * curr = (double *)malloc( sizeof(double)*inputLength);
if ( prev == 0 || curr == 0 ) return 999999999;

x = input[0];
for ( j=0; j<targetLength; j++ ) {
w = target[j];
d = x - w;
d = fabs(d);
if (j == 0) prev[j] = d;
else prev[j] = d + prev[j-1];

}

for (i=1; i<inputLength; i++ ) {
x = input[i];

j = 0;
w = target[j];
d = x - w;
d = fabs(d);
curr[j] = d + prev[j];

for (j=1; j<targetLength; j++) {
w = target[j];
d = x - w;
d = fabs(d);
curr[j] = d + fmin( prev[j],

fmin( prev[j-1], curr[j] ));
}

if ( i < inputLength) {
for ( j=0; j<targetLength; j++ )

prev[j] = curr[j];
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}

}

d = curr[inputLength-1];
free( (char*) prev);
free( (char*) curr);
return( d );

}
externcend;

run;

The preceding SAS statements create two C language functions that can then be used in SAS language
functions or subroutines or both. However, these functions cannot be directly used by the SIMILARITY
procedure. In order to use these C language functions in the SIMILARITY procedure, two SAS language
functions must be created that call these two C language functions. The following SAS statements create
two user-defined SAS language versions of these measures called DTW_SQRDEV and DTW_ABSDEV and
stores these functions in the catalog SASUSER.MYSIMILAR.FUNCS. These SAS language functions use the
previously created C language function; the SAS language functions can then be used by the SIMILARITY
procedure.

proc fcmp outlib=sasuser.mysimilar.funcs
inlib=sasuser.cfuncs;

function dtw_sqrdev( target[*], input[*] );
dev = dtw_sqrdev_c(target,DIM(target),input,DIM(input));
return( dev );

endsub;

function dtw_absdev( target[*], input[*] );
dev = dtw_absdev_c(target,DIM(target),input,DIM(input));
return( dev );

endsub;

run;

This user-defined function can be specified in the MEASURE= option in the TARGET statement as follows:

options cmplib=sasuser.mysimilar;

proc similarity ...;
...
target mytarget / measure=dtw_sqrdev;
target yourtarget / measure=dtw_absdev;
...

run;
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Similarity Measures and Warping Path

A user-defined similarity measure and warping path information function has the signature

FUNCTION <FUNCTION-NAME> ( <ARRAY-NAME>[*], <ARRAY-NAME>[*],
<ARRAY-NAME>[*], <ARRAY-NAME>[*],
<ARRAY-NAME>[*] );

where the first array-name is the target sequence, the second array-name is the input sequence, the third
array-name is the returned target sequence indices, the fourth array-name is the returned input sequence
indices, and the fifth array-name is the returned path distances. The returned value of the function is the
similarity measure. The last three returned arrays are used to compute the path and cost statistics.

The returned sequence indices must represent a valid warping path; that is, integers greater than zero and less
than or equal to the sequence length and recorded in ascending order. The returned path distances must be
nonnegative numbers.

Output Data Sets
The SIMILARITY procedure can create the OUT=, OUTMEASURE=, OUTPATH= , OUTSEQUENCE=,
and OUTSUM= data sets. In general, these data sets contain the variables listed in the BY statement. The
ID statement time ID variable is also included in the data sets when the time dimension is important. If an
analysis step related to an output data step fails, then the values of this step are not recorded or are set to
missing in the related output data set, and appropriate error and warning messages are recorded in the SAS
log.

OUT= Data Set
The OUT= data set contains the variables that are specified in the BY, ID, INPUT, and TARGET statements.
If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN=,
INTERVAL=, START=, and END= options. The values of the variables specified in the INPUT and TARGET
statements are accumulated based on the ACCUMULATE= option, missing values are interpreted based on
the SETMISSING= option, and zero values are interpreted using the ZEROMISS= option. The accumulated
time series is transformed based on the TRANSFORM=, DIF=, and SDIF= options.

OUTMEASURE= Data Set
The OUTMEASURE= data set records the similarity measures between each INPUT and TARGET statement
variable with respect to each time ID value. The form of the OUTMEASURE= data set depends on the
SORTNAMES and ORDER= options. The OUTMEASURE= data set contains the variables specified in the
BY statement in addition to the variables listed below.

For ORDER=INPUTTARGET and ORDER=TARGETINPUT, the OUTMEASURE= data set has the follow-
ing form:
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_INPUT_ input variable name

_TARGET_ target variable name

_TIMEID_ time ID values

_INPSEQ_ input sequence values

_TARSEQ_ target sequence values

_SIM_ similarity measures

The OUTMEASURE= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_
when ORDER=INPUTTARGET. The OUTMEASURE= data set is ordered by the variables _TARGET_,
then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT.

For ORDER=INPUT, the OUTMEASURE= data set has the following form:

_INPUT_ input variable name

_TIMEID_ time ID values

_INPSEQ_ input sequence values

target-names similarity measures that are associated with each TARGET statement variable name

The OUTMEASURE= data set is ordered by the variables _INPUT_, then _TIMEID_.

For ORDER=TARGET, the OUTMEASURE= data set has the following form:

_TARGET_ target variable name

_TIMEID_ time ID values

_TARSEQ_ target sequence values

input-names similarity measures that are associated with each INPUT statement variable name

The OUTMEASURE= data set is ordered by the variables _TARGET_, then _TIMEID_.

OUTPATH= Data Set
The OUTPATH= data set records the path analysis between each INPUT and TARGET statement variable.
This data set records the path sequences for each slide index and for each warp index associated with the slide
index. The sequence values recorded are normalized and scaled based on the NORMALIZE= and SCALE=
options.

The OUTPATH= data set contains the variables specified in the BY statement and the following variables:

_INPUT_ input variable name

_TARGET_ target variable name

_TIMEID_ time ID values

_SLIDE_ slide index

_WARP_ warp index
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_INPSEQ_ input sequence values

_TARSEQ_ target sequence values

_INPPTH_ input path index

_TARPTH_ target path index

_METRIC_ distance metric values

The Warp Index indicates the total amount of warping for each slide. A negative number represents
compression of the target sequence. A positive number represents expansion of the target sequence. The
Warp Index is always zero for SLIDE=NONE and SLIDE=SEASON.

The sorting of the OUTPATH= data set depends on the SORTNAMES and ORDER= options.

The OUTPATH= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_ when OR-
DER=INPUTTARGET or ORDER=INPUT. The OUTPATH= data set is ordered by the variables _TARGET_,
then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT or ORDER=TARGET.

If there are a large number of slides or warps or both, this data set might be large.

OUTSEQUENCE= Data Set
The OUTSEQUENCE= data set records the input and target sequences that are associated with each INPUT
and TARGET statement variable. This data set records the input and target sequence values for each slide
index and for each warp index that is associated with the slide index. The sequence values that are recorded
are normalized and scaled based on the NORMALIZE= and SCALE= options. This data set also contains the
similarity measure associated with the two sequences.

The OUTSEQUENCE= data set contains the variables specified in the BY statement in addition to the
following variables:

_INPUT_ input variable name

_TARGET_ target variable name

_TIMEID_ time ID values

_SLIDE_ slide index

_WARP_ warp index

_INPSEQ_ input sequence values

_TARSEQ_ target sequence values

_SIM_ similarity measure

_STATUS_ sequence status

The sorting of the OUTSEQUENCE= data set depends on the SORTNAMES and ORDER= options.

The OUTSEQUENCE= data set is ordered by the variables _INPUT_, then _TARGET_, then _TIMEID_
when ORDER=INPUTTARGET or ORDER=INPUT. The OUTSEQUENCE= data set is ordered by the vari-
ables _TARGET_, then _INPUT_, then _TIMEID_ when ORDER=TARGETINPUT or ORDER=TARGET.

If there are a large number of slides or warps or both, this data set might be large.
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OUTSUM= Data Set
The OUTSUM= data set summarizes the similarity measures between each INPUT and TARGET statement
variable. The form of the OUTSUM= data set depends on the SORTNAMES and ORDER= options. If the
SORTNAMES option is specified, each variable (INPUT or TARGET) is analyzed in ascending order. The
OUTSUM= data set contains the variables specified in the BY statement in addition to the variables listed
below.

For ORDER=INPUTTARGET and ORDER=TARGETINPUT, the OUTSUM= data set has the following
form:

_INPUT_ input variable name

_TARGET_ target variable name

_STATUS_ status flag that indicates whether the requested analyses were successful

_TIMEID_ time ID values

_SIM_ similarity measure summary

The OUTSUM= data set is ordered by the variables _INPUT_, then _TARGET_ when OR-
DER=INPUTTARGET. The OUTSUM= data set is ordered by the variables _TARGET_, then _INPUT_
when ORDER=TARGETINPUT.

For ORDER=INPUT, the OUTSUM= data set has the following form:

_INPUT_ input variable name

_STATUS_ status flag that indicates whether the requested analyses were successful

target-names similarity measure summary that is associated with each TARGET statement variable
name

The OUTSUM= data set is ordered by the variable _INPUT_.

For ORDER=TARGET, the OUTSUM= data set has the following form:

_TARGET_ target variable name

_STATUS_ status flag that indicates whether the requested analyses were successful

input-names similarity measure summary that is associated with each INPUT statement variable name

The OUTSUM= data set is ordered by the variable _TARGET_.
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_STATUS_ Variable Values
The _STATUS_ variable contains a code that specifies whether the similarity analysis has been successful or
not. The _STATUS_ variable can take the following values:

0 Success

3000 Accumulation failure

4000 Missing value interpretation failure

6000 Series is all missing

7000 Transformation failure

8000 Differencing failure

9000 Unable to compute descriptive statistics

10000 Normalization failure

11000 Input contains embedded missing values

12000 Target contains embedded missing values

13000 Scaling failure

14000 Measure failure

15000 Path failure

16000 Slide summarization failure

Printed Output
The SIMILARITY procedure optionally produces printed output by using the Output Delivery System
(ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT= and
PRINTDETAILS options in the PROC SIMILARITY statement.

The sort, order, and form of the printed output depend on both the SORTNAMES option and the ORDER=
option. If the SORTNAMES option is specified, each variable (INPUT or TARGET) is analyzed in ascending
order. For ORDER=INPUTTARGET, the printed output is ordered by the INPUT statement variables (row)
and then by the TARGET statement variables (row). For ORDER=TARGETINPUT, the printed output
is ordered by the TARGET statement variables (row) and then by the INPUT statement variables (row).
For ORDER=INPUT, the printed output is ordered by the INPUT statement variables (row) and then by
the TARGET statement variables (column). For ORDER=TARGET, the printed output is ordered by the
TARGET statement variables (row) and then by the INPUT statement variables (column).

In general, if an analysis step related to printed output fails, the values of that step are not printed and
appropriate error and warning messages are recorded in the SAS log. The printed output is similar to the
output data set; these similarities are described as follows:
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PRINT=COSTS
prints the costs statistics.

PRINT=DESCSTATS
prints the descriptive statistics.

PRINT=PATHS
prints the path statistics.

PRINT=SLIDES
prints the sliding sequence summary.

PRINT=SUMMARY
prints the summary of similarity measures similar to the OUTSUM= data set.

PRINT=WARPS
prints the warp summary.

PRINTDETAILS
prints each table with greater detail.

ODS Table Names
Table 30.2 relates the PRINT= options to ODS tables.

Table 30.2 ODS Tables Produced in PROC SIMILARITY

ODS Table Name Description Option

CostStatistics Cost statistics PRINT=COSTS
DescStats Descriptive statistics PRINT=DESCSTATS
PathLimits Path limits PRINT=PATHS
PathStatistics Path statistics PRINT=PATHS
SlideMeasuresSummary Summary of measure per slide PRINT=SLIDES
MeasuresSummary Measures summary PRINT=SUMMARY
InputMeasuresSummary Measures summary PRINT=SUMMARY
TargetMeasuresSummary Measures summary PRINT=SUMMARY
WarpMeasuresSummary Summary of measure per warp PRINT=WARPS

The tables are related to a single series within a BY group.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the SIMILARITY procedure.

ODS Graph Names

PROC SIMILARITY assigns a name to each graph it creates by using ODS. You can use these names to
selectively reference the graphs. The names are listed in Table 30.3.

Table 30.3 ODS Graphics Produced by PROC SIMILARITY

ODS Graph Name Plot Description Statement PLOTS= Option

CostsPlot Costs plot SIMILARITY COSTS
NormalizedSequencePlot Normalized sequence

plot
SIMILARITY NORMALIZED

PathDistancePlot Path distances plot SIMILARITY DISTANCES
PathDistanceHistogram Path distances

histogram
SIMILARITY DISTANCES

PathRelativeDistancePlot Path relative distances
plot

SIMILARITY DISTANCES

PathRelativeDistanceHistogram Path relative distances
histogram

SIMILARITY DISTANCES

PathPlot Path plot SIMILARITY PATHS
PathSequencesPlot Path sequences plot SIMILARITY MAPS
PathSequencesScaledPlot Scaled path sequences

map plot
SIMILARITY MAPS

ScaledSequencePlot Scaled sequence plot SIMILARITY SCALED
SequencePlot Sequence plot SIMILARITY SEQUENCES
SeriesPlot Input time series plot SIMILARITY INPUTS
SimilarityPlot Similarity measures

plot
SIMILARITY MEASURES

TargetSequencePlot Target sequence plot SIMILARITY TARGETS
WarpPlot Warping plot SIMILARITY WARPS
WarpScaledPlot Scaled warping plot SIMILARITY WARPS

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Time Series Plots

The time series plots (SeriesPlot) illustrate the input time series to be compared. The horizontal axis represents
the input series time ID values, and the vertical axis represents the input series values.

Sequence Plots

The sequence plots (SequencePlot) illustrate the target and input sequences to be compared. The horizontal
axis represents the (target or input) sequence index, and the vertical axis represents the (target or input)
sequence values.

Path Plots

The path plot (PathPlot) and path limits plot (PathLimitsPlot) illustrate the path through the distance matrix.
The horizontal axis represents the input sequence index, and the vertical axis represents the target sequence
index. The dots represent the path coordinates. The upper parallel line represents the compression limit, and
the lower parallel line represents the expansion limit. These plots visualize the path through the distance
matrix. Vertical movements indicate compression, and horizontal movements represent expansion of the
target sequence with respect to the input sequence. These plots are useful for visualizing the amount of
expansion and compression along the path.

Time Warp Plots

The time warp plot (WarpPlot) and scaled time warp plot (WarpScaledPlot) illustrate the time warping. The
horizontal axis represents the (input and target) sequence index. The upper line plot represents the target
sequence. The lower line plot represents the input sequence. The lines that connect the input and target
sequence values represent the mapping between the input and target sequence indices along the optimal path.
These plots visualize the warping of the time index with respect to the input and target sequence values.
Expansion of a single target sequence value occurs when it is mapped to more than one input sequence value.
Expansion of a single input sequence value occurs when it is mapped to more than one target sequence value.
The plots are useful for visualizing the mapping between the input and target sequence values along the path.
The plots are useful for comparing the path sequences or input and target sequence after time warping.

Path Sequence Plots

The path sequence plot (PathSequencesPlot) and scaled path sequence plot (PathSequencesScaledPlot)
illustrate the sequence mapping along the optimal path. The horizontal axis represents the path index. The
dashed line represents the time warped input sequence. The solid line represents the time warped target
sequence. These plots visualize the mapping between the input and target sequence values with respect to the
path index. The scaled plot with the input and target sequence values are scaled and evenly separated for
visual convenience.

Path Distance Plots

The path distance plots (PathDistancePlot) and path relative distance plots (PathRelativeDistancePlot)
illustrate the path (relative) distances. The horizontal axis represents the path index. The vertical needles
represent the (relative) distances. The horizontal reference lines indicate one and two standard deviations.
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The path distance histogram (PathDistanceHistogram) and path relative distance histogram (PathDistanceRel-
ativeHistogram) illustrate the distribution of the path (relative) distances. The bars represent the histogram,
and the solid line represents a normal distribution with the same mean and variance.

Cost Plots

The cost plot (CostPlot) and cost limits plot (CostPlot) illustrate the cost of traversing the distance matrix.
The horizontal axis represents the input sequence index, and the vertical axis represents the target sequence
index. The colors and shading within the plot illustrate the incremental cost of traversing the distance matrix.
The upper parallel line represents the compression limit, and the lower parallel line represents the expansion
limit.

Examples: SIMILARITY Procedure

Example 30.1: Accumulating Transactional Data into Time Series Data
This example uses the SIMILARITY procedure to illustrate the accumulation of time-stamped transactional
data that has been recorded at no particular frequency into time series data at a specific frequency. After the
time series is created, the various SAS/ETS procedures related to time series analysis, similarity analysis,
seasonal adjustment and decomposition, modeling, and forecasting can be used to further analyze the time
series data.

Suppose that the input data set WORK.RETAIL contains the variables STORE and TIMESTAMP and numerous
other numeric transaction variables. The BY variable STORE contains values that break up the transactions
into groups (BY groups). The time ID variable TIMESTAMP contains SAS date values recorded at no
particular frequency. The other data set variables contain the numeric transaction values to be analyzed. It is
further assumed that the input data set is sorted by the variables STORE and TIMESTAMP.

The following statements form monthly time series from the transactional data based on the median value
(ACCUMULATE=MEDIAN) of the transactions recorded with each time period. The accumulated time series
values for time periods with no transactions are set to zero instead of missing (SETMISS=0). Only transactions
recorded between the first day of 1998 (START=’01JAN1998’D) and last day of 2000 (END=’31JAN2000’D)
are considered and if needed are extended to include this range.

proc similarity data=work.retail out=mseries;
by store;
id timestamp interval=month

accumulate=median
setmiss=0
start='01jan1998'd
end ='31dec2000'd;

target _NUMERIC_;
run;

The monthly time series data are stored in the data set WORK.MSERIES. Each BY group associated with
the BY variable STORE contains an observation for each of the 36 months associated with the years 1998,
1999, and 2000. Each observation contains the variables STORE and TIMESTAMP and each of the analysis
variables in the input DATA= data set.
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After each set of transactions has been accumulated to form the corresponding time series, the accumulated
time series can be analyzed by using various time series analysis techniques. For example, exponentially
weighted moving averages can be used to smooth each series. The following statements use the EXPAND
procedure to smooth the analysis variable named STOREITEM:

proc expand data=mseries
out=smoothed
from=month;

by store;
id timestamp;
convert storeitem=smooth / transform=(ewma 0.1);

run;

The smoothed series is stored in the data set WORK.SMOOTHED. The variable SMOOTH contains the
smoothed series.

If the time ID variable TIMESTAMP contains SAS datetime values instead of SAS date values, the INTER-
VAL= , START=, and END= options in the SIMILARITY procedure must be changed accordingly, and the
following statements could be used to accumulate the datetime transactions to a monthly interval:

proc similarity data=work.retail
out=tseries;

by store;
id timestamp interval=dtmonth

accumulate=median
setmiss=0
start='01jan1998:00:00:00'dt
end ='31dec2000:00:00:00'dt;

target _NUMERIC_;
run;

The monthly time series data are stored in the data set WORK.TSERIES, and the time ID values use a SAS
datetime representation.

Example 30.2: Similarity Analysis
This simple example illustrates how to use similarity analysis to compare two time sequences. The following
statements create an example data set that contains two time sequences of differing lengths:

data test;
input i y x;
datalines;
1 2 3
2 4 5
3 6 3
4 7 3
5 3 3
6 8 6
7 9 3
8 3 8
9 10 .
10 11 .
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;
run;

The following statements perform similarity analysis on the example data set:

proc similarity data=test out=_null_
print=all plot=all;
input x;
target y / measure=absdev;

run;

The DATA=TEST option specifies that the input data set WORK.TEST is to be used in the analysis. The
OUT=_NULL_ option specifies that no output time series data set is to be created. The PRINT=ALL and
PLOTS=ALL options specify that all ODS tables and graphs are to be produced. The INPUT statement
specifies that the input variable is X. The TARGET statement specifies that the target variable is Y and that
the similarity measure is computed using absolute deviation (MEASURE=ABSDEV).

Output 30.2.1 Description Statistics of the Input Variable, x

The SIMILARITY Procedure

Time Series Descriptive Statistics

Variable x

Number of Observations 10

Number of Missing Observations 2

Minimum 3

Maximum 8

Mean 4.25

Standard Deviation 1.908627
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Output 30.2.2 Plot of Input Variable, x
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Output 30.2.3 Target Sequence Plot
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Output 30.2.4 Sequence Plot
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Output 30.2.5 Path Plot
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Output 30.2.6 Path Sequences Plot
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Output 30.2.7 Path Sequences Scaled Plot
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Output 30.2.8 Path Distance Plot
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Output 30.2.9 Path Distance Histogram
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Output 30.2.10 Path Relative Distance Plot
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Output 30.2.11 Path Relative Distance Histogram

Output 30.2.12 Path Limits

Path Limits

Limit
Specified
Absolute

Specified
Percentage

Minimum
Allowed

Maximum
Allowed Applied

Compression None None 2 9 9

Expansion None None 0 7 7

Output 30.2.13 Path Statistics

Path Statistics

Path Number
Path

Percent
Input

Percent
Target

Percent Maximum

Path
Maximum

Percent

Input
Maximum

Percent

Target
Maximum

Percent

Missing Map 0 0.000% 0.000% 0.000% 0 0.000% 0.000% 0.000%

Direct Maps 6 50.00% 75.00% 60.00% 2 16.67% 25.00% 20.00%

Compression 4 33.33% 50.00% 40.00% 1 8.333% 12.50% 10.00%

Expansion 2 16.67% 25.00% 20.00% 2 16.67% 25.00% 20.00%

Warps 6 50.00% 75.00% 60.00% 2 16.67% 25.00% 20.00%
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Output 30.2.14 Cost Plot

Output 30.2.15 Cost Statistics

Cost Statistics

Cost Number Total Average
Standard
Deviation Minimum Maximum

Input
Mean

Target
Mean

Minimum
Path

Mean

Maximum
Path

Mean

Absolute 12 15.00000 1.250000 1.138180 0 3.000000 1.875000 1.500000 1.875000 0.8823529

Relative 12 2.25844 0.188203 0.160922 0 0.500000 0.282305 0.225844 0.282305 0.1328495

Relative Costs based on Target Sequence values
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Output 30.2.16 Time Warp Plot
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Output 30.2.17 Time Warp Scaled Plot

The following statements repeat the preceding similarity analysis on the example data set with warping limits:

proc similarity data=test out=_null_
print=all plot=all;
input x;
target y / measure=absdev

compress=(localabs=2)
expand=(localabs=2);

run;

The COMPRESS=(LOCALABS=2) option limits local absolute compression to 2. The EX-
PAND=(LOCALABS=2) option limits local absolute expansion to 2.
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Output 30.2.18 Path Plot with Warping Limits

Output 30.2.19 Warped Path Limits

Path Limits

Limit
Specified
Absolute

Specified
Percentage

Minimum
Allowed

Maximum
Allowed Applied

Compression 2 None 2 9 2

Expansion 2 None 0 7 2
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Output 30.2.20 Cost Plot with Warping Limits

The following statements repeat the preceding similarity analysis on the example data set but store the results
in output data sets:

proc similarity data=test out=series
outsequence=sequences outpath=path outsum=summary;
input x;
target y / measure=absdev

compress=(localabs=2)
expand=(localabs=2);

run;

The OUT=SERIES, OUTSEQUENCE=SEQUENCES, OUTPATH=PATH, and OUTSUM=SUMMARY
options specify that the output time series, time sequences, path analysis, and summary data sets be created,
respectively.
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Example 30.3: Sliding Similarity Analysis
This example illustrates how to use sliding similarity analysis to compare two time sequences. The
SASHELP.WORKERS data set contains two similar time series variables (ELECTRIC and MASONRY),
which represent employment over time. The following statements create an example data set that contains
two time series of differing lengths, where the variable MASONRY has the first 12 and last 7 observations set
to missing to simulate the lack of data associated with the target series:

data workers; set sashelp.workers;
if '01JAN1978'D <= date < '01JAN1982'D then masonry = masonry;
else masonry = .;

run;

The goal of sliding similarity measures analysis is find the slide index that corresponds to the most similar
subsequence of the input series when compared to the target sequence. The following statements perform
sliding similarity analysis on the example data set:

proc similarity data=workers out=_NULL_ print=(slides summary);
id date interval=month;
input electric;
target masonry / slide=index measure=msqrdev

expand=(localabs=3 globalabs=3)
compress=(localabs=3 globalabs=3);

run;

The DATA=WORKERS option specifies that the input data set WORK.WORKERS is to be used in the
analysis. The OUT=_NULL_ option specifies that no output time series data set is to be created. The
PRINT=(SLIDES SUMMARY) option specifies that the ODS tables related to the sliding similarity measures
and their summary be produced. The INPUT statement specifies that the input variable is ELECTRIC.
The TARGET statement specifies that the target variable is MASONRY and that the similarity measure be
computed using mean squared deviation (MEASURE=MSQRDEV). The SLIDE=INDEX option specifies
observation index sliding. The COMPRESS=(LOCALABS=3 GLOBALABS=3) option limits local and
global absolute compression to 3. The EXPAND=(LOCALABS=3 GLOBALABS=3) option limits local
and global absolute expansion to 3.



2276 F Chapter 30: The SIMILARITY Procedure

Output 30.3.1 Summary of the Slide Measures

The SIMILARITY Procedure

Slide Measures Summary for Input=ELECTRIC and
Target=MASONRY

Slide
Index DATE

Slide
Target

Sequence
Length

Slide
Input

Sequence
Length

Slide
Warping
Amount

Slide
Minimum
Measure

0 JAN1977 48 51 3 497.6737

1 FEB1977 48 51 1 482.6777

2 MAR1977 48 51 0 474.1251

3 APR1977 48 51 0 490.7792

4 MAY1977 48 51 -2 533.0788

5 JUN1977 48 51 -3 605.8198

6 JUL1977 48 51 -3 701.7138

7 AUG1977 48 51 3 646.5918

8 SEP1977 48 51 3 616.3258

9 OCT1977 48 51 3 510.9836

10 NOV1977 48 51 3 382.1434

11 DEC1977 48 51 3 340.4702

12 JAN1978 48 51 2 327.0572

13 FEB1978 48 51 1 322.5460

14 MAR1978 48 51 0 325.2689

15 APR1978 48 51 -1 351.4161

16 MAY1978 48 51 -2 398.0490

17 JUN1978 48 50 -3 471.6931

18 JUL1978 48 49 -3 590.8089

19 AUG1978 48 48 0 595.2538

20 SEP1978 48 47 -1 689.2233

21 OCT1978 48 46 -2 745.8891

22 NOV1978 48 45 -3 679.1907

Output 30.3.2 Minimum Measure

Minimum Measure
Summary

Input
Variable MASONRY

ELECTRIC 322.5460

This analysis results in 23 slides based on the observation index. The minimum measure (322.5460)
occurs at slide index 13, which corresponds to the time value FEB1978. Note that the original data set
SASHELP.WORKERS was modified beginning at the time value JAN1978. This similarity analysis justifies
the belief that ELECTRIC lags MASONRY by one month based on the time series cross-correlation analysis
despite the lack of target data (MASONRY).

The goal of seasonal sliding similarity measures is to find the seasonal slide index that corresponds to the
most similar seasonal subsequence of the input series when compared to the target sequence. The following
statements repeat the preceding similarity analysis on the example data set with seasonal sliding:
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proc similarity data=workers out=_NULL_ print=(slides summary);
id date interval=month;
input electric;
target masonry / slide=season measure=msqrdev;

run;

Output 30.3.3 Summary of the Seasonal Slide Measures

The SIMILARITY Procedure

Slide Measures Summary for Input=ELECTRIC and
Target=MASONRY

Slide
Index DATE

Slide
Target

Sequence
Length

Slide
Input

Sequence
Length

Slide
Warping
Amount

Slide
Minimum
Measure

0 JAN1977 48 48 0 1040.086

12 JAN1978 48 48 0 641.927

Output 30.3.4 Seasonal Minimum Measure

Minimum Measure
Summary

Input
Variable MASONRY

ELECTRIC 641.9273

The analysis differs from the previous analysis in that the slides are performed based on the seasonal index
(SLIDE=SEASON) with no warping. With a seasonality of 12, two seasonal slides are considered at slide
indices 0 and 12 with the minimum measure (641.9273) occurring at slide index 12 which corresponds to the
time value JAN1978. Note that the original data set SASHELP.WORKERS was modified beginning at the
time value JAN1978. This similarity analysis justifies the belief that ELECTRIC and MASONRY have similar
seasonal properties based on seasonal decomposition analysis despite the lack of target data (MASONRY).

Example 30.4: Searching for Historical Analogies
This example illustrates how to search for historical analogies by using seasonal sliding similarity analysis
of transactional time-stamped data. The SASHELP.TIMEDATA data set contains the variable (VOLUME),
which represents activity over time. The following statements create an example data set that contains two
time series of differing lengths, where the variable HISTORY represents the historical activity and RECENT
represents the more recent activity:

data timedata; set sashelp.timedata;
drop volume;
recent = .;
history = volume;
if datetime >= '20AUG2000:00:00:00'DT then do;

recent = volume;
history = .;
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end;
run;

The goal of seasonal sliding similarity measures is to find the seasonal slide index that corresponds to the
most similar seasonal subsequence of the input series when compared to the target sequence. The following
statements perform similarity analysis on the example data set with seasonal sliding:

proc similarity data=timedata out=_NULL_ outsequence=sequences
outsum=summary;

id datetime interval=dtday accumulate=total
start='27JUL1997:00:00:00'dt
end='21OCT2000:11:59:59'DT;

input history / normalize=absolute;
target recent / slide=season normalize=absolute measure=mabsdev;

run;

The DATA=TIMEDATA option specifies that the input data set WORK.TIMEDATA be used in the analysis.
The OUT=_NULL_ option specifies that no output time series data set is to be created. The OUTSE-
QUENCE=SEQUENCES and OUTSUM=SUMMARY options specify the output sequences and sum-
mary data sets, respectively. The ID statement specifies that the time ID variable is DATETIME, which
is to be accumulated on a daily basis (INTERVAL=DTDAY) by summing the transactions (ACCUMU-
LATE=TOTAL). The ID statement also specifies that the data are accumulated on the weekly boundaries start-
ing on the week of 27JUL1997 and ending on the week of 15OCT2000 (START=’27JUL1997:00:00:00’DT
END=’21OCT2000:11:59:59’DT). The INPUT statement specifies that the input variable is HISTORY, which
is to be normalized using absolute normalization (NORMALIZE=ABSOLUTE). The TARGET statement
specifies that the target variable is RECENT, which is to be normalized by using absolute normalization
(NORMALIZE=ABSOLUTE) and that the similarity measure be computed by using mean absolute deviation
(MEASURE=MABSDEV). The SLIDE=SEASON options specifies season index sliding.

To illustrate the results of the similarity analysis, the output sequence data set must be subset by using the
output summary data set.

data _NULL_; set summary;
call symput('MEASURE', left(trim(putn(recent,'BEST20.'))));

run;

data result; set sequences;
by _SLIDE_;
retain flag 0;
if first._SLIDE_ then do;

if (&measure - 0.00001 < _SIM_ < &measure + 0.00001)
then flag = 1;

end;
if flag then output;
if last._SLIDE_ then flag = 0;

run;

The following statements generate a cross series plot of the results:

proc timeseries data=result out=_NULL_ crossplot=series;
id datetime interval=dtday;
var _TARSEQ_;
crossvar _INPSEQ_;

run;
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The cross series plot illustrates that the historical time series analogy most similar to the most recent time
series data that started on 20AUG2000 occurred on 02AUG1998.

Output 30.4.1 Cross Series Plot of the Historical Time Series

Example 30.5: Clustering Time Series
This example illustrates how to cluster time series using a similarity matrix. The SASHELP.APPLIANC data
set contains 24 variables that record sales histories. The following statements create a similarity matrix and
store the matrix in the WORK.SIMMATRIX data set:

proc similarity data=sashelp.applianc out=_null_ outsum=simmatrix;
target units_1--units_24 / measure=mabsdev normalize=absolute;

run;

The following statements cluster the rows of the similarity matrix and plot the dendrogram:
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proc cluster data=simmatrix(drop=_status_) outtree=tree method=ward plots=dendrogram;
id _input_;

run;
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Overview: SIMLIN Procedure
The SIMLIN procedure reads the coefficients for a set of linear structural equations, which are usually
produced by the SYSLIN procedure. PROC SIMLIN then computes the reduced form and, if input data are
given, uses the reduced form equations to generate predicted values. PROC SIMLIN is especially useful
when dealing with sets of structural difference equations. The SIMLIN procedure can perform simulation or
forecasting of the endogenous variables.

The SIMLIN procedure can be applied only to models that are as follows:

� linear with respect to the parameters

� linear with respect to the variables

� square (as many equations as endogenous variables)

� nonsingular (the coefficients of the endogenous variables form an invertible matrix)

Getting Started: SIMLIN Procedure
The SIMLIN procedure processes the coefficients in a data set created by the SYSLIN procedure using the
OUTEST= option or by another regression procedure such as PROC REG. To use PROC SIMLIN you must
first produce the coefficient data set and then specify this data set in the EST= option of the PROC SIMLIN
statement. You must also tell PROC SIMLIN which variables are endogenous and which variables are
exogenous. List the endogenous variables in an ENDOGENOUS statement, and list the exogenous variables
in an EXOGENOUS statement.

The following example illustrates the creation of an OUTEST= data set with PROC SYSLIN and the
computation and printing of the reduced form coefficients for the model with PROC SIMLIN:

proc syslin data=in outest=e;
model y1 = y2 x1;
model y2 = y1 x2;

run;

proc simlin est=e;
endogenous y1 y2;
exogenous x1 x2;

run;

If the model contains lagged endogenous variables you must also use a LAGGED statement to tell PROC
SIMLIN which variables contain lagged values, which endogenous variables they are lags of, and the number
of periods of lagging. For dynamic models, the TOTAL and INTERIM= options can be used in the PROC
SIMLIN statement to compute and print total and impact multipliers. (For an explanation of multipliers, see
the section “Dynamic Multipliers” on page 2290.)

In the following example, the variables Y1LAG1, Y2LAG1, and Y2LAG2 contain lagged values of the
endogenous variables Y1 and Y2. Y1LAG1 and Y2LAG1 contain values of Y1 and Y2 for the previous
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observation, while Y2LAG2 contains 2 period lags of Y2. The LAGGED statement specifies the lagged
relationships, and the TOTAL and INTERIM= options request multiplier analysis. The INTERIM=2 option
prints matrices showing the impact that changes to the exogenous variables have on the endogenous variables
after 1 and 2 periods.

data in; set in;
y1lag1 = lag(y1);
y2lag1 = lag(y2);
y2lag2 = lag2(y2);

run;

proc syslin data=in outest=e;
model y1 = y2 y1lag1 y2lag2 x1;
model y2 = y1 y2lag1 x2;

run;

proc simlin est=e total interim=2;
endogenous y1 y2;
exogenous x1 x2;
lagged y1lag1 y1 1 y2lag1 y2 1 y2lag2 y2 2;

run;

After the reduced form of the model is computed, the model can be simulated by specifying an input data set
in the PROC SIMLIN statement and using an OUTPUT statement to write the simulation results to an output
data set. The following example modifies the PROC SIMLIN step from the preceding example to simulate
the model and stores the results in an output data set:

proc simlin est=e total interim=2 data=in;
endogenous y1 y2;
exogenous x1 x2;
lagged y1lag1 y1 1 y2lag1 y2 1 y2lag2 y2 2;
output out=sim predicted=y1hat y2hat

residual=y1resid y2resid;
run;

Prediction and Simulation
If an input data set is specified with the DATA= option in the PROC SIMLIN statement, the procedure
reads the data and uses the reduced form equations to compute predicted and residual values for each of the
endogenous variables. (If no data set is specified with the DATA= option, no simulation of the system is
performed, and only the reduced form and multipliers are computed.)

The character of the prediction is based on the START= value. Until PROC SIMLIN encounters the START=
observation, actual endogenous values are found and fed into the lagged endogenous terms. Once the
START= observation is reached, dynamic simulation begins, where predicted values are fed into lagged
endogenous terms until the end of the data set is reached.

The predicted and residual values generated here are different from those produced by the SYSLIN procedure
since PROC SYSLIN uses the structural form with actual endogenous values. The predicted values computed
by the SIMLIN procedure solve the simultaneous equation system. These reduced-form predicted values
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are functions only of the exogenous and lagged endogenous variables and do not depend on actual values of
current period endogenous variables.

Syntax: SIMLIN Procedure
The following statements can be used with PROC SIMLIN:

PROC SIMLIN options ;
BY variables ;
ENDOGENOUS variables ;
EXOGENOUS variables ;
ID variables ;
LAGGED lag-var endogenous-var number . . . ;
OUTPUT OUT=SAS-data-set options ;

Functional Summary
The statements and options controlling the SIMLIN procedure are summarized in Table 31.1.

Table 31.1 Functional Summary

Description Statement Option

Data Set Options
Specify input data set containing structural
coefficients

PROC SIMLIN EST=

Specify type of estimates read from EST= data
set

PROC SIMLIN TYPE=

Write reduced form coefficients and
multipliers to an output data set

PROC SIMLIN OUTEST=

Specify the input data set for simulation PROC SIMLIN DATA=
Write predicted and residual values to an
output data set

OUTPUT

Printing Control Options
Print the structural coefficients PROC SIMLIN ESTPRINT
Suppress printing of reduced form coefficients PROC SIMLIN NORED
Suppress all printed output PROC SIMLIN NOPRINT

Dynamic Multipliers
Compute interim multipliers PROC SIMLIN INTERIM=
Compute total multipliers PROC SIMLIN TOTAL

Declaring the Role of Variables
Specify BY-group processing BY
Specify the endogenous variables ENDOGENOUS
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Table 31.1 continued

Description Statement Option

Specify the exogenous variables EXOGENOUS
Specify identifying variables ID
Specify lagged endogenous variables LAGGED

Controlling the Simulation
Specify the starting observation for dynamic
simulation

PROC SIMLIN START=

PROC SIMLIN Statement
PROC SIMLIN options ;

The following options can be used in the PROC SIMLIN statement:

DATA=SAS-data-set
specifies the SAS data set containing input data for the simulation. If the DATA= option is used, the
data set specified must supply values for all exogenous variables throughout the simulation. If the
DATA= option is not specified, no simulation of the system is performed, and only the reduced form
and multipliers are computed.

EST=SAS-data-set
specifies the input data set containing the structural coefficients of the system. If EST= is omitted the
most recently created SAS data set is used. The EST= data set is normally a "TYPE=EST" data set
produced by the OUTEST= option of PROC SYSLIN. However, you can also build the EST= data set
with a SAS DATA step. For more information, see the section “EST= Data Set” on page 2291.

ESTPRINT
prints the structural coefficients read from the EST= data set.

INTERIM=n
requests that interim multipliers be computed for interim numbers 1 through n. If not specified, no
interim multipliers are computed. This feature is available only if there are no lags greater than 1.

NOPRINT
suppresses all printed output.

NORED
suppresses the printing of the reduced form coefficients.

OUTEST=SAS-data-set
specifies an output SAS data set to contain the reduced form coefficients and multipliers, in addition to
the structural coefficients read from the EST= data set. The OUTEST= data set has the same form
as the EST= data set. If the OUTEST= option is not specified, the reduced form coefficients and
multipliers are not written to a data set.
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START=n
specifies the observation number in the DATA= data set where the dynamic simulation is to be started.
By default, the dynamic simulation starts with the first observation in the DATA= data set for which all
variables (including lags) are not missing.

TOTAL
requests that the total multipliers be computed. This feature is available only if there are no lags greater
than 1.

TYPE=value
specifies the type of estimates to be read from the EST= data set. The TYPE= value must match the
value of the _TYPE_ variable for the observations that you want to select from the EST= data set
(TYPE=2SLS, for example).

BY Statement
BY variables ;

A BY statement can be used with PROC SIMLIN to obtain separate analyses for groups of observations
defined by the BY variables.

The BY statement can be applied to one or both of the EST= and DATA= input data sets. When a BY
statement is used and both an EST= and a DATA= input data set are specified, PROC SIMLIN checks to see
if one or both of the data sets contain the BY variables.

Thus, there are three ways of using the BY statement with PROC SIMLIN:

1. If the BY variables are found in the EST= data set only, PROC SIMLIN simulates over the entire
DATA= data set once for each set of coefficients read from the BY groups in the EST= data set.

2. If the BY variables are found in the DATA= data set only, PROC SIMLIN performs separate simulations
over each BY group in the DATA= data set, using the single set of coefficients in the EST= data set.

3. If the BY variables are found in both the EST= and DATA= data sets, PROC SIMLIN performs separate
simulations over each BY group in the DATA= data set using the coefficients from the corresponding
BY group in the EST= data set.
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ENDOGENOUS Statement
ENDOGENOUS variables ;

List the names of the endogenous (jointly dependent) variables in the ENDOGENOUS statement. The
ENDOGENOUS statement can be abbreviated as ENDOG or ENDO.

EXOGENOUS Statement
EXOGENOUS variables ;

List the names of the exogenous (independent) variables in the EXOGENOUS statement. The EXOGENOUS
statement can be abbreviated as EXOG or EXO.

ID Statement
ID variables ;

The ID statement can be used to restrict the variables copied from the DATA= data set to the OUT= data
set. Use the ID statement to list the variables you want copied to the OUT= data set besides the exogenous,
endogenous, lagged endogenous, and BY variables. If the ID statement is omitted, all the variables in the
DATA= data set are copied to the OUT= data set.

LAGGED Statement
LAGGED lag-var endogenous-var number . . . ;

For each lagged endogenous variable, specify the name of the lagged variable, the name of the endogenous
variable that was lagged, and the degree of the lag. Only one LAGGED statement is allowed.

The following is an example of the use of the LAGGED statement:

proc simlin est=e;
endog y1 y2;
lagged y1lag1 y1 1 y2lag1 y2 1 y2lag3 y2 3;

run;

This statement specifies that the variable Y1LAG1 contains the values of the endogenous variable Y1 lagged
one period; the variable Y2LAG1 refers to the values of Y2 lagged one period; and the variable Y2LAG3
refers to the values of Y2 lagged three periods.
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OUTPUT Statement
OUTPUT OUT=SAS-data-set options ;

The OUTPUT statement specifies that predicted and residual values be put in an output data set. A DATA=
input data set must be supplied if the OUTPUT statement is used, and only one OUTPUT statement is
allowed. The following options can be used in the OUTPUT statement:

OUT=SAS-data-set
names the output SAS data set to contain the predicted values and residuals. If OUT= is not specified,
the output data set is named using the DATAn convention.

PREDICTED=names

P=names
names the variables in the output data set that contain the predicted values of the simulation. These
variables correspond to the endogenous variables in the order in which they are specified in the
ENDOGENOUS statement. Specify up to as many names as there are endogenous variables. If you
specify names in the PREDICTED= option for only some of the endogenous variables, predicted
values for the remaining variables are not output. The names must not match any variable name in the
input data set.

RESIDUAL=names

R=names
names the variables in the output data set that contain the residual values from the simulation. The
residuals are the differences between the actual values of the endogenous variables from the DATA=
data set and the predicted values from the simulation. These variables correspond to the endogenous
variables in the order in which they are specified in the ENDOGENOUS statement. Specify up to as
many names as there are endogenous variables. The names must not match any variable name in the
input data set.

The following is an example of the use of the OUTPUT statement. This example outputs predicted values for
Y1 and Y2 and outputs residuals for Y1.

proc simlin est=e;
endog y1 y2;
output out=b predicted=y1hat y2hat

residual=y1resid;
run;
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Details: SIMLIN Procedure
The following sections explain the structural and reduced forms, dynamic multipliers, input data sets, and the
model simulation process in more detail.

Defining the Structural Form
An EST= input data set supplies the coefficients of the equation system. The data set containing the
coefficients is normally a “TYPE=EST” data set created by the OUTEST= option of PROC SYSLIN
or another regression procedure. The data set contains the special variables _TYPE_, _DEPVAR_, and
INTERCEPT. You can also supply the structural coefficients of the system to PROC SIMLIN in a data set
produced by a SAS DATA step as long as the data set is of the form TYPE=EST. For a discussion of the
special TYPE=EST type of SAS data set, see SAS/STAT software documentation.

Suppose that there is a g � 1 vector of endogenous variables yt , an l � 1 vector of lagged endogenous
variables yLt , and a k�1 vector of exogenous variables xt , including the intercept. Then, there are g structural
equations in the simultaneous system that can be written

Gyt D CyLt C Bxt

where G is the matrix of coefficients of current period endogenous variables, C is the matrix of coefficients
of lagged endogenous variables, and B is the matrix of coefficients of exogenous variables. G is assumed to
be nonsingular.

Computing the Reduced Form
First, the SIMLIN procedure computes reduced form coefficients by premultiplying by G�1:

yt D G�1CyLt CG�1Bxt

This can be written as

yt D …1yLt C…2xt

where …1 D G�1C and …2 D G�1B are the reduced form coefficient matrices.

The reduced form matrices …1 D G�1C and …2 D G�1B are printed unless the NORED option is specified
in the PROC SIMLIN statement. The structural coefficient matrices G, C, and B are printed when the
ESTPRINT option is specified.
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Dynamic Multipliers
For models that have only first-order lags, the equation of the reduced form of the system can be rewritten

yt D Dyt�1 C…2xt

D is a matrix formed from the columns of …1 plus some columns of zeros, arranged in the order in which the
variables meet the lags. The elements of …2 are called impact multipliers because they show the immediate
effect of changes in each exogenous variable on the values of the endogenous variables. This equation can be
rewritten as

yt D D2yt�2 CD…2xt�1 C…2xt

The matrix formed by the product D…2 shows the effect of the exogenous variables one lag back; the
elements in this matrix are called interim multipliers and are computed and printed when the INTERIM=
option is specified in the PROC SIMLIN statement. The ith period interim multipliers are formed by Di…2.

The series can be expanded as

yt D D1yt�1 C
1X
iD0

Di…2xt�i

A permanent and constant setting of a value for x has the following cumulative effect: 
1X
iD0

Di
!
…2x D .I �D/�1…2x

The elements of .I � D/�1…2 are called the total multipliers. Assuming that the sum converges and that
.I �D/ is invertible, PROC SIMLIN computes the total multipliers when the TOTAL option is specified in
the PROC SIMLIN statement.

Multipliers for Higher-Order Lags
The dynamic multiplier options require the system to have no lags of order greater than one. This limitation
can be circumvented, since any system with lags greater than one can be rewritten as a system where no lag
is greater than one by forming new endogenous variables that are single-period lags.

For example, suppose you have the third-order single equation

yt D ayt�3 C bxt

This can be converted to a first-order three-equation system by introducing two additional endogenous
variables, y1;t and y2;t , and computing corresponding first-order lagged variables for each endogenous
variable: yt�1, y1;t�1, and y2;t�1. The higher-order lag relations are then produced by adding identities to
link the endogenous and identical lagged endogenous variables:

y1;t D yt�1
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y2;t D y1;t�1

yt D ay2;t�1 C bXt

This conversion using the SYSLIN and SIMLIN procedures requires three steps:

1. Add the extra endogenous and lagged endogenous variables to the input data set using a DATA step.
Note that two copies of each lagged endogenous variable are needed for each lag reduced, one to serve
as an endogenous variable and one to serve as a lagged endogenous variable in the reduced system.

2. Add IDENTITY statements to the PROC SYSLIN step to equate each added endogenous variable to
its lagged endogenous variable copy.

3. In the PROC SIMLIN step, declare the added endogenous variables in the ENDOGENOUS statement
and define the lag relations in the LAGGED statement.

For an illustration of how to convert an equation system with higher-order lags into a larger system with only
first-order lags, see Example 31.2.

EST= Data Set
Normally, PROC SIMLIN uses an EST= data set produced by PROC SYSLIN with the OUTEST= option.
This data set is in the form expected by PROC SIMLIN. If there is more than one set of estimates produced
by PROC SYSLIN, you must use the TYPE= option in the PROC SIMLIN statement to select the set to be
simulated. Then PROC SIMLIN reads from the EST= data set only those observations with a _TYPE_ value
corresponding to the TYPE= option (for example, TYPE=2SLS) or with a _TYPE_ value of IDENTITY.

The SIMLIN procedure can only solve square, nonsingular systems. If you have fewer equations than
endogenous variables, you must specify IDENTITY statements in the PROC SYSLIN step to bring the
system up to full rank. If there are g endogenous variables and m < g stochastic equations with unknown
parameters, then you use m MODEL statements to specify the equations with parameters to be estimated and
you must use g �m IDENTITY statements to complete the system.

You can build your own EST= data set with a DATA step rather than use PROC SYSLIN. The EST= data set
must contain the endogenous variables, the lagged endogenous variables (if any), and the exogenous variables
in the system (if any). If any of the equations have intercept terms, the variable INTERCEPT must supply
these coefficients. The EST= data set should also contain the special character variable comp _DEPVAR_ to
label the equations.

The EST= data set must contain one observation for each equation in the system. The values of the lagged
endogenous variables must contain the C coefficients. The values of the exogenous variables and the
INTERCEPT variable must contain the B coefficients. The values of the endogenous variables, however, must
contain the negatives of the G coefficients. This is because the SYSLIN procedure writes the coefficients to
the OUTEST= data set in the form

0 D Hyt C CyLt C Bxt

where H D �G.

For more information about building the EST= data set, see the section “Multipliers for Higher-Order Lags”
on page 2290 and Example 31.2.
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DATA= Data Set
The DATA= data set must contain all of the exogenous variables. Values for all of the exogenous variables
are required for each observation for which predicted endogenous values are desired. To forecast past the end
of the historical data, the DATA= data set should contain nonmissing values for all of the exogenous variables
and missing values for the endogenous variables for the forecast periods, in addition to the historical data.
(For an illustration, see Example 31.1.)

In order for PROC SIMLIN to output residuals and compute statistics of fit, the DATA= data set must also
contain the endogenous variables with nonmissing actual values for each observation for which residuals and
statistics are to be computed.

If the system contains lags, initial values must be supplied for the lagged variables. This can be done by
including either the lagged variables or the endogenous variables, or both, in the DATA= data set. If the
lagged variables are not in the DATA= data set or if they have missing values in the early observations, PROC
SIMLIN prints a warning and uses the endogenous variable values from the early observations to initialize
the lags.

OUTEST= Data Set
The OUTEST= data set contains all the variables read from the EST= data set. The variables in the OUTEST=
data set are as follows:

� the BY statement variables, if any

� _TYPE_, a character variable that identifies the type of observation

� _DEPVAR_, a character variable containing the name of the dependent variable for the observation

� the endogenous variables

� the lagged endogenous variables

� the exogenous variables

� INTERCEPT, a numeric variable containing the intercept values

� _MODEL_, a character variable containing the name of the equation

� _SIGMA_, a numeric variable containing the estimated error variance of the equation (output only if
present in the EST= data set)

The observations read from the EST= data set that supply the structural coefficients are copied to the
OUTEST= data set, except that the signs of endogenous coefficients are reversed. For these observations, the
_TYPE_ variable values are the same as in the EST= data set.

In addition, the OUTEST= data set contains observations with the following _TYPE_ values:
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REDUCED the reduced form coefficients. The endogenous variables for this group of observations
contain the inverse of the endogenous coefficient matrix G. The lagged endogenous
variables contain the matrix …1 D G�1C. The exogenous variables contain the matrix
…2 D G�1B.

IMULTi the interim multipliers, if the INTERIM= option is specified. There are gn observations
for the interim multipliers, where g is the number of endogenous variables and n is the
value of the INTERIM=n option. For these observations the _TYPE_ variable has the
value IMULTi, where the interim number i ranges from 1 to n.

The exogenous variables in groups of g observations that have a _TYPE_ value of IMULTi
contain the matrix Di…2 of multipliers at interim i. The endogenous and lagged endoge-
nous variables for this group of observations are set to missing.

TOTAL the total multipliers, if the TOTAL option is specified. The exogenous variables in this
group of observations contain the matrix .I � D/�1…2. The endogenous and lagged
endogenous variables for this group of observations are set to missing.

OUT= Data Set
The OUT= data set normally contains all of the variables in the input DATA= data set, plus the variables
named in the PREDICTED= and RESIDUAL= options in the OUTPUT statement.

You can use an ID statement to restrict the variables that are copied from the input data set. If an ID statement
is used, the OUT= data set contains only the BY variables (if any), the ID variables, the endogenous and
lagged endogenous variables (if any), the exogenous variables, plus the PREDICTED= and RESIDUAL=
variables.

The OUT= data set contains an observation for each observation in the DATA= data set. When the actual
value of an endogenous variable is missing in the DATA= data set, or when the DATA= data set does not
contain the endogenous variable, the corresponding residual is missing.

Printed Output

Structural Form

The following items are printed as they are read from the EST= input data set. Structural zeros are printed as
dots in the listing of these matrices.

1. Structural Coefficients for Endogenous Variables. This is the G matrix, with g rows and g columns.

2. Structural Coefficients for Lagged Endogenous Variables. These coefficients make up the C matrix,
with g rows and l columns.

3. Structural Coefficients for Exogenous Variables. These coefficients make up the B matrix, with g rows
and k columns.
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Reduced Form

1. The reduced form coefficients are obtained by inverting G so that the endogenous variables can be
directly expressed as functions of only lagged endogenous and exogenous variables.

2. Inverse Coefficient Matrix for Endogenous Variables. This is the inverse of the G matrix.

3. Reduced Form for Lagged Endogenous Variables. This is …1 D G�1C, with g rows and l columns.
Each value is a dynamic multiplier that shows how past values of lagged endogenous variables affect
values of each of the endogenous variables.

4. Reduced Form for Exogenous Variables. This is …2 D G�1B, with g rows and k columns. Its values
are called impact multipliers because they show the immediate effect of each exogenous variable on
the value of the endogenous variables.

Multipliers

Interim and total multipliers show the effect of a change in an exogenous variable over time.

1. Interim Multipliers. These are the interim multiplier matrices. They are formed by multiplying …2 by
powers of D. The dth interim multiplier is Dd…2. The interim multiplier of order d shows the effects
of a change in the exogenous variables after d periods. Interim multipliers are only available if the
maximum lag of the endogenous variables is 1.

2. Total Multipliers. This is the matrix of total multipliers, T D .I � D/�1…2. This matrix shows the
cumulative effect of changes in the exogenous variables. Total multipliers are only available if the
maximum lag is one.

Statistics of Fit

If the DATA= option is used and the DATA= data set contains endogenous variables, PROC SIMLIN prints a
statistics-of-fit report for the simulation. The statistics printed include the following. (Summations are over
the observations for which both yt and Oyt are nonmissing.)

1. the number of nonmissing errors. (Number of observations for which both yt and Oyt are nonmissing.)

2. the mean error: 1
n

P
.yt � Oyt /

3. the mean percent error: 100
n

P .yt� Oyt /
yt

4. the mean absolute error: 1
n

P
jyt � Oyt j

5. the mean absolute percent error 100
n

P jyt� Oyt j
yt

6. the root mean square error:
q
1
n

P
.yt � Oyt /2

7. the root mean square percent error:
q
100
n

P
. .yt� Oyt /

yt
/2
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ODS Table Names
PROC SIMLIN assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 31.2.

Table 31.2 ODS Tables Produced in PROC SIMLIN

ODS Table Name Description Option

Endogenous Structural coefficients for endogenous
variables

Default

LaggedEndogenous Structural coefficients for lagged endogenous
variables

Default

Exogenous Structural coefficients for exogenous variables Default
InverseCoeff Inverse coefficient matrix for endogenous

variables
Default

RedFormLagEndo Reduced form for lagged endogenous
variables

Default

RedFormExog Reduced form for exogenous variables Default
InterimMult Interim multipliers INTERIM=
TotalMult Total multipliers TOTAL=
FitStatistics Fit statistics Default

Examples: SIMLIN Procedure

Example 31.1: Simulating Klein’s Model I
In this example, the SIMLIN procedure simulates a model of the U.S. economy called Klein’s Model I. The
SAS data set KLEIN is used as input to the SYSLIN and SIMLIN procedures.

data klein;
input year c p w i x wp g t k wsum;
date=mdy(1,1,year);
format date year.;
y = c + i + g - t;
yr = year - 1931;
klag = lag( k );
plag = lag( p );
xlag = lag( x );
if year >= 1921;
label c ='consumption'

p ='profits'
w ='private wage bill'
i ='investment'
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k ='capital stock'
y ='national income'
x ='private production'
wsum='total wage bill'
wp ='govt wage bill'
g ='govt demand'
t ='taxes'
klag='capital stock lagged'
plag='profits lagged'
xlag='private product lagged'
yr ='year-1931';

datalines;
1920 . 12.7 . . 44.9 . . . 182.8 .
1921 41.9 12.4 25.5 -0.2 45.6 2.7 3.9 7.7 182.6 28.2

... more lines ...

First, the model is specified and estimated using the SYSLIN procedure, and the parameter estimates are
written to an OUTEST= data set. The printed output produced by the SYSLIN procedure is not shown here;
see Example 36.1 in Chapter 36 for the printed output of the PROC SYSLIN step.

title1 'Simulation of Klein''s Model I using SIMLIN';
proc syslin 3sls data=klein outest=a;

instruments klag plag xlag wp g t yr;
endogenous c p w i x wsum k y;

consume: model c = p plag wsum;
invest: model i = p plag klag;
labor: model w = x xlag yr;

product: identity x = c + i + g;
income: identity y = c + i + g - t;
profit: identity p = x - w - t;
stock: identity k = klag + i;
wage: identity wsum = w + wp;

run;

The OUTEST= data set A created by the SYSLIN procedure contains parameter estimates to be used by the
SIMLIN procedure. The OUTEST= data set is shown in Output 31.1.1.
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Output 31.1.1 The OUTEST= Data Set Created by PROC SYSLIN

Simulation of Klein's Model I using SIMLIN

Obs _TYPE_ _STATUS_ _MODEL_ _DEPVAR_ _SIGMA_ Intercept klag plag xlag wp

1 INST 0 Converged FIRST c 2.11403 58.3018 -0.14654 0.74803 0.23007 0.19327

2 INST 0 Converged FIRST p 2.18298 50.3844 -0.21610 0.80250 0.02200 -0.07961

3 INST 0 Converged FIRST w 1.75427 43.4356 -0.12295 0.87192 0.09533 -0.44373

4 INST 0 Converged FIRST i 1.72376 35.5182 -0.19251 0.92639 -0.11274 -0.71661

5 INST 0 Converged FIRST x 3.77347 93.8200 -0.33906 1.67442 0.11733 -0.52334

6 INST 0 Converged FIRST wsum 1.75427 43.4356 -0.12295 0.87192 0.09533 0.55627

7 INST 0 Converged FIRST k 1.72376 35.5182 0.80749 0.92639 -0.11274 -0.71661

8 INST 0 Converged FIRST y 3.77347 93.8200 -0.33906 1.67442 0.11733 -0.52334

9 3SLS 0 Converged CONSUME c 1.04956 16.4408 . 0.16314 . .

10 3SLS 0 Converged INVEST i 1.60796 28.1778 -0.19485 0.75572 . .

11 3SLS 0 Converged LABOR w 0.80149 1.7972 . . 0.18129 .

12 IDENTITY 0 Converged PRODUCT x . 0.0000 . . . .

13 IDENTITY 0 Converged INCOME y . 0.0000 . . . .

14 IDENTITY 0 Converged PROFIT p . 0.0000 . . . .

15 IDENTITY 0 Converged STOCK k . 0.0000 1.00000 . . .

16 IDENTITY 0 Converged WAGE wsum . 0.0000 . . . 1.00000

Obs g t yr c p w i x wsum k y

1 0.20501 -0.36573 0.70109 -1 . . . . . . .

2 0.43902 -0.92310 0.31941 . -1.00000 . . . . . .

3 0.86622 -0.60415 0.71358 . . -1 . . . . .

4 0.10023 -0.16152 0.33190 . . . -1 . . . .

5 1.30524 -0.52725 1.03299 . . . . -1.00000 . . .

6 0.86622 -0.60415 0.71358 . . . . . -1.00000 . .

7 0.10023 -0.16152 0.33190 . . . . . . -1 .

8 1.30524 -1.52725 1.03299 . . . . . . . -1

9 . . . -1 0.12489 . . . 0.79008 . .

10 . . . . -0.01308 . -1 . . . .

11 . . 0.14967 . . -1 . 0.40049 . . .

12 1.00000 . . 1 . . 1 -1.00000 . . .

13 1.00000 -1.00000 . 1 . . 1 . . . -1

14 . -1.00000 . . -1.00000 -1 . 1.00000 . . .

15 . . . . . . 1 . . -1 .

16 . . . . . 1 . . -1.00000 . .

Using the OUTEST= data set A produced by the SYSLIN procedure, the SIMLIN procedure can now compute
the reduced form and simulate the model. The following statements perform the simulation:

title1 'Simulation of Klein''s Model I using SIMLIN';
proc simlin data=klein

est=a type=3sls
estprint
total interim=2
outest=b;

endogenous c p w i x wsum k y;
exogenous wp g t yr;
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lagged klag k 1 plag p 1 xlag x 1;
id year;
output out=c p=chat phat what ihat xhat wsumhat khat yhat

r=cres pres wres ires xres wsumres kres yres;
run;

The reduced form coefficients and multipliers are added to the information read from EST= data set A and
written to the OUTEST= data set B. The predicted and residual values from the simulation are written to the
OUT= data set C specified in the OUTPUT statement.

The SIMLIN procedure first prints the structural coefficient matrices read from the EST= data set, as shown
in Output 31.1.2 through Output 31.1.4.

Output 31.1.2 SIMLIN Procedure Output — Endogenous Structural Coefficients

Simulation of Klein's Model I using SIMLIN

The SIMLIN Procedure

Structural Coefficients for Endogenous Variables

Variable c p w i x wsum k y

c 1.0000 -0.1249 . . . -0.7901 . .

i . 0.0131 . 1.0000 . . . .

w . . 1.0000 . -0.4005 . . .

x -1.0000 . . -1.0000 1.0000 . . .

y -1.0000 . . -1.0000 . . . 1.0000

p . 1.0000 1.0000 . -1.0000 . . .

k . . . -1.0000 . . 1.0000 .

wsum . . -1.0000 . . 1.0000 . .

Output 31.1.3 SIMLIN Procedure Output — Lagged Endogenous Structural Coefficients

Structural Coefficients for
Lagged Endogenous Variables

Variable klag plag xlag

c . 0.1631 .

i -0.1948 0.7557 .

w . . 0.1813

x . . .

y . . .

p . . .

k 1.0000 . .

wsum . . .
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Output 31.1.4 SIMLIN Procedure Output — Exogenous Structural Coefficients

Structural Coefficients for Exogenous Variables

Variable wp g t yr Intercept

c . . . . 16.4408

i . . . . 28.1778

w . . . 0.1497 1.7972

x . 1.0000 . . 0

y . 1.0000 -1.0000 . 0

p . . -1.0000 . 0

k . . . . 0

wsum 1.0000 . . . 0

The SIMLIN procedure then prints the inverse of the endogenous variables coefficient matrix, as shown in
Output 31.1.5.

Output 31.1.5 SIMLIN Procedure Output — Inverse Coefficient Matrix

Inverse Coefficient Matrix for Endogenous Variables

Variable c i w x y p k wsum

c 1.6347 0.6347 1.0957 0.6347 0 0.1959 0 1.2915

p 0.9724 0.9724 -0.3405 0.9724 0 1.1087 0 0.7682

w 0.6496 0.6496 1.4406 0.6496 0 0.0726 0 0.5132

i -0.0127 0.9873 0.004453 -0.0127 0 -0.0145 0 -0.0100

x 1.6219 1.6219 1.1001 1.6219 0 0.1814 0 1.2815

wsum 0.6496 0.6496 1.4406 0.6496 0 0.0726 0 1.5132

k -0.0127 0.9873 0.004453 -0.0127 0 -0.0145 1.0000 -0.0100

y 1.6219 1.6219 1.1001 0.6219 1.0000 0.1814 0 1.2815

The SIMLIN procedure next prints the reduced form coefficient matrices, as shown in Output 31.1.6.

Output 31.1.6 SIMLIN Procedure Output — Reduced Form Coefficients

Reduced Form for Lagged
Endogenous Variables

Variable klag plag xlag

c -0.1237 0.7463 0.1986

p -0.1895 0.8935 -0.0617

w -0.1266 0.5969 0.2612

i -0.1924 0.7440 0.000807

x -0.3160 1.4903 0.1994

wsum -0.1266 0.5969 0.2612

k 0.8076 0.7440 0.000807

y -0.3160 1.4903 0.1994
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Output 31.1.6 continued

Reduced Form for Exogenous Variables

Variable wp g t yr Intercept

c 1.2915 0.6347 -0.1959 0.1640 46.7273

p 0.7682 0.9724 -1.1087 -0.0510 42.7736

w 0.5132 0.6496 -0.0726 0.2156 31.5721

i -0.0100 -0.0127 0.0145 0.000667 27.6184

x 1.2815 1.6219 -0.1814 0.1647 74.3457

wsum 1.5132 0.6496 -0.0726 0.2156 31.5721

k -0.0100 -0.0127 0.0145 0.000667 27.6184

y 1.2815 1.6219 -1.1814 0.1647 74.3457

The multiplier matrices (requested by the INTERIM=2 and TOTAL options) are printed next, as shown in
Output 31.1.7 and Output 31.1.8.

Output 31.1.7 SIMLIN Procedure Output — Interim Multipliers

Interim Multipliers for Interim 1

Variable wp g t yr Intercept

c 0.829130 1.049424 -0.865262 -.0054080 43.27442

p 0.609213 0.771077 -0.982167 -.0558215 28.39545

w 0.794488 1.005578 -0.710961 0.0125018 41.45124

i 0.574572 0.727231 -0.827867 -.0379117 26.57227

x 1.403702 1.776655 -1.693129 -.0433197 69.84670

wsum 0.794488 1.005578 -0.710961 0.0125018 41.45124

k 0.564524 0.714514 -0.813366 -.0372452 54.19068

y 1.403702 1.776655 -1.693129 -.0433197 69.84670

Interim Multipliers for Interim 2

Variable wp g t yr Intercept

c 0.663671 0.840004 -0.968727 -.0456589 28.36428

p 0.350716 0.443899 -0.618929 -.0401446 10.79216

w 0.658769 0.833799 -0.925467 -.0399178 28.33114

i 0.345813 0.437694 -0.575669 -.0344035 10.75901

x 1.009485 1.277698 -1.544396 -.0800624 39.12330

wsum 0.658769 0.833799 -0.925467 -.0399178 28.33114

k 0.910337 1.152208 -1.389035 -.0716486 64.94969

y 1.009485 1.277698 -1.544396 -.0800624 39.12330
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Output 31.1.8 SIMLIN Procedure Output — Total Multipliers

Total Multipliers

Variable wp g t yr Intercept

c 1.881667 1.381613 -0.685987 0.1789624 41.3045

p 0.786945 0.996031 -1.286891 -.0748290 15.4770

w 1.094722 1.385582 -0.399095 0.2537914 25.8275

i 0.000000 0.000000 -0.000000 0.0000000 0.0000

x 1.881667 2.381613 -0.685987 0.1789624 41.3045

wsum 2.094722 1.385582 -0.399095 0.2537914 25.8275

k 2.999365 3.796275 -4.904859 -.2852032 203.6035

y 1.881667 2.381613 -1.685987 0.1789624 41.3045

The last part of the SIMLIN procedure output is a table of statistics of fit for the simulation, as shown in
Output 31.1.9.

Output 31.1.9 SIMLIN Procedure Output — Simulation Statistics

Fit Statistics

Variable N
Mean
Error

Mean Pct
Error

Mean Abs
Error

Mean Abs
Pct Error

RMS
Error

RMS Pct
Error Label

c 21 0.1367 -0.3827 3.5011 6.69769 4.3155 8.1701 consumption

p 21 0.1422 -4.0671 2.9355 19.61400 3.4257 26.0265 profits

w 21 0.1282 -0.8939 3.1247 8.92110 4.0930 11.4709 private wage bill

i 21 0.1337 105.8529 2.4983 127.13736 2.9980 252.3497 investment

x 21 0.2704 -0.9553 5.9622 10.40057 7.1881 12.5653 private production

wsum 21 0.1282 -0.6669 3.1247 7.88988 4.0930 10.1724 total wage bill

k 21 -0.1424 -0.1506 3.8879 1.90614 5.0036 2.4209 capital stock

y 21 0.2704 -1.3476 5.9622 11.74177 7.1881 14.2214 national income

The OUTEST= output data set contains all the observations read from the EST= data set, and in addition
contains observations for the reduced form and multiplier matrices. The following statements produce a
partial listing of the OUTEST= data set, as shown in Output 31.1.10:

proc print data=b;
where _type_ = 'REDUCED' | _type_ = 'IMULT1';

run;
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Output 31.1.10 Partial Listing of OUTEST= Data Set

Simulation of Klein's Model I using SIMLIN

Obs _TYPE_ _DEPVAR_ _MODEL_ _SIGMA_ c p w i x wsum k

9 REDUCED c . 1.63465 0.63465 1.09566 0.63465 0 0.19585 0

10 REDUCED p . 0.97236 0.97236 -0.34048 0.97236 0 1.10872 0

11 REDUCED w . 0.64957 0.64957 1.44059 0.64957 0 0.07263 0

12 REDUCED i . -0.01272 0.98728 0.00445 -0.01272 0 -0.01450 0

13 REDUCED x . 1.62194 1.62194 1.10011 1.62194 0 0.18135 0

14 REDUCED wsum . 0.64957 0.64957 1.44059 0.64957 0 0.07263 0

15 REDUCED k . -0.01272 0.98728 0.00445 -0.01272 0 -0.01450 1

16 REDUCED y . 1.62194 1.62194 1.10011 0.62194 1 0.18135 0

17 IMULT1 c . . . . . . . .

18 IMULT1 p . . . . . . . .

19 IMULT1 w . . . . . . . .

20 IMULT1 i . . . . . . . .

21 IMULT1 x . . . . . . . .

22 IMULT1 wsum . . . . . . . .

23 IMULT1 k . . . . . . . .

24 IMULT1 y . . . . . . . .

Obs y klag plag xlag wp g t yr Intercept

9 1.29151 -0.12366 0.74631 0.19863 1.29151 0.63465 -0.19585 0.16399 46.7273

10 0.76825 -0.18946 0.89347 -0.06173 0.76825 0.97236 -1.10872 -0.05096 42.7736

11 0.51321 -0.12657 0.59687 0.26117 0.51321 0.64957 -0.07263 0.21562 31.5721

12 -0.01005 -0.19237 0.74404 0.00081 -0.01005 -0.01272 0.01450 0.00067 27.6184

13 1.28146 -0.31603 1.49034 0.19944 1.28146 1.62194 -0.18135 0.16466 74.3457

14 1.51321 -0.12657 0.59687 0.26117 1.51321 0.64957 -0.07263 0.21562 31.5721

15 -0.01005 0.80763 0.74404 0.00081 -0.01005 -0.01272 0.01450 0.00067 27.6184

16 1.28146 -0.31603 1.49034 0.19944 1.28146 1.62194 -1.18135 0.16466 74.3457

17 . . . . 0.82913 1.04942 -0.86526 -0.00541 43.2744

18 . . . . 0.60921 0.77108 -0.98217 -0.05582 28.3955

19 . . . . 0.79449 1.00558 -0.71096 0.01250 41.4512

20 . . . . 0.57457 0.72723 -0.82787 -0.03791 26.5723

21 . . . . 1.40370 1.77666 -1.69313 -0.04332 69.8467

22 . . . . 0.79449 1.00558 -0.71096 0.01250 41.4512

23 . . . . 0.56452 0.71451 -0.81337 -0.03725 54.1907

24 . . . . 1.40370 1.77666 -1.69313 -0.04332 69.8467

The actual and predicted values for the variable C are plotted in Output 31.1.11.

title2 'Plots of Simulation Results';
proc sgplot data=c;

scatter x=year y=c;
series x=year y=chat / markers markerattrs=(symbol=plus);
refline 1941.5 / axis=x;

run;
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Output 31.1.11 Plot of Actual and Predicted Consumption

Example 31.2: Multipliers for a Third-Order System
This example shows how to fit and simulate a single-equation dynamic model with third-order lags. It then
shows how to convert the third-order equation into a three-equation system with only first-order lags, so that
the SIMLIN procedure can compute multipliers. (For more information, see the section “Multipliers for
Higher-Order Lags” on page 2290.)

The input data set TEST is created from simulated data. A partial listing of the data set TEST produced by
PROC PRINT is shown in Output 31.2.1.
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Output 31.2.1 Partial Listing of Input Data Set

Simulate Equation with Third-Order Lags
Listing of Simulated Input Data

Obs y ylag1 ylag2 ylag3 x n

1 8.2369 8.5191 6.9491 7.8800 -1.2593 1

2 8.6285 8.2369 8.5191 6.9491 -1.6805 2

3 10.2223 8.6285 8.2369 8.5191 -1.9844 3

4 10.1372 10.2223 8.6285 8.2369 -1.7855 4

5 10.0360 10.1372 10.2223 8.6285 -1.8092 5

6 10.3560 10.0360 10.1372 10.2223 -1.3921 6

7 11.4835 10.3560 10.0360 10.1372 -2.0987 7

8 10.8508 11.4835 10.3560 10.0360 -1.8788 8

9 11.2684 10.8508 11.4835 10.3560 -1.7154 9

10 12.6310 11.2684 10.8508 11.4835 -1.8418 10

The REG procedure processes the input data and writes the parameter estimates to the OUTEST= data set A.

title2 'Estimated Parameters';
proc reg data=test outest=a;

model y=ylag3 x;
run;

title2 'Listing of OUTEST= Data Set';
proc print data=a;
run;

Output 31.2.2 shows the printed output produced by the REG procedure, and Output 31.2.3 displays the
OUTEST= data set A that is produced.

Output 31.2.2 Estimates and Fit Information from PROC REG

Simulate Equation with Third-Order Lags
Estimated Parameters

The REG Procedure
Model: MODEL1

Dependent Variable: y

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 173.98377 86.99189 1691.98 <.0001

Error 27 1.38818 0.05141

Corrected Total 29 175.37196

Root MSE 0.22675 R-Square 0.9921

Dependent Mean 13.05234 Adj R-Sq 0.9915

Coeff Var 1.73721
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Output 31.2.2 continued

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.14239 0.23657 0.60 0.5523

ylag3 1 0.77121 0.01723 44.77 <.0001

x 1 -1.77668 0.10843 -16.39 <.0001

Output 31.2.3 The OUTEST= Data Set Created by PROC REG

Simulate Equation with Third-Order Lags
Listing of OUTEST= Data Set

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept ylag3 x y

1 MODEL1 PARMS y 0.22675 0.14239 0.77121 -1.77668 -1

The SIMLIN procedure processes the TEST data set using the estimates from PROC REG. The following
statements perform the simulation and write the results to the OUT= data set OUT2:

title2 'Simulation of Equation';
proc simlin est=a data=test nored;

endogenous y;
exogenous x;
lagged ylag3 y 3;
id n;
output out=out1 predicted=yhat residual=yresid;

run;

The printed output from the SIMLIN procedure is shown in Output 31.2.4.

Output 31.2.4 Output Produced by PROC SIMLIN

Simulate Equation with Third-Order Lags
Simulation of Equation

The SIMLIN Procedure

Fit Statistics

Variable N
Mean
Error

Mean Pct
Error

Mean Abs
Error

Mean Abs
Pct Error

RMS
Error

RMS Pct
Error

y 30 -0.0233 -0.2268 0.2662 2.05684 0.3408 2.6159

The following statements plot the actual and predicted values, as shown in Output 31.2.5:

title2 'Plots of Simulation Results';
proc sgplot data=out1;

scatter x=n y=y;
series x=n y=yhat / markers markerattrs=(symbol=plus);

run;
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Output 31.2.5 Plot of Predicted and Actual Values

Next, the input data set TEST is modified by creating two new variables, YLAG1X and YLAG2X, that are
equal to YLAG1 and YLAG2. These variables are used in the SYSLIN procedure. (The estimates produced by
PROC SYSLIN are the same as before and are not shown.) A listing of the OUTEST= data set B created by
PROC SYSLIN is shown in Output 31.2.6.

data test2;
set test;
ylag1x=ylag1;
ylag2x=ylag2;

run;

title2 'Estimation of parameters and definition of identities';
proc syslin data=test2 outest=b;

endogenous y ylag1x ylag2x;
model y=ylag3 x;
identity ylag1x=ylag1;
identity ylag2x=ylag2;

run;

title2 'Listing of OUTEST= data set from PROC SYSLIN';



Example 31.2: Multipliers for a Third-Order System F 2307

proc print data=b;
run;

Output 31.2.6 Listing of OUTEST= Data Set Created from PROC SYSLIN

Simulate Equation with Third-Order Lags
Listing of OUTEST= data set from PROC SYSLIN

Obs _TYPE_ _STATUS_ _MODEL_ _DEPVAR_ _SIGMA_ Intercept ylag3 x ylag1 ylag2 y ylag1x ylag2x

1 OLS 0 Converged y y 0.22675 0.14239 0.77121 -1.77668 . . -1 . .

2 IDENTITY 0 Converged ylag1x . 0.00000 . . 1 . . -1 .

3 IDENTITY 0 Converged ylag2x . 0.00000 . . . 1 . . -1

The SIMLIN procedure is used to compute the reduced form and multipliers. The OUTEST= data set B from
PROC SYSLIN is used as the EST= data set for the SIMLIN procedure. The following statements perform
the multiplier analysis:

title2 'Simulation of transformed first-order equation system';

proc simlin est=b data=test2 total interim=2;
endogenous y ylag1x ylag2x;
exogenous x;
lagged ylag1 y 1 ylag2 ylag1x 1 ylag3 ylag2x 1;
id n;
output out=out2 predicted=yhat residual=yresid;

run;

Output 31.2.7 shows the interim 2 and total multipliers printed by the SIMLIN procedure.

Output 31.2.7 Interim 2 and Total Multipliers

Simulate Equation with Third-Order Lags
Simulation of transformed first-order equation system

The SIMLIN Procedure

Interim Multipliers for Interim
2

Variable x Intercept

y 0.000000 0.0000000

ylag1x 0.000000 0.0000000

ylag2x -1.776682 0.1423865

Total Multipliers

Variable x Intercept

y -7.765556 0.6223455

ylag1x -7.765556 0.6223455

ylag2x -7.765556 0.6223455
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Overview: SPATIALREG Procedure
The SPATIALREG (spatial regression) procedure analyzes spatial econometric models for cross-sectional
data whose observations are spatially referenced or georeferenced. For example, housing price data that
are collected from 48 continental states in the United States fall into the category of spatially referenced
data. Compared to nonspatial regression models, spatial econometric models are capable of handling spatial
interaction and spatial heterogeneity in a regression setting (Anselin 2001).

The SPATIALREG procedure supports the following models:

� linear model

� linear model with spatial lag of X (SLX) effects

� spatial autoregressive (SAR) model

� spatial Durbin model (SDM)

� spatial error model (SEM)

� spatial Durbin error model (SDEM)

� spatial moving average (SMA) model

� spatial Durbin moving average (SDMA) model

� spatial autoregressive moving average (SARMA) model

� spatial Durbin autoregressive moving average (SDARMA) model



Getting Started: SPATIALREG Procedure F 2311

� spatial autoregressive confused (SAC) model

� spatial Durbin autoregressive confused (SDAC) model

In general, SARMA, SDARMA, SAC, and SDAC models can require two spatial weights matrices. If you fit
these four types of models, the two spatial weights matrices are assumed to be identical.

Spatial econometric models have been widely used in economics, political science, sociology, and other fields.
For example, LeSage and Pace (2009) provide a detailed introduction to commonly used spatial econometric
models from both frequentist and Bayesian perspectives. A brief introduction to spatial econometric models
is also provided by Elhorst (2013).

The SPATIALREG procedure primarily uses the maximum likelihood estimation to achieve parameter
estimation. Initial values for the nonlinear optimizations are usually calculated by ordinary least squares
(OLS).

Getting Started: SPATIALREG Procedure
The SPATIALREG procedure is similar to other SAS regression model procedures, except that you usually
need to provide a secondary data set (in the WMAT= option). The spatial weights matrix defines all pairwise
spatial relationships and is the most vital component of a spatial regression model. For more information
about how to create spatial weights matrix, see the section “Specifying the Spatial Weights Matrix” on
page 2341.

The following statements fit a SAR model:

proc spatialreg data=one Wmat=W;
model y = x1 x2 / type=SAR;

run;

The response variable y is continuous, and the data set W, which you specify in the WMAT= option, contains
the spatial relationships among all spatial units in the data. In this case, W is either contiguity or weights.
You specify the TYPE=SAR option to request a SAR model.

The following example illustrates PROC SPATIALREG by using a real-world data set. The data set CRIMEOH
is taken from Anselin (1988) and can be found in the SAS/ETS Sample Library. This data set contains
variables such as INCOME (household income, measured in $1000), HVALUE (housing value by $1000),
and CRIME (number of crimes, including residential burglaries and vehicle thefts, measured per 1,000
households) in 49 neighborhoods in Columbus, Ohio. You want to examine how household income and
housing value affect the number of crimes in the 49 neighborhoods of interest.

The first 10 observations in the CRIMEOH data set are shown in Figure 32.1.
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Figure 32.1 Columbus Crime Data

Obs crime income hvalue lat lon

1 18.802 21.232 44.567 35.62 42.38

2 32.388 4.477 33.200 36.50 40.52

3 38.426 11.337 37.125 36.71 38.71

4 0.178 8.438 75.000 33.36 38.41

5 15.726 19.531 80.467 38.80 44.07

6 30.627 15.956 26.350 39.82 41.18

7 50.732 11.252 23.225 40.01 38.00

8 26.067 16.029 28.750 43.75 39.28

9 48.585 9.873 18.000 39.61 34.91

10 34.001 13.598 96.400 47.61 36.42

The following SAS statements fit a linear regression model to the CRIMEOH data set:

proc spatialreg data=crimeoh;
model crime = income hvalue / type=LINEAR;

run;

The “Model Fit Summary” table, shown in Figure 32.2, lists several fit summary statistics about the model.
By default, the SPATIALREG procedure uses the Newton-Raphson optimization technique. The maximum
log-likelihood value is shown, in addition to two information measures, Akaike’s information criterion (AIC)
and Schwarz’s Bayesian information criterion (SBC). AIC or SBC can be used for model selection. For a set
of candidate models, the model with the smallest AIC or SBC is often preferred.

Figure 32.2 Fit Summary Statistics for a Linear Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Model Fit Summary

Dependent Variable crime

Number of Observations 49

Data Set WORK.CRIMEOH

Model Linear

Log Likelihood -187.37709

Maximum Absolute Gradient 7.59852E-7

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 382.75418

SBC 390.32146

The parameter estimates of the model and their standard errors are shown in Figure 32.3. Based on the
p-values, both INCOME and HVALUE are significant at the 0.05 level.
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Figure 32.3 Parameter Estimates of the Linear Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 68.618863 4.588210 14.96 <.0001

income 1 -1.597304 0.323739 -4.93 <.0001

hvalue 1 -0.273931 0.099989 -2.74 0.0062

_sigma2 1 122.751696 24.799493 4.95 <.0001

The following statements fit a SAR model to the CRIMEOH data set:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime = income hvalue / type=SAR;

run;

The NONORMALIZE option requests that the spatial weights matrix that is specified in the CRIMEWMAT
data set be used “as is” rather than be row-standardized. The “Model Fit Summary” table, shown in
Figure 32.4, lists several fit summary statistics about the SAR model. For this model, the value of AIC is
about 374.78—smaller than 382.75, which is the AIC value for the preceding linear model. Based on AIC,
the SAR model is preferred.

Figure 32.4 Fit Summary Statistics for a SAR Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Model Fit Summary

Dependent Variable crime

Number of Observations 49

Data Set WORK.CRIMEOH

Spatial Weights WORK.CRIMEWMAT

Model SAR

Log Likelihood -182.38860

Maximum Absolute Gradient 2.7871E-7

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 374.77720

SBC 384.23630

The parameter estimates of the SAR model and their standard errors are shown in Figure 32.5. According
to the p-values, both INCOME and HVALUE are significant at the 0.05 level. In addition, the spatial
autoregressive coefficient � is estimated to be about 0.431, with a p-value of 0.0005.
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Figure 32.5 Parameter Estimates of the SAR Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 45.077070 7.870590 5.73 <.0001

income 1 -1.031531 0.328403 -3.14 0.0017

hvalue 1 -0.265924 0.088218 -3.01 0.0026

_rho 1 0.431020 0.123594 3.49 0.0005

_sigma2 1 95.487066 19.506312 4.90 <.0001

The following statements fit an SDM model. Unlike the previous SAR model, SDM accounts for exogenous
interaction effects by introducing spatial lags of two explanatory variables—INCOME and HVALUE.

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime = income hvalue / type=SAR;
spatialeffects income hvalue;

run;

The fit summary statistics for the SDM model are shown in Figure 32.6. Parameter estimates are provided in
Figure 32.7.

Figure 32.6 Fit Summary Statistics for the SDM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Model Fit Summary

Dependent Variable crime

Number of Observations 49

Data Set WORK.CRIMEOH

Spatial Weights WORK.CRIMEWMAT

Model SDM

Log Likelihood -181.39141

Maximum Absolute Gradient 5.44803E-8

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 376.78282

SBC 390.02556
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Figure 32.7 Parameter Estimates for the SDM Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 42.803457 13.924487 3.07 0.0021

income 1 -0.914206 0.336439 -2.72 0.0066

hvalue 1 -0.293745 0.088857 -3.31 0.0009

W_income 1 -0.519640 0.594772 -0.87 0.3823

W_hvalue 1 0.245716 0.176854 1.39 0.1647

_rho 1 0.426492 0.167492 2.55 0.0109

_sigma2 1 91.779519 18.909222 4.85 <.0001

The spatial autoregressive coefficient � is estimated to be 0.426 with a p-value of 0.0109 based on an
asymptotic t test. This result seems to suggest that there is a significantly positive spatial dependence in the
number of crimes.

In the SPATIALREG procedure, the null hypothesis H0 W � D 0 can also be tested against the alternative
Ha W � ¤ 0 by using the likelihood ratio (LR) test, Lagrange multiplier (LM) test, and Wald test. For the LR
test, the test statistic is equal to �2.Llinear � LSAR/ D �2.�187:38C 182:39/ D 9:98, where Llinear and
LSAR are the log likelihoods for the linear regression model and SAR model, respectively. The likelihood
ratio test is significant at the 0.05 level, providing strong evidence of spatial dependence in the data.

Syntax: SPATIALREG Procedure
The following statements are available in the SPATIALREG procedure:

PROC SPATIALREG < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variables ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent = < regressors >< / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >< output-options > ;
PERFORMANCE options ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST equation1 < , equation2 . . . >< /test-options > ;
SPATIALEFFECTS < model-spatial-effect-regressors > ;
SPATIALID variable ;

You can specify more than one MODEL statement, as shown in the section “Example 32.3: Fitting Multiple
Models” on page 2365. The CLASS statement must precede the MODEL statement. If you include the
SPATIALEFFECTS statement, it must be paired with and appear after the MODEL statement.
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Functional Summary
Table 32.1 summarizes the statements and options that you can use with the SPATIALREG procedure.

Table 32.1 PROC SPATIALREG Functional Summary

Description Statement Option

Data Set Options
Specifies the input primary data set PROC SPATIALREG DATA=
Specifies the input spatial weights data set PROC SPATIALREG WMAT=
Suppresses normalization of the spatial weights PROC SPATIALREG NONORMALIZE
Writes parameter estimates to an output data set PROC SPATIALREG OUTEST=
Writes estimates of x0iˇ, predicted values, and
residuals to an output data set

OUTPUT OUT=

Approximation Control Options
Specifies the approximation-related options PROC SPATIALREG APPROXIMATION=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies classification variables CLASS
Specifies a spatial ID variable SPATIALID

Printing Control Options
Prints the correlation matrix of the estimates MODEL CORRB
Prints the covariance matrix of the estimates MODEL COVB
Prints a summary iteration listing MODEL ITPRINT
Suppresses the normal printed output PROC SPATIALREG NOPRINT
Prints all available output MODEL PRINTALL

Optimization Process Control Options
Specifies maximum number of iterations allowed MODEL MAXITER=
Selects the iterative minimization method to use PROC SPATIALREG METHOD=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT
Sets the number of threads to use PERFORMANCE NTHREADS=
Specifies the optimization options NLOPTIONS See Chapter 7, “Nonlin-

ear Optimization Meth-
ods.”

Model Estimation Options
Specifies the spatial lag of covariate effect SPATIALEFFECTS
Specifies the type of model MODEL TYPE=
Specifies the type of covariance matrix MODEL COVEST=
Suppresses the intercept parameter MODEL NOINT
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Table 32.1 continued

Description Statement Option

Output Control Options
Includes covariances in the OUTEST= data set PROC SPATIALREG COVOUT
Outputs the residual OUTPUT RESID=
Outputs the expected value of the response variable OUTPUT PRED=
Outputs estimates of x0iˇ OUTPUT XBETA=

PROC SPATIALREG Statement
PROC SPATIALREG < options > ;

You can specify the following options in the PROC SPATIALREG statement.

Data Set Options

DATA=SAS-data-set
specifies the primary SAS data set that contains dependent variables, and explanatory variables, and so
on.

WMAT=SAS-data-set
specifies the secondary spatial weights data set, which can be used to construct the spatial weights
matrix W. Loosely speaking, the entries of W, w.si ; sj /, define the amount of influence that a unit
sj has over a unit si . The entries w.si ; sj / must be nonnegative and have zeros on the diagonal; that
is, w.si ; sj / � 0 and w.si ; si / D 0, where i; j D 1; 2; : : : ; n, with n being the total number of spatial
units in the data. Any nonzero diagonal elements w.si ; si / are replaced with 0. The spatial weights
matrix can be asymmetric; that is, it is not necessary that w.si ; sj / D w.sj ; si /. For information about
missing spatial weights in W, see the section “NONORMALIZE” on page 2318.

The W matrix can take two different forms. First, you can provide a full spatial weights matrix. In this
case, the data set that you specify in the WMAT= option has n rows. However, the number of columns
can be either nC 1 or n, depending on whether you need a spatial ID variable to match observations in
two data sets that are specified by the DATA= option and WMAT= option. If you need a SPATIALID
statement to specify a spatial ID variable for the purpose of matching observations, the data set that
you specify in the WMAT= option needs to have n+1 columns. In this case, the spatial ID variable can
appear in any column in the data set. Otherwise, the number of columns in the data set that you specify
in the WMAT= option should be n.

Second, you can also specify the spatial weights matrix by using a compact form when appropriate. In
this form, the number of observations in the data set that you specify in the WMAT= option should
match the number of nonzero elements in the spatial weights matrix. Moreover, the number of columns
in this data set should be three. The first two columns give the row and column indices for nonzero
entries in the spatial weights matrix. The third column in the data set contains the nonzero entries in the
spatial weights matrix. If you use the compact form for the spatial weights matrix, you must include
a SPATIALID statement to match observations in the two data sets that are specified in the DATA=
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option and WMAT= option. For more information about the SPATIALID statement, see the section
“SPATIALID Statement” on page 2327. For more information about the compact representation of
the spatial weights matrix, see the section “Compact Representation of Spatial Weights Matrix” on
page 2342.

NONORMALIZE
suppresses the row standardization of the spatial weights matrix that is specified in the WMAT= option.
By default, the spatial weights matrix is row-standardized; that is, the spatial weights matrix has unit
row sum. If the NONORMALIZE option is specified, spatial weights are used “as is” except for
w.si ; si /, which is always treated as 0. This implies that an entry w.si ; sj / in the W matrix cannot be
missing for i ¤ j if the NONORMALIZE option is specified. If this option is not specified, missing
spatial weights are replaced with zeros.

Approximation Control Options

For the SAR, SDM, SEM, and SDEM models, you can specify the following options:

APPROXIMATION=(< approx-options >)
specifies options that are related to approximating the Jacobian, as described in the section “Approxi-
mations to the Jacobian” on page 2346. You must specify one or more of the following approx-options:

CHEBYSHEV | TAYLOR
specifies the approximation method. By default, Chebyshev approximation is used. The Taylor
approximation is used only if you specify the TAYLOR option.

NMC=number
specifies a positive integer as the number of standard random normal draws for the Monte Carlo
simulation that approximates the traces of powers of the spatial weights matrix W. If the SEED=
option is specified, NMC=100 by default. If neither the NMC= option nor the SEED= option
is specified, Monte Carlo simulation is not used and the traces of powers of the spatial weights
matrix W are computed exactly. For more information, see the section “Approximations to the
Jacobian” on page 2346.

ORDER=number
specifies a positive integer as the order of series in Taylor approximation or Chebyshev approxi-
mation. If Taylor approximation is used, ORDER=50 by default. If Chebyshev approximation is
used, ORDER=5 by default.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator that is used
for the Monte Carlo simulation that approximates the traces of powers of the spatial weights
matrix W. If the NMC= option is specified, SEED=1 by default. If neither the NMC= option
nor the SEED= option is specified, Monte Carlo simulation is not used and the traces of powers
of the spatial weights matrix W are computed exactly. For more information, see the section
“Approximations to the Jacobian” on page 2346. Specifying a seed enables you to reproduce your
analysis.
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Output Data Set Options

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
when you specify the OUTEST= option.

OUTEST=SAS-data-set
writes the parameter estimates to the specified output data set.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates. You can also specify this option in the MODEL
statement.

COVB
prints the covariance matrix of the parameter estimates. You can also specify this option in the MODEL
statement.

NOPRINT
suppresses all printed output.

Estimation Control Options

COVEST=HESSIAN | OP | QML
specifies the type of covariance matrix for the parameter estimates. You can specify the following
types:

HESSIAN specifies the covariance from the Hessian matrix.

OP specifies the covariance from the outer product matrix.

QML specifies the covariance from the outer product and Hessian matrices.

By default, COVEST=HESSIAN. The quasi-maximum-likelihood estimates are computed using
COVEST=QML. For all models except the linear and SLX models, only COVEST=HESSIAN is
supported.

Optimization Process Control Options

PROC SPATIALREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. All the NLO options are available in the NLOPTIONS statement. For more information, see the
section “NLOPTIONS Statement” on page 2324. In addition, you can specify the following option in the
PROC SPATIALREG statement:

METHOD=CONGRA | DBLDOG | NEWRAP | NMSIMP | NONE | NRRIDG | QUANEW | TRUREG
specifies the iterative minimization method to use. You can specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double-dogleg method.

NEWRAP specifies the Newton-Raphson method.
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NMSIMP specifies the Nelder-Mead simplex method.

NONE specifies that optimization not be performed.

NRRIDG specifies the Newton-Raphson ridge method.

QUANEW specifies the quasi-Newton method.

TRUREG specifies the trust region method.

By default, METHOD=NEWRAP.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. You can specify
any number of BOUNDS statements.

Each bound is composed of parameter names, constants, and inequality operators as follows:

item operator item < operator item operator item . . . >

Each item can be a constant, a parameter name, or a list of parameter names. Each operator can be <, >, <=,
or >=.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. For
more information about the RESTRICT statement, see the section “RESTRICT Statement” on page 2325.

The following BOUNDS statement constrains the estimates of the parameter for z to be negative, the
parameters for x1 through x10 to be between 0 and 1, and the parameter for spatial lag of the x1 to be less
than 1:

bounds z < 0,
0 < x1-x10 < 1,
W_x1 < 1;

BY Statement
BY variables ;

A BY statement can be used in PROC SPATIALREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When you use a BY statement, the primary input data set (specified in
the DATA= option) should be sorted by the BY variables.
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CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < /global-options > ;

The CLASS statement names the classification variables that are used to group (classify) data in the analysis.
Classification variables can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats
to group values into levels. For more information, see the discussion of the FORMAT procedure in SAS
Language Reference: Dictionary. The CLASS statement must precede the MODEL statement.

Most options can be specified as either individual variable options or global-options. You can specify options
for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that are specified in the CLASS statement. If you specify more than one CLASS statement,
the global-options that are specified in any one CLASS statement apply to all CLASS statements. However,
individual CLASS variable options override the global-options.

You can specify the following values for either an option or a global-option:

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
levels for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC SPATIALREG interprets values of the ORDER= option:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in Base SAS Procedures
Guide and the discussion of BY-group processing in SAS Programmers Guide: Essentials.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; by default, PARAM=GLM.

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only as a global-option)

REFERENCE
REF

Reference cell coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for effect and reference coding and for their orthogonal
parameterizations. It also indirectly determines the reference level for a singular GLM parameterization
through the order of levels.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. When PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format
is assigned. For a global or individual variable REF= option, you can specify one of the following
keywords:

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

By default, REF=LAST.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization.

Each initvalue is written as a parameter or parameter list, followed by an optional equal sign (=), followed by
a number:

parameter < = > number

For continuous regressors, the names of the parameters are the same as the corresponding variables. For a
regressor that is a CLASS variable, the parameter name combines the corresponding CLASS variable name
with the variable level. For interaction and nested regressors, the parameter names combine the names of all
the regressors. The names of the parameters can be seen in the OUTEST= data set. By default, initial values
are determined by OLS regression. Initial values can be displayed by using the ITPRINT option in the PROC
SPATIALREG statement.
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MODEL Statement
MODEL dependent-variable = <regressors> </ options> ;

The MODEL statement specifies the dependent-variable and independent covariates (regressors) for the
regression model. If you specify no regressors, PROC SPATIALREG fits a model that contains only an
intercept. The dependent-variable is treated as a continuous variable in the primary input data set (specified
in the DATA= option). Models in PROC SPATIALREG do not allow missing values. If there are missing
values, you get an error message.

You can specify more than one MODEL statement. You can specify the following options in the MODEL
statement after a slash (/):

NOINT
suppresses the intercept parameter.

TYPE=LINEAR | SAC | SAR | SARMA | SEM | SMA
specifies the type of model to be fitted. If you specify this option in both the MODEL statement and the
PROC SPATIALREG statement, the MODEL statement overrides the PROC SPATIALREG statement.
You can specify the following model types:

LINEAR specifies the linear model.

SAC specifies the spatial autoregressive confused model.

SAR specifies the spatial autoregressive model.

SARMA specifies the spatial autoregressive moving average model.

SEM specifies the spatial error model.

SMA specifies the spatial moving average model.

By default, TYPE=SAR.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates. You can also specify this option in the PROC
SPATIALREG statement.

COVB
prints the covariance matrix of the parameter estimates. You can also specify this option in the PROC
SPATIALREG statement.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective function is
the negative log-likelihood function. You can also specify this option in the PROC SPATIALREG
statement.
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PRINTALL
requests all available output. You can also specify this option in the PROC SPATIALREG statement.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement provides the options to control the nonlinear optimization (NLO) subsystem to
perform nonlinear optimization tasks. For a list of all the options available in the NLOPTIONS statement,
see Chapter 7, “Nonlinear Optimization Methods.”

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimates of x0iˇ, the expected value of the response variable, and the residual.

You can specify only one OUTPUT statement for each MODEL statement. You can specify the following
output-options:

OUT=SAS-data-set
names the output data set.

XBETA=name
names the variable that contains estimates of x0iˇ.

PRED=name

MEAN=name
assigns a name to the variable that contains the predicted value of the response variable.

RESID=name

RESIDUAL=name
assigns a name to the variable that contains the residuals (that is, the difference between the observed
and predicted values of the response variable).
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PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement controls the number of threads that are used in the optimization phase. You
can also specify that multithreading not be used in the optimization phase by using the NOTHREADS option.

You can specify only one PERFORMANCE statement. You can specify the following performance-options:

DETAILS
specifies that a timing table be included in the output.

NOTHREADS
specifies that no threads be used during optimization.

NTHREADS=number
specifies the number of threads to be used during optimization.

If you use both the NTHREADS= and NOTHREADS options, then the NTHREADS= option is ignored. If
you use a PERFORMANCE statement, then it overrides any global threading settings that might have been
set using the CPUCOUNT=, THREADS, or NOTHREADS system option.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

parameter < number

Restriction expressions can be composed of parameter names; constants; and the operators times (�), plus
(C), and minus (�). The restriction expressions must be a linear function of the parameters. For continuous
regressors, the names of the parameters are the same as the names of the corresponding variables. For a
regressor that is a CLASS variable, the parameter name combines the corresponding CLASS variable name
with the variable level. For interaction and nested regressors, the parameter names combine the names of all
the regressors. The names of the parameters can be seen in the OUTEST= data set.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified by the names Restrict1, Restrict2, and so on. The p-values of these Lagrange multipliers are
computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect on
the estimation results and are not noted in the output.

For example, the following RESTRICT statement constrains the spatial autoregressive coefficient � to 0,
which removes endogenous interaction effects:
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restrict _rho = 0;

TEST Statement
<’label’:> TEST equation [,equation. . . ] < / options > ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses
about the parameters in your model. Each equation specifies a linear hypothesis to be tested. All hypotheses
in one TEST statement are tested jointly. Variable names in the equations must correspond to regressors in
the preceding MODEL statement, and each name represents the coefficient of the corresponding regressor.
The keyword INTERCEPT refers to the coefficient of the intercept. The keywords _rho and _lambda refer to
the autoregressive coefficients � and �, respectively. In addition, the keyword _sigma2 refers to the variance
parameter �2.

You can specify the following options after the slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

WALD
requests the Wald test.

The following statements illustrate the use of the TEST statement:

proc spatialreg data=dat;
model y = x1 x2 x3/type=LINEAR;
test x1 = 0, x2 * .5 + 2 * x3 = 0/ALL;
test_int: test intercept = 0, x3 = 0/LR;

run;

The first test investigates the joint hypothesis that ˇ1 D 0 and 0:5ˇ2 C 2ˇ3 D 0.

Only linear equality tests are permitted in PROC SPATIALREG. Tests expressions can be composed only of
algebraic operations that use the addition symbol (+), subtraction symbol (–), and multiplication symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. TEST statements can be labeled
in two ways: a TEST statement can be preceded by a label followed by a colon, or the keyword TEST can be
followed by a quoted string. If both are present, PROC SPATIALREG uses the label preceding the colon. If
no label is specified, PROC SPATIALREG automatically labels the tests.
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SPATIALID Statement
SPATIALID variable ;

For models that require a spatial weights matrix, the SPATIALID statement specifies a variable that identifies
a spatial unit for each observation in the two data sets that are specified in the DATA= option and WMAT=
option in the PROC SPATIALREG statement. The variable that is specified in the SPATIALID statement
is also used to match the rows and columns within the WMAT= data set. You do not need a SPATIALID
statement if no matching is needed for the two data sets specified in the DATA= option and WMAT= option.
If you do need a SPATIALID statement, only one SPATIALID statement and one spatial ID variable are
allowed. The values of the spatial ID variable in either the DATA= data set or the WMAT= data set cannot be
missing.

The variable in the SPATIALID statement can be either numeric or character. However, the type of spatial ID
variable in the two data sets specified in the DATA= option and WMAT= option must be the same. When the
spatial ID variable is numeric, it needs to be integer-valued. If you specify a number that is not an integer,
PROC SPATIALREG uses the integer part of that number for matching.

SPATIALEFFECTS Statement
SPATIALEFFECTS < model-spatial-effect-regressors > < /options > ;

The SPATIALEFFECTS statement enables you to specify covariates (such as X) whose spatial lag, WX, is to
be added to the MODEL statement.

PROC SPATIALREG adds the spatially weighted model-spatial-effect-regressors to regressors that are speci-
fied in the MODEL statement. For example, if you specify q variables z1; : : : ; zq in the SPATIALEFFECTS
statement, then each of q spatially weighted variables, as represented by each column of WZ, has a parameter
to be included in the regression. Here, WZ denotes the matrix product of W and Z. In addition, Z is the
design matrix formed by the q variables z1; : : : ; zq . The spatial weights matrix W comes from the data set
that is specified in the WMAT= option. The “Parameter Estimates” table in the displayed output shows the
estimates for spatially weighted model-spatial-effect-regressors; they are labeled with the prefix “W_”. For
example, if you specify z (a variable in your primary data set) as a spatial effect explanatory variable, then
the “Parameter Estimates” table labels the corresponding parameter estimate “W_z”.
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Details: SPATIALREG Procedure

Specification of Regressors
Each term in a model, called a regressor, is a variable or combination of variables. Regressors are specified
in a special notation that uses variable names and operators. There are two kinds of variables: classification
(CLASS) variables and continuous variables. There are two primary operators: crossing and nesting. A third
operator, the bar operator, is used to simplify effect specification.

In the SAS System, classification variables are declared in the CLASS statement. (They can also be called
categorical, qualitative, discrete, or nominal variables.) Classification variables can be either numeric or
character. The values of a classification variable are called levels. For example, the classification variable
Sex has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is assumed to be continuous.
Continuous variables, which must be numeric, are used for covariates. For example, the heights and weights
of subjects are continuous variables. A response variable is a continuous variable and must also be numeric.

Types of Regressors

Seven different types of regressors are used in the SPATIALREG procedure. In the following list, assume
that A, B, C, D, and E are CLASS variables and that X1 and X2 are continuous variables:

� Regressors are specified by writing continuous variables by themselves: X1 X2.

� Polynomial regressors are specified by joining (crossing) two or more continuous variables with
asterisks: X1*X1 X1*X2.

� Dummy regressors are specified by writing CLASS variables by themselves: A B C.

� Dummy interactions are specified by joining classification variables with asterisks: A*B B*C
A*B*C.

� Nested regressors are specified by following a dummy variable or dummy interaction with a classifica-
tion variable or list of classification variables enclosed in parentheses. The dummy variable or dummy
interaction is nested within the regressor that is listed in parentheses: B(A) C(B*A) D*E(C*B*A).
In this example, B(A) is read as “B nested within A.”

� Continuous-by-class regressors are written by joining continuous variables and classification variables
with asterisks: X1*A.

� Continuous-nesting-class regressors consist of continuous variables followed by a classification variable
interaction enclosed in parentheses: X1(A) X1*X2(A*B).

An example of the general form of an effect that involves several variables is

X1*X2*A*B*C(D*E)
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This example contains an interaction between continuous terms and classification terms that are nested within
more than one classification variable. The continuous list comes first, followed by the dummy list, followed
by the nesting list in parentheses. Note that asterisks can appear within the nested list but not immediately
before the left parenthesis.

The MODEL statement uses these effects. Some examples of MODEL statements that use various kinds of
effects are shown in Table 32.2, where a, b, and c represent classification variables. The variables x and z are
continuous.

Table 32.2 Examples of MODEL Statement and Effects

Specification Type of Model

model y=x; Simple regression

model y=x z; Multiple regression

model y=x x*x; Polynomial (quadratic) regression

model y=a; Regression with one classification variable

model y=a b c; Regression with multiple classification variables

model y=a b a*b; Regression with classification variables and their interactions

model y=a b(a) c(b a); Regression with classification variables and their interactions

model y=a x; Regression with both continuous and classification variables

model y=a x(a); Separate-slopes regression

model y=a x x*a; Homogeneity-of-slopes regression

Bar Operator

You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

model Y = A B C A*B A*C B*C A*B*C;

model Y = A|B|C;

When the bar (|) is used, the right and left sides become effects, and the cross between them becomes an
effect. Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 from
Searle (1971, p. 390).

� Multiple bars are evaluated from left to right. For example, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

� Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.



2330 F Chapter 32: The SPATIALREG Procedure

� Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

� Effects are discarded if a variable occurs in both the crossed and nested parts of an effect. For example,
A(B) | B(D E) generates A*B(B D E), but this effect is discarded immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the
specification A | B | C@2 would result in only those effects that contain no more than two variables: in this
case, A B A*B C A*C and B*C.

More examples of using the | and @ operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

Missing Values
Missing values can occur in both the primary data set (specified in the DATA= option) and the secondary
spatial weights data set (specified in the WMAT= option). PROC SPATIALREG does not allow missing
values in the primary input data set. If any observation in the primary input data set has a missing value
for one or more of the regressors or the dependent variable, PROC SPATIALREG will not fit the model. If
any observation in the primary data set has a missing value for the spatial ID variable when you specify the
SPATIALID statement, PROC SPATIALREG will not fit the model. In such cases, an error message is issued.

For the secondary spatial weights data set, a missing value for the spatial ID variable is not allowed when
you specify the SPATIALID statement. Moreover, missing spatial weights are not allowed if you specify the
NONORMALIZE option. In these cases, PROC SPATIALREG issues an error message and skips the model
fitting.
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Spatial Autoregressive Models
The spatial autoregressive (SAR) model is useful for incorporating the spatial dependence in the dependent
variable—that is, the endogenous interaction effect. Let yi denote the observation associated with a spatial
unit si for i D 1; 2; : : : ; n. For these spatial units, let an n � n matrix W with nonnegative elements be a
spatial weights matrix. Further, let xi be a p � 1 vector that denotes values of p regressors recorded for the
spatial unit si . The SAR model can be formulated as

yi D �

nX
jD1

Wijyj C x0iˇ C �i

where i D 1; 2; : : : ; n. Here � is the spatial autoregressive coefficient and ˇ is a p � 1 parameter vector.
Moreover, Wij is the .i; j /th element of the matrix W subject to Wi i D 0. For the error term �i related to the

spatial unit si , it is assumed that �i
iid
� N.0; �2/.

The SAR model is often described in vector form as

y D �WyCXˇ C �

where y D .y1; y2; : : : ; yn/0, X is an n � p matrix where each row consists of x0i , and � D .�1; �2; : : : ; �n/0.

The standard estimator for the SAR model is the maximum likelihood estimator (MLE). For the SAR model,
the log-likelihood function is (Anselin 2001)

L D �
n

2
ln.2��2/ �

.Ay �Xˇ/0.Ay �Xˇ/
2�2

C ln jAj

where A D In � �W, with In being an n � n identity matrix. jAj denotes the determinant of A.

The gradients can be derived as follows:

@L
@ˇ
D

X0.Ay �Xˇ/
�2

@L
@�
D

1

�2
y0W0.Ay �Xˇ/ � tr.A�1W/

@L
@�2
D �

n

2�2
C
.Ay �Xˇ/0.Ay �Xˇ/

2�4

For the n � n matrix A, tr.A/ D
Pn
iD1 ai i , where ai i is the ith diagonal element of A.

A SAR model does not account for exogenous interaction effects. However, in practice, the value of the
dependent variable y for a spatial unit might be affected by some independent exploratory variables of other
spatial units as well. In such a case, you can use the SDM model instead.
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Spatial Durbin Models
Unlike a SAR model, a spatial Durbin model (SDM) can account for exogenous interaction effects in addition
to the endogenous interaction effects. Let yi denote the observation associated with a spatial unit si for
i D 1; 2; : : : ; n. For these spatial units, let W be an n � n spatial weights matrix of your choice. Further,
assume that xi is a p � 1 vector that denotes values of p regressors recorded for the spatial unit si . Similarly,
assume that zi is a q � 1 vector that denotes values of q regressors measured at unit si .

The SDM model can be described in vector form as (LeSage and Pace 2009)

y D �WyCXˇ CWZ� C �

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0 with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

where each row consists of x0i , and Z is an n � q matrix where each row consists of z0i . In addition, ˇ and �
are p � 1 and q � 1 parameter vectors, respectively.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, you can rewrite the SDM model as

y D �WyC eXěC �
The log-likelihood function for the SDM model is

L D �
n

2
ln.2��2/ �

.Ay � eXě/0.Ay � eXě/
2�2

C ln jAj

where A D In � �W.

For the SDM model, the gradients are

@L
@ě D eX0.Ay � eXě/

�2

@L
@�
D

1

�2
y0W0.Ay � eXě/ � tr.A�1W/

@L
@�2
D �

n

2�2
C
.Ay � eXě/0.Ay � eXě/

2�4

Both the SAR model and the SDM model account for endogenous interaction effects. However, in some
cases there might be an interaction among error terms. In such cases, you might consider a spatial error
model, which addresses spatial interaction among error terms.
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Spatial Error Models
The spatial error model (SEM) accounts for spatial dependence in the error terms rather than in the dependent
variable. Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these
spatial units, let W be an n� n spatial weights matrix. Further, let xi be a p � 1 vector that denotes values of
p regressors recorded at unit si .

The SEM model can be described in vector form by using the following two-stage formulation (LeSage and
Pace 2009),

y D Xˇ C u

u D �WuC �

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

where each row consists of x0i . In addition, ˇ is a p � 1 parameter vector.

The log-likelihood function for the SEM model is

L D �
n

2
ln.2��2/ �

ŒB.y �Xˇ/�0 ŒB.y �Xˇ/�
2�2

C ln jBj

where B D In � �W.

For the SEM model, the gradients are

@L
@ˇ
D
.BX/0 ŒB.y �Xˇ/�

�2

@L
@�
D

1

�2
ŒW.y �Xˇ/�0 ŒB.y �Xˇ/� � tr.B�1W/

@L
@�2
D �

n

2�2
C
ŒB.y �Xˇ/�0 ŒB.y �Xˇ/�

2�4

In addition to the interaction effects among error terms, you might also want to include exogenous interaction
effects in the model. In such cases, you need to consider a spatial Durbin error model (SDEM).

Spatial Durbin Error Models
The spatial Durbin error model (SDEM) accounts for spatial dependence among the error terms and the
exogenous interaction effect. Let yi denote the observation associated with the spatial unit si for i D
1; 2; : : : ; n. For these spatial units, let W be an n� n spatial weights matrix. Further, let xi be a p � 1 vector
that denotes values of p regressors recorded at unit si . Similarly, let zi be a q � 1 vector that denotes values
of q regressors measured at unit si .

The SDEM can be described in vector form by using the following two-stage formulation (LeSage and Pace
2009),

y D Xˇ CWZ� C u

u D �WuC �
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where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X and Z are n � p

and n � q matrices, where each row consists of x0i and z0i , respectively. In addition, ˇ and � are p � 1 and
q � 1 parameter vectors, respectively.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, the SDEM model can be rewritten as

y D eXěC B�1�

where B D In � �W.

The log-likelihood function for the SDEM model is

L D �
n

2
ln.2��2/ �

�
B.y � eXě/�0 �B.y � eXě/�

2�2
C ln jBj

For the SDEM model, the gradients are

@L
@ě D .BeX/0 �B.y � eXě/�

�2

@L
@�
D

1

�2

�
W.y � eXě/�0 �B.y � eXˇ/� � tr.B�1W/

@L
@�2
D �

n

2�2
C

�
B.y � eXě/�0 �B.y � eXě/�

2�4

Spatial Moving Average Models
The spatial moving average (SMA) model accounts for spatial dependence among the error terms; thus it is
similar to the SEM model but with a different autocorrelation structure. The SMA model is used for modeling
local autocorrelation. Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n.
For these spatial units, let W be an n� n spatial weights matrix. Further, let xi be a p � 1 vector that denotes
values of p regressors recorded at unit si .

The SMA model can be described in vector form by using the following two-stage formulation,

y D Xˇ C u

u D .In � �W/�

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row, and Z is an n� q matrix that has of z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

The log-likelihood function for the SMA model is

L D �
n

2
ln.2��2/ �

�
B�1.y �Xˇ/

�0 �B�1.y �Xˇ/
�

2�2
� ln jBj

where B D In � �W.
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For the SMA model, the gradients are

@L
@ˇ
D
.B�1X/0

�
B�1.y �Xˇ/

�
�2

@L
@�
D �

1

�2

�
B�1.y �Xˇ/

�0 �
B�1W

� �
B�1.y �Xˇ/

�
C tr.B�1W/

@L
@�2
D �

n

2�2
C

�
B�1.y �Xˇ/

�0 �B�1.y �Xˇ/
�

2�4

Spatial Durbin Moving Average Models
The term spatial Durbin moving average (SDMA) model is used to refer to the SMA model with exogenous
interaction effects. Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For
these spatial units, let W be an n � n spatial weights matrix. Further, let xi be a p � 1 vector that denotes
values of p regressors recorded at unit si . Similarly, let zi be a q � 1 vector that denotes values of q covariates
measured at unit si .

The SDMA model can be described in vector form as

y D Xˇ CWX� C .In � �W/�

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X and Z are n � p

and n � q matrices, where each row consists of x0i and z0i , respectively. In addition, ˇ is a p � 1 parameter
vector and � is a q � 1 parameter vector, respectively.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, the SDMA model can be written as

y D eXěC B�

The log-likelihood function for the SDMA model is

L D �
n

2
ln.2��2/ �

�
B�1.y � eXě/�0 �B�1.y � eXě/�

2�2
� ln jBj

where B D In � �W and jBj denotes the determinant of matrix B.

For the SDMA model, the gradients are

@L
@ě D .B�1eX/0 �B�1.y � eXě/�

�2

@L
@�
D �

1

�2

�
B�1.y � eXě/�0 �B�1W� �

B�1.y � eXě/�C tr.B�1W/

@L
@�2
D �

n

2�2
C

�
B�1.y � eXě/�0 �B�1.y � eXě/�

2�4
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Spatial Autoregressive Moving Average Models
The spatial autoregressive moving average (SARMA) model, like the SMA model, can account for spatial
dependence among the error terms. In addition, the SARMA model enables you to account for spatial
dependence in the dependent variable, as the SAR model does. Let yi denote the observation associated
with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let the n � n matrices W1 and W2 with
nonnegative elements be two spatial weights matrices. In practice, W1 and W2 can be identical. Further, it is
assumed that xi is a p � 1 vector that denotes values of p covariates recorded at unit si .

The SARMA model can be described in the vector form by using the following two-stage formulation
(LeSage and Pace 2009),

y D �W1yCXˇ C u

u D .In � �W2/�

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that consists of x0i in each row. In addition, ˇ is a p � 1 parameter vector, and In is an n � n identity matrix.

The log-likelihood function for the SARMA model is

L D �
n

2
ln.2��2/ �

�
B�1.Ay �Xˇ/

�0 �B�1.Ay �Xˇ/
�

2�2
C ln jAj � ln jBj

where A D In � �W1, B D In � �W2 and j � j denotes the matrix determinant operator.

For the SARMA model, the gradients are

@L
@ˇ
D
.B�1X/0

�
B�1.Ay �Xˇ/

�
�2

@L
@�
D

�
B�1W1y

�0 B�1.Ay �Xˇ/
�2

� tr.A�1W1/

@L
@�
D �

1

�2

�
B�1.Ay �Xˇ/

�0 �
B�1W2

� �
B�1.Ay �Xˇ/

�
C tr.B�1W2/

@L
@�2
D �

n

2�2
C

�
B�1.Ay �Xˇ/

�0 �B�1.Ay �Xˇ/
�

2�4



Spatial Durbin Autoregressive Moving Average Models F 2337

Spatial Durbin Autoregressive Moving Average Models
You can also accommodate exogenous interaction effects in the SARMA model. The term spatial Durbin
autoregressive moving average (SDARMA) model is used to refer to such an extension of the SARMA model.
Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units,
let W1 and W2 be two spatial weights matrices. Further, let xi be a p � 1 vector that denotes values of p
regressors recorded at unit si . Similarly, let zi be a q � 1 vector that denotes values of q regressors measured
at unit si .

The SDARMA model can be described in vector form by using the following two-stage formulation,

y D �W1yCXˇ CW1Z� C u

u D .In � �W2/�

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/0. Moreover, X is an n�p matrix

that has x0i in each row, Z is an n � q matrix that has z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

By letting eX D ŒX W1Z� and ěD .ˇ0 � 0/0, the SDARMA model can be written as

y D �W1yC eXěC .In � �W2/�

The log-likelihood function for the SDARMA model is

L D �
n

2
ln.2��2/ �

�
B�1.Ay � eXě/�0 �B�1.Ay � eXě/�

2�2
C ln jAj � ln jBj

where A D In � �W1 and B D In � �W2.

For the SDARMA model, the gradients are

@L
@ě D .B�1eX/0 �B�1.Ay � eXě/�

�2

@L
@�
D

�
B�1W1y

�0 B�1.Ay � eXě/
�2

� tr.A�1W1/

@L
@�
D �

1

�2

�
B�1.Ay � eXě/�0 �B�1W2

� �
B�1.Ay � eXě/�C tr.B�1W2/

@L
@�2
D �

n

2�2
C

�
B�1.Ay � eXě/�0 �B�1.Ay � eXě/�

2�4
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Spatial Autoregressive Confused Models
The spatial autoregressive confused (SAC) model, like the SARMA model, can accommodate spatial
dependence in both the dependent variable and error terms. However, the covariance structure for the error
terms in a SAC model is different from that of the SARMA model. Let yi denote the observation associated
with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let W1 and W2 be two spatial weights
matrices. Further, let xi be a p � 1 vector that denotes values of p regressors recorded at unit si .

The SAC model can be described in vector form by using the following two-stage formulation (LeSage and
Pace 2009),

y D �W1yCXˇ C u

u D �W2uC �

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/0. Moreover, X is an n�p matrix

that has x0i in each row. In addition, ˇ is a p � 1 parameter vector.

The log-likelihood function for the SAC model is

L D �
n

2
ln.2��2/ �

ŒB.Ay �Xˇ/�0 ŒB.Ay �Xˇ/�
2�2

C ln jAj C ln jBj

where A D In � �W1 and B D In � �W2.

For the SAC model, the gradients are

@L
@ˇ
D
.BX/0 ŒB.Ay �Xˇ/�

�2

@L
@�
D
.BW1y/0 B.Ay �Xˇ/

�2
� tr.A�1W1/

@L
@�
D

1

�2
ŒW2.Ay �Xˇ/�0 ŒB.Ay �Xˇ/� � tr.B�1W2/

@L
@�2
D �

n

2�2
C
ŒB.Ay �Xˇ/�0 ŒB.Ay �Xˇ/�

2�4

Spatial Durbin Autoregressive Confused Models
The SAC model can be extended to account for exogenous interaction effects. The term spatial Durbin
autoregressive confused (SDAC) model is used to refer to such an extension of the SAC model. Let yi denote
the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let W1 and W2

be two spatial weights matrices. Further, let xi be a p � 1 vector that denotes values of p regressors recorded
at unit si . Similarly, assume that zi is a q � 1 vector that denotes values of q regressors measured at unit si .

The SDAC model can be described in vector form by using the following two-stage formulation,

y D �W1yCXˇ CW1Z� C u

u D .In � �W2/
�1�
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where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row, Z is an n � q matrix that has z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

By letting eX D ŒX W1Z� and ěD .ˇ0 � 0/0, the SDAC model can be rewritten as

y D �W1yC eXěC .In � �W2/
�1�

The log-likelihood function for the SDAC model is

L D �
n

2
ln.2��2/ �

�
B.Ay � eXě/�0 �B.Ay � eXě/�

2�2
C ln jAj C ln jBj

For the SDAC model, the gradients are

@L
@ě D .BeX/0 �B.Ay � eXě/�

�2

@L
@�
D
.BW1y/0 B.Ay � eXě/

�2
� tr.A�1W1/

@L
@�
D

1

�2

�
W2.Ay � eXě/�0 �B.Ay � eXě/� � tr.B�1W2/

@L
@�2
D �

n

2�2
C

�
B.Ay � eXě/�0 �B.Ay � eXě/�

2�4

Linear Regression Models
You can also fit a linear regression model in PROC SPATIALREG. In this case, let yi denote the observation
associated with the spatial unit si for i D 1; 2; : : : ; n. Further, let xi be a p � 1 vector that denotes values of
p regressors recorded at unit si .

The linear regression model can be described in vector form as

y D Xˇ C �

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row.

The log-likelihood function for the linear regression model is

L D �
n

2
ln.2��2/ �

.y �Xˇ/0.y �Xˇ/
2�2

For the linear regression model, the gradients are

@L
@ˇ
D

X0.y �Xˇ/
�2

@L
@�2
D �

n

2�2
C
.y �Xˇ/0.y �Xˇ/

2�4
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The Hessians take the following forms:

@2L
@ˇ@ˇ0

D �
X0X
�2

@2L
@ˇ@�2

D �
X0.y �Xˇ/

�4

@2L
@�4
D

n

2�4
�
.y �Xˇ/0.y �Xˇ/

�6

Spatial Lag of X Models
The spatial lag of X (SLX) model assumes no endogenous interaction effects or spatial dependence in the
error terms. Instead, it incorporates only exogenous interaction effects into the linear regression model. Let
yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let W
be a spatial weights matrix. Further, let xi be a p � 1 vector that denotes values of p regressors recorded at
unit si . Similarly, let zi be a q � 1 vector that denotes values of q regressors measured at unit si .

The SLX model can be described in vector form as

y D Xˇ CWZ� C �

where y D .y1; y2; : : : ; yn/0 and � D .�1; �2; : : : ; �n/0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row, Z is an n � q matrix that has z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, the SLX model can be rewritten as

y D eXěC �
The log-likelihood function for the SLX model is

L D �
n

2
ln.2��2/ �

.y � eXě/0.y � eXě/
2�2

For the SLX model, the gradients are

@L
@ě D .eX/0.y � eXě/

�2

@L
@�2
D �

n

2�2
C
.y � eXě/0.y � eXě/

2�4

The Hessians take the following forms:

@2L
@ě@ě0 D �eX0eX�2
@2L
@ě@�2 D �eX0.y � eXě/�4

@2L
@�4
D

n

2�4
�
.y � eXě/0.y � eXě/

�6
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Specifying the Spatial Weights Matrix
The spatial weights matrix W plays a vital role in spatial econometric modeling. If you fit a purely linear
model without SLX effects, you do not need a W matrix. For other types of models in PROC SPATIALREG,
you need to provide a spatial weights matrix to fit the model. Although the creation of the W matrix is often
problem-specific, there are some general guidelines to consider. Two common ways to create the W matrix
are k-order binary contiguity matrices and k-nearest neighbor matrices (Elhorst 2013).

k -Order Binary Contiguity Matrices

You start with the spatial contiguity matrix C. In the case of the first-order neighbors (k D 1), a value of
1 for the .i; j /th entry in C indicates that the two units i and j are neighbors to each other, and 0 indicates
otherwise. The neighbor relationship is often defined based on sharing of a common boundary. To generalize
this, a k-order neighbor (k � 2) of a unit i can be any units whose neighbors are .k � 1/-order neighbors of
unit i. In this sense, the two units i and j that are not first-order neighbors can still be second-order neighbors
if unit j is the neighbor to a first-order neighbor of unit i.

As an example, a first-order binary contiguity matrix might look like the following:

C D

0BBBB@
SID L1 L2 L3 L4
L1 0 1 0 1

L2 1 0 0 0

L3 0 0 0 1

L4 1 0 1 0

1CCCCA
The diagonal elements of C are zeros because, in general, a unit is not considered to be a neighbor of itself.
Moreover, the two units L2 and L4 are neighbors of L1; L2 has L1 as its only neighbor; L3 has L4 as its
only neighbor; and L4 has L1 and L3 as its neighbors. You can create the spatial weights matrix W by
row-standardizing the contiguity matrix C. To do so, you divide entries in each row of C by the sum of that
row. The spatial weights matrix W, which is the row-standardized version of C, is as follows:

W D

0BBBB@
SID L1 L2 L3 L4
L1 0 1

2
0 1

2

L2 1 0 0 0

L3 0 0 0 1

L4 1
2

0 1
2

0

1CCCCA

k -Nearest Neighbor Matrices

You can create a spatial contiguity matrix based on a distance metric. Let dij denote the distance between
the two units i and j, which might be the Euclidean distance between centroids of the two spatial units. Let
.loni ; lati / and .lonj ; latj / be the centroids of units i and j, where 1 � i; j � n, and lon and lat denote the
longitude and latitude, respectively. Under the Euclidean distance metric, the distance dij between units i
and j is

dij D

q
.lati � latj /2 C .loni � lonj /2

After computing the distance between the unit i and other units under a certain metric, you sort dij in ascending
order; for example, dij1 � dij2 � � � � � dijk � � � � � dijn�1 . For a given k, let Nk.i/ D fj1; j2; : : : ; jkg be
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the set that contains the indices of k-nearest neighbors of unit i; then the .i; j /th entries of the contiguity
matrix C are defined as

Cij D

(
1 if j 2 Nk.i/
0 otherwise

The .i; j /th entry of the corresponding row-standardized matrix W is Wij D Cij
nP

j2Nk.i/
Cij

o�1
.

Unlike the k-order binary contiguity matrix, which is often symmetric by construction, k-nearest neighbor
matrices can be asymmetric. To obtain a symmetric k-nearest neighbor matrices, you can define the .i; j /th
entries of the contiguity matrix C as follows:

Cij D

(
1 if j 2 Nk.i/ or i 2 Nk.j /
0 otherwise

In addition to the Euclidean distance measure, you can use other distance metrics as appropriate. A variant of
k-nearest neighbor matrices C� that is used in some empirical studies defines its .i; j /th entries as

C �ij D

(
1 if dij � dcutoff
0 otherwise

where dcutoff is a prespecified threshold distance.

In addition to the two constructions of spatial weights matrices that are presented earlier, see Elhorst (2013)
and the references therein for more information about other ways to create a spatial weights matrix. In
practice, you can define the neighbor relation that is problem-specific. For example, you can define two
spatial units that are far apart to be neighbors because they share some attributes (such as population sizes
larger than 500,000).

The data set that you specify in the WMAT= option is row-standardized by default to create a spatial
weights matrix. This means that if you specify WMAT=C, PROC SPATIALREG row-standardizes the spatial
contiguity matrix to create a spatial weights matrix. If you want to suppress row standardization, you must
specify the NONORMALIZE option.

Compact Representation of Spatial Weights Matrix
When the number of spatial units n increases, the amount of memory that it takes to store n2 entries of
the spatial contiguity matrix C or the spatial weights matrix W increases dramatically. To circumvent the
storage issue, PROC SPATIALREG enables you to provide a compact representation of W (or C) when
appropriate. With the compact matrix representation, you provide a data set that contains three variables
by using the WMAT= option. The first two variables identify the row r and column c of W (or C), and
.r; c/ can be expressed either as numerical indices or as values of the variable specified in the SPATIALID
statement. The third variable contains the nonzero value of W (or C) for row r and column c. With this
compact representation, the number of observations in the data set specified in the WMAT= option equals
the total number of nonzero entries in W (or C).

You must use a SPATIALID statement if you want to use the compact representation of the spatial contiguity
or spatial weights matrix. With the compact representation, the first two variables of the data set that you



Compact Representation of Spatial Weights Matrix F 2343

specify in the WMAT= option must be of the same type. First, the first two columns in that data set can be
row and column index for each nonzero entry in W (or C). In this case, the SPATIALID variable is numeric
type. Alternatively, the first two columns in the WMAT= data set can be characters that are the names of two
neighboring spatial units in W (or C). In this second case, the SPATIALID variable is character type.

For example, the compact representation of the spatial weights matrix W,

W D

0BB@
0 0:5 0 0:5

1 0 0 0

0 0 0 1

0:5 0 0:5 0

1CCA
would look like the following:

data Ws;
input SID cSID Weight;
datalines;
1 2 0.5
1 4 0.5
2 1 1.0
3 4 1.0
4 1 0.5
4 3 0.5
;

run;

For the spatial contiguity matrix C,

C D

0BB@
0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

1CCA
the compact representation would look like the following:

data Cs;
input SID cSID Weight;
datalines;
1 2 1.0
1 4 1.0
2 1 1.0
3 4 1.0
4 1 1.0
4 3 1.0
;

run;

If the spatial weights matrix is the same as matrix W in the section “k-Order Binary Contiguity Matrices” on
page 2341, its compact representation would be as follows:

data Ws2;
input SID $ cSID $ Weight;
datalines;
L1 L2 0.5
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L1 L4 0.5
L2 L1 1.0
L3 L4 1.0
L4 L1 0.5
L4 L3 0.5
;

run;

If the spatial contiguity matrix is the same as matrix C in the section “k-Order Binary Contiguity Matrices”
on page 2341, its compact representation can be given in the data set Cs2 as follows:

data Cs2;
input SID $ cSID $ Weight;
datalines;
L1 L2 1.0
L1 L4 1.0
L2 L1 1.0
L3 L4 1.0
L4 L1 1.0
L4 L3 1.0
;

run;

Spatial ID Matching
Depending on the type of model that you use in PROC SPATIALREG, you might need to specify two data
sets: one in the DATA= option and the other in the WMAT= option. However, in some cases, these two data
sets might not come in the same order in terms of spatial units. In such cases, you must use a SPATIALID
statement to specify a spatial ID variable in order to match observations in these two data sets.

As an example, assume that the data set you specify in the DATA= option looks like the following:

data example;
input SID $ x1 x2 y;
datalines;
L1 0.3 0.5 0.9
L3 -0.7 0.8 -0.4
L2 0.4 -1.2 0.6
L8 -1.7 1.2 -0.5
L4 1.4 0.9 0.3
L5 2.3 1.5 1.9
L7 -0.9 -0.8 -1.3
L6 1.4 -1.6 -2.0
;

run;

Suppose the spatial contiguity matrix that you specify in the WMAT= option looks like the following:

data cmat;
input SID $ L1 L8 L3 L4 L7 L6 L5 L2;
datalines;
L1 0 1 0 1 0 1 0 1
L2 1 0 0 0 1 0 0 0
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L6 1 0 1 0 0 0 0 0
L4 1 0 0 0 1 0 0 0
L3 0 0 0 0 1 1 0 0
L7 0 0 1 1 0 0 0 1
L5 0 1 0 0 0 0 0 0
L8 1 0 0 0 0 0 1 0
;

run;

As you can see, rows in the two data sets Example and Cmat do not share identically sorted SID values.
The second row in the Example data set contains the observation for a spatial unit L3, and its neighbor
information is given in the fifth row of the Cmat data set. Moreover, the rows and columns of the spatial
weights data set Cmat are not in the same order. The following SAS statements fit a SAR model to these data:

proc spatialreg data=example Wmat=cmat;
model y=x1 x2/type=SAR;
spatialid SID;

run;

The SPATIALID statement enables you to match rows and columns of Cmat in addition to rows of Example
and Cmat. Without the SPATIALID statement, you need to sort Cmat so that the order of its rows and
columns matches that of Example. The sorted data set, Cmat2, would look like the following:

data cmat2;
input SID $ L1 L3 L2 L8 L4 L5 L7 L6;
datalines;
L1 0 0 1 1 1 0 0 1
L3 0 0 0 0 0 0 1 1
L2 1 0 0 0 0 0 1 0
L8 1 0 0 0 0 1 0 0
L4 1 0 0 0 0 0 1 0
L5 0 0 0 1 0 0 0 0
L7 0 1 1 0 1 0 0 0
L6 1 1 0 0 0 0 0 0
;

run;

Parameter Space of Autoregressive Parameters
For all models except linear regression models in PROC SPATIALREG, the autoregressive parameters � and
� are often assumed to satisfy some assumptions to ensure consistency of the maximum likelihood estimator
(Elhorst 2013). For SAR and SDM models, the Jacobian term involves the log-determinant of I � �W1, and
the parameter space of � is often specified such that I � �W1 is nonsingular. For SEM, SMA, SDM, and
SDMA models, the Jacobian term involves the log-determinant of I � �W1, and the parameter space of � is
often specified such that I � �W1 is nonsingular. For SAC, SDAC, SARMA, and SDARMA models, the
Jacobian term involves the log-determinants of both I � �W1 and I � �W1. As a result, the parameter space
of � and � is often specified such that both I � �W1 and I � �W1 are nonsingular.

In the SPATIALREG procedure, the parameter space of autoregressive parameters � and � depends on the
spatial weights matrix W that you choose. For W, the parameter space of the autoregressive parameters �
and � in PROC SPATIALREG is determined as follows:
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1. For a symmetric W, the nonsingularity condition requires � 2
�
!�1min; !

�1
max

�
and � 2

�
!�1min; !

�1
max

�
.

Here !min and !max denote the smallest (that is, most negative) and largest real eigenvalues of W,
respectively.

2. If W is symmetric and subsequently row-standardized, the nonsingularity condition requires � 2�
!�min

�1; 1
�

and � 2
�
!�min

�1; 1
�

. Here !�min denotes the smallest purely real eigenvalue of the
row-standardized W.

3. If W is asymmetric and subsequently row-standardized, the nonsingularity condition requires � 2�
r�min

�1; 1
�

and � 2
�
r�min

�1; 1
�

. Here r�min denotes the smallest purely real eigenvalue of the
row-standardized W.

4. When Taylor approximation or Chebyshev approximation is used for SAR and SDM models, W is
required to be row-standardized. In these cases, the restriction on the autoregressive coefficient � is
� 2 .�1; 1/.

Approximations to the Jacobian
In order for PROC SPATIALREG to obtain maximum likelihood estimates for all models except linear
regression models, it needs to compute the Jacobian term because that term appears in the log-likelihood
function. The Jacobian term is ln jIn � �Wj for SDMs and SAR models and ln jIn � �Wj for SEMs and
SDEMs, where n is the number of observations and W is the spatial weights matrix. When n is not large, the
Jacobian is computed as

ln jIn � �Wj D
nX
iD1

ln j1 � �!i j

where !i are the eigenvalues of W. This computation requires that all eigenvalues of W be precomputed,
which works fine for small data sets. However, when n is large, computing the Jacobian term by using the
eigenvalue method can be computationally infeasible. Instead, you can use approximations to the Jacobian.

The SPATIALREG procedure supports two different approximations to the Jacobian for SDMs, SEMs,
SDEMs, and SAR models: Taylor approximation or Chebyshev approximation. Using SDMs and SAR
models as an example, the two approximations for the Jacobian term can be described as follows (for more
information, see LeSage and Pace 2009, and the references therein):

� Taylor approximation uses finite, lower-order series to approximate the log-determinant as

ln jIn � �Wj � �
qX
kD1

�ktr
�
Wk

�
k

� Chebyshev approximation uses finite, lower-order Chebyshev polynomials of the first kind to approxi-
mate the log-determinant as

ln jIn � �Wj �
qX
kD0

ck.�/tr .Tk.W//
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where T0.W/ D In, T1.W/ DW, and TkC1.W/ D 2WTk.W/� Tk�1.W/ for k D 1; 2; : : : ; q. The
coefficients ck.�/ are defined as

ck.�/ D

(
1
qC1

Pq
jD0 ln.1 � � cos �j / cos.k�j / if k D 0

2
qC1

Pq
jD0 ln.1 � � cos �j / cos.k�j / if k > 0

with �j D .j C 1/�=.q C 1/ for j D 0; 1; : : : ; q.

The traces of powers of W can be computed exactly or approximated using Monte Carlo simulation. The
Monte Carlo simulation is done as follows,

tr
�
Wk

�
�

1

M

MX
lD1

n

u0
l
ul

u0lW
kul

where ul
iid
� N.0; In/ and M is the total number of Monte Carlo samples.

When you apply these two approximations, it is often assumed that the maximum eigenvalue of W equals
1 and the minimum eigenvalue of W is greater than or equal to –1 (see LeSage and Pace 2009, and the
references therein). One way to satisfy this assumption is to use a row-standardized spatial weights matrix
that is similar to a symmetric matrix. If the spatial weights matrix is not symmetric or similar to a symmetric
matrix, it becomes more difficult to apply Chebyshev approximation and thus requires extra care (LeSage
and Pace 2009).

When you request an approximation to the Jacobian, the choices that you need to make might include the
approximation method to use (that is, Taylor approximation or Chebyshev approximation); the order of
series q; and the number of Monte Carlo samples (that is, M). Your choice can be accommodated through
the APPROXIMATION= option in the PROC SPATIALREG statement. For the approximation method,
you can use the keyword TAYLOR in the APPROXIMATION= option to request Taylor approximation.
Otherwise, the approximation method defaults to Chebyshev approximation. You specify ORDER=q in
the APPROXIMATION= option to request a series of order q when approximating the log-determinant. In
addition, you specify NMC=M in the APPROXIMATION= option to request M Monte Carlo samples to be
drawn when approximating the traces of powers of W. In addition, you can use the SEED= suboption of
the APPROXIMATION= option to specify an integer seed for a random number generator to replicate your
analysis.

Parameter Naming Conventions for RESTRICT, TEST, BOUNDS, and INIT
Statements
This section describes how you refer to the parameters when using either the RESTRICT, TEST, BOUNDS,
or INIT statement. The examples are presented using the RESTRICT statement. However, the same remarks
apply to referencing parameters when you use the TEST, BOUNDS, or INIT statement.

To impose a restriction on a parameter related to a regressor in the MODEL statement, you simply use the
name of the regressor itself. Suppose your model is
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model y = x1-x3 / type=SAR;

where x1-x3 are continuous variables. Suppose you want to restrict the parameter associated with the
regressor x3 to be greater than 1.7. You should provide the following statement:

RESTRICT x3 > 1.7;

To impose a restriction on a parameter associated with a regressor in the SPATIALEFFECTS statement, you
can form the name of the parameter by prefixing W_ to the name of the regressor. Suppose your MODEL
and SPATIALEFFECTS statements are as follows:

model y = x1-x3 / type=SAR;
spatialeffects x1 x2 x3;

Suppose you want to restrict the parameter related to the x3 regressor in the SPATIALEFFECTS statement to
be less than 1.0. You should refer to the parameter as W_x3 and provide the following statement:

RESTRICT W_x3 < 1.0;

Even though the regressor x3 appears in both the MODEL and SPATIALEFFECTS statements, the parameter
associated with x3 in the MODEL statement is, of course, different from the parameter associated with x3 in
the SPATIALEFFECTS statement. Thus, when the name of a regressor is used in a RESTRICT statement
without any prefix, it refers to the parameter associated with that regressor in the MODEL statement.
Meanwhile, when the name of a regressor is used in a RESTRICT statement with the prefix W_, it refers to
the parameter associated with that regressor in the SPATIALEFFECTS statement. Note that the intercept is
not included in the SPATIALEFFECTS statement.

Referring to Class Level Parameters

When your MODEL includes a CLASS variable, you can impose restrictions on the parameters associated
with each of the levels related to that variable as described in this section.

Suppose your CLASS variable is named C and has three levels: 0, 1, 2. Suppose your model is the following:

class C;
model y = x1 x2 C;

Adding a CLASS variable as a regressor to your model introduces additional parameters to your model,
each of which is associated with one of the levels of that variable. You can form the name of the parameter
associated with a particular level of your CLASS variable by inserting the underscore character between the
name of the variable and the value of the level. Thus, to restrict the parameter associated with level 0 of the
CLASS variable C to always be greater than 0.7, you should refer to the parameter as C_0 and provide the
following statement:

RESTRICT C_0 > 0.7;

When the value of a level is a negative number, you must replace the minus sign with an underscore when
you form the name of the parameter associated with that particular level of the CLASS variable. For example,
suppose your CLASS variable is named D and has four levels: –1, 0, 1, 2. Suppose your model is the
following:



Parameter Naming Conventions for RESTRICT, TEST, BOUNDS, and INIT Statements F 2349

class D;
model y = x1 x2 D;

To restrict the parameter associated with level –1 of the CLASS variable D to always be less than 0.4, you
should refer to the parameter as D__1 (note that there are two underscores in this parameter name: one to
connect the name of the variable to its value and the other to replace the minus sign in the value itself). The
following statement imposes the restriction on the parameter in question:

RESTRICT D__1 < 0.4;

Depending on the parameterization that you impose on your CLASS variable, one of the parameters associated
with its levels can be dropped from your model before optimization in order to avoid collinearity. For example,
when the default parameterization GLM is imposed, the parameter associated with the last level of your
CLASS variable is dropped before optimization. If you attempt to impose a restriction on a dropped parameter
by using the RESTRICT statement, you receive an error message in the log.

For example, suppose once again that your CLASS variable is named C and that it has three levels: 0, 1, 2.
Suppose your model is the following:

class C;
model y = x1 x2 C;

Because no additional options were specified in the CLASS statement, the GLM parameterization is assumed.
This entails that the parameter named C_2 (which is the parameter associated with the last level of your
CLASS variable) will be dropped from your model before the optimizer is invoked. Therefore, you generate
an error if you attempt to restrict the C_2 parameter in any way by referring to it in a RESTRICT statement.
For example, the following RESTRICT statement generates an error:

RESTRICT C_2 < 0.3;

Referring to Parameters Associated with Interactions between Regressors

When a regressor in your model involves an interaction between other regressors, you can impose restrictions
on the parameters associated with the interaction as described in this section.

Suppose you have the following model:

model y = x1 x2 x3*x4;

You can form the name of the parameter associated with the interaction regressor x3*x4 by replacing the
multiplication sign with an underscore. Thus, x3_x4 refers to the parameter associated with the interaction
regressor x3*x4.

Referring to interactions between regressors and CLASS variables is handled in exactly the same way.
Suppose you have a CLASS variable named C that has three levels (0, 1, 2), and that your model is the
following:

class C;
model y = x1 x2 C*x3;

The interaction between the continuous variable x3 and the CLASS variable C introduces three additional
parameters, which are named x3_C_0, x3_C_1, and x3_C_2. Note that, although the order of the terms in
the interaction is C followed by x3, the name of the parameter associated with the interaction is formed by
placing the name of the continuous variable x3 first, followed by an underscore, followed by the name of
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the CLASS variable C, followed by another underscore, and then followed by the level value. Once again,
depending on the parameterization that you specify in your CLASS statement, for each interaction in your
model that involves a CLASS variable, one of the parameters associated with that interaction can be dropped
from your model before optimization.

The name of a parameter associated with a nested interaction is formed in a slightly different way. Suppose
you have a CLASS variable named C that has three levels (0, 1, 2) and your model is the following:

class C;
model y = x1 x2 x3(C);

The nested interaction between the continuous variable x3 and the CLASS variable C introduces three
additional parameters, which are named x3_C__0, x3_C__1, and x3_C__2. Note how the name in each case
was formed from the name of the regressor by replacing the left and right parentheses with underscores and
then appending another underscore followed by the level value.

Referring to Implicit Parameters

For all models in PROC SPATIALREG, one or more implicit parameters are added to your model before
optimization. You can impose restrictions on these implicit parameters as follows.

If you have a linear model or SLX model, the _sigma2 parameter is added to your model. For the SAR or
SDM model, the _rho and _sigma2 parameters are added to your model.

If you specify TYPE=SEM or TYPE=SMA, the _lambda and _sigma2 parameters are added to your model.
If you specify the TYPE=SAC or TYPE=SARMA option, then three implicit parameters are added to your
model: _rho, _lambda, and _sigma2.

Whenever your model type dictates the addition of one or more of these implicit parameters, you can impose
restrictions on the implicit parameters by referring to them by name. For example, assuming that your model
type implies the existence of the _rho parameter, you can restrict _rho to be greater than 0 as follows:

RESTRICT _rho > 0.0;

Computational Resources
The time and memory that PROC SPATIALREG requires are proportional to the number of parameters in the
model and the number of observations in the data set being analyzed. Also affecting resources are the method
that is chosen to calculate the variance-covariance matrix and the optimization method. All optimization
methods available through the METHOD= option have similar memory use requirements.

The processing time might differ for each method, depending on the number of iterations and functional calls
needed. The data set is read into memory to save processing time. If not enough memory is available to hold
the data, the SPATIALREG procedure stores the data in a utility file on disk and rereads the data as needed
from this file. When this occurs, the execution time of the procedure increases substantially. The gradient
and the variance-covariance matrix must be held in memory. If the model has p parameters, including the
intercept, then at least 8.pCp.pC1/=2/ bytes are needed. If the quasi–maximum likelihood method is used
to estimate the variance-covariance matrix (COVEST=QML), an additional 8p.p C 1/=2 bytes of memory
are needed.

Processing time is also a function of the number of iterations needed to converge to a solution for the model
parameters. The number of iterations cannot be known in advance. The MAXITER= option can be used to
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limit the number of iterations that PROC SPATIALREG performs. The convergence criteria can be altered by
nonlinear optimization options available in the PROC SPATIALREG statement. For a list of all the nonlinear
optimization options, see Chapter 7, “Nonlinear Optimization Methods.”

Nonlinear Optimization Options
PROC SPATIALREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. In the PROC SPATIALREG statement, you can specify nonlinear optimization options that are then
passed to the NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 7, “Nonlinear
Optimization Methods.”

Covariance Matrix Types
The SPATIALREG procedure enables you to specify the estimation method for the covariance matrix. The
COVEST=HESSIAN option estimates the covariance matrix based on the inverse of the Hessian matrix,
COVEST=OP uses the outer product of gradients, and COVEST=QML produces the covariance matrix based
on both the Hessian and outer product matrices. By default, COVEST=HESSIAN.

Although all three methods produce asymptotically equivalent results, they differ in computational intensity
and produce results that might differ in finite samples. The COVEST=OP option provides the covariance
matrix that is usually the easiest to compute. In some cases, the OP approximation is considered more
efficient than the Hessian or QML approximation because it contains fewer random elements. The QML
approximation is computationally the most complex, because both the outer product of gradients and the
Hessian matrix are required. In most cases, the OP or Hessian approximation is preferred to QML. The need
to use QML approximation arises in some cases when the model is misspecified and the information matrix
equality does not hold.

When Taylor approximation or Chebyshev approximation is used for the SAR and SDM models, only
COVEST=HESSIAN is supported.

Displayed Output
PROC SPATIALREG produces the following displayed output.

Class Level Information

If you specify the CLASS statement, the SPATIALREG procedure displays a table that contains the following
information:

� CLASS variable name

� number of levels of the CLASS variable

� list of values of the CLASS variable
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Iteration History for Parameter Estimates

If you specify the ITPRINT or PRINTALL option in the PROC SPATIALREG statement, PROC SPATIAL-
REG displays a table that contains the following information for each iteration. Some information is specific
to the model-fitting procedure that you choose (for example, Newton-Raphson, trust region, quasi-Newton).

� iteration number

� number of restarts since the fitting began

� number of function calls

� number of active constraints at the current solution

� value of the objective function (the negative log-likelihood value) at the current solution

� change in the objective function from previous iteration

� value of the maximum absolute gradient element

� step size (for Newton-Raphson and quasi-Newton methods)

� slope of the current search direction (for Newton-Raphson and quasi-Newton methods)

� lambda (for trust region method)

� radius value at current iteration (for trust region method)

Model Fit Summary

The “Model Fit Summary” table contains the following information:

� dependent variable name

� number of observations used

� data set name

� name of the spatial weights data set (specified by the WMAT= option)

� type of model that was fit

� log-likelihood value at solution

� maximum absolute gradient at solution

� number of iterations

� AIC value at the solution (a smaller value indicates a better fit)

� SBC value at the solution (a smaller value indicates a better fit)

Below the “Model Fit Summary” table is a statement about whether the algorithm successfully converged.
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Parameter Estimates

The “Parameter Estimates” table displays the estimates of the model parameters. In the SAR model, estimates
are also displayed for the autoregressive coefficient � and the variance of the error terms �2. For the SEM,
SDEM, SMA, and SDMA models, estimates are given for the autoregressive coefficient � and the variance
of the error terms �2. In addition, for SAC, SDAC, SARMA, and SDARMA models, estimates are given for
the autoregressive coefficients � and �, and the variance of the error terms �2. In the linear and SLX models,
estimates are given for the variance of the error terms �2.

“_rho” is the internal name of the autoregressive coefficient � in the SAR, SDM, SARMA, SDARMA,
SAC, and SDAC models. The t statistic given for “_rho” is a test of autoregressive coefficient. In addition,
“_lambda” is the internal name of the autoregressive coefficient � in the SEM, SDEM, SMA, SARMA, SAC,
and SDAC models. Moreover, “_sigma2” is the internal name of the variance parameter �2.

Last Evaluation of the Gradient

If you specify the ITPRINT option in the MODEL statement, the SPATIALREG procedure displays the last
evaluation of the gradient vector.

Covariance of Parameter Estimates

If you specify the COVB option in the MODEL statement or in the PROC SPATIALREG statement, the
SPATIALREG procedure displays the estimated covariance matrix, defined as the inverse of the information
matrix, evaluated at the final iteration.

Correlation of Parameter Estimates

If you specify the CORRB option in the MODEL statement or in the PROC SPATIALREG statement, PROC
SPATIALREG displays the estimated correlation matrix. It is based on the Hessian matrix that is used in the
final iteration.

OUTPUT OUT= Data Set
The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimates of x0iˇ, the expected value of the response variable, and the residual.

OUTEST= Data Set
The OUTEST= data set has two rows: the first row (with _TYPE_=‘PARM’) contains each of the parameter
estimates in the model, and the second row (with _TYPE_=‘STD’) contains the standard errors for the
parameter estimates in the model.

If you specify the COVOUT option in the PROC SPATIALREG statement, the OUTEST= data set also
contains the covariance matrix for the parameter estimates. The covariance matrix appears in the observations
for which _TYPE_=‘COV’, and the _NAME_ variable labels the rows with the parameter names.

The names of the parameters are used as variable names. These are the same names that are used in the INIT,
BOUNDS, and RESTRICT statements.
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ODS Table Names
PROC SPATIALREG assigns a name to each table that it creates. You can use these names to denote the
table when using the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 32.3.

Table 32.3 ODS Tables Produced in PROC SPATIALREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ClassLevels Class levels Default
FitSummary Summary of nonlinear estimation Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
InputOptions Input options ITPRINT
IterStart Optimization start ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ParameterEstimatesResults Parameter estimates ITPRINT
ParameterEstimatesStart Parameter estimates ITPRINT
ProblemDescription Problem description ITPRINT

ODS Tables Created by the TEST Statement
TestResults Test results Default

Examples: SPATIALREG Procedure

Example 32.1: Columbus Crime Data

Data Description and Objective

The data set CRIMEOH contains data from Columbus, Ohio, about the number of crimes (including residential
burglaries and vehicle thefts) and possible determinants of crime. This data set is taken from Anselin (1988)
and can be found in the SAS/ETS Sample Library.

The variable CRIME represents the number of crimes in 49 neighborhoods of Columbus, Ohio. Additional
variables in the data set that you want to evaluate as determinants of crimes include INCOME (household
income by $1000) and HVALUE (housing value by $1000). Summary statistics for these variables are
computed by the following statements and presented in Output 32.1.1:
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proc means data=crimeoh;
var crime income hvalue;

run;

Output 32.1.1 Summary Statistics

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

crime
income
hvalue

49
49
49

35.1288367
14.3749388
38.4362245

16.7320385
5.7033781
18.4660693

0.1780000
4.4770000
17.9000000

68.8920000
31.0700000
96.4000000

The spatial relationships among the 49 neighborhoods are summarized using the first-order neighbor contigu-
ity matrix, contained in the CRIMEWMAT data set. This data set is also taken from Anselin (1988) and can be
found in the SAS/ETS Sample Library.

Spatial Autoregressive (SAR) Model

The following statements fit a SAR model to the data by using the regressors INCOME and HVALUE:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAR;

run;

In this example, the TYPE=SAR option in the MODEL statement specifies a SAR model. The NONOR-
MALIZE option indicates that the spatial weights data set CRIMEWMAT should be used “as is” rather than
be row-standardized. The parameter estimates for this model are shown in Output 32.1.2. According to the
results, the spatial autoregressive coefficient � is positive and significant at the 0.05 level. This indicates that
there is a positive spatial dependence in the data.

Output 32.1.2 Parameter Estimates of SAR Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 45.077070 7.870590 5.73 <.0001

income 1 -1.031531 0.328403 -3.14 0.0017

hvalue 1 -0.265924 0.088218 -3.01 0.0026

_rho 1 0.431020 0.123594 3.49 0.0005

_sigma2 1 95.487066 19.506312 4.90 <.0001
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Spatial Durbin Model (SDM)

To fit an SDM model, you specify the SPATIALEFFECTS statement together with the TYPE=SAR option.
In this example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDM model.

The following statements fit an SDM model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAR;
spatialeffects income hvalue;

run;

The parameter estimates are given in Output 32.1.3. As in the SAR model, the spatial autoregressive
coefficient � in the SDM model is positive and significant at the 0.05 level, indicating a positive spatial
dependence in the data.

Output 32.1.3 Parameter Estimates of SDM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 42.803457 13.924487 3.07 0.0021

income 1 -0.914206 0.336439 -2.72 0.0066

hvalue 1 -0.293745 0.088857 -3.31 0.0009

W_income 1 -0.519640 0.594772 -0.87 0.3823

W_hvalue 1 0.245716 0.176854 1.39 0.1647

_rho 1 0.426492 0.167492 2.55 0.0109

_sigma2 1 91.779519 18.909222 4.85 <.0001

In order to avoid potential collinearity with the intercept term in the MODEL statement, the SPATIALEF-
FECTS statement always excludes the intercept term. This means that only the explicitly specified variables
in the SPATIALEFFECTS statement are used to construct spatial lag of covariate effects.

Spatial Error Model (SEM)

To fit an SEM model, use the TYPE=SEM option.

The following statements fit an SEM model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SEM;

run;

The parameter estimates are shown in Output 32.1.4. According to this output, the p-value for the spatial
autoregressive parameter � is 0.0002. The results indicate that there is a significant positive dependence in
the error term.
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Output 32.1.4 Parameter Estimates of SEM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 59.891907 5.884103 10.18 <.0001

income 1 -0.941301 0.370267 -2.54 0.0110

hvalue 1 -0.302253 0.090552 -3.34 0.0008

_lambda 1 0.561781 0.152413 3.69 0.0002

_sigma2 1 95.572081 20.037403 4.77 <.0001

Spatial Durbin Error Model (SDEM)

To fit an SDEM model, use the SPATIALEFFECTS statement together with the TYPE=SEM option. In this
example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDEM model.

The following statements fit an SDEM model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SEM;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.5.

Output 32.1.5 Parameter Estimates of SDEM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 73.540584 8.860968 8.30 <.0001

income 1 -1.051699 0.322436 -3.26 0.0011

hvalue 1 -0.275607 0.091154 -3.02 0.0025

W_income 1 -1.156553 0.592915 -1.95 0.0511

W_hvalue 1 0.111754 0.202366 0.55 0.5808

_lambda 1 0.425397 0.173831 2.45 0.0144

_sigma2 1 92.533614 19.090022 4.85 <.0001
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Spatial Moving Average (SMA) Model

To fit an SMA model, use the TYPE=SMA option.

The following statements fit an SMA model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SMA;

run;

The parameter estimates are shown in Output 32.1.6.

Output 32.1.6 Parameter Estimates of SMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 59.252971 5.934861 9.98 <.0001

income 1 -0.921806 0.363482 -2.54 0.0112

hvalue 1 -0.287393 0.086880 -3.31 0.0009

_lambda 1 -0.799089 0.277861 -2.88 0.0040

_sigma2 1 117.731990 26.373322 4.46 <.0001

Spatial Durbin Moving Average (SDMA) Model

To fit an SDMA model, use the SPATIALEFFECTS statement together with the TYPE=SMA option. In this
example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDMA model.

The following statements fit an SDMA model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SMA;
spatialeffects income hvalue;

run;

Partial output is shown in Output 32.1.7.
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Output 32.1.7 Parameter Estimates of SDMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 73.944211 9.083977 8.14 <.0001

income 1 -1.065635 0.312045 -3.42 0.0006

hvalue 1 -0.266840 0.092400 -2.89 0.0039

W_income 1 -1.074757 0.584955 -1.84 0.0662

W_hvalue 1 0.067568 0.209867 0.32 0.7475

_lambda 1 -0.642124 0.296638 -2.16 0.0304

_sigma2 1 103.502516 22.487027 4.60 <.0001

Spatial Autoregressive Confused (SAC) Model

To fit an SAC model, use the TYPE=SAC option.

The following statements fit the SAC model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAC;

run;

The parameter estimates are shown in Output 32.1.8.

Output 32.1.8 Parameter Estimates of SAC Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 47.778937 9.278438 5.15 <.0001

income 1 -1.025840 0.334006 -3.07 0.0021

hvalue 1 -0.281636 0.093366 -3.02 0.0026

_rho 1 0.368143 0.181118 2.03 0.0421

_lambda 1 0.166526 0.298115 0.56 0.5764

_sigma2 1 95.597117 19.474269 4.91 <.0001
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Spatial Durbin Autoregressive Confused (SDAC) Model

To fit an SDAC model, use the SPATIALEFFECTS statement together with the TYPE=SAC option. In this
example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDAC model.

The following statements fit an SDAC model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAC;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.9.

Output 32.1.9 Parameter Estimates of SDAC Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 50.827256 31.089621 1.63 0.1021

income 1 -0.950352 0.353961 -2.68 0.0073

hvalue 1 -0.286559 0.091261 -3.14 0.0017

W_income 1 -0.690471 0.839980 -0.82 0.4111

W_hvalue 1 0.208936 0.222585 0.94 0.3479

_rho 1 0.316760 0.414771 0.76 0.4450

_lambda 1 0.152884 0.475512 0.32 0.7478

_sigma2 1 93.133958 19.187743 4.85 <.0001

Spatial Autoregressive Moving Average (SARMA) Model

To fit a SARMA model, use the TYPE=SARMA option.

The following statements fit a SARMA model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SARMA;

run;

The parameter estimates are shown in Output 32.1.10.
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Output 32.1.10 Parameter Estimates of SARMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 48.973247 9.602039 5.10 <.0001

income 1 -1.016359 0.337215 -3.01 0.0026

hvalue 1 -0.287458 0.093079 -3.09 0.0020

_rho 1 0.336281 0.204317 1.65 0.0998

_lambda 1 -0.271945 0.426840 -0.64 0.5241

_sigma2 1 97.992936 21.253768 4.61 <.0001

Spatial Durbin Autoregressive Moving Average (SDARMA) Model

To fit an SDARMA model, use the SPATIALEFFECTS statement together with the TYPE=SARMA option.
In this example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDARMA
model.

The following statements fit an SDARMA model without an intercept term to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SARMA noint;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.11.

Output 32.1.11 Parameter Estimates of SDARMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

income 1 -0.792292 0.379696 -2.09 0.0369

hvalue 1 -0.328521 0.095588 -3.44 0.0006

W_income 1 0.587122 0.457090 1.28 0.1990

W_hvalue 1 0.438500 0.136144 3.22 0.0013

_rho 1 0.957745 0.041913 22.85 <.0001

_lambda 1 0.691307 0.260974 2.65 0.0081

_sigma2 1 86.990404 19.034142 4.57 <.0001
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Linear Regression Model

To fit a linear model, use the TYPE=LINEAR option.

The following statements fit a linear model to the CRIMEOH data:

proc spatialreg data=crimeoh;
model crime=income hvalue / type=LINEAR;

run;

Partial output is shown in Output 32.1.12.

Output 32.1.12 Parameter Estimates of Linear Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 68.618863 4.588210 14.96 <.0001

income 1 -1.597304 0.323739 -4.93 <.0001

hvalue 1 -0.273931 0.099989 -2.74 0.0062

_sigma2 1 122.751696 24.799493 4.95 <.0001

Spatial Lag of X Model

To fit an SLX model, use the SPATIALEFFECTS statement together with the TYPE=LINEAR option. In
this example, the spatial lags of the regressors INCOME and HVALUE are considered in the linear model.

The following statements fit an SLX model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=LINEAR;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.13.
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Output 32.1.13 Parameter Estimates of SLX Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 75.028184 6.279950 11.95 <.0001

income 1 -1.109020 0.354232 -3.13 0.0017

hvalue 1 -0.289734 0.096058 -3.02 0.0026

W_income 1 -1.370866 0.531889 -2.58 0.0100

W_hvalue 1 0.191785 0.189841 1.01 0.3124

_sigma2 1 107.292373 21.676329 4.95 <.0001

Example 32.2: Models with Spatial ID Matching

Data Description and Objective

Two simulated data sets, SIMDATA and SIMW, are used to illustrate models with spatial ID matching in
PROC SPATIALREG.

The SIMDATA data set contains 50 observations and five variables. The variable SID identifies each spatial
unit in the data. Three explanatory variables are x1, x2, and x3. The dependent variable is y. The SIMW data
set defines the spatial contiguity for all 50 spatial units. The first column, SID, in the SIMW data set identifies
each spatial unit. The remaining entries in the SIMW data set are binary and define whether two spatial units
are neighbors. A value of 1 indicates that two spatial units are neighbors, and 0 indicates otherwise.

Summary statistics for all variables except SID in the SIMDATA data set are computed by the following
statements and presented in Output 32.2.1:

proc means data=simdata;
var x1 x2 x3 y;

run;

Output 32.2.1 Summary Statistics

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

x1
x2
x3
y

50
50
50
50

-0.0076329
-0.0829941
-0.0894387
1.1569199

1.0989504
0.9671181
0.9975304
1.5687060

-2.4523193
-2.5725767
-2.4470049
-1.9399423

1.6539456
2.4034547
2.6720533
4.7136835

Because the SIMDATA and SIMW data sets are ordered differently in terms of the values of SID, the
SPATIALID statement is needed to match observations in SIMDATA and SIMW. The following statements fit
a SAR model to the data by using three regressors, x1, x2, and x3:
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proc spatialreg data=simdata Wmat=simw;
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.2.2.

Output 32.2.2 Parameter Estimates of SAR Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780650 0.098703 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707048 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473713 0.063008 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

To fit an SDM model that includes exogenous interaction effects of x1, x2, and x3, submit the following
statements:

proc spatialreg data=simdata Wmat=simw;
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.2.3.

Output 32.2.3 Parameter Estimates of SDM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932575 0.198882 9.72 <.0001

x1 1 0.548505 0.049806 11.01 <.0001

x2 1 0.686012 0.056266 12.19 <.0001

x3 1 -0.890162 0.053516 -16.63 <.0001

W_x1 1 0.172300 0.154018 1.12 0.2633

W_x2 1 0.023744 0.198557 0.12 0.9048

W_x3 1 -0.324806 0.228032 -1.42 0.1543

_rho 1 -0.639755 0.164652 -3.89 0.0001

_sigma2 1 0.120527 0.024729 4.87 <.0001
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If you want to fit another type of model, you need to change the TYPE= option. As an example, if you want
to fit an SEM model instead of a SAR model to the data, you can use the following statements:

proc spatialreg data=simdata Wmat=simw;
model y=x1-x3 / type=SEM;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.2.4.

Output 32.2.4 Parameter Estimates of SEM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.166289 0.029514 39.52 <.0001

x1 1 0.487975 0.049086 9.94 <.0001

x2 1 0.634442 0.061776 10.27 <.0001

x3 1 -0.831250 0.054780 -15.17 <.0001

_lambda 1 -0.964826 0.132514 -7.28 <.0001

_sigma2 1 0.147434 0.031318 4.71 <.0001

Example 32.3: Fitting Multiple Models
You can fit more than one model by making only one call to PROC SPATIALREG. For example, if you want
to fit both SAR and SEM models to the CRIMEOH data set, you can use the following statements:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAR;
model crime=income hvalue / type=SEM;

run;

The parameter estimates for the SAR and SEM models are shown in Output 32.3.1 and Output 32.3.2,
respectively.

Output 32.3.1 Parameter Estimates of SAR Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 45.077070 7.870590 5.73 <.0001

income 1 -1.031531 0.328403 -3.14 0.0017

hvalue 1 -0.265924 0.088218 -3.01 0.0026

_rho 1 0.431020 0.123594 3.49 0.0005

_sigma2 1 95.487066 19.506312 4.90 <.0001
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Output 32.3.2 Parameter Estimates of SEM Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 59.891907 5.884103 10.18 <.0001

income 1 -0.941301 0.370267 -2.54 0.0110

hvalue 1 -0.302253 0.090552 -3.34 0.0008

_lambda 1 0.561781 0.152413 3.69 0.0002

_sigma2 1 95.572081 20.037403 4.77 <.0001

Example 32.4: Compact Representation of a Spatial Weights Matrix
When a spatial weights matrix is sparse, you might want to provide its compact representation rather than
the full matrix to PROC SPATIALREG. In this case, you must use a SPATIALID statement. This example
shows you how to use the compact representation of a spatial weights matrix in PROC SPATIALREG. For
illustration, the simulated data sets SIMDATA and SIMW in “Example 32.2: Models with Spatial ID Matching”
on page 2363 are used here. The compact representation of the spatial weights matrix in the SIMW data set is
created and saved in the SIMW_COMPACT data set.

The first 10 observations in the SIMW_COMPACT data set are shown in Figure 32.4.1.

Output 32.4.1 SIMW_COMPACT Data Set

Obs SID cSID Value

1 L50 L45 1

2 L30 L22 1

3 L42 L46 1

4 L32 L35 1

5 L7 L25 1

6 L33 L25 1

7 L50 L25 1

8 L23 L50 1

9 L9 L7 1

10 L45 L36 1

The following statements fit a SAR model:

proc spatialreg data=simdata Wmat=simw_compact;
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.4.2.
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Output 32.4.2 Parameter Estimates of SAR Model with Compact Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780650 0.098703 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707048 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473713 0.063008 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

To fit an SEM model instead of a SAR model to the data, you can use the following statements:

proc spatialreg data=simdata Wmat=simw_compact;
model y=x1-x3 / type=SEM;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.4.3.

Output 32.4.3 Parameter Estimates of SEM Model with Compact Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.166289 0.029514 39.52 <.0001

x1 1 0.487975 0.049086 9.94 <.0001

x2 1 0.634442 0.061776 10.27 <.0001

x3 1 -0.831250 0.054780 -15.17 <.0001

_lambda 1 -0.964826 0.132514 -7.28 <.0001

_sigma2 1 0.147434 0.031318 4.71 <.0001
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Example 32.5: Taylor and Chebyshev Approximations
When you have a large data set (that is, the number of spatial units in your data is large), it becomes
burdensome to fit some models. This is partially because all models except linear regression models involve
the calculation of the determinant of the matrix of a large size (such as jI � �Wj in a SAR model). In these
cases, Taylor and Chebyshev approximations in PROC SPATIALREG can be helpful. The SPATIALREG
procedure enables you to estimate both SAR and SDM models with a relatively large spatial weights matrix by
using these two approximations. Using the two small data sets SIMDATA and SIMW in “Example 32.2: Models
with Spatial ID Matching” on page 2363, you will see how you can invoke the two approximations in PROC
SPATIALREG.

The following statements fit a SAR model by using Chebyshev approximation:

proc spatialreg data=simdata Wmat=simw approximation=(ORDER=10);
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.1. Note that the spatial weights matrix in
the SIMW data set is a full matrix. Compared with Output 32.2.2, Chebyshev approximation yields very
similar parameter estimates.

Output 32.5.1 Parameter Estimates of SAR Model with Chebyshev Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780638 0.098699 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707050 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473704 0.063004 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

Using the compact representation of the spatial weights matrix, you can submit the following statements to
fit a SAR model by using Chebyshev approximation:

proc spatialreg data=simdata Wmat=simw_compact approximation=(ORDER=10);
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.2, which is identical to Output 32.5.1.
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Output 32.5.2 Parameter Estimates of SAR Model with Chebyshev Approximation and Compact Repre-
sentation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780638 0.098699 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707050 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473704 0.063004 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

The following statements fit an SDM model by using Taylor approximation:

proc spatialreg data=simdata Wmat=simw approximation=(Taylor ORDER=50);
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.3. Compared with Output 32.2.3, the SDM
model that is fit using Taylor approximation yields almost identical parameter estimates.

Output 32.5.3 Parameter Estimates of SDM Model with Taylor Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932575 0.198882 9.72 <.0001

x1 1 0.548505 0.049806 11.01 <.0001

x2 1 0.686012 0.056266 12.19 <.0001

x3 1 -0.890162 0.053516 -16.63 <.0001

W_x1 1 0.172300 0.154018 1.12 0.2633

W_x2 1 0.023744 0.198557 0.12 0.9048

W_x3 1 -0.324806 0.228032 -1.42 0.1543

_rho 1 -0.639755 0.164652 -3.89 0.0001

_sigma2 1 0.120527 0.024729 4.87 <.0001

With the compact representation, the following statements fit the SDM model by using Taylor approximation:



2370 F Chapter 32: The SPATIALREG Procedure

proc spatialreg data=simdata Wmat=simw_compact
approximation=(Taylor ORDER=50);

model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.4, which is identical to Output 32.5.3.

Output 32.5.4 Parameter Estimates of SDM Model with Taylor Approximation and Compact Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932575 0.198882 9.72 <.0001

x1 1 0.548505 0.049806 11.01 <.0001

x2 1 0.686012 0.056266 12.19 <.0001

x3 1 -0.890162 0.053516 -16.63 <.0001

W_x1 1 0.172300 0.154018 1.12 0.2633

W_x2 1 0.023744 0.198557 0.12 0.9048

W_x3 1 -0.324806 0.228032 -1.42 0.1543

_rho 1 -0.639755 0.164652 -3.89 0.0001

_sigma2 1 0.120527 0.024729 4.87 <.0001

To use Chebyshev approximation for the preceding SDM model, submit the following statements:

proc spatialreg data=simdata Wmat=simw approximation=(ORDER=10);
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;
run;

The parameter estimates for this model are shown in Output 32.5.5, which is similar to Output 32.5.3.
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Output 32.5.5 Parameter Estimates of SDM Model with Chebyshev Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932081 0.198494 9.73 <.0001

x1 1 0.548538 0.049802 11.01 <.0001

x2 1 0.686049 0.056262 12.19 <.0001

x3 1 -0.890191 0.053515 -16.63 <.0001

W_x1 1 0.172017 0.153857 1.12 0.2636

W_x2 1 0.023362 0.198331 0.12 0.9062

W_x3 1 -0.324342 0.227739 -1.42 0.1544

_rho 1 -0.639325 0.164295 -3.89 <.0001

_sigma2 1 0.120542 0.024731 4.87 <.0001

The following statements use Chebyshev approximation for this model with compact representation:

proc spatialreg data=simdata Wmat=simw_compact approximation=(ORDER=10);
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.6.

Output 32.5.6 Parameter Estimates of SDM Model with Chebyshev Approximation and Compact Repre-
sentation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932081 0.198494 9.73 <.0001

x1 1 0.548538 0.049802 11.01 <.0001

x2 1 0.686049 0.056262 12.19 <.0001

x3 1 -0.890191 0.053515 -16.63 <.0001

W_x1 1 0.172017 0.153857 1.12 0.2636

W_x2 1 0.023362 0.198331 0.12 0.9062

W_x3 1 -0.324342 0.227739 -1.42 0.1544

_rho 1 -0.639325 0.164295 -3.89 <.0001

_sigma2 1 0.120542 0.024731 4.87 <.0001

The following statements fit an SEM model by using Chebyshev approximation:



2372 F Chapter 32: The SPATIALREG Procedure

proc spatialreg data=simdata Wmat=simw approximation=(ORDER=10);
model y=x1-x3 / type=SEM;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.7. Note that the spatial weights matrix in
the SIMW data set is a full matrix. Chebyshev approximation yields parameter estimates that are very similar
to those shown in Output 32.2.2.

Output 32.5.7 Parameter Estimates of SEM Model with Chebyshev Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.166102 0.029941 38.95 <.0001

x1 1 0.488665 0.049412 9.89 <.0001

x2 1 0.637142 0.061543 10.35 <.0001

x3 1 -0.831674 0.055165 -15.08 <.0001

_lambda 1 -0.944395 0.110388 -8.56 <.0001

_sigma2 1 0.149103 0.031221 4.78 <.0001

The following statements fit an SEM model by using Chebyshev approximation and compact representation
of the spatial weights matrix:

proc spatialreg data=simdata Wmat=simw_compact approximation=(ORDER=10);
model y=x1-x3 / type=SEM;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.8, which is identical to Output 32.5.7.

Output 32.5.8 Parameter Estimates of SEM Model with Chebyshev Approximation and Compact Repre-
sentation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.166102 0.029941 38.95 <.0001

x1 1 0.488665 0.049412 9.89 <.0001

x2 1 0.637142 0.061543 10.35 <.0001

x3 1 -0.831674 0.055165 -15.08 <.0001

_lambda 1 -0.944395 0.110388 -8.56 <.0001

_sigma2 1 0.149103 0.031221 4.78 <.0001
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The following statements fit an SDEM model by using Taylor approximation:

proc spatialreg data=simdata Wmat=simw approximation=(Taylor ORDER=50);
model y=x1-x3/ type=SEM;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.9.

Output 32.5.9 Parameter Estimates of SDEM Model with Taylor Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.193178 0.047129 25.32 <.0001

x1 1 0.566497 0.056782 9.98 <.0001

x2 1 0.722060 0.059717 12.09 <.0001

x3 1 -0.909212 0.061286 -14.84 <.0001

W_x1 1 -0.135284 0.128339 -1.05 0.2918

W_x2 1 -0.418116 0.152899 -2.73 0.0062

W_x3 1 0.290041 0.192397 1.51 0.1317

_lambda 1 -0.723853 0.209844 -3.45 0.0006

_sigma2 1 0.126723 0.026820 4.73 <.0001

The following statements fit an SDEM model by using Taylor approximation and compact representation of
the spatial weights matrix:

proc spatialreg data=simdata Wmat=simw_compact
approximation=(Taylor ORDER=50);

model y=x1-x3/ type=SEM;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.10, which is identical to Output 32.5.9.
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Output 32.5.10 Parameter Estimates of SDEM Model with Taylor Approximation and Compact Represen-
tation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.193178 0.047129 25.32 <.0001

x1 1 0.566497 0.056782 9.98 <.0001

x2 1 0.722060 0.059717 12.09 <.0001

x3 1 -0.909212 0.061286 -14.84 <.0001

W_x1 1 -0.135284 0.128339 -1.05 0.2918

W_x2 1 -0.418116 0.152899 -2.73 0.0062

W_x3 1 0.290041 0.192397 1.51 0.1317

_lambda 1 -0.723853 0.209844 -3.45 0.0006

_sigma2 1 0.126723 0.026820 4.73 <.0001

The following statements use Chebyshev approximation for the preceding SDEM model:

proc spatialreg data=simdata Wmat=simw approximation=(ORDER=10);
model y=x1-x3/ type=SEM;
spatialeffects x1-x3;
spatialid SID;
run;

The parameter estimates for this model are shown in Output 32.5.11, which is similar to Output 32.5.10.

Output 32.5.11 Parameter Estimates of SDEM Model with Chebyshev Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.193199 0.047156 25.30 <.0001

x1 1 0.566631 0.056730 9.99 <.0001

x2 1 0.722163 0.059688 12.10 <.0001

x3 1 -0.909288 0.061252 -14.84 <.0001

W_x1 1 -0.135591 0.128237 -1.06 0.2904

W_x2 1 -0.418437 0.152818 -2.74 0.0062

W_x3 1 0.290294 0.192253 1.51 0.1311

_lambda 1 -0.722074 0.208152 -3.47 0.0005

_sigma2 1 0.126797 0.026816 4.73 <.0001

The following statements use Chebyshev approximation for this model with compact representation of the
spatial weights matrix:
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proc spatialreg data=simdata Wmat=simw_compact approximation=(ORDER=10);
model y=x1-x3/ type=SEM;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.12, which is similar to Output 32.5.11.

Output 32.5.12 Parameter Estimates of SDEM Model with Chebyshev Approximation and Compact
Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.193199 0.047156 25.30 <.0001

x1 1 0.566631 0.056730 9.99 <.0001

x2 1 0.722163 0.059688 12.10 <.0001

x3 1 -0.909288 0.061252 -14.84 <.0001

W_x1 1 -0.135591 0.128237 -1.06 0.2904

W_x2 1 -0.418437 0.152818 -2.74 0.0062

W_x3 1 0.290294 0.192253 1.51 0.1311

_lambda 1 -0.722074 0.208152 -3.47 0.0005

_sigma2 1 0.126797 0.026816 4.73 <.0001
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Overview: SPECTRA Procedure
The SPECTRA procedure performs spectral and cross-spectral analysis of time series. You can use spectral
analysis techniques to look for periodicities or cyclical patterns in data.

The SPECTRA procedure produces estimates of the spectral and cross-spectral densities of a multivariate time
series. Estimates of the spectral and cross-spectral densities of a multivariate time series are produced using
a finite Fourier transform to obtain periodograms and cross-periodograms. The periodogram ordinates are
smoothed by a moving average to produce estimated spectral and cross-spectral densities. PROC SPECTRA
can also test whether or not the data are white noise.

PROC SPECTRA uses the finite Fourier transform to decompose data series into a sum of sine and cosine
waves of different amplitudes and wavelengths. The finite Fourier transform decomposition of the series xt is

xt D
a0

2
C

m�1X
kD1

fk.ak cos!kt C bk sin!kt /

fk D

(
1=2 if n is even and k D m � 1
1 otherwise

where

t is the time subscript, t D 0; 1; 2; : : : ; n � 1

xt are the equally spaced time series data

n is the number of observations in the time series

m is the number of frequencies in the Fourier decomposition: m D nC2
2

if n is even,
m D nC1

2
if n is odd

k is the frequency subscript, k D 0; 1; 2; : : : ; m � 1

a0 is the mean term: a0 D 2x

ak are the cosine coefficients

bk are the sine coefficients

!k are the Fourier frequencies: !k D 2�k
n

Functions of the Fourier coefficients ak and bk can be plotted against frequency or against wave length to
form periodograms. The amplitude periodogram Jk is defined as follows:

Jk D
n

2
.a2k C b

2
k/

Several definitions of the term periodogram are used in the spectral analysis literature. The following
discussion refers to the Jk sequence as the periodogram.

The periodogram can be interpreted as the contribution of the kth harmonic !k to the total sum of squares (in
an analysis of variance sense) in the decomposition of the process into two-degree-of-freedom components
for each of the m frequencies. When n is even, sin.!n

2
/ is zero, and thus the last periodogram value is a

one-degree-of-freedom component.



Getting Started: SPECTRA Procedure F 2379

The periodogram is a volatile and inconsistent estimator of the spectrum. The spectral density estimate is
produced by smoothing the periodogram. Smoothing reduces the variance of the estimator but introduces a
bias. The weight function used for the smoothing process, W(), often called the kernel or spectral window, is
specified with the WEIGHTS statement. It is related to another weight function, w(), the lag window, that
is used in other methods to taper the correlogram rather than to smooth the periodogram. Many specific
weighting functions have been suggested in the literature (Fuller 1976; Jenkins and Watts 1968; Priestley
1981). Table 33.3 later in this chapter gives the relevant formulas when the WEIGHTS statement is used.

Letting i represent the imaginary unit
p
�1, the cross-periodogram is defined as follows:

J
xy

k
D
n

2
.axka

y

k
C bxkb

y

k
/C i

n

2
.axkb

y

k
� bxka

y

k
/

The cross-spectral density estimate is produced by smoothing the cross-periodogram in the same way as the
periodograms are smoothed using the spectral window specified by the WEIGHTS statement.

The SPECTRA procedure creates an output SAS data set whose variables contain values of the periodograms,
cross-periodograms, estimates of spectral densities, and estimates of cross-spectral densities. The form of the
output data set is described in the section “OUT= Data Set” on page 2388.

Getting Started: SPECTRA Procedure
To use the SPECTRA procedure, specify the input and output data sets and options for the analysis you want
in the PROC SPECTRA statement, and list the variables to analyze in the VAR statement. The procedure
produces no printed output unless the WHITETEST option is specified in the PROC SPECTRA statement.
The periodogram, spectral density, and other results are written to the OUT= data set, depending on the
options used.

For example, to compute the Fourier transform of a variable X in a data set A, use the following statements:

proc spectra data=a out=b coef;
var x;

run;

This PROC SPECTRA step writes the Fourier coefficients ak and bk to the variables COS_01 and SIN_01 in
the output data set B.

When a WEIGHTS statement is specified, the periodogram is smoothed by a weighted moving average to
produce an estimate of the spectral density of the series. The following statements write a spectral density
estimate for X to the variable S_01 in the output data set B:

proc spectra data=a out=b s;
var x;
weights 1 2 3 4 3 2 1;

run;

When the VAR statement specifies more than one variable, you can perform cross-spectral analysis by
specifying the CROSS option in the PROC SPECTRA statement. The CROSS option by itself produces
the cross-periodograms for all two-way combinations of the variables listed in the VAR statement. For
example, the following statements write the real and imaginary parts of the cross-periodogram of X and Y to
the variables RP_01_02 and IP_01_02 in the output data set B:
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proc spectra data=a out=b cross;
var x y;

run;

To produce cross-spectral density estimates, specify both the CROSS option and the S option. The cross-
periodogram is smoothed using the weights specified by the WEIGHTS statement in the same way as the
spectral density. The squared coherency and phase estimates of the cross-spectrum are computed when the K
and PH options are used.

The following example computes cross-spectral density estimates for the variables X and Y:

proc spectra data=a out=b cross s;
var x y;
weights 1 2 3 4 3 2 1;

run;

The real part and imaginary part of the cross-spectral density estimates are written to the variables CS_01_02
and QS_01_02, respectively.

Syntax: SPECTRA Procedure
The following statements are used with the SPECTRA procedure:

PROC SPECTRA options ;
BY variables ;
VAR variables ;
WEIGHTS < weights > < kernel > ;

Functional Summary
Table 33.1 summarizes the statements and options that control the SPECTRA procedure.

Table 33.1 Functional Summary

Description Statement Option

Statements
Specify BY-group processing BY
Specify the variables to be analyzed VAR
Specify weights for spectral density estimates WEIGHTS

Data Set Options
Specify the input data set PROC SPECTRA DATA=
Specify the output data set PROC SPECTRA OUT=

Output Control Options
Output the amplitudes of the cross-spectrum PROC SPECTRA A
Output the Fourier coefficients PROC SPECTRA COEF
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Table 33.1 continued

Description Statement Option

Output the periodogram PROC SPECTRA P
Output the spectral density estimates PROC SPECTRA S
Output cross-spectral analysis results PROC SPECTRA CROSS
Output squared coherency of the
cross-spectrum

PROC SPECTRA K

Output the phase of the cross-spectrum PROC SPECTRA PH

Smoothing Options
Specify the Bartlett kernel WEIGHTS BART
Specify the Parzen kernel WEIGHTS PARZEN
Specify the quadratic spectral kernel WEIGHTS QS
Specify the Tukey-Hanning kernel WEIGHTS TUKEY
Specify the truncated kernel WEIGHTS TRUNCAT

Other Options
Subtract the series mean PROC SPECTRA ADJMEAN
Specify an alternate quadrature spectrum
estimate

PROC SPECTRA ALTW

Request tests for white noise PROC SPECTRA WHITETEST

PROC SPECTRA Statement
PROC SPECTRA options ;

The following options can be used in the PROC SPECTRA statement:

A
outputs the amplitude variables (A_nn _mm ) of the cross-spectrum.

ADJMEAN

CENTER
subtracts the series mean before performing the Fourier decomposition. This sets the first periodogram
ordinate to 0 rather than 2n times the squared mean. This option is commonly used when the
periodograms are to be plotted to prevent a large first periodogram ordinate from distorting the scale of
the plot.

ALTW
specifies that the quadrature spectrum estimate is computed at the boundaries in the same way as the
spectral density estimate and the cospectrum estimate are computed.
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COEF
outputs the Fourier cosine and sine coefficients of each series.

CROSS
is used with the P and S options to output cross-periodograms and cross-spectral densities when more
than one variable is listed in the VAR statement.

DATA=SAS-data-set
names the SAS data set that contains the input data. If the DATA= option is omitted, the most recently
created SAS data set is used.

K
outputs the squared coherency variables (K_nn _mm ) of the cross-spectrum. The K_nn _mm variables
are identically 1 unless weights are given in the WEIGHTS statement and the S option is specified.

OUT=SAS-data-set
names the output data set created by PROC SPECTRA to store the results. If the OUT= option is
omitted, the output data set is named by using the DATAn convention.

P
outputs the periodogram variables. The variables are named P_nn, where nn is an index of the original
variable with which the periodogram variable is associated. When both the P and CROSS options are
specified, the cross-periodogram variables RP_nn_mm and IP_nn_mm are also output.

PH
outputs the phase variables (PH_nn _mm) of the cross-spectrum.

S
outputs the spectral density estimates. The variables are named S_nn, where nn is an index of the
original variable with which the estimate variable is associated. When both the S and CROSS options
are specified, the cross-spectral variables CS_nn _mm and QS_nn _mm are also output.

WHITETEST
prints two tests of the hypothesis that the data are white noise. For more information, see the section
“White Noise Test” on page 2387.

Note that the CROSS, A, K, and PH options are meaningful only if more than one variable is listed in
the VAR statement.
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BY Statement
BY variables ;

A BY statement can be used with PROC SPECTRA to obtain separate analyses for groups of observations
defined by the BY variables.

VAR Statement
VAR variables ;

The VAR statement specifies one or more numeric variables that contain the time series to analyze. The order
of the variables in the VAR statement list determines the index, nn, used to name the output variables. The
VAR statement is required.

WEIGHTS Statement
WEIGHTS weight-constants | kernel-specification ;

The WEIGHTS statement specifies the relative weights used in the moving average applied to the periodogram
ordinates to form the spectral density estimates. A WEIGHTS statement must be used to produce smoothed
spectral density estimates. You can specify the relative weights in two ways: you can specify them explicitly
as explained in the section “Using Weight Constants Specification” on page 2383, or you can specify them
implicitly by using the kernel specification as explained in the section “Using Kernel Specifications” on
page 2384. If the WEIGHTS statement is not used, only the periodogram is produced.

Using Weight Constants Specification

Any number of weighting constants can be specified. The constants should be positive and symmetric about
the middle weight. The middle constant (or the constant to the right of the middle if an even number of
weight constants are specified) is the relative weight of the current periodogram ordinate. The constant
immediately following the middle one is the relative weight of the next periodogram ordinate, and so on. The
actual weights used in the smoothing process are the weights specified in the WEIGHTS statement scaled so
that they sum to 1

4�
.

The moving average reflects at each end of the periodogram. The first periodogram ordinate is not used; the
second periodogram ordinate is used in its place.

For example, a simple triangular weighting can be specified using the following WEIGHTS statement:

weights 1 2 3 2 1;
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Using Kernel Specifications

You can specify five different kernels in the WEIGHTS statement. The syntax for the statement is

WEIGHTS [PARZEN][BART][TUKEY][TRUNCAT][QS] [c e] ;

where c >D 0 and e >D 0 are used to compute the bandwidth parameter as

l.q/ D cqe

and q is the number of periodogram ordinates +1:

q D floor.n=2/C 1

To specify the bandwidth explicitly, set c D to the desired bandwidth and e D 0.

For example, a Parzen kernel can be specified using the following WEIGHTS statement:

weights parzen 0.5 0;

For more information, see the section “Kernels” on page 2385.

Details: SPECTRA Procedure

Input Data
Observations in the data set analyzed by the SPECTRA procedure should form ordered, equally spaced time
series. No more than 99 variables can be included in the analysis.

Data are often detrended before analysis by the SPECTRA procedure. This can be done by using the residuals
output by a SAS regression procedure. Optionally, the data can be centered using the ADJMEAN option in
the PROC SPECTRA statement, since the zero periodogram ordinate corresponding to the mean is of little
interest from the point of view of spectral analysis.

Missing Values
Missing values are excluded from the analysis by the SPECTRA procedure. If the SPECTRA procedure
encounters missing values for any variable listed in the VAR statement, the procedure determines the longest
contiguous span of data that has no missing values for the variables listed in the VAR statement and uses that
span for the analysis.
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Computational Method
If the number of observations n factors into prime integers that are less than or equal to 23, and the product of
the square-free factors of n is less than 210, then PROC SPECTRA uses the fast Fourier transform developed
by Cooley and Tukey and implemented by Singleton (1969). If n cannot be factored in this way, then PROC
SPECTRA uses a Chirp-Z algorithm similar to that proposed by Monro and Branch (1977). To reduce
memory requirements, when n is small, the Fourier coefficients are computed directly using the defining
formulas.

Kernels
Kernels are used to smooth the periodogram by using a weighted moving average of nearby points. A
smoothed periodogram is defined by the following equation:

OJi .l.q// D
l.q/X

�D�l.q/

w
�
�

l.q/

�
QJiC�

where w.x/ is the kernel or weight function. At the endpoints, the moving average is computed cyclically;
that is,

QJiC� D

8̂<̂
:
JiC� 0 <D i C � <D q

J�.iC�/ i C � < 0

Jq�.iC�/ i C � > q

The SPECTRA procedure supports the following kernels. They are listed with their default bandwidth
functions.

Bartlett: KERNEL BART

w.x/ D

(
1 � jxj jxj�1

0 otherwise

l.q/ D
1

2
q1=3

Parzen: KERNEL PARZEN

w.x/ D

8̂<̂
:
1 � 6jxj2 C 6jxj3 0�jxj�1

2

2.1 � jxj/3 1
2
�jxj�1

0 otherwise

l.q/ D q1=5
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Quadratic spectral: KERNEL QS

w.x/ D
25

12�2x2

�
sin.6�x=5/
6�x=5

� cos.6�x=5/
�

l.q/ D
1

2
q1=5

Tukey-Hanning: KERNEL TUKEY

w.x/ D

(
.1C cos.�x//=2 jxj�1

0 otherwise

l.q/ D
2

3
q1=5

Truncated: KERNEL TRUNCAT

w.x/ D

(
1 jxj�1

0 otherwise

l.q/ D
1

4
q1=5

A summary of the default values of the bandwidth parameters, c and e, associated with the kernel smoothers
in PROC SPECTRA are listed in Table 33.2.

Table 33.2 Bandwidth Parameters

Kernel c e

Bartlett 1=2 1=3

Parzen 1 1=5

Quadratic 1=2 1=5

Tukey-Hanning 2=3 1=5

Truncated 1=4 1=5
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Figure 33.1 Kernels for Smoothing

For more information about the properties of these kernels, see Andrews (1991).

White Noise Test
PROC SPECTRA prints two test statistics for white noise when the WHITETEST option is specified: Fisher’s
Kappa (Davis 1941; Fuller 1976) and Bartlett’s Kolmogorov-Smirnov statistic (Bartlett 1966; Fuller 1976;
Durbin 1967).

If the time series is a sequence of independent random variables with mean 0 and variance �2, then the
periodogram, Jk , will have the same expected value for all k. For a time series with nonzero autocorrelation,
each ordinate of the periodogram, Jk , will have different expected values. The Fisher’s Kappa statistic tests
whether the largest Jk can be considered different from the mean of the Jk . Critical values for the Fisher’s
Kappa test can be found in Fuller 1976.

The Kolmogorov-Smirnov statistic reported by PROC SPECTRA has the same asymptotic distribution
as Bartlett’s test (Durbin 1967). The Kolmogorov-Smirnov statistic compares the normalized cumulative
periodogram with the cumulative distribution function of a uniform(0,1) random variable. The normalized
cumulative periodogram, Fj , of the series is

Fj D

Pj

kD1
JkPm

kD1 Jk
; j D 1; 2 : : : ; m � 1
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wherem D n
2

if n is even orm D n�1
2

if n is odd. The test statistic is the maximum absolute difference of the
normalized cumulative periodogram and the uniform cumulative distribution function. Approximate p-values
for Bartlett’s Kolmogorov-Smirnov test statistics are provided with the test statistics. Small p-values cause
you to reject the null-hypothesis that the series is white noise.

Transforming Frequencies
The variable FREQ in the data set created by the SPECTRA procedure ranges from 0 to � . Sometimes it is
preferable to express frequencies in cycles per observation period, which is equal to 1

2�
FREQ.

To express frequencies in cycles per unit time (for example, in cycles per year), multiply FREQ by d
2�

, where
d is the number of observations per unit of time. For example, for monthly data, if the desired time unit is
years then d is 12. The period of the cycle is 2�

d�FREQ , which ranges from 2
d

to infinity.

OUT= Data Set
The OUT= data set contains n

2
C 1 observations, if n is even, or nC1

2
observations, if n is odd, where n is the

number of observations in the time series or the span of data being analyzed if missing values are present in
the data. For more information, see the section “Missing Values” on page 2384.

The variables in the new data set are named according to the following conventions. Each variable to be
analyzed is associated with an index. The first variable listed in the VAR statement is indexed as 01, the
second variable as 02, and so on. Output variables are named by combining indexes with prefixes. The prefix
always identifies the nature of the new variable, and the indices identify the original variables from which the
statistics were obtained.

Variables that contain spectral analysis results have names that consist of a prefix, an underscore, and the
index of the variable analyzed. For example, the variable S_01 contains spectral density estimates for the
first variable in the VAR statement. Variables that contain cross-spectral analysis results have names that
consist of a prefix, an underscore, the index of the first variable, another underscore, and the index of the
second variable. For example, the variable A_01_02 contains the amplitude of the cross-spectral density
estimate for the first and second variables in the VAR statement.

Table 33.3 shows the formulas and naming conventions used for the variables in the OUT= data set. Let X be
variable number nn in the VAR statement list and let Y be variable number mm in the VAR statement list.
Table 33.3 shows the output variables that contain the results of the spectral and cross-spectral analysis of X
and Y.

In Table 33.3 the following notation is used. Let Wj be the vector of 2p C 1 smoothing weights given by the
WEIGHTS statement, normalized to sum to 1

4�
. Note that the weights are either explicitly provided using the

constant specification or are implicitly determined by the kernel specification in the WEIGHTS statement.

The subscript of Wj runs from W�p to Wp , so that W0 is the middle weight in the list. Let !k D 2�k
n

, where
k D 0; 1; : : : ; floor.n

2
/.
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Table 33.3 Variables Created by PROC SPECTRA

Variable Description

FREQ Frequency in radians from 0 to �
(Note: Cycles per observation is FREQ

2�
.)

PERIOD Period or wavelength: 2�
FREQ

(Note: PERIOD is missing for FREQ=0.)

COS_nn Cosine transform of X:
ax
k
D

2
n

Pn
tD1Xt cos.!k.t � 1//

SIN_nn Sine transform of X:
bx
k
D

2
n

Pn
tD1Xt sin.!k.t � 1//

P_nn Periodogram of X: J x
k
D

n
2
Œ.ax

k
/2 C .bx

k
/2�

S_nn Spectral density estimate of X:
F x
k
D
Pp
jD�pWjJ

x
kCj

(except across endpoints)

RP_nn _mm Real part of cross-periodogram X and Y:
real.J xy

k
/ D n

2
.ax
k
a
y

k
C bx

k
b
y

k
/

IP_nn _mm Imaginary part of cross-periodogram of X and Y:
imag.J xy

k
/ D n

2
.ax
k
b
y

k
� bx

k
a
y

k
/

CS_nn _mm Cospectrum estimate (real part of cross-spectrum) of X and Y:
C
xy

k
D
Pp
jD�pWj real.J

xy

kCj
/ (except across endpoints)

QS_nn _mm Quadrature spectrum estimate (imaginary part of cross-spectrum)
of X and Y:
Q
xy

k
D
Pp
jD�pWj imag.J xy

kCj
/ (except across endpoints)

A_nn _mm Amplitude (modulus) of cross-spectrum of X and Y:

A
xy

k
D

q
.C

xy

k
/
2
C .Q

xy

k
/
2

K_nn _mm Coherency squared of X and Y:
K
xy

k
D .A

xy

k
/
2
=.F x

k
F
y

k
/

PH_nn _mm Phase spectrum in radians of X and Y:
ˆ
xy

k
D arctan.Qxy

k
=C

xy

k
/
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Printed Output
By default PROC SPECTRA produces no printed output.

When the WHITETEST option is specified, the SPECTRA procedure prints the following statistics for each
variable in the VAR statement:

1. the name of the variable

2. M–1, the number of two-degrees-of-freedom periodogram ordinates used in the test

3. MAX(P(*)), the maximum periodogram ordinate

4. SUM(P(*)), the sum of the periodogram ordinates

5. Fisher’s Kappa statistic

6. Bartlett’s Kolmogorov-Smirnov test statistic

7. approximate p-value for Bartlett’s Kolmogorov-Smirnov test statistic

For more information, see the section “White Noise Test” on page 2387.

ODS Table Names: SPECTRA Procedure
PROC SPECTRA assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in the following table:

Table 33.4 ODS Tables Produced in PROC SPECTRA

ODS Table Name Description Option

WhiteNoiseTest White noise test WHITETEST
Kappa Fisher’s Kappa statistic WHITETEST
Bartlett Bartlett’s Kolmogorov-Smirnov statistic WHITETEST
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Examples: SPECTRA Procedure

Example 33.1: Spectral Analysis of Sunspot Activity
This example analyzes Wolfer’s sunspot data (Anderson 1971). The following statements read and plot the
data:

title "Wolfer's Sunspot Data";
data sunspot;

input year wolfer @@;
datalines;
1749 809 1750 834 1751 477 1752 478 1753 307 1754 122 1755 96

... more lines ...

proc sgplot data=sunspot;
series x=year y=wolfer / markers markerattrs=(symbol=circlefilled);
xaxis values=(1740 to 1930 by 10);
yaxis values=(0 to 1600 by 200);

run;

The plot of the sunspot series is shown in Output 33.1.1.
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Output 33.1.1 Plot of Original Sunspot Data

The spectral analysis of the sunspot series is performed by the following statements:

proc spectra data=sunspot out=b p s adjmean whitetest;
var wolfer;
weights 1 2 3 4 3 2 1;

run;

proc print data=b(obs=12);
run;

The PROC SPECTRA statement specifies the P and S options to write the periodogram and spectral density
estimates to the OUT= data set B. The WEIGHTS statement specifies a triangular spectral window for
smoothing the periodogram to produce the spectral density estimate. The ADJMEAN option zeros the
frequency 0 value and avoids the need to exclude that observation from the plots. The WHITETEST option
prints tests for white noise.

The Fisher’s Kappa test statistic of 16.070 is larger than the 5% critical value of 7.2, so the null hypothesis
that the sunspot series is white noise is rejected (see the table of critical values in Fuller (1976)).

The Bartlett’s Kolmogorov-Smirnov statistic is 0.6501, and its approximate p-value is < 0:0001. The small
p-value associated with this test leads to the rejection of the null hypothesis that the spectrum represents
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white noise.

The printed output produced by PROC SPECTRA is shown in Output 33.1.2. The output data set B created
by PROC SPECTRA is shown in part in Output 33.1.3.

Output 33.1.2 White Noise Test Results

Wolfer's Sunspot Data

The SPECTRA Procedure

Test for White
Noise for Variable

wolfer

M-1 87

Max(P(*)) 4062267

Sum(P(*)) 21156512

Fisher's Kappa:
(M-1)*Max(P(*))/Sum(P(*))

Kappa 16.70489

Bartlett's Kolmogorov-Smirnov Statistic:
Maximumabsolute difference of the standardized
partial sums of the periodogram and the CDF of a

uniform(0,1) random variable.

Test Statistic 0.650055

Approximate P-Value <.0001

Output 33.1.3 First 12 Observations of the OUT= Data Set

Wolfer's Sunspot Data

Obs FREQ PERIOD P_01 S_01

1 0.00000 . 0.00 59327.52

2 0.03570 176.000 3178.15 61757.98

3 0.07140 88.000 2435433.22 69528.68

4 0.10710 58.667 1077495.76 66087.57

5 0.14280 44.000 491850.36 53352.02

6 0.17850 35.200 2581.12 36678.14

7 0.21420 29.333 181163.15 20604.52

8 0.24990 25.143 283057.60 15132.81

9 0.28560 22.000 188672.97 13265.89

10 0.32130 19.556 122673.94 14953.32

11 0.35700 17.600 58532.93 16402.84

12 0.39270 16.000 213405.16 18562.13

The following statements plot the periodogram and spectral density estimate by the frequency and period:
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proc sgplot data=b;
series x=freq y=p_01 / markers markerattrs=(symbol=circlefilled);

run;

proc sgplot data=b;
series x=period y=p_01 / markers markerattrs=(symbol=circlefilled);

run;

proc sgplot data=b;
series x=freq y=s_01 / markers markerattrs=(symbol=circlefilled);

run;

proc sgplot data=b;
series x=period y=s_01 / markers markerattrs=(symbol=circlefilled);

run;

The periodogram is plotted against the frequency in Output 33.1.4 and plotted against the period in Out-
put 33.1.5. The spectral density estimate is plotted against the frequency in Output 33.1.6 and plotted against
the period in Output 33.1.7.

Output 33.1.4 Plot of Periodogram by Frequency
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Output 33.1.5 Plot of Periodogram by Period
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Output 33.1.6 Plot of Spectral Density Estimate by Frequency
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Output 33.1.7 Plot of Spectral Density Estimate by Period

Since PERIOD is the reciprocal of frequency, the plot axis for PERIOD is stretched for low frequencies and
compressed at high frequencies. One way to correct for this is to use a WHERE statement to restrict the plots
and exclude the low frequency components. The following statements plot the spectral density for periods
less than 50:

proc sgplot data=b;
where period < 50;
series x=period y=s_01 / markers markerattrs=(symbol=circlefilled);
refline 11 / axis=x;

run;
title;

The spectral analysis of the sunspot series confirms a strong 11-year cycle of sunspot activity. The plot makes
this clear by drawing a reference line at the 11 year period, which highlights the position of the main peak in
the spectral density.

Output 33.1.8 shows the plot. Contrast Output 33.1.8 with Output 33.1.7.
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Output 33.1.8 Plot of Spectral Density Estimate by Period to 50 Years

Example 33.2: Cross-Spectral Analysis
This example uses simulated data to show cross-spectral analysis for two variables X and Y. X is generated by
an AR(1) process; Y is generated as white noise plus an input from X lagged 2 periods. All output options are
specified in the PROC SPECTRA statement. PROC CONTENTS shows the contents of the OUT= data set.

data a;
xl = 0; xll = 0;
do i = - 10 to 100;

x = .4 * xl + rannor(123);
y = .5 * xll + rannor(123);
if i > 0 then output;
xll = xl; xl = x;

end;
run;
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proc spectra data=a out=b cross coef a k p ph s;
var x y;
weights 1 1.5 2 4 8 9 8 4 2 1.5 1;

run;

proc contents data=b position;
run;

The PROC CONTENTS report for the output data set B is shown in Output 33.2.1.

Output 33.2.1 Contents of PROC SPECTRA OUT= Data Set

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Label

16 A_01_02 Num 8 Amplitude of x by y

3 COS_01 Num 8 Cosine Transform of x

5 COS_02 Num 8 Cosine Transform of y

13 CS_01_02 Num 8 Cospectra of x by y

1 FREQ Num 8 Frequency from 0 to PI

12 IP_01_02 Num 8 Imag Periodogram of x by y

15 K_01_02 Num 8 Coherency**2 of x by y

2 PERIOD Num 8 Period

17 PH_01_02 Num 8 Phase of x by y

7 P_01 Num 8 Periodogram of x

8 P_02 Num 8 Periodogram of y

14 QS_01_02 Num 8 Quadrature of x by y

11 RP_01_02 Num 8 Real Periodogram of x by y

4 SIN_01 Num 8 Sine Transform of x

6 SIN_02 Num 8 Sine Transform of y

9 S_01 Num 8 Spectral Density of x

10 S_02 Num 8 Spectral Density of y

The following statements plot the amplitude of the cross-spectrum estimate against frequency and against
period for periods less than 25:

proc sgplot data=b;
series x=freq y=a_01_02 / markers markerattrs=(symbol=circlefilled);
xaxis values=(0 to 4 by 1);

run;

The plot of the amplitude of the cross-spectrum estimate against frequency is shown in Output 33.2.2.
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Output 33.2.2 Plot of Cross-Spectrum Amplitude by Frequency

The plot of the cross-spectrum amplitude against period for periods less than 25 observations is shown in
Output 33.2.3.

proc sgplot data=b;
where period < 25;
series x=period y=a_01_02 / markers markerattrs=(symbol=circlefilled);
xaxis values=(0 to 30 by 5);

run;
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Output 33.2.3 Plot of Cross-Spectrum Amplitude by Period
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Overview: SSM Procedure
State space models (SSMs) are used for analyzing continuous response variables that are recorded sequentially
according to a numeric indexing variable. In many cases, the indexing variable is time and the observations
are collected at regular time intervals—for example, hourly, weekly, or monthly. In such cases, the resulting
data are called time series data. In other cases, the indexing variable might not be time or the observations
might not be equally spaced according to the indexing variable. These more general types of sequential data
are called longitudinal data. Because of their sequential nature, these types of data exhibit some characteristic
features. For example, chronologically closer measurements tend to be highly correlated while measurements
farther apart are essentially uncorrelated. Data can be trending in a particular direction and can have seasonal
or other periodic patterns. SSMs are specially designed to model such sequential data. They apply to both
univariate and multivariate response situations and can easily incorporate predictor (independent variable)
information when it is available.

The SSM procedure performs state space modeling of univariate and multivariate time series and longitudinal
data. You can do the following with the SSM procedure:

� analyze quite general linear state space models

� use an expressive language to specify an SSM. An SSM specification consists of specifying a variety
of matrices—for example, the state transition matrix and the covariance matrices of the state and
observation disturbances. The SSM procedure provides language similar to a DATA step for specifying
the elements of these matrices. The matrix elements can be user-defined functions of data variables
and unknown parameters.

� easily specify several commonly needed univariate and multivariate SSMs by using only a few
keywords. These SSMs include the principal univariate and multivariate structural models for regularly
spaced data and a variety of trend and cycle models for the longitudinal data.

� estimate unknown model parameters by (restricted) maximum likelihood. The likelihood function is
computed by using the (diffuse) Kalman filter algorithm.

� print, or output to a data set, the series forecasts, residuals, and the full-sample estimates of any linear
combination of the underlying state variables. These estimates are obtained by using the (diffuse)
Kalman filter and smoother algorithm.

� generate residual diagnostic plots and plots useful for detecting structural breaks
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Background
State space models are widely used in a variety of fields such as engineering, statistics, econometrics, and
agriculture. There are numerous references that deal with state space modeling, particularly with the state
space modeling of time series data. State space modeling of longitudinal data has received a little less
attention. The primary reference for the modeling techniques implemented in the SSM procedure is Harvey
(1989). It contains treatment of both the time series and longitudinal data. Other useful books about this
subject are Pelagatti (2015); Durbin and Koopman (2012); Jones (1993); Anderson and Moore (1979). In
addition, informative articles about state space modeling of longitudinal data include Wecker and Ansley
(1983); Kohn and Ansley (1991); De Jong and Mazzi (2001); Eubank, Huang, and Wang (2003); Selukar
(2015). For the implementation details of the diffuse Kalman filter and smoother (the main computational
tool used by the SSM procedure), the main references are a series of articles (De Jong 1989, 1991; De Jong
and Chu-Chun-Lin 2003) and the references therein.

Getting Started: SSM Procedure
This example illustrates how you can use the SSM procedure to analyze a panel of time series. The following
data set, Cigar, contains information about yearly per capita cigarette sales for 46 geographic regions in
the United States over the period 1963–1992. The variables lsales, lprice, lndi, and lpimin denote the per
capita cigarette sales, price per pack of cigarettes, per capita disposable income, and minimum price in
adjoining regions per pack of cigarettes, respectively (all in the natural log scale). The variable year contains
the observation year, and the variable region contains an integer between 1 to 46 that serves as the unique
identifier for the region. For additional data description see Baltagi and Levin (1992); Baltagi (1995). The
data are sorted by year.

data cigar;
input year region lsales lprice lndi lpimin;
label lsales = 'Log cigarette sales in packs per capita';
label lprice = 'Log price per pack of cigarettes';
label lndi = 'Log per capita disposable income';
label lpimin = 'Log minimum price in adjoining regions

per pack of cigarettes';
year = intnx( 'year', '1jan63'd, year-63 );
format year year.;

datalines;
63 1 4.54223 3.35341 7.3514 3.26194
63 2 4.82831 3.17388 7.5729 3.21487
63 3 4.63860 3.29584 7.3000 3.25037
63 4 4.95583 3.23080 7.9288 3.17388
63 5 5.05114 3.28840 7.9772 3.26576

... more lines ...

The goal of the analysis is to study the impact of the regressors on the smoking behavior and to understand
the changes in the smoking patterns in different regions over the years. Consider the following model for
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lsales:

lsalesi;t D ���i;t C lprice ˇ̌̌1 C lndi ˇ̌̌2 C lpimin ˇ̌̌3 C ���i;t

This model represents lsales in a region i and in a year t as a sum of region-specific trend components���i;t ,
the regression effects due to lprice, lndi, and lpimin, and the observation noise ���i;t . Different variations of this
model are obtained by considering different models for the trend component���i;t . Proper modeling of the
trend component is important because it captures differences between the regions because of unrecorded
factors such as demographic changes over time, results of anti-smoking campaigns, and so on. The following
statements specify and fit one such model:

proc ssm data=Cigar plots=residual;
id year interval=year;
array RegionArray{46} region1-region46;
do i=1 to 46;

RegionArray[i] = (region=i);
end;
trend IrwTrend(ll) cross(matchparm)=(RegionArray) levelvar=0;
irregular wn;
model lsales = lprice lndi lpimin IrwTrend wn;
eval TrendPlusReg = IrwTrend + lprice + lndi + lpimin;
output out=forCigar pdv press;

run;

The PROC SSM statement specifies the input data set, Cigar, which contains analysis variables such as the
response variable, lsales, and the predictor variables, lprice, lndi, and lpimin. The PLOTS=RESIDUAL option
in the PROC SSM statement produces residual diagnostic plots. The optional ID statement specifies a numeric
index variable (often a SAS date or datetime variable), which is year in this case. The INTERVAL=YEAR
option in the ID statement indicates that the measurements are collected on a yearly basis. The next few
statements define a 46-dimensional array of dummy variables, RegionArray, such that RegionArray[i] is 1 if
region is i and is 0 otherwise. The next three statements, TREND, IRREGULAR, and MODEL, constitute
the model specification part of the program:

� trend IrwTrend(ll) cross(matchparm)=(RegionArray) levelvar=0; defines a trend,
named IrwTrend, of local linear type (which is signified by the keyword ll used within the parenthesis
after the name). A local linear trend—a trend with time-varying level and time-varying slope—depends
on two parameters: the disturbance variance of the level equation and the disturbance variance
of the slope equation (see the section “Local Linear Trend” on page 2455 for more information).
The LEVELVAR=0 specification fixes the disturbance variance of the level equation to 0, which
results in a trend model called an integrated random walk (IRW). An IRW model tends to produce
a smoother trend than a general local linear trend. In the limiting case, if the disturbance variance
of the slope equation is also 0, the IRW trend reduces to a straight line (with a fixed intercept and
slope). In addition, because of the use of the 46-dimensional array, RegionArray, in the CROSS=
option (cross(matchparm)=(RegionArray)), this trend specification amounts to fitting a separate
IRW trend for each region. This is because, as a result of the CROSS= option, IrwTrend is treated
as a linear combination of 46 (the number of variables in RegionArray) stochastically independent,
integrated random walks,

IrwTrendt D
46X
iD1

RegionArrayŒi � ���i;t



2408 F Chapter 34: The SSM Procedure

where each ���i;t is an integrated random walk. Note that since RegionArray[i] is a binary variable,
IrwTrend equals ���i;t when region is i. Lastly, the use of MATCHPARM option specifies that the
different IRW trends���i;t use the same disturbance variance parameter for their slope equation. This is
done mainly for parsimony. Based on the model diagnostics shown later, this appears to be a reasonable
model simplification.

� irregular wn; defines the observation noise ���i;t , named wn, as a sequence of independent, identically
distributed, zero-mean, Gaussian variables—a white noise sequence.

� model lsales = lprice lndi lpimin IrwTrend wn; defines the model for lsales as a sum of
regression effects that involve lprice, lndi, and lpimin, a trend term, IrwTrend, and the observation noise
wn.

The last two statements, EVAL and OUTPUT, control certain aspects of the procedure output. The following
EVAL statement defines a linear combination, named TrendPlusReg, of selected terms in the MODEL
statement:

eval TrendPlusReg = IrwTrend + lprice + lndi + lpimin;

This EVAL statement causes the SSM procedure to produce an estimate of TrendPlusReg (and its standard
error), which can then be printed or output to a data set. TrendPlusReg contains all the terms in the model
except for the observation noise and thus can be regarded as the explanatory part of the model. In the
OUTPUT statement, you can specify an output data set that stores all the component estimates that are
produced by the procedure. The following OUTPUT statement specifies forCigar as the output data set:

output out=forCigar pdv press;

The PDV option causes variables such as region1–region46, which are defined by the DATA step statements
within the SSM procedure, also to be included in the output data set. The PRESS option causes the printing
of fit measures that are based on the delete-one cross validation errors (see the section “Delete-One Cross
Validation and Structural Breaks” on page 2451 for more information).

All the models that are specified in the SSM procedure possess a state space representation. For more
information, see the section “State Space Model and Notation” on page 2438. The SSM procedure output
begins with a table (not shown here) of the input data set that provides the name and other information. Next,
the “Model Summary” table, shown in Figure 34.1, provides basic model information, such as the following:

� the dimension of the underlying state equation, 92 (because each of the 46 IRW trends���i;t contributes
two elements to the state)

� the diffuse dimension of the model, 95 (which is equal to the three regressors plus the 92 diffuse initial
states of���i;t )

� the number of model parameters, 2 (which is the common disturbance variance of the slope equation
in IrwTrend and the variance of the noise term wn)

This information is very useful in determining the computational complexity of the model (the larger state
size, 92, explains the relatively long computing time—as much as two minutes on some desktops—for this
example).
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Figure 34.1 Summary of the Underlying State Space Model

The SSM Procedure

Model Summary

Model Property Value

Number of Model Equations 1

State Dimension 92

Dimension of the Diffuse Initial Condition 95

Number of Parameters 2

The index variable information is shown in Figure 34.2. Among other things, it categorizes the data to be of
the type Regular with Replication, which implies that the data are regularly spaced with respect to the ID
variable and at least some observations have the same ID value. This is clearly true in this example: the data
are yearly without any gaps, and there are 46 observations in each year—one per region.

Figure 34.2 Index Variable Information

ID Variable Information

Name Start End
Max

Delta NDistinct Type

year 1963 1992 1 30 Regular with Replication

Figure 34.3 provides simple summary information about the response variable. It shows that lsales has no
missing values and no induced missing values because the predictors in the model, lprice, lndi, and lpimin, do
not have any missing values either.

Figure 34.3 Response Variable Summary

Response Variable Information

Number of
Observations

Name Total Missing
Induced
Missing Minimum Maximum Mean

Std
Deviation

lsales 1380 0 0 3.98 5.7 4.79 0.225

The regression coefficients of lprice, lndi, and lpimin are shown in Figure 34.4. As expected, the coefficient of
lprice is negative and the coefficients of lndi and lpimin are positive, all being statistically significant. This is
consistent with the expectation that the cigarette sales are adversely affected by the price and are positively
correlated with the disposable income. The estimated effect of lpimin, called the bootlegging effect by Baltagi
and Levin (1992), is statistically significant but smaller than the effects of lprice and lndi.

Figure 34.4 Estimated Regression Coefficients

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

lsales lprice -0.3480 0.0232 -15.01 <.0001

lsales lndi 0.1425 0.0344 4.15 <.0001

lsales lpimin 0.0619 0.0269 2.30 0.0214
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Figure 34.5 Estimated Model Parameters

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

IrwTrend LL Trend Slope Variance 0.000169 0.0000219 7.72

wn Irregular Variance 0.000592 0.0000342 17.29

Figure 34.5 shows the estimates of the disturbance variance of the slope equation in IrwTrend and the variance
of the noise term wn.

Figure 34.6 shows a panel of residual normality diagnostic plots. These plots show that the residuals are
symmetrically distributed but contain slightly larger than expected number of extreme residuals. Figure 34.7
shows the plot of residuals versus time. There the residuals do not exhibit any obvious pattern; however, the
plot does show that more extreme residuals appear before 1970 and after 1989. On the whole, however, these
plots do not exhibit serious violations of model assumptions.

Figure 34.6 Residual Normality Check
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Figure 34.7 Standardized Residuals Plotted against Time

Figure 34.8 shows the details of the likelihood computations such as the number of nonmissing response
values used and the likelihood of the fitted model. For more information, see the section “Likelihood
Computation and Model-Fitting Phase” on page 2447. Figure 34.8 shows the likelihood-based information
criteria in lower-is-better format, which are useful for model comparison.

Figure 34.8 Likelihood Computation Details

Likelihood Computation Summary

Statistic Value

Nonmissing Response Values Used 1380

Estimated Parameters 2

Initialized Diffuse State Elements 95

Normalized Residual Sum of Squares 1285.0002

Diffuse Log Likelihood 2246.0466

Profile Log Likelihood 2169.6232
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Figure 34.9 Information Criteria

Information Criteria

Statistic

Diffuse
Likelihood

Based

Profile
Likelihood

Based

AIC (lower is better) -4488.093 -4145.246

BIC (lower is better) -4477.776 -3637.952

AICC (lower is better) -4488.084 -4130.417

HQIC (lower is better) -4484.220 -3955.472

CAIC (lower is better) -4475.776 -3540.952

In addition to the regression estimates, it is useful to analyze the estimates of different model components such
as the trend component IrwTrend and the linear combination TrendPlusReg. These estimates can be printed
by using the PRINT= option provided in the TREND and EVAL statements, or they can be output to a data
set (as it is done in this illustration). This latter option is particularly useful for graphical exploration of these
components by standard graphical procedures such as SGPLOT and SGPANEL procedures. The following
statements produce a panel of plots that shows how well the proposed model fits the observed cigarette
sales in the first three regions, which correspond to Alabama, Arizona, and Arkansas. The output data set,
forCigar, contains all the needed information: Smoothed_TrendPlusReg contains the smoothed (full-sample)
estimate of TrendPlusReg, and Smoothed_Lower_TrendPlusReg and Smoothed_Upper_TrendPlusReg
contain its 95% lower and upper confidence limits. In addition, for easy readability, a user-defined format
(RegionFormat), which is created by using the FORMAT procedure (not shown), is used to associate the
region names to region values.

proc sgpanel data=forCigar noautolegend;
where region <= 3;
format region RegionFormat.;
title 'Region-Specific Sales Patterns with 95% Confidence Band';
panelby region / columns=3;
band x=year lower=Smoothed_Lower_TrendPlusReg
upper=Smoothed_Upper_TrendPlusReg;
scatter x=year y=lsales;
series x=year y= Smoothed_TrendPlusReg;

run;
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Figure 34.10 Cigarette Sales Patterns for the First Three Regions

Figure 34.10 seems to indicate that the model fits the data reasonably well. It also shows that Arizona differs
markedly from Alabama and Arkansas in its cigarette sales pattern over the years. The following statements
produce a similar panel of plots that show the estimate of trend without the regression effects:

proc sgpanel data=forCigar noautolegend;
where region <= 3;
format region RegionFormat.;
title 'Region-Specific Trend Estimates';
panelby region / columns=3;
series x=year y= smoothed_IrwTrend;

run;
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Figure 34.11 Estimate of IrwTrend for the First Three Regions

The trend patterns, shown in Figure 34.11, seem to suggest that after accounting for the regression effects,
per capita cigarette sales were on the rise in Alabama and Arkansas while they were declining in Arizona.
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Syntax: SSM Procedure
The following statements are available in the SSM procedure:

PROC SSM < options > ;
BY variables ;
COMPONENT name = (variables)* state < / options > ;
DEPLAG name(response-variable) lag-term1 < lag-term2 . . . > ;
EVAL name = expression < / options > ;
ID variable < option > ;
IRREGULAR name < options > ;
MODEL response = variables < / options > ;
OUTPUT < options > ;
PARMS variables < / options > ;
Programming statements ;
STATE name(dim)< options > ;
TREND name(type)< options > ;

You can specify all statements except the BY, ID, and the OUTPUT statements multiple times. The PROC
SSM statement and at least one MODEL statement are required. In addition to these statements, you can use
most DATA step programming statements to define new variables that are needed for specifying different
parts of the state space model.

NOTE: In the statement options described throughout this section, whenever you use a list to specify the
elements of the system matrices, the list elements must all be of the same type: either all of them must
be variables or all of them must be numbers. In addition, if the list contains more than one variable, then
they cannot be of the array type. These are not serious restrictions. When the list contains mix of variables
and numbers, you can redefine the numbers as constant variables. Similarly, you can reformulate a list that
contains a mix of variables of array and non-array types as just one array by combining all its elements in a
new array.

Functional Summary
Table 34.1 summarizes the statements and options that control the SSM procedure. Most commonly needed
scenarios are listed; for more information, see the individual statements.

Table 34.1 PROC SSM Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set PROC SSM DATA=
Writes series and component forecasts to an
output data set

OUTPUT OUT=

Model Specification Options
Specifies the index variable ID
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Table 34.1 continued

Description Statement Option

Defines variables as model parameters PARMS
Specifies a response variable and the
associated observation equation

MODEL

Specifies a state subsection STATE
Specifies the transition matrix of a state
subsection

STATE T

Specifies the disturbance covariance matrix of
a state subsection

STATE COV

Specifies the size of the diffuse initial
condition of a state subsection

STATE A1

Specifies the initial covariance matrix of a
state subsection

STATE COV1

Specifies a state subsection for a predefined
structural model

STATE TYPE=

Specifies the regressors in a state equation STATE W
Specifies the input vector in a state equation STATE SINPUT=
Specifies a component COMPONENT
Specifies a predefined trend component TREND

Likelihood Optimization Process Control Options
Specifies the optimization technique PROC SSM OPTIMIZER(TECH=)
Limits the number of iterations PROC SSM OPTIMIZER(MAXITER=)

Outlier and Structural Break Detection Options
Turns on the search for additive outliers (AO) Default
Turns on the search for structural breaks in a
state subsection

STATE CHECKBREAK

Turns on the search for structural breaks in a
state subsection associated with a trend

TREND CHECKBREAK

Specifies the significance level for additive
outlier tests

OUTPUT AO(ALPHA= )

Limits the reported number of additive outliers OUTPUT AO(MAXNUM= )
Limits the reported number of additive outliers
to a percentage of the series length

OUTPUT AO(MAXPCT= )

Specifies the significance level for structural
break tests

OUTPUT BREAK(ALPHA= )

Limits the reported number of structural breaks OUTPUT BREAK(MAXNUM= )
Limits the reported number of structural
breaks to a percentage of the series length

OUTPUT BREAK(MAXPCT= )

Turns on the search for maximal state shock OUTPUT MAXSHOCK

Graphical Residual and Outlier Analysis Options
Creates a panel of plots that consists of
residual normality plots

PROC SSM PLOTS=RESIDUAL(NORMAL)
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Table 34.1 continued

Description Statement Option

Creates the standardized residual plot against
time

PROC SSM PLOTS=RESIDUAL(STD)

Creates a panel of plots that consists of
prediction error normality plots

PROC SSM PLOTS=AO(NORMAL)

Creates the standardized prediction error plot
against time

PROC SSM PLOTS=AO(STD)

Creates the plot of maximal state shock
chi-square statistics against time

PROC SSM PLOTS=MAXSHOCK

Output Control Options
Specifies the significance level of the forecast
confidence limits

OUTPUT ALPHA=

Prints the prediction error sum of squares table OUTPUT PRESS
Specifies a linear combination of components
to be output

EVAL

Global Printing and Plotting Options
Turns off all printing for the procedure PROC SSM NOPRINT
Turns on all printing options for the procedure PROC SSM PRINTALL
Turns off all plotting for the procedure PROC SSM PLOTS=NONE
Turns on all plotting options for the procedure PROC SSM PLOTS=ALL

Printing State Equation System Matrix Options
Prints the transition matrix that is associated
with a state subsection

STATE PRINT=T

Prints the disturbance covariance matrix that is
associated with a state subsection

STATE PRINT=COV

Prints the initial covariance matrix that is
associated with a state subsection

STATE PRINT=COV1

Prints the autoregressive coefficient matrix that
is associated with a state subsection

STATE PRINT=AR

Prints the moving average coefficient matrix
that is associated with a state subsection

STATE PRINT=MA

Printing Component, Series Forecast, and Smoothed Estimate Options
Prints the series forecasts MODEL PRINT=FILTER
Prints the full-sample estimates of missing
series values

MODEL PRINT=SMOOTH

Prints the smoothed trend estimate TREND PRINT=SMOOTH
Prints the filtered trend estimate TREND PRINT=FILTER
Prints the smoothed component estimate COMPONENT PRINT=SMOOTH
Prints the filtered component estimate COMPONENT PRINT=FILTER
Prints the smoothed component estimate EVAL PRINT=SMOOTH
Prints the filtered component estimate EVAL PRINT=FILTER
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Table 34.1 continued

Description Statement Option

BY Groups
Specifies BY-group processing BY

PROC SSM Statement
PROC SSM < options > ;

The PROC SSM statement is required. You can specify the following options in the PROC SSM statement:

BREAKPEAKS
prints an alternate form of the break summary tables when the CHECKBREAK option is used in the
STATE or TREND statement or when the MAXSHOCK option is used in the OUTPUT statement. In
this alternate form, the summary tables report the significant peaks of the shock statistics curves; see
Example 34.8 for examples of these curves.

DATA=SAS-data-set
specifies the name of the SAS data set that contains the variables needed for the analysis. If you do not
specify this option, PROC SSM uses the most recently created SAS data set.

LIKE=DIFFUSE | MARGINAL (Experimental )
specifies the type of likelihood to use for parameter estimation. You can specify the following values:

DIFFUSE specifies diffuse likelihood.

MARGINAL specifies marginal likelihood.

By default, LIKE=DIFFUSE. For more information about different likelihood types, see the section
“Likelihood Computation and Model-Fitting Phase” on page 2447.

NOPRINT
turns off all the printing and plotting for the procedure. Any subsequent print options are ignored.

PLOTS < (global-plot-options) > = plot-request < (options) >

PLOTS< (global-plot-options) > = ( plot-request < (options) > < . . . plot-request < (options) > > )
controls the plots produced with ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around it. Here are some examples:

plots=none
plots=all
plots=residual
plots=residual(normal)
plots=(maxshock residual(normal))
plots(unpack)=residual
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If you do not specify any specific plot-request , then by default PROC SSM produces the plot of
standardized residuals against time. For general information about ODS Graphics, see Chapter 24,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Global Plot Options
The global-plot-options apply to all relevant plots generated by the SSM procedure. The following
global-plot-option is supported:

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)

Specific Plot Options
The following list describes the specific plot-requests and their options:

ALL
produces all plots appropriate for the particular analysis.

AO< (prediction-error-plot-options) >
produces the prediction error plots—one for each response variable. You can specify the following
prediction-error-plot-options:

NORMAL
produces a summary panel of the prediction error diagnostics, which consist of the following:

� histogram of prediction errors

� normal quantile plot of prediction errors

STD
produces a scatter plot of standardized prediction errors against time.

MAXSHOCK
produces a scatter plot of maximal state shock statistics against time.

NONE
suppresses all plots.

RESIDUAL < (residual-plot-options) >
produces the residuals plots—one for each response variable. You can specify the following
residual-plot-options:

NORMAL
produces a summary panel of the residual diagnostics, which consist of the following:

� histogram of residuals

� normal quantile plot of residuals

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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STD
produces a scatter plot of standardized residuals against time.

For more information about the precise meaning of the terms maximal state shock statistics and
prediction errors, see the section “Delete-One Cross Validation and Structural Breaks” on page 2451.

PRINTALL
turns on all the printing options for the procedure. All subsequent NOPRINT options in the procedure
are ignored.

STATEINFO
prints two tables that provide information about the composition of the state vector in terms of the
components specified in the model. One table describes the composition of state ˛̨̨ t , and the other table
describes the diffuse vector ııı and the regressors, which are part of the initial condition specification ˛̨̨1.
For more information about the state space model notation, see the section “State Space Model and
Notation” on page 2438.

OPTIMIZER( < TECHNIQUE=technique > < MAXITER=integer >)
specifies options that are associated with the optimizer used in the maximum likelihood parameter
estimation. The default settings of the optimization process are adequate in most problems. However,
in some cases it might be useful to change the optimization technique or to change the maximum
number of iterations. You can specify one of the following techniques:

ACTIVESET corresponds to the active-set method.

DBLDOG corresponds to the double-dogleg method.

INTERIORPOINT corresponds to the primal-dual interior point method.

NEWRAP corresponds to the Newton-Raphson method.

QUANEW corresponds to the (dual) quasi-Newton method.

TRUREG corresponds to the trust region method.

The default technique is TRUREG. The INTERIORPOINT and ACTIVESET techniques are docu-
mented in Chapter 11, “The Nonlinear Programming Solver” (SAS/OR User’s Guide: Mathematical
Programming), and the remaining techniques are documented in Chapter 7, “Nonlinear Optimization
Methods.” You can alter the maximum number of iterations setting in the nonlinear optimization search
by specifying a nonnegative integer as the MAXITER= value.

ZSPARSE
enables the exploitation of the sparsity of the Zt matrices in the observation equation during the
modeling calculations (see the section “State Space Model and Notation” on page 2438 for further
information). The use of this option can improve the computational efficiency of models that have a
large state dimension and sparse Zt matrices—that is, many of their elements are zero. You should
use the ZSPARSE option only when the state dimension is sufficiently large (at least 30) and a good
percentage (at least 50%) of Zt entries are zero; otherwise, the computational efficiency can in fact
degrade. For example, the illustration that is discussed in the section “Getting Started: SSM Procedure”
on page 2406 is a good candidate for the use of the ZSPARSE option:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
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proc ssm data=Cigar plots=residual zsparse;

BY Statement
BY variables ;

A BY statement can be used in the SSM procedure to process a data set in groups of observations that are
defined by the BY variables. The model specified by using the MODEL and other statements is applied to all
the groups defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. The BY variables are one or more variables in the input data set.
The BY variables cannot be used in the model specification; in particular, they cannot be used as response
variables or regressors in a MODEL statement.

COMPONENT Statement
COMPONENT name = (var1 var2 . . . | number1 number2 . . . ) * state < / options > ;

COMPONENT name = state[ integer ] < / options > ;

COMPONENT name = (Variable | Number )* state[ integer ] < / options > ;

The COMPONENT statement specifies a component (a linear combination of state elements), named name.
You can use name later as a term in the right-hand side of the MODEL statement, which defines the
observation equation. The estimate of name is output to the OUT= data set that is specified in the OUTPUT
statement. In addition, you can print the component estimate by using the PRINT= option.

The first form of the COMPONENT statement defines a component as a dot product of a state subsection
state and a row vector (var1 var2 . . . ). The value of state can be the name of a state subsection that is defined
by using a STATE statement elsewhere in the program, or it can be the name of the state that is associated with
a trend component defined by using a TREND statement elsewhere in the program (see the section “TREND
Statement” on page 2434 for more information about the naming of the state that is associated with a trend
component). The row vector (var1 var2 . . . ), which can be either a list of numbers or a list of variables, must
be of the same dimension as the actual dimension of the state subsection. The dot product form—also called
the explicit dot product form—of the component specification is unambiguous; however, it requires detailed
knowledge of the state vector underlying the state specification. Suppose that mystate is a two-dimensional
state defined by a STATE statement elsewhere in the program and that X1 and X2 are (numeric) predictor
variables. The following are valid examples of the dot product form of the COMPONENT statement:

component c1 = (x1 x2) * mystate;
component c2 = (1 1) * mystate;

The second and the third forms of the COMPONENT statement are a shortened version of the first form.
The second form defines the component as a particular element of state—for example, state[3] defines the
component as the third element of state. The specified integer must lie between 1 and dim, the nominal
dimension of state. The second form of component specification has another important use when the STATE
statement that defines state uses the TYPE= option to set its type or when state is associated with a trend
component. In these cases, the second form of the component specification assumes additional meaning
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when the nominal state dimension and the actual state dimensions differ (specifically the state types LL,
SEASON, CYCLE, and VARMA and the states associated with all the trend types). For example, if state
is a three-dimensional seasonal component, state[2] signifies an appropriate linear combination of state
that results in the second of the three seasonals that constitute the three-dimensional seasonal. Similar
interpretation holds for the CYCLE type. For more information, see the sections “Multivariate Season” on
page 2461 and “Predefined Structural Models” on page 2458. The third form extends the second form by
permitting multiplication by a variable or a number.

NOTE: A component that is based on a state associated with a trend component cannot be used as a right-hand
side term in any MODEL statement. That is, it is defined purely for output purposes (either printed or output
to a data set). However, it can be used as a term in the expression that is specified in an EVAL statement to
build more complex linear combinations for output.

You can specify the following options to print the filtered or smoothed estimate of the component:

PRINT=FILTER | SMOOTH

PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the specified component.

DEPLAG Statement
DEPLAG name(response-variable) lag-term1 < lag-term2 . . . > ;

The DEPLAG statement defines a term, named name, that consists of a linear combination of lagged response
variables. You can use name later as a right-hand-side term in the MODEL statement for the response
variable, as specified in name(response-variable). For a multivariate model, a separate DEPLAG statement
is needed for each MODEL statement that has a right-hand-side term that involves lagged response variables.
The linear combination of lagged response variables is specified by using one or more lag-terms. Each
lag-term specifies the lags that are associated with one of the response variables.

A lag-term is specified in one of the following forms:

lag-response-variable(LAGS=maximum-lag)

lag-response-variable(LAGS=(integer1 integer2 . . . ))

lag-response-variable(LAGS=maximum-lag COEFF=(number1 number2 . . . ) | (variable1 variable2 . . . ))

lag-response-variable(LAGS=(integer1 integer2 . . . ) COEFF=(number1 number2 . . . ) | (variable1 variable2 . . . ))

The lag-response-variable in the lag term specification can be the same as the response variable that
corresponds to the model equation (which is specified in name(response-variable)), or it can be a
different response variable.

The first form of specification is useful when all lags up to the maximum-lag, which must be a positive
integer, are present in the lag term. The second form is useful when only certain lags, which are specified as
a list of positive integers in parentheses, are present. In these two cases, the lag coefficients are not specified
and they are treated as unknown parameters to be estimated from the data.

The COEFF= option in the last two forms enable you to specify lag coefficients. The COEFF= option must
follow the LAGS= option. You can use the COEFF=(number1 number2 . . . ) option to specify the lag
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coefficients as known values. Similarly, you can use the COEFF=(variable1 variable2 . . . ) option to specify
user-defined variables as lag coefficients; the user-defined variables can be functions of parameters (which
are defined by using the PARMS statement) and input variables. However, the lag coefficients cannot depend
on any of the response variables. The number of coefficients specified in the COEFF= option must exactly
equal the number of lags specified in the LAGS= option.

There can be at most one DEPLAG statement associated with a particular MODEL statement (you can
specify all the needed lag terms in a single DEPLAG statement).

As an illustration, let lagsFORy1 and lagsFORy2 represent the following linear combinations of lagged
response variables Y1, Y2, and Y3:

lagsFORy1 D �11Y1t�1 C �12Y1t�2 C �22Y 2t�2 C �23Y 2t�3 C 1:2Y 3t�1 � 2:1Y 3t�2

lagsFORy2 D Phi1Y1t�1 C Phi2Y1t�2 C �21Y 2t�1

where Phi1 and Phi2 denote user-defined variables and �ij denote generic parameters. You can specify
lagsFORy1 (which is used in the model equation for Y1) and lagsFORy2 (which is used in the model equation
for Y2) as follows:

deplag lagsFORy1(y1) y1(lags=2) y2(lags=(2 3)) y3(lags=2 coeff=(1.2 -2.1));
deplag lagsFORy2(y2) y1(lags=2 coeff=(phi1 phi2)) y2(lags=1);
... more statements ...;
model y1 = lagsFORy1 ...;
model y2 = lagsFORy2 ...;
model y3 = ...;
... more statements ...;

assuming that the right-hand side of the MODEL equation for Y3 does not have a term that involves lags of
response variables.

The DEPLAG statement in PROC SSM has the same purpose as the DEPLAG statement in PROC UCM
(see Chapter 42, “The UCM Procedure”). However, there are many differences in the syntax of the two
statements, mainly because PROC SSM supports much more complex models. The syntax difference
between the two DEPLAG statements can be illustrated by considering the differencing specification—
.1 � B/.1 � B12/ D .1 � B � B12 C B13/—in the well-known airline model (ARIMA(0, 1, 1)(0, 1, 1)12
model). You can specify the lag-term that is implied by the differencing in the airline model in PROC UCM
as follows:

deplag lags=(1)(12) phi=1 1 noest;

In PROC SSM the same specification has the following form:

deplag airLags(y) y(lags=(1 12 13) coeff=(1 1 -1));

Both these specifications define the same lag-term: .yt�1 C yt�12 � yt�13/.

For an example of the use of lagged response variables in a model specification, see Example 34.13. For
more information about models that have dependent lags, see the section “Models with Dependent Lags” on
page 2464.

NOTE: Models that have lagged response variables are permitted only if the data form a time series (either
univariate or multivariate). The SSM procedure adds one more restriction on the models that use lagged
response variables: the variables in the list that define a component in any of the COMPONENT statements
must be free of unknown parameters. This restriction is artificial and is made primarily to reduce the overall
complexity of the model. In future versions of the SSM procedure, this restriction might go away.
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EVAL Statement
EVAL name = number1*variable1 + number2*variable2 + . . . < / options > ;

The EVAL statement defines a linear combination, named name, of the terms used in the right-hand side
of a MODEL statement. You can specify any variables (for example, predictor variables and names of
components) in the expression of the EVAL statement; however, you cannot specify in this expression any
observation disturbances that are specified by the IRREGULAR statement and any model terms that are
specified by the DEPLAG statement. Suppose C1 and C2 are two components (defined by COMPONENT
statements elsewhere in the program), T1 is a trend component, and X1 is a regression variable used in a
model. The following are valid examples of the EVAL statement:

eval e1 = c1 - c2;
eval e2 = t1 + c1 + x1;
eval e2 = t1 + 2*c1 - 1.5*x1;

The estimates of linear combinations defined by the EVAL statement (for example, E1, E2, and E3) are
output to the OUT= data set that is specified in the OUTPUT statement.

The components used in a given EVAL expression must correspond to distinct state subsections. This
requirement is imposed only to simplify the overall readability of the program and does not limit the type of
linear combinations that can be specified; if two components in the right hand side of an EVAL expression
share the same state subsection, a new component that combines the effect of these two components can
always be defined.

In addition, you can print these estimates by using the following PRINT= options:

PRINT=FILTER | SMOOTH

PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the specified linear combination.

NOTE: The expression builder in the EVAL statement is primitive. For example, you cannot use parentheses
to group terms.

ID Statement
ID variable < option > ;

The ID statement names a numeric variable to associate a sequence value—usually related to a time stamp—to
the observations in the input data set. The observations within a BY group must be ordered in ascending
order by the ID variable. Often the ID variable’s values are SAS date, time, or datetime values, and each
observation within a BY group has a unique ID value. Generally, however, the ID variable can be any numeric
variable, and there can be multiple observations with the same ID value. If the ID values are SAS date, time,
or datetime values, you can specify the associated unit of time—for example, day, week or month—by using
the INTERVAL= option. If an ID statement is not specified, the observation number, with respect to the BY
group, is used as the time ID. Whenever an ID variable is specified, a variable, _ID_DELTA_, is automatically
created that can be used as any input data set variable in the programming statements. _ID_DELTA_ contains
the distance between two successive ID values. The first _ID_DELTA_ value is arbitrarily taken as one. If the
INTERVAL= option is specified, the distance between the ID values is measured in terms of the number of
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intervals; therefore, for regularly spaced data, _ID_DELTA_ is identically equal to one. You can specify the
following option in the ID statement:

INTERVAL=value
specifies the unit of time interval that is used for measuring the ID values. INTERVAL=value is used
in conjunction with the ID variable to check that the input data are in the proper order. For a complete
discussion of the supported intervals, see Chapter 5, “Date Intervals, Formats, and Functions.”

IRREGULAR Statement
IRREGULAR name < options > ;

The IRREGULAR statement specifies a one-dimensional white noise component, which can be used to specify
the observation error in a MODEL statement. You can specify the following options in the IRREGULAR
statement:

PRINT=SMOOTH
requests printing of the smoothed estimate of the specified irregular component.

VARIANCE=variable | number
specifies the variance of the white noise. Any nonnegative value, including 0, is permissible. If the
variable contains unknown parameters, they are estimated from the data. Similarly, if the VARIANCE=
option is not specified, the variance is estimated from the data.

MODEL Statement
MODEL response = variables < / options > ;

A MODEL statement specifies an observation equation that describes a response variable as a sum of
regression effects and components that are defined in the program. The response variable must be a numeric
variable from the input data set. The variables used in the right-hand side of the model expression can be
numeric variables from the input data set, numeric variables defined by using programming statements,
or names of components that are specified in the COMPONENT, DEPLAG, TREND, or IRREGULAR
statements.

For a multivariate model, a separate MODEL statement is needed for each of the response variables. In this
case, the observation errors, which are specified in an IRREGULAR statement, must be different in each
MODEL statement.

The components that are specified in a given MODEL statement must correspond to distinct state subsections.
This requirement is imposed only to simplify the overall readability of the program and does not limit the
type of models that can be specified; if two components on the right-hand side of a MODEL statement share
the same state subsection, a new component that combines the effect of these two components can always be
defined.

You can specify the following options in the MODEL statement; they must be separated from the list of terms
in the right-hand side of the model equation by a slash (/):
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AGGREGATE(START=startFlag) (Experimental )

SUM(START=startFlag)
produces a table of full-sample predictions of the temporally aggregated values of the response variable
that is specified in the MODEL statement. The variable that you specify in the START= option,
startFlag, must be a zero-one variable that flags the start of an aggregation interval—equal to 1 at the
start of an interval and 0 otherwise. For example, you can use this option to obtain the forecasts of
weekly (or monthly) totals from a daily series. In this case, the value of startFlag is 1 at the start of the
week (or month) and 0 otherwise. For more information, see the section “Temporal Aggregation and
Temporal Distribution (Experimental)” on page 2465. This option is valid only if the data form a time
series (either univariate or multivariate). If you use the AGGREGATE option in a MODEL statement,
you cannot use the DISTRIBUTE option in the same statement or in another MODEL statement.

DISTRIBUTE(START=startFlag) (Experimental )
indicates that the response variable that is specified in the MODEL statement is a temporally aggregated
version of an unobserved variable. The variable that you specify in the START= option, startFlag, must
be a zero-one variable that flags the start of an aggregation interval—equal to 1 at the start of an interval
and 0 otherwise. This option can be used only when the data form a time series (either univariate
or multivariate) and when the overall model specification does not contain terms that involve lagged
response variables (that is, the model specification does not involve the use of DEPLAG statements). If
you use the DISTRIBUTE option in a MODEL statement, you cannot use the AGGREGATE option in
the same statement or in another MODEL statement. For more information, see the section “Temporal
Aggregation and Temporal Distribution (Experimental)” on page 2465.

PRINT=FILTER | SMOOTH

PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the specified response variable. The filtered
estimate is produced during the filtering phase, and the smoothed estimate is produced by the smoothing
phase of the Kalman filter and smoother algorithm. The filtered estimate is also called the one-step-
ahead forecast of the response variable. The smoothed estimate corresponds to the full-sample
prediction of the response variable. Since the full-sample prediction of a nonmissing response value is
that value itself, full-sample predictions are printed only for the missing response values.

OUTPUT Statement
OUTPUT < options > ;

The OUTPUT statement creates an optional output data set and also provides options to control certain
aspects of the procedure output. If the OUT= option is specified, then an output data set is created to store
estimates of the model components and series forecasts. If the OUT= option is omitted, then no data set is
created by the OUTPUT statement. Other options in the OUTPUT statement produce additional information
in the printed output generated by the procedure. For example, the AO and BREAK options control the
search for additive outliers and structural breaks in the data, respectively.
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AO(< ALPHA=number > < MAXNUM=number > < MAXPCT=number >)
controls the additive outlier search (see the section “Delete-One Cross Validation and the Additive
Outlier Detection” on page 2451 for more information). The ALPHA= suboption specifies the
significance level for reporting the outliers. The default is ALPHA=0.05. The MAXNUM= suboption
limits the number of outliers to search. The default is MAXNUM=5. The MAXPCT= suboption is
similar to the MAXNUM= suboption. In the MAXPCT= option you can limit the number of outliers
to search for according to a percentage of the series length. The default is MAXPCT=1. When you
specify both of these options, the lesser of the two search numbers is used.

ALPHA=number
specifies the significance level of the forecast confidence intervals. For example, ALPHA=0.05, which
is the default, results in a 95% confidence interval.

BREAK(< ALPHA=number > < MAXNUM=number > < MAXPCT=number >)
controls the structural break search (for more information, see the section “Structural Breaks in the
State Evolution” on page 2452). In order for this option to have any effect, the CHECKBREAK option
in one of the STATE or TREND statements, or the MAXSHOCK option in the OUTPUT statement,
must be turned on. The ALPHA= suboption specifies the significance level for reporting the breaks.
The default is ALPHA=0.05. The MAXNUM= suboption limits the number of breaks to search. The
default is MAXNUM=5. The MAXPCT= suboption is similar to the MAXNUM= suboption. In the
MAXPCT= option, you can limit the number of breaks to search for according to a percentage of the
number of distinct time points in the data. The default is MAXPCT=1. When you specify both of these
options, the lesser of the two search numbers is used.

MAXSHOCK
causes the computation of the maximal state shock chi-square statistic at each distinct time point in the
input data set. These statistics are output to the data set that is specified in the OUT= option. A time
series plot of these statistics is produced if the PLOTS=MAXSHOCK option is specified in the PROC
SSM statement. These statistics are useful for detecting structural breaks in the state evolution process.
This option can be computationally expensive for a model with large state size. For more information,
see the section “Structural Breaks in the State Evolution” on page 2452.

OUT=SAS-data-set
specifies an output data set for the forecasts. The output data set contains the ID variable (if specified),
the response variables, the one-step-ahead and out-of-sample response variable forecasts, the forecast
confidence intervals, the smoothed values of the response series, and the one-step-ahead and smoothed
estimates of the model components—including expressions that are defined by using the EVAL
statement. For more information, see the section “OUT= Data Set” on page 2474.

PDV
causes the inclusion of the variables (variables in the program data vector) that are defined by using
the programming statements in the SSM procedure in the OUT= data set. The parameters defined by
the PARMS statement are also included. The output data set contains the values of these variables
evaluated for all the rows in the input data set that is specified in the DATA= option. The parameters in
the PARMS statement contain their estimated values.
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PRESS
prints the prediction error sum of squares (PRESS) and the generalized cross validation error sum of
squares (GCV). The PRESS table also reports the number of summands that are used in these sums of
squares. For more information, see the section “Delete-One Cross Validation and the Additive Outlier
Detection” on page 2451.

PARMS Statement
PARMS variable< =number > variable< =number > < / options > ;

The PARMS statement declares the parameters of a model and optionally sets their initial values. You can
also specify the lower and upper limits of their validity range. The parameters declared by using the PARMS
statement are called named parameters throughout this chapter. A model can have additional parameters: any
unspecified quantity in the model specification becomes part of the parameter vector. You can specify the
following options:

LOWER=(number1 number2 . . . )

LOWER=(number )
specifies the lower bounds for the specified parameters. The list can contain exactly one number, which
is taken to be the lower bound for all the listed parameters in the statement, or it must contain as many
values as the number of parameters specified. A missing value, denoted by ., is a permissible value,
which signifies that the parameter has no lower bound.

UPPER=(number1 number2 . . . )

UPPER=(number )
specifies the upper bounds for the specified parameters. The list can contain exactly one number, which
is taken to be the upper bound for all the listed parameters in the statement, or it must contain as many
values as the number of parameters specified. A missing value, denoted by ., is a permissible value,
which signifies that the parameter has no upper bound.

Programming Statements
To define the model, you can use most of the programming statements that are allowed in the SAS DATA
step. For more information, see the SAS DATA Step Statements: Reference. For the most part, the syntax
of programming statements used in PROC SSM is identical to that used in the MODEL procedure (see
Chapter 25, “The MODEL Procedure”) and the NLMIXED procedure (see Chapter 89, “The NLMIXED
Procedure” (SAS/STAT User’s Guide)). However, there are some restrictions: the DATA step lagging and
differencing functions are not allowed, and the use of character variables in the DATA step expressions is not
permitted. These are not serious restrictions; usually you can overcome them by adding the variables that are
created by such operations to the input data set before its use in the SSM procedure.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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STATE Statement
STATE name (dim)< options > ;

The STATE statement specifies a subsection of ˛̨̨ t , the overall state vector at time t (for more information,
see the section “State Space Model and Notation” on page 2438). Consider the state equations that define the
state space model:

˛̨̨ tC1 D Tt ˛̨̨ t CWtC1 C ctC1 C ���tC1
˛̨̨1 D c1 CA1ııı CW1 C ���1

You can specify multiple STATE statements, each specifying a separate subsection. It is assumed that
the subsections that are specified by using different STATE statements are mutually independent. This
independence assumption implies a block-diagonal structure for the transition matrices Tt and the disturbance
covariances Qt for all t � 1. An appropriate block structure also applies to Wt and A1. The options in the
STATE statement provide complete control over the description of the relevant blocks of Tt , Qt , Wt , and
A1. The argument dim (a positive integer in name (dim)) specifies the nominal dimension of this subsection.
In most situations, the nominal dimension and the actual dimension of the state subsection are the same.
However, when you specify the TYPE= option, the actual dimension of the state subsection can be different
from the nominal dimension. The TYPE= option simplifies the state specification task for some commonly
needed models.

NOTE: The T, COV, W, and COV1 options, described later in this section, specify the relevant blocks of Tt ,
Qt , Wt , and Q1, respectively. The structure of these matrix blocks is described in a similar way in the option
descriptions. For example, the specification COV(I) corresponds to the identity form, COV(D) corresponds
to the diagonal form, and COV(G) corresponds to the general form of the Qt block.

You can use the following options in the STATE statement to specify the system matrices Tt , Qt , Wt , and
A1 and to request printing of their estimates when they contain unknown parameters. You can also request
the checking of unexpected changes—structural breaks—in the evolution of this state subsection by using the
CHECKBREAK option.

A1(nd)
treats the last nd elements of the state subsection as diffuse. This becomes the dimension of the relevant
subsection of the diffuse vector ııı. The A1 block is created by using appropriate columns of the identity
matrix. The value of nd must lie between 1 and the nominal dimension, dim. The absence of this
option signifies that this subsection of ˛̨̨ t is nondiffuse. If both the COV1 and A1 options are specified,
the last nd rows and columns of the matrix specified in the COV1 option are taken to be 0. This option
cannot be used together with the RANK= option of the COV1 option.

CHECKBREAK< ( ELEMENTWISE | OVERALL) >
turns on the checking of breaks for this state subsection. The ELEMENTWISE suboption requests the
elementwise checking of any unexpected change in the state subsection as it evolves from one time
point to the next. The OVERALL suboption requests a similar check for the entire state subsection—
that is, in this case the change is measured as a multidimensional change. The ELEMENTWISE
suboption is the default. Unless the PRINT=BREAKDETAIL option is specified, only a summary of
the most significant breaks is produced. If the PRINT=BREAKDETAIL is specified, tables that contain
the break significance statistics at every distinct time point are produced—one for the ELEMENTWISE
suboption and one for the OVERALL suboption. For more information about the structural break
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detection process, see the section “Structural Breaks in the State Evolution” on page 2452. For an
example of the use of the CHECKBREAK option, see Example 34.8.

COV( D ) < = (var1 var2 . . . ) | (number1 number2 . . . ) >

COV( G ) < = (var1 var2 . . . ) | (number1 number2 . . . ) >

COV( I ) < = (variable) | (number ) >

COV( RANK=integer )
specifies the relevant block of the disturbance covariance Qt (for t � 2) in the transition equation. As
with the T option, the absence of this option signifies that this Q-block consists of only zeros. The
structure of the Q-block is also similarly specified. However, the following differences exist:

� The list that is specified to form the covariance must result in a symmetric, positive semidefinite
matrix. For an example, see Example 34.5.

� You can specify a rank constraint on the Q-block by specifying COV(RANK=integer ), where
the specified integer must lie between 1 and dim. A rank constraint is permissible only for the
general form and only when its elements are not specified by using a list.

� The convention of treating unset variables as structural zeros, which is used in specifying sparsity
of the T-block, is not used in the Q-block specification. Whenever you explicitly specify the
entries of the Q-block by specifying a list of variables in parentheses, all variables in the list must
evaluate to nonmissing values.

The following examples illustrate different ways of specifying a Q-block. It is assumed that dim = 2.

� COV(G) specifies a general-form Q-block, which contributes .2 � .2C 1//=2 D 3 unspecified
elements to the parameter vector ��� .

� COV(RANK=1) specifies a rank-one Q-block.

COV1( D ) < = (var1 var2 . . . ) | (number1 number2 . . . ) >

COV1( G ) < = (var1 var2 . . . ) | (number1 number2 . . . ) >

COV1( I ) < = (variable) | (number ) >

COV1( RANK=integer )
specifies the relevant block of the initial state covariance Q1. The different options in this case have
the same meaning as the options of the COV option. However, the following differences exist:

� If the elements of Q1 are specified by a list of variables in parentheses, then these variables must
evaluate to constant values. In particular, they can depend on parameters that are specified by the
PARMS statements; however, they cannot depend on any of the input data columns.

� If the initial condition is partially diffuse (that is, the diffuse dimension nd specified in the A1
option is nonzero), the last nd rows and columns of the matrix specified in COV1 are taken to
be zero. Moreover, if the elements of Q1 are specified by a list, its number of elements must
correspond to a matrix of dimension (dim – nd).
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PRINT=AR | BREAKDETAIL | COV | COV1 | MA | T

PRINT=(< AR > < BREAKDETAIL > < COV > < COV1 > < MA > < T > )
requests printing of the respective system matrices and the printing of the break statistics at each distinct
time point. You can specify PRINT=AR or PRINT=MA only if you specify the TYPE=VARMA
option. If any of these matrices are time-varying, the matrix that corresponds to the first time instance
is printed. For the BREAKDETAIL suboption to have any effect, the CHECKBREAK option must
be turned on. If TYPE= option is used, the result of PRINT=COV can be different than the matrix
supplied in the COV= option.

SINPUT = (var1 var2 . . . ) | (number1 number2 . . . )
specifies the relevant dim-dimensional block of the state input vector ct . The absence of this option
signifies that this block of the ct vector consists of only zeros. If the elements of ct are specified by a
list of variables in parentheses, then these variables must be independent of unknown parameters. In
particular, they cannot be functions of parameters that are defined by the PARMS statements.

T( D ) < = (var1 var2 . . . ) | (number1 number2 . . . ) >

T( G ) < = (var1 var2 . . . ) | (number1 number2 . . . ) >

T( I ) < = (variable) | (number ) >
specifies the relevant block of the transition matrix Tt . The absence of this option signifies that this
block consists of only zeros. You can specify the structure of the T-block by specifying T(I) for the
identity form, T(D) for the diagonal form, and T(G) for a general unstructured form. In addition, you
can explicitly specify the entries of the T-block by specifying a list of numbers in parentheses, or by
specifying in parentheses a list of variables that are defined by using the programming statements. The
unspecified elements of the T-block are included in the list of parameters to be estimated from the
data. If the elements of the T-block are supplied by a list in parentheses, the number of elements in
the list depends on its structure. For the diagonal form, the list must contain exactly dim elements.
In the case of the identity form—T(I)—the block is already fully specified; however, a specification
T(I)=(variable) is understood to mean that the identity block is scaled by the specified variable (or
a number ). In the general case—T(G)—the list must consist of dim � dim elements, specified in a
rowwise fashion. An inappropriate number of elements in the list results in a syntax error.

The following examples illustrate different ways of specifying the transition matrix. It is assumed that
dim = 2.

� T(I) specifies that the T-block is a two-dimensional identity matrix.

� T(D) specifies that the T-block is a two-dimensional diagonal matrix. The two unspecified
diagonal entries become part of the parameter vector ��� .

� T(D)=(1.1 2) fully specifies the two-dimensional diagonal T-block.

� T(D)=(X1X2) specifies a two-dimensional diagonal T-block where the diagonal elements are
dynamically calculated based on the values of the variables X1 and X2. In this case the T-block
can change with time if X1 or X2 changes with time.

� T(G) specifies a general form T-block (with 22 D 4 unspecified elements).

� T(G)=(X1X2X3X4) specifies a general form T-block where the first row is formed by X1 and
X2, and the second row is formed by X3 and X4.

In practice the transition matrix is often sparse—that is, many of its elements are 0. The algorithms in
the SSM procedure exploit this sparsity structure for computational efficiency. Whenever you explicitly
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specify the entries of the T-block by specifying a list of variables in parentheses, you can leave the
variables that correspond to the zero elements unset. These unset variables are treated as structural
zeros by the SSM procedure. The section “Sparse Transition Matrix Specification” on page 2444
further explains how to use this sparsity convention.

TYPE=WN

TYPE=RW

TYPE=LL < (SLOPECOV(I | D | G) < = (var1, var2, . . . ) | (number1, number2, . . . ) > ) >

TYPE=LL (SLOPECOV( RANK=integer ) )

TYPE=SEASON (LENGTH=integer < DROPH=number-list > < KEEPH=number-list > )

TYPE=CYCLE < ( < CT > < RHO=variable | number > < PERIOD=variable | number > ) >

TYPE=VARMA ( < p < (I | D) > =integer > < q< (D) >=integer > )
specifies a state subsection that corresponds to the specified type. You can specify either a number
or a variable for the RHO= and PERIOD= suboptions. When TYPE=VARMA, the autoregressive
and moving average orders can be at most 1 (0 � p � 1 and 0 � q � 1). Moreover, by using the D
and I flags with the order specification, you can impose additional structure on the autoregressive and
moving average coefficient matrices—for example, specifying TYPE=VARMA(P=1) implies a VAR(1)
model with general autoregressive coefficient matrix, whereas specifying TYPE=VARMA(P(D)=1)
implies a VAR(1) model with diagonal autoregressive coefficient matrix. If you specify the TYPE=
option, the T, COV1, SINPUT, and A1 options are not needed. In fact they are ignored, since the
transition matrix Tt and the matrices in the initial condition (Q1 and A1) are implicitly defined by the
choice of the type. However, the COV and W options can be useful. In fact, the specification of the
COV option does play a key role in the eventual form of Qt—the covariance of the disturbance term
in the transition equation. For the types LL, CYCLE, SEASON, and VARMA, the dimension of the
resulting state subsection is a certain multiple of dim, the nominal dimension in the STATE statement.
For example, the following specification results in a state subsection, named cycleState, of dimension
2*dim:

state cycleState(dim) cov(g) type=cycle;

The name cycleState corresponds to the state underlying a dim-dimensional cycle component. All of
these special state types require that the data be regular (replication is permissible); the only exception
is TYPE=CYCLE(CT), which defines a continuous-time cycle and is applicable to any data type.
Table 34.2 summarizes some of this information for easy reference. For more information about these
state types, see the section “Predefined Structural Models” on page 2458.

The TYPE=LL specification results in a state that corresponds to a multivariate local linear trend. It is
governed by two covariance matrices: the COV option specifies the covariance that corresponds to the
level equation, and the SLOPECOV suboption specifies the covariance used in the slope equation. The
omission of the SLOPECOV suboption signifies that the covariance used in the slope equation is zero.
The form of the SLOPECOV suboption is exactly the same as that of the COV option.

The TYPE=CYCLE option results in a state that corresponds to a (stochastic) cycle. By default, this
cycle is assumed to be for the regular data type. If TYPE=CYCLE(CT), the resulting cycle is applicable
to any data type. The CT option is available only for dim = 1; that is, only a univariate cycle is available
for the irregular data type. The cycle specification depends on a covariance matrix and two numbers:
the damping factor RHO and the cycle period PERIOD. The covariance can be specified by the COV
option. The damping factor is specified by the RHO= suboption; its value must lie between 0.0 and 1.0.
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The cycle period can be specified by the PERIOD= suboption. If the CT suboption is not included, the
period value must be larger than 2.0. On the other hand, if the CT suboption is included, its value must
be strictly positive. If these parameters are not specified, they are estimated from the data.

The TYPE=SEASON(LENGTH=integer ) specifies a multivariate trigonometric season that contains
the full set of harmonics (for more information, see “Multivariate Season” on page 2461). In some cases,
you might want to drop some of the harmonics from this complete set to obtain a more parsimonious
trigonometric season specification. You can use the DROPH= (to drop) or KEEPH= (to keep) suboption
to control the harmonics that are included in the season specification as follows:

TYPE=SEASON(
LENGTH=integer
< DROPH=number-list | n TO m BY p >
< KEEPH=number-list | n TO m BY p >
)

The DROPH= and KEEPH= lists can include any integer between 1 and LENGTH/2 if the season
length is even and any integer between 1 and (LENGTH – 1)/2 if the season length is odd. For example,
the following specification results in a specification of a trigonometric season with a season length 12
that consists of only the first four harmonics ���j , j D 1; 2; 3; 4:

type=season(length=12 DROPH=5 6) ...;

The last two high-frequency harmonics, ���5 and ���6, are dropped. The DROPH= suboption cannot be
used with the KEEPH= suboption.

Table 34.2 Summary of Predefined State Types

Type Description Parameters State Dimension

WN dim-variate white noise COV dim
RW dim-variate random walk COV dim
LL dim-variate local linear COV, SLOPECOV 2*dim
SEASON(LENGTH=length) dim-variate season COV (length–1)*dim
CYCLE dim-variate cycle COV, RHO, PERIOD 2*dim
VARMA(P=p Q=q) dim-variate VARMA(p, q) COV, AR, MA dim*max( p, q+1)

W(D)= (var1 var2 . . . ) | (number1 number2 . . . )

W(G)= (var1 var2 . . . ) | (number1 number2 . . . )

W(I) < = (variable) | (number ) >
specifies the relevant block of the design matrix Wt in the transition equation. The W-block is of
dimension sd im � sg, where sdim denotes the actual dimension of the state subsection (which can
be the same as dim, the nominal dimension, or different if the TYPE= option is used) and sg denotes
the desired size of the subsection of the overall state regression vector  . The absence of this option
signifies that the state equation does not contain any regression effects. The number of variables
supplied in the W(G)= list option must be a multiple of sdim. For example, if sdim = 4 and the W(G)=
list contains 8 variables, then the implied size of  subsection is 2. If the W(D)= or W(I)= option
is used, then the W-block is assumed to be an sd im-dimensional diagonal matrix and the W(D)=



2434 F Chapter 34: The SSM Procedure

list must contain exactly sdim variables. For examples of the use of this option, see Example 34.8,
Example 34.10, and Example 34.11.

TREND Statement
TREND name (type)< options > ;

The TREND statement defines a term in the model that follows a stochastic pattern of a certain predefined
type. The options in the TREND statement enable you to specify a wide variety of commonly used stochastic
patterns. Each TREND statement in effect stands for a special pair of STATE and COMPONENT statements.
You can specify more than one TREND statement. Each separate TREND statement defines a component
that is assumed to be independent of all other component specifications in the model. Very often the TREND
statement is used to specify a component that captures the time-varying level of the data. However, in many
cases it is also used to define components of a more general nature; for example, it can be used to define a
noise component that follows a stationary ARMA model.

You can refer to the state that is associated with a TREND statement by appending the string “_state_” to the
end of its name. For example, name_state_ is the state that is associated with a trend named name. You can
use name_state_ in a COMPONENT statement to define a linear combination of its elements. The estimate
of this linear combination can then be printed or output to a data set. The nominal dimension of name_state_
is taken to be 1, or the number of variables in the list that is specified in the CROSS= option in the TREND
statement that is used to define name (see Example 34.4 for an example of such use of the COMPONENT
statement).

Some of these trend specifications are applicable to all the data types—that is, they can be used for both
regular data types and irregular data types, whereas the others require that the data be regular or regular with
replication. Of course, the trend specification is only part of the overall model specification. Therefore, the
other parts of the model can imply additional constraints on the data type.

Table 34.3 lists the available trend models and their data requirements. The type column shows the admissible
keywords that signify the particular trend type. For brevity, the Data Type column groups the data types
regular and regular with replication into one category: regular. For more information about these trend
models, see the section “Predefined Trend Models” on page 2454.

Table 34.3 Summary of Trend Types

type Data Type Description Parameters

ARIMA(P=integer D=integer . . . ) Regular ARIMA model specification AR and MA coefficients,
and the error variance �2

DLL Regular Damped local linear Level and slope �21 , �22 ,
damping factor �

LL Regular Local linear Level and slope �21 , �22
RW Regular Random walk Level �2

DECAY Irregular A type of decay pattern Level �2, decay rate �
DECAY(OU) Irregular Ornstein-Uhlenbeck decay pattern Level �2, decay rate �
GROWTH Irregular A type of growth pattern Level �2, growth rate �
GROWTH(OU) Irregular Ornstein-Uhlenbeck growth pattern Level �2, growth rate �
PS(order ) Irregular Polynomial spline of a given order Level �2
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The keyword specification of different trend types, except possibly the ARIMA trend, is quite simple. For
example, the following statement specifies polySpline as a trend of the type second-order polynomial spline:

trend polySpline(ps(2));

Similarly, the following statement defines dampedTrend as a damped local linear trend:

trend dampedTrend(dll) slopevar=x;

The variance parameter that governs the slope equation of this trend type is given by a variable x, which must
be defined elsewhere in the program. The other parameters that define dampedTrend are left unspecified (and
are estimated by using the data).

The ARIMA trend specification permits specification of trends that follow an ARIMA(p,d,q)�(P,D,Q)s
model. The specification of ARIMA models requires some notation, which is explained first.

Let B denote the backshift operator—that is, for any sequence �t , B�t D �t�1. The higher powers of B repre-
sent larger shifts (for example, B3�t D �t�3). A random sequence �t follows an ARIMA(p,d,q)�(P,D,Q)s
model with nonseasonal autoregressive order p, seasonal autoregressive order P, nonseasonal differencing
order d, seasonal differencing order D, nonseasonal moving average order q, and seasonal moving average
order Q if it satisfies the following difference equation, which is specified in terms of the polynomials in the
backshift operator, where at is a white noise sequence and s is the season length:

�.B/ˆ.Bs/.1 � B/d .1 � Bs/D�t D �.B/‚.B
s/at

The polynomials �;ˆ; �; and ‚ are of orders p, P, q, and Q, respectively, which can be any nonnegative
integers. The season length s must be a positive integer. For example, �t satisfies an ARIMA(1,0,1) model
(that is, p D 1; d D 0; q D 1; P D 0;D D 0; and Q D 0) if

�t D �1�t�1 C at � �1at�1

for some coefficients �1 and �1 and a white noise sequence at . Similarly, �t satisfies an
ARIMA(0,1,1)�(0,1,1)12 model if

�t D �t�1 C �t�12 � �t�13 C at � �1at�1 �‚1at�12 C �1‚1at�13

for some coefficients �1 and ‚1 and a white noise sequence at . An ARIMA process is zero-mean, stationary,
and invertible if d D 0;D D 0, and the defining polynomials �;ˆ; �; and ‚ have all their roots outside the
unit circle—that is, their absolute values are strictly larger than 1.0. It is assumed that the coefficients of the
polynomials �;ˆ; �; and ‚ are constrained so that the stationarity and invertibility conditions are satisfied.
The unknown coefficients of these polynomials become part of the model parameter vector that is estimated
by using the data. The general form of the ARIMA trend specification is as follows:

ARIMA(< P=integer > < D=integer > < Q=integer > < SP=integer > < SD=integer > < SQ=integer > < S=integer > )

By default, the different orders are equal to 0 and the season length is equal to 1. The following examples
illustrate a few different ARIMA trend specifications. The following statement defines ima as an integrated
moving average trend:

trend ima(arima(d=1 q=1));

The following statement defines airTrend as a trend that satisfies the well-known airline model
(ARIMA(0,1,1)(0,1,1)12 model) for monthly seasonal data:
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trend airTrend(arima(d=1 q=1 sd=1 sq=1 s=12));

The following statement defines arma11 as a zero-mean ARMA(1,1) trend with autoregressive parameter
fixed to 0.1:

trend arma11(arima(p=1 q=1)) ar=0.1;

For an example of the use of the ARIMA trend specification, see Example 34.6.

You can use the following options in the TREND statement to specify the trend parameters and to request
printing of the trend estimates. In addition, you can create a custom combination of a given trend type
by specifying the CROSS= option to create a more general trend. For an example of using the CROSS=
option, see the section “Getting Started: SSM Procedure” on page 2406 and the discussion of the second
model in Example 34.4. You can also check for the unexpected changes in the trend component by using the
CHECKBREAK option.

AR=�1 �2 . . .�p
lists the values of the coefficients of the nonseasonal autoregressive polynomial

�.B/ D 1 � �1B � � � � � �pB
p

where the order p is specified in the ARIMA trend specification. The coefficients �i must define a
stationary autoregressive polynomial.

CHECKBREAK< ( ELEMENTWISE | OVERALL) >
turns on the checking of breaks for this trend component. The ELEMENTWISE suboption requests the
elementwise checking of any unexpected change in the state subsection that is associated with the trend
component. The OVERALL suboption requests a similar check for the entire state subsection—that is,
in this case the change is measured as a multidimensional change. The ELEMENTWISE suboption
is the default. Unless the PRINT=BREAKDETAIL option is specified, only a summary of the most
significant breaks is produced. If the PRINT=BREAKDETAIL is specified, tables that contain the
break significance statistics at every distinct time point are produced—one for the ELEMENTWISE
suboption and one for the OVERALL suboption. If the CROSS= option is specified and the CROSS=
list contains more than one variable, the OVERALL suboption considers subsections that are associated
with each CROSS= variable separately. For more information about the structural break detection
process, see the section “Structural Breaks in the State Evolution” on page 2452.

CROSS=(var1, var2, . . . )

CROSS(MATCHPARM)=(var1, var2, . . . )
creates a linear combination of one or more independent trend components that is based on the variables
in the list. If the parameters of the trend are specified by options such as the LEVELVAR= option
or the PHI= option, these parameters are shared by these constituent trends. For example, suppose
that the CROSS= list contains two variables .X1 and X2/ and the trend specification is of the type
RW. The effect of CROSS=(X1; X2) is to create a component �t D X1�1;t C X2�2;t , where �1;t
and �2;t are two independent random walk trends. Moreover, if the random walk trend specification
uses the LEVELVAR= option to specify the variance parameter, �1;t and �2;t share the same variance
parameter; otherwise, two separate variance parameters are assigned to these random walks. If the
second form of the CROSS option, CROSS(MATCHPARM)=, is used, then the constituent trends
share all the relevant parameters no matter how they are specified. The CROSS= option is useful for a
variety of situations. For example, suppose X is an indicator variable that is 1 before a certain time
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point t0 and 0 thereafter. Then CROSS=(X) has the effect of turning off the trend component after time
t0. Similarly, suppose G1 and G2 are indicators for gender—for example, G1 = (GENDER=1) and G2
= (GENDER=0) for male and female cases, respectively. Then CROSS=(G1; G2) results in separate
trends according to the gender. The variables in the CROSS= list must be free of unknown parameters.

The CROSS= option can be computationally expensive; computationally it is equivalent to specifying
as many separate trends as the number of variables in the specified list.

LEVELVAR=variable | number
specifies the disturbance variance parameter for all the trend types. For trend types LL and DLL, this
option specifies �21 . Any nonnegative value, including 0, is permissible. If variable contains unknown
parameters, they are estimated from the data. Similarly, if the LEVELVAR= option is not specified, �2

is estimated from the data.

MA=�1 �2 . . . �q
lists the values of the coefficients of the nonseasonal moving average polynomial,

�.B/ D 1 � �1B � � � � � �qB
q

where the order q is specified in the ARIMA trend specification. The coefficients �i must define an
invertible moving average polynomial.

NODIFFUSE
treats the diffuse elements in the initial state of the state subsection underlying the trend component as
nondiffuse. This option is applicable to all trend types except ARIMA. For the ARIMA trend type,
this option is ignored even if the nonseasonal or seasonal differencing orders are nonzero. The diffuse
elements are assumed to be independent, zero-mean, Gaussian variables. Their variances become
part of the parameter vector and are estimated by using the data. This option is useful for creating a
trend component that can be interpreted as a deviation from an overall trend component (with diffuse
initialization), which is defined separately.

PHI=variable | number
specifies the value of � for trend types DLL, DECAY, DECAY(OU), GROWTH, and GROWTH(OU).
For the type DLL, the specified value must be between 0.0 and 1.0. For types DECAY and DECAY(OU),
� must be strictly negative. For types GROWTH and GROWTH(OU), � must be strictly positive. If
variable contains unknown parameters, they are estimated from the data. Similarly, if the PHI= option
is not specified, � is estimated from the data.

PRINT=BREAKDETAIL | COV | COV1 | FILTER | SMOOTH | T

PRINT= (< BREAKDETAIL > < COV > < COV1 > < FILTER > < SMOOTH > < T > )
requests printing of the respective system matrices of the state equation that underlies the specified
trend, the printing of its filtered and smoothed estimates, and the printing of the break statistics at each
distinct time point. For the BREAKDETAIL suboption to have any effect, the CHECKBREAK option
must be turned on. If any of these matrices are time-varying, the matrix that corresponds to the first
time instance is printed.
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SAR=ˆ1 ˆ2 . . .ˆP
lists the values of the coefficients of the seasonal autoregressive polynomial

ˆ.Bs/ D 1 �ˆ1B
s
� � � � �ˆPB

sP

where the order P is specified by using the SP= option in the ARIMA trend specification and the season
length s is specified in the S= option. The coefficients ˆi must define a stationary autoregressive
polynomial.

SMA=‚1 ‚2 . . .‚Q
lists the values of the coefficients of the seasonal moving average polynomial

‚.Bs/ D 1 �‚1B
s
� � � � �‚QB

sQ

where the order Q is specified by using the SQ= option in the ARIMA trend specification and the
season length s is specified in the S= option. The coefficients ‚i must define an invertible moving
average polynomial.

SLOPEVAR=variable | number
specifies the second disturbance variance parameter, �22 , for trend types LL and DLL. Any nonnegative
value, including 0, is permissible. If variable contains unknown parameters, they are estimated from
the data. Similarly, if the SLOPEVAR= option is not specified, �22 is estimated from the data.

Details
Throughout this section, vectors and matrices are denoted by boldface letters. Generally, Greek letters (such
as ˛̨̨ , ˇ̌̌ , and ���) denote unobserved or latent quantities—often estimated from the data—that represent model
parameters, latent states, or noise variables. Capital letters such as X, Y, and Z are used to denote the observed
data variables. Whenever there is no ambiguity, it is assumed that the matrices have appropriate dimensions
when they are being multiplied—in particular, the vectors behave as column vectors or row vectors as the
need arises. On many occasions, matrices are described inline—that is, they are described as parenthesized
lists, in a rowwise fashion, with the rows separated by a comma. The term “dot product” is used to describe
the scalar that results from the product of a row vector with a (conforming) column vector.

State Space Model and Notation
The (linear) state space model is described in the literature in a few different ways and with varying degree of
generality. The description given in this section loosely follows the description given in Durbin and Koopman
(2012, chap. 6, sec. 4). This formulation of SSM is quite general; in particular, it includes nonstationary
SSMs with time-varying system matrices and state equations with a diffuse initial condition (these terms are
defined later in this subsection).

Suppose that observations are collected in a sequential fashion (indexed by a numeric variable �) on
some variables: the vector y D .y1; y2; : : : ; yq/, which denotes the q-variate response values, and the
k-dimensional vector x, which denotes the predictors. Suppose that the observation instances are �1 < �2 <
: : : < �n. The possibility that multiple observations are taken at a particular instance �i is not ruled out, and
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the successive observation instances do not need to be regularly spaced—that is, .�2 � �1/ does not need
to equal .�3 � �2/. For t D 1; 2; : : : ; n, suppose pt (� 1) denotes the number of observations recorded at
instance �t . For notational simplicity, an integer-valued secondary index t is used to index the data so that
t D 1 corresponds to � D �1, t D 2 corresponds to � D �2, and so on. Consider the following model:

Yt D Zt ˛̨̨ t CXt ˇ̌̌ C ���t Observation equation

˛̨̨ tC1 D Tt ˛̨̨ t CWtC1 C ctC1 C ���tC1 State transition equation

˛̨̨1 D c1 CA1ııı CW1 C ���1 Initial condition

The following list describes these equations:

� The observation equation describes the relationship between the .pt � q/-dimensional response vector
Yt and the unobserved vectors ˛̨̨ t , ˇ̌̌ , and ���t . The q-variate responses are vertically stacked in a column
to form this .pt � q/-dimensional response vector Yt . The m-dimensional vectors ˛̨̨ t are called states,
the k-dimensional vector ˇ̌̌ is the regression coefficient vector associated with predictors x, and the
.pt �q/-dimensional vectors ���t are called the observation disturbances. The matrices Zt (of dimension
.q �pt /�m) and Xt (of dimension .q �pt /�k) correspond to the state effect and the regression effect,
respectively. The elements of Xt are assumed to be fully known. The states ˛̨̨ t and the disturbances ���t
are random sequences. It is assumed that ���t is a sequence of independent, zero-mean, Gaussian random
vectors with diagonal covariances, with the diagonal elements denoted by �2t;i ; i D 1; 2; : : : ; q � pt .

� The state sequence ˛̨̨ t is assumed to follow a Markovian structure described by the state transition
equation and the associated initial condition.

� The state transition equation postulates that a new instance of the state, ˛̨̨ tC1, is obtained by multiplying
its previous instance, ˛̨̨ t , by an m-dimensional square matrix Tt (called the state transition matrix) and
by adding three more terms: a known nonrandom vector ctC1 (called the state input); a regression
term WtC1 , where WtC1 is an m � g-dimensional design matrix with fully known elements and 
is the g-dimensional regression vector; and a random disturbance vector ���tC1. The m-dimensional
state disturbance vectors ���t are assumed to be independent, zero-mean, Gaussian random vectors with
covariances Qt (not necessarily diagonal).

� The initial condition describes the starting condition of the state evolution equation. The starting
state vector ˛̨̨1 is assumed to be partially diffuse: it is the sum of a known nonrandom vector c1, a
mean-zero Gaussian vector ���1, and the terms A1ııı and W1 . A1ııı represents the contribution from a
d-dimensional diffuse vector ııı (a diffuse vector is a Gaussian vector with infinite covariance). The
observation and state regression vectors ˇ̌̌ and  are also assumed to be diffuse. The m � d matrix A1
is assumed to be completely known.

� The observation disturbances ���t and the state disturbances ���t (for t � 1) are assumed to be mutually
independent. Either the elements of the matrices Zt , Tt , and Qt and the diagonal elements of the
observation disturbance covariances �2t;i are assumed to be completely known, or some of them can
be functions of a small set of unknown parameters (to be estimated from the data). Suppose that this
unknown set of parameters is denoted by ��� .

� The d-dimensional diffuse vector ııı from the state initial condition together with the observation and
state regression vectors ˇ̌̌ and  constitute the overall .d CkCg/-dimensional diffuse initial condition
of the model. For more information, see the section “Filtering, Smoothing, Likelihood, and Structural
Break Detection” on page 2446.
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Although this description of the state space model might appear involved, it conveniently covers many variants
of the SSMs that are encountered in practice and precisely describes the most general case that can be handled
by the SSM procedure. An important restriction about the preceding description of the model formulation is
that it assumes that the matrices Xt and Wt that appear in the observation equation and the state equation
respectively are free of unknown parameters and that the covariances of the observation disturbances ���t
are diagonal. In most practical situations, the model under consideration can be easily reformulated to a
statistically equivalent form that conforms to this restriction.

NOTE: The transition matrix Tt in the state equation relates the state ˛̨̨ t at time t with the state ˛̨̨ tC1 at time
t C 1. In many situations, such as when the observations are taken at irregular time intervals, Tt depends on
information at both t and t C 1. Therefore, it is more appropriate to denote the transition matrix as TtC1t .
However, for simplicity, the former notation is used throughout this chapter. The same comment applies to
the covariance matrix Qt of the disturbance term ���t .

For easy reference, Table 34.4 summarizes the information contained in the SSM equations.

Table 34.4 State Space Model: Notation

Notation Description

�1; �2; : : : ; �n Distinct index values at which the observations are recorded
n Number of distinct index instances
pt Number of observations recorded at index �t , t D 1; 2; : : : ; n
q Number of response variables in the model
Yt D .yt;1; yt;2; : : : ; yt;pt�q/ Vertically stacked vector of response values recorded at �t
N D q �

Pn
tD1 pt Total number of response values in the data set

k Number of predictor (regressor) variables in the observation equation
Xt .pt � q/ � k matrix of predictor values recorded at �t
ˇ̌̌ k-dimensional regression vector that is associated with the predictors
���t � N.0; .�

2
t;1; : : :// .q � pt /-dimensional observation disturbance vector with diagonal covariance

m Dimension of the state vectors ˛̨̨ t
˛̨̨ t m-dimensional state vector
Zt .q � pt / �m matrix that is associated with ˛̨̨ t in the observation equation
Tt m �m state transition matrix
ct m-dimensional state input vector
Wt m � g design matrix associated with  , the state regression vector
 g-dimensional state regression vector
���t � N.0;Qt / m-dimensional state disturbance vector
d Dimension of the diffuse vector ııı in the state initial condition
ııı � N.0; �†/, � !1 Diffuse vector in the state initial condition
A1 m � d constant matrix associated with ııı
���1 � N.0;Q1/ m-dimensional state disturbance vector in the initial condition
��� Parameter vector
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Types of Sequence Data
The state space model specification in the SSM procedure requires proper understanding of both the data
organization and the form of the model. The SSMs that are appropriate for time series data might not be
appropriate for irregularly spaced longitudinal data. The SSM procedure distinguishes three types of data
organization based on the way the observations are sequenced by the index variable. If an index variable is
not specified, it is assumed that the observations are sequenced according to the observation number.

Regular: The observations are recorded at regularly spaced intervals; that is, �1; �2; : : : ; �n are regularly
spaced. Moreover, at each observation instance �i a single observation is recorded; that is, pt D 1 for
all t. The standard time series data (both univariate and multivariate) fall in this category.

Regular with Replication: The observations are recorded at regularly spaced intervals, but pt > 1 for at
least one t. Here the word replication is used loosely—it does not mean that the multiple observations
at �t are replications in the precise statistical sense. The panel or cross-sectional data types fall into
this category. In the panel data case with p cross sections, pt D p for all t.

Irregular: The observations are not recorded at regular intervals, and the number of observations pt at each
index instance can be different. The longitudinal data fall into this category.

It is not always easy to decide whether the specified model is appropriate for the given data type. Whenever
possible, the SSM procedure issues a note regarding the possible mismatch between the specified model and
the data type being analyzed.

Overview of Model Specification Syntax
An SSM specification involves the description of the terms in the observation equation, the state transition
equation, and the initial condition. For example, the response variables, the predictor variables, and the
elements of the state transition matrix Tt must somehow be specified. The SSM procedure syntax is designed
so that little effort is needed to specify the more commonly needed models, while a highly flexible language
is available for specifying more complex models. Two syntax features help achieve this goal: the ability
to build a complex specification by combining simpler subspecifications, and a programming language for
creating lists of variables to be used later in the model specification.

The SSM procedure statements can be divided into two classes:

� programming statements, which are used to create lists of variables that can be used for a variety
purposes (for example, as the elements of the model system matrices)

� statements specific to the SSM procedure that formulate the state space model and control its other
aspects such as the input data specification and the resulting output

Since the matrices involved in the model specification can be specified as lists of variables, which you
separately create by using the programming statements, you can finely control all aspects of the model
specification. These programming statements permit the use of most DATA step language features such as
the conditional logic (IF-THEN-ELSE), array type variables, and all the mathematical functions available in
the DATA step. You can also use programming statements to define predictor variables on the fly.
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Building a Complex Model Specification

In addition to being able to specify the system matrices in a flexible way, you can also build a complex model
specification in a modular way by combining simpler subspecifications. Suppose that the state vector for
the model to be specified is composed of subsections that are statistically independent, which is a common
scenario in practical modeling situations. For example, suppose that ˛̨̨ t can be divided into two disjoint
subsections ˛̨̨at and ˛̨̨bt , which are statistically independent. This entails a corresponding block-diagonal
structure to the system matrices Tt , Wt , and Qt that govern the state equations. In this case the term Zt ˛̨̨ t
that appears in the observation equation also splits into the sum Zat ˛̨̨

a
t C Zbt ˛̨̨

b
t for appropriately partitioned

matrices Zat and Zbt . The model specification syntax of the SSM procedure makes building an SSM from
such smaller pieces easy. Throughout this chapter, the linear combinations of the state subsections (such
as Zat ˛̨̨

a
t ) that appear in the observation equation are called components. An SSM specification in the SSM

procedure is created by combining separate component specifications. In general, you specify a component
in two steps: first you define a state subsection ˛̨̨at , and then you define a matching linear combination Zat ˛̨̨

a
t .

For some special components, such as some commonly needed trend components, you can combine these
two steps into one keyword specification.

The following list summarizes the (nonprogramming) SSM procedure syntax statements used for model
specification:

� The ID statement specifies the index variable (� ). It is assumed that the data within each BY group are
ordered (in ascending order) according to the ID variable. The SSM procedure automatically creates a
variable, _ID_DELTA_, which contains the difference between the successive ID values. This variable is
available for use by the programming statements to define time-varying system matrices. For example,
in the case of SSMs used for modeling the longitudinal data, the Tt and Qt matrices often depend on
_ID_DELTA_ (see Example 34.5).

� The PARMS statement specifies variables that serve as the parameters of the model. That is, it partially
defines the model parameter vector ��� . Other elements of ��� are implicitly defined if your specification
of the system matrices is not fully complete.

� The STATE statement specifies a subsection of the model state vector. Multiple STATE statements
can be used in the model specification; each one defines a statistically independent subsection of the
model state vector. For full customization, Tt , Wt , and Qt blocks that govern this subsection can be
specified as lists of variables that are created by programming statements. However, you can obtain
many commonly needed state subsection types simply by using the TYPE= option in this statement.
For example, the use of TYPE=SEASON(LENGTH=12) results in a state subsection that can be used
to define a monthly seasonal component.

� The COMPONENT statement specifies a linear combination that matches a state subsection that
is previously defined in a STATE statement. Thus, a matching pair of STATE and COMPONENT
statements define a component.

� The TREND statement is used for easy specification of some commonly needed components that
follow stochastic patterns of certain predefined types.

� The IRREGULAR statement specifies the observation disturbance for a particular response variable.

� The DEPLAG statement specifies the terms in the model that involve lagged response variables.
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� The MODEL statement specifies the observation equation for one of the response variables. A separate
MODEL statement is needed for each response variable in the multivariate case. The MODEL
statement specifies an equation in which the left-hand side is the response variable and the right-hand
side is a list that contains components and regression variables.

Model Specification Steps

To illustrate the model specification steps, suppose y is a response variable and variables x1 and x2 are
predictors. The following statements specify a model for y that includes two components named cycle and
randomWalk, predictors x1 and x2, and an observation disturbance named whiteNoise:

parms lambda / lower=(1.e-6) upper=(3.14);
parms cycleVar / lower=(1.e-6);
array cycleT{4} c1-c4;
c1 = cos(lambda);
c2 = sin(lambda);
c3 = -c2;
c4 = c1;
state s_cycle(2) T(g)=(cycleT) cov(I)=(cycleVar) a1(2);
component cycle=(1 0)*s_cycle;
trend randomWalk(rw);
irregular whiteNoise;
model y = x1 x2 randomWalk cycle whiteNoise;

The specification begins with a PARMS statement that defines two parameters, lambda and cycleVar,
along with their lower and upper bounds (essentially 0 and � for lambda, and 0 and infinity for cycleVar).
Next, programming statements define an array of variables, cycleT, which contains four variables, c1–c4;
these variables are used later for defining the elements of the transition matrix of a state subsection. The
STATE statement specifies the two-dimensional subsection s_cycle; the dimension appears within the
parentheses after the name (s_cycle(2)). The T= option specifies the transition matrix for the s_cycle
(T(g)=(cycleT)); the g in T(g) signifies that the form of the T matrix is general. The COV= option
(cov(I)=(cycleVar)) specifies the covariance of the state disturbance (Qt for t � 2); because of the use of
I in cov(I), the covariance is of the form scaled identity, essentially a two-dimensional diagonal matrix with
both diagonal elements equal to cycleVar. The initial condition for s_cycle is completely diffuse because
the A1= option, which specifies A1, specifies that the dimension of the diffuse vector ııı is 2: a1(2). In this
case there is no need to specify the covariance Q1 in the initial condition. The COMPONENT statement
specifies the component cycle. It specifies cycle as a dot product of two vectors—.1 0/ and s_cycle, which
merely selects the first element of s_cycle: component cycle=(1 0)*s_cycle. The TREND statement
defines a component named randomWalk; its type is rw, which signifies random walk. The IRREGULAR
statement defines an observation disturbance named whiteNoise. Both the randomWalk and whiteNoise
specifications are only partially complete—for example, the disturbance variance of whiteNoise is not
specified. These unspecified variances, trendVar, which corresponds to randomWalk, and wnVar, which
corresponds to whiteNoise, are automatically included in the list of unknown parameters, ��� , along with
the parameters that are defined by the PARMS statements. Thus, the parameter vector for this model is
��� D .lambda cycleVar trendVar wnVar/. Finally, the model specification is completed by the MODEL
statement, which specifies the components of the observation equation: the response variable y, the predictors
x1 and x2, the components randomWalk and cycle, and the irregular term whiteNoise.

The preceding statements result in an SSM with a three-dimensional state vector, which is the result of
combining the two-dimensional state subsection, s_cycle, and a one-dimensional subsection underlying the
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trend, randomWalk. In this specification, the initial state is completely diffuse with Q1 a null matrix, and A1
equal to the three-dimensional identity. The other state system matrices Tt and Qt are time-invariant:

T D

24 cos.lambda/ sin.lambda/ 0

� sin.lambda/ cos.lambda/ 0

0 0 1

35 Q D

24 cycleVar 0 0

0 cycleVar 0

0 0 trendVar

35
The observation equation is obvious with Z D Œ1 0 1�.

Sparse Transition Matrix Specification

It often happens that the transition matrix T (or Tt in the time-varying case) specified in a STATE statement is
sparse—that is, many of its elements are zero. The algorithms in the SSM procedure exploit this sparsity for
computational efficiency. In most cases the sparsity of a T-block can be inferred from the context. However,
if the elements of the T-block are supplied by a list of variables in parentheses, it can be difficult to recognize
elements that are structurally zero (this is because of the generality of the DATA step language used for
defining the variables). To simplify the specification of such sparse transition matrix, SSM procedure has
adopted a convention: the variables that correspond to structural zeros can (and should) be left unset—that
is, these variables are declared, but no value is assigned to them. As an example, suppose that a three-
dimensional state subsection has the following form of transition matrix for some variables X1, X2, and X3
defined elsewhere in the program:

T D

24 X1 0 0

X2 X1 0

X3 0 X1

35
The following (incomplete) statements show how to specify such a T-block:

array tMat{3,3};
do i=1 to 3;

tMat[i, i] = x1;
end;
tMat[2,1] = x2;
tMat[3,1] = x3;
state foo(3) T(g)=(tMat) ...;

In this specification only the nonzero elements of the tMat array, which contains 3 � 3 D 9 elements, are
assigned a value. On the other hand, the following statements show an alternate way of specifying the same
T-block. This specification explicitly sets the zeros in the T-block (the elements above the diagonal and
tMat[3,2]) to 0.

array tMat{3,3};
do i=1 to 3;

do j=1 to 3;
if i=j then tMat[i, j] = x1;
else if j > i then tMat[i, j] = 0;

end;
end;
tMat[2,1] = x2;
tMat[3,1] = x3;
tMat[3,2] = 0;
state foo(3) T(g)=(tMat) ...;
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The first specification is simpler, and is preferred. The second specification is mathematically equivalent (and
generates the same output) but is computationally less efficient since its sparsity structure cannot always be
reliably inferred due to the generality of the DATA step language. In the first specification, the unset elements
are recognized to be structural zeros while the set elements are treated as nonzero for sparsity purposes. For
a simple illustration, see Example 34.5. Proper sparsity specification can lead to significant computational
savings for larger matrices.

Regression Variable Specification in Multivariate Models

Suppose that a regression variable in a multivariate model affects two or more response variables. For
example, suppose that response variables y1 and y2 depend on a regression variable x. This dependence can
be categorized as one of two types:

� In the more common case, the regression coefficient of x for y1 and the regression coefficient of x for
y2 are different. The relationship can be described as follows:

y1 D ˇ1x C other terms

y2 D ˇ2x C other terms

In the SSM procedure you can specify this type of relationship in two equivalent ways:

– You can specify the variable x in the MODEL statement for y1 and specify the variable x_copy (a
copy of x) in the MODEL statement for y2 as follows:

x_copy = x; /* create a copy of x */
model y1 = x ...;
model y2 = x_copy ...;

– You can specify the variable x in MODEL statements for both y1 and y2 as follows:

model y1 = x ...;
model y2 = x ...;

This specification avoids creating x_copy.

Of these two alternate ways, the first is preferred because x and x_copy can then be unambiguously
used in an EVAL statement to refer to the terms ˇ1x and ˇ2x, respectively.

� In the less common case, y1 and y2 share a common regression coefficient.The relationship can be
described as follows:

y1 D ˇx C other terms

y2 D ˇx C other terms

You can specify this type of relationship by placing the regression coefficient in the model state vector
as follows:
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state beta(1) T(I) A1(1) ; /* beta is a constant state */
comp xeffect = beta*(x) ;
model y1 = xeffect ...;
model y2 = xeffect ...;

Here the STATE statement defines beta as a one-dimensional, time-invariant constant (because the
transition matrix is identity, the disturbance covariance is 0 and the initial state is diffuse). Next, the
COMP statement defines xeffect as the product between beta and the variable x. Subsequently, both y1
and y2 use xeffect in their respective MODEL statements.

Filtering, Smoothing, Likelihood, and Structural Break Detection
The Kalman filter and smoother (KFS) algorithm is the main computational tool for using SSM for data anal-
ysis. This subsection briefly describes the basic quantities generated by this algorithm and their relationship
to the output generated by the SSM procedure. For proper treatment of SSMs with a diffuse initial condition
or when regression variables are present, a modified version of the traditional KFS, called diffuse Kalman
filter and smoother (DKFS), is needed. A good discussion of the different variants of the traditional and
diffuse KFS can be found in Durbin and Koopman (2012). The DKFS implemented in the SSM procedure
closely follows the treatments in De Jong and Chu-Chun-Lin (2003) and Francke, Koopman, and de Vos
(2010). Additional details can be found in these references.

The state space model equations (see the section “State Space Model and Notation” on page 2438) imply
that the combined response data vector Y D .Y1;Y2; : : : ;Yn/ has a Gaussian probability distribution. This
probability distribution is proper if d, the dimension of the diffuse vector ııı in the initial condition, is 0 and
if .k C g/, the total number of regression variables in the observation and state equations, is also 0 (the
regression vectors ˇ̌̌ and  are also treated as a diffuse vectors). Otherwise, this probability distribution is
improper. The KFS algorithm is a combination of two iterative phases: a forward pass through the data,
called filtering, and a backward pass through the data, called smoothing, that uses the quantities generated
during filtering. One of the advantages of using the SSM formulation to analyze the time series data is its
ability to handle the missing values in the response variables. The KFS algorithm appropriately handles
the missing values in Y. For additional information about how PROC SSM handles missing values, see the
section “Missing Values” on page 2469.

Filtering Pass

The filtering pass sequentially computes the quantities shown in Table 34.5 for t D 1; 2; : : : ; n and i D
1; 2; : : : ; q � pt .

Table 34.5 KFS: Filtering Phase

Quantity Description

Oyt;i D E.yt;i jyt;i�1; : : : yt;1;Yt�1; : : : ;Y1/ One-step-ahead prediction of the response values
�t;i D yt;i � Oyt;i One-step-ahead prediction residuals
Ft;i D Var.yt;i jyt;i�1; : : : yt;1;Yt�1; : : : ;Y1/ Variance of the one-step-ahead prediction
Ǫ̨̨ t;i D E.˛̨̨ t jyt;i�1; : : : yt;1;Yt�1; : : : ;Y1/ One-step-ahead prediction of the state vector
Pt;i D Cov.˛̨̨ t jyt;i�1; : : : yt;1;Yt�1; : : : ;Y1/ Covariance of Ǫ̨̨ t;i
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Table 34.5 continued

Quantity Description

bt;i .d C k C g/-dimensional vector
St;i .d C k C g/-dimensional symmetric matrix�
Oııı Ǒ̌̌ O

�0
t;i
D S�1t;i bt;i Estimates of ııı, ˇ̌̌ , and  by using the data up to .t; i/

S�1t;i Covariance of
�
Oııı Ǒ̌̌ O

�0
t;i

S�t;i .d C k C g/-dimensional symmetric matrix
needed in the marginal likelihood computation

Here the notation E.yt;i jyt;i�1; : : : ; yt;1;Yt�1; : : : ;Y1/ denotes the conditional expectation of
yt;i given the history up to the index .t; i � 1/: .yt;i�1; : : : ; yt;1;Yt�1; : : : ;Y1/. Similarly
Var.yt;i jyt;i�1; : : : ; yt;1;Yt�1; : : : ;Y1/ denotes the corresponding conditional variance. The quan-
tity �t;i D yt;i � Oyt;i is set to missing whenever yt;i is missing. Note that Oyt;i are one-step-ahead forecasts
only when the model has only one response variable and the data are a time series; in all other cases it
is more appropriate to call them one-measurement-ahead forecasts (since the next measurement might
be at the same time point). Despite this, Oyt;i are called one-step-ahead predictions (and �t;i are called
one-step-ahead residuals) throughout this document. In the diffuse case, the conditional expectations must be
appropriately interpreted. The vector bt;i and the matrix St;i contain some accumulated quantities that are
needed for the estimation of ııı, ˇ̌̌ , and  . Of course, when .d C k C g/ D 0 (the nondiffuse case), these
quantities are not needed. In the diffuse case, because the matrix St;i is sequentially accumulated (starting at
t D 1; i D 1), it might not be invertible until some t D t�; i D i�. The filtering process is called initialized
after t D t�; i D i�. In some situations, this initialization might not happen even after the entire sample is
processed—that is, the filtering process remains uninitialized. This can happen if the regression variables
are collinear or if the data are not sufficient to estimate the initial condition ııı for some other reason. In
the diffuse case if the marginal likelihood is to be computed (see the section “Likelihood Computation and
Model-Fitting Phase” on page 2447), an additional matrix (S�t;i ) is computed at each step by sequential
accumulation.

The filtering process is used for a variety of purposes. One important use of filtering is to compute the
likelihood of the data. In the model-fitting phase, the unknown model parameters ��� are estimated by
maximum likelihood. This requires repeated evaluation of the likelihood at different trial values of ��� . After ���
is estimated, it is treated as a known vector. The filtering process is used again with the fitted model in the
forecasting phase, when the one-step-ahead forecasts and residuals based on the fitted model are provided.
In addition, this filtering output is needed by the smoothing phase to produce the full-sample component
estimates and for the structural break analysis.

Likelihood Computation and Model-Fitting Phase

Because of the Gaussian nature of the response vector, the likelihood of Y can be computed by using the
prediction-error decomposition. The desired prediction-error decomposition is obtained by the filtering
pass described in the previous section (“Filtering Pass” on page 2446). When the state space model under
consideration has a nondiffuse initial condition and no regression effects are present in the observation
and state equations, Y has a proper Gaussian distribution and its likelihood is defined unambiguously.
Otherwise, the definition of the likelihood depends on the treatment of the diffuse quantities—ııı, ˇ̌̌ , and  .
Francke, Koopman, and de Vos (2010) describe three variants of the likelihood function—diffuse-likelihood,
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marginal-likelihood, and profile-likelihood—that are commonly considered for state space models that
have a diffuse initial condition. In the SSM procedure, you can either use diffuse likelihood (Ld .Y; ���/) or
marginal likelihood (Lm.Y; ���/) for parameter estimation. Parameter estimation by marginal likelihood is a
new experimental feature in this release. By default, diffuse likelihood is used for parameter estimation.

In terms of the quantities described in Table 34.5, diffuse, marginal, and profile likelihoods are defined as
follows:

�2 log Ld .Y; ���/ D N0 log 2� C
nX
tD1

q�ptX
iD1

.logFt;i C
�2t;i

Ft;i
/ � b

0

n;pn
S�1n;pnbn;pn C log.jSn;pn j/

�2 log Lm.Y; ���/ D N0 log 2� C
nX
tD1

q�ptX
iD1

.logFt;i C
�2t;i

Ft;i
/ � b

0

n;pn
S�1n;pnbn;pn C log.jSn;pn j/

� log.jS�n;pn j/

�2 log Lp.Y; ���/ D N log 2� C
nX
tD1

q�ptX
iD1

.logFt;i C
�2t;i

Ft;i
/ � b

0

n;pn
S�1n;pnbn;pn

In the preceding formulas, the terms that are associated with the missing response values yt;i are excluded and
N denotes the total number of nonmissing response values in the sample. In addition, N0 D .N �k�g�d/;
jSn;pn j and jS�n;pn j denote the determinants of Sn;pn and S�n;pn , respectively; and b

0

n;pn
denotes the transpose

of the column vector bn;pn . If Sn;pn is not invertible, then a generalized inverse is used in place of S�1n;pn ,
and jSn;pn j and jS�n;pn j are computed based on the nonzero eigenvalues of Sn;pn and S�n;pn , respectively.
Moreover, in this case, N0 D N � Rank.Sn;pn/. When .d C k C g/ D 0, the terms that involve Sn;pn ,
S�n;pn , and bn;pn are absent.

The expression for marginal likelihood is derived by treating the diffuse quantities as fixed but unknown
parameters. The expression can be shown to be based on a linear transformation of the N-dimensional
response vector Y. For a suitably chosen N � N matrix H, let U D HY. H is chosen such that the
N-dimensional transformed vector U partitions into two uncorrelated (and independent because of their
Gaussian nature) subvectors: an N0-dimensional vector U1 and a .d C k C g/-dimensional vector U2.
Furthermore, the distribution of U1 does not depend on the diffuse vectors (ııı, ˇ̌̌ , and ), and U2 stores
the generalized least squares estimates of the diffuse vectors: U

0

2 D .Oııı Ǒ̌̌ O/
0

. It turns out that the
N0-dimensional vector, U1, has a proper Gaussian distribution and the marginal likelihood, log Lm.Y; ���/, is
the proper likelihood of U1. The diffuse likelihood, log Ld .Y; ���/, is also based on U1. However, rather than
assuming the diffuse quantities as unknown parameters, the expression of the diffuse likelihood is derived
by assuming that ııı, ˇ̌̌ , and  are random vectors with diffuse priors. Even though the marginal and diffuse
likelihoods are based on different interpretations of the diffuse quantities, their expressions differ by only
one term: the diffuse likelihood does not have the term � log.jS�n;pn j/. Since the marginal likelihood is the
proper likelihood of U1, the diffuse likelihood can be interpreted as a quasi-likelihood of U1. Apart from
being essential to make it a proper likelihood, the extra term in the marginal likelihood plays another useful
role: it makes the marginal likelihood invariant to linear rescaling of the diffuse effects, a desirable property
in a likelihood. The diffuse likelihood is not invariant to linear rescaling of the diffuse effects. The profile
likelihood, log Lp.Y; ���/, is the likelihood of the response vector Y evaluated at the generalized least squares
estimates of the diffuse vectors: .ııı ˇ̌̌ /

0

D .Oııı Ǒ̌̌ O/
0

. It is derived by treating the diffuse quantities as
fixed but unknown parameters and, like the marginal likelihood, is invariant to linear rescaling of the diffuse
effects. For an illustration of this invariance property, see Example 34.18.

In the literature, the marginal likelihood (in addition to the diffuse likelihood) is also called the restricted-
likelihood, and the estimate of the parameter vector ��� that is obtained by maximizing log Lm.Y; ���/ (or
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log Ld .Y; ���/) is called the restricted maximum likelihood estimate (REML). In this section, the REML
estimate that is based on marginal likelihood is denoted by REML_M and the REML estimate that is based on
diffuse likelihood is denoted by REML_D. In addition, the estimate of ��� that is obtained by maximizing the
profile likelihood is called the maximum likelihood estimate (ML). In the absence of the diffuse quantities,
all three likelihoods are the same and the REML_M, REML_D, and ML estimates coincide. When diffuse
quantities are present, there is some evidence to prefer REML_M, the estimate of ��� that is based on the
marginal likelihood. For more information, see Francke, Koopman, and de Vos (2010) and the references
therein. By default, the SSM procedure uses diffuse likelihood for parameter estimation. You can switch to
marginal likelihood by using the LIKE=MARGINAL option in the PROC SSM statement. In the current
release of the SSM procedure, you cannot request parameter estimation by using profile likelihood.

Interestingly, for many types of state space models, REML_M and REML_D coincide even when diffuse
effects are present. This is because for these models the extra term in the marginal likelihood, � log.jS�n;pn j/,
turns out to be independent of the parameter vector ��� . Specifically, for models that are specified by using the
PROC SSM syntax, REML_M and REML_D differ only if at least one of the following conditions hold:

� The transition matrix (Tt ) that is implied by a STATE statement depends on at least one unknown
parameter and the diffuse dimension of the associated state subsection is nonzero.

� The list of variables that is specified in a COMPONENT statement depends on at least one unknown
parameter and the diffuse dimension of the associated state subsection is nonzero.

� At least one lag term in a DEPLAG statement depends on an unknown parameter.

� A TREND statement with GROWTH or GROWTH(OU) type is present and the growth parameter, �,
is unknown.

In particular, if the parameter vector affects only the disturbance covariances (Qt ) in the state equation and
the error variances (�2t;i ) in the observation equation (see Table 34.4), REML_M and REML_D coincide.
These observations also imply that REML_M and REML_D coincide for the most commonly used univariate
and multivariate unobserved component models and for ARIMA models, with or without regression effects.

NOTE: For many examples in the section “Examples: SSM Procedure” on page 2475, one of the preceding
conditions does hold and the REML_M and REML_D estimates do differ. However, in all these cases, it turns
out that the differences in REML_M and REML_D are not large enough to change the overall conclusions of
the analysis. As verification, you can rerun the analyses that are described in Example 34.10, Example 34.13,
and Example 34.14 by using the LIKE=MARGINAL option in the PROC SSM statement. Of course, this
will not be true in general.

The REML_D and REML_M estimates of the unknown parameter vector ��� (each denoted as O��� ), are computed
by maximizing the diffuse (or marginal) likelihood. This is done by using a nonlinear optimization process
that involves repeated evaluations of Ld .Y; ���/ (or Lm.Y; ���/) at different values of ��� . Approximate standard
errors of O��� are computed by taking the square root of the diagonal elements of its (approximate) covariance
matrix. This covariance is computed as �H�1, where H is the Hessian (the matrix of the second-order
partials) of log Ld .Y; ���/ (or log Lm.Y; ���/) evaluated at the optimum O��� . It is known that under mild regularity
assumptions (as the number of distinct time points tends toward infinity), O��� is consistent and efficient. For
good discussions about REML_D, REML_M, and ML estimates, see Searle, Casella, and McCulloch (1992);
Laird (2004); Francke, Koopman, and de Vos (2010).

If the marginal likelihood is used for parameter estimation, the SSM procedure reports the values of all three
likelihoods at the parameter estimate O��� . Otherwise, PROC SSM reports the values of the diffuse and profile
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likelihoods that are calculated at the parameter estimate O��� . Let dim.�/ denote the dimension of the parameter
vector ��� . After PROC SSM completes the parameter estimation, it prints the “Likelihood Computation
Summary” table, which summarizes the likelihood calculations at O��� , as shown in Table 34.6.

Table 34.6 Likelihood Computation Summary

Quantity Formula

Nonmissing response values used N
Estimated parameters dim.�/
Initialized diffuse state elements rank.Sn;pn/

Normalized residual sum of squares
Pn
tD1

Pq�pt
iD1 .

�2
t;i

Ft;i
/ � b

0

n;pn
S�1n;pnbn;pn

Diffuse log likelihood log Ld .Y; O���/
Marginal log likelihood log Lm.Y; O���/
Profile log likelihood log Lp.Y; O���/

In addition to the likelihood computation summary, PROC SSM also reports the information criteria that
are based on the diffuse and profile likelihoods. It also reports the information criteria that are based on
the marginal likelihood if marginal likelihood is used for parameter estimation. A variety of information
criteria are reported. All these criteria are functions of twice the negative likelihood (�2 log L, where the
likelihood can be diffuse, marginal, or profile), N� (the effective sample size), and nparm (the effective
number of model parameters). For information criteria that are based on the diffuse and marginal likelihoods,
the effective sample size, N�, is equal to N0 and the effective number of model parameters, nparm , is equal
to dim.�/. For information criteria that are based on the profile likelihood, the effective sample size, N�,
is equal to N and the effective number of model parameters, nparm, is equal to dim.�/ C d C k C g.
Table 34.7 summarizes the reported information criteria in smaller-is-better form.

Table 34.7 Information Criteria

Criterion Formula Reference

AIC �2 log LC 2nparm Akaike (1974)
AICC �2 log LC 2nparmN�=.N� � nparm � 1/ Hurvich and Tsai (1989)

Burnham and Anderson (1998)
HQIC �2 log LC 2nparm log log.N�/ Hannan and Quinn (1979)
BIC �2 log LC nparm log.N�/ Schwarz (1978)
CAIC �2 log LC nparm.log.N�/C 1/ Bozdogan (1987)

Forecasting Phase

After the model-fitting phase, the filtering process is repeated again to produce the model-based one-step-
ahead response variable forecasts ( Oyt;i ), residuals (�t;i ), and their standard errors (

p
Ft;i ). In addition,

one-step-ahead forecasts of the components that are specified in the MODEL statements, and any other
user-defined linear combinations of ˛̨̨ t , are also produced. These forecasts are set to missing as long as the
index t < t� (that is, until the filtering process is initialized). If the filtering process remains uninitialized,
then all the quantities that are related to the one-step-ahead forecast (such as Oyt;i and �t;i ) are reported
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as missing. When the fitted model is appropriate, the one-step-ahead residuals �t;i form a sequence of
uncorrelated normal variates. This fact can be used during model diagnostic process.

Smoothing Phase

After the filtering phase of KFS produces the one-step-ahead predictions of the response variables and the
underlying state vectors, the smoothing phase of KFS produces the full-sample versions of these quantities—
that is, rather than using the history up to .t; i � 1/, the entire sample Y is used. The smoothing phase of
KFS is a backward algorithm, which begins at t D n and i D q � pn and goes back toward t D 1 and i D 1.
It produces the following quantities:

Table 34.8 KFS: Smoothing Phase

Quantity Description

Qyt;i D E.yt;i jY/ Interpolated response value
QFt;i D Var.yt;i jY/ Variance of the interpolated response value
Q̨̨̨ t D E.˛̨̨ t jY/ Full-sample estimate of the state vector
QPt D Cov.˛̨̨ t jY/ Covariance of Q̨̨̨ t�
Oııı Ǒ̌̌ O

�0
D S�1n;pnbn;pn Full-sample estimates of ııı, ˇ̌̌ , and 

S�1n;pn Covariance of
�
Oııı Ǒ̌̌ O

�0

Note that if yt;i is not missing, then Qyt;i D E.yt;i jY/ D yt;i and QFt;i D Var.yt;i jY/ D 0 because yt;i is
completely known, given Y. Therefore, Qyt;i provides nontrivial information only when yt;i is missing—in
which case Qyt;i represents the best estimate of yt;i based on the available data. The full-sample estimates of
components that are specified in the model equations are based on the corresponding linear combinations of
Q̨̨̨ t . Similarly, their standard errors are computed by using appropriate functions of QPt .

If the filtering process remains uninitialized until the end of the sample (that is, if Sn;pn is not invertible),
some linear combinations of ııı, ˇ̌̌ , and  are not estimable. This, in turn, implies that some linear combinations
of ˛̨̨ t are also inestimable. These inestimable quantities are reported as missing. For more information about
the estimability of the state effects, see Selukar (2010).

Delete-One Cross Validation and Structural Breaks

In addition to the interpolation of missing response values and the full-sample estimation of components in
the model, the smoothing phase can also produce several useful diagnostic measures that can indicate outlying
observations and breaks in the state evolution process. The treatment of additive outliers and structural
breaks that is described in this section is based on De Jong and Penzer (1998). Also see Selukar (2017) for
illustrative examples.

Delete-One Cross Validation and the Additive Outlier Detection
Let AOt;i D yt;i � E.yt;i jYt;i / denote the difference between the observed response value yt;i and its
estimate or prediction by using all the data except yt;i , which is denoted by Yt;i . The smoothing phase of
DKFS can generate AOt;i (and its variance) at all .t; i/. A large value of AOt;i signifies that the observed
response value (yt;i ) is unusual relative to the rest of the sample (according to the postulated model). Such
values are called additive outliers. In the literature, AOt;i are referred by a few different names. Sometimes
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they are called delete-one cross validation errors or simply prediction errors. In this chapter, these names are
used interchangeably. Like the one-step-ahead residuals, �t;i , the prediction errors can be used in checking
the adequacy of the model. The prediction errors are normally distributed; however, unlike �t;i , they are not
serially uncorrelated. AOt;i is set to missing when yt;i is missing. The SSM procedure prints a summary
table of extreme additive outliers by default. In addition, you can request the plotting of the standardized
prediction errors, and they can be output to a data set.

The prediction error sum of squares (PRESS)X
t;i

AO2t;i

can be a useful measure of fit to compare different models. It is also called the cross validation error sum of
squares. An additional measure of fit based on the prediction errors is called the generalized cross validation
error sum of squares (GCV). Denoting the variance of AOt;i by VAR_AOt;i , it is defined asP

t;i .AO
2
t;i=VAR_AO2t;i /

Œ
P
t;i .1=VAR_AOt;i / �2

You can request the printing of PRESS and GCV by specifying the PRESS option in the OUTPUT statement.

After inspecting the reported additive outliers, you can adjust the model to account for the effects of some
of the extreme outlying observations. This can be done by including appropriate dummy variables in the
observation equation.

Structural Breaks in the State Evolution
The additive outliers that are discussed in the preceding section are diagnostic measures associated with
the measurement equation. The smoothing phase of DKFS can generate diagnostic measures that are also
associated with the state equation.

For simplicity of notation and exposition, initially assume that the state equation has the following form:

˛̨̨ tC1 D Tt ˛̨̨ t C ctC1 C ���tC1

That is, the state regression term WtC1 is absent in the postulated model. Suppose that an unanticipated
change of unknown size takes place in the i0th element of the state at time .t0 C 1/. The model can then be
adjusted to account for this change by including a suitable dummy regressor in the state equation as follows:

˛̨̨ tC1 D Tt ˛̨̨ t CWtC1 C ctC1 C ���tC1

Here Wt is a sequence of m-dimensional column vectors such that Wt0C1Œi0� D 1 and Wt Œi � D 0 for
all other t and i. The estimate of the regression coefficient  provides information about the size of the
unanticipated change in the i0th element of ˛̨̨ t at time t D t0 C 1. Similarly, an unanticipated change in a
subsection of ˛̨̨ t at a time t D t0 C 1 can be estimated by using a set of appropriate dummies (the number
of dummies equals the number of elements in the state subsection) in the state equation. The algorithm
of De Jong and Penzer (1998) efficiently generates the estimates of such one-time changes in the state at
all distinct time points in the sample in one smoothing pass. A statistically significant value of  at a time
point t0 indicates an unanticipated change in the relevant element (or the subsection) of ˛̨̨ t0 . Note that the
change associated with an additive outlier is temporary: the previous or the subsequent measurements are not
affected. On the other hand, because of the evolutionary nature of the state equation, a one-time change in
the state affects all the subsequent states, which in turn affect the subsequent observations. In this sense, a
significant unanticipated change in the state is a structural break.
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In the preceding discussion, the absence of the state regression variables in the postulated model was assumed
only for notational simplicity. If the postulated model does contain some state regression variables, the
dummy variable that is associated with the one-time state change is simply added to the existing set of state
regression variables, and the interpretation of its regression coefficient as the measure of unanticipated change
in the state remains unaffected.

In the SSM procedure, you can request the computation of significance statistics that are associated with
one-time changes in the state subsections specified by using the STATE statement in addition to the state
subsections that are associated with the components specified by using the TREND statements. This is done
by using the CHECKBREAK option in these statements. In addition, you can request the computation of such
statistics for the entire state ˛̨̨ t by using the MAXSHOCK option in the OUTPUT statement. The significance
statistics can be computed for both elementwise change and subsectionwise change. The computation of
subsectionwise change statistics can be computationally expensive for large subsections (an inversion of
a p � p-dimensional matrix at each distinct time point in the sample is needed for the computation of
significance statistics for a state subsection of size p). For an example of structural break analysis, see
Example 34.8.

Estimation of User-Specified Linear Combination of State Elements
By default, the SSM procedure computes the estimates of all the components that are specified in the
MODEL statements (you can print these estimates by using the PRINT= option in the respective TREND
and COMPONENT statements, or you can output these estimates to a data set by specifying it in the OUT=
option in the OUTPUT statement). However, in many cases it is desirable to obtain the estimates of additional
linear combinations of the state elements and the regression effects. The SSM procedure provides two
statements, the COMPONENT statement and the EVAL statement, that are useful for specifying virtually any
desired linear combination of the elements of the state vector and the regression effects in the observation
equation. After a desired linear combination is specified, you can print or output its estimate as you would
for a component that is used in the MODEL statement. This feature of the SSM procedure is illustrated in
many examples in the section “Examples: SSM Procedure” on page 2475. For example, in the second part of
Example 34.4, the COMPONENT and EVAL statements are used to define the contrasts between the growth
profiles of cows that are receiving different treatments. Similarly, in Example 34.7, the EVAL statement is
used to define the yield curve as a sum of the components that are used in the MODEL statement.

Contrasting PROC SSM with Other SAS Procedures
The SSM procedure complements several SAS/ETS procedures and the MIXED procedure in SAS/STAT
software (see Chapter 84, “The MIXED Procedure” (SAS/STAT User’s Guide)). The statistical models under-
lying all these procedures can be formulated as state space models; however, in many cases this formulation
effort can be considerable. Generally speaking, when a problem can be formulated and satisfactorily solved
either by using the SSM procedure or by using one of these other procedures, the other procedures are likely
to be more efficient. However, in many instances, the SSM procedure can solve more general problems
or offer more detailed analysis, or both. Throughout this discussion, it is assumed that the problem being
solved can be modeled as a linear statistical model with Gaussian response variables. In particular, situations
that require models such as autoregressive conditional heteroscedasticity (ARCH) models, and models with
categorical response variables are not considered. The following list provides a more specific comparison of
the SSM procedure with different procedures:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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� All the SAS/ETS time series analysis procedures (the ARIMA, ESM, UCM, VARMAX, STATESPACE,
and PANEL procedures) require time series data and are not applicable to the longitudinal data.

� For univariate time series analysis, the modeling facilities provided by the ARIMA, ESM, and UCM
procedures are adequate in most cases. The SSM procedure can handle cases that do not fit neatly into
one of these categories.

� For multivariate time series data analysis, you can use the VARMAX procedure for vector ARIMA
modeling and the STATESPACE procedure for state space modeling. The capabilities of the SSM
procedure are complementary to these procedures. In particular, the predefined multivariate structural
models available in the SSM procedure cannot be specified by either of these procedures. In addition,
you can formulate a much wider range of multivariate models—for example, models for series with
different frequencies, by using the SSM procedure.

� When the R side effects are not too complicated (for example, if R is diagonal), the model considered
by the MIXED procedure is a special case of the model considered by the SSM procedure. In the case
of diagonal R, it is easy to see that the state vector ˛̨̨ t is equal to  , the MIXED random-effects vector,
for all t � 1 (that is, ˛̨̨ t is time invariant). Therefore, the random-effects MIXED model is obtained by
setting T D Identity, Qt D 0; t � 2, Q1 D G (the MIXED G matrix), and A1 D 0.

� For the analysis of cross-sectional data, you can use the PANEL procedure. In this case, the SSM
procedure capabilities are complementary. PROC SSM can provide alternate models, REML estimates,
richer missing value support, and the estimates of the unobserved components (see the section “Getting
Started: SSM Procedure” on page 2406 and the examples Example 34.2 and Example 34.11 for more
information). In some situations the cross-sectional studies contain many panels but very few distinct
time points. The PANEL procedure based analysis is better suited in such settings. In order for the
analysis based on PROC SSM to be valid, the cross-sectional study must contain an adequate number
of distinct time points.

Predefined Trend Models
The statistical models that govern the predefined trend components available in the SSM procedure are
divided into two groups: models that are applicable to equally spaced data (possibly with replication), and
models that are applicable more generally (the irregular data type). Each trend component can be described
as a dot product Z˛̨̨ t for some (time-invariant) vector Z and a state vector ˛̨̨ t . The component specification is
complete after the vector Z is specified and the system matrices that govern the equations of ˛̨̨ t are specified.
For trend models for regular data, all the system matrices are time-invariant. For irregular data, Tt and Qt
depend on the spacing between the distinct time points: .�tC1 � �t /.

Trend Models for Regular Data

These models are applicable when the data type is either regular or regular with replication. A good reference
for these models is Harvey (1989).

Random Walk Trend
This model provides a trend pattern in which the level of the curve changes with time. The rapidity of this
change is inversely proportional to the disturbance variance �2 that governs the underlying state. It can be
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described as Z˛t , where Z D .1/ and the (one-dimensional) state ˛t follows a random walk:

˛tC1 D ˛t C �tC1; �t � N.0; �
2/

Here T D 1 and Q D �2. The initial condition is fully diffuse. Note that if �2 D 0, the resulting trend is a
fixed constant.

Local Linear Trend
This model provides a trend pattern in which both the level and the slope of the curve change with time.
This variation in the level and the slope is controlled by two parameters: �21 controls the level variation,
and �22 controls the slope variation. If �21 D 0, the resulting trend is called an integrated random walk. If
both �21 D 0 and �22 D 0, then the resulting model is the deterministic linear time trend. Here Z D .1 0/,
T D .1 1; 0 1/, and Q D Diag.�21 ; �

2
2 /. The initial condition is fully diffuse.

Damped Local Linear Trend
This trend pattern is similar to the local linear trend pattern. However, in the DLL trend the slope follows a
first-order autoregressive model, whereas in the LL trend the slope follows a random walk. The autoregressive
parameter or the damping factor, �, must lie between 0.0 and 1.0, which implies that the long-run forecast
according to this pattern has a slope that tends to 0. Here Z D .1 0/, T D .1 1; 0 �/, and Q D Diag.�21 ; �

2
2 /.

The initial condition is partially diffuse with Q1 D Diag.0; �22=.1 � � � �//.

ARIMA Trend
This section describes the state space form for a component that follows an ARIMA(p,d,q)�(P,D,Q)s model.
The notation for ARIMA models is explained in the TREND statement.

First the state space form for the stationary case—that is, when d D 0 and D D 0, is explained. A number
of alternate state space forms are possible in this case; the one described here is based on Jones (1980). With
slight abuse of notation, let p D p C s � P denote the effective autoregressive order, and let q D q C sQ
denote the effective moving average order of the model. Similarly, let � be the effective autoregressive
polynomial, and let � be the effective moving average polynomial in the backshift operator with coefficients
�1; : : : ; �p and �1; : : : ; �q , obtained by multiplying the respective nonseasonal and seasonal factors. Then, a
random sequence �t that follows an ARMA(p,q)�(P,Q)s model with a white noise sequence at has a state
space form with state vector of sizem D max.p; qC1/. The system matrices are as follows: Z D Œ1 0 : : : 0�,
and the transition matrix T, in a blocked form, is given by

T D
�

0 Im�1
�m : : : �1

�
where �i D 0 if i > p and Im�1 is an .m � 1/ dimensional identity matrix. The covariance of the
state disturbance matrix Q D �2  

0

, where �2 is the variance of the white noise sequence at and the
vector  D Œ 0 : : :  m�1�

0

contains the first m values of the impulse response function—that is, the first m
coefficients in the expansion of the ratio �=�. The covariance matrix of the initial state, Q1, is computed as

vec.Q1/ D .I � T
O

T/�1vec.Q/

where
N

denotes the Kronecker product and the vec operation on a matrix creates a vector formed by
vertically stacking the rows of that matrix.

A number of alternate state space forms are possible in the nonstationary case also. The form used by the
SSM procedure utilizes the state space form for the stationary case as a building block. Suppose that a random
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sequence �t follows an ARIMA(p,d,q)�(P,D,Q)s model with a white noise sequence at . As in the notation
for the stationary case, with slight abuse of notation, let d D dCs�D denote the effective differencing order,
and let � be the effective differencing polynomial in the backshift operator with coefficients �1; : : : ; �d .
It can be shown that �t has a state space form with state vector size m� D m C d . In what follows, the
system matrices and related quantities in the nonstationary case are described in terms of similar entities in
the stationary case. A superscript dagger (�) has been added to distinguish the entities from the nonstationary
case. Z� D Œ0 0 : : : 1 : : : 0� where the only nonzero value, 1, is at the index m C 1, and the transition
matrix, T�, in a blocked form, is given by

T� D

24 T 0 0

ZT �1 : : : �d
0 Id�1 0

35
The state disturbance matrix Q� is given by

Q� D

24 Q QZ
0

0

ZQ ZQZ
0

0

0 0 0

35
Finally, the initial state is partially diffuse: the first m elements are nondiffuse and the last d elements are
diffuse. The covariance matrix of the first m elements is Q1.

Trend Models for Irregular Data

A good reference for these models is De Jong and Mazzi (2001). Throughout this section ht D .�tC1 � �t /
denotes the difference between the successive time points. The system matrices Tt and Qt that govern these
models depend on ht . However, whenever the notation is unambiguous, the subscript t is omitted.

Polynomial Spline Trend
This model is a general-purpose tool for extracting a smooth trend from the noisy data. The order of the
spline governs the order of the local polynomial that defines the spline. The order-1 spline corresponds to
Brownian motion (continuous-time random walk), the order-2 spline corresponds to integrated Brownian
motion (continuous-time integrated random walk), and the order-3 spline provides a locally quadratic trend;
the default order is 1. The dimension of the state underlying this component is the same as the order of
the spline. The system matrices for the orders up to 3 are described as follows (in all the cases the initial
condition is fully diffuse):

� order-1 spline: Z D .1/, T D .1/, and Q D �2.h/

� order-2 spline: Z D .1 0/, T D .1 h; 0 1/, and Q D �2
�
h3

3
h2

2
; h
2

2
h
�

� order-3 spline: Z D .1 0 0/, T D
�
1 h h2

2
; 0 1 h; 0 0 1

�
, and

QŒi; j � D �2 �
h6�i�jC1

.6 � i � j C 1/.3 � i/Š.3 � j /Š
1 � i; j � 3

The system matrices for higher orders are similarly defined (for more information, see De Jong and Mazzi
(2001)).
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Note that, in addition to providing an estimate of the trend, this methodology can provide estimates of the
higher-order derivatives of the trend. If ˛̨̨ denotes the k-dimensional subsection that is associated with a
polynomial spline of order k, then its jth element (1 � j � k), ˛̨̨ Œj �, corresponds to the derivative of order
.j �1/ of this polynomial spline. For an example of the estimation of the first derivative of a trend component,
see Example 34.12. For additional information about using these types of trend patterns in data analysis, see
Eubank, Huang, and Wang (2003); Kohn, Ansley, and Tharm (1991); Selukar (2015).

Decay and Growth Trends
There are two choices for the decay trend: DECAY and DECAY(OU). Similarly, there are two choices for the
growth trend: GROWTH and GROWTH(OU). The “OU” stands for the Ornstein-Uhlenbeck form of these
models. The decay trend is a sum of two correlated components: one component is a random walk, and the
other component is a stationary autoregression. In its Ornstein-Uhlenbeck form, the random walk component
is replaced by a constant. The growth trend (and its Ornstein-Uhlenbeck variant) has the same form as the
decay trend except that the autoregression is nonstationary (in fact, it is explosive). For growth trend models,
floating-point errors can result for even moderately long forecast horizons because of the explosive growth in
the trend values.

The system matrices for the decay and the growth types in their respective cases are identical, except for the
sign of the rate parameter �: � < 0:0 for the decay type, and � > 0:0 for the growth type. In addition, the
initial conditions for the growth models are fully diffuse; they are only partially diffuse for the decay models.
The underlying state vector for all these models is two-dimensional.

The system matrices for the DECAY type are

Z D .1 1/

T D Diag.1; exp.h�//

Q D
�2

�3
. h� 1 � exp.h�/; 1 � exp.h�/ .exp.2h�/ � 1/=2 /

The initial condition is partially diffuse with Q1 D Diag.0; ��
2

2�3
/. The system matrices for the GROWTH

type are the same (with � > 0:0), except that the initial condition is fully diffuse; so Q1 D 0.

For the DECAY(OU) type, Z and T are the same as DECAY, whereas

Q D Diag
�
0; �2

.exp.2h�/ � 1/
2�

�
and Q1 D Diag.0;

��2

2�
/

The system matrices for the GROWTH(OU) type are the same (with � > 0:0), except that the initial condition
is fully diffuse; so Q1 D 0.
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Predefined Structural Models
A set of predefined models is available in the SSM procedure for models called structural models in the time
series literature. These predefined models can be used to model trend, seasonal, and cyclical patterns in
the univariate and multivariate time series. For the most part, the multivariate models are straightforward
generalizations of the corresponding univariate models—for example, the multivariate random walk trend
described later in this section generalizes the univariate random walk trend that is described in the section
“Random Walk Trend” on page 2454. All of these models, with the exception of the continuous-time cycle
model, are applicable only to the regular data type. The continuous-time cycle model is applicable to all the
data types; however, it is available for the univariate case only.

To specify these models, you must first use the STATE statement with the correct TYPE= option. When you
specify the TYPE=option, you do not need to specify other options of the STATE statement (for example,
the T option, the COV1 option, and the A1 option). However, you must specify the COV option, which
describes the covariance of the disturbance term that drives the state equation. Throughout this section, the
symmetric matrix specified by using the COV option is denoted by†††. For TYPE= LL, an additional matrix,
specified by using the SLOPECOV suboption, also plays a role; it is denoted by†††slope. Subsequently you
must specify one or more COMPONENT statements to define the (univariate) components that are based
on this state subsection for their inclusion in the MODEL statement. These univariate components exhibit
interesting behavior based on the structure of††† (and†††slope, whenever applicable)—for example, imposing
rank restrictions on††† in the multivariate random walk results in these univariate trends moving together. For
additional information about these models, see Harvey (1989).

The following example summarizes the steps needed to define a multivariate structural model by using a
sequence of STATE and COMPONENT statements. For a full example, see Example 34.1. Suppose that a
three-dimensional time series is being studied with response variables y1, y2, and y3. Suppose you want to
specify the trivariate structural model

yt D ���t C   t C ���t

where yt D .y1;t ; y2;t ; y3;t / denotes the response series, and���t ,   t , and ���t denote the trivariate compo-
nents, trend, cycle, and white noise, respectively. The three components of ���t , the observation noise in the
model, are not assumed to be independent. Therefore, you cannot specify them by using three IRREGULAR
statements; you must include them in the state specification. The following (incomplete) statements show
how to specify this model:

state whiteNoise(3) type=wn ...;
component wn1 = whiteNoise[1];
component wn2 = whiteNoise[2];
component wn3 = whiteNoise[3];

state randomWalk(3) type=rw ...;
component rw1 = randomWalk[1];
component rw2 = randomWalk[2];
component rw3 = randomWalk[3];

state cycleState(3) type=cycle ...;
component c1 = cycleState[1];
component c2 = cycleState[2];
component c3 = cycleState[3];
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model y1 = rw1 c1 wn1;
model y2 = rw2 c2 wn2;
model y3 = rw3 c3 wn3;

The first STATE statement defines whiteNoise, a state subsection that is needed for defining a three-
dimensional white noise component. In turn, whiteNoise is used to define the three univariate white
noise components: wn1, wn2, and wn3. The components wn1, wn2, and wn3 are correlated—their corre-
lation structure is controlled by the covariance specification of whiteNoise. The second set of STATE and
COMPONENT statements result in three correlated random walk trend components: rw1, rw2, and rw3.
Finally, the last set of STATE and COMPONENT statements result in three correlated cycle components: c1,
c2, and c3. In the end, the desired multivariate model is defined by including these (univariate) components
in the appropriate MODEL statements.

In the preceding example, it is important to note the relationship between the nominal dimension (denoted
by dim throughout this section) that is specified in the STATE statement and the actual dimension of the
resulting state subsection. Note that the three state subsections, whiteNoise, randomWalk, and cycleState, are
defined by using the same dim specification: 3. However, the actual dimensions of these state subsections
depend on their type; they do not need to equal this specified dimension. Here, whiteNoise and randomWalk
do have the same size, 3, as the specified dim. However, the size of cycleState, which is of TYPE=CYCLE, is
2� dim D 6. Another important point to note: no matter what the underlying size of the state subsection, the
desired univariate components were obtained by using an identical specification scheme in the COMPONENT
statement. This happens because the component specification style that is based on the element operator—
[]—in the COMPONENT statement behaves differently when the TYPE= option is used to define the state
subsection (for an illustration, see the section “Multivariate Season” on page 2461).

The system matrices for all these models are time-invariant, with the exception of the continuous-time cycle
model. In this section, ˛̨̨ t denotes the subsection of the overall model state ˛̨̨ t , and T, Q, and A1 denote the
corresponding blocks of the larger system matrices.

For the multivariate cycle system matrices described in the section “Multivariate Cycle” on page 2460, the
Kronecker product notation is useful: if A is an m � n matrix and B is a p � q matrix, then the Kronecker
product A

N
B is an mp � nq block matrix:

A
O

B D

264a11B � � � a1nB
:::

: : :
:::

am1B � � � amnB

375

Multivariate White Noise

The STATE statement option TYPE=WN specifies white noise of dimension dim—that is, a sequence of zero
mean, independent, Gaussian vectors with covariance†††. The specification of the associated system matrices
is trivial: T is zero, Q D†††, and the initial condition is nondiffuse (Q1 D††† and A1 D 0).

Multivariate white noise is needed to specify the observation equation noise term for the multivariate models
for the time series data. Since the state space formulation for the SSM procedure requires the observation
equation noise vector to have the diagonal form, you need to include the noise vector in the state. The
noise term for the ith response variable is defined by a component that simply picks the ith element of this
multivariate white noise. For example, the component wn_i defined as follows can be used as a noise term in
the MODEL statement of the ith response variable:
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state white(dim) type=wn ...;
component wn_3 = white[3];

Multivariate Random Walk Trend

The STATE statement option TYPE=RW specifies a dim-dimensional random walk

˛̨̨ tC1 D ˛̨̨ t C ���tC1

where ���t is a sequence of zero mean, independent, Gaussian vectors with covariance†††. The specification
of the associated system matrices is trivial: T is a dim-dimensional identity matrix, Idim, Q D†††, and the
initial condition is fully diffuse (Q1 D 0 and A1 D Idim).

The multivariate random walk is a useful trend model for multivariate time series data. The trend term for the
ith response variable is defined by a component that simply picks the ith (1 � i � dim) element of ˛̨̨ t . For
example, the component rw_i defined as follows can be used as a trend term in the MODEL statement of the
ith response variable:

state randomWalk(3) type=rw ...;
component rw_2 = randomWalk[2];

Multivariate Local Linear Trend

The STATE statement option TYPE=LL specifies a (2*dim)-dimensional ˛̨̨ t , needed for defining a dim-
dimensional local linear trend. The first dim elements of ˛̨̨ t correspond to the needed multivariate trend, and
the subsequent dim elements are needed to capture the slope vector of this trend. ˛̨̨ t can be defined as

˛̨̨ tC1 D T˛̨̨ t C ���tC1

where ���t is a sequence of zero mean, independent, Gaussian vectors with covariance Diag.†††; †††slope/ and
T is a 2*dim-dimensional block matrix T D .Idim Idim; 0 Idim/. The initial condition is fully diffuse
(Q1 D 0 and A1 D I2�dim). This is a multivariate generalization of the univariate local linear trend.

The multivariate local linear trend is a useful trend model for multivariate time series data. The trend term for
the ith response variable is defined by a component that simply picks the ith element (1 � i � dim) of ˛̨̨ t .
For example, the component ll_i defined as follows can be used as a trend term in the MODEL statement of
the ith response variable:

state localLin(dim) type=ll(slopecov..) ...;
component ll_3 = localLin[3];

Multivariate Cycle

The STATE statement option TYPE=CYCLE specifies a (2*dim)-dimensional ˛̨̨ t , needed for defining a dim-
dimensional cycle. As in the LL case, the first dim elements of ˛̨̨ t correspond to the needed dim-dimensional
cycle, and the remaining dim elements contain some auxiliary quantities. The cycle model defined in this
subsection requires a regular data type—that is, the CT option is not included. Let � denote the damping
factor, and let � D 2�=period be the frequency associated with the cycle. The admissible parameter ranges
are 0 < � � 1 and period > 2, which implies that 0 < � < � . Let C D �.cos.�/ sin.�/; � sin.�/ cos.�//,
a 2 � 2 matrix, and let T D C

N
Idim, a 2 � dim � 2 � dim matrix. With this notation, the transition

equation associated with ˛̨̨ t is

˛̨̨ tC1 D T˛̨̨ t C ���tC1
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where ���t is a sequence of zero mean, independent, .2 � dim/-dimensional Gaussian vectors with covariance
Diag.†††; †††/. If � D 1, the initial condition is fully diffuse (Q1 D 0 and A1 D I2�dim). Otherwise, it is
nondiffuse: Q1 D 1

.1��2/
Diag.†††; †††/ and A1 D 0.

The multivariate cycle is useful for capturing periodic behavior for multivariate time series data. The cycle
term for the ith response variable is defined by a component that simply picks the ith element of ˛̨̨ t . For
example, the component cycle_i defined as follows can be used as a cycle term in the MODEL statement of
the ith response variable:

state cycleState(dim) type=cycle ...;
component cycle_2 = cycleState[2];

Multivariate Season

The STATE statement option TYPE=SEASON(LENGTH=s) specifies a ((s–1)*dim)-dimensional ˛̨̨ t , needed
for defining a dim-dimensional trigonometric season component with season length s. A (multivariate)
trigonometric season component, ���, is a sum of (multivariate) cycles of different frequencies,

��� D

Œs=2�X
jD1

���j

where the constituent cycles ���j , called harmonics, have frequencies �j D 2�j=s. All the harmonics are
assumed to be statistically independent, have the same damping factor � D 1, and are governed by the
disturbances with the same covariance matrix†††. The number of harmonics, Œs=2�, equals s=2 if s is even and
.s � 1/=2 if it is odd. This means that specifying TYPE=SEASON(LENGTH=s) is equivalent to specifying
Œs=2� cycle specifications with correct frequencies, damping factor � D 1, and the COV option restricted to
the same covariance†††. The resulting ˛̨̨ t is necessarily ((s–1)*dim)-dimensional. When the season length
s is even, the last harmonic cycle, ���s=2, has frequency � and requires special attention. It is of dimension
dim rather than 2*dim because its underlying state equation simplifies to a dim-variate autoregression with
autoregression coefficient �Idim. As a result of this discussion, it is clear that the system matrices T and
Q associated with the ((s–1)*dim)-dimensional ˛̨̨ t are block-diagonal with the blocks corresponding to the
harmonics. The initial condition is fully diffuse.

For all the models discussed so far, the first dim elements of ˛̨̨ t provided the needed (multivariate) component.
This is not the case for the (multivariate) season component. Extracting the ith seasonal component from ˛̨̨ t
requires accumulating the contributions from the Œs=2� harmonics that are associated with this ith seasonal,
which are not organized contiguously in ˛̨̨ t . For example, suppose that dim is 2 and the season length s is 4.
In this case Œs=2� is 2, and the bivariate seasonal component is a sum of two independent bivariate cycles,
���1 and ���2. The cycle ���1 has frequency �=2 and its underlying state, say ˛̨̨at , has dimension 2 � dim D 4.
The last harmonic, ���2, has frequency � , and therefore its underlying state, say ˛̨̨bt , has dimension 2. The
combined state ˛̨̨ t D .˛̨̨at ; ˛̨̨

b
t / has dimension 6 D 4 C 2. In order to extract the first bivariate seasonal

component, you must extract the first components of bivariate cycles ���1 and ���2, which in turn implies the
first elements of ˛̨̨at and ˛̨̨bt , respectively. Thus, obtaining the first bivariate seasonal component requires
extracting the first and the fifth elements of the combined state ˛̨̨ t . Similarly, obtaining the second bivariate
seasonal component requires extracting the second and the sixth elements of the combined state ˛̨̨ t . All this
can be summarized by the dot product expressions

s1t D .1 0 0 0 1 0/ ˛̨̨ t

s2t D .0 1 0 0 0 1/ ˛̨̨ t
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where s1t and s2t denote the first and second components, respectively, of the bivariate seasonal component.
Note that s1t and s2t are univariate seasonal components, each of season length 4, in their own right. They
are correlated components; their correlation structure depends on†††.

Obtaining the desired components of the multivariate seasonal component is made easy by a special syntax
convention of the COMPONENT statement. Continuing with the previous example, the following examples
illustrate two equivalent ways of obtaining s1t and s2t . The first set of statements explicitly specify the linear
combinations needed for defining s1t and s2t :

state seasonState(2) type=season(length=4) ...;
component s_1 =( 1 0 0 0 1 0 ) * seasonState;
component s_2 =( 0 1 0 0 0 1 ) * seasonState;

The following simpler specification achieves the same result:

state seasonState(2) type=season(length=4) ...;
component s_1 = seasonState[1];
component s_2 = seasonState[2];

In the latter specification, the meaning of the element operator [] changes if the state in question is defined by
using the TYPE= option.

Multivariate ARMA

You can specify a state vector that follows a multivariate autoregressive, moving average (VARMA) model
by using the STATE statement option TYPE=VARMA. The autoregressive and moving average orders can be
either 0 or 1 (0 � p � 1 and 0 � q � 1 )—that is, only VAR(1), MA(1), and VARMA(1,1) models can be
specified. The notation and the state space form of the VARMA model described here is taken from Reinsel
(1997), which is a good reference for VARMA modeling.

A dim-dimensional vector process ���t follows a zero-mean, autoregressive order p, moving average order q
(VARMA(p, q)) model if it satisfies the following matrix difference equation:

���t D

pX
iD1

ˆ̂̂i���t�i C ���t �

qX
jD1

‚‚‚j���t�j

Here ˆ̂̂i and‚‚‚j are dim-dimensional square matrices and ���t is a dim-dimensional, Gaussian, white noise
sequence with covariance matrix †††. If autoregressive order p is 0, the term that involves ˆ̂̂i is absent;
similarly, if the moving average order q is 0, the term that involves‚‚‚j is absent. Since AR and MA orders
can be at most 1, the subscripts of ˆ̂̂i and‚‚‚j can be ignored in this discussion—when applicable, an AR
coefficient matrix is denoted by ˆ̂̂ and an MA coefficient matrix is denoted by‚‚‚. The unknown elements of
ˆ̂̂,‚‚‚, and††† constitute the parameter vector that is associated with a VARMA state. The process ���t defined
by the VARMA difference equation is stationary and invertible (Reinsel 1997) if and only if the eigenvalues
of ˆ̂̂ and‚‚‚ are strictly less than 1 in magnitude. By default, the SSM procedure imposes these stationarity
and invertibility restrictions on ˆ̂̂ and‚‚‚. However, you can specify ˆ̂̂ to be an identity matrix, in which case
the resulting process is nonstationary.

A VARMA model can be cast into a state space form. The state space form used by the SSM procedure
is described in Reinsel (1997, pp. 52–53). The system matrices for the supported VARMA models are as
follows:

� The VAR(1) form is the simplest. In this case, the underlying state ˛̨̨ t is the same as the VAR(1)
process ���t . Therefore, T D ˆ̂̂ and Qt D†††.
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� Taking ˆ̂̂ equal to the zero matrix if p D 0, the VARMA(1,1) and MA(1) cases can be treated
together. In this case, the underlying state ˛̨̨ t is 2*dim dimensional and the desired VARMA process ���t
corresponds to its first dim elements. Let‰‰‰ D ˆ̂̂ �‚‚‚. Then, in the blocked form,

T D
�
0 Idim
0 ˆ̂̂

�
and Qt D Q D

�
††† †††‰‰‰

0

‰‰‰††† ‰‰‰†††‰‰‰
0

�

Unless ˆ̂̂ is restricted to be identity, the underlying state ˛̨̨ t is stationary and the covariance of the initial
condition is computed by

vec.Q1/ D .I � T
O

T/�1vec.Q/

where
N

denotes the Kronecker product and the vec operation on a matrix creates a vector formed by
vertically stacking the rows of that matrix. If ˆ̂̂ is restricted to be identity, the initial condition is fully diffuse.

Continuous-Time Cycle

The STATE statement option TYPE=CYCLE(CT) specifies a two-dimensional ˛̨̨ t , needed for defining a
univariate continuous time cycle. In this case the nominal dimension, dim, must be 1. In particular, †††
becomes one-dimensional, which is denoted by �2. This cycle can be used for any data type. As before, the
parameters of the cycle are a damping factor �, 0 < � � 1, and period > 0. Unlike in the discrete-time cycle
described in the section “Multivariate Cycle” on page 2460, the period is not required to be larger than 2. Let
� D 2�=period , and let ht D .�tC1 � �t / denote the difference between successive time points. In this case,
the system matrices T and Q that govern ˛̨̨ t depend on ht . They are as follows:

T D �h .cos.�h/ sin.�h/; � sin.�h/ cos.�h//

Q D
�2.1 � �2h/

�2 ln.�/
� I2 if � < 1

Q D �2hI2 if � D 1

If � < 1, the initial condition is nondiffuse: Q1 D �2

�2 ln.�/I2. For � D 1, the initial condition is fully diffuse.

The first element of ˛̨̨ t corresponds to the needed cycle, and the second element is an auxiliary quantity. You
can define a cycle term based on this state as follows:

state cycleState(1) type=cycle(CT) ...;
component cycle = cycleState[1];

The CT option must be included in the use of TYPE=CYCLE.
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Models with Dependent Lags
Many useful time series models relate the present value of a response variable to its own lagged values and,
in the multivariate case, the lagged values of other response variables in the model. In the SSM procedure,
you can use the DEPLAG statement to specify the terms in the model that involve lagged response variables.
These models apply only to the regular data type. This section describes the state space form of such models;
for more information, see Harvey (1989, sec. 7.1.1). As an illustration, consider the following model, where
the q-dimensional coefficient matrices ˆ̂̂1 and ˆ̂̂2 are either fully or partially known:

Yt D ˆ̂̂1Yt�1 C ˆ̂̂2Yt�2 C Zt ˛̨̨ t CXt ˇ̌̌ C ���t
˛̨̨ tC1 D Tt ˛̨̨ t CWtC1 C ctC1 C ���tC1
˛̨̨1 D c1 CA1ııı C ���1

Except for the presence of the terms that involve lagged response vectors (ˆ̂̂1Yt�1 and ˆ̂̂2Yt�2) in the
observation equation, the form of this model is the same as the standard state space form that is described in
the section “State Space Model and Notation” on page 2438. It turns out that this model can be expressed in
the standard state space form by suitably enlarging the latent vectors in the state equation and by appropriately
reorganizing the system matrices. The enlarged latent vectors and the corresponding system matrices are
distinguished by the presence of dagger (�) as a superscript in the following reformulated model,

Yt D Z�t ˛̨̨
�
t

˛̨̨
�
tC1 D T�t ˛̨̨

�
t CW�

tC1
�
C c�tC1 C ���

�
tC1

˛̨̨
�
1 D c�1 CA�1ııı

�
C ���

�
1

where the following conditions are true (column vectors are displayed horizontally to save space):

� The enlarged state vector (˛̨̨�t ) is formed by vertically stacking the old state vector (˛̨̨ t ), the observation
disturbance vector (���t ), and the present and lagged response vectors (Yt and Yt�1, respectively). That
is, ˛̨̨�t D Œ̨˛̨t ���t Yt Yt�1�. Because ˛̨̨ t is m-dimensional and ���t , Yt , and Yt�1 are q-dimensional,
the dimension of ˛̨̨�t is m� D .mC 3 � q/.

� The new state regression vector (�) is formed by vertically stacking the old state regression vector ( )
and the observation equation regression vector (ˇ̌̌). That is, � D Œ ˇ̌̌�.

� The enlarged disturbance vector (����t ) is formed by vertically stacking the old state disturbance vector
(���t ), the observation disturbance vector (���t ), the vector sum .Zt���t C ���t /, and filling the rest of the
vector with zeros. That is, ����t D Œ���t ���t .Zt���t C ���t / 0�.

� The deterministic vector c�tC1 D ŒctC1 0 ZtC1ctC1 0�.

� The last 2q elements of the initial state vector (˛̨̨�1), which correspond to Y1, and Y0, are taken to be
diffuse (which means that the diffuse vector ııı� has 2q additional elements compared to ııı).

The new system matrices can be described in blockwise form in terms of the old system matrices as follows:
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� The q � .mC 3 � q/-dimensional Z�t D Œ0 0 I 0�, where 0 is either a q � m-dimensional or q � q-
dimensional matrix of zeros and I is a q-dimensional identity matrix.

� The m� �m� matrices T�t (transition matrix) and Q�t (covariance of ����tC1) are

T�t D

2664
Tt 0 0 0
0 0 0 0

ZtC1Tt 0 ˆ̂̂1 ˆ̂̂2
0 0 I 0

3775 and Q�t D

2664
Qt 0 QtZ

0

tC1 0
0 †††tC1 †††tC1 0

ZtC1Qt †††tC1 .ZtC1QtZ
0

tC1 C†††tC1/ 0
0 0 0 0

3775
where†††t denotes the covariance matrix (which is diagonal by design) of the observation error vector
���t . Recall that the system matrices in the transition equation can depend on both t and t C 1 even if the
subscripts of T and Q show dependence on t alone.

� The m� � .k C g/ matrix W�
t is

W�
tC1 D

2664
WtC1 0
0 0

ZtC1WtC1 XtC1
0 0
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This state space form can be easily extended to account for higher-order lags.

Models that contain dependent lag terms must be used with care. Because the SSM procedure does not
impose any special constraints on the lag coefficients (the elements of coefficient matrices ˆ̂̂1; ˆ̂̂2; and so on),
the resulting models can often be explosive. For an example of a model with lagged response variables, see
Example 34.13.

PROC SSM and PROC UCM (see Chapter 42, “The UCM Procedure”) handle models that contain dependent
lags in essentially the same way. However, there is one difference: if the model parameter vector contains
unknown lag parameters, PROC UCM parameters are estimated by optimizing the nondiffuse part of the
likelihood, whereas PROC SSM continues to use the full diffuse likelihood for parameter estimation.

Temporal Aggregation and Temporal Distribution (Experimental)
The response variables in time series analysis are often classified as either stock variables or flow variables.
Stock variables, such as interest rates or temperatures, are measured at a particular point in time. Flow
variables, such as monthly income or weekly sales, are defined with respect to an interval of time. Flow
variables have the property that they remain meaningful under the operations of temporal aggregation and
temporal distribution—for example, aggregation of daily sales to weekly sales and distribution (or dis-
aggregation) of weekly sales to daily sales are quite natural, whereas the same cannot be said of temperature
readings. This section explains how you can use the SSM procedure to do model-based temporal aggregation
and distribution of flow variables. State space models are often used to carry out model-based temporal
aggregation and distribution. Two properties of state space models make them particularly suitable for this
purpose:

� If a variable is modeled by a state space model at a particular time interval, its aggregated form—for
example, daily to monthly—also follows a state space model. Moreover, the state space forms of these
two models have a simple relationship.
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� State space models can easily handle missing response values.

The discussion in this section, which is based on Harvey (1989, chap. 6, sec. 3), is limited to regular data
types—that is, the data must be either univariate or multivariate time series.

Temporal Distribution

For the sake of simplicity, consider a simple case of distributing weekly observations of a flow variable, y, at
a daily interval. Even though the values of y are observed weekly (suppose they are recorded each Sunday),
in this case it is necessary to treat the observations yt ; t � 1; as a daily time series such that yt equals the
weekly total when t corresponds to the end of the week (Sunday), and yt is missing on other days of the
week. In addition, suppose that y�t denotes the unobserved time series of daily values of y. In other words, if
t corresponds to a Sunday, then

yt D

tX
sDt�6

y�s

Suppose that the unobserved daily series y�t can be modeled by a state space model. For example, suppose
the model for y�t is

y
�
t D Zt ˛̨̨ t C �t

˛̨̨ tC1 D Tt ˛̨̨ t C ���tC1

Then it is easy to see that the aggregated series yt follows a state space model of the form

yt D Z�t ˛̨̨
�
t

˛̨̨
�
tC1 D T�t ˛̨̨

�
t C ���

�
tC1

where the following are true (both the row and column vectors are displayed horizontally to save space):

� The new state vector (˛̨̨�t ) is formed by augmenting the old state vector (˛̨̨ t ) with a latent variable,
y
f
t . That is, ˛̨̨�t D Œ̨˛̨t y

f
t �. In fact, yft represents the within-week running total of y�t , so that when t

corresponds to a Sunday, yft D yt .

� The new transition matrix T�t is

T�t D
�

Tt 0
ZtC1Tt  tC1

�
where  t is a dummy variable that equals 1 when t is not the start of the week (not Monday) and equals
0 when t is the start of the week (Monday).

� The new disturbance vector (����t ) is formed by augmenting the old disturbance vector (���t ) by .Zt���tC�t /.
That is, ����t D Œ���t Zt���t C �t �.

� The new design matrix for the state effect (Z�t ) is Z�t D Œ0 1�, where 0 is a zero vector of the same size
as the old state vector ˛̨̨ t .

This shows that you can do model-based distribution of y values by carrying out the following steps:
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1 Organize the y values as a daily time series.

2 Define a dummy variable, startWeek, that flags the start of the week—that is, startWeek is 1 when the day
is Monday and 0 otherwise. Note that  t D 1 � startWeekt .

3 Specify a suitable state space model for the unobserved daily series y�t . This specification in turn implies a
state space model specification for y.

4 Carry out the analysis—model fitting, component estimation, and forecasting—of y in the usual fashion by
using this implied model specification.

5 The smoothed values of y from the previous step provide the estimates of yft . In addition, the estimates of
y
�
t can be obtained as the smoothed estimates of appropriate linear combination of the elements of ˛̨̨ t and
�t .

The SSM procedure enables you to carry out the key steps—Step 3 to Step 5—in this process quite easily.
The usual model specification syntax that uses the STATE, COMPONENT, and TREND statements to define
the terms in a MODEL statement is used to define a model for the unobserved daily series y�t (the first part of
Step 3). Then, the use of the DISTRIBUTE(START=startWeek) option in the MODEL statement causes the
SSM procedure to use the implied model to analyze the observed y values. As a brief illustration, suppose
that a data set Test contains two variables: date, a SAS date variable that indexes the daily observations, and
y, the values of the weekly variable arranged as a daily series. Then the following PROC SSM statements
show you how to distribute y at the daily interval:

proc ssm data=test;
id date interval=day;
startWeek = (weekday(date) = 2); /* indicator of Monday */
state ...;
comp term1 = ...;
...;
state noise(1) type=wn ...;
comp wnoise = noise[1];
model y = term1 term2 ... wnoise / distribute(start=startWeek);
/* daily_Y = sum of all terms in the MODEL statement */
eval daily_Y = term1 + term2 + ...+ wnoise;
output out=...;

run;

Here are a few comments about this program:

� The terms in the MODEL statement correspond to the observation equation for the unobserved daily
series y�t . However, the DISTRIBUTE(START=startWeek) option causes the SSM procedure to use
the implied model (with the augmented state vector) to analyze y—the weekly variable arranged as a
daily series.

� Because wnoise—the white noise term (�t ) in the observation equation of y�t —is subsequently to be
used in an EVAL statement, this program specifies it by using the STATE statement rather than by
using the IRREGULAR statement.

� Because daily_Y (the component specified in the EVAL statement) is the sum of all the terms in the
MODEL statement, it corresponds to the unobserved daily series y�t . Therefore, the smoothed estimate
of daily_Y (smoothed_daily_Y) provides the needed distribution of y at the daily interval.
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In this release of the SSM procedure, the last element of the augmented state vector, yf , is always initialized
with diffuse distribution. A more flexible specification of the initial distribution of yf might become possible
in a future release.

To keep the explanation simple, the preceding discussion was confined to a single response variable. In
fact, you can use the SSM procedure for temporal distribution in more general settings—for example, you
can consider temporal distribution of one or more flow variables in a multivariate model that includes one
or more response variables of stock type, one or more response variables of flow type, and one or more
explanatory variables. An illustration of such modeling is shown in Example 34.16. The modeling of a
response variable as a temporal aggregate of some unobserved latent variable is also needed in a process
known as benchmarking; see Durbin and Koopman (2012, chap. 3, sec. 10.2) and Pelagatti (2015, chap. 9,
sec. 2). You can use the SSM procedure in such benchmarking situations as well.

Temporal Aggregation

Temporal aggregation is the reverse of temporal distribution. In this case, the observations are available
on a finer time scale, and you are interested in estimating the aggregated values on some coarser time
scale—for example, estimating weekly totals from daily data. Of course, the aggregation is trivial in the
historical region where the observations on the finer scale are known—in fact, in this case the estimation
of the aggregate values is done with no estimation error. However, when the aggregate values are to be
estimated in the region where the observations on the finer scale are missing—for example, in the forecast
region—the problem becomes nontrivial. It is easier to explain the situation by using a simple example.
Suppose yt ; 1 � t � 100; denote the daily observations of a response variable, y. Let wyt ; t � 1; denote the
within-week daily running totals—that is, wyt represents the total of y values up to the day t in the week that
contains the day t. Clearly, given the daily values yt ; 1 � t � 100; the aggregate values wyt ; 1 � t � 100;
are fully known. The question is, assuming that y follows a state space model, how do you estimate and
obtain appropriate confidence intervals for wyt in the forecast region (t D 101; 102; : : :)? In this section
you have already seen that when a variable is modeled by a state space model at a particular time interval,
its aggregated form also follows a state space model. The AGGREGATE(START=) option in the MODEL
statement of the SSM procedure enables you to perform temporal aggregation for a response variable. An
illustration of such aggregation is shown in Example 34.17.

Covariance Parameterization
The covariance matrices specified by the COV and COV1 options in the STATE statement must be positive
semidefinite. When these matrices are of general form and are not user-specified, they are internally
parameterized by their Cholesky root. Suppose that †, an m �m positive semidefinite matrix of rank r, is
such a covariance matrix. Then, † can always be written as

† D RR
0

where the (generalized) Cholesky root, R, is an m � r lower triangular matrix with nonnegative diagonal
elements (that is, RŒi; j � D 0 ifj > i and RŒi; i � � 0; 1 � i � r). The SSM procedure parameterizes † by
the elements of its Cholesky root, which adds r � .r C 1/=2C r � .m� r/ elements to the parameter vector ��� .
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Missing Values
For a variety of reasons the data might contain missing response and predictor values. Before starting the
analysis of a particular BY group, SSM procedure makes an internal copy of the data. The actual analysis
is done by using this copy. The data in the copy are first examined for missing values in the response,
predictor, and the ID variables. No missing values are permitted in the ID variable (if it is specified). If all
the missing values are associated with only the response variables, then the internal copy of the data is not
altered. However, if any of the predictors in the observation equation—the elements of X matrix—are found
to contain missing values, the internal copy of the data is altered as follows: any missing predictor value is
replaced by 0, and the response values that are dependent on that predictor in the corresponding row are set
to missing. These missing response values are called the induced missing values. The reported analysis is
based on the (possibly altered) internal copy of the BY group.

Missing values are not permitted in any of the other system matrices that define the state space model. In
particular, missing values are not permitted in Z;T;W, and Q matrices. In some cases the elements of these
matrices depend on the data values. In such cases, care must be taken to ensure that these data values are not
missing.

Computational Issues

A Well-Behaved Model

The model defined by the state space model equations (see the section “State Space Model and Notation” on
page 2438) is very general. This generality is quite useful because it encompasses a wide variety of data
generation processes. On the other hand, it also makes it easy to specify overly complex and numerically
unstable models. If a suitable model is not already known and you are in the early phases of modeling, it is
important to start with models that are relatively simple and well-behaved from the numerical standpoint.
From the numerical and statistical considerations, two aspects of model formulation are particularly important:
identifiability and numerical stability. A model is identifiable if the observed data has a distinct probability
distribution for each admissible parameter vector. Unless proper care is taken, it is easy to specify an
unidentifiable state space model. Similarly, predictions according to some types of state space models can
display explosive growth or wild oscillations. This behavior is primarily governed by the transition matrix T
(or Tt in the time-varying case). Unidentifiable models can run into difficulties during parameter estimation,
and explosive growth (and wild oscillation) causes numerical problems associated with finite-precision
arithmetic. Unfortunately, no simple identifiability check is available for a general state space model, and
it is difficult to decide at the outset whether a specified model might suffer from numerical instability. For
a discussion of identifiability issues, see Harvey (1989, chap. 4, sec. 4). For a discussion of the stability
properties of time-invariant state space models, see Harvey (1989, chap. 3, sec. 3). The following guidelines
are likely to result in models that are identifiable and numerically stable:

� Build models by composing submodels that are known to be well-behaved. The predefined models
provided by the SSM procedure are good submodel candidates (see the sections “Predefined Trend
Models” on page 2454 and “Predefined Structural Models” on page 2458).

� Pay careful attention to the way the variety of system matrices are defined. The behavior of their
elements, as functions of model parameters and other variables, must be well-understood. If these
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elements are defined by using DATA steps, you can validate their behavior by running these DATA
steps outside of the SSM procedure. In particular, note the following:

– The transition matrix T (or Tt in the time-varying case) determines the explosiveness characteris-
tics of the model; it must be well-behaved for all parameters.

– The disturbance covariances Qt must be positive semidefinite for all parameters.

– If the system matrices in the state equation, such as the transition matrix Tt or the disturbance
covariance Qt , are time-varying and the data contain replicate observations (observations with the
same ID value), check that the elements of these matrices do not vary during replicate observations.
This follows from the fact that the underlying state does not vary during replications (see the state
equation in the section “State Space Model and Notation” on page 2438 and the section “Types
of Sequence Data” on page 2441).

Convergence Problems

As explained in the section “Likelihood Computation and Model-Fitting Phase” on page 2447, the model
parameters are estimated by nonlinear optimization of the likelihood. This process is not guaranteed to
succeed. For some data sets, the optimization algorithm can fail to converge. Nonconvergence can result from
a number of causes, including flat or ridged likelihood surfaces and ill-conditioned data. It is also possible
for the algorithm to converge to a point that is not the global optimum of the likelihood.

If you experience convergence problems, consider the following:

� Data that are extremely large or extremely small can adversely affect results because of the internal
tolerances used during the filtering steps of the likelihood calculation. Rescaling the data can improve
stability.

� Whenever possible, parameterize the disturbance variances in the model on the exponential scale.
For illustrations of parameterizing disturbance variances in this manner, see Example 34.12 and
Example 34.14.

� Examine your model for redundancies in the included components and regressors. The components
or regressors that are nearly collinear to each other can cause the optimization process to become
unstable.

� Lack of convergence can indicate model misspecification such as unidentifiable model or a violation of
the normality assumption.

Computer Resource Requirements

The computing resources required for the SSM procedure depend on several factors. The memory requirement
for the procedure is largely dependent on the number of observations to be processed and the size of the state
vector underlying the specified model. If n denotes the sample size and m denotes the size of the state vector,
the memory requirement for the smoothing phase of the Kalman filter is of the order of 6 � 8 � n � m2

bytes, ignoring the lower-order terms. If the smoothed component estimates are not needed, then the memory
requirement is of the order of 6� 8� .m2C n/ bytes. Besides m and n, the computing time for the parameter
estimation depends on the size of the parameter vector ��� and how many likelihood evaluations are needed to
reach the optimum.
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Displayed Output
The default printed output produced by the SSM procedure contains the following information:

� brief information about the input data set, including the data set name and label

� summary statistics for the response variables in the model, including the names of the variables,
the total number of observations and the number of missing observations, the smallest and largest
measurements, and the mean and standard deviation

� information about the index variable, including the index value of the first and the last observation, the
maximum difference between the successive index values, the number of distinct index values, and the
categorization of the data into regular, regular with replication, or irregular types

� estimates of the regression parameters if the model contains any predictors, including their standard
errors, t statistics, and p-values

� convergence status of the likelihood optimization process if any parameters are estimated

� estimates of the free parameters at the end of the model-fitting phase, including the parameter estimates
and their approximate standard errors

� the likelihood-based goodness-of-fit statistics, including the full likelihood, the sum of squares of
residuals normalized by their standard errors, and the information criteria: AIC, AICC, HQIC, BIC,
and CAIC

� summary of most significant additive outliers

ODS Table Names
The SSM procedure assigns a name to each table it creates. You can use these names to refer to the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 34.9.

Table 34.9 ODS Tables Produced by PROC SSM

ODS Table Name Description Statement Option

Tables That Summarize the Model Information
ModelSummary Summary information about

the underlying state space
model

Default

IdInformation Summary information about
the ID variable

Default

ResponseInfo Summary information about
the response variables

Default

StateSummary Summary information about
the model state vector

PROC SSM STATEINFO
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Table 34.9 continued

ODS Table Name Description Statement Option

DiffuseStateSummary Summary information about
the diffuse initial state

PROC SSM STATEINFO

Tables Related to Model Parameters and the Likelihood
ConvergenceStatus Convergence status of the

estimation process
Default

RegressionEstimates Estimates of the regression
parameters

MODEL Default

StateRegressionEstimates Estimates of the state
regression parameters

STATE W

FixedStateEstimates Estimates of time-invariant,
non-stochastic state
subsections

Default

NamedParameterEstimates Estimates of the parameters
specified in the PARMS
statement

PARMS Default

ParameterEstimates Estimates of the unknown
elements in the model
system matrices

Default

DisturbanceCovariance Estimate of the disturbance
covariance

STATE PRINT=COV

InitialCovariance Estimate of the initial state
covariance

STATE PRINT=COV1

ARCoefficient Estimate of the
autoregressive coefficient
matrix

STATE PRINT=AR

MACoefficient Estimate of the
moving-average coefficient
matrix

STATE PRINT=MA

TransitionMatrix Estimate of the state
transition matrix

STATE PRINT=T

FitSummary Summary of the
likelihood-based fit-statistics

Default

InformationCriteria Likelihood-based
information criteria

Default

Tables Related to Series and Component Forecasts
Forecasts Series forecasts MODEL PRINT=FILTER
SmoothedResponse Smoothed series values MODEL PRINT=SMOOTH
FilteredComponent Component forecasts COMPONENT PRINT=FILTER
SmoothedComponent Smoothed component COMPONENT PRINT=SMOOTH

Tables Related to Outlier Detection and Model Quality
AOSummary Summary of additive outliers Default Default
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Table 34.9 continued

ODS Table Name Description Statement Option

ElementTrendBreakSummary Elementwise trend break
summary

TREND CHECKBREAK

OverallTrendBreakSummary Overall trend break summary TREND CHECKBREAK(OVERALL)
StateElementBreakSummary Elementwise state break

summary
STATE CHECKBREAK

OverallStateBreakSummary Overall state break summary STATE CHECKBREAK(OVERALL)
MaximalShockSummary Summary of maximal state

shocks
OUTPUT MAXSHOCK

PRESS Prediction error sum of
squares

OUTPUT PRESS

ODS Graph Names
You can refer to every graph produced through ODS Graphics with a name. The names of the graphs that
PROC SSM generates are listed in Table 34.10, along with the required statements and options.

Table 34.10 ODS Graphs Produced by PROC SSM

ODS Graph Name Description Statement Option

Graphs for One-Step-Ahead Residual Analysis
ResidualNormalityPlot Normality check PROC SSM PLOTS=RESIDUAL(NORMAL)
ResidualHistogram Residual histogram PROC SSM PLOTS(UNPACK)=RESIDUAL
ResidualQQPlot Residual Q-Q plot PROC SSM PLOTS(UNPACK)=RESIDUAL
StdResidualPlot Time series plot of

standardized residuals
PROC SSM Default

Graphs Related to Outlier Detection and Structural Break
PredErrorNormalityPlot Normality check PROC SSM PLOTS=AO(NORMAL)
PredErrorHistogram Prediction error histogram PROC SSM PLOTS(UNPACK)=AO
PredErrorQQPlot Prediction error Q-Q plot PROC SSM PLOTS(UNPACK)=AO
StdPredErrorPlot Time series plot of

standardized additive-outlier
statistics

PROC SSM PLOTS=AO(STD)

MaximalShockPlot Time series plot of maximal
state shock chi-square
statistics

PROC SSM PLOTS=MAXSHOCK
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OUT= Data Set
You can use the OUT= option in the OUTPUT statement to store the series and component forecasts that are
produced by PROC SSM. Which columns are included in the data set depends on the model specification.
The model can have one or more response variables, a variety of components that appear in the MODEL
statement, and components specified by the EVAL statement. The OUT= data set contains the one-step-ahead
and full-sample estimates of the response variables, and all these components.

The following list describes the columns of the data set:

� the BY variables

� the ID variable, if specified by the ID statement

� Obs, a variable that contains the observation number

� the response series (more than one in the multivariate case)

� the following columns associated with the response series (the wildcard * is substituted by the name of
one of the response variables):

– FORECAST_* contains the one-step-ahead predicted values. and the multistep forecasts of the
response series.

– RESIDUAL_* contains the difference between the actual and forecast values.

– StdErr_* contains the standard error of prediction.

– Lower_* and Upper_* contain the lower and upper forecast confidence limits.

– Smoothed_* contains the smoothed values of the response variable.

– StdErr_Smoothed_* contains standard errors of the smoothed values of the response variable.

– AO_* contains the additive outlier estimate.

– StdErr_AO_* contains the standard error of the additive outlier estimate.

� the following columns associated with the components (the wildcard * is substituted by the name of
one of the components):

– FORECAST_* contains the one-step-ahead predicted values and the multistep forecasts of the
component.

– StdErr_* contains the standard error of prediction.

– Smoothed_* contains the smoothed values of the component.

– StdErr_Smoothed_* contains standard errors of the smoothed values of the component.

– Smoothed_Lower_* and Smoothed_Upper_* contain the lower and upper confidence limits of
the smoothed component.

� the maximal state shock chi-square statistics at distinct time points (this column is present only if the
MAXSHOCK option is used in the OUTPUT statement)

Confidence limits are not produced for the smoothed series values or for the component forecasts; they are
produced for the smoothed components.
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Examples: SSM Procedure

Example 34.1: Bivariate Basic Structural Model
This example illustrates how you can use the SSM procedure to analyze a bivariate time series. The following
data set contains two variables, f_KSI and r_KSI, which are measured quarterly, starting the first quarter of
1969. The variable f_KSI represents the quarterly average of the log of the monthly totals of the front-seat
passengers killed or seriously injured during the car accidents, and r_KSI represents a similar number for the
rear-seat passengers. The data set has been extended at the end with eight missing values, which represent
four quarters, to cause the SSM procedure to produce model forecasts for this span.

data seatBelt;
input f_KSI r_KSI @@;
label f_KSI = "Front Seat Passengers Injured--log scale";
label r_KSI = "Rear Seat Passengers Injured--log scale";
date = intnx( 'quarter', '1jan1969'd, _n_-1 );
format date YYQS.;
datalines;

6.72417 5.64654 6.81728 6.06123 6.92382 6.18190
6.92375 6.07763 6.84975 5.78544 6.81836 6.04644
7.00942 6.30167 7.09329 6.14476 6.78554 5.78212
6.86323 6.09520 6.99369 6.29507 6.98344 6.06194
6.81499 5.81249 6.92997 6.10534 6.96356 6.21298
7.02296 6.15261 6.76466 5.77967 6.95563 6.18993
7.02016 6.40524 6.87849 6.06308 6.55966 5.66084
6.73627 6.02395 6.91553 6.25736 6.83576 6.03535
6.52075 5.76028 6.59860 5.91208 6.70597 6.08029
6.75110 5.98833 6.53117 5.67676 6.52718 5.90572
6.65963 6.01003 6.76869 5.93226 6.44483 5.55616
6.62063 5.82533 6.72938 6.04531 6.82182 5.98277
6.64134 5.76540 6.66762 5.91378 6.83524 6.13387
6.81594 5.97907 6.60761 5.66838 6.62985 5.88151
6.76963 6.06895 6.79927 6.01991 6.52728 5.69113
6.60666 5.92841 6.72242 6.03111 6.76228 5.93898
6.54290 5.72538 6.62469 5.92028 6.73415 6.11880
6.74094 5.98009 6.46418 5.63517 6.61537 5.96040
6.76185 6.15613 6.79546 6.04152 6.21529 5.70139
6.27565 5.92508 6.40771 6.13903 6.37293 5.96883
6.16445 5.77021 6.31242 6.05267 6.44414 6.15806
6.53678 6.13404 . . . . . . . .

run;

These data have been analyzed in Durbin and Koopman (2012, chap. 8, sec. 3). The analysis presented
here is similar. To simplify the illustration, the monthly data have been converted to quarterly data and two
predictors (the number of kilometers traveled and the real price of petrol) are excluded from the analysis.
You can also use PROC SSM to carry out the more elaborate analysis in Durbin and Koopman (2012).

One of the original reasons for studying these data was to assess the effect on f_KSI of the enactment of
a seat-belt law in February 1983 that compelled the front seat passengers to wear seat belts. A simple
graphical inspection of the data (not shown here) reveals that f_KSI and r_KSI do not show a pronounced
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upward or downward trend but do show seasonal variation, and that these two series seem to move together.
Additional inspection also shows that the seasonal effect is relatively stable throughout the data span. These
considerations suggest the following model for y = (f_KSI, r_KSI):

yt D

 
Xt

0

!
ˇ C���t C ���t C ��� t

All the terms on the right-hand side of this equation are assumed to be statistically independent. These terms
are as follows:

� The predictor Xt (defined as Q1_83_Shift later in the program) denotes a variable that is 0 before the
first quarter of 1983, and 1 thereafter. Xt is supposed to affect only f_KSI (the first element of y); it
represents the enactment of the seat-belt law of 1983.

� ���t denotes a bivariate random walk. It is supposed to capture the slowly changing level of the vector yt .
To capture the fact that f_KSI and r_KSI move together (that is, they are co-integrated), the covariance
of the disturbance term of this random walk is assumed to be of lower than full rank.

� ���t denotes a bivariate trigonometric seasonal term. In this model, it is taken to be fixed (that is, the
seasonal effects do not change over time).

� ��� t denotes a bivariate white noise term, which captures the residual variation that is unexplained by the
other terms in the model.

The preceding model is an example of a (bivariate) basic structural model (BSM). The following statements
specify and fit this model to f_KSI and r_KSI:

proc ssm data=seatBelt stateinfo;
id date interval=quarter;
Q1_83_Shift = (date >= '1jan1983'd);
state error(2) type=WN cov(g) print=cov;
component wn1 = error[1];
component wn2 = error[2];
state level(2) type=RW cov(rank=1) print=cov;
component rw1 = level[1];
component rw2 = level[2];
state season(2) type=season(length=4);
component s1 = season[1];
component s2 = season[2];
model f_KSI = Q1_83_Shift rw1 s1 wn1 / print=(smooth);
model r_KSI = rw2 s2 wn2;
eval f_KSI_sa = rw1 + Q1_83_Shift;
output out=For1;

run;

The PROC SSM statement specifies the input data set, seatBelt. The use of the STATEINFO option in the
PROC SSM statement produces additional information about the model state vector and its diffuse initial
state. The optional ID statement specifies an index variable, date. The INTERVAL=QUARTER option in
the ID statement indicates that the measurements were collected on a quarterly basis. Next, a programming
statement defines Q1_83_Shift, the predictor that represents the enactment of the seat-belt law of 1983. It
is used later in the MODEL statement for f_KSI. Separate STATE statements specify the terms���t , ���t , and
��� t because they are statistically independent. Each model that governs them (white noise for ��� t , random
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walk for���t , and trigonometric seasonal for ���t ) can be specified by using the TYPE= option of the STATE
statement. When you use the TYPE= option, you can use the COV option to specify the information about
the disturbance covariance in the state transition equation. The other details, such as the transition matrix
specification and the specification of A1 in the initial condition, are inferred from the TYPE= option. The use
of PRINT=COV in the STATE statement causes the estimated disturbance covariance to be printed. For ��� t (a
white noise), A1 is zero and Qt D Q for all t � 1, where Q is specified by the COV option. For���t and ���t
the initial condition is fully diffuse—that is, A1 is an identity matrix of appropriate order and Q1 D 0. The
total diffuse dimension of this model, .d C k/, is 9 D 8C 1 as a result of one predictor, Q1_83_Shift, and
two fully diffuse state subsections,���t and ���t . The components in the model are defined by suitable linear
combinations of these different state subsections. The program statements define the model as follows:

� state error(2) type=WN cov(g); defines ��� t as a two-dimensional white noise, named error, with
the covariance of general form. Then two COMPONENT statements define wn1 and wn2 as the first
and second elements of error, respectively.

� state level(2) type=RW cov(rank=1); defines���t as a two-dimensional random walk, named
level, with covariance of general form whose rank is restricted to 1. Then two COMPONENT
statements define rw1 and rw2 as the first and second elements of level, respectively.

� state season(2) type=season(length=4); defines ���t as a two-dimensional trigonometric sea-
sonal of season length 4, named season, with zero covariance—signified by the absence of the COV
option. Then two COMPONENT statements define s1 and s2 as appropriate linear combinations
of season so that s1 represents the seasonal for f_KSI and s2 represents the seasonal for r_KSI.
Because TYPE=SEASON in the STATE statement, the COMPONENT statement appropriately inter-
prets component s1 = season[1]; as s1 being a dot product: .1 0 0 0 1 0/ � season. For more
information, see the section “Multivariate Season” on page 2461.

� model f_KSI = Q1_83_Shift rw1 s1 wn1; defines the model for f_KSI, and model r_KSI =

rw2 s2 wn2; defines the model for r_KSI.

The SSM procedure fits the model and reports the parameter estimates, their approximate standard errors,
and the likelihood-based goodness-of-fit measures by default. In order to output the one-step-ahead and
full-sample estimates of the components in the model, you can either use the PRINT= options in the MODEL
statement and the respective COMPONENT statements or you can specify an output data set in the OUTPUT
statement. In addition, you can use the EVAL statement to define specific linear combinations of the
underlying state that should also be estimated. The statement eval f_KSI_sa = rw1 + Q1_83_Shift;

is an example of one such linear combination. It defines f_KSI_sa, a linear combination that represents
the seasonal adjustment of f_KSI. The output data set, For1 (named in the OUTPUT statement) contains
estimates of all the model components in addition to the estimate of f_KSI_sa.

The model summary table, shown in Output 34.1.1, provides basic model information, such as the dimension
of the underlying state equation (m D 10), the diffuse dimension of the model (.d Ck/ D 9), and the number
of parameters (5) in the model parameter vector ��� .
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Output 34.1.1 Bivariate Basic Structural Model

The SSM Procedure

Model Summary

Model Property Value

Number of Model Equations 2

State Dimension 10

Dimension of the Diffuse Initial Condition 9

Number of Parameters 5

Additional details about the role of different components in forming the model state and its diffuse initial
condition are shown in Output 34.1.2 and Output 34.1.3. They show that the 10-dimensional model state
vector is made up of subsections that are associated with error and level (each of dimension 2) and season (of
dimension 6). Similarly, the nine-dimensional diffuse vector in the initial condition is made up of subsections
that correspond to level, season, and the regression variable, Q1_83_Shift. Note that error does not contribute
to the diffuse initial vector because it has a fully nondiffuse initial state.

Output 34.1.2 Bivariate Basic Structural Model State Vector Summary

State Vector
Composition

Subsection Dimension

error 2

level 2

season 6

Output 34.1.3 Bivariate Basic Structural Model Initial Diffuse State Vector Summary

Diffuse Initial State
Composition

(Including Regressors)

Subsection Dimension

level 2

season 6

Q1_83_Shift 1

The index variable information is shown in Output 34.1.4.

Output 34.1.4 Index Variable Information

ID Variable Information

Name Start End
Max

Delta NDistinct Type

date 1969:1 1985:4 1 68 Regular

Output 34.1.5 provides simple summary information about the response variables. It shows that f_KSI and
r_KSI have four missing values each and no induced missing values because the predictor in the model,
Q1_83_Shift, has no missing values.
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Output 34.1.5 Response Variable Summary

Response Variable Information

Number of
Observations

Name Total Missing
Induced
Missing Minimum Maximum Mean

Std
Deviation

f_KSI 68 4 0 6.16 7.09 6.71 0.206

r_KSI 68 4 0 5.56 6.41 5.97 0.186

The regression coefficient of Q1_83_Shift, shown in Output 34.1.6, is negative and is statistically significant.
This is consistent with the expected drop in f_KSI after the enactment of the seat-belt law.

Output 34.1.6 Regression Coefficient of Q1_83_Shift

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

f_KSI Q1_83_Shift -0.408 0.0259 -15.74 <.0001

Output 34.1.7 shows the estimates of the elements of ��� . The five parameters in ��� correspond to unknown
elements that are associated with the covariance matrices in the specifications of error and level. Whenever a
covariance specification is of a general form and is not defined by a user-specified variable list, it is internally
parameterized as a product of its Cholesky root: Cov D Root Root

0

. This ensures that the resulting
covariance is positive semidefinite. The Cholesky root is constrained to be lower triangular, with positive
diagonal elements. If rank constraints (such as the rank-one constraint on the covariance in the specification
of level) are imposed, the number of free parameters in the Cholesky factor is reduced appropriately. For more
information, see the section “Covariance Parameterization” on page 2468. In view of these considerations,
the five parameters in ��� are a result of three parameters from the Cholesky root of error and two parameters
that are associated with the Cholesky root of level.

Output 34.1.7 Parameter Estimates

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

error Disturbance Covariance RootCov[1, 1] 0.0361 0.00736 4.91

error Disturbance Covariance RootCov[2, 1] 0.0338 0.01131 2.99

error Disturbance Covariance RootCov[2, 2] 0.0462 0.00470 9.84

level Disturbance Covariance RootCov[1, 1] 0.0375 0.00843 4.45

level Disturbance Covariance RootCov[2, 1] 0.0223 0.00569 3.92

Output 34.1.8 shows the resulting covariance estimate of error after multiplying the Cholesky factors.

Output 34.1.8 White Noise Covariance Estimate

Disturbance Covariance
for error

Col1 Col2

Row1 0.001307 0.001222

Row2 0.001222 0.003277
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Similarly, Output 34.1.9 shows the covariance estimate of level disturbance. Note that because of the rank-one
constraint, the determinant of this matrix is 0.

Output 34.1.9 Covariance Estimate of the Random Walk Disturbance

Disturbance Covariance
for level

Col1 Col2

Row1 0.001408 0.000837

Row2 0.000837 0.000497

Output 34.1.10 shows the likelihood computation summary. This table is produced by using the fitted
model to carry out the filtering operation on the data. For more information, see the section “Likelihood
Computation and Model-Fitting Phase” on page 2447.

Output 34.1.10 Likelihood Computation Summary of the Fitted Model

Likelihood Computation Summary

Statistic Value

Nonmissing Response Values Used 128

Estimated Parameters 5

Initialized Diffuse State Elements 9

Normalized Residual Sum of Squares 119

Diffuse Log Likelihood 166.15755

Profile Log Likelihood 199.91165

The output data set, For1, specified in the OUTPUT statement contains one-step-ahead and full-sample
estimates of all the model components and the user-specified components (defined by the EVAL statement).
Their standard errors and the upper and lower confidence limits (by default, 95%) are also produced.

The following statements use the For1 data set to produce a time series plot of the seasonally adjusted f_KSI:

proc sgplot data=For1;
title "Seasonally Adjusted f_KSI with 95% Confidence Band";
band x=date lower=smoothed_lower_f_KSI_sa

upper=smoothed_upper_f_KSI_sa ;
series x=date y=smoothed_f_KSI_sa;
refline '1jan1985'd / axis=x lineattrs=(pattern=shortdash)

LEGENDLABEL= "Start of Multistep Forecasts"
name="Forecast Reference Line";

scatter x=date y=f_KSI ;
run;

The generated plot is shown in Output 34.1.11.
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Output 34.1.11 Plot of Seasonally Adjusted f_KSI

Example 34.2: Panel Data: Random-Effects and Autoregressive Models
This example shows how you can use the SSM procedure to specify and fit the two-way random-effects model
and the autoregressive model to analyze a panel of time series. The fitting of dynamic panel model for such
data is illustrated in Example 34.11. These (and a few other) model types can also be fitted by the PANEL
procedure, a SAS/ETS procedure that is specially designed to efficiently handle the cross-sectional time
series data. However, because of the differences in their model fitting algorithms, generally the parameter
estimates and other fit statistics produced by the SSM and PANEL procedures do not match. The SSM
procedure always uses the (restricted) maximum likelihood for parameter estimation. The estimation method
used by the PANEL procedure depends on the model type and the particular estimation options.

The cross-sectional data, Cigar, that are used in the section “Getting Started: SSM Procedure” on page 2406
are reused in this example. The output shown here is less extensive than the output shown in that section.
The main emphasis of this example is how you can specify the two-way random effects model and the
autoregressive model in the SSM procedure.

According to the two-way random effects model, the cigarette sales, lsales, can be described by the following
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equation:

lsalesi;t D ���C lprice ˇ̌̌1 C lndi ˇ̌̌2 C lpimin ˇ̌̌3 C ���i C ���t C ���i;t

This model represents lsales in region i and in year t as a sum of an overall intercept���, the regression effects
due to lprice, lndi, and lpimin, a zero-mean, random effect ���i associated with region i, a zero-mean, random
effect ���t associated with year t, and the observation noise ���i;t . The region-specific random effects ���i and
the year-specific random effects ���t are assumed to be independent, Gaussian sequences with variances �2

�

and �2� , respectively. In addition, they are assumed to be independent of the observation noise, which is also
assumed to be a sequence of independent, zero-mean, Gaussian variables with variance �2� .

You can specify and fit this model by using the following statements:

proc ssm data=Cigar;
id year interval=year;
parms s2g/ lower=(1.e-6);
array RegionArray{46} region1-region46;
do i=1 to 46;

RegionArray[i] = (region=i);
end;
/* region-specific random effects */
state zeta(46) T(I) cov1(I)=(s2g);
component regionEffect = zeta * (RegionArray);
/* year-specific random effect */
state eta(1) type=wn cov(D);
component timeEffect = eta[1];
irregular wn;
intercept = 1.0;
model lsales = intercept lprice lndi lpimin

timeEffect regionEffect wn;
run;

The PARMS statement defines s2g, a parameter that is restricted to be positive and is used later as the variance
parameter for the region effect. Similarly the 46-dimensional array, RegionArray, of region-specific dummy
variables is defined to be used later. The state subsection zeta corresponds to ���, which is the 46-dimensional
vector of region-specific, zero-mean, random effects. The component regionEffect extracts the proper element
of ��� by using the array RegionArray. A constant column, intercept, is defined to be used later as an intercept
term. The component timeEffect corresponds to �t , and wn specifies the observation noise ���it . Finally the
MODEL statement defines the model. Some of the tables that are produced by running these statements are
shown in Output 34.2.1 through Output 34.2.5.

The model summary, shown in Output 34.2.1, shows that the model is defined by one MODEL statement, the
dimension of the underlying state vector is 47 (because ��� is 46-dimensional and �t is one-dimensional), the
diffuse dimension is 4 (because of the four predictors in the model), and there are three parameters to be
estimated.
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Output 34.2.1 Two-Way Random-Effects Model: Model Summary

The SSM Procedure

Model Summary

Model Property Value

Number of Model Equations 1

State Dimension 47

Dimension of the Diffuse Initial Condition 4

Number of Parameters 3

Output 34.2.2 provides the likelihood information about the fitted model.

Output 34.2.2 Two-Way Random-Effects Model: Likelihood Summary

Likelihood Computation Summary

Statistic Value

Nonmissing Response Values Used 1380

Estimated Parameters 3

Initialized Diffuse State Elements 4

Normalized Residual Sum of Squares 1376.0001

Diffuse Log Likelihood 1459.0277

Profile Log Likelihood 1470.8628

Output 34.2.3 shows the regression estimates.

Output 34.2.3 Two-Way Random-Effects Model: Regression Estimates

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

lsales intercept 2.798 0.1136 24.62 <.0001

lsales lprice -0.903 0.0365 -24.73 <.0001

lsales lndi 0.592 0.0246 24.08 <.0001

lsales lpimin 0.127 0.0398 3.18 0.0015

The ML estimate of s2g, a parameter specified in the PARMS statement, is shown in Output 34.2.4. It
corresponds to �2

�
, the variance of the region effect.

Output 34.2.4 Two-Way Random-Effects Model: Estimate of �2
�

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

s2g 0.0241 0.00512 4.70
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Output 34.2.5 Variance Estimates of �t and �it

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

eta Disturbance Covariance Cov[1, 1] 0.000681 0.000264 2.58

wn Irregular Variance 0.005698 0.000224 25.40

The estimates of the other unknown parameters in the model are shown in Output 34.2.5. It shows the
estimate of the variance of the irregular component wn and the estimate of the variance of the time effect �t .

The remainder of this example describes how you can specify and fit the following first-order vector
autoregessive model to the cigarette data:

lsalesi;t D ���C lprice ˇ̌̌1 C lndi ˇ̌̌2 C lpimin ˇ̌̌3 C ���t Œi �
���t D ˆ̂̂ ���t�1 C ���t

This model represents lsales in region i and in year t as a sum of an overall intercept���, the regression effects
due to lprice, lndi, and lpimin, and the ith element of a vector error term ���t Œi �. The multidimensional error
sequence ���t is assumed to follow a first-order autoregression with a diagonal autoregressive coefficient matrix
ˆ̂̂ and with a multivariate, white noise sequence ���t as its disturbance sequence. The covariance matrix of
���t ,†††, is assumed to be dense. Note that the dimension of the vectors ���t is the same as the number of cross
sections in the study (the number of regions in this example). Therefore, even for a relatively modest panel
study, the total number of parameters to be estimated can get quite large. Therefore, in this example only the
first three regions are considered in the analysis. The following statements specify and fit this model to the
Cigar data set:

proc ssm data=Cigar;
where region <= 3;
id year interval=year;
array RegionArray{3} region1-region3;
do i=1 to 3;

RegionArray[i] = (region=i);
end;
state zeta(3) type=varma(p(d)=1) cov(g) print=(ar cov);
component eta = zeta*(RegionArray);
intercept = 1.0;
model lsales = intercept lprice lndi lpimin eta;

run;

The vectors ���t are specified in the STATE statement. The TYPE= specification signifies that the three-
dimensional state subsection, zeta, follows a vector AR(1) model with a diagonal transition matrix and a
disturbance covariance of a general form. The PRINT=(AR COV) option causes the SSM procedure to
print the estimated AR coefficient matrix, ˆ̂̂, and the disturbance error covariance †††, respectively. The
COMPONENT statement defines the appropriate error contribution (named eta), ���t Œi �. Output 34.2.6 shows
the estimated regression coefficients, Output 34.2.7 shows the estimate of ˆ̂̂, and Output 34.2.8 shows the
estimate of†††:
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Output 34.2.6 Autoregressive Model: Regression Estimates

The SSM Procedure

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

lsales intercept 3.6857 0.3961 9.31 <.0001

lsales lprice -0.2356 0.0833 -2.83 0.0047

lsales lndi 0.1969 0.0774 2.54 0.0110

lsales lpimin 0.0737 0.0995 0.74 0.4588

Output 34.2.7 Estimate of the AR Coefficient ˆ̂̂

AR Coefficient Matrix for zeta

Col1 Col2 Col3

Row1 0.925707 0 0

Row2 0 0.984015 0

Row3 0 0 0.960071

Output 34.2.8 Estimate of the Disturbance Covariance†††

Disturbance Covariance for zeta

Col1 Col2 Col3

Row1 0.000911 0.000342 0.000361

Row2 0.000342 0.002216 0.000172

Row3 0.000361 0.000172 0.000923

Example 34.3: Backcasting, Forecasting, and Interpolation
This example illustrates how you can do model-based extrapolation—backcasting, forecasting, or
interpolation—of a response variable. All you need is to appropriately augment the input data set with the
relevant ID and predictor information and assign missing values to the response variable in these places.
The following DATA step creates one such augmented data set by using a well-known data set that contains
recordings of the Nile River water level measured between the years 1871 and 1970. Suppose you want to
backcast the Nile water level for two years before 1871, forecast it for two years after 1970, and interpolate
its value for the year 1921—for illustration purposes, this value is assumed to be missing in the available data
set.

data Nile;
input level @@;
year = intnx( 'year', '1jan1869'd, _n_-1 );
format year year4.;
if year = '1jan1921'd then level=.;

datalines;
. .
1120 1160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
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1100 1210 1150 1250 1260 1220 1030 1100 774 840
874 694 940 833 701 916 692 1020 1050 969
831 726 456 824 702 1120 1100 832 764 821
768 845 864 862 698 845 744 796 1040 759
781 865 845 944 984 897 822 1010 771 676
649 846 812 742 801 1040 860 874 848 890
744 749 838 1050 918 986 797 923 975 815
1020 906 901 1170 912 746 919 718 714 740
. .
;

It is also known that for this time span the Nile water level can be reasonably modeled as a sum of a random
walk trend, a level shift in the year 1899, and the observation error. The following statements fit this model to
the data:

proc ssm data=Nile;
id year interval=year;
shift1899 = ( year >= '1jan1899'd );
trend rw(rw);
irregular wn;
model level = shift1899 RW wn / print=smooth;
output out=nileOut;

quit;

The model-based interpolated and extrapolated values of the Nile water level are shown in Output 34.3.1,
which is produced by using the PRINT=SMOOTH option in the MODEL statement.

Output 34.3.1 Interpolated and Extrapolated Nile Water Level

The SSM Procedure

Full-Sample Prediction of Missing Values
for level

Obs ID Estimate
Standard

Error

95%
Confidence

Limits

1 1869 1098 130 843 1353

2 1870 1098 130 843 1353

53 1921 851 129 599 1104

103 1971 851 129 599 1104

104 1972 851 129 599 1104
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Example 34.4: Longitudinal Data: Smoothing of Repeated Measures
This example of a repeated measures study is taken from Diggle, Liang, and Zeger (1994, p. 100). The
data consist of body weights of 27 cows, measured at 23 unequally spaced time points over a period of
approximately 22 months. Following Diggle, Liang, and Zeger (1994), one animal is removed from the
analysis, one observation is removed according to their Figure 5.7, and the time is shifted to start at 0 and is
measured in 10-day increments. The design is a 2 � 2 factorial, and the factors are the infection of an animal
with M. paratuberculosis and whether the animal is receiving iron dosing. The data set contains five variables:
cow assigns a unique identification number—from 1 to 26—to each cow in the study, tpoint denotes the time
of the growth measurement, weight denotes the growth measurement, iron is a dummy variable that indicates
whether the animal is receiving iron or not, and infection is a dummy variable that indicates whether the
animal is infected or not. The goal of the study is to assess the effect of iron and infection—and their possible
interaction—on weight. The following DATA steps create this data set:

data times;
input time1-time23;
datalines;

122 150 166 179 219 247 276 296 324 354 380 445
478 508 536 569 599 627 655 668 723 751 781

;

data Cows;
if _n_ = 1 then merge times;
array t{23} time1 - time23;
array w{23} weight1 - weight23;
input cow iron infection weight1-weight23 @@;
do i=1 to 23;

weight = w{i};
tpoint = (t{i}-t{1})/10;
output;

end;
keep cow iron infection tpoint weight;
datalines;
1 0 0 4.7 4.905 5.011 5.075 5.136 5.165 5.298 5.323

5.416 5.438 5.541 5.652 5.687 5.737 5.814 5.799

... more lines ...

The following DATA step adds ironInf, a grouping variable that is used later during the plotting of the results.
In the next step, the data are sorted by the index variable, tpoint.

data Cows;
set Cows;
ironInf = "No Iron and No Infection";
if iron=1 and infection=1 then ironInf = "Iron and Infection";
else if iron=1 and infection=0 then ironInf = "Iron and No Infection";
else if iron=0 and infection=1 then ironInf = "No Iron and Infection";
else ironInf = "No Iron and No Infection";
run;
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proc sort data=Cows;
by tpoint ;

run;

To assess the effect of iron and infection on weight, the natural growth profile of the animals must also be
accounted for. Here two alternate models for this problem are considered. The first model assumes that the
observed weight of an animal is the sum of a common growth profile, which is modeled by a polynomial
spline trend of order 2, the regression effects of iron and infection, and the observation error—modeled as
white noise. An interaction term, for interaction between iron and infection, was found to be insignificant and
is not included. In the second model, the common growth profile and the regression variables of the first
model are replaced by four environment specific growth profiles.

The following statements fit the first model:

proc ssm data=Cows;
id tpoint;
trend growth(ps(2));
irregular wn;
model weight = iron infection growth wn;
eval pattern = iron + infection + growth;
output out=For;

quit;

Output 34.4.1 shows that the state dimension of this model is 2 (corresponding to the polynomial trend
specification of order 2), the number of diffuse elements in the initial condition is 4 (corresponding to the
trend and the two regressors iron and infection), and the number of unknown parameters is 2 (corresponding
to the variance parameters of trend and irregular).

Output 34.4.1 Model1: Model Summary Information

The SSM Procedure

Model Summary

Model Property Value

Number of Model Equations 1

State Dimension 2

Dimension of the Diffuse Initial Condition 4

Number of Parameters 2

Output 34.4.2 shows that the ID variable is irregularly spaced with replication.

Output 34.4.2 ID Variable Information

ID Variable Information

Name Start End
Max

Delta NDistinct Type

tpoint 0 65.9 6.5 23 Irregular with Replication

The estimated regression coefficients of iron and infection, shown in Output 34.4.3, are significant and
negative. This implies that both iron and infection adversely affect the response variable, weight.
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Output 34.4.3 Model 1: Regression Estimates

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

weight iron -0.0748 0.00761 -9.82 <.0001

weight infection -0.1292 0.00859 -15.04 <.0001

The variance estimates of the trend component and the irregular component are shown in Output 34.4.4.

Output 34.4.4 Model 1: Estimates of Unnamed Parameters

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

growth PS(2) Trend Level Variance 0.0000162 9.01E-06 1.80

wn Irregular Variance 0.0085849 5.03E-04 17.06

After examining the model fit, it is useful to study how well the patterns implied by the model follow the
data. pattern, defined by the EVAL statement, is a sum of the trend component and the regression effects. A
graphical examination of the smoothed estimate of pattern is done next. The following DATA step merges
the output data set specified in the OUTPUT statement, For, with the input data set, Cows. In particular, this
adds ironInf (a grouping variable from Cows) to For.

data For;
merge for Cows;
by tpoint;

run;

The following statements produce the graphs of smoothed_pattern, grouped according to the environment
condition (see Output 34.4.5). The plot clearly shows that the control group “No Iron and No Infection” has
the best growth profile, while the worst growth profile is for the group “Iron and Infection.”

proc sgplot data=For noautolegend;
title 'Common Growth Profile Adjusted by Iron and Infection Status';
band x=tpoint lower=smoothed_lower_pattern

upper=smoothed_upper_pattern / group=ironInf name="band";
series x=tpoint y=smoothed_pattern / group=ironInf name="series";
keylegend "series";

run;
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Output 34.4.5 Model 1: Growth Profile Comparison with 95% Confidence Bands

The following statements produce a panel of plots that show how well smoothed_pattern follows the observed
data:

proc sgpanel data=For noautolegend;
title 'Growth Plots Grouped by Iron and Infection';
label tpoint='Time' ;
panelby iron infection / columns=2;
band x=tpoint lower=smoothed_lower_pattern

upper=smoothed_upper_pattern ;
scatter x=tpoint y=weight;
series x=tpoint y=smoothed_pattern ;

run;

Output 34.4.6 shows that the model fits the data reasonably well.
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Output 34.4.6 Model 1: Smoothed Model Fit Lines

The following statements fit the second model. In this model separate polynomial trends are fit according to
different settings of iron and infection by specifying an appropriate list of (dummy) variables in the CROSS=
option of the trend specification.

proc ssm data=Cows;
id tpoint;
a1 = (iron=1 and infection=1);
a2 = (iron=1 and infection=0);
a3 = (iron=0 and infection=1);
a4 = (iron=0 and infection=0);
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trend growth(ps(2)) cross=(a1-a4);
irregular wn;
model weight = growth wn;
/* Define contrasts between a1 and other treatments */
comp a1Curve = growth_state_[1];
comp a2Curve = growth_state_[2];
comp a3Curve = growth_state_[3];
comp a4Curve = growth_state_[4];
eval contrast21 = a2Curve - a1Curve;
eval contrast31 = a3Curve - a1Curve;
eval contrast41 = a4Curve - a1Curve;
output out=for1;

quit;

As a result of the CROSS= option, the trend component growth is actually a sum of four separate trends that
correspond to the different iron-infection settings. Denoting growth by �t and the four independent trends by
�1;t ; �2;t ; �3;t ; and �4;t ,

�t D a1 � �1;t C a2 � �2;t C a3 � �3;t C a4 � �4;t

where a1, a2, a3, and a4 are the dummy variables specified in the CROSS= option. This shows that, for any
given setting (say, the one for a4) �t is simply the corresponding trend �4;t . In addition, note the form of
the COMPONENT statements that define the components a1Curve, a2Curve, a3Curve, and a4Curve. This
form of the COMPONENT statement treats the state that is associated with growth, named growth_state_
by convention, as a state of nominal dimension 4—the number of variables in the CROSS= list. This, in
turn, implies that a1Curve, which is defined as growth_state_[1], refers to �1;t . These components are
subsequently used in the EVAL statements to define contrasts between the trends—for example, contrast21
corresponds to the difference between the trends �2;t and �1;t . The estimates of these components (a1Curve,
a2Curve, . . . , contrast41) are output to the data set For1 named in the OUT= option of the OUTPUT data set.

The model summary, shown in Output 34.4.7, reflects the increased state dimension and the increased number
of parameters.

Output 34.4.7 Model2: Model Summary Information

The SSM Procedure

Model Summary

Model Property Value

Number of Model Equations 1

State Dimension 8

Dimension of the Diffuse Initial Condition 8

Number of Parameters 5

Output 34.4.8 shows the parameter estimates for this model.
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Output 34.4.8 Model2: Estimates of Unnamed Parameters (Partial Output)

Component Parameter Estimate StdErr tValue

growth(Cross = a1) Level Variance 1.28E-05 6.83E-06 1.87

growth(Cross = a2) Level Variance 8.72E-06 3.81E-06 2.29

growth(Cross = a3) Level Variance 9.07E-06 4.23E-06 2.14

growth(Cross = a4) Level Variance 8.45E-06 3.40E-06 2.49

wn Variance 8.39E-03 4.98E-04 16.84

Next, the smoothed estimate of trend (growth) is graphically studied. The following DATA step prepares the
data for the grouped plots of smoothed_growth by merging For1 with the input data set Cows. As before, the
reason is merely to include ironInf (the grouping variable).

data For1;
merge For1 Cows;
by tpoint;

run;

The following statements produce the graphs of smoothed �t for the desired settings (since the grouping
variable ironInf exactly corresponds to these settings). Once again, the plot in Output 34.4.9 clearly shows
that the control group “No Iron and No Infection” has the best growth profile, while the worst growth profile
is for the group “Iron and Infection.” However, unlike the first model, the profile curves are not merely shifted
versions of a common profile.

proc sgplot data=For1 noautolegend;
title 'Iron and Infection Status-Specific Growth Profiles';
band x=tpoint lower=smoothed_lower_growth

upper=smoothed_upper_growth / group=ironInf name="band";
series x=tpoint y=smoothed_growth / group=ironInf name="series";
keylegend "series";

run;
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Output 34.4.9 Model 2: Growth Profile Comparison with 95% Confidence Bands

The following statements produce the plot of smoothed .�4;t � �1;t /—contrast between the best and the
worst growth profiles:

proc sgplot data=For1;
title "Estimated Contrast between the Treatments 4 and 1 ";
band x=tpoint lower=smoothed_lower_contrast41

upper=smoothed_upper_contrast41;
series x=tpoint y=smoothed_contrast41;

run;

Output 34.4.10 shows that the growth pattern of the control group “No Iron and No Infection” consistently
remains above the growth pattern of the treatment group “Iron and Infection.”
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Output 34.4.10 Estimated Contrast between the Treatments 4 and 1 with 95% Confidence Bands

Example 34.5: A User-Defined Trend Model
This example shows how to specify a continuous-time trend model discussed in Harvey (1989, chap. 9, sec.
9.2.1). This model is not one of the predefined trend models in the SSM procedure. The system matrices that
govern the two-dimensional state of this model are

T D
�
1 h

0 1

�

Q D

"
h�21 C

h3�22
3

h2�22
2

h2�22
2

h�22

#
where h D ht D .�tC1 � �t / denotes the difference between the successive time points, and the parameters
�21 and �22 are called the level variance and the slope variance, respectively. The initial condition is fully
diffuse. The trend component corresponds to the first element of this state vector. The second element of the
state vector corresponds to the slope of this trend component. This model reduces to the polynomial spline
model of order 2 if the level variance �21 D 0. (See the section “Polynomial Spline Trend” on page 2456.)



2496 F Chapter 34: The SSM Procedure

The following statements specify a trend-plus-noise model to model the growth of cows in the previous
example (Example 34.4). The only cows that are considered are the ones that received iron and are infected.

proc ssm data=Cows;
where iron=1 and infection=1;
id tpoint;
parms var1 var2 / lower=(1.e-8 1.e-8);
array tMat{2,2};
tMat[1,1] = 1;
tMat[2,2] = 1;
tMat[1,2] = _ID_DELTA_;
array covMat{2,2};
covMat[1,1] = var1*_ID_DELTA_ + var2*_ID_DELTA_**3/3;
covMat[1,2] = var2*_ID_DELTA_**2/2;
covMat[2,1] = covMat[1,2] ;
covMat[2,2] = var2*_ID_DELTA_;
state harveyLL(2) T(g)=(tMat) cov(g)=(covMat) a1(2);
component trend = harveyLL[1];
component slope = harveyLL[2];
irregular wn;
model weight = trend wn;
output out=for;

run;

The program is easy to follow. The PARMS statement declares var1 and var2 as positive parameters, which
correspond to �21 and �22 , respectively. The programming statements define arrays tMat and covMat, which
later become the matrices T and Q, respectively. Note that the element tMat[2,1] is left unassigned, since it
is a structural zero of T (see the section “Sparse Transition Matrix Specification” on page 2444 for more
information). Recall that the predefined variable _ID_DELTA_ contains the value of ht , which is needed for
defining the elements of T and Q (see the section “ID Statement” on page 2424). The STATE statement
defines the trend state vector, harveyLL, and the COMPONENT statement defines the trend component,
trend, by selecting the first element of harveyLL. An additional COMPONENT statement defines the slope
component, slope, as the second element of harveyLL. The slope component (which represents the cow’s
growth rate) is not part of the observation equation; it is specified so that its estimate is output to For (the
OUT= data set specified in the OUTPUT statement). The IRREGULAR statement defines the observation
noise, and the MODEL statement defines the trend-plus-noise model.

The estimates of var1 and var2 are shown in Output 34.5.1. It shows that the estimate of the level variance is
nearly 0, implying that the fitted trend model is identical to the polynomial spline trend of order 2.

Output 34.5.1 Estimates of the Named Parameters

The SSM Procedure

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

var1 1.00E-08 0.000849 0.00

var2 1.24E-05 . .

The estimate of the noise variance is shown in Output 34.5.2.
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Output 34.5.2 Estimates of the Unnamed Parameters

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

wn Irregular Variance 0.00954 0.000909 10.49

The following statements produce the plot of the fit of this trend model (shown in Output 34.5.3):

proc sgplot data=For;
title "Model Fit: Two-Parameter Polynomial Spline of Order 2";
series x=tpoint y=smoothed_trend;
scatter x=tpoint y=weight;

run;

Output 34.5.3 A User-Defined Trend Model

The following statements produce the plot of the estimate of the slope component (shown in Output 34.5.4).
This plot complements the preceding plot of trend; it shows the pattern of decline in the growth rate as the
animals age.
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proc sgplot data=For;
title "Smoothed Estimate of Growth-Rate";
series x=tpoint y=smoothed_slope;

run;

Output 34.5.4 Estimate of the slope Component

Example 34.6: Model with Multiple ARIMA Components
This example shows how you can fit the REGCOMPONENT models in Bell (2011) by using the SSM
procedure. The following DATA step generates the data used in the last example of this article (Example
6: “Modeling a Time Series with a Sampling Error Component”). The variable y in this data set contains
monthly values of the VIP series (value of construction put in place), a US Census Bureau publication that
measures the value of construction installed or erected at construction sites during a given month. The values
of y are known to be contaminated with heterogeneous sampling errors; the variable hwt in the data set is a
proxy for this sampling error in the log scale. The variable hwt is treated as a weight variable for the noise
component in the model.
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data Test;
input y hwt;
date = intnx('month', '01jan1997'd, _n_-1 );
format date date.;
logy = log(y);
label logy = 'Log value of construction put in place';
datalines;

115.2 0.042
110.4 0.042
111.5 0.067
127.9 0.122
150.0 0.129
149.5 0.135
139.5 0.152
144.6 0.168
176.0 0.173

... more lines ...

The article proposes the following model for the log VIP series:

log.y/ D �t C hwt � �t

where �t follows an ARIMA(0,1,1)�(0,1,1)12 model and �t is a zero-mean, AR(2) error process. In addition,
the article fixes the values of some of the model parameters to known values in order to use the known
background information. The following statements specify the model in the article:

proc ssm data=Test;
id date interval=month;
parm var1=0.016565 / lower=1.e-8;
trend airlineTrend(arma(d=1 sd=1 q=1 sq=1 s=12)) variance=var1;
trend ar2Noise(arma(p=2)) cross=(hwt) ar=0.600 0.246 variance=0.34488;
model logy = airlineTrend ar2Noise;
output outfor=For;

run;

Output 34.6.1 Estimates of the MA Parameters in the airlineTrend Model

The SSM Procedure

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

airlineTrend ARMA Trend MA_1 0.421 0.301 1.40

airlineTrend ARMA Trend SMA_1 0.310 0.347 0.89

Output 34.6.2 Estimate of the Error Variance in the airlineTrend Model

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

var1 0.004 0.00222 1.80
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The ARIMA(0,1,1)�(0,1,1)12 trend �t is named airlineTrend and the zero-mean, AR(2) error process �t is
named ar2Noise. For more information about the ARIMA notation, see the TREND statement. The estimates
of model parameters are shown in Output 34.6.1 and Output 34.6.2. These estimates are slightly different
from the estimates given in the article; however, the estimated trend and noise series are qualitatively similar.

The following statements produce the plot of the estimate of the airlineTrend component (shown in Out-
put 34.6.3). This plot is very similar to the trend plot shown in the article (the article plots are in the antilog
scale).

proc sgplot data=For;
title "Smoothed Estimate of the ARIMA(0,1,1)(0,1,1)12 Trend";
series x= date y=smoothed_airlineTrend;
scatter x= date y=logy;

run;

Output 34.6.3 Estimate of the airlineTrend Component

The following statements produce the plot of the estimate of the ar2Noise component (shown in Output 34.6.4).
This plot is also very similar to the noise plot shown in the article (once again, the article plots are in the
antilog scale).
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proc sgplot data=For;
title "Smoothed Estimate of the AR(2) Noise";
series x= date y=smoothed_ar2Noise;
refline 0;

run;

Output 34.6.4 Estimate of the ar2Noise Component
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Example 34.7: A Dynamic Factor Model for the Yield Curve
This example shows how you can fit a variant of the dynamic Nelson-Siegel (DNS) factor model discussed in
Koopman, Mallee, and van der Wel (2010). Also see the example in Durbin and Koopman (2012, chap. 8,
sect. 6). The following DATA step creates the yield-curve data set, Dns, that is used in Koopman, Mallee,
and van der Wel. The data are monthly bond yields that were recorded between the start of 1970 and the
end of 2000 for 17 bonds of different maturities; the maturities range from three months to 10 years (120
months). The variable date contains the observation date, yield contains the bond yield, maturity contains the
associated bond maturity, and mtype contains an index (ranging from 1 to 17) that sequentially labels bonds
of increasing maturity. The data have been extended for two more years by adding missing yields for the
years 2001 and 2002, which causes the SSM procedure to produce model forecasts for this span.

data Dns;
input date : date. yield maturity mtype;
format date date.;
datalines;
1-Jan-70 8.019 3 1
1-Jan-70 8.091 6 2
1-Jan-70 8.108 9 3

... more lines ...

In addition, suppose you are interested in extrapolating the fitted model to predict the yield of a hypothetical
bond that has a maturity of 42 months and is not traded on the general exchange. The following DATA step
creates the necessary missing values for this new bond, which is assigned the index of 18—that is, the value
of mtype is 18:

data tmp1;
set dns(keep=date);
by date;
if first.date then do;

yield = .;
maturity = 42;
mtype = 18;
output;

end;
run;

proc append data=tmp1 base=dns; run;
proc sort data=dns;
by date;
run;

Suppose that �t .�/ denotes the (idealized) yield at time t that is associated with a bond of maturity � (in
months). Even if time is not measured continuously and the bonds of only certain maturities are traded, �t .�/
is treated as a smooth function of two continuous variables, time t and maturity � . Koopman, Mallee, and
van der Wel (2010) discuss a variety of models for �t .�/, which is called the yield surface. One of these
models depends on a positive, time-varying, scalar parameter �t and a time-varying three-dimensional vector
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parameter ˇ̌̌ t . This model can be described as follows:

�t .�/ D �.� I�t ; ˇ̌̌ t /

D ˇ1t C ˇ2t

�
1 � exp.��t�/

�t�

�
C ˇ3t

�
1 � exp.��t�/

�t�
� exp.��t�/

�
This model is a dynamic version of a static model discussed in Nelson and Siegel (1987), where �t and ˇ̌̌ t
are time invariant. For fixed time period t, the three terms in this model have relatively simple interpretation.
The first term ˇ1t can be thought of as the overall yield level because it does not depend on � , the bond
maturity. It can also be thought of as the long term yield because as � " 1 the other two terms vanish; the
coefficients of both ˇ2t and ˇ3t converge to 0 as � " 1 (recall that �t is positive). Next, note that as � # 0
the coefficient of ˇ2t in the second term converges to 1 while that of ˇ3t in the third term converges to 0;
therefore the second term can be thought of as a correction to the overall yield that is associated with the short
term bonds. Finally, note that the coefficient of ˇ3t in the third term is a unimodal function of � that decays
monotonically to 0 as � # 0 and as � " 1; therefore the third term is associated with the medium term bond
yields. It is postulated that the observed yield, denoted by yt .�/, is a noisy version of this unobserved (true)
yield �t .�/. The observed yield can be modeled as

yt .�/ D �.� I�t ; ˇ̌̌ t /C �t;�

D ˇ1t C ˇ2t

�
1 � exp.��t�/

�t�

�
C ˇ3t

�
1 � exp.��t�/

�t�
� exp.��t�/

�
C �t;�

.ˇ̌̌ t ����/ D ˆ̂̂.ˇ̌̌ t�1 ����/C ���t

where �t;� are zero-mean, independent, Gaussian variables with variance �2� , and ���t is a three-dimensional,
Gaussian white noise. That is, ˇ̌̌ t is a VAR(1) process with mean vector���. The remainder of this example
explains how to use the SSM procedure to fit this model to the yield data in the Dns data set.

Suppose that variables Z1, Z2, and Z3 are defined as the coefficients of ˇ1t , ˇ2t , and ˇ3t , respectively. That
is,

Z1 D 1

Z2 D
1 � exp.��t�/

�t�

Z3 D
1 � exp.��t�/

�t�
� exp.��t�/

In this case,

�t .�/ D Z1 � ˇ1t CZ2 � ˇ2t CZ3 � ˇ3t

Let ���t D ˇ̌̌ t ����. Then ���t is a zero-mean VAR(1) process and ˇ̌̌ t D ���t C���. In particular,

�t .�/ D Z1 � ˇ1t CZ2 � ˇ2t CZ3 � ˇ3t

D Z1 � �1t CZ2 � �2t CZ3 � �3t CZ1 � �1 CZ2 � �2 CZ3 � �3

This shows that the model for yt .�/ can be cast into a state space form with the following observation
equation:

yt .�/ D Z���t C Z���C �t;�
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The underlying six-dimensional state vector ˛̨̨ t is formed by joining the two independent subvectors, ���t (which
is a zero-mean, VAR(1) process) and the constant mean vector���. That is, ˛̨̨ t D .�1t �2t �3t �1 �2 �3/

0

.

Note that the variables Z2 and Z3 depend on the time varying parameter �t , which is unknown. �t is assumed
to be a smooth and positive function of time t. In what follows �t is represented as an exponential of a cubic
spline—a B-spline— in time with four evenly spaced interior knots between January 1970 and December
2002. A cubic spline with four interior knots can be represented as a sum of seven (number of knots + spline
degree + 1) B-spline basis functions, c1t ; c2t ; : : : ; c7t , for example. More specifically, �t can be expressed as

�t D exp.v1 � c1t C : : :C v7 � c7t /

for some parameters v1; v2; : : : ; v7 and the B-spline basis functions (of time) c1t ; c2t ; : : : ; c7t . Thus, the
variables Z2 and Z3 become known functions of time, except for the parameters v1; v2; : : : ; v7, which are
estimated from the data. The following statements augment the Dns data set with the B-spline basis columns
in two steps. First a data set that contains the basis columns, c1–c7, is created by using the BSPLINE function
in the IML procedure. This data set is then merged with the Dns data set.

proc iml;
use dns;
read all var {date} into x;
bsp = bspline(x, 2, ., 4);
create spline var{c1 c2 c3 c4 c5 c6 c7};
append from bsp;

quit;
data dns;

merge dns spline;
run;

The following statements use the SSM procedure to perform the model fitting and forecasting calculations.
The variance of the observation equation disturbance for the hypothetical bond (mtype = 18) is taken to be the
average of the neighboring bonds (mtype = 10 and 11), whose maturities are 36 and 48 months, respectively.

proc ssm data=Dns optimizer(technique=dbldog maxiter=400);
id date interval=month;

/* Time-varying parameter lambda */
parms v1-v7;
lambda = exp(v1*c1 + v2*c2 + v3*c3 + v4*c4

+ v5*c5 + v6*c6 + v7*c7);

/* Observation equation disturbance -- separate variance for each maturity */
parms sigma1-sigma17 / lower=1.e-4;
array s_array(17) sigma1-sigma17;
do i=1 to 17;

if (mtype=i) then sigma = s_array[i];
end;
if (mtype=18) then sigma = (sigma10+sigma11)/2;
irregular wn variance=sigma;

/* Variables Z1, Z2, Z3 needed in the observation equation */
Z1= 1.0;
tmp = lambda*maturity;
Z2 = (1-exp(-tmp))/tmp;
Z3 = ( 1-exp(-tmp)-tmp*exp(-tmp) )/tmp;



Example 34.7: A Dynamic Factor Model for the Yield Curve F 2505

/* Zero-mean VAR(1) factor zeta and the associated component */
state zeta(3) type=VARMA(p(d)=1) cov(g) print=(cov ar);
comp zetaComp = (Z1-Z3)*zeta;

/* Constant mean vector mu and the associated component */
state mu(3) type=rw;
comp muComp = (Z1-Z3)*mu;

/* Observation equation */
model yield = muComp zetaComp wn;

/* Various components defined only for output purposes */
eval yieldSurface = muComp + zetaComp;

comp zeta1 = zeta[1];
comp zeta2 = zeta[2];
comp zeta3 = zeta[3];
comp mu1 = mu[1];
comp mu2 = mu[2];
comp mu3 = mu[3];

comp z2zeta = (Z2)*zeta[2];
comp z3zeta = (Z3)*zeta[3];
comp z2Mu = (Z2)*mu[2];
comp z3Mu = (Z3)*mu[3];

eval beta1 = mu1 + zeta1;
eval beta2 = mu2 + zeta2;
eval beta3 = mu3 + zeta3;

eval shortTem = z2zeta + z2Mu;
eval medTerm = z3zeta + z3Mu;

/* output the component estimates and the forecasts */
output out=dnsFor pdv;

run;

The DBLDOG optimization technique is used for parameter estimation since it is computationally more
efficient in this example. The transition matrix, ˆ̂̂, in the VAR(1) specification of zetazetazeta is taken to be diagonal
(TYPE=VARMA(P(D)=1)) because the use of more general square matrix did not improve the model fit
significantly. The mean vectormumumu (recall that betabetabetat D zetazetazetat Cmumumu) is specified as a three-dimensional
random walk with zero disturbance covariance (signified by the absence of COV= option). The model
specification part of the program ends with the MODEL statement; the subsequent COMP and EVAL
statements define some useful linear combinations of the underlying state. Their estimates are computed after
the model fit is completed and are output to the output data set dnsFor. The dnsFor data set also contains all
the program variables and the parameters defined in the PARMS statement because the OUTPUT statement
contains the PDV option.

Output 34.7.1 shows the estimated mean vector (���). It shows that the mean long-term yield is 7.64.
Output 34.7.2 shows the estimates of v1–v7 (used for defining time-varying �t ) and the maturity specific
observation variances. Output 34.7.3 shows the estimate of the VAR(1) transition matrix ˆ̂̂, and Output 34.7.4
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shows the associated disturbance covariance matrix†††. The model fit summary is shown in Output 34.7.5.

Output 34.7.1 Estimate of the Mean Vector (���)

The SSM Procedure

Estimates of Fixed State Effects

State
Element

Index Estimate
Standard

Error t Value Pr > |t|

mu 1 7.638 1.357 5.63 <.0001

mu 2 -1.319 0.777 -1.70 0.0897

mu 3 -0.309 0.268 -1.15 0.2481

Output 34.7.2 Estimates of v1–v7 and Observation Variances

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

v1 -1.19585 0.303997 -3.93

v2 -2.93680 0.111439 -26.35

v3 -1.88701 0.068966 -27.36

v4 -2.31369 0.079110 -29.25

v5 -3.21865 0.105563 -30.49

v6 -1.66086 0.315651 -5.26

v7 -4.60100 1.547921 -2.97

sigma1 0.05405 0.004706 11.49

sigma2 0.00349 0.000865 4.03

sigma3 0.00869 0.000752 11.56

sigma4 0.01093 0.000900 12.14

sigma5 0.00865 0.000757 11.43

sigma6 0.00603 0.000571 10.56

sigma7 0.00519 0.000491 10.58

sigma8 0.00542 0.000497 10.90

sigma9 0.00562 0.000500 11.25

sigma10 0.00639 0.000559 11.43

sigma11 0.01032 0.000848 12.17

sigma12 0.00742 0.000676 10.98

sigma13 0.01106 0.000947 11.68

sigma14 0.01194 0.001052 11.36

sigma15 0.01244 0.001163 10.70

sigma16 0.02141 0.001843 11.62

sigma17 0.02747 0.002296 11.97

Output 34.7.3 Transition Matrix, ˆ̂̂, Associated with ���

AR Coefficient Matrix for zeta

Col1 Col2 Col3

Row1 0.989828 0 0

Row2 0 0.962479 0

Row3 0 0 0.803032



Example 34.7: A Dynamic Factor Model for the Yield Curve F 2507

Output 34.7.4 Estimated Disturbance Covariance of ���

Disturbance Covariance for zeta

Col1 Col2 Col3

Row1 0.108104 -0.02618 0.087117

Row2 -0.02618 0.360624 0.008945

Row3 0.087117 0.008945 1.072188

Output 34.7.5 Likelihood Computation Summary for the DNS Factor Model

Likelihood Computation Summary

Statistic Value

Nonmissing Response Values Used 6324

Estimated Parameters 33

Initialized Diffuse State Elements 3

Normalized Residual Sum of Squares 6321.0007

Diffuse Log Likelihood 3548.9546

Profile Log Likelihood 3547.494

The following statements produce the time series plots of the smoothed estimate of the idealized bond yield
(�t .�/) for bonds with maturities 30, 60, and 120 months (shown in Output 34.7.6). To simplify the display,
the plots exclude the time span prior to 1991.

proc sgplot data= dnsFor;
title "The Estimated Yield Surface and the Observed Yields ";
where maturity in (3 60 120) and date >= '31dec1990'd;
series x=date y=smoothed_yieldSurface / group=maturity;
scatter x=date y=yield / group=maturity;
refline '31dec2000'd / axis=x lineattrs=GraphReference(pattern = Dash)

name="RefLine" label="Start of multistep forecasts";
run;
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Output 34.7.6 Smoothed Estimate of �t .�/ for � D 3; 60; 120

The plots indicate that the DNS model is a reasonable description of the yield data. Similar plots (not shown
here) for other maturities also indicate the adequacy of the DNS model. The following statements produce
the time series plot of the smoothed estimate of ˇ1t , the long-term bond yield (shown in Output 34.7.7) :

proc sgplot data=dnsFor;
title "Long-Term Bond Yields Over Time ";
series x=date y=smoothed_beta1 ;
refline '31dec2000'd / axis=x lineattrs=GraphReference(pattern = Dash)

name="RefLine" label="Start of multistep forecasts";
run;
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Output 34.7.7 Smoothed Estimate of ˇ1t , the Long-Term Yield

Similarly, Output 34.7.8, which is produced by the following statements, shows the smoothed estimate of the
correction to the overall yield that is provided by the second term (Z2 � ˇ2t ) for maturities of 3 months and
120 months. As expected, the correction for the (long-term) maturity of 120 months is negligible compared
to the (short-term) maturity of 3 months.

proc sgplot data=dnsFor;
title "The Correction Term for the Short-Term Yields ";
where maturity in (3 120);
series x=date y=smoothed_shortTem / group=maturity;
refline '31dec2000'd / axis=x lineattrs=GraphReference(pattern = Dash)

name="RefLine" label="Start of multistep forecasts";
run;
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Output 34.7.8 Smoothed Estimate of Z2 � ˇ2t , the Correction Term for the Short-Term Yields

The following statements create plots that show the estimated yield for the hypothetical bond whose maturity
is 42 months:

proc sgplot data=dnsFor;
title "Interpolated Yield Curve for the Bond of 42 Months' Maturity";
title2 "(With 95% Pointwise Confidence Band)";
where maturity in (42);
band x=date lower=smoothed_lower_yieldSurface upper=smoothed_upper_yieldSurface;
series x=date y=smoothed_yieldSurface;
refline '31dec2000'd / axis=x lineattrs=GraphReference(pattern = Dash)

name="RefLine" label="Start of multistep forecasts";
run;

proc sgplot data= dnsFor;
title "Estimated Yield Curves";
title2 "(Maturities 36, 42, and 48 Months)";
where maturity in (36 42 48) and date >= '31dec1990'd;
series x=date y=smoothed_yieldSurface / group=maturity;
refline '31dec2000'd / axis=x lineattrs=GraphReference(pattern = Dash)

name="RefLine" label="Start of multistep forecasts";
run;
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Output 34.7.9 shows the interpolated yield curve with a pointwise 95% confidence band. In the historical
period, the confidence band appears too tight, mostly because of graphical scaling.

Output 34.7.9 Interpolated Yield Curve for 42 Months’ Maturity
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Output 34.7.10 Estimated Yield Curves

Output 34.7.10 shows the estimates of �t .�/ for � = 36, 42, and 48 months. As expected, the estimated
�t .42/ lies between the estimates of �t .36/ and �t .48/.

Example 34.8: Diagnostic Plots and Structural Break Analysis
This example provides information about the diagnostic plots that the SSM procedure produces. In addition,
a simple illustration of structural break analysis is also provided. For additional examples of structural break
analysis, see Selukar (2017). The following plots are available in the SSM procedure:

� a panel of two plots—a histogram and a Q-Q plot—for the normality check of the one-step-ahead
residuals �t;i . A separate panel is produced for each response variable.

� a time series plot of standardized residuals, one per response variable

� a panel of two plots—a histogram and a Q-Q plot—for the normality check of the prediction errors
AOt;i . A separate panel is produced for each response variable.

� a time series plot of standardized prediction errors, one per response variable
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� a time series plot of maximal state shock chi-square statistics

All these plots are used primarily for model diagnostics. In this example, the automobile seat-belt data that
are discussed in Example 34.1 are revisited. In Example 34.1, the question under consideration is whether
the data show evidence of the effectiveness of the seat-belt law that was introduced in the first quarter of
1983. An intervention variable, Q1_83_Shift, was used in the model to measure the effect of this law on the
drivers and front-seat passengers who were killed or seriously injured in car accidents (f_KSI). In the current
example, the analysis of these data begins without the knowledge of this seat-belt law. In effect, the same
model is fitted without the use of the intervention variable Q1_83_Shift.

The following statements specify the model (without the intervention variable):

proc ssm data=seatBelt optimizer(tech=interiorpoint) plots=all;
id date interval=quarter;
state error(2) type=WN cov(g);
component wn1 = error[1];
component wn2 = error[2];
state level(2) type=RW cov(rank=1) checkbreak;
component rw1 = level[1];
component rw2 = level[2];
state season(2) type=season(length=4);
component s1 = season[1];
component s2 = season[2];
model f_KSI = rw1 s1 wn1;
model r_KSI = rw2 s2 wn2;

run;

The PLOTS=ALL option in the PROC SSM statement turns on all the plotting options. Because there are
two response variables, nine plots in total are produced: a separate set of four plots—two residual and two
prediction error—is produced for f_KSI and r_KSI, and one maximal shock plot is produced. Only three of
these plots are shown here. Output 34.8.1 shows the normality check for the one-step-ahead residuals for
f_KSI. It shows some evidence of lack of normality.
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Output 34.8.1 Normality Check of One-Step-Ahead Residuals for f_KSI

Output 34.8.2 shows the time series plot of standardized prediction errors for f_KSI. It identifies some extreme
observations (additive outliers): two near 1983 and one near 1970.
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Output 34.8.2 Time Series Plot of Standardized Prediction Errors for f_KSI

Output 34.8.3 shows the time series plot of maximal shock statistics. This plot can be very informative
in showing the temporal locations of the structural changes in the overall observation-generation process
(treating the fitted model as the reference). It can indicate locations of shifts in the process level or shifts in
other characteristics, such as its slope. The precise nature of the shift (whether the shift occurs in the level or
in some other aspects) can be determined by using the CHECKBREAK option in the appropriate STATE and
TREND statements (as is done in the STATE statement in this example that defines the bivariate state level).
In this example, the maximal shock statistics plot indicates two locations—the last quarter of 1973 and the
first quarter of 1983—as likely locations for the structural breaks that are associated with the traffic accident
process. These are indeed reasonable findings, because the last quarter of 1973 (beginning in October 1973)
is associated with the start of the oil crisis that severely curtailed worldwide automobile traffic, and the first
quarter of 1983 is associated with the introduction of the seat-belt law that might have improved the safety
of drivers and front-seat passengers. In addition, Output 34.8.4 shows the summary of most likely break
locations for the bivariate state level. It identifies a break in the first element of level (which corresponds to
the drivers and front-seat passengers) in the first quarter of 1983.
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Output 34.8.3 Time Series Plot of Maximal Shock Statistics

Output 34.8.4 Elementwise Break Summary for the Bivariate State: level

Elementwise Break Summary
for level

ID
Element

Index Z Value Pr > |z|

1983:1 1 -5.85 <.0001

The following statements fit a revised model that accounts for the break in the first element of level by
introducing a dummy variable, Q1_83_Pulse, in the state equation:

ods output ElementStateBreakDetails=stateBreak;
proc ssm data=seatBelt optimizer(tech=interiorpoint) plots=all;

id date interval=quarter;
Q1_83_Pulse = (date = '1jan1983'd);
zero = 0;
state error(2) type=WN cov(g);
component wn1 = error[1];
component wn2 = error[2];
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state level(2) type=RW cov(rank=1) W(g)=(Q1_83_Pulse zero)
checkbreak print=breakdetail;

component rw1 = level[1];
component rw2 = level[2];
state season(2) type=season(length=4);
component s1 = season[1];
component s2 = season[2];
model f_KSI = rw1 s1 wn1;
model r_KSI = rw2 s2 wn2;

run;

Note that using Q1_83_Pulse in the definition of level is equivalent to using Q1_83_Shift in the MODEL
statement for f_KSI in Example 34.1. Output 34.8.5 shows the estimated change in the first element of the
state level, which is the same as the estimated level shift shown in Output 34.1.6 (this is not surprising,
because these two models are statistically equivalent).

Output 34.8.5 Estimate of the Regression Coefficient of Q1_83_Pulse

The SSM Procedure

Estimate of the State Equation Regression Vector

State
Element

Index Estimate
Standard

Error t Value Pr > |t|

level 1 -0.408 0.0259 -15.74 <.0001

In the preceding SSM procedure statements, the CHECKBREAK option is used along with the
PRINT=BREAKDETAIL option, which produces a table that contains the break statistics at every dis-
tinct time point (this table, in turn, is captured in the output data set stateBreak for later use). Output 34.8.6
shows the time series plot of maximal shock statistics for this revised model. As expected, the plot no longer
shows the first quarter of 1983 as a structural break location. It continues to show the last quarter of 1973 as
a structural break location, because the fitted model does not try to explicitly account for this shift.
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Output 34.8.6 Time Series Plot of Maximal Shock Statistics for the Model with Q1_83_Pulse

Note that the reference line in Output 34.8.3 is drawn at the 99.9th percentile, whereas the reference line
in Output 34.8.6 is drawn at the 99th percentile. The reference line location in the maximal state shock
chi-square statistics plot is based on the points in the plot. A reference line is drawn at percentile 80, 90, 99,
or 99.9 based on the largest maximal shock statistic that is shown.

The detailed information in the data set stateBreak can be used to further investigate the possibility of
significant breaks in the trend in and around 1973. The following statements produce scatter plots for the
break statistics for both the drivers and front passengers and the rear passengers (reference lines are also
drawn at –3 and 3 to check for extreme Z values):

proc sgpanel data=stateBreak;
panelby elementIndex;
scatter x=time y=zValue;
refline 3 / axis=y lineattrs=(pattern=shortdash) noclip;
refline -3 / axis=y lineattrs=(pattern=shortdash) noclip;

run;
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Output 34.8.7 Elementwise Structural Break Statistics for level

The resulting graph, shown in Output 34.8.7, shows possible breaks in the second element—rear side
passengers—around 1969. In general, however, the evidence of breaks in the elements of level is not very
strong. This means that you must look elsewhere to explain the extreme point in Output 34.8.6.

Example 34.9: Longitudinal Data: Variable Bandwidth Smoothing
The data for this example, taken from Givens and Hoeting (2005, chap. 11, Example 11.8), contain two
variables, x and y. The variable y represents noisy evaluation of an unknown smooth function at x. The data
are sorted by x.

data Difficult;
input x y;
datalines;
0.002 0.040
0.011 0.009
0.013 0.719
0.016 0.199
0.017 -0.409
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... more lines ...

Output 34.9.1 shows the scatter plot of y against x that is generated by the following statements:

proc sgplot data=Difficult;
title "Scatter Plot of Y versus X";
scatter x=x y=y ;

run;

Output 34.9.1 Scatter Plot of Y versus X

The plot clearly shows that the variance of y values varies considerably over the range of x values—the
variance is larger for x values around 0.2 and gets increasingly smaller as the x values get closer to 1. Givens
and Hoeting (2005) discuss the difficulties of extracting a smooth pattern from such data. Consider the
following model for y:

y.x/ D ���x C ���x

where���x is a smooth trend component and ���x is the observation noise with variance, h.x/, which changes
with x: ���x � N.0; h.x//. It is known (Durbin and Koopman 2012, chap. 3, sect. 9 and chap. 8, sect. 5)
that modeling the trend���x as a polynomial smoothing spline (for example, the way the growth curves are
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modeled in Example 34.4) and taking the variance function of the observation noise ���x a constant results in
a trend estimate that can be termed a fixed-bandwidth-smoother. The optimal bandwidth turns out to be a
function of the signal-to-noise ratio: the ratio of the observation noise variance and the disturbance variance
of the trend component. On the other hand, allowing the variance function of the observation noise to change
with the x values results in a trend estimate that can be termed a variable-bandwidth-smoother. The rest of
this example shows how to use the SSM procedure to create a data-dependent variance function h.x/ and
to extract the associated (variable-bandwidth) smooth trend from such data. Suppose that the (unknown)
variance function h.x/ can be approximated as

h.x/ D exp.
7X
iD1

�i SplineBasisi .x//

where �i ; i D 1; 2; : : : ; 7 are unknown parameters and SplineBasisi .x/; i D 1; 2; : : : ; 7, are the full set
of cubic spline basis functions (B-splines) with four evenly spaced internal knots between the range of x
values—essentially, four equispaced points between 0.0 and 1.0. Note that the number of basis functions
in the full set, 7, is the sum of the number of internal knots, 4, and the degree of the polynomial, 3. The
following statements create a data set, Combined, that contains the variables x and y, along with the desired
spline basis functions (col1–col7) that are created by using the BSPLINE function in PROC IML:

proc iml;
use difficult;
/* read x and y from difficult into temp */
read all var _num_ into temp;
x = temp[,1];
/* generate B-spline basis for a cubic spline

with 4 evenly spaced internal knots in the x-range */
bsp = bspline(x, 2, ., 4);
Combined = temp || bsp;
/* create a merged data set with x, y, and

spline basis columns */
create Combined var {x y col1 col2 col3 col4 col5 col6 col7};
append from Combined;

quit;

The following statements specify and fit the desired model to the data:

proc ssm data=Combined opt(tech=dbldog);
id x;
/* parameters needed to define h(x) */
parms v1-v7;
/* defining h(x) */
var = exp(v1*col1 + v2*col2 + v3*col3 + v4*col4

+ v5*col5 + v6*col6 + v7*col7);
/* defining the polynomial spline trend */
trend trend(ps(2));
/* defining the observation noise with variance h(x) */
irregular wn variance=var;
model y = trend wn;
output out=For pdv;

run;

Output 34.9.2 shows the estimates of �i ; i D 1; 2; : : : ; 7, and Output 34.9.3 shows the estimate of the
disturbance variance associated with the polynomial spline trend that is specified in the TREND statement.
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Output 34.9.2 Estimates of v1–v7

The SSM Procedure

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

v1 -3.302 1.501 -2.20

v2 -0.826 0.619 -1.33

v3 -2.234 0.453 -4.93

v4 -3.130 0.412 -7.60

v5 -4.306 0.415 -10.38

v6 -6.901 0.588 -11.73

v7 -19.514 2.306 -8.46

Output 34.9.3 Estimate of the Disturbance Variance Associated with the Trend

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

trend PS(2) Trend Level Variance 339 110 3.07

The following statements produce a plot, shown in Output 34.9.4, of the fitted trend with 95% confidence
band:

proc sgplot data=For;
title "Variable Bandwidth Smoothing Spline";
band x=x lower=smoothed_lower_trend

upper=smoothed_upper_trend ;
series x=x y=smoothed_trend;
scatter x=x y=y;

run;
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Output 34.9.4 Fitted Trend with 95% Confidence Band

Clearly the fitted curve tracks the data quite well. Lastly, Output 34.9.5 (produced by using the following
statements) shows the estimated variance function h.x/.

proc sgplot data=For;
title "Estimated Variance Function";
series x=x y=var;

run;

As expected, the curve attains its peak at an x value around 0.18 and decays to nearly 0 as x values reach 1.0.
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Output 34.9.5 Estimated Variance Function h.x/ D exp.
P7
iD1 O�i SplineBasisi .x//

Example 34.10: A Transfer Function Model for the Gas Furnace Data
This example describes how you can include components in your model that follow a transfer function model.
Transfer function models, a generalization of distributed lag models, are useful for capturing the contributions
from lagged values of the predictor series. Box and Jenkins popularized ARIMA models with transfer
function inputs in their famous book (Box and Jenkins 1976). This example shows how you can specify an
ARIMA model that is suggested in that book to analyze the data collected in an experiment at a chemical
factory. The data set, called Series J by Box and Jenkins, contains sequentially recorded measurements of
two variables: x, the input gas rate, and y, the output CO2. For the output CO2, Box and Jenkins suggest the
model

yt D �C ft C �t

where � is the intercept, �t is a zero-mean noise term that follows a second-order autoregressive model (that
is, �t � AR(2)), and ft follows a transfer function model

ft D
.1B

3 C 2B
4 C 3B

5/

.1 � ıB/
xt
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The model for ft is specified by using the ratio of two polynomials in the backshift operator B. Alternatively,
this model can also be described as follows:

ft D ıft�1 C 1xt�3 C 2xt�4 C 3xt�5

In this alternate form, it is easy to see that the equation for ft can also be seen as a state evolution equation
for a one-dimensional state with a (1 � 1) transition matrix ı and state regression variables xt�3; xt�4, and
xt�5 (lagged values of x). This state equation has no disturbance term.

The following statements define the data set Seriesj. The variables x3, x4, and x5, which denote the
appropriately lagged values of x, are also created. These variables are used later in the STATE statement that
is used to specify ft .

data Seriesj;
input x y @@;
label x = 'Input Gas Rate'

y = 'Output CO2';
x3 = lag3(x);
x4 = lag4(x);
x5 = lag5(x);
obsIndex = _n_;
label obsIndex = 'Observation Index';

datalines;
-0.109 53.8 0.000 53.6 0.178 53.5 0.339 53.5
0.373 53.4 0.441 53.1 0.461 52.7 0.348 52.4
0.127 52.2 -0.180 52.0 -0.588 52.0 -1.055 52.4

... more lines ...

The following SSM procedure statements carry out the modeling of y, the output CO2, according to the
preceding model:

proc ssm data=Seriesj(firstobs=6);
id obsIndex;
parms delta /lower=-0.9999 upper=0.9999;
state tfstate(1) T(g)=(delta) W(g)=(x3 x4 x5) a1(1) checkbreak;
comp tfinput = tfstate[1];
trend ar2(arma(p=2)) ;
intercept = 1;
model y = intercept tfinput ar2 ;
eval modelCurve = intercept + tfinput;
forecast out=For;

run;

The coefficient of the denominator polynomial, ı, is specified in a PARMS statement. It is constrained to
be less than 1 in magnitude, which ensures that the transfer function term does not have explosive growth.
The transfer function model for ft is specified in a STATE statement that defines a one-dimensional state
named tfstate. In this statement, the transition matrix (which contains only one element, ı) is specified by
using the T(g)= option; the state regression variables x3, x4, and x5 are specified by using the W(g)= option;
and the CHECKBREAK option is used to turn on the search for unexpected changes in the behavior of ft .
The COV option is absent from this STATE statement because the disturbance term is absent from the state
equation for ft . Moreover, because nothing can be assumed about the initial condition of this state equation,
it is taken to be diffuse (as signified by the A1 option). Note that the first five observations of the input data
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set, Seriesj, are excluded from the analysis to ensure that the state regression variables x3, x4, and x5 do not
contain any missing values. The component that is associated with tfstate, named tfinput, is specified in a
COMPONENT statement that follows the STATE statement. A zero-mean, second-order autoregressive noise
term, named ar2, is specified by using a TREND statement. Next, a constant regression variable, intercept, is
defined to be used in the MODEL statement to capture the intercept term �. Finally, the model specification
is completed by specifying the response variable, y, and the three right-hand terms in the MODEL statement.
Next, an EVAL statement is used to specify a component, modelCurve, which is the sum of the intercept and
the transfer function input (�C ft ). The modelCurve component represents the structural part of the model
and is defined only for output purposes: its estimate is output (along with the estimates of other components)
to the data set that is specified in the OUT= option of the OUTPUT statement.

Note that the modeling of output CO2 according to this model is also illustrated in Example 8.3 of the PROC
ARIMA documentation (see Chapter 8, “The ARIMA Procedure”). The ARIMA procedure handles the
computation of the transfer function ft slightly differently than the way it is estimated by the SSM procedure.
However, despite this algorithmic difference in the modeling procedures, for this example the estimated
parameters agree quite closely (barring the sign conventions that are used to specify the model parameters).

Output 34.10.1 shows the estimate of �, the intercept in the model. Output 34.10.2 shows the estimate
of ı, the coefficient in the denominator polynomial of the transfer function. Output 34.10.3 shows the
regression estimates of the state regression variables x3, x4, and x5 (which correspond to the coefficients of
the numerator polynomial). Output 34.10.4 shows the estimates of the parameters of the AR(2) noise term.

Output 34.10.1 Estimate of �

The SSM Procedure

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

y intercept 53.4 0.145 368.20 <.0001

Output 34.10.2 Estimate of ı, the Coefficient of the Denominator Polynomial in the Transfer Function

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

delta 0.548 0.0398 13.78

Output 34.10.3 Regression Estimates of the State Regression Variables x3, x4, and x5

Estimate of the State Equation Regression Vector

State
Element

Index Estimate
Standard

Error t Value Pr > |t|

tfstate 1 -0.530 0.0743 -7.13 <.0001

tfstate 2 -0.380 0.1022 -3.72 0.0002

tfstate 3 -0.519 0.0743 -6.99 <.0001
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Output 34.10.4 Estimates of the Parameters of the Autoregressive Term

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

ar2 ARMA Trend Error Variance 0.0581 0.00486 11.96

ar2 ARMA Trend AR_1 1.5319 0.04700 32.60

ar2 ARMA Trend AR_2 -0.6291 0.04973 -12.65

The following statements produce a time series plot of the estimate of modelCurve—that is, the estimate of
the structural part of the model (�C ft )—along with the scatter plot of the observed values of the output
CO2. The plot, shown in Output 34.10.5, seems to indicate that the model captures the relationship between
the input gas rate and the output CO2 quite well, at least up to the observation index 250.

proc sgplot data=For;
title "Smoothed estimate of the model curve: Intercept + Transfer Function Input";
series x=obsIndex y=smoothed_modelCurve;
scatter x=obsIndex y=y;

run;

Output 34.10.5 Smoothed Estimate of �C ft
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The plot shown in Output 34.10.6 shows the estimate of the noise term, ar2, which is produced by the
following statements:

proc sgplot data=For;
title "Smoothed estimate of the AR(2) Noise Term";
series x=obsIndex y=smoothed_ar2;
refline 0 / axis=y lineattrs=GraphReference(pattern = Dash);

run;

If you compare the scales of these two plots, it appears that the noise term is relatively small and that most of
the variation in output CO2 can be explained by the structural part of the model. It does, however, appear
that the model fit deteriorates toward the latter part of the sample. The structural break analysis summary,
shown in Output 34.10.7, indicates strong evidence of structural break in the behavior of ft at or near the
observation index 264. Obviously, this type of structural break analysis can be quite useful in industrial
quality-control applications.

Output 34.10.6 Smoothed Estimate of the AR(2) Noise Term
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Output 34.10.7 Summary of Breaks in ft

Elementwise Break Summary
for tfstate

ID
Element

Index Z Value Pr > |z|

264 1 -5.03 <.0001

199 1 4.62 <.0001

198 1 -3.15 0.0016

Example 34.11: Panel Data: Dynamic Panel Model for the Cigar Data
This example shows how you can use the SSM procedure to specify and fit the so-called dynamic panel
model, which is commonly used to analyze a panel of time series. Suppose that a panel of time series yt;i
follows the model

yt;i D �y.t�1/;i C �i C ˇXt;i C �t C �t;i

where t denotes the time index (for example, t D 1; : : : ; T ); i denotes the panel index (for example, i D
1; : : : ; P ); � is the autoregression coefficient; �i denote the panel-specific intercepts; Xt;i are observations
on a regression variable with regression coefficient ˇ (the same for all panels); �t are unobserved, random
time effects; and �t;i are the observation errors. The sequences �t and �t;i are assumed to be independent,
zero-mean Gaussian variables with variances �21 and �20 , respectively. This is an example of a dynamic panel
model that contains one regressor variable. It is easy to formulate this model equation as a state equation
with state ˛̨̨ t of size P—the number of panels. Taking yt;i D ˛̨̨ t Œi �, it is easy to see that the states ˛̨̨ t evolve
according to the equation

˛̨̨ tC1 D T˛̨̨ t CWtC1ˇ̌̌ C ���tC1

where T D �IP (a P-dimensional, diagonal matrix with all its diagonal elements equal to �); Wt D .Xt IP /
is a P � .1C P /-dimensional matrix (in a block form) of state regression variables, where the first block
is a column that includes all the values Xt;i that are associated with a given time index (t) and the second
block is a P-dimensional identity matrix; ˇ̌̌ D .ˇ �1; : : : ; �P /

0

is the .1C P /-dimensional column vector
of regression coefficients; and ���t D .�t C �t;1; : : : ; �t C �t;P /

0

is a P-dimensional column vector of all the
disturbances that are associated with time index t. Because �t and �t;i are independent, the covariance matrix
of ���t—for example, Qt—is easy to calculate: Qt Œi; i � D �20 C �

2
1 and, for i ¤ j; Qt Œi; j � D �21 . This

formulation can be easily extended to multiple regression variables, such as r variables, by appropriately
modifying the term that is associated with the state regression variables—Wt ˇ̌̌ : the new Wt matrix becomes
P � .r C P /-dimensional and the new regression vector ˇ̌̌ becomes .r C P /-dimensional.

The cross-sectional data, Cigar, that are used in the section “Getting Started: SSM Procedure” on page 2406
are reused in this example. In order to use the SSM procedure to perform the dynamic panel model–based
analysis, the input data set must be reorganized so that it contains the variables that form the P � .r C P /-
dimensional matrix Wt . For the Cigar data, the number of panels P D 46 (the number of regions considered
in the study), and the number of regression variables r D 3. Therefore, the input data set needs to be
augmented by 46 � .3 C 46/ D 2;254 variables that constitute the matrix Wt D .Xt I46/—the first
46 � 3-dimensional block Xt contains the values of the three regression variables, lprice, lndi, and lpimin, at
a given time index (a particular year in this case). The following DATA steps accomplish this task in two
steps. In the first step, the raw data that form the rows of the Cigar data set are read into a temporary data set,
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Tmp, such that all 6*46 = 276 values that are associated with a given year (values of six variables—year,
region, lsales, lprice, lndi, and lpimin for 46 panels in a given year) are read in a single row that consists of
276 columns. In the second step, the final input data set is formed by rearranging Tmp so that it contains the
necessary variables in the proper order—year (the time index), region (the panel index), lsales (the response
variable), and the variables that form the 46 � 49-dimensional W matrix (w1, . . . , w2254).

data Tmp;
input u1-u276;

datalines;
63 1 4.54223 3.35341 7.3514 3.26194
63 2 4.82831 3.17388 7.5729 3.21487
63 3 4.63860 3.29584 7.3000 3.25037

... more lines ...

data cigar(keep=year region lsales w1-w2254);
array wmat{46, 49} w1-w2254;
array ivar{46, 6} u1-u276;
set tmp;
year = intnx( 'year', '1jan63'd, u1-63 );
format year year.;
do i=1 to 46;

region = ivar[i, 2];
lsales = ivar[i, 3];
do j=1 to 46;

do k=1 to 49;
wmat[j,k] = 0;
if k = j+3 then wmat[j,k] = 1;
if k=1 then wmat[j,k] = ivar[j, 4];
if k=2 then wmat[j,k] = ivar[j, 5];
if k=3 then wmat[j,k] = ivar[j, 6];

end;
end;
output;

end;
run;

The following statements specify and fit the dynamic panel model:

proc ssm data=Cigar opt(tech=dbldog maxiter=75);
id year interval=year;
parms rho / lower=-0.9999 upper=0.9999;
parms sigma0 sigma1 / lower=1.e-8;
array RegionArray{46} region1-region46;
do i=1 to 46;

RegionArray[i] = (region=i);
end;
array cov{46,46};
do i=1 to 46;

do j=1 to 46;
if(i=j) then cov[i,j] = sigma0 + sigma1;
else cov[i,j] = sigma1;

end;
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end;
state panelState(46) T(I)=(rho) W(g)=(w1-w2254)

cov(g)=(cov) a1(46) checkbreak;
comp dynPanel = (RegionArray)*panelState;
model lsales = dynPanel;
output out=for1 press;

run;

The estimates of the regression coefficients and the regional intercepts, which are all statistically significant,
are shown in Output 34.11.1. In particular, the estimated coefficients of lprice, lndi, and lpimin, are –0.26,
0.13, and 0.07, respectively.
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Output 34.11.1 Estimates of ˇ1, ˇ2, ˇ3 and the Regional Intercepts

The SSM Procedure

Estimate of the State Equation Regression Vector

State
Element

Index Estimate
Standard

Error t Value Pr > |t|

panelState 1 -0.2627 0.0178 -14.79 <.0001

panelState 2 0.1340 0.0130 10.30 <.0001

panelState 3 0.0748 0.0198 3.78 0.0002

panelState 4 0.4265 0.0581 7.35 <.0001

panelState 5 0.3825 0.0605 6.32 <.0001

panelState 6 0.4425 0.0582 7.61 <.0001

panelState 7 0.3471 0.0631 5.50 <.0001

panelState 8 0.3686 0.0635 5.81 <.0001

panelState 9 0.4357 0.0614 7.10 <.0001

panelState 10 0.3753 0.0655 5.73 <.0001

panelState 11 0.4249 0.0606 7.01 <.0001

panelState 12 0.4185 0.0604 6.92 <.0001

panelState 13 0.3824 0.0602 6.35 <.0001

panelState 14 0.3942 0.0644 6.12 <.0001

panelState 15 0.4154 0.0626 6.64 <.0001

panelState 16 0.3961 0.0610 6.49 <.0001

panelState 17 0.3765 0.0618 6.10 <.0001

panelState 18 0.4528 0.0608 7.44 <.0001

panelState 19 0.4316 0.0586 7.36 <.0001

panelState 20 0.4357 0.0601 7.25 <.0001

panelState 21 0.3771 0.0639 5.90 <.0001

panelState 22 0.3939 0.0629 6.26 <.0001

panelState 23 0.4122 0.0621 6.64 <.0001

panelState 24 0.3949 0.0605 6.52 <.0001

panelState 25 0.4386 0.0565 7.77 <.0001

panelState 26 0.4118 0.0627 6.57 <.0001

panelState 27 0.3898 0.0604 6.45 <.0001

panelState 28 0.3818 0.0613 6.23 <.0001

panelState 29 0.4343 0.0632 6.87 <.0001

panelState 30 0.4619 0.0625 7.39 <.0001

panelState 31 0.3730 0.0636 5.86 <.0001

panelState 32 0.3784 0.0589 6.43 <.0001

panelState 33 0.3825 0.0625 6.12 <.0001

panelState 34 0.3784 0.0598 6.32 <.0001

panelState 35 0.4093 0.0628 6.52 <.0001

panelState 36 0.4155 0.0597 6.96 <.0001

panelState 37 0.3960 0.0615 6.44 <.0001

panelState 38 0.4075 0.0602 6.77 <.0001

panelState 39 0.4045 0.0586 6.91 <.0001

panelState 40 0.3918 0.0599 6.55 <.0001

panelState 41 0.4350 0.0608 7.15 <.0001

panelState 42 0.4007 0.0602 6.65 <.0001

panelState 43 0.3196 0.0597 5.36 <.0001

panelState 44 0.4337 0.0609 7.12 <.0001

panelState 45 0.3790 0.0634 5.98 <.0001
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Output 34.11.1 continued

The SSM Procedure

Estimate of the State Equation Regression Vector

State
Element

Index Estimate
Standard

Error t Value Pr > |t|

panelState 46 0.3767 0.0618 6.10 <.0001

panelState 47 0.4392 0.0597 7.36 <.0001

panelState 48 0.3932 0.0604 6.51 <.0001

panelState 49 0.3938 0.0616 6.40 <.0001

Output 34.11.2 shows the estimates of the autoregression coefficient �, the observation error variance �20 ,
and the variance of the time effect (variance of �) �21 .

Output 34.11.2 Estimates of �, �20 , and �21

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

rho 0.831679 0.0124338 66.89

sigma0 0.001231 0.0000491 25.08

sigma1 0.000213 0.0000662 3.22

Finally, you can compare the fit of the dynamic panel model with the fit of the model that is discussed in
the section “Getting Started: SSM Procedure” on page 2406. Output 34.11.3 shows the likelihood-based
information criteria for the dynamic panel model, and Output 34.11.4 shows the same information for the
other model.

Output 34.11.3 Likelihood-Based Information Criteria: Dynamic Panel Model

Information Criteria

Statistic

Diffuse
Likelihood

Based

Profile
Likelihood

Based

AIC (lower is better) -4732.722 -4856.398

BIC (lower is better) -4717.247 -4343.874

AICC (lower is better) -4732.704 -4841.250

HQIC (lower is better) -4726.913 -4664.667

CAIC (lower is better) -4714.247 -4245.874
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Output 34.11.4 Likelihood-Based Information Criteria: Getting Started Example

Information Criteria

Statistic

Diffuse
Likelihood

Based

Profile
Likelihood

Based

AIC (lower is better) -4488.093 -4145.246

BIC (lower is better) -4477.776 -3637.952

AICC (lower is better) -4488.084 -4130.417

HQIC (lower is better) -4484.220 -3955.472

CAIC (lower is better) -4475.776 -3540.952

Similarly, Output 34.11.5 shows fit criteria based on the delete-one cross validation error for the dynamic
panel model, and Output 34.11.6 shows the same information for the other model.

Output 34.11.5 Delete-One Cross Validation Criteria: Dynamic Panel Model

Delete-One Cross Validation Error
Criteria

Variable N PRESS
Generalized

Cross-Validation

lsales 1380 1.115309 5.62798E-7

Output 34.11.6 Delete-One Cross Validation Criteria: Getting Started Example

Delete-One Cross Validation Error
Criteria

Variable N PRESS
Generalized

Cross-Validation

lsales 1380 1.290420 6.18144E-7

On the basis of both these considerations, the dynamic panel model appears to provide a better fit for the
Cigar data than the model that is fit in the section “Getting Started: SSM Procedure” on page 2406.

Example 34.12: Multivariate Modeling: Long-Term Temperature Trends
In an article by Ansley and de Jong (2015), three monthly time series are jointly modeled to obtain long-
term—several decades long—temperature predictions for certain regions of the northern hemisphere. This
example shows how you can specify and fit the final model that this presentation proposed. The following
data set, Temp, contains four variables: date dates the monthly observations; UAH contains monthly satellite
global temperature readings, starting in December 1978; CRU contains monthly temperature data, starting in
January 1850 (from a different source); and GISS contains monthly temperature data, starting in January
1880 (from yet another source). All these temperature data are scaled suitably so that the numbers represent
temperature readings in centigrade.

data Temp;
input UAH CRU GISS @@;
date = intnx('month', '01jan1850'd, _n_-1);
format date date.;
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datalines;
. 8.243 .
. 9.733 .

... more lines ...

The following statements produce scatter plots of these three series in a single graph:

proc sgplot data=Temp;
title "Scatter Plots of the Temperature Series";
scatter x=date y=cru;
scatter x=date y=uah ;
scatter x=date y=giss;

run;

Output 34.12.1 shows the resulting graph. As already noted, these three series start at different points in
the past. However, they all end at the same time: they all have measurements until January 2012, which
is the last month in the data set. The mean levels of these series are different: the GISS measurements are
generally larger than CRU and UAH by about 4 degrees. In addition, the variability in the CRU values seems
to decrease with time (this is more apparent when the series is plotted by itself). The goal of the analysis is
to use these data to make long-term predictions about future temperature levels. The following statements
append 1,200 missing measurements to Temp, so that the model fitted by using the SSM procedure can be
extrapolated to obtain temperature forecasts 100 years in the future:

data append(keep=date cru giss uah);
do i=1 to 1200;

cru = .; giss=.; uah=.;
date = intnx('month','01jan2012'D, i);

format date monyy7.;
output;
end;

run;

proc append base=Temp data=Append; run;
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Output 34.12.1 Scatter Plots of CRU, UAH, and GISS

Ansley and de Jong propose a parsimonious model that links these three time series. It can be described as

GISSt D �t C a �t C a r1 �1t

CRUt D ˇcru C �t C a �t C a �2t

UAHt D ˇuah C �t C a �t C a r3 �3t

where ˇcru and ˇuah are intercepts that are associated with CRU and UAH, respectively; �t is an integrated
random walk trend; �t is a zero-mean, autoregressive noise term (which is scaled by an unknown scaling
factor a); and �it (i D 1; 2; 3) are independent observation errors with different variances that are also scaled
suitably. Note that the trend �t and the autoregressive noise term �t are shared by the models of the three
series, and, for identification purposes, the intercept for GISS is taken to be zero. In addition, the model
parameters are assumed to be interrelated and are parameterized in a particular way (which leads to fewer
parameters to estimate, and their relative scaling helps in parameter estimation). This special parameterization
can be expressed as a function of seven basic parameters: loga1, logr1, logr3, logsigma, b, c, and rhoParm
(this naming convention is different from that used by Ansley and de Jong (2015)).

Let �2 D exp.2logsigma/, and let the scaling factors a D exp.loga1/, r1 D exp.logr1/, and r3 D
exp.logr3/. Then the model parameters can be described as follows:
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� The parameters that are associated with the autoregression �t : the damping factor � D exp.rhoParm/�1
exp.rhoParm/C1 ,

the variance of the disturbance term = a2�2, and the variance of the initial state = a2�2=.1 � �2/

� The parameters that are associated with the integrated random walk trend: the variance of the distur-
bance term in the slope equation = �2

� The variance of the observation errors for GISS = a2r21�
2

� The variance of the observation errors for UAH = a2r23�
2

� The variance of the observation errors for CRU is taken to be time-varying with the following form:
for t � nobs;

�22;t D a
2�2 exp.2b C 2c t=nobs/

where nobs = 1,945 (the number of observations in the unappended data set). For t > 1,945, it is fixed
at its last value: �22;t D a

2�2 exp.2b C 2c/.

The following DATA step adds an observation index, tindex, to Temp, which is used in the SSM procedure to
define the time-varying observation error variance for CRU:

data temp;
set temp;
tindex = _n_;

run;

The following statements fit the preceding model to the Temp data:

ods output RegressionEstimates=regEst;
proc ssm data=Temp;

id date interval=month;
parms loga1 logr1 logr3 logsigma;
parms b=0 c=0;
parms rhoParm;
rho = (exp(rhoParm)-1)/(exp(rhoParm)+1);
sigmaSq = exp(2*logsigma);
initSigmaSq = sigmaSq/(1-rho*rho);
a1 = exp(loga1);
a1Sq = a1*a1;
r1sq = exp(2*logr1);
r3sq = exp(2*logr3);
giss_var = a1Sq*r1sq*sigmaSq;
nobs=1945;
if tindex <= nobs then

cru_var = a1Sq*exp(2*b + 2*c*tindex/nobs)*sigmaSq;
else cru_var = a1Sq*exp(2*b + 2*c)*sigmaSq;
uah_var = a1Sq*r3sq*sigmaSq;
UAH_Intercept=1.0;
CRU_Intercept=1.0;
trend level(ll) variance=0 slopevar=sigmaSq;
state auto(1) T(g)=(rho) cov(g)=(sigmaSq) cov1(g)=(initSigmaSq);
comp auto_common = auto*(a1);
state wn(3) type=wn cov(d)=(giss_var cru_var uah_var);
comp wn_giss = wn[1];
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comp wn_cru = wn[2];
comp wn_uah = wn[3];
model GISS = level auto_common wn_giss;
model CRU = CRU_Intercept level auto_common wn_cru;
model UAH = UAH_Intercept level auto_common wn_uah;
comp slope = level_state_*(0 1);
output out=For pdv press;

run;

Output 34.12.2 shows the estimated intercepts Ǒcru and Ǒuah. As expected, they are quite close (see the
scatter plots of CRU and UAH in Output 34.12.1).

Output 34.12.2 Estimated Intercepts for CRU and UAH

The SSM Procedure

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

CRU CRU_Intercept -4.10 0.00360 -1139.2 <.0001

UAH UAH_Intercept -4.48 0.00671 -666.48 <.0001

The estimates of the basic parameters that underlie the model parameters are shown in Output 34.12.3.

Output 34.12.3 Estimates of Basic Model Parameters

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

loga1 7.820 0.3819 20.48

logr1 -1.005 0.0884 -11.37

logr3 -0.231 0.0453 -5.09

logsigma -9.682 0.3806 -25.44

b 0.737 0.0502 14.69

c -1.403 0.0689 -20.35

rhoParm 1.432 0.0767 18.68

The following DATA steps add two variables (CRU_ADJ = CRU – Ǒcru and UAH_ADJ = UAH – Ǒuah) to the
output data set For. These adjusted versions of CRU and UAH have the same mean level as GISS—estimated
�t .

data _NULL_;
set regEst;
if _n_ = 1 then call symput('intercept1',trim(left(estimate)));
else call symput('intercept2',trim(left(estimate)));

run;
data for;

set For;
cru_adj = cru - &intercept1;
uah_adj = uah - &intercept2;

run;
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The following statements produce a graph that contains four plots: scatter plots of GISS, CRU_ADJ, and
UAH_ADJ and a series plot of the estimated �t .

proc sgplot data=For;
where date < '01feb2021'd;
title "Fitted Trend for the Temp Series (Up to Year 2020) ";
title2 "(CRU and UAH Adjusted by Their Estimated Intercepts) ";
scatter x=date y=cru_adj / LEGENDLABEL="Adjusted CRU"

MARKERATTRS=GraphData1(symbol=star size=3);
scatter x=date y=uah_adj / LEGENDLABEL="Adjusted UAH"

MARKERATTRS=GraphData2(symbol=plus size=3);
scatter x=date y=giss /

MARKERATTRS=GraphData3(symbol=triangle size=3);
series x=date y=smoothed_level / MARKERATTRS=GraphData4;

run;

Output 34.12.4 shows the resulting graph. It shows that the estimated mean level �t tracks the observed data
quite well.

Output 34.12.4 Fitted Trend �t

The following statements produce the time series plot of the estimated �t along with the 95% confidence
band:
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proc sgplot data=For;
title "Temperature Projections for the Next 100 Years";
band x=date lower=smoothed_lower_level upper=smoothed_upper_level;
series x=date y=smoothed_level;
refline '01feb2012'd / axis=x lineattrs=(pattern=shortdash)

LEGENDLABEL= "Start of Multistep Forecasts"
name="Forecast Reference Line";

run;

Output 34.12.5 shows the resulting graph.

Output 34.12.5 Long-Term Forecasts of �t

The following statements produce a similar graph for the estimated slope of �t :

proc sgplot data=For;
where date <= '01feb2031'd;
title "The Monthly Rate of Temperature Change (Up to Year 2030)";
band x=date lower=smoothed_lower_slope upper=smoothed_upper_slope;
series x=date y=smoothed_slope;
refline '01feb2012'd / axis=x lineattrs=(pattern=shortdash)

LEGENDLABEL= "Start of Multistep Forecasts"



Example 34.12: Multivariate Modeling: Long-Term Temperature Trends F 2541

name="Forecast Reference Line";
refline 0 / axis=y lineattrs=(pattern=dash);

run;

Output 34.12.6 shows the resulting plot of the estimated slope of �t .

Output 34.12.6 Forecasts of the Slope of �t

Based on the preceding analysis (see the plots of �t and its slope in Output 34.12.5 and Output 34.12.6), it
appears that there has been statistically significant warming over the last 10 years, but the warming does not
appear to be accelerating.
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Example 34.13: Bivariate Model: Sales of Mink and Muskrat Furs
This example considers a bivariate time series of logarithms of the annual sales of mink and muskrat furs
by the Hudson’s Bay Company for the years 1850–1911. These data have been analyzed previously by
many authors, including Chan and Wallis (1978); Harvey (1989); Reinsel (1997). There is known to be a
predator-prey relationship between the mink and muskrat species: minks are principal predators of muskrats.
Previous analyses for these data generally conclude the following:

� An increase in the muskrat population is followed by an increase in the mink population a year later,
and an increase in the mink population is followed by a decrease in the muskrat population a year later.

� Because muskrats are not the only item in the mink diet and because both mink and muskrat populations
are affected by many other factors, the model must include additional terms to explain the year-to-year
variation.

The analysis in this example, which loosely follows the discussion in Harvey (1989, chap. 8, sec. 8), also
leads to similar conclusions. It begins by taking Harvey’s model 8.8.8 (a and b), with autoregressive order
one, as the starting model—that is, it assumes that the bivariate (mink, muskrat) process Yt satisfies the
following relationship:

���t D ���t�1 C ˇ̌̌ C ���t

Yt D ���t C ˆ̂̂Yt�1 C ��� t

This model postulates that Yt can be expressed as a sum of three terms: ���t , a bivariate trend that is modeled
as a random walk with drift ˇ̌̌; ˆ̂̂Yt�1, an AR(1) correction; and ��� t , a bivariate Gaussian white noise
disturbance. It is assumed that the AR coefficient matrix ˆ̂̂ is stable (that is, its eigenvalues are less than 1
in magnitude) and that the bivariate disturbances ���t (white noise associated with ���t ) and ��� t are mutually
independent.

The following statements show how you can specify this model in the SSM procedure:

proc ssm data=furs plots=residual;

/* Specify the ID variable */
id year interval=year;

/* Define parameters */
parms rho1 rho2/ lower=-0.9999 upper=0.9999;
parms msd1 msd2 esd1 esd2 / lower=1.e-6;

/* Specify the terms with lagged response variables */
deplag LagsForMink(LogMink) LogMink(lags=1) LogMusk(lags=1);
deplag LagsForMusk(LogMusk) LogMink(lags=1) LogMusk(lags=1);

/* Specify the bivariate trend */
array rwQ{2,2};
rwQ[1,1] = msd1*msd1; rwQ[1,2] = msd1*msd2*rho1;
rwQ[2,1] = rwQ[1,2]; rwQ[2,2]=msd2*msd2;
state alpha(2) type=RW W(I) cov(g)=(rwQ);
comp minkLevel = alpha[1];
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comp muskLevel = alpha[2];

/* Specify the bivariate white noise */
array wnQ{2,2};
wnQ[1,1] = esd1*esd1; wnQ[1,2] = esd1*esd2*rho2;
wnQ[2,1] = wnQ[1,2]; wnQ[2,2]=esd2*esd2;
state error(2) type=WN cov(g)=(wnQ);
comp minkWn = error[1];
comp muskWn = error[2];

/* Specify the observation equation */
model LogMink = LagsForMink minkLevel minkWn;
model LogMusk = LagsForMusk muskLevel muskWn;

/* Specify an output data set to store component estimates */
output out=salesFor press;

run;

The different parts of the program are explained as follows:

� The PARMS statements define parameters that are used to form the elements of †1 (the covariance
of ���t , the disturbance term in the bivariate level equation) and †2 (the covariance of ��� t , which is the
bivariate white noise). †1 is parameterized as (msd1*msd1 msd1*msd2*rho1; msd1*msd2*rho1

msd2*msd2). †2 is similarly parameterized by using esd1, esd2, and rho2. In addition to ensuring
that†1 and†2 are positive semidefinite, it turns out that this parameterization leads to an interpretable
model at the end.

� The DEPLAG statements help define the terms that are associated with ˆ̂̂Yt�1.

� The remaining statements are self-explanatory.

Output 34.13.1 shows the estimate of the drift vector ˇ̌̌ in the equation of���t (���t D ���t�1 C ˇ̌̌ C ���t ).

Output 34.13.1 Estimate of the Drift Vector ˇ̌̌

Estimate of the State Equation Regression Vector

State
Element

Index Estimate
Standard

Error t Value Pr > |t|

alpha 1 -0.000817 0.0323 -0.03 0.9798

alpha 2 0.005953 0.0258 0.23 0.8175

Clearly, both elements of ˇ̌̌ are statistically insignificant, and the ���t equation can be simplified as ���t D
���t�1 C ���t . Next, Output 34.13.2 shows the estimates of the elements of †1, and †2, and Output 34.13.3
shows the estimates of the lag coefficients.
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Output 34.13.2 Estimates of †1, and †2

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

rho1 0.8310 0.1377 6.03

rho2 -0.9999 1.6555 -0.60

msd1 0.2500 0.0354 7.06

msd2 0.1991 0.0592 3.36

esd1 0.0662 0.0597 1.11

esd2 0.1344 0.0527 2.55

Output 34.13.3 Estimates of Lag Coefficients (Elements of ˆ̂̂)

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

LagsForMink Lag Coefficient Of LogMink Lag[1] -0.0011 0.173 -0.01

LagsForMink Lag Coefficient Of LogMusk Lag[1] 0.3349 0.137 2.45

LagsForMusk Lag Coefficient Of LogMink Lag[1] -0.9905 0.142 -6.98

LagsForMusk Lag Coefficient Of LogMusk Lag[1] 0.6570 0.121 5.44

The main points of the output can be summarized as follows:

� phi11, the first element of ˆ̂̂, which relates the current value of LogMink with its lagged value, is
statistically insignificant. That is, lagged LogMink term could be dropped from the model equation for
LogMink.

� rho2, the correlation coefficient between the elements of ��� t—the bivariate noise vector in the equation
Yt D ���t C ˆ̂̂Yt�1 C ��� t—is very near its lower boundary of –1 (in such cases the standard error of
the parameter estimate is not reliable). This implies that the two elements of ��� t are perfectly negatively
correlated.

Taken together, these observations suggest the reduced model

���t D ���t�1 C ���t

Yt D ���t C ˆ̂̂Yt�1 C ��� t

where ˆ̂̂ D .0 �12I �21 �22/ and Cov.��� t / D †2 is parameterized as (esd1*esd1 -esd1*esd2;

-esd1*esd2 esd2*esd2). The program that produces the reduced model is a simple modification of the
preceding program and is not shown.
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Output 34.13.4 Estimates of †1, and †2 (Reduced Model)

Estimates of Named Parameters

Parameter Estimate
Standard

Error t Value

rho1 0.8526 0.0978 8.71

msd1 0.2472 0.0282 8.78

msd2 0.1955 0.0365 5.36

esd1 0.0679 0.0385 1.76

esd2 0.1372 0.0328 4.18

Output 34.13.5 Estimates of Lag Coefficients (elements of ˆ̂̂) (Reduced Model)

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

LagsForMink Lag Coefficient Of LogMusk Lag[1] 0.330 0.0986 3.35

LagsForMusk Lag Coefficient Of LogMink Lag[1] -0.997 0.1168 -8.54

LagsForMusk Lag Coefficient Of LogMusk Lag[1] 0.668 0.1003 6.66

The tables in Output 34.13.4 and Output 34.13.5 show the new parameter estimates. By examining the
parameter estimates, you can easily see that this model supports the general conclusions mentioned at the
start of this example. In particular, note the following:

� O�12 D 0:33 implies that this year’s mink abundance is positively correlated with last year’s muskrat
abundance.

� O�21 D �0:99 and O�22 D 0:66 imply that this year’s muskrat abundance is negatively correlated with
last year’s mink abundance and positively correlated with last year’s muskrat abundance.

� Even though the parameters were not restricted to ensure stability, the estimated ˆ̂̂ turns out to be stable
with a pair of complex eigenvalues, 0:317

�

C i 0:473, and a modulus of 0.570 (these calculations are
done separately by using the IML procedure).

� The fact that elements of ��� t are perfectly negatively correlated further supports the predator-prey
relationship.

Finally, Output 34.13.6 shows the plots of one-step-ahead and post-sample forecasts for LogMink and
LogMusk, and Output 34.13.7 shows the plot of the smoothed (full-sample) estimate of the first element of
���t : LogMink Trend.
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Output 34.13.6 Forecasts for Mink and Muskrat Fur Sales in Logarithms
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Output 34.13.7 Smoothed Estimate of LogMink Trend

Example 34.14: Factor Model: Now-Casting the US Economy
A well-known business conditions index, the Aruoba-Diebold-Scotti (ADS) business conditions index, is
designed to track real business conditions at high frequency (for more information about this index, see
http://www.philadelphiafed.org/research-and-data/real-time-center/business-
conditions-index/). Its underlying (seasonally adjusted) economic indicators (weekly initial jobless
claims, monthly payroll employment, industrial production, personal income less transfer payments,
manufacturing and trade sales, and quarterly real GDP) blend high- and low-frequency information with
stock and flow data. The ADS index is based on a rather elaborate state space model that takes into account
the stock and flow nature of the underlying economic indicators. To simplify the illustration, this example
uses the same economic indicators to develop a similar index by using a simpler factor model. You can
also use PROC SSM to carry out the more elaborate modeling that underlies the ADS index. All these
economic indicators are freely available from the Federal Reserve Economic Data (FRED). You can access
these data by using the SASEFRED interface engine; see Chapter 49, “The SASEFRED Interface Engine.”
The names of analysis variables and the relevant information that is needed for using the SASEFRED engine
to obtain these data are shown in Table 34.11. All variables are transformed versions of the original series:
all, except l_icsa, are both logged and differenced; l_icsa is only logged. The input data set for the analysis,

http://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index/
http://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index/
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named econ, is formed by merging these six series of different frequencies. This merging is done by treating
them as daily series that have missing values on the days when the series values are not available—for
example, ld_pinc is nonmissing only for the first day of the month. The econ data set contains one more
variable, recession, which is an indicator variable for the recessionary periods. This time series is an
interpretation of the US Business Cycle Expansions and Contractions data that are provided by the National
Bureau of Economic Research (NBER) at http://www.nber.org/cycles/cyclesmain.html (also
see http://research.stlouisfed.org/fred2/series/USRECDM). The variable recession is not
used in modeling. It is used later to demonstrate the adequacy of the activity index that is created in this
example.

Table 34.11 Analysis Variables and Their FRED IDs

Name FRED ID Frequency Description

ld_payemp PAYEMS Monthly Payroll employment
ld_pinc W875RX1 Monthly Real personal income excluding current transfer

receipts
ld_mnfctr CMRMTSPL Monthly Real manufacturing and trade industries sales
ld_indpro INDPRO Monthly Industrial production index
ld_gdp GDPC1 Quarterly Real GDP
l_icsa ICSA Weekly Initial jobless claims

For easier model description, the variables ld_payemp to ld_gdp are also denoted as y1t to y5t , and the
variable l_icsa is denoted as y6t . Using this notation, the following model is postulated for the six daily time
series:

yit D intercepti C ˇi � irwt C �it 1 � i � 5

y6t D �t C ˇ6 � irwt C �6t

A justification for this model is based on the following observations:

� The five time series y1t to y5t are logged and differenced versions of the underlying economic variables.
Their plots (not shown here) show them to be hovering around a constant level, with some periods of
deviation from this level. The plot of the sixth series, y6t , which is logged but not differenced, shows a
pronounced nonstationary pattern.

� All these series can be considered as proxies, possibly noisy, for the national economic activity. It
is therefore reasonable to assume that a model for each of them will contain a common component,
appropriately weighted, that is associated with the economic activity. In the current model this common
component, named irwt , is modeled as an integrated random walk. For y1t to y5t , the only other
terms in the model are the respective intercepts, intercepti , and the random disturbances, �it . Because
y6t shows a pronounced nonstationary pattern, its model has a time-varying level, �t , which is also
modeled as an integrated random walk. For identifiability purposes, the initial condition for irwt is
taken to be 0. For the same reason, ˇ1, the coefficient of irwt in the model for y1t is taken to be 1.

� The underlying economic variables of the five time series y1t to y5t are positively correlated with the
economic activity—for example, payroll employment is expected to increase with increased economic
activity. On the other hand, y6t , which is associated with the initial jobless claims, is negatively
correlated with the economic activity. This means that, with ˇ1 taken to be 1, the estimates of

http://www.nber.org/cycles/cyclesmain.html
http://research.stlouisfed.org/fred2/series/USRECDM
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ˇ2; : : : ; ˇ5 are expected to be positive and the estimate of ˇ6 is expected to be negative. In the factor
modeling terminology, irwt is called a factor and ˇ1; : : : ; ˇ6 are called the associated factor loadings.

The following statements show you how to specify this model in the SSM procedure:

ods output NamedParameterEstimates = named;
proc ssm data=econ opt(tech=activeset);

id date interval=day;
parms beta2-beta6;
parms lv1-lv8;
avar = exp(lv7);
wnv1 = exp(lv1); wnv2 = exp(lv2);
wnv3 = exp(lv3); wnv4 = exp(lv4);
wnv5 = exp(lv5); wnv6 = exp(lv6);
tvar = exp(lv8);
zero = 0;

/* --- start of model spec ---*/
state latent(2) t(g)=(1 1 0 1) cov(d)=(zero avar);
comp c1 = latent[1];
comp c2 = (beta2)*latent[1];
comp c3 = (beta3)*latent[1];
comp c4 = (beta4)*latent[1];
comp c5 = (beta5)*latent[1];
comp c6 = (beta6)*latent[1];

irregular w1 variance=wnv1;
int1 = 1;
model ld_payemp = int1 c1 w1;

irregular w2 variance=wnv2;
int2 = 1;
model ld_pinc = int2 c2 w2;

irregular w3 variance=wnv3;
int3 = 1;
model ld_mnfctr = int3 c3 w3;

irregular w4 variance=wnv4;
int4 = 1;
model ld_indpro = int4 c4 w4;

irregular w5 variance=wnv5;
int5 = 1;
model ld_gdp = int5 c5 w5;

irregular w6 variance=wnv6 ;
trend t_icsa(ll) levelvar=0 slopevar=tvar;
model l_icsa = c6 t_icsa w6;
/* ---model spec done---*/

eval icsaPattern = c6 + t_icsa;
/*--index is a scaled version of the common factor--*/
eval Index = 1000*c1;
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comp slope = latent[2];
eval IndexSlope = 1000*slope;
/*--just so recession is output to the output data set--*/
rec = recession;
output out=forecast1 press pdv;
run;

A few comments about the program:

� If the model and data are in reasonable accord, the default likelihood optimization settings work in most
situations. However, in some cases the likelihood optimization process needs additional customization.
Some experimentation with alternative optimization techniques and different parameterization of the
model parameters can help. This example turns out to be one such case. The optimization technique
ACTIVESET (opt(tech=activeset)) works better for WINDOWS and a few other platforms,
whereas the default optimization technique works better for the AIX platform. In addition, the
variances of all the disturbance terms in the model are parameterized in the exponential scale.

� The two-dimensional state that is associated with irwt is named latent, and irwt (the first element of
latent) itself is named c1. Note that the second element of latent corresponds to the slope of irwt . The
components c2 to c6 correspond to ˇi � irwt for 2 � i � 6.

� The desired business index, named index, is a scaled version of irwt (eval Index = 1000*c1;).
This scaling is done purely for ease of display—the scaled values turn out to be in the range of –6.0 to
5.0. Another component, named IndexSlope, contains the slope of index, which is also a quantity of
interest.

Output 34.14.1 Estimated Factor Loadings

The Estimated Loadings

Parameter Estimate StdErr tValue

beta2 1.15 0.1276 8.98

beta3 1.96 0.2391 8.20

beta4 2.48 0.1646 15.08

beta5 3.27 0.2653 12.33

beta6 -96.46 9.6044 -10.04

Output 34.14.1 shows the estimated factor loadings. They are statistically significant and their signs are
consistent.
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Output 34.14.2 The Estimate of Economic Activity Index

Output 34.14.2 shows the plot of the smoothed index. Note that it coheres quite well with the NBER
recessionary periods. In Aruoba, Diebold, and Scotti (2009, sec. 4.4) the features of an earlier version of the
ADS index are discussed in detail. Similar comments apply to this indicator also.
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Output 34.14.3 Estimated Slope of the Economic Activity Index

Finally, Output 34.14.3 shows the plot of the slope of the index, which gives an idea of the direction of the
economic activity.

Example 34.15: Longitudinal Data: Lung Function Analysis
The data for this example, which consist of 209 measurements of the lung function of an asthma patient, are
analyzed in Wang (2013). The time series is measured mostly at two-hour time intervals but with irregular
gaps. Wang (2013) fit a fourth-order continuous-time autoregressive model, CAR(4), to these data. The
analysis results in a decomposition of the observed time series in three components:

� a slowly varying trend pattern, which appears to have a slight downward drift

� a diurnal component—a periodic pattern with a period of 24 hours

� a residual component

As shown in Wang (2013), the continuous-time autoregressive models can be formulated as state space
models. However, in general, the form of such SSMs is quite complex. Consequently, specifying such a
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model by using the current SSM procedure syntax is impractical. On the other hand, you can analyze these
types of longitudinal data by using continuous-time structural models, which are easy to specify in the SSM
procedure. In this example, the lung function measurements, y, are modeled as

yt D interceptC ˇ � t C �t C �t

where .interceptC ˇ � t / is a simple linear time trend, �t is a continuous-time stochastic cycle, and �t is a
Gaussian white noise sequence. Replacing the linear time trend with a more general time trend, such as a
spline smoother, does not seem to change the fit, because the estimated smoothing spline turns out to be
almost perfectly linear.

The following statements show you how to specify this model in the SSM procedure:

proc ssm data=asth;
id time;
state s1(1) type=cycle(CT) cov(g);
comp c1 = s1[1];
intercept = 1;
irregular wn;
model y= intercept time c1 wn;
output out=for1 press;
eval pattern=intercept+time+c1;

run;

The continuous-time stochastic cycle, named c1, is defined by a pair of STATE and COMPONENT statements.
The STATE statement defines s1 as a state subsection that is associated with a univariate, continuous-time
cycle (signified by the use of type=cycle(CT)). The COMPONENT statement defines c1 as its first element.

Output 34.15.1 Linear Time Trend: Estimates of Intercept and Slope

Regression Parameter Estimates

Response
Variable

Regression
Variable Estimate

Standard
Error t Value Pr > |t|

y intercept 502.1637 3.50470 143.28 <.0001

y time -0.0201 0.00918 -2.19 0.0286

Output 34.15.1 shows the estimated intercept and slope of the time trend. The estimated slope (only
marginally significant) is negative, which is consistent with the overall downward drift.
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Output 34.15.2 Estimated Stochastic Cycle: �t

Output 34.15.2 shows the plot of the estimated cycle component, which has a period of 24.78 hours and a
damping factor of 0.97. That is, it is a nearly persistent diurnal cycle.
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Output 34.15.3 Estimated Pattern: InterceptC ˇ � t C �t

Output 34.15.3 shows the fit of the de-noised y values (interceptC ˇ � t C �t ). To reduce the clutter, only the
second half of the data are plotted. The fit appears to be quite reasonable.

Example 34.16: Temporal Distribution: Estimating Monthly GDP
(Experimental)

This example is based on a case study described in Pelagatti (2015, chap. 9, Example 9.2). The case study
shows how you can estimate the monthly GDP (gross domestic product) for the United States by temporally
distributing the quarterly GDP time series, which is readily available. The temporal distribution process is
based on a bivariate model that relates two variables, the quarterly GDP and the monthly industrial production
index (both for the United States). Assuming that t denotes the monthly time index, indpt denotes the
monthly industrial production index series, and gdpt denotes the quarterly GDP series that is organized as a
monthly series (by setting the GDP numbers to missing for the months when they are not published), the case
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study uses the following model,

indpt D �1;t C  1;t C �1;t

gdp
�
t D �2;t C  2;t C �2;t

gdpt D gdp
�
t C gdp

�
t�1 C gdp

�
t�2

where

� gdp
�
t is the unobserved monthly GDP series (which is to be estimated)

� ���t D .�1;t �2;t / is a bivariate trend component that follows an integrated random walk

�    t D . 1;t  2;t / is a bivariate cycle component

� ���t D .�1;t �2;t / is a bivariate white noise component

As explained in the section “Temporal Distribution” on page 2466, it is easy to fit this model by using the
SSM procedure. As a first step, a data set, Useco, is created that organizes the monthly industrial production
index and the quarterly GDP as monthly series. Specifically, Useco contains four variables: date dates the
observations, indpro contains the monthly industrial production index, gdp contains the quarterly GDP, and
startQ is a dummy variable that indicates the start of the quarter. This data set is essentially the same as the
one that is used in the case study, except that, to improve the computational stability, gdp is scaled by 100.
This data set has one peculiarity that is not mentioned in the case study: the GDP reporting pattern appears
to have changed a few times over the years (October 1969, May 1992, and December 2014). The dummy
variable, startQ, which indicates the start of the aggregation interval, is appropriately modified to take these
changes into account. Output 34.16.1 shows the first few rows of Useco.

Output 34.16.1 First Few Rows of Useco

date startQ gdp indpro

01JAN47 1 . 13.6351

01FEB47 0 . 13.7156

01MAR47 0 19.3447 13.7962

01APR47 1 . 13.6888

01MAY47 0 . 13.7425

01JUN47 0 19.3228 13.7425

01JUL47 1 . 13.6619

01AUG47 0 . 13.7425

The following statements show you how to specify the bivariate model for indpro and gdp:

proc ssm data=useco opt(maxiter=100);
id date interval=month;

/* Bivariate integrated random walk */
state irwState(2) type=ll(slopecov(g));
comp irwInd = irwState[1];
comp irwGdp = irwState[2];
/* Bivariate cycle */
state cycle(2) type=cycle cov(g);



Example 34.16: Temporal Distribution: Estimating Monthly GDP (Experimental) F 2557

comp cycInd = cycle[1];
comp cycGdp = cycle[2];
/* Bivariate white noise */
state noise(2) type=wn cov(g);
comp noiseInd = noise[1];
comp noiseGdp = noise[2];
/* Observation equations */
model indpro = irwInd cycInd noiseInd;
model gdp = irwGdp cycGdp noiseGdp / distribute(start=startQ);
/* Components for output */
eval trendCycGdp = irwGdp + cycGdp;
eval trendCycInd = irwInd + cycInd;
eval monthlyGdp = irwGdp + cycGdp + noiseGdp;
/* Output data set */
output out=forGdp pdv press;

run;

Here are a few comments about this program:

� The first STATE statement specifies irwState as a bivariate trend that follows an integrated random walk
(which is a local linear trend without the disturbance term in the level equation); irwState corresponds to
���t . The trend components in the models for indpro and gdp are specified in the two COMP statements
that follow: irwInd and irwGdp correspond to �1;t and �2;t , respectively.

� Similarly, the second STATE statement and the two COMP statements that follow it define cycInd and
cycGdp as the two cycle components ( 1;t and  2;t ) in the model.

� The noise components, noiseInd and noiseGdp, which correspond to �1;t and �2;t , respectively, are
also defined in the same way.

� The MODEL statement for indpro corresponds to the equation indpt D �1;t C  1;t C �1;t . On the
other hand, the DISTRIBUTE(START=startQ) option in the MODEL statement of gdp causes gdp to
be modeled as an aggregated version of the unobserved monthly GDP series (gdp�t ):

gdp
�
t D �2;t C  2;t C �2;t

gdpt D gdp
�
t C gdp

�
t�1 C gdp

�
t�2

� After the model specification is complete, EVAL statements are used to define some useful linear
combinations of the components that are part of the model specification—for example, monthlyGdp
(which is defined as a sum of irwGdp, cycGdp, and noiseGdp) corresponds to the unobserved monthly
GDP (gdp�t ). The SSM procedure outputs the estimates of these components to the data set that is
specified in the OUT= option in the OUTPUT statement.

The parameter estimates in Output 34.16.2 are similar to (but not the same as) the parameter estimates
reported in the case study. In particular, the estimates of the parameters of the cycle component—for example,
the damping factor (Rho = 0.99228) and the period (293.32178)—are reasonably close.
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Output 34.16.2 Estimated Model Parameters

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

irwState Slope Disturbance Covari RootCov[1, 1] 0.10652 0.013572 7.85

irwState Slope Disturbance Covari RootCov[2, 1] 0.02060 0.002921 7.05

irwState Slope Disturbance Covari RootCov[2, 2] 0.00128 0.000507 2.52

cycle Damping Factor Rho 0.99228 0.004598 215.80

cycle Cycle Period Period 293.32178 94.269721 3.11

cycle Disturbance Covariance RootCov[1, 1] 0.32777 0.028788 11.39

cycle Disturbance Covariance RootCov[2, 1] 0.04196 0.013560 3.09

cycle Disturbance Covariance RootCov[2, 2] 0.06074 0.007665 7.92

noise Disturbance Covariance RootCov[1, 1] 0.08617 0.038876 2.22

noise Disturbance Covariance RootCov[2, 1] -0.12117 0.094158 -1.29

noise Disturbance Covariance RootCov[2, 2] 0.03707 0.322549 0.11

Output 34.16.3 shows the plot of the estimated monthly GDP, and Output 34.16.4 shows the plot of the
estimate of monthly trend-cycle estimate (�2;t C  2;t ) for GDP.

Output 34.16.3 Estimate of Monthly GDP
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Output 34.16.4 Smoothed Trend-Cycle Component of Monthly GDP (1950 to 1960)

Example 34.17: Temporal Aggregation: Triannual Nile River Level
(Experimental)

This example illustrates how you can do model-based temporal aggregation of a response variable. The
following DATA step creates a data set, Nile, by using a well-known data set that contains annual recordings
of the Nile water level measured between the years 1871 and 1970. The Nile water level is clearly a stock
variable, and temporal aggregation of such variables is usually meaningless. However, for illustration
purposes, assume that you are interested in forecasting triannual totals of the water level.

data Nile;
input level @@;
year = intnx( 'year', '1jan1871'd, _n_-1 );
format year year4.;
startAggr = (mod(_n_, 3) = 1);

datalines;
1120 1160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
1100 1210 1150 1250 1260 1220 1030 1100 774 840
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874 694 940 833 701 916 692 1020 1050 969
831 726 456 824 702 1120 1100 832 764 821
768 845 864 862 698 845 744 796 1040 759
781 865 845 944 984 897 822 1010 771 676
649 846 812 742 801 1040 860 874 848 890
744 749 838 1050 918 986 797 923 975 815
1020 906 901 1170 912 746 919 718 714 740
. . . . . . .
;

The Nile date set contains three variables: year indicates the observation year, level contains the yearly water
level, and startAggr is a dummy variable that indicates the start of the triannual aggregation intervals. It is
known that for the time span of the observations, the yearly water levels can be reasonably modeled as a sum
of a random walk trend, a level shift in the year 1899, and the observation error. The following statements
show you how to obtain forecasts of the triannual water level that are consistent with the model postulated
for the yearly water levels:

proc ssm data=Nile;
id year interval=year;
shift1899 = ( year >= '1jan1899'd );
trend rw(rw);
irregular wn;
model level = shift1899 RW wn / aggregate(start=startAggr);
output out=nileOut;

quit;

As a result of running this program, you get the usual output that is associated with fitting the specified model
to the yearly water level. In addition (as explained in the section “Temporal Aggregation” on page 2468), the
AGGREGATE option in the MODEL statement causes the estimation and printing of triannual aggregates of
the water level. Output 34.17.1 shows the last few rows of this output. When the summands—the response
values—in the aggregation are known, the aggregation can be done without error; that is, the standard error
of the estimation is zero. However, when at least one summand in the aggregate is missing, the standard error
of estimation is nonzero.

Output 34.17.1 Triannual Aggregate Values of the Nile Water Levels (Partial Output)

Time Response Start_Flag Aggregate StdErr Lower Upper

1967 919 1 919 0 919 919

1968 718 0 1637 0 1637 1637

1969 714 0 2351 0 2351 2351

1970 740 1 740 0 740 740

1971 . 0 1590 128 1338 1842

1972 . 0 2440 183 2081 2798

1973 . 1 850 128 598 1102

1974 . 0 1700 183 1341 2058

1975 . 0 2550 226 2108 2992

1976 . 1 850 128 598 1102

1977 . 0 1700 183 1341 2058
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Example 34.18: Invariance of the Marginal Likelihood under Linear Rescaling
of the Diffuse Effects (Experimental)

Consider the following alternate but equivalent specifications of a trend-plus-seasonal model (monthly
seasonality):

yt D �t C  t C �t Spec1

yt D �t Cm1;t C � � � Cm11;t C �t Spec2

Here the trend (�t , a random walk with drift) and the irregular component (�t , white noise) are the same in
both the specifications. However, the seasonal component is specified differently: in Spec1 the seasonality is
modeled as a deterministic trigonometric seasonal component ( t ) whereas in Spec2 it is modeled using the
seasonal dummies (m1 � � �m11). Spec1 and Spec2 are statistically equivalent models from the perspective of
the data generation process. This example uses these two specifications to demonstrate a useful invariance
property of the marginal and profile likelihoods, which is described in the section “Likelihood Computation
and Model-Fitting Phase” on page 2447. The airline passenger series, given as Series G in Box and Jenkins
(1976), is used to illustrate the computations. The following DATA step prepares the log-transformed
passenger series and the seasonal dummies that are needed for this example:

data seriesG;
set sashelp.air;
logair = log(air);
array m{11} m1-m11;
do i=1 to 11;

m[i] = (month(date)=i);
end;

run;

The following statements fit the two models to the log-transformed passenger series. The first PROC SSM
call fits Spec1, and the second call fits Spec2.

proc ssm data=seriesG plots=none like=marginal;
id date interval=month;
trend rwDrift(ll) slopevar=0;
irregular wn;
state trigState(1) type=season(length=12);
comp season = trigState[1];
model logair = rwDrift season wn;

run;

proc ssm data=seriesG plots=none like=marginal;
id date interval=month;
trend rwDrift(ll) slopevar=0;
irregular wn;
model logair = rwDrift m1-m11 wn;

run;

For these two models, the parameter estimates that are based on the diffuse likelihood (REML_D) and the
marginal likelihood ((REML_M) coincide because the extra term in the marginal likelihood (� log.jS�n;pn j/)
turns out to be independent of these parameters. Nevertheless, it is useful to use the LIKE=MARGINAL
option in the PROC SSM statement so that both the likelihood computation summary and the information
criteria tables display the likelihood values and the information criteria for all three likelihoods—diffuse,
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marginal, and profile—at the estimated parameters. The parameter estimates for Spec1 and Spec2 are
displayed in Output 34.18.1 and Output 34.18.2, respectively. As expected, the parameter estimates for the
two specifications are the same because they are statistically equivalent models. The other aspects of the fit
(such as model-based forecasts), which are not shown, also agree.

Output 34.18.1 Parameter Estimates For Spec1

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

rwDrift LL Trend Level Variance 0.000766 0.000219 3.49

wn Irregular Variance 0.000368 0.000141 2.60

Output 34.18.2 Parameter Estimates For Spec2

Model Parameter Estimates

Component Type Parameter Estimate
Standard

Error t Value

rwDrift LL Trend Level Variance 0.000766 0.000219 3.49

wn Irregular Variance 0.000368 0.000141 2.60

The fit summary tables shown in Output 34.18.3 (for Spec1) and Output 34.18.4 (for Spec2) show that
the marginal and profile likelihoods (the last two lines in each table) for the two specifications also agree.
However, you can see that the diffuse likelihood value for the two specifications differ (diffuse likelihood
= 215.45 for Spec1 and diffuse likelihood = 226.89 for Spec2). This difference occurs because the diffuse
likelihood is not invariant to the different (but equivalent) formulations of the seasonal effects. This also
means that the information criteria that are based on the marginal and profile likelihoods, which are shown in
Output 34.18.5 (for Spec1) and Output 34.18.6 (for Spec2), correctly conclude that the two specifications
cannot be distinguished on the basis of these criteria, whereas the information criteria that are based on the
diffuse likelihood erroneously suggest that Spec1 is inferior to Spec2.

Output 34.18.3 Likelihood Computation Summary For Spec1

Likelihood Computation Summary

Statistic Value

Nonmissing Response Values Used 144

Estimated Parameters 2

Initialized Diffuse State Elements 13

Normalized Residual Sum of Squares 131

Diffuse Log Likelihood 215.4522

Profile Log Likelihood 265.63882

Marginal Log Likelihood 248.01412
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Output 34.18.4 Likelihood Computation Summary For Spec2

Likelihood Computation Summary

Statistic Value

Nonmissing Response Values Used 144

Estimated Parameters 2

Initialized Diffuse State Elements 13

Normalized Residual Sum of Squares 131

Diffuse Log Likelihood 226.8959

Profile Log Likelihood 265.63882

Marginal Log Likelihood 248.01412

Output 34.18.5 Information Criteria For Spec1

Information Criteria

Statistic

Diffuse
Likelihood

Based

Profile
Likelihood

Based

Marginal
Likelihood

Based

AIC (lower is better) -426.9044 -501.2776 -492.0282

BIC (lower is better) -421.1540 -456.7304 -486.2779

AICC (lower is better) -426.8106 -497.5276 -491.9345

HQIC (lower is better) -424.5678 -483.1762 -489.6916

CAIC (lower is better) -419.1540 -441.7304 -484.2779

Output 34.18.6 Information Criteria For Spec2

Information Criteria

Statistic

Diffuse
Likelihood

Based

Profile
Likelihood

Based

Marginal
Likelihood

Based

AIC (lower is better) -449.7918 -501.2776 -492.0282

BIC (lower is better) -444.0414 -456.7304 -486.2779

AICC (lower is better) -449.6981 -497.5276 -491.9345

HQIC (lower is better) -447.4552 -483.1762 -489.6916

CAIC (lower is better) -442.0414 -441.7304 -484.2779

This example highlights the care that must be taken while doing model selection based on information criteria.
It suggests that information criteria that are based on the marginal and profile likelihoods are preferred over
the information criteria that are based on diffuse likelihood.
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Overview: STATESPACE Procedure
The STATESPACE procedure has largely been superseded by the newer SSM procedure. PROC SSM fits and
forecasts very general linear state space models. It supports irregularly spaced time series and replicated
longitudinal data, in addition to supporting regular fixed-period time series. The SSM procedure also provides
a powerful expressive language for specifying state space models, and allows programming statements
to define model elements through user-written functions of unlimited complexity. The SSM procedure
also provides more modern estimation, filtering, and forecasting algorithms than the older STATESPACE
procedure. For more information about PROC SSM, see Chapter 34, “The SSM Procedure.”

Although the SSM procedure should be preferred to the STATESPACE procedure for most state space
modeling applications, the STATESPACE procedure should be considered if you wish to perform automated
multivariate forecasting using a state space model selected through the modeling strategy proposed by
Akaike (1976). This strategy employs an initial sequence of unrestricted vector autoregressive (VAR) models,
selection of an initial VAR model using Akaike’s information criterion (AIC), followed by a canonical
correlation analysis for the automatic identification of the state space model to use to forecast the vector of
time series.

The operation of the STATESPACE procedure and the form of state space model it supports are described in
the following.

The STATESPACE procedure uses the state space model to analyze and forecast multivariate time series. The
STATESPACE procedure is appropriate for jointly forecasting several related time series that have dynamic
interactions. By taking into account the autocorrelations among all the variables in a set, it is possible that
the STATESPACE procedure may give better forecasts than methods that model each series separately.

By default, the STATESPACE procedure automatically selects a state space model appropriate for the time
series, making the procedure a good tool for automatic forecasting of multivariate time series. Alternatively,
you can specify the state space model by giving the form of the state vector and the state transition and
innovation matrices.

The methods used by the STATESPACE procedure assume that the time series are jointly stationary. Nonsta-
tionary series must be made stationary by some preliminary transformation, usually by differencing. The
STATESPACE procedure enables you to specify differencing of the input data. When differencing is specified,
the STATESPACE procedure automatically integrates forecasts of the differenced series to produce forecasts
of the original series.

The State Space Model
The state space model represents a multivariate time series through auxiliary variables, some of which might
not be directly observable. These auxiliary variables are called the state vector. The state vector summarizes
all the information from the present and past values of the time series that is relevant to the prediction
of future values of the series. The observed time series are expressed as linear combinations of the state
variables. The state space model is also called a Markovian representation, or a canonical representation, of a
multivariate time series process. The state space approach to modeling a multivariate stationary time series is
summarized in Akaike (1976).
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The state space form encompasses a very rich class of models. Any Gaussian multivariate stationary time
series can be written in a state space form, provided that the dimension of the predictor space is finite.
In particular, any autoregressive moving average (ARMA) process has a state space representation and,
conversely, any state space process can be expressed in an ARMA form (Akaike 1974). For more information
about the relationship between the state space and ARMA forms, see the section “Relation of ARMA and
State Space Forms” on page 2598.

Let xt be the r � 1 vector of observed variables, after differencing (if differencing is specified) and subtracting
the sample mean. Let zt be the state vector of dimension s, s � r , where the first r components of zt consist
of xt . Let the notation xtCkjt represent the conditional expectation (or prediction) of xtCk based on the
information available at time t. Then the last s � r elements of zt consist of elements of x tCkjt , where k >0
is specified or determined automatically by the procedure.

There are various forms of the state space model in use. The form of the state space model used by the
STATESPACE procedure is based on Akaike (1976). The model is defined by the following state transition
equation:

ztC1 D Fzt CGetC1

In the state transition equation, the s � s coefficient matrix F is called the transition matrix; it determines the
dynamic properties of the model.

The s � r coefficient matrix G is called the input matrix; it determines the variance structure of the transition
equation. For model identification, the first r rows and columns of G are set to an r � r identity matrix.

The input vector e t is a sequence of independent normally distributed random vectors of dimension r with
mean 0 and covariance matrix †ee. The random error e t is sometimes called the innovation vector or shock
vector.

In addition to the state transition equation, state space models usually include a measurement equation or
observation equation that gives the observed values xt as a function of the state vector zt . However, since
PROC STATESPACE always includes the observed values xt in the state vector zt , the measurement equation
in this case merely represents the extraction of the first r components of the state vector.

The measurement equation used by the STATESPACE procedure is

xt D ŒIr0�zt

where Ir is an r � r identity matrix. In practice, PROC STATESPACE performs the extraction of xt from zt
without reference to an explicit measurement equation.

In summary:

x t is an observation vector of dimension r.

z t is a state vector of dimension s, whose first r elements are x t and whose last s � r elements are
conditional prediction of future x t .

F is an s�s transition matrix.

G is an s�r input matrix, with the identity matrix I r forming the first r rows and columns.

e t is a sequence of independent normally distributed random vectors of dimension r with mean 0 and
covariance matrix †ee.
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How PROC STATESPACE Works
The design of the STATESPACE procedure closely follows the modeling strategy proposed by Akaike (1976).
This strategy employs canonical correlation analysis for the automatic identification of the state space model.

Following Akaike (1976), the procedure first fits a sequence of unrestricted vector autoregressive (VAR)
models and computes Akaike’s information criterion (AIC) for each model. The vector autoregressive models
are estimated using the sample autocovariance matrices and the Yule-Walker equations. The order of the
VAR model that produces the smallest Akaike’s information criterion is chosen as the order (number of lags
into the past) to use in the canonical correlation analysis.

The elements of the state vector are then determined via a sequence of canonical correlation analyses of the
sample autocovariance matrices through the selected order. This analysis computes the sample canonical
correlations of the past with an increasing number of steps into the future. Variables that yield significant
correlations are added to the state vector; those that yield insignificant correlations are excluded from further
consideration. The importance of the correlation is judged on the basis of another information criterion
proposed by Akaike. For more information, see the section “Canonical Correlation Analysis Options” on
page 2583. If you specify the state vector explicitly, these model identification steps are omitted.

After the state vector is determined, the state space model is fit to the data. The free parameters in the F, G,
and †ee matrices are estimated by approximate maximum likelihood. By default, the F and G matrices are
unrestricted, except for identifiability requirements. Optionally, conditional least squares estimates can be
computed. You can impose restrictions on elements of the F and G matrices.

After the parameters are estimated, the Kalman filtering technique is used to produce forecasts from the
fitted state space model. If differencing was specified, the forecasts are integrated to produce forecasts of the
original input variables.

Getting Started: STATESPACE Procedure
The following introductory example uses simulated data for two variables X and Y. The following statements
generate the X and Y series:

data in;
x=10; y=40;
x1=0; y1=0;
a1=0; b1=0;
iseed=123;
do t=-100 to 200;

a=rannor(iseed);
b=rannor(iseed);
dx = 0.5*x1 + 0.3*y1 + a - 0.2*a1 - 0.1*b1;
dy = 0.3*x1 + 0.5*y1 + b;
x = x + dx + .25;
y = y + dy + .25;
if t >= 0 then output;
x1 = dx; y1 = dy;
a1 = a; b1 = b;

end;
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keep t x y;
run;

The simulated series X and Y are shown in Figure 35.1.

Figure 35.1 Example Series

Automatic State Space Model Selection
The STATESPACE procedure is designed to automatically select the best state space model for forecasting the
series. You can specify your own model if you want, and you can use the output from PROC STATESPACE
to help you identify a state space model. However, the easiest way to use PROC STATESPACE is to let it
choose the model.
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Stationarity and Differencing

Although PROC STATESPACE selects the state space model automatically, it does assume that the input
series are stationary. If the series are nonstationary, then the process might fail. Therefore the first step is to
examine your data and test to see if differencing is required. (For further discussion of this issue, see the
section “Stationarity and Differencing” on page 2588.)

The series shown in Figure 35.1 are nonstationary. In order to forecast X and Y with a state space model, you
must difference them (or use some other detrending method). If you fail to difference when needed and try to
use PROC STATESPACE with nonstationary data, an inappropriate state space model might be selected, and
the model estimation might fail to converge.

The following statements identify and fit a state space model for the first differences of X and Y, and forecast
X and Y 10 periods ahead:

proc statespace data=in out=out lead=10;
var x(1) y(1);
id t;

run;

The DATA= option specifies the input data set and the OUT= option specifies the output data set for the
forecasts. The LEAD= option specifies forecasting 10 observations past the end of the input data. The VAR
statement specifies the variables to forecast and specifies differencing. The notation X(1) Y(1) specifies that
the state space model analyzes the first differences of X and Y.

Descriptive Statistics and Preliminary Autoregressions

The first page of the printed output produced by the preceding statements is shown in Figure 35.2.

Figure 35.2 Descriptive Statistics and VAR Order Selection

The STATESPACE Procedure

Number of Observations 200

Variable Mean
Standard

Error

x 0.144316 1.233457 Has been differenced. With period(s) = 1.

y 0.164871 1.304358 Has been differenced. With period(s) = 1.

The STATESPACE Procedure

Information Criterion for Autoregressive Models

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8 Lag=9 Lag=10

149.697 8.387786 5.517099 12.05986 15.36952 21.79538 24.00638 29.88874 33.55708 41.17606 47.70222

Schematic Representation of Correlations

Name/Lag 0 1 2 3 4 5 6 7 8 9 10

x ++ ++ ++ ++ ++ ++ +. .. +. +. ..

y ++ ++ ++ ++ ++ +. +. +. +. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Descriptive statistics are printed first, giving the number of nonmissing observations after differencing and
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the sample means and standard deviations of the differenced series. The sample means are subtracted before
the series are modeled (unless the NOCENTER option is specified), and the sample means are added back
when the forecasts are produced.

Let Xt and Yt be the observed values of X and Y, and let xt and yt be the values of X and Y after differencing
and subtracting the mean difference. The series xt modeled by the STATEPSPACE procedure is

xt D
�
xt
yt

�
D

�
.1 � B/Xt � 0:144316

.1 � B/Yt � 0:164871

�
where B represents the backshift operator.

After the descriptive statistics, PROC STATESPACE prints the Akaike’s information criterion (AIC) values
for the autoregressive models fit to the series. The smallest AIC value, in this case 5.517 at lag 2, determines
the number of autocovariance matrices analyzed in the canonical correlation phase.

A schematic representation of the autocorrelations is printed next. This indicates which elements of the
autocorrelation matrices at different lags are significantly greater than or less than 0.

The second page of the STATESPACE printed output is shown in Figure 35.3.

Figure 35.3 Partial Autocorrelations and VAR Model

Schematic Representation of Partial Autocorrelations

Name/Lag 1 2 3 4 5 6 7 8 9 10

x ++ +. .. .. .. .. .. .. .. ..

y ++ .. .. .. .. .. .. .. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Yule-Walker Estimates for Minimum AIC

Lag=1 Lag=2

x y x y

x 0.257438 0.202237 0.170812 0.133554

y 0.292177 0.469297 -0.00537 -0.00048

Figure 35.3 shows a schematic representation of the partial autocorrelations, similar to the autocorrelations
shown in Figure 35.2. The selection of a second order autoregressive model by the AIC statistic looks
reasonable in this case because the partial autocorrelations for lags greater than 2 are not significant.

Next, the Yule-Walker estimates for the selected autoregressive model are printed. This output shows the
coefficient matrices of the vector autoregressive model at each lag.

Selected State Space Model Form and Preliminary Estimates

After the autoregressive order selection process has determined the number of lags to consider, the canonical
correlation analysis phase selects the state vector. By default, output for this process is not printed. You can
use the CANCORR option to print details of the canonical correlation analysis. For an explanation of this
process, see the section “Canonical Correlation Analysis Options” on page 2583.

After the state vector is selected, the state space model is estimated by approximate maximum likelihood.
Information from the canonical correlation analysis and from the preliminary autoregression is used to form
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preliminary estimates of the state space model parameters. These preliminary estimates are used as starting
values for the iterative estimation process.

The form of the state vector and the preliminary estimates are printed next, as shown in Figure 35.4.

Figure 35.4 Preliminary Estimates of State Space Model

The STATESPACE Procedure
Selected Statespace Form and Preliminary Estimates

State Vector

x(T;T) y(T;T) x(T+1;T)

Estimate of Transition
Matrix

0 0 1

0.291536 0.468762 -0.00411

0.24869 0.24484 0.204257

Input Matrix for
Innovation

1 0

0 1

0.257438 0.202237

Variance Matrix
for Innovation

0.945196 0.100786

0.100786 1.014703

Figure 35.4 first prints the state vector as X[T;T] Y[T;T] X[T+1;T]. This notation indicates that the state
vector is

zt D

24 xt jt
yt jt
xtC1jt

35
The notation xtC1jt indicates the conditional expectation or prediction of xtC1 based on the information
available at time t, and xt jt and yt jt are xt and yt , respectively.

The remainder of Figure 35.4 shows the preliminary estimates of the transition matrix F, the input matrix G,
and the covariance matrix †ee.

Estimated State Space Model

The next page of the STATESPACE output prints the final estimates of the fitted model, as shown in
Figure 35.5. This output has the same form as in Figure 35.4, but it shows the maximum likelihood estimates
instead of the preliminary estimates.
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Figure 35.5 Fitted State Space Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T)

Estimate of Transition
Matrix

0 0 1

0.297273 0.47376 -0.01998

0.2301 0.228425 0.256031

Input Matrix for
Innovation

1 0

0 1

0.257284 0.202273

Variance Matrix
for Innovation

0.945188 0.100752

0.100752 1.014712

The estimated state space model shown in Figure 35.5 is

24xtC1jtC1ytC1jtC1
xtC2jtC1

35 D

24 0 0 1

0:297 0:474 �0:020

0:230 0:228 0:256

3524 xt
yt

xtC1jt

35C
24 1 0

0 1

0:257 0:202

35�etC1
ntC1

�

var
�
etC1
ntC1

�
D

�
0:945 0:101

0:101 1:015

�
The next page of the STATESPACE output lists the estimates of the free parameters in the F and G matrices
with standard errors and t statistics, as shown in Figure 35.6.

Figure 35.6 Final Parameter Estimates

Parameter Estimates

Parameter Estimate
Standard

Error t Value

F(2,1) 0.297273 0.129995 2.29

F(2,2) 0.473760 0.115688 4.10

F(2,3) -0.01998 0.313025 -0.06

F(3,1) 0.230100 0.126226 1.82

F(3,2) 0.228425 0.112978 2.02

F(3,3) 0.256031 0.305256 0.84

G(3,1) 0.257284 0.071060 3.62

G(3,2) 0.202273 0.068593 2.95
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Convergence Failures

The maximum likelihood estimates are computed by an iterative nonlinear maximization algorithm, which
might not converge. If the estimates fail to converge, warning messages are printed in the output.

If you encounter convergence problems, you should recheck the stationarity of the data and ensure that
the specified differencing orders are correct. Attempting to fit state space models to nonstationary data is
a common cause of convergence failure. You can also use the MAXIT= option to increase the number of
iterations allowed, or experiment with the convergence tolerance options DETTOL= and PARMTOL=.

Forecast Data Set

The following statements print the output data set. The WHERE statement excludes the first 190 observations
from the output, so that only the forecasts and the last 10 actual observations are printed.

proc print data=out;
id t;
where t > 190;

run;

The PROC PRINT output is shown in Figure 35.7.

Figure 35.7 OUT= Data Set Produced by PROC STATESPACE

t x FOR1 RES1 STD1 y FOR2 RES2 STD2

191 34.8159 33.6299 1.18600 0.97221 58.7189 57.9916 0.72728 1.00733

192 35.0656 35.6598 -0.59419 0.97221 58.5440 59.7718 -1.22780 1.00733

193 34.7034 35.5530 -0.84962 0.97221 59.0476 58.5723 0.47522 1.00733

194 34.6626 34.7597 -0.09707 0.97221 59.7774 59.2241 0.55330 1.00733

195 34.4055 34.8322 -0.42664 0.97221 60.5118 60.1544 0.35738 1.00733

196 33.8210 34.6053 -0.78434 0.97221 59.8750 60.8260 -0.95102 1.00733

197 34.0164 33.6230 0.39333 0.97221 58.4698 59.4502 -0.98046 1.00733

198 35.3819 33.6251 1.75684 0.97221 60.6782 57.9167 2.76150 1.00733

199 36.2954 36.0528 0.24256 0.97221 60.9692 62.1637 -1.19450 1.00733

200 37.8945 37.1431 0.75142 0.97221 60.8586 61.4085 -0.54984 1.00733

201 . 38.5068 . 0.97221 . 61.3161 . 1.00733

202 . 39.0428 . 1.59125 . 61.7509 . 1.83678

203 . 39.4619 . 2.28028 . 62.1546 . 2.62366

204 . 39.8284 . 2.97824 . 62.5099 . 3.38839

205 . 40.1474 . 3.67689 . 62.8275 . 4.12805

206 . 40.4310 . 4.36299 . 63.1139 . 4.84149

207 . 40.6861 . 5.03040 . 63.3755 . 5.52744

208 . 40.9185 . 5.67548 . 63.6174 . 6.18564

209 . 41.1330 . 6.29673 . 63.8435 . 6.81655

210 . 41.3332 . 6.89383 . 64.0572 . 7.42114

The OUT= data set produced by PROC STATESPACE contains the VAR and ID statement variables. In
addition, for each VAR statement variable, the OUT= data set contains the variables FORi, RESi, and STDi.
These variables contain the predicted values, residuals, and forecast standard errors for the ith variable in the
VAR statement list. In this case, X is listed first in the VAR statement, so FOR1 contains the forecasts of X,
while FOR2 contains the forecasts of Y.
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The following statements plot the forecasts and actuals for the series:

proc sgplot data=out noautolegend;
where t > 150;
series x=t y=for1 / markers
markerattrs=(symbol=circle color=blue)
lineattrs=(pattern=solid color=blue);

series x=t y=for2 / markers
markerattrs=(symbol=circle color=blue)
lineattrs=(pattern=solid color=blue);
series x=t y=x / markers
markerattrs=(symbol=circle color=red)
lineattrs=(pattern=solid color=red);
series x=t y=y / markers
markerattrs=(symbol=circle color=red)
lineattrs=(pattern=solid color=red);
refline 200.5 / axis=x;

run;

The forecast plot is shown in Figure 35.8. The last 50 observations are also plotted to provide context, and a
reference line is drawn between the historical and forecast periods.

Figure 35.8 Plot of Forecasts



2578 F Chapter 35: The STATESPACE Procedure

Controlling Printed Output

By default, the STATESPACE procedure produces a large amount of printed output. The NOPRINT option
suppresses all printed output. You can suppress the printed output for the autoregressive model selection
process with the PRINTOUT=NONE option. The descriptive statistics and state space model estimation
output are still printed when PRINTOUT=NONE is specified. You can produce more detailed output with the
PRINTOUT=LONG option and by specifying the printing control options CANCORR, COVB, and PRINT.

Specifying the State Space Model
Instead of allowing the STATESPACE procedure to select the model automatically, you can use FORM and
RESTRICT statements to specify a state space model.

Specifying the State Vector

Use the FORM statement to control the form of the state vector. You can use this feature to force PROC
STATESPACE to estimate and forecast a model different from the model it would select automatically. You
can also use this feature to reestimate the automatically selected model (possibly with restrictions) without
repeating the canonical correlation analysis.

The FORM statement specifies the number of lags of each variable to include in the state vector. For example,
the statement FORM X 3; forces the state vector to include xt jt , xtC1jt , and xtC2jt . The following statement
specifies the state vector .xt jt ; yt jt ; xtC1jt /, which is the same state vector selected in the preceding example:

form x 2 y 1;

You can specify the form for only some of the variables and allow PROC STATESPACE to select the form for
the other variables. If only some of the variables are specified in the FORM statement, canonical correlation
analysis is used to determine the number of lags included in the state vector for the remaining variables not
specified by the FORM statement. If the FORM statement includes specifications for all the variables listed
in the VAR statement, the state vector is completely defined and the canonical correlation analysis is not
performed.

Restricting the F and G matrices

After you know the form of the state vector, you can use the RESTRICT statement to fix some parameters in
the F and G matrices to specified values. One use of this feature is to remove insignificant parameters by
restricting them to 0.

In the introductory example shown in the preceding section, the F[2,3] parameter is not significant. (The
parameters estimation output shown in Figure 35.6 gives the t statistic for F[2,3] as –0.06. F[3,3] and F[3,1]
also have low significance with t < 2.)

The following statements reestimate this model with F[2,3] restricted to 0. The FORM statement is used to
specify the state vector and thus bypass the canonical correlation analysis.

proc statespace data=in out=out lead=10;
var x(1) y(1);
id t;
form x 2 y 1;
restrict f(2,3)=0;
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run;

The final estimates produced by these statements are shown in Figure 35.10.

Figure 35.9 Results Using RESTRICT Statement

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T)

Estimate of Transition
Matrix

0 0 1

0.290051 0.467468 0

0.227051 0.226139 0.26436

Input Matrix for
Innovation

1 0

0 1

0.256826 0.202022

Variance Matrix
for Innovation

0.945175 0.100696

0.100696 1.014733

Figure 35.10 Restricted Parameter Estimates

Parameter Estimates

Parameter Estimate
Standard

Error t Value

F(2,1) 0.290051 0.063904 4.54

F(2,2) 0.467468 0.060430 7.74

F(3,1) 0.227051 0.125221 1.81

F(3,2) 0.226139 0.111711 2.02

F(3,3) 0.264360 0.299537 0.88

G(3,1) 0.256826 0.070994 3.62

G(3,2) 0.202022 0.068507 2.95
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Syntax: STATESPACE Procedure
The STATESPACE procedure uses the following statements:

PROC STATESPACE options ;
BY variable . . . ;
FORM variable value . . . ;
ID variable ;
INITIAL F(row,column)=value . . . G(row,column)=value . . . ;
RESTRICT F(row,column)=value . . . G(row,column)=value . . . ;
VAR variable (difference, difference, . . . ). . . ;

Functional Summary
Table 35.1 summarizes the statements and options used by PROC STATESPACE.

Table 35.1 Functional Summary

Description Statement Option

Input Data Set Options
Specify the input data set PROC STATESPACE DATA=
Prevent subtraction of sample mean PROC STATESPACE NOCENTER
Specify the ID variable ID
Specify the observed series and differencing VAR

Options for Autoregressive Estimates
Specify the maximum order PROC STATESPACE ARMAX=
Specify maximum lag for autocovariances PROC STATESPACE LAGMAX=
Output only minimum AIC model PROC STATESPACE MINIC
Specify the amount of detail printed PROC STATESPACE PRINTOUT=
Write preliminary AR models to a data set PROC STATESPACE OUTAR=

Options for Canonical Correlation Analysis
Print the sequence of canonical correlations PROC STATESPACE CANCORR
Specify upper limit of dimension of state
vector

PROC STATESPACE DIMMAX=

Specify the minimum number of lags PROC STATESPACE PASTMIN=
Specify the multiplier of the degrees of
freedom

PROC STATESPACE SIGCORR=

Options for State Space Model Estimation
Specify starting values INITIAL
Print covariance matrix of parameter estimates PROC STATESPACE COVB
Specify the convergence criterion PROC STATESPACE DETTOL=
Specify the convergence criterion PROC STATESPACE PARMTOL=
Print the details of the iterations PROC STATESPACE ITPRINT
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Table 35.1 continued

Description Statement Option

Specify an upper limit of the number of lags PROC STATESPACE KLAG=
Specify maximum number of iterations
allowed

PROC STATESPACE MAXIT=

Suppress the final estimation PROC STATESPACE NOEST
Write the state space model parameter
estimates to an output data set

PROC STATESPACE OUTMODEL=

Use conditional least squares for final
estimates

PROC STATESPACE RESIDEST

Specify criterion for testing for singularity PROC STATESPACE SINGULAR=

Options for Forecasting
Start forecasting before end of the input data PROC STATESPACE BACK=
Specify the time interval between observations PROC STATESPACE INTERVAL=
Specify multiple periods in the time series PROC STATESPACE INTPER=
Specify how many periods to forecast PROC STATESPACE LEAD=
Specify the output data set for forecasts PROC STATESPACE OUT=
Print forecasts PROC STATESPACE PRINT

Options to Specify the State Space Model
Specify the state vector FORM
Specify the parameter values RESTRICT

BY Groups
Specify BY-group processing BY

Printing
Suppresses all printed output NOPRINT

PROC STATESPACE Statement
PROC STATESPACE options ;

The following options can be specified in the PROC STATESPACE statement.

Printing Options

NOPRINT
suppresses all printed output.
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Input Data Options

DATA=SAS-data-set
specifies the name of the SAS data set to be used by the procedure. If the DATA= option is omitted,
the most recently created SAS data set is used.

LAGMAX=k
specifies the number of lags for which the sample autocovariance matrix is computed. The LAGMAX=
option controls the number of lags printed in the schematic representation of the autocorrelations.

The sample autocovariance matrix of lag i, denoted as Ci , is computed as

Ci D
1

N � 1

NX
tD1Ci

xtx0t�i

where xt is the differenced and centered data andN is the number of observations. (If the NOCENTER
option is specified, 1 is not subtracted from N .) LAGMAX= k specifies that C0 through Ck are
computed. The default is LAGMAX=10.

NOCENTER
prevents subtraction of the sample mean from the input series (after any specified differencing) before
the analysis.

Options for Preliminary Autoregressive Models

ARMAX=n
specifies the maximum order of the preliminary autoregressive models. The ARMAX= option controls
the autoregressive orders for which information criteria are printed, and controls the number of lags
printed in the schematic representation of partial autocorrelations. The default is ARMAX=10. For
more information, see the section “Preliminary Autoregressive Models” on page 2589.

MINIC
writes to the OUTAR= data set only the preliminary Yule-Walker estimates for the VAR model that
produces the minimum AIC. For more information, see the section “OUTAR= Data Set” on page 2600.

OUTAR=SAS-data-set
writes the Yule-Walker estimates of the preliminary autoregressive models to a SAS data set. For more
information, see the section “OUTAR= Data Set” on page 2600.

PRINTOUT=SHORT | LONG | NONE
determines the amount of detail printed. PRINTOUT=LONG prints the lagged covariance matrices, the
partial autoregressive matrices, and estimates of the residual covariance matrices from the sequence of
autoregressive models. PRINTOUT=NONE suppresses the output for the preliminary autoregressive
models. The descriptive statistics and state space model estimation output are still printed when
PRINTOUT=NONE is specified. PRINTOUT=SHORT is the default.
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Canonical Correlation Analysis Options

CANCORR
prints the canonical correlations and information criterion for each candidate state vector considered.
For more information, see the section “Canonical Correlation Analysis Options” on page 2583.

DIMMAX=n
specifies the upper limit to the dimension of the state vector. The DIMMAX= option can be used to
limit the size of the model selected. The default is DIMMAX=10.

PASTMIN=n
specifies the minimum number of lags to include in the canonical correlation analysis. The default is
PASTMIN=0. For more information, see the section “Canonical Correlation Analysis Options” on
page 2583.

SIGCORR=value
specifies the multiplier of the degrees of freedom for the penalty term in the information criterion used
to select the state space form. The default is SIGCORR=2. The larger the value of the SIGCORR=
option, the smaller the state vector tends to be. Hence, a large value causes a simpler model to be fit.
For more information, see the section “Canonical Correlation Analysis Options” on page 2583.

State Space Model Estimation Options

COVB
prints the inverse of the observed information matrix for the parameter estimates. This matrix is an
estimate of the covariance matrix for the parameter estimates.

DETTOL=value
specifies the convergence criterion. The DETTOL= and PARMTOL= option values are used together
to test for convergence of the estimation process. If, during an iteration, the relative change of the
parameter estimates is less than the PARMTOL= value and the relative change of the determinant of
the innovation variance matrix is less than the DETTOL= value, then iteration ceases and the current
estimates are accepted. The default is DETTOL=1E–5.

ITPRINT
prints the iterations during the estimation process.

KLAG=n
sets an upper limit for the number of lags of the sample autocovariance matrix used in computing the
approximate likelihood function. If the data have a strong moving average character, a larger KLAG=
value might be necessary to obtain good estimates. The default is KLAG=15. For more information,
see the section “Parameter Estimation” on page 2594.

MAXIT=n
sets an upper limit to the number of iterations in the maximum likelihood or conditional least squares
estimation. The default is MAXIT=50.
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NOEST
suppresses the final maximum likelihood estimation of the selected model.

OUTMODEL=SAS-data-set
writes the parameter estimates and their standard errors to a SAS data set. For more information, see
the section “OUTMODEL= Data Set” on page 2601.

PARMTOL=value
specifies the convergence criterion. The DETTOL= and PARMTOL= option values are used together
to test for convergence of the estimation process. If, during an iteration, the relative change of the
parameter estimates is less than the PARMTOL= value and the relative change of the determinant of
the innovation variance matrix is less than the DETTOL= value, then iteration ceases and the current
estimates are accepted. The default is PARMTOL=0.001.

RESIDEST
computes the final estimates by using conditional least squares on the raw data. This type of estimation
might be more stable than the default maximum likelihood method but is usually more computationally
expensive. For more information about the conditional least squares method, see the section “Parameter
Estimation” on page 2594.

SINGULAR=value
specifies the criterion for testing for singularity of a matrix. A matrix is declared singular if a scaled
pivot is less than the SINGULAR= value when sweeping the matrix. The default is SINGULAR=1E–7.

Forecasting Options

BACK=n
starts forecasting n periods before the end of the input data. The BACK= option value must not be
greater than the number of observations. The default is BACK=0.

INTERVAL=interval
specifies the time interval between observations. The INTERVAL= value is used in conjunction with
the ID variable to check that the input data are in order and have no missing periods. The INTERVAL=
option is also used to extrapolate the ID values past the end of the input data. For more information
about the INTERVAL= values allowed, see Chapter 5, “Date Intervals, Formats, and Functions.”

INTPER=n
specifies that each input observation corresponds to n time periods. For example, the options IN-
TERVAL=MONTH and INTPER=2 specify bimonthly data and are equivalent to specifying IN-
TERVAL=MONTH2. If the INTERVAL= option is not specified, the INTPER= option controls the
increment used to generate ID values for the forecast observations. The default is INTPER=1.

LEAD=n
specifies how many forecast observations are produced. The forecasts start at the point set by the
BACK= option. The default is LEAD=0, which produces no forecasts.
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OUT=SAS-data-set
writes the residuals, actual values, forecasts, and forecast standard errors to a SAS data set. For more
information, see the section “OUT= Data Set” on page 2599.

PRINT
prints the forecasts.

BY Statement
BY variable . . . ;

A BY statement can be used with the STATESPACE procedure to obtain separate analyses on observations in
groups defined by the BY variables.

FORM Statement
FORM variable value . . . ;

The FORM statement specifies the number of times a variable is included in the state vector. Values can be
specified for any variable listed in the VAR statement. If a value is specified for each variable in the VAR
statement, the state vector for the state space model is entirely specified, and automatic selection of the state
space model is not performed.

The FORM statement forces the state vector, zt , to contain a specific variable a given number of times. For
example, if Y is one of the variables in xt , then the statement

form y 3;

forces the state vector to contain Yt ; YtC1jt , and YtC2jt , possibly along with other variables.

The following statements illustrate the use of the FORM statement:

proc statespace data=in;
var x y;
form x 3 y 2;

run;

These statements fit a state space model with the following state vector:

zt D

266664
xt jt
yt jt
xtC1jt
ytC1jt
xtC2jt

377775
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ID Statement
ID variable ;

The ID statement specifies a variable that identifies observations in the input data set. The variable specified
in the ID statement is included in the OUT= data set. The values of the ID variable are extrapolated for the
forecast observations based on the values of the INTERVAL= and INTPER= options.

INITIAL Statement
INITIAL F(row,column)=value . . . G(row, column)=value . . . ;

The INITIAL statement gives initial values to the specified elements of the F and G matrices. These initial
values are used as starting values for the iterative estimation.

Parts of the F and G matrices represent fixed structural identities. If an element specified is a fixed structural
element instead of a free parameter, the corresponding initialization is ignored.

The following is an example of an INITIAL statement:

initial f(3,2)=0 g(4,1)=0 g(5,1)=0;

RESTRICT Statement
RESTRICT F(row,column)=value . . . G(row,column)=value . . . ;

The RESTRICT statement restricts the specified elements of the F and G matrices to the specified values.

To use the restrict statement, you need to know the form of the model. Either specify the form of the model
with the FORM statement, or do a preliminary run (perhaps with the NOEST option) to find the form of the
model that PROC STATESPACE selects for the data.

The following is an example of a RESTRICT statement:

restrict f(3,2)=0 g(4,1)=0 g(5,1)=0 ;

Parts of the F and G matrices represent fixed structural identities. If a restriction is specified for an element
that is a fixed structural element instead of a free parameter, the restriction is ignored.
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VAR Statement
VAR variable (difference, difference, . . . ) . . . ;

The VAR statement specifies the variables in the input data set to model and forecast. The VAR statement
also specifies differencing of the input variables. The VAR statement is required.

Differencing is specified by following the variable name with a list of difference periods separated by commas.
For more information about differencing of input variables, see the section “Stationarity and Differencing”
on page 2588.

The order in which variables are listed in the VAR statement controls the order in which variables are included
in the state vector. Usually, potential inputs should be listed before potential outputs.

For example, assuming the input data are monthly, the following VAR statement specifies modeling and
forecasting of the one period and seasonal second difference of X and Y:

var x(1,12) y(1,12);

In this example, the vector time series analyzed is

xt D
�
.1 � B/.1 � B12/Xt � Nx

.1 � B/.1 � B12/Yt � Ny

�
where B represents the back shift operator and Nx and Ny represent the means of the differenced series. If the
NOCENTER option is specified, the mean differences are not subtracted.

Details: STATESPACE Procedure

Missing Values
The STATESPACE procedure does not support missing values. The procedure uses the first contiguous group
of observations with no missing values for any of the VAR statement variables. Observations at the beginning
of the data set with missing values for any VAR statement variable are not used or included in the output data
set.
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Stationarity and Differencing
The state space model used by the STATESPACE procedure assumes that the time series are stationary.
Hence, the data should be checked for stationarity. One way to check for stationarity is to plot the series. A
graph of series over time can show a time trend or variability changes.

You can also check stationarity by using the sample autocorrelation functions displayed by the ARIMA
procedure. The autocorrelation functions of nonstationary series tend to decay slowly. For more information,
see Chapter 8, “The ARIMA Procedure.”

Another alternative is to use the STATIONARITY= option in the IDENTIFY statement in PROC ARIMA to
apply Dickey-Fuller tests for unit roots in the time series. For more information about Dickey-Fuller unit
root tests, see Chapter 8, “The ARIMA Procedure.”

The most popular way to transform a nonstationary series to stationarity is by differencing. Differencing of
the time series is specified in the VAR statement. For example, to take a simple first difference of the series
X, use this statement:

var x(1);

In this example, the change in X from one period to the next is analyzed. When the series has a seasonal
pattern, differencing at a period equal to the length of the seasonal cycle can be desirable. For example,
suppose the variable X is measured quarterly and shows a seasonal cycle over the year. You can use the
following statement to analyze the series of changes from the same quarter in the previous year:

var x(4);

To difference twice, add another differencing period to the list. For example, the following statement analyzes
the series of second differences .Xt �Xt�1/ � .Xt�1 �Xt�2/ D Xt � 2Xt�1 CXt�2:

var x(1,1);

The following statement analyzes the seasonal second difference series:

var x(1,4);

The series that is being modeled is the 1-period difference of the 4-period difference:
.Xt �Xt�4/ � .Xt�1 �Xt�5/ D Xt �Xt�1 �Xt�4 CXt�5.

Another way to obtain stationary series is to use a regression on time to detrend the data. If the time series has
a deterministic linear trend, regressing the series on time produces residuals that should be stationary. The
following statements write residuals of X and Y to the variable RX and RY in the output data set DETREND:

data a;
set a;
t=_n_;

run;

proc reg data=a;
model x y = t;
output out=detrend r=rx ry;

run;

You then use PROC STATESPACE to forecast the detrended series RX and RY. A disadvantage of this
method is that you need to add the trend back to the forecast series in an additional step. A more serious
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disadvantage of the detrending method is that it assumes a deterministic trend. In practice, most time series
appear to have a stochastic rather than a deterministic trend. Differencing is a more flexible and often more
appropriate method.

There are several other methods to handle nonstationary time series. For more information and examples, see
Brockwell and Davis (1991).

Preliminary Autoregressive Models
After computing the sample autocovariance matrices, PROC STATESPACE fits a sequence of vector autore-
gressive models. These preliminary autoregressive models are used to estimate the autoregressive order of
the process and limit the order of the autocovariances considered in the state vector selection process.

Yule-Walker Equations for Forward and Backward Models

Unlike a univariate autoregressive model, a multivariate autoregressive model has different forms, depend-
ing on whether the present observation is being predicted from the past observations or from the future
observations.

Let xt be the r-component stationary time series given by the VAR statement after differencing and subtracting
the vector of sample means. (If the NOCENTER option is specified, the mean is not subtracted.) Let n be the
number of observations of xt from the input data set.

Let et be a vector white noise sequence with mean vector 0 and variance matrix †p, and let nt be a
vector white noise sequence with mean vector 0 and variance matrix �p. Let p be the order of the vector
autoregressive model for xt .

The forward autoregressive form based on the past observations is written as follows:

xt D
pX
iD1

ˆ
p
i xt�i C et

The backward autoregressive form based on the future observations is written as follows:

xt D
pX
iD1

‰
p
i xtCi C nt

Letting E denote the expected value operator, the autocovariance sequence for the xt series, �i , is

�i D Extx0t�i

The Yule-Walker equations for the autoregressive model that matches the first p elements of the autocovariance
sequence are26664

�0 �1 � � � �p�1
� 01 �0 � � � �p�2
:::

:::
:::

� 0p�1 � 0p�2 � � � �0

37775
26664
ˆ
p
1

ˆ
p
2
:::

ˆ
p
p

37775 D
26664
�1
�2
:::

�p

37775
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and 26664
�0 � 01 � � � � 0p�1
�1 �0 � � � � 0p�2
:::

:::
:::

�p�1 �p�2 � � � �0

37775
26664
‰
p
1

‰
p
2
:::

‰
p
p

37775 D
26664
� 01
� 02
:::

� 0p

37775
Here ˆpi are the coefficient matrices for the past observation form of the vector autoregressive model, and
‰
p
i are the coefficient matrices for the future observation form. More information about the Yule-Walker

equations in the multivariate setting can be found in Whittle (1963); Ansley and Newbold (1979).

The innovation variance matrices for the two forms can be written as follows:

†p D �0 �

pX
iD1

ˆ
p
i �
0
i

�p D �0 �

pX
iD1

‰
p
i �i

The autoregressive models are fit to the data by using the preceding Yule-Walker equations with �i replaced
by the sample covariance sequence Ci. The covariance matrices are calculated as

Ci D
1

N � 1

NX
tDiC1

xtx0t�i

Let b̂p , b‰p , b†p , and b�p represent the Yule-Walker estimates of ˆp , ‰p ,†p , and�p , respectively. These
matrices are written to an output data set when the OUTAR= option is specified.

When the PRINTOUT=LONG option is specified, the sequence of matrices b†p and the corresponding
correlation matrices are printed. The sequence of matrices b†p is used to compute Akaike’s information
criteria for selection of the autoregressive order of the process.

Akaike’s Information Criterion

Akaike’s information criterion (AIC) is defined as –2(maximum of log likelihood )+2(number of parameters).
Since the vector autoregressive models are estimates from the Yule-Walker equations, not by maximum
likelihood, the exact likelihood values are not available for computing the AIC. However, for the vector
autoregressive model the maximum of the log likelihood can be approximated as

ln.L/��
n

2
ln.jb†pj/

Thus, the AIC for the order p model is computed as

AICp D nln.jb†pj/C 2pr2
You can use the printed AIC array to compute a likelihood ratio test of the autoregressive order. The
log-likelihood ratio test statistic for testing the order p model against the order p � 1 model is

�nln.jb†pj/C nln.jb†p�1j/
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This quantity is asymptotically distributed as a �2 with r2 degrees of freedom if the series is autoregressive
of order p � 1. It can be computed from the AIC array as

AICp�1 �AICp C 2r2

You can evaluate the significance of these test statistics with the PROBCHI function in a SAS DATA step or
with a �2 table.

Determining the Autoregressive Order

Although the autoregressive models can be used for prediction, their primary value is to aid in the selection
of a suitable portion of the sample covariance matrix for use in computing canonical correlations. If the
multivariate time series xt is of autoregressive order p, then the vector of past values to lag p is considered to
contain essentially all the information relevant for prediction of future values of the time series.

By default, PROC STATESPACE selects the order p that produces the autoregressive model with the smallest
AICp . If the value p for the minimum AICp is less than the value of the PASTMIN= option, then p is set to
the PASTMIN= value. Alternatively, you can use the ARMAX= and PASTMIN= options to force PROC
STATESPACE to use an order you select.

Significance Limits for Partial Autocorrelations

The STATESPACE procedure prints a schematic representation of the partial autocorrelation matrices that
indicates which partial autocorrelations are significantly greater than or significantly less than 0. Figure 35.11
shows an example of this table.

Figure 35.11 Significant Partial Autocorrelations

Schematic Representation of Partial Autocorrelations

Name/Lag 1 2 3 4 5 6 7 8 9 10

x ++ +. .. .. .. .. .. .. .. ..

y ++ .. .. .. .. .. .. .. .. ..

+ is > 2*std error, - is < -2*std error, . is between

The partial autocorrelations are from the sample partial autoregressive matrices b̂pp . The standard errors used
for the significance limits of the partial autocorrelations are computed from the sequence of matrices †p and
�p.

Under the assumption that the observed series arises from an autoregressive process of order p � 1, the pth
sample partial autoregressive matrix b̂pp has an asymptotic variance matrix 1

n
��1p ˝†p.

The significance limits for b̂pp used in the schematic plot of the sample partial autoregressive sequence are
derived by replacing�p and †p with their sample estimators to produce the variance estimate, as follows:

bVar
�b̂p

p

�
D

�
1

n � rp

� b��1p ˝b†p
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Canonical Correlation Analysis
Given the order p, let pt be the vector of current and past values relevant to prediction of xtC1:

pt D .x0t ; x
0
t�1; : : : ; x

0
t�p/

0

Let ft be the vector of current and future values:

ft D .x0t ; x
0
tC1; : : : ; x

0
tCp/

0

In the canonical correlation analysis, consider submatrices of the sample covariance matrix of pt and ft . This
covariance matrix, V, has a block Hankel form:

V D

26664
C0 C01 C02 � � � C0p
C01 C02 C03 � � � C0pC1
:::

:::
:::

:::

C0p C0pC1 C0pC2 � � � C02p

37775

State Vector Selection Process

The canonical correlation analysis forms a sequence of potential state vectors zjt . Examine a sequence fjt of
subvectors of ft , form the submatrix Vj that consists of the rows and columns of V that correspond to the
components of fjt , and compute its canonical correlations.

The smallest canonical correlation of Vj is then used in the selection of the components of the state vector.
The selection process is described in the following discussion. For more information about this process, see
Akaike (1976).

In the following discussion, the notation xtCkjt denotes the wide sense conditional expectation (best linear
predictor) of xtCk , given all xs with s less than or equal to t. In the notation xi;tC1, the first subscript denotes
the ith component of xtC1.

The initial state vector z1t is set to xt . The sequence fjt is initialized by setting

f1t D .z
10

t ; x1;tC1jt /
0
D .x0t ; x1;tC1jt /

0

That is, start by considering whether to add x1;tC1jt to the initial state vector z1t .

The procedure forms the submatrix V1 that corresponds to f1t and computes its canonical correlations. Denote
the smallest canonical correlation of V1 as �min. If �min is significantly greater than 0, x1;tC1jt is added to
the state vector.

If the smallest canonical correlation of V1 is not significantly greater than 0, then a linear combination of f1t
is uncorrelated with the past, pt . Assuming that the determinant of C0 is not 0, (that is, no input series is a
constant), you can take the coefficient of x1;tC1jt in this linear combination to be 1. Denote the coefficients
of z1t in this linear combination as `. This gives the relationship:

x1;tC1jt D `
0xt
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Therefore, the current state vector already contains all the past information useful for predicting x1;tC1 and
any greater leads of x1;t . The variable x1;tC1jt is not added to the state vector, nor are any terms x1;tCkjt
considered as possible components of the state vector. The variable x1 is no longer active for state vector
selection.

The process described for x1;tC1jt is repeated for the remaining elements of ft . The next candidate for
inclusion in the state vector is the next component of ft that corresponds to an active variable. Components
of ft that correspond to inactive variables that produced a zero �min in a previous step are skipped.

Denote the next candidate as xl;tCkjt . The vector fjt is formed from the current state vector and xl;tCkjt as
follows:

fjt D .z
j 0

t ; xl;tCkjt /
0

The matrix Vj is formed from fjt and its canonical correlations are computed. The smallest canonical
correlation of Vj is judged to be either greater than or equal to 0. If it is judged to be greater than 0, xl;tCkjt
is added to the state vector. If it is judged to be 0, then a linear combination of fjt is uncorrelated with the pt ,
and the variable xl is now inactive.

The state vector selection process continues until no active variables remain.

Testing Significance of Canonical Correlations

For each step in the canonical correlation sequence, the significance of the smallest canonical correlation
�min is judged by an information criterion from Akaike (1976). This information criterion is

�nln.1 � �2min/ � �.r.p C 1/ � q C 1/

where q is the dimension of fjt at the current step, r is the order of the state vector, p is the order of the vector
autoregressive process, and � is the value of the SIGCORR= option. The default is SIGCORR=2. If this
information criterion is less than or equal to 0, �min is taken to be 0; otherwise, it is taken to be significantly
greater than 0. (Do not confuse this information criterion with the AIC.)

Variables in xtCpjt are not added in the model, even with positive information criterion, because of the
singularity of V. You can force the consideration of more candidate state variables by increasing the size of
the V matrix by specifying a PASTMIN= option value larger than p.

Printing the Canonical Correlations

To print the details of the canonical correlation analysis process, specify the CANCORR option in the
PROC STATESPACE statement. The CANCORR option prints the candidate state vectors, the canonical
correlations, and the information criteria for testing the significance of the smallest canonical correlation.

Bartlett’s �2 and its degrees of freedom are also printed when the CANCORR option is specified. The
formula used for Bartlett’s �2 is

�2 D �.n � :5.r.p C 1/ � q C 1//ln.1 � �2min/

with r.p C 1/ � q C 1 degrees of freedom.

Figure 35.12 shows the output of the CANCORR option for the introductory example shown in the “Getting
Started: STATESPACE Procedure” on page 2570.
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proc statespace data=in out=out lead=10 cancorr;
var x(1) y(1);
id t;

run;

Figure 35.12 Canonical Correlations Analysis

The STATESPACE Procedure
Canonical Correlations Analysis

x(T;T) y(T;T) x(T+1;T)
Information
Criterion Chi-Square DF

1 1 0.237045 3.566167 11.4505 4

New variables are added to the state vector if the information criteria are positive. In this example, ytC1jt and
xtC2jt are not added to the state space vector because the information criteria for these models are negative.

If the information criterion is nearly 0, then you might want to investigate models that arise if the opposite
decision is made regarding �min. This investigation can be accomplished by using a FORM statement to
specify part or all of the state vector.

Preliminary Estimates of F

When a candidate variable xl;tCkjt yields a zero �min and is not added to the state vector, a linear combination
of fjt is uncorrelated with the pt . Because of the method used to construct the fjt sequence, the coefficient of
xl;tCkjt in l can be taken as 1. Denote the coefficients of zjt in this linear combination as l.

This gives the relationship:

xl;tCkjt D l0zjt

The vector l is used as a preliminary estimate of the first r columns of the row of the transition matrix F
corresponding to xl;tCk�1jt .

Parameter Estimation
The model is ztC1 D Fzt CGetC1, where et is a sequence of independent multivariate normal innovations
with mean vector 0 and variance †ee. The observed sequence xt composes the first r components of zt , and
thus xt D Hzt , where H is the r � s matrix ŒIr 0�.

Let E be the r � n matrix of innovations:

E D
�
e1 � � � en

�
If the number of observations n is reasonably large, the log likelihood L can be approximated up to an additive
constant as follows:

L D �
n

2
ln.j†eej/ �

1

2
trace.†�1ee EE0/
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The elements of †ee are taken as free parameters and are estimated as follows:

S0 D
1

n
EE0

Replacing †ee by S0 in the likelihood equation, the log likelihood, up to an additive constant, is

L D �
n

2
ln.jS0j/

Letting B be the backshift operator, the formal relation between xt and et is

xt D H.I � BF/�1Get

et D .H.I � BF/�1G/�1xt D
1X
iD0

„ixt�i

Letting Ci be the ith lagged sample covariance of xt and neglecting end effects, the matrix S0 is

S0 D
1X

i;jD0

„iC�iCj„
0

j

For the computation of S0, the infinite sum is truncated at the value of the KLAG= option. The value of the
KLAG= option should be large enough that the sequence „i is approximately 0 beyond that point.

Let � be the vector of free parameters in the F and G matrices. The derivative of the log likelihood with
respect to the parameter � is

@L

@�
D �

n

2
trace

�
S�10

@S0
@�

�
The second derivative is

@2L
@�@� 0

D
n

2

�
trace

�
S�10

@S0
@� 0

S�10
@S0
@�

�
� trace

�
S�10

@2S0
@�@� 0

��

Near the maximum, the first term is unimportant and the second term can be approximated to give the
following second derivative approximation:

@2L

@�@� 0
Š �n trace

�
S�10

@E
@�

@E0

@� 0

�

The first derivative matrix and this second derivative matrix approximation are computed from the sample
covariance matrix C0 and the truncated sequence „i . The approximate likelihood function is maximized by
a modified Newton-Raphson algorithm that employs these derivative matrices.

The matrix S0 is used as the estimate of the innovation covariance matrix,†ee. The negative of the inverse of
the second derivative matrix at the maximum is used as an approximate covariance matrix for the parameter
estimates. The standard errors of the parameter estimates printed in the parameter estimates tables are taken
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from the diagonal of this covariance matrix. The parameter covariance matrix is printed when the COVB
option is specified.

If the data are nearly nonstationary, a better estimate of †ee and the other parameters can sometimes be
obtained by specifying the RESIDEST option. The RESIDEST option estimates the parameters by using
conditional least squares instead of maximum likelihood.

The residuals are computed using the state space equation and the sample mean values of the variables in the
model as start-up values. The estimate of S0 is then computed using the residuals from the ith observation
on, where i is the maximum number of times any variable occurs in the state vector. A multivariate
Gauss-Marquardt algorithm is used to minimize jS0j. For a further description of this method, see Harvey
(1981a).

Forecasting
Given estimates of F, G, and †ee, forecasts of xt are computed from the conditional expectation of zt .

In forecasting, the parameters F, G, and †ee are replaced with the estimates or by values specified in the
RESTRICT statement. One-step-ahead forecasting is performed for the observation xt , where t�n � b. Here
n is the number of observations and b is the value of the BACK= option. For the observation xt , where
t > n � b, m-step-ahead forecasting is performed form D t � nC b. The forecasts are generated recursively
with the initial condition z0 D 0.

The m-step-ahead forecast of ztCm is ztCmjt , where ztCmjt denotes the conditional expectation of ztCm
given the information available at time t. The m-step-ahead forecast of xtCm is xtCmjt D HztCmjt , where
the matrix H D ŒIr0�.

Let ‰i D FiG. Note that the last s � r elements of zt consist of the elements of xujt for u > t .

The state vector ztCm can be represented as

ztCm D Fmzt C
m�1X
iD0

‰ietCm�i

Since etCi jt D 0 for i > 0, the m-step-ahead forecast ztCmjt is

ztCmjt D Fmzt D FztCm�1jt

Therefore, the m-step-ahead forecast of xtCm is

xtCmjt D HztCmjt

The m-step-ahead forecast error is

ztCm � ztCmjt D
m�1X
iD0

‰ietCm�i

The variance of the m-step-ahead forecast error is

Vz;m D
m�1X
iD0

‰i†ee‰
0
i
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Letting Vz;0 D 0, the variance of the m-step-ahead forecast error of ztCm, Vz;m, can be computed recursively
as follows:

Vz;m D Vz;m�1 C‰m�1†ee‰
0

m�1

The variance of the m-step-ahead forecast error of xtCm is the r � r left upper submatrix of Vz;m; that is,

Vx;m D HVz;mH0

Unless the NOCENTER option is specified, the sample mean vector is added to the forecast. When
differencing is specified, the forecasts x tCmjt plus the sample mean vector are integrated back to produce
forecasts for the original series.

Let yt be the original series specified by the VAR statement, with some 0 values appended that correspond
to the unobserved past observations. Let B be the backshift operator, and let �.B/ be the s � s matrix
polynomial in the backshift operator that corresponds to the differencing specified by the VAR statement.
The off-diagonal elements of �i are 0. Note that �0 D Is , where Is is the s � s identity matrix. Then
zt D �.B/yt .

This gives the relationship

yt D ��1.B/zt D
1X
iD0

ƒizt�i

where��1.B/ D
P1
iD0ƒiB

i and ƒ0 D Is .

The m-step-ahead forecast of ytCm is

ytCmjt D
m�1X
iD0

ƒiztCm�i jt C
1X
iDm

ƒiztCm�i

The m-step-ahead forecast error of ytCm is

m�1X
iD0

ƒi
�
ztCm�i � ztCm�i jt

�
D

m�1X
iD0

 
iX

uD0

ƒu‰i�u

!
etCm�i

Letting Vy;0 D 0, the variance of the m-step-ahead forecast error of ytCm, Vy;m, is

Vy;m D

m�1X
iD0

 
iX

uD0

ƒu‰i�u

!
†ee

 
iX

uD0

ƒu‰i�u

!0

D Vy;m�1 C

 
m�1X
uD0

ƒu‰m�1�u

!
†ee

 
m�1X
uD0

ƒu‰m�1�u

!0
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Relation of ARMA and State Space Forms
Every state space model has an ARMA representation, and conversely every ARMA model has a state space
representation. This section discusses this equivalence. The following material is adapted from Akaike
(1974), where there is a more complete discussion. Pham (1978) also contains a discussion of this material.

Suppose you are given the following ARMA model:

ˆ.B/xt D ‚.B/et

or, in more detail,

xt �ˆ1xt�1� � � ��ˆpxt�p D et C‚1et�1C� � �C‚qet�q .1/

where et is a sequence of independent multivariate normal random vectors with mean 0 and variance matrix
†ee, B is the backshift operator (Bxt D xt�1), ˆ.B/ and‚.B/ are matrix polynomials in B, and xt is the
observed process.

If the roots of the determinantial equation jˆ.B/j D 0 are outside the unit circle in the complex plane, the
model can also be written as

xt D ˆ�1.B/‚.B/et D
1X
iD0

‰iet�i

The ‰i matrices are known as the impulse response matrices and can be computed as ˆ�1.B/‚.B/.

You can assume p > q since, if this is not initially true, you can add more terms ˆi that are identically 0
without changing the model.

To write this set of equations in a state space form, proceed as follows. Let xtCi jt be the conditional
expectation of xtCi given xw for w�t . The following relations hold:

xtCi jt D
1X
jDi

‰j etCi�j

xtCi jtC1 D xtCi jt C‰i�1etC1

However, from equation (1) you can derive the following relationship:

xtCpjt D ˆ1xtCp�1jtC� � �Cˆpxt .2/

Hence, when i D p, you can substitute for xtCpjt in the right-hand side of equation (2) and close the system
of equations.

This substitution results in the following model in the state space form ztC1 D Fzt CGetC1:26664
xtC1

xtC2jtC1
:::

xtCpjtC1

37775 D
26664
0 I 0 � � � 0

0 0 I � � � 0
:::

:::
:::

:::

ˆp ˆp�1 � � � ˆ1

37775
26664

xt
xtC1jt
:::

xtCp�1jt

37775C
26664

I
‰1
:::

‰p�1

37775 etC1
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Note that the state vector zt is composed of conditional expectations of xt and the first r components of zt
are equal to xt .

The state space form can be cast into an ARMA form by solving the system of difference equations for the
first r components.

When converting from an ARMA form to a state space form, you can generate a state vector larger than
needed; that is, the state space model might not be a minimal representation. When going from a state space
form to an ARMA form, you can have nontrivial common factors in the autoregressive and moving average
operators that yield an ARMA model larger than necessary.

If the state space form used is not a minimal representation, some but not all components of xtCi jt might be
linearly dependent. This situation corresponds to Œˆp‚p�1� being of less than full rank when ˆ.B/ and
‚.B/ have no common nontrivial left factors. In this case, zt consists of a subset of the possible components
of ŒxtCi jt � i D 1; 2; : : : ; p � 1: However, once a component of xtCi jt (for example, the jth one) is linearly
dependent on the previous conditional expectations, then all subsequent jth components of xtCkjt for k > i
must also be linearly dependent. Note that in this case, equivalent but seemingly different structures can arise
if the order of the components within xt is changed.

OUT= Data Set
The forecasts are contained in the output data set specified by the OUT= option in the PROC STATESPACE
statement. The OUT= data set contains the following variables:

� the BY variables

� the ID variable

� the VAR statement variables. These variables contain the actual values from the input data set.

� FORi, numeric variables that contain the forecasts. The variable FORi contains the forecasts for the ith
variable in the VAR statement list. Forecasts are one-step-ahead predictions until the end of the data or
until the observation specified by the BACK= option.

� RESi, numeric variables that contain the residual for the forecast of the ith variable in the VAR
statement list. For forecast observations, the actual values are missing and the RESi variables contain
missing values.

� STDi, numeric variables that contain the standard deviation for the forecast of the ith variable in the
VAR statement list. The values of the STDi variables can be used to construct univariate confidence
limits for the corresponding forecasts. However, such confidence limits do not take into account the
covariance of the forecasts.



2600 F Chapter 35: The STATESPACE Procedure

OUTAR= Data Set
The OUTAR= data set contains the estimates of the preliminary autoregressive models. The OUTAR= data
set contains the following variables:

� ORDER, a numeric variable that contains the order p of the autoregressive model that the observation
represents

� AIC, a numeric variable that contains the value of the information criterion AICp

� SIGFl, numeric variables that contain the estimate of the innovation covariance matrices for the forward
autoregressive models. The variable SIGFl contains the lth column of b†p in the observations with
ORDER=p.

� SIGBl, numeric variables that contain the estimate of the innovation covariance matrices for the
backward autoregressive models. The variable SIGBl contains the lth column of b�p in the observations
with ORDER=p.

� FORk_l, numeric variables that contain the estimates of the autoregressive parameter matrices for the
forward models. The variable FORk_l contains the lth column of the lag k autoregressive parameter
matrix b̂p

k
in the observations with ORDER=p.

� BACk_l, numeric variables that contain the estimates of the autoregressive parameter matrices for the
backward models. The variable BACk_l contains the lth column of the lag k autoregressive parameter
matrix b‰p

k
in the observations with ORDER=p.

The estimates for the order p autoregressive model can be selected as those observations with ORDER=p.
Within these observations, the k,lth element of ˆpi is given by the value of the FORi_l variable in the kth
observation. The k,lth element of ‰pi is given by the value of BACi_l variable in the kth observation. The
k,lth element of †p is given by SIGFl in the kth observation. The k,lth element of�p is given by SIGBl in
the kth observation.

Table 35.2 shows an example of the OUTAR= data set, with ARMAX=3 and xt of dimension 2. In Table 35.2,
.i; j / indicate (i, (n) element of the matrix.

Table 35.2 Values in the OUTAR= Data Set

Obs ORDER AIC SIGF1 SIGF2 SIGB1 SIGB2 FOR1_1 FOR1_2 FOR2_1 FOR2_2 FOR3_1

1 0 AIC0 †0.1;1/ †0.1;2/ �0.1;1/ �0.1;2/ . . . . .
2 0 AIC0 †0.2;1/ †0.2;2/ �0.2;1/ �0.2;2/ . . . . .
3 1 AIC1 †1.1;1/ †1.1;2/ �1.1;1/ �1.1;2/ ˆ11.1;1/ ˆ11.1;2/ . . .
4 1 AIC1 †1.2;1/ †1.1;2/ �1.2;1/ �1.1;2/ ˆ11.2;1/ ˆ11.2;2/ . . .
5 2 AIC2 †2.1;1/ †2.1;2/ �2.1;1/ �2.1;2/ ˆ21.1;1/ ˆ21.1;2/ ˆ22.1;1/ ˆ22.1;2/ .
6 2 AIC2 †2.2;1/ †2.1;2/ �2.2;1/ �2.1;2/ ˆ21.2;1/ ˆ21.2;2/ ˆ22.2;1/ ˆ22.2;2/ .
7 3 AIC3 †3.1;1/ †3.1;2/ �3.1;1/ �3.1;2/ ˆ31.1;1/ ˆ31.1;2/ ˆ32.1;1/ ˆ32.1;2/ ˆ33.1;1/
8 3 AIC3 †3.2;1/ †3.1;2/ �3.2;1/ �3.1;2/ ˆ31.2;1/ ˆ31.2;2/ ˆ32.2;1/ ˆ32.2;2/ ˆ33.2;1/
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Obs FOR3_2 BACK1_1 BACK1_2 BACK2_1 BACK2_2 BACK3_1 BACK3_2

1 . . . . . . .
2 . . . . . . .
3 . ‰11 .1;1/ ‰11 .1;2/ . . . .
4 . ‰11 .2;1/ ‰11 .2;2/ . . . .
5 . ‰21 .1;1/ ‰21 .1;2/ ‰22 .1;1/ ‰22 .1;2/ . .
6 . ‰21 .2;1/ ‰21 .2;2/ ‰22 .2;1/ ‰22 .2;2/ . .
7 ˆ33.1;2/ ‰31 .1;1/ ‰31 .1;2/ ‰32 .1;1/ ‰32 .1;2/ ‰33 .1;1/ ‰33 .1;2/
8 ˆ33.2;2/ ‰31 .2;1/ ‰31 .2;2/ ‰32 .2;1/ ‰32 .2;2/ ‰33 .2;1/ ‰33 .2;2/

The estimated autoregressive parameters can be used in the IML procedure to obtain autoregressive estimates
of the spectral density function or forecasts based on the autoregressive models.

OUTMODEL= Data Set
The OUTMODEL= data set contains the estimates of the F and G matrices and their standard errors, the
names of the components of the state vector, and the estimates of the innovation covariance matrix. The
variables contained in the OUTMODEL= data set are as follows:

� the BY variables

� STATEVEC, a character variable that contains the name of the component of the state vector corre-
sponding to the observation. The STATEVEC variable has the value STD for standard deviations
observations, which contain the standard errors for the estimates given in the preceding observation.

� F_j, numeric variables that contain the columns of the F matrix. The variable F_j contains the jth
column of F. The number of F_j variables is equal to the value of the DIMMAX= option. If the model
is of smaller dimension, the extraneous variables are set to missing.

� G_j, numeric variables that contain the columns of the G matrix. The variable G_j contains the jth
column of G. The number of G_j variables is equal to r, the dimension of xt given by the number of
variables in the VAR statement.

� SIG_j, numeric variables that contain the columns of the innovation covariance matrix. The variable
SIG_j contains the jth column of †ee. There are r variables SIG_j.

Table 35.3 shows an example of the OUTMODEL= data set, with xt D .xt ; yt /0, zt D .xt ; yt ; xtC1jt /0, and
DIMMAX=4. In Table 35.3, Fi;j and Gi;j are the (i, j) elements of F and G respectively. Note that all
elements for F_4 are missing because F is a 3 � 3 matrix.

Table 35.3 Value in the OUTMODEL= Data Set

Obs STATEVEC F_1 F_2 F_3 F_4 G_1 G_2 SIG_1 SIG_2

1 X(T;T) 0 0 1 . 1 0 †1;1 †1;2
2 STD . . . . . . . .
3 Y(T;T) F 2;1 F 2;2 F 2;3 . 0 1 †2;1 †2;2
4 STD std F 2;1 std F 2;2 std F 2;3 . . . . .
5 X(T+1;T) F 3;1 F 3;2 F 3;3 . G 3;1 G 3;2 . .
6 STD std F 3;1 std F 3;2 std F 3;3 . std G 3;1 std G 3;2 . .
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Printed Output
The printed output produced by the STATESPACE procedure includes the following:

1. descriptive statistics, which include the number of observations used, the names of the variables, their
means and standard deviations (Std), and the differencing operations used

2. Akaike’s information criteria for the sequence of preliminary autoregressive models

3. if the PRINTOUT=LONG option is specified, the sample autocovariance matrices of the input series at
various lags

4. if the PRINTOUT=LONG option is specified, the sample autocorrelation matrices of the input series

5. a schematic representation of the autocorrelation matrices, showing the significant autocorrelations

6. if the PRINTOUT=LONG option is specified, the partial autoregressive matrices. (These are ˆpp as
described in the section “Preliminary Autoregressive Models” on page 2589.)

7. a schematic representation of the partial autocorrelation matrices, showing the significant partial
autocorrelations

8. the Yule-Walker estimates of the autoregressive parameters for the autoregressive model with the
minimum AIC

9. if the PRINTOUT=LONG option is specified, the autocovariance matrices of the residuals of the
minimum AIC model. This is the sequence of estimated innovation variance matrices for the solutions
of the Yule-Walker equations.

10. if the PRINTOUT=LONG option is specified, the autocorrelation matrices of the residuals of the
minimum AIC model

11. If the CANCORR option is specified, the canonical correlations analysis for each potential state vector
considered in the state vector selection process. This includes the potential state vector, the canonical
correlations, the information criterion for the smallest canonical correlation, Bartlett’s �2 statistic
(“Chi Square”) for the smallest canonical correlation, and the degrees of freedom of Bartlett’s �2.

12. the components of the chosen state vector

13. the preliminary estimate of the transition matrix, F, the input matrix, G, and the variance matrix for
the innovations, †ee

14. if the ITPRINT option is specified, the iteration history of the likelihood maximization. For each
iteration, this shows the iteration number, the number of step halvings, the determinant of the innovation
variance matrix, the damping factor Lambda, and the values of the parameters.

15. the state vector, printed again to aid interpretation of the following listing of F and G

16. the final estimate of the transition matrix F

17. the final estimate of the input matrix G

18. the final estimate of the variance matrix for the innovations †ee
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19. a table that lists the estimates of the free parameters in F and G and their standard errors and t statistics

20. if the COVB option is specified, the covariance matrix of the parameter estimates

21. if the COVB option is specified, the correlation matrix of the parameter estimates

22. if the PRINT option is specified, the forecasts and their standard errors

ODS Table Names
PROC STATESPACE assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 35.4.

Table 35.4 ODS Tables Produced in PROC STATESPACE

ODS Table Name Description Option

NObs Number of observations Default
Summary Simple summary statistics table Default
InfoCriterion Information criterion table Default
CovLags Covariance matrices of input series PRINTOUT=LONG
CorrLags Correlation matrices of input series PRINTOUT=LONG
PartialAR Partial autoregressive matrices PRINTOUT=LONG
YWEstimates Yule-Walker estimates for minimum AIC Default
CovResiduals Covariance of residuals PRINTOUT=LONG
CorrResiduals Residual correlations from AR models PRINTOUT=LONG
StateVector State vector table Default
CorrGraph Schematic representation of correlations Default
TransitionMatrix Transition matrix Default
InputMatrix Input matrix Default
VarInnov Variance matrix for the innovation Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates COVB
CanCorr Canonical correlation analysis CANCORR
IterHistory Iterative fitting table ITPRINT
ParameterEstimates Parameter estimates table Default
Forecasts Forecasts table PRINT
ConvergenceStatus Convergence status table Default
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Examples: STATESPACE Procedure

Example 35.1: Series J from Box and Jenkins
This example analyzes the gas furnace data (series J) from Box and Jenkins. (The data are not shown; see
Box and Jenkins 1976 for the data.)

First, a model is selected and fit automatically using the following statements:

title1 'Gas Furnace Data';
title2 'Box & Jenkins Series J';
title3 'Automatically Selected Model';

proc statespace data=seriesj cancorr;
var x y;

run;

The results for the automatically selected model are shown in Output 35.1.1.

Output 35.1.1 Results for Automatically Selected Model

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure

Number of Observations 296

Variable Mean
Standard

Error

x -0.05683 1.072766

y 53.50912 3.202121

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure

Information Criterion for Autoregressive Models

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8 Lag=9 Lag=10

651.3862 -1033.57 -1632.96 -1645.12 -1651.52 -1648.91 -1649.34 -1643.15 -1638.56 -1634.8 -1633.59

Schematic Representation of Correlations

Name/Lag 0 1 2 3 4 5 6 7 8 9 10

x +- +- +- +- +- +- +- +- +- +- +-

y -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+

+ is > 2*std error, - is < -2*std error, . is between
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Output 35.1.2 Results for Automatically Selected Model

Schematic Representation of Partial Autocorrelations

Name/Lag 1 2 3 4 5 6 7 8 9 10

x +. -. +. .. .. -. .. .. .. ..

y -+ -- -. .+ .. .. .. .. .. .+

+ is > 2*std error, - is < -2*std error, . is between

Yule-Walker Estimates for Minimum AIC

Lag=1 Lag=2 Lag=3 Lag=4

x y x y x y x y

x 1.925887 -0.00124 -1.20166 0.004224 0.116918 -0.00867 0.104236 0.003268

y 0.050496 1.299793 -0.02046 -0.3277 -0.71182 -0.25701 0.195411 0.133417

Output 35.1.3 Results for Automatically Selected Model

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Canonical Correlations Analysis

x(T;T) y(T;T) x(T+1;T)
Information
Criterion Chi-Square DF

1 1 0.804883 292.9228 304.7481 8

Output 35.1.4 Results for Automatically Selected Model

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Selected Statespace Form and Preliminary Estimates

State Vector

x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T)

Estimate of Transition Matrix

0 0 1 0 0

0 0 0 1 0

-0.84718 0.026794 1.711715 -0.05019 0

0 0 0 0 1

-0.19785 0.334274 -0.18174 -1.23557 1.787475
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Output 35.1.4 continued

Input Matrix for
Innovation

1 0

0 1

1.925887 -0.00124

0.050496 1.299793

0.142421 1.361696

Output 35.1.5 Results for Automatically Selected Model

Variance Matrix
for Innovation

0.035274 -0.00734

-0.00734 0.097569

Output 35.1.6 Results for Automatically Selected Model

Gas Furnace Data
Box & Jenkins Series J

Automatically Selected Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T)

Estimate of Transition Matrix

0 0 1 0 0

0 0 0 1 0

-0.86192 0.030609 1.724235 -0.05483 0

0 0 0 0 1

-0.34839 0.292124 -0.09435 -1.09823 1.671418

Input Matrix for
Innovation

1 0

0 1

1.92442 -0.00416

0.015621 1.258495

0.08058 1.353204
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Output 35.1.7 Results for Automatically Selected Model

Variance Matrix
for Innovation

0.035579 -0.00728

-0.00728 0.095577

Parameter Estimates

Parameter Estimate
Standard

Error t Value

F(3,1) -0.86192 0.072961 -11.81

F(3,2) 0.030609 0.026167 1.17

F(3,3) 1.724235 0.061599 27.99

F(3,4) -0.05483 0.030169 -1.82

F(5,1) -0.34839 0.135253 -2.58

F(5,2) 0.292124 0.046299 6.31

F(5,3) -0.09435 0.096527 -0.98

F(5,4) -1.09823 0.109525 -10.03

F(5,5) 1.671418 0.083737 19.96

G(3,1) 1.924420 0.058162 33.09

G(3,2) -0.00416 0.035255 -0.12

G(4,1) 0.015621 0.095771 0.16

G(4,2) 1.258495 0.055742 22.58

G(5,1) 0.080580 0.151622 0.53

G(5,2) 1.353204 0.091388 14.81

The two series are believed to have a transfer function relation with the gas rate (variable X) as the input
and the CO2 concentration (variable Y) as the output. Since the parameter estimates shown in Output 35.1.1
support this kind of model, the model is reestimated with the feedback parameters restricted to 0. The
following statements fit the transfer function (no feedback) model:

title3 'Transfer Function Model';
proc statespace data=seriesj printout=none;

var x y;
restrict f(3,2)=0 f(3,4)=0

g(3,2)=0 g(4,1)=0 g(5,1)=0;
run;

The last two pages of the output are shown in Output 35.1.8.

Output 35.1.8 STATESPACE Output for Transfer Function Model

Gas Furnace Data
Box & Jenkins Series J

Transfer Function Model

The STATESPACE Procedure
Selected Statespace Form and Fitted Model

State Vector

x(T;T) y(T;T) x(T+1;T) y(T+1;T) y(T+2;T)
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Output 35.1.8 continued

Estimate of Transition Matrix

0 0 1 0 0

0 0 0 1 0

-0.68882 0 1.598717 0 0

0 0 0 0 1

-0.35944 0.284179 -0.0963 -1.07313 1.650047

Input Matrix for
Innovation

1 0

0 1

1.923446 0

0 1.260856

0 1.346332

Output 35.1.9 STATESPACE Output for Transfer Function Model

Variance Matrix
for Innovation

0.036995 -0.0072

-0.0072 0.095712

Parameter Estimates

Parameter Estimate
Standard

Error t Value

F(3,1) -0.68882 0.050549 -13.63

F(3,3) 1.598717 0.050924 31.39

F(5,1) -0.35944 0.229044 -1.57

F(5,2) 0.284179 0.096944 2.93

F(5,3) -0.09630 0.140876 -0.68

F(5,4) -1.07313 0.250385 -4.29

F(5,5) 1.650047 0.188533 8.75

G(3,1) 1.923446 0.056328 34.15

G(4,2) 1.260856 0.056464 22.33

G(5,2) 1.346332 0.091086 14.78

References

Akaike, H. (1974). “Markovian Representation of Stochastic Processes and Its Application to the Analysis of
Autoregressive Moving Average Processes.” Annals of the Institute of Statistical Mathematics 26:363–387.

Akaike, H. (1976). “Canonical Correlations Analysis of Time Series and the Use of an Information Criterion.”
In System Identification: Advances and Case Studies, edited by R. Mehra and D. G. Lainiotis, 27–96. New
York: Academic Press.

Anderson, T. W. (1971). The Statistical Analysis of Time Series. New York: John Wiley & Sons.



References F 2609

Ansley, C. F., and Newbold, P. (1979). “Multivariate Partial Autocorrelations.” In Proceedings of the Business
and Economic Statistics Section, 349–353. Washington, DC: American Statistical Association.

Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Rev. ed. San
Francisco: Holden-Day.

Brockwell, P. J., and Davis, R. A. (1991). Time Series: Theory and Methods. 2nd ed. New York: Springer-
Verlag.

Hannan, E. J. (1970). Multiple Time Series. New York: John Wiley & Sons.

Hannan, E. J. (1976). “The Identification and Parameterization of ARMAX and State Space Forms.”
Econometrica 44:713–722.

Harvey, A. C. (1981a). The Econometric Analysis of Time Series. New York: John Wiley & Sons.

Harvey, A. C. (1981b). Time Series Models. New York: John Wiley & Sons.

Jones, R. H. (1974). “Identification and Autoregressive Spectrum Estimation.” IEEE Transactions on
Automatic Control 19:894–898.

Pham, D.-T. (1978). “On the Fitting of Multivariate Processes of the Autoregressive Moving Average Type.”
Biometrika 65:99–107.

Priestley, M. B. (1980). “System Identification, Kalman Filtering, and Stochastic Control.” In Directions in
Time Series, edited by D. R. Brillinger and G. C. Tiao, 228–254. Bethesda, MD: Institute of Mathematical
Statistics.

Whittle, P. (1963). “On the Fitting of Multivariate Autoregressions and the Approximate Canonical Factor-
ization of a Spectral Density Matrix.” Biometrika 50:129–134.



2610



Chapter 36

The SYSLIN Procedure

Contents
Overview: SYSLIN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2612
Getting Started: SYSLIN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2613

An Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2613
Variables in a System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2614
Using PROC SYSLIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2614
OLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2615
Two-Stage Least Squares Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 2617
LIML, K-Class, and MELO Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 2619
SUR, 3SLS, and FIML Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2619
Computing Reduced Form Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 2623
Restricting Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2624
Testing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2625
Saving Residuals and Predicted Values . . . . . . . . . . . . . . . . . . . . . . . . . 2628
Plotting Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2628

Syntax: SYSLIN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2629
Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2630
PROC SYSLIN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2631
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2634
ENDOGENOUS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2635
IDENTITY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2635
INSTRUMENTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2635
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2635
OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2637
RESTRICT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2638
SRESTRICT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2639
STEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2640
TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2641
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643

Details: SYSLIN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643
Input Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2643
Estimation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644
ANOVA Table for Instrumental Variables Methods . . . . . . . . . . . . . . . . . . . 2646
The R-Square Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2647
Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2648
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2650



2612 F Chapter 36: The SYSLIN Procedure

OUT= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2651
OUTEST= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2651
OUTSSCP= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2652
Printed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2653
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2655
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2656

Examples: SYSLIN Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2656
Example 36.1: Klein’s Model I Estimated with LIML and 3SLS . . . . . . . . . . . . 2656
Example 36.2: Grunfeld’s Model Estimated with SUR . . . . . . . . . . . . . . . . . 2662
Example 36.3: Illustration of ODS Graphics . . . . . . . . . . . . . . . . . . . . . . 2666

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2669

Overview: SYSLIN Procedure
The SYSLIN procedure estimates parameters in an interdependent system of linear regression equations.

Ordinary least squares (OLS) estimates are biased and inconsistent when current period endogenous variables
appear as regressors in other equations in the system. The errors of a set of related regression equations
are often correlated, and the efficiency of the estimates can be improved by taking these correlations into
account. The SYSLIN procedure provides several techniques that produce consistent and asymptotically
efficient estimates for systems of regression equations.

The SYSLIN procedure provides the following estimation methods:

� ordinary least squares (OLS)

� two-stage least squares (2SLS)

� limited information maximum likelihood (LIML)

� K-class

� seemingly unrelated regressions (SUR)

� iterated seemingly unrelated regressions (ITSUR)

� three-stage least squares (3SLS)

� iterated three-stage least squares (IT3SLS)

� full information maximum likelihood (FIML)

� minimum expected loss (MELO)

Other features of the SYSLIN procedure enable you to:

� impose linear restrictions on the parameter estimates
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� test linear hypotheses about the parameters

� write predicted and residual values to an output SAS data set

� write parameter estimates to an output SAS data set

� write the crossproducts matrix (SSCP) to an output SAS data set

� use raw data, correlations, covariances, or cross products as input

Getting Started: SYSLIN Procedure
This section introduces the use of the SYSLIN procedure. The problem of dependent regressors is introduced
using a supply and demand example. This section explains the terminology used for variables in a system of
regression equations and introduces the SYSLIN procedure statements for declaring the roles the variables
play. The syntax used for the different estimation methods and the output produced is shown.

An Example Model
In simultaneous systems of equations, endogenous variables are determined jointly rather than sequentially.
Consider the following supply and demand functions for some product:

QD D a1 C b1P C c1Y C d1S C �1.demand/

QS D a2 C b2P C c2U C �2.supply/

Q D QD D QS .market equilibrium/

The variables in this system are as follows:

QD quantity demanded

QS quantity supplied

Q the observed quantity sold, which equates quantity supplied and quantity demanded in
equilibrium

P price per unit

Y income

S price of substitutes

U unit cost

�1 the random error term for the demand equation

�2 the random error term for the supply equation
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In this system, quantity demanded depends on price, income, and the price of substitutes. Consumers
normally purchase more of a product when prices are lower and when income and the price of substitute
goods are higher. Quantity supplied depends on price and the unit cost of production. Producers supply more
when price is high and when unit cost is low. The actual price and quantity sold are determined jointly by the
values that equate demand and supply.

Since price and quantity are jointly endogenous variables, both structural equations are necessary to adequately
describe the observed values. A critical assumption of OLS is that the regressors are uncorrelated with
the residual. When current endogenous variables appear as regressors in other equations (endogenous
variables depend on each other), this assumption is violated and the OLS parameter estimates are biased and
inconsistent. The bias caused by the violated assumptions is called simultaneous equation bias. Neither the
demand nor supply equation can be estimated consistently by OLS.

Variables in a System of Equations
Before explaining how to use the SYSLIN procedure, it is useful to define some terms. The variables in a
system of equations can be classified as follows:

� Endogenous variables, which are also called jointly dependent or response variables, are the variables
determined by the system. Endogenous variables can also appear on the right-hand side of equations.

� Exogenous variables are independent variables that do not depend on any of the endogenous variables
in the system.

� Predetermined variables include both the exogenous variables and lagged endogenous variables, which
are past values of endogenous variables determined at previous time periods. PROC SYSLIN does not
compute lagged values; any lagged endogenous variables must be computed in a preceding DATA step.

� Instrumental variables are predetermined variables used in obtaining predicted values for the current
period endogenous variables by a first-stage regression. The use of instrumental variables characterizes
estimation methods such as two-stage least squares and three-stage least squares. Instrumental variables
estimation methods substitute these first-stage predicted values for endogenous variables when they
appear as regressors in model equations.

Using PROC SYSLIN
First specify the input data set and estimation method in the PROC SYSLIN statement. If any model uses
dependent regressors, and you are using an instrumental variables regression method, declare the dependent
regressors with an ENDOGENOUS statement and declare the instruments with an INSTRUMENTS statement.
Next, use MODEL statements to specify the structural equations of the system.

The use of different estimation methods is shown by the following examples. These examples use the
simulated data set WORK.IN, which follows:
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data in;
label q = "Quantity"

p = "Price"
s = "Price of Substitutes"
y = "Income"
u = "Unit Cost";

drop i e1 e2;
p = 0; q = 0;
do i = 1 to 60;

y = 1 + .05*i + .15*rannor(123);
u = 2 + .05*rannor(123) + .05*rannor(123);
s = 4 - .001*(i-10)*(i-110) + .5*rannor(123);
e1 = .15 * rannor(123);
e2 = .15 * rannor(123);
demandx = 1 + .3 * y + .35 * s + e1;
supplyx = -1 - 1 * u + e2 - .4*e1;
q = 1.4/2.15 * demandx + .75/2.15 * supplyx;
p = ( - q + supplyx ) / -1.4;
output;

end;
run;

OLS Estimation
PROC SYSLIN performs OLS regression if you do not specify a method of estimation in the PROC SYSLIN
statement. OLS does not use instruments, so the ENDOGENOUS and INSTRUMENTS statements can be
omitted.

The following statements estimate the supply and demand model shown previously:

proc syslin data=in;
demand: model q = p y s;
supply: model q = p u;

run;

The PROC SYSLIN output for the demand equation is shown in Figure 36.1, and the output for the supply
equation is shown in Figure 36.2.

Figure 36.1 OLS Results for Demand Equation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model DEMAND

Dependent Variable q

Label Quantity
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Figure 36.1 continued

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 9.587901 3.195967 398.31 <.0001

Error 56 0.449338 0.008024

Corrected Total 59 10.03724

Root MSE 0.08958 R-Square 0.95523

Dependent Mean 1.30095 Adj R-Sq 0.95283

Coeff Var 6.88542

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.47677 0.210239 -2.27 0.0272 Intercept

p 1 0.123326 0.105177 1.17 0.2459 Price

y 1 0.201282 0.032403 6.21 <.0001 Income

s 1 0.167258 0.024091 6.94 <.0001 Price of Substitutes

Figure 36.2 OLS Results for Supply Equation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model SUPPLY

Dependent Variable q

Label Quantity

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 9.033902 4.516951 256.61 <.0001

Error 57 1.003337 0.017602

Corrected Total 59 10.03724

Root MSE 0.13267 R-Square 0.90004

Dependent Mean 1.30095 Adj R-Sq 0.89653

Coeff Var 10.19821

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.30389 0.471397 -0.64 0.5217 Intercept

p 1 1.218743 0.053914 22.61 <.0001 Price

u 1 -1.07757 0.234150 -4.60 <.0001 Unit Cost

For each MODEL statement, the output first shows the model label and dependent variable name and label.
This is followed by an analysis-of-variance table for the model, which shows the model, error, and total mean
squares, and an F test for the no-regression hypothesis. Next, the procedure prints the root mean squared
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error, dependent variable mean and coefficient of variation, and the R2 and adjusted R2 statistics.

Finally, the table of parameter estimates shows the estimated regression coefficients, standard errors, and t
tests. You would expect the price coefficient in a demand equation to be negative. However, note that the
OLS estimate of the price coefficient P in the demand equation (0.1233) has a positive sign. This could be
caused by simultaneous equation bias.

Two-Stage Least Squares Estimation
In the supply and demand model, P is an endogenous variable, and consequently the OLS estimates are
biased. The following example estimates this model using two-stage least squares:

proc syslin data=in 2sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

The 2SLS option in the PROC SYSLIN statement specifies the two-stage least squares method. The
ENDOGENOUS statement specifies that P is an endogenous regressor for which first-stage predicted values
are substituted. You need to declare an endogenous variable in the ENDOGENOUS statement only if it
is used as a regressor; thus although Q is endogenous in this model, it is not necessary to list it in the
ENDOGENOUS statement.

Usually, all predetermined variables that appear in the system are used as instruments. The INSTRUMENTS
statement specifies that the exogenous variables Y, U, and S are used as instruments for the first-stage
regression to predict P.

The 2SLS results are shown in Figure 36.3 and Figure 36.4. The first-stage regressions are not shown. To see
the first-stage regression results, use the FIRST option in the PROC SYSLIN statement.

Figure 36.3 2SLS Results for Demand Equation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model DEMAND

Dependent Variable q

Label Quantity

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 9.670892 3.223631 115.58 <.0001

Error 56 1.561956 0.027892

Corrected Total 59 10.03724

Root MSE 0.16701 R-Square 0.86095

Dependent Mean 1.30095 Adj R-Sq 0.85350

Coeff Var 12.83744
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Figure 36.3 continued

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.901048 1.171231 1.62 0.1102 Intercept

p 1 -1.11519 0.607395 -1.84 0.0717 Price

y 1 0.419546 0.117955 3.56 0.0008 Income

s 1 0.331475 0.088472 3.75 0.0004 Price of Substitutes

Figure 36.4 2SLS Results for Supply Equation

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model SUPPLY

Dependent Variable q

Label Quantity

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 9.646109 4.823054 253.96 <.0001

Error 57 1.082503 0.018991

Corrected Total 59 10.03724

Root MSE 0.13781 R-Square 0.89910

Dependent Mean 1.30095 Adj R-Sq 0.89556

Coeff Var 10.59291

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.51878 0.490999 -1.06 0.2952 Intercept

p 1 1.333080 0.059271 22.49 <.0001 Price

u 1 -1.14623 0.243491 -4.71 <.0001 Unit Cost

The 2SLS output is similar in form to the OLS output. However, the 2SLS results are based on predicted
values for the endogenous regressors from the first stage instrumental regressions. This makes the analysis-
of-variance table and the R2 statistics difficult to interpret. For more information, see the sections “ANOVA
Table for Instrumental Variables Methods” on page 2646 and “The R-Square Statistics” on page 2647.

Note that, unlike the OLS results, the 2SLS estimate for the P coefficient in the demand equation (–1.115) is
negative.
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LIML, K-Class, and MELO Estimation
To obtain limited information maximum likelihood, general K-class, or minimum expected loss estimates,
use the ENDOGENOUS, INSTRUMENTS, and MODEL statements as in the 2SLS case but specify the
LIML, K=, or MELO option instead of 2SLS in the PROC SYSLIN statement. The following statements
show this for K-class estimation:

proc syslin data=in k=.5;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

For more information about these estimation methods, see the section “Estimation Methods” on page 2644
and consult econometrics textbooks.

SUR, 3SLS, and FIML Estimation
In a multivariate regression model, the errors in different equations might be correlated. In this case, the
efficiency of the estimation might be improved by taking these cross-equation correlations into account.

Seemingly Unrelated Regression

Seemingly unrelated regression (SUR), also called joint generalized least squares (JGLS) or Zellner estimation,
is a generalization of OLS for multi-equation systems. Like OLS, the SUR method assumes that all the
regressors are independent variables, but SUR uses the correlations among the errors in different equations to
improve the regression estimates. The SUR method requires an initial OLS regression to compute residuals.
The OLS residuals are used to estimate the cross-equation covariance matrix.

The SUR option in the PROC SYSLIN statement specifies seemingly unrelated regression, as shown in the
following statements:

proc syslin data=in sur;
demand: model q = p y s;
supply: model q = p u;

run;

INSTRUMENTS and ENDOGENOUS statements are not needed for SUR, because the SUR method assumes
there are no endogenous regressors. For SUR to be effective, the models must use different regressors. SUR
produces the same results as OLS unless the model contains at least one regressor not used in the other
equations.
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Three-Stage Least Squares

The three-stage least squares method generalizes the two-stage least squares method to take into account the
correlations between equations in the same way that SUR generalizes OLS. Three-stage least squares requires
three steps: first-stage regressions to get predicted values for the endogenous regressors; a two-stage least
squares step to get residuals to estimate the cross-equation correlation matrix; and the final 3SLS estimation
step.

The 3SLS option in the PROC SYSLIN statement specifies the three-stage least squares method, as shown in
the following statements:

proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

The 3SLS output begins with a two-stage least squares regression to estimate the cross-model correlation
matrix. This output is the same as the 2SLS results shown in Figure 36.3 and Figure 36.4, and is not repeated
here. The next part of the 3SLS output prints the cross-model correlation matrix computed from the 2SLS
residuals. This output is shown in Figure 36.5 and includes the cross-model covariances, correlations, the
inverse of the correlation matrix, and the inverse covariance matrix.

Figure 36.5 Estimated Cross-Model Covariances Used for 3SLS Estimates

The SYSLIN Procedure
Three-Stage Least Squares Estimation

Cross Model Covariance

DEMAND SUPPLY

DEMAND 0.027892 -.011283

SUPPLY -.011283 0.018991

Cross Model Correlation

DEMAND SUPPLY

DEMAND 1.00000 -0.49022

SUPPLY -0.49022 1.00000

Cross Model Inverse
Correlation

DEMAND SUPPLY

DEMAND 1.31634 0.64530

SUPPLY 0.64530 1.31634

Cross Model Inverse
Covariance

DEMAND SUPPLY

DEMAND 47.1941 28.0379

SUPPLY 28.0379 69.3130

The final 3SLS estimates are shown in Figure 36.6.
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Figure 36.6 Three-Stage Least Squares Results

System Weighted MSE 0.5711

Degrees of freedom 113

System Weighted R-Square 0.9627

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.980269 1.169176 1.69 0.0959 Intercept

p 1 -1.17654 0.605015 -1.94 0.0568 Price

y 1 0.404117 0.117179 3.45 0.0011 Income

s 1 0.359204 0.085077 4.22 <.0001 Price of Substitutes

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.51878 0.490999 -1.06 0.2952 Intercept

p 1 1.333080 0.059271 22.49 <.0001 Price

u 1 -1.14623 0.243491 -4.71 <.0001 Unit Cost

This output first prints the system weighted mean squared error and system weighted R2 statistics. The
system weighted MSE and system weighted R2 measure the fit of the joint model obtained by stacking all
the models together and performing a single regression with the stacked observations weighted by the inverse
of the model error variances. For more information, see the section “The R-Square Statistics” on page 2647.

Next, the table of 3SLS parameter estimates for each model is printed. This output has the same form as for
the other estimation methods.

Note that, in some cases, the 3SLS and 2SLS results can be the same. Such a case could arise because of
the same principle that causes OLS and SUR results to be identical, unless an equation includes a regressor
not used in the other equations of the system. However, the application of this principle is more complex
when instrumental variables are used. When all the exogenous variables are used as instruments, linear
combinations of all the exogenous variables appear in the third-stage regressions through substitution of
first-stage predicted values.

In this example, 3SLS produces different (and, it is hoped, more efficient) estimates for the demand equation.
However, the 3SLS and 2SLS results for the supply equation are the same. This is because the supply
equation has one endogenous regressor and one exogenous regressor not used in other equations. In contrast,
the demand equation has fewer endogenous regressors than exogenous regressors not used in other equations
in the system.
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Full Information Maximum Likelihood

The FIML option in the PROC SYSLIN statement specifies the full information maximum likelihood method,
as shown in the following statements:

proc syslin data=in fiml;
endogenous p q;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

The FIML results are shown in Figure 36.7.

Figure 36.7 FIML Results

The SYSLIN Procedure
Full-Information Maximum Likelihood Estimation

NOTE: Convergence criterion met at iteration 3.

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.988538 1.233632 1.61 0.1126 Intercept

p 1 -1.18148 0.652278 -1.81 0.0755 Price

y 1 0.402312 0.107270 3.75 0.0004 Income

s 1 0.361345 0.103817 3.48 0.0010 Price of Substitutes

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.52443 0.479522 -1.09 0.2787 Intercept

p 1 1.336083 0.057939 23.06 <.0001 Price

u 1 -1.14804 0.237793 -4.83 <.0001 Unit Cost
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Computing Reduced Form Estimates
A system of structural equations with endogenous regressors can be represented as functions of only the
predetermined variables. For this to be possible, there must be as many equations as endogenous variables. If
there are more endogenous variables than regression models, you can use IDENTITY statements to complete
the system. For more information, see the section “Reduced Form Estimates” on page 2649.

The REDUCED option in the PROC SYSLIN statement prints reduced form estimates. The following
statements show this by using the 3SLS estimates of the structural parameters:

proc syslin data=in 3sls reduced;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;

run;

The first four pages of this output were as shown previously and are not repeated here. (See Figure 36.3,
Figure 36.4, Figure 36.5, and Figure 36.6.) The final page of the output from this example contains the
reduced form coefficients from the 3SLS structural estimates, as shown in Figure 36.8.

Figure 36.8 Reduced Form 3SLS Results

The SYSLIN Procedure
Three-Stage Least Squares Estimation

Endogenous Variables

p q

DEMAND 1.176543 1

SUPPLY -1.33308 1

Exogenous Variables

Intercept y s u

DEMAND 1.980269 0.404117 0.359204 0

SUPPLY -0.51878 0 0 -1.14623

Inverse Endogenous
Variables

DEMAND SUPPLY

p 0.398466 -0.39847

q 0.531187 0.468813

Reduced Form

Intercept y s u

p 0.995788 0.161027 0.143131 0.456735

q 0.808682 0.214662 0.190804 -0.53737
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Restricting Parameter Estimates
You can impose restrictions on the parameter estimates with RESTRICT and SRESTRICT statements. The
RESTRICT statement imposes linear restrictions on parameters in the equation specified by the preceding
MODEL statement. The SRESTRICT statement imposes linear restrictions that relate parameters in different
models.

To impose restrictions involving parameters in different equations, use the SRESTRICT statement. Specify
the parameters in the linear hypothesis as model-label.regressor-name. (If the MODEL statement does not
have a label, you can use the dependent variable name as the label for the model, provided the dependent
variable uniquely labels the model.)

Tests for the significance of the restrictions are printed when RESTRICT or SRESTRICT statements are used.
You can label RESTRICT and SRESTRICT statements to identify the restrictions in the output.

The RESTRICT statement in the following example restricts the price coefficient in the demand equation
to equal 0.015. The SRESTRICT statement restricts the estimate of the income coefficient in the demand
equation to be 0.01 times the estimate of the unit cost coefficient in the supply equation.

proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
peq015: restrict p = .015;
supply: model q = p u;
yeq01u: srestrict demand.y = .01 * supply.u;

run;

The restricted estimation results are shown in Figure 36.9.

Figure 36.9 Restricted Estimates

The SYSLIN Procedure
Three-Stage Least Squares Estimation

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.46584 0.053307 -8.74 <.0001 Intercept

p 1 0.015000 0 . . Price

y 1 -0.00679 0.002357 -2.88 0.0056 Income

s 1 0.325589 0.009872 32.98 <.0001 Price of Substitutes

RESTRICT -1 50.59353 7.464988 6.78 <.0001 PEQ015

Model SUPPLY

Dependent Variable q

Label Quantity
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Figure 36.9 continued

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -1.31894 0.477633 -2.76 0.0077 Intercept

p 1 1.291718 0.059101 21.86 <.0001 Price

u 1 -0.67887 0.235679 -2.88 0.0056 Unit Cost

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

RESTRICT -1 342.3605 38.12094 8.98 <.0001 YEQ01U

The standard error for P in the demand equation is 0, since the value of the P coefficient was specified
by the RESTRICT statement and not estimated from the data. The “Parameter Estimates” table for the
demand equation contains an additional row for the restriction specified by the RESTRICT statement. The
parameter estimate for the restriction is the value of the Lagrange multiplier used to impose the restriction.
The restriction is highly significant (t D 6:777), which means that the data are not consistent with the
restriction, and the model does not fit as well with the restriction imposed. For more information, see the
section “RESTRICT Statement” on page 2638.

Following the “Parameter Estimates” table for the supply equation, the results for the cross model restrictions
are printed. This shows that the restriction specified by the SRESTRICT statement is not consistent with the
data (t D 8:98). For more information, see the section “SRESTRICT Statement” on page 2639.

Testing Parameters
You can test linear hypotheses about the model parameters with TEST and STEST statements. The TEST
statement tests hypotheses about parameters in the equation specified by the preceding MODEL statement.
The STEST statement tests hypotheses that relate parameters in different models.

For example, the following statements test the hypothesis that the price coefficient in the demand equation is
equal to 0.015:

proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
test_1: test p = .015;
supply: model q = p u;

run;

The TEST statement results are shown in Figure 36.10. This reports an F test for the hypothesis specified
by the TEST statement. In this case, the F statistic is 6.79 (3.879/.571) with 1 and 113 degrees of freedom.
The p-value for this F statistic is 0.0104, which indicates that the hypothesis tested is almost but not quite
rejected at the 0.01 level. For more information, see the section “TEST Statement” on page 2641.
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Figure 36.10 TEST Statement Results

The SYSLIN Procedure
Three-Stage Least Squares Estimation

System Weighted MSE 0.5711

Degrees of freedom 113

System Weighted R-Square 0.9627

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.980269 1.169176 1.69 0.0959 Intercept

p 1 -1.17654 0.605015 -1.94 0.0568 Price

y 1 0.404117 0.117179 3.45 0.0011 Income

s 1 0.359204 0.085077 4.22 <.0001 Price of Substitutes

Test Results

Num DF Den DF F Value Pr > F Label

1 113 6.79 0.0104 TEST_1

To test hypotheses that involve parameters in different equations, use the STEST statement. Specify the
parameters in the linear hypothesis as model-label.regressor-name. (If the MODEL statement does not have
a label, you can use the dependent variable name as the label for the model, provided the dependent variable
uniquely labels the model.)

For example, the following statements test the hypothesis that the income coefficient in the demand equation
is 0.01 times the unit cost coefficient in the supply equation:

proc syslin data=in 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
supply: model q = p u;
stest1: stest demand.y = .01 * supply.u;

run;

The STEST statement results are shown in Figure 36.11. The form and interpretation of the STEST statement
results are like the TEST statement results. In this case, the F test produces a p-value less than 0.0001
and strongly rejects the hypothesis tested. For more information, see the section “STEST Statement” on
page 2640.
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Figure 36.11 STEST Statement Results

The SYSLIN Procedure
Three-Stage Least Squares Estimation

System Weighted MSE 0.5711

Degrees of freedom 113

System Weighted R-Square 0.9627

Model DEMAND

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.980269 1.169176 1.69 0.0959 Intercept

p 1 -1.17654 0.605015 -1.94 0.0568 Price

y 1 0.404117 0.117179 3.45 0.0011 Income

s 1 0.359204 0.085077 4.22 <.0001 Price of Substitutes

Model SUPPLY

Dependent Variable q

Label Quantity

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.51878 0.490999 -1.06 0.2952 Intercept

p 1 1.333080 0.059271 22.49 <.0001 Price

u 1 -1.14623 0.243491 -4.71 <.0001 Unit Cost

Test Results

Num DF Den DF F Value Pr > F Label

1 113 22.46 0.0001 STEST1

You can combine TEST and STEST statements with RESTRICT and SRESTRICT statements to perform
hypothesis tests for restricted models. Of course, the validity of the TEST and STEST statement results
depends on the correctness of any restrictions you impose on the estimates.
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Saving Residuals and Predicted Values
You can store predicted values and residuals from the estimated models in a SAS data set. Specify the OUT=
option in the PROC SYSLIN statement and use the OUTPUT statement to specify names for new variables
to contain the predicted and residual values.

For example, the following statements store the predicted quantity from the supply and demand equations in
the data set PRED:

proc syslin data=in out=pred 3sls;
endogenous p;
instruments y u s;
demand: model q = p y s;
output predicted=q_demand;
supply: model q = p u;
output predicted=q_supply;

run;

Plotting Residuals
You can plot the residuals against the regressors by using the PROC SGPLOT. For example, the following
statements plot the 2SLS residuals for the demand model against price, income, and price of substitutes:

proc syslin data=in 2sls out=out;
endogenous p;
instruments y u s;
demand: model q = p y s;
output residual=residual_q;

run;

proc sgplot data=out;
scatter x=p y=residual_q;
refline 0 / axis=y;

run;

proc sgplot data=out;
scatter x=y y=residual_q;
refline 0 / axis=y;

run;

proc sgplot data=out;
scatter x=s y=residual_q;
refline 0 / axis=y;

run;

The plot for income is shown in Figure 36.12. The other plots are not shown.
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Figure 36.12 Plot of Residuals against Income

Syntax: SYSLIN Procedure
The SYSLIN procedure uses the following statements:

PROC SYSLIN options ;
BY variables ;
ENDOGENOUS variables ;
IDENTITY identities ;
INSTRUMENTS variables ;
MODEL response = regressors / options ;
OUTPUT PREDICTED=variable RESIDUAL=variable ;
RESTRICT restrictions ;
SRESTRICT restrictions ;
STEST equations ;
TEST equations ;
VAR variables ;
WEIGHT variable ;
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Functional Summary
The SYSLIN procedure statements and options are summarized in Table 36.1.

Table 36.1 Functional Summary

Description Statement Option

Data Set Options
Specify the input data set PROC SYSLIN DATA=
Specify the output data set PROC SYSLIN OUT=
Write parameter estimates to an output data set PROC SYSLIN OUTEST=
Write covariances to the OUTEST= data set PROC SYSLIN OUTCOV

OUTCOV3
Write the SSCP matrix to an output data set PROC SYSLIN OUTSSCP=

Estimation Method Options
Specify full information maximum likelihood
estimation

PROC SYSLIN FIML

Specify iterative SUR estimation PROC SYSLIN ITSUR
Specify iterative 3SLS estimation PROC SYSLIN IT3SLS
Specify K-class estimation PROC SYSLIN K=
Specify limited information maximum
likelihood estimation

PROC SYSLIN LIML

Specify minimum expected loss estimation PROC SYSLIN MELO
Specify ordinary least squares estimation PROC SYSLIN OLS
Specify seemingly unrelated estimation PROC SYSLIN SUR
Specify two-stage least squares estimation PROC SYSLIN 2SLS
Specify three-stage least squares estimation PROC SYSLIN 3SLS
Specify Fuller’s modification to LIML PROC SYSLIN ALPHA=
Specify convergence criterion PROC SYSLIN CONVERGE=
Specify maximum number of iterations PROC SYSLIN MAXIT=
Use diagonal of S instead of S PROC SYSLIN SDIAG
Exclude RESTRICT statements in final stage PROC SYSLIN NOINCLUDE
Specify criterion for testing for singularity PROC SYSLIN SINGULAR=
Specify denominator for variance estimates PROC SYSLIN VARDEF=

Printing Control Options
Print all results PROC SYSLIN ALL
Print first-stage regression statistics PROC SYSLIN FIRST
Print estimates and SSE at each iteration PROC SYSLIN ITPRINT
Print the reduced form estimates PROC SYSLIN REDUCED
Print descriptive statistics PROC SYSLIN SIMPLE
Print uncorrected SSCP matrix PROC SYSLIN USSCP
Print correlations of the parameter estimates MODEL CORRB
Print covariances of the parameter estimates MODEL COVB
Print Durbin-Watson statistics MODEL DW
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Table 36.1 continued

Description Statement Option

Print Basmann’s test MODEL OVERID
Plot residual values against regressors MODEL PLOT
Print standardized parameter estimates MODEL STB
Print unrestricted parameter estimates MODEL UNREST
Print the model crossproducts matrix MODEL XPX
Print the inverse of the crossproducts matrix MODEL I
Suppress printed output MODEL NOPRINT
Suppress all printed output PROC SYSLIN NOPRINT

Model Specification
Specify structural equations MODEL
Suppress the intercept parameter MODEL NOINT
Specify linear relationship among variables IDENTITY
Perform weighted regression WEIGHT

Tests and Restrictions on Parameters
Place restrictions on parameter estimates RESTRICT
Place restrictions on parameter estimates SRESTRICT
Test linear hypothesis STEST
Test linear hypothesis TEST

Other Statements
Specify BY-group processing BY
Specify the endogenous variables ENDOGENOUS
Specify instrumental variables INSTRUMENTS
Write predicted and residual values to a data set OUTPUT
Name variable for predicted values OUTPUT PREDICTED=
Name variable for residual values OUTPUT RESIDUAL=
Include additional variables in X 0X matrix VAR

PROC SYSLIN Statement
PROC SYSLIN options ;

The following options can be used with the PROC SYSLIN statement.
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Data Set Options

DATA=SAS-data-set
specifies the input data set. If the DATA= option is omitted, the most recently created SAS data set is
used. In addition to ordinary SAS data sets, PROC SYSLIN can analyze data sets of TYPE=CORR,
TYPE=COV, TYPE=UCORR, TYPE=UCOV, and TYPE=SSCP. For more information, see the section
“Special TYPE= Input Data Sets” on page 2643.

OUT=SAS-data-set
specifies an output SAS data set for residuals and predicted values. The OUT= option is used in
conjunction with the OUTPUT statement. For more information, see the section “OUT= Data Set” on
page 2651.

OUTEST=SAS-data-set
writes the parameter estimates to an output data set. For more information, see the section “OUTEST=
Data Set” on page 2651.

OUTCOV

COVOUT
writes the covariance matrix of the parameter estimates to the OUTEST= data set in addition to the
parameter estimates.

OUTCOV3

COV3OUT
writes covariance matrices for each model in a system to the OUTEST= data set when the 3SLS, SUR,
or FIML option is used.

OUTSSCP=SAS-data-set
writes the sum-of-squares-and-crossproducts matrix to an output data set. For more information, see
the section “OUTSSCP= Data Set” on page 2652.

Estimation Method Options

2SLS
specifies the two-stage least squares estimation method.

3SLS
specifies the three-stage least squares estimation method.

ALPHA=value
specifies Fuller’s modification to the LIML estimation method. For more information, see the section
“Fuller’s Modification to LIML” on page 2650.

CONVERGE=value
specifies the convergence criterion for the iterative estimation methods IT3SLS, ITSUR, and FIML.
The default is CONVERGE=0.0001.



PROC SYSLIN Statement F 2633

FIML
specifies the full information maximum likelihood estimation method.

ITSUR
specifies the iterative seemingly unrelated estimation method.

IT3SLS
specifies the iterative three-stage least squares estimation method.

K=value
specifies the K-class estimation method.

LIML
specifies the limited information maximum likelihood estimation method.

MAXITER=n
specifies the maximum number of iterations allowed for the IT3SLS, ITSUR, and FIML estimation
methods. The MAXITER= option can be abbreviated as MAXIT=. The default is MAXITER=30.

MELO
specifies the minimum expected loss estimation method.

NOINCLUDE
excludes the RESTRICT statements from the final stage for the 3SLS, IT3SLS, SUR, and ITSUR
estimation methods.

OLS
specifies the ordinary least squares estimation method. This is the default.

SDIAG
uses the diagonal of S instead of S to do the estimation, where S is the covariance matrix of equation
errors. For more information, see the section “Uncorrelated Errors across Equations” on page 2650.

SINGULAR=value
specifies a criterion for testing singularity of the crossproducts matrix. This is a tuning parameter used
to make PROC SYSLIN more or less sensitive to singularities. The value must be between 0 and 1.
The default is SINGULAR=1E–8.

SUR
specifies the seemingly unrelated estimation method.

Printing Control Options

ALL
specifies the CORRB, COVB, DW, I, OVERID, PLOT, STB, and XPX options for every MODEL
statement.
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FIRST
prints first-stage regression statistics for the endogenous variables regressed on the instruments. This
output includes sums of squares, estimates, variances, and standard deviations.

ITPRINT
prints parameter estimates, system-weighted residual sum of squares, and R2 at each iteration for the
IT3SLS and ITSUR estimation methods. For the FIML method, the ITPRINT option prints parameter
estimates, negative of log-likelihood function, and norm of gradient vector at each iteration.

NOPRINT
suppresses all printed output. Specifying NOPRINT in the PROC SYSLIN statement is equivalent to
specifying NOPRINT in every MODEL statement.

REDUCED
prints the reduced form estimates. If the REDUCED option is specified, you should specify any
IDENTITY statements needed to make the system square. For more information, see the section
“Reduced Form Estimates” on page 2649.

SIMPLE
prints descriptive statistics for the dependent variables. The statistics printed include the sum, mean,
uncorrected sum of squares, variance, and standard deviation.

USSCP
prints the uncorrected sum-of-squares-and-crossproducts matrix.

USSCP2
prints the uncorrected sum-of-squares-and-crossproducts matrix for all variables used in the analysis,
including predicted values of variables generated by the procedure.

VARDEF=DF | N | WEIGHT | WGT
specifies the denominator to use in calculating cross-equation error covariances and parameter standard
errors and covariances. The default is VARDEF=DF, which corrects for model degrees of freedom.
VARDEF=N specifies no degrees-of-freedom correction. VARDEF=WEIGHT specifies the sum of
the observation weights. VARDEF=WGT specifies the sum of the observation weights minus the
model degrees of freedom. For more information, see the section “Computation of Standard Errors”
on page 2649.

BY Statement
BY variables ;

A BY statement can be used with PROC SYSLIN to obtain separate analyses on observations in groups
defined by the BY variables.
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ENDOGENOUS Statement
ENDOGENOUS variables ;

The ENDOGENOUS statement declares the jointly dependent variables that are projected in the first-stage
regression through the instrument variables. The ENDOGENOUS statement is not needed for the SUR,
ITSUR, or OLS estimation methods. The default ENDOGENOUS list consists of all the dependent variables
in the MODEL and IDENTITY statements that do not appear in the INSTRUMENTS statement.

IDENTITY Statement
IDENTITY equation ;

The IDENTITY statement specifies linear relationships among variables to write to the OUTEST= data
set. It provides extra information in the OUTEST= data set but does not create or compute variables. The
OUTEST= data set can be processed by the SIMLIN procedure in a later step.

The IDENTITY statement is also used to compute reduced form coefficients when the REDUCED option in
the PROC SYSLIN statement is specified. For more information, see the section “Reduced Form Estimates”
on page 2649.

The equation given by the IDENTITY statement has the same form as equations in the MODEL statement. A
label can be specified for an IDENTITY statement as follows:

label : IDENTITY . . . ;

INSTRUMENTS Statement
INSTRUMENTS variables ;

The INSTRUMENTS statement declares the variables used in obtaining first-stage predicted values. All the
instruments specified are used in each first-stage regression. The INSTRUMENTS statement is required for
the 2SLS, 3SLS, IT3SLS, LIML, MELO, and K-class estimation methods. The INSTRUMENTS statement
is not needed for the SUR, ITSUR, OLS, or FIML estimation methods.

MODEL Statement
MODEL response = regressors / options ;

The MODEL statement regresses the response variable on the left side of the equal sign against the regressors
listed on the right side.

Models can be given labels. Model labels are used in the printed output to identify the results for different
models. Model labels are also used in SRESTRICT and STEST statements to refer to parameters in different
models. If no label is specified, the response variable name is used as the label for the model. The model
label is specified as follows:
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label : MODEL . . . ;

The following options can be used in the MODEL statement after a slash (/):

ALL
specifies the CORRB, COVB, DW, I, OVERID, PLOT, STB, and XPX options.

ALPHA=value
specifies the ˛ parameter for Fuller’s modification to the LIML estimation method. For more informa-
tion, see the section “Fuller’s Modification to LIML” on page 2650.

CORRB
prints the matrix of estimated correlations between the parameter estimates.

COVB
prints the matrix of estimated covariances between the parameter estimates.

DW
prints Durbin-Watson statistics and autocorrelation coefficients for the residuals. If there are missing
values, d 0 is calculated according to Savin and White (1978). Use the DW option only if the data set
to be analyzed is an ordinary SAS data set with time series observations sorted in time order. The
Durbin-Watson test is not valid for models with lagged dependent regressors.

I
prints the inverse of the crossproducts matrix for the model, .X0X/�1. If restrictions are specified, the
crossproducts matrix printed is adjusted for the restrictions. For more information, see the section
“Computational Details” on page 2648.

K=value
specifies K-class estimation.

NOINT
suppresses the intercept parameter from the model.

NOPRINT
suppresses the normal printed output.

OVERID
prints Basmann’s (1960) test for over identifying restrictions. For more information, see the section
“Overidentification Restrictions” on page 2650.

PLOT
plots residual values against regressors. A plot of the residuals for each regressor is printed.

STB
prints standardized parameter estimates. Sometimes known as a standard partial regression coefficient,
a standardized parameter estimate is a parameter estimate multiplied by the standard deviation of the
associated regressor and divided by the standard deviation of the response variable.
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UNREST
prints parameter estimates computed before restrictions are applied. The UNREST option is valid only
if a RESTRICT statement is specified.

XPX
prints the model crossproducts matrix, X 0X . For more information, see the section “Computational
Details” on page 2648.

OUTPUT Statement
OUTPUT < PREDICTED=variable > < RESIDUAL=variable > ;

The OUTPUT statement writes predicted values and residuals from the preceding model to the data set
specified by the OUT= option in the PROC SYSLIN statement. An OUTPUT statement must come after the
MODEL statement to which it applies. The OUT= option must be specified in the PROC SYSLIN statement.

The following options can be specified in the OUTPUT statement:

PREDICTED=variable
names a new variable to contain the predicted values for the response variable. The PREDICTED=
option can be abbreviated as PREDICT=, PRED=, or P=.

RESIDUAL=variable
names a new variable to contain the residual values for the response variable. The RESIDUAL= option
can be abbreviated as RESID= or R=.

For example, the following statements create an output data set named B. In addition to the variables in
the input data set, the data set B contains the variable YHAT, with values that are predicted values of
the response variable Y, and the YRESID, with values that are the residual values of Y.

proc syslin data=a out=b;
model y = x1 x2;
output p=yhat r=yresid;

run;

For example, the following statements create an output data set named PRED. In addition to the
variables in the input data set, the data set PRED contains the variables Q_DEMAND and Q_SUPPLY,
with values that are predicted values of the response variable Q for the demand and supply equations,
respectively, and the variables R_DEMAND and R_SUPPLY, with values that are the residual values of
the demand and supply equations, respectively.

proc syslin data=in out=pred;
demand: model q = p y s;
output p=q_demand r=r_demand;
supply: model q = p u;
output p=q_supply r=r_supply;

run;

For more information, see the section “OUT= Data Set” on page 2651.
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RESTRICT Statement
RESTRICT equation , . . . , equation ;

The RESTRICT statement places restrictions on the parameter estimates for the preceding MODEL statement.
Any number of RESTRICT statements can follow a MODEL statement. Each restriction is written as a
linear equation. If more than one restriction is specified in a single RESTRICT statement, the restrictions are
separated by commas.

Parameters are referred to by the name of the corresponding regressor variable. Each name used in the
equation must be a regressor in the preceding MODEL statement. The keyword INTERCEPT is used to refer
to the intercept parameter in the model.

RESTRICT statements can be given labels. The labels are used in the printed output to distinguish results for
different restrictions. Labels are specified as follows:

label : RESTRICT . . . ;

The following is an example of the use of the RESTRICT statement, in which the coefficients of the regressors
X1 and X2 are required to sum to 1:

proc syslin data=a;
model y = x1 x2;
restrict x1 + x2 = 1;

run;

Variable names can be multiplied by constants. When no equal sign appears, the linear combination is set
equal to 0. Note that the parameters associated with the variables are restricted, not the variables themselves.
Here are some examples of valid RESTRICT statements:

restrict x1 + x2 = 1;
restrict x1 + x2 - 1;
restrict 2 * x1 = x2 + x3 , intercept + x4 = 0;
restrict x1 = x2 = x3 = 1;
restrict 2 * x1 - x2;

Restricted parameter estimates are computed by introducing a Lagrangian parameter � for each restriction
(Pringle and Rayner 1971). The estimates of these Lagrangian parameters are printed in the “Parameter
Estimates” table. If a restriction cannot be applied, its parameter value and degrees of freedom are listed as 0.

The Lagrangian parameter � measures the sensitivity of the sum of squared errors (SSE) to the restriction. If
the restriction is changed by a small amount �, the SSE is changed by 2��.

The t ratio tests the significance of the restrictions. If � is zero, the restricted estimates are the same as the
unrestricted.

Any number of restrictions can be specified in a RESTRICT statement, and any number of RESTRICT
statements can be used. The estimates are computed subject to all restrictions specified. However, restrictions
should be consistent and not redundant.

NOTE: The RESTRICT statement is not supported for the FIML estimation method.
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SRESTRICT Statement
SRESTRICT equation , . . . , equation ;

The SRESTRICT statement imposes linear restrictions that involve parameters in two or more MODEL
statements. The SRESTRICT statement is like the RESTRICT statement but is used to impose restrictions
across equations, whereas the RESTRICT statement applies only to parameters in the immediately preceding
MODEL statement.

Each restriction is written as a linear equation. Parameters are referred to as label.variable, where label is
the model label and variable is the name of the regressor to which the parameter is attached. (If the MODEL
statement does not have a label, you can use the dependent variable name as the label for the model, provided
the dependent variable uniquely labels the model.) Each variable name used must be a regressor in the
indicated MODEL statement. The keyword INTERCEPT is used to refer to intercept parameters.

SRESTRICT statements can be given labels. The labels are used in the printed output to distinguish results
for different restrictions. Labels are specified as follows:

label : SRESTRICT . . . ;

The following is an example of the use of the SRESTRICT statement, in which the coefficient for the
regressor X2 is constrained to be the same in both models:

proc syslin data=a 3sls;
endogenous y1 y2;
instruments x1 x2;
model y1 = y2 x1 x2;
model y2 = y1 x2;
srestrict y1.x2 = y2.x2;

run;

When no equal sign is used, the linear combination is set equal to 0. Thus, the restriction in the preceding
example can also be specified as

srestrict y1.x2 - y2.x2;

Any number of restrictions can be specified in an SRESTRICT statement, and any number of SRESTRICT
statements can be used. The estimates are computed subject to all restrictions specified. However, restrictions
should be consistent and not redundant.

When a system restriction is requested for a single equation estimation method (such as OLS or 2SLS), PROC
SYSLIN produces the restricted estimates by actually using a corresponding system method. For example,
when an SRESTRICT statement is specified along with OLS, PROC SYSLIN produces the restricted OLS
estimates via a two-step process equivalent to using SUR estimation with the SDIAG option. First, the
unrestricted OLS results are produced. Then, the GLS (SUR) estimation with the system restriction is
performed, using the diagonal of the covariance matrix of the residuals. When an SRESTRICT statement is
specified along with 2SLS, PROC SYSLIN produces the restricted 2SLS estimates via a multistep process
equivalent to using 3SLS estimation with the SDIAG option. First, the unrestricted 2SLS results are
produced. Then, the GLS (3SLS) estimation with the system restriction is performed, using the diagonal of
the covariance matrix of the residuals.

The results of the SRESTRICT statements are printed after the parameter estimates for all the models in the
system. The format of the SRESTRICT statement output is the same as the “Parameter Estimates” table. In
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this output the parameter estimate is the Lagrangian parameter � used to impose the restriction.

The Lagrangian parameter � measures the sensitivity of the system sum of square errors to the restriction.
The system SSE is the system MSE shown in the printed output multiplied by the degrees of freedom. If the
restriction is changed by a small amount �, the system SSE is changed by 2��.

The t ratio tests the significance of the restriction. If � is zero, the restricted estimates are the same as the
unrestricted estimates.

The model degrees of freedom are not adjusted for the cross-model restrictions imposed by SRESTRICT
statements.

NOTE: The SRESTRICT statement is only supported for 2SLS, 3SLS, IT3SLS, OLS, SUR and ITSUR
estimation methods.

STEST Statement
STEST equation , . . . , equation / options ;

The STEST statement performs an F test for the joint hypotheses specified in the statement.

The hypothesis is represented in matrix notation as

Lˇ D c

and the F test is computed as

.Lb � c/0.L.X0X/�1L0/�1.Lb � c/
m O�2

where b is the estimate of ˇ, m is the number of restrictions, and O�2 is the system weighted mean squared
error. For information about the matrix X0X, see the section “Computational Details” on page 2648.

Each hypothesis to be tested is written as a linear equation. Parameters are referred to as label.variable, where
label is the model label and variable is the name of the regressor to which the parameter is attached. (If the
MODEL statement does not have a label, you can use the dependent variable name as the label for the model,
provided the dependent variable uniquely labels the model.) Each variable name used must be a regressor in
the indicated MODEL statement. The keyword INTERCEPT is used to refer to intercept parameters.

STEST statements can be given labels. The label is used in the printed output to distinguish different tests.
Any number of STEST statements can be specified. Labels are specified as follows:

label : STEST . . . ;

The following is an example of the STEST statement:

proc syslin data=a 3sls;
endogenous y1 y2;
instruments x1 x2;
model y1 = y2 x1 x2;
model y2 = y1 x2;
stest y1.x2 = y2.x2;

run;
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The test performed is exact only for ordinary least squares, given the OLS assumptions of the linear model.
For other estimation methods, the F test is based on large sample theory and is only approximate in finite
samples.

If RESTRICT or SRESTRICT statements are used, the tests computed by the STEST statement are conditional
on the restrictions specified. The validity of the tests can be compromised if incorrect restrictions are imposed
on the estimates.

The following are examples of STEST statements:

stest a.x1 + b.x2 = l;
stest 2 * b.x2 = c.x3 + c.x4 ,

a.intercept + b.x2 = 0;
stest a.x1 = c.x2 = b.x3 = 1;
stest 2 * a.x1 - b.x2 = 0;

The PRINT option can be specified in the STEST statement after a slash (/):

PRINT
prints intermediate calculations for the hypothesis tests.

NOTE: The STEST statement is only supported for 2SLS, 3SLS, IT3SLS, OLS, SUR and ITSUR estimation
methods.

TEST Statement
TEST equation , . . . , equation / options ;

The TEST statement performs F tests of linear hypotheses about the parameters in the preceding MODEL
statement. Each equation specifies a linear hypothesis to be tested. If more than one equation is specified, the
equations are separated by commas.

Variable names must correspond to regressors in the preceding MODEL statement, and each name represents
the coefficient of the corresponding regressor. The keyword INTERCEPT is used to refer to the model
intercept.

TEST statements can be given labels. The label is used in the printed output to distinguish different tests.
Any number of TEST statements can be specified. Labels are specified as follows:

label : TEST . . . ;

The following is an example of the use of TEST statement, which tests the hypothesis that the coefficients of
X1 and X2 are the same:

proc syslin data=a;
model y = x1 x2;
test x1 = x2;

run;

The following statements perform F tests for the hypothesis that the coefficients of X1 and X2 are equal, for
the hypothesis that the sum of the X1 and X2 coefficients is twice the intercept, and for the joint hypothesis:



2642 F Chapter 36: The SYSLIN Procedure

proc syslin data=a;
model y = x1 x2;
x1eqx2: test x1 = x2;
sumeq2i: test x1 + x2 = 2 * intercept;
joint: test x1 = x2, x1 + x2 = 2 * intercept;

run;

The following are additional examples of TEST statements:

test x1 + x2 = 1;
test x1 = x2 = x3 = 1;
test 2 * x1 = x2 + x3, intercept + x4 = 0;
test 2 * x1 - x2;

The TEST statement performs an F test for the joint hypotheses specified. The hypothesis is represented in
matrix notation as follows:

Lˇ D c

The F test is computed as

.Lb � c/0.L.X0X/�L0/�1.Lb � c/
m O�2

where b is the estimate of ˇ, m is the number of restrictions, and O�2 is the model mean squared error. For
information about the matrix X0X, see the section “Computational Details” on page 2648.

The test performed is exact only for ordinary least squares, given the OLS assumptions of the linear model.
For other estimation methods, the F test is based on large sample theory and is only approximate in finite
samples.

If RESTRICT or SRESTRICT statements are used, the tests computed by the TEST statement are conditional
on the restrictions specified. The validity of the tests can be compromised if incorrect restrictions are imposed
on the estimates.

The PRINT option can be specified in the TEST statement after a slash (/):

PRINT
prints intermediate calculations for the hypothesis tests.

NOTE: The TEST statement is not supported for the FIML estimation method.
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VAR Statement
VAR variables ;

The VAR statement is used to include variables in the crossproducts matrix that are not specified in any
MODEL statement. This statement is rarely used with PROC SYSLIN and is used only with the OUTSSCP=
option in the PROC SYSLIN statement.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement is used to perform weighted regression. The WEIGHT statement names a variable
in the input data set whose values are relative weights for a weighted least squares fit. If the weight value is
proportional to the reciprocal of the variance for each observation, the weighted estimates are the best linear
unbiased estimates (BLUE).

Details: SYSLIN Procedure

Input Data Set
PROC SYSLIN does not compute new values for regressors. For example, if you need a lagged variable, you
must create it with a DATA step. No values are computed by IDENTITY statements; all values must be in
the input data set.

Special TYPE= Input Data Sets

The input data set for most applications of the SYSLIN procedure contains standard rectangular data. However,
PROC SYSLIN can also process input data in the form of a crossproducts, covariance, or correlation matrix.
Data sets that contain such matrices are identified by values of the TYPE= data set option.

These special kinds of input data sets can be used to save computer time. It takes nk2 operations, where n is
the number of observations and k is the number of variables, to calculate cross products; the regressions are
of the order k3. When n is in the thousands and k is much smaller, you can save most of the computer time in
later runs of PROC SYSLIN by reusing the SSCP matrix rather than recomputing it.

The SYSLIN procedure can process TYPE=CORR, COV, UCORR, UCOV, or SSCP data sets. TYPE=CORR
and TYPE=COV data sets, usually created by the CORR procedure, contain means and standard deviations,
and correlations or covariances. TYPE=SSCP data sets, usually created in previous runs of PROC SYSLIN,
contain sums of squares and cross products. For more information about special SAS data sets, see SAS/STAT
User’s Guide.

When special SAS data sets are read, you must specify the TYPE= data set option. PROC CORR and PROC
SYSLIN automatically set the type for output data sets; however, if you create the data set by some other
means, you must specify its type with the TYPE= data set option.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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When the special data sets are used, the DW (Durbin-Watson test) and PLOT options in the MODEL statement
cannot be performed, and the OUTPUT statements are not valid.

Estimation Methods
A brief description of the methods used by the SYSLIN procedure follows. For more information about these
methods, see the references at the end of this chapter.

There are two fundamental methods of estimation for simultaneous equations: least squares and maximum
likelihood. There are two approaches within each of these categories: single equation methods (also referred
to as limited information methods) and system methods (also referred to as full information methods). System
methods take into account cross-equation correlations of the disturbances in estimating parameters, while
single equation methods do not.

OLS, 2SLS, MELO, K-class, SUR, ITSUR, 3SLS, and IT3SLS use the least squares method; LIML and
FIML use the maximum likelihood method.

OLS, 2SLS, MELO, K-class, and LIML are single equation methods. The system methods are SUR, ITSUR,
3SLS, IT3SLS, and FIML.

Single Equation Estimation Methods

Single equation methods do not take into account correlations of errors across equations. As a result, these
estimators are not asymptotically efficient compared to full information methods; however, there are instances
in which they may be preferred. (For more information, see the section “Choosing a Method for Simultaneous
Equations” on page 2646.)

Let yi be the dependent endogenous variable in equation i, and Xi and Yi be the matrices of exogenous and
endogenous variables appearing as regressors in the same equation.

The 2SLS method owes its name to the fact that, in a first stage, the instrumental variables are used as
regressors to obtain a projected value OYi that is uncorrelated with the residual in equation i. In a second stage,
OYi replaces Yi on the right-hand side to obtain consistent least squares estimators.

Normally, the predetermined variables of the system are used as the instruments. It is possible to use variables
other than predetermined variables from your system as instruments; however, the estimation might not be as
efficient. For consistent estimates, the instruments must be uncorrelated with the residual and correlated with
the endogenous variables.

The LIML method results in consistent estimates that are equal to the 2SLS estimates when an equation is
exactly identified. LIML can be viewed as a least-variance ratio estimation or as a maximum likelihood
estimation. LIML involves minimizing the ratio � D .rvar_eq/=.rvar_sys/, where rvar_eq is the residual
variance associated with regressing the weighted endogenous variables on all predetermined variables that
appear in that equation, and rvar_sys is the residual variance associated with regressing weighted endogenous
variables on all predetermined variables in the system.

The MELO method computes the minimum expected loss estimator. MELO estimators “minimize the
posterior expectation of generalized quadratic loss functions for structural coefficients of linear structural
models” (Judge et al. 1985, p. 635).

K-class estimators are a class of estimators that depends on a user-specified parameter k. A k value less than
1 is recommended but not required. The parameter k can be deterministic or stochastic, but its probability
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limit must equal 1 for consistent parameter estimates. When all the predetermined variables are listed as
instruments, they include all the other single equation estimators supported by PROC SYSLIN. The instance
when some of the predetermined variables are not listed among the instruments is not supported by PROC
SYSLIN for the general K-class estimation. However, it is supported for the other methods.

For k D 1, the K-class estimator is the 2SLS estimator, while for k D 0, the K-class estimator is the OLS
estimator. The K-class interpretation of LIML is that k D �. Note that k is stochastic in the LIML method,
unlike for OLS and 2SLS.

MELO is a Bayesian K-class estimator. It yields estimates that can be expressed as a matrix-weighted
average of the OLS and 2SLS estimates. MELO estimators have finite second moments and hence finite risk.
Other frequently used K-class estimators might not have finite moments under some commonly encountered
circumstances, and hence there can be infinite risk relative to quadratic and other loss functions.

One way of comparing K-class estimators is to note that when k =1, the correlation between regressor and
the residual is completely corrected for. In all other cases, it is only partially corrected for.

For more information about K-class estimators, see the section “Computational Details” on page 2648.

SUR and 3SLS Estimation Methods

SUR might improve the efficiency of parameter estimates when there is contemporaneous correlation of
errors across equations. In practice, the contemporaneous correlation matrix is estimated using OLS residuals.
Under two sets of circumstances, SUR parameter estimates are the same as those produced by OLS: when
there is no contemporaneous correlation of errors across equations (the estimate of the contemporaneous
correlation matrix is diagonal) and when the independent variables are the same across equations.

Theoretically, SUR parameter estimates are always at least as efficient as OLS in large samples, provided that
your equations are correctly specified. However, in small samples the need to estimate the covariance matrix
from the OLS residuals increases the sampling variability of the SUR estimates. This effect can cause SUR to
be less efficient than OLS. If the sample size is small and the cross-equation correlations are small, then OLS
is preferred to SUR. The consequences of specification error are also more serious with SUR than with OLS.

The 3SLS method combines the ideas of the 2SLS and SUR methods. Like 2SLS, the 3SLS method uses OY
instead of Y for endogenous regressors, which results in consistent estimates. Like SUR, the 3SLS method
takes the cross-equation error correlations into account to improve large sample efficiency. For 3SLS, the
2SLS residuals are used to estimate the cross-equation error covariance matrix.

The SUR and 3SLS methods can be iterated by recomputing the estimate of the cross-equation covariance
matrix from the SUR or 3SLS residuals and then computing new SUR or 3SLS estimates based on this
updated covariance matrix estimate. Continuing this iteration until convergence produces ITSUR or IT3SLS
estimates.

FIML Estimation Method

The FIML estimator is a system generalization of the LIML estimator. The FIML method involves minimizing
the determinant of the covariance matrix associated with residuals of the reduced form of the equation system.
From a maximum likelihood standpoint, the LIML method involves assuming that the errors are normally
distributed and then maximizing the likelihood function subject to restrictions on a particular equation. FIML
is similar, except that the likelihood function is maximized subject to restrictions on all of the parameters in
the model, not just those in the equation being estimated.
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NOTE: The RESTRICT, SRESTRICT, TEST, and STEST statements are not supported when the FIML
method is used.

Choosing a Method for Simultaneous Equations

A number of factors should be taken into account in choosing an estimation method. Although system
methods are asymptotically most efficient in the absence of specification error, system methods are more
sensitive to specification error than single equation methods.

In practice, models are never perfectly specified. It is a matter of judgment whether the misspecification is
serious enough to warrant avoidance of system methods.

Another factor to consider is sample size. With small samples, 2SLS might be preferred to 3SLS. In general,
it is difficult to say much about the small sample properties of K-class estimators because the results depend
on the regressors used.

LIML and FIML are invariant to the normalization rule imposed but are computationally more expensive
than 2SLS or 3SLS.

If the reason for contemporaneous correlation among errors across equations is a common, omitted variable,
it is not necessarily best to apply SUR. SUR parameter estimates are more sensitive to specification error
than OLS. OLS might produce better parameter estimates under these circumstances. SUR estimates are also
affected by the sampling variation of the error covariance matrix. There is some evidence from Monte Carlo
studies that SUR is less efficient than OLS in small samples.

ANOVA Table for Instrumental Variables Methods
In the instrumental variables methods (2SLS, LIML, K-class, MELO), first-stage predicted values are
substituted for the endogenous regressors. As a result, the regression sum of squares (RSS) and the error
sum of squares (ESS) do not sum to the total corrected sum of squares for the dependent variable (TSS). The
analysis-of-variance table included in the second-stage results gives these sums of squares and the mean
squares that are used for the F test, but this table is not a variance decomposition in the usual sense.

The F test shown in the instrumental variables case is a valid test of the no-regression hypothesis that the
true coefficients of all regressors are 0. However, because of the first-stage projection of the regression mean
square, this is a Wald-type test statistic, which is asymptotically F but not exactly F-distributed in finite
samples. Thus, for small samples the F test is only approximate when instrumental variables are used.
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The R-Square Statistics
As explained in the section “ANOVA Table for Instrumental Variables Methods” on page 2646, when
instrumental variables are used, the regression sum of squares (RSS) and the error sum of squares (ESS) do
not sum to the total corrected sum of squares. In this case, there are several ways that the R2 statistic can be
defined.

The definition of R2 used by the SYSLIN procedure is

R2 D
RSS

RSSC ESS

This definition is consistent with the F test of the null hypothesis that the true coefficients of all regressors
are zero. However, this R2 might not be a good measure of the goodness of fit of the model.

System Weighted R-Square and System Weighted Mean Squared Error

The system weighted R2, printed for the 3SLS, IT3SLS, SUR, ITSUR, and FIML methods, is computed as
follows.

R2 D Y0WR.X0X/�1R0WY=Y0WY

In this equation, the matrix X0X is R0WR and W is the projection matrix of the instruments:

W D S�1˝Z.Z0Z/�1Z0

The matrix Z is the instrument set, R is the regressor set, and S is the estimated cross-model covariance
matrix.

The system weighted MSE, printed for the 3SLS, IT3SLS, SUR, ITSUR, and FIML methods, is computed as
follows:

MSE D
1

tdf
.Y0WY �Y0WR.X0X/�1R0WY/

In this equation, tdf is the sum of the error degrees of freedom for the equations in the system.
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Computational Details
This section discusses various computational details.

Computation of Least Squares–Based Estimators

Let the system be composed of G equations, and let the ith equation be expressed in the form

yi D Yiˇi CXii C u

where

yi is the vector of observations on the dependent variable

Yi is the matrix of observations on the endogenous variables included in the equation

ˇi is the vector of parameters associated with Yi

Xi is the matrix of observations on the predetermined variables included in the equation

i is the vector of parameters associated with Xi

u is a vector of errors

Let OVi D Yi � OYi , where OYi is the projection of Yi onto the space spanned by the instruments matrix Z.

Let

ıi D

�
ˇi
i

�
be the vector of parameters associated with both the endogenous and exogenous variables.

The K-class of estimators (Theil 1971) is defined by

Oıi;k D

�
Y 0i Yi � k

OV 0i
OVi Y 0iXi

X 0iYi X 0iXi

��1 �
.Yi � kVi /

0yi
X 0iyi

�
where k is a user-defined value.

Let

R D ŒYiXi �

and

OR D Œ OYi Xi �

The 2SLS estimator is defined as

Oıi;2SLS D Œ OR
0
i
ORi �
�1 OR0iyi

Let y and ı be the vectors obtained by stacking the vectors of dependent variables and parameters for all G
equations, and let R and OR be the block diagonal matrices formed by Ri and ORi , respectively.
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The SUR and ITSUR estimators are defined as

Oı.IT/SUR D
h
R0
�
O†�1 ˝ I

�
R
i�1

R0
�
O†�1 ˝ I

�
y

while the 3SLS and IT3SLS estimators are defined as

Oı.IT/3SLS D
h
OR
0
�
O†�1 ˝ I

�
OR
i�1
OR
0
�
O†�1 ˝ I

�
y

where I is the identity matrix and O† is an estimator of the cross-equation correlation matrix. For 3SLS, O† is
obtained from the 2SLS estimation, while for SUR it is derived from the OLS estimation. For IT3SLS and
ITSUR, it is obtained iteratively from the previous estimation step, until convergence.

Computation of Standard Errors

The VARDEF= option in the PROC SYSLIN statement controls the denominator used in calculating the
cross-equation covariance estimates and the parameter standard errors and covariances. The values of the
VARDEF= option and the resulting denominator are as follows:

N uses the number of nonmissing observations.

DF uses the number of nonmissing observations less the degrees of freedom in the model.

WEIGHT uses the sum of the observation weights given by the WEIGHTS statement.

WDF uses the sum of the observation weights given by the WEIGHTS statement less the degrees
of freedom in the model.

The VARDEF= option does not affect the model mean squared error, root mean squared error, or R2 statistics.
These statistics are always based on the error degrees of freedom, regardless of the VARDEF= option. The
VARDEF= option also does not affect the dependent variable coefficient of variation (CV).

Reduced Form Estimates

The REDUCED option in the PROC SYSLIN statement computes estimates of the reduced form coefficients.
The REDUCED option requires that the equation system be square. If there are fewer models than endogenous
variables, IDENTITY statements can be used to complete the equation system.

The reduced form coefficients are computed as follows. Represent the equation system, with all endogenous
variables moved to the left-hand side of the equations and identities, as

BY D �X

Here B is the estimated coefficient matrix for the endogenous variables Y, and � is the estimated coefficient
matrix for the exogenous (or predetermined) variables X.

The system can be solved for Y as follows, provided B is square and nonsingular:

Y D B�1�X

The reduced form coefficients are the matrix B�1� .
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Uncorrelated Errors across Equations

The SDIAG option in the PROC SYSLIN statement computes estimates by assuming uncorrelated errors
across equations. As a result, when the SDIAG option is used, the 3SLS estimates are identical to 2SLS
estimates, and the SUR estimates are the same as the OLS estimates.

Overidentification Restrictions

The OVERID option in the MODEL statement can be used to test for overidentifying restrictions on
parameters of each equation. The null hypothesis is that the predetermined variables that do not appear in any
equation have zero coefficients. The alternative hypothesis is that at least one of the assumed zero coefficients
is nonzero. The test is approximate and rejects the null hypothesis too frequently for small sample sizes.

The formula for the test is given as follows. Let yi D ˇiYi C iZi C ei be the ith equation. Yi are the
endogenous variables that appear as regressors in the ith equation, and Zi are the instrumental variables that
appear as regressors in the ith equation. Let Ni be the number of variables in Yi and Zi .

Let vi D yi �Yi Ǒi . Let Z represent all instrumental variables, T be the total number of observations, and K
be the total number of instrumental variables. Define Ol as follows:

Ol D
v0i .I � Zi .Z0iZi /�1Z0i /vi
v0i .I � Z.Z0Z/�1Z0/vi

Then the test statistic

T �K

K �Ni
. Ol � 1/

is distributed approximately as an F with K �Ni and T �K degrees of freedom. For more information, see
Basmann (1960).

Fuller’s Modification to LIML

The ALPHA= option in the PROC SYSLIN and MODEL statements parameterizes Fuller’s modification
to LIML. This modification is k D  � .˛=.n � g//, where ˛ is the value of the ALPHA= option,  is the
LIML k value,n is the number of observations, and g is the number of predetermined variables. Fuller’s
modification is not used unless the ALPHA= option is specified. For more information, see Fuller (1977).

Missing Values
Observations that have a missing value for any variable in the analysis are excluded from the computations.
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OUT= Data Set
The output SAS data set produced by the OUT= option in the PROC SYSLIN statement contains all the
variables in the input data set and the variables that contain predicted values and residuals specified by
OUTPUT statements.

The residuals are computed as actual values minus predicted values. Predicted values never use lags of other
predicted values, as would be desirable for dynamic simulation. For these applications, PROC SIMLIN is
available to predict or simulate values from the estimated equations.

OUTEST= Data Set
The OUTEST= option produces a TYPE=EST output SAS data set that contains estimates from the regres-
sions. The variables in the OUTEST= data set are as follows:

BY variables identifies the BY statement variables that are included in the OUTEST= data set.

_TYPE_ identifies the estimation type for the observations. The _TYPE_ value INST indicates
first-stage regression estimates. Other values indicate the estimation method used: 2SLS
indicates two-stage least squares results, 3SLS indicates three-stage least squares re-
sults, LIML indicates limited information maximum likelihood results, and so forth.
Observations added by IDENTITY statements have the _TYPE_ value IDENTITY.

_STATUS_ identifies the convergence status of the estimation. The value of _STATUS_ is 0 when
convergence criteria are met. Otherwise, the value of _STATUS_ is 1 when the estimation
converges with a note, 2 when it converges with a warning, or 3 when it fails to converge.

_MODEL_ identifies the model label. The model label is the label specified in the MODEL statement
or the dependent variable name if no label is specified. For first-stage regression estimates,
_MODEL_ has the value FIRST.

_DEPVAR_ identifies the name of the dependent variable for the model.

_NAME_ identifies the names of the regressors for the rows of the covariance matrix, if the COVOUT
option is specified. _NAME_ has a blank value for the parameter estimates observations.
The _NAME_ variable is not included in the OUTEST= data set unless the COVOUT
option is used to output the covariance of parameter estimates matrix.

_SIGMA_ contains the root mean squared error for the model, which is an estimate of the standard
deviation of the error term. The _SIGMA_ variable contains the same values reported as
Root MSE in the printed output.

INTERCEPT identifies the intercept parameter estimates.

regressors identifies the regressor variables from all the MODEL statements that are included in the
OUTEST= data set. Variables used in IDENTIFY statements are also included in the
OUTEST= data set.

The parameter estimates are stored under the names of the regressor variables. The intercept parameters
are stored in the variable INTERCEPT. The dependent variable of the model is given a coefficient of –1.
Variables that are not in a model have missing values for the OUTEST= observations for that model.
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Some estimation methods require computation of preliminary estimates. All estimates computed are output
to the OUTEST= data set. For each BY group and each estimation, the OUTEST= data set contains one
observation for each MODEL or IDENTITY statement. Results for different estimations are identified by the
_TYPE_ variable.

For example, consider the following statements:

proc syslin data=a outest=est 3sls;
by b;
endogenous y1 y2;
instruments x1-x4;
model y1 = y2 x1 x2;
model y2 = y1 x3 x4;
identity x1 = x3 + x4;

run;

The 3SLS method requires both a preliminary 2SLS stage and preliminary first-stage regressions for the en-
dogenous variable. The OUTEST= data set thus contains three different kinds of estimates. The observations
for the first-stage regression estimates have the _TYPE_ value INST. The observations for the 2SLS estimates
have the _TYPE_ value 2SLS. The observations for the final 3SLS estimates have the _TYPE_ value 3SLS.

Since there are two endogenous variables in this example, there are two first-stage regressions and two
_TYPE_=INST observations in the OUTEST= data set. Since there are two model statements, there are two
OUTEST= observations with _TYPE_=2SLS and two observations with _TYPE_=3SLS. In addition, the
OUTEST= data set contains an observation with the _TYPE_ value IDENTITY that contains the coefficients
specified by the IDENTITY statement. All these observations are repeated for each BY group in the input
data set defined by the values of the BY variable B.

When the COVOUT option is specified, the estimated covariance matrix for the parameter estimates is
included in the OUTEST= data set. Each observation for parameter estimates is followed by observations
that contain the rows of the parameter covariance matrix for that model. The row of the covariance matrix is
identified by the variable _NAME_. For observations that contain parameter estimates, _NAME_ is blank. For
covariance observations, _NAME_ contains the regressor name for the row of the covariance matrix and the
regressor variables contain the covariances.

For an example of the OUTEST= data set, see Example 36.1.

OUTSSCP= Data Set
The OUTSSCP= option produces a TYPE=SSCP output SAS data set that contains sums of squares and
cross products. The data set contains all variables used in the MODEL, IDENTITY, and VAR statements.
Observations are identified by the variable _NAME_.

The OUTSSCP= data set can be useful when a large number of observations are to be explored in many differ-
ent PROC SYSLIN runs. The sum-of-squares-and-crossproducts matrix can be saved with the OUTSSCP=
option and used as the DATA= data set on subsequent PROC SYSLIN runs. This is much less expensive
computationally because PROC SYSLIN never reads the original data again. In the step that creates the
OUTSSCP= data set, include in the VAR statement all the variables you expect to use.
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Printed Output
The printed output produced by the SYSLIN procedure is as follows:

1. If the SIMPLE option is used, a table of descriptive statistics is printed that shows the sum, mean, sum
of squares, variance, and standard deviation for all the variables used in the models.

2. If the FIRST option is specified and an instrumental variables method is used, first-stage regression
results are printed. The results show the regression of each endogenous variable on the variables in the
INSTRUMENTS list.

3. The results of the second-stage regression are printed for each model. (For more information, see the
section “Printed Output for Each Model” on page 2653.)

4. If a systems method like 3SLS, SUR, or FIML is used, the cross-equation error covariance matrix is
printed. This matrix is shown four ways: the covariance matrix itself, the correlation matrix form, the
inverse of the correlation matrix, and the inverse of the covariance matrix.

5. If a systems method like 3SLS, SUR, or FIML is used, the system weighted mean squared error and
system weighted R2 statistics are printed. The system weighted MSE and R2 measure the fit of the
joint model obtained by stacking all the models together and performing a single regression with the
stacked observations weighted by the inverse of the model error variances.

6. If a systems method like 3SLS, SUR, or FIML is used, the final results are printed for each model.

7. If the REDUCED option is used, the reduced form coefficients are printed. These consist of the
structural coefficient matrix for the endogenous variables, the structural coefficient matrix for the
exogenous variables, the inverse of the endogenous coefficient matrix, and the reduced form coefficient
matrix. The reduced form coefficient matrix is the product of the inverse of the endogenous coefficient
matrix and the exogenous structural coefficient matrix.

Printed Output for Each Model

The results printed for each model include the analysis-of-variance table, the “Parameter Estimates” table,
and optional items requested by TEST statements or by options in the MODEL statement.

The printed output produced for each model is described in the following.

The analysis-of-variance table includes the following:

� the model degrees of freedom, sum of squares, and mean square

� the error degrees of freedom, sum of squares, and mean square. The error mean square is computed by
dividing the error sum of squares by the error degrees of freedom and is not affected by the VARDEF=
option.

� the corrected total degrees of freedom and total sum of squares. Note that for instrumental variables
methods, the model and error sums of squares do not add to the total sum of squares.
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� the F ratio, labeled “F Value,” and its significance, labeled “PROB>F,” for the test of the hypothesis
that all the nonintercept parameters are 0

� the root mean squared error. This is the square root of the error mean square.

� the dependent variable mean

� the coefficient of variation (CV) of the dependent variable

� the R2 statistic. This R2 is computed consistently with the calculation of the F statistic. It is valid for
hypothesis tests but might not be a good measure of fit for models estimated by instrumental variables
methods.

� the R2 statistic adjusted for model degrees of freedom, labeled “Adj R-SQ”

The “Parameter Estimates” table includes the following:

� estimates of parameters for regressors in the model and the Lagrangian parameter for each restriction
specified

� a degrees of freedom column labeled DF. Estimated model parameters have 1 degree of freedom.
Restrictions have a DF of –1. Regressors or restrictions dropped from the model due to collinearity
have a DF of 0.

� the standard errors of the parameter estimates

� the t statistics, which are the parameter estimates divided by the standard errors

� the significance of the t tests for the hypothesis that the true parameter is 0, labeled “Pr > |t|.” As
previously noted, the significance tests are strictly valid in finite samples only for OLS estimates but
are asymptotically valid for the other methods.

� the standardized regression coefficients, if the STB option is specified. This is the parameter estimate
multiplied by the ratio of the standard deviation of the regressor to the standard deviation of the
dependent variable.

� the labels of the regressor variables or restriction labels

In addition to the analysis-of-variance table and the “Parameter Estimates” table, the results printed for each
model can include the following:

� If TEST statements are specified, the test results are printed.

� If the DW option is specified, the Durbin-Watson statistic and first-order autocorrelation coefficient are
printed.

� If the OVERID option is specified, the results of Basmann’s test for overidentifying restrictions are
printed.

� If the PLOT option is used, plots of residual against each regressor are printed.
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� If the COVB or CORRB options are specified, the results for each model also include the covariance
or correlation matrix of the parameter estimates. For systems methods like 3SLS and FIML, the
COVB and CORB output is printed for the whole system after the output for the last model, instead of
separately for each model.

The third-stage output for 3SLS, SUR, IT3SLS, ITSUR, and FIML does not include the analysis-of-variance
table. When a systems method is used, the second-stage output does not include the optional output, except
for the COVB and CORRB matrices.

ODS Table Names
PROC SYSLIN assigns a name to each table it creates. You can use these names to reference the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 36.2. If the estimation method used is 3SLS, IT3SLS, ITSUR or SUR, you can obtain tables
by specifying ODS OUTPUT CorrResiduals, InvCorrResiduals, InvCovResiduals.

Table 36.2 ODS Tables Produced in PROC SYSLIN

ODS Table Name Description Option

ANOVA Summary of the SSE, MSE for the equations Default
AugXPXMat Model crossproducts XPX or USSCP
AutoCorrStat Autocorrelation statistics DW
ConvergenceStatus Convergence status Default
CorrB Correlations of parameters CORRB
CorrResiduals Correlations of residuals
CovB Covariance of parameters COVB
CovResiduals Covariance of residuals
EndoMat Endogenous variables REDUCED
ExogMat Exogenous variables REDUCED
FitStatistics Statistics of fit Default
InvCorrResiduals Inverse correlations of residuals
InvCovResiduals Inverse covariance of residuals
InvEndoMat Inverse endogenous variables REDUCED
InvXPX X 0X inverse for system I
IterHistory Iteration printing ITPRINT
MissingValues Missing values generated by the program Default
ModelVars Name and label for the model Default
ParameterEstimates Parameter estimates Default
RedMat Reduced form REDUCED
SimpleStatistics Descriptive statistics SIMPLE
SSCP Model crossproducts XPX or USSCP
TestResults Test for overidentifying restrictions
Weight Weighted model statistics
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ODS Graphics
This section describes the use of ODS for creating graphics with the SYSLIN procedure.

ODS Graph Names

PROC SYSLIN assigns a name to each graph it creates using ODS. You can use these names to reference the
graphs when you use ODS. The names are listed in Table 36.3.

To request these graphs, you must specify the ODS GRAPHICS statement.

Table 36.3 ODS Graphics Produced by PROC SYSLIN

ODS Graph Name Plot Description

DiagnosticsPanel All applicable plots listed below
ActualByPredicted Predicted versus actual plot
QQPlot Q-Q plot of residuals
ResidualHistogram Histogram of the residuals
ResidualPlot Residual plot

Examples: SYSLIN Procedure

Example 36.1: Klein’s Model I Estimated with LIML and 3SLS
This example uses PROC SYSLIN to estimate the classic Klein Model I. For a discussion of this model, see
Theil (1971). The following statements read the data:

*---------------------------Klein's Model I----------------------------*
| By L.R. Klein, Economic Fluctuations in the United States, 1921-1941 |
| (1950), NY: John Wiley. A macro-economic model of the U.S. with |
| three behavioral equations, and several identities. See Theil, p.456.|

*----------------------------------------------------------------------*;
data klein;
input year c p w i x wp g t k wsum;

date=mdy(1,1,year);
format date monyy.;
y =c+i+g-t;
yr =year-1931;
klag=lag(k);
plag=lag(p);
xlag=lag(x);
label year='Year'

date='Date'
c ='Consumption'
p ='Profits'
w ='Private Wage Bill'
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i ='Investment'
k ='Capital Stock'
y ='National Income'
x ='Private Production'
wsum='Total Wage Bill'
wp ='Govt Wage Bill'
g ='Govt Demand'
i ='Taxes'
klag='Capital Stock Lagged'
plag='Profits Lagged'
xlag='Private Product Lagged'
yr ='YEAR-1931';

datalines;
1920 . 12.7 . . 44.9 . . . 182.8 .
1921 41.9 12.4 25.5 -0.2 45.6 2.7 3.9 7.7 182.6 28.2
1922 45.0 16.9 29.3 1.9 50.1 2.9 3.2 3.9 184.5 32.2
1923 49.2 18.4 34.1 5.2 57.2 2.9 2.8 4.7 189.7 37.0
1924 50.6 19.4 33.9 3.0 57.1 3.1 3.5 3.8 192.7 37.0
1925 52.6 20.1 35.4 5.1 61.0 3.2 3.3 5.5 197.8 38.6
1926 55.1 19.6 37.4 5.6 64.0 3.3 3.3 7.0 203.4 40.7
1927 56.2 19.8 37.9 4.2 64.4 3.6 4.0 6.7 207.6 41.5
1928 57.3 21.1 39.2 3.0 64.5 3.7 4.2 4.2 210.6 42.9
1929 57.8 21.7 41.3 5.1 67.0 4.0 4.1 4.0 215.7 45.3
1930 55.0 15.6 37.9 1.0 61.2 4.2 5.2 7.7 216.7 42.1

... more lines ...

The following statements estimate the Klein model using the limited information maximum likelihood
method. In addition, the parameter estimates are written to a SAS data set with the OUTEST= option.

proc syslin data=klein outest=b liml;
endogenous c p w i x wsum k y;
instruments klag plag xlag wp g t yr;
consume: model c = p plag wsum;
invest: model i = p plag klag;
labor: model w = x xlag yr;

run;

proc print data=b;
run;

The PROC SYSLIN estimates are shown in Output 36.1.1 through Output 36.1.3.

Output 36.1.1 LIML Estimates for Consumption

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

Model CONSUME

Dependent Variable c

Label Consumption
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Output 36.1.1 continued

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 854.3541 284.7847 118.42 <.0001

Error 17 40.88419 2.404952

Corrected Total 20 941.4295

Root MSE 1.55079 R-Square 0.95433

Dependent Mean 53.99524 Adj R-Sq 0.94627

Coeff Var 2.87209

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 17.14765 2.045374 8.38 <.0001 Intercept

p 1 -0.22251 0.224230 -0.99 0.3349 Profits

plag 1 0.396027 0.192943 2.05 0.0558 Profits Lagged

wsum 1 0.822559 0.061549 13.36 <.0001 Total Wage Bill

Output 36.1.2 LIML Estimates for Investments

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

Model INVEST

Dependent Variable i

Label Taxes

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 210.3790 70.12634 34.06 <.0001

Error 17 34.99649 2.058617

Corrected Total 20 252.3267

Root MSE 1.43479 R-Square 0.85738

Dependent Mean 1.26667 Adj R-Sq 0.83221

Coeff Var 113.27274

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 22.59083 9.498146 2.38 0.0294 Intercept

p 1 0.075185 0.224712 0.33 0.7420 Profits

plag 1 0.680386 0.209145 3.25 0.0047 Profits Lagged

klag 1 -0.16826 0.045345 -3.71 0.0017 Capital Stock Lagged
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Output 36.1.3 LIML Estimates for Labor

The SYSLIN Procedure
Limited-Information Maximum Likelihood Estimation

Model LABOR

Dependent Variable w

Label Private Wage Bill

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 696.1485 232.0495 393.62 <.0001

Error 17 10.02192 0.589525

Corrected Total 20 794.9095

Root MSE 0.76781 R-Square 0.98581

Dependent Mean 36.36190 Adj R-Sq 0.98330

Coeff Var 2.11156

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.526187 1.320838 1.16 0.2639 Intercept

x 1 0.433941 0.075507 5.75 <.0001 Private Production

xlag 1 0.151321 0.074527 2.03 0.0583 Private Product Lagged

yr 1 0.131593 0.035995 3.66 0.0020 YEAR-1931

The OUTEST= data set is shown in part in Output 36.1.4. Note that the data set contains the parameter
estimates and root mean squared errors, _SIGMA_, for the first-stage instrumental regressions as well as the
parameter estimates and � for the LIML estimates for the three structural equations.

Output 36.1.4 The OUTEST= Data Set

Obs _TYPE_ _STATUS_ _MODEL_ _DEPVAR_ _SIGMA_ Intercept klag plag xlag wp

1 LIML 0 Converged CONSUME c 1.55079 17.1477 . 0.39603 . .

2 LIML 0 Converged INVEST i 1.43479 22.5908 -0.16826 0.68039 . .

3 LIML 0 Converged LABOR w 0.76781 1.5262 . . 0.15132 .

Obs g t yr c p w i x wsum k y

1 . . . -1 -0.22251 . . . 0.82256 . .

2 . . . . 0.07518 . -1 . . . .

3 . . 0.13159 . . -1 . 0.43394 . . .

The following statements estimate the model using the 3SLS method. The reduced form estimates are
produced by the REDUCED option; IDENTITY statements are used to make the model complete.

proc syslin data=klein 3sls reduced;
endogenous c p w i x wsum k y;
instruments klag plag xlag wp g t yr;
consume: model c = p plag wsum;
invest: model i = p plag klag;
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labor: model w = x xlag yr;
product: identity x = c + i + g;
income: identity y = c + i + g - t;
profit: identity p = y - w;
stock: identity k = klag + i;
wage: identity wsum = w + wp;

run;

The preliminary 2SLS results and estimated cross-model covariance matrix are not shown. The 3SLS
estimates are shown in Output 36.1.5 through Output 36.1.7. The reduced form estimates are shown in
Output 36.1.8 through Output 36.1.11.

Output 36.1.5 3SLS Estimates for Consumption

The SYSLIN Procedure
Three-Stage Least Squares Estimation

System Weighted MSE 5.9342

Degrees of freedom 51

System Weighted R-Square 0.9550

Model CONSUME

Dependent Variable c

Label Consumption

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 16.44079 1.449925 11.34 <.0001 Intercept

p 1 0.124890 0.120179 1.04 0.3133 Profits

plag 1 0.163144 0.111631 1.46 0.1621 Profits Lagged

wsum 1 0.790081 0.042166 18.74 <.0001 Total Wage Bill

Output 36.1.6 3SLS Estimates for Investments

Model INVEST

Dependent Variable i

Label Taxes

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 28.17785 7.550853 3.73 0.0017 Intercept

p 1 -0.01308 0.179938 -0.07 0.9429 Profits

plag 1 0.755724 0.169976 4.45 0.0004 Profits Lagged

klag 1 -0.19485 0.036156 -5.39 <.0001 Capital Stock Lagged
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Output 36.1.7 3SLS Estimates for Labor

Model LABOR

Dependent Variable w

Label Private Wage Bill

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 1.797218 1.240203 1.45 0.1655 Intercept

x 1 0.400492 0.035359 11.33 <.0001 Private Production

xlag 1 0.181291 0.037965 4.78 0.0002 Private Product Lagged

yr 1 0.149674 0.031048 4.82 0.0002 YEAR-1931

Output 36.1.8 Reduced Form Estimates

Endogenous Variables

c p w i x wsum k y

CONSUME 1 -0.12489 0 0 0 -0.79008 0 0

INVEST 0 0.013079 0 1 0 0 0 0

LABOR 0 0 1 0 -0.40049 0 0 0

PRODUCT -1 0 0 -1 1 0 0 0

INCOME -1 0 0 -1 0 0 0 1

PROFIT 0 1 1 0 0 0 0 -1

STOCK 0 0 0 -1 0 0 1 0

WAGE 0 0 -1 0 0 1 0 0

Output 36.1.9 Reduced Form Estimates

Exogenous Variables

Intercept plag klag xlag yr g t wp

CONSUME 16.44079 0.163144 0 0 0 0 0 0

INVEST 28.17785 0.755724 -0.19485 0 0 0 0 0

LABOR 1.797218 0 0 0.181291 0.149674 0 0 0

PRODUCT 0 0 0 0 0 1 0 0

INCOME 0 0 0 0 0 1 -1 0

PROFIT 0 0 0 0 0 0 0 0

STOCK 0 0 1 0 0 0 0 0

WAGE 0 0 0 0 0 0 0 1
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Output 36.1.10 Reduced Form Estimates

Inverse Endogenous Variables

CONSUME INVEST LABOR PRODUCT INCOME PROFIT STOCK WAGE

c 1.634654 0.634654 1.095657 0.438802 0.195852 0.195852 0 1.291509

p 0.972364 0.972364 -0.34048 -0.13636 1.108721 1.108721 0 0.768246

w 0.649572 0.649572 1.440585 0.576943 0.072629 0.072629 0 0.513215

i -0.01272 0.987282 0.004453 0.001783 -0.0145 -0.0145 0 -0.01005

x 1.621936 1.621936 1.10011 1.440585 0.181351 0.181351 0 1.281461

wsum 0.649572 0.649572 1.440585 0.576943 0.072629 0.072629 0 1.513215

k -0.01272 0.987282 0.004453 0.001783 -0.0145 -0.0145 1 -0.01005

y 1.621936 1.621936 1.10011 0.440585 1.181351 0.181351 0 1.281461

Output 36.1.11 Reduced Form Estimates

Reduced Form

Intercept plag klag xlag yr g t wp

c 46.7273 0.746307 -0.12366 0.198633 0.163991 0.634654 -0.19585 1.291509

p 42.77363 0.893474 -0.18946 -0.06173 -0.05096 0.972364 -1.10872 0.768246

w 31.57207 0.596871 -0.12657 0.261165 0.215618 0.649572 -0.07263 0.513215

i 27.6184 0.744038 -0.19237 0.000807 0.000667 -0.01272 0.014501 -0.01005

x 74.3457 1.490345 -0.31603 0.19944 0.164658 1.621936 -0.18135 1.281461

wsum 31.57207 0.596871 -0.12657 0.261165 0.215618 0.649572 -0.07263 1.513215

k 27.6184 0.744038 0.80763 0.000807 0.000667 -0.01272 0.014501 -0.01005

y 74.3457 1.490345 -0.31603 0.19944 0.164658 1.621936 -1.18135 1.281461

Example 36.2: Grunfeld’s Model Estimated with SUR
The following example was used by Zellner in his classic 1962 paper on seemingly unrelated regressions.
Different stock prices often move in the same direction at a given point in time. The SUR technique might
provide more efficient estimates than OLS in this situation.

The following statements read the data. (The prefix GE stands for General Electric and WH stands for
Westinghouse.)

*---------Zellner's Seemingly Unrelated Technique------------*
| A. Zellner, "An Efficient Method of Estimating Seemingly |
| Unrelated Regressions and Tests for Aggregation Bias," |
| JASA 57(1962) pp.348-364 |
| |
| J.C.G. Boot, "Investment Demand: an Empirical Contribution |
| to the Aggregation Problem," IER 1(1960) pp.3-30. |
| |
| Y. Grunfeld, "The Determinants of Corporate Investment," |
| Unpublished thesis, Chicago, 1958 |

*------------------------------------------------------------*;

data grunfeld;
input year ge_i ge_f ge_c wh_i wh_f wh_c;
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label ge_i = 'Gross Investment, GE'
ge_c = 'Capital Stock Lagged, GE'
ge_f = 'Value of Outstanding Shares Lagged, GE'
wh_i = 'Gross Investment, WH'
wh_c = 'Capital Stock Lagged, WH'
wh_f = 'Value of Outstanding Shares Lagged, WH';

datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8

... more lines ...

The following statements compute the SUR estimates for the Grunfeld model:

proc syslin data=grunfeld sur;
ge: model ge_i = ge_f ge_c;
westing: model wh_i = wh_f wh_c;

run;

The PROC SYSLIN output is shown in Output 36.2.1 through Output 36.2.5.

Output 36.2.1 PROC SYSLIN Output for SUR

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model GE

Dependent Variable ge_i

Label Gross Investment, GE

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 31632.03 15816.02 20.34 <.0001

Error 17 13216.59 777.4463

Corrected Total 19 44848.62

Root MSE 27.88272 R-Square 0.70531

Dependent Mean 102.29000 Adj R-Sq 0.67064

Coeff Var 27.25850

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -9.95631 31.37425 -0.32 0.7548 Intercept

ge_f 1 0.026551 0.015566 1.71 0.1063 Value of Outstanding Shares Lagged, GE

ge_c 1 0.151694 0.025704 5.90 <.0001 Capital Stock Lagged, GE
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Output 36.2.2 PROC SYSLIN Output for SUR

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model WESTING

Dependent Variable wh_i

Label Gross Investment, WH

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 5165.553 2582.776 24.76 <.0001

Error 17 1773.234 104.3079

Corrected Total 19 6938.787

Root MSE 10.21312 R-Square 0.74445

Dependent Mean 42.89150 Adj R-Sq 0.71438

Coeff Var 23.81153

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -0.50939 8.015289 -0.06 0.9501 Intercept

wh_f 1 0.052894 0.015707 3.37 0.0037 Value of Outstanding Shares Lagged, WH

wh_c 1 0.092406 0.056099 1.65 0.1179 Capital Stock Lagged, WH

Output 36.2.3 PROC SYSLIN Output for SUR

The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Covariance

GE WESTING

GE 777.446 207.587

WESTING 207.587 104.308

Cross Model Correlation

GE WESTING

GE 1.00000 0.72896

WESTING 0.72896 1.00000

Cross Model Inverse
Correlation

GE WESTING

GE 2.13397 -1.55559

WESTING -1.55559 2.13397
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Output 36.2.3 continued

Cross Model Inverse
Covariance

GE WESTING

GE 0.002745 -.005463

WESTING -.005463 0.020458

Output 36.2.4 PROC SYSLIN Output for SUR

System Weighted MSE 0.9719

Degrees of freedom 34

System Weighted R-Square 0.6284

Model GE

Dependent Variable ge_i

Label Gross Investment, GE

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -27.7193 29.32122 -0.95 0.3577 Intercept

ge_f 1 0.038310 0.014415 2.66 0.0166 Value of Outstanding Shares Lagged, GE

ge_c 1 0.139036 0.024986 5.56 <.0001 Capital Stock Lagged, GE

Output 36.2.5 PROC SYSLIN Output for SUR

Model WESTING

Dependent Variable wh_i

Label Gross Investment, WH

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|
Variable
Label

Intercept 1 -1.25199 7.545217 -0.17 0.8702 Intercept

wh_f 1 0.057630 0.014546 3.96 0.0010 Value of Outstanding Shares Lagged, WH

wh_c 1 0.063978 0.053041 1.21 0.2443 Capital Stock Lagged, WH
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Example 36.3: Illustration of ODS Graphics
This example illustrates the use of ODS graphics. This is a continuation of the section “Example 36.1: Klein’s
Model I Estimated with LIML and 3SLS” on page 2656. These graphical displays are requested by specifying
the ODS GRAPHICS statement before running PROC SYSLIN. For information about the graphics available
in the SYSLIN procedure, see the section “ODS Graphics” on page 2656.

The following statements show how to generate ODS graphics plots with the SYSLIN procedure. The plots
of residuals for each one of the equations in the model are displayed in Figure 36.3.1 through Figure 36.3.3.

*---------------------------Klein's Model I----------------------------*
| By L.R. Klein, Economic Fluctuations in the United States, 1921-1941 |
| (1950), NY: John Wiley. A macro-economic model of the U.S. with |
| three behavioral equations, and several identities. See Theil, p.456.|

*----------------------------------------------------------------------*;
data klein;
input year c p w i x wp g t k wsum;

date=mdy(1,1,year);
format date monyy.;
y =c+i+g-t;
yr =year-1931;
klag=lag(k);
plag=lag(p);
xlag=lag(x);
label year='Year'

date='Date'
c ='Consumption'
p ='Profits'
w ='Private Wage Bill'
i ='Investment'
k ='Capital Stock'
y ='National Income'
x ='Private Production'
wsum='Total Wage Bill'
wp ='Govt Wage Bill'
g ='Govt Demand'
i ='Taxes'
klag='Capital Stock Lagged'
plag='Profits Lagged'
xlag='Private Product Lagged'
yr ='YEAR-1931';

datalines;
1920 . 12.7 . . 44.9 . . . 182.8 .
1921 41.9 12.4 25.5 -0.2 45.6 2.7 3.9 7.7 182.6 28.2
1922 45.0 16.9 29.3 1.9 50.1 2.9 3.2 3.9 184.5 32.2
1923 49.2 18.4 34.1 5.2 57.2 2.9 2.8 4.7 189.7 37.0
1924 50.6 19.4 33.9 3.0 57.1 3.1 3.5 3.8 192.7 37.0
1925 52.6 20.1 35.4 5.1 61.0 3.2 3.3 5.5 197.8 38.6
1926 55.1 19.6 37.4 5.6 64.0 3.3 3.3 7.0 203.4 40.7
1927 56.2 19.8 37.9 4.2 64.4 3.6 4.0 6.7 207.6 41.5
1928 57.3 21.1 39.2 3.0 64.5 3.7 4.2 4.2 210.6 42.9
1929 57.8 21.7 41.3 5.1 67.0 4.0 4.1 4.0 215.7 45.3
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1930 55.0 15.6 37.9 1.0 61.2 4.2 5.2 7.7 216.7 42.1

... more lines ...

ods graphics on;

proc syslin data=klein outest=b liml plots(unpack only)=residual ;
endogenous c p w i x wsum k y;
instruments klag plag xlag wp g t yr;
consume: model c = p plag wsum;
invest: model i = p plag klag;
labor: model w = x xlag yr;

run;

Output 36.3.1 Residuals Diagnostic Plots for Consumption
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Output 36.3.2 Residuals Diagnostic Plots for Investments
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Output 36.3.3 Residuals Diagnostic Plots for Labor
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Overview: TIMEDATA Procedure
The TIMEDATA procedure analyzes time-stamped transactional data with respect to time and accumulates
the data into a time series format.

After the transactional data are accumulated to form a time series and any missing values are interpreted,
the accumulated time series can be functionally transformed using log, square root, logistic, or Box-Cox
transformations. The time series can be further transformed using simple differencing, seasonal differencing,
or both. After functional and difference transformations have been applied, the accumulated and transformed
time series can be stored in an output data set. This working time series can then be analyzed further using
various time series analysis techniques provided by this procedure or other SAS/ETS procedures.

The TIMEDATA procedure is very similar to the TIMESERIES procedure. However, unlike the TIME-
SERIES procedure (which enables you to perform a variety of standard time series analysis techniques), the
TIMEDATA procedure enables you to define your own analyses using SAS programming statements.

By default, the TIMEDATA procedure provides no further analyses.

The TIMEDATA procedure forms time series vectors and then provides these vectors as SAS data arrays for
subsequent processing by your SAS programming statements. Your programming statements are processed
independently for each BY group. The TIMEDATA procedure is like the SAS DATA step for time series data.
The SAS DATA step processes data by each row; the TIMEDATA procedure processes time series vectors.

As part of your SAS programming statements, you can include user-defined functions and subroutines created
by the FCMP procedure. Additionally, you can use the RUN_MACRO subroutine provided by the FCMP
procedure to submit SAS statements that use any SAS procedures.

All results of the transactional or time series analysis can be stored in output data sets or printed using the
Output Delivery System (ODS).

Getting Started: TIMEDATA Procedure
This section outlines the use of the TIMEDATA procedure and gives a cursory description of some of the
analysis techniques that you can perform on time-stamped transactional data.

Given an input data set that contains numerous transaction variables recorded over time at no specific
frequency, the TIMEDATA procedure can form time series as follows:

PROC TIMEDATA DATA=<input-data-set>
OUT=<output-data-set>;

BY <list-of-BY-variables>;
ID <time-ID-variable> INTERVAL=<frequency>

ACCUMULATE=<statistic>;
VAR <time-series-variables>;
/* programming statements */

RUN;

The TIMEDATA procedure forms time series from the input time-stamped transactional data. It can provide
results in output data sets or in other output formats by using the Output Delivery System (ODS).
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Time-stamped transactional data are recorded at no fixed interval. Analysts often want to use time series
analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated
to form a fixed-interval time series, such as daily, weekly, or monthly.

Suppose that a bank wants to analyze the transactions that are associated with each of its customers over
time. Further, suppose that the data set Work.Transactions contains four variables that are related to these
transactions: Customer, Date, Withdrawals, and Deposits. The following examples illustrate possible ways
to analyze these transactions by using the TIMEDATA procedure.

The following TIMEDATA procedure statements accumulate the time-stamped transactional data to form
a daily time series based on the accumulated daily totals of each type of transaction (Withdrawals and
Deposits):

proc timedata data=transactions
out=timeseries
outarray=arrays;

by customer;
id date interval=day accumulate=total;
var withdrawals deposits;
outarrays balance;

balance[1] = deposits[1] - withdrawals[1];
do t = 2 to _LENGTH_;

balance[t] = balance[t-1] + (deposits[t] - withdrawals[t]);
end;

run;

The OUT=TIMESERIES option specifies that the resulting time series data for each customer are to be
stored in the data set Work.Transactions. The OUTARRAY=ARRAYS option specifies that the resulting
time series data along with a newly created variable, Balance, are to be stored in the data set Work.Arrays.
The INTERVAL=DAY option specifies that the transactions are to be accumulated on a daily basis. The
ACCUMULATE=TOTAL option specifies that the sum of the transactions is to be calculated. After the
transactional data are accumulated into a time series format, many of the procedures provided with SAS/ETS
software can be used to analyze the resulting time series data.

For example, the following statements use the ARIMA procedure to model and forecast each customer’s
balance data by using an ARIMA(1,0,0)(0,1,0)s model (where the number of seasons is s=7 days in a week):

proc arima data=arrays;
by customer;
identify var=balance(7) noprint;
estimate p=(1) outest=estimates noprint;
forecast id=date interval=day out=forecasts;

quit;

The OUTEST=ESTIMATES data set contains the parameter estimates of the model specified. The
OUT=FORECASTS data set contains forecasts based on the model specified. For more information,
see Chapter 8, “The ARIMA Procedure.”

By default, the TIMEDATA procedure produces no printed output.
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Syntax: TIMEDATA Procedure
The following statements are available in the TIMEDATA procedure:

PROC TIMEDATA options ;
BY variables ;
ID variable INTERVAL= interval-option ;
FCMPOPT options ;
OUTARRAYS array-name-list ;
OUTSCALARS scalar-name-list ;
VAR variable-list / options ;
REGISTER package ;
Programming Statements ;

Functional Summary
Table 37.1 summarizes the statements and options that control the TIMEDATA procedure.

Table 37.1 Functional Summary

Description Statement Option

Statements
Specifies BY-group processing BY
Specifies variables to analyze VAR
Specifies the time ID variable ID
Specifies the FCMP options FCMPOPT
Specifies the arrays to output OUTARRAYS
Specifies the scalars to output OUTSCALARS
Specifies the packages to include REGISTER

Data Set Options
Specifies the auxiliary input data sets PROC TIMEDATA AUXDATA=
Specifies the input data set PROC TIMEDATA DATA=
Specifies the output data set PROC TIMEDATA OUT=
Specifies the array output data set PROC TIMEDATA OUTARRAY=
Specifies the run status data set PROC TIMEDATA OUTPROCINFO=
Specifies the scalar output data set PROC TIMEDATA OUTSCALAR=
Specifies the summary statistics output
data set

PROC TIMEDATA OUTSUM=

User-Defined Functions and Subroutine Options
Specifies FCMP quiet mode FCMPOPT QUIET=
Specifies FCMP trace mode FCMPOPT TRACE=
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Table 37.1 continued

Description Statement Option

Accumulation and Seasonality Options
Specifies the accumulation frequency ID INTERVAL=
Specifies the length of seasonal cycle PROC TIMEDATA SEASONALITY=
Specifies the type of life-cycle indexing PROC TIMEDATA CYCLETYPE=
Specifies the interval alignment ID ALIGN=
Specifies that time ID variable values not
be sorted

ID NOTSORTED

Specifies the starting time ID value ID START=
Specifies the ending time ID value ID END=
Specifies the accumulation statistic ID, VAR ACCUMULATE=
Specifies missing value interpretation ID, VAR SETMISSING=
Specifies the zero value interpretation ID, VAR ZEROMISS=

Time Series Transformation Options
Specifies simple differencing VAR DIF=
Specifies seasonal differencing VAR SDIF=
Specifies transformation VAR TRANSFORM=

Printing Control Options
Specifies the time ID format ID FORMAT=
Specifies which output to print PROC TIMEDATA PRINT=

Miscellaneous Options
Specifies the forecast horizon or lead
used to extend the data set

PROC TIMEDATA LEAD=

Limits error and warning messages when
running analysis

PROC TIMEDATA MAXERROR=

Limits error and warning messages when
loading data

PROC TIMEDATA MAXDATAERROR=

ODS Graphics Options
Specifies the variable and array graphical
output

PROC TIMEDATA PLOTS=
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PROC TIMEDATA Statement
PROC TIMEDATA options ;

The following options can be used in the PROC TIMEDATA statement:

AUXDATA=SAS-data-set
names a SAS data set that contains auxiliary input data for the procedure to use for supplying time
series variables. For more information, see the section “Auxiliary Data Sets” on page 2688.

CYCLETYPE=option
specifies the indexing of each time series with respect to life-cycle. By default, CYCLETYPE=BOL.

The following CYCLETYPE= options are available:

BOL indexes the time series by the beginning of life. The first time value is 1. The following
values are incremented by 1.

MOL indexes the time series by the middle of life. The middle time value is zero. The
preceding values are decremented by 1. The following values are incremented by 1.

EOL indexes the time series by the end of life. The last time value is 1. The preceding values
are incremented by 1.

The CYCLETYPE= option specifies the indexing of the _CYCLE_ variable contained in the OUTAR-
RAY= data set and the predefined array _CYCLE_.

DATA=SAS-data-set
names the SAS data set that contains the input data from which the procedure creates the time series.
If the DATA= option is not specified, the most recently created SAS data set is used.

LEAD=n
specifies the number of periods ahead to forecast (forecast lead or horizon) used to extend the data set.
The default is LEAD=0.

The LEAD= value is relative to the last observation in the input data set and not to the last nonmissing
observation of a particular series.

MAXERROR=number
limits the number of warning and error messages that are produced during the execution of the
procedure to the specified number . This option is particularly useful in BY-group processing, where it
can be used to suppress recurring messages. By default, MAXERROR=50.

MAXDATAERROR=number
limits the number of warning and error messages that are produced during the loading of data to the
specified number . This option is particularly useful in BY-group processing, where it can be used to
suppress recurring messages. By default, MAXDATAERROR=50.
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OUT=SAS-data-set
names the output data set to contain the time series variables specified in the subsequent VAR statements.
If BY variables are specified, they are also included in the OUT= data set. If an ID variable is specified,
it is also included in the OUT= data set. The values are accumulated based on the INTERVAL= option
or the ACCUMULATE= option or both in the ID statement. The OUT= data set is particularly useful
when you want to further analyze, model, or forecast the resulting time series with other SAS/ETS
procedures.

OUTARRAY=SAS-data-set
names the output data set to contain the time series vectors listed in the VAR and OUTARRAYS
statements.

The OUTARRAY= data set contains the variables specified in the BY, ID, and VAR statements in
addition to the arrays that are specified in the OUTARRAYS statements.

OUTSCALAR=SAS-data-set
names the output data set to contain the scalar names listed in the OUTSCALARS statements.

The OUTSCALAR= data set contains the variables specified in the BY statement and the scalars that
are specified in the OUTSCALARS statements.

OUTPROCINFO=SAS-data-set
names the output data set to summarize information in the SAS log, specifically the number of notes,
errors, and warnings and the number of series processed, analyses requested, and analyses failed.

OUTSUM=SAS-data-set
names the output data set to contain the descriptive statistics. The descriptive statistics are based on the
accumulated time series when the ACCUMULATE= option, the SETMISSING= option, or both are
specified in the ID or VAR statements. The OUTSUM= data set is particularly useful when analyzing
large numbers of series and a summary of the results is needed.

PLOTS=option | ( options )
specifies the univariate graphical output desired. By default, the TIMEDATA procedure produces
no graphical output. The PLOTS= option produces results that are similar to the data sets shown in
parentheses next to the following options:

ARRAYS plots the time series (OUT= data set).

ALL same as PLOTS=(ARRAYS).

For example, PLOTS=ARRAYS plots the time series. The PLOTS= option produces graphical output
for these results by using the Output Delivery System (ODS).

PRINT=option | ( options )
specifies the printed output desired. By default, the TIMEDATA procedure produces no printed output.
The PRINT= option produces results that are similar to the data sets shown in parentheses next to the
following options:

ARRAYS prints the arrays table (OUTARRAY= data set).

SCALARS prints the scalars table (OUTSCALAR= data set).

SUMMARY prints the descriptive statistics table for all time series (OUTSUM= data set).
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ALL same as PRINT=(ARRAYS SCALARS SUMMARY).

For example, PRINT=SCALARS prints the scalars specified in the OUTSCALARS statement. The
PRINT= option produces printed output for these results by using the Output Delivery System (ODS).

SEASONALITY=number
specifies the length of the seasonal cycle. For example, SEASONALITY=3 means that every group
of three time periods forms a seasonal cycle. By default, the length of the seasonal cycle is 1 (no
seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For
example, INTERVAL=MONTH implies that the length of the seasonal cycle is 12.

BY Statement
You can include a BY statement with PROC TIMEDATA to obtain separate dummy variable definitions for
groups of observations defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY
variables. If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the option NOTSORTED or DESCENDING in the BY statement for the TIMEDATA procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Programmers Guide: Essentials. For more information
about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FCMPOPT Statement
FCMPOPT options ;

The FCMPOPT statement specifies the following options that are related to user-defined functions and
subroutines:

QUIET=ON | OFF
specifies whether the nonfatal errors and warnings that are generated by the user-defined SAS language
functions and subroutines are printed to the log. Nonfatal errors are usually associated with operations
with missing values. The default is QUIET=ON.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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TRACE=ON | OFF
specifies whether the user-defined SAS language functions and subroutines tracings are printed to the
log. Tracings are the results of every operation executed. This option is generally used for debugging.
The default is TRACE=OFF.

ID Statement
ID variable INTERVAL=interval < options > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date or datetime values. In addition, the ID statement specifies
the (desired) frequency associated with the time series. The ID statement options also specify how the
observations are accumulated and how the time ID values are aligned to form the time series. The information
specified affects all variables listed in subsequent VAR statements. If the ID statement is specified, the
INTERVAL= must also be used. If an ID statement is not specified, the observation number, with respect to
the BY group, is used as the time ID.

You can specify the following options in the ID statement:

ACCUMULATE=option
specifies how the data set observations are to be accumulated within each time period. The frequency
(width of each time interval) is specified by the INTERVAL= option. The ID variable contains the time
ID values. Each time ID variable value corresponds to a specific time period. The accumulated values
form the time series, which is used in subsequent analysis.

The ACCUMULATE= option is useful when there are zero or more than one input observations that
coincide with a particular time period (for example, time-stamped transactional data). The EXPAND
procedure offers additional frequency conversions and transformations that can also be useful in
creating a time series.

The following options determine how the observations are accumulated within each time period based
on the ID variable and the frequency specified by the INTERVAL= option:

NONE No accumulation occurs; the ID variable values must be equally spaced with
respect to the frequency. This is the default. Observations are accumulated
based on the following:

TOTAL total sum of their values

AVERAGE | AVG average of their values

MINIMUM | MIN minimum of their values

MEDIAN | MED median of their values

MAXIMUM | MAX maximum of their values

N number of nonmissing observations

NMISS number of missing observations

NOBS number of observations

FIRST first of their values
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LAST last of their values

STDDEV | STD standard deviation of their values

CSS corrected sum of squares of their values

USS uncorrected sum of squares of their values

If the ACCUMULATE= option is specified, the SETMISSING= option is useful for specifying how
accumulated missing values are to be treated. If missing values should be interpreted as zero, then
SETMISSING=0 should be used. For more information about accumulation, see the section “Details:
TIMEDATA Procedure” on page 2684.

ALIGN=option
controls the alignment of SAS dates that are used to identify output observations. The ALIGN= option
accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.

END=option
specifies a SAS date or datetime value that represents the end of the data. If the last time ID variable
value is less than the END= value, the series is extended with missing values. If the last time ID
variable value is greater than the END= value, the series is truncated. For example, END=“&sysdate”D
uses the automatic macro variable SYSDATE to extend or truncate the series to the current date. You
can specify the START= and END= options to ensure that the data that are associated within each BY
group contain the same number of observations.

FORMAT=format
specifies the SAS format for the time ID values. If the FORMAT= option is not specified, the default
format is inferred from the INTERVAL= option.

INTERVAL=interval
specifies the frequency of the accumulated time series. For example, if the input data set consists of
quarterly observations, then INTERVAL=QTR should be used. If the SEASONALITY= option is
not specified in the PROC TIMEDATA statement, the length of the seasonal cycle is implied from
the INTERVAL= option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the
ACCUMULATE= option is also specified, the INTERVAL= option determines the time periods for the
accumulation of observations. The INTERVAL= option is required and must be specified in the ID
statement.

NOTSORTED
specifies that the time ID values not be in sorted order. The TIMEDATA procedure sorts the data with
respect to the time ID prior to analysis.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated
time series. If a number is specified, missing values are set to the number . If a missing value indicates
an unknown value, specify SETMISSING=MISSING. If a missing value indicates a zero value, specify
SETMISSING=0. You would typically use SETMISSING=0 for transactional data because no recorded
data usually implies no activity. You can use the following options to determine how missing values
are assigned. Missing values are set as follows:
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MISSING a missing value. This is the default.

AVERAGE | AVG the accumulated average value

MINIMUM | MIN the accumulated minimum value

MEDIAN | MED the accumulated median value

MAXIMUM | MAX the accumulated maximum value

FIRST the accumulated first nonmissing value

LAST the accumulated last nonmissing value

PREVIOUS | PREV the previous period’s accumulated nonmissing value. Missing values at the
beginning of the accumulated series remain missing.

NEXT the next period’s accumulated nonmissing value. Missing values at the end
of the accumulated series remain missing.

START=option
specifies a SAS date or datetime value that represents the beginning of the data. If the first time ID
variable value is greater than the START= value, missing values are added at the beginning of the
series. If the first time ID variable value is less than the START= value, the series is truncated. You can
specify the START= and END= options to ensure that data associated with each BY group contain the
same number of observations.

ZEROMISS=option
specifies how beginning and ending zero values (either actual or accumulated) are interpreted in the
accumulated time series. The following options can also be used to determine how beginning and
ending zero values are assigned:

NONE Beginning and ending zeros are unchanged. This is the default.

LEFT Beginning zeros are set to missing.

RIGHT Ending zeros are set to missing.

BOTH Both beginning and ending zeros are set to missing.

If the accumulated series is all missing or zero, the series is not changed.

OUTARRAYS Statements
OUTARRAYS array-name-list ;

Each array name listed in an OUTARRAYS statement specifies a numeric output array variable to be stored
in the OUTARRAY= data set. You can include any number of OUTARRAYS statements.

Your programming statements can create and use any number of arrays. Only arrays that are listed in the
OUTARRAYS statement are predefined and included in your output. The arrays are initialized to missing
values.
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OUTSCALARS Statements
OUTSCALARS scalar-name-list ;

Each scalar name listed in an OUTSCALARS statement specifies a numeric output scalar variable to be
stored in the OUTSCALAR= data set. You can include any number of OUTSCALARS statements.

Your programming statements can create and use any number of scalars. Only scalars that are listed in the
OUTSCALARS statement are predefined and included in your output. The scalars are initialized to missing
values.

VAR Statements
VAR variable-list < / options > ;

The VAR statements list the numeric variables in the DATA= data set whose values are to be accumulated to
form the time series.

An input data set variable can be specified in only one VAR statement. You can specify any number of VAR
statements. You can also specify the following options in the VAR statements:

ACCUMULATE=option
specifies how the data set observations are to be accumulated within each time period for the variables
listed in the VAR statement. If the ACCUMULATE= option is not specified in the VAR statement,
accumulation is determined by the ACCUMULATE= option in the ID statement. For more information,
see the ACCUMULATE= option in the ID statement.

DIF=(numlist)
specifies the differencing to be applied to the accumulated time series. The list of differencing orders
must be separated by spaces or commas. For example, DIF=(1,3) specifies first then third order
differencing. Differencing is applied after time series transformation. The TRANSFORM= option is
applied before the DIF= option.

SDIF=(numlist)
specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal
differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first
then third order seasonal differencing. Differencing is applied after time series transformation. The
TRANSFORM= option is applied before the SDIF= option.

SETMISS=option | number

SETMISSING= option | number
specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated
time series for variables listed in the VAR statement. If the SETMISSING= option is not specified in
the VAR statement, missing values are set based on the SETMISSING= option in the ID statement.
For more information, see the SETMISSING= option in the ID statement.
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TRANSFORM=option
specifies the time series transformation to be applied to the accumulated time series. You can specify
the following transformation options:

NONE No transformation is applied. This option is the default.

LOG Logarithmic transformation

SQRT Square-root transformation

LOGISTIC Logistic transformation

BOXCOX(n ) Box-Cox transformation with parameter number where n is between –5 and 5

When the TRANSFORM= option is specified, the time series must be strictly positive.

ZEROMISS=option
specifies how beginning and ending zero values (either actual or accumulated) are interpreted in
the accumulated time series or ordered sequence for variables listed in the VAR statement. If the
ZEROMISS= option is not specified in the VAR statement, beginning and ending zero values are set
based on the ZEROMISS= option of the ID statement. If the ZEROMISS= option is not specified in the
ID statement or the VAR statement, no zero value interpretation is performed. For more information,
see the ZEROMISS= option in the ID statement.

REGISTER Statement
REGISTER package ;

The REGISTER statement specifies which time series and time frequency analysis packages to make available
for your user-defined program. These packages include functions that you can utilize from your program to
perform sophisticated time series processing. These packages provide functionality that ranges from a simple
function to count missing observations in an array to very sophisticated functions that perform time series
statistical analysis.

The REGISTER statement enables you to specify package names that are available for use. You can
only specify a single package in a REGISTER statement. However, you can specify multiple REGISTER
statements.

All packages that are specified in REGISTER statements are loaded prior to parsing your program statements
so that any references are defined at the time your code is parsed. If you specify an invalid package name,
then an error is returned prior to parsing your program statements. For more information, see SAS Forecast
Server: Time Series Packages.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=fstsp&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=fstsp&docsetTarget=titlepage.htm
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Program Statements
Program Statements ;

You can use most of the programming statements that are allowed in the SAS DATA step.

Details: TIMEDATA Procedure
The TIMEDATA procedure forms time series data from transactional data. The accumulated time series can
then be processed using SAS programming statements. The resulting time series can then be analyzed using
time series techniques. The data are analyzed using the following steps (the relevant option is listed to the
left):

1. accumulation ACCUMULATE= option in the ID or VAR statement

2. missing value interpretation SETMISSING= option in the ID or VAR statement

3. time series transformation TRANSFORM= option in the VAR statement

4. time series differencing DIF= and SDIF= options in the VAR statement

5. program execution SAS programming statements

6. descriptive statistics OUTSUM= option

Accumulation
If the ACCUMULATE= option in the ID or VAR statement is specified, data set observations are accumulated
within each time period. The frequency (width of each time interval) is specified by the INTERVAL= option
in the ID statement. The ID variable contains the time ID values. Each time ID value corresponds to a specific
time period. Accumulation is useful when the input data set contains transactional data, whose observations
are not spaced with respect to any particular time interval. The accumulated values form the time series,
which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20

If the INTERVAL=MONTH is specified, all of the preceding observations fall within a three-month period
of time between March 1999 and May 1999. The observations are accumulated within each time period as
follows:



Accumulation F 2685

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are
not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the resulting time series is

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified, the resulting time series is

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified, the resulting time series is

O1MAR1999 10
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MEDIAN option is specified, the resulting time series is

O1MAR1999 20
01APR1999 .
O1MAY1999 20

If the ACCUMULATE=MAXIMUM option is specified, the resulting time series is

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified, the resulting time series is

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified, the resulting time series is

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified, the resulting time series is
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O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As you can see from the preceding examples, the accumulated time series can have missing values even
though the data set observations contain no missing values.

Missing Value Interpretation
Sometimes missing values should be interpreted as unknown values. But sometimes missing values are
known, such as when missing values are created from accumulation and no observations should be interpreted
as no value—that is, zero. In the former case, the SETMISSING= option can be used to interpret how missing
values are treated. Specify SETMISSING=0 when missing observations are to be treated as no (zero) values.
In other cases, missing values should be interpreted as global values, such as minimum or maximum values
of the accumulated series. The accumulated and interpreted time series is used in subsequent analyses.

Time Series Transformation
Four transformations are available for strictly positive series only. Let yt > 0 be the original time series, and
let wt be the transformed series. The transformations are defined as follows:

Log is the logarithmic transformation.

wt D ln.yt /

Logistic is the logistic transformation.

wt D ln.cyt=.1 � cyt //

where the scaling factor c is

c D .1 � 10�6/10�ceil.log10.max.yt ///

and ceil.x/ is the smallest integer greater than or equal to x.

Square root is the square root transformation.

wt D
p
yt

Box Cox is the Box-Cox transformation.

wt D

(
y�t �1

�
; �¤0

ln.yt /; � D 0

More complex time series transformations can be performed by using the EXPAND procedure in SAS/ETS.



Time Series Differencing F 2687

Time Series Differencing
After you optionally transform the series, you can simply or seasonally difference the accumulated series
by using the DIF= and SDIF= options in the VAR statement. For example, suppose yt is a monthly time
series. The following examples of the DIF= and SDIF= options demonstrate how to simply and seasonally
difference the time series:

dif=(1) sdif=(1)
dif=(1,12)

Additionally, when yt is strictly positive and the TRANSFORM=, DIF=, and SDIF= options are combined in
the VAR statements, the transformation operation is performed before the differencing operations.

Summary Statistics
You can compute summary statistics from the working series by specifying the OUTSUM= option or
PRINT=SUMMARY.

Programming Statements
You can typically use most of the SAS programming statements and SAS functions that you can use in a
DATA step for defining the FCMP functions and subroutines. However, there are a few differences in the
capabilities of the DATA step and the FCMP procedure. For more information, see the “FCMP Procedure”
chapter in the Base SAS Procedures Guide.

All variables listed in the ID and VAR statements are assigned as predefined arrays for subsequent processing.
Additionally, all of the array names listed in the OUTARRAYS statements and all of the scalars names listed
in the OUTSCALARS statements are assigned as predefined symbols for subsequent processing.

Predefined Symbols
In addition to both the predefined arrays listed in the OUTARRAYS statements and also the predefined
scalars listed in the OUTSCALARS statements, the TIMEDATA procedure creates the following predefined
symbols for use in the program statements:

Predefined Scalar Values

_FORMAT_ time format either implied by the INTERVAL= option or specified by the FOR-
MAT= option in the ID statement

_INTERVAL_ time interval specified by the INTERVAL= option in the ID statement

_LEAD_ forecast horizon or lead specified by the LEAD= option in the PROC TIMEDATA
statement

_LENGTH_ length of the time series associated with the current BY group

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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_SERIES_ series index or BY-group counter

_SEASONALITY_ length of the seasonal cycle specified by the SEASONALITY= option PROC
TIMEDATA statement or implied by the INTERVAL= option in the ID statement

Predefined Array Values

_TIMEID_ time ID values

_SEASON_ season index values

_CYCLE_ life-cycle index values

Auxiliary Data Sets
Auxiliary data set support enables the TIMEDATA procedure to use auxiliary data sets to contribute input
variables to the run of the procedure step. This functionality creates a virtual data source that enables some of
the input variables to physically reside in different data sets with some defined in the primary data set defined
by the DATA= option and others defined in the data sets that are specified by one or more AUXDATA=
options. For example, this functionality enables sharing of common time series data across multiple projects.

Furthermore, auxiliary data set support enables more than the simple separation of shared data. It also
facilitates the elimination of redundancy in these auxiliary data sources by performing partial matching on
BY-group qualification. Duplication of time series for the full BY-group hierarchy is no longer required for
the auxiliary data sets.

Finally, this functionality permits more than one auxiliary data source to be used concurrently to materialize
the virtual time series vectors across a given BY-group hierarchy. So variables that have naturally different
levels of BY-group qualification can be isolated into separate data sets and supplied with separate AUXDATA=
options to optimize data management and performance.

AUXDATA Functionality

When used, this option declares the presence of an auxiliary data set to optionally provide time series variables
to satisfy various declaration statements in the respective procedure steps.

There are two classes of time series data set sources:

� a primary data set from the DATA=DataSet option

� auxiliary data sources from AUXDATA=DataSet options

You can specify zero or more AUXDATA= options in the PROC TIMEDATA statement. Each AUXDATA=
option establishes an auxiliary data set source to supply variables declared in subsequent statements that
comprise the procedure step.

Variables referenced in the PROC TIMEDATA invocation fall into three classes:

� those that must be physically present in the primary data set
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� those that must be physically present in each auxiliary data set

� those that can reside in either the primary or an auxiliary data set

If you specify an ID variable for PROC TIMEDATA, it must be present in the primary data set and all of the
auxiliary data sets that you specify. Variables that you specify in the BY statement must be present in the
primary data set. A leftmost subset of those BY variables can be present in each of the auxiliary data sets
that you specify, and it is not required that all auxiliary data sets contain the same subset. Partial BY-group
matching is performed for each auxiliary data set independent of the others.

The time series variables that you specify in VAR statements can be resolved from either the primary data set
or an auxiliary data set. Variable resolution proceeds in reverse order from the last AUXDATA= option in the
PROC TIMEDATA statement to the first. If the variable in question is not found in any of those, the variable
must be present in the primary data set for the procedure step to be successful.

AUXDATA Alignment across BY Groups

All BY statement variables must be physically present in the primary data set. However, it is not necessary to
have the BY variables present in any of the auxiliary data sets. All, some, or none of the BY variables can
be present in any auxiliary data set, as your requirements dictate. Partial BY-group matching is performed
between the primary data set and the auxiliary data sets based on the number of BY statement variables that
are present in the respective auxiliary data sets.

For example, suppose you have a hierarchy of (REGION, PRODUCT) in the primary data set, which holds
the time series variables for monthly sales metrics. Suppose you have an auxiliary data set with time series
qualified by REGION for pertinent explanatory variables and another with time series for other explanatory
variables to be applied across all (REGION, PRODUCT) groupings of the primary data set. In this scenario,
each (REGION, PRODUCT) group in the primary data set seeks a match with a corresponding REGION
from the first auxiliary data set to materialize the time series for its variables, but no matching is performed
on the second auxiliary data set to materialize the time series for its variables. So if (‘SOUTH’,‘EDSEL’) is a
BY group from the primary data set, the ‘SOUTH’ BY-group series from the first auxiliary data set are used,
and the series from the second auxiliary data set are supplied without qualification. If the next primary BY
group is (‘SOUTH’, ‘HUDSON’), then the ‘SOUTH’ BY group is again used to supply the time series from
the first auxiliary data set, and the unqualified series are supplied from the second auxiliary data set. So on it
goes, each auxiliary data set performing a partial match on the BY variables it holds within the BY group
from the primary data set.

AUXDATA Alignment over the Time Dimension

The series from each BY group of the primary data set defines a reference time span for the auxiliary data
sets. Only the intersection of the time interval for each auxiliary series with the reference span is materialized.
Head or tail missing values are inserted into the auxiliary series for start or stop times that lie inside the
reference span. More generally, missing value semantics apply to the head and tail regions that require filling
to materialize the full reference time span.

With time series materialized from a single primary data set, there is no latitude for different time ID ranges
between the different variables because each observation read contains not only the time ID but also the
associated values for all of the variables. With some series materialized from the primary data set and some
materialized from auxiliary data sets, the possibility exists for the reference time span to have an arbitrary
intersection with the time span of the corresponding series from the auxiliary sources. The intent is to
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materialize the portion of the auxiliary series time span that intersects with the reference time span and to
handle head and tail shortages via missing value semantics as needed.

For the previous usage scenario with a primary data set and two auxiliary data sets, when data are read over a
sequence of primary BY groups it might be necessary to materialize various spans of the auxiliary series
with appropriate missing value semantics applied as needed to resolve head and tail shortages even though
the actual time series contributed from the auxiliary data sets does not physically change. The following
discussion breaks this down into several cases depending on intersection possibilities between the reference
time span and the auxiliary time span.

Legend:

� tbP denotes the begin time ID of the primary (DATA=) series.

� teP denotes the end time ID of the primary (DATA=) series.

� tbA denotes the begin time ID of the AUXDATA series.

� teA denotes the end time ID of the AUXDATA series.

� ŒtbP ; t
e
P � denotes the time span for the primary (DATA=) series (also known as the reference time span).

� ŒtbA; t
e
A� denotes the time span for the AUXDATA series.

Case 1:

DATA
tbP
Œ

teP
�

AUX
tbA
Œ

teA
�

Here ŒtbP ; t
e
P � � ŒtbA; t

e
A�. The auxiliary time span includes the reference span as a subset. Values in the

AUXDATA series to the left of tbP and values to the right of teP are truncated from the AUXDATA series that
is materialized in connection with the primary series.

Case 2:

DATA
tbP
Œ

teP
�

AUX
tbA
Œ

teA
�

Here ŒtbP ; t
e
P � D Œt

b
P ; t

b
A/ [ Œt

b
A; t

e
P �. The reference time span leads the auxiliary time span with a non-empty

intersection. AUXDATA series values in ŒtbP ; t
b
A/ are materialized with missing value semantics. AUXDATA

series values in ŒtbA; t
e
P � are materialized as actual subject to missing value semantics.
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Case 3:

DATA
tbP
Œ

teP
�

AUX
tbA
Œ

teA
�

Here ŒtbP ; t
e
P � D Œt

b
P ; t

e
A� [ .t

e
A; t

e
P �. The reference time span lags the auxiliary time span with a non-empty

intersection. AUXDATA series values in ŒtbP ; t
e
A� are materialized as actual subject to missing value semantics.

AUXDATA series values in .teA; t
e
P � are materialized with missing value semantics.

Case 4:

DATA
tbP
Œ

teP
�

AUX
tbA
Œ

teA
�

Here ŒtbA; t
e
A� � Œt

b
P ; t

e
P �. The auxiliary time span is a subset of the reference time span. AUXDATA series

values in ŒtbP ; t
b
A/ and values in .teA; t

e
P � are materialized with missing value semantics. AUXDATA series

values in ŒtbA; t
e
A� are materialized as actual subject to missing value semantics.

Case 5:

DATA
tbP
Œ

teP
�

AUX
tbA
Œ

teA
�

Here ŒtbP ; t
e
P �\ Œt

b
A; t

e
A� D ˛. The auxiliary time span does not intersect the reference time span at all. In this

case all AUXDATA series values are materialized with missing value semantics.
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Data Set Output
The TIMEDATA procedure can create the OUT=, OUTARRAY=, OUTPROCINFO=, OUTSCALAR=, and
OUTSUM= data sets. In general, these data sets contain the variables listed in the BY statement. If an
analysis step that is related to an output step fails, the values of this step are not recorded or are set to missing
in the related output data set but appropriate error or warning messages (or both) are recorded in the log.

OUT= Data Set
The OUT= data set contains the variables specified in the BY, ID, or VAR statements. If the ID statement is
specified, the ID variable values are aligned and extended based on the ALIGN= and INTERVAL= options.
The values of the variables specified in the VAR statements are accumulated based on the ACCUMULATE=
option, and missing values are interpreted based on the SETMISSING= option.

OUTARRAY= Data Set
The OUTARRAY= data set contains the variables specified in the BY, ID, or VAR statements. If the
ID statement is specified, the ID variable values are aligned and extended based on the ALIGN= and
INTERVAL= options. The values of the variables specified in the VAR statements are accumulated based
on the ACCUMULATE= option, and missing values are interpreted based on the SETMISSING= option.
Additionally, the OUTARRAY= data set contains the variables that are specified in the OUTARRAYS
statements and the following variables:

_STATUS_ status flag that indicates whether the requested analyses were successful

_SERIES_ series index or BY-group index

_TIMEID_ time ID values

_SEASON_ season index values

_CYCLE_ life-cycle index values

Array-Variable-Names variables listed in the OUTARRAYS statement

The OUTARRAY= data set contains the arrays that are related to the (accumulated) time series.
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OUTPROCINFO= Data Set
The OUTPROCINFO= data set contains information about the run of the TIMEDATA procedure. The
following variables are present:

_SOURCE_ name of the procedure, in this case TIMEDATA

_NAME_ name of the item being reported

_LABEL_ descriptive label for the item in _NAME_

_STAGE_ current stage of the procedure (for TIMEDATA this is set to ALL)

_VALUE_ value of the item specified in _NAME_

OUTSCALAR= Data Set
The OUTSCALAR= data set contains the variables specified in the BY statement. Additionally, the
OUTSCALAR= data set contains the variables that are specified in the OUTSCALARS statements and
following variables:

_STATUS_ status flag that indicates whether the requested analyses were successful

_SERIES_ series index or BY-group counter

Scalar-Variable-Names variables listed in the OUTSCALARS statement

The OUTSCALAR= data set contains the scalars that are related to the (accumulated) time series.

OUTSUM= Data Set
The OUTSUM= data set contains the variables that are specified in the BY statement as and the variables
in the following list. The OUTSUM= data set records the descriptive statistics for each variable specified
in a VAR statement. Variables related to descriptive statistics are based on the ACCUMULATE= and
SETMISSING= options in the ID and VAR statements:

_NAME_ variable name

_STATUS_ status flag that indicates whether the requested analyses were successful

_SERIES_ count of the series processed in each BY group

START the starting date of each series

END the ending date of each series

STARTOBS the beginning observation number of each series

ENDOBS the ending observation number of each series

NOBS number of observations

N number of nonmissing observations
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NMISS number of missing observations

MINIMUM minimum value

MAXIMUM maximum value

AVG average value

STDDEV standard deviation

The OUTSUM= data set contains the descriptive statistics of the (accumulated) time series.

_STATUS_ Variable Values
The _STATUS_ variable that appears in the OUTSUM= data set contains a value that specifies whether the
analysis has been successful or not. The _STATUS_ variable can take the following values:

0 Analysis was successful.

3000 Accumulation failed.

4000 Missing value interpretation failed.

6000 Series is all missing.

7000 Transformation failed.

8000 Differencing failed.

9000 Descriptive statistics could not be computed.

Printed Output
The TIMEDATA procedure optionally produces printed output by using the Output Delivery System (ODS).
By default, the procedure produces no printed output. All output is controlled by the PRINT= option
associated with the PROC TIMEDATA statement. In general, if an analysis step related to printed output
fails, the values of this step are not printed and appropriate error or warning messages or both are recorded in
the log. The printed output is similar to the output data set as follows:

PRINT=ARRAYS prints the arrays similar to the OUTARRAY= data set.

PRINT=SCALARS prints the scalars similar to the OUTSCALAR= data set.

PRINT=SUMMARY prints the summary statistics similar to the OUTSUM= data set.
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ODS Table Names
Table 37.2 relates the PRINT= options to ODS tables.

Table 37.2 ODS Tables Produced in PROC TIMEDATA

ODS Table Name Description Statement Option

Arrays Arrays table PRINT ARRAYS
Scalars Scalars table PRINT SCALARS
StatisticsSummary Statistics summary PRINT SUMMARY

The tables are related to all series within a BY group.

Arrays Table

The arrays table (Arrays) illustrate the arrays in tabular form with respect to the Time ID values.

Scalars Table

The scalars table (Scalars) illustrate the scalars in tabular form.

Statistics Summary Table

The summary statistics table (StatisticsSummary) illustrate the summary statistics for each array in tabular
form.

ODS Graphics Names
This section describes the graphical output produced by the TIMEDATA procedure. PROC TIMEDATA
assigns a name to each graph it creates. These names are listed in Table 37.3.

Table 37.3 ODS Graphics Produced by PROC TIMEDATA

ODS Graph Name Plot Description Statement Option

ArrayPlot Array plot PLOTS ARRAY

The graphs are related to a single series within a BY group.
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Array Plots

The array plots (ArraryPlot) illustrate time series associated with each array. The horizontal axis represents
the time ID values, and the vertical axis represents the time series values.

Examples: TIMEDATA Procedure

Example 37.1: Accumulating Transactional Data into Time Series Data
This example uses the TIMEDATA procedure to accumulate time-stamped transactional data that has been
recorded at no particular frequency into time series data at a specific frequency. After the time series is created,
the various SAS/ETS procedures related to time series analysis, seasonal adjustment and decomposition,
modeling, and forecasting can be used to further analyze the time series data.

Suppose that the input data set Work.Retail contains variables Store and Timestamp and numerous other
numeric transaction variables. The BY variable Store contains values that break up the transactions into
groups (BY groups). The time ID variable Timestamp contains SAS date values recorded at no particular
frequency. The other data set variables contain the numeric transaction values to be analyzed. It is further
assumed that the input data set is sorted by the variables Store and Timestamp. The following statements
form monthly time series from the transactional data based on the median value (ACCUMULATE=MEDIAN)
of the transactions recorded with each time period. Also, the accumulated time series values for time periods
with no transactions are set to zero instead of to missing (SETMISS=0) and only transactions recorded
between the first day of 1998 (START=’01JAN1998’D ) and last day of 2000 (END=’31DEC2000’D) are
considered and, if needed, extended to include this range.

proc timedata data=retail out=mseries;
by store;
id timestamp interval=month

accumulate=median
setmiss=0
start='01jan1998'd
end ='31dec2000'd;

var item1-item8;
run;

The monthly time series data are stored in the data set Work.Mseries. Each BY group associated with the BY
variable Store contains an observation for each of the 36 months associated with the years 1998, 1999, and
2000. Each observation contains the values Store, Timestamp, and each of the analysis variables in the input
data set.

After each set of transactions has been accumulated to form a corresponding time series, accumulated time
series can be analyzed using various time series analysis techniques. For example, exponentially weighted
moving averages can be used to smooth each series. The following statements use the EXPAND procedure to
smooth the analysis variable named Storeitem:
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proc expand data=mseries out=smoothed from=month;
by store;
id date;
convert storeitem=smooth / transform=(ewma 0.1);

run;

The smoothed series are stored in the data set Work.Smoothed. The variable Smooth contains the smoothed
series.

If the time ID variable Timestamp contains SAS datetime values instead of SAS date values, the INTERVAL=,
START=, and END= options must be changed accordingly and the following statements could be used:

proc timedata data=retail out=tseries;
by store;
id timestamp interval=dtmonth

accumulate=median
setmiss=0
start='01jan1998:00:00:00'dt
end ='31dec2000:00:00:00'dt;

var _numeric_;
run;

The monthly time series data are stored in the data Work.Tseries, and the time ID values use a SAS datetime
representation.

Example 37.2: Using User-Defined Functions and Subroutines
This example uses the TIMEDATA procedure with a user-defined function and subroutine created by the
FCMP procedure.

The following statements use the FCMP procedure to create a user-defined subroutine and a user-defined
function. Mylog is a subroutine that log-transforms a time series. Mymean is a function that compute the
mean of a time series. The subroutine and function definitions are stored in the data set Work.Timefnc. The
OPTIONS statement loads the subroutine and function definitions.

proc fcmp outlib=work.timefnc.funcs;

subroutine mylog(actual[*], transform[*]);
outargs transform;
actlen = DIM(actual);
do t = 1 to actlen;

transform[t] = log(actual[t]);
end;
endsub;

function mymean(actual[*]);
actlen = DIM(actual);
sum = 0;
do t = 1 to actlen;

sum = sum + actual[t];
end;
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return( sum / actlen );
endsub;

run;
quit;

options cmplib = work.timefnc;

The input data set Sashelp.Air contains the variables Air and Date. The time series is recorded monthly.

The following statements form quarterly time series from the monthly series based on the median value
(ACCUMULATE=TOTAL) of the transactions recorded with each time period and assign the SAS time
format (FORMAT=YYMMDD.). The OUTARRAYS statement specifies the Logair and Myair arrays as
output. The OUTSCALARS statement specifies the Mystats scalars as output. The other arrays and scalars
are not part of the output. The subsequent programming statements create the output arrays and scalars. The
PRINT=(ARRAYS SCALARS) prints the output arrays and scalars.

proc timedata data=sashelp.air out=work.air
print=(scalars arrays);
id date interval=qtr acc=t format=yymmdd.;
vars air;
outarrays logair myair;
outscalars mystats;

call mylog(air,logair);
do t = 1 to dim(air);
myair[t] = air[t] - logair[t];
end;
mystats= mymean(air);

run;

Example 37.3: Using Auxiliary Data Sets with PROC TIMEDATA
This example demonstrates the use of the AUXDATA= option in PROC TIMEDATA. The data set
Sashelp.Gulfoil contains oil and gas production data from the Gulf of Mexico. The variables Region-
Name and ProtractionName can be used to define a time series hierarchy of interest. Suppose you want to
generate two new series that contain the protraction’s share of oil and gas production for its associated region
at each time index.

You first use PROC TIMESERIES to perform temporal aggregation (accumulation) of the time series for the
RegionName level.

proc timeseries data=sashelp.gulfoil
out=byregion(rename=(oil=roil gas=rgas));

by regionname;
id date interval=month accumulate=total notsorted;
var oil gas;

run;
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You can then use PROC TIMEDATA with the AUXDATA= option to compute the share of oil and gas
production contributed by each protraction within its associated region. PROC TIMEDATA reads a monthly
time series for each (RegionName, ProtractionName) group for the variables Oil and Gas from Sashelp.Gulfoil.
Two new series are produced in the variables Oilshare and Gasshare that respectively contain the protraction’s
share of the oil and gas production at the region level of the hierarchy (given by variables Roil and Rgas).
Those share variables are specified in the OUTARRAY statement for inclusion in the OUTARRAY= data set
(Work.Shares). This example relies on the capability of the AUXDATA= feature to perform partial BY-group
matching. The time series that are acquired for the variables Roil and Rgas are the result of matching on
the RegionName BY variable from the data set Work.Byregion with the RegionName variable from the BY
groups that are acquired from the Sashelp.Gulfoil data set.

proc timedata data=sashelp.gulfoil
auxdata=byregion
out=_null_
outarray=shares;

by regionname protractionname;
outarray oilshare gasshare;
var oil gas roil rgas;
id date interval=month accumulate=total;
do i=1 to _length_;

oilshare[i] = oil[i] / roil[i];
gasshare[i] = gas[i] / rgas[i];

end;
run;

The following code demonstrates that the computed shares sum to 1 for each time index in the resulting
Oilshare and Gasshare series. PROC TIMESERIES is used to accumulate the shares for these respective
variables from the data set Work.Shares and the accumulated share series at the RegionName level are stored
to the data set Work.Rshares with variable names Oilsum and Gassum, respectively. The summary from
PROC MEANS for the distinct values of RegionName shows that per-time totals for both share series sums
to 1.

proc timeseries data=shares
out=rshares(rename=(oilshare=oilsum gasshare=gassum));

by regionname;
id date interval=month accumulate=total notsorted;
var oilshare gasshare;

run;
proc means data=rshares;

by regionname;
var oilsum gassum;

run;

Output 37.3.1 Validation of Oil and Gas Shares by Region

The MEANS Procedure

Region within Gulf of Mexico=Central

Variable N Mean Std Dev Minimum Maximum

oilsum
gassum

123
123

1.0000000
1.0000000

0
0
1.0000000
1.0000000

1.0000000
1.0000000
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Output 37.3.1 continued

Region within Gulf of Mexico=Western

Variable N Mean Std Dev Minimum Maximum

oilsum
gassum

123
123

1.0000000
1.0000000

0
0
1.0000000
1.0000000

1.0000000
1.0000000

You might also want to plot the share series. The following code produces a graph that overlays the protraction
level share series for oil production for the Western region:

proc sgplot data=shares(where=(RegionName='Western'));
series x=Date y=OilShare/group=ProtractionName;

run;

Output 37.3.2 Protraction Share of Oil Production for Western Region



References F 2701

References

Keogh, E., Chu, S., Hart, D., and Pazzani, M. (2004). “Segmenting Time Series: A Survey and Novel
Approach.” In Data Mining in Time Series Databases, edited by M. Last, A. Kandel, and H. Bunke, 1–22.
London: World Scientific. https://www.worldscientific.com/worldscibooks/10.1142/
5210.

https://www.worldscientific.com/worldscibooks/10.1142/5210
https://www.worldscientific.com/worldscibooks/10.1142/5210


2702



Chapter 38

The TIMEID Procedure

Contents
Overview: TIMEID Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2703
Getting Started: TIMEID Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2704
Syntax: TIMEID Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2704

Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2704
PROC TIMEID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2705
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2707
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2708

Details: TIMEID Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2709
Time ID Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2709
Diagnostic Output Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2709
Inferring Time Intervals and Alignments . . . . . . . . . . . . . . . . . . . . . . . . 2711
Data Set Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712
Printed Tabular Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2715
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2715

Examples: TIMEID Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2716
Example 38.1: Examining a Weekly Time ID Variable . . . . . . . . . . . . . . . . . 2716
Example 38.2: Inferring a Date Interval . . . . . . . . . . . . . . . . . . . . . . . . . 2723
Example 38.3: Examining Multiple BY Groups . . . . . . . . . . . . . . . . . . . . . 2723

Overview: TIMEID Procedure
The TIMEID procedure evaluates a variable in an input data set for its suitability as a time ID variable in
SAS procedures and solutions that are used for time series analysis. PROC TIMEID assesses how well a
time interval specification fits SAS date or datetime values, or observation numbers used to index a time
series. The time interval used in this analysis can be either specified explicitly as input to PROC TIMEID
or inferred by the procedure based on values of the time ID variable. The TIMEID procedure produces
diagnostic information in the form of data sets and ODS tabular and plotted output. These diagnostic results
summarize characteristics of the time ID variable that can help determine its use as an index in other time
series procedures and solutions.

PROC TIMEID is intended for use as a tool to either identify the time interval of a variable or prepare
problematic data sets for use in subsequent time series analyses. In particular, this procedure can be used to
investigate inconsistencies between time ID values and the ID statement options used in other SAS procedures
and solutions.
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Getting Started: TIMEID Procedure
When a data set contains a time ID variable with corrupted, missing, or duplicate values, PROC TIMEID can
help isolate and identify these problematic observations. For a data set with a small number of ID variable
anomalies and a known time interval, a graphical depiction of the problem areas can be created using the
following statements:

proc timeid data=<input-dataset> plot=values;
id <time-ID-variable> interval=<frequency>;

run;

For larger data sets whose quality is unknown, it can be useful to get a general overview of the relative
number of observations with problematic time ID values. The following statements graphically summarize
the prevalence of anomalous time ID values:

proc timeid data=<input-dataset> plot=(intervalcounts offsets spans);
id <time-ID-variable> interval=<frequency>;

run;

When prior knowledge of the time interval that separates observations is incomplete, PROC TIMEID can
be used to infer the interval by omitting the INTERVAL= option from the ID statement as in the following
statements:

proc timeid data=<input-dataset> outinterval=<output-dataset>;
id <time-ID-variable>;

run;

Syntax: TIMEID Procedure
The TIMEID procedure uses the following statements:

PROC TIMEID options ;
BY variables ;
ID variable < options > ;

Functional Summary
The statements and options that control the TIMEID procedure are summarized in Table 38.1.

Table 38.1 Functional Summary

Description Statement Option

Statements
Specifies data sets and options PROC TIMEID
Specifies BY-group processing BY
Specifies the time ID variable ID
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Table 38.1 continued

Description Statement Option

Data Set Options
Specifies the input data set PROC TIMEID DATA=
Specifies the maximum number of ID
values to analyze

PROC TIMEID NBYOBS=

Specifies the output frequency count
data set

PROC TIMEID OUTFREQ=

Specifies the output interval data set PROC TIMEID OUTINTERVAL=
Specifies the detailed output interval
data set

PROC TIMEID OUTINTERVALDETAILS=

Time ID Options
Specifies the interval alignment ID ALIGN=
Specifies that duplicate time ID
values can be present in the DATA=
data set

ID DUPLICATES

Specifies the time interval between
observations

ID INTERVAL=

Specifies that time ID variable values
are not sorted

ID NOTSORTED

Printing and Plotting Options
Specifies the time ID format ID FORMAT=
Specifies the types of graphical
output

PROC TIMEID PLOT=

Specifies the types of printed output PROC TIMEID PRINT=

Miscellaneous Options
Limits the number of error and
warning messages

PROC TIMEID MAXERROR=

PROC TIMEID Statement
PROC TIMEID options ;

The following options can be used in the PROC TIMEID statement:

DATA=SAS-data-set
names the SAS data set that contains the input data for the procedure. If the DATA= option is not
specified, the most recently created SAS data set is used.
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MAXERROR=number
limits the number of warning and error messages produced during the execution of the procedure to
the specified value. The default is MAXERRORS=50. This option is particularly useful in BY-group
processing, where it can be used to suppress recurring messages.

NBYOBS=number
limits the number of observations that are used to analyze the time ID variable. The NBYOBS= option
should be used instead of the OBS= data set option when BY variables are specified. The NBYOBS=
option excludes observations from incomplete BY groups in the analysis. This option guarantees
that any truncation of the DATA= data set occurs at a BY-group boundary. Only BY groups that are
completely contained within the first number of observations are processed. When the NBYOBS=
option is omitted, all observations are processed.

OUTFREQ=SAS-data-set
names the output data set to contain the frequency counts of each unique value of the time ID variable.
The frequency counts are performed on time ID values that are recorded in the DATA= data set. The
time ID values are not aligned with respect to an interval prior to computation of the frequency counts.
For more information, see the section “OUTFREQ= Data Set” on page 2712.

OUTINTERVAL=SAS-data-set
names the output data set to contain the time ID interval information that is summarized across all BY
groups in the DATA= data set. For more information, see the section “OUTINTERVAL= Data Set” on
page 2712.

OUTINTERVALDETAILS=SAS-data-set
names the output data set to contain the time ID interval information for each BY group. For more
information, see the section “OUTINTERVALDETAILS= Data Set” on page 2713.

PLOT(global-option)=request-option | (request-options)
specifies the graphical output desired. By default, the TIMEID procedure produces no graphical output.
The following global-options are available:

UNPACK | UNPACKPANELS suppresses paneling.

By default, multiple plots can appear in some output panels. Specify UNPACKPANELS to get each
plot in a separate panel. The following plot request-options are available:

COUNTS | INTCNTS | INTERVALCOUNTS
plots a histogram of the time ID interval counts.

OFFSETS plots a histogram of the time offsets for the time ID values.

PERIODS | SPANS plots a histogram of the spans between adjacent time ID values.

VALUES plots a panel of the counts, offsets, and spans for each of the time ID
values.

ALL is equivalent to specifying PLOT=(INTERVALCOUNTS SPANS OFF-
SETS VALUES).

For more information, see the section “Time ID Diagnostics” on page 2709.
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PRINT=option | (options)
specifies the printed output desired. By default, the TIMEID procedure produces no printed output.
The following printing options are available:

COUNTS | INTCNTS | INTERVALCOUNTS
prints a table that contains the counts of time ID values per interval.

INTERVAL prints a summary of information about the time interval.

OFFSETS prints a table that contains the time offsets for the time ID values.

PERIODS | SPANS prints tables that contain statistics on the spans between adjacent time ID
values.

VALUES prints tables that contain offset span and count information for the time
ID values.

ALL is equivalent to specifying PRINT=(INTERVALCOUNTS SPANS IN-
TERVAL OFFSETS VALUES).

For more information, see the section “Time ID Diagnostics” on page 2709.

BY Statement
BY variables ;

A BY statement can be used with PROC TIMEID to obtain separate analyses for groups of observations
defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the option NOTSORTED or DESCENDING in the BY statement for the TIMESERIES
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Programmers Guide: Essentials. For more information
about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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ID Statement
ID variable < options > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date or datetime values. The ID statement options specify how
the time ID values are spaced and aligned relative to a SAS date or datetime interval. The INTERVAL=
option specifies the fundamental spacing that is used as the basis for counting intervals, offsets, and spans in
the data. Specification of the ID variable in an ID statement is required.

ALIGN=alignment
specifies the alignment of the identifying SAS date or datetime that is used to represent intervals. The
value of the ALIGN= option is used in the analysis of the time ID variable. The ALIGN= option
accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, ENDING | END | E,
and INFER. For example, ALIGN=BEGIN specifies that the identifying date for the interval is the
beginning date in the interval. If the ALIGN= option is not specified, then the default alignment is
BEGIN. ALIGN=INFER specifies that the alignment of values within time intervals be inferred from
the time ID values.

DUPLICATES
specifies that multiple observations in the DATA= data set can fall within the same time interval
as defined by the time ID variable. When this option is omitted and multiple time ID values are
encountered in a single time interval, error messages are written to the SAS log.

FORMAT=format
specifies the SAS format used for time ID values in the data sets and in printed and plotted output that
is generated by PROC TIMEID. If the FORMAT= option is not specified, the format applied to the
input time ID variable is used. If neither of these formats is specified, the format is inferred from the
INTERVAL= option.

INTERVAL=interval
specifies the proposed time interval and shift that describe the time ID values in the input data set. For
more information about the intervals that can be specified, see Chapter 5, “Date Intervals, Formats,
and Functions.” For more information about how the INTERVAL= option determines the nature of
diagnostic information reported by the TIMEID procedure, see the section “Time ID Diagnostics” on
page 2709.

If no interval is specified, the procedure attempts to infer an interval from the input time ID values. For
more information about how the time interval is inferred, see the section “Inferring Time Intervals and
Alignments” on page 2711.

NOTSORTED
specifies that the observations in the DATA= data set are not sorted by the time ID variable. When
this option is omitted, error messages are generated for time ID values that are not sorted in ascending
order.
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Details: TIMEID Procedure

Time ID Diagnostics
For a specified time interval, PROC TIMEID decomposes the raw time ID values in an input data set into
the following three quantities, whose values are represented by nonnegative integers at each unique time ID
value in the input series:

interval counts the number of observations that share each time interval in the data set.

offsets the numerical difference between a time ID value and the aligned value for that time
interval. The unit of measure used to express this distance is days for date values and
seconds for datetime values. The offset is computed for each time ID value, ti , by using
the following SAS expression:

offseti D ti � INTNX.interval; ti ; 0; alignment/

spans the number of intervals between each time ID value and the previous time ID value. The
spans value is equivalent to the number returned by the following SAS expression:

spansi D INTCK.interval; ti�1; ti /

Diagnostic Output Representation
The TIMEID procedure produces time ID diagnostics as both time-ID-based and count-based frequency
distributions to expose many of the possible problems that can occur in a time ID variable. The time-ID-based
frequency distributions that are generated with the PLOT= option provide a detailed view of time ID values
that can isolate problems with specific ID values. Figure 38.1 shows a time series that has a span of 10
observations in a weekday series based on the results of the PLOT=(VALUES SPANS) option. The single
large bar in the spans plot shows where data are omitted.
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Figure 38.1 Time ID Decomposition

The count-based frequency distributions summarize features of the time ID variable. Individual printed and
plotted outputs are available to describe the distribution of the number of spans, offsets, and interval counts
that occur in the time ID variable. Figure 38.2 illustrates a count-based frequency distribution of the spans
within the weekday series.
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Figure 38.2 Span Count Distribution

The large bar at the span of 1 shows that most of the observations are correctly separated by one interval. The
bar at 11 indicates that one observation is separated by 11 intervals from the preceding value of the time ID
variable. This further illustrates a span of 10 omitted observations.

Inferring Time Intervals and Alignments
When the INTERVAL= option is not specified in the ID statement, a time interval is inferred from the time
ID values in the input data set. The technique used to infer a time interval involves searching for the interval
that fits the greatest number of time ID values. First, time ID values are sampled from the input data set to
generate a set of candidate intervals. Then the candidate interval that is consistent with greatest number of
time ID values is chosen to represent the time series.

When the ALIGN=INFER option is specified, the convention that is used to specify time interval alignment
is inferred from the time ID variable values by using a similar technique. When both the time interval and its
alignment are to be inferred, each of the possible alignments, BEGIN, MIDDLE, and END, is considered in
the search. Precedence in the search is given to intervals with the BEGIN alignment.
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Data Set Output
The TIMEID procedure creates the OUTFREQ=, OUTINTERVAL=, and OUTINTERVALDETAILS= data
sets. The OUTFREQ= and OUTINTERVALDETAILS= data sets contain the variables that are specified in
the BY statement along with variables that characterize the time ID values. The OUTINTERVAL= option
creates a data set without BY variables. The information in this data set summarizes time ID diagnostic
information across all BY groups in the DATA= data set.

OUTFREQ= Data Set

The OUTFREQ= data set contains a single observation for each value of the time ID variable in the input
data set for each BY group. Additionally, the following variables are written to the OUTFREQ= data set:

COUNT number of the occurrences of the time ID value

PERCENT percentage of all time ID values

OUTINTERVAL= Data Set

The OUTINTERVAL= data set contains information that is similar to the variables written to the OUTIN-
TERVALDETAILS= data set; however, the OUTINTERVAL= data set summarizes the information across all
BY groups into a single observation. The following variables are written to the OUTINTERVAL= data set:

TIMEID time ID variable

START smallest time ID interval

END largest time ID interval

STARTSHARED largest starting time ID interval

ENDSHARED smallest ending time ID interval

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

NBY number of BY groups

NINVALID number of invalid observations

STATUS status flag that indicates whether the requested analyses were successful:

0 The analysis completed successfully.

1 interval consistent but data contain gaps

2 interval not consistent with data

10 missing or invalid values found

20 ID values not sorted

21 duplicate ID values detected

30 fewer than three values found
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4000 Inference of a time interval from the data set failed.

5000 Diagnosis of the DATA= data set for the specified time interval failed.

MSG a message that provides further details when the STATUS variable is not zero

INTERVAL time interval that is specified or recommended

INTNAME time interval base name that is specified or recommended

MULTIPLIER time interval multiplier that is specified or recommended

SHIFT_INDEX time interval shift index that is specified or recommended

ALIGNMENT time interval alignment that is specified or recommended

SEASONALITY seasonality determined from specified or recommended time interval

TOTALSEASONCYCLES total number of seasonal cycles spanned by all the observations

SEASONCYCLESSHARED number of seasonal cycles that are shared among all BY groups

FORMAT format of the time ID variable

The START, END, STARTSHARED, and ENDSHARED variables are reported using the interval and alignment
specified in the ID statement or inferred from the time ID values.

OUTINTERVALDETAILS= Data Set

The OUTINTERVALDETAILS= data set contains statistics about the time interval that is specified in the ID
statement or inferred from the time ID values for each BY group. The following variables represent these
statistics:

TIMEID time ID variable name

START starting time ID interval

END ending time ID interval

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

NINVALID number of invalid observations

NINTCNTS number of unique interval count values

PCTINTCNTS percentage of interval counts greater than one

MININTCNT minimum of interval counts

MAXINTCNT maximum of interval counts

MEANINTCNT mean of interval counts

STDINTCNT standard deviation of interval counts

MEDINTCNT median of interval counts

NOFFSETS number of time ID offset

PCTOFFSETS percentage of time ID offset
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MINOFFSET minimum of time ID offsets

MAXOFFSET maximum of time ID offsets

MEANOFFSET mean of time ID offsets

STDOFFSET standard deviation of time ID offsets

MEDOFFSET median of time ID offsets

NSPANS number of spans between time ID values

PCTSPANS percentage of spans between time ID values

MINSPAN maximum of spans between time ID values

MAXSPAN minimum of spans between time ID values

MEANSPAN mean of spans between time ID values

STDSPAN standard deviation of spans between time ID values

MEDSPAN median of spans between time ID values

STATUS status flag that indicates whether the requested analyses were successful:

0 The analysis completed successfully.

1 interval consistent but data contain gaps

2 interval not consistent with data

10 missing or invalid values found

20 ID values not sorted

21 duplicate ID values detected

30 fewer than three values found

4000 Inference of a time interval from the data set failed.

5000 Diagnosis of the DATA= data set for specified time interval failed.

MSG a message that provides further details when the STATUS variable is not zero

INTERVAL time interval specified or recommended

INTNAME time interval base name specified or recommended

MULTIPLIER time interval multiplier specified or recommended

SHIFT_INDEX time interval shift index specified or recommended

ALIGNMENT time interval alignment specified or recommended

SEASONALITY seasonality determined from specified or recommended time interval

NSEASONCYCLES number of seasonal cycles spanned by the time ID values

FORMAT format of the time ID variable

The START and END variables are reported using the interval and alignment specified in the ID statement or
inferred from the time ID values.
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Printed Tabular Output
The TIMEID procedure optionally produces printed output by using the Output Delivery System (ODS). By
default, the procedure produces no printed output. The appearance of the printed tabular output is controlled
by the PRINT= option in the PROC TIMEID statement.

Table 38.2 relates the PRINT= options to the names of the ODS tables.

Table 38.2 ODS Tables Produced in PROC TIMEID

ODS Name Description PRINT= Option

DataSet Information about the input data
set

ALL

Decomposition Time ID counts, offsets, and
spans

VALUES

Interval Information about the time
interval

INTERVAL

IntervalCountsComponent Frequency distribution of interval
counts

INTERVALCOUNTS

IntervalCountsStatistics Statistics on interval count
frequency distribution

INTERVALCOUNTS

OffsetsComponent Frequency distribution of offsets OFFSETS
OffsetStatistics Statistics on offset frequency

distribution
OFFSETS

SpansComponent Frequency distribution of spans SPANS
SpanStatistics Statistics on the span frequency

distribution
SPANS

Values Time ID value counts VALUES
ValueSummary Summary of the number of valid

observations
VALUES

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

The TIMEID procedure uses ODS Graphics to produce plotted output as specified by the PLOT= option.
Table 38.3 relates the PLOT= options to the names of the ODS Graphics objects.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 38.3 ODS Graphics Produced by the PLOT= Option in
PROC TIMEID

ODS Graph Name Plot Description PLOT= Option

DecompositionPlot Panel of spans, offsets, and counts for
each time interval

VALUES

IntervalCountsComponentPlot Histogram of interval counts INTERVALCOUNTS
IntervalCountsPlot Plot of counts for each time interval value VALUES
OffsetComponentPlot Histogram of time ID offsets OFFSETS
OffsetsPlot Plot of offsets for each time interval value VALUES
SpanComponentPlot Histogram of span sizes between time ID

values
SPANS

SpansPlot Plot of spans for each time interval value VALUES
ValuesPlot Plot of counts of each time ID value VALUES

Examples: TIMEID Procedure

Example 38.1: Examining a Weekly Time ID Variable
This example illustrates how problems in a weekly time series can be visualized and quantified using the
TIMEID procedure’s diagnostic capabilities.

The following DATA step creates a data set that contains time values spaced in three-week intervals where
some weeks have been skipped or duplicated and some have been recorded on different weekdays:

data triweek;
format date date.;
input date : date. @@;

datalines;
28DEC48 18JAN49 08FEB49 01MAR49 22MAR49 12APR49 03MAY49 24MAY49
17JUN49 05JUL49 26JUL49 16AUG49 06SEP49 27SEP49 18OCT49 08NOV49
29NOV49 20DEC49 10JAN50 04FEB50 21FEB50 14MAR50 04APR50 25APR50

... more lines ...

The following TIMEID procedure statements generate an ODS display of the time series that characterizes
interval counts, offsets, and spans in the time ID variable:

proc timeid data=triweek print=all plot=all;
id date interval=week3;

run;

The Time ID decomposition listing and plot shown in Output 38.1.1 and Output 38.1.2 summarize how well
the WEEK3 interval fits the time ID values by showing the number of counts, offsets, and spans for each time
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interval that is represented by the DATE variable. The listing in Output 38.1.1 has been truncated to include
only the first 10 observations. The Time ID plots in Output 38.1.2 indicate that there are duplicated time ID
values for a three-week time interval in the Counts plot. The duplicated time intervals have a Count value of
2. The Offsets plot shows which days in the 21 day cycle have been used to record each time interval in the
series. The Spans plot records values of 2 for six time intervals where no observations were recorded in the
previous interval. The three component plots are histogram summaries of the diagnostic quantities plotted
against individual intervals in the decomposition plots. The component plots can be useful in diagnosing
time series that contain many time intervals.

Output 38.1.1 Time ID Decomposition Listing

Time Component

Value
Index date Offset Span

Interval
Count

1 Sun, 12 Dec 1948 16 . 1

2 Sun, 2 Jan 1949 16 1 1

3 Sun, 23 Jan 1949 16 1 1

4 Sun, 13 Feb 1949 16 1 1

5 Sun, 6 Mar 1949 16 1 1

6 Sun, 27 Mar 1949 16 1 1

7 Sun, 17 Apr 1949 16 1 1

8 Sun, 8 May 1949 16 1 1

9 Sun, 29 May 1949 19 1 1

10 Sun, 19 Jun 1949 16 1 1
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Output 38.1.2 Time ID Decomposition Plot

Output 38.1.3 and Output 38.1.4 describe the distribution of counts of duplicated WEEK3 intervals in the
TriWeek data set. For this data set there are 134 intervals that contain one DATE value, and 10 intervals that
contain two DATE values.

Output 38.1.3 Time ID Interval Counts Listings

The TIMEID Procedure

Component

Value
Index

Interval
Count Frequency Percentage

1 1 132 91.666667

2 2 12 8.333333

Statistics Summary

Minimum Maximum Mean
Standard
Deviation

1 2 1.0833333 1.3008873
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Output 38.1.4 Time ID Interval Counts Histogram

The offsets diagnostics Output 38.1.5 and Output 38.1.6 show the distribution of days in the 21-day WEEK3
interval used to record the time intervals in the series. The observations in the TriWeek data set represent
intervals with five different offsets from the beginning of the WEEK3 interval: 0, 16, 18, 19, and 20. The
high prevalence of intervals with offset 16 indicates that the TriWeek data set would be represented better
using the WEEK3.17 interval.

Output 38.1.5 Time ID Offsets Listings

The TIMEID Procedure

Component

Value
Index Offset Frequency Percentage

1 0 1 0.694444

2 16 138 95.833333

3 18 1 0.694444

4 19 1 0.694444

5 20 3 2.083333



2720 F Chapter 38: The TIMEID Procedure

Output 38.1.5 continued

Statistics Summary

Minimum Maximum Mean
Standard
Deviation

0 20 16.006944 1.7006205

Output 38.1.6 Time ID Offsets Histogram

The span diagnostics Output 38.1.7 and Output 38.1.8 show the distribution of the span sizes between
successive DATE values. The TriWeek data set has three different span sizes of widths 0, 1, and 2. Here one
span corresponds to the width of a WEEK3 interval.
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Output 38.1.7 Time ID Span Listings

The TIMEID Procedure

Component

Value
Index Span Frequency Percentage

1 0 1 0.704225

2 1 135 95.070423

3 2 6 4.225352

Statistics Summary

Minimum Maximum Mean
Standard
Deviation

0 2 1.0352113 0.6367974

Output 38.1.8 Time ID Span Histogram

Output 38.1.9 and Output 38.1.10 show the distribution of time ID values before alignment to the WEEK3
interval. The listing in Output 38.1.9 has been truncated to include only the first 10 observations.
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Output 38.1.9 Unaligned Time ID Listings

Time ID Values for DATE

Value
Index date Frequency Percentage

1 Tue, 28 Dec 1948 1 0.694444

2 Tue, 18 Jan 1949 1 0.694444

3 Tue, 8 Feb 1949 1 0.694444

4 Tue, 1 Mar 1949 1 0.694444

5 Tue, 22 Mar 1949 1 0.694444

6 Tue, 12 Apr 1949 1 0.694444

7 Tue, 3 May 1949 1 0.694444

8 Tue, 24 May 1949 1 0.694444

9 Fri, 17 Jun 1949 1 0.694444

10 Tue, 5 Jul 1949 1 0.694444

Output 38.1.10 Unaligned Time ID Histogram
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Example 38.2: Inferring a Date Interval
This example illustrates how a time ID variable can be inferred from a data set when a sufficient number of
observations are present.

data workdays;
format day weekdate.;
input day : date. @@;
datalines;

01AUG09 06AUG09 11AUG09 14AUG09 19AUG09 22AUG09
27AUG09 01SEP09 04SEP09 09SEP09 12SEP09 17SEP09
;

proc timeid data=workdays print=interval;
id day;

run;

The 12 observations in the WorkDays data set are enough to determine that the DAY time ID variable is
represented by the WEEKDAY12W3 interval. The WEEKDAY12W3 interval corresponds to every third day
of the week excluding Sundays and Mondays. Characteristics of this interval are shown in Output 38.2.1.

Output 38.2.1 Inferred Time Interval Information

The TIMEID Procedure

Time Interval Analysis Summary

Time ID Variable day

Time Interval WEEKDAY12W3

Base Name WEEKDAY

Multiplier 3

Shift 0

Length of Seasonal Cycle 5

Time ID Format DATE9.

Start 01AUG2009

End 17SEP2009

Example 38.3: Examining Multiple BY Groups
This example illustrates how a time ID variable can be examined independently over each BY group and
summarized over all observations in the DATA= data set.

data bygroups;
format tid date.;
input tid : date. by @@;

datalines;
24NOV09 1 25NOV09 1 26NOV09 1 27NOV09 1 30NOV09 1 01DEC09 1 02DEC09 1 03DEC09 1

... more lines ...
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The following TIMEID procedure statements generate two data sets that summarize a data set with four BY
groups:

proc timeid data=bygroups outintervaldetails=int outinterval=intsum;
id tid;
by by;

run;

The summarized information in Output 38.3.1 shows that BY groups 2, 3, and 4 in the ByGroups data set
contain some duplicate values and spans, and group 1 conforms exactly to the WEEKDAY17W interval. This
listing also shows that the date ranges in these two BY groups start and end on different days and that they
overlap between December 7, 2009, and December 28, 2009.

Output 38.3.1 Selected Variables in the Combined OUTINTERVALDETAILS= OUTINTERVAL= Data Sets

by N NINTCNTS PCTINTCNTS NOFFSETS PCTOFFSETS NSPANS PCTSPANS STATUS

1 25 1 0.00 1 0 1 0.00000 0

2 25 2 0.08 1 0 2 0.00000 0

3 25 2 0.16 1 0 2 0.04348 1

4 25 2 0.24 1 0 2 0.13043 1

. 100 . . . . . . 1

INTERVAL START END SEASONALITY NSEASONCYCLES STARTSHARED ENDSHARED

WEEKDAY17W 24NOV09 28DEC09 5 5 . .

WEEKDAY17W 27NOV09 31DEC09 5 5 . .

WEEKDAY17W 02DEC09 05JAN10 5 5 . .

WEEKDAY17W 07DEC09 08JAN10 5 4 . .

WEEKDAY17W 24NOV09 08JAN10 5 . 07DEC09 28DEC09

NBY TOTALSEASONCYCLES SEASONCYCLESSHARED

. . .

. . .

. . .

. . .

4 6 3
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Overview: TIMESERIES Procedure
The TIMESERIES procedure analyzes time-stamped transactional data with respect to time and accumulates
the data into a time series format. The procedure can perform trend and seasonal analysis on the transactions.
After the transactional data are accumulated, time domain and frequency domain analysis can be performed
on the accumulated time series.

For seasonal analysis of the transaction data, various statistics can be computed for each season. For trend
analysis of the transaction data, various statistics can be computed for each time period. The analysis is
similar to applying the MEANS procedure of Base SAS software to each season or time period of concern.

After the transactional data are accumulated to form a time series and any missing values are interpreted,
the accumulated time series can be functionally transformed using log, square root, logistic, or Box-Cox
transformations. The time series can be further transformed using simple and/or seasonal differencing. After
functional and difference transformations have been applied, the accumulated and transformed time series
can be stored in an output data set. This working time series can then be analyzed further using various time
series analysis techniques provided by this procedure or other SAS/ETS procedures.

Time series analyses performed by the TIMESERIES procedure include the following:

� descriptive (global) statistics

� seasonal decomposition/adjustment analysis

� correlation analysis

� cross-correlation analysis

� spectral analysis
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All results of the transactional or time series analysis can be stored in output data sets or printed using the
Output Delivery System (ODS).

The TIMESERIES procedure can process large amounts of time-stamped transactional data. Therefore, the
analysis results are useful for large-scale time series analysis or (temporal) data mining. All of the results can
be stored in output data sets in either a time series format (default) or a coordinate format (transposed). The
time series format is useful for preparing the data for subsequent analysis with other SAS/ETS procedures.
For example, the working time series can be further analyzed, modeled, and forecast with other SAS/ETS
procedures. The coordinate format is useful when using this procedure with SAS/STAT procedures or SAS
Enterprise Miner. For example, clustering time-stamped transactional data can be achieved by using the
results of this procedure with the clustering procedures of SAS/STAT and the nodes of SAS Enterprise Miner.

The EXPAND procedure can be used for the frequency conversion and transformations of time series output
from this procedure.

Getting Started: TIMESERIES Procedure
This section outlines the use of the TIMESERIES procedure and gives a cursory description of some of the
analysis techniques that can be performed on time-stamped transactional data.

Given an input data set that contains numerous transaction variables recorded over time at no specific
frequency, the TIMESERIES procedure can form time series as follows:

PROC TIMESERIES DATA=<input-data-set>
OUT=<output-data-set>;

ID <time-ID-variable> INTERVAL=<frequency>
ACCUMULATE=<statistic>;

VAR <time-series-variables>;
RUN;

The TIMESERIES procedure forms time series from the input time-stamped transactional data. It can provide
results in output data sets or in other output formats by using the Output Delivery System (ODS).

Time-stamped transactional data are often recorded at no fixed interval. Analysts often want to use time series
analysis techniques that require fixed-time intervals. Therefore, the transactional data must be accumulated
to form a fixed-interval time series.

Suppose that a bank wants to analyze the transactions associated with each of its customers over time. Further,
suppose that the data set WORK.TRANSACTIONS contains four variables that are related to these transactions:
CUSTOMER, DATE, WITHDRAWAL, and DEPOSITS. The following examples illustrate possible ways to
analyze these transactions by using the TIMESERIES procedure.

To accumulate the time-stamped transactional data to form a daily time series based on the accumulated daily
totals of each type of transaction (WITHDRAWALS and DEPOSITS), the following TIMESERIES procedure
statements can be used:
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proc timeseries data=transactions
out=timeseries;

by customer;
id date interval=day accumulate=total;
var withdrawals deposits;

run;

The OUT=TIMESERIES option specifies that the resulting time series data for each customer is to be stored
in the data set WORK.TIMESERIES. The INTERVAL=DAY option specifies that the transactions are to be
accumulated on a daily basis. The ACCUMULATE=TOTAL option specifies that the sum of the transactions
is to be calculated. After the transactional data are accumulated into a time series format, many of the
procedures provided with SAS/ETS software can be used to analyze the resulting time series data.

For example, the ARIMA procedure can be used to model and forecast each customer’s withdrawal data
by using an ARIMA(0,1,1)(0,1,1)s model (where the number of seasons is s=7 days in a week) using the
following statements:

proc arima data=timeseries;
identify var=withdrawals(1,7) noprint;
estimate q=(1)(7) outest=estimates noprint;
forecast id=date interval=day out=forecasts;

quit;

The OUTEST=ESTIMATES data set contains the parameter estimates of the model specified. The
OUT=FORECASTS data set contains forecasts based on the model specified. For more information,
see Chapter 8, “The ARIMA Procedure.”

A single set of transactions can be very large and must be summarized in order to analyze them effectively.
Analysts often want to examine transactional data for trends and seasonal variation. To analyze transactional
data for trends and seasonality, statistics must be computed for each time period and season of concern. For
each observation, the time period and season must be determined and the data must be analyzed based on this
determination.

The following statements illustrate how to use the TIMESERIES procedure to perform trend and seasonal
analysis of time-stamped transactional data:

proc timeseries data=transactions out=out
outseason=season outtrend=trend;

by customer;
id date interval=day accumulate=total;
var withdrawals deposits;

run;

Since the INTERVAL=DAY option is specified, the length of the seasonal cycle is seven (7), where the
first season is Sunday and the last season is Saturday. The output data set specified by the OUTSEA-
SON=SEASON option contains the seasonal statistics for each day of the week by each customer. The
output data set specified by the OUTTREND=TREND option contains the trend statistics for each day of the
calendar by each customer.

Often it is desired to seasonally decompose into seasonal, trend, cycle, and irregular components or to
seasonally adjust a time series. The following techniques describe how the changing seasons influence the
time series.
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The following statements illustrate how to use the TIMESERIES procedure to perform seasonal adjust-
ment/decomposition analysis of time-stamped transactional data:

proc timeseries data=transactions
out=out
outdecomp=decompose;

by customer;
id date interval=day accumulate=total;
var withdrawals deposits;

run;

The output data set specified by the OUTDECOMP=DECOMPOSE option contains the decomposed/adjusted
time series for each customer.

A single time series can be very large. Often, a time series must be summarized with respect to time lags in
order to be efficiently analyzed using time domain techniques. These techniques help describe how a current
observation is related to the past observations with respect to the time (season) lag.

The following statements illustrate how to use the TIMESERIES procedure to perform time domain analysis
of time-stamped transactional data:

proc timeseries data=transactions
out=out
outcorr=timedomain;

by customer;
id date interval=day accumulate=total;
var withdrawals deposits;

run;

The output data set specified by the OUTCORR=TIMEDOMAIN option contains the time domain statistics,
such as sample autocorrelations and partial autocorrelations, by each customer.

Sometimes time series data contain underlying patterns that can be identified using spectral analysis tech-
niques. Two kinds of spectral analyses on univariate data can be performed using the TIMESERIES procedure.
They are singular spectrum analysis and Fourier spectral analysis.

Singular spectrum analysis (SSA) is a technique for decomposing a time series into additive components and
categorizing these components based on the magnitudes of their contributions. SSA uses a single parameter,
the window length, to quantify patterns in a time series without relying on prior information about the
series’ structure. The window length represents the maximum lag that is considered in the analysis, and it
corresponds to the dimensionality of the principle components analysis (PCA) on which SSA is based. The
components are combined into groups to categorize their roles in the SSA decomposition.

Fourier spectral analysis decomposes a time series into a sum of harmonics. In the discrete Fourier transform,
the contribution of components at evenly spaced frequencies are quantified in a periodogram and summarized
in spectral density estimates.

The following statements illustrate how to use the TIMESERIES procedure to analyze time-stamped transac-
tional data without prior information about the series’ structure:

proc timeseries data=transactions
outssa=ssa
outspectra=spectra;

by customer;
id date interval=day accumulate=total;
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var withdrawals deposits;
run;

The output data set specified by the OUTSSA=SSA option contains a singular spectrum analysis of the
withdrawals and deposits data. The data set specified by the OUTSPECTRA=SPECTRA option contains a
Fourier spectral decomposition of the same data.

By default, the TIMESERIES procedure produces no printed output.

Syntax: TIMESERIES Procedure
The TIMESERIES procedure uses the following statements:

PROC TIMESERIES options ;
BY variables ;
CORR statistics-list / options ;
CROSSCORR statistics-list / options ;
CROSSVAR variable-list / options ;
COUNT / options ;
DECOMP component-list / options ;
ID variable INTERVAL= interval-option ;
SEASON statistics-list / options ;
SPECTRA statistics-list / options ;
SSA / options ;
TREND statistics-list / options ;
VAR variable-list / options ;

Functional Summary
Table 39.1 summarizes the statements and options that control the TIMESERIES procedure.

Table 39.1 Functional Summary

Description Statements Options

Statements
Specifies BY-group processing BY
Specifies variables to analyze VAR
Specifies cross variables to analyze CROSSVAR
Specifies the time ID variable ID
Specifies correlation options CORR
Specifies cross-correlation options CROSSCORR
Specifies discrete distribution analysis options COUNT
Specifies decomposition analysis options DECOMP
Specifies seasonal statistics options SEASON
Specifies spectral analysis options SPECTRA
Specifies SSA options SSA
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Table 39.1 continued

Description Statements Options

Specifies trend statistics options TREND

Data Set Options
Specifies the input data set PROC TIMESERIES DATA=
Specifies the output data set PROC TIMESERIES OUT=
Specifies the correlations output data set PROC TIMESERIES OUTCORR=
Specifies the cross-correlations output data set PROC TIMESERIES OUTCROSSCORR=
Specifies the decomposition output data set PROC TIMESERIES OUTDECOMP=
Specifies the frequency (count) output data set PROC TIMESERIES OUTFREQ=
Specifies the SAS log output data set PROC TIMESERIES OUTPROCINFO=
Specifies the seasonal statistics output data set PROC TIMESERIES OUTSEASON=
Specifies the spectral analysis output data set PROC TIMESERIES OUTSPECTRA=
Specifies the SSA output data set PROC TIMESERIES OUTSSA=
Specifies the summary statistics output
data set

PROC TIMESERIES OUTSUM=

Specifies the trend statistics output data set PROC TIMESERIES OUTTREND=

Accumulation and Seasonality Options
Specifies the accumulation frequency ID INTERVAL=
Specifies the length of seasonal cycle PROC TIMESERIES SEASONALITY=
Specifies the interval alignment ID ALIGN=
Specifies the interval boundary alignment ID BOUNDARYALIGN=
Specifies that time ID variable values not be
sorted

ID NOTSORTED

Specifies the starting time ID value ID START=
Specifies the ending time ID value ID END=
Specifies the accumulation statistic ID, VAR, CROSSVAR ACCUMULATE=
Specifies missing value interpretation ID, VAR, CROSSVAR SETMISSING=

Time-Stamped Data Seasonal Statistics Options
Specifies the form of the output data set SEASON TRANSPOSE=

Fourier Spectral Analysis Options
Specifies whether to adjust to the series mean SPECTRA ADJUSTMEAN=
Specifies confidence limits SPECTRA ALPHA=
Specifies the kernel weighting function SPECTRA PARZEN | BARTLETT |

TUKEY | TRUNC | QS
Specifies the domain where kernel functions
apply

SPECTRA DOMAIN=

Specifies the constant kernel scale parameter SPECTRA C=
Specifies the exponent kernel scale parameter SPECTRA EXPON=
Specifies the periodogram weights SPECTRA WEIGHTS
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Table 39.1 continued

Description Statements Options

Singular Spectrum Analysis Options
Specifies whether to adjust to the series mean SSA ADJUSTMEAN=
Specifies the grouping of principal
components

SSA GROUPS=

Specifies the window length SSA LENGTH=
Specifies the number of time periods in the
transposed output

SSA NPERIODS=

Specifies the division between principal
component groupings

SSA THRESHOLDPCT

Specifies that the output be transposed SSA TRANSPOSE=

Time-Stamped Data Trend Statistics Options
Specifies the form of the output data set TREND TRANSPOSE=
Specifies the number of time periods to be
stored

TREND NPERIODS=

Time Series Transformation Options
Specifies simple differencing VAR, CROSSVAR DIF=
Specifies seasonal differencing VAR, CROSSVAR SDIF=
Specifies transformation VAR, CROSSVAR TRANSFORM=

Time Series Correlation Options
Specifies the list of lags CORR LAGS=
Specifies the number of lags CORR NLAG=
Specifies the number of parameters CORR NPARMS=
Specifies the form of the output data set CORR TRANSPOSE=

Time Series Cross-Correlation Options
Specifies the list of lags CROSSCORR LAGS=
Specifies the number of lags CROSSCORR NLAG=
Specifies the form of the output data set CROSSCORR TRANSPOSE=

Time Series Decomposition Options
Specifies the mode of decomposition DECOMP MODE=
Specifies the Hodrick-Prescott filter parameter DECOMP LAMBDA=
Specifies the number of time periods to be
stored

DECOMP NPERIODS=

Specifies the form of the output data set DECOMP TRANSPOSE=

Time Series Discrete Distribution Analysis Options
Specifies the confidence limit size COUNT ALPHA=
Specifies the discrete distribution selection
criterion

COUNT CRITERION=

Specifies one or more discrete distributions COUNT DISTRIBUTION=
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Table 39.1 continued

Description Statements Options

Printing Control Options
Specifies the time ID format ID FORMAT=
Specifies which output to print PROC TIMESERIES PRINT=
Specifies that detailed output be printed PROC TIMESERIES PRINTDETAILS

Miscellaneous Options
Specifies that analysis variables be processed
in sorted order

PROC TIMESERIES SORTNAMES

Limits error and warning messages when
running analysis

PROC TIMESERIES MAXERROR=

Limits error and warning messages when
loading data

PROC TIMESERIES MAXDATAERROR=

ODS Graphics Options
Specifies the count series graphical output PROC TIMESERIES COUNTPLOTS=
Specifies the cross-variable graphical output PROC TIMESERIES CROSSPLOTS=
Specifies the variable graphical output PROC TIMESERIES PLOTS=
Specifies the vector time series graphical
output

PROC TIMESERIES VECTORPLOTS=

PROC TIMESERIES Statement
PROC TIMESERIES options ;

You can specify the following options:

DATA=SAS-data-set
names the SAS data set that contains the input data for the procedure to create the time series. If the
DATA= option is not specified, the most recently created SAS data set is used.

COUNTPLOTS=option | ( options )
specifies the count series graphical output to be produced. You can specify the following plotting
options:

COUNTS plots the counts of the discrete values of the time series (OUTFREQ= data
set).

CHISQPROB | CHISQ plots the chi-square probabilities.

DISTRIBUTION | DIST plots the discrete probability distribution.

VALUES plots the distinct values of the time series (OUTFREQ= data set).

ALL is equivalent to PLOTS=(COUNTS CHISQPROB DISTRIBUTION VAL-
UES).
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The COUNTPLOTS= option produces graphical results similar to the information contained in the
data sets that are listed in parentheses next to the options.

By default, the TIMESERIES procedure produces no graphical output.

CROSSPLOTS=option | ( options )
specifies the cross-variable graphical output to be produced. You can specify the following plotting
options:

SERIES plots the two time series (OUT= data set).

CCF plots the cross-correlation functions (OUTCROSSCORR= data set).

ALL is equivalent to PLOTS=(SERIES CCF).

The CROSSPLOTS= option produces results similar to the information contained in the data sets that
are listed in parentheses next to the options.

By default, the TIMESERIES procedure produces no graphical output.

MAXERROR=number
limits the number of warning and error messages that are produced during the execution of the
procedure to the specified number . This option is particularly useful in BY-group processing, where it
can be used to suppress recurring messages. By default, MAXERROR=50.

MAXDATAERROR=number
limits the number of warning and error messages that are produced during the loading of data to the
specified number . This option is particularly useful in BY-group processing, where it can be used to
suppress recurring messages. By default, MAXDATAERROR=50.

MAXVARLENGTH
specifies that processed variables be set to eight bytes in length. This option exists principally for use
when data storage might be a concern.

OUT=SAS-data-set
names the output data set to contain the time series variables that are specified in the subsequent VAR
and CROSSVAR statements. If BY variables are specified, they are also included in the OUT= data set.
If an ID variable is specified, it is also included in the OUT= data set. The values are accumulated
based on the INTERVAL= option or the ACCUMULATE= option (or both) in the ID statement. The
OUT= data set is particularly useful when you want to further analyze, model, or forecast the resulting
time series with other SAS/ETS procedures.

OUTCORR=SAS-data-set
names the output data set to contain the univariate time domain statistics.

OUTCROSSCORR=SAS-data-set
names the output data set to contain the cross-correlation statistics.
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OUTDECOMP=SAS-data-set
names the output data set to contain the decomposed or seasonally adjusted time series (or both).

OUTFREQ=SAS-data-set
names the output data set to contain the frequency (count) analysis.

OUTPROCINFO=SAS-data-set
names the output data set to contain information in the SAS log, specifically the number of notes,
errors, and warnings and the number of series processed, number of analyses requested, and number of
analyses failed.

OUTSEASON=SAS-data-set
names the output data set to contain the seasonal statistics. The statistics are computed for each season
as specified by the INTERVAL= option in the ID statement or the SEASONALITY= option in the
PROC TIMESERIES statement. The OUTSEASON= data set is particularly useful when analyzing
transactional data for seasonal variations.

OUTSPECTRA=SAS-data-set
names the output data set to contain the univariate frequency domain analysis results.

OUTSSA=SAS-data-set
names the output data set to contain the singular spectrum analysis result series.

OUTSUM=SAS-data-set
names the output data set to contain the descriptive statistics. The descriptive statistics are based on the
accumulated time series when the ACCUMULATE= or SETMISSING= options are specified in the ID
or VAR statements. The OUTSUM= data set is particularly useful when you analyze large numbers of
series and you need a summary of the results.

OUTTREND=SAS-data-set
names the output data set to contain the trend statistics. The statistics are computed for each time
period as specified by the INTERVAL= option in the ID statement . The OUTTREND= data set is
particularly useful when you analyze transactional data for trends.

PLOTS=option | ( options )
specifies the univariate graphical output desired. By default, the TIMESERIES procedure produces no
graphical output. You can specify the following plotting options:

SERIES plots the time series (OUT= data set).

RESIDUAL plots the residual time series (OUT= data set).

HISTOGRAM plots a histogram of the time series values

CYCLES plots the seasonal cycles (OUT= data set).

CORR plots the correlation panel (OUTCORR= data set).

ACF plots the autocorrelation function (OUTCORR= data set).

PACF plots the partial autocorrelation function (OUTCORR= data set).

IACF plots the inverse autocorrelation function (OUTCORR= data set).

WN plots the white noise probabilities (OUTCORR= data set).
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DECOMP plots the seasonal adjustment panel (OUTDECOMP= data set).

TCS plots the trend-cycle-seasonal component (OUTDECOMP= data set).

TCC plots the trend-cycle component (OUTDECOMP= data set).

SIC plots the seasonal-irregular component (OUTDECOMP= data set).

SC plots the seasonal component (OUTDECOMP= data set).

SA plots the seasonal adjusted component (OUTDECOMP= data set).

PCSA plots the percent change in the seasonal adjusted component (OUTDE-
COMP= data set).

IC plots the irregular component (OUTDECOMP= data set).

TC plots the trend component (OUTDECOMP= data set).

CC plots the cycle component (OUTDECOMP= data set).

PERIODOGRAM< (suboption) > plots the periodogram (OUTSPECTRA= data set). You can specify
the following suboptions:

MAXFREQ=number specifies the maximum frequency in radians to in-
clude in the plot.

MINPERIOD=number specifies the minimum period to include in the
plot.

SPECTRUM< (suboption) > plots the spectral density estimate (OUTSPECTRA= data set). You can
specify the following suboptions:

MAXFREQ=number specifies the maximum frequency in radians to in-
clude in the plot.

MINPERIOD=number specifies the minimum period to include in the
plot.

SSA< (suboption) > plots the singular spectrum analysis results (OUTSSA= data set). You can
specify the following suboptions:

MAXWINDOW=number specifies the maximum window number to dis-
play in the SSASingularValuesPlot and SSAWCor-
rHeatmap.

ALL is equivalent to PLOTS=(SERIES HISTOGRAM ACF PACF IACF WN
SSA PERIODOGRAM SPECTRUM).

BASIC is equivalent to PLOTS=(SERIES HISTOGRAM CYCLES CORR DE-
COMP)

The PLOTS= option produces graphical output for these results by using the Output Delivery System
(ODS). The PLOTS= option produces results similar to the data sets listed in parentheses next to the
preceding options.
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PRINT=option | ( options )
specifies the printed output desired. By default, the TIMESERIES procedure produces no printed
output. You can specify the following printing options:

COUNTS prints the discrete distribution analysis (OUTFREQ= data set).

DECOMP prints the seasonal decomposition/adjustment table (OUTDECOMP= data
set).

SEASONS prints the seasonal statistics table (OUTSEASON= data set).

DESCSTATS prints the descriptive statistics for the accumulated time series (OUTSUM=
data set).

SUMMARY prints the descriptive statistics table for all time series (OUTSUM= data
set).

TRENDS prints the trend statistics table (OUTTREND= data set).

SSA prints the singular spectrum analysis results (OUTSSA= data set).

ALL is equivalent to PRINT=(DESCSTATS SUMMARY).

The PRINT= option produces printed output for these results by using the Output Delivery System
(ODS). The PRINT= option produces results similar to the data sets listed in parentheses next to the
preceding options.

PRINTDETAILS
requests that output specified in the PRINT= option be printed in greater detail.

SEASONALITY=number
specifies the length of the seasonal cycle. For example, SEASONALITY=3 means that every group
of three time periods forms a seasonal cycle. By default, the length of the seasonal cycle is one
(no seasonality) or the length implied by the INTERVAL= option specified in the ID statement. For
example, INTERVAL=MONTH implies that the length of the seasonal cycle is 12.

SORTNAMES
requests that the variables specified in the VAR and CROSSVAR statements be processed in sorted
order by the variable names. This option enables the output data sets to be presorted by the variable
names.

VECTORPLOTS=option | ( options )
specifies the vector time series graphical output to be produced. You can specify the following plotting
options:

SCALED plots each time series scaled between 0 and 1.

SERIES plots each time series on a common axis without scaling.

STACKED plots each time series on stacked thumbnail plots.

ALL is equivalent to PLOTS=(SCALED SERIES STACKED).

By default, the TIMESERIES procedure produces no graphical output.
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BY Statement
You can use a BY statement to obtain separate dummy variable definitions for groups of observations that are
defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the option NOTSORTED or DESCENDING in the BY statement for the TIMESERIES
procedure. The NOTSORTED option does not mean that the data are unsorted but rather that the
data are arranged in groups (according to values of the BY variables) and that these groups are not
necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure.

For more information about the BY statement, see SAS Language Reference: Concepts. For more information
about the DATASETS procedure, see the Base SAS Procedures Guide.

CORR Statement
CORR statistics < / options > ;

You can use a CORR statement to specify options that are related to time domain analysis of the accumulated
time series. Only one CORR statement is allowed.

You can specify the following time domain statistics:

LAG time lag

N number of variance products

ACOV autocovariances

ACF autocorrelations

ACFSTD autocorrelation standard errors

ACF2STD an indicator of whether autocorrelations are less than (–1), greater than (1), or
within (0) two standard errors of zero

ACFNORM normalized autocorrelations

ACFPROB autocorrelation probabilities

ACFLPROB autocorrelation log probabilities

PACF partial autocorrelations

PACFSTD partial autocorrelation standard errors

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lrcon&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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PACF2STD an indicator of whether partial autocorrelation are less than (–1), greater than (1),
or within (0) two standard errors of zero

PACFNORM partial normalized autocorrelations

PACFPROB partial autocorrelation probabilities

PACFLPROB partial autocorrelation log probabilities

IACF inverse autocorrelations

IACFSTD inverse autocorrelation standard errors

IACF2STD an indicator of whether the inverse autocorrelation is less than (–1), greater than
(1) or within (0) two standard errors of zero

IACFNORM normalized inverse autocorrelations

IACFPROB inverse autocorrelation probabilities

IACFLPROB inverse autocorrelation log probabilities

WN white noise test statistics

WNPROB white noise test probabilities

WNLPROB white noise test log probabilities

If you do not specify any statistics, then the default is as follows:

corr lag n acov acf acfstd pacf pacfstd iacf iacfstd wn wnprob;

You can specify the following options after a slash (/):

LAGS=(numlist)
specifies the list of lags to be stored in OUTCORR= data set or to be plotted. The list of lags must be
separated by spaces or commas. For example, LAGS=(1,3) specifies the first then third lag.

NLAG=number
specifies the number of lags to be stored in the OUTCORR= data set or to be plotted. The default
is 24 or three times the length of the seasonal cycle, whichever is smaller. The LAGS= option takes
precedence over the NLAG= option.

NPARMS=number
specifies the number of parameters that are used in the model that created the residual time series. The
number of parameters determines the degrees of freedom associated with the Ljung-Box statistics. This
option is useful when you analyze the residuals of a time series model whose number of parameters is
specified by number . By default, NPARMS=0.

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTCORR= data set. You can specify the
following values:

NO specifies that correlation statistics be recorded as the column names. This option is
useful for graphing the correlation results with SAS/GRAPH procedures.
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YES specifies that lags be recorded as the column names instead of correlation statistics
as the column names. This option is useful for analyzing the correlation results
with other SAS procedures such as the CLUSTER procedure in SAS/STAT or with
SAS Enterprise Miner software.

By default, TRANSPOSE=NO.

COUNT Statement
COUNT < / options > ;

You can use a COUNT statement to specify options that are related to the discrete distribution analysis of the
accumulated time series. Only one COUNT statement is allowed.

You can specify the following options after a slash (/):

ALPHA=number
specifies the confidence limit size. The number must be between 0 and 1; the default is 0.05.

CRITERION=LOGLIK | AIC | BIC
specifies the discrete distribution selection criterion. The default is CRITERION=LOGLIK.

You can specify the following selection criteria:

AIC specifies Akaike’s information criterion.

BIC specifies the Bayesian information criterion.

LOGLIK specifies the log likelihood as the criterion.

By default, CRITERION=LOGLIK.

DISTRIBUTION= option | ( options )
specifies one or more discrete distributions for automatic selection. You can specify one or more of the
following options:

BINOMIAL specifies the binomial distribution.

ZMBINOMIAL specifies the zero-modified binomial distribution.

GEOMETRIC specifies the geometric distribution.

ZMGEOMETRIC specifies the zero-modified geometric distribution.

POISSON specifies the Poisson distribution.

ZMPOISSON specifies the zero-modified Poisson distribution.

NEGBINOMIAL | NEGBIN specifies the negative binomial distribution.
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CROSSCORR Statement
CROSSCORR statistics < / options > ;

You can use a CROSSCORR statement to produce statistics that are related to cross-correlation analysis of
the accumulated time series. Only one CROSSCORR statement is allowed.

You can specify the following time domain statistics:

LAG time lag

N number of variance products

CCOV cross covariances

CCF cross-correlations

CCFSTD cross-correlation standard errors

CCF2STD an indicator of whether cross-correlations are less than (–1), greater than (1), or
within (0) two standard errors of zero

CCFNORM normalized cross-correlations

CCFPROB cross-correlation probabilities

CCFLPROB cross-correlation log probabilities

If do not specify any statistics, the default is as follows:

crosscorr lag n ccov ccf ccfstd;

You can also specify the following options after a slash (/):

NLAG=number
specifies the number of lags to be stored in the OUTCROSSCORR= data set or to be plotted. The
default is 24 or three times the length of the seasonal cycle, whichever is smaller. The LAGS= option
takes precedence over the NLAG= option.

LAGS=(numlist)
specifies a list of lags to be stored in OUTCROSSCORR= data set or to be plotted. The list of lags
must be separated by spaces or commas. For example, LAGS=(1,3) specifies the first then third lag.

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTCROSSCORR= data set. You can
specify the following values:

NO specifies that cross-correlation statistics be recorded as the column names. This
option is useful for graphing the cross-correlation results with SAS/GRAPH proce-
dures.

YES specifies that lags instead of cross-correlation statistics be recorded as the column
names. This option is useful for analyzing the cross-correlation results with other
procedures such as the CLUSTER procedure in SAS/STAT or with SAS Enterprise
Miner software.

By default, TRANSPOSE=NO.



2742 F Chapter 39: The TIMESERIES Procedure

DECOMP Statement
DECOMP components < / options > ;

You can use a DECOMP statement to specify options that are related to classical seasonal decomposition of
the time series data. Only one DECOMP statement is allowed. The options affect all variables that are listed
in the VAR statements. Decomposition can be performed only when the length of the seasonal cycle specified
by the SEASONALITY= option in the PROC TIMESERIES statement or implied by the INTERVAL= option
in the ID statement is greater than 1.

You can specify the following seasonal decomposition components:

ORIG | ORIGINAL original series

TCC | TRENDCYCLE trend-cycle component

SIC | SEASONIRREGULAR seasonal-irregular component

SC | SEASONAL seasonal component

SCSTD seasonal component standard errors

TCS | TRENDCYCLESEASON trend-cycle-seasonal component

IC | IRREGULAR irregular component

SA | ADJUSTED seasonally adjusted series

PCSA percent change seasonally adjusted series

TC trend component

CC | CYCLE cycle component

If you do not specify any components, then the default is as follows:

decomp orig tcc sc ic sa;

You can also specify the following options after a slash (/):

MODE=option
specifies the type of decomposition to be used to decompose the time series. You can specify the
following options:

ADD | ADDITIVE uses additive decomposition.

MULT | MULTIPLICATIVE uses multiplicative decomposition.

LOGADD | LOGADDITIVE uses log-additive decomposition.

PSEUDOADD | PSEUDOADDITIVE uses pseudo-additive decomposition.

MULTORADD uses multiplicative decomposition when the accumulated
time series contains only positive values, uses pseudo-
additive decomposition when the accumulated time series
contains only nonnegative values, and uses additive de-
composition otherwise.
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Multiplicative and log additive decomposition require strictly positive time series. If the accumulated
time series contains nonpositive values and MODE=MULT or MODE=LOGADD, an error results.
Pseudo-additive decomposition requires a nonnegative-valued time series. If the accumulated time
series contains negative values and the MODE=PSEUDOADD option is specified, an error results.

By default, MODE=MULTORADD.

LAMBDA=number
specifies the Hodrick-Prescott filter parameter for trend-cycle decomposition. Filtering applies when
the trend component or the cycle component is requested. If filtering is not specified, this option is
ignored. By default, LAMBDA=1600.

NPERIODS=number
specifies the number of time periods to be stored in the OUTDECOMP= data set when the TRANS-
POSE=YES option is specified. If TRANSPOSE=NO, the NPERIODS= option is ignored. If number
is positive, the first or beginning time periods are recorded. If number is negative, the last or ending
time periods are recorded. The NPERIODS= option specifies the number of OUTDECOMP= data
set variables to contain the seasonal decomposition and is therefore limited to the maximum allowed
number of SAS variables. If the number of time periods exceeds this limit, a warning is printed in the
log and the number of periods stored is reduced to the limit.

If the NPERIODS= option is not specified, all of the periods specified between the ID statement
START= and END= options are stored. If at least one of the START= or END= options is not
specified, the default magnitude is the seasonality specified in the SEASONALITY= option in the
PROC TIMESERIES statement or implied by the INTERVAL= option in the ID statement. If only
the START= option or both the START= and END= options are specified and the seasonality is zero,
the default is NPERIODS=5. If only the END= option or neither the START= nor END= option is
specified and the seasonality is zero, the default is NPERIODS=–5.

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTDECOMP= data set.

NO specifies that decomposition components be recorded as the column names.
This option is useful for analyzing or displaying the decomposition results with
SAS/GRAPH procedures.

YES specifies that the time periods be recorded as the column names instead of decom-
position components. The first and last time periods stored in the OUTDECOMP=
data set correspond to the period specified in the START= option and END= option,
respectively, in the ID statement. If only the END= option is specified, the last
time ID value of each accumulated time series corresponds to the last time period
column. If only the START= option is specified, the first time ID value of each
accumulated time series corresponds to the first time period column. If neither
the START= option nor the END= option is specified in the ID statement, the first
time ID value of each accumulated time series corresponds to the first time period
column. This option is useful for analyzing the decomposition results with other
SAS procedures or with SAS Enterprise Miner software.

By default, TRANSPOSE=NO.
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ID Statement
ID variable INTERVAL=interval < options > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date or datetime values. In addition, the ID statement specifies the
frequency to be associated with the time series. The ID statement option also specify how the observations
are accumulated and how the time ID values are aligned to form the time series. The specified information
affects all variables that are listed in subsequent VAR statements. If you do not specify an ID statement, the
observation number, with respect to the BY group, is used as the time ID.

You must specify the following argument:

INTERVAL=interval
specifies the frequency of the accumulated time series. For example, if the input data set consists of
quarterly observations, then specify INTERVAL=QTR. If the PROC TIMESERIES statement SEA-
SONALITY= option is not specified, the length of the seasonal cycle is implied from the INTERVAL=
option. For example, INTERVAL=QTR implies a seasonal cycle of length 4. If the ACCUMULATE=
option is also specified, the INTERVAL= option determines the time periods for the accumulation
of observations. The INTERVAL= option is required and must be the first option specified in the ID
statement.

You can also specify the following options:

ACCUMULATE=option
specifies how the data set observations are to be accumulated within each time period. The frequency
(width of each time interval) is specified by the INTERVAL= interval . The ID variable contains the
time ID values. Each time ID variable value corresponds to a specific time period. The accumulated
values form the time series, which is used in subsequent analysis.

This option is useful when there are zero or more than one input observations that coincide with a
particular time period (for example, time-stamped transactional data). The EXPAND procedure offers
additional frequency conversions and transformations that can also be useful in creating a time series.

You can specify the following options, which determine how the observations are accumulated within
each time period based on the ID variable and on the frequency specified in INTERVAL= interval:

NONE does not accumulate observations; the ID variable values must be equally
spaced with respect to the frequency.

TOTAL accumulates observations based on the total sum of their values.

AVERAGE | AVG accumulates observations based on the average of their values.

MINIMUM | MIN accumulates observations based on the minimum of their values.

MEDIAN | MED accumulates observations based on the median of their values.

MAXIMUM | MAX accumulates observations based on the maximum of their values.

N accumulates observations based on the number of nonmissing observations.

NMISS accumulates observations based on the number of missing observations.

NOBS accumulates observations based on the number of observations.
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FIRST accumulates observations based on the first of their values.

LAST accumulates observations based on the last of their values.

STDDEV | STD accumulates observations based on the standard deviation of their values.

CSS accumulates observations based on the corrected sum of squares of their values.

USS accumulates observations based on the uncorrected sum of squares of their
values.

If you specify the ACCUMULATE= option, the SETMISSING= option is useful for specifying how
accumulated missing values are to be treated. If missing values are to be interpreted as 0, then specify
SETMISSING=0. For more information about accumulation, see the section “Details: TIMESERIES
Procedure” on page 2755.

By default, ACCUMULATE=NONE.

ALIGN=option
controls the alignment of SAS dates that are used to identify output observations. The ALIGN= option
accepts the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
BEGINNING is the default.

BOUNDARYALIGN=option
controls how the ACCUMULATE= option is processed for the two boundary time intervals, which
include the START= and END= time ID values. Some time ID values might fall inside the first and
last accumulation intervals but fall outside the START= and END= boundaries. In these cases the
BOUNDARYALIGN= option determines which values to include in the accumulation operation. You
can specify the following options:

NONE does not accumulate any values outside the START= and END= boundaries.

START accumulates all observations in the first time interval.

END accumulates all observations in the last time interval.

BOTH accumulates all observations in the first and last.

For more information, see the section “Details: TIMESERIES Procedure” on page 2755. By default,
BOUNDARYALIGN=NONE.

END=value
specifies a SAS date or datetime value that represents the end of the data. If the last time ID variable
value is less than value, the series is extended with missing values. If the last time ID variable value
is greater than value, the series is truncated. For example, END=“&sysdate”D uses the automatic
macro variable SYSDATE to extend or truncate the series to the current date. You can use the START=
and END= options to ensure that data associated within each BY group contains the same number of
observations.

FORMAT=format
specifies the SAS format for the time ID values. The default format is implied from the INTERVAL=
option.
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NOTSORTED
specifies that the time ID values might not be in sorted order. Prior to analysis, the TIMESERIES
procedure sorts the data with respect to the time ID.

SETMISSING=option | number
specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated
time series. If you specify a number , missing values are set to the number . If a missing value
indicates an unknown value, this option should not be used. If a missing value indicates no value,
specify SETMISSING=0. You would typically use SETMISSING=0 for transactional data because no
recorded data usually implies no activity. Instead of specifying a number , you can specify one of the
following options to determine how missing values are assigned:

MISSING sets missing values to missing.

AVERAGE | AVG sets missing values to the accumulated average value.

MINIMUM | MIN sets missing values to the accumulated minimum value.

MEDIAN | MED sets missing values to the accumulated median value.

MAXIMUM | MAX sets missing values to the accumulated maximum value.

FIRST sets missing values to the accumulated first nonmissing value.

LAST sets missing values to the accumulated last nonmissing value.

PREVIOUS | PREV sets missing values to the previous period’s accumulated nonmissing value.
Missing values at the beginning of the accumulated series remain missing.

NEXT sets missing values to the next period’s accumulated nonmissing value.
Missing values at the end of the accumulated series remain missing.

By default, SETMISSING=MISSING.

START=value
specifies a SAS date or datetime value that represents the beginning of the data. If the first time ID
variable value is greater than value, missing values are added to the beginning of the series. If the
first time ID variable value is less than value, the series is truncated. You can specify the START=
and END= options to ensure that data associated with each BY group contains the same number of
observations.

SEASON Statement
SEASON statistics < / options > ;

You can use a SEASON statement to specify seasonal statistics and options that are related to seasonal
analysis of the time-stamped transactional data. Only one SEASON statement is allowed. The options affect
all variables specified in the VAR statements. Seasonal analysis can be performed only when the length of the
seasonal cycle specified by the SEASONALITY= option in the PROC TIMESERIES statement or implied by
the INTERVAL= option in the ID statement is greater than 1.

You can specify the following seasonal statistics:
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NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

MINIMUM minimum value

MAXIMUM maximum value

RANGE range value

SUM summation value

MEAN mean value

STDDEV standard deviation

CSS corrected sum of squares

USS uncorrected sum of squares

MEDIAN median value

If you do not specify any of the seasonal statistics, then the default is as follows:

season n min max mean std;

You can also specify the following options after a slash (/):

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTSEASON= data set. You can specify
the following values:

NO specifies that the seasonal statistics be recorded as the column names. This option
is useful for graphing the seasonal analysis results with SAS/GRAPH procedures.

YES specifies that the seasonal indices instead of the seasonal statistics be recorded as
the column names. This option is useful for analyzing the seasonal analysis results
with SAS procedures or with SAS Enterprise Miner software.

By default, TRANSPOSE=NO.

SPECTRA Statement
SPECTRA statistics < / options > ;

You can use a SPECTRA statement to specify which statistics appear in the OUTSPECTRA= data set.
The SPECTRA statement options are used in performing a spectral analysis on the variables listed in the
VAR statement. These options affect values that are produced in the PROC TIMESERIES statement’s
OUTSPECTRA= data set, and in the periodogram and spectral density estimate. Only one SPECTRA
statement is allowed.

You can request the following univariate frequency domain statistics:
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FREQ frequency in radians from 0 to �

PERIOD period or wavelength

COS cosine transform

SIN sine transform

P periodogram

S spectral density estimates

If you do not specify any frequency domain statistics, then the default is as follows:

spectra period p;

You can also specify the following options after a slash (/):

C=coefficient
specifies the scale coefficient for the kernel function. For more information, see the section “Kernel
Option Details” on page 2749.

E=exponent
EXP=exponent
EXPON=exponent

specifies the exponent for the kernel function. For more information, see the section “Kernel Option
Details” on page 2749.

ADJUSTMEAN=NO | YES
CENTER=NO | YES

specifies whether the series is to be adjusted by its mean prior to performing the Fourier decomposition.
This adjustment sets the first periodogram ordinate to 0 rather than to 2n times the squared mean. This
option is commonly used when the periodograms are to be plotted to prevent a large first periodogram
ordinate from distorting the scale of the plot.

NO specifies that no adjustment of the series be performed.

YES specifies that the series be transformed by subtracting its mean.

By default, ADJUSTMEAN=NO.

ALPHA=num
specifies the width of a window that is drawn around the spectral density estimate in a spectral
density versus frequency plot. Based on approximations proposed by Brockwell and Davis (1991),
periodogram ordinates fall within this window with a confidence level of 1 � num. The value num
must be between 0 and 1; the default is 0.05.

DOMAIN=domain
specifies how the smoothing function is interpreted. You can specify the following domain values:

FREQUENCY smooths the periodogram ordinates.

TIME applies the kernel as a filter to the time series autocovariance function.

By default DOMAIN=FREQUENCY, and smoothing is applied in the same manner as weights are
applied when you specify the WEIGHTS= option.
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kernel
specifies the smoothing function to use to calculate a spectral density estimate as the moving average
of periodogram ordinates. The kernel function is an alternative smoothing method to using the
WEIGHTS= option. You can specify the following kernel values:

PARZEN Parzen kernel

BARTLETT Bartlett kernel

TUKEY Tukey-Hanning kernel

TRUNC | TRUNCAT truncated kernel

QS | QUADR quadratic spectral kernel

If neither a WEIGHTS= option nor a kernel function is specified, the spectral density estimate is
identical to the unmodified periodogram.

WEIGHTS=numlist
specifies the relative weights to use to compute a spectral density estimate as the moving average
smoothing of periodogram ordinates. If neither a WEIGHTS= option nor a kernel function is specified,
the spectral density estimate is identical to the unmodified periodogram. The following SPECTRA
statement uses the WEIGHTS= option to specify equal weighting for each of the three adjacent
periodogram ordinates that are centered on each spectral density estimate:

spectra / weights 1 1 1;

For information about how the weights are applied, see the section “Using Specification of Weight
Constants” on page 2767.

Kernel Option Details

You can further parameterize each of the kernel functions with a kernel scale factor by using the C= and
E= options. The default values of the kernel scale parameters, c and e, that are associated with each of the
kernel functions together with their kernel scale factor values, M, for a series with 100 periodogram ordinates
are listed in Table 39.2. The formula that is used to generate the table entries is M D cKe, where K is the
number of Fourier component frequencies.

Table 39.2 Default Kernel Scale Factor Parameters

Kernel c e M

Bartlett 1/2 1/3 2.32
Parzen 1 1/5 2.51
Quadratic 1/2 1/5 1.26
Tukey-Hanning 2/3 1/5 1.67
Truncated 1/4 1/5 0.63

For example, to apply the truncated kernel by using default scale factor parameters in the frequency domain,
you could use the following SPECTRA statement:
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spectra / truncat;

For more information about the kernel function parameterization and the DOMAIN= option, see the section
“Using Kernel Specifications” on page 2765.

SSA Statement
SSA < / options > ;

The SSA statement requests singular spectrum analysis (SSA) of the accumulated time series. Only one SSA
statement is allowed.

You can also specify the following options after a slash (/):

ADJUSTMEAN=NO | YES

CENTER=NO | YES
specifies whether the series should be adjusted by its mean prior to performing the singular spectrum
analysis. You can specify the following values:

NO specifies that no adjustment of the series be performed.

YES specifies that the series be transformed by subtracting its mean.

By default, ADJUSTMEAN=NO.

GROUPS=(numlist). . . (numlist) | AUTO(number )

(numlist). . . (numlist) specifies the lists that categorize window lags into groups. The window lags
must be separated by spaces or commas. For example, GROUPS=(1,3) (2,4) specifies that the first
and third window lags form the first group and the second and fourth window lags form the second
group. If you do not specify this option, the window lags are divided into two groups based on the
value of the THRESHOLDPCT= option.

For example, the following SSA statement specifies three groups:

ssa / groups=(1 3)(2 4 5)(6);

The first group contains the first and third principal components; the second group contains the
second, fourth, and fifth principal components; and the third group contains the sixth principal
component.

By default, the first group contains the principal components whose contributions to the series sum
to greater than the THRESHOLDPCT= option value of 90%, and the second group contains the
remaining components.

AUTO(number ) specifies the maximum number of groups to be retained when the automatic grouping
is used. When you specify this option , the automatic grouping is based on the weighted correlations
(w-correlations). For more information, see the section “Automatic Grouping” on page 2769.



SSA Statement F 2751

LENGTH=number
specifies the window length to be used in the analysis. The window length represents the maximum
lag to be used in the SSA autocovariance calculations, where number must be greater than 1. When
the SEASONALITY= option is provided or implied by the INTERVAL= option in the ID statement,
the default window length is the smaller of two times the length of the seasonal cycle and one-half
the length of the time series. When no seasonality value is available, the default window length is the
smaller of 12 and one-half the length of the time series.

For example, the following SSA statement specifies a window length of 10:

ssa / length=10;

If the specified number is greater than one-half the length of the accumulated time series, the window
length is reduced and a warning message is displayed in the log. If you do not specify the window
length option and the INTERVAL=MONTH or SEASONALITY=12 option is specified, a window
length of 24 is used.

NPERIODS=number
specifies the number of time periods to be stored in the OUTSSA= data set when you specify the
TRANSPOSE=YES option. If the TRANSPOSE option is not specified, the NPERIODS= option is
ignored. The NPERIODS= option specifies the number of OUTSSA= data set variables to contain the
groups.

If you do not specify this option, all the periods that are specified between the START= and END=
options are stored in the ID statement. If at least one of the START= or END= options is not specified,
the default magnitude is the seasonality specified by the SEASONALITY= option in the PROC
TIMESERIES statement or implied by the INTERVAL= option in the ID statement. If only the
START= option or both the START= and END= options are specified and the seasonality is zero,
the default is NPERIODS=5. If only the END= option or neither the START= nor END= option is
specified and the seasonality is zero, the default is NPERIODS=–5.

THRESHOLDPCT=percentage
specifies a percentage to be used to divide the SSA components into two groups based on the
cumulative percentage of their singular values. The percentage must be between 0 and 100, inclusive.
By default, THRESHOLDPCT=90.

For example, the following SSA statement specifies 80%:

ssa / THRESHOLDPCT=80;

The size of the second group must be at least 1, and it must be less than the window length. The
percentage is adjusted to achieve this requirement.

For example, the following SSA statement specifies THRESHOLDPCT=0, which effectively sets the
size of the second group to one less than the window length:

ssa / THRESHOLDPCT = 0;

The following SSA statement specifies 100%, which implies that the size of the last group is one:
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ssa / THRESHOLDPCT= 100;

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTSSA= data set.

NO specifies that the specified groups be recorded as the column names. This option is
useful for displaying the SSA results.

YES specifies that the time periods instead of the specified groups be recorded as the
column names. The first and last time periods stored in the OUTSSA= data set
correspond to the periods that are specified in the START= and END= options,
respectively, in the ID statement. If only the END= option is specified in the ID
statement, the last time ID value of each accumulated time series corresponds to
the last time period column. If only the START= option is specified in the ID
statement, the first time ID value of each accumulated time series corresponds to
the first time period column. If neither the START= option nor the END= option is
specified in the ID statement, the first time ID value of each accumulated time series
corresponds to the first time period column. This option is useful for analyzing the
SSA results using SAS Enterprise Miner software.

By default, TRANSPOSE=NO.

TREND Statement
TREND statistics < / options > ;

You can use a TREND statement to specify statistics and related options for trend analysis of the time-
stamped transactional data. Only one TREND statement is allowed. The specified options affect all variables
that are listed in the VAR statements.

You can specify the following trend statistics:

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

MINIMUM minimum value

MAXIMUM maximum value

RANGE range value

SUM summation value

MEAN mean value

STDDEV standard deviation

CSS corrected sum of squares

USS uncorrected sum of squares
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MEDIAN median value

If you do not specify any trend statistics, the default is as follows:

trend n min max mean std;

You can also specify the following options after a slash (/):

NPERIODS=number
specifies the number of time periods to be stored in the OUTTREND= data set when the TRANS-
POSE=YES option is specified. If the TRANSPOSE option is not specified, the NPERIODS= option is
ignored. The NPERIODS= option specifies the number of OUTTREND= data set variables to contain
the trend statistics and is therefore limited to the maximum allowed number of SAS variables.

If you do not specify this option, all the periods that are specified between the START= and END=
options in the ID statement are stored. If at least one of the START= or END= options is not specified,
the default magnitude is the seasonality that is specified in the SEASONALITY= option in the PROC
TIMESERIES statement or implied by the INTERVAL= option in the ID statement. If only the
START= option or both the START= and END= options are specified and the seasonality is zero,
the default is NPERIODS=5. If only the END= option or neither the START= nor END= option is
specified and the seasonality is zero, the default is NPERIODS=–5.

TRANSPOSE=NO | YES
specifies which values are recorded as column names in the OUTTREND= data set.

NO specifies that the specified groups be recorded as the column names. This option is
useful for displaying the SSA results.

YES specifies that the time periods instead of the specified groups be recorded as the
column names. The first and last time periods stored in the OUTSSA= data set
correspond to the periods that are specified in the START= and END= options,
respectively, in the ID statement. If only the END= option is specified in the ID
statement, the last time ID value of each accumulated time series corresponds to
the last time period column. If only the START= option is specified in the ID
statement, the first time ID value of each accumulated time series corresponds to
the first time period column. If neither the START= option nor the END= option is
specified in the ID statement, the first time ID value of each accumulated time series
corresponds to the first time period column. This option is useful for analyzing the
SSA results using SAS Enterprise Miner software.

By default, TRANSPOSE=NO.
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VAR and CROSSVAR Statements
VAR variable-list < / options > ;

CROSSVAR variable-list < / options > ;

The VAR and CROSSVAR statements list the numeric variables in the DATA= data set whose values are to
be accumulated to form the time series.

An input data set variable can be specified in only one VAR or CROSSVAR statement. You can specify any
number of VAR and CROSSVAR statements. You can specify the following options for either the VAR or
CROSSVAR statement:

ACCUMULATE=option
specifies how the data set observations are to be accumulated within each time period for the variables
in the variable-list . If you do not specify the ACCUMULATE= option in the VAR or CROSSVAR
statement, accumulation is determined by the ACCUMULATE= option in the ID statement. For more
information, see the ACCUMULATE= option in the ID statement.

DIF=(numlist)
specifies the differencing to be applied to the accumulated time series. The list of differencing orders
must be separated by spaces or commas. For example, DIF=(1,3) specifies first then third order
differencing. Differencing is applied after time series transformation. The TRANSFORM= option is
applied before the DIF= option.

SDIF=(numlist)
specifies the seasonal differencing to be applied to the accumulated time series. The list of seasonal
differencing orders must be separated by spaces or commas. For example, SDIF=(1,3) specifies first
then third order seasonal differencing. Differencing is applied after time series transformation. The
TRANSFORM= option is applied before the SDIF= option.

SETMISS=option | number
SETMISSING=option | number

specifies how missing values (either actual or accumulated) are to be interpreted in the accumulated
time series for variables in the variable-list . If the SETMISSING= option is not specified in the VAR or
CROSSVAR statement, missing values are set based on the SETMISSING= option of the ID statement.
For more information, see the SETMISSING= option in the ID statement.

TRANSFORM=transformation
specifies the time series transformation to be applied to the accumulated time series. When you specify
the TRANSFORM= option, the time series must be strictly positive. You can specify the following
transformations:

NONE does not apply any transformation.

LOG logarithmic transformation

SQRT square-root transformation

LOGISTIC logistic transformation

BOXCOX(n) Box-Cox transformation with parameter n, where n is between –5 and 5

By default, TRANSFORM=NONE.
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Details: TIMESERIES Procedure
The TIMESERIES procedure can be used to perform trend and seasonal analysis on transactional data. For
trend analysis, various sample statistics are computed for each time period defined by the time ID variable and
INTERVAL= option. For seasonal analysis, various sample statistics are computed for each season defined
by the INTERVAL= or the SEASONALITY= option. For example, if the transactional data ranges from June
1990 to January 2000 and the data are to be accumulated on a monthly basis, then the trend statistics are
computed for every month: June 1990, July 1990, . . . , January 2000. The seasonal statistics are computed for
each season: January, February, . . . , December.

The TIMESERIES procedure can be used to form time series data from transactional data. The accumulated
time series can then be analyzed using time series techniques. The data are analyzed in the following order:

1. accumulation ACCUMULATE= option in the ID, VAR, or CROSSVAR statement

2. missing value interpretation SETMISSING= option in the ID, VAR, or CROSSVAR statement

3. time series transformation TRANSFORM= option in the VAR or CROSSVAR statement

4. time series differencing DIF= and SDIF= options in the VAR or CROSSVAR statement

5. descriptive statistics OUTSUM= option and the PRINT=DESCSTATS option

6. seasonal decomposition DECOMP statement or the OUTDECOMP= option in the PROC TIME-
SERIES statement

7. correlation analysis CORR statement or the OUTCORR= option in the PROC TIME-
SERIES statement

8. singular spectrum analysis SSA statement or the OUTSSA= option in the PROC TIMESERIES
statement

9. Fourier spectral analysis SPECTRA statement or the OUTSPECTRA= option in the PROC
TIMESERIES statement

10. cross-correlation analysis CROSSCORR statement or the OUTCROSSCORR= option in the
PROC TIMESERIES statement
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Accumulation
If the ACCUMULATE= option in the ID, VAR, or CROSSVAR statement is specified, data set observations
are accumulated within each time period. The frequency (width of each time interval) is specified by the ID
statement INTERVAL= option. The ID variable contains the time ID values. Each time ID value corresponds
to a specific time period. Accumulation is useful when the input data set contains transactional data, whose
observations are not spaced with respect to any particular time interval. The accumulated values form the
time series, which is used in subsequent analyses.

For example, suppose a data set contains the following observations:

19MAR1999 10
19MAR1999 30
11MAY1999 50
12MAY1999 20
23MAY1999 20

If the INTERVAL=MONTH is specified, all of the above observations fall within a three-month period of
time between March 1999 and May 1999. The observations are accumulated within each time period as
follows:

If the ACCUMULATE=NONE option is specified, an error is generated because the ID variable values are
not equally spaced with respect to the specified frequency (MONTH).

If the ACCUMULATE=TOTAL option is specified, the resulting time series is

O1MAR1999 40
O1APR1999 .
O1MAY1999 90

If the ACCUMULATE=AVERAGE option is specified, the resulting time series is

O1MAR1999 20
O1APR1999 .
O1MAY1999 30

If the ACCUMULATE=MINIMUM option is specified, the resulting time series is

O1MAR1999 10
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=MEDIAN option is specified, the resulting time series is

O1MAR1999 20
01APR1999 .
O1MAY1999 20
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If the ACCUMULATE=MAXIMUM option is specified, the resulting time series is

O1MAR1999 30
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=FIRST option is specified, the resulting time series is

O1MAR1999 10
O1APR1999 .
O1MAY1999 50

If the ACCUMULATE=LAST option is specified, the resulting time series is

O1MAR1999 30
O1APR1999 .
O1MAY1999 20

If the ACCUMULATE=STDDEV option is specified, the resulting time series is

O1MAR1999 14.14
O1APR1999 .
O1MAY1999 17.32

As can be seen from the preceding examples, even though the data set observations contain no missing values,
the accumulated time series can have missing values.

Boundary Alignment

When the BOUNDARYALIGN= option is used to qualify the START= or END= options, additional time
series values can be incorporated into the accumulation operation. For instance, if a data set contains the
observations

01JAN1999 10
01FEB1999 10
01MAR1999 10
01APR1999 10
01MAY1999 10
01JUN1999 10

and the options START=001FEB19990d, END=001APR19990d, INTERVAL=QUARTER, and
ACCUMULATE=TOTAL are specified, using the BOUNDARYALIGN= option results in the follow-
ing accumulated time series:

If BOUNDARYALIGN=START is specified, the accumulated time series is

01JAN1999 30
01APR1999 10
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If BOUNDARYALIGN=END is specified, the accumulated time series is

01JAN1999 20
01APR1999 30

If BOUNDARYALIGN=BOTH is specified, the accumulated time series is

01JAN1999 30
01APR1999 30

If BOUNDARYALIGN=NONE is specified, the accumulated time series is

01JAN1999 20
01APR1999 10

Missing Value Interpretation
Sometimes missing values should be interpreted as unknown values. But sometimes missing values are
known, such as when missing values are created from accumulation and no observations should be interpreted
as no value—that is, zero. In the former case, the SETMISSING= option can be used to interpret how
missing values are treated. The SETMISSING=0 option should be used when missing observations are to be
treated as no (zero) values. In other cases, missing values should be interpreted as global values, such as
minimum or maximum values of the accumulated series. The accumulated and interpreted time series is used
in subsequent analyses.

Time Series Transformation
There are four transformations available for strictly positive series only. Let yt > 0 be the original time
series, and let wt be the transformed series. The transformations are defined as follows:

Log is the logarithmic transformation.

wt D ln.yt /

Logistic is the logistic transformation.

wt D ln.cyt=.1 � cyt //

where the scaling factor c is

c D .1 � 10�6/10�ceil.log10.max.yt ///

and ceil.x/ is the smallest integer greater than or equal to x.

Square root is the square root transformation.

wt D
p
yt
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Box Cox is the Box-Cox transformation.

wt D

(
y�t �1

�
; �¤0

ln.yt /; � D 0

More complex time series transformations can be performed by using the EXPAND procedure of SAS/ETS.

Time Series Differencing
After optionally transforming the series, the accumulated series can be simply or seasonally differenced
by using the VAR and CROSSVAR statement DIF= and SDIF= options. For example, suppose yt is a
monthly time series. The following examples of the DIF= and SDIF= options demonstrate how to simply and
seasonally difference the time series.

dif=(1) sdif=(1)
dif=(1,12)

Additionally, when yt is strictly positive and the TRANSFORM=, DIF=, and SDIF= options are combined
in the VAR and CROSSVAR statements, the transformation operation is performed before the differencing
operations.

Descriptive Statistics
Descriptive statistics can be computed from the working series by specifying the OUTSUM= option or
PRINT=DESCSTATS.

Seasonal Decomposition
Seasonal decomposition/analysis can be performed on the working series by specifying the OUTDECOMP=
option, the PRINT=DECOMP option, or one of the PLOTS= options associated with decomposition in
the PROC TIMESERIES statement. The DECOMP statement enables you to specify options related
to decomposition. The TIMESERIES procedure uses classical decomposition. More complex seasonal
decomposition/adjustment analysis can be performed by using the X11 or the X12 procedure of SAS/ETS.

The DECOMP statement MODE= option determines the mode of the seasonal adjustment decomposi-
tion to be performed. There are four modes: multiplicative (MODE=MULT), additive (MODE=ADD),
pseudo-additive (MODE=PSEUDOADD), and log-additive (MODE=LOGADD) decomposition. The
default is MODE=MULTORADD which specifies MODE=MULT for series that are strictly positive,
MODE=PSEUDOADD for series that are nonnegative, and MODE=ADD for series that are not nonnegative.

When MODE=LOGADD is specified, the components are exponentiated to the original metric.

The DECOMP statement LAMBDA= option specifies the Hodrick-Prescott filter parameter (Hodrick and
Prescott 1980). The default is LAMBDA=1600. The Hodrick-Prescott filter is used to decompose the
trend-cycle component into the trend component and cycle component in an additive fashion. A smaller
parameter assigns less significance to the cycle; that is, LAMBDA=0 implies no cycle component.
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The notation and keywords associated with seasonal decomposition/adjustment analysis are defined in
Table 39.3.

Table 39.3 Seasonal Adjustment Formulas

Component Keyword MODE= Option Formula

Original series ORIGINAL MULT Ot D TCtStIt
ADD Ot D TCt C St C It
LOGADD log.Ot / D TCt C St C It
PSEUDOADD Ot D TCt .St C It � 1/

Trend-cycle component TCC MULT Centered moving average of Ot
ADD Centered moving average of Ot
LOGADD Centered moving average of log.Ot /
PSEUDOADD Centered moving average of Ot

Seasonal-irregular component SIC MULT SIt D StIt D Ot=TCt
ADD SIt D St C It D Ot � TCt
LOGADD SIt D St C It D log.Ot / � TCt
PSEUDOADD SIt D St C It � 1 D Ot=TCt

Seasonal component SC MULT Seasonal averages of SIt
ADD Seasonal averages of SIt
LOGADD Seasonal averages of SIt
PSEUDOADD Seasonal averages of SIt

Irregular component IC MULT It D SIt=St
ADD It D SIt � St
LOGADD It D SIt � St
PSEUDOADD It D SIt � St C 1

Trend-cycle-seasonal component TCS MULT TCSt D TCtSt D Ot=It
ADD TCSt D TCt C St D Ot � It
LOGADD TCSt D TCt C St D Ot � It
PSEUDOADD TCSt D TCtSt

Trend component TC MULT Tt D TCt � Ct
ADD Tt D TCt � Ct
LOGADD Tt D TCt � Ct
PSEUDOADD Tt D TCt � Ct

Cycle component CC MULT Ct D TCt � Tt
ADD Ct D TCt � Tt
LOGADD Ct D TCt � Tt
PSEUDOADD Ct D TCt � Tt

Seasonally adjusted series SA MULT SAt D Ot=St D TCtIt
ADD SAt D Ot � St D TCt C It
LOGADD SAt D Ot=exp.St / D exp.TCt C It /
PSEUDOADD SAt D TCtIt
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When s is odd the trend-cycle component is computed from the s-period centered moving average as follows:

TCt D

bs=2cX
kD�bs=2c

ytCk=s

When s is even the trend-cycle component is computed from the s-period centered moving average as follows:

TCt D

s=2�1X
kD�s=2

.ytCk C ytC1Ck/=2s

The seasonal component is obtained by averaging the seasonal-irregular component for each season.

SkCjs D
X

tDk mod s

SIt

T=s

where 0�j�T=s and 1�k�s. The seasonal components are normalized to sum to one (multiplicative) or
zero (additive).

Correlation Analysis
Correlation analysis can be performed on the working series by specifying the OUTCORR= option or one
of the PLOTS= options that are associated with correlation. The CORR statement enables you to specify
options that are related to correlation analysis.

Autocovariance Statistics

LAGS h 2 f0; : : : ;H g

N Nh is the number of observed products at lag h, ignoring missing values

ACOV O.h/ D 1
T

PT
tDhC1.yt � y/.yt�h � y/

ACOV O.h/ D 1
Nh

PT
tDhC1.yt � y/.yt�h � y/ when embedded missing values are present

Autocorrelation Statistics

ACF O�.h/ D O.h/= O.0/

ACFSTD Std. O�.h// D
r
1
T

�
1C 2

Ph�1
jD1 O�.j /

2
�

ACFNORM Norm. O�.h// D O�.h/=Std. O�.h//

ACFPROB Prob. O�.h// D 2 .1 �ˆ.jNorm. O�.h//j//

ACFLPROB LogProb. O�.h// D � log10.Prob. O�.h//

ACF2STD Flag. O�.h// D

8<:
1 O�.h/ > 2Std. O�.h//
0 �2Std. O�.h// < O�.h/ < 2Std. O�.h//
�1 O�.h/ < �2Std. O�.h//



2762 F Chapter 39: The TIMESERIES Procedure

Partial Autocorrelation Statistics

PACF O'.h/ D �.0;h�1/fj g
h
jD1

PACFSTD Std. O'.h// D 1=
p
N0

PCFNORM Norm. O'.h// D O'.h/=Std. O'.h//

PACFPROB Prob. O'.h// D 2 .1 �ˆ.jNorm. O'.h//j//

PACFLPROB LogProb. O'.h// D � log10.Prob. O'.h//

PACF2STD Flag. O'.h// D

8<:
1 O'.h/ > 2Std. O'.h//
0 �2Std. O'.h// < O'.h/ < 2Std. O'.h//
�1 O'.h/ < �2Std. O'.h//

Inverse Autocorrelation Statistics

IACF O�.h/

IACFSTD Std. O�.h// D 1=
p
N0

IACFNORM Norm. O�.h// D O�.h/=Std. O�.h//

IACFPROB Prob. O�.h// D 2
�
1 �ˆ

�
jNorm. O�.h//j

��
IACFLPROB LogProb. O�.h// D � log10.Prob. O�.h//

IACF2STD Flag. O�.h// D

8̂<̂
:
1 O�.h/ > 2Std. O�.h//
0 �2Std. O�.h// < O�.h/ < 2Std. O�.h//
�1 O�.h/ < �2Std. O�.h//

White Noise Statistics

WN Q.h/ D T .T C 2/
Ph
jD1 �.j /

2=.T � j /

WN Q.h/ D
Ph
jD1Nj�.j /

2 when embedded missing values are present

WNPROB Prob.Q.h// D �max.1;h�p/.Q.h//

WNLPROB LogProb.Q.h// D � log10.Prob.Q.h//

Cross-Correlation Analysis
Cross-correlation analysis can be performed on the working series by specifying the OUTCROSSCORR=
option or one of the CROSSPLOTS= options that are associated with cross-correlation. The CROSSCORR
statement enables you to specify options that are related to cross-correlation analysis.
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Cross-Correlation Statistics

The cross-correlation statistics for the variable x supplied in a VAR statement and the variable y supplied in a
CROSSVAR statement are as follows:

LAGS h 2 f�H; : : : ; 0; : : : ;H g

N Nh is the number of observed products at lag h, ignoring missing values

CCOV Ox;y.h/ D

(
1
T

PT
tDhC1.xt � x/.yt�h � y/ 0 � h < T

1
T

PT
tDjhjC1.xt�jhj � x/.yt � y/ �T < h < 0

CCOV Ox;y.h/ D

(
1
Nh

PT
tDhC1.xt � x/.yt�h � y/ 0 � h < T

1
Nh

PT
tDjhjC1.xt�jhj � x/.yt � y/ �T < h < 0

when embedded

missing values are present

CCF O�x;y.h/ D Ox;y.h/=
p
Ox.0/ Oy.0/

CCFSTD Std. O�x;y.h// D 1=
p
N0

CCFNORM Norm. O�x;y.h// D O�x;y.h/=Std. O�x;y.h//

CCFPROB Prob. O�x;y.h// D 2
�
1 �ˆ

�
jNorm. O�x;y.h//j

��
CCFLPROB LogProb. O�x;y.h// D � log10.Prob. O�x;y.h//

CCF2STD Flag. O�x;y.h// D

8<:
1 O�x;y.h/ > 2Std. O�x;y.h//
0 �2Std. O�x;y.h// < O�x;y.h/ < 2Std. O�x;y.h//
�1 O�x;y.h/ < �2Std. O�x;y.h//

Spectral Density Analysis
Spectral analysis can be performed on the working series by specifying the OUTSPECTRA= option or
by specifying the PLOTS=PERIODOGRAM or PLOTS=SPECTRUM option in the PROC TIMESERIES
statement. PROC TIMESERIES uses the finite Fourier transform to decompose data series into a sum of sine
and cosine terms of different amplitudes and wavelengths. The finite Fourier transform decomposition of the
series xt is

xt D
a0

2
C

K�1X
kD1

fk.ak cos!kt C bk sin!kt /

fk D

(
1=2 if T is even and k D K � 1
1 otherwise

where

t is the time subscript, t D 0; 1; 2; : : : ; T � 1

xt are the equally spaced time series data

T is the number of observations in the time series

K is the number of frequencies in the Fourier decomposition: K D TC2
2

if T is even,
K D TC1

2
if T is odd

k is the frequency subscript, k D 0; 1; 2; : : : ; K � 1
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a0 is the mean term: a0 D 2x

ak are the cosine coefficients

bk are the sine coefficients

!k are the Fourier frequencies: !k D 2�k
T

The Fourier decomposition is performed after the ACCUMULATE=, DIF=, SDIF=, and TRANSFORM=
options in the ID and VAR statements have been applied.

Functions of the Fourier coefficients ak and bk can be plotted against frequency or against wavelength to
form periodograms. The amplitude periodogram Ik is defined as follows:

Ik D
T

2
.a2k C b

2
k/

Since the Fourier transform is an even, periodic function of frequency that repeats every T ordinates, the
periodogram is also. Values of Ik for all k therefore can be mapped to the unique values Ik W k D 0; : : : ; K�1
using the equations

Ik D I�k for all k

Ik D IkCnT for n D ˙1;˙2;˙3; : : :

Ik D IT�k for 0 � k � K � 1

The periodogram, Ik , is an estimate at the discrete frequencies !k of the spectral density function which
characterizes the series xt . By smoothing the periodogram an improved spectral density estimate with
reduced variance and bias can be achieved at these points. Smoothing can be accomplished either through
use of a spectral window smoothing function or by applying a lag window filter to the series autocovariance
function.

When the SPECTRA statement’s DOMAIN=FREQUENCY option is in effect spectral density estimates are
computed by smoothing the periodogram ordinates using the equation

Sk.M/ D

K�1X
�DK�T

w
� �
M

�
IkC�

where w.�/ is the spectral window function whose form is specified by either the KERNEL= option or the
WEIGHTS option. M is the kernel scale parameter which acts as a frequency scaling factor in the spectral
window smoothing function. Values of IkC� that fall outside of 0 � k C � � K � 1 are mapped to values
inside this range by the equations presented previously.

When the DOMAIN=TIME option is specified, spectral density values are estimated by applying a lag
window filter, �.h;M/, to the series autocovariance function. The spectral density estimate then can be
computed from the filtered autocovariance function using the equation

Sk.M/ D

T�1X
hD�.T�1/

�.h;M/ O.h/ cos h!k

In this case the kernel scale parameter, M, serves as a scale factor for the lag length, h, in the time domain.
In the lag window formulation the spectral density estimate is a consistent estimator as T;M !1 under
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the conditions �.h;M/ D 0 for jhj > M , and limT!1M=T D 0. These conditions lead to the following
parameterization of M provided by the SPECTRA statement,

M D cKe

where the values c > 0 and 0 < e < 1 satisfy the consistency conditions. To specify the kernel scale
parameter explicitly, set c D to the desired scale factor and e D 0.

For uniformity and computational efficiency, all spectral density estimates are calculated using a spectral win-
dow weighting function, w.�/, applied to the periodogram ordinates. In the case where the DOMAIN=TIME
option is specified, the effective spectral window weighting function is computed by the equation

wTIME.�/ D

T�1X
hD�.T�1/

�.h;M/ cos h�

Because the kernel scale parameter, M, serves as a lag scale factor in the time domain and bandwidth scale
factor in the frequency domain, the impact of M on spectral density estimates depends on the value of the
DOMAIN= option. When DOMAIN=FREQUENCY, increasing values of M decrease variance and increase
bias in the spectral density estimates; when DOMAIN=TIME, increasing values of M increase variance and
decrease bias.

Using Kernel Specifications

You can specify one of ten different kernel smoothing functions in the SPECTRA statement. Five smoothing
functions are available as KERNEL= options, and five complementary smoothing functions, which cor-
respond to lag window filters, are available when the KERNEL= option is used in conjunction with the
DOMAIN=TIME option.

For example, a Parzen kernel with a support of 11 periodogram ordinates in the frequency domain can be
specified using the kernel option:

spectra / parzen c=5 expon=0;

The TIMESERIES procedure supports the following spectral window kernel functions in the frequency
domain where x D �=M :

BARTLETT: Bartlett kernel

w.x/ D

(
1 � jxj jxj�1

0 otherwise

PARZEN: Parzen kernel

w.x/ D

8̂<̂
:
1 � 6jxj2 C 6jxj3 0�jxj�1

2

2.1 � jxj/3 1
2
�jxj�1

0 otherwise

QS: quadratic spectral kernel

w.x/ D
3

.2�x/2

�
sin 2�x
2�x

� cos 2�x
�
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TUKEY: Tukey-Hanning kernel

w.x/ D

(
.1C cos.�x//=2 jxj�1

0 otherwise

TRUNCAT: truncated kernel

w.x/ D

(
1 jxj�1

0 otherwise

When the DOMAIN=TIME option is specified the five kernel functions above are interpreted as lag window
filters on the autocovariance function. The lag window kernel functions correspond to the following spectral
window smoothing functions where � D 2��=T :

BARTLETT: Bartlett equivalent lag window filter

w.�/ D
1

2�M

�
sin.M�=2/

sin.�=2/

�2

PARZEN: Parzen equivalent lag window filter

w.�/ D
6

�M 3

�
sin.M�=4/

sin.�=2/

�4 �
1 �

2

3
sin2.�=2/

�

QS: quadratic spectral equivalent lag window filter

w.�/ D

(
3M
4�
.1 � .M�=�/2/ j� j � �=M

0 j� j > �=M

TUKEY: Tukey-Hanning equivalent lag window filter

w.�/ D
1

4
DM .� � �=M/C

1

2
DM .�/C

1

4
DM .� C �=M/

DM .�/ D
1

2�

sinŒ.M C 1=2/��
sin.�=2/

TRUNC: truncated equivalent lag window filter

w.�/ D DM .�/
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Using Specification of Weight Constants

Any number of weighting constants can be specified. The constants are interpreted symmetrically about the
middle weight. The middle constant (or the constant to the right of the middle if an even number of weight
constants is specified) is the relative weight of the current periodogram ordinate. The constant immediately
following the middle one is the relative weight of the next periodogram ordinate, and so on. The actual
weights used in the smoothing process are the weights specified in the WEIGHTS option scaled so that they
sum to 1.

The moving average calculation reflects at each end of the periodogram to accommodate the periodicity of
the periodogram function.

For example, a simple triangular weighting can be specified using the following WEIGHTS option:

spectra / weights 1 2 3 2 1;

Computational Method

If the number of observations, T, factors into prime integers that are less than or equal to 23, and the product
of the square-free factors of T is less than 210, then the procedure uses the fast Fourier transform developed
by Cooley and Tukey (1965) and implemented by Singleton (1969). If T cannot be factored in this way, then
the procedure uses a Chirp-Z algorithm similar to that proposed by Monro and Branch (1977).

Missing Values

Missing values are replaced with an estimate of the mean to perform spectral analyses. This treatment of a
series with missing values is consistent with the approach used by Priestley (1981).

Singular Spectrum Analysis
Given a time series, yt , for t D 1; : : : ; T , and a window length, 2 � L < T=2, singular spectrum analysis
Golyandina, Nekrutkin, and Zhigljavsky (2001) decompose the time series into spectral groupings using the
following steps:

Embedding Step
Using the time series, form a K � L trajectory matrix, X, with elements

X D fxk;lg
K;L
kD1;lD1

such that xk;l D yk�lC1 for k D 1; : : : ; Kand l D 1; : : : ; L and where K D T � L C 1. By definition
L � K < T , because 2 � L < T=2.

Decomposition Step
Using the trajectory matrix, X, apply singular value decomposition to the trajectory matrix

X D UQV

where U represents theK �L matrix that contains the left-hand-side (LHS) eigenvectors, where Q represents
the diagonal L � L matrix that contains the singular values, and where V represents the L � L matrix that
contains the right-hand-side (RHS) eigenvectors.
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Therefore,

X D
LX
lD1

X.l/ D
LX
lD1

ulqlvTl

where X.l/ represents the K � L principal component matrix, ul represents the K � 1 left-hand-side (LHS)
eigenvector, ql represents the singular value, and vl represents the L � 1 right-hand-side (RHS) eigenvector
associated with the lth window index.

Grouping Step
For each group index, m D 1; : : : ;M , define a group of window indices Im � f1; : : : ; Lg. Let

XIm D
X
l2Im

X.l/ D
X
l2Im

ulqlvTl

represent the grouped trajectory matrix for group Im. If groupings represent a spectral partition,

M[
mD1

Im D f1; : : : ; Lg and Im \ In D ; for m ¤ n

then according to the singular value decomposition theory,

X D
MX
mD1

XIm

Averaging Step
For each group index, m D 1; : : : ;M , compute the diagonal average of XIm ,

Qx
.m/
t D

1

nt

etX
lDst

x
.m/

t�lC1;l

where

st D 1; et D t; nt D t for 1 � t < L

st D 1; et D L; nt D L for L � t � T � LC 1

st D t � T C L; et D L; nt D T � t C 1 for T � LC 1 < t � T

If the groupings represent a spectral partition, then by definition

yt D

MX
mD1

Qx
.m/
t

Hence, singular spectrum analysis additively decomposes the original time series, yt , into m component
series Qx.m/t for m D 1; : : : ;M .
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Computing W-Correlations

An important step in SSA is specifying the groups, Im � f1; : : : ; Lg for m D 1; : : : ;M . In order
to automate the SSA grouping step, the weighted correlations (w-correlations) are computed. �.w/i;j D�

Qx
.i/
t ; Qx

.j/
t

�
w

jj Qx
.i/
t ; Qx

.i/
t jjw jj Qx

.j/
t ; Qx

.j/
t jjw

, where
�
Qx
.i/
t ; Qx

.j /
t

�
w
D

TP
t�1

wt Qx
.i/
t Qx

.j /
t and wt D min.t; L; T � t /.

Specifying the Window Length

You can explicitly specify the maximum window length, 2 � L � 1000, by using the LENGTH= option, or
you can implicitly specify the window length by using the INTERVAL= option in the ID statement or the
SEASONALITY= option in the PROC TIMESERIES statement. Either way, the window length is reduced
based on the accumulated time series length, T, to enforce the requirement that 2 � L � T=2.

Specifying the Groups

The GROUPS=(numlist). . . (numlist) option explicitly specifies the composition and number of groups,
Im � f1; : : : ; Lg, or you can use the THRESHOLDPCT= option in the SSA statement to implicitly specify
the grouping. The THRESHOLDPCT= option is useful for removing noise or less dominant patterns from
the accumulated time series.

Let 0 < ˛ < 1 be the cumulative percentage singular value that is specified in the THRESHOLDPCT=
option. Then the last group, IM D fl˛; : : : ; Lg, is determined by the smallest value such that0@l˛�1X

lD1

ql

� LX
lD1

ql

1A � ˛ 1 < l˛ � L

Using this rule, the last group, IM , describes the least dominant patterns in the time series, and the size of
the last group is at least one and is less than the window length, L � 2.

The magnitudes of the principal components that are plotted using the PLOT=SSA option and selected by the
THRESHOLDPCT= option are based on the singular values that appear on the diagonal of Q. Alternatively,
each principal component’s contribution to variation in the series can be quantified by using the squares
of the singular values. The relative contributions of the principal components to variation in the series are
included in the printed tabular output that is produced by the PRINT=SSA option.

Automatic Grouping

Besides specifying the groups explicitly, you can also use the GROUPS=AUTO(number ) option to perform
the automatic grouping. In this SSA automatic grouping, the following steps are performed:

1. Initially assume the maximal number of groups: M D L.

2. Diagonally average the groups as described previously: Qx.m/t for m D 1; : : : ; L.

3. Compute the weighted correlations (w-correlations) between groups: �.m/i;j .

4. Choose the groups based on the w-correlations for which the absolute values are close to one. Or more
formally, Im � f1; : : : ; Lg such that j�.m/i;j j � 1 whenever i; j 2 Im.
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Data Set Output
The TIMESERIES procedure can create the OUT=, OUTCORR=, OUTCROSSCORR=, OUTDECOMP=,
OUTFREQ=, OUTSEASON=, OUTSPECTRA=, OUTSSA=, OUTSUM=, and OUTTREND= data sets. In
general, these data sets contain the variables listed in the BY statement. If an analysis step that is related to
an output data step fails, the values of this step are not recorded or are set to missing in the related output
data set and appropriate error and/or warning messages are recorded in the log.

OUT= Data Set
The OUT= data set contains the variables specified in the BY, ID, VAR, and CROSSVAR statements.
If the ID statement is specified, the ID variable values are aligned and extended based on the ALIGN=
and INTERVAL= options. The values of the variables specified in the VAR and CROSSVAR statements
are accumulated based on the ACCUMULATE= option, and missing values are interpreted based on the
SETMISSING= option.

OUTCORR= Data Set
The OUTCORR= data set contains the variables specified in the BY statement as well as the variables in
the following list. The OUTCORR= data set records the correlations for each variable specified in a VAR
statement (not the CROSSVAR statement).

When the CORR statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names
are related to correlation statistics specified in the CORR statement options and the variable values are related
to the NLAG= or LAGS= option.

_NAME_ variable name

LAG time lag

N number of variance products

ACOV autocovariances

ACF autocorrelations

ACFSTD autocorrelation standard errors

ACF2STD an indicator of whether autocorrelations are less than (–1), greater than (1), or within (0)
two standard errors of zero

ACFNORM normalized autocorrelations

ACFPROB autocorrelation probabilities

ACFLPROB autocorrelation log probabilities

PACF partial autocorrelations

PACFSTD partial autocorrelation standard errors

PACF2STD an indicator of whether partial autocorrelations are less than (–1), greater than (1), or
within (0) two standard errors of zero
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PACFNORM partial normalized autocorrelations

PACFPROB partial autocorrelation probabilities

PACFLPROB partial autocorrelation log probabilities

IACF inverse autocorrelations

IACFSTD an indicator of whether inverse autocorrelations are less than (–1), greater than (1), or
within (0) two standard errors of zero

IACF2STD two standard errors beyond inverse autocorrelation

IACFNORM normalized inverse autocorrelations

IACFPROB inverse autocorrelation probabilities

IACFLPROB inverse autocorrelation log probabilities

WN white noise test statistics

WNPROB white noise test probabilities

WNLPROB white noise test log probabilities

The preceding correlation statistics are computed for each specified time lag.

When the CORR statement TRANSPOSE=YES option is specified, the variable values are related to
correlation statistics specified in the CORR statement and the variable names are related to the NLAG= or
LAGS= option.

_NAME_ variable name

_STAT_ correlation statistic name

_LABEL_ correlation statistic label

LAGh correlation statistics for lag h

OUTCROSSCORR= Data Set
The OUTCROSSCORR= data set contains the variables specified in the BY statement as well as the variables
in the following list. The OUTCROSSCORR= data set records the cross-correlations for each variable
specified in a VAR and the CROSSVAR statements.

When the CROSSCORR statement TRANSPOSE=NO option is omitted or specified explicitly, the variable
names are related to cross-correlation statistics specified in the CROSSCORR statement options and the
variable values are related to the NLAG= or LAGS= option.

_NAME_ variable name

_CROSS_ cross variable name

LAG time lag

N number of variance products

CCOV cross-covariances

CCF cross-correlations
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CCFSTD cross-correlation standard errors

CCF2STD an indicator of whether cross-correlations are less than (–1), greater than (1), or within (0)
two standard errors of zero

CCFNORM normalized cross-correlations

CCFPROB cross-correlation probabilities

CCFLPROB cross-correlation log probabilities

The preceding cross-correlation statistics are computed for each specified time lag.

When the CROSSCORR statement TRANSPOSE=YES option is specified, the variable values are related to
cross-correlation statistics specified in the CROSSCORR statement and the variable names are related to the
NLAG= or LAGS= option.

_NAME_ variable name

_CROSS_ cross variable name

_STAT_ cross-correlation statistic name

_LABEL_ cross-correlation statistic label

LAGh cross-correlation statistics for lag h

OUTDECOMP= Data Set
The OUTDECOMP= data set contains the variables specified in the BY statement as well as the variables in
the following list. The OUTDECOMP= data set records the seasonal decomposition/adjustments for each
variable specified in a VAR statement (not the CROSSVAR statement).

When the DECOMP statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names
are related to decomposition/adjustments specified in the DECOMP statement and the variable values are
related to the ID statement INTERVAL= option and the PROC TIMESERIES statement SEASONALITY=
option.

_NAME_ variable name

_MODE_ mode of decomposition

_TIMEID_ time ID values

_SEASON_ seasonal index

ORIGINAL original series values

TCC trend-cycle component

SIC seasonal-irregular component

SC seasonal component

SCSTD seasonal component standard errors

TCS trend-cycle-seasonal component

IC irregular component
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SA seasonally adjusted series

PCSA percent change seasonally adjusted series

TC trend component

CC cycle component

The preceding decomposition components are computed for each time period.

When the DECOMP statement TRANSPOSE=YES option is specified, the variable values are related to
decomposition/adjustments specified in the DECOMP statement and the variable names are related to the
ID statement INTERVAL= option, the PROC TIMESERIES statement SEASONALITY= option, and the
DECOMP statement NPERIODS= option.

_NAME_ variable name

_MODE_ mode of decomposition name

_COMP_ decomposition component name

_LABEL_ decomposition component label

PERIODt decomposition component value for time period t

OUTFREQ= Data Set
The OUTFREQ= data set contains the variables specified in the BY statement as well as the variables in the
following list. The OUTFREQ= data set records the counts of the discrete values of the time series for each
variable specified in a VAR statement (not the CROSSVAR statement).

_NAME_ variable name

VALUES distinct series values

COUNTS counts of the discrete values

PERCENT percentage of the total counts

OUTPROCINFO= Data Set
The OUTPROCINFO= data set contains information about the run of the TIMESERIES procedure. The
following variables are present:

_SOURCE_ set to the name of the procedure, in this case TIMESERIES

_NAME_ name of the item being reported

_LABEL_ descriptive label for the item in _NAME_

_STAGE_ set to the current stage of the procedure; for TIMESERIES this is set to ALL

_VALUE_ value of the item specified in _NAME_
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OUTSEASON= Data Set
The OUTSEASON= data set contains the variables specified in the BY statement as well as the variables in
the following list. The OUTSEASON= data set records the seasonal statistics for each variable specified in a
VAR statement (not the CROSSVAR statement).

When the SEASON statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names
are related to seasonal statistics specified in the SEASON statement and the variable values are related to the
ID statement INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

_NAME_ variable name

_TIMEID_ time ID values

_SEASON_ seasonal index

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

MINIMUM minimum value

MAXIMUM maximum value

RANGE range value

SUM summation value

MEAN mean value

STDDEV standard deviation

CSS corrected sum of squares

USS uncorrected sum of squares

MEDIAN median value

The preceding statistics are computed for each season.

When the SEASON statement TRANSPOSE=YES option is specified, the variable values are related to
seasonal statistics specified in the SEASON statement and the variable names are related to the ID statement
INTERVAL= option or the PROC TIMESERIES statement SEASONALITY= option.

_NAME_ variable name

_STAT_ season statistic name

_LABEL_ season statistic name

SEASONs season statistic value for season s
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OUTSPECTRA= Data Set
The OUTSPECTRA= data set contains the variables that are specified in the BY statement in addition to the
variables in the following list. The OUTSPECTRA= data set records the frequency domain analysis for each
variable specified in a VAR statement (not the CROSSVAR statement).

The following variable names are related to correlation statistics specified in the SPECTRA statement options:

_NAME_ variable name

FREQ frequency in radians from 0 to �

PERIOD period or wavelength

COS cosine transform

SIN sine transform

P periodogram

S spectral density estimates

OUTSSA= Data Set
The OUTSSA= data set contains the variables that are specified in the BY statement in addition to the
variables in the following list. The OUTSSA= data set records the singular spectrum analysis (SSA) for each
variable specified in a VAR statement (not the CROSSVAR statement).

When the SSA statement TRANSPOSE=NO option is omitted or specified explicitly, the variable names are
related to singular spectrum analysis specified in the SSA statement, and the variable values are related to
the INTERVAL= option in the ID statement and the SEASONALITY= option in the PROC TIMESERIES
statement.

_NAME_ variable name

_TIMEID_ time ID values

_CYCLE_ cycle index

_SEASON_ seasonal index

ORIGINAL original series values

_GROUPi_ SSA result groups

The _GROUPi_ decomposition components are computed for each time period.

When the SSA statement TRANSPOSE=YES option is specified, the variable values are related to singular
spectrum analysis specified in the SSA statement, and the variable names are related to the INTERVAL=
option in the ID statement, the SEASONALITY= option in the PROC TIMESERIES statement, or the
NPERIODS= option in the SSA statement. The following variables are written to a transposed OUTSSA=
data set:
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_NAME_ variable name

_GROUP_ group number

PERIODt SSA group value for time period t

OUTSUM= Data Set
The OUTSUM= data set contains the variables specified in the BY statement as well as the variables in the
following list. The OUTSUM= data set records the descriptive statistics for each variable specified in a VAR
statement (not the CROSSVAR statement).

Variables related to descriptive statistics are based on the ACCUMULATE= and SETMISSING= options in
the ID and VAR statements:

_NAME_ variable name

_STATUS_ status flag that indicates whether the requested analyses were successful

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

START the starting date of the time series

END the ending date of the time series

STARTOBS the beginning observation of the time series

ENDOBS the ending observation of the time series

MINIMUM minimum value

MAXIMUM maximum value

AVG average value

STDDEV standard deviation

MEDIAN median value

The OUTSUM= data set contains the descriptive statistics of the (accumulated) time series.
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OUTTREND= Data Set
The OUTTREND= data set contains the variables specified in the BY statement as well as the variables in
the following list. The OUTTREND= data set records the trend statistics for each variable specified in a VAR
statement (not the CROSSVAR statement).

When the TREND statement TRANSPOSE=NO option is omitted or explicitly specified, the variable
names are related to trend statistics specified in the TREND statement and the variable values are related to
the INTERVAL= option in the ID statement or the SEASONALITY= option in the PROC TIMESERIES
statement.

_NAME_ variable name

_TIMEID_ time ID values

_SEASON_ seasonal index

NOBS number of observations

N number of nonmissing observations

NMISS number of missing observations

MINIMUM minimum value

MAXIMUM maximum value

RANGE range value

SUM summation value

MEAN mean value

STDDEV standard deviation

CSS corrected sum of squares

USS uncorrected sum of squares

MEDIAN median value

The preceding statistics are computed for each time period.

When the TREND statement TRANSPOSE=YES option is specified, the variable values related to trend
statistics specified in the TREND statement and the variable names are related to the INTERVAL= option in
the ID statement, the SEASONALITY= option in the PROC TIMESERIES statement, or the NPERIODS=
option in the TREND statement. The following variables are written to the OUTTREND= data set:

_NAME_ variable name

_STAT_ trend statistic name

_LABEL_ trend statistic name

PERIODt trend statistic value for time period t
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_STATUS_ Variable Values
The _STATUS_ variable that appears in the OUTSUM= data set contains a code that specifies whether the
analysis has been successful or not. The _STATUS_ variable can take the following values:

0 success

1000 transactional trend statistics failure

2000 transactional seasonal statistics failure

3000 accumulation failure

4000 missing value interpretation failure

6000 series is all missing

7000 transformation failure

8000 differencing failure

9000 unable to compute descriptive statistics

10000 seasonal decomposition failure

11000 correlation analysis failure

15000 singular spectrum analysis failure

16000 spectral analysis failure

Printed Output
The TIMESERIES procedure optionally produces printed output by using the Output Delivery System
(ODS). By default, the procedure produces no printed output. All output is controlled by the PRINT= and
PRINTDETAILS options associated with the PROC TIMESERIES statement. In general, if an analysis
step related to printed output fails, the values of this step are not printed and appropriate error or warning
messages or both are recorded in the log. The printed output is similar to the output data set, and these
similarities are described as follows.

PRINT=COUNTS prints the discrete distribution analysis.

PRINT=DECOMP prints the seasonal decomposition similar to the OUTDECOMP= data set.

PRINT=DESCSTATS prints a table of descriptive statistics for each variable.

PRINT=SEASONS prints the seasonal statistics similar to the OUTSEASON= data set.

PRINT=SSA prints the singular spectrum analysis similar to the OUTSSA= data set.

PRINT=SUMMARY prints the summary statistics similar to the OUTSUM= data set.

PRINT=TRENDS prints the trend statistics similar to the OUTTREND= data set.

PRINTDETAILS prints each table with greater detail.

If the PRINT=SEASONS and PRINTDETAILS options are both specified, all seasonal statistics are printed.
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ODS Table Names
Table 39.4 relates the PRINT= options to ODS tables.

Table 39.4 ODS Tables Produced in PROC TIMESERIES

ODS Table Name Description Statement Option

CountStatistics Sample count statistics PRINT COUNTS
DistSelection Discrete distribution selection PRINT COUNTS
DistParmEst Discrete distribution parameter

estimates
PRINT COUNTS

DistEst Discrete distribution estimates PRINT COUNTS
SeasonalDecomposition Seasonal decomposition PRINT DECOMP
DescStats Descriptive statistics PRINT DESCSTATS
GlobalStatistics Global statistics PRINT SEASONS
SeasonStatistics Season statistics PRINT SEASONS
StatisticsSummary Statistics summary PRINT SUMMARY
TrendStatistics Trend statistics PRINT TRENDS
GlobalStatistics Global statistics PRINT TRENDS
SSASingularValues SSA singular values PRINT SSA
SSAResults SSA results PRINT SSA
SSAGroups SSA groups PRINT SSA

The tables are related to a single series within a BY group.

ODS Graphics Names
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the graphical output produced by the TIMESERIES procedure. PROC TIMESERIES
assigns a name to each graph it creates. These names are listed in Table 39.5.

Table 39.5 ODS Graphics Produced by PROC TIMESERIES

ODS Graph Name Plot Description Statement Option

ACFPlot Autocorrelation function PLOTS ACF
ACFNORMPlot Normalized autocorrelation

function
PLOTS ACF

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 39.5 continued

ODS Graph Name Plot Description Statement Option

CCFNORMPlot Normalized cross-correlation
function

CROSSPLOTS CCF

CCFPlot Cross-correlation function CROSSPLOTS CCF
ChiSqProbPlot Discrete distribution

evaluation
COUNTPLOTS CHISQPROB

ChiSqLogProbPlot Discrete distribution
evaluation

COUNTPLOTS CHISQPROB

CorrelationPlots Correlation graphics panel PLOTS CORR
CrossSeriesPlot Cross series plot CROSSPLOTS SERIES
CycleComponentPlot Cycle component PLOTS CC
CyclePlot Seasonal cycles plot PLOTS CYCLES
DecompositionPlots Decomposition graphics

panel
PLOTS DECOMP

DiscreteDistPlot Discrete distribution COUNTPLOTS DISTRIBUTION
ZeroModDiscreteDistPlot Zero-modified discrete

distribution
COUNTPLOTS DISTRIBUTION

FreqDistPlot Frequency distribution COUNTPLOTS COUNTS
FreqIndexDistPlot Frequency index distribution COUNTPLOTS COUNTS
FreqValueByIndexPlot Frequency values by index COUNTPLOTS COUNTS
IACFPlot Inverse autocorrelation

function
PLOTS IACF

IACFNORMPlot Normalized inverse
autocorrelation function

PLOTS IACF

IrregularComponentPlot Irregular component PLOTS IC
PACFPlot Partial autocorrelation

function
PLOTS PACF

PACFNORMPlot Standardized partial
autocorrelation function

PLOTS PACF

PercentChangeAdjustedPlot Percent-change seasonally
adjusted

PLOTS PCSA

Periodogram Periodogram versus period PLOTS PERIODOGRAM
ResidualPlot Residual time series plot PLOTS RESIDUAL
SeasonallyAdjustedPlot Seasonally adjusted PLOTS SA
SeasonalComponentPlot Seasonal component PLOTS SC
SeasonalIrregularComponentPlot Seasonal-irregular

component
PLOTS SIC

SeriesHistogram Histogram of series values PLOTS HISTOGRAM
SeriesPlot Time series plot PLOTS SERIES
SpectralDensityPlot Spectral density versus

period
PLOTS SPECTRUM

SSASingularValuesPlot SSA singular values PLOTS SSA
SSAResultsPlot SSA results PLOTS SSA
SSAResultsVectorPlot SSA results vector PLOTS SSA
SSAWCorrHeatmap SSA w-correlation matrix PLOTS SSA
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Table 39.5 continued

ODS Graph Name Plot Description Statement Option

SSAGroupSumPlot SSA sum plot and actual
values

PLOTS SSA

TrendComponentPlot Trend component PLOTS TC
TrendCycleComponentPlot Trend-cycle component PLOTS TCC
TrendCycleSeasonalPlot Trend-cycle-seasonal

component
PLOTS TCS

WhiteNoiseLogProbabilityPlot White noise probability (log
scale)

PLOTS WN

WhiteNoiseProbabilityPlot White noise probability PLOTS WN

Examples: TIMESERIES Procedure

Example 39.1: Accumulating Transactional Data into Time Series Data
This example illustrates using the TIMESERIES procedure to accumulate time-stamped transactional data that
has been recorded at no particular frequency into time series data at a specific frequency. After the time series
is created, the various SAS/ETS procedures related to time series analysis, seasonal adjustment/decomposition,
modeling, and forecasting can be used to further analyze the time series data.

Suppose that the input data set WORK.RETAIL contains the variables STORE and TIMESTAMP and numerous
other numeric transaction variables. The BY variable STORE contains values that break up the transactions
into groups (BY groups). The time ID variable TIMESTAMP contains SAS date values recorded at no
particular frequency. The other data set variables contain the numeric transaction values to be analyzed.
It is further assumed that the input data set is sorted by the variables STORE and TIMESTAMP. The
following statements form monthly time series from the transactional data based on the median value
(ACCUMULATE=MEDIAN) of the transactions recorded with each time period. Also, the accumulated
time series values for time periods with no transactions are set to zero instead of to missing (SETMISS=0)
and only transactions recorded between the first day of 1998 (START=’01JAN1998’D ) and last day of 2000
(END=’31JAN2000’D) are considered and, if needed, extended to include this range.

proc timeseries data=retail out=mseries;
by store;
id timestamp interval=month

accumulate=median
setmiss=0
start='01jan1998'd
end ='31dec2000'd;

var item1-item8;
run;

The monthly time series data are stored in the data set WORK.MSERIES. Each BY group associated with
the BY variable STORE contains an observation for each of the 36 months associated with the years 1998,
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1999, and 2000. Each observation contains the variables STORE and TIMESTAMP and each of the analysis
variables in the input data set.

After each set of transactions has been accumulated to form corresponding time series, accumulated time
series can be analyzed using various time series analysis techniques. For example, exponentially weighted
moving averages can be used to smooth each series. The following statements use the EXPAND procedure to
smooth the analysis variable named STOREITEM:

proc expand data=mseries out=smoothed from=month;
by store;
id date;
convert storeitem=smooth / transform=(ewma 0.1);

run;

The smoothed series are stored in the data set WORK.SMOOTHED. The variable SMOOTH contains the
smoothed series.

If the time ID variable TIMESTAMP contains SAS datetime values instead of SAS date values, the INTER-
VAL=, START=, and END= options must be changed accordingly and the following statements could be
used:

proc timeseries data=retail out=tseries;
by store;
id timestamp interval=dtmonth

accumulate=median
setmiss=0
start='01jan1998:00:00:00'dt
end ='31dec2000:00:00:00'dt;

var _numeric_;
run;

The monthly time series data are stored in the data WORK.TSERIES, and the time ID values use a SAS
datetime representation.

Example 39.2: Trend and Seasonal Analysis
This example illustrates using the TIMESERIES procedure for trend and seasonal analysis of time-stamped
transactional data.

Suppose that the data set Sashelp.Air contains two variables: DATE and AIR. The variable DATE contains
sorted SAS date values recorded at no particular frequency. The variable AIR contains the transaction values
to be analyzed.

The following statements accumulate the transactional data on an average basis to form a quarterly time
series and perform trend and seasonal analysis on the transactions:

proc timeseries data=sashelp.air
out=series
outtrend=trend
outseason=season print=seasons;

id date interval=qtr accumulate=avg;
var air;

run;
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The time series is stored in the data set WORK.SERIES, the trend statistics are stored in the data set
WORK.TREND, and the seasonal statistics are stored in the data set WORK.SEASON. Additionally, the
seasonal statistics are printed (PRINT=SEASONS) and the results of the seasonal analysis are shown in
Output 39.2.1.

Output 39.2.1 Seasonal Statistics Table

The TIMESERIES Procedure

Season Statistics for Variable AIR

Season
Index N Minimum Maximum Sum Mean

Standard
Deviation

1 36 112.0000 419.0000 8963.00 248.9722 95.65189

2 36 121.0000 535.0000 10207.00 283.5278 117.61839

3 36 136.0000 622.0000 12058.00 334.9444 143.97935

4 36 104.0000 461.0000 9135.00 253.7500 101.34732

Using the trend statistics stored in the WORK.TREND data set, the following statements plot various trend
statistics associated with each time period over time:

title1 "Trend Statistics";
proc sgplot data=trend;

series x=date y=max / lineattrs=(pattern=solid);
series x=date y=mean / lineattrs=(pattern=solid);
series x=date y=min / lineattrs=(pattern=solid);
yaxis display=(nolabel);
format date year4.;

run;

The results of this trend analysis are shown in Output 39.2.2.
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Output 39.2.2 Trend Statistics Plot

Using the trend statistics stored in the WORK.TREND data set, the following statements chart the sum of the
transactions associated with each time period for the second season over time:

title1 "Trend Statistics for 2nd Season";
proc sgplot data=trend;

where _season_ = 2;
vbar date / freq=sum;
format date year4.;
yaxis label='Sum';

run;

The results of this trend analysis are shown in Output 39.2.3.
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Output 39.2.3 Trend Statistics Bar Chart

Using the trend statistics stored in the WORK.TREND data set, the following statements plot the mean of the
transactions associated with each time period by each year over time:

data trend;
set trend;
year = year(date);

run;

title1 "Trend Statistics by Year";
proc sgplot data=trend;

series x=_season_ y=mean / group=year lineattrs=(pattern=solid);
xaxis values=(1 to 4 by 1);

run;

The results of this trend analysis are shown in Output 39.2.4.



2786 F Chapter 39: The TIMESERIES Procedure

Output 39.2.4 Trend Statistics

Using the season statistics stored in the WORK.SEASON data set, the following statements plot various
season statistics for each season:

title1 "Seasonal Statistics";
proc sgplot data=season;

series x=_season_ y=max / lineattrs=(pattern=solid);
series x=_season_ y=mean / lineattrs=(pattern=solid);
series x=_season_ y=min / lineattrs=(pattern=solid);
yaxis display=(nolabel);
xaxis values=(1 to 4 by 1);

run;

The results of this seasonal analysis are shown in Output 39.2.5.
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Output 39.2.5 Seasonal Statistics Plot

Example 39.3: Illustration of ODS Graphics
This example illustrates the use of ODS graphics.

The following statements use the Sashelp.Workers data set to study the time series of electrical workers and
its interaction with the simply differenced series of masonry workers. The series plot, the correlation panel,
the seasonal adjustment panel, and all cross-series plots are requested. Output 39.3.1 through Output 39.3.4
show a selection of the plots created.

The graphical displays are requested by specifying the PLOTS= or CROSSPLOTS= option in the PROC
TIMESERIES statement. For information about the graphics available in the TIMESERIES procedure, see
the section “ODS Graphics Names” on page 2779.

title "Illustration of ODS Graphics";
proc timeseries data=sashelp.workers out=_null_

plots=(series corr decomp)
crossplots=all;

id date interval=month;
var electric;
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crossvar masonry / dif=(1);
run;

Output 39.3.1 Series Plot
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Output 39.3.2 Correlation Panel
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Output 39.3.3 Seasonal Decomposition Panel
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Output 39.3.4 Cross-Correlation Plot

Example 39.4: Illustration of Spectral Analysis
This example illustrates the use of spectral analysis.

The following statements perform a spectral analysis on the SUNSPOT data set. The periodogram is displayed
as a function of the period and frequency in Output 39.4.1. The estimated spectral density together with its
50% confidence limits is displayed in Output 39.4.2.

title "Wolfer's Sunspot Data";

proc timeseries data=sunspot plot=(series periodogram spectrum);
var wolfer;
id year interval=year;
spectra freq period p s / adjmean bart c=1.5 expon=0.2;

run;
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Output 39.4.1 Periodogram
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Output 39.4.2 Spectral Density Plot

Example 39.5: Singular Spectrum Analysis
This example illustrates the use of singular spectrum analysis with different grouping steps.

The following statements extract two additive components from the Sashelp.Air time series by using the
THRESHOLDPCT= option to specify that the first component represent 80% of the variability in the series
(see Output 39.5.1). The resulting groupings, which consist of the first three and remaining nine singular
value components, are presented in Output 39.5.2 through Output 39.5.4.

title "SSA of AIR Data";

proc timeseries data=sashelp.air plot=ssa;
id date interval=month;
var air;
ssa / length=12 THRESHOLDPCT=80;

run;
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Output 39.5.1 Singular Values Plot
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Output 39.5.2 Singular Value Grouping #1 Plot
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Output 39.5.3 Singular Value Grouping #2 Plot
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Output 39.5.4 Singular Value Components Plot

The following statements extract the first three important additive components from the Sashelp.Air time series
by using the GROUPS=AUTO(3) option to apply SSA automatic grouping. The w-correlations are shown
in Output 39.5.7. Large w-correlation values indicate that the procedure should select the corresponding
singular value components as one group. The grouping results based on the w-correlations are shown in
Output 39.5.5. The resulting groupings, which consist of the first (group 1), the second and third (group
2), and the fourth and fifth (group 3) singular value components, are presented in Output 39.5.8 through
Output 39.5.11. According to Output 39.5.6, these three groups represent about 90% of the variability in the
series. Finally, Output 39.5.12 shows the summation of the groups together with the original data.

title "SSA of AIR Data";

proc timeseries data=sashelp.air print=ssa plot=ssa;
id date interval=month;
var air;
ssa / length=12 GROUPS=AUTO(3);

run;
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Output 39.5.5 SSA Groups

SSA of AIR Data

The TIMESERIES Procedure

SSA Groups

Group
Index

Window
Indices

1 1

2 2, 3

3 4, 5

Output 39.5.6 Singular Values Plot
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Output 39.5.7 W-Correlations Heat Map
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Output 39.5.8 Singular Value Grouping #1 Plot
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Output 39.5.9 Singular Value Grouping #2 Plot



2802 F Chapter 39: The TIMESERIES Procedure

Output 39.5.10 Singular Value Grouping #3 Plot
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Output 39.5.11 Singular Value Components Plot
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Output 39.5.12 SSA Groups Summation Plot
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Overview: TMODEL Procedure
The TMODEL procedure is a new, experimental version of the MODEL procedure. The code that you use to
perform nearly all analyses in PROC MODEL can be used unchanged in PROC TMODEL; however, PROC
TMODEL incorporates high-performance computational techniques and offers new features that enhance the
functionality of PROC MODEL. For an explanation of the capabilities and operation of both PROC MODEL
and PROC TMODEL, see Chapter 25, “The MODEL Procedure.”

Comparison of PROC TMODEL and PROC MODEL
PROC TMODEL includes changes to the underlying computational algorithms that are used in the majority
of PROC MODEL analyses. The new algorithms improve the stability and convergence characteristics along
with the computational efficiency for most problems; however, for some problems these improvements can
cause PROC TMODEL to produce different results than PROC MODEL. In particular, both estimation and
simulation tasks rely on matrix ordering and factorization algorithms that have been enhanced in PROC
TMODEL to work more efficiently, especially for large problems. Also, PROC TMODEL processes input
data in a different order than PROC MODEL to improve performance, and this can cause some estimation
tasks to produce different results.

In addition to performance improvements, PROC TMODEL has the following new features:

� estimation and simulation of models that use panel data by specifying cross-sectional variables in the
CROSSSECTION statement

� estimation of models with nonlinear random-effects parameters when cross-sectional variables are
identified in the input data

� use of analytic expressions for Hessian matrices in the optimization process for most estimation
methods by default

� use of the nonlinear programming (NLP) solver available in SAS/OR software for performing the
optimizations during estimation tasks

The ability to specify cross-sectional variables in PROC TMODEL allows for the estimation of dynamic
models by using multiple time series. By contrast, PROC MODEL can estimate dynamic models only
for data that contain a single time series. Also, PROC TMODEL enhances the modeling capabilities of
PROC MODEL by supporting models of the correlations among cross sections through the specification of
random-effects parameters.

Models that depend on highly nonlinear parameters can cause the estimation process either to converge
slowly or to fail to converge. PROC TMODEL includes two new features that address these problems. In
PROC MODEL, a first-order approximation of the model problem’s Hessian matrix is used in the parameter
search. PROC TMODEL has the option to use exact Hessian matrix values in the parameter search. PROC
TMODEL also supports the use of an alternative nonlinear programming solver that improves convergence
characteristics for many estimation problems.

PROC TMODEL breaks computationally intensive operations into multiple, concurrent threads to reduce the
time it takes to complete many of the estimation and simulation tasks available in PROC MODEL. PROC
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MODEL performs all calculations sequentially. PROC TMODEL can break calculations up in the following
ways:

� multithreading across partitions of the input data set

� multithreading across BY groups

� multithreading across repetitions in Monte Carlo simulations

� multithreading the optimization process in estimations across sets of initial estimates

For estimation tasks that do not involve dynamic models, PROC TMODEL breaks up the observed data into
partitions and computes each partition’s contribution to the estimation of parameters concurrently. When
PROC TMODEL analyzes a model for many BY groups, the BY groups can be analyzed concurrently. In
Monte Carlo simulations, the random perturbations of the model variables can be evaluated concurrently in
PROC TMODEL. In problems that involve a numerical optimization, it is sometimes necessary to perform
many local optimizations by using separate initial estimates in order to determine a global solution. PROC
TMODEL can perform these local optimizations concurrently to find the global solution more quickly than
PROC MODEL, which solves local optimization problems sequentially.

PROC MODEL Features Not Available in PROC TMODEL

The following features in PROC MODEL are not currently available in PROC TMODEL:

� some features in the model file used by the OUTMODEL= and MODEL= options

� BY groups in the SDATA= and ESTDATA= data sets

� covariance matrices in output data sets

� the OUTSUSED= data set

� some diagnostic information in output tables

� Durbin-Watson autocorrelation statistics

� some features in the CMP system, such as the RUN_MACRO function

Model specifications in either PROC MODEL or PROC TMODEL can be saved to a file for use in subsequent
PROC MODEL or PROC TMODEL operations; however, there are some limitations to the model files that
can be shared between PROC MODEL and PROC TMODEL. The specification of instrumental variables
that is saved to a model file in PROC MODEL or PROC TMODEL cannot be used in PROC TMODEL or
PROC MODEL estimation tasks, respectively.

Monte Carlo simulations in PROC MODEL can apply a different error covariance matrix, different parameter
values, and a different parameter covariance matrix for each BY group in the DATA= data set through the
specification of corresponding BY groups in the SDATA= and ESTDATA= data sets. Also, in PROC MODEL
estimations, different initial parameter estimates for each BY group can be specified in the ESTDATA= data
set. In contrast, PROC TMODEL does not currently support the use of BY groups in either the SDATA= or
ESTDATA= data set. All BY groups share the same covariance matrices and parameter value specifications.
PROC TMODEL will support BY groups in the SDATA= and ESTDATA= data sets in a future release.
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PROC MODEL adds perturbations to parameter values during Monte Carlo simulations when a parameter
covariance matrix is specified in the ESTDATA= data set. PROC TMODEL does not currently support
perturbation of parameters, but this functionality will be available in a future release.

PROC MODEL stores both parameter estimates and parameter covariance matrices in the OUTEST= data
set when the OUTCOV option is specified. PROC TMODEL does not support the output of covariance
matrices in the OUTEST= data set; however, the COV option, which prints parameter covariance matrices, is
supported.

Many tables that PROC MODEL produces are not available in PROC TMODEL because they fall into one or
more of the following categories:

Not available report the intermediate states of PROC MODEL calculations that are not available or are
computed differently in PROC TMODEL.

Replaced are replaced by equivalent diagnostic output in PROC TMODEL in a different format.

Future are not yet available in PROC TMODEL but are planned for a future release.

The reason that each table is not available in PROC TMODEL is summarized in Table 40.1.

Table 40.1 ODS Tables Not Available in PROC TMODEL

ODS Table Name Description Reason1

ODS Tables Created by the FIT Statement
AugGMMCovariance Crossproducts matrix F
ConfInterval Profile likelihood confidence intervals F
Crossproducts Crossproducts matrix F
DatasetOptions Data sets used F
DetResidCov Determinant of the residuals F
DWTest Durbin-Watson test F
EstSummaryMiss Summary statistics for PAIRWISE option F
GMMCovariance Crossproducts matrix F
GMMTestStats GMM test statistics F
Godfrey Godfrey’s serial correlation test F
HausmanTest Hausman’s test table F
InvXPXMat X0X inverse for system N
IterInfo Iteration printing N R
ObsSummary Identifies observations that contain errors R
ObsUsed Observations read, used, and missing R
ParmChange Parameter change vector N
SizeInfo Storage requirement for estimation F
XPXMat X0X for system N
YkVector Marquardt iteration vector N

ODS Tables Created by the SOLVE Statement
DatasetOptions Data sets used F
DescriptiveStatistics Descriptive statistics F
FitStatistics Fit statistics for simulation F
1N - Not available, R - Replaced, F - Future
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Table 40.1 continued

ODS Table Name Description Reason1

ObsSummary Simulation trace output R
ObsUsed Observations read, used, and missing R
SolutionVarList Solution variable lists F
TheilRelStats Theil relative change error statistics F
TheilStats Theil forecast error statistics F
ErrorVec Iteration error vector N
ResidualValues Iteration residual values N
PredictedValues Iteration predicted values N
SolutionValues Iteration solved for variable values N

ODS Tables Created by the FIT and SOLVE Statements
AdjacencyMatrix Adjacency graph R
CodeDependency Variable cross reference N
CodeList Listing of compiled program code N
CrossReference Cross-reference listing for program N
DepStructure Dependency structure of the system N
FirstDerivatives First derivative table N
IterIntg Integration iteration output N
MemUsage Memory usage statistics F
MissingDependencies Missing values by dependency F
MissingObservations Missing values by observation F
MissingSymbols Missing values by symbol F
ParmReadIn Parameter estimates read in F
SortAdjacencyMatrix Sorted adjacency graph R
TransitiveClosure Transitive closure graph R
1N - Not available, R - Replaced, F - Future

You can find information in PROC TMODEL for the PROC MODEL tables in category R as follows:

� IterInfo displays iteration information for the optimization process in the log for the ORMP optimizer.

� ObsSummary displays diagnostic information for observations that produce missing values in the log.

� ObsUsed displays observation counts in the EstSummaryStats table.

� AdjacencyMatrix, SortAdjacencyMatrix, TransitiveClosure have dependency information that you
display by using the ANALYZEDEPS= option in the SOLVE statement.
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Getting Started: TMODEL Procedure
One of the most powerful enhancements in PROC TMODEL compared to PROC MODEL is the ability
to reduce the time required to perform computationally intensive tasks, such as estimating parameters in
a nonlinear ordinary differential equation (ODE) model. This estimation task requires both the numerical
integration of derivative variables in the model over time steps and the repeated evaluation of the time steps
during the estimation’s minimization process. The following example estimates the parameters in a system of
two coupled differential equations by using simulated data for four time series:

data soln;
keep exprun t x y;
length exprun $ 8;
array experno[4] $ _temporary_ ( "one" "two" "three" "four" );
call streaminit (1);
do i = 1 to 4;

exprun = experno[i];
do t = 0 to 5 by 0.1;

/* analytic solution for the ODE system */
x = 1/2*(exp(-3*t) - exp(-t)) + rand('normal',0,0.01);
y = 1/2*(exp(-3*t) + exp(-t)) + rand('normal',0,0.01);
output;

end;
end;

run;

proc model outmodel=ode;
endo x y;
parms a b;
g = exp (x + y);
dert.x = -a*x - log (g);
dert.y = -b*y - log (g);

quit;

proc model data=soln model=ode;
fit / time=t dynamic;

quit;

proc tmodel data=soln model=ode;
crosssection exprun;
fit / time=t dynamic;

quit;

The model file Work.ODE is created and used in this example to avoid redundant specification of the model
program. Although the ODE model and data are identical in the PROC MODEL and PROC TMODEL
steps, you must specify the CROSSSECTION statement to take advantage of the multithreading capabilities
of PROC TMODEL. Figure 40.1 shows how much faster PROC TMODEL performs this estimation by
integrating the model over each of the four time series concurrently. Real time measures how long it takes to
execute the PROC step, and CPU time is a measure of the computing resources that the PROC step consumes.
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Figure 40.1 Performance Comparison of PROC MODEL and PROC TMODEL

NOTE: PROCEDURE MODEL used (Total process time):                                

      real time           2.73 seconds                                          

      cpu time            2.66 seconds                                          

NOTE: PROCEDURE TMODEL used (Total process time):                               

      real time           2.47 seconds                                          

      cpu time            6.26 seconds                                          
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Syntax: TMODEL Procedure
The following statements are available in PROC TMODEL:

PROC TMODEL options ;
ARRAY arrayname variable-list . . . ;
ATTRIB variable-list1 attribute-list1 < variable-list2 attribute-list2 . . . > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variable-list ;
CALL name ;
CALL name(expression1 < , expression2 . . . > ) ;
CONTROL variable < value > . . . ;
CROSSSECTION variable-list ;
DO ;
DO variable = expression < TO expression > < BY expression > < , expression TO expression <

BY expression > . . . > < WHILE expression > < UNTIL expression > ;
END ;
DROP variable . . . ;
ENDOGENOUS variable < initial-values > . . . ;
ERRORMODEL equation-name Ï distribution < CDF=(CDF (options )) > ;
ESTIMATE item1 < , item2 . . . > < ,/ options > ;
EXOGENOUS variable < initial values > . . . ;
FIT equations < PARMS=(parameter values . . . ) > < START=(parameter values . . . ) >

< DROP=(parameters ) > < / options > ;
FORMAT variable-list < format > < DEFAULT= default-format > ;
GOTO statement-label ;
ID variable-list ;
IF expression ;
IF expression THEN programming-statement1 ; < ELSE programming-statement2 > ;
variable = expression ;
variable + expression ;
INCLUDE model-file . . . ;
INSTRUMENTS < instruments > < _EXOG_ > < EXCLUDE=(parameters ) > < / options > ;
KEEP variable . . . ;
LABEL variable ='label ' . . . ;
LENGTH variable-list < $ > length . . . < DEFAULT=length > ;
LINK statement-label ;
MOMENT variable-list = moment-specification . . . ;
OUTVARS variable . . . ;
PARAMETERS variable1 < value1 > < variable2 < value2 . . . > > ;
PERFORMANCE < NTHREADS= n > < BYPRIORITY= priority > < REPPRIORITY= priority > <

MSPRIORITY | GRIDPRIORITY= priority > < PARTPRIORITY= priority > ;
PUT print-item . . . < @ > < @@ > ;
RANDOM random-effects Ï distribution < options > ;
RANGE variable < = first > < TO last > ;
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RENAME old-name1 = new-name1 < . . . old-name2 = new-name2 > ;
RESET options ;
RESTRICT restriction1 < , restriction2 . . . > ;
RETAIN variable-list1 value1 < variable-list2 value2 . . . > ;
RETURN ;
SOLVE variable-list < SATISFY=(equations) > < / options > ;
SUBSTR (variable, index, length )= expression ;
SELECT < (expression ) > ;
OTHERWISE programming-statement ;
TEST < "name" > test1 < , test2 . . . > < ,/ options > ;
VAR variable < initial-values > . . . ;
WEIGHT variable ;
WHEN (expression )programming-statement ;

The following sections describe statements that are available in PROC TMODEL but not in PROC MODEL
or statements that have options in PROC TMODEL that are not available in PROC MODEL. For information
about all other statements in the PROC TMODEL syntax, see Chapter 25, “The MODEL Procedure.”

PROC TMODEL Statement
PROC TMODEL options ;

The PROC TMODEL statement invokes the TMODEL procedure. The options that you can specify in the
PROC TMODEL statement are the same as those you can specify in the PROC MODEL statement. For
more information, see the section “PROC MODEL Statement” on page 1448 in Chapter 25, “The MODEL
Procedure.”

In addition to all the options described in PROC MODEL, you can specify the following options. These
options can also be specified in a FIT statement or a SOLVE statement.

Options to Control the Solution of a System of Linear Equations

LUSOLVER=NUMPIVOT | STRUCTPIVOT | OLD | n
specifies the method to use to factor and solve systems of linear equations. These linear systems are
encountered when the FIML option (which requests that the FIML method be used to estimate models)
is specified in the FIT statement or the PROC TMODEL statement. These linear systems are also
encountered when either the NEWTON or OPTIMIZE option is specified in the SOLVE statement
(these options specify the numerical solution method). Also, model programs that include differential
equations require the solution of linear systems of equations. You can specify the following values:

n considers numerical values of matrix elements only every nth time a lower triangular
times upper triangular (LU) matrix factorization is computed.

NUMPIVOT considers numerical values of matrix elements each time an LU factorization is
computed.

OLD uses the factorization and solution algorithm that the MODEL procedure uses.

STRUCTPIVOT considers only the structure of nonzero elements in the linear system for ordering
equations in the LU factorization.
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By default, LUSOLVER=NUMPIVOT.

CROSSSECTION Statement
CROSSSECTION variables ;

The CROSSSECTION statement specifies the variables that identify observations in the input data set that
form time series. This statement is useful when the input data set contains more than one time series and
when a dynamic model is being estimated using the FIT statement or simulated using the SOLVE statement.
When you use the CROSSSECTION statement, observations within each cross section must be grouped
together, and the observations in each cross section must be sorted.

FIT Statement
FIT < equations > < PARMS=(parameter < values > . . . ) > < START=(parameter values . . . ) > <

DROP=(parameter . . . ) > < INITIAL=(variable < = parameter | constant > . . . ) > < / options > ;

PROC TMODEL includes additional options in the FIT statement to provide more control of the estimation
process than PROC MODEL provides. For a complete description of the syntax of the FIT statement, see the
section “FIT Statement” on page 1464 in Chapter 25, “The MODEL Procedure.” The syntax for specifying
the new options follows:

FIT < . . . > < / QUADHESS=LINEAR | ANALYTIC | FDA < OPTIMIZER=type < (ORMP-optimizer-
options) > > > ;

Options to Control the Estimation Process

QUADHESS=LINEAR | ANALYTIC | FDA (Experimental )
specifies which method to use to compute the Hessian matrix during the optimization process. For
FIML and t distribution estimations, the HESSIAN= option is used to specify how the Hessian matrix
is computed, and the QUADHESS= option has no effect.

ANALYTIC uses the exact analytical representation of the Hessian matrix during the opti-
mization process. This option might improve convergence properties for certain
nonlinear models. It is not available for feasible GLS estimations or random-effects
estimations.

FDA uses a finite difference approximation to the Hessian matrix during the optimization
process. This option is available only when the OPTIMIZER=ORMP option is
specified.

LINEAR uses the crossproduct of the Jacobian matrix as an approximation to the Hessian
matrix during the optimization process.

By default, QUADHESS=LINEAR.
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Options to Control the Optimization Process

The following options control the optimization process. For more information about the optimizers available
in PROC TMODEL, see the section “Nonlinear Optimization” on page 2825.

OPTIMIZER=type< (ORMP-optimizer-options) >
specifies which optimizer to use to perform the numerical minimization. You can specify only one of
the following types. By default, OPTIMIZER=ORMP.

ZOPT uses the optimizer that is used in PROC MODEL in the minimization.

You can also specify the following options after the slash in the FIT statement:
CONVERGE=, MAXITER=, MAXSUBITER=, METHOD=.

ORMP uses the nonlinear programming solver available in SAS/OR software in the mini-
mization. For more information about the ORMP nonlinear solver, see Chapter 11,
“The Nonlinear Programming Solver” (SAS/OR User’s Guide: Mathematical Pro-
gramming).

You can specify the following ORMP-optimizer-options:

ALGORITHM=ACTIVESET | CONCURRENT | INTERIORPOINT
specifies the optimization technique to use to solve the problem. By default,
ALGORITHM=INTERIORPOINT.

FEASTOL=�
defines the feasible tolerance. By default, FEASTOL=1E–6.

MAXITER=n
requests that the NLP solver take at most n major iterations to determine an
optimum. By default, MAXITER=5,000.

MAXTIME=t
specifies an upper limit of t units of time for the optimization process. If you do
not specify this option, the NLP solver does not stop because of time elapsed.

MSBNDRANGE=m
defines the range from which each variable can take values during the sampling
process. By default, MSBNDRANG=200.

MSDISTTOL=�
specifies the tolerance by which two optimal points are considered distinct.
Optimal points are considered distinct if the Euclidean distance between them
is at least �. By default, MSDISTTOL=1.0E–6.

MSMAXSTARTS=n
specifies the maximum number of starting points to use for local optimization.
By default, MSMAXSTARTS=100.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=ormpug&docsetTarget=titlepage.htm
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MSMAXTIME=t
specifies the maximum time t (in seconds) for the NLP solver to locate the
best local optimum in multistart mode. If you do not specify this option, the
multistart algorithm does not stop because of the amount of time elapsed.

MULTISTART
enables multistart mode. In this mode, the local solver solves the problem from
multiple starting points, possibly finding a better local minimum as a result.
By default, this option is disabled.

OBJLIMIT=m
specifies a limit on the magnitude of the objective value. The algorithm
terminates when the objective value becomes less than –m. The minimum
acceptable value of m is 1EC8. If the specified value of m is less than 1EC8,
the value is reset to the default value. By default, OBJLIMIT=1EC20.

OPTTOL=�
defines the measure by which the ORMP optimizer decides whether the current
iterate is an acceptable approximation of a local minimum, where � is a positive
real number. The ORMP optimizer determines that the current iterate is a local
minimum when the norm of the scaled vector of the optimality conditions
is less than � and the true constraint violation is less than the value of the
FEASTOL= option. By default OPTTOL=1E–6.

SEED=n
specifies a positive integer to use as the seed for generating random number
sequences in multistart mode. To ensure reproducible results, specify a nonzero
value. By default, SEED=0.

TIMETYPE=CPU | REAL
specifies the units of time that the MAXTIME= option uses. If you do not
specify this option, the multistart algorithm does not stop because of the
amount of time elapsed.

Options to Control the Solution of a System of Linear Equations

LUSOLVER=NUMPIVOT | STRUCTPIVOT | OLD | n
specifies the method to use to factor and solve systems of linear equations. These linear systems are
encountered when the FIML option (which requests that the FIML method be used to estimate models)
is specified in the FIT statement or the PROC TMODEL statement. These linear systems are also
encountered when either the NEWTON or OPTIMIZE option is specified in the SOLVE statement
(these options specify the numerical solution method). Also, model programs that include differential
equations require the solution of linear systems of equations. You can specify the following values:

n considers numerical values of matrix elements only every nth time a lower triangular
times upper triangular (LU) matrix factorization is computed.

NUMPIVOT considers numerical values of matrix elements each time an LU factorization is
computed.

OLD uses the factorization and solution algorithm that the MODEL procedure uses.
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STRUCTPIVOT considers only the structure of nonzero elements in the linear system for ordering
equations in the LU factorization.

By default, LUSOLVER=NUMPIVOT.

PERFORMANCE Statement
PERFORMANCE < NTHREADS=n > < BYPRIORITY=priority > < REPPRIORITY=priority >

< MSPRIORITY | GRIDPRIORITY=priority > < PARTPRIORITY=priority > ;

The PERFORMANCE statement controls how an estimation or simulation task in PROC TMODEL uses
multiple execution threads. You can specify two types of information in a PERFORMANCE statement: the
number of threads and the priority of calculations to which the threads are assigned. Calculations with a
higher priority are allocated a greater number of threads, and calculations with a lower priority are allocated
fewer threads. When a calculation is assigned a priority of zero, it is executed in one thread. When priority
options are not specified, PROC TMODEL assigns default priority values based on properties of the model
program and data.

Each PERFORMANCE statement is associated with the FIT or SOLVE statement that precedes it. When
there is no preceding FIT or SOLVE statement, the PERFORMANCE statement is associated with the FIT or
SOLVE statement that follows it.

The following options apply to both estimation and simulation tasks:

BYPRIORITY=priority
specifies the priority for allocating the computation threads to process BY groups concurrently in the
input data set. The value of priority must be between 0 and 1, where 0 specifies the lowest priority and
1 specifies the highest priority.

CPUCOUNT=n

NTHREADS=n
specifies the approximate number of concurrent computation threads to use. By default, the global
CPUCOUNT= option is used to specify the number of threads. The actual number of threads that are
used might vary from the value that you specify in the CPUCOUNT= or NTHREADS= option based
on the properties of the model program, the properties of the input data set, and the priority options
specified in the PERFORMANCE statement.

Options to Configure Estimation Threads

MSPRIORITY=priority

GRIDPRIORITY=priority
specifies the priority for allocating computation threads for the concurrent execution of the optimizer
during the estimation process. Concurrent execution of the optimizer is possible when the OPTI-
MIZER=ORMP(MULTISTART) option or the START= option is specified in the FIT statement. The
value of priority must be between 0 and 1, where 0 specifies the lowest priority and 1 specifies the
highest priority.
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PARTPRIORITY=priority
specifies the priority for allocating computation threads for concurrent execution across partitions of
the input data set. The value of priority must be between 0 and 1, where 0 specifies the lowest priority
and 1 specifies the highest priority.

Option to Configure Simulation Threads

REPPRIORITY=priority
specifies the priority for allocating computation threads for the concurrent execution of repetitions of
the input data set when you are performing Monte Carlo simulations. The value of priority must be
between 0 and 1, where 0 specifies the lowest priority and 1 specifies the highest priority.

For more information about multithreading in PROC TMODEL, see the section “Multithreaded Calculations”
on page 2828.

RANDOM Statement (Experimental)
RANDOM random-effects Ï distribution < options > ;

The RANDOM statement specifies which parameters in the model program are random effects and defines
their distribution. The statement consists of a list of the random effects, a tilde (Ï), and then the distribution
of the random effects. The RANDOM statement must also be accompanied by a CROSSSECTION statement,
which specifies the subject variables. Only one RANDOM statement can be associated with each FIT
statement.

The only distribution available for the random effects is normal(m,v), with mean m and variance v. This
syntax is illustrated as follows for one effect:

random u ~ normal(0,s2u);

For multiple effects, you should specify bracketed vectors for m and v, the latter consisting of the lower
triangular elements of the random-effects variance matrix listed in row order. This is illustrated for two
random effects as follows:

random b1 b2 ~ normal([0,0],[g11,g21,g22]);

Similarly, the syntax for three random effects is illustrated as follows:

random b1 b2 b3 ~ normal([0,0,0],[g11,g21,g22,g31,g32,g33]);

The variables that you specify in the CROSSSECTION statement determine the unique realizations of the
random effects. The observations for each value of the CROSSSECTION variables must be grouped together
in the input data set. PROC TMODEL processes the input data set sequentially and considers an observation
to be from a new cross section whenever the values of the CROSSSECTION variables change from the
previous observation.

You can specify the following options in the RANDOM statement:
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EBESOPT
specifies that the empirical Bayes estimates of the random effects that are computed for each value of
the CROSSSECTION variables during the optimization process be computed by performing a nonlinear
optimization. When you specify this option, the optimizer that you specify in the OPTIMIZER= option
in the FIT statement is used to compute the empirical Bayes estimates. By default, a Newton search
algorithm computes the empirical Bayes estimates.

NOPSD
specifies that the covariance matrix of random effects not be constrained to be positive semidefinite.
This option might improve convergence properties for certain parameterizations of the random-effects
covariance matrix.

NUMQUADPTS=n
specifies the number of quadrature points to use in the adaptive Gaussian quadrature approximation of
the likelihood function. Each random effect is evaluated at n points during the approximation of the
likelihood function, so if there are r random effects, the likelihood function is evaluated at nr points.
By default, NUMQUADPTS=1.

PSD
specifies that the covariance matrix of random effects be constrained to be positive semidefinite. PSD
is the default.

SOLVE Statement
SOLVE variables < SATISFY= equations > < /options > ;

PROC TMODEL includes additional options in the SOLVE statement to provide more control of the solution
process than PROC MODEL provides. For a complete description of the syntax of the SOLVE statement, see
the section “SOLVE Statement” on page 1481 in Chapter 25, “The MODEL Procedure.”

You can specify the following options after the slash.

Options to Control the Solution of a System of Linear Equations

LUSOLVER=NUMPIVOT | STRUCTPIVOT | OLD | n
specifies the method to use to factor and solve systems of linear equations. These linear systems are
encountered when the FIML option (which requests that the FIML method be used to estimate models)
is specified in the FIT statement or the PROC TMODEL statement. These linear systems are also
encountered when either the NEWTON or OPTIMIZE option is specified in the SOLVE statement
(these options specify the numerical solution method). Also, model programs that include differential
equations require the solution of linear systems of equations. You can specify the following values:

n considers numerical values of matrix elements only every nth time a lower triangular
times upper triangular (LU) matrix factorization is computed.

NUMPIVOT considers numerical values of matrix elements each time an LU factorization is
computed.

OLD uses the factorization and solution algorithm that the MODEL procedure uses.
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STRUCTPIVOT considers only the structure of nonzero elements in the linear system for ordering
equations in the LU factorization.

By default, LUSOLVER=NUMPIVOT.

Details: TMODEL Procedure

Panel Data
Panel data, also known as longitudinal data, consist of observations made over time for multiple subjects
or cross sections. Data that are recorded in this form are often used to analyze dynamic models, which use
past information to model the relationships among variables. In PROC TMODEL, you can analyze dynamic
models that use panel data by identifying the cross-sectional variables in a CROSSSECTION statement. The
following example illustrates how to use the CROSSSECTION statement to estimate an autoregressive model
that has one parameter shared among five time series:

data d;
length cs $ 8;
array csname{5} $ _temporary_ ( 'first' 'second' 'third' 'fourth' 'fifth' );
call streaminit (1);
do pp = 1 to dim(csname);

lagx = 0;
do t = 1 to 10;

x = 0.8*lagx + rand('normal');
lagx = x;
cs = csname[pp];
output;

end;
end;

run;

proc tmodel data=d;
endo x;
crosssection cs;
parms p;

x = p*lag(x);
fit;

quit;

In this example, PROC TMODEL skips the first observation in each time series because the first lag of x is
not available. Figure 40.2 shows that only 45 of the 50 observations contribute to the estimation, because the
first observation in each series is skipped.
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Figure 40.2 Observation Counts in a Dynamic Model Estimation

The TMODEL Procedure

Number of
Observations

Statistics for
System

Used 45 Objective 0.9694

Missing 0 Objective*N 43.623

Panel data are also treated differently from ordinary observational data for the purpose of multithreading.
When no cross-sectional variables are specified, the observations in the DATA= data set are partitioned in
a round-robin fashion among computational threads. Figure 40.3 shows how observations are partitioned
among threads in the presence and absence of a cross-sectional variable specification.

Figure 40.3 Data Partitioning Strategies in a Multithreaded Environment

In the case where no cross sectional-variables are specified and a dynamic model with lag terms is being
analyzed, all the observations are processed sequentially in a single thread.

Another use for panel data is in random-effects models, which model the variation among subjects in the
data. In these models, the grouping of observations into subjects is achieved by specifying cross-sectional
variables in the same manner as in the other panel data applications in PROC TMODEL.



2824 F Chapter 40: The TMODEL Procedure

Random-Effects Models (Experimental)
The general nonlinear model that is estimated by PROC MODEL and PROC TMODEL can be extended to
accommodate observations on M subjects as follows,

q.yit ; xit ;�; ui / D �it ; i D 1; : : : ;M t D 1; : : : ;Mi

where q 2 Rg is a real-vector-valued function of yit 2 Rg , xit 2 Rl , � 2 Rp, and ui 2 Rr , where g is the
number of equations, l is the number of exogenous variables (lagged endogenous variables are considered
exogenous here), p is the number of fixed parameters, r is the number of random effects, M is the number of
subjects, and Mi is the number of observations on the ith subject. The random effects, ui , that are associated
with the ith subject are distributed as follows,

ui � N.�;D/
� D �.�/

D D D.�/

where � is an r � 1 vector of means of the random effects, D is an r � r covariance matrix of the random
effects, and � is a vector of parameters of the random-effects distribution.

The vector of unknown parameters for the random-effects models is � D Œ�; ��. PROC TMODEL performs
a maximum likelihood estimation of � and the covariance of � by using the following marginal distribution
of y based on the joint distribution of y and the random effects, ui ,

p.�/ D

MY
iD1

Z
p.yi jxi ;�; ui / p.ui j�/ dui

where p.yi jxi ;�; ui / is the conditional distribution of y for the ith subject and p.ui j�/ is the conditional
distribution of the random effects.

Random-Effects Estimation

Estimating the maximum likelihood values of � requires computation of an integral over the random effects.
PROC TMODEL approximates this integral by using the adaptive Gaussian quadrature method described in
Pinheiro and Bates (1995).

PROC TMODEL minimizes the following negative log-likelihood function to estimate the parameters in
random-effects models,

� logp.�/ �
MX
iD1

0@1
2
log jGi j � log

QX
qD1

eobji;q

1AC M

2
.log jDj C r log 2�/

where

obji;q D �
1

2

MiX
jD1

q0j .vq/H
�1qj .vq/C z0qzq C

rX
kD1

logwk �
1

2
v0qD

�1vq

H D diag.h1; : : : ; hg/

vq D Oui C
p
2G�1=2i zq

Gi D �r2uiobji CD�1
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where Q is the number of quadrature points used to approximate the integral, Mi is the number of observations
on the ith subject, obji is the ith-subject-specific objective function evaluated at the empirical Bayes estimate
of the random effects, obji;q is the objective function evaluated at the qth quadrature point, qj is the vector
of equation residuals, hi is the variance specified for the ith equation, zq is the qth quadrature point, wk is the
weight for the kth element of the quadrature point vector, vq is the random-effects vector evaluated at the
qth quadrature point, Oui is the empirical Bayes estimate of the random effects for the ith subject, Gi is the
random-effects scale matrix for the ith subject, and r2uiobji is the Hessian of the empirical Bayes estimate
of the random effects for the ith subject. The gradient of the negative log-likelihood function is computed
analytically, and the Hessian is computed numerically.

This approach is also used by PROC NLMIXED. For more information about the implementation of the
adaptive Gaussian quadrature method, see Chapter 89, “The NLMIXED Procedure” (SAS/STAT User’s
Guide).

The estimation of random-effects models in PROC TMODEL differs from that in PROC NLMIXED in the
following ways:

� PROC TMODEL supports only the adaptive Gaussian quadrature method to compute the integral over
random effects.

� PROC TMODEL does not compute the number of quadrature points adaptively.

� PROC TMODEL does not support models that contain variance parameters.

� PROC TMODEL constrains the covariance matrix of the random effects to be positive definite by
imposing the nonlinear constraint jDj > 0 in the optimization.

� PROC TMODEL does not support hierarchical random effects.

� PROC TMODEL supports models that have more than one endogenous variable.

Nonlinear Optimization
PROC TMODEL provides two numerical optimization systems, ZOPT and ORMP, to minimize the objective
function associated with each of the available estimation methods. The ZOPT system is the same optimization
system that PROC MODEL uses, and the nonlinear programming solver, ORMP, is the same optimization
system that PROC OPTMODEL uses. The following sections summarize how both optimization systems
address issues particular to the problem of estimating model parameters in PROC TMODEL.

Nonlinear Objective Function

The nonlinear dependence of model programs on parameters complicates the optimization process because it
can cause the objective function to become a less predictable function of the parameters. The ZOPT optimizer
provides the Gauss and Marquardt minimization methods to manage this nonlinear dependency during the
numerical search for a minimum. The Gauss method implements a line search during the search process, and
the Marquardt method improves the conditioning of the search for an optimum. The ORMP optimizer uses
similar techniques to address nonlinearity and ill-conditioning of the minimization problem. In the ORMP
optimizer, these techniques are implemented in a hybrid trust region and line-search algorithm.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Constraints on Parameters

Another difficulty occurs during the optimization process when constraints are placed on the parameters.
In PROC TMODEL, linear and nonlinear constraints can be introduced through the use of the BOUNDS,
RESTRICT, and TEST statements. The ZOPT optimizer handles constraints in the minimization by using an
active set algorithm to keep track of and enforce constraints. The ORMP optimizer provides two algorithms to
handle constraints, an active set algorithm and an interior point algorithm. The active set algorithm manages
constraints during the optimization, which is similar to the approach used by the ZOPT optimizer. The
interior point algorithm imposes constraints by using barrier functions.

Multiple Local Minima

Occasionally, characteristics of the data or model program can cause there to be more than one local minimum
in the minimization problem. In such cases the optimization process must choose the best minimum from
among multiple local minima. In PROC TMODEL, you can specify a grid of initial parameter estimates by
using the START= option in the FIT statement, and PROC TMODEL solves the minimization problem by
using each point in the grid as an initial estimate. The grid point optimization that converges to the smallest
minimum is then selected as the global minimum. Either the ZOPT system or the ORMP system can be used
in the grid search approach to solving the global minimization problem.

The ORMP system also supports a multistart algorithm for finding the global minimum. The multistart
algorithm chooses the best global minimum from among many local minima, as in the grid search approach;
however, the multistart algorithm does not require you to specify the initial grid point estimates.

Choosing an Optimizer

For most problems, there is no need to choose between the ZOPT and ORMP optimizers, because they both
converge quickly to the same optimum. However, in cases where the optimizers yield different results, the
following general guidelines can help you choose which optimizer to use for a particular problem.

Some considerations for choosing the ZOPT optimizer follow:

� compatibility with PROC MODEL estimation results, because the ZOPT system is also used in PROC
MODEL

� faster solutions for smaller problems and for problems that are subject to neither extreme nonlinearities
nor ill-conditioning

Some considerations for choosing the ORMP optimizer follow:

� more robust convergence properties for larger problems

� faster and more reliable convergence when there are many constraints on the parameters

� improved estimates in the presence of multiple local minima, or when there is insufficient information
to choose initial grid point estimates
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Hessian Evaluation (Experimental)
PROC MODEL uses a linear approximation to the Hessian for all estimation methods by default. In most
cases, this linear approximation to the Hessian matrix is sufficient to ensure convergence of the optimization.
However, for some combinations of models, data, estimation methods, and optimization methods, the
estimates that PROC MODEL produces are sensitive to the linear approximation error in the Hessian. To
correct for this shortcoming, PROC TMODEL computes an exact analytical representation of the Hessian for
many of the estimation methods by default. The exact Hessian that PROC TMODEL uses also improves
convergence properties of the ORMP optimizer for some problems. Table 40.2 summarizes estimation
methods and exact analytical representations of the Hessian that are available in PROC TMODEL.

Table 40.2 PROC TMODEL Hessians for Estimation Methods

Method Exact Hessian

OLS
ITOLS

X0.diag.S/�1˝I/XC1
2
.Q0.diag.S/�1˝I/rC r0.diag.S/�1˝I/Q/

SUR
ITSUR

X0.S�1˝I/XC1
2
.Q0.S�1˝I/rC r0.S�1˝I/Q/

N2SLS
ITN2SLS

X0.diag.S/�1˝W/XC1
2
.Q0.diag.S/�1˝W/rC r0.diag.S/�1˝W/Q/

N3SLS
ITN3SLS

X0.S�1˝W/XC1
2
.Q0.S�1˝W/rC r0.S�1˝W/Q/

The variables in this table are defined as follows:

n the number of nonmissing observations

g the number of equations

k the number of instrumental variables

p the number of parameters

r the ng � 1 vector of residuals for the g equations stacked together

S a g � g matrix that estimates †, the covariances of the errors across equations (referred to
as the S matrix)

I an n � n identity matrix

X an ng � p matrix of partial derivatives of the residuals with respect to the parameters

Q an ng � p � p vector of matrices of second-order partial derivatives of the residuals with
respect to the parameters

W an n � n matrix, Z.Z0Z/�1Z0

Z an n � k matrix of instruments

The exact analytic Hessians are not currently available for the FIML or GMM estimation methods or for
models with random effects.
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Multithreaded Calculations
PROC TMODEL uses concurrent computation threads to reduce the time it takes to perform estimation and
simulation tasks. Because the characteristics of the input data, model program, and task can vary, PROC
TMODEL uses different strategies for breaking its calculations into pieces that can be executed concurrently.
For example, when you are estimating a simple model by using a data set with many observations, the
most efficient multithreading strategy is to partition the observations and to evaluate the objective function
concurrently across the partitions. However, for a highly nonlinear estimation problem with many parameters
and fewer observations, the best strategy might be to execute the minimization problem concurrently for
multiple regions of the parameter space and then choose the region that yields the optimal estimates.

PROC TMODEL automatically determines which threading strategy to use for each estimation or simulation
modeling task by default. Alternatively, you can specify the threading strategy manually by specifying priority
options in the PERFORMANCE statement. For each modeling task, the threading strategy is determined by
the number of threads allocated to each job in the task. A job is an aspect or dimension of the task that can be
executed concurrently with another job. The total number of threads that are used to complete each modeling
task is determined as follows,

n� D
Y
i2J

ceil.n
pi
ptot / for ptot D

X
k2J

pk

where n� is the actual number of threads used, n is the number of threads specified, pi D

max.priorityi ; 10
�8/, priorityi 2 Œ0; 1� is the priority specified for the ith job, and J is the set of all jobs in

the modeling task. The allocation of threads to jobs in modeling tasks creates the same number or more
threads than the number specified in the PERFORMANCE statement and CPUCOUNT= system option.

Multithreading Estimation Calculations

The following jobs in estimation tasks can be executed currently:

� BY-group processing

� grid search for optimal parameters specified using the START= option in the FIT statement, or multistart
global optimization specified by the MULTISTART suboption of the OPTIMIZER= option in the FIT
statement

� evaluation of the objective function across partitions of the DATA= data set

For model programs that use lagging functions, the observations in the DATA= data set must be processed
sequentially to compute the objective function. In these cases, multithreading across partitions of the data is
not possible unless you specify a CROSSSECTION statement or a RANDOM statement. The priority of
each estimation job can be specified in the PERFORMANCE statement. When no priorities are specified,
PROC TMODEL assigns jobs priorities based on the number of BY groups in the input data set, the number
of observations in the input data set, the presence of a START= or MULTISTART option in the FIT statement,
and the lag length of the model program.
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Multithreading Simulation Calculations

The following jobs in simulation tasks can be executed concurrently:

� BY-group processing

� processing repetitions in Monte Carlo simulations that are specified using the RANDOM= option in
the SOLVE statement

The priority of each simulation job can be specified in the PERFORMANCE statement. When no priorities
are specified, PROC TMODEL assigns jobs priorities based on the number of BY groups in the input data
set, the presence of a RANDOM= option, and the lag length of the model program.

Examples: TMODEL Procedure

Example 40.1: Thread Allocation Using the Performance Statement
This example illustrates how you can use the PERFORMANCE statement to improve the performance of
parameter estimation for a data set that contains multiple BY groups. For clarity, a small data set and a simple
model are used. In practice, the benefits of configuring the thread allocation strategy are realized only for
larger data sets and more computationally demanding models.

In the following PROC TMODEL step, a linear model is estimated for 20 BY groups, each of which contains
1,001 observations:

data d;
call streaminit(1);
do iby = 1 to 2;

do jby = 1 to 10;
do x = -500 to 500;

y = 2*x + 1 + rand('normal');
output;

end;
end;

end;
run;

proc tmodel data=d;
performance nthreads=4 bypriority=1 partpriority=1 / threadconfig timings;
y = a*x + b;
by iby jby;
fit y;

quit;

In this example, PROC TMODEL performs the estimations in two concurrent threads, where each thread
performs the estimation for 10 BY groups. Also, within the estimation of each BY group, the 1,001
observations are processed concurrently in two partitions, one with 501 observations and the other with 500
observations. Figure 40.1.1 shows how PROC TMODEL divides this estimation problem into threads and
the time it takes to complete all 20 estimations.
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Output 40.1.1 Multithreading Performance for Two BY-Group Threads

The TMODEL Procedure

Multithreading Configuration

Calculation Type
Concurrency

Factor Priority

BY Group Processing 2 1.00

Nonlinear Optimization 1 0

Data Partitioning 2 1.00

Performance Summary

Threads Used 4

Task Time (sec) 4.41974

Program Run Time (sec) 0.233087

Data Time (sec) 0.223164

Another way to perform these estimation tasks is to divide the 20 BY groups into four concurrent threads,
where the estimation of each BY group is performed on a single partition that contains all 1,001 observations.
You can do this by setting the PARTPRIORITY= option to 0 in the following PERFORMANCE statement:

proc tmodel data=d;
performance nthreads=4 bypriority=1 partpriority=0 / threadconfig timings;
y = a*x + b;
by iby jby;
fit y;

quit;

Figure 40.1.2 shows that maximizing the number of BY-group threads improves the performance of this
model and data set.

Output 40.1.2 Multithreading Performance for Four BY-Group Threads

The TMODEL Procedure

Multithreading Configuration

Calculation Type
Concurrency

Factor Priority

BY Group Processing 4 1.00

Nonlinear Optimization 1 0

Data Partitioning 1 0

Performance Summary

Threads Used 4

Task Time (sec) 4.874322

Program Run Time (sec) 0.248641

Data Time (sec) 0.224331
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Example 40.2: Random-Effects Parameter Estimation (Experimental)
This example models the circumference of five orange trees over 1,600 days by using a logistic curve to
represent the growth of each tree over time in conjunction with a random-effects parameter that accounts
for variation among the trees. The tree data for this example come from Draper and Smith (1981) and are
displayed in Output 40.2.1.

Output 40.2.1 Orange Tree Growth Curves

Lindstrom and Bates (1990) and Pinheiro and Bates (1995) propose the following logistic nonlinear mixed
model for these data:

yij D
b1 C ui1

1C expŒ�.dij � b2/=b3�
C eij

Here, yij represents the jth circumference measurement on the ith tree (i D 1; : : : ; 5; j D 1; : : : ; 7); dij is
the corresponding day; b1; b2, and b3 are the fixed-effects parameters; ui1 are the random-effect parameters
assumed to be iid N.0; �2u/; and eij are the residual errors assumed to be iid N.0; �2e / and independent of
the ui1. The random-effect parameters ui1 enter the model linearly.

The following PROC TMODEL step estimates the fixed-effects and random-effect parameters in this model:
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proc tmodel data=tree;
parms b1 200

b2 800
b3 800
s2u;

num = b1 + u1;
ex = exp(-(day-b2)/b3);
den = 1 + ex;
y = num/den;
crosssection tree;
random u1 ~ normal(0,s2u);
fit y;

quit;

The four SAS programming statements in this PROC TMODEL step specify the logistic model for tree
growth. The variable u1 identifies the random effect in this model.

The CROSSSECTION statement defines a variable that indicates when new realizations of the random effect
are encountered in the DATA= data set; in this case the variable tree is used.

The RANDOM statement defines the single random effect to be u1 and specifies that it follow a normal
distribution with mean 0 and variance s2u. For models that have a nonlinear dependence on the random-
effects variables, you can use the NUMQUADPTS= option to specify the number of Gaussian quadrature
points to use in the approximation of the likelihood function. In this example, the model has a linear
dependence on u1, so the default (NUMQUADPTS=1) is used.

For this example, as with many nonlinear random-effects models, the parameter optimization is sensitive
to the selection of initial estimates. Therefore, in the PARMS statement, the values for the fixed-effects
parameters are initialized with values based on a cursory examination of Output 40.2.1 to assure convergence.
The parameter b1 represents an asymptotic limit for the circumference of an average tree. The parameters b2
and b3 are characteristic of the growth period for the orange trees.

Figure 40.2.2 shows the estimates for the fixed-effects and random-effect parameters together with their
standard errors and approximate t-values.

Output 40.2.2 Fixed-Effects and Random-Effect Parameters for the Orange Tree Model

The TMODEL Procedure

Nonlinear Random Effects  Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

b1 192.0409 13.6457 14.07 <.0001

b2 727.8899 4.4899 162.12 <.0001

b3 347.9685 3.4501 100.86 <.0001

s2u 1016.531 535.2 1.90 0.0669
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Overview: The TSCSREG Procedure
The TSCSREG (time series cross section regression) procedure analyzes a class of linear econometric models
that commonly arise when time series and cross-sectional data are combined. The TSCSREG procedure
deals with panel data sets that consist of time series observations on each of several cross-sectional units.

The TSCSREG procedure is very similar to the PANEL procedure; for a full description, syntax details,
models, and estimation methods, see Chapter 26, “The PANEL Procedure.” The TSCSREG procedure is no
longer being updated, and it shares the code base with the PANEL procedure.

The original TSCSREG procedure was developed by Douglas J. Drummond and A. Ronald Gallant, and
contributed to the Version 5 SUGI Supplemental Library in 1979. The original code was changed substantially
over the years. Additional new methods as well as other new features are currently included in the PANEL
PROCEDURE. SAS Institute would like to thank Dr. Drummond and Dr. Gallant for their contribution of
the original version of the TSCSREG procedure.
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Getting Started: The TSCSREG Procedure

Specifying the Input Data
The input data set used by the TSCSREG procedure must be sorted by cross section and by time within each
cross section. Therefore, the first step in using PROC TSCSREG is to make sure that the input data set is
sorted. Normally, the input data set contains a variable that identifies the cross section for each observation
and a variable that identifies the time period for each observation.

To illustrate, suppose that you have a data set A that contains data over time for each of several states.
You want to regress the variable Y on regressors X1 and X2. Cross sections are identified by the variable
STATE, and time periods are identified by the variable DATE. The following statements sort the data set A
appropriately:

proc sort data=a;
by state date;

run;

The next step is to invoke the TSCSREG procedure and specify the cross section and time series variables in
an ID statement. List the variables in the ID statement exactly as they are listed in the BY statement.

proc tscsreg data=a;
id state date;

Alternatively, you can omit the ID statement and use the CS= and TS= options in the PROC TSCSREG
statement to specify the number of cross sections in the data set and the number of time series observations
in each cross section.

Unbalanced Data
In the case of fixed-effects and random-effects models, the TSCSREG procedure is capable of processing
data with different numbers of time series observations across different cross sections. You must specify
the ID statement to estimate models that use unbalanced data. The missing time series observations are
recognized by the absence of time series ID variable values in some of the cross sections in the input data set.
Moreover, if an observation with a particular time series ID value and cross-sectional ID value is present
in the input data set, but one or more of the model variables are missing, that time series point is treated as
missing for that cross section.
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Specifying the Regression Model
Next, specify the linear regression model with a MODEL statement, as shown in the following statements:

proc tscsreg data=a;
id state date;
model y = x1 x2;

run;

The MODEL statement in PROC TSCSREG is specified like the MODEL statement in other SAS regression
procedures: the dependent variable is listed first, followed by an equal sign, followed by the list of regressor
variables.

The reason for using PROC TSCSREG instead of other SAS regression procedures is that you can incorporate
a model for the structure of the random errors. It is important to consider what kind of error structure model
is appropriate for your data and to specify the corresponding option in the MODEL statement.

The error structure options supported by the TSCSREG procedure are FIXONE, FIXTWO, RANONE,
RANTWO, FULLER, PARKS, and DASILVA. For more information about these methods and the error
structures they assume, see the section “Details: The TSCSREG Procedure” on page 2846.

By default, the two-way random-effects error model structure is used while Fuller-Battese and Wansbeek-
Kapteyn methods are used for the estimation of variance components in balanced data and unbalanced data,
respectively. Thus, the preceding example is the same as specifying the RANTWO option, as shown in the
following statements:

proc tscsreg data=a;
id state date;
model y = x1 x2 / rantwo;

run;

You can specify more than one error structure option in the MODEL statement; the analysis is repeated using
each method specified. You can use any number of MODEL statements to estimate different regression
models or estimate the same model by using different options.

In order to aid in model specification within this class of models, the procedure provides two specification
test statistics. The first is an F statistic that tests the null hypothesis that the fixed-effects parameters are
all zero. The second is a Hausman m-statistic that provides information about the appropriateness of the
random-effects specification. It is based on the idea that, under the null hypothesis of no correlation between
the effects variables and the regressors, OLS and GLS are consistent, but OLS is inefficient. Hence, a
test can be based on the result that the covariance of an efficient estimator with its difference from an
inefficient estimator is zero. Rejection of the null hypothesis might suggest that the fixed-effects model is
more appropriate.

The procedure also provides the Buse R-square measure, which is the most appropriate goodness-of-fit
measure for models estimated by using GLS. This number is interpreted as a measure of the proportion of the
transformed sum of squares of the dependent variable that is attributable to the influence of the independent
variables. In the case of OLS estimation, the Buse R-square measure is equivalent to the usual R-square
measure.
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Estimation Techniques
If the effects are fixed, the models are essentially regression models with dummy variables that correspond to
the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is equivalent to best
linear unbiased estimation.

The output from PROC TSCSREG is identical to what one would obtain from creating dummy variables
to represent the cross-sectional and time (fixed) effects. The output is presented in this manner to facilitate
comparisons to the least squares dummy variables estimator (LSDV). As such, the inclusion of a intercept
term implies that one dummy variable must be dropped. The actual estimation of the fixed-effects models is
not LSDV. LSDV is much too cumbersome to implement. Instead, PROC TSCSREG operates in a two-step
fashion. In the first step, the following occurs:

� One-way fixed-effects model: In the one-way fixed-effects model, the data are transformed by removing
the cross-sectional means from the dependent and independent variables. The following is true:

Qyit D yit � Nyi �

Qxit D xit � Nxi �

� Two-way fixed-effects model: In the two-way fixed-effects model, the data are transformed by removing
the cross-sectional and time means and adding back the overall means,

Qyit D yit � Nyi � � Ny�t C NNy

Qxit D xit � Nxi � � Nx�t C NNx

where yit and xit are the dependent variable (a scalar) and the explanatory variables (a vector whose columns
are the explanatory variables, not including a constant), respectively; Nyi � and Nxi � are cross section means; Ny�t
and Nx�t are time means; and NNy and NNx are the overall means.

The second step consists of running OLS on the properly de-meaned series, provided that the data are
balanced. The unbalanced case is slightly more difficult, because the structure of the missing data must be
retained. For this case, PROC TSCSREG uses a slight specialization on Wansbeek and Kapteyn.

The other alternative is to assume that the effects are random. In the one-way case, E .�i / D 0, E .�2i / D �
2
� ,

and E .�i�j / D 0 for i¤j , and �i is uncorrelated with �it for all i and t . In the two-way case, in addition
to all of the preceding, E .et / D 0, E .e2t / D �

2
e , and E .etes/ D 0 for t¤s, and the et are uncorrelated

with the �i and the �it for all iand t . Thus, the model is a variance components model, with the variance
components �2� , �2e , and �2� , to be estimated. A crucial implication of such a specification is that the
effects are independent of the regressors. For random-effects models, the estimation method is an estimated
generalized least squares (EGLS) procedure that involves estimating the variance components in the first
stage and using the estimated variance covariance matrix thus obtained to apply generalized least squares
(GLS) to the data.
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Introductory Example
This example uses the cost function data from Greene (1990) to estimate the variance components model.
The variable OUTPUT is the log of output in millions of kilowatt-hours, and the variable COST is the log of
cost in millions of dollars. For more information, see Greene (1990).

title1;
data greene;

input firm year output cost @@;
df1 = firm = 1;
df2 = firm = 2;
df3 = firm = 3;
df4 = firm = 4;
df5 = firm = 5;
d60 = year = 1960;
d65 = year = 1965;
d70 = year = 1970;

datalines;
1 1955 5.36598 1.14867 1 1960 6.03787 1.45185

... more lines ...

Usually you cannot explicitly specify all the explanatory variables that affect the dependent variable. The
omitted or unobservable variables are summarized in the error disturbances. The TSCSREG procedure used
with the RANTWO option specifies the two-way random-effects error model where the variance components
are estimated by the Fuller-Battese method, because the data are balanced and the parameters are efficiently
estimated by using the GLS method. The variance components model used by the Fuller-Battese method is

yit D

KX
kD1

Xitkˇk C vi C et C �it i D 1; : : : ;N ; t D 1; : : : ; T

The following statements fit this model:

proc sort data=greene;
by firm year;

run;

proc tscsreg data=greene;
model cost = output / rantwo;
id firm year;

run;

The TSCSREG procedure output is shown in Figure 41.1. A model description is printed first; it reports
the estimation method used and the number of cross sections and time periods. The variance components
estimates are printed next. Finally, the table of regression parameter estimates shows the estimates, standard
errors, and t tests.
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Figure 41.1 The Variance Components Estimates

The TSCSREG Procedure
Fuller and Battese Variance Components (RanTwo)

Dependent Variable: cost

Model Description

Estimation Method RanTwo

Number of Cross Sections 6

Time Series Length 4

Fit Statistics

SSE 0.3481 DFE 22

MSE 0.0158 Root MSE 0.1258

R-Square 0.8136

Variance Component Estimates

Variance Component for Cross Sections 0.046907

Variance Component for Time Series 0.00906

Variance Component for Error 0.008749

Hausman Test for
Random Effects

DF m Value Pr > m

1 26.46 <.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 -2.99992 0.6478 -4.63 0.0001 Intercept

output 1 0.746596 0.0762 9.80 <.0001
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Syntax: The TSCSREG Procedure
The following statements are used with the TSCSREG procedure:

PROC TSCSREG options ;
BY variables ;
ID cross-section-id-variable time-series-id-variable ;
MODEL dependent = regressor-variables / options ;
TEST equation1 < ,equation2. . . > ;

Functional Summary
The statements and options used with the TSCSREG procedure are summarized in Table 41.1.

Table 41.1 Functional Summary

Description Statement Option

Data Set Options
Specify the input data set PROC TSCSREG DATA=
Write parameter estimates to an output data set PROC TSCSREG OUTEST=
Include correlations in the OUTEST= data set PROC TSCSREG CORROUT
Include covariances in the OUTEST= data set PROC TSCSREG COVOUT
Specify number of time series observations PROC TSCSREG TS=
Specify number of cross sections PROC TSCSREG CS=

Declaring the Role of Variables
Specify BY-group processing BY
Specify the cross section and time ID variables ID

Printing Control Options
Print correlations of the estimates MODEL CORRB
Print covariances of the estimates MODEL COVB
Suppress printed output MODEL NOPRINT
Perform tests of linear hypotheses TEST

Model Estimation Options
Specify the one-way fixed-effects model MODEL FIXONE
Specify the two-way fixed-effects model MODEL FIXTWO
Specify the one-way random-effects model MODEL RANONE
Specify the two-way random-effects model MODEL RANTWO
Specify Da Silva method MODEL DASILVA
Specify Fuller-Battese method MODEL FULLER
Specify Parks method MODEL PARKS
Specify order of the moving-average error
process for Da Silva method

MODEL M=

Print ˆ matrix for Parks method MODEL PHI
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Table 41.1 continued

Description Statement Option

Print autocorrelation coefficients for Parks
method

MODEL RHO

Suppress the intercept term MODEL NOINT
Control check for singularity MODEL SINGULAR=

PROC TSCSREG Statement
PROC TSCSREG options ;

The following options can be specified in the PROC TSCSREG statement:

DATA=SAS-data-set
names the input data set. The input data set must be sorted by cross section and by time period within
cross section. If you omit the DATA= option, the most recently created SAS data set is used.

TS=number
specifies the number of observations in the time series for each cross section. The TS= option value
must be greater than 1. The TS= option is required unless an ID statement is used. Note that the
number of observations for each time series must be the same for each cross section and must cover
the same time period.

CS=number
specifies the number of cross sections. The CS= option value must be greater than 1. The CS= option
is required unless an ID statement is used.

OUTEST=SAS-data-set
the parameter estimates. When the OUTEST= option is not specified, the OUTEST= data set is not
created.

OUTCOV

COVOUT
writes the covariance matrix of the parameter estimates to the OUTEST= data set.

OUTCORR

CORROUT
writes the correlation matrix of the parameter estimates to the OUTEST= data set.

In addition, any of the following MODEL statement options can be specified in the PROC TSC-
SREG statement: CORRB, COVB, FIXONE, FIXTWO, RANONE, RANTWO, FULLER, PARKS,
DASILVA, NOINT, NOPRINT, M=, PHI, RHO, and SINGULAR=. When specified in the PROC TSC-
SREG statement, these options are equivalent to specifying the options for every MODEL statement.
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BY Statement
BY variables ;

A BY statement can be used with PROC TSCSREG to obtain separate analyses on observations in groups
defined by the BY variables. When a BY statement appears, the input data set must be sorted by the BY
variables as well as by cross section and time period within the BY groups.

When both an ID statement and a BY statement are specified, the input data set must be sorted first with
respect to BY variables and then with respect to the cross section and time series ID variables. For example:

proc sort data=a;
by byvar1 byvar2 csid tsid;

run;

proc tscsreg data=a;
by byvar1 byvar2;
id csid tsid;
...

run;

When both a BY statement and an ID statement are used, the data set might have a different number of cross
sections or a different number of time periods in each BY group. If no ID statement is used, the CS=N and
TS=T options must be specified and each BY group must contain N � T observations.

ID Statement
ID cross-section-id-variable time-series-id-variable ;

The ID statement is used to specify variables in the input data set that identify the cross section and time
period for each observation.

When an ID statement is used, the TSCSREG procedure verifies that the input data set is sorted by the cross
section ID variable and by the time series ID variable within each cross section. The TSCSREG procedure
also verifies that the time series ID values are the same for all cross sections.

To make sure the input data set is correctly sorted, use PROC SORT with a BY statement with the variables
listed exactly as they are listed in the ID statement to sort the input data set. For example:

proc sort data=a;
by csid tsid;

run;

proc tscsreg data=a;
id csid tsid;
... etc. ...

run;

If the ID statement is not used, the TS= and CS= options must be specified in the PROC TSCSREG statement.
Note that the input data must be sorted by time within cross section, regardless of whether the cross section
structure is given by an ID statement or by the options TS= and CS=.
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If an ID statement is specified, the time series length T is set to the minimum number of observations for any
cross section, and only the first T observations in each cross section are used. If both the ID statement and
the TS= and CS= options are specified, the TS= and CS= options are ignored.

MODEL Statement
MODEL response = regressors / options ;

The MODEL statement specifies the regression model and the error structure assumed for the regression
residuals. The response variable on the left side of the equal sign is regressed on the independent variables
listed after the equal sign. Any number of MODEL statements can be used. For each model statement, only
one response variable can be specified on the left side of the equal sign.

The error structure is specified by the FIXONE, FIXTWO, RANONE, RANTWO, FULLER, PARKS, and
DASILVA options. More than one of these options can be used, in which case the analysis is repeated for
each error structure model specified.

Models can be given labels up to 32 characters in length. Model labels are used in the printed output to
identify the results for different models. If no label is specified, the response variable name is used as the
label for the model. The model label is specified as follows:

label: MODEL response = regressors / options ;

The following options can be specified in the MODEL statement after a slash (/):

CORRB

CORR
prints the matrix of estimated correlations between the parameter estimates.

COVB

VAR
prints the matrix of estimated covariances between the parameter estimates.

FIXONE
specifies that a one-way fixed-effects model be estimated with the one-way model that corresponds to
group effects only.

FIXTWO
specifies that a two-way fixed-effects model be estimated.

RANONE
specifies that a one-way random-effects model be estimated.

RANTWO
specifies that a two-way random-effects model be estimated.
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FULLER
specifies that the model be estimated by using the Fuller-Battese method, which assumes a variance
components model for the error structure.

PARKS
specifies that the model be estimated by using the Parks method, which assumes a first-order autore-
gressive model for the error structure.

DASILVA
specifies that the model be estimated by using the Da Silva method, which assumes a mixed variance-
component moving-average model for the error structure.

M=number
specifies the order of the moving-average process in the Da Silva method. The M= value must be less
than T � 1. The default is M=1.

PHI
prints the ˆ matrix of estimated covariances of the observations for the Parks method. The PHI option
is relevant only when the PARKS option is used.

RHO
prints the estimated autocorrelation coefficients for the Parks method.

NOINT
NOMEAN

suppresses the intercept parameter from the model.

NOPRINT
suppresses the normal printed output.

SINGULAR=number
specifies a singularity criterion for the inversion of the matrix. The default depends on the precision of
the computer system.

TEST Statement
TEST equation < , equation . . . > < / options > ;

The TEST statement performs F tests of linear hypotheses about the regression parameters in the preceding
MODEL statement. Each equation specifies a linear hypothesis to be tested. All hypotheses in one TEST
statement are tested jointly. Variable names in the equations must correspond to regressors in the preceding
MODEL statement, and each name represents the coefficient of the corresponding regressor. The keyword
INTERCEPT refers to the coefficient of the intercept.

The following statements illustrate the use of the TEST statement:

proc tscsreg;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3= 0;
test_int: test intercept=0, x3 = 0;

Note that a test of the following form is not permitted:
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test_bad: test x2 / 2 + 2 * x3= 0;

Do not use the division sign in the TEST statement.

Details: The TSCSREG Procedure
Models, estimators, and methods are covered in detail in Chapter 26, “The PANEL Procedure.”

ODS Table Names
PROC TSCSREG assigns a name to each table it creates. You can use these names to reference the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 41.2.

Table 41.2 ODS Tables Produced in PROC TSCSREG

ODS Table Name Description Options

ODS Tables Created by the MODEL Statement
ModelDescription Model description Default
FitStatistics Fit statistics Default
FixedEffectsTest F test for no fixed effects FIXONE, FIXTWO,

RANONE, RANTWO
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlations of parameter estimates CORRB
VarianceComponents Variance component estimates FULLER, DASILVA, M=,

RANONE, RANTWO
RandomEffectsTest Hausman test for random effects FULLER, DASILVA, M=,

RANONE, RANTWO
AR1Estimates First-order autoregressive parameter

estimates
PARKS, RHO

EstimatedPhiMatrix Estimated phi matrix PARKS
EstimatedAutocovariances Estimates of autocovariances DASILVA, M=

ODS Table Created by the TEST Statement
TestResults Test results
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Examples: The TSCSREG Procedure
For examples of analysis of panel data, see Chapter 26, “The PANEL Procedure.”
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Overview: UCM Procedure
The UCM procedure analyzes and forecasts equally spaced univariate time series data by using an unobserved
components model (UCM). The UCMs are also called structural models in the time series literature. A UCM
decomposes the response series into components such as trend, seasonals, cycles, and the regression effects
due to predictor series. The components in the model are supposed to capture the salient features of the
series that are useful in explaining and predicting its behavior. Harvey (1989) and Pelagatti (2015) are good
references for time series modeling that use the UCMs. Harvey calls the components in a UCM the “stylized
facts” about the series under consideration. Traditionally, the ARIMA models and, to some limited extent,
the exponential smoothing models have been the main tools in the analysis of this type of time series data. It
is fair to say that the UCMs capture the versatility of the ARIMA models while possessing the interpretability
of the smoothing models. A thorough discussion of the correspondence between the ARIMA models and the
UCMs, and the relative merits of UCM and ARIMA modeling, is given in Harvey (1989). The UCMs are
also very similar to another set of models, called the dynamic models, that are popular in the Bayesian time
series literature (West and Harrison 1999). In SAS/ETS, you can use PROC SSM for multivariate (and more
general univariate) UCMs (see Chapter 34, “The SSM Procedure”), PROC ARIMA for ARIMA modeling
(see Chapter 8, “The ARIMA Procedure”), PROC ESM for exponential smoothing modeling (see Chapter 15,
“The ESM Procedure”), and the Time Series Forecasting System for a point-and-click interface to ARIMA
and exponential smoothing modeling.

You can use the UCM procedure to fit a wide range of UCMs that can incorporate complex trend, seasonal,
and cyclical patterns and can include multiple predictors. It provides a variety of diagnostic tools to assess the
fitted model and to suggest the possible extensions or modifications. The components in the UCM provide
a succinct description of the underlying mechanism governing the series. You can print, save, or plot the
estimates of these component series. Along with the standard forecast and residual plots, the study of these
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component plots is an essential part of time series analysis using the UCMs. Once a suitable UCM is found
for the series under consideration, it can be used for a variety of purposes. For example, it can be used for the
following:

� forecasting the values of the response series and the component series in the model

� obtaining a model-based seasonal decomposition of the series

� obtaining a “denoised” version and interpolating the missing values of the response series in the
historical period

� obtaining the full sample or “smoothed” estimates of the component series in the model

Getting Started: UCM Procedure
The analysis of time series using the UCMs involves recognizing the salient features present in the series and
modeling them suitably. The UCM procedure provides a variety of models for estimating and forecasting the
commonly observed features in time series. These models are discussed in detail later in the section “An
Introduction to Unobserved Component Models” on page 2891. First the procedure is illustrated using an
example.

A Seasonal Series with Linear Trend
The airline passenger series, given as Series G in Box and Jenkins (1976), is often used in time series
literature as an example of a nonstationary seasonal time series. This series is a monthly series consisting of
the number of airline passengers who traveled during the years 1949 to 1960. Its main features are a steady
rise in the number of passengers from year to year and the seasonal variation in the numbers during any given
year. It also exhibits an increase in variability around the trend. A log transformation is used to stabilize this
variability. The following DATA step prepares the log-transformed passenger series analyzed in this example:

data seriesG;
set sashelp.air;
logair = log( air );

run;

The following statements produce a time series plot of the series by using the TIMESERIES procedure (see
Chapter 39, “The TIMESERIES Procedure”). The trend and seasonal features of the series are apparent in
the plot in Figure 42.1.

proc timeseries data=seriesG plot=series;
id date interval=month;
var logair;

run;
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Figure 42.1 Series Plot of Log-Transformed Airline Passenger Series

In this example this series is modeled using an unobserved component model called the basic structural
model (BSM). The BSM models a time series as a sum of three stochastic components: a trend component
�t , a seasonal component t , and random error �t . Formally, a BSM for a response series yt can be described
as

yt D �t C t C �t

Each of the stochastic components in the model is modeled separately. The random error �t , also called the
irregular component, is modeled simply as a sequence of independent, identically distributed (iid) zero-mean
Gaussian random variables. The trend and the seasonal components can be modeled in a few different ways.
The model for trend used here is called a locally linear time trend. This trend model can be written as follows:

�t D �t�1 C ˇt�1 C �t ; �t � iid N.0; �2� /

ˇt D ˇt�1 C �t ; �t � iid N.0; �2� /

These equations specify a trend where the level �t as well as the slope ˇt is allowed to vary over time. This
variation in slope and level is governed by the variances of the disturbance terms �t and �t in their respective
equations. Some interesting special cases of this model arise when you manipulate these disturbance variances.
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For example, if the variance of �t is zero, the slope will be constant (equal to ˇ0); if the variance of �t is also
zero, �t will be a deterministic trend given by the line �0C ˇ0t . The seasonal model used in this example is
called a trigonometric seasonal. The stochastic equations governing a trigonometric seasonal are explained
later (see the section “Modeling Seasons” on page 2893). However, it is interesting to note here that this
seasonal model reduces to the familiar regression with deterministic seasonal dummies if the variance of the
disturbance terms in its equations is equal to zero. The following statements specify a BSM with these three
components:

proc ucm data=seriesG;
id date interval=month;
model logair;
irregular;
level;
slope;
season length=12 type=trig print=smooth;
estimate;
forecast lead=24 print=decomp;

run;

The PROC UCM statement signifies the start of the UCM procedure, and the input data set, seriesG,
containing the dependent series is specified there. The optional ID statement is used to specify a date, datetime,
or time identification variable, date in this example, to label the observations. The INTERVAL=MONTH
option in the ID statement indicates that the measurements were collected on a monthly basis. The model
specification begins with the MODEL statement, where the response series is specified (logair in this case).
After this the components in the model are specified using separate statements that enable you to control
their individual properties. The irregular component �t is specified using the IRREGULAR statement and
the trend component �t is specified using the LEVEL and SLOPE statements. The seasonal component t
is specified using the SEASON statement. The specifics of the seasonal characteristics such as the season
length, its stochastic evolution properties, etc., are specified using the options in the SEASON statement. The
seasonal component used in this example has a season length of 12, corresponding to the monthly seasonality,
and is of the trigonometric type. Different types of seasonals are explained later (see the section “Modeling
Seasons” on page 2893).

The parameters of this model are the variances of the disturbance terms in the evolution equations of �t , ˇt ,
and t and the variance of the irregular component �t . These parameters are estimated by maximizing the
likelihood of the data. The ESTIMATE statement options can be used to specify the span of data used in
parameter estimation and to display and save the results of the estimation step and the model diagnostics.
You can use the estimated model to obtain the forecasts of the series as well as the components. The
options in the individual component statements can be used to display the component forecasts—for example,
PRINT=SMOOTH option in the SEASON statement requests the displaying of smoothed forecasts of the
seasonal component t . The series forecasts and forecasts of the sum of components can be requested using
the FORECAST statement. The option PRINT=DECOMP in the FORECAST statement requests the printing
of the smoothed trend �t and the trend plus seasonal component (�t C t ).

The parameter estimates for this model are displayed in Figure 42.2.
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Figure 42.2 BSM for the Logair Series

The UCM Procedure

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Irregular Error Variance 0.00023436 0.0001079 2.17 0.0298

Level Error Variance 0.00029828 0.0001057 2.82 0.0048

Slope Error Variance 8.47922E-13 6.2271E-10 0.00 0.9989

Season Error Variance 0.00000356 1.32347E-6 2.69 0.0072

The estimates suggest that except for the slope component, the disturbance variances of all the components
are significant—that is, all these components are stochastic. The slope component, however, appears to be
deterministic because its error variance is quite insignificant. It might then be useful to check if the slope
component can be dropped from the model—that is, if ˇ0 D 0. This can be checked by examining the
significance analysis table of the components given in Figure 42.3.

Figure 42.3 Component Significance Analysis for the Logair Series

Significance Analysis of Components
(Based on the Final State)

Component DF Chi-Square Pr > ChiSq

Irregular 1 0.08 0.7747

Level 1 117867 <.0001

Slope 1 43.78 <.0001

Season 11 507.75 <.0001

This table provides the significance of the components in the model at the end of the estimation span. If a
component is deterministic, this analysis is equivalent to checking whether the corresponding regression
effect is significant. However, if a component is stochastic, then this analysis pertains only to the portion of
the series near the end of the estimation span. In this example the slope appears quite significant and should
be retained in the model, possibly as a deterministic component. Note that, on the basis of this table, the
irregular component’s contribution appears insignificant toward the end of the estimation span; however,
since it is a stochastic component, it cannot be dropped from the model on the basis of this analysis alone.
The slope component can be made deterministic by holding the value of its error variance fixed at zero. This
is done by modifying the SLOPE statement as follows:

slope variance=0 noest;

After a tentative model is fit, its adequacy can be checked by examining different goodness-of-fit measures
and other diagnostic tests and plots that are based on the model residuals. Once the model appears satisfactory,
it can be used for forecasting. An interesting feature of the UCM procedure is that, apart from the series
forecasts, you can request the forecasts of the individual components in the model. The plots of component
forecasts can be useful in understanding their contributions to the series. The following statements illustrate
some of these features:

proc ucm data=seriesG;
id date interval = month;
model logair;
irregular;
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level plot=smooth;
slope variance=0 noest;
season length=12 type=trig

plot=smooth;
estimate;
forecast lead=24 plot=decomp;

run;

The table given in Figure 42.4 shows the goodness-of-fit statistics that are computed by using the one-step-
ahead prediction errors (see the section “Statistics of Fit” on page 2931). These measures indicate a good
agreement between the model and the data. Additional diagnostic measures are also printed by default but
are not shown here.

Figure 42.4 Fit Statistics for the Logair Series

The UCM Procedure

Fit Statistics Based on Residuals

Mean Squared Error 0.00147

Root Mean Squared Error 0.03830

Mean Absolute Percentage Error 0.54132

Maximum Percent Error 2.19097

R-Square 0.99061

Adjusted R-Square 0.99046

Random Walk R-Square 0.87288

Amemiya's Adjusted R-Square 0.99017

Number of non-missing residuals used
for computing the fit statistics = 131

The first plot, shown in Figure 42.5, is produced by the PLOT=SMOOTH option in the LEVEL statement, it
shows the smoothed level of the series.
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Figure 42.5 Smoothed Trend in the Logair Series

The second plot (Figure 42.6), produced by the PLOT=SMOOTH option in the SEASON statement, shows
the smoothed seasonal component by itself.
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Figure 42.6 Smoothed Seasonal in the Logair Series

The plot of the sum of the trend and seasonal component, produced by the PLOT=DECOMP option in the
FORECAST statement, is shown in Figure 42.7. You can see that, at least visually, the model seems to fit the
data well. In all these decomposition plots the component estimates are extrapolated for two years in the
future based on the LEAD=24 option specified in the FORECAST statement.
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Figure 42.7 Smoothed Trend plus Seasonal in the Logair Series
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Syntax: UCM Procedure
The UCM procedure uses the following statements:

PROC UCM < options > ;
AUTOREG < options > ;
BLOCKSEASON options ;
BY variables ;
CYCLE < options > ;
DEPLAG options ;
ESTIMATE < options > ;
FORECAST < options > ;
ID variable options ;
IRREGULAR < options > ;
LEVEL < options > ;
MODEL dependent variable < = regressors > ;
NLOPTIONS options ;
PERFORMANCE options ;
OUTLIER options ;
RANDOMREG regressors < / options > ;
SEASON options ;
SLOPE < options > ;
SPLINEREG regressor < options > ;
SPLINESEASON options ;
TF regressor < options > ;

The PROC UCM and MODEL statements are required. In addition, the model must contain at least one
component with nonzero disturbance variance.

Functional Summary
The statements and options controlling the UCM procedure are summarized in Table 42.1. Most commonly
needed scenarios are listed; see the individual statements for additional details. You can use the PRINT=
and PLOT= options in the individual component statements for printing and plotting the corresponding
component forecasts.

Table 42.1 Functional Summary

Description Statement Option

Data Set Options
Specify the input data set PROC UCM DATA=
Write parameter estimates to an output data set ESTIMATE OUTEST=
Write series and component forecasts to an
output data set

FORECAST OUTFOR=
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Table 42.1 continued

Description Statement Option

Model Specification
Specify the dependent variable and simple
predictors

MODEL

Specify predictors with time-varying
coefficients

RANDOMREG

Specify a nonlinear predictor SPLINEREG
Specify the irregular component IRREGULAR
Specify the random walk trend LEVEL
Specify the locally linear trend LEVEL and SLOPE
Specify a cycle component CYCLE
Specify a dummy seasonal component SEASON TYPE=DUMMY
Specify a trigonometric seasonal component SEASON TYPE=TRIG
Drop some harmonics from a trigonometric
seasonal component

SEASON DROPH=

Specify a list of harmonics to keep in a
trigonometric seasonal component

SEASON KEEPH=

Specify a spline-season component SPLINESEASON
Specify a block-season component BLOCKSEASON
Specify an autoreg component AUTOREG
Specify the lags of the dependent variable DEPLAG
Specify a transfer function component TF

Controlling the Likelihood Optimization Process
Request optimization of the profile likelihood ESTIMATE PROFILE
Request optimization of the usual likelihood ESTIMATE NOPROFILE
Specify the optimization technique NLOPTIONS TECH=
Limit the number of iterations NLOPTIONS MAXITER=

Outlier Detection
Turn on the search for additive outliers Default
Turn on the search for level shifts LEVEL CHECKBREAK
Specify the significance level for outlier tests OUTLIER ALPHA=
Limit the number of outliers OUTLIER MAXNUM=
Limit the number of outliers to a percentage of
the series length

OUTLIER MAXPCT=

Controlling the Series Span
Exclude some initial observations from
analysis during the parameter estimation

ESTIMATE SKIPFIRST=

Exclude some observations at the end from
analysis during the parameter estimation

ESTIMATE BACK=

Exclude some initial observations from
analysis during forecasting

FORECAST SKIPFIRST=
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Table 42.1 continued

Description Statement Option

Exclude some observations at the end from
analysis during forecasting

FORECAST BACK=

Graphical Residual Analysis
Get a panel of plots consisting of residual
autocorrelation plots and residual normality
plots

ESTIMATE PLOT=PANEL

Get the residual CUSUM plot ESTIMATE PLOT=CUSUM
Get the residual cumulative sum of squares
plot

ESTIMATE PLOT=CUSUMSQ

Get a plot of p-values for the portmanteau
white noise test

ESTIMATE PLOT=WN

Get a time series plot of residuals with
overlaid loess smoother

ESTIMATE PLOT=LOESS

Series Decomposition and Forecasting
Specify the number of periods to forecast in
the future

FORECAST LEAD=

Specify the significance level of the forecast
confidence interval

FORECAST ALPHA=

Request printing of smoothed series
decomposition

FORECAST PRINT=DECOMP

Request printing of one-step-ahead and
multistep-ahead forecasts

FORECAST PRINT=FORECASTS

Request plotting of smoothed series
decomposition

FORECAST PLOT=DECOMP

Request plotting of one-step-ahead and
multistep-ahead forecasts

FORECAST PLOT=FORECASTS

Request bootstrap standard errors FORECAST BOOTSTRAP

BY Groups
Specify BY-group processing BY

Global Printing and Plotting Options
Turn off all the printing for the procedure PROC UCM NOPRINT
Turn on all the printing options for the
procedure

PROC UCM PRINTALL

Turn off all the plotting for the procedure PROC UCM PLOTS=NONE
Turn on all the plotting options for the
procedure

PROC UCM PLOTS=ALL

Turn on a variety of plotting options for the
procedure

PROC UCM PLOTS=
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Table 42.1 continued

Description Statement Option

ID
Specify a variable that provides the time index
for the series values

ID

PROC UCM Statement
PROC UCM < options > ;

The PROC UCM statement is required. The following options can be used in the PROC UCM statement:

DATA=SAS-data-set
specifies the name of the SAS data set containing the time series. If the DATA= option is not specified
in the PROC UCM statement, the most recently created SAS data set is used.

NOPRINT
turns off all the printing for the procedure. The subsequent print options in the procedure are ignored.

PLOTS< (global-plot-options) > < = plot-request < (options) > >

PLOTS< (global-plot-options) > < = (plot-request < (options) > < . . . plot-request < (options) > >) >
controls the plots produced with ODS Graphics. When you specify only one plot request, you can omit
the parentheses around the plot request.

Here are some examples:

plots=none
plots=all
plots=residuals(acf loess)
plots(noclm)=(smooth(decomp) residual(panel loess))

For general information about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide).

proc ucm;
model y = x;
irregular;
level;

run;

proc ucm plots=all;
model y = x;
irregular;
level;

run;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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The first PROC UCM step does not specify the PLOTS= option, so the default plot that displays the
series forecasts in the forecast region is produced. The PLOTS=ALL option in the second PROC UCM
step produces all the plots that are appropriate for the specified model.

In addition to the PLOTS= option in the PROC UCM statement, you can request plots by using the
PLOT= option in other statements of the UCM procedure. This way of requesting plots provides finer
control over the plot production. If you do not specify any specific plot request, then PROC UCM
produces the plot of series forecasts in the forecast horizon by default.

Global Plot Options

The global-plot-options apply to all relevant plots generated by the UCM procedure. The following
global-plot-option is supported:

NOCLM
suppresses the confidence limits in all the component and forecast plots.

Specific Plot Options
The following list describes the specific plots and their options:

ALL
produces all plots appropriate for the particular analysis.

NONE
suppresses all plots.

FILTER (< filter-plot-options >)
produces time series plots of the filtered component estimates. The following filter-plot-options
are available:

ALL
produces all the filtered component estimate plots appropriate for the particular analysis.

LEVEL
produces a time series plot of the filtered level component estimate, provided the model
contains the level component.

SLOPE
produces a time series plot of the filtered slope component estimate, provided the model
contains the slope component.

CYCLE
produces time series plots of the filtered cycle component estimates for all cycle components
in the model, if there are any.
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SEASON
produces time series plots of the filtered season component estimates for all seasonal
components in the model, if there are any.

DECOMP
produces time series plots of the filtered estimates of the series decomposition.

RESIDUAL ( < residual-plot-options >)
produces the residuals plots. The following residual-plot-options are available:

ALL
produces all the residual diagnostics plots appropriate for the particular analysis.

ACF
produces the autocorrelation plot of residuals.

CUSUM
produces the plot of cumulative residuals against time.

CUSUMSQ
produces the plot of cumulative squared residuals against time.

HISTOGRAM
produces the histogram of residuals.

LOESS
produces a scatter plot of residuals against time, which has an overlaid loess-fit.

PACF
produces the partial-autocorrelation plot of residuals.

PANEL
produces a summary panel of the residual diagnostics consisting of the following:

� histogram of residuals

� normal quantile plot of residuals

� the residual-autocorrelation-plot

� the residual-partial-autocorrelation-plot

QQ
produces a normal quantile plot of residuals.

RESIDUAL
produces a needle plot of residuals against time.
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WN
produces the plot of Ljung-Box white-noise test p-values at different lags (in log scale).

SMOOTH ( < smooth-plot-options >)
produces time series plots of the smoothed component estimates. The following smooth-plot-
options are available:

ALL
produces all the smoothed component estimate plots appropriate for the particular analysis.

LEVEL
produces time series plot of the smoothed level component estimate, provided the model
contains the level component.

SLOPE
produces time series plot of the smoothed slope component estimate, provided the model
contains the slope component.

CYCLE
produces time series plots of the smoothed cycle component estimates for all cycle compo-
nents in the model, if there are any.

SEASON
produces time series plots of the smoothed season component estimates for all season
components in the model, if there are any.

DECOMP
produces time series plots of the smoothed estimates of the series decomposition.

PRINTALL
turns on all the printing options for the procedure. The subsequent NOPRINT options in the procedure
are ignored.

AUTOREG Statement
AUTOREG < options > ;

The AUTOREG statement specifies an autoregressive component in the model. An autoregressive component
is a special case of cycle that corresponds to the frequency of zero or � . It is modeled separately for easier
interpretation. A stochastic equation for an autoregressive component rt can be written as follows:

rt D �rt�1 C �t ; �t � iid N.0; �2� /

The damping factor � can take any value in the interval (–1, 1), including –1 but excluding 1. If � D 1, the
autoregressive component cannot be distinguished from the random walk level component. If � D �1, the
autoregressive component corresponds to a seasonal component with a season length of 2, or a nonstationary
cycle with period 2. If j�j < 1, then the autoregressive component is stationary. The following example
illustrates the AUTOREG statement. This statement includes an autoregressive component in the model. The
damping factor � and the disturbance variance �2� are estimated from the data.
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autoreg;

NOEST=RHO

NOEST=VARIANCE

NOEST=(RHO VARIANCE)
fixes the values of � and �2� to those specified in the RHO= and VARIANCE= options.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plotting of the filtered or smoothed estimate of the autoreg component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=(< FILTER > < SMOOTH >)
requests printing of the filtered or smoothed estimate of the autoreg component.

RHO=value
specifies an initial value for the damping factor � during the parameter estimation process. The value
of � must be in the interval (–1, 1), including –1 but excluding 1.

VARIANCE=value
specifies an initial value for the disturbance variance �2� during the parameter estimation process. Any
nonnegative value, including zero, is an acceptable starting value.

BLOCKSEASON Statement
BLOCKSEASON NBLOCKS=integer BLOCKSIZE=integer < options > ;

The BLOCKSEASON or BLOCKSEASONAL statement is used to specify a seasonal component t that has
a special block structure. The seasonal t is called a block seasonal of block size m and number of blocks k
if its season length, s, can be factored as s D m � k and its seasonal effects have a block form—that is, the
first m seasonal effects are all equal to some number �1, the next m effects are all equal to some number �2,
and so on.

This type of seasonal structure can be appropriate in some cases; for example, consider a series that is
recorded on an hourly basis. Further assume that, in this particular case, the hour-of-the-day effect and the
day-of-the-week effect are additive. In this situation the hour-of-the-week seasonality, having a season length
of 168, can be modeled as a sum of two components. The hour-of-the-day effect is modeled using a simple
seasonal of season length 24, while the day-of-the-week is modeled as a block seasonal component that has
the days of the week as blocks. This day-of-the-week block seasonal component has seven blocks, each of
size 24.

A block seasonal specification requires, at the minimum, the block size m and the number of blocks in the
seasonal k . These are specified using the BLOCKSIZE= and NBLOCKS= option, respectively. In addition,
you might need to specify the position of the first observation of the series by using the OFFSET= option if it
is not at the beginning of one of the blocks. In the example just considered, this corresponds to a situation
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where the first series measurement is not at the start of the day. Suppose that the first measurement of the
series corresponds to the hour between 6:00 and 7:00 a.m., which is the seventh hour within that day or at the
seventh position within that block. This is specified as OFFSET=7.

The other options in this statement are very similar to the options in the SEASON statement; for example, a
block seasonal can also be of one of the two types, DUMMY and TRIG. There can be more than one block
seasonal component in the model, each specified using a separate BLOCKSEASON statement. No two block
seasonals in the model can have the same NBLOCKS= and BLOCKSIZE= specifications. The following
example illustrates the use of the BLOCKSEASON statement to specify the additive, hour-of-the-week
seasonal model:

season length=24 type=trig;
blockseason nblocks=7 blocksize=24;

BLOCKSIZE=integer
specifies the block size, m. This is a required option in this statement. The block size can be any
integer larger than or equal to two. Typical examples of block sizes are 24, corresponding to the hours
of the day when a day is being used as a block in hourly data, or 60, corresponding to the minutes in
an hour when an hour is being used as a block in data recorded by minutes, etc.

NBLOCKS=integer
specifies the number of blocks, k . This is a required option in this statement. The number of blocks
can be any integer greater than or equal to two.

NOEST
fixes the value of the disturbance variance parameter to the value specified in the VARIANCE= option.

OFFSET=integer
specifies the position of the first measurement within the block, if the first measurement is not at the
start of a block. The OFFSET= value must be between one and the block size. The default value is one.
The first measurement refers to the start of the estimation span and the forecast span. If these spans
differ, their starting measurements must be separated by an integer multiple of the block size.

PLOT=FILTER

PLOT=SMOOTH

PLOT=F_ANNUAL

PLOT=S_ANNUAL

PLOT=( < plot-request > . . . < plot-request > )
requests plots of the season component. When you specify only one plot-request , you can omit the
parentheses around it. You can use the FILTER and SMOOTH options to plot the filtered and smoothed
estimates of the season component t . You can use the F_ANNUAL and S_ANNUAL options to
get the plots of “annual” variation in the filtered and smoothed estimates of t . The annual plots are
useful to see the change in the contribution of a particular month over the span of years. Here “month”
and “year” are generic terms that change appropriately with the interval type being used to label the
observations and the season length. For example, for monthly data with a season length of 12, the
usual meaning applies, while for daily data with a season length of 7, the days of the week serve as
months and the weeks serve as years. The first period in each block is plotted over the years.
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PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests the printing of the filtered or smoothed estimate of the block seasonal component t .

TYPE=DUMMY | TRIG
specifies the type of the block seasonal component. The default type is DUMMY.

VARIANCE=value
specifies an initial value for the disturbance variance, �2! , in the t equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.

BY Statement
BY variables ;

A BY statement can be used in the UCM procedure to process a data set in groups of observations defined by
the BY variables. The model specified using the MODEL and other component statements is applied to all
the groups defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. The variables are one or more variables in the input data set.

CYCLE Statement
CYCLE < options > ;

The CYCLE statement is used to specify a cycle component,  t , in the model. The stochastic equation
governing a cycle component of period p and damping factor � is�

 t
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where �t and ��t are independent, zero-mean, Gaussian disturbances with variance �2� and � D 2 � �=p is
the angular frequency of the cycle. Any p strictly greater than two is an admissible value for the period, and
the damping factor � can be any value in the interval (0, 1), including one but excluding zero. The cycles
with frequency zero and � , which correspond to the periods equal to infinity and two, respectively, can be
specified using the AUTOREG statement. The values of � less than one give rise to a stationary cycle, while
� D 1 gives rise to a nonstationary cycle. As a default, values of �, p, and �2� are estimated from the data.
However, if necessary, you can fix the values of some or all of these parameters.

There can be multiple cycles in a model, each specified using a separate CYCLE statement. The examples
that follow illustrate the use of the CYCLE statement.

The following statements request including two cycles in the model. The parameters of each of these cycles
are estimated from the data.



CYCLE Statement F 2869

cycle;
cycle;

The following statement requests inclusion of a nonstationary cycle in the model. The cycle period p and the
disturbance variance �2� are estimated from the data.

cycle rho=1 noest=rho;

In the following statement, a nonstationary cycle with a fixed period of 12 is specified. Moreover, a starting
value is supplied for �2� .

cycle period=12 rho=1 variance=4 noest=(rho period);

NOEST=PERIOD

NOEST=RHO

NOEST=VARIANCE

NOEST=( < RHO > < PERIOD > < VARIANCE > )
fixes the values of the component parameters to those specified in the RHO=, PERIOD=, and VARI-
ANCE= options. This option enables you to fix any combination of parameter values.

ORDER=integer (Experimental )
enables you to specify a higher-order cycle. A higher-order cycle (a cycle whose order is greater than
1) is a generalization of the stochastic cycle described at the beginning of this section, which can
be thought of as a first-order cycle. Higher-order cycles are well explained in Trimbur (2005) and
Pelagatti (2015, sect. 3.3.3). A cycle whose order is greater than 2 is rarely needed, and specifying
cycles of large orders (for example, an order greater than 4) can lead to computational instability. See
Example 42.9 for an example of the use of higher-order cycles.

PERIOD=value
specifies an initial value for the cycle period during the parameter estimation process. Period value
must be strictly greater than 2.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plotting of the filtered or smoothed estimate of the cycle component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests the printing of a filtered or smoothed estimate of the cycle component  t .

RHO=value
specifies an initial value for the damping factor in this component during the parameter estimation
process. Any value in the interval (0, 1), including one but excluding zero, is an acceptable initial value
for the damping factor.



2870 F Chapter 42: The UCM Procedure

VARIANCE=value
specifies an initial value for the disturbance variance parameter, �2� , to be used during the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.

DEPLAG Statement
DEPLAG LAGS=order < PHI=value . . . > < NOEST > ;

The DEPLAG statement is used to specify the lags of the dependent variable to be included as predictors in
the model. The following examples illustrate the use of the DEPLAG statement.

If the dependent series is denoted by yt , the following statement specifies the inclusion of �1yt�1 C �2yt�2
in the model. The parameters �1 and �2 are estimated from the data.

deplag lags=2;

The following statement requests including �1yt�1 C �2yt�4 � �1�2yt�5 in the model. The values of �1
and �2 are fixed at 0.8 and –1.2.

deplag lags=(1)(4) phi=0.8 -1.2 noest;

The dependent lag parameters are not constrained to lie in any particular region. In particular, this implies that
a UCM that contains only an irregular component and dependent lags, resulting in a traditional autoregressive
model, is not constrained to be a stationary model. In the DEPLAG statement, if an initial value is supplied
for any one of the parameters, the initial values must also be supplied for all other parameters.

LAGS=order

LAGS=(lag, . . . , lag ) . . . (lag, . . . , lag )
is a required option in this statement. LAGS=(l 1, l 2, . . . , l k ) defines a model with specified lags of
the dependent variable included as predictors. LAGS=order is equivalent to LAGS=(1, 2, . . . , order ).

A concatenation of parenthesized lists specifies a factored model. For example, LAGS=(1)(12) specifies
that the lag values, 1, 12, and 13, corresponding to the following polynomial in the backward shift
operator, be included in the model:

.1 � �1;1B/.1 � �2;1B
12/

Note that, in this case, the coefficient of the thirteenth lag is constrained to be the product of the
coefficients of the first and twelfth lags.

NOEST
fixes the values of the parameters to those specified in PHI= option.

PHI=value . . .
lists starting values for the coefficients of the lagged dependent variable. The order of the values listed
corresponds with the order of the lags specified in the LAGS= option.
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ESTIMATE Statement
ESTIMATE < options > ;

The ESTIMATE statement is an optional statement used to control the overall model-fitting environment.
Using this statement, you can control the span of observations used to fit the model by using the SKIPFIRST=
and BACK= options. This can be useful in model diagnostics. You can request a variety of goodness-of-fit
statistics and other model diagnostic information including different residual diagnostic plots. Note that the
ESTIMATE statement is not used to control the nonlinear optimization process itself. That is done using
the NLOPTIONS statement, where you can control the number of iterations, choose between the different
optimization techniques, and so on. You can save the estimated parameters and other related information
in a data set by using the OUTEST= option. You can request the optimization of the profile likelihood,
the likelihood obtained by concentrating out a disturbance variance, for parameter estimation by using the
PROFILE option. The following example illustrates the use of this statement:

estimate skipfirst=12 back=24;

This statement requests that the initial 12 measurements and the last 24 measurements be excluded during the
model-fitting process. The actual observation span used to fit the model is decided as follows: Suppose that
n0 and n1 are the observation numbers of the first and the last nonmissing values of the response variable,
respectively. As a result of SKIPFIRST=12 and BACK=24, the measurements between observation numbers
n0 C 12 and n1 � 24 form the estimation span. Of course, the model fitting might not take place if there
are insufficient data in the resulting span. The model fitting does not take place if there are regressors in the
model that have missing values in the estimation span.

BACK=integer
SKIPLAST=integer

indicates that some ending part of the data needs to be ignored during the parameter estimation. This
can be useful when you want to study the forecasting performance of a model on the observed data.
BACK=10 results in skipping the last 10 measurements of the response series during the parameter
estimation. The default is BACK=0.

LIKE=DIFFUSE | MARGINAL (Experimental )
specifies the type of likelihood to use for parameter estimation. You can specify the following values:

DIFFUSE uses diffuse likelihood.

MARGINAL uses marginal likelihood.

For more information about likelihood types, see the section “Likelihood Computation and Model-
Fitting Phase” on page 2447 in Chapter 34, “The SSM Procedure.” For an example of the use of
LIKE=MARGINAL option, see Example 42.10. By default, LIKE=DIFFUSE.

EXTRADIFFUSE=k
enables continuation of the diffuse filtering iterations for k additional iterations beyond the first instance
where the initialization of the diffuse state would have otherwise taken place. If the specified k is larger
than the sample size, the diffuse iterations continue until the end of the sample. Note that one-step-
ahead residuals are produced only after the diffuse state is initialized. Delaying the initialization leads
to a reduction in the number of one-step-ahead residuals available for computing the residual diagnostic
measures. This option is useful when you want to ignore the first few one-step-ahead residuals that
often have large variance.
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NOPROFILE
requests that the usual likelihood be optimized for parameter estimation. For more information, see the
section “Parameter Estimation by Profile Likelihood Optimization” on page 2909.

OUTEST=SAS-data-set
specifies an output data set for the estimated parameters.

In the ESTIMATE statement, the PLOT= option is used to obtain different residual diagnostic plots.
The different possibilities are as follows:

PLOT=ACF

PLOT=MODEL

PLOT=LOESS

PLOT=HISTOGRAM

PLOT=PACF

PLOT=PANEL

PLOT=QQ

PLOT=RESIDUAL

PLOT=WN

PLOT=( < plot-request > . . . < plot-request > )
requests different residual diagnostic plots. The different options are as follows:

ACF
produces the residual-autocorrelation plot.

CUSUM
produces the plot of cumulative residuals against time.

CUSUMSQ
produces the plot of cumulative squared residuals against time.

MODEL
produces the plot of one-step-ahead forecasts in the estimation span.

HISTOGRAM
produces the histogram of residuals.

LOESS
produces a scatter plot of residuals against time, which has an overlaid loess-fit.

PACF
produces the residual-partial-autocorrelation plot.

PANEL
produces a summary panel of the residual diagnostics consisting of the following:

� histogram of residuals
� normal quantile plot of residuals
� the residual-autocorrelation-plot
� the residual-partial-autocorrelation-plot
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QQ
produces a normal quantile plot of residuals.

RESIDUAL
produces a needle plot of residuals against time.

WN
produces a plot of p-values, in log-scale, at different lags for the Ljung-Box portmanteau white
noise test statistics.

PRINT=NONE
suppresses all the printed output related to the model fitting, such as the parameter estimates, the
goodness-of-fit statistics, and so on.

PROFILE
requests that the profile likelihood, obtained by concentrating out one of the disturbance variances
from the likelihood, be optimized for parameter estimation. By default, the profile likelihood is not
optimized if any of the disturbance variance parameters is held fixed to a nonzero value. For more
information see the section “Parameter Estimation by Profile Likelihood Optimization” on page 2909.

SKIPFIRST=integer
indicates that some early part of the data needs to be ignored during the parameter estimation. This
can be useful if there is a reason to believe that the model being estimated is not appropriate for this
portion of the data. SKIPFIRST=10 results in skipping the first 10 measurements of the response series
during the parameter estimation. The default is SKIPFIRST=0.

FORECAST Statement
FORECAST < options > ;

The FORECAST statement is an optional statement that is used to specify the overall forecasting environment
for the specified model. It can be used to specify the span of observations, the historical period, to use to
compute the forecasts of the future observations. This is done using the SKIPFIRST= and BACK= options.
The number of periods to forecast beyond the historical period, and the significance level of the forecast
confidence interval, is specified using the LEAD= and ALPHA= options. You can request one-step-ahead
series and component forecasts by using the PRINT= option. You can save the series forecasts, and the
model-based decomposition of the series, in a data set by using the OUTFOR= option. You can use the
BOOTSTRAP option to request the computation of bootstrap prediction standard errors and the associated
confidence intervals. The following example illustrates the use of this statement:

forecast skipfirst=12 back=24 lead=30;

This statement requests that the initial 12 and the last 24 response values be excluded during the forecast
computations. The forecast horizon, specified using the LEAD= option, is 30 periods; that is, multistep
forecasting begins at the end of the historical period and continues for 30 periods. The actual observation span
used to compute the multistep forecasting is decided as follows: Suppose that n0 and n1 are the observation
numbers of the first and the last nonmissing values of the response variable, respectively. As a result of
SKIPFIRST=12 and BACK=24, the historical period, or the forecast span, begins at n0 C 12 and ends at
n1 � 24. Multistep forecasts are produced for the next 30 periods—that is, for the observation numbers
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n1� 23 to n1C 6. Of course, the forecast computations can fail if the model has regressor variables that have
missing values in the forecast span. If the regressors contain missing values in the forecast horizon—that is,
between the observations n1 � 23 and n1 C 6—the forecast horizon is reduced accordingly.

ALPHA=value
specifies the significance level of the forecast confidence intervals; for example, ALPHA=0.05, which
is the default, results in a 95% confidence interval.

BACK=integer

SKIPLAST=integer
specifies the holdout sample for the evaluation of the forecasting performance of the model. For
example, BACK=10 results in treating the last 10 observed values of the response series as unobserved.
A post-sample-prediction-analysis table is produced for comparing the predicted values with the actual
values in the holdout period. The default is BACK=0.

BOOTSTRAP(NREP=integer < SEED=integer >) (Experimental )
enables the computation of bootstrap prediction standard errors based on the specified number of
replications (NREP). The value of NREP must be at least 2. Optionally, you can specify the random
number seed that is associated with the first replication by using the SEED= option. The seeds for the
subsequent replications are assigned sequentially. The default seed value that is associated with the first
replication is 123. The BOOTSTRAP option has no effect if the number of parameters to be estimated
is zero (that is, all the model parameters are known). Note that this option is computationally expensive.
The computational cost of NREP replications is comparable to the cost of estimating parameters NREP
times.

EXTRADIFFUSE=k
enables continuation of the diffuse filtering iterations for k additional iterations beyond the first instance
where the initialization of the diffuse state would have otherwise taken place. If the specified k is larger
than the sample size, the diffuse iterations continue until the end of the sample. Note that one-step-
ahead forecasts are produced only after the diffuse state is initialized. Delaying the initialization leads
to reduction in the number of one-step-ahead forecasts. This option is useful when you want to ignore
the first few one-step-ahead forecasts that often have large variance.

LEAD=integer
specifies the number of periods to forecast beyond the historical period defined by the SKIPFIRST=
and BACK= options; for example, LEAD=10 results in the forecasting of 10 future values of the
response series. The default is LEAD=12.

OUTFOR=SAS-data-set
specifies an output data set for the forecasts. The output data set contains the ID variable (if specified),
the response and predictor series, the one-step-ahead and out-of-sample response series forecasts, the
forecast confidence intervals, the smoothed values of the response series, and the smoothed forecasts
produced as a result of the model-based decomposition of the series.



ID Statement F 2875

PLOT=DECOMP

PLOT=DECOMPVAR

PLOT=FDECOMP

PLOT=FDECOMPVAR

PLOT=FORECASTS

PLOT=TREND

PLOT=( < plot-request > . . . < plot-request > )
requests forecast and model decomposition plots. The FORECASTS option provides the plot of the
series forecasts, the TREND and DECOMP options provide the plots of the smoothed trend and other
decompositions, the DECOMPVAR option can be used to plot the variance of these components, and
the FDECOMP and FDECOMPVAR options provide the same plots for the filtered decomposition
estimates and their variances.

PRINT=DECOMP

PRINT=FDECOMP

PRINT=FORECASTS

PRINT=NONE

PRINT=( < print-request > . . . < print-request > )
controls the printing of the series forecasts and the printing of smoothed model decomposition estimates.
By default, the series forecasts are printed only for the forecast horizon specified by the LEAD= option;
that is, the one-step-ahead predicted values are not printed. You can request forecasts for the entire
forecast span by specifying the PRINT=FORECASTS option. Using PRINT=DECOMP, you can
get smoothed estimates of the following effects: trend, trend plus regression, trend plus regression
plus cycle, and sum of all components except the irregular. If some of these effects are absent in
the model, then they are ignored. Similarly, you can get filtered estimates of these effects by using
PRINT=FDECOMP. You can use PRINT=NONE to suppress the printing of all the forecast output.

SKIPFIRST=integer
indicates that some early part of the data needs to be ignored during the forecasting calculations. This
can be useful if there is a reason to believe that the model being used for forecasting is not appropriate
for this portion of the data. SKIPFIRST=10 results in skipping the first 10 measurements of the
response series during the forecast calculations. The default is SKIPFIRST=0.

ID Statement
ID variable INTERVAL=value < ALIGN=value > ;

The ID statement names a numeric variable that identifies observations in the input and output data sets. The
ID variable’s values are assumed to be SAS date, time, or datetime values. In addition, the ID statement
specifies the frequency associated with the time series. The ID statement options also specify how the
observations are aligned to form the time series. If the ID statement is specified, the INTERVAL= option
must also be specified. If the ID statement is not specified, the observation number, with respect to the BY
group, is used as the time ID. The values of the ID variable are extrapolated for the forecast observations
based on the values of the INTERVAL= option.
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ALIGN=value
controls the alignment of SAS dates used to identify output observations. The ALIGN= option has the
following possible values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E.
The default is BEGINNING. The ALIGN= option is used to align the ID variable with the beginning,
middle, or end of the time ID interval specified by the INTERVAL= option.

INTERVAL=value
specifies the time interval between observations. This option is required in the ID statement. IN-
TERVAL=value is used in conjunction with the ID variable to check that the input data are in order
and have no gaps. The INTERVAL= option is also used to extrapolate the ID values past the end of
the input data. For a complete discussion of the intervals supported, see Chapter 5, “Date Intervals,
Formats, and Functions.”

IRREGULAR Statement
IRREGULAR < options > ;

The IRREGULAR statement includes an irregular component in the model. There can be at most one
IRREGULAR statement in the model specification. The irregular component corresponds to the overall
random error �t in the model. By default the irregular component is modeled as white noise—that is, as a
sequence of independent, identically distributed, zero-mean, Gaussian random variables. However, you can
also model it as an autoregressive moving average (ARMA) process. The options for specifying an ARMA
model for the irregular component are given in a separate subsection: “ARMA Specification” on page 2877.

The options in this statement enable you to specify the model for the irregular component and to output its
estimates. Two examples of the IRREGULAR statement are given next. In the first example the statement is
in its simplest form, resulting in the inclusion of an irregular component that is white noise with unknown
variance:

irregular;

The following statement provides a starting value for the white noise variance �2� to be used in the nonlinear
parameter estimation process. It also requests the printing of smoothed estimates of �t . The smoothed
irregulars are useful in model diagnostics.

irregular variance=4 print=smooth;

NOEST
fixes the value of �2� to the value specified in the VARIANCE= option. Also see the NOEST= option
in the subsection “ARMA Specification” on page 2877.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plotting of the filtered or smoothed estimate of the irregular component.
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PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests printing of the filtered or smoothed estimate of the irregular component.

VARIANCE=value
specifies an initial value for �2� during the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

ARMA Specification

This section details the options for specifying an ARMA model for the irregular component. The specification
of ARMA models requires some notation, which is explained first.

Let B denote the backshift operator—that is, for any sequence �t , B�t D �t�1. The higher powers
of B represent larger shifts (for example, B3�t D �t�3). A random sequence �t follows a zero-mean
ARMA(p,q)�(P,Q)s model with nonseasonal autoregressive order p, seasonal autoregressive order P, nonsea-
sonal moving average order q, and seasonal moving average order Q, if it satisfies the following difference
equation specified in terms of the polynomials in the backshift operator where at is a white noise sequence
and s is the season length:

�.B/ˆ.Bs/�t D �.B/‚.B
s/at

The polynomials �;ˆ; �; and ‚ are of orders p, P, q, and Q, respectively, which can be any nonnegative
integers. The season length s must be a positive integer. For example, �t satisfies an ARMA(1,1) model (that
is, p D 1; q D 1; P D 0; and Q D 0) if

�t D �1�t�1 C at � �1at�1

for some coefficients �1 and �1 and a white noise sequence at . Similarly, �t satisfies an ARMA(1,1)�(1,1)12
model if

�t D �1�t�1 Cˆ1�t�12 � �1ˆ1�t�13 C at � �1at�1 �‚1at�12 C �1‚1at�13

for some coefficients �1; ˆ1; �1; and ‚1 and a white noise sequence at . The ARMA process is stationary
and invertible if the defining polynomials �;ˆ; �; and ‚ have all their roots outside the unit circle—that
is, their absolute values are strictly larger than 1.0. It is assumed that the ARMA model specified for the
irregular component is stationary and invertible—that is, the coefficients of the polynomials �;ˆ; �; and ‚
are constrained so that the stationarity and invertibility conditions are satisfied. The unknown coefficients of
these polynomials become part of the model parameter vector that is estimated using the data.

The notation for a closely related class of models, autoregressive integrated moving average (ARIMA)
models, is also given here. A random sequence yt is said to follow an ARIMA(p,d,q)�(P,D,Q)s model
if, for some nonnegative integers d and D, the differenced series �t D .1 � B/d .1 � Bs/Dyt follows
an ARMA(p,q)�(P,Q)s model. The integers d and D are called nonseasonal and seasonal differencing
orders, respectively. You can specify ARIMA models by using the DEPLAG statement for specifying the
differencing orders and by using the IRREGULAR statement for the ARMA specification. For an example
of ARIMA(0,1,1)�(0,1,1)12 model specification, see Example 42.8. Brockwell and Davis (1991) can be
consulted for additional information about ARIMA models.

You can use options of the IRREGULAR statement to specify the desired ARMA model and to request
printed and graphical output. A few examples of the IRREGULAR statement are given next.
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The following statement specifies an irregular component that is modeled as an ARMA(1,1) process. It also
requests plotting its smoothed estimate.

irregular p=1 q=1 plot=smooth;

The following statement specifies an ARMA(1,1)�(1,1)12 model. It also fixes the coefficient of the first-order
seasonal moving average polynomial to 0.1. The other coefficients and the white noise variance are estimated
using the data.

irregular p=1 sp=1 q=1 sq=1 s=12 sma=0.1 noest=(sma);

AR=�1 �2 . . .�p
lists the starting values of the coefficients of the nonseasonal autoregressive polynomial

�.B/ D 1 � �1B � � � � � �pB
p

where the order p is specified in the P= option. The coefficients �i must define a stationary autoregres-
sive polynomial.

MA=�1 �2 . . . �q
lists the starting values of the coefficients of the nonseasonal moving average polynomial

�.B/ D 1 � �1B � � � � � �qB
q

where the order q is specified in the Q= option. The coefficients �i must define an invertible moving
average polynomial.

NOEST=(<VARIANCE> <AR> <SAR> <MA> <SMA>)
fixes the values of the ARMA parameters and the value of the white noise variance to those specified
in the AR=, SAR=, MA=, SMA=, or VARIANCE= options.

P=integer
specifies the order of the nonseasonal autoregressive polynomial. The order can be any nonnegative
integer; the default value is 0. In practice the order is a small integer such as 1, 2, or 3.

Q=integer
specifies the order of the nonseasonal moving average polynomial. The order can be any nonnegative
integer; the default value is 0. In practice the order is a small integer such as 1, 2, or 3.

S=integer
specifies the season length used during the specification of the seasonal autoregressive or seasonal
moving average polynomial. The season length can be any positive integer; for example, S=4 might be
an appropriate value for a quarterly series. The default value is S=1.

SAR=ˆ1 ˆ2 . . .ˆP
lists the starting values of the coefficients of the seasonal autoregressive polynomial

ˆ.Bs/ D 1 �ˆ1B
s
� � � � �ˆPB

sP

where the order P is specified in the SP= option and the season length s is specified in the S= option.
The coefficients ˆi must define a stationary autoregressive polynomial.
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SMA=‚1 ‚2 . . .‚Q
lists the starting values of the coefficients of the seasonal moving average polynomial

‚.Bs/ D 1 �‚1B
s
� � � � �‚QB

sQ

where the order Q is specified in the SQ= option and the season length s is specified in the S= option.
The coefficients ‚i must define an invertible moving average polynomial.

SP=integer
specifies the order of the seasonal autoregressive polynomial. The order can be any nonnegative integer;
the default value is 0. In practice the order is a small integer such as 1 or 2.

SQ=integer
specifies the order of the seasonal moving average polynomial. The order can be any nonnegative
integer; the default value is 0. In practice the order is a small integer such as 1 or 2.

LEVEL Statement
LEVEL < options > ;

The LEVEL statement is used to include a level component in the model. The level component, either by
itself or together with a slope component (see the SLOPE statement), forms the trend component, �t , of
the model. If the slope component is absent, the resulting trend is a random walk (RW) specified by the
following equations:

�t D �t�1 C �t ; �t � iid N.0; �2� /

If the slope component is present, signified by the presence of a SLOPE statement, a locally linear trend
(LLT) is obtained. The equations of LLT are as follows:

�t D �t�1 C ˇt�1 C �t ; �t � iid N.0; �2� /

ˇt D ˇt�1 C �t ; �t � iid N.0; �2� /

In either case, the options in the LEVEL statement are used to specify the value of �2� and to request forecasts
of �t . The SLOPE statement is used for similar purposes in the case of slope ˇt . The following examples
illustrate the use of the LEVEL statement. Assuming that a SLOPE statement is not added subsequently, a
simple random walk trend is specified by the following statement:

level;

The following statements specify a locally linear trend with value of �2� fixed at 4. It also requests printing of
filtered values of �t . The value of �2

�
, the disturbance variance in the slope equation, is estimated from the

data.

level variance=4 noest print=filter;
slope;
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CHECKBREAK
turns on the checking of breaks in the level component.

NOEST
fixes the value of �2� to the value specified in the VARIANCE= option.

PLOT=FILTER
PLOT=SMOOTH
PLOT=( < FILTER > < SMOOTH > )

requests plotting of the filtered or smoothed estimate of the level component.

PRINT=FILTER
PRINT=SMOOTH
PRINT=( < FILTER > < SMOOTH > )

requests printing of the filtered or smoothed estimate of the level component.

VARIANCE=value
specifies an initial value for �2� , the disturbance variance in the �t equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.

MODEL Statement
MODEL dependent < = regressors > ;

The MODEL statement specifies the response variable and, optionally, the predictor or regressor variables for
the UCM model. This is a required statement in the UCM procedure. The predictors specified in the MODEL
statement are assumed to have a linear and time-invariant relationship with the response. The predictors that
have time-varying regression coefficients are specified separately in the RANDOMREG statement. Similarly,
the predictors that have a nonlinear effect on the response variable are specified separately in the SPLINEREG
statement. Only one MODEL statement can be specified.

NLOPTIONS Statement
NLOPTIONS < options > ;

PROC UCM uses the nonlinear optimization (NLO) subsystem to perform the nonlinear optimization of the
likelihood function during the estimation of model parameters. You can use the NLOPTIONS statement
to control different aspects of this optimization process. For most problems the default settings of the
optimization process are adequate. However, in some cases it might be useful to change the optimization
technique or to change the maximum number of iterations. This can be done by using the TECH= and
MAXITER= options in the NLOPTIONS statement as follows:

nloptions tech=dbldog maxiter=200;

This sets the maximum number of iterations to 200 and changes the optimization technique to DBLDOG
rather than the default technique, TRUREG, used in PROC UCM. A discussion of the full range of options
that can be used with the NLOPTIONS statement is given in Chapter 7, “Nonlinear Optimization Methods.”
In PROC UCM, all these options are available except the options related to the printing of the optimization
history. In this version of PROC UCM all the printed output from the NLO subsystem is suppressed.
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OUTLIER Statement
OUTLIER < options > ;

The OUTLIER statement enables you to control the reporting of the additive outliers (AO) and level shifts
(LS) in the response series. The AOs are searched by default. You can turn on the search for LSs by using the
CHECKBREAK option in the LEVEL statement.

ALPHA=significance-level
specifies the significance level for reporting the outliers. The default is 0.05.

MAXNUM=number
limits the number of outliers to search. The default is MAXNUM=5.

MAXPCT=number
is similar to the MAXNUM= option. In the MAXPCT= option you can limit the number of outliers to
search for according to a percentage of the series length. The default is MAXPCT=1. When both of
these options are specified, the minimum of the two search numbers is used.

PRINT=SHORT | DETAIL
enables you to control the printed output of the outlier search. The PRINT=SHORT option, which
is the default, produces an outlier summary table containing the most significant outliers, either AO
or LS, discovered in the outlier search. The PRINT=DETAIL option produces, in addition to the
outlier summary table, separate tables containing the AO and LS structural break chi-square statistics
computed at each time point in the estimation span.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for distributed and multithreaded computing
and passes variables that describe the distributed computing environment. In the UCM procedure, this
statement is applicable only if you specify the BOOTSTRAP option in the FORECAST statement. In
addition, the number of nodes that you specify in the NODES= option in the PERFORMANCE statement
must be strictly smaller than the number of bootstrap replications that you specify in the BOOTSTRAP
option. The following statements illustrate how you can use this statement to perform bootstrap computations
that use 10 nodes on a grid named hpa.sas.com:

proc ucm data=seriesG;
id date interval=month;
model logair;
irregular;
level;
forecast lead=24 bootstrap(nrep=50 seed=1234);
performance nodes=10 host="hpa.sas.com";

run;

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement”
(Chapter 2, SAS/ETS User’s Guide: High-Performance Procedures).

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=etshpug&docsetTarget=titlepage.htm
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RANDOMREG Statement
RANDOMREG regressors < / options > ;

The RANDOMREG statement is used to specify regressors with time-varying regression coefficients. Each
regression coefficient—for example, ˇt—is assumed to evolve as a random walk:

ˇt D ˇt�1 C �t ; �t � iid N.0; �2/

Of course, if the random walk disturbance variance �2 is zero, then the regression coefficient is not time
varying, and it reduces to the standard regression setting. There can be multiple RANDOMREG statements,
and each statement can contain one or more regressors. The regressors in a given RANDOMREG statement
form a group that is assumed to share the same disturbance variance parameter. The random walks associated
with different regressors are assumed to be independent. For an example of using this statement see
Example 42.4. For additional information about the way parameter estimates are reported for this type of
regressors, see the section “Reporting Parameter Estimates for Random Regressors” on page 2905.

NOEST
fixes the value of �2 to the value specified in the VARIANCE= option.

PLOT=FILTER
PLOT=SMOOTH
PLOT=( < FILTER > < SMOOTH > )

requests plotting of filtered or smoothed estimate of the time-varying regression coefficient.

PRINT=FILTER
PRINT=SMOOTH
PRINT=( < FILTER > < SMOOTH > )

requests printing of the filtered or smoothed estimate of the time-varying regression coefficient.

VARIANCE=value
specifies an initial value for �2 during the parameter estimation process. Any nonnegative value,
including zero, is an acceptable starting value.

SEASON Statement
SEASON LENGTH=integer < options > ;

The SEASON or SEASONAL statement is used to specify a seasonal component, t , in the model. A
seasonal component can be one of the two types, DUMMY or TRIG. A DUMMY seasonal with season
length s satisfies the following stochastic equation:

s�1X
iD0

t�i D !t ; !t � iid N.0; �2!/

The equations for a TRIG (short for trigonometric) seasonal component are as follows

t D

Œs=2�X
jD1

j;t
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where Œs=2� equals s=2 if s is even and .s � 1/=2 if it is odd. The sinusoids, also called harmonics, j;t have
frequencies �j D 2�j=s and are specified by the matrix equation�

j;t
�j;t

�
D

�
cos�j sin�j
� sin�j cos�j

� �
j;t�1
�j;t�1

�
C

�
!j;t
!�j;t

�
where the disturbances !j;t and !�j;t are assumed to be independent and, for fixed j, !j;t and !�j;t � N.0; �

2
!/.

If s is even, then the equation for �
s=2;t

is not needed and s=2;t is given by

s=2;t D �s=2;t�1 C !s=2;t

In the TRIG seasonal case, the option KEEPH= or DROPH= can be used to obtain subset trigonometric
seasonals that contain only a subset of the full set of harmonics j;t , j D 1; 2; : : : ; Œs=2�. This is particularly
useful when the season length s is large and the seasonal pattern is relatively smooth.

Note that whether the seasonal type is DUMMY or TRIG, there is only one parameter, the disturbance
variance �2! , in the seasonal model.

There can be more than one seasonal component in the model, necessarily with different season lengths if the
seasons are full. You can have multiple subset season components with the same season length, if you need
to use separate disturbance variances for different sets of harmonics. Each seasonal component is specified
using a separate SEASON statement. A model with multiple seasonal components can easily become quite
complex and might need a large amount of data and computing resources for its estimation and forecasting.
The examples that follow illustrate the use of SEASON statement.

The following statement specifies a DUMMY type (default) seasonal component with a season length of four,
corresponding to the quarterly seasonality. The disturbance variance �2! is estimated from the data.

season length=4;

The following statement specifies a trigonometric seasonal with monthly seasonality. It also provides a
starting value for �2! .

season length=12 type=trig variance=4;

DROPHARMONICS | DROPH=number-list | n TO m BY p
enables you to drop some harmonics j;t from the full set of harmonics used to obtain a trigonometric
seasonal. The drop list can include any integer between 1 and Œs=2�, s being the season length. For
example, the following specification results in a specification of a trigonometric seasonal with a season
length 12 that consists of only the first four harmonics j;t , j D 1; 2; 3; 4:

season length=12 type=trig DROPH=5 6;

The last two high-frequency harmonics are dropped. The DROPH= option cannot be used with the
KEEPH= option.

KEEPHARMONICS | KEEPH=number-list | n TO m BY p
enables you to keep only the harmonics j;t listed in the option to obtain a trigonometric seasonal. The
keep list can include any integer between 1 and Œs=2�, s being the season length. For example, the
following specification results in a specification of a trigonometric seasonal with a season length of 12
that consists of all six harmonics j;t , j D 1; : : : ; 6:
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season length=12 type=trig KEEPH=1 to 3;
season length=12 type=trig KEEPH=4 to 6;

However, these six harmonics are grouped into two groups, each having its own disturbance variance
parameter. The DROPH= option cannot be used with the KEEPH= option.

LENGTH=integer
specifies the season length, s. This is a required option in this statement. The season length can be any
integer greater than or equal to 2. Typical examples of season lengths are 12, corresponding to the
monthly seasonality, or 4, corresponding to the quarterly seasonality.

NOEST
fixes the value of the disturbance variance parameter to the value specified in the VARIANCE= option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=F_ANNUAL

PLOT=S_ANNUAL

PLOT=( <plot-request> . . . <plot-request> )
requests plots of the season component. When you specify only one plot-request , you can omit the
parentheses around it. You can use the FILTER and SMOOTH options to plot the filtered and smoothed
estimates of the season component t . You can use the F_ANNUAL and S_ANNUAL options to
get the plots of “annual” variation in the filtered and smoothed estimates of t . The annual plots are
useful to see the change in the contribution of a particular month over the span of years. Here “month”
and “year” are generic terms that change appropriately with the interval type being used to label the
observations and the season length. For example, for monthly data with a season length of 12, the
usual meaning applies, while for daily data with a season length of 7, the days of the week serve as
months and the weeks serve as years.

PRINT=HARMONICS
requests printing of the summary of harmonics present in the seasonal component. This option is valid
only for the trigonometric seasonal component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=( < print-request > . . . < print-request > )
requests printing of the filtered or smoothed estimate of the seasonal component t .

TYPE=DUMMY | TRIG
specifies the type of the seasonal component. The default type is DUMMY.

VARIANCE=value
specifies an initial value for the disturbance variance, �2! , in the t equation at the start of the parameter
estimation process. Any nonnegative value, including zero, is an acceptable starting value.
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SLOPE Statement
SLOPE < options > ;

The SLOPE statement is used to include a slope component in the model. The slope component cannot be
used without the level component (see the LEVEL statement). The level and slope specifications jointly
define the trend component of the model. A SLOPE statement without the accompanying LEVEL statement
is ignored. The equations of the trend, defined jointly by the level �t and slope ˇt , are as follows:

�t D �t�1 C ˇt�1 C �t ; �t � iid N.0; �2� /

ˇt D ˇt�1 C �t ; �t � iid N.0; �2� /

The SLOPE statement is used to specify the value of the disturbance variance, �2
�

, in the slope equation, and
to request forecasts of ˇt . The following examples illustrate this statement:

level;
slope;

The preceding statements fit a model with a locally linear trend. The disturbance variances �2� and �2
�

are
estimated from the data. You can request a locally linear trend with fixed slope by using the following
statements:

level;
slope variance=0 noest;

NOEST
fixes the value of the disturbance variance, �2

�
, to the value specified in the VARIANCE= option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plotting of the filtered or smoothed estimate of the slope component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests printing of the filtered or smoothed estimate of the slope component ˇt .

VARIANCE=value
specifies an initial value for the disturbance variance, �2

�
, in the ˇt equation at the start of the parameter

estimation process. Any nonnegative value, including zero, is an acceptable starting value.
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SPLINEREG Statement
SPLINEREG regressor < options > ;

The SPLINEREG statement is used to specify a regressor that has a nonlinear relationship with the dependent
series that can be approximated by a given B-spline. If the specified spline has degree d and is based on
n internal knots, then it is known that it can be written as a linear combination of .nC d C 1/ regressors
that are derived from the original regressor. The span of these .n C d C 1/ derived regressors includes
constant; therefore, to avoid multicollinearity with the level component, one of these regressors is dropped.
Specifying the SPLINEREG statement is equivalent to specifying a RANDOMREG statement with these
derived regressors. There can be multiple SPLINEREG statements. You must specify at least one interior
knot, either using the NKNOTS= option or the KNOTS= option. For more information about splines,
see Chapter 126, “The TRANSREG Procedure” (SAS/STAT User’s Guide). For an example of using this
statement, see Example 42.6. For additional information about the way parameter estimates are reported
for this type of regressors, see the section “Reporting Parameter Estimates for Random Regressors” on
page 2905.

DEGREE=integer
specifies the degree of the spline. It can be any integer larger than or equal to zero. The default value
is 3. The polynomial degree should be a small integer, usually 0, 1, 2, or 3. Larger values are rarely
useful. If you have any doubt as to what degree to specify, use the default.

KNOTS=number-list | n TO m BY p
specifies the interior knots or break points. The values in the knot list must be nondecreasing and must
lie between the minimum and the maximum of the spline regressor values in the input data set. The
first time you specify a value in the knot list, it indicates a discontinuity in the nth (from DEGREE=n)
derivative of the transformation function at the value of the knot. The second mention of a value
indicates a discontinuity in the .n � 1/th derivative of the transformation function at the value of the
knot. Knots can be repeated any number of times for decreasing smoothness at the break points, but
the values in the knot list can never decrease.

You cannot use the KNOTS= option with the NKNOTS= option. You should keep the number of knots
small.

NKNOTS=m
creates m knots, the first at the 100=.mC 1/ percentile, the second at the 200=.mC 1/ percentile, and
so on. Knots are always placed at data values; there is no interpolation. For example, if NKNOTS=3,
knots are placed at the 25th percentile, the median, and the 75th percentile. The value specified for the
NKNOTS= option must be � 1. You cannot use the NKNOTS=option with the KNOTS= option.

NOTE: Specifying knots by using the NKNOTS= option can result in different sets of knots in the
estimation and forecast stages if the distributions of regressor values in the estimation and forecast
spans differ. The estimation span is based on the BACK= and SKIPFIRST= options in the ESTIMATE
statement, and the forecast span is based on the BACK= and SKIPFIRST= options in the FORECAST
statement.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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NOEST
fixes the value of the regression coefficient random walk disturbance variance to the value specified in
the VARIANCE= option.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plotting of filtered or smoothed estimate of the time-varying regression coefficient.

PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests printing of filtered or smoothed estimate of the time-varying regression coefficient.

VARIANCE=value
specifies an initial value for the regression coefficient random walk disturbance variance during the
parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

SPLINESEASON Statement
SPLINESEASON LENGTH=integer KNOTS=integer1 integer2 . . . < options > ;

The SPLINESEASON statement is used to specify a seasonal pattern that is to be approximated by a given
B-spline. If the specified spline has degree d and is based on n internal knots, then it can be written as
a linear combination of .n C d/ regressors that are derived from the seasonal dummy regressors. The
SPLINESEASON specification is equivalent to specifying a RANDOMREG specification with these derived
regressors. Such approximation is useful only if the season length is relatively large, at least larger than
.nCd/. For additional information about splines, see Chapter 126, “The TRANSREG Procedure” (SAS/STAT
User’s Guide). For an example of using this statement, see Example 42.3.

DEGREE=integer
specifies the degree of the spline. It can be any integer greater than or equal to zero. The default value
is 3.

KNOTS=integer1 integer2 . . .
lists the internal knots. This list of values must be a nondecreasing sequence of integers within the
range of 2 to .s � 1/, where s is the season length specified in the LENGTH= option. This is a required
option in this statement.

LENGTH=integer
specifies the season length, s. This is a required option in this statement. The length can be any integer
greater than or equal to three.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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NOEST
fixes the value of the regression coefficient random walk disturbance variance to the value specified in
the VARIANCE= option.

OFFSET=integer
specifies the position of the first measurement within the season, if the first measurement is not at the
start of the season. The OFFSET= value must be between one and the season length. The default value
is one. The first measurement refers to the start of the estimation span and the forecast span. If these
spans differ, their starting measurements must be separated by an integer multiple of the season length.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plots of the season component. When you specify only one plot request, you can omit the
parentheses around the plot request. You can use the FILTER and SMOOTH options to plot the filtered
and smoothed estimates of the season component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests the printing of the filtered or smoothed estimate of the spline season component.

RKNOTS=(knot, . . . , knot ) . . . (knot, . . . , knot )
specifies a grouping of knots such that the knots within the same group have identical seasonal values.
The knots specified in this option must already be present in the list specified by the KNOTS= option.
The knot groups must be non-overlapping and without any repeated knots.

VARIANCE=value
specifies an initial value for the regression coefficient random walk disturbance variance during the
parameter estimation process. Any nonnegative value, including zero, is an acceptable starting value.

TF Statement (Experimental)
TF regressor < options > ;

The TF statement specifies a regressor that has a transfer-function relationship with the dependent series.
A transfer function is useful for capturing the contributions from lagged values of the regressor. Box and
Jenkins (1976) popularized ARIMA models that have transfer-function inputs. In the UCM procedure, you
can specify a transfer function of the following type (assuming the regression variable is x):

.0 C 1B
l1 C 2B

l2 C � � � /Bd

.1 � ı1B � ı2B2 � � � � � ımBm/.1 � !1Bs � !2B2s � � � � � !nBns/
xt

This transfer function is specified by using the ratio of polynomials in the backshift operator B. The
numerator polynomial orders (l1; l2; � � � ) are positive integers, possibly with gaps (for example, 1, 3). The
numerator term Bd signifies the delay of order d. The denominator polynomial can have two factors:
a nonseasonal factor, .1 � ı1B � ı2B2 � � � � � ımBm/, and a seasonal factor whose season length is s,
.1 � !1B

s � !2B
2s � � � � � !nB

ns/. The orders of the terms in the denominator factors cannot have gaps;
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that is, if 5 is the maximum order of the nonseasonal factor, then all terms of orders 1 through 5 are present.
By design, the denominator factors are restricted to be stable polynomials (their roots are strictly larger than
1 in absolute value). As an example, consider the following transfer function specification:

.0 C 1B
1 C 2B

2/B3

.1 � ı1B � ı2B2/.1 � !1B4/
xt

You can specify this transfer function as follows:

tf x num=(1 2) den=2 sden=1 s=4 delay=3;

Since the numerator polynomial orders do not have any gaps, the following simpler specification is also
available:

tf x num=2 den=2 sden=1 s=4 delay=3;

Because the denominator factors do not permit gaps in their orders, only the maximum orders need to be
provided in their specification.

A state space representation of a transfer-function relationship is described in the section “State Space Form
of a Transfer Function Relationship” on page 2905. You can specify multiple TF statements, each one with
a separate regressor. A regressor that is specified in any transfer function specification must not appear
in any other regression specifications, such as in the right-hand side of the MODEL statement or in the
RANDOMREG and SPLINEREG statements.

NOTE: The mathematical form of the transfer function considered by PROC UCM is similar to the one
considered in the ARIMA procedure (Chapter 8, “The ARIMA Procedure”). However, there are some
differences:

� The sign convention of the coefficients of the nonzero-order terms in the numerator polynomial in the
UCM procedure is opposite to that of the ARIMA procedure.

� The ARIMA procedure permits multiple polynomial factors in both the numerator and the denominator.
The UCM procedure permits only one numerator factor and at most two denominator factors.

� The ARIMA procedure permits full control over the terms present in each of the polynomial factors.
The UCM procedure does not permit such fine control over the terms in the polynomials.

� In the UCM procedure, you cannot fix the coefficients of the numerator polynomial. They are always
estimated from the data.

� In the UCM procedure, if both nonseasonal and seasonal factors are present in the denominator, you
must specify starting values for their coefficients either for both factors or for neither.

You can specify the following options in the TF statement:

DELAY=integer
specifies the delay order, which must be a positive integer. By default, DELAY= 0.
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DEN=integer
specifies the maximum order of the nonseasonal factor of the denominator polynomial. By default,
DEN=0.

DENVAL=val1 val2 . . .
specifies the starting values of the coefficients of the nonseasonal factor of the denominator polynomial.
The number of values supplied in the DENVAL= option must match the value of the DEN= option.
Moreover, the resulting polynomial must be stable.

NOEST
fixes the values of the denominator polynomial coefficients to those specified in the DENVAL= and
SDENVAL= specifications.

NUM=argument
specifies the positive orders of the terms in the numerator polynomial. You can specify the argument
in either of the following forms:

integer includes all orders from 1 to integer .

(lag1, lag2, . . . ) specifies a more general list of orders.

PLOT=FILTER

PLOT=SMOOTH

PLOT=( < FILTER > < SMOOTH > )
requests plots of the transfer-function component. When you specify only one plot request, you can
omit the parentheses around the plot request. You can use the FILTER and SMOOTH options to plot
the filtered and smoothed estimates of the transfer-function component.

PRINT=FILTER

PRINT=SMOOTH

PRINT=( < FILTER > < SMOOTH > )
requests the printing of the filtered or smoothed estimate of the transfer-function component. When
you specify only one print request, you can omit the parentheses around the print request. You can use
the FILTER and SMOOTH options to print the filtered and smoothed estimates of the transfer-function
component.

S=integer
specifies the season length that is used in the specification of the seasonal factor of the denominator
polynomial. The season length can be any positive integer; for example, S=4 might be an appropriate
value for a quarterly series. By default, S=1.

SDEN=integer
specifies the maximum order of the seasonal factor of the denominator polynomial. By default,
SDEN=0.
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SDENVAL=val1 val2 . . .
specifies the starting values of the coefficients of the seasonal factor of the denominator polynomial.
The number of values supplied in this option must match the value of the SDEN= option. Moreover,
the resulting polynomial must be stable.

TFSTART=value
specifies the value of the transfer function at the start of the sample (the first time ID). By default, the
value of this option is a missing value that is estimated from the data. This option is often used when
the past values of the transfer function can be inferred because of the structure of the problem or when
it is useful to set these values (usually to 0) to achieve identifiability of the overall model. For more
information, see the section “State Space Form of a Transfer Function Relationship” on page 2905.
See Example 42.10 for an example of the use of this option.

Details: UCM Procedure

An Introduction to Unobserved Component Models
A UCM decomposes the response series into components such as trend, seasons, cycles, and the regression
effects due to predictor series. The following model shows a possible scenario:

yt D �t C t C  t C

mX
jD1

ˇjxjt C �t

�t � iid N.0; �2� /

The terms �t ; t , and  t represent the trend, seasonal, and cyclical components, respectively. In fact the
model can contain multiple seasons and cycles, and the seasons can be of different types. For simplicity
of discussion the preceding model contains only one of each of these components. The regression term,Pm
jD1 ˇjxjt , includes contribution of regression variables with fixed regression coefficients. A model can

also contain regression variables that have time-varying regression coefficients or that have a nonlinear or a
transfer-function relationship with the dependent series (see “Incorporating Predictors of Different Types” on
page 2904). The disturbance term �t , also called the irregular component, is usually assumed to be Gaussian
white noise. In some cases it is useful to model the irregular component as a stationary ARMA process. For
additional information, see the section “Modeling the Irregular Component” on page 2895.

By controlling the presence or absence of various terms and by choosing the proper flavor of the included
terms, the UCMs can generate a rich variety of time series patterns. A UCM can be applied to variables after
transforming them by transforms such as log and difference.

The components �t ; t , and  t model structurally different aspects of the time series. For example, the
trend �t models the natural tendency of the series in the absence of any other perturbing effects such as
seasonality, cyclical components, and the effects of exogenous variables, while the seasonal component
t models the correction to the level due to the seasonal effects. These components are assumed to be
statistically independent of each other and independent of the irregular component. All of the component
models can be thought of as stochastic generalizations of the relevant deterministic patterns in time. This
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way the deterministic cases emerge as special cases of the stochastic models. The different models available
for these unobserved components are discussed next.

Modeling the Trend

As mentioned earlier, the trend in a series can be loosely defined as the natural tendency of the series in the
absence of any other perturbing effects. The UCM procedure offers two ways to model the trend component
�t . The first model, called the random walk (RW) model, implies that the trend remains roughly constant
throughout the life of the series without any persistent upward or downward drift. In the second model the
trend is modeled as a locally linear time trend (LLT). The RW model can be described as

�t D �t�1 C �t ; �t � iid N.0; �2� /

Note that if �2� D 0, then the model becomes �t D constant . In the LLT model the trend is locally linear,
consisting of both the level and slope. The LLT model is

�t D �t�1 C ˇt�1 C �t ; �t � iid N.0; �2� /

ˇt D ˇt�1 C �t ; �t � iid N.0; �2� /

The disturbances �t and �t are assumed to be independent. There are some interesting special cases of this
model obtained by setting one or both of the disturbance variances �2� and �2

�
equal to zero. If �2

�
is set

equal to zero, then you get a linear trend model with fixed slope. If �2� is set to zero, then the resulting
model usually has a smoother trend. If both the variances are set to zero, then the resulting model is the
deterministic linear time trend: �t D �0 C ˇ0t .

You can incorporate these trend patterns in your model by using the LEVEL and SLOPE statements.

Modeling a Cycle

A deterministic cycle  t with frequency �, 0 < � < � , can be written as

 t D ˛ cos.�t/C ˇ sin.�t/

If the argument t is measured on a continuous scale, then  t is a periodic function with period 2�=�,
amplitude  D .˛2 C ˇ2/1=2, and phase � D tan�1.ˇ=˛/. Equivalently, the cycle can be written in terms
of the amplitude and phase as

 t D  cos.�t � �/

Note that when  t is measured only at the integer values, it is not exactly periodic, unless � D .2�j /=k for
some integers j and k. The cycles in their pure form are not used very often in practice. However, they are
very useful as building blocks for more complex periodic patterns. It is well known that the periodic pattern
of any complexity can be written as a sum of pure cycles of different frequencies and amplitudes. In time
series situations it is useful to generalize this simple cyclical pattern to a stochastic cycle that has a fixed
expected period but time-varying amplitude and phase. The stochastic cycle considered here is motivated by
the following recursive formula for computing  t ,�

 t
 �t

�
D

�
cos� sin�
� sin� cos�

� �
 t�1
 �t�1

�
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starting with  0 D ˛ and  �0 D ˇ. Note that  t and  �t satisfy the relation

 2t C  
�2
t D ˛

2
C ˇ2 for all t

A stochastic generalization of the cycle  t can be obtained by adding random noise to this recursion and by
introducing a damping factor, �, for additional modeling flexibility. This model can be described as follows,�

 t
 �t

�
D �

�
cos� sin�
� sin� cos�

� �
 t�1
 �t�1

�
C

�
�t
��t

�
where 0 � � � 1, and the disturbances �t and ��t are independentN.0; �2� / variables. The resulting stochastic
cycle has a fixed expected period but time-varying amplitude and phase. The stationarity properties of the
random sequence  t depend on the damping factor �. If � < 1,  t has a stationary distribution with mean
zero and variance �2� =.1 � �

2/. If � D 1,  t is nonstationary.

You can incorporate a cycle in a UCM by specifying a CYCLE statement. You can include multiple cycles in
the model by using separate CYCLE statements for each included cycle.

As mentioned before, the cycles are very useful as building blocks for constructing more complex periodic
patterns. Periodic patterns of almost any complexity can be created by superimposing cycles of different
periods and amplitudes. In particular, the seasonal patterns, general periodic patterns with integer periods, can
be constructed as sums of cycles. This important topic of modeling the seasonal components is considered
next.

Modeling Seasons

Seasonal fluctuations are a common source of variation in time series data. These fluctuations arise because of
the regular changes in seasons or some other periodic events. The seasonal effects are regarded as corrections
to the general trend of the series due to the seasonal variations, and these effects sum to zero when summed
over the full season cycle. Therefore the seasonal component t is modeled as a stochastic periodic pattern of
an integer period s such that the sum

Ps�1
iD0 t�i is always zero in the mean. The period s is called the season

length. Two different models for the seasonal component are considered here. The first model is called the
dummy variable form of the seasonal component. It is described by the equation

s�1X
iD0

t�i D !t ; !t � iid N.0; �2!/

The other model is called the trigonometric form of the seasonal component. In this case t is modeled as a
sum of cycles of different frequencies. This model is given by

t D

Œs=2�X
jD1

j;t

where Œs=2� equals s=2 if s is even and .s � 1/=2 if it is odd. The cycles j;t have frequencies �j D 2�j=s
and are specified by the matrix equation�

j;t
�j;t

�
D

�
cos�j sin�j
� sin�j cos�j

� �
j;t�1
�j;t�1

�
C

�
!j;t
!�j;t

�
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where the disturbances !j;t and !�j;t are assumed to be independent and, for fixed j, !j;t and !�j;t � N.0; �
2
!/.

If s is even, then the equation for �
s=2;t

is not needed and s=2;t is given by

s=2;t D �s=2;t�1 C !s=2;t

The cycles j;t are called harmonics. If the seasonal component is deterministic, the decomposition of the
seasonal effects into these harmonics is identical to its Fourier decomposition. In this case the sum of squares
of the seasonal factors equals the sum of squares of the amplitudes of these harmonics. In many practical
situations, the contribution of the high-frequency harmonics is negligible and can be ignored, giving rise
to a simpler description of the seasonal. In the case of stochastic seasonals, the situation might not be so
transparent; however, similar considerations still apply. Note that if the disturbance variance �2! D 0, then
both the dummy and the trigonometric forms of seasonal components reduce to constant seasonal effects.
That is, the seasonal component reduces to a deterministic function that is completely determined by its first
s � 1 values.

In the UCM procedure you can specify a seasonal component in a variety of ways, the SEASON statement
being the simplest of these. The dummy and the trigonometric seasonal components discussed so far can be
considered as saturated seasonal components that put no restrictions on the s � 1 seasonal values. In some
cases a more parsimonious representation of the seasonal might be more appropriate. This is particularly
useful for seasonal components with large season lengths. In the UCM procedure you can obtain parsimonious
representations of the seasonal components by one of the following ways:

� Use a subset trigonometric seasonal component obtained by deleting a few of the Œs=2� harmonics used
in its sum. For example, a slightly smoother seasonal component of length 12, corresponding to the
monthly seasonality, can be obtained by deleting the highest-frequency harmonic of period 2. That is,
such a seasonal component will be a sum of five stochastic cycles that have periods 12, 6, 4, 3, and 2.4.
You can specify such subset seasonal components by using the KEEPH= or DROPH= option in the
SEASON statement.

� Approximate the seasonal pattern by a suitable spline approximation. You can do this by using the
SPLINESEASON statement.

� A block-seasonal pattern is a seasonal pattern where the pattern is divided into a few blocks of equal
length such that the season values within a block are the same—for example, a monthly seasonal
pattern that has only four different values, one for each quarter. In some situations a long seasonal
pattern can be approximated by the sum of block season and a simple season, the length of the simple
season being equal to the block length of the block season. You can obtain such approximation by
using a combination of BLOCKSEASON and SEASON statements.

� Consider a seasonal component of a large season length as a sum of two or more seasonal components
that are each of much smaller season lengths. This can be done by specifying more than one SEASON
statements.

Note that the preceding techniques of obtaining parsimonious seasonal components can also enable you
to specify seasonal components that are more general than the simple saturated seasonal components. For
example, you can specify a saturated trigonometric seasonal component that has some of its harmonics
evolving according to one disturbance variance parameter while the others evolve with another disturbance
variance parameter.
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Modeling an Autoregression

An autoregression of order one can be thought of as a special case of a cycle when the frequency � is either 0
or � . Modeling this special case separately helps interpretation and parameter estimation. The autoregression
component rt is modeled as

rt D �rt�1 C �t ; �t � iid N.0; �2� /

where �1 � � < 1. An autoregression can also provide an alternative to the IRREGULAR component when
the model errors show some autocorrelation. You can incorporate an autoregression in your model by using
the AUTOREG statement.

Modeling Regression Effects

A predictor variable can affect the response variable in a variety of ways. The UCM procedure enables you
to model several different types of predictor-response relationships:

� The predictor-response relationship is linear, and the regression coefficient does not change with time.
This is the simplest kind of relationship and such predictors are specified in the MODEL statement.

� The predictor-response relationship is linear, but the regression coefficient does change with time.
Such predictors are specified in the RANDOMREG statement. Here the regression coefficient is
assumed to evolve as a random walk.

� The predictor-response relationship is nonlinear and the relationship can change with time. This
type of relationship can be approximated by an appropriate time-varying spline. Such predictors are
specified in the SPLINEREG statement.

� The response depends on contemporaneous and lagged values of the predictor. This type of relationship
is called transfer-function relationship, which can be specified in the TF statement.

A response variable can depend on its own past values—that is, lagged dependent values. Such a relationship
can be specified in the DEPLAG statement.

Modeling the Irregular Component

The components—such as trend, seasonal and regression effects, and nonstationary cycles—are used to
capture the structural dynamics of a response series. In contrast, the stationary cycles and the autoregression
are used to capture the transient aspects of the response series that are important for its short-range prediction
but have little impact on its long-term forecasts. The irregular component represents the residual variation
remaining in the response series that is modeled using an appropriate selection of structural and transient
effects. In most cases, the irregular component can be assumed to be simply Gaussian white noise. In some
other cases, however, the residual variation can be more complicated. In such situations, it might be necessary
to model the irregular component as a stationary ARMA process. Moreover, you can use the ARMA
irregular component together with the dependent lag specification (see the DEPLAG statement) to specify an
ARIMA(p,d,q)�(P,D,Q)s model for the response series. For an explanation of the ARIMA notation, see the
IRREGULAR statement. For an example of modeling a series by using an ARIMA(0,1,1)�(0,1,1)12 model,
see Example 42.8.
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The Model Parameters

The parameter vector in a UCM consists of the variances of the disturbance terms of the unobserved compo-
nents, the damping coefficients and frequencies in the cycles, the damping coefficient in the autoregression,
and the regression coefficients in the regression terms. These parameters are estimated by maximizing the
likelihood. It is possible to restrict the values of the model parameters to user-specified values.

Model Specification

A UCM is specified by describing the components in the model. For example, consider the model

yt D �t C t C �t

consisting of the irregular, level, slope, and seasonal components. This model is called the basic structural
model (BSM) by Harvey (1989). The syntax for a BSM with monthly seasonality of trigonometric type is as
follows:

model y;
irregular;
level;
slope;
season length=12 type=trig;

Similarly, the following syntax specifies a BSM with a response variable y, a regressor x, and dummy-type
monthly seasonality:

model y = x;
irregular;
level;
slope variance=0 noest;
season length=12 type=dummy;

Moreover, the disturbance variance of the slope component is restricted to zero, giving rise to a local linear
trend with fixed slope.

A model can contain multiple cycle and seasonal components. In such cases the model syntax contains a
separate statement for each of these multiple cycle or seasonal components; for example, the syntax for a
model containing irregular and level components along with two cycle components could be as follows:

model y = x;
irregular;
level;
cycle;
cycle;
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The UCMs as State Space Models
The UCMs considered in PROC UCM are special cases of more general models, called (linear) state space
models (SSM). The section “State Space Model and Notation” on page 2438 in Chapter 34, “The SSM
Procedure,” provides an elaborate notation for such models. However, for most of the UCMs considered
in PROC UCM, much simpler notation suffices. This section describes a treatment of UCMs in terms of
this simplified notation. At times the description and mathematical treatment (such as the expressions of
likelihood) of state space models in PROC UCM and PROC SSM can appear different. However, these
differences are only notational and the underlying mathematical quantities coincide. For example, the diffuse
Kalman filter (DKF) described in this section is called the exact initial Kalman filter whereas the DKF
described in the section “Filtering, Smoothing, Likelihood, and Structural Break Detection” on page 2446 in
Chapter 34, “The SSM Procedure,” is called the augmented Kalman filter. Both of these algorithms produce
the same final output (see Durbin and Koopman (2012, chap. 5) for more information).

An SSM can be described as follows:

yt D Zt˛t

˛tC1 D Tt˛t C �tC1; �t � N.0;Qt /

˛1 � N.0; P /

The first equation, called the observation equation, relates the response series yt to a state vector ˛t that
is usually unobserved. The second equation, called the state equation, describes the evolution of the state
vector in time. The system matrices Zt and Tt are of appropriate dimensions and are known, except possibly
for some unknown elements that become part of the parameter vector of the model. The noise series �t
consists of independent, zero-mean, Gaussian vectors with covariance matrices Qt . For most of the UCMs
considered here, the system matrices Zt and Tt , and the noise covariances Qt , are time invariant—that is,
they do not depend on time. In a few cases, however, some or all of them can depend on time. The initial
state vector ˛1 is assumed to be independent of the noise series, and its covariance matrix P can be partially
diffuse. A random vector has a partially diffuse covariance matrix if it can be partitioned such that one part
of the vector has a properly defined probability distribution, while the covariance matrix of the other part is
infinite—that is, you have no prior information about this part of the vector. The covariance of the initial
state ˛1 is assumed to have the form

P D P� C �P1

where P� and P1 are nonnegative definite, symmetric matrices and � is a constant that is assumed to be
close to1. In the case of UCMs considered here, P1 is always a diagonal matrix that consists of zeros and
ones, and, if a particular diagonal element of P1 is one, then the corresponding row and column in P� are
zero.

The state space formulation of a UCM has many computational advantages. In this formulation there are
convenient algorithms for estimating and forecasting the unobserved states f˛tg by using the observed series
fytg. These algorithms also yield the in-sample and out-of-sample forecasts and the likelihood of fytg.
The state space representation of a UCM does not need to be unique. In the representation used here, the
unobserved components in the UCM often appear as elements of the state vector. This makes the elements
of the state interpretable and, more important, the sample estimates and forecasts of these unobserved
components are easily obtained. For additional information about the computational aspects of the state
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space modeling, see Durbin and Koopman (2012). Next, some notation is developed to describe the essential
quantities computed during the analysis of the state space models.

Let fyt ; t D 1; : : : ; ng be the observed sample from a series that satisfies a state space model. Next, for
1 � t � n, let the one-step-ahead forecasts of the series, the states, and their variances be defined as follows,
using the usual notation to denote the conditional expectation and conditional variance:

Ǫ t D E.˛t jy1; y2; : : : ; yt�1/

�t D Var.˛t jy1; y2; : : : ; yt�1/

Oyt D E.yt jy1; y2; : : : ; yt�1/

Ft D Var.yt jy1; y2; : : : ; yt�1/

These are also called the filtered estimates of the series and the states. Similarly, for t � 1, let the following
denote the full-sample estimates of the series and the state values at time t:

Q̨ t D E.˛t jy1; y2; : : : ; yn/

�t D Var.˛t jy1; y2; : : : ; yn/

Qyt D E.yt jy1; y2; : : : ; yn/

Gt D Var.yt jy1; y2; : : : ; yn/

If the time t is in the historical period—that is, if 1 � t � n—then the full-sample estimates are called
the smoothed estimates, and if t lies in the future then they are called out-of-sample forecasts. Note that if
1 � t � n, then Qyt D yt and Gt D 0, unless yt is missing.

All the filtered and smoothed estimates ( Ǫ t ; Q̨ t ; : : : ; Gt , and so on) are computed by using the Kalman
filtering and smoothing (KFS) algorithm, which is an iterative process. If the initial state is diffuse, as is
often the case for the UCMs, its treatment requires modification of the traditional KFS, which is called the
diffuse KFS (DKFS). The details of DKFS implemented in the UCM procedure can be found in De Jong
and Chu-Chun-Lin (2003). Additional information on the state space models can be found in Durbin and
Koopman (2012). The likelihood formulas described in this section are taken from the latter reference.

In the case of diffuse initial condition, the effect of the improper prior distribution of ˛1 manifests itself in the
first few filtering iterations. During these initial filtering iterations the distribution of the filtered quantities
remains diffuse; that is, during these iterations the one-step-ahead series and state forecast variances Ft and
�t have the following form:

Ft D F�t C �F1t

�t D ��t C ��1t

The actual number of iterations—for example, I—affected by this improper prior depends on the nature
of the vectors Zt , the number of nonzero diagonal elements of P1, and the pattern of missing values in
the dependent series. After I iterations, �1t and F1t become zero and the one-step-ahead series and state
forecasts have proper distributions. These first I iterations constitute the initialization phase of the DKFS
algorithm. The post-initialization phase of the DKFS and the traditional KFS is the same. In the state space
modeling literature the pre-initialization and post-initialization phases are some times called pre-collapse and
post-collapse phases of the diffuse Kalman filtering. In certain missing value patterns it is possible for I to
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exceed the sample size; that is, the sample information can be insufficient to create a proper prior for the
filtering process. In these cases, parameter estimation and forecasting is done on the basis of this improper
prior, and some or all of the series and component forecasts can have infinite variances (or zero precision).
The forecasts that have infinite variance are set to missing. The same situation can occur if the specified
model contains components that are essentially multicollinear. In these situations no residual analysis is
possible; in particular, no residuals-based goodness-of-fit statistics are produced.

The log likelihood of the sample (L1), which takes account of this diffuse initialization step, is computed by
using the one-step-ahead series forecasts as follows,

L1.y1; : : : ; yn/ D �
.n � d/

2
log 2� �

1

2

IX
tD1

wt �
1

2

nX
tDIC1

.logFt C
�2t
Ft
/

where d is the number of diffuse elements in the initial state ˛1, �t D yt � Zt Ǫ t are the one-step-ahead
residuals, and

wt D logF1t if F1t > 0

D logF�t C
�2t
F�t

if F1t D 0

If yt is missing at some time t, then the corresponding summand in the log likelihood expression is deleted,
and the constant term is adjusted suitably. Moreover, if the initialization step does not complete—that is, if I
exceeds the sample size—then the value of d is reduced to the number of diffuse states that are successfully
initialized.

The portion of the log likelihood that corresponds to the post-initialization period is called the nondiffuse log
likelihood (L0). The nondiffuse log likelihood is given by

L0.y1; : : : ; yn/ D �
1

2

nX
tDIC1

.logFt C
�2t
Ft
/

In the case of UCMs considered in PROC UCM, it often happens that the diffuse part of the likelihood,PI
tD1wt , does not depend on the model parameters, and in these cases the maximization of nondiffuse and

diffuse likelihoods is equivalent. However, in some cases, such as when the model consists of dependent lags,
the diffuse part does depend on the model parameters. In these cases the maximization of the diffuse and
nondiffuse likelihood can produce different parameter estimates.

In some situations it is convenient to reparameterize the nondiffuse initial state covariance P� as �2P� and
the state noise covariance Qt as �2Qt for some common scalar parameter �2. In this case the preceding
log-likelihood expression, up to a constant, can be written as

L1.y1; : : : ; yn/ D �
1

2

IX
tD1

wt �
1

2

nX
tDIC1

logFt �
1

2�2

nX
tDIC1

�2t
Ft
�
.n � d/

2
log �2

Solving analytically for the optimum, the maximum likelihood estimate of �2 can be shown to be

O�2 D
1

.n � d/

nX
tDIC1

�2t
Ft
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When this expression of �2 is substituted back into the likelihood formula, an expression called the profile
likelihood (Lprofile) of the data is obtained:

�2Lprofile.y1; : : : ; yn/ D

IX
tD1

wt C

nX
tDIC1

logFt C .n � d/ log.
nX

tDIC1

�2t
Ft
/

In some situations the parameter estimation is done by optimizing the profile likelihood (see the section
“Parameter Estimation by Profile Likelihood Optimization” on page 2909 and the PROFILE option in the
ESTIMATE statement).

A new experimental feature in this release enables you to request that parameter estimation be based on an
alternate form of the likelihood, called the marginal likelihood (Lm.Y; ���/). You can switch to the marginal-
likelihood-based parameter estimation by specifying LIKE=MARGINAL in the ESTIMATE statement. This
alternate likelihood and two additional likelihoods are described in the section “Likelihood Computation
and Model-Fitting Phase” on page 2447 in Chapter 34, “The SSM Procedure.” The diffuse likelihood,
L1, described in this section is equivalent to the diffuse likelihood, Ld .Y; ���/, described in that section.
However, do not confuse the profile likelihood, Lprofile, described in this section with the profile likelihood,
Lp.Y; ���/, described in that section. The profiling in Lp.Y; ���/ refers to the profiling of the diffuse effects,
whereas the profiling in Lprofile refers to the profiling of a common scalar parameter �2. For each of the
three likelihoods—diffuse, marginal and profile—that are described in that section, it is possible to profile
out (also called concentrate out) a common scalar parameter �2 and obtain expressions similar to the Lprofile
likelihood that is described in this section. In fact, when you request that parameter estimation be based on
the marginal likelihood by specifying LIKE=MARGINAL in the ESTIMATE statement, the profile version of
marginal likelihood (Lm.Y; ���/) is used if the PROFILE option is in effect (by default or when the PROFILE
option is specified). The discussion in the section “Parameter Estimation by Profile Likelihood Optimization”
on page 2909 also applies to marginal likelihood. As explained in the section “Likelihood Computation and
Model-Fitting Phase” on page 2447 in Chapter 34, “The SSM Procedure,” the estimates that are based on
marginal likelihood and the estimates that are based on diffuse likelihood coincide in many cases. In PROC
UCM, estimates that are based on marginal likelihood and diffuse likelihood will differ only if at least one of
the following conditions holds:

� The DEPLAG statement is present and the NOEST option is not specified.

� In a TF statement, at least one denominator factor is present and the NOEST option is not specified.

� In a CYCLE statement, RHO is fixed at 1 and the period is to be estimated—that is, RHO=1 and
NOEST=RHO or NOEST=(RHO VARIANCE).

Whenever you specify LIKE=MARGINAL in the ESTIMATE statement, the FitSummary table that displays
the likelihood-based fit statistics includes fit statistics and information criteria that are based on the marginal
likelihood in addition to fit statistics that are based on diffuse likelihood.

In the remainder of this section, the state space formulation of UCMs is further explained by using some
particular UCMs as examples. The examples show that the state space formulation of the UCMs depends
on the components in the model in a simple fashion; for example, the system matrix T is usually a block
diagonal matrix with blocks that correspond to the components in the model. The only exception to this
pattern is the UCMs that consist of the lags of dependent variable. This case is considered at the end of the
section.

In what follows, Diag Œa; b; : : : � denotes a diagonal matrix with diagonal entries Œa; b; : : : �, and the transpose
of a matrix T is denoted as T

0

.
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Locally Linear Trend Model

Recall that the dynamics of the locally linear trend model are

yt D �t C �t

�t D �t�1 C ˇt�1 C �t

ˇt D ˇt�1 C �t

Here yt is the response series and �t ; �t ; and �t are independent, zero-mean Gaussian disturbance sequences
with variances �2� ; �

2
� , and �2

�
, respectively. This model can be formulated as a state space model where

the state vector ˛t D Œ �t �t ˇt �
0

and the state noise �t D Œ �t �t �t �
0

. Note that the elements of the state
vector are precisely the unobserved components in the model. The system matrices T and Z and the noise
covariance Q corresponding to this choice of state and state noise vectors can be seen to be time invariant and
are given by

Z D Œ 1 1 0 � ; T D

24 0 0 0

0 1 1

0 0 1

35 and Q D Diag
h
�2� ; �

2
� ; �

2
�

i

The distribution of the initial state vector ˛1 is diffuse, with P� D Diag
�
�2� ; 0; 0

�
and P1 D Diag Œ0; 1; 1�.

The parameter vector � consists of all the disturbance variances—that is, � D .�2� ; �
2
� ; �

2
�
/.

Basic Structural Model

The basic structural model (BSM) is obtained by adding a seasonal component, t , to the local level model.
In order to economize on the space, the state space formulation of a BSM with a relatively short season
length, season length = 4 (quarterly seasonality), is considered here. The pattern for longer season lengths
such as 12 (monthly) and 52 (weekly) is easy to see.

Let us first consider the dummy form of seasonality. In this case the state and state noise vectors are
˛t D

�
�t �t ˇt 1;t 2;t 3;t

�0
and �t D Œ �t �t �t !t 0 0 �

0

, respectively. The first three elements of the
state vector are the irregular, level, and slope components, respectively. The remaining elements, i;t , are
lagged versions of the seasonal component t . 1;t corresponds to lag zero—that is, the same as t , 2;t to
lag 1 and 3;t to lag 2. The system matrices are

Z D Œ 1 1 0 1 0 0 � ; T D

26666664

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 �1 �1 �1

0 0 0 1 0 0

0 0 0 0 1 0

37777775
and Q D Diag

h
�2� ; �

2
� ; �

2
�
; �2! ; 0; 0

i
. The distribution of the initial state vector ˛1 is diffuse, with P� D

Diag
�
�2� ; 0; 0; 0; 0; 0

�
and P1 D Diag Œ0; 1; 1; 1; 1; 1�.

In the case of the trigonometric type of seasonality, ˛t D
h
�t �t ˇt 1;t 

�
1;t 2;t

i0
and �t Dh

�t �t �t !1;t !
�
1;t !2;t

i0
. The disturbance sequences, !j;t ; 1 � j � 2, and !�1;t , are independent, zero-
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mean, Gaussian sequences with variance �2! . The system matrices are

Z D Œ 1 1 0 1 0 1 � ; T D

26666664

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 cos�1 sin�1 0

0 0 0 � sin�1 cos�1 0

0 0 0 0 0 cos�2

37777775
and Q D Diag

h
�2� ; �

2
� ; �

2
�
; �2! ; �

2
! ; �

2
!

i
. Here �j D .2�j /=4. The distribution of the initial state vector ˛1

is diffuse, with P� D Diag
�
�2� ; 0; 0; 0; 0; 0

�
and P1 D Diag Œ0; 1; 1; 1; 1; 1�. The parameter vector in both

the cases is � D .�2� ; �
2
� ; �

2
�
; �2!/.

Seasons with Blocked Seasonal Values

Block seasonals are special seasonal components that impose a special block structure on the seasonal effects.
Let us consider a BSM with monthly seasonality that has a quarterly block structure—that is, months within
the same quarter are assumed to have identical effects except for some random perturbation. Such a seasonal
component is a block seasonal with block size m equal to 3 and the number of blocks k equal to 4. The state
space structure for such a model with dummy-type seasonality is as follows: The state and state noise vectors
are ˛t D

�
�t �t ˇt 1;t 2;t 3;t

�0
and �t D Œ �t �t �t !t 0 0 �

0

, respectively. The first three elements of
the state vector are the irregular, level, and slope components, respectively. The remaining elements, i;t , are
lagged versions of the seasonal component t . 1;t corresponds to lag zero—that is, the same as t , 2;t to
lag m and 3;t to lag 2m. All the system matrices are time invariant, except the matrix T. They can be seen to

be Z D Œ 1 1 0 1 0 0 �, Q D Diag
h
�2� ; �

2
� ; �

2
�
; �2! ; 0; 0

i
, and

Tt D

26666664

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 �1 �1 �1

0 0 0 1 0 0

0 0 0 0 1 0

37777775
when t is a multiple of the block size m, and

Tt D

26666664

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777775
otherwise. Note that when t is not a multiple of m, the portion of the Tt matrix corresponding to the seasonal
is identity. The distribution of the initial state vector ˛1 is diffuse, with P� D Diag

�
�2� ; 0; 0; 0; 0; 0

�
and

P1 D Diag Œ0; 1; 1; 1; 1; 1�.

Similarly, in the case of the trigonometric form of seasonality, ˛t D
h
�t �t ˇt 1;t 

�
1;t 2;t

i0
and �t Dh

�t �t �t !1;t !
�
1;t !2;t

i0
. The disturbance sequences, !j;t ; 1 � j � 2, and !�1;t , are independent, zero-

mean, Gaussian sequences with variance �2! . Z D Œ 1 1 0 1 0 1 �, Q D Diag
h
�2� ; �

2
� ; �

2
�
; �2! ; �

2
! ; �

2
!

i
,
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and

Tt D

26666664

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 cos�1 sin�1 0

0 0 0 � sin�1 cos�1 0

0 0 0 0 0 cos�2

37777775
when t is a multiple of the block size m, and

Tt D

26666664

0 0 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777775
otherwise. As before, when t is not a multiple of m, the portion of the Tt matrix corresponding to the
seasonal is identity. Here �j D .2�j /=4. The distribution of the initial state vector ˛1 is diffuse, with
P� D Diag

�
�2� ; 0; 0; 0; 0; 0

�
and P1 D Diag Œ0; 1; 1; 1; 1; 1�. The parameter vector in both the cases is

� D .�2� ; �
2
� ; �

2
�
; �2!/.

Cycles and Autoregression

The preceding examples have illustrated how to build a state space model corresponding to a UCM that
includes components such as irregular, trend, and seasonal. There you can see that the state vector and the
system matrices have a simple block structure with blocks corresponding to the components in the model.
Therefore, here only a simple model consisting of a single cycle and an irregular component is considered.
The state space form for more complex UCMs consisting of multiple cycles and other components can be
easily deduced from this example.

Recall that a stochastic cycle  t with frequency �, 0 < � < � , and damping coefficient � can be modeled as�
 t
 �t

�
D �

�
cos� sin�
� sin� cos�

� �
 t�1
 �t�1

�
C

�
�t
��t

�
where �t and ��t are independent, zero-mean, Gaussian disturbances with variance �2� . In what follows, a
state space form for a model consisting of such a stochastic cycle and an irregular component is given.

The state vector ˛t D
�
�t  t  

�
t

�0
, and the state noise vector �t D

�
�t �t �

�
t

�0
. The system matrices are

Z D Œ 1 1 0 � T D

24 0 0 0

0 � cos� � sin�
0 �� sin� � cos�

35 Q D Diag
�
�2� ; �

2
� ; �

2
�

�
The distribution of the initial state vector ˛1 is proper, with P� D Diag

h
�2� ; �

2
 ; �

2
 

i
, where �2 D

�2� .1 � �
2/�1. The parameter vector � D .�2� ; �; �; �

2
� /.

An autoregression rt can be considered as a special case of cycle with frequency � equal to 0 or � . In this
case the equation for  �t is not needed. Therefore, for a UCM consisting of an autoregressive component and
an irregular component, the state space model simplifies to the following form.
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The state vector ˛t D Œ �t rt �
0

, and the state noise vector �t D Œ �t �t �
0

. The system matrices are

Z D Œ 1 1 � ; T D

�
0 0

0 �

�
and Q D Diag

�
�2� ; �

2
�

�
The distribution of the initial state vector ˛1 is proper, with P� D Diag

�
�2� ; �

2
r

�
, where �2r D �

2
� .1� �

2/�1.
The parameter vector � D .�2� ; �; �

2
� /.

Incorporating Predictors of Different Types

In the UCM procedure, you can incorporate predictors in a UCM in a variety of ways: you can specify simple
time-invariant linear predictors in the MODEL statement, you can specify predictors that have time-varying
coefficients in the RANDOMREG statement, and you can specify predictors that have a nonlinear relationship
with the response variable in the SPLINEREG statement. You can also specify a transfer-function relationship
by using the TF statement. As with earlier examples, the first part of this section uses a simple special
case to show how to obtain a state space form of a UCM that consists of a variety of predictors (except the
transfer-function relationship). The state space form that is associated with a transfer-function relationship is
described in the section “State Space Form of a Transfer Function Relationship” on page 2905.

Consider a random walk trend model that has predictors x; u1; u2, and v. Assume that x is a simple regressor
that is specified in the MODEL statement, u1 and u2 are random regressors with time-varying regression
coefficients that are specified in the same RANDOMREG statement, and v is a nonlinear regressor that is
specified in a SPLINEREG statement. Further assume that the spline that is associated with v has degree
one and is based on two internal knots. As explained in the section “SPLINEREG Statement” on page 2886,
using v is equivalent to using .n knotsC degree/ D .2C 1/ D 3 derived (random) regressors: for example,
s1; s2; s3. There are .1C 2C 3/ D 6 regressors in all, the first one being a simple regressor and the others
being time-varying coefficient regressors. The time-varying regressors are in two groups: the first group
consists of u1 and u2, and the other group consists of s1; s2, and s3. The dynamics of this model are as
follows:

yt D �t C ˇxt C �1tu1t C �2tu2t C

3X
iD1

itsit C �t

�t D �t�1 C �t

�1t D �1.t�1/ C �1t

�2t D �2.t�1/ C �2t

1t D 1.t�1/ C �1t

2t D 2.t�1/ C �2t

3t D 3.t�1/ C �3t

All the disturbances �t ; �t ; �1t ; �2t ; �1t ; �2t ; and �3t are independent, zero-mean, Gaussian variables, where
�1t ; �2t share a common variance parameter �2

�
and �1t ; �2t ; �3t share a common variance �2

�
. These

dynamics can be captured in the state space form by taking state ˛t D Œ �t �t ˇ �1t �2t 1t 2t 3t �
0

, state
disturbance �t D Œ �t �t 0 �1t �2t �1t �2t �3t �

0

, and the system matrices

Zt D Œ 1 1 xt u1t u2t s1t s2t s3t �

T D Diag Œ0; 1; 1; 1; 1; 1; 1; 1�

Q D Diag
h
�2� ; �

2
� ; 0; �

2
� ; �

2
� ; �

2
� ; �

2
� ; �

2
�

i
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Note that the regression coefficients are elements of the state vector and that the system vector Zt is not
time-invariant. The distribution of the initial state vector ˛1 is diffuse, with P� D Diag

�
�2� ; 0; 0; 0; 0; 0; 0; 0

�
and P1 D Diag Œ0; 1; 1; 1; 1; 1; 1; 1�. The parameters of this model are the disturbance variances, �2� , �2� ;
�2
�
; and �2

�
, which are estimated by maximizing the likelihood. The regression coefficients, time-invariant ˇ,

and time-varying �1t ; �2t ; 1t ; 2t and 3t are implicitly estimated during the state estimation (smoothing).

State Space Form of a Transfer Function Relationship
This section illustrates the state space form of a simple transfer-function relationship. The state space form
of more complicated transfer-function relationships can be deduced using the same logic. Suppose that a
predictor x enters the model for a response variable y as

yt D ft C �t

ft D
.0 C 1B/

.1 � ı1B � ı2B2/
xt

where ft is the transfer-function component and �t is a sequence of independent, zero-mean, Gaussian
variables. In this description, the transfer-function component is described using the backward shift operator
B. Alternatively, it can be described as follows:

ft D ı1ft�1 C ı2ft�2 C 0xt C 1xt�1

This model can be easily put in a state space form by taking state ˛̨̨ t D .�t ft ft�1 0 1/
0

, state disturbance
���t D .�t 0 0 0 0/

0

, the system matrices Z D Œ1 1 0 0 0�, Q D DiagŒ�2� 0 0 0 0�, and

Tt D

266664
0 0 0 0 0

0 ı1 ı2 xtC1 xt
0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

377775
The initial state ˛̨̨1 is partially diffuse. The precise form of the initial state depends on the value of the
TFSTART= option in the TF statement. If the TFSTART option is not specified, all elements of ˛̨̨1 except for
the first element (�1) are treated as diffuse. On the other hand, if a value is specified in the TFSTART= option,
the initial transfer function values (f1 and f0) in ˛̨̨1 are fixed at that specified value. In this formulation of
the model, the numerator coefficients of the transfer-function relationship (0 and 1) are part of the state.
They are implicitly estimated during the state estimation (smoothing). On the other hand, the denominator
coefficients (ı1 and ı2) and the noise variance (�2� ) are estimated by maximizing the likelihood.

Reporting Parameter Estimates for Random Regressors
If the random walk disturbance variance that is associated with a random regressor is held fixed at 0, then
its coefficient is no longer time-varying. In the UCM procedure, the random regressor parameter estimates
are reported differently if the random walk disturbance variance that is associated with a random regressor
is held fixed at 0. The following points explain how the parameter estimates are reported in the parameter
estimates table and in the OUTEST= data set:

� If the random walk disturbance variance that is associated with a random regressor is not held fixed,
then its estimate is reported in the parameter estimates table and in the OUTEST= data set.
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� If more that one random regressor is specified in a RANDOMREG statement, then the first regressor
in the list is used as a representative of the list when the corresponding common variance parameter
estimate is reported.

� If the random walk disturbance variance is held fixed at 0, then the parameter estimates table and the
OUTEST= data set contain the corresponding regression parameter estimate rather than the variance
parameter estimate.

� Similar considerations apply in the case of the derived random regressors that are associated with a
spline regressor.

Forecasting with Predictor Variables
If regression effects are included in the model (in a MODEL statement or in one or more of the RAN-
DOMREG, SPLINEREG, and TF statements) and the FORECAST statement is used to compute multistep
forecasts, then future values of the predictor variables must be included in the DATA= data set for the
forecast horizon that is defined by the BACK= and LEAD= options in the FORECAST statement. For more
information about how the forecast horizon is defined, see the FORECAST statement.

ARMA Irregular Component

The state space form for the irregular component that follows an ARMA(p,q)�(P,Q)s model is described
in this section. The notation for ARMA models is explained in the IRREGULAR statement. A number of
alternate state space forms are possible in this case; the one given here is based on Jones (1980). With slight
abuse of notation, let p D p C sP denote the effective autoregressive order and q D q C sQ denote the
effective moving average order of the model. Similarly, let � be the effective autoregressive polynomial
and � be the effective moving average polynomial in the backshift operator with coefficients �1; : : : ; �p
and �1; : : : ; �q , obtained by multiplying the respective nonseasonal and seasonal factors. Then, a random
sequence �t that follows an ARMA(p,q)�(P,Q)s model with a white noise sequence at has a state space form
with state vector of size m D max.p; q C 1/. The system matrices, which are time invariant, are as follows:
Z D Œ1 0 : : : 0�. The state transition matrix T, in a blocked form, is given by

T D

�
0 Im�1

�m : : : �1

�
where �i D 0 if i > p and Im�1 is an .m � 1/ dimensional identity matrix. The covariance of the
state disturbance matrix Q D �2  

0

where �2 is the variance of the white noise sequence at and the
vector  D Œ 0 : : :  m�1�

0

contains the first m values of the impulse response function—that is, the first m
coefficients in the expansion of the ratio �=�. Since �t is a stationary sequence, the initial state is nondiffuse
and P1 D 0. The description of P�, the covariance matrix of the initial state, is a little involved; the details
are given in Jones (1980).

Models with Dependent Lags

The state space form of a UCM consisting of the lags of the dependent variable is quite different from the
state space forms considered so far. Let us consider an example to illustrate this situation. Consider a model
that has random walk trend, two simple time-invariant regressors, and that also includes a few—for example,
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k—lags of the dependent variable. That is,

yt D

kX
iD1

�iyt�i C �t C ˇ1x1t C ˇ2x2t C �t

�t D �t�1 C �t

The state space form of this augmented model can be described in terms of the state space form of a model
that has random walk trend with two simple time-invariant regressors. A superscript dagger (�) has been
added to distinguish the augmented model state space entities from the corresponding entities of the state
space form of the random walk with predictors model. With this notation, the state vector of the augmented

model ˛�t D
h
˛
0

t yt yt�1 : : : yt�kC1

i0
and the new state noise vector ��t D

h
�
0

t ut 0 : : : 0
i0

, where ut is
the matrix product Zt�t . Note that the length of the new state vector is k C length.˛t / D k C 4. The new
system matrices, in block form, are

Z
�
t D Œ 0 0 0 0 1 : : : 0 � ; T

�
t D

24 Tt 0 : : : 0

ZtC1Tt �1 : : : �k
0 Ik�1;k�1 0

35
where Ik�1;k�1 is the k � 1 dimensional identity matrix and

Q
�
t D

24 Qt QtZ
0

t 0

ZtQt ZtQtZ
0

t 0

0 0 0

35
Note that the T and Q matrices of the random walk with predictors model are time invariant, and in the
expressions above their time indices are kept because they illustrate the pattern for more general models. The
initial state vector is diffuse, with

P
�
� D

�
P� 0

0 0

�
; P �1 D

�
P1 0

0 Ik;k

�
The parameters of this model are the disturbance variances �2� and �2� , the lag coefficients �1; �2; : : : ; �k ,
and the regression coefficients ˇ1 and ˇ2. As before, the regression coefficients get estimated during the
state smoothing, and the other parameters are estimated by maximizing the likelihood.

Outlier Detection
In time series analysis it is often useful to detect changes over time in the characteristics of the response
series. In the UCM procedure you can search for two types of changes, additive outliers (AO) and level
shifts (LS). An additive outlier is an unusual value in the series, the cause of which might be a data recording
error or a temporary shock to the series generation process. A level shift represents a permanent shift, either
up or down, in the level of the series. You can control different aspects of the outlier search, such as the
significance level of the reported outliers, by choosing different options in the OUTLIER statement. The
search for AOs is done by default, whereas the CHECKBREAK option in the LEVEL statement must be
used to turn on the search for LSs.

The outlier detection process implemented in the UCM procedure is based on De Jong and Penzer (1998). In
this approach the fitted model is taken to be the null model, and the series values and level shifts that are



2908 F Chapter 42: The UCM Procedure

not adequately accounted for by the null model are flagged as outliers. The unusualness of a response series
value at a particular time point t0, with respect to the fitted model, can be judged by estimating its value
based on the rest of the data (that is, the series obtained by deleting the series value at t0) and comparing
the estimated value to the observed value. If the difference between the estimated and observed values is
statistically significant, then such value can be regarded as an AO. Note that this difference between the
estimated and observed values is also the regression coefficient of a dummy regressor that takes the value 1.0
at t0 and is 0.0 elsewhere, assuming such a regressor is added to the null model. In this way the series value
at t0 is regarded as AO if the regression coefficient of this dummy regressor is significant. Similarly, you
can say that a level shift has occurred at a time point t0 if the regression coefficient of a regressor, which is
0.0 before t0 and 1.0 at t0 and thereafter, is statistically significant. De Jong and Penzer (1998) provide an
efficient way to compute such AO and LS regression coefficients and their standard errors at all time points
in the series. The outlier summary table, which is produced by default, simply lists the most statistically
significant candidates among these.

Missing Values
Embedded missing values in the dependent variable usually cause no problems in UCM modeling. However,
no missing values are allowed in the predictor variables. Certain patterns of missing values in the dependent
variable can lead to failure of the initialization step of the diffuse Kalman filtering for some models. For
example, if in a monthly series all values are missing for a certain month—such as May—then a BSM with
monthly seasonality leads to such a situation. However, in this case the initialization step can complete
successfully for a nonseasonal model such as local linear model.

Parameter Estimation
The parameter vector in a UCM consists of the variances of the disturbance terms of the unobserved compo-
nents, the damping coefficients and frequencies in the cycles, the damping coefficient in the autoregression,
the lag coefficients of the dependent lags, and the regression coefficients in the regression terms. The
regression coefficients are always part of the state vector and are estimated by state smoothing. The remaining
parameters are estimated by maximizing either the full diffuse likelihood or the nondiffuse likelihood. The
decision to use the full diffuse likelihood or the nondiffuse likelihood depends on the presence or absence
of the dependent lag coefficients in the parameter vector. If the parameter vector does not contain any
dependent lag coefficients, then the full diffuse likelihood is used. If, on the other hand, the parameter
vector does contain some dependent lag coefficients, then the parameters are estimated by maximizing the
nondiffuse likelihood. The optimization of the full diffuse likelihood is often unstable when the parameter
vector contains dependent lag coefficients. In this sense, when the parameter vector contains dependent lag
coefficients, the parameter estimates are not true maximum likelihood estimates.

The optimization of the likelihood, either full or nondiffuse, is carried out using one of several nonlinear
optimization algorithms. The user can control many aspects of the optimization process by using the NLOP-
TIONS statement and by providing the starting values of the parameters while specifying the corresponding
components. However, in most cases the default settings work quite well. The optimization process is
not guaranteed to converge to a maximum likelihood estimate. In most cases the difficulties in parameter
estimation are associated with the specification of a model that is not appropriate for the series being modeled.
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Parameter Estimation by Profile Likelihood Optimization

If a disturbance variance, such as the disturbance variance of the irregular component, is a part of the UCM
and is a free parameter, then it can be profiled out of the likelihood. This means solving analytically for its
optimum and plugging this expression back into the likelihood formula, giving rise to the so-called profile
likelihood. The expression of the profile likelihood and the MLE of the profiled variance are given earlier in
the section “The UCMs as State Space Models” on page 2897, where the computation of the likelihood of
the state space model is also discussed.

In some situations the optimization of the profile likelihood can be more efficient because the number of
parameters to optimize is reduced by one; however, for a variety of reasons such gains might not always
be observed. Moreover, in theory the estimates obtained by optimizing the profile likelihood and the usual
likelihood should be the same, but in practice this might not hold because of numerical rounding and other
conditions.

In the UCM procedure, by default the usual likelihood is optimized if any of the disturbance variance
parameters is held fixed to a nonzero value by using the NOEST option in the corresponding component
statement. In other cases the decision whether to optimize the profile likelihood or the usual likelihood
is based on several factors that are difficult to document. You can choose which likelihood to optimize
during parameter estimation by specifying the PROFILE option for the profile likelihood optimization or
the NOPROFILE option for the usual likelihood optimization. In the presence of the PROFILE option, the
disturbance variance to profile is checked in a specific order, so that if the irregular component disturbance
variance is free then it is always chosen. The situation in other cases is more complicated.

Profiling in the Presence of Fixed Variance Parameters
Note that when the parameter estimation is done by optimizing the profile likelihood, the interpretation of
the variance parameters that are held fixed to nonzero values changes. In the presence of the PROFILE
option, the disturbance variances that are held at a fixed value by using the NOEST option in their respective
component statements are interpreted as being restricted to be that fixed multiple of the profiled variance
rather than being fixed at that nominal value. That is, implicitly, the parameter estimation is done under
the restriction of holding the disturbance variance ratio fixed at a given value rather than the disturbance
variance itself. For an example of this type of restriction to obtain a UC model that is equivalent to the famous
Hodrick-Prescott filter, see Example 42.5.

t Values

The t values reported in the table of parameter estimates are approximations whose accuracy depends on
the validity of the model, the nature of the model, and the length of the observed series. The distributional
properties of the maximum likelihood estimates of general unobserved components models have not been
explored fully; therefore the probability values that correspond to a t distribution should be interpreted
carefully, as they can be misleading. This is particularly true if the parameters in question are close to
the boundary of the parameter space. The two sources by Harvey (1989, 2001) are good references for
information about this topic. For some parameters, such as the cycle period, the reported t values are
uninformative because comparison of the estimated parameter with zero is never needed. In such cases the t
values and the corresponding probability values should be ignored.
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Bootstrap Prediction Intervals (Experimental)
By default, the UCM procedure computes the standard errors of the series and component forecasts (both the
filtered and smoothed estimates) by assuming that the estimated parameters are in fact the true parameters.
Rodriguez and Ruiz (2010) describe a bootstrap-based procedure to compute the standard errors of the series
and component forecasts that takes into account the uncertainty of parameter estimation. As an experimental
feature in this release, you can request the computation of standard errors based on this bootstrap-based
procedure by specifying the BOOTSTRAP option in the FORECAST statement. Subsequently, the confidence
intervals for the series and component forecasts are based on these bootstrap standard errors. The algorithm
that PROC UCM uses closely follows the first procedure described in Section 3 of Rodriguez and Ruiz (2010).
Note that this bootstrap algorithm is computationally expensive. The computational burden increases with the
number of bootstrap replications and is comparable to the computational burden of fitting the specified model
as many times as the number of replications. Fortunately, these replications can be executed in parallel, and
the UCM procedure can use multiple cores and multiple grid nodes (if they are available) to complete these
calculations faster. For a single machine with multiple cores, the procedure automatically detects and uses all
the cores. If a grid environment with multiple machines is available (with the appropriate SAS license), you
must use the PERFORMANCE statement to supply the necessary information to the UCM procedure.

Computational Issues

Convergence Problems

As explained in the section “Parameter Estimation” on page 2908, the model parameters are estimated by
nonlinear optimization of the likelihood. This process is not guaranteed to succeed. For some data sets, the
optimization algorithm can fail to converge. Nonconvergence can result from a number of causes, including
flat or ridged likelihood surfaces and ill-conditioned data. It is also possible for the algorithm to converge to
a point that is not the global optimum of the likelihood.

If you experience convergence problems, the following points might be helpful:

� Data that are extremely large or extremely small can adversely affect results because of the internal
tolerances used during the filtering steps of the likelihood calculation. Rescaling the data can improve
stability.

� Examine your model for redundancies in the included components and regressors. If some of the
included components or regressors are nearly collinear to each other, then the optimization process can
become unstable.

� Experimenting with different options offered by the NLOPTIONS statement can help.

� Lack of convergence can indicate model misspecification or a violation of the normality assumption.
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Computer Resource Requirements

The computing resources required for the UCM procedure depend on several factors. The memory require-
ment for the procedure is largely dependent on the number of observations to be processed and the size of the
state vector underlying the specified model. If n denotes the sample size and m denotes the size of the state
vector, the memory requirement for the smoothing stage of the Kalman filter is of the order of 6� 8� n�m2

bytes, ignoring the lower-order terms. If the smoothed component estimates are not needed then the memory
requirement is of the order of 6� 8� .m2C n/ bytes. Besides m and n, the computing time for the parameter
estimation depends on the type of components included in the model. For example, the parameter estimation
is usually faster if the model parameter vector consists only of disturbance variances, because in this case
there is an efficient way to compute the likelihood gradient.

Displayed Output
The default printed output produced by the UCM procedure is described in the following list:

� brief information about the input data set, including the data set name and label, and the name of the
ID variable specified in the ID statement

� summary statistics for the data in the estimation and forecast spans, including the names of the variables
in the model, their categorization as dependent or predictor, the index of the beginning and ending
observations in the spans, the total number of observations and the number of missing observations,
the smallest and largest measurements, and the mean and standard deviation

� information about the model parameters at the start of the model-fitting stage, including the fixed
parameters in the model and the initial estimates of the free parameters in the model

� convergence status of the likelihood optimization process if any parameter estimation is done

� estimates of the free parameters at the end of the model fitting-stage, including the parameter estimates,
their approximate standard errors, t statistics, and the approximate p-value

� the likelihood-based goodness-of-fit statistics, including the full likelihood, the portion of the likelihood
corresponding to the diffuse initialization, the sum of squares of residuals normalized by their standard
errors, and the information criteria: AIC, AICC, HQIC, BIC, and CAIC

� the fit statistics that are based on the raw residuals (observed minus predicted), including the mean
squared error (MSE), the root mean squared error (RMSE), the mean absolute percentage error
(MAPE), the maximum percentage error (MAXPE), the R-square, the adjusted R-square, the random
walk R-square, and Amemiya’s R-square

� the significance analysis of the components included in the model that is based on the estimation span

� brief information about the components included in the model

� additive outliers in the series, if any are detected

� the multistep series forecasts

� post-sample-prediction analysis table that compares the multistep forecasts with the observed series
values, if the BACK= option is used in the FORECAST statement
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Statistical Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section provides information about the basic ODS statistical graphics produced by the UCM procedure.

You can obtain most plots relevant to the specified model by using the global PLOTS= option in the PROC
UCM statement. The plot of series forecasts in the forecast horizon is produced by default. You can further
control the production of individual plots by using the PLOT= options in the different statements.

The main types of plots available are as follows:

� Time series plots of the component estimates, either filtered or smoothed, can be requested by using
the PLOT= option in the respective component statements. For example, the use of PLOT=SMOOTH
option in a CYCLE statement produces a plot of smoothed estimate of that cycle.

� Residual plots for model diagnostics can be obtained by using the PLOT= option in the ESTIMATE
statement.

� Plots of series forecasts and model decompositions can be obtained by using the PLOT= option in the
FORECAST statement.

The following example is a simple illustration of the available plot options.

Analysis of Sunspot Data: Illustration of ODS Graphics

In this example a well-known series, Wolfer’s sunspot data (Anderson 1971), is considered. The data consist
of yearly sunspot numbers recorded from 1749 to 1924. These sunspot numbers are known to have a cyclical
pattern with a period of about eleven years. The following DATA step creates the input data set:

data sunspot;
input year wolfer @@;
year = mdy(1,1, year);
format year year4.;

datalines;
1749 809 1750 834 1751 477 1752 478 1753 307 1754 122 1755 96
1756 102 1757 324 1758 476 1759 540 1760 629 1761 859 1762 612
1763 451 1764 364 1765 209 1766 114 1767 378 1768 698 1769 1061

... more lines ...

The following statements specify a UCM that includes a cycle component and a random walk trend compo-
nent:

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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proc ucm data=sunspot;
id year interval=year;
model wolfer;
irregular;
level ;
cycle plot=(filter smooth);
estimate back=24 plot=(loess panel cusum wn);
forecast back=24 lead=24 plot=(forecasts decomp);

run;

The following subsections explain the graphics produced by the preceding statements.

Component Plots
The plots in Figure 42.8 and Figure 42.9, produced by specifying PLOT=(FILTER SMOOTH) in the CYCLE
statement, show the filtered and smoothed estimates, respectively, of the cycle component in the model.
Note that the smoothed estimate appears smoother than the filtered estimate. This is always true because
the filtered estimate of a component at time t is based on the observations prior to time t—that is, it uses
measurements from the first observation up to the .t �1/th observation. On the other hand, the corresponding
smoothed estimate uses all the available observations—that is, all the measurements from the first observation
to the last. This makes the smoothed estimate of the component more precise than the filtered estimate for
the time points within historical period. In the forecast horizon, both filtered and smoothed estimates are
identical, being based on the same set of observations.
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Figure 42.8 Sunspots Series: Filtered Cycle
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Figure 42.9 Sunspots Series: Smoothed Cycle

Residual Diagnostics
If the fitted model is appropriate for the given data, then the corresponding one-step-ahead residuals should
be approximately white—that is, uncorrelated—and approximately normal. Moreover, the residuals should
not display any discernible pattern. You can detect departures from these conditions graphically. Different
residual diagnostic plots can be requested by using the PLOT= option in the ESTIMATE statement.

The normality can be checked by examining the histogram and the normal quantile plot of residuals. The
whiteness can be checked by examining the ACF and PACF plots that show the sample autocorrelation and
sample partial-autocorrelation at different lags. The diagnostic panel shown in Figure 42.10, produced by
specifying PLOT=PANEL, contains these four plots.
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Figure 42.10 Sunspots Series: Residual Diagnostics

The residual histogram and Q-Q plot show no serious violation of normality. The histogram appears
reasonably symmetric and follows the overlaid normal density curve reasonably closely. Similarly, in the
Q-Q plot the residuals follow the reference line fairly closely. The ACF and PACF plots also do not exhibit
any violation of the whiteness assumption; the correlations at all nonzero lags seem to be insignificant.

The residual whiteness can also be formally tested by using the Ljung-Box portmanteau test. The plot in
Figure 42.11, produced by specifying PLOT=WN, shows the p-values of the Ljung-Box test statistics at
different lags. In these plots the p-values for the first few lags, equal to the number of estimated parameters in
the model, are not shown because they are always missing. This portion of the plot is shaded blue to indicate
this fact. In the case of this model, five parameters are estimated so the p-values for the first five lags are
not shown. The p-values are displayed on a log scale in such a way that higher bars imply more extreme
test statistics. In this plot some early p-values appear extreme. However, these p-values are based on large
sample theory, which suggests that these statistics should be examined for lags larger than the square root of
sample size. In this example it means that the p-values for the first

p
154 � 12 lags can be ignored. With

this consideration, the plot shows no violation of whiteness since the p-values after the 12th lag do not appear
extreme.
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Figure 42.11 Sunspots Series: Ljung-Box Portmanteau Test

The plot in Figure 42.12, produced by specifying PLOT=LOESS, shows the residuals plotted against time
with an overlaid loess curve. This plot is useful for checking whether any discernible pattern remains in the
residuals. Here again, no significant pattern appears to be present.
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Figure 42.12 Sunspots Series: Residual Loess Plot

The plot in Figure 42.13, produced by specifying PLOT=CUSUM, shows the cumulative residuals plotted
against time. This plot is useful for checking structural breaks. Here, there appears to be no evidence of
structural break since the cumulative residuals remain within the confidence band throughout the sample
period. Similarly, you can request a plot of the squared cumulative residuals by specifying PLOT=CUSUMSQ.
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Figure 42.13 Sunspots Series: CUSUM Plot

Brockwell and Davis (1991) can be consulted for additional information on diagnosing residuals. For more
information about CUSUM and CUSUMSQ plots, you can consult Harvey (1989).

Forecast and Series Decomposition Plots
You can use the PLOT= option in the FORECAST statement to obtain the series forecast plot and the
series decomposition plots. The series decomposition plots show the result of successively adding different
components in the model starting with the trend component. The IRREGULAR component is left out of this
process. The following two plots, produced by specifying PLOT=DECOMP, show the results of successive
component addition for this example. The first plot, shown in Figure 42.14, shows the smoothed trend
component and the second plot, shown in Figure 42.15, shows the sum of smoothed trend and cycle.
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Figure 42.14 Sunspots Series: Smoothed Trend
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Figure 42.15 Sunspots Series: Smoothed Trend plus Cycle

Finally, Figure 42.16 shows the forecast plot.
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Figure 42.16 Sunspots Series: Series Forecasts

ODS Table Names
The UCM procedure assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 42.2.

Table 42.2 ODS Tables Produced by PROC UCM

ODS Table Name Description Statement Option

Tables Summarizing the Estimation and Forecast Spans
EstimationSpan Estimation span summary

information
Default

ForecastSpan Forecast span summary
information

Default
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Table 42.2 continued

ODS Table Name Description Statement Option

Tables Related to Model Parameters
ConvergenceStatus Convergence status of the

estimation process
Default

FixedParameters Fixed parameters in the
model

Default

InitialParameters Initial estimates of the free
parameters

Default

ParameterEstimates Final estimates of the free
parameters

Default

Tables Related to Model Information and Diagnostics
BlockSeasonDescription Information about the block

seasonals in the model
Default

ComponentSignificance Significance analysis of the
components in the model

Default

CycleDescription Information about the cycles
in the model

Default

FitStatistics Fit statistics based on the
one-step-ahead predictions

Default

FitSummary Likelihood-based fit statistics Default
OutlierSummary Summary table of the

detected outliers
Default

AdditiveOutliers AO statistics computed at
each time point in the
estimation span

OUTLIER PRINT=DETAIL

LevelShifts LS statistics computed at
each time point in the
estimation span

OUTLIER PRINT=DETAIL

SeasonDescription Information about the
seasonals in the model

Default

SeasonHarmonics Summary of harmonics in a
trigonometric seasonal
component

SEASON PRINT=HARMONICS

SplineSeasonDescription Information about the
spline-seasonals in the model

Default

TrendInformation Summary information of the
level and slope components

Default

Tables Related to Filtered Component Estimates
FilteredAutoReg Filtered estimate of an

autoreg component
AUTOREG PRINT=FILTER

FilteredBlockSeason Filtered estimate of a block
seasonal component

BLOCKSEASON PRINT=FILTER
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Table 42.2 continued

ODS Table Name Description Statement Option

FilteredCycle Filtered estimate of a cycle
component

CYCLE PRINT=FILTER

FilteredIrregular Filtered estimate of the
irregular component

IRREGULAR PRINT=FILTER

FilteredLevel Filtered estimate of the level
component

LEVEL PRINT=FILTER

FilteredRandomReg Filtered estimate of the
time-varying
random-regression
coefficient

RANDOMREG PRINT=FILTER

FilteredSeason Filtered estimate of a
seasonal component

SEASON PRINT=FILTER

FilteredSlope Filtered estimate of the slope
component

SLOPE PRINT=FILTER

FilteredSplineReg Filtered estimate of the
time-varying
spline-regression coefficient

SPLINEREG PRINT=FILTER

FilteredSplineSeason Filtered estimate of a
spline-seasonal component

SPLINESEASON PRINT=FILTER

Tables Related to Smoothed Component Estimates
SmoothedAutoReg Smoothed estimate of an

autoreg component
AUTOREG PRINT=SMOOTH

SmoothedBlockSeason Smoothed estimate of a
block seasonal component

BLOCKSEASON PRINT=SMOOTH

SmoothedCycle Smoothed estimate of the
cycle component

CYCLE PRINT=SMOOTH

SmoothedIrregular Smoothed estimate of the
irregular component

IRREGULAR PRINT=SMOOTH

SmoothedLevel Smoothed estimate of the
level component

LEVEL PRINT=SMOOTH

SmoothedRandomReg Smoothed estimate of the
time-varying
random-regression
coefficient

RANDOMREG PRINT=SMOOTH

SmoothedSeason Smoothed estimate of a
seasonal component

SEASON PRINT=SMOOTH

SmoothedSlope Smoothed estimate of the
slope component

SLOPE PRINT=SMOOTH

SmoothedSplineReg Smoothed estimate of the
time-varying
spline-regression coefficient

SPLINEREG PRINT=SMOOTH

SmoothedSplineSeason Smoothed estimate of a
spline-seasonal component

SPLINESEASON PRINT=SMOOTH
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Table 42.2 continued

ODS Table Name Description Statement Option

Tables Related to Series Decomposition and Forecasting
FilteredAllExceptIrreg Filtered estimate of sum of

all components except the
irregular component

FORECAST PRINT=FDECOMP

FilteredTrend Filtered estimate of trend FORECAST PRINT= FDECOMP
FilteredTrendReg Filtered estimate of trend

plus regression
FORECAST PRINT=FDECOMP

FilteredTrendRegCyc Filtered estimate of trend
plus regression plus cycles
and autoreg

FORECAST PRINT=FDECOMP

Forecasts Dependent series forecasts Default
PostSamplePrediction Forecasting performance in

the holdout period
FORECAST BACK=

SmoothedAllExceptIrreg Smoothed estimate of sum of
all components except the
irregular component

FORECAST PRINT=DECOMP

SmoothedTrend Smoothed estimate of trend FORECAST PRINT= DECOMP
SmoothedTrendReg Smoothed estimate of trend

plus regression
FORECAST PRINT=DECOMP

SmoothedTrendRegCyc Smoothed estimate of trend
plus regression plus cycles
and autoreg

FORECAST PRINT=DECOMP

NOTE: The tables are related to a single series within a BY group. In the case of models that contain multiple
cycles, seasonal components, or block seasonal components, the corresponding component estimate tables
are sequentially numbered. For example, if a model contains two cycles and a seasonal component and the
PRINT=SMOOTH option is used for each of them, the ODS tables containing the smoothed estimates will
be named SmoothedCycle1, SmoothedCycle2, and SmoothedSeason. Note that the seasonal table is not
numbered because there is only one seasonal component. There are some exceptions to this numbering rule:
the tables, FilteredRandomReg, SmoothedRandomReg, FilteredSplineReg, and SmoothedSplineReg, are
always numbered starting with zero.
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ODS Graph Names
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC UCM generates are listed in Table 42.3, along with the required statements and options.

Table 42.3 ODS Graphics Produced by PROC UCM

ODS Graph Name Description Statement Option

Plots Related to Residual Analysis
ErrorACFPlot Prediction error

autocorrelation plot
ESTIMATE PLOT=ACF

ErrorPACFPlot Prediction error
partial-autocorrelation plot

ESTIMATE PLOT=PACF

ErrorHistogram Prediction error histogram ESTIMATE PLOT=NORMAL
ErrorQQPlot Prediction error normal

quantile plot
ESTIMATE PLOT=QQ

ErrorPlot Plot of prediction errors ESTIMATE PLOT=RESIDUAL
ErrorWhiteNoiseLogProbPlot Plot of p-values at different

lags for the Ljung-Box
portmanteau white noise test
statistics

ESTIMATE PLOT=WN

CUSUMPlot Plot of cumulative residuals ESTIMATE PLOT=CUSUM
CUSUMSQPlot Plot of cumulative squared

residuals
ESTIMATE PLOT=CUSUMSQ

ModelPlot Plot of one-step-ahead
forecasts in the estimation
span

ESTIMATE PLOT=MODEL

PanelResidualPlot Panel of residual diagnostic
plots

ESTIMATE PLOT=PANEL

ResidualLoessPlot Time series plot of residuals
with superimposed loess
smoother

ESTIMATE PLOT=LOESS

Plots Related to Filtered Component Estimates
FilteredAutoregPlot Plot of filtered autoreg

component
AUTOREG PLOT=FILTER

FilteredBlockSeasonPlot Plot of filtered block season
component

BLOCKSEASON PLOT=FILTER

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 42.3 continued

ODS Graph Name Description Statement Option

FilteredCyclePlot Plot of filtered cycle
component

CYCLE PLOT=FILTER

FilteredIrregularPlot Plot of filtered irregular
component

IRREGULAR PLOT=FILTER

FilteredLevelPlot Plot of filtered level
component

LEVEL PLOT=FILTER

FilteredRandomRegPlot Plot of filtered time-varying
regression coefficient

RANDOMREG PLOT=FILTER

FilteredSeasonPlot Plot of filtered season
component

SEASON PLOT=FILTER

FilteredSlopePlot Plot of filtered slope
component

SLOPE PLOT=FILTER

FilteredSplineRegPlot Plot of filtered time-varying
regression coefficient

SPLINEREG PLOT=FILTER

FilteredSplineSeasonPlot Plot of filtered spline-season
component

SPLINESEASON PLOT=FILTER

AnnualSeasonPlot Plot of annual variation in
the filtered season
component

SEASON PLOT=F_ANNUAL

Plots Related to Smoothed Component Estimates
SmoothedAutoregPlot Plot of smoothed autoreg

component
AUTOREG PLOT=SMOOTH

SmoothedBlockSeasonPlot Plot of smoothed block
season component

BLOCKSEASON PLOT=SMOOTH

SmoothedCyclePlot Plot of smoothed cycle
component

CYCLE PLOT=SMOOTH

SmoothedIrregularPlot Plot of smoothed irregular
component

IRREGULAR PLOT=SMOOTH

SmoothedLevelPlot Plot of smoothed level
component

LEVEL PLOT=SMOOTH

SmoothedRandomRegPlot Plot of smoothed
time-varying regression
coefficient

RANDOMREG PLOT=SMOOTH

SmoothedSeasonPlot Plot of smoothed season
component

SEASON PLOT=SMOOTH

SmoothedSlopePlot Plot of smoothed slope
component

SLOPE PLOT=SMOOTH

SmoothedSplineRegPlot Plot of smoothed
time-varying regression
coefficient

SPLINEREG PLOT=SMOOTH

SmoothedSplineSeasonPlot Plot of smoothed
spline-season component

SPLINESEASON PLOT=SMOOTH
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Table 42.3 continued

ODS Graph Name Description Statement Option

AnnualSeasonPlot Plot of annual variation in
the smoothed season
component

SEASON PLOT=S_ANNUAL

Plots Related to Series Decomposition and Forecasting
ForecastsOnlyPlot Series forecasts beyond the

historical period
FORECAST DEFAULT

ForecastsPlot One-step-ahead as well as
multistep-ahead forecasts

FORECAST PLOT=FORECASTS

FilteredAllExceptIrregPlot Plot of sum of all filtered
components except the
irregular component

FORECAST PLOT= FDECOMP

FilteredTrendPlot Plot of filtered trend FORECAST PLOT= FDECOMP
FilteredTrendRegCycPlot Plot of sum of filtered trend,

cycles, and regression effects
FORECAST PLOT= FDECOMP

FilteredTrendRegPlot Plot of filtered trend plus
regression effects

FORECAST PLOT= FDECOMP

SmoothedAllExceptIrregPlot Plot of sum of all smoothed
components except the
irregular component

FORECAST PLOT= DECOMP

SmoothedTrendPlot Plot of smoothed trend FORECAST PLOT= TREND
SmoothedTrendRegPlot Plot of smoothed trend plus

regression effects
FORECAST PLOT= DECOMP

SmoothedTrendRegCycPlot Plot of sum of smoothed
trend, cycles, and regression
effects

FORECAST PLOT= DECOMP

FilteredAllExceptIrregVarPlot Plot of standard error of sum
of all filtered components
except the irregular

FORECAST PLOT= FDECOMPVAR

FilteredTrendVarPlot Plot of standard error of
filtered trend

FORECAST PLOT= FDECOMPVAR

FilteredTrendRegVarPlot Plot of standard error of
filtered trend plus regression
effects

FORECAST PLOT= FDECOMPVAR

FilteredTrendRegCycVarPlot Plot of standard error of
filtered trend, cycles, and
regression effects

FORECAST PLOT= FDECOMPVAR

SmoothedAllExceptIrregVarPlot Plot of standard error of sum
of all smoothed components
except the irregular

FORECAST PLOT= DECOMPVAR

SmoothedTrendVarPlot Plot of standard error of
smoothed trend

FORECAST PLOT= DECOMPVAR



OUTFOR= Data Set F 2929

Table 42.3 continued

ODS Graph Name Description Statement Option

SmoothedTrendRegVarPlot Plot of standard error of
smoothed trend plus
regression effects

FORECAST PLOT= DECOMPVAR

SmoothedTrendRegCycVarPlot Plot of standard error of
smoothed trend, cycles, and
regression effects

FORECAST PLOT= DECOMPVAR

OUTFOR= Data Set
You can use the OUTFOR= option in the FORECAST statement to store the series and component forecasts
produced by the procedure. This data set contains the following columns:

� the BY variables

� the ID variable. If an ID variable is not specified, then a numerical variable, _ID_, is created that
contains the observation numbers from the input data set.

� the dependent series and the predictor series

� FORECAST, a numerical variable containing the one-step-ahead predicted values and the multistep
forecasts

� RESIDUAL, a numerical variable containing the difference between the actual and forecast values

� STD, a numerical variable containing the standard error of prediction

� LCL and UCL, numerical variables containing the lower and upper forecast confidence limits

� S_SERIES and VS_SERIES, numerical variables containing the smoothed values of the dependent
series and their variances

� S_IRREG and VS_IRREG, numerical variables containing the smoothed values of the irregular compo-
nent and their variances. These variables are present only if the model has an irregular component.

� F_LEVEL, VF_LEVEL, S_LEVEL, and VS_LEVEL, numerical variables containing the filtered and
smoothed values of the level component and the respective variances. These variables are present only
if the model has a level component.

� F_SLOPE, VF_SLOPE, S_SLOPE, and VS_SLOPE, numerical variables containing the filtered and
smoothed values of the slope component and the respective variances. These variables are present only
if the model has a slope component.

� F_AUTOREG, VF_AUTOREG, S_AUTOREG, and VS_AUTOREG, numerical variables containing the
filtered and smoothed values of the autoreg component and the respective variances. These variables
are present only if the model has an autoreg component.
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� F_CYCLE, VF_CYCLE, S_CYCLE, and VS_CYCLE, numerical variables containing the filtered and
smoothed values of the cycle component and the respective variances. If there are multiple cycles in
the model, these variables are sequentially numbered as F_CYCLE1, F_CYCLE2, and so on. These
variables are present only if the model has at least one cycle component.

� F_SEASON, VF_SEASON, S_SEASON, and VS_SEASON, numerical variables containing the filtered
and smoothed values of the season component and the respective variances. If there are multiple
seasons in the model, these variables are sequentially numbered as F_SEASON1, F_SEASON2, and
so on. These variables are present only if the model has at least one season component.

� F_BLKSEAS, VF_BLKSEAS, S_BLKSEAS, and VS_BLKSEAS, numerical variables containing the
filtered and smoothed values of the blockseason component and the respective variances. If there
are multiple block seasons in the model, these variables are sequentially numbered as F_BLKSEAS1,
F_BLKSEAS2, and so on.

� F_SPLSEAS, VF_SPLSEAS, S_SPLSEAS, and VS_SPLSEAS, numerical variables containing the
filtered and smoothed values of the splineseason component and the respective variances. If there
are multiple spline seasons in the model, these variables are sequentially numbered as F_SPLSEAS1,
F_SPLSEAS2, and so on. These variables are present only if the model has at least one splineseason
component.

� Filtered and smoothed estimates, and their variances, of the time-varying regression coefficients of
the variables that are specified in the RANDOMREG and SPLINEREG statements. A variable is not
included if its coefficient is time-invariant, that is, if the associated disturbance variance is zero.

� F_TF, VF_TF, S_TF, and VS_TF, numerical variables that contain the filtered and smoothed values of
the transfer-function component and their variances. If there are multiple transfer-function components
in the model, these variables are sequentially numbered as F_TF1, F_TF2, and so on. These variables
are present only if the model has at least one transfer-function component.

� S_TREG and VS_TREG, numerical variables containing the smoothed values of level plus regression
component and their variances. These variables are present only if the model has at least one predictor
variable or has dependent lags.

� S_TREGCYC and VS_TREGCYC, numerical variables containing the smoothed values of level plus
regression plus cycle component and their variances. These variables are present only if the model has
at least one cycle or an autoreg component.

� S_NOIRREG and VS_NOIRREG, numerical variables containing the smoothed values of the sum of
all components except the irregular component and their variances. These variables are present only if
the model has at least one seasonal or block seasonal component.
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OUTEST= Data Set
You can use the OUTEST= option in the ESTIMATE statement to store the model parameters and the related
estimation details. This data set contains the following columns:

� the BY variables

� COMPONENT, a character variable containing the name of the component corresponding to the
parameter being described

� PARAMETER, a character variable containing the parameter name

� TYPE, a character variable indicating whether the parameter value was fixed by the user or estimated

� _STATUS_, a character variable indicating whether the parameter estimation process converged or
failed or there was an error of some other kind

� ESTIMATE, a numerical variable containing the parameter estimate

� STD, a numerical variable containing the standard error of the parameter estimate. This has a missing
value if the parameter value is fixed.

� TVALUE, a numerical variable containing the t-statistic. This has a missing value if the parameter
value is fixed.

� PVALUE, a numerical variable containing the p-value. This has a missing value if the parameter value
is fixed.

Statistics of Fit
This section explains the goodness-of-fit statistics reported to measure how well the specified model fits the
data.

First the various statistics of fit that are computed using the prediction errors, yt � Oyt , are considered. In
these formulas, n is the number of nonmissing prediction errors and k is the number of fitted parameters in
the model. Moreover, the sum of squared errors, SSE D

P
.yt � Oyt /

2, and the total sum of squares for the
series corrected for the mean, SST D

P
.yt � y/

2, where y is the series mean, and the sums are over all the
nonmissing prediction errors.

Mean Squared Error
The mean squared prediction error, MSE D 1

n
SSE

Root Mean Squared Error
The root mean square error, RMSE =

p
MSE

Mean Absolute Percent Error
The mean absolute percent prediction error, MAPE = 100

n

Pn
tD1 j.yt � Oyt /=yt j.

The summation ignores observations where yt D 0.
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R-Square
The R-square statistic, R2 D 1 � SSE=SST.
If the model fits the series badly, the model error sum of squares, SSE, might be larger than SST and the
R-square statistic will be negative.

Adjusted R-Square
The adjusted R-square statistic, 1 � .n�1

n�k
/.1 � R2/

Amemiya’s Adjusted R-Square
Amemiya’s adjusted R-square, 1 � .nCk

n�k
/.1 � R2/

Random Walk R-Square
The random walk R-square statistic (Harvey’s R-square statistic that uses the random walk
model for comparison), 1 � .n�1

n
/SSE=RWSSE, where RWSSE D

Pn
tD2 .yt � yt�1 � �/

2, and
� D 1

n�1

Pn
tD2 .yt � yt�1/

Maximum Percent Error
The largest percent prediction error, 100 max..yt � Oyt /=yt /. In this computation the observations where
yt D 0 are ignored.

The likelihood-based fit statistics are reported separately (see the section “The UCMs as State Space Models”
on page 2897). They include the full log likelihood (L1), the diffuse part of the log likelihood, the normalized
residual sum of squares, and several information criteria: AIC, AICC, HQIC, BIC, and CAIC. Let q denote the
number of estimated parameters, n be the number of nonmissing measurements in the estimation span, and d
be the number of diffuse elements in the initial state vector that are successfully initialized during the Kalman
filtering process. Moreover, let n� D .n� d/. The reported information criteria, all in smaller-is-better form,
are described in Table 42.4:

Table 42.4 Information Criteria

Criterion Formula Reference

AIC �2L1 C 2q Akaike (1974)
AICC �2L1 C 2qn

�=.n� � q � 1/ Hurvich and Tsai (1989)
Burnham and Anderson (1998)

HQIC �2L1 C 2q log log.n�/ Hannan and Quinn (1979)
BIC �2L1 C q log.n�/ Schwarz (1978)

CAIC �2L1 C q.log.n�/C 1/ Bozdogan (1987)
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Examples: UCM Procedure

Example 42.1: The Airline Series Revisited
The series in this example, the monthly airline passenger series, has already been discussed earlier; see the
section “A Seasonal Series with Linear Trend” on page 2851. Recall that the series consists of monthly
numbers of international airline travelers (from January 1949 to December 1960). Here additional output
features of the UCM procedure are illustrated, such as how to use the ESTIMATE and FORECAST statements
to limit the span of the data used in parameter estimation and forecasting. The following statements fit a BSM
to the logarithm of the airline passenger numbers. The disturbance variance for the slope component is held
fixed at value 0; that is, the trend is locally linear with constant slope. In order to evaluate the performance of
the fitted model on observed data, some of the observed data are withheld during parameter estimation and
forecast computations. The observations in the last two years, years 1959 and 1960, are not used in parameter
estimation, while the observations in the last year, year 1960, are not used in the forecasting computations.
This is done using the BACK= option in the ESTIMATE and FORECAST statements. In addition, a panel of
residual diagnostic plots is obtained using the PLOT=PANEL option in the ESTIMATE statement.

data seriesG;
set sashelp.air;
logair = log(air);

run;

proc ucm data = seriesG;
id date interval = month;
model logair;
irregular;
level;
slope var = 0 noest;
season length = 12 type=trig;
estimate back=24 plot=panel;
forecast back=12 lead=24 print=forecasts;

run;

The following tables display the summary of data used in estimation and forecasting (Output 42.1.1 and
Output 42.1.2). These tables provide simple summary statistics for the estimation and forecast spans; they
include useful information such as the beginning and ending dates of the span, the number of nonmissing
values, and so on.

Output 42.1.1 Observation Span Used in Parameter Estimation (partial output)

Variable Type First Last Nobs Mean

logair Dependent JAN1949 DEC1958 120 5.43035

Output 42.1.2 Observation Span Used in Forecasting (partial output)

Variable Type First Last Nobs Mean

logair Dependent JAN1949 DEC1959 132 5.48654
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The following tables display the fixed parameters in the model, the preliminary estimates of the free
parameters, and the final estimates of the free parameters (Output 42.1.3, Output 42.1.4, and Output 42.1.5).

Output 42.1.3 Fixed Parameters in the Model

The UCM Procedure

Fixed Parameters in the Model

Component Parameter Value

Slope Error Variance 0

Output 42.1.4 Starting Values for the Parameters to Be Estimated

Preliminary  Estimates of the Free
Parameters

Component Parameter Estimate

Irregular Error Variance 6.64120

Level Error Variance 2.49045

Season Error Variance 1.26676

Output 42.1.5 Maximum Likelihood Estimates of the Free Parameters

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Irregular Error Variance 0.00018686 0.0001212 1.54 0.1233

Level Error Variance 0.00040314 0.0001566 2.57 0.0100

Season Error Variance 0.00000350 1.66319E-6 2.10 0.0354

Two types of goodness-of-fit statistics are reported after a model is fit to the series (see Output 42.1.6
and Output 42.1.7). The first type is the likelihood-based goodness-of-fit statistics, which include the full
likelihood of the data, the diffuse portion of the likelihood (see the section “Details: UCM Procedure” on
page 2891), and the information criteria. The second type of statistics is based on the raw residuals, residual
= observed – predicted. If the model is nonstationary, then one-step-ahead predictions are not available for
some initial observations, and the number of values used in computing these fit statistics will be different
from those used in computing the likelihood-based test statistics.
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Output 42.1.6 Likelihood-Based Fit Statistics for the Airline Data

Likelihood Based Fit Statistics

Statistic Value

Diffuse Log Likelihood 180.63

Diffuse Part of Log Likelihood -13.93

Non-Missing Observations Used 120

Estimated Parameters 3

Initialized Diffuse State Elements 13

Normalized Residual Sum of Squares 107

AIC (smaller is better) -355.3

BIC (smaller is better) -347.2

AICC (smaller is better) -355

HQIC (smaller is better) -352

CAIC (smaller is better) -344.2

Output 42.1.7 Residuals-Based Fit Statistics for the Airline Data

Fit Statistics Based on Residuals

Mean Squared Error 0.00156

Root Mean Squared Error 0.03944

Mean Absolute Percentage Error 0.57677

Maximum Percent Error 2.19396

R-Square 0.98705

Adjusted R-Square 0.98680

Random Walk R-Square 0.86370

Amemiya's Adjusted R-Square 0.98630

Number of non-missing residuals used
for computing the fit statistics = 107

The diagnostic plots based on the one-step-ahead residuals are shown in Output 42.1.8. The residual histogram
and the Q-Q plot show no reasons to question the approximate normality of the residual distribution. The
remaining plots check for the whiteness of the residuals. The sample correlation plots, the autocorrelation
function (ACF) and the partial autocorrelation function (PACF), also do not show any significant violations
of the whiteness of the residuals. Therefore, on the whole, the model seems to fit the data well.
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Output 42.1.8 Residual Diagnostics for the Airline Series Using a BSM

The forecasts are given in Output 42.1.9. In order to save the space, the upper and lower confidence limit
columns are dropped from the output, and only the rows corresponding to the year 1960 are shown. Recall
that the actual measurements in the years 1959 and 1960 were withheld during the parameter estimation, and
the ones in 1960 were not used in the forecast computations.
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Output 42.1.9 Forecasts for the Airline Data

Obs date Forecast StdErr logair Residual

133 JAN60 6.050 0.038 6.033 -0.017

134 FEB60 5.996 0.044 5.969 -0.027

135 MAR60 6.156 0.049 6.038 -0.118

136 APR60 6.124 0.053 6.133 0.010

137 MAY60 6.168 0.058 6.157 -0.011

138 JUN60 6.303 0.061 6.282 -0.021

139 JUL60 6.435 0.065 6.433 -0.002

140 AUG60 6.450 0.068 6.407 -0.043

141 SEP60 6.265 0.071 6.230 -0.035

142 OCT60 6.138 0.073 6.133 -0.005

143 NOV60 6.015 0.075 5.966 -0.049

144 DEC60 6.121 0.077 6.068 -0.053

Output 42.1.10 shows the forecast plot. The forecasts in the year 1960 show that the model predictions were
quite good.

Output 42.1.10 Forecast Plot of the Airline Series Using a BSM
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Example 42.2: Variable Star Data
The series in this example is studied in detail in Bloomfield (2000). This series consists of brightness
measurements (magnitude) of a variable star taken at midnight for 600 consecutive days. The data can
be downloaded from a time series archive maintained by the University of York, England (http://www.
york.ac.uk/depts/maths/data/ts/welcome.htm (series number 26)). The following DATA step
statements read the data in a SAS data set:

data star;
input magnitude @@;
day = _n_;

datalines;
25 28 31 32 33 33 32 31 28 25 22 18
14 10 7 4 2 0 0 0 2 4 8 11
15 19 23 26 29 32 33 34 33 32 30 27
24 20 17 13 10 7 5 3 3 3 4 5
7 10 13 16 19 22 24 26 27 28 29 28
27 25 24 21 19 17 15 13 12 11 11 10
10 11 12 12 13 14 15 16 17 18 19 19

... more lines ...

The following statements use the TIMESERIES procedure to get a timeseries plot of the series (see Out-
put 42.2.1):

proc timeseries data=star plot=series;
var magnitude;

run;

http://www.york.ac.uk/depts/maths/data/ts/welcome.htm
http://www.york.ac.uk/depts/maths/data/ts/welcome.htm
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Output 42.2.1 Plot of Star Brightness on Successive Days

The plot clearly shows the cyclic nature of the series. Bloomfield shows that the series is very well explained
by a model that includes two deterministic cycles that have periods 29.0003 and 24.0001 days, a constant
term, and a simple error term. He also mentions the difficulty involved in estimating the periods from the
data (Bloomfield 2000, Chapter 3). In his case the cycle periods are estimated by least squares, and the sum
of squares surface has multiple local optima and ridges. The following statements show how to use the UCM
procedure to fit this two-cycle model to the series. The constant term in the model is specified by holding the
variance parameter of the level component to zero.

proc ucm data=star;
model magnitude;
irregular;
level var=0 noest;
cycle;
cycle;
estimate;

run;

The final parameter estimates and the goodness-of-fit statistics are shown in Output 42.2.2 and Output 42.2.3,
respectively. The model fit appears to be good.
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Output 42.2.2 Two-Cycle Model: Parameter Estimates

The UCM Procedure

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Irregular Error Variance 0.09257 0.0053845 17.19 <.0001

Cycle_1 Damping Factor 1.00000 1.81175E-7 5519514 <.0001

Cycle_1 Period 29.00036 0.0022709 12770.4 <.0001

Cycle_1 Error Variance 0.00000882 5.27213E-6 1.67 0.0944

Cycle_2 Damping Factor 1.00000 2.11939E-7 4718334 <.0001

Cycle_2 Period 24.00011 0.0019128 12547.2 <.0001

Cycle_2 Error Variance 0.00000535 3.56374E-6 1.50 0.1330

Output 42.2.3 Two-Cycle Model: Goodness of Fit

Fit Statistics Based on Residuals

Mean Squared Error 0.12072

Root Mean Squared Error 0.34745

Mean Absolute Percentage Error 2.65141

Maximum Percent Error 36.38991

R-Square 0.99850

Adjusted R-Square 0.99849

Random Walk R-Square 0.97281

Amemiya's Adjusted R-Square 0.99847

Number of non-missing residuals used for
computing the fit statistics = 599

A summary of the cycles in the model is given in Output 42.2.4.

Output 42.2.4 Two-Cycle Model: Summary

Name Type period Rho ErrorVar

Cycle_1 Stationary 29.00036 1.00000 0.00000882

Cycle_2 Stationary 24.00011 1.00000 0.00000535

Note that the estimated periods are the same as in Bloomfield’s model, the damping factors are nearly equal
to 1.0, and the disturbance variances are very close to zero, implying persistent deterministic cycles. In fact,
this model is identical to Bloomfield’s model.
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Example 42.3: Modeling Long Seasonal Patterns
This example illustrates some of the techniques you can use to model long seasonal patterns in a series. If the
seasonal pattern is of moderate length and the underlying dynamics are simple, then it is easily modeled by
using the basic settings of the SEASON statement and these additional techniques are not needed. However,
if the seasonal pattern has a long season length and/or has a complex stochastic dynamics, then the techniques
discussed here can be useful. You can obtain parsimonious models for a long seasonal pattern by using
an appropriate subset of trigonometric harmonics, or by using a suitable spline function, or by using a
block-season pattern in combination with a seasonal component of much smaller length. You can also vary
the disturbance variances of the subcomponents that combine to form the seasonal component.

The time series used in this example consists of number of calls received per shift at a call center. Each
shift is six hours long, and the first shift of the day begins at midnight, resulting in four shifts per day. The
observations are available from December 15, 1999, to April 30, 2000. This series is seasonal with season
length 28, which is moderate, and in fact there is no particular need to use pattern approximation techniques
in this case. However, it is adequate for demonstration purposes. The plan of this example is as follows. First
an initial model with a full seasonal component is created. This model is used as a baseline for comparing
alternate models created by the techniques that are being illustrated. In practice any candidate model is first
checked for adequacy by using various diagnostic procedures. In this illustration the main focus is on the
different ways a long seasonal pattern can be modeled and no model diagnostics are done for the models
being entertained. The alternate models are compared by using the sum of absolute prediction errors in the
holdout region.

The following DATA step statements create the input data set used in this example:

data callCenter;
input calls @@;
label calls= "Number of Calls Received in a 6 Hour Shift";
start = '15dec99:00:00'dt;
datetime = INTNX( 'dthour6', start, _n_-1 );
format datetime datetime10.;

datalines;
18 122 244 128 19 113 230 119 17 112

219 93 14 73 139 53 11 32 74 56
15 137 289 153 20 125 227 106 16 101

201 92 14 94 187 69 11 59 94 21

... more lines ...

Initial exploration of the series clearly indicates that the series does not show any significant trend, and time
of day and day of the week have a significant influence on the number of calls received. These considerations
suggest a simple random walk trend model along with a seasonal component of season length 28, the total
number of shifts in a week. The following statements specify this model. Note the PRINT=HARMONICS
option in the SEASON statement, which produces a table that lists the full set of harmonics contributing
to the seasonal along with the significance of their contribution. This table will be useful later in choosing
a subset trigonometric model. The BACK=28 and LEAD=28 specifications in the FORECAST statement
create a holdout region of 28 observations. The sum of absolute prediction errors (SAE) in this holdout
region is used to compare the different models.
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proc ucm data=callCenter;
id datetime interval=dthour6;
model calls;
irregular;
level;
season length=28 type=trig

print=(harmonics);
estimate back=28;
forecast back=28 lead=28;

run;

The forecasting performance of this model in the holdout region is shown in Output 42.3.1. The SAE is
516.22, which appears in the last row of the holdout analysis table.

Output 42.3.1 Predictions in the Holdout Region: Baseline Model

Obs datetime Actual Forecast Error SAE

525 24APR00:00 12 -4.004 16.004 16.004

526 24APR00:06 136 110.825 25.175 41.179

527 24APR00:12 295 262.820 32.180 73.360

528 24APR00:18 172 145.127 26.873 100.232

529 25APR00:00 20 2.188 17.812 118.044

530 25APR00:06 127 105.442 21.558 139.602

531 25APR00:12 236 217.043 18.957 158.559

532 25APR00:18 125 114.313 10.687 169.246

533 26APR00:00 16 2.855 13.145 182.391

534 26APR00:06 108 95.202 12.798 195.189

535 26APR00:12 207 194.184 12.816 208.005

536 26APR00:18 112 97.687 14.313 222.317

537 27APR00:00 15 1.270 13.730 236.047

538 27APR00:06 98 85.875 12.125 248.172

539 27APR00:12 200 184.891 15.109 263.281

540 27APR00:18 113 93.113 19.887 283.168

541 28APR00:00 15 -1.120 16.120 299.288

542 28APR00:06 104 84.983 19.017 318.305

543 28APR00:12 205 177.940 27.060 345.365

544 28APR00:18 89 64.292 24.708 370.073

545 29APR00:00 12 -6.020 18.020 388.093

546 29APR00:06 68 46.286 21.714 409.807

547 29APR00:12 116 100.339 15.661 425.468

548 29APR00:18 54 34.700 19.300 444.768

549 30APR00:00 10 -6.209 16.209 460.978

550 30APR00:06 30 12.167 17.833 478.811

551 30APR00:12 66 49.524 16.476 495.287

552 30APR00:18 61 40.071 20.929 516.216

Now that a baseline model is created, the exploration for alternate models can begin. The review of the
harmonic table in Output 42.3.2 shows that all but the last three harmonics are significant, and deleting
any of them to form a subset trigonometric seasonal component will lead to a poorer model. The last three
harmonics, 12th, 13th, and 14th, with periods of 2.333, 2.15 and 2.0, respectively, do appear to be possible
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choices for deletion. Note that the disturbance variance of the seasonal component is not very insignificant
(see Output 42.3.3); therefore the seasonal component is stochastic and the preceding logic, which is based
on the final state estimate, provides only a rough guideline.

Output 42.3.2 Harmonic Analysis of the Season: Initial Model

The UCM Procedure

Harmonic Analysis of Trigonometric Seasons
(Based on the Final State)

Name
Season
Length Harmonic Period Chi-Square DF Pr > ChiSq

Season 28 1 28.00000 234.19 2 <.0001

Season 28 2 14.00000 264.19 2 <.0001

Season 28 3 9.33333 95.65 2 <.0001

Season 28 4 7.00000 105.64 2 <.0001

Season 28 5 5.60000 146.74 2 <.0001

Season 28 6 4.66667 121.93 2 <.0001

Season 28 7 4.00000 4299.12 2 <.0001

Season 28 8 3.50000 150.79 2 <.0001

Season 28 9 3.11111 89.68 2 <.0001

Season 28 10 2.80000 8.95 2 0.0114

Season 28 11 2.54545 6.14 2 0.0464

Season 28 12 2.33333 2.20 2 0.3325

Season 28 13 2.15385 3.40 2 0.1828

Season 28 14 2.00000 2.33 1 0.1272

Output 42.3.3 Parameter Estimates: Initial Model

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Irregular Error Variance 92.14591 13.10986 7.03 <.0001

Level Error Variance 44.83595 10.65465 4.21 <.0001

Season Error Variance 0.01250 0.0065153 1.92 0.0551

The following statements fit a subset trigonometric model formed by dropping the last three harmonics by
specifying the DROPH= option in the SEASON statement:

proc ucm data=callCenter;
id datetime interval=dthour6;
model calls;
irregular;
level;
season length=28 type=trig droph=12 13 14;
estimate back=28;
forecast back=28 lead=28;

run;

The last row of the holdout region prediction analysis table for the preceding model is shown in Output 42.3.4.
It shows that the subset trigonometric model has better prediction performance in the holdout region than the
full trigonometric model; its SAE is 471.53, compared to an SAE of 516.22 for the full model.
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Output 42.3.4 SAE for the Subset Trigonometric Model

Obs datetime Actual Forecast Error SAE

552 30APR00:18 61 40.836 20.164 471.534

The following statements illustrate a spline approximation to this seasonal component. In the spline specifica-
tion the knot placement is quite important, and usually some experimentation is needed. In the following
model the knots are placed at the beginning and the middle of each day. Note that the knots at the beginning
and end of the season, 1 and 28 in this case, should not be listed in the knot list because knots are always
placed there anyway.

proc ucm data=callCenter;
id datetime interval=dthour6;
model calls;
irregular;
level;
splineseason length=28

knots=3 5 7 9 11 13 15 17 19 21 23 25 27
degree=3;

estimate back=28;
forecast back=28 lead=28;

run;

The spline season model takes about half the time to fit that the baseline model takes. The last row of the
holdout region prediction analysis table for this model is shown in Output 42.3.5, which shows that the spline
season model performs even better than the previous two models in the holdout region; its SAE is 313.79,
compared to an SAE of 471.53 for the previous model.

Output 42.3.5 SAE for the Spline Season Model

Obs datetime Actual Forecast Error SAE

552 30APR00:18 61 23.350 37.650 313.792

The following statements illustrate yet another way to approximate a long seasonal component. Here a
combination of BLOCKSEASON and SEASON statements results in a seasonal component that is a sum of
two seasonal patterns: one seasonal pattern is simply a regular season with season length 4 that captures the
within-day seasonal pattern, and the other seasonal pattern is a block seasonal pattern that remains constant
during the day but varies from day to day within a week. Note the use of the NLOPTIONS statement to
change the optimization technique during the parameter estimation to DBLDOG, which in this case performs
better than the default technique, TRUREG.

proc ucm data=callCenter;
id datetime interval=dthour6;
model calls;
irregular;
level;
season length=4 type=trig;
blockseason nblocks=7 blocksize=4

type=trig;
estimate back=28;
forecast back=28 lead=28;



Example 42.4: Modeling Time-Varying Regression Effects F 2945

nloptions tech=dbldog;
run;

This model also takes about half the time to fit that the baseline model takes. The last row of the holdout
region prediction analysis table for this model is shown in Output 42.3.6, which shows that the block season
model does slightly better than the baseline model but not as well as the other two models; its SAE is 508.52,
compared to an SAE of 516.22 for the baseline model.

Output 42.3.6 SAE for the Block Season Model

Obs datetime Actual Forecast Error SAE

552 30APR00:18 61 39.339 21.661 508.522

This example showed a few different ways to model a long seasonal pattern. It showed that parsimonious
models for long seasonal patterns can be useful, and in some cases even more effective than the full model.
Moreover, for very long seasonal patterns the high memory requirements and long computing times might
make full models impractical.

Example 42.4: Modeling Time-Varying Regression Effects
In April 1979, the Albuquerque Police Department began a special enforcement program aimed at reducing
the number of DWI (driving while intoxicated) accidents. The program was administered by a squad
of police officers, who used breath alcohol testing (BAT) devices and a van that houses a BAT device
(Batmobile). These data were collected by the Division of Governmental Research of the University of New
Mexico, under a contract with the National Highway Traffic Safety Administration of the U.S. Department of
Transportation, to evaluate the Batmobile program. The first 29 observations are for a control period, and the
next 23 observations are for the experimental (Batmobile) period. The data consist of two variables: ACC,
which represents injuries and fatalities from Wednesday to Saturday nighttime accidents, and FUEL, which
represents fuel consumption (millions of gallons) in Albuquerque. The variables are measured quarterly
starting from the first quarter of 1972 up to the last quarter of 1984, covering the span of 13 years. The
following DATA step statements create the input data set:

data bat;
input ACC FUEL @@;
batProgram = 0;
if _n_ > 29 then batProgram = 1;
date = INTNX( 'qtr', '1jan1972'd, _n_- 1 );
format date qtr8.;

datalines;
192 32.592 238 37.250 232 40.032
246 35.852 185 38.226 274 38.711
266 43.139 196 40.434 170 35.898
234 37.111 272 38.944 234 37.717
210 37.861 280 42.524 246 43.965
248 41.976 269 42.918 326 49.789
342 48.454 257 45.056 280 49.385
290 42.524 356 51.224 295 48.562
279 48.167 330 51.362 354 54.646
331 53.398 291 50.584 377 51.320
327 50.810 301 46.272 269 48.664
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314 48.122 318 47.483 288 44.732
242 46.143 268 44.129 327 46.258
253 48.230 215 46.459 263 50.686
319 49.681 263 51.029 206 47.236
286 51.717 323 51.824 306 49.380
230 47.961 304 46.039 311 55.683
292 52.263
;

There are a number of ways to study these data and the question of the effectiveness of the BAT program.
One possibility is to study the before-after difference in the injuries and fatalities per million gallons of fuel
consumed, by regressing ACC on FUEL and the dummy variable BATPROGRAM, which is zero before the
program began and one while the program is in place. However, it is possible that the effect of the Batmobiles
might well be cumulative, because as awareness of the program becomes dispersed, its effectiveness as
a deterrent to driving while intoxicated increases. This suggests that the regression coefficient of the
BATPROGRAM variable might be time-varying. The following program fits a model that incorporates these
considerations. A seasonal component is included in the model since it is easy to see that the data show
strong quarterly seasonality.

proc ucm data=bat;
model acc = fuel;
id date interval=qtr;
irregular;
level var=0 noest;
randomreg batProgram / plot=smooth;
season length=4 var=0 noest plot=smooth;
estimate plot=(panel residual);
forecast plot=forecasts lead=0;

run;

The model seems to fit the data adequately. No data are withheld for model validation because the series
is relatively short. The plot of the time-varying coefficient of BATPROGRAM is shown in Output 42.4.1.
As expected, it shows that the effectiveness of the program increases as awareness of the program becomes
dispersed. The effectiveness eventually seems to level off. The residual diagnostic plots are shown in
Output 42.4.2 and Output 42.4.3, the forecast plot is in Output 42.4.4, the goodness-of-fit statistics are in
Output 42.4.5, and the parameter estimates are in Output 42.4.6.
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Output 42.4.1 Time-Varying Regression Coefficient of BATPROGRAM
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Output 42.4.2 Residuals for the Time-Varying Regression Model
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Output 42.4.3 Residual Diagnostics for the Time-Varying Regression Model
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Output 42.4.4 One-Step-Ahead Forecasts for the Time-Varying Regression Model

Output 42.4.5 Model Fit for the Time-Varying Regression Model

Fit Statistics Based on Residuals

Mean Squared Error 866.75562

Root Mean Squared Error 29.44071

Mean Absolute Percentage Error 9.50326

Maximum Percent Error 14.15368

R-Square 0.32646

Adjusted R-Square 0.29278

Random Walk R-Square 0.63010

Amemiya's Adjusted R-Square 0.19175

Number of non-missing residuals used for
computing the fit statistics = 22
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Output 42.4.6 Parameter Estimates for the Time-Varying Regression Model

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Irregular Error Variance 480.92258 109.21980 4.40 <.0001

FUEL Coefficient 6.23279 0.67533 9.23 <.0001

batProgram Error Variance 84.22334 79.88166 1.05 0.2917

Example 42.5: Trend Removal Using the Hodrick-Prescott Filter
The Hodrick-Prescott filter (Hodrick and Prescott 1997) is a popular tool in macroeconomics for fitting
a smooth trend to time series. It is well known that the trend computation according to this filter is
equivalent to fitting the local linear trend plus irregular model with the level disturbance variance restricted
to zero and the slope disturbance variance restricted to be a suitable multiple of the irregular component
variance. The multiple used depends on the frequency of the series; for example, for quarterly series the
commonly recommended multiple is 1=1600 D 0:000625. For other intervals there is no consensus, but a
frequently suggested value for monthly series is 1=14400 and the value for an annual series can range from
1=400 D 0:0025 to 1=7 D 0:15. The data set considered in this example consists of quarterly GNP values
for the United States from 1960 to 1991. In the UCM procedure statements that follow, the presence of the
PROFILE option in the ESTIMATE statement implies that the restriction that the disturbance variance of
the slope component be fixed at 0.000625 is interpreted differently: it implies that the disturbance variance
of the slope component be restricted to be 0.000625 times the estimated irregular component variance, as
needed for the Hodrick-Prescott filter. The plot of the fitted trend is shown in Output 42.5.1, and the plot of
the smoothed irregular component, which corresponds to the detrended series, is given in Output 42.5.2. The
detrended series can be further analyzed for business cycles.

proc ucm data=sashelp.gnp;
id date interval=qtr;
model gnp;
irregular plot=smooth;
level var=0 noest plot=smooth;
slope var=0.000625 noest;
estimate PROFILE;
forecast plot=(decomp);

run;
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Output 42.5.1 Smoothed Trend for the GNP Series as per the Hodrick-Prescott Filter
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Output 42.5.2 Detrended GNP Series

Example 42.6: Using Splines to Incorporate Nonlinear Effects
The data in this example are created to mirror the electricity demand and temperature data recorded at a utility
company in the midwest region of the United States. The data set (not shown), utility, has three variables:
load, temp, and date. The load column contains the daily electricity demand, the temp column has the
average daily temperature readings, and the date column records the observation date.

The following statements produce a plot, shown in Output 42.6.1, of electricity load versus temperature.
Clearly the relationship is smooth but nonlinear: the load generally increases when the temperatures are away
from the comfortable sixties.

proc sgplot data=utility;
loess x=temp y=load / smooth=0.4;

run;
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Output 42.6.1 Load versus Temperature Plot

The time series plot of the load (not shown) also shows that, apart from a day-of-the-week seasonal effect,
there are no additional easily identifiable patterns in the series. The series has no apparent upward or
downward trend. The following statements fit a UCM to the series that takes into account these observations.
The particular choice of the model is a result of a little modeling exercise that compared a small number of
competing models. The chosen model is adequate but by no means the best possible. The temperature effect
is modeled by a deterministic three-degree spline with knots at 30, 40, 50, 60, and 75. The knot locations
and the degree were chosen by visual inspection of the plot (Output 42.6.1). An autoreg component is used
in place of the simple irregular component, which improved the residual analysis. The last 60 days of data
are withheld for out-of-sample forecast evaluation (note the BACK= option in both the ESTIMATE and
FORECAST statements). The OUTLIER statement is used to increase the number of outliers reported to 10.
Since no CHECKBREAK option is used in the LEVEL statement, only the additive outliers are searched. In
this example the use of the EXTRADIFFUSE= option in the ESTIMATE and FORECAST statements is
useful for discarding some early one-step-ahead forecasts and residuals with large variance.

proc ucm data=utility;
id date interval=day;
model load;
autoreg;
level plot=smooth;
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splinereg temp knots=30 40 50 65 75 degree=3
variance=0 noest;

season length=7 var=0 noest;
estimate plot=panel back=60

extradiffuse=50;
outlier maxnum=10;
forecast back=60 lead=60

extradiffuse=50;
run;

The parameter estimates are given in Output 42.6.2, and the residual goodness-of-fit statistics are shown in
Output 42.6.3. The residual diagnostic plots are shown in Output 42.6.4. The ACF and PACF plots appear
satisfactory, but the normality plots, particularly the Q-Q plot, show possible violations. It appears that, at
least in part, this nonnormal behavior of the residuals might be attributable to the outliers in the series. The
outlier summary table, Output 42.6.5, shows the most likely outlying observations. Notice that most of these
outliers are holidays, like July 4th, when the electricity load is lower than usual for that day of the week.

Output 42.6.2 Electricity Load: Parameter Estimates

The UCM Procedure

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Level Error Variance 0.21185 0.05025 4.22 <.0001

AutoReg Damping Factor 0.57522 0.03466 16.60 <.0001

AutoReg Error Variance 2.21057 0.20478 10.79 <.0001

temp Spline Coefficient_1 4.72502 1.93997 2.44 0.0149

temp Spline Coefficient_2 2.19116 1.71243 1.28 0.2007

temp Spline Coefficient_3 -7.14492 1.56805 -4.56 <.0001

temp Spline Coefficient_4 -11.39950 1.45098 -7.86 <.0001

temp Spline Coefficient_5 -16.38055 1.36977 -11.96 <.0001

temp Spline Coefficient_6 -18.76075 1.28898 -14.55 <.0001

temp Spline Coefficient_7 -8.04628 1.09017 -7.38 <.0001

temp Spline Coefficient_8 -2.30525 1.25102 -1.84 0.0654

Output 42.6.3 Electricity Load: goodness-of-fit

Fit Statistics Based on Residuals

Mean Squared Error 2.90945

Root Mean Squared Error 1.70571

Mean Absolute Percentage Error 2.92586

Maximum Percent Error 14.96281

R-Square 0.92739

Adjusted R-Square 0.92721

Random Walk R-Square 0.69618

Amemiya's Adjusted R-Square 0.92684

Number of non-missing residuals used for
computing the fit statistics = 791
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Output 42.6.4 Electricity Load: Residual Diagnostics

Output 42.6.5 Additive Outliers in the Electricity Load Series

Obs Time Estimate StdErr ChiSq DF ProbChiSq

1281 04JUL2002 -7.99908 1.3417486 35.54 1 <.0001

916 04JUL2001 -6.55778 1.338431 24.01 1 <.0001

329 25NOV1999 -5.85047 1.3379735 19.12 1 <.0001

977 03SEP2001 -5.67254 1.3389138 17.95 1 <.0001

1341 02SEP2002 -5.49631 1.337843 16.88 1 <.0001

693 23NOV2000 -5.27968 1.3374368 15.58 1 <.0001

915 03JUL2001 5.06557 1.3375273 14.34 1 0.0002

1057 22NOV2001 -5.01550 1.3386184 14.04 1 0.0002

551 04JUL2000 -4.89965 1.3381557 13.41 1 0.0003

879 28MAY2001 -4.76135 1.3375349 12.67 1 0.0004

The plot of the load forecasts for the withheld data is shown in Output 42.6.6.
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Output 42.6.6 Electricity Load: Forecast Evaluation of the Withheld Data

Example 42.7: Detection of Level Shift
The series in this example consists of the yearly water level readings of the Nile River recorded at Aswan,
Egypt (Cobb 1978; De Jong and Penzer 1998). The readings are from the years 1871 to 1970. The series
does not show any apparent trend or any other distinctive patterns; however, there is a shift in the water level
starting at the year 1899. This shift could be attributed to the start of construction of a dam near Aswan in
that year. A time series plot of this series is given in Output 42.7.1. The following DATA step statements
create the input data set:

data nile;
input waterlevel @@;
year = intnx( 'year', '1jan1871'd, _n_-1 );
format year year4.;

datalines;
1120 1160 963 1210 1160 1160 813 1230 1370 1140
995 935 1110 994 1020 960 1180 799 958 1140
1100 1210 1150 1250 1260 1220 1030 1100 774 840
874 694 940 833 701 916 692 1020 1050 969
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831 726 456 824 702 1120 1100 832 764 821
768 845 864 862 698 845 744 796 1040 759
781 865 845 944 984 897 822 1010 771 676
649 846 812 742 801 1040 860 874 848 890
744 749 838 1050 918 986 797 923 975 815
1020 906 901 1170 912 746 919 718 714 740

;

proc timeseries data=nile plot=series;
id year interval=year;
var waterlevel;

run;

Output 42.7.1 Nile Water Level

In this situation it is known that a shift in the water level occurred within the span of the series, and its effect
can be easily taken into account by including an appropriate indicator variable as a regressor. However, in
many situation such prior information is not available, and it is useful to detect such a shift in a data analytic
fashion. You can check for breaks in the level by using the CHECKBREAK option in the LEVEL statement.
The following statements fit a simple locally constant level plus error model to the series:
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proc ucm data=nile;
id year interval=year;
model waterlevel;
irregular;
level plot=smooth checkbreak;
estimate;
forecast plot=decomp;

run;

The plot in Output 42.7.2 shows a noticeable drop in the smoothed water level around 1899.

Output 42.7.2 Smoothed Trend without the Shift of 1899

The “Outlier Summary” table in Output 42.7.3 shows the most likely types of breaks and their locations
within the series span. The shift of 1899 is easily detected.

Output 42.7.3 Detection of Structural Breaks in the Nile River Level

Outlier Summary

Obs year Break Type Estimate
Standard

Error Chi-Square DF Pr > ChiSq

29 1899 Level -315.73791 97.639753 10.46 1 0.0012
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The following statements specify a UCM that models the level of the river as a locally constant series with a
shift in the year 1899, represented by a dummy regressor (SHIFT1899):

data nile;
set nile;
shift1899 = ( year >= '1jan1899'd );

run;

proc ucm data=nile;
id year interval=year;
model waterlevel = shift1899;
irregular;
level;
estimate;
forecast plot=decomp;

run;

The plot in Output 42.7.4 shows the smoothed trend, including the correction due to the shift in the year 1899.
Notice the simplicity in the shape of the smoothed curve after the incorporation of the shift information.

Output 42.7.4 Smoothed Trend plus Shift of 1899
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Example 42.8: ARIMA Modeling
This example shows how you can use the UCM procedure for ARIMA modeling. The parameter estimates
and predictions for ARIMA models obtained by using PROC UCM will be close to those obtained by using
PROC ARIMA (in the presence of the ML option in its ESTIMATE statement) if the model is stationary or
if the model is nonstationary and there are no missing values in the data. For more information about the
ARIMA procedure, see Chapter 8, “The ARIMA Procedure.” However, if there are missing values in the data
and the model is nonstationary, then the UCM and ARIMA procedures can produce significantly different
parameter estimates and predictions. An article by Kohn and Ansley (1986) suggests a statistically sound
method of estimation, prediction, and interpolation for nonstationary ARIMA models with missing data. This
method is based on an algorithm that is equivalent to the Kalman filtering and smoothing algorithm used
in the UCM procedure. The results of an illustrative example in their article are reproduced here using the
UCM procedure. In this example an ARIMA(0,1,1)�(0,1,1)12 model is applied to the logarithm of the air
series in the sashelp.air data set. Four different missing value patterns are considered to highlight different
aspects of the problem:

� Data1. The full data set of 144 observations.

� Data2. The set of 78 observations that omit January through November in each of the last 6 years.

� Data3. The data set with the 5 observations July 1949, June, July, and August 1957, and July 1960
missing.

� Data4. The data set with all July observations missing and June and August 1957 also missing.

The following DATA steps create these data sets:

data Data1;
set sashelp.air;
logair = log(air);

run;

data Data2;
set data1;
if year(date) >= 1955 and month(date) < 12 then logair = .;

run;

data Data3;
set data1;
if (year(date) = 1949 and month(date) = 7) then logair = .;
if ( year(date) = 1957 and

(month(date) = 6 or month(date) = 7 or month(date) = 8))
then logair = .;

if (year(date) = 1960 and month(date) = 7) then logair = .;
run;

data Data4;
set data1;
if month(date) = 7 then logair = .;
if year(date) = 1957 and (month(date) = 6 or month(date) = 8)
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then logair = .;
run;

The following statements specify the ARIMA.0; 1; 1/ � .0; 1; 1/12 model for the logair series in the first data
set (Data1):

proc ucm data=Data1;
id date interval=month;
model logair;
irregular q=1 sq=1 s=12;
deplag lags=(1)(12) phi=1 1 noest;
estimate outest=est1;
forecast outfor=for1;

run;

Note that the moving average part of the model is specified by using the Q=, SQ=, and S= options in the
IRREGULAR statement and the differencing operator, .1�B/.1�B12/, is specified by using the DEPLAG
statement. The model does not contain an intercept term; therefore no LEVEL statement is needed. The
parameter estimates are saved in a data set EST1 by using the OUTEST= option in the ESTIMATE statement
and the forecasts and the component estimates are saved in a data set FOR1 by using the OUTFOR= option
in the FORECAST statement. The same analysis is performed on the other three data sets, but is not shown
here.

Output 42.8.1 resembles Table 1 in Kohn and Ansley (1986). This table is generated by merging the parameter
estimates from the four analyses. Only the moving average parameter estimates and their standard errors are
reported. The columns EST1 and STD1 correspond to the estimates for Data1. The parameter estimates and
their standard errors for other three data sets are similarly named. Note that the parameter estimates closely
match the parameter estimates in the article. However, their standard errors differ slightly. This difference
could be the result of different ways of computing the Hessian at the optimum. The white noise error variance
estimates are not reported here, but they agree quite closely with those in the article.

Output 42.8.1 Data Sets 1–4: Parameter Estimates and Standard Errors

PARAMETER est1 std1 est2 std2 est3 std3 est4 std4

MA_1 0.402 0.090 0.457 0.121 0.408 0.092 0.431 0.091

SMA_1 0.557 0.073 0.758 0.236 0.566 0.075 0.573 0.074

Output 42.8.2 resembles Table 2 in Kohn and Ansley (1986). It contains forecasts and their standard errors
for the four data sets. The numbers are very close to those in the article.
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Output 42.8.2 Data Sets 1–4: Forecasts and Standard Errors

DATE for1 std1 for2 std2 for3 std3 for4 std4

JAN61 6.110 0.037 6.084 0.052 6.110 0.037 6.111 0.037

FEB61 6.054 0.043 6.091 0.058 6.054 0.043 6.055 0.043

MAR61 6.172 0.048 6.247 0.063 6.173 0.048 6.174 0.048

APR61 6.199 0.053 6.205 0.068 6.199 0.053 6.200 0.052

MAY61 6.233 0.057 6.199 0.072 6.232 0.058 6.233 0.056

JUN61 6.369 0.061 6.308 0.076 6.367 0.062 6.368 0.060

JUL61 6.507 0.065 6.409 0.079 6.497 0.067 . .

AUG61 6.503 0.069 6.414 0.082 6.503 0.069 6.503 0.067

SEP61 6.325 0.072 6.299 0.085 6.325 0.072 6.326 0.071

OCT61 6.209 0.075 6.174 0.087 6.209 0.076 6.209 0.074

NOV61 6.063 0.079 6.043 0.089 6.064 0.079 6.064 0.077

DEC61 6.168 0.082 6.174 0.086 6.168 0.082 6.169 0.080

Output 42.8.3 is based on Data2. It resembles Table 3 in Kohn and Ansley (1986). The columns S_SERIES
and VS_SERIES in the OUTFOR= data set contain the interpolated values of logair and their variances.
The estimate column in Output 42.8.3 reports interpolated values (which are the same as S_SERIES),
and the std column reports their standard errors (which are computed as square root of VS_SERIES) for
January–November 1957. The actual logair values for these months, which are missing in Data2, are also
provided for comparison. The numbers are very close to those in the article.

Output 42.8.3 Data Set 2: Interpolated Values and Standard Errors

DATE logair estimate std

JAN57 5.753 5.733 0.045

FEB57 5.707 5.738 0.049

MAR57 5.875 5.893 0.052

APR57 5.852 5.850 0.054

MAY57 5.872 5.843 0.055

JUN57 6.045 5.951 0.055

JUL57 6.142 6.051 0.055

AUG57 6.146 6.055 0.054

SEP57 6.001 5.938 0.052

OCT57 5.849 5.812 0.049

NOV57 5.720 5.680 0.045

Output 42.8.4 resembles Table 4 in Kohn and Ansley (1986). These numbers are based on Data3, and they
also are very close to those in the article.

Output 42.8.4 Data Set 3: Interpolated Values and Standard Errors

DATE logair estimate std

JUL49 4.997 5.013 0.031

JUN57 6.045 6.024 0.030

JUL57 6.142 6.147 0.031

AUG57 6.146 6.148 0.030

JUL60 6.433 6.409 0.031
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Output 42.8.5 resembles Table 5 in Kohn and Ansley (1986). As before, the numbers are very close to those
in the article.

Output 42.8.5 Data Set 4: Interpolated Values and Standard Errors

DATE logair estimate std

JUN57 6.045 6.023 0.030

AUG57 6.146 6.147 0.030

The similarity between the outputs in this example and the results shown in Kohn and Ansley (1986)
demonstrate that PROC UCM can be effectively used for nonstationary ARIMA models with missing data.

Example 42.9: Extracting A Business Cycle (Experimental)
The data set (not shown) gdp in this example has two variables: date dates the observations, and lgdp contains
the quarterly readings of the US real GDP (in log scale). Pelagatti (2015, Example 3.3, Example 8.2) uses
this quarterly time series (lgdp) to illustrate how you can adjust the smoothness of the estimated cycle by
changing the order of the cycle in a trend-cycle decomposition,

lgdpt D �t C  t C �t

where �t is an integrated random walk trend,  t is a cycle component, and �t is an irregular component.

The following statements fit the model lgdpt D �t C  t C �t , where the cycle component has an order of 1
(default):

proc ucm data=gdp;
where year(date) >= 1970;
id date interval=quarter;
model lgdp;
irregular;
level variance=0 noest plot=smooth;
slope;
cycle plot=smooth;
estimate plot=panel;
forecast plot=decomp outfor=for1;

run;

The following statements fit the same model, except that the cycle order is 2. Similarly, a model with a cycle
order of 4 is also fit (not shown).

proc ucm data=gdp;
where year(date) >= 1970;
id date interval=quarter;
model lgdp;
irregular;
level variance=0 noest plot=smooth;
slope;
cycle order=2 plot=smooth;
estimate plot=panel;
forecast plot=decomp outfor=for2;
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run;

Output 42.9.1 summarizes the features of the estimated cycles of different orders. The estimated periods
of the first-order and second-order cycles, 31.59 and 45.18, are reasonable. However, the period of the
fourth-order cycle seems quite unreasonable. Fortunately, Pelagatti (2015, Example 8.2) mentions that cycles
of order 3 or higher are rarely needed when you are working with real economic series. Although they are not
the same, the parameter estimates that the UCM procedure produces are reasonably close to those reported in
Pelagatti (2015, Example 8.2).

Output 42.9.1 Cycles of Orders 1, 2, and 4: Summary

order period Frequency Rho ErrorVar

1 31.59295 0.19888 0.94371 0.00004873

2 45.18256 0.13906 0.76177 0.00000956

4 23580 0.00026647 0.52055 0.00000856

Output 42.9.2 shows the plot of the first-order cycle, Output 42.9.3 shows the plot of the second-order cycle,
and Output 42.9.4 shows the plot of the fourth-order cycle. You can see that although the overall form of the
estimated cycle remains the same, the smoothness of the plot of the estimated cycle increases with the order.

Output 42.9.2 Estimated Cycle: Order = 1
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Output 42.9.3 Estimated Cycle: Order = 2
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Output 42.9.4 Estimated Cycle: Order = 4

Output 42.9.5 shows the three cycle estimates in the same plot. It shows that the estimates don’t differ very
much.
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Output 42.9.5 Estimated Cycles of Orders 1, 2, and 4

Example 42.10: A Transfer-Function Model for the Italian Traffic Accident Data
(Experimental)

This example is based on a case study described in Pelagatti (2015, chap. 9, sec. 1). In July 2003, Italy
introduced a new traffic monitoring system with the aim of improving traffic safety. The case study tried to
answer the question, “Was the monitoring system effective in reducing the number of traffic injuries?” The
time series plot in Output 42.10.1 shows monthly traffic injuries for the span of January 2001 to December
2013. Visual inspection of the plot clearly shows that the series is seasonal and has an overall downward
trend, which appears to be more pronounced after the intervention.
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Output 42.10.1 Monthly Traffic Injuries in Italy

Pelagatti (2015, chap. 9, sec. 1) suggests the following model for this series:

yt D �t C  t C shift03 ˇ C �t C �t

Various terms in the right-hand side of this model are explained as follows:

� �t is the trend component, which is modeled as an integrated random walk.

�  t is the trigonometric seasonal component, which accounts for the monthly seasonality.

� The effect of the introduction of the monitoring system is modeled using two terms:

– One term captures a permanent shift, which is a regression effect that is associated with the
dummy regressor shift03. This regressor is 0 before July 2003 and 1 thereafter.

– The other term captures a transient effect that rapidly decays to 0. The transient effect �t is a
transfer-function effect

�t D
0 pulse03t
.1 � ıB/

where pulse03 is a dummy regressor that is 1 at July 2003 and 0 otherwise. In this example, the
transfer function �t is clearly 0 before July 2003.
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� �t is the simple irregular component.

The following statements show how to fit this model to the data. The LIKE=MARGINAL option in the
ESTIMATE statement causes the parameter estimation to be based on marginal likelihood rather than on
diffuse likelihood, which is the default. Since the parameter vector of this model contains ı (the denominator
coefficient of the transfer function), the parameter estimations that are based on marginal likelihood and
diffuse likelihood can lead to different results. In this example, the results turn out to be similar; however, this
is not necessarily the case in general. Generally, parameter estimation that is based on marginal likelihood is
the preferred choice in such cases.

proc ucm data=italy;
id date interval=month;
model Injured = shift03;
irregular;
level variance=0 noest;
slope;
season length=12 type=trig;
tf pulse03 den=1 tfstart=0 plot=smooth;
estimate plot=(panel residual) like=marginal;
forecast plot=decomp;

run;

Output 42.10.3 shows the parameter estimates. It shows that soon after the introduction of the monitoring
system in July 2003, the accident level decreased by about 5.22 thousand ( Ǒ C O0 D �.2:48 C 2:74/).
However, the permanent decrease was only about 2.48 thousand ( Ǒ D �2:48). The estimate of the decay
parameter of the transfer function, ı, is 0.587.

Output 42.10.2 Estimates of the Model Parameters

The UCM Procedure

Final Estimates of the Free Parameters

Component Parameter Estimate
Approx

Std Error t Value
Approx
Pr > |t|

Irregular Error Variance 0.55447 0.09227 6.01 <.0001

Slope Error Variance 0.00064586 0.0004515 1.43 0.1526

Season Error Variance 0.00068803 0.0005190 1.33 0.1849

shift03 Coefficient -2.47939 0.70928 -3.50 0.0005

pulse03 Coefficient -2.74316 0.93850 -2.92 0.0035

pulse03 DEN_1 0.58714 0.17805 3.30 0.0010

Output 42.10.3 shows the plot of smoothed estimate of the transfer function �t , and Output 42.10.4 shows the
plot of the estimate of the trend plus the total effect of the July 2003 intervention.
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Output 42.10.3 Decaying Part of the July 2003 Intervention Effect (Smoothed Estimate of �t )
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Output 42.10.4 Smoothed Estimate of �t C shift03 ˇ C �t

Finally, the Output 42.10.5 shows the plot of the overall model fit.
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Output 42.10.5 Sum of All Model Terms Except the Irregular
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Overview: VARMAX Procedure
Given a multivariate time series, the VARMAX procedure estimates the model parameters and generates
forecasts that are associated with vector autoregressive moving average processes with exogenous regressors
(VARMAX) models. Often, economic or financial variables are not only contemporaneously correlated
with each other, but also correlated with each other’s past values. You can use the VARMAX procedure
to model these types of time relationships. In many economic and financial applications, the variables of
interest (dependent, response, or endogenous variables) are influenced by variables external to the system
under consideration (independent, input, predictor, regressor, or exogenous variables). The VARMAX
procedure enables you to model the dynamic relationships both among the dependent variables and between
the dependent and independent variables.

A VARMAX model is defined in terms of the orders of the autoregressive or moving average processes
(or both). When you use the VARMAX procedure, these orders can be specified by options or they can
be automatically determined according to the information criteria. The VARMAX procedure supports the
following information criteria: Akaike’s information criterion (AIC), the corrected AIC (AICC), the Hannan-
Quinn criterion (HQC), the final prediction error (FPE), and the Schwarz Bayesian criterion (SBC), which is
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also known as the Bayesian information criterion (BIC). For the definitions and usages of the information
criteria, see the section “The Minimum Information Criterion (MINIC) Method” on page 3093.

If you do not want to use automatic order selection, the VARMAX procedure provides the following
autoregressive order identification aids: partial cross-correlations, partial autoregressive coefficients, partial
canonical correlations, and Yule-Walker estimates.

For situations where the stationarity of the time series is in question, the VARMAX procedure provides the
following tests to aid in determining the presence of unit roots and cointegration: Dickey-Fuller tests, the
Stock-Watson common trends test for the possibility of cointegration among nonstationary vector processes
of integrated order one, and Johansen cointegration tests for nonstationary vector processes of integrated
order one and order two.

For stationary vector times series or nonstationary series that are made stationary by appropriate differencing
or cointegration, the VARMAX procedure provides the vector autoregressive and moving average (VARMA)
model and the vector error correction model (VECM). The vector error correction model can be in both
autoregressive (AR) and autoregressive and moving average (ARMA) forms.

To cope with the problem of high dimensionality in the parameters of the VAR model and the VECM, the
VARMAX procedure provides both the Bayesian vector autoregressive (BVAR) model and the Bayesian
vector error correction model (BVECM). Bayesian models are used when prior information about the model
parameters is available.

The VARMAX procedure also allows independent (exogenous) variables and their distributed lags to influence
dependent (endogenous) variables in various models. These models are identified by an X suffix added to the
original model name; for example, VARMAX, VECMX, BVARX, and BVECMX.

Correlations in the second moments of the vector time series might exist; this is called conditional het-
eroscedasticity. The VARMAX procedure supports three forms of multivariate generalized autoregressive
conditional heteroscedasticity (GARCH) models to model the conditional heteroscedasticity: the Baba-Engle-
Kroner-Kraft (BEKK) GARCH model, the constant conditional correlation (CCC) GARCH model, and the
dynamic conditional correlation (DCC) GARCH model. For CCC and DCC GARCH models, five subforms
of univariate GARCH models are supported: the GARCH model, the exponential GARCH (EGARCH)
model, the quadratic GARCH (QGARCH) model, the threshold GARCH (TGARCH) model, and the power
GARCH (PGARCH) model.

You can use the VARMAX-GARCH model or the VEC-ARMAX-GARCH model to simultaneously model
both the first and second moments of the time series.

Finally, for stationary time series exhibiting long-range dependence (also known as long memory or per-
sistence), that is series with a slowly decaying sample autocorrelation function, the VARMAX procedure
supports the VARFIMA (vector autoregressive fractionally integrated moving average) and VARFIMAX
models.

Forecasting is one of the main objectives of multivariate time series analysis. After successfully fitting the
VARMAX, BVARX, VECMX, BVECMX, VARFIMAX and multivariate GARCH models, the VARMAX
procedure computes predicted values and conditional heteroscedasticity based on the parameter estimates
and the past values of the vector time series. Out-of-sample multistep-ahead forecasts are also supported.
Simulation-based conditional forecasts and scenario analysis are supported for the VAR, BVAR, VECM, and
BVECM models with or without the exogenous variables.

The following model parameter estimation methods are supported:

� the least squares (LS) method, which can be applied to VARX models
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� the maximum likelihood (ML) method, which can be applied to all types of models and is used by
default for VARFIMAX models,

� the conditional maximum likelihood (CML) method, which can be applied to VARMAX models

When you use the ML or CML method, you can start your optimization with the default or with different
initial parameter values.

The VARMAX procedure supports the estimation of the restricted model when you impose linear constraints
on the parameters of interest. The VARMAX procedure also supports various hypothesis tests of long-run
effects and adjustment coefficients by using the likelihood ratio test that is based on Johansen cointegration
analysis. It also supports the likelihood ratio test of weak exogeneity for each variable. In fact, because the
VARMAX procedure outputs log-likelihood values for all models, you can always use the likelihood ratio test
to check any linear hypothesis on parameters that are estimated in the models by estimating the restricted and
unrestricted models separately. The VARMAX procedure also supports another alternative test, the Wald test.

After fitting the model parameters, the VARMAX procedure uses the following tests to provide model checks
and residual analysis: Durbin-Watson (DW) statistics, the F test for autoregressive conditional heteroscedastic
(ARCH) disturbance, the F test for AR disturbance, the Jarque-Bera normality test, and the portmanteau test.

The VARMAX procedure supports several modeling features, including seasonal deterministic terms, linear
and quadratic time trends, subset models, multiple regression with distributed lags, the dead-start model
(which does not have present values of the exogenous variables), and so on.

The VARMAX procedure provides a Granger causality test to determine the Granger-causal relationships
between two distinct groups of variables. It also provides the following: the infinite order AR representation,
the impulse response function (also called infinite order MA representation), the decomposition of the
predicted error covariances, roots of the characteristic functions for both the AR and MA parts to evaluate the
proximity of the roots to the unit circle, and contemporaneous relationships among the components of the
vector time series.

Getting Started: VARMAX Procedure
This section provides several examples of the types of models that the VARMAX procedure supports.

Vector Autoregressive Model
Let yt D .y1t ; : : : ; ykt /

0; t D 1; 2; : : : ; denote a k-dimensional time series vector of random variables of
interest. The pth-order VAR process is written as

yt D ı Cˆ1yt�1 C � � � Cˆpyt�p C �t

where �t D .�1t ; : : : ; �kt /
0 is a vector white noise process such that E.�t / D 0, E.�t�0t / D †, and

E.�t�0s/ D 0 for t ¤ s; ı D .ı1; : : : ; ık/0 is a constant vector; and ˆi is a k � k matrix.
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Analyzing and modeling the series jointly enables you to understand the dynamic relationships over time
among the series and to improve the accuracy of forecasts for individual series by using the additional
information available from the related series and their forecasts.

Consider the first-order stationary bivariate vector autoregressive model:

yt D
�
1:2 �0:5

0:6 0:3

�
yt�1 C �t ; with † D

�
1:0 0:5

0:5 1:25

�
The following IML procedure statements simulate a bivariate vector time series from this model to provide
test data for the VARMAX procedure:

proc iml;
sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
/* simulate the vector time series */
call varmasim(y,phi) sigma = sig n = 100 seed = 34657;
cn = {'y1' 'y2'};
create simul1 from y[colname=cn];
append from y;

quit;

The following statements plot the simulated vector time series yt , which is shown in Figure 43.1:

data simul1;
set simul1;
date = intnx( 'year', '01jan1900'd, _n_-1 );
format date year4.;

run;

proc sgplot data=simul1;
series x=date y=y1 / lineattrs=(pattern=solid);
series x=date y=y2 / lineattrs=(pattern=dash);
yaxis label="Series";

run;
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Figure 43.1 Plot of the Generated Data Process

The following statements fit a VAR(1) model to the simulated data:

/*--- Vector Autoregressive Model ---*/

proc varmax data=simul1;
id date interval=year;
model y1 y2 / p=1 noint lagmax=3

print=(estimates diagnose);
output out=for lead=5;

run;

First, you specify the input data set in the PROC VARMAX statement. Then, you use the MODEL statement
to designate the dependent variables, y1 and y2. To estimate a zero-mean VAR model, you specify the order
of the autoregressive model in the P= option and the NOINT option. The MODEL statement fits the model to
the data and prints parameter estimates and their significance. The PRINT=ESTIMATES option prints the
matrix form of parameter estimates, and the PRINT=DIAGNOSE option prints various diagnostic tests. The
LAGMAX=3 option prints the output for the residual diagnostic checks.

To output the forecasts to a data set, you specify the OUT= option in the OUTPUT statement. If you want to
forecast five steps ahead, you use the LEAD=5 option. The ID statement specifies the yearly interval between
observations and provides the Time column in the forecast output.
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The VARMAX procedure output is shown in Figure 43.2 through Figure 43.10. The VARMAX procedure
first displays descriptive statistics, as shown in Figure 43.2. The Type column indicates that the variables are
dependent variables. The N column indicates the number of nonmissing observations.

Figure 43.2 Descriptive Statistics

The VARMAX Procedure

Number of Observations 100

Number of Pairwise Missing 0

Simple Summary Statistics

Variable Type N Mean
Standard
Deviation Min Max

y1 Dependent 100 -0.21653 2.78210 -4.75826 8.37032

y2 Dependent 100 0.16905 2.58184 -6.04718 9.58487

Figure 43.3 shows the model type and the estimation method that is used to fit the model to the simulated data.
It also shows the AR coefficient matrix in terms of lag 1, the schematic representation, and the parameter
estimates and their significance that can indicate how well the model fits the data.

The “AR” table shows the AR coefficient matrix. The “Schematic Representation” table schematically
represents the parameter estimates and enables you to easily verify their significance in matrix form.

In the “Model Parameter Estimates” table, the first column shows the variable on the left side of the
equation; the second column is the parameter name ARl_i_j , which indicates the (i, j) element of the lag l
autoregressive coefficient; the next four columns provide the estimate, standard error, t value, and p-value for
the parameter; and the last column is the regressor that corresponds to the displayed parameter.
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Figure 43.3 Model Type and Parameter Estimates

The VARMAX Procedure

Type of Model VAR(1)

Estimation Method Least Squares Estimation

AR

Lag Variable y1 y2

1 y1 1.15977 -0.51058

y2 0.54634 0.38499

Schematic Representation

Variable/Lag AR1

y1 +-

y2 ++

+ is > 2*std error, - is < -2*std error, . is between, * is N/A

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 AR1_1_1 1.15977 0.05508 21.06 0.0001 y1(t-1)

AR1_1_2 -0.51058 0.05898 -8.66 0.0001 y2(t-1)

y2 AR1_2_1 0.54634 0.05779 9.45 0.0001 y1(t-1)

AR1_2_2 0.38499 0.06188 6.22 0.0001 y2(t-1)

The fitted VAR(1) model with estimated standard errors in parentheses is given as

yt D

0BB@
1:160 �0:511

.0:055/ .0:059/

0:546 0:385

.0:058/ .0:062/

1CCA yt�1 C �t

Clearly, all parameter estimates in the coefficient matrix ˆ1 are significant.

The model can also be written as two univariate regression equations:

y1t D 1:160 y1;t�1 � 0:511 y2;t�1 C �1t

y2t D 0:546 y1;t�1 C 0:385 y2;t�1 C �2t

The table in Figure 43.4 shows the innovation covariance matrix estimates, the log likelihood, and the
various information criteria results. The variable names in the table for the innovation covariance matrix
estimates O† are printed for convenience: y1 means the innovation for y1, and y2 means the innovation
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for y2. The log likelihood for a VAR model that is estimated through least squares method is defined
as �T .log.j O†MLj/ C k/=2, where T .D 100 � 1 D 99/ is the sample size except the presample being
skipped because of the AR lag order, k.D 2/ is the number of dependent variables, and O†ML is the
maximum likelihood estimate (MLE) of innovation covariance matrix. The matrix O†ML is computed from the
reported least squares estimate of the innovation covariance matrix, O†, by adjusting the degrees of freedom.
O†ML D

T�rb
T
O†, where rb.D 2/ is the number of parameters in each equation. You can use the information

criteria to compare the fit of competing models to a set of data. The model that has a smaller value of the
information criterion is preferred when it is compared to other models. For more information about how to
calculate the information criteria, see the section “Multivariate Model Diagnostic Checks” on page 3114.

Figure 43.4 Innovation Covariance Estimates, Log Likelihood, and Information Criteria

Covariances of
Innovations

Variable y1 y2

y1 1.28875 0.39751

y2 0.39751 1.41839

Log-likelihood -122.362

Information
Criteria

AICC 259.9557

HQC 266.0748

AIC 258.7249

SBC 276.8908

FPEC 1.738092

Figure 43.5 shows the cross covariances of the residuals. The values of the lag 0 are slightly different from
Figure 43.4 because of the different degrees of freedom.

Figure 43.5 Multivariate Diagnostic Checks

Cross Covariances of
Residuals

Lag Variable y1 y2

0 y1 1.26271 0.38948

y2 0.38948 1.38974

1 y1 0.03121 0.05675

y2 -0.04646 -0.05398

2 y1 0.08134 0.10599

y2 0.03482 -0.01549

3 y1 0.01644 0.11734

y2 0.00609 0.11414

Figure 43.6 and Figure 43.7 show tests for white noise residuals that are based on the cross correlations of
the residuals. The output shows that you cannot reject the null hypothesis that the residuals are uncorrelated.
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Figure 43.6 Multivariate Diagnostic Checks, Continued

Cross Correlations of
Residuals

Lag Variable y1 y2

0 y1 1.00000 0.29401

y2 0.29401 1.00000

1 y1 0.02472 0.04284

y2 -0.03507 -0.03884

2 y1 0.06442 0.08001

y2 0.02628 -0.01115

3 y1 0.01302 0.08858

y2 0.00460 0.08213

Schematic Representation of Cross Correlations of
Residuals

Variable/Lag 0 1 2 3

y1 ++ .. .. ..

y2 ++ .. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Figure 43.7 Multivariate Diagnostic Checks, Continued

Portmanteau Test for Cross
Correlations of Residuals

Up To
Lag DF Chi-Square Pr > ChiSq

2 4 1.58 0.8124

3 8 2.78 0.9473

The VARMAX procedure provides diagnostic checks for the univariate form of the equations. The table in
Figure 43.8 describes how well each univariate equation fits the data. From the two univariate regression
equations shown in Figure 43.3, the values of R2 in the second column of Figure 43.8 are 0.84 and 0.79.
The standard deviations in the third column are the square roots of the diagonal elements of the covariance
matrix from Figure 43.4. The F statistics in the fourth column test the null hypotheses �11 D �12 D 0 and
�21 D �22 D 0, where �ij is the (i, j) element of the matrix ˆ1. The last column shows the p-values of the
F statistics. The results show that each univariate model is significant.

Figure 43.8 Univariate Diagnostic Checks

Univariate Model ANOVA Diagnostics

Variable R-Square
Standard
Deviation F Value Pr > F

y1 0.8351 1.13523 491.25 <.0001

y2 0.7906 1.19096 366.29 <.0001

The check for white noise residuals in terms of the univariate equation is shown in Figure 43.9. This output
contains information that indicates whether the residuals are correlated and heteroscedastic. In the first table,
the second column contains the Durbin-Watson test statistics to test the null hypothesis that the residuals are
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uncorrelated. The third and fourth columns show the Jarque-Bera normality test statistics and their p-values
to test the null hypothesis that the residuals have normality. The last two columns show F statistics and their
p-values for ARCH(1) disturbances to test the null hypothesis that the residuals have equal covariances. The
second table includes F statistics and their p-values for AR(1), AR(1,2), AR(1,2,3) and AR(1,2,3,4) models
of residuals to test the null hypothesis that the residuals are uncorrelated.

Figure 43.9 Univariate Diagnostic Checks, Continued

Univariate Model White Noise Diagnostics

Normality ARCH

Variable
Durbin

Watson Chi-Square Pr > ChiSq F Value Pr > F

y1 1.94534 3.56 0.1686 0.13 0.7199

y2 2.06276 5.42 0.0667 2.10 0.1503

Univariate Model AR Diagnostics

AR1 AR2 AR3 AR4

Variable F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F

y1 0.02 0.8980 0.14 0.8662 0.09 0.9629 0.82 0.5164

y2 0.52 0.4709 0.41 0.6650 0.32 0.8136 0.32 0.8664

The table in Figure 43.10 shows forecasts, their prediction errors, and 95% confidence limits. For more
information, see the section “Forecasting” on page 3084.

Figure 43.10 Forecasts

Forecasts

Variable Obs Time Forecast
Standard

Error

95%
Confidence
Limits

y1 101 2000 -3.59212 1.13523 -5.81713 -1.36711

102 2001 -3.09448 1.70915 -6.44435 0.25539

103 2002 -2.17433 2.14472 -6.37792 2.02925

104 2003 -1.11395 2.43166 -5.87992 3.65203

105 2004 -0.14342 2.58740 -5.21463 4.92779

y2 101 2000 -2.09873 1.19096 -4.43298 0.23551

102 2001 -2.77050 1.47666 -5.66469 0.12369

103 2002 -2.75724 1.74212 -6.17173 0.65725

104 2003 -2.24943 2.01925 -6.20709 1.70823

105 2004 -1.47460 2.25169 -5.88782 2.93863
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Bayesian Vector Autoregressive Model
The Bayesian vector autoregressive (BVAR) model avoids problems of collinearity and overparameterization
that often occur with the use of VAR models. BVAR models avoid these problems by imposing priors on the
AR parameters.

The following statements fit a BVAR(1) model to the simulated data:

/*--- Bayesian Vector Autoregressive Process ---*/

proc varmax data=simul1;
model y1 y2 / p=1 noint

prior=(lambda=0.9 theta=0.1);
run;

The hyperparameters, LAMBDA=0.9 and THETA=0.1, in the PRIOR= option control the prior covariance.
Part of the VARMAX procedure output is shown in Figure 43.11, whose parameter estimates are slightly
different from those in Figure 43.3. By choosing the appropriate priors, you might be able to obtain more
accurate forecasts by using a BVAR model instead of an unconstrained VAR model. For more information,
see the section “Bayesian VAR and VARX Modeling” on page 3102.

Figure 43.11 Parameter Estimates for the BVAR(1) Model

The VARMAX Procedure

Type of Model BVAR(1)

Estimation Method Maximum Likelihood Estimation

Prior Lambda 0.9

Prior Theta 0.1

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 AR1_1_1 1.02312 0.04999 20.47 0.0001 y1(t-1)

AR1_1_2 -0.32867 0.04807 -6.84 0.0001 y2(t-1)

y2 AR1_2_1 0.37863 0.04867 7.78 0.0001 y1(t-1)

AR1_2_2 0.52911 0.05670 9.33 0.0001 y2(t-1)

Covariances of
Innovations

Variable y1 y2

y1 1.39090 0.50192

y2 0.50192 1.51456
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Vector Error Correction Model
A vector error correction model (VECM) can lead to a better understanding of the nature of any nonstation-
arity among the different component series and can also improve longer-term forecasting compared to an
unconstrained model.

The VECM(p) form with the cointegration rank, r.� k/, is written as

�yt D ı C…yt�1 C
p�1X
iD1

ˆ�i �yt�i C �t

where � is the differencing operator, such that �yt D yt � yt�1; … D ˛ˇ0, where ˛ and ˇ are k � r
matrices; and ˆ�i is a k � k matrix.

The VECM(p) form has an equivalent VAR(p) representation as described in the section “Vector Autoregres-
sive Model” on page 2978.

yt D ı C .Ik C…Cˆ�1/yt�1 C
p�1X
iD2

.ˆ�i �ˆ
�
i�1/yt�i �ˆ

�
p�1yt�p C �t

where Ik is a k � k identity matrix.

An example of the second-order nonstationary vector autoregressive model is

yt D
�
�0:2 0:1

0:5 0:2

�
yt�1 C

�
0:8 0:7

�0:4 0:6

�
yt�2 C �t

with

† D

�
100 0

0 100

�
and y�1 D y0 D

�
0

0

�

This process can be given the following VECM(2) representation with the cointegration rank one:

�yt D
�
�0:4

0:1

�
.1;�2/yt�1 �

�
0:8 0:7

�0:4 0:6

�
�yt�1 C �t

The following PROC IML statements generate simulated data for this VECM(2) form and the PROC SGPLOT
statements plot the data, as shown in Figure 43.12:
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proc iml;
sig = 100*i(2);
phi = {-0.2 0.1, 0.5 0.2, 0.8 0.7, -0.4 0.6};
call varmasim(y,phi) sigma=sig n=100 initial=0

seed=45876;
cn = {'y1' 'y2'};
create simul2 from y[colname=cn];
append from y;

quit;

data simul2;
set simul2;
date = intnx( 'year', '01jan1900'd, _n_-1 );
format date year4. ;

run;

proc sgplot data=simul2;
series x=date y=y1 / lineattrs=(pattern=solid);
series x=date y=y2 / lineattrs=(pattern=dash);
yaxis label="Series";

run;

Figure 43.12 Plot of Generated Data Process
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Cointegration Testing

The following statements use the Johansen cointegration rank test. The COINTTEST=(JOHANSEN) option
performs the Johansen trace test and is equivalent to specifying the COINTTEST option with no additional
suboptions or specifying the COINTTEST=(JOHANSEN=(TYPE=TRACE)) option.

/*--- Cointegration Test ---*/

proc varmax data=simul2;
model y1 y2 / p=2 noint dftest cointtest=(johansen);

run;

Figure 43.13 shows the output for Dickey-Fuller tests for the nonstationarity of each series and the Johansen
cointegration rank test between series.

Figure 43.13 Dickey-Fuller Tests and Cointegration Rank Test

The VARMAX Procedure

Unit Root Test

Variable Type Rho Pr < Rho Tau Pr < Tau

y1 Zero Mean 1.47 0.9628 1.65 0.9755

Single Mean -0.80 0.9016 -0.47 0.8916

Trend -10.88 0.3573 -2.20 0.4815

y2 Zero Mean -0.05 0.6692 -0.03 0.6707

Single Mean -6.03 0.3358 -1.72 0.4204

Trend -50.49 0.0003 -4.92 0.0006

Cointegration Rank Test Using Trace

H0:
Rank=r

H1:
Rank>r Eigenvalue Trace Pr > Trace

Drift in
ECM

Drift in
Process

0 0 0.5086 70.7279 <.0001 NOINT Constant

1 1 0.0111 1.0921 0.3441

In Dickey-Fuller tests, the second column specifies three types of models, which are zero mean, single mean,
or trend. The third column (Rho) and the fifth column (Tau) are the test statistics that are used to test the null
hypothesis that the series has a unit root. Other columns are their p-values. You can see that both series have
unit roots. For a description of Dickey-Fuller tests, see the section “PROBDF Function for Dickey-Fuller
Tests” on page 160 in Chapter 6, “SAS Macros and Functions.”

In the “Cointegration Rank Test Using Trace” table, the last two columns explain the drift in the model or
process. Because the NOINT option is specified, the model is

�yt D …yt�1 Cˆ�1�yt�1 C �t

The column Drift in ECM indicates that there is no separate drift in the error correction model, and the
column Drift in Process indicates that the process has a constant drift before differencing.

H0 is the null hypothesis, and H1 is the alternative hypothesis. The first row tests the cointegration rank
r D 0 against r > 0, and the second row tests r D 1 against r > 1. The trace test statistics in the fourth
column are computed by �T

Pk
iDrC1 log.1 � �i /, where T is the available number of observations and �i
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is the eigenvalue in the third column. The p-values for these statistics are output in the fifth column. If you
compare the p-value in each row to the significance level of interest (such as 5%), the null hypothesis that
there is no cointegrated process (H0: r D 0) is rejected, whereas the null hypothesis that there is at most one
cointegrated process (H0: r D 1) cannot be rejected.

The following statements fit a VECM(2) form to the simulated data:

/*--- Vector Error Correction Model ---*/

proc varmax data=simul2;
model y1 y2 / p=2 noint lagmax=3

print=(iarr estimates);
cointeg rank=1 normalize=y1;

run;

The results in Figure 43.13 indicate that the time series are cointegrated with rank = 1. So you might want
to specify the RANK=1 option in the COINTEG statement. For normalizing the value of the cointegrated
vector, you specify the normalized variable by using the NORMALIZE= option in the COINTEG statement.
The COINTEG statement produces the estimates of the long-run parameter, ˇ, and the adjustment coefficient,
˛. The PRINT=(IARR) option provides the VAR(2) representation.

The VARMAX procedure output is shown in Figure 43.14 through Figure 43.17. In Figure 43.14, “1”
indicates the first column of the ˛ and ˇ matrices. Because the cointegration rank is 1 in the bivariate system,
˛ and ˇ are two-dimensional vectors. The estimated cointegrating vector is Ǒ D .1;�1:96/0. Therefore,
the long-run relationship between y1t and y2t is y1t D 1:96y2t . The first element of Ǒ is 1 because y1 is
specified as the normalized variable. Asymptotically, ˛ follows a normal distribution, and the t values and
p-values of its elements are shown in the “Alpha and Beta Parameter Estimates” table; however, because ˇ
follows a nonnormal distribution, the corresponding standard errors, t values, and p-values are missing. The
Variable column shows the variables that correspond to the coefficients. For example, for the coefficient ˛ij
(the ith element in the jth column of ˛), ALPHAi_j , the variable is the inner product of the transpose of the
jth column of ˇ (Beta[,j]0) and the vector of lag 1 dependent variables yt�1 (_DEP_(t–1)).
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Figure 43.14 Parameter Estimates for the VECM(2) Form

The VARMAX Procedure

Type of Model VECM(2)

Estimation Method Maximum Likelihood Estimation

Cointegrated Rank 1

Beta

Variable 1

y1 1.00000

y2 -1.95575

Alpha

Variable 1

y1 -0.46680

y2 0.10667

Alpha and Beta Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

D_y1 ALPHA1_1 -0.46680 0.04786 -9.75 <.0001 Beta[,1]'*_DEP_(t-1)

BETA1_1 1.00000 y1(t-1)

D_y2 ALPHA2_1 0.10667 0.05146 2.07 0.0409 Beta[,1]'*_DEP_(t-1)

BETA2_1 -1.95575 y2(t-1)

Figure 43.15 shows the parameter estimates in terms of lag 1 coefficients, yt�1, and lag 1 first-differenced
coefficients, �yt�1, and their significance. “Alpha * Beta0” indicates the coefficients of yt�1 and is obtained
by multiplying the Alpha and Beta estimates in Figure 43.14. The parameter AR1_i_j (which is shown
in the “Model Parameter Estimates” table) corresponds to the elements in the “Alpha * Beta0” matrix. The
parameter AR2_i_j corresponds to the elements in the differenced lagged AR coefficient matrix. The “D_”
prefixed to a variable name in Figure 43.15 implies differencing.
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Figure 43.15 Parameter Estimates for the VECM(2) Form, Continued

Parameter Alpha * Beta'
Estimates

Variable y1 y2

y1 -0.46680 0.91295

y2 0.10667 -0.20862

AR Coefficients of Differenced Lag

DIF Lag Variable y1 y2

1 y1 -0.74332 -0.74621

y2 0.40493 -0.57157

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

D_y1 AR1_1_1 -0.46680 0.04786 -9.75 <.0001 y1(t-1)

AR1_1_2 0.91295 0.09359 9.75 <.0001 y2(t-1)

AR2_1_1 -0.74332 0.04526 -16.42 <.0001 D_y1(t-1)

AR2_1_2 -0.74621 0.04769 -15.65 <.0001 D_y2(t-1)

D_y2 AR1_2_1 0.10667 0.05146 2.07 0.0409 y1(t-1)

AR1_2_2 -0.20862 0.10064 -2.07 0.0409 y2(t-1)

AR2_2_1 0.40493 0.04867 8.32 <.0001 D_y1(t-1)

AR2_2_2 -0.57157 0.05128 -11.15 <.0001 D_y2(t-1)

Figure 43.16 shows the parameter estimates of the innovations covariance matrix and their significance.

Figure 43.16 Parameter Estimates for the VECM(2) Form, Continued

Covariance Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

COV1_1 94.75575 13.53654 7.00 <.0001

COV1_2 4.52684 10.30302 0.44 0.6614

COV2_2 109.57038 15.65291 7.00 <.0001

The fitted model is represented as

�yt D

0BB@
�0:467 0:913

.0:048/ .0:094/

0:107 �0:209

.0:051/ .0:100/

1CCA yt�1 C

0BB@
�0:743 �0:746

.0:045/ .0:048/

0:405 �0:572

.0:049/ .0:051/

1CCA�yt�1 C �t
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Figure 43.17 Change the VECM(2) Form to the VAR(2) Model

Infinite Order AR
Representation

Lag Variable y1 y2

1 y1 -0.21013 0.16674

y2 0.51160 0.21980

2 y1 0.74332 0.74621

y2 -0.40493 0.57157

3 y1 0.00000 0.00000

y2 0.00000 0.00000

The PRINT=(IARR) option in the previous SAS statements prints the reparameterized coefficient estimates.
Because LAGMAX=3 in those statements, the coefficient matrix of lag 3 is zero.

The VECM(2) form in Figure 43.17 can be rewritten as the following second-order vector autoregressive
model:

yt D
�
�0:210 0:167

0:512 0:220

�
yt�1 C

�
0:743 0:746

�0:405 0:572

�
yt�2 C �t

Bayesian Vector Error Correction Model
Bayesian inference on a cointegrated system begins by using the priors of ˇ, which are obtained from the
VECM(p) form. Bayesian vector error correction models can improve forecast accuracy for cointegrated
processes.

To use a Bayesian vector error correction model, you specify both the PRIOR= option in the MODEL
statement and the COINTEG statement. The following statements fit a BVECM(2) form to the simulated
data:

/*--- Bayesian Vector Error Correction Model ---*/

proc varmax data=simul2;
model y1 y2 / p=2 noint

prior=( lambda=0.5 theta=0.2 )
print=(estimates);

cointeg rank=1 normalize=y1;
run;

The VARMAX procedure output in Figure 43.18 shows the model type fitted to the data, the estimates
of the adjustment coefficient (˛), the parameter estimates in terms of lag 1 coefficients (yt�1), and lag 1
first-differenced coefficients (�yt�1).
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Figure 43.18 Parameter Estimates for the BVECM(2) Form

The VARMAX Procedure

Type of Model BVECM(2)

Estimation Method Maximum Likelihood Estimation

Cointegrated Rank 1

Prior Lambda 0.5

Prior Theta 0.2

Alpha

Variable 1

y1 -0.34173

y2 0.17202

Parameter Alpha * Beta'
Estimates

Variable y1 y2

y1 -0.34173 0.66835

y2 0.17202 -0.33643

AR Coefficients of Differenced Lag

DIF Lag Variable y1 y2

1 y1 -0.80345 -0.59201

y2 0.33192 -0.52779

Vector Autoregressive Fractionally Integrated Moving Average Model
Fractionally integrated models can be used to model stationary time series whose sample autocorrelation
function decays slowly at large positive and negative lags. This behavior is often referred to as long-range
dependence (LRD), long memory, or persistence; series that exhibit such behavior are called long-range
dependent (LRD).

A typical parametric model for a k-dimensional series yt D .y1t ; : : : ; ykt /0; t D 1; : : : ; T; whose individual
components are LRD is the VARFIMA (vector autoregressive fractionally integrated moving average) model.
It is obtained as a natural extension of the well-known class of ARFIMA models by fractionally integrating
the individual components of a k-dimensional white noise series. For example, a bivariate VARFIMA.0;D; 0/
series with no intercept term is given by

yt D
�
y1t
y2t

�
D

�
.I � B/�d1 0

0 .I � B/�d2

��
�1t
�2t

�
D .I � B/�D�t

where B is the backshift operator; I D B0 is the identity operator; d1; d2 2 .�1=2; 1=2/ are the LRD
parameters of the component series fy1tgt2Z and fy2tgt2Z, respectively; D D diag.d1; d2/; and f�tgt2Z=
f.�1t ; �2t /

0gt2Z is a bivariate white noise series indexed by the set of integers Z with zero mean E�t D 0 and
covariance E�t�0t D †.

The multivariate VARFIMA model is defined analogously. The matrix † is in general nondiagonal, which
enables the VARFIMA model to capture dependence between the individual series.
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The following statements plot a simulated bivariate VARFIMA.0;D; 0/ series with d1 D 0:2, d2 D 0:4, and
Gaussian errors with †11 D †22 D 3 and †12 D 0:5:

data VARFIMA0D0;
time = _N_;
input y1 y2;

datalines;
1.6380971 1.877144

... more lines ...

0.3482938 4.8601886
1.5320803 2.8687495
;

proc sgplot data = VARFIMA0D0;
series x = time y=y1 / lineattrs=(pattern=solid);
series x = time y=y2 / lineattrs=(pattern=dash);
yaxis label="Series";

run;
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Figure 43.19 Plot of the Data

Before fitting a VARFIMA model to a data set, you should plot the series’ sample autocorrelation function to
confirm its slow decay. It is also instructive to plot the periodogram of the series. In the presence of long
memory, the periodogram explodes at frequencies near 0.

The following statements produce the periodogram and the sample autocorrelation function for the specified
data:

ods graphics on;
proc timeseries data= VARFIMA0D0 plots = (periodogram acf);

var y1 y2;
spectra freq / adjmean;
corr / NLAG = 30;

run;
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Figure 43.20 Sample Autocorrelation Functions of the Two Series

Figure 43.21 Periodograms of the Two Series

The magnitude of the LRD parameters d1 and d2 controls the memory of the two series. Series y2 has a
larger LRD parameter than series y1 and hence is expected to exhibit longer memory. In the time domain,
this effect is illustrated in Figure 43.20, where the autocorrelation function of series y2 (right plot in
Figure 43.20) decays more slowly than the autocorrelation function of series y1 (left plot in Figure 43.20)
with the increasing lag.

Figure 43.21 is the frequency domain analogue of Figure 43.20. In this case, the longer memory of series y2
is reflected by its periodogram (right plot in Figure 43.21), which blows up higher than the periodogram of
series y1 (left plot in Figure 43.21) at frequencies near 0. Note the different scales used in the two plots.

The following statements fit the VARFIMA.0;D; 0/ model with no intercept term to the data. The FI option
in the MODEL statement specifies fractional integration.

proc varmax data = VARFIMA0D0;
model y1 y2 / fi noint method = ML;

run;
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Figure 43.22 Parameter Estimates for the VARFIMA.0;D; 0/ Model

The VARMAX Procedure

Type of Model VARFIMA(0,D,0)

Estimation Method Maximum Likelihood Estimation

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 D1 0.20250 0.03555 5.70 0.0001

y2 D2 0.38839 0.03053 12.72 0.0001

Covariances of
Innovations

Variable y1 y2

y1 3.20607 0.48068

y2 0.48068 3.15651

The estimation method that PROC VARMAX uses by default for the VARFIMA series is maximum likelihood
(for more information, see the section “VARFIMA and VARFIMAX Modeling” on page 3150). All five
parameter are estimated close to their true value and are significant.

Vector Autoregressive Model with Exogenous Variables
A VAR process can be affected by other observable variables that are determined outside the system of
interest. Such variables are called exogenous (independent) variables. Exogenous variables can be stochastic
or nonstochastic. The process can also be affected by the lags of exogenous variables. A model used to
describe this process is called a VARX(p,s) model.

The VARX(p,s) model is written as

yt D ı C
pX
iD1

ˆiyt�i C
sX
iD0

‚�i xt�i C �t

where xt D .x1t ; : : : ; xrt /0 is an r-dimensional time series vector and ‚�i is a k � r matrix.

For example, a VARX(1,0) model is

yt D ı Cˆ1yt�1 C‚�0xt C �t

where yt D .y1t ; y2t ; y3t /0 and xt D .x1t ; x2t /0.

The following statements fit the VARX(1,0) model to the given data:
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data grunfeld;
input year y1 y2 y3 x1 x2 x3;
label y1='Gross Investment GE'

y2='Capital Stock Lagged GE'
y3='Value of Outstanding Shares GE Lagged'
x1='Gross Investment W'
x2='Capital Stock Lagged W'
x3='Value of Outstanding Shares Lagged W';

datalines;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1

... more lines ...

/*--- Vector Autoregressive Process with Exogenous Variables ---*/

proc varmax data=grunfeld;
model y1-y3 = x1 x2 / p=1 lagmax=5

printform=univariate
print=(impulsx=(all) estimates);

run;

The VARMAX procedure output is shown in Figure 43.23 through Figure 43.25.

Figure 43.23 shows the descriptive statistics for the dependent (endogenous) and independent (exogenous)
variables with labels.

Figure 43.23 Descriptive Statistics for the VARX(1, 0) Model

The VARMAX Procedure

Number of Observations 20

Number of Pairwise Missing 0

Simple Summary Statistics

Variable Type N Mean
Standard
Deviation Min Max Label

y1 Dependent 20 102.29000 48.58450 33.10000 189.60000 Gross Investment GE

y2 Dependent 20 1941.32500 413.84329 1170.60000 2803.30000 Capital Stock Lagged GE

y3 Dependent 20 400.16000 250.61885 97.80000 888.90000 Value of Outstanding Shares GE Lagged

x1 Independent 20 42.89150 19.11019 12.93000 90.08000 Gross Investment W

x2 Independent 20 670.91000 222.39193 191.50000 1193.50000 Capital Stock Lagged W

Figure 43.24 shows the parameter estimates for the constant, the lag zero coefficients of exogenous variables,
and the lag one AR coefficients. From the schematic representation of parameter estimates, the significance
of the parameter estimates can be easily verified. The symbol “C” means the constant and “XL0” means the
lag zero coefficients of exogenous variables.
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Figure 43.24 Parameter Estimates for the VARX(1, 0) Model

The VARMAX Procedure

Type of Model VARX(1,0)

Estimation Method Least Squares Estimation

Constant

Variable Constant

y1 -12.01279

y2 702.08673

y3 -22.42110

XLag

Lag Variable x1 x2

0 y1 1.69281 -0.00859

y2 -6.09850 2.57980

y3 -0.02317 -0.01274

AR

Lag Variable y1 y2 y3

1 y1 0.23699 0.00763 0.02941

y2 -2.46656 0.16379 -0.84090

y3 0.95116 0.00224 0.93801

Schematic Representation

Variable/Lag C XL0 AR1

y1 . +. ...

y2 + .+ ...

y3 - .. +.+

+ is > 2*std error, - is < -2*std error, . is between, * is N/A

Figure 43.25 shows the parameter estimates and their significance.
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Figure 43.25 Parameter Estimates for the VARX(1, 0) Model Continued

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 CONST1 -12.01279 27.47108 -0.44 0.6691 1

XL0_1_1 1.69281 0.54395 3.11 0.0083 x1(t)

XL0_1_2 -0.00859 0.05361 -0.16 0.8752 x2(t)

AR1_1_1 0.23699 0.20668 1.15 0.2722 y1(t-1)

AR1_1_2 0.00763 0.01627 0.47 0.6470 y2(t-1)

AR1_1_3 0.02941 0.04852 0.61 0.5548 y3(t-1)

y2 CONST2 702.08673 256.48046 2.74 0.0169 1

XL0_2_1 -6.09850 5.07849 -1.20 0.2512 x1(t)

XL0_2_2 2.57980 0.50056 5.15 0.0002 x2(t)

AR1_2_1 -2.46656 1.92967 -1.28 0.2235 y1(t-1)

AR1_2_2 0.16379 0.15193 1.08 0.3006 y2(t-1)

AR1_2_3 -0.84090 0.45304 -1.86 0.0862 y3(t-1)

y3 CONST3 -22.42110 10.31166 -2.17 0.0487 1

XL0_3_1 -0.02317 0.20418 -0.11 0.9114 x1(t)

XL0_3_2 -0.01274 0.02012 -0.63 0.5377 x2(t)

AR1_3_1 0.95116 0.07758 12.26 0.0001 y1(t-1)

AR1_3_2 0.00224 0.00611 0.37 0.7201 y2(t-1)

AR1_3_3 0.93801 0.01821 51.50 0.0001 y3(t-1)

The fitted model is given as

0BBBB@
y1t

y2t

y3t

1CCCCA D

0BBBBBB@

�12:013

.27:471/

702:086

.256:480/

�22:421

.10:312/

1CCCCCCAC
0BBBBBB@

1:693 �0:009

.0:544/ .0:054/

�6:099 2:580

.5:078/ .0:501/

�0:023 �0:013

.0:204/ .0:020/

1CCCCCCA
0@ x1t

x2t

1A

C

0BBBBBB@

0:237 0:008 0:029

.0:207/ .0:016/ .0:049/

�2:467 0:164 �0:841

.1:930/ .0:152/ .0:453/

0:951 0:002 0:938

.0:078/ .0:006/ .0:018/

1CCCCCCA

0BBBB@
y1;t�1

y2;t�1

y3;t�1

1CCCCAC
0BBBB@
�1t

�2t

�3t

1CCCCA
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Parameter Estimation and Testing on Restrictions
In the previous example, the VARX(1,0) model is written as

yt D ı C‚�0xt Cˆ1yt�1 C �t

with

‚�0 D

0@ ��11 ��12
��21 ��22
��31 ��32

1A ˆ1 D

0@ �11 �12 �13
�21 �22 �23
�31 �32 �33

1A
In Figure 43.25 of the preceding section, you can see several insignificant parameters. For example, the
coefficients XL0_1_2, AR1_1_2, and AR1_3_2 are insignificant.

The following statements restrict the coefficients of ��12 D �12 D �32 D 0 for the VARX(1,0) model:

/*--- Models with Restrictions and Tests ---*/

proc varmax data=grunfeld;
model y1-y3 = x1 x2 / p=1 print=(estimates);
restrict XL(0,1,2)=0, AR(1,1,2)=0, AR(1,3,2)=0;

run;

The output in Figure 43.26 shows that three parameters ��12, �12, and �32 are replaced by the restricted
values, zeros, and their standard errors are also zeros to indicate that the parameters are fixed to these values.
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Figure 43.26 Parameter Estimation with Restrictions

The VARMAX Procedure

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 CONST1 -2.16781 13.13755 -0.17 0.8715 1

XL0_1_1 1.67592 0.40792 4.11 0.0012 x1(t)

XL0_1_2 0.00000 0.00000 x2(t)

AR1_1_1 0.27671 0.17606 1.57 0.1401 y1(t-1)

AR1_1_2 0.00000 0.00000 y2(t-1)

AR1_1_3 0.01747 0.03519 0.50 0.6279 y3(t-1)

y2 CONST2 768.14598 224.12735 3.43 0.0045 1

XL0_2_1 -6.30880 4.85729 -1.30 0.2166 x1(t)

XL0_2_2 2.65308 0.43840 6.05 0.0001 x2(t)

AR1_2_1 -2.16968 1.83550 -1.18 0.2584 y1(t-1)

AR1_2_2 0.10945 0.11751 0.93 0.3686 y2(t-1)

AR1_2_3 -0.93053 0.41478 -2.24 0.0429 y3(t-1)

y3 CONST3 -19.88165 7.69575 -2.58 0.0227 1

XL0_3_1 -0.03576 0.20079 -0.18 0.8614 x1(t)

XL0_3_2 -0.00919 0.01747 -0.53 0.6076 x2(t)

AR1_3_1 0.96398 0.06907 13.96 0.0001 y1(t-1)

AR1_3_2 0.00000 0.00000 y2(t-1)

AR1_3_3 0.93412 0.01473 63.41 0.0001 y3(t-1)

The output in Figure 43.27 shows the estimates of the Lagrangian parameters and their significance. Based
on the p-values associated with the Lagrangian parameters, you cannot reject the null hypotheses ��12 D 0,
�12 D 0, and �32 D 0 with the 0.05 significance level.

Figure 43.27 RESTRICT Statement Results

Testing of the Restricted Parameters

Parameter Estimate
Standard

Error t Value Pr > |t| Equation

Restrict0 1.74969 21.44026 0.08 0.9353 XL0_1_2 = 0

Restrict1 30.36254 70.74347 0.43 0.6700 AR1_1_2 = 0

Restrict2 55.42191 164.03075 0.34 0.7371 AR1_3_2 = 0

The TEST statement in the following example tests �31 D 0 and ��12 D �12 D �32 D 0 for the VARX(1,0)
model:

proc varmax data=grunfeld;
model y1-y3 = x1 x2 / p=1;
test AR(1,3,1)=0;
test XL(0,1,2)=0, AR(1,1,2)=0, AR(1,3,2)=0;

run;

The output in Figure 43.28 shows that the first column in the output is the index corresponding to each TEST
statement. You can reject the hypothesis test �31 D 0 at the 0.05 significance level, but you cannot reject the
joint hypothesis test ��12 D �12 D �32 D 0 at the 0.05 significance level.
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Figure 43.28 TEST Statement Results

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 1 150.31 <.0001

2 3 0.34 0.9522

Causality Testing
The following statements use the CAUSAL statement to compute the Granger causality test for a VAR(1)
model. For the Granger causality tests, the autoregressive order should be defined by the P= option in the
MODEL statement. The variable groups are defined in the CAUSAL statement as well. Regardless of
whether the variables specified in the GROUP1= and GROUP2= options are designated as dependent or
exogenous (independent) variables in the MODEL statement, the CAUSAL statement fits the VAR(p) model
by considering the variables in the two groups as dependent variables.

/*--- Causality Testing ---*/

proc varmax data=grunfeld;
model y1-y3 = x1 x2 / p=1 noprint;
causal group1=(x1) group2=(y1-y3);
causal group1=(y3) group2=(y1 y2);

run;

The output in Figure 43.29 is associated with the CAUSAL statement. The first CAUSAL statement fits the
VAR(1) model by using the variables y1, y2, y3, and x1. The second CAUSAL statement fits the VAR(1)
model by using the variables y1, y3, and y2.

Figure 43.29 CAUSAL Statement Results

The VARMAX Procedure

Granger-Causality Wald Test

Test DF Chi-Square Pr > ChiSq

1 3 2.40 0.4946

2 2 262.88 <.0001

Test 1:  Group 1 Variables: x1

Group 2 Variables: y1 y2 y3

Test 2:  Group 1 Variables: y3

Group 2 Variables: y1 y2

The null hypothesis of the Granger causality test is that GROUP1 is influenced only by itself, and not by
GROUP2.

The first column in the output is the index corresponding to each CAUSAL statement. The output shows that
you cannot reject that x1 is influenced by itself and not by .y1; y2; y3/ at the 0.05 significance level for Test
1. You can reject that y3 is influenced by itself and not by .y1; y2/ for Test 2. For more information, see the
section “VAR and VARX Modeling” on page 3095.
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Multivariate GARCH Models
Modeling and forecasting the volatility of time series has been the focus of many researchers and practitioners,
especially in the fields of risk management, portfolio optimization, and asset pricing. One of the most
powerful tools for volatility modeling is the autoregressive conditional heteroscedasticity (ARCH) model
proposed by Engle (1982) and extended by Bollerslev (1986) to the generalized autoregressive conditional
heteroscedasticity (GARCH) model. The VARMAX procedure supports three forms of multivariate GARCH
models: BEKK, CCC, and DCC. This section shows some examples of how to specify, estimate, and compare
various forms of multivariate GARCH models.

Data about two indices, the Dow Jones Industrial Average index and the Standard & Poor’s 500 index, are
obtained from Yahoo Finance and used in this section. The sample contains daily data from February 16,
2005, to February 13, 2015. The following statements input the daily prices and then generate the daily
returns:

data indices;
input date : MMDDYY10. DJIA SP500;
logDJIA = log(DJIA); logSP500 = log(SP500);
rDJIA = (logDJIA-lag(logDJIA))*100;
rSP500 = (logSP500-lag(logSP500))*100;

datalines;
2/16/2005 10834.88 1210.34
2/17/2005 10754.26 1200.75
2/18/2005 10785.22 1201.59

... more lines ...

2/12/2015 17972.38 2088.48
2/13/2015 18019.35 2096.99
;

To model the volatility of bivariate returns, rDJIA and rSP500, you can start with the BEKK GARCH(1,1)
model. The following equations describe the bivariate BEKK GARCH(1,1) model:

rt D H
1
2

t �t

Ht D C C A01rt�1r
0
t�1A1 CG

0
1Ht�1G1

D

�
c11 c12
c12 c22

�
C

�
a11;1 a12;1
a21;1 a22;1

�0 �
r1;t�1
r2;t�1

� �
r1;t�1
r2;t�1

�0 �
a11;1 a12;1
a21;1 a22;1

�
C

�
g11;1 g12;1
g21;1 g22;1

�0 �
h11;t�1 h12;t�1
h12;t�1 h22;t�1

� �
g11;1 g12;1
g21;1 g22;1

�

In these equations, rt is the vector of returns at time t, Ht is the conditional covariance matrix of rt , H
1
2

t

denotes the square root of Ht such that the square of matrix H
1
2

t is Ht , �t is the innovation at time t and
follows an iid bivariate standard normal distribution, C is a 2 � 2 symmetric parameter matrix, A1 is a 2 � 2
full parameter matrix for the first lag of the ARCH term, and G1 is a 2 � 2 full parameter matrix for the first
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lag of the GARCH term. Hence, there are 11 parameters in total for a bivariate BEKK GARCH(1,1) model;
that is, a vector

�
c11; c12; c22; a11;1; a21;1; a12;1; a22;1; g11;1; g21;1; g12;1; g22;1

�0.
You can use the FORM=BEKK option in the GARCH statement to specify the BEKK GARCH form, or
you can omit this option because BEKK is the default value for the FORM= option. The Q= option in
the GARCH statement specifies the lags of the ARCH terms, and the P= option in the GARCH statement
specifies the lags of the GARCH terms. The forecasts of conditional covariance matrices are output to a SAS
data set when you specify the OUTHT= option in the GARCH statement. The parameter estimates and their
covariance matrix are output to a SAS data set when you specify the OUTEST= option together with the
OUTCOV option in the PROC VARMAX statement.

The following statement specifies the BEKK GARCH(1,1) model:

/*--- BEKK ---*/

proc varmax data=indices outest=oebekk outcov;
model rDJIA rSP500 / noint;
garch p=1 q=1 form=bekk outht=ohbekk;

run;

Figure 43.30 shows the log likelihood and the information criteria. They are used later in the model
comparison.

Figure 43.30 BEKK GARCH Log Likelihood and Information Criteria

The VARMAX Procedure

Log-likelihood 1360.976

Information
Criteria

AICC -2699.85

HQC -2676.68

AIC -2699.95

SBC -2635.82

FPEC 0.080617

Figure 43.31 shows the parameters estimates for the BEKK GARCH(1,1) model. For the constant term
C, GCHCi_j, i; j D 1; 2, correspond to parameters cij , respectively. Because C is symmetric, GCHC2_1 is
omitted. For the ARCH and GARCH terms, ACHl_i_j, l D 1; i; j D 1; 2, correspond to aij;l , respectively,
and GCHl_i_j, l D 1; i; j D 1; 2, correspond to gij;l , respectively.
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Figure 43.31 BEKK GARCH Parameter Estimates

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

GCHC1_1 0.19101 0.00000

GCHC1_2 0.09343 0.00000

GCHC2_2 0.00000 0.01807 0.00 1.0000

ACH1_1_1 0.27518 0.13503 2.04 0.0417

ACH1_2_1 0.20619 0.11122 1.85 0.0639

ACH1_1_2 0.24907 0.11982 2.08 0.0377

ACH1_2_2 0.23448 0.09739 2.41 0.0161

GCH1_1_1 0.11391 0.10984 1.04 0.2998

GCH1_2_1 0.64841 0.11363 5.71 0.0001

GCH1_1_2 0.75455 0.11263 6.70 0.0001

GCH1_2_2 0.20598 0.11520 1.79 0.0739

As shown in Figure 43.31, the standard errors of GCHC1_1 and GCHC1_2 are both zeros. It might be a sign
that the numerical optimization for the BEKK GARCH model converges to a local minimum instead of
the global minimum, which often happens for nonlinear optimization of complex models that have many
parameters. A possible way to solve this problem is to try different initial values. To obtain reasonable initial
values, the following statements fit a diagonal BEKK GARCH model (that is, a restricted BEKK GARCH
model in which the ARCH and GARCH parameter matrices are diagonal):

/*--- Diagonal BEKK ---*/

proc varmax data=indices outest=oebekk outcov;
model rDJIA rSP500 / noint;
garch p=1 q=1 form=bekk;
restrict ach(1,1,2), ach(1,2,1), gch(1,1,2), gch(1,2,1);

run;

The parameter estimates of the diagonal BEKK GARCH model are shown in Figure 43.32. As expected,
the standard errors of the off-diagonal elements of the ARCH and GARCH parameter matrices (namely
ACH1_1_2, ACH1_2_1, GCH1_1_2, and GCH1_2_1) are all zeros because they are restricted in the RESTRICT
statement. All other parameters have valid standard errors.
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Figure 43.32 Diagonal BEKK GARCH Parameter Estimates

The VARMAX Procedure

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

GCHC1_1 0.01407 0.00254 5.53 0.0001

GCHC1_2 0.01446 0.00262 5.51 0.0001

GCHC2_2 0.01598 0.00299 5.34 0.0001

ACH1_1_1 0.25702 0.01251 20.54 0.0001

ACH1_2_1 0.00000 0.00000

ACH1_1_2 0.00000 0.00000

ACH1_2_2 0.26061 0.01302 20.02 0.0001

GCH1_1_1 -0.95794 0.00413 -231.85 0.0001

GCH1_2_1 0.00000 0.00000

GCH1_1_2 0.00000 0.00000

GCH1_2_2 -0.95694 0.00443 -216.10 0.0001

Figure 43.33 shows the log likelihood and the information criteria. The log likelihood for the diagonal BEKK
GARCH model is larger than that of the previous estimated BEKK GARCH model (which is shown in
Figure 43.30). The larger value confirms that the previous BEKK GARCH model does not converge to the
global minimum.

Figure 43.33 Diagonal BEKK GARCH Log Likelihood and Information Criteria

Log-likelihood 1520.235

Information
Criteria

AICC -3026.43

HQC -3011.66

AIC -3026.47

SBC -2985.66

FPEC 0.080617

The following statements reestimate the BEKK GARCH model whose initial values are parameter estimates
of the diagonal BEKK GARCH model (which are shown in Figure 43.32):

/*--- BEKK with Initial Values ---*/

proc varmax data=indices outest=oebekk outcov;
model rDJIA rSP500 / noint;
garch p=1 q=1 form=bekk;
initial gchc(1,1)=0.01407, gchc(1,2)=0.01446, gchc(2,2)=0.01598,

ach(1,1,1)=0.25702, ach(1,2,2)=0.26061,
gch(1,1,1)=-0.95794, gch(1,2,2)=-0.95694,
ach(1,1,2), ach(1,2,1), gch(1,1,2), gch(1,2,1);

run;
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The parameter estimates of the reestimated BEKK GARCH models are shown in Figure 43.34. The standard
errors of all parameters are valid.

Figure 43.34 Reestimated BEKK GARCH Parameter Estimates

The VARMAX Procedure

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

GCHC1_1 0.01999 0.00394 5.07 0.0001

GCHC1_2 0.02043 0.00391 5.22 0.0001

GCHC2_2 0.02112 0.00408 5.18 0.0001

ACH1_1_1 0.07178 0.10153 0.71 0.4796

ACH1_2_1 0.22679 0.09285 2.44 0.0147

ACH1_1_2 -0.09556 0.11262 -0.85 0.3962

ACH1_2_2 0.41214 0.10167 4.05 0.0001

GCH1_1_1 -0.95018 0.03580 -26.55 0.0001

GCH1_2_1 0.01069 0.03266 0.33 0.7434

GCH1_1_2 0.03746 0.04018 0.93 0.3513

GCH1_2_2 -0.97038 0.03589 -27.04 0.0001

Figure 43.35 shows the log likelihood and information criteria of the reestimated BEKK GARCH model.
As expected, the log likelihood of the reestimated BEKK GARCH model is larger than that of the diagonal
BEKK GARCH model. Moreover, the reestimated BEKK GARCH model has a smaller SBC, compared to
the SBC of the diagonal BEKK GARCH model (which is shown in Figure 43.33). The smaller SBC means
that the BEKK GARCH model should be chosen instead of the diagonal BEKK GARCH model.

Figure 43.35 Reestimated BEKK GARCH Log Likelihood and Information Criteria

Log-likelihood 1542.362

Information
Criteria

AICC -3062.62

HQC -3039.45

AIC -3062.72

SBC -2998.59

FPEC 0.080617

The number of parameters for a BEKK GARCH model increases very quickly as the number of dependent
variables increases. There are .p C q/k2 C k.k C 1/=2 parameters for a k-variate BEKK GARCH(p, q)
model. For example, a 16-variate BEKK GARCH(1,1) model has 648 parameters to be estimated.

Compared with BEKK GARCH models, CCC GARCH models are much more parsimonious. In a CCC
GARCH model, each series follows a GARCH process and their composition through the constant conditional
correlation matrix constructs the conditional covariance matrices. A bivariate CCC GARCH(1,1) has the
form
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rt D H
1
2

t �t

Ht D DtSDt

Dt D

� p
h11;t 0

0
p
h22;t

�
S D

�
1 s12
s12 1

�
h11;t D c11 C a11;1r

2
1;t�1 C g11;1h11;t�1

h22;t D c22 C a22;1r
2
2;t�1 C g22;1h22;t�1

where Dt is the diagonal matrix with conditional standard deviations and S is the time-invariant con-
ditional correlation matrix. Hence, there are seven parameters to be estimated; that is, a vector�
s12; c11; c22; a11;1; a22;1; g11;1; g22;1

�0. A k-variate CCC GARCH(p, q) model has .p C q C 1/k C

k.k � 1/=2 parameters. For example, a 16-variate CCC GARCH(1,1) model has 168 parameters to be
estimated, about 1=4 of the number that a BEKK GARCH(1,1) model has.

The following statements estimate a CCC GARCH(1,1) model:

/*--- CCC ---*/

proc varmax data=indices outest=oeccc outcov;
model rDJIA rSP500 / noint;
garch p=1 q=1 form=ccc outht=ohccc;

run;

Figure 43.36 shows the parameter estimates for the CCC GARCH(1,1) model. For the constant conditional
correlation matrix S, CCC1_2 corresponds to the parameter s12.

Figure 43.36 CCC GARCH Parameter Estimates

The VARMAX Procedure

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

CCC1_2 0.97294 0.00109 890.75 0.0001

GCHC1_1 0.03713 0.00504 7.37 0.0001

GCHC2_2 0.04004 0.00536 7.47 0.0001

ACH1_1_1 0.06862 0.00737 9.31 0.0001

ACH1_2_2 0.06684 0.00690 9.68 0.0001

GCH1_1_1 0.88472 0.01183 74.81 0.0001

GCH1_2_2 0.88916 0.01099 80.92 0.0001

Figure 43.37 shows the log likelihood and the information criteria. Compared to the SBC for the BEKK
GARCH model (shown in Figure 43.35), the SBC for the CCC GARCH model is much larger, which means
the CCC GARCH model should not be preferred.
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Figure 43.37 CCC GARCH Log Likelihood and Information Criteria

Log-likelihood 1474.578

Information
Criteria

AICC -2935.11

HQC -2920.34

AIC -2935.16

SBC -2894.34

FPEC 0.080617

The CCC GARCH model is not preferred over the BEKK GARCH model in this case because the basic
assumption in the CCC GARCH model—that the conditional correlation matrix is time-invariant—might not
hold. A DCC GARCH model relaxes this assumption and models the time-varying conditional correlation
matrix in an ARMA form. A bivariate DCC GARCH(1,1) has the form

rt D H
1
2

t �t

Ht D DtStDt

Dt D

� p
h11;t 0

0
p
h22;t

�
h11;t D c11 C a11;1r

2
1;t�1 C g11;1h11;t�1

h22;t D c11 C a22;1r
2
2;t�1 C g22;1h22;t�1

St D

�
1 s12;t
s12;t 1

�
s12;t D

q12;t
p
q11;tq22;t

q12;t D .1 � ˛ � ˇ/s12 C ˛
r1;t�1p
h11;t�1

r2;t�1p
h22;t�1

C ˇq12;t�1

q11;t D .1 � ˛ � ˇ/C ˛
r21;t�1

h11;t�1
C ˇq11;t�1

q22;t D .1 � ˛ � ˇ/C ˛
r22;t�1

h22;t�1
C ˇq22;t�1

where St is the time-varying conditional correlation matrix at time t. Compared to the CCC GARCH model,
two more parameters, ˛ and ˇ, are added into the DCC GARCH model. There are nine parameters in total;
that is, a vector

�
˛; ˇ; s12; c11; c22; a11;1; a22;1; g11;1; g22;1

�0.
The following statements estimate a DCC GARCH model:

/*--- DCC ---*/

proc varmax data=indices outest=oedcc outcov;
model rDJIA rSP500 / noint;
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garch p=1 q=1 form=dcc outht=ohdcc;
run;

Figure 43.38 shows the parameter estimates for the DCC GARCH(1,1) model. DCCA corresponds to the
parameter ˛, DCCB corresponds to the parameter ˇ, and DCCS1_2 corresponds to the parameter s12, the
off-diagonal element in the unconditional correlation matrix. The standard errors of many parameter estimates
are zeros, which might be a sign that the model does not converge to the global minimum.

Figure 43.38 DCC GARCH Parameter Estimates

The VARMAX Procedure

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

DCCA 0.01540 0.00000

DCCB 0.00000 0.00000

DCCS1_2 0.98743 0.00040 999.00 0.0001

GCHC1_1 1.28530 0.00000

GCHC2_2 1.50117 0.00000

ACH1_1_1 0.03378 0.00216 15.62 0.0001

ACH1_2_2 0.02694 0.00084 32.07 0.0001

GCH1_1_1 0.07596 0.00000

GCH1_2_2 0.09939 0.00000

Figure 43.39 shows the log likelihood and the information criteria.

Figure 43.39 DCC GARCH Log Likelihood and Information Criteria

Log-likelihood 700.3131

Information
Criteria

AICC -1382.55

HQC -1363.58

AIC -1382.63

SBC -1330.16

FPEC 0.080617

Because a CCC GARCH model can be regarded as a restricted DCC GARCH model in which ˛ and ˇ
in the conditional correlation equations are restricted to zeros, it is expected that the log likelihood of the
“unrestricted” DCC GARCH model should always be larger than (or at least equal to) the log likelihood of the
corresponding CCC GARCH model, even though DCC might have a larger information criterion and not be
chosen. Hence, it is unexpected that the log likelihood of the DCC GARCH model (shown in Figure 43.39)
is smaller than that of the CCC GARCH model (shown in Figure 43.37). This unexpected phenomenon
confirms that the numerical optimization for the DCC GARCH model converges to a local minimum instead
of the global minimum. Different initial values should be tried. In addition to some reasonable values for
parameters DCCA and DCCB, the INITIAL statement specifies the initial values for the DCC GARCH model
parameters in the following statements; these values are based on the corresponding parameter estimates of
the CCC GARCH model (shown in Figure 43.36):
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/*--- DCC with Initial Values ---*/

proc varmax data=indices outest=oedcc outcov;
model rDJIA rSP500 / noint;
garch p=1 q=1 form=dcc outht=ohdcc;
initial DCCA=0.01, DCCB=0.98, DCCS(1,2) = 0.97294,

GCHC(1,1) = 0.03713, GCHC(2,2) = 0.04004,
ACH(1,1,1) = 0.06862, ACH(1,2,2) = 0.06684,
GCH(1,1,1) = 0.88472, GCH(1,2,2) = 0.88916;

run;

Figure 43.40 shows the parameter estimates for the reestimated DCC GARCH(1,1) model. All standard
errors of parameter estimates are valid.

Figure 43.40 Reestimated DCC GARCH Parameter Estimates

The VARMAX Procedure

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

DCCA 0.03802 0.00634 6.00 0.0001

DCCB 0.93782 0.01084 86.49 0.0001

DCCS1_2 0.97401 0.00247 394.22 0.0001

GCHC1_1 0.02193 0.00370 5.93 0.0001

GCHC2_2 0.02395 0.00401 5.97 0.0001

ACH1_1_1 0.07842 0.00787 9.97 0.0001

ACH1_2_2 0.07758 0.00770 10.07 0.0001

GCH1_1_1 0.89540 0.01046 85.58 0.0001

GCH1_2_2 0.89738 0.01012 88.64 0.0001

As shown in Figure 43.41, the log likelihood of the DCC GARCH model increases dramatically. Compared
to the SBC of the CCC GARCH model (shown in Figure 43.37), the SBC for the DCC GARCH model
is much smaller, and the DCC GARCH model is chosen. However, compared to the SBC for the BEKK
GARCH model (shown in Figure 43.35), the SBC for the DCC GARCH model is a little larger, The BEKK
GARCH model should be chosen although it has two more parameters than the DCC GARCH model.

Figure 43.41 Reestimated DCC GARCH Log Likelihood and Information Criteria

Log-likelihood 1531.454

Information
Criteria

AICC -3044.84

HQC -3025.86

AIC -3044.91

SBC -2992.44

FPEC 0.080617

Compared to the BEKK GARCH model, in addition to parsimony, another advantage of the DCC (and
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also the CCC) GARCH model is that you can use subforms other than GARCH to model the conditional
covariance of each series. For example, you can use the threshold GARCH (TGARCH) model for modeling
the conditional covariances of rDJIA and rSP500. A bivariate DCC TGARCH(1,1) has the same form as the
bivariate DCC GARCH(1,1) except that the conditional covariance equations are replaced by

h11;t D c11 C a11;1r
2
1;t�1 C 1r1;t�1<0b11;1r

2
1;t�1 C g11;1h11;t�1

h22;t D c11 C a22;1r
2
2;t�1 C 1r2;t�1<0b22;1r

2
2;t�1 C g22;1h22;t�1

where the indicator function 1A is 1 if A is true and 0 otherwise. Compared to the DCC GARCH model, two
more parameters, b11;1 and b22;1, are added to the DCC TGARCH model to catch the so-called leverage
effect (that is, the positive and negative returns have different impacts on future volatility).

The following statements include the SUBFORM=TARCH option to fit a bivariate DCC TGACH(1,1) model
with the same initial values that are used for the previous DCC GARCH(1,1) model. Because the LEAD=10
option is specified in the OUTPUT statement, the 1- to 10-step-ahead forecasts of rDJIA and rSP500 are
output to the OUT= data set odcct and the 1- to 10-step-ahead forecasts of conditional covariance matrices of
rDJIA and rSP500 are output to the OUTHT= data set ohdcct.

proc varmax data=indices outest=oedcct outcov;
model rDJIA rSP500 / noint;
garch p=1 q=1 form=dcc outht=ohdcct subform=tgarch;
initial DCCA=0.01, DCCB=0.98, DCCS(1,2) = 0.97294,

GCHC(1,1) = 0.03713, GCHC(2,2) = 0.04004,
ACH(1,1,1) = 0.06862, ACH(1,2,2) = 0.06684,
GCH(1,1,1) = 0.88472, GCH(1,2,2) = 0.88916;

output out=odcct lead=10;
run;

Figure 43.42 shows the parameter estimates for the DCC TGARCH(1,1) model. TACH1_1_1 and TACH1_2_2

correspond to the parameters b11;1 and b22;1, respectively. They are significant, which means that the
leverage effect exists.
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Figure 43.42 DCC TGARCH Parameter Estimates

The VARMAX Procedure

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

DCCA 0.04302 0.00669 6.43 0.0001

DCCB 0.92807 0.01142 81.26 0.0001

DCCS1_2 0.97309 0.00248 392.01 0.0001

GCHC1_1 0.02068 0.00305 6.78 0.0001

GCHC2_2 0.02329 0.00346 6.73 0.0001

ACH1_1_1 0.00104 0.00684 0.15 0.8787

ACH1_2_2 0.00314 0.00698 0.45 0.6525

TACH1_1_1 0.11443 0.01207 9.48 0.0001

TACH1_2_2 0.10805 0.01166 9.27 0.0001

GCH1_1_1 0.91490 0.00956 95.68 0.0001

GCH1_2_2 0.91574 0.00964 95.03 0.0001

Figure 43.43 shows the log likelihood and the information criteria. The SBC for the DCC TGARCH model
is smaller than the SBC for the BEKK GARCH model (which is shown in Figure 43.35). The smaller SBC
means that the DCC TGARCH model is the final winner.

Figure 43.43 DCC TGARCH Log Likelihood and Information Criteria

Log-likelihood 1587.793

Information
Criteria

AICC -3153.48

HQC -3130.31

AIC -3153.59

SBC -3089.46

FPEC 0.080617

Other subforms of GARCH models—the exponential GARCH (EGARCH) model, the quadratic GARCH
(QGARCH) model, and the power GARCH (PGARCH) model—are also supported for the CCC and DCC
GARCH models. Furthermore, the multivariate GARCH models can be used together with VARMAX or
vector error correction models. For more information and examples, see the sections “Multivariate GARCH
Modeling” on page 3139 and “Example 43.4: Analysis of Euro Foreign Exchange Reference Rates” on
page 3205.
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Syntax: VARMAX Procedure
PROC VARMAX options ;

BOUND restriction, . . . , restriction ;
BY variables ;
CAUSAL GROUP1=(variables)GROUP2=(variables) ;
COINTEG RANK=number < options > ;
CONDFORE < options > ;
GARCH options ;
ID variable INTERVAL=value < ALIGN=value > ;
INITIAL equation, . . . , equation ;
MODEL dependents < = regressors > < , dependents < = regressors > . . . > < / options > ;
NLOPTIONS options ;
OUTPUT < options > ;
RESTRICT restriction, . . . , restriction ;
TEST restriction, . . . , restriction ;

Functional Summary
The statements and options available in the VARMAX procedure are summarized in Table 43.1.

Table 43.1 Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set VARMAX DATA=
Writes parameter estimates to an output data set VARMAX OUTEST=
Includes covariances in the OUTEST= data set VARMAX OUTCOV
Writes the diagnostic checking tests for a model and
the cointegration test results to an output data set

VARMAX OUTSTAT=

Specifies the input data set for scenarios CONDFORE SDATA=
Writes the statistics of simulated forecasts to an
output data set

CONDFORE OUT=

Writes the simulated forecasts to an output data set CONDFORE OUTSIM=
Writes the conditional covariance matrix to an
output data set

GARCH OUTHT=

Writes actuals, predictions, residuals, and
confidence limits to an output data set

OUTPUT OUT=

BY Groups
Specifies BY-group processing BY

ID Variable
Specifies the identifying variable ID
Specifies the time interval between observations ID INTERVAL=
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Table 43.1 continued

Description Statement Option

Controls the alignment of SAS date values ID ALIGN=

Options to Control the Optimization Process
Specifies the optimization options NLOPTIONS

Printing Control Options
Specifies how many lags to print results MODEL LAGMAX=
Suppresses the printed output MODEL NOPRINT
Requests all printing options MODEL PRINTALL
Requests the printing format MODEL PRINTFORM=
Controls plots produced through ODS GRAPHICS VARMAX PLOTS=

PRINT= Option
Prints the correlation matrix of parameter estimates MODEL CORRB
Prints the cross-correlation matrices of independent
variables

MODEL CORRX

Prints the cross-correlation matrices of dependent
variables

MODEL CORRY

Prints the covariance matrices of prediction errors MODEL COVPE
Prints the cross-covariance matrices of the
independent variables

MODEL COVX

Prints the cross-covariance matrices of the
dependent variables

MODEL COVY

Prints the covariance matrix of parameter estimates MODEL COVB
Prints the decomposition of the prediction error
covariance matrix

MODEL DECOMPOSE

Prints the residual diagnostics MODEL DIAGNOSE
Prints the contemporaneous relationships among
the components of the vector time series

MODEL DYNAMIC

Prints the parameter estimates MODEL ESTIMATES
Prints the infinite order AR representation MODEL IARR
Prints the impulse response function MODEL IMPULSE=
Prints the impulse response function in the transfer
function

MODEL IMPULSX=

Prints the partial autoregressive coefficient matrices MODEL PARCOEF
Prints the partial canonical correlation matrices MODEL PCANCORR
Prints the partial correlation matrices MODEL PCORR
Prints the eigenvalues of the companion matrix MODEL ROOTS
Prints the Yule-Walker estimates MODEL YW

Model Estimation and Order Selection Options
Specifies the initial parameter values for non-linear
optimization when the model is estimated through
the maximum likelihood method

INITIAL
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Table 43.1 continued

Description Statement Option

Centers the dependent variables MODEL CENTER
Specifies the degrees of differencing for the
specified model variables

MODEL DIF=

Specifies the degrees of differencing for all
independent variables

MODEL DIFX=

Specifies the degrees of differencing for all
dependent variables

MODEL DIFY=

Specifies the estimation method MODEL METHOD=
Selects the tentative order MODEL MINIC=
Suppresses the current values of independent
variables

MODEL NOCURRENTX

Suppresses the intercept parameters MODEL NOINT
Specifies the number of seasonal periods MODEL NSEASON=
Specifies the order of autoregressive polynomial MODEL P=
Specifies the Bayesian prior model MODEL PRIOR=
Specifies the order of moving-average polynomial MODEL Q=
Centers the seasonal dummies MODEL SCENTER
Specifies the degree of time trend polynomial MODEL TREND=
Specifies the denominator for error covariance
matrix estimates

MODEL VARDEF=

Specifies the lag order of independent variables MODEL XLAG=

GARCH-Related Options
Specifies how to calculate the constant
(unconditional) correlation matrix in the CCC
(DCC) GARCH model

GARCH CORRCONSTANT=

Specifies the type of the multivariate GARCH
model

GARCH FORM=

Specifies the order of the GARCH polynomial GARCH P=
Specifies the order of the ARCH polynomial GARCH Q=
Specifies the type of the univariate GARCH model
for each innovation in the CCC or DCC GARCH
model

GARCH SUBFORM=

Cointegration-Related Options
Specifies the restriction on the drift in the VECM COINTEG ECTREND
Prints the results from the weak exogeneity test of
the long-run parameters

COINTEG EXOGENEITY

Specifies the restriction on the cointegrated
coefficient matrix

COINTEG H=

Specifies the restriction on the adjustment
coefficient matrix

COINTEG J=



Functional Summary F 3019

Table 43.1 continued

Description Statement Option

Specifies the nonlinear constraints that the
adjustment coefficient matrix and the cointegrated
coefficient matrix are both full rank

COINTEG NLC

Specifies the variable name whose cointegrating
vectors are normalized

COINTEG NORMALIZE=

Specifies a cointegration rank COINTEG RANK=
Prints the Johansen cointegration rank test MODEL COINTTEST=

(JOHANSEN= )
Prints the Stock-Watson common trends test MODEL COINTTEST=(SW= )
Prints the Dickey-Fuller unit root test MODEL DFTEST=
Specifies the vector error correction model
(obsolete)1

MODEL ECM=

Long Memory Options
Specifies the Vector autoregressive fractionally
integrated moving average model

MODEL FI

Tests and Restrictions on Parameters
Tests the Granger causality CAUSAL GROUP1=

GROUP2=
Places and tests restrictions on parameter estimates BOUND
Places and tests restrictions on parameter estimates RESTRICT
Tests hypotheses on parameter estimates TEST

Forecasting Control Options
Specifies the size of confidence limits for
forecasting

OUTPUT ALPHA=

Starts forecasting before end of the input data OUTPUT BACK=
Specifies how many periods to forecast OUTPUT LEAD=
Suppresses the printed forecasts OUTPUT NOPRINT

Conditional Forecasts and Scenario Analysis Options
Specifies the size of the credible interval CONDFORE ALPHA=
Specifies the number of multistep forecast values to
compute

CONDFORE LEAD=

Specifies the number of burn-in iterations CONDFORE NBI=
Specifies the number of Monte Carlo iterations CONDFORE NMC=
Specifies whether and how to consider the
uncertainty of parameters

CONDFORE PARM=

Specifies a nonnegative integer to use as the seed
for generating random number sequences

CONDFORE SEED=

Specifies the numeric variable that identifies each
scenario

CONDFORE SID=

1Starting with SAS/ETS 14.1, it is recommended that you use the COINTEG statement instead.
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PROC VARMAX Statement
PROC VARMAX options ;

The following options can be used in the PROC VARMAX statement:

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, the PROC VARMAX statement
uses the most recently created SAS data set.

OUTEST=SAS-data-set
writes the parameter estimates to the output data set.

COVOUT

OUTCOV
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

OUTSTAT=SAS-data-set
writes residual diagnostic results to an output data set. If the COINTTEST=(JOHANSEN) option is
specified, the results of this option are also written to the output data set.

The following statements are the examples of these options in the PROC VARMAX statement:

proc varmax data=one outest=est outcov outstat=stat;
model y1-y3 / p=1;

run;

proc varmax data=one outest=est outstat=stat;
model y1-y3 / p=1 cointtest=(johansen);

run;

PLOTS< (global-plot-option) > = plot-request-option < (options) >

PLOTS< (global-plot-option) > = ( plot-request-option < (options) > . . . plot-request-option < (options) > )
controls the plots produced through ODS Graphics. When you specify only one plot, you can omit the
parentheses around the plot request. Some examples follow:

plots=none
plots=all
plots=condcorr
plots(unpack)=residual(residual normal)
plots=(forecasts model)

For general information about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide).

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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proc varmax data=one plots=impulse(simple);
model y1-y3 / p=1;

run;

proc varmax data=one plots=(model residual);
model y1-y3 / p=1;

run;

proc varmax data=one plots=forecasts;
model y1-y3 / p=1;
output lead=12;

run;

The first VARMAX program produces the simple response impulse plots. The second VARMAX
program produces the plots associated with the model and prediction errors. The plots associated
with prediction errors are the ACF, PACF, IACF, distribution, white-noise, and Normal quantile
plots and the prediction error plot. The third VARMAX program produces the FORECASTS and
FORECASTSONLY plots.

The global-plot-option applies to the impulse and prediction error analysis plots generated by the
VARMAX procedure. The following global-plot-option is available:

UNPACK displays each graph separately. (By default, some graphs can appear together in a
single panel.)

The following plot-request-options are available:

ALL produces all plots appropriate for the particular analysis.

CONDCORR produces dynamic conditional covariance plots. This option is available only when
the DCC GARCH model is specified. This option is experimental in this release.

FORECASTS < (forecasts-plot-options ) > produces plots of the forecasts. The forecasts-only plot
that shows the multistep forecasts in the forecast region is produced by default. The
following forecasts-plot-options are available:

ALL produces the FORECASTSONLY and the FORECASTS plots.
This is the default.

FORECASTS produces a plot that shows the one-step-ahead as well as the
multistep forecasts.

FORECASTSONLY produces a plot that shows only the multistep forecasts.

IMPULSE < (impulse-plot-options ) > produces the plots of impulse response function and the im-
pulse response of the transfer function.

ALL produces all impulse plots. This is the default.

ACCUM produces the accumulated impulse plot.

ORTH produces the orthogonalized impulse plot.



3022 F Chapter 43: The VARMAX Procedure

SIMPLE produces the simple impulse plot.

MODEL produces plots of dependent variables listed in the MODEL statement and plots of
the one-step-ahead predicted values for each dependent variables.

NONE suppresses all plots.

RESIDUAL < (residual-plot-options ) > produces plots associated with the prediction errors obtained
after modeling the data. The following residual-plot-options are available:

ALL produces all plots associated with the analysis of the prediction
errors. This is the default.

RESIDUAL produces prediction error plot.

DIAGNOSTICS produces a panel of plots useful in assessing the autocorrelations
and white-noise of the prediction errors. The panel consists of
the following:

� the autocorrelation plot of the prediction errors

� the partial autocorrelation plot of the prediction errors

� the inverse autocorrelation plot of the prediction errors

� the log scaled white noise plot of the prediction errors

NORMAL produces a panel of plots useful in assessing normality of the
prediction errors. The panel consists of the following:

� distribution of the prediction errors with overlaid the normal
curve

� normal quantile plot of the prediction errors

Other Options

In addition, any of the following MODEL statement options can be specified in the PROC VARMAX state-
ment, which is equivalent to specifying the option for every MODEL statement: CENTER, DFTEST=, DIF=,
DIFX=, DIFY=, LAGMAX=, METHOD=, MINIC=, NOCURRENTX, NOINT, NOPRINT, NSEASON=,
P=, PRINT=, PRINTALL, PRINTFORM=, Q=, SCENTER, TREND=, VARDEF=, and XLAG= options.

The following is an example of the options in the PROC VARMAX statement:

proc varmax data=one lagmax=3 method=ml;
model y1-y3 / p=1;

run;
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BOUND Statement
BOUND restriction, . . . , restriction ;

The BOUND statement sets up linear bounds for parameters when the maximum likelihood method is applied
to the estimation of VARMAX, VECM, VARMAX-GARCH, and VEC-ARMAX-GARCH models. Only
one BOUND statement is allowed. If you specify more than one restriction, separate them with commas.
The restrictions are specified in the same manner as the restrictions in the RESTRICT statement. For
information about how to define restrictions by using matrix expressions, operators, and functions, see the
section “RESTRICT Statement” on page 3052. Both equality and inequality constraints are allowed in the
BOUND statement, although usually equality constraints are specified in the RESTRICT statement and
inequality constraints are specified in the BOUND statement.

To use the BOUND statement, you need to know the form of the model. If you do not specify the GARCH
statement, the COINTEG statement, or the ECM=, P=, Q=, or XLAG= option in the MODEL statement,
then the BOUND statement is not applicable. If you specify the ECM=(NORMALIZE=), METHOD=LS, or
PRIOR= option in the MODEL statement, or if you specify the EXOGENEITY, H=, J=, or NORMALIZE=
option in the COINTEG statement, the BOUND statement is ignored. Nonlinear restrictions on parameters
are not supported.

The following is an example of the BOUND statement for a bivariate (k=2) zero-mean VARMA(1,1) model,
which is by default estimated by maximum likelihood method because the MA term is present:

proc varmax data=one;
model y1 y2 / noint p=1 q=1;
bound -1<=AR<=1, 0<MA;

run;

This BOUND statement specifies that all AR parameters must be between �1 and 1 and that all MA
parameters must be positive.

You can use the BOUND statement together with the RESTRICT statement, as in the following bivariate
(k=2) zero-mean VARMA(1,1) model:

proc varmax data=one;
model y1 y2 / noint p=1 q=1;
bound AR+MA>=0.001;
restrict AR(1,1,2) = 0.5;

run;



3024 F Chapter 43: The VARMAX Procedure

BY Statement
BY variables ;

A BY statement can be used with PROC VARMAX to obtain separate analyses on observations in groups
defined by the BY variables.

When a BY statement appears, the procedure expects the input data set to be sorted in order of the BY
variables.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement option NOTSORTED or DESCENDING in the BY statement for the
VARMAX procedure. The NOTSORTED option does not mean that the data are unsorted but rather
that the data are arranged in groups (according to values of the BY variables) and that these groups are
not necessarily in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure.

For more information about the BY statement, see in SAS Language Reference: Concepts. For more
information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

The following is an example of the BY statement:

proc varmax data=one;
by region;
model y1-y3 / p=1;

run;

CAUSAL Statement
CAUSAL GROUP1=(variables)GROUP2=(variables) ;

A CAUSAL statement prints the Granger causality test by fitting the VAR(p) model by using all variables
defined in GROUP1 and GROUP2. Any number of CAUSAL statements can be specified. The CAUSAL
statement proceeds with the MODEL statement and uses the variables and the autoregressive order, p,
specified in the MODEL statement. Variables in the GROUP1= and GROUP2= options should be defined in
the MODEL statement. If the P=0 option is specified in the MODEL statement, the CAUSAL statement is
not applicable.

The null hypothesis of the Granger causality test is that GROUP1 is influenced only by itself, and not by
GROUP2. If the hypothesis test fails to reject the null, then the variables listed in GROUP1 might be
considered as independent variables.

For more information, see the section “VAR and VARX Modeling” on page 3095.

The following is an example of the CAUSAL statement. You specify the CAUSAL statement with the
GROUP1= and GROUP2= options.
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proc varmax data=one;
model y1-y3 = x1 / p=1;
causal group1=(x1) group2=(y1-y3);
causal group1=(y2) group2=(y1 y3);

run;

The first CAUSAL statement fits the VAR(1) model by using the variables y1, y2, y3, and x1 and tests the
null hypothesis that x1 causes the other variables, y1, y2, and y3, but the other variables do not cause x1.
The second CAUSAL statement fits the VAR(1) model by using the variables y1, y3, and y2 and tests the
null hypothesis that y2 causes the other variables, y1 and y3, but the other variables do not cause y2.

COINTEG Statement
COINTEG RANK=number < options > ;

The COINTEG statement fits the vector error correction model to the data, tests the restrictions of the long-run
parameters and the adjustment parameters, and tests for weak exogeneity in the long-run parameters. The
P= option in the MODEL statement specifies the autoregressive order of the VECM. Only one COINTEG
statement is allowed.

The cointegrated system uses maximum likelihood estimation. If there are no moving average (MA) terms
specified by the Q= option in the MODEL statement, no GARCH terms specified in the GARCH statement,
and no general restrictions specified in the BOUND and RESTRICT statements, then PROC VARMAX
applies the maximum likelihood analysis proposed by Johansen and Juselius (1990); Johansen (1995a, b).
Otherwise, the likelihood is maximized using an optimizer whose options can be specified in the NLOPTIONS
statement.

The following statements fit a VECM(2):

proc varmax data=one;
model y1-y3 / p=2;
cointeg rank=1;

run;

To test restrictions on ˛ and ˇ, you specify the J= option and the H= option, respectively. You specify the
EXOGENEITY option in the COINTEG statement for tests of weak exogeneity in the long-run parameters.

The following example of the COINTEG statement specifies tests of restrictions on ˛ and ˇ, along with tests
of weak exogeneity:

proc varmax data=one;
model y1-y3 / p=2;
cointeg rank=1 h=(1 0, -1 0, 0 1)

j=(1 0, 0 0, 0 1) exogeneity;
run;

You must specify the following option:
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RANK=number
specifies the cointegration rank of the cointegrated system. The rank of cointegration should be greater
than 0 and less than the number of dependent (endogenous) variables. If number is different from
the value of the RANK= option specified in the ECM= option in the MODEL statement, the number
specified here is used for the rank.

You can also specify the following options in the COINTEG statement:

ECTREND
specifies the restriction on the drift in the VECM. This option is used in the following cases:

� There is no separate drift in the VECM, but a constant enters only through the error correction
term. For example, for VECM(p),

�yt D ˛.ˇ0;ˇ0/.y0t�1; 1/
0
C

p�1X
iD1

ˆ�i �yt�i C �t

An example of the ECTREND option follows:

model y1 y2 / p=2;
cointeg rank=1 ectrend;

� There is a separate drift and no separate linear trend in the VECM, but a linear trend enters only
through the error correction term. For example, for VECM(p),

�yt D ˛.ˇ0;ˇ1/.y0t�1; t /
0
C

p�1X
iD1

ˆ�i �yt�i C ı0 C �t

An example of the ECTREND option with the TREND= option follows:

model y1 y2 / p=2 trend=linear;
cointeg rank=1 ectrend;

If you specify both this option and the NSEASON option in the MODEL statement, then the NSEASON
option is ignored. If you specify the NOINT option in the MODEL statement, then this option is
ignored.

EXOGENEITY
formulates the likelihood ratio tests for testing weak exogeneity in the long-run parameters. The null
hypothesis is that one variable is weakly exogenous for the others.

H=(matrix)
specifies the restrictions H on the k � r or .k C 1/ � r cointegrated coefficient matrix Q̌ such that
Q̌ D H�, where H is known and � is unknown. If you do not specify the ECTREND option, then the

cointegrated coefficient matrix Q̌ is the cointegrating matrix ˇ and the H matrix has dimension k �m.
If you specify the ECTREND option, then the cointegrated coefficient matrix Q̌ is the cointegrating
matrix ˇ stacked with the coefficient row vector ˇ0 or ˇ1 for the constant or linear trend in the error
correction term, and the H matrix has dimension .k C 1/ � m. Here k is the number of dependent
variables and m is r � m < k, where r is defined in the RANK=r option.

For example, consider a VECM(2) with rank equal to 1 on four dependent variables. Then, ˇ D
.ˇ11; ˇ21; ˇ31; ˇ41/

0. To test the null hypothesis ˇ11 C ˇ21 D 0 (that is, H0?ˇ D 0, where H? D
.1 � 1 0 0/0), you can use the following statements to specify the restriction matrix H:
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model y1-y4 / p=2;
cointeg rank=1 h=(1 0 0, -1 0 0, 0 1 0, 0 0 1);

Here the dimension of matrix H is 4 � 3 because k D 4 and m D 3, and each row of the matrix H is
separated by commas. Note that H0?H D 0; that is, the H and H? matrices are orthogonal.

When the series has no separate deterministic trend, and therefore you specify the ECTREND option,
the constant term should be restricted by ˛0

?
ı D 0. The matrix ˛? is a k � .k � r/ full-rank

matrix orthogonal to ˛, such that rank.˛?/ D k � r and ˛0
?
˛ D 0. The Q̌ becomes .ˇ0;ˇ0/0 or

Q̌ D .ˇ11; ˇ21; ˇ31; ˇ41; ˇ
.0/
11 /
0. As for the previous test of ˇ11 C ˇ21 D 0 (that is, H0? Q̌ D 0, where

H? D .1 � 1 0 0 0/0), you can specify the restriction matrix H as follows:

model y1-y4 / p=2;
cointeg rank=1 ectrend

h=(1 0 0 0, -1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1);

Because the dimension is changed in the H? matrix, the dimension of H matrix has to be adjusted
accordingly.

When the cointegrated system contains three dependent variables and the RANK=2 option is specified,
the test of ˇ1j D �ˇ2j for j D 1; 2 can be run with the following restriction matrix H, where
H? D .1 1 0/0 and H0?ˇ D 0:

cointeg rank=2 h=(1 0, -1 0, 0 1);

There are many ways to achieve a matrix that is orthogonal to a particular matrix. The following
statements illustrate how to obtain the orthogonal matrix through QR decomposition:

proc iml;
/* For a given matrix H_dot, */
H_dot = {1 1 0}`;
/* get its QR decomposition, i.e., H_dot = QR. */
call qr(Q, R, piv, lindep, H_dot);
/* Then, the matrix orthogonal to H_dot

can be extracted from Q. */
H = Q[,ncol(H_dot)+1:nrow(H_dot)];
/* Finally, normalize each column of H if necessary. */
do i = 1 to ncol(H);

k = 0;
do j = nrow(H) to 1 by -1;

if (H[j,i]^=0) then k=j;
end;
if (k=0) then

print "Error: H is not full rank!";
else

do j = nrow(H) to 1 by -1;
H[j,i] = H[j,i] / H[k,i];

end;
end;
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print "The given matrix is:";
print H_dot;
print "The matrix orthogonal to it is:";
print H;

quit;

J=(matrix)
specifies the restrictions J on the k � r adjustment matrix ˛ such that ˛ D J , where J is known
and  is unknown. The k �m matrix J is specified by using this option, where k is the number of
dependent variables, m is r � m < k, and r is defined in the RANK=r option.

For example, suppose the system contains four variables, the RANK=1 option is specified, and you
want to test ˛j D 0 for j D 2; 3; 4 —that is, J0?˛ D 0, where

J? D

0BB@
0 0 0

1 0 0

0 1 0

0 0 1

1CCA
Then you can specify the restriction matrix J as follows:

cointeg rank=1 j=(1, 0, 0, 0);

Suppose the system contains three variables, the RANK=2 option is specified, and you want to test
˛2j D 0 for j D 1; 2—that is, J0?˛ D 0, where J? D .0 1 0/0. Then you can specify the restriction
matrix J as follows:

cointeg rank=2 j=(1 0, 0 0, 0 1);

NLC
specifies the nonlinear constraints that ˛ and ˇ are full column rank. Although the constraints are
required for a well-defined VECM, only the TECH=QUANEW and TECH=NMSIMP optimization
methods in the NLOPTIONS statement support nonlinear constraints. The full-rank constraints are not
imposed by default so that other optimization methods, such as TECH=CONGRA or TECH=TRUREG,
can be tried. The NLC option works only when numerical optimization is used for estimating VECM
(for example, when the BOUND, INITIAL, or RESTRICT statement is specified, or the VEC-ARMA
or VEC-ARMA-GARCH model is estimated). That is, the NLC option is ignored if the closed-form
solution of parameter estimates and maximum likelihood analysis, which is provided in Johansen and
Juselius (1990) and Johansen (1995a, b), can be applied.

NORMALIZE=variable
specifies a single dependent (endogenous) variable whose cointegrating vectors are normalized. If
the variable is different from the variable specified in the COINTTEST=(JOHANSEN=) or ECM=
option in the MODEL statement, the variable in this option is used. If this option is not specified,
cointegrating vectors are not normalized.

If the EXOGENEITY, H=, J=, or NORMALIZE= option is specified, the BOUND, GARCH, INITIAL, and
RESTRICT statements are all ignored, and the Q= option in the MODEL statement is also ignored.
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CONDFORE Statement
CONDFORE < options > ;

The CONDFORE statement defines the options for conditional forecasts and scenario analysis.

You can apply conditional forecasts and scenario analysis for both Bayesian and non-Bayesian vector
autoregressive models and vector error correction models, with or without independent variables. The
future values of dependent and independent variables (which define the scenario) are saved in a table, which
can then be input by specifying the SDATA= option in the CONDFORE statement. If you do not specify
the SDATA= option, unconditional forecasts are performed. If you specify several scenarios (which are
distinguished by the variable that is specified in the SID= option), conditional forecasts are performed for
each scenario. The statistics of forecasts (including the mean, standard error, median, and lower and upper
bounds of credible interval of each forecast) are output to the table that is specified in the OUT= option in the
CONDFORE statement, and the simulated forecasts in each iteration are output to the table that is specified
in the OUTSIM= option in the CONDFORE statement.

If you specify the BY statement, the scenarios in the SDATA= table are applied to each BY group, and the BY
variables are included in the tables that are specified in the OUT= and OUTSIM= options in the CONDFORE
statement. If you specify the ID statement, the ID variable is included in the table that is specified in the
OUT= option in the CONDFORE statement. If you specify the SID= option in the CONDFORE statement,
the SID= variable is included in the tables that are specified in the OUT= and OUTSIM= options in the
CONDFORE statement.

When the GARCH statement is specified or the Q= or FI option is specified in the MODEL statement, the
CONDFORE statement is ignored.

You can specify the following options:

ALPHA=˛
sets the size, ˛ (the probability of falsely rejecting the null hypothesis), of the credible interval
(100(1� ˛)%), where ˛ is inclusively between 0 and 1. The credible interval is an equal-tailed interval.
By default, ALPHA=0.05, which produces a 95% credible interval.

LEAD=number
specifies the number of multistep forecast values to compute. By default, LEAD=12.

NBI=number
specifies the number of burn-in iterations. By default, NBI=0.

NMC=number
specifies the number of Monte Carlo iterations. By default, NMC=1000.

OUT=SAS-data-set
specifies the output table for forecasts. The columns of the table are the mean, standard error, median,
and lower and upper bounds of credible interval of the forecasts for each dependent variable in each
scenario.
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OUTSIM=SAS-data-set
specifies the output table for the simulated forecasts in each scenario.

PARM=FIXED | SAMPLING < (SCENARIO) >
specifies whether and how to consider the uncertainty of parameters. You can specify the following
values:

FIXED fixes the parameters that are used in conditional forecasts to the parameter estimates
for non-Bayesian models or to the expectation of the posterior distribution of
parameters for Bayesian models.

SAMPLING < SCENARIO > samples the parameters from the posterior distribution of parameters.
If you specify PARM=SAMPLING(SCENARIO), the parameters are sampled
through the Gibbs sampling algorithm to consider the effect of the information in
each scenario. In theory, it is suggested that the parameter uncertainty should be
considered in the conditional forecasts for Bayesian models; however, in practice,
the sampling (especially Gibbs sampling) might lead to floating point overflow
because of some outlier-like realized parameters. You can specify this value only
for Bayesian models.

By default, PARM=FIXED.

SDATA=SAS-data-set
specifies the input data table that contains observations for one or multiple scenarios.

SEED=number
specifies a nonnegative integer to use as the seed for generating random number sequences. You can
use this option to replicate results from different runs if you specify the same positive random seed.
If you specify SEED=0, the random seed is determined according to the system clock. By default,
SEED=1.

SID=variable

SCENARIOID=(variable)
specifies a numeric variable that identifies each scenario. This option is ignored if the SDATA= option
is not specified.

Some examples of the CONDFORE statements follow:

proc varmax data=one;
model y1 y2 / p=2;
condfore out=oucf;

run;

proc varmax data=one;
model y1 y2 / p=2;
condfore alpha=0.2 lead=6 sdata=scenarios sid=scenarioIndex

nbi=1000 nmc=10000 seed=12345 parm=sampling(scenario)
out=ocf outsim=ocfsim;

run;



GARCH Statement F 3031

GARCH Statement
GARCH options ;

The GARCH statement specifies a GARCH-type multivariate conditional heteroscedasticity model.

You can specify the following options:

CORRCONSTANT=ESTIMATE | EXPECT
specifies how to calculate the constant or unconditional correlation matrix in the CCC or DCC GARCH
model, respectively. If you specify CORRCONSTANT=EXPECT, the constant conditional correlation
matrix in the CCC GARCH model or the unconditional correlation matrix in the DCC GARCH
model is calculated through the standardized residuals, given the other parameters. After parameter
estimates are output, the constant or unconditional correlation matrix for the CCC or DCC GARCH
model is output in the CCCCorrConstant or DCCCorrConstant ODS table, respectively. If you specify
CORRCONSTANT=ESTIMATE, the correlation matrix is estimated like all other parameters in the
model. By default, CORRCONSTANT=ESTIMATE.

FORM=value
specifies the representation for a GARCH model. Valid values are as follows:

BEKK specifies a BEKK representation. This is the default.

CCC specifies a constant conditional correlation representation.

DCC specifies a dynamic conditional correlation representation.

OUTHT=SAS-data-set
writes the conditional covariance matrix to an output data set. When you use the LEAD= option in the
OUTPUT statement together with this option in the GARCH statement, you can obtain the multistep
forecast of conditional covariance matrices at any horizons ahead that are of interest.

P=number

P=(number-list)
specifies the order of the process or the subset of GARCH terms to be fitted. For example, you can
specify the P=(1,3) option. The P=3 option is equivalent to the P=(1,2,3) option. By default, P=0.

Q=number

Q=(number-list)
specifies the order of the process or the subset of ARCH terms to be fitted. This option is required in
the GARCH statement. For example, you can specify the Q=(2) option. The Q=2 option is equivalent
to the Q=(1,2) option.

SUBFORM=value
specifies the type of the univariate GARCH model for each innovation in the CCC or DCC GARCH
model. If you specify the FORM=BEKK option, the SUBFORM= option is ignored. The values of the
SUBFORM= option are as follows:

EGARCH specifies the exponential GARCH, or EGARCH, model.

GARCH specifies the GARCH model with no constraints.
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GJR | TGARCH specifies the GJR GARCH (also called threshold GARCH, or TGARCH) model.

PGARCH specifies the power GARCH, or PGARCH, model.

QGARCH specifies the quadratic GARCH, or QGARCH, model.

By default, SUBFORM=GARCH.

If you specify the ECM=(NORMALIZE=) or PRIOR= option in the MODEL statement, or if you specify the
EXOGENEITY, H=, J=, or NORMALIZE= option in the COINTEG statement, the GARCH statement is
ignored.

For the VAR(1)–ARCH(1) model,

model y1 y2 / p=1;
garch q=1 form=bekk;

For the multivariate GARCH(1,1) model,

model y1 y2;
garch q=1 p=1 form=ccc;

Other multivariate GARCH-type models are

model y1 y2 = x1 / xlag=1;
garch q=1;

model y1 y2 / q=1;
garch q=1 p=1;

For more information, see the section “Multivariate GARCH Modeling” on page 3139.

ID Statement
ID variable INTERVAL=value < ALIGN=value > ;

The ID statement specifies a variable that identifies observations in the input data set. The datetime variable
specified in the ID statement is included in the OUT= data set if the OUTPUT statement is specified. The ID
variable is usually a SAS datetime variable. The values of the ID variable are extrapolated for the forecast
observations based on the value of the INTERVAL= option.

ALIGN= value
controls the alignment of SAS dates used to identify output observations. The ALIGN= option allows
the following values: BEGINNING | BEG | B, MIDDLE | MID | M, and ENDING | END | E. The
default is BEGINNING. The ALIGN= option is used to align the ID variable to the beginning, middle,
or end of the time ID interval specified by the INTERVAL= option.

INTERVAL=value
specifies the time interval between observations. This option is required in the ID statement. The
INTERVAL= option is used in conjunction with the ID variable to check that the input data are in order
and have no missing periods. The INTERVAL= option is also used to extrapolate the ID values past
the end of the input data when the OUTPUT statement is specified.

The following is an example of the ID statement:
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proc varmax data=one;
id date interval=qtr align=mid;
model y1-y3 / p=1;

run;

INITIAL Statement
INITIAL equation, . . . , equation ;

The INITIAL statement sets up the initial parameter values for nonlinear optimization when the maximum
likelihood method is applied to the estimation of VARMAX, VECM, VARMAX-GARCH, or VEC-ARMAX-
GARCH models. Only one INITIAL statement is allowed. If you specify more than one equation, separate
them with commas. The equations are specified in the same manner as the restrictions in the RESTRICT
statement. For information about how to define equations by using matrix expressions, operators, and
functions, see the section “RESTRICT Statement” on page 3052.

To use the INITIAL statement, you need to know the form of the model. If you do not specify the GARCH
statement, the COINTEG statement, or the ECM=, P=, Q=, or XLAG= option in the MODEL statement,
then the INITIAL statement is not applicable. If you specify the ECM=(NORMALIZE=), METHOD=LS, or
PRIOR= option in the MODEL statement, or if you specify the EXOGENEITY, H=, J=, or NORMALIZE=
option in the COINTEG statement, the INITIAL statement is ignored. Nonlinear restrictions on parameters
are not supported.

The initial parameter values are the solution of the specified linear equations. If you do not specify initial
values for all parameters, the default initial value for any parameter that is not specified in the INITIAL
statement is 0, except for the following:

� The diagonal elements of the COV parameter matrix are set to ones if the COV parameter matrix is to be
estimated.

� The diagonal elements of the GCHC parameter matrix are set to ones if the GCHC parameter matrix is to
be estimated and the SUBFORM=EGARCH option is not specified.

� The diagonal elements of the PACH parameter matrix are set to ones if the SUBFORM=PGARCH
option is specified.

The following is an example of the INITIAL statement for a bivariate (k=2) zero-mean VARMA(1,1) model,
which is estimated by the maximum likelihood method by default because a moving average (MA) term is
present:

proc varmax data=one;
model y1 y2 / noint p=1 q=1;
initial AR = 0, MA = 0,

COV={1 0.5, 0.5 4};
run;

Like the RESTRICT statement, the preceding INITIAL statement can be abbreviated as follows:
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initial AR = MA = 0,
COV={1 0.5, 0.5 4};

or

initial AR, MA, COV={1 0.5, 0.5 4};

Furthermore, you can omit AR and MA in the INITIAL statement as follows, because by default the AR and MA

matrices are set to zeros if they are not specified in the INITIAL statement:

initial COV={1 0.5, 0.5 4};

If you use the INITIAL statement for a vector error correction model (VECM), you must specify initial
values for both the ALPHA and BETA matrices and make sure they are both full rank; otherwise, the INITIAL
statement is ignored.

In the following example, the INITIAL statement is ignored because initial values for ALPHA and BETA are
not specified:

proc varmax data=one;
model y1 y2 / noint p=1;
cointeg rank=1;
initial cov=I(2)*4;

run;

In the following example, the INITIAL statement is ignored because initial values for ALPHA are not specified:

proc varmax data=one;
model y1 y2 / noint p=1;
cointeg rank=1;
initial beta=1;

run;

In the following example, the INITIAL statement is ignored because the initial BETA matrix is not full rank:

proc varmax data=one;
model y1 y2 y3 / noint p=1;
cointeg rank=2;
initial alpha={1 0, 0 1, 0 0},

beta ={1 2, 2 4, 3 6};
run;

In the following example, the INITIAL statement works fine because the specified initial ALPHA and BETA

matrices are both full rank:

proc varmax data=one;
model y1 y2 y3 / noint p=1;
cointeg rank=2;
initial alpha={1 0, 0 1, 0 0},

beta ={1 2, 2 4, 3 5};
run;
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MODEL Statement
MODEL dependents < = regressors >

< , dependents < = regressors > . . . >
< / options > ;

The MODEL statement specifies dependent (endogenous) variables and independent (exogenous) variables
for the VARMAX model. The multivariate model can have the same or different independent variables
corresponding to the dependent variables. As a special case, the VARMAX procedure allows you to analyze
one dependent variable. Only one MODEL statement is allowed.

For example, the following statements are equivalent ways of specifying the multivariate model for the vector
.y1; y2; y3/:

model y1 y2 y3 </options>;
model y1-y3 </options>;

The following statements are equivalent ways of specifying the multivariate model with independent variables,
where y1; y2; y3, and y4 are the dependent variables and x1; x2; x3; x4, and x5 are the independent
variables:

model y1 y2 y3 y4 = x1 x2 x3 x4 x5 </options>;
model y1 y2 y3 y4 = x1-x5 </options>;
model y1 = x1-x5, y2 = x1-x5, y3 y4 = x1-x5 </options>;
model y1-y4 = x1-x5 </options>;

When the multivariate model has different independent variables that correspond to each of the dependent
variables, equations are separated by commas (,) and the model can be specified as illustrated by the following
MODEL statement:

model y1 = x1-x3, y2 = x3-x5, y3 y4 = x1-x5 </options>;

The FI, PRIOR, and Q= options, the GARCH statement, and vector error correction models require that
the same independent variables be used for all dependent variables. If you specify different independent
variables that correspond to each of the dependent variables together with these options, statement, or models,
all independent variables are dropped from the model. You can use the RESTRICT statement to achieve the
goal when these options, statement, or models are specified. For example, if you need to specify x1 as the
regressor of y1, x2 as the regressor of y2, and x3 as the regressor of y3 in a VMA(1) model, the following
statement does not work:

model y1 = x1, y2 = x2, y3 = x3 / q=1;

But you can use the following statement to achieve your goal:

model y1 y2 y3 = x1 x2 x3 / q=1;
restrict xl(,y1,{x2 x3}) = 0,

xl(,y2,{x1 x3}) = 0,
xl(,y3,{x1 x2}) = 0;

You can specify the following options in the MODEL statement after a forward slash (/):
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CENTER
centers the dependent (endogenous) variables by subtracting their means. Note that centering is done
after differencing when the DIF= or DIFY= option is specified. If there are exogenous (independent)
variables, this option is not applicable.

model y1 y2 / p=1 center;

DIF(variable (number-list) < . . . variable (number-list) >)

DIF=(variable (number-list) < . . . variable (number-list) >)
specifies the degrees of differencing to be applied to the specified dependent or independent variables.
The number-list must contain one or more numbers, each of which should be greater than zero. The
differencing can be the same for all variables, or it can vary among variables. For example, the
DIF=(y1(1,4) y3(1) x2(2)) option specifies that the series y1 is differenced at lag 1 and at lag 4, which
is

.1 � B4/.1 � B/y1t D .y1t � y1;t�1/ � .y1;t�4 � y1;t�5/

the series y3 is differenced at lag 1, which is .y3t � y3;t�1/; and the series x2 is differenced at lag 2,
which is .x2t � x2;t�2/.

The following uses the data dy1, y2, x1, and dx2, where dy1 D .1�B/y1t and dx2 D .1�B/2x2t :

model y1 y2 = x1 x2 / p=1 dif=(y1(1) x2(2));

DIFX(number-list)

DIFX=(number-list)
specifies the degrees of differencing to be applied to all independent variables. The number-list must
contain one or more numbers, each of which should be greater than zero. For example, the DIFX=(1)
option specifies that all of the independent series are differenced once at lag 1. The DIFX=(1,4) option
specifies that all of the independent series are differenced at lag 1 and at lag 4. If independent variables
are specified in the DIF= option, then the DIFX= option is ignored.

The following statement uses the data y1, y2, dx1, and dx2, where dx1 D .1 � B/x1t and dx2 D
.1 � B/x2t :

model y1 y2 = x1 x2 / p=1 difx(1);

DIFY(number-list)

DIFY=(number-list)
specifies the degrees of differencing to be applied to all dependent (endogenous) variables. The
number-list must contain one or more numbers, each of which should be greater than zero. For more
information, see the DIFX= option. If dependent variables are specified in the DIF= option, then the
DIFY= option is ignored.
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model y1 y2 / p=1 dify(1);

FI
uses the vector autoregressive fractionally integrated moving average model with exogenous variables.

model y1 y2 / fi method = ML;

METHOD=value
specifies the type of estimates to compute. You can specify the following values:

LS specifies least squares estimates.

ML specifies maximum likelihood estimates.

CML specifies conditional maximum likelihood estimates.

For VARX models, you can apply the least squares method, maximum likelihood method, or conditional
maximum likelihood method; for VARMAX models, you can apply either the maximum the likelihood
method or the conditional maximum likelihood method; for other type of models, namely, vector error
correction models, GARCH models, and Bayesian models, the default maximum likelihood method is
applied. The (conditional) log-likelihood equations are solved by iterative numerical methods such as
quasi-Newton optimization. The starting values for the AR and MA parameters are obtained from the
least squares estimates. Although the small-sample properties of CML estimates might not be as good
as the ML estimates, the CML method is much faster than the ML method.

model y1 y2 / p=1 method=ml;

NOCURRENTX
suppresses the current values xt of the independent variables. In general, the VARX(p; s) model is

yt D ı C
pX
iD1

ˆiyt�i C
sX
iD0

‚�i xt�i C �t

where p is the number of lags of the dependent variables included in the model, and s is the number of
lags of the independent variables included in the model, including the contemporaneous values of xt .

A VARX(1,2) model can be specified as:

model y1 y2 = x1 x2 / p=1 xlag=2;

If the NOCURRENTX option is specified, it suppresses the current values xt and starts with xt�1. The
VARX(p; s) model is redefined as:

yt D ı C
pX
iD1

ˆiyt�i C
sX
iD1

‚�i xt�i C �t

This model with p D 1 and s D 2 can be specified as:
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model y1 y2 = x1 x2 / p=1 xlag=2 nocurrentx;

NOINT
suppresses the intercept parameter ı.

model y1 y2 / p=1 noint;

NSEASON=number
specifies the number of seasonal periods. When the NSEASON=number option is specified, (number
–1) seasonal dummies are added to the regressors. If the NOINT option is specified, the NSEASON=
option is not applicable. For more information, see the section “Seasonal Dummies and Time Trends”
on page 3100.

model y1 y2 / p=1 nseason=4;

SCENTER
centers seasonal dummies specified by the NSEASON= option. The centered seasonal dummies are
generated by c � .1=s/, where c is a seasonal dummy generated by the NSEASON=s option.

model y1 y2 / p=1 nseason=4 scenter;

TREND=value
specifies the degree of deterministic time trend included in the model. Valid values are as follows:

LINEAR includes a linear time trend as a regressor.

QUAD includes linear and quadratic time trends as regressors.

The TREND=QUAD option is not applicable for a cointegration analysis. For more information, see
the section “Seasonal Dummies and Time Trends” on page 3100.

model y1 y2 / p=1 trend=linear;

VARDEF=value
corrects for the degrees of freedom of the denominator for computing an error covariance matrix for
the METHOD=LS option. If the METHOD=ML option is specified, the VARDEF=N option is always
used. Valid values are as follows:

DF specifies that the number of nonmissing observation minus the number of regressors
be used.

N specifies that the number of nonmissing observation be used.
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model y1 y2 / p=1 vardef=n;

Printing Control Options

LAGMAX=number
specifies the maximum number of lags for which results are computed and displayed by the
PRINT=(CORRX CORRY COVX COVY IARR IMPULSE= IMPULSX= PARCOEF PCANCORR
PCORR) options. This option is also used to limit the printed results for the cross covariances and
cross-correlations of residuals. The default is LAGMAX=min(12, T-2), where T is the number of
nonmissing observations.

model y1 y2 / p=1 lagmax=6;

NOPRINT
suppresses all printed output.

model y1 y2 / p=1 noprint;

PRINTALL
requests all printing control options. The options set by the option PRINTALL are DFTEST=,
MINIC=, PRINTFORM=BOTH, and PRINT=(CORRB CORRX CORRY COVB COVPE COVX
COVY DECOMPOSE DYNAMIC IARR IMPULSE=(ALL) IMPULSX=(ALL) PARCOEF PCAN-
CORR PCORR ROOTS YW).

You can also specify this option as the option ALL.

model y1 y2 / p=1 printall;

PRINTFORM=value
requests the printing format of the output generated by the PRINT= option and cross covariances and
cross-correlations of residuals. Valid values are as follows:

BOTH prints output in both MATRIX and UNIVARIATE forms.

MATRIX prints output in matrix form. This is the default.

UNIVARIATE prints output by variables.

model y1 y2 / p=1 print=(impulse) printform=univariate;
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Printing Options

PRINT=(options)
The following options can be used in the PRINT=( ) option. The options are listed within parentheses.
If a number in parentheses follows an option listed below, then the option prints the number of lags spec-
ified by number in parentheses. The default is the number of lags specified by the LAGMAX=number
option.

CORRB
prints the estimated correlations of the parameter estimates.

CORRX

CORRX(number )
prints the cross-correlation matrices of exogenous (independent) variables. The number should be
greater than zero.

CORRY

CORRY(number )
prints the cross-correlation matrices of dependent (endogenous) variables. The number should be
greater than zero.

COVB
prints the estimated covariances of the parameter estimates.

COVPE

COVPE(number )
prints the covariance matrices of number -ahead prediction errors for the
VARMAX(p,q,s) model. The number should be greater than zero. If the DIF= or DIFY= option is
specified, the covariance matrices of multistep prediction errors are computed based on the differenced
data. This option is not applicable when the PRIOR= option is specified. For more information, see
the section “Forecasting” on page 3084.

COVX

COVX(number )
prints the cross-covariance matrices of exogenous (independent) variables. The number should be
greater than zero.

COVY

COVY(number )
prints the cross-covariance matrices of dependent (endogenous) variables. The number should be
greater than zero.

DECOMPOSE

DECOMPOSE(number )
prints the decomposition of the prediction error covariances using up to the number of lags specified by
number in parentheses for the VARMA(p,q) model. The number should be greater than zero. It can be
interpreted as the contribution of innovations in one variable to the mean squared error of the multistep
forecast of another variable. The DECOMPOSE option also prints proportions of the forecast error
variance.
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If the DIF= or DIFY= option is specified, the covariance matrices of multistep prediction errors are
computed based on the differenced data. This option is not applicable when the PRIOR= option is
specified. For more information, see the section “Forecasting” on page 3084.

DIAGNOSE
prints the residual diagnostics and model diagnostics.

DYNAMIC
prints the contemporaneous relationships among the components of the vector time series.

ESTIMATES
prints the coefficient estimates and a schematic representation of the significance and sign of the
parameter estimates.

IARR

IARR(number )
prints the infinite order AR representation of a VARMA process. The number should be greater
than zero. If the ECM= option or the COINTEG statement is specified, then the reparameterized AR
coefficient matrices are printed.

IMPULSE

IMPULSE(number )

IMPULSE=(SIMPLE ACCUM ORTH STDERR ALL)

IMPULSE(number )=(SIMPLE ACCUM ORTH STDERR ALL)
prints the impulse response function. The number should be greater than zero. It investigates the
response of one variable to an impulse in another variable in a system that involves a number of other
variables as well. It is an infinite order MA representation of a VARMA process. For more information,
see the section “Impulse Response Function” on page 3073.

You can specify the following options within parentheses:

ACCUM prints the accumulated impulse response function.

ALL is equivalent to specifying SIMPLE, ACCUM, ORTH, and STDERR.

ORTH prints the orthogonalized impulse response function.

SIMPLE prints the impulse response function. This is the default.

STDERR prints the standard errors of the impulse response function, the accumulated impulse
response function, or the orthogonalized impulse response function.

IMPULSX

IMPULSX(number )

IMPULSX=(SIMPLE ACCUM STDERR ALL)

IMPULSX(number )=(SIMPLE ACCUM STDERR ALL)
prints the impulse response function related to exogenous (independent) variables. The number should
be greater than zero. For more information, see the section “Impulse Response Function” on page 3073.

You can specify the following options within parentheses:
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ACCUM prints the accumulated impulse response matrices for the transfer function.

ALL is equivalent to specifying SIMPLE, ACCUM, and STDERR.

SIMPLE prints the impulse response matrices for the transfer function.

STDERR prints the standard errors of the simple impulse response function or the accumulated
impulse response function.

By default, IMPULSX(number )=(SIMPLE).

PARCOEF

PARCOEF(number )
prints the partial autoregression coefficient matrices, ˆmm up to the lag number . The number should
be greater than zero. With a VAR process, this option is useful for the identification of the order since
the ˆmm have the property that they equal zero for m > p under the hypothetical assumption of a
VAR(p) model. For more information, see the section “Tentative Order Selection” on page 3089.

PCANCORR

PCANCORR(number )
prints the partial canonical correlations of the process at lag m and the test for testing ˆm=0 for m > p

up to the lag number . The number should be greater than zero. The lag m partial canonical correlations
are the canonical correlations between yt and yt�m, after adjustment for the dependence of these
variables on the intervening values yt�1, . . . , yt�mC1. For more information, see the section “Tentative
Order Selection” on page 3089.

PCORR

PCORR(number )
prints the partial correlation matrices. The number should be greater than zero. With a VAR process,
this option is useful for a tentative order selection by the same property as the partial autoregression
coefficient matrices, as described in the PRINT=(PARCOEF) option. For more information, see the
section “Tentative Order Selection” on page 3089.

ROOTS
prints the eigenvalues of the kp � kp companion matrix associated with the AR characteristic function
ˆ.B/, where k is the number of dependent (endogenous) variables, and ˆ.B/ is the finite order
matrix polynomial in the backshift operator B, such that B iyt D yt�i . These eigenvalues indicate
the stationary condition of the process since the stationary condition on the roots of jˆ.B/j D 0 in
the VAR(p) model is equivalent to the condition in the corresponding VAR(1) representation that
all eigenvalues of the companion matrix be less than one in absolute value. Similarly, you can use
this option to check the invertibility of the MA process. In addition, when the GARCH statement is
specified, this option prints the roots of the GARCH characteristic polynomials to check covariance
stationarity for the GARCH process.

YW
prints Yule-Walker estimates of the preliminary autoregressive model for the dependent (endogenous)
variables. The coefficient matrices are printed using the maximum order of the autoregressive process.

Some examples of the PRINT= option are as follows:
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model y1 y2 / p=1 print=(covy(10) corry(10));
model y1 y2 / p=1 print=(parcoef pcancorr pcorr);
model y1 y2 / p=1 print=(impulse(8) decompose(6) covpe(6));
model y1 y2 / p=1 print=(dynamic roots yw);

Lag Specification Options

P=number

P=(number-list)
specifies the order of the vector autoregressive process. Subset models of vector autoregressive orders
can be specified by listing the desired set of lags. For example, you can specify the P=(1,3,4) option.
The P=3 option is equivalent to the P=(1,2,3) option. The default is P=0.

If P=0 and there are no exogenous (independent) variables, then the AR polynomial order is automati-
cally determined by minimizing an information criterion. If P=0 and the PRIOR= or ECM= option or
COINTEG statement are specified, then the AR polynomial order is determined automatically.

If the ECM= option or the COINTEG statement is specified, then subset models of vector autoregressive
orders are not allowed and the AR maximum order specified is used.

Examples illustrating the P= option follow:

model y1 y2 / p=3;
model y1 y2 / p=(1,3);
model y1 y2 / p=(1,3) prior;

Q=number

Q=(number-list)
specifies the order of the moving-average error process. Subset models of moving-average orders can
be specified by listing the desired set of lags. For example, you can specify the Q=(1,5) option. The
default is Q=0.

model y1 y2 / p=1 q=1;
model y1 y2 / q=(2);

XLAG=number

XLAG=(number-list)
specifies the lags of exogenous (independent) variables. Subset models of distributed lags can be
specified by listing the desired set of lags. For example, XLAG=(2) selects only a lag 2 of the
exogenous variables. The default is XLAG=0. To exclude the present values of exogenous variables
from the model, the NOCURRENTX option must be used.

model y1 y2 = x1-x3 / xlag=2 nocurrentx;
model y1 y2 = x1-x3 / p=1 xlag=(2);
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Tentative Order Selection Options

MINIC

MINIC=( P=number PERROR=number Q=number TYPE=value )
prints the information criterion for the appropriate AR and MA tentative order selection.

You can specify the following options within parentheses in the MINIC= option:

P=number

P=(pmin : pmax)
specifies the range of AR orders to be considered in the tentative order selection. The default is
P=(0:5). P=3 is equivalent to P=(0:3).

PERROR=number

PERROR=(p�;min : p�;max)
specifies the range of AR orders for obtaining the error series. The default is PERROR=(pmax W
pmax C qmax).

Q=number

Q=(qmin : qmax)
specifies the range of MA orders to be considered in the tentative order selection. The default is
Q=(0:5).

TYPE= AIC | AICC | FPE | HQC | SBC
specifies the criterion for the model order selection. Valid criteria are as follows:

AIC specifies Akaike’s information criterion.

AICC specifies the corrected Akaike’s information criterion.

FPE specifies the final prediction error criterion.

HQC specifies the Hanna-Quinn criterion.

SBC specifies the Schwarz Bayesian criterion. You can also specify this value as
TYPE=BIC.

By default, TYPE=AICC.

The following examples show how to use the MINIC or MINIC= option:

model y1 y2 / minic;

model y1 y2 / minic=(type=aic p=13);

In the selection of AR and MA orders, the model that has the smallest criterion value is chosen. For
the definitions of the information criteria used in the MINIC option, see the section “The Minimum
Information Criterion (MINIC) Method” on page 3093.
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Cointegration Related Options

Two options are related to integrated time series; one is the DFTEST option to test for a unit root and the
other is the COINTTEST option to test for cointegration.

DFTEST

DFTEST=(DLAG=number )

DFTEST=(DLAG=(number ) . . . (number ) )
prints the Dickey-Fuller unit root tests. The DLAG=(number ) . . . (number ) option specifies the regular
or seasonal unit root test. Supported values of number are in 1, 2, 4, 12. If the number is greater than
one, a seasonal Dickey-Fuller test is performed. If the TREND= option is specified, the seasonal unit
root test is not available. The default is DLAG=1.

For example, the DFTEST=(DLAG=(1)(12)) option produces two tables: the Dickey-Fuller regular
unit root test and the seasonal unit root test.

Some examples of the DFTEST= option follow:

model y1 y2 / p=2 dftest;
model y1 y2 / p=2 dftest=(dlag=4);
model y1 y2 / p=2 dftest=(dlag=(1)(12));
model y1 y2 / p=2 dftest cointtest;

COINTTEST

COINTTEST=(JOHANSEN < (=options) > SW < (=options) > SIGLEVEL=number )
specifies the cointegration tests.

You can specify the following options within parentheses in the COINTTEST= option:

JOHANSEN

JOHANSEN=(TYPE=value IORDER=number NORMALIZE=variable)
prints the cointegration rank test for multivariate time series based on Johansen’s method. This
test is provided when the number of dependent (endogenous) variables is less than or equal to 64.
For more information, see the section “Vector Error Correction Modeling” on page 3119.

The VARX(p,s) model can be written as the error correction model

�yt D …yt�1 C
p�1X
iD1

ˆ�i �yt�i C ADt C
sX
iD0

‚�i xt�i C �t

where …, ˆ�i , A, and ‚�i are coefficient parameters and Dt is a deterministic term such as a
constant, a linear trend, or seasonal dummies.

The I.1/ model is defined by one reduced-rank condition. If the cointegration rank is r < k, then
there exist k � r matrices ˛ and ˇ of rank r such that … D ˛ˇ0.

The I.1/ model is rewritten as the I.2/ model

�2yt D …yt�1 �‰�yt�1 C
p�2X
iD1

‰i�
2yt�i C ADt C

sX
iD0

‚�i xt�i C �t
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where ‰ D Ik �
Pp�1
iD1 ˆ

�
i and ‰i D �

Pp�1
jDiC1ˆ

�
i .

The I.2/ model is defined by two reduced-rank conditions. One is that … D ˛ˇ0, where ˛ and ˇ
are k � r matrices of full-rank r. The other is that ˛0

?
‰ˇ? D ��

0, where � and � are .k � r/� s
matrices with s � k � r , and ˛? and ˇ? are k � .k � r/ matrices of full-rank k � r such that
˛0˛? D 0 and ˇ0ˇ? D 0.

You can specify the following options within parentheses in the JOHANSEN= option:

IORDER=1 | 2
specifies the integrated order. You can specify the following values:

1 prints the cointegration rank test for an integrated order 1 and prints the
long-run parameter, ˇ, and the adjustment coefficient, ˛. If you specify
IORDER=1, then the AR order should be greater than or equal to 1. If
you specify P=0 in the MODEL statement, the value of P is set to 1 for
the Johansen test.

2 prints the cointegration rank test for integrated orders 1 and 2. If you
specify IORDER=2, then the AR order should be greater than or equal to
2. If you specify P=1 and IORDER=2, then the value of IORDER is set
to 1; if you specify P=0 and IORDER=2, then the value of P is set to 2.

By default, IORDER=1.

NORMALIZE=variable
specifies the dependent (endogenous) variable whose cointegration vectors are to be normal-
ized. If the variable is different from the variable specified in the COINTEG statement or
in the ECM= option in the MODEL statement, then the value specified in the COINTEG
statement is used. If you specify this option and you want to estimate an error correction
model, then the BOUND, GARCH, INITIAL, and RESTRICT statements are all ignored
and the Q= option in the MODEL statement is also ignored.

TYPE=MAX | TRACE
specifies the type of cointegration rank test to be printed. You can specify the following
values:

MAX prints the cointegration maximum eigenvalue test.

TRACE prints the cointegration trace test.

By default, TYPE=TRACE. If the NOINT option is not specified, PROC VARMAX prints
two different cointegration rank tests in the presence of the unrestricted and restricted
deterministic terms (constant or linear trend) models. If you specify IORDER=2, the
procedure automatically sets the TYPE=TRACE option.

The following examples illustrate the JOHANSEN= option:

model y1 y2 / p=2 cointtest=(johansen=(type=max normalize=y1));
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model y1 y2 / p=2 cointtest=(johansen=(iorder=2 normalize=y1));

SIGLEVEL=value
sets the size (the significance level) of the common trends tests.

The SIGLEVEL=value can be set to 0.1, 0.05, or 0.01. By default, SIGLEVEL=0.05.

model y1 y2 / p=2 cointtest=(sw siglevel=0.1);

model y1 y2 / p=2 cointtest=(sw siglevel=0.01);

SW

SW=(TYPE=value LAG=number )
prints common trends tests for a multivariate time series based on the Stock-Watson method.
This test is provided when the number of dependent (endogenous) variables is less than or equal
to 6. For more information, see the section “Common Trends” on page 3116.

You can specify the following options within parentheses in the SW= option:

LAG=number
specifies the number of lags. The default is LAG=max(1,p) for the TYPE=FILTDIF or
TYPE=FILTRES option, where p is the AR maximum order specified by the P= option. The
default is LAG=T 1=4 for the TYPE=KERNEL option, where T is the number of nonmissing
observations. If the specified LAG=number exceeds the default, then it is replaced by the
default.

TYPE=FILTDIF | FILTRES | KERNEL
specifies the type of common trends test to be printed. You can specify the following values:

FILTDIF prints the common trends test based on the filtering method applied to
the differenced series.

FILTRES prints the common trends test based on the filtering method applied to
the residual series.

KERNEL prints the common trends test based on the kernel method.

By default, TYPE=FILTDIF.

The following examples illustrate the SW option:

model y1 y2 / p=2 cointtest=(sw);

model y1 y2 / p=2 cointtest=(sw=(type=kernel));

model y1 y2 / p=2 cointtest=(sw=(type=kernel lag=3));
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Bayesian VARX Estimation Options

PRIOR

PRIOR=(prior-options)
specifies the prior value of parameters for the BVARX(p, s) model. The BVARX model allows for
a subset model specification. If the ECM= option or the COINTEG statement is specified with the
PRIOR option, the BVECMX(p, s) form is fitted. When the PRIOR option is specified, the Q= option
in the MODEL statement is ignored, and the BOUND, GARCH, INITIAL, RESTRICT, and TEST
statements are all ignored. For more information, see the section “Bayesian VAR and VARX Modeling”
on page 3102.

The following options can be used with the PRIOR=(prior-options) option. The prior-options are listed
within parentheses.

IVAR

IVAR=(variables)
specifies an integrated BVAR(p) model. The variables should be specified in the MODEL statement as
dependent variables. If you use the IVAR option without variables, then it sets the overall prior mean
of the first lag of each variable equal to one in its own equation and sets all other coefficients to zero. If
variables are specified, it sets the prior mean of the first lag of the specified variables equal to one in its
own equation and sets all other coefficients to zero. When the series yt D .y1; y2/0 follows a bivariate
BVAR(2) process, the IVAR or IVAR=(y1 y2) option is equivalent to specifying MEAN=(1 0 0 0 0
1 0 0).

If the PRIOR=(MEAN=) or ECM= option or the COINTEG statement is specified, the IVAR= option
is ignored.

LAMBDA=value
specifies the prior standard deviation of the AR coefficient parameter matrices. It should be a positive
number. The default is LAMBDA=1. As the value of the LAMBDA= option is increased, the BVAR(p)
model becomes closer to a VAR(p) model.

MEAN=(vector )
specifies the mean vector in the prior distribution for the AR coefficients. If the vector is not specified,
the prior value is assumed to be a zero vector. For more information, see the section “Bayesian VAR
and VARX Modeling” on page 3102.

You can specify the mean vector by order of the equation. Let .ı;ˆ1; : : : ; ˆp/ be the parameter sets
to be estimated and ˆ D .ˆ1; : : : ; ˆp/ be the AR parameter sets. The mean vector is specified by
row-wise from ˆ; that is, the MEAN=(vec.ˆ0/) option.

For the PRIOR=(mean) option in the BVAR(2),

ˆ D

�
�1;11 �1;12 �2;11 �2;12
�1;21 �1;22 �2;21 �2;22

�
D

�
2 0:1 1 0

0:5 3 0 �1

�
where �l;ij is an element of ˆ, l is a lag, i is associated with the first dependent variable, and j is
associated with the second dependent variable.
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model y1 y2 / p=2 prior=(mean=(2 0.1 1 0 0.5 3 0 -1));

The deterministic terms and exogenous variables are considered to shrink toward zero; you must omit
prior means of exogenous variables and deterministic terms such as a constant, seasonal dummies, or
trends.

For a Bayesian error correction model estimated when both the ECM= option (or the COINTEG
statement) and the PRIOR= option are used, a mean vector for only lagged AR coefficients, ˆ�i , in
terms of regressors�yt�i , for i D 1; : : : ; .p�1/ is used in the VECM(p) representation. The diffused
prior variance of ˛ is used, since ˇ is replaced by Ǒ estimated in a nonconstrained VECM(p) form.

�yt D ˛zt�1 C
p�1X
iD1

ˆ�i �yt�i C ADt C
sX
iD0

‚�i xt�i C �t

where zt D ˇ0yt .

For example, in the case of a bivariate (k D 2) BVECM(2) form, the option

MEAN D .��1;11 �
�
1;12 �

�
1;21 �

�
1;22/

where ��1;ij is the (i, j) element of the matrix ˆ�1 .

NREP=number
determines the number of repetitions that are used to compute the measure of forecast accuracy. For
more information, see the equation in the section “Forecasting of BVAR Modeling” on page 3103. The
default is NREP=0:5T , where T is the number of observations. If NREP is above 0:5T , it is decreased
to 0:5T ; if NREP is below the value of the LEAD= option, it is increased to the value of the LEAD=
option.

THETA=value
specifies the prior standard deviation of the AR coefficient parameter matrices. The value is in the
interval (0,1). The default is THETA=0.1. As the value of the THETA= option approaches 1, the
specified BVAR(p) model approaches a VAR(p) model.

Some examples of the PRIOR= option follow:

model y1 y2 / p=2 prior;
model y1 y2 / p=2 prior=(theta=0.2 lambda=5);
model y1 y2 = x1 / p=2 prior=(theta=0.2 lambda=5);
model y1 y2 = x1 / p=2

prior=(theta=0.2 lambda=5 mean=(2 0.1 1 0 0.5 3 0 -1));

For more information, see the section “Bayesian VAR and VARX Modeling” on page 3102.
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Vector Error Correction Model Options

ECM=(RANK=number < ECTREND > < NORMALIZE=variable > )
specifies a vector error correction model.

The ECM= option is obsolete. Use the COINTEG statement instead.

You must specify the following option within parentheses in the ECM= option:

RANK=number
specifies the cointegration rank of the cointegrated system. The rank of cointegration should
be greater than 0 and less than the number of dependent (endogenous) variables. If number is
different from the RANK= option specified in the COINTEG statement, the value specified in the
COINTEG statement is used for the rank.

You can also specify the following options within parentheses in the ECM= option:

ECTREND
specifies the restriction on the drift in the VECM. This option is used in the following cases:

� There is no separate drift in the VECM, but a constant enters only through the error correction
term. For example, for VECM(p),

�yt D ˛.ˇ0;ˇ0/.y0t�1; 1/
0
C

p�1X
iD1

ˆ�i �yt�i C �t

An example of the ECTREND option follows:

model y1 y2 / p=2 ecm=(rank=1 ectrend);

� There is a separate drift and no separate linear trend in the VECM, but a linear trend enters
only through the error correction term. For example, for VECM(p),

�yt D ˛.ˇ0;ˇ1/.y0t�1; t /
0
C

p�1X
iD1

ˆ�i �yt�i C ı0 C �t

An example of the ECTREND option with the TREND= option follows:

model y1 y2 / p=2 ecm=(rank=1 ectrend) trend=linear;

If you specify both this option and the NSEASON option in the MODEL statement, then the
NSEASON option is ignored. If you specify the NOINT option in the MODEL statement, then
this option is ignored.

NORMALIZE=variable
specifies a single dependent (endogenous) variable whose cointegrating vectors are normalized. If
the variable is different from the variable specified in the NORMALIZE= option in the COINTEG
statement, the variable specified in the NORMALIZE= option in the COINTEG statement is
used. If this option is not specified, cointegrating vectors are not normalized. If you specify this
option, then the BOUND, GARCH, INITIAL, and RESTRICT statements are all ignored and the
Q= option in the MODEL statement is also ignored.

The following examples illustrate the ECM= option:
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model y1 y2 / p=2 ecm=(rank=1 normalize=y1);

model y1 y2 / p=2 ecm=(rank=1 ectrend) trend=linear;

For more information, see the section “Vector Error Correction Modeling” on page 3119.

NLOPTIONS Statement
NLOPTIONS options ;

The VARMAX procedure uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. For a list of all the options in the NLOPTIONS statement, see Chapter 7, “Nonlinear Optimization
Methods.”

An example of the NLOPTIONS statement is as follows:

proc varmax data=one;
nloptions tech=qn maxit=1000 pall;
model y1 y2 / p=2;

run;

By default, the VARMAX procedure uses the dual quasi-Newton optimization method.

OUTPUT Statement
OUTPUT < options > ;

The OUTPUT statement generates and prints forecasts based on the model estimated in the previous MODEL
statement and, optionally, creates an output SAS data set that contains these forecasts.

When the GARCH model is estimated, the upper and lower confidence limits of forecasts are calculated
according to the conditional covariance of errors.

ALPHA=number
sets the forecast confidence limit size, where number is between 0 and 1. When you specify the
ALPHA=number option, the upper and lower confidence limits define the 100(1 � ˛)% confidence
interval. The default is ALPHA=0.05, which produces 95% confidence intervals.

BACK=number
specifies the number of observations before the end of the data at which the multistep forecasts begin.
The BACK= option value must be less than or equal to the number of observations minus the number
of lagged regressors in the model. The default is BACK=0, which means that the forecasts start at the
end of the available data.
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LEAD=number
specifies the number of multistep forecast values to compute. The default is LEAD=12.

NOPRINT
suppresses the printed forecast values of each dependent (endogenous) variable.

OUT=SAS-data-set
writes the forecast values to an output data set. If the OUT= option is not included in the OUTPUT
statement, then the output data set is named using the DATAn naming convention.

Some examples of the OUTPUT statements follow:

proc varmax data=one;
model y1 y2 / p=2;
output lead=6 back=2;

run;

proc varmax data=one;
model y1 y2 / p=2;
output out=for noprint;

run;

RESTRICT Statement
RESTRICT restriction, . . . , restriction ;

The RESTRICT statement places linear restrictions on the parameters and provides constrained estimation.
Only one RESTRICT statement is allowed. If you specify more than one restriction in a RESTRICT statement,
separate them with commas. Both equality and inequality constraints are allowed in the RESTRICT statement,
although usually equality constraints are specified in the RESTRICT statement and inequality constraints are
specified in the BOUND statement. If the least squares method is used, the inequality constraints are not
applicable.

To use the RESTRICT statement, you need to know the form of the model. If you do not specify the GARCH
statement, the COINTEG statement, or the ECM=, P=, Q=, or XLAG= option in the MODEL statement then
the RESTRICT statement is not applicable. If you specify the ECM=(NORMALIZE=) option or PRIOR=
option in the MODEL statement or if you specify the EXOGENEITY, H=, J=, or NORMALIZE= option in
the COINTEG statement, then the RESTRICT statement is ignored. Nonlinear restrictions on parameters are
not supported.

Restricted parameter estimates are computed by introducing a Lagrangian parameter for each restriction
(Pringle and Rayner 1971). The Lagrangian parameter measures the sensitivity of the sum of squared errors
to the restriction. The estimates of these Lagrangian parameters and their significance are printed in the
Restrict ODS table.
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Matrix Expression

The RESTRICT statement operates on matrices. That is, you can specify the parameter matrices or constant
matrices through the RESTRICT statement’s built-in operators and functions. You can add elements of the
matrices A and B with the expression A+B, and you can perform matrix multiplication with the expression
A*B and elementwise multiplication with the expression A#B. You can get the diagonal elements of the matrix
A through the function DIAG(A), and you can get the n � n identity matrix through the function I(n).

Each restriction is written as a matrix expression composed of constants, operators, and functions.

Constants
Constants are either scalar constants (such as –1.2, 0.3, and so on) or matrix constants enclosed in braces
(such as the 2 � 2 matrix, {1 2, 3 4}, or the 1 � 3 row vector, {-0.2 5.3 12}). Constants also include
the dependent variable names and exogenous variable names that represent their index values and are mostly
used in the subscripts or function arguments. For example, in the following PROC VARMAX statements, the
dependent and exogenous variables have the following index values (based on their orders in the MODEL
statement): GDP is equal to 1, CPI to 2, M2 to 3, FFR to 1, and CP to 2. Hence, the function call AR(2, GDP,

{CPI M2}) is equivalent to AR(2,1,{2 3}), and XL(0, CPI, {FFR CP}) is equivalent to XL(0,2,{1

2}). For more information about the use of AR and XL functions to access parameters, see the section
“Functions” on page 3054.

proc varmax data=macrodata;
model GDP CPI M2 = FFR CP / p=12 xlag=12;
restrict AR(2, GDP, {CPI M2}) = 0,

XL(0, CPI, {FFR CP}) = 0;
run;

The matrix constant cannot be the first item in the RESTRICT statement. For example, you cannot specify
the following statement:

restrict {-0.1 -0.2, -0.3 -0.4} <= AR <= {0.1 0.2, 0.3 0.4};

However, you can put the first matrix constant in parentheses and specify the preceding example in the
following way:

restrict ({-0.1 -0.2, -0.3 -0.4}) <= AR <= {0.1 0.2, 0.3 0.4};

Operators
Operators define the operations on operands. Table 43.2 lists all built-in operators supported by the RE-
STRICT statement.

Table 43.2 Operators

Operator Name Description

+ Addition Adds corresponding matrix elements
= Comparison, equal Compares matrix elements
< Comparison, less than Compares matrix elements
<= Comparison, not greater than Compares matrix elements
> Comparison, greater than Compares matrix elements
>= Comparison, not less than Compares matrix elements
|| Concatenation, horizontal Concatenates matrices horizontally
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Table 43.2 continued

Operator Name Description

// Concatenation, vertical Concatenates matrices vertically
@ Direct product Takes the direct product of two matrices
: Index creation Creates an index vector
# Multiplication, elementwise Performs elementwise multiplication
* Multiplication, matrix Performs matrix multiplication
� Sign reverse Reverses the signs of elements
Œ � Subscripts Selects submatrices
� Subtraction Subtracts corresponding matrix elements
` Transpose Transposes a matrix

For more information about each operator, see the section “Details of Operators” on page 3059.

Table 43.3 shows the precedence of matrix operators in the RESTRICT statement.

Table 43.3 Operator Precedence

Priority Group Operators

I (highest) Œ � (subscripts) ` (transpose)
II � (sign reverse)
III * # @
IV � (subtraction) +
V || // :
VI (lowest) = < <= > >=

Each restriction can be a compound expression that involves several matrix operators and operands. The
rules for evaluating compound expressions are as follows:

� Evaluation follows the order of operator precedence, as described in Table 43.3. Group I has the
highest priority; that is, Group I operators are evaluated first. Group II operators are evaluated after
Group I operators, and so on. For example, 1C 2 � 3 returns 7.

� If neighboring operators in an expression have equal precedence, the expression is evaluated from left
to right, except for the Group I operators. For example, 1 � 2 � 3 returns �4.

� All expressions in parentheses are evaluated first, following the two preceding rules. For example,
3 � .2C 1/ returns 9.

Functions
Functions are mainly divided into two categories: one type of function refers to parameters to be estimated,
such as AR(L,I,J) and CCC(I,J); the other type does not, such as I(n) and DIAG(A).

Functions that refer to the parameters are listed in Table 43.4. The arguments for functions can be matrices.
The simplest case, scalar arguments, is discussed first. For convenience, the scalar indices i and j refer to the
position of the element in the coefficient matrix, and scalar l refers to the lag value.
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Table 43.4 Functions That Refer to Parameters

Function Description

ACH(l,i,j) ARCH parameter of the lag l value of �t�0t in a GARCH model
ALPHA(i,j) The (i, j) element in the adjustment coefficient matrix ˛ for the vector error

correction model
AR(l,i,j) Autoregressive parameter of the lag l value of the jth dependent

(endogenous) variable, yj;t�l , to the ith dependent variable at time t, yit
for models other than error-correction models. For error correction models,
AR(1,i,j) is the (i, j) element in ….D ˛ˇ0/ for yt�1, and AR(l,i,j),
l > 1, is the autoregressive parameter of the lag .l � 1/ value of the jth
differenced dependent (endogenous) variable, �yj;t�.l�1/, to the ith
differenced dependent variable at time t, �yit .

BETA(i,j) The (i, j) element in the cointegrating matrix ˇ for the vector error
correction model

CCC(i,j) Constant conditional correlation parameter between the ith and jth
standardized error processes for the CCC GARCH model

CONST(i) Intercept parameter of the ith time series, yit
COV(i,j) Covariance of innovations parameter between the ith and jth error processes

when the maximum likelihood method is used for the fitted non-GARCH
model

D(i) Long-range dependent parameter of the ith time series, yi , when the FI
option is specified. By default, the LRD parameters are restricted between
–1/2 and 1/2.

DCCA() Parameter ˛ in the correlation equation for the DCC GARCH model
DCCB() Parameter ˇ in the correlation equation for the DCC GARCH model
DCCS(i,j) Unconditional correlation parameter between the ith and jth standardized

error processes for the DCC GARCH model
EACH(l,i,j) Exponential ARCH parameter of the lag l value of �it=�it in the CCC or

DCC GARCH model when SUBFORM=EGARCH is specified and i D j .
If i ¤ j , the value is set to 0.

ECCONST(i) The ith element for the constant in the error correction term for the vector
error correction model when the ECTREND option in the COINTEG
statement is specified

ECLTREND(i) The ith element for the linear trend in the error correction term for vector
error correction model when the ECTREND option in the COINTEG
statement is specified

GCH(l,i,j) GARCH parameter of the lag l value of the covariance matrix, Ht , in a
GARCH model

GCHC(i,j) Constant parameter of the covariance matrix, Ht , in a GARCH model
LAMBDA(i) Power parameter for the ith error process in the CCC or DCC GARCH

model when SUBFORM=PGARCH is specified
LTREND(i) Linear trend parameter of the ith time series, yit , when the TREND=

option is specified
MA(l,i,j) Moving average parameter of the lag l value of the jth error process, �j;t�l ,

to the ith dependent variable at time t, yit
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Table 43.4 continued

Function Description

PACH(l,i,j) Power ARCH parameter of the lag l value of �it in the CCC or DCC
GARCH model when SUBFORM=PGARCH is specified and i D j . If
i ¤ j , the value is set to 0.

QACH(l,i,j) Quadratic ARCH center parameter of the lag l value of �it in the CCC or
DCC GARCH model when SUBFORM=QGARCH is specified and i D j .
If i ¤ j , the value is set to 0.

QTREND(i) Quadratic trend parameter of the ith time series, yit , when TREND=QUAD
is specified

SD(i,j) Same as SDUMMY(i, j)

SDUMMY(i,j) The jth seasonal dummy of the ith time series at time t, yit , where
j D 1; : : : ; .nseason�1/, where nseason is the value of the NSEASON=
option in the MODEL statement

TACH(l,i,j) Threshold ARCH parameter of the lag l value of 1�it<0�
2
it in the CCC or

DCC GARCH model when SUBFORM=GJR is specified and i D j . If
i ¤ j , the value is set to 0.

XL(l,i,j) Exogenous parameter of the lag l value of the jth exogenous (independent)
variable, xj;t�l , to the ith dependent variable at time t, yit

The functions that refer to parameters, as shown in Table 43.4, accept vector arguments and return the matrix
that is constructed by the corresponding parameters. According to the number of arguments, the following
list shows what matrix a function returns when the arguments are vectors:

� A function, FUNC0, that has zero arguments, always returns the corresponding scalar parameter. DCCA
and DCCB are types of FUNC0.

� A function, FUNC1, that has one vector argument I, where I D .i1 i2 : : : inI /
0, returns a vector

R D .r1 r2 : : : rnI /
0, where rk D FUNC1(ik), k D 1; : : : ; nI . CONST, ECCONST, ECLTREND, LAMBDA,

LTREND, and QTREND are types of FUNC1.

� A function, FUNC2, that has two vector arguments I and J, where I D .i1 i2 : : : inI /
0 and J D

.j1 j2 : : : jnJ /
0, returns a matrix

R D

0BB@
r1;1 r1;2 � � � r1;nJ
r2;1 r2;2 � � � r2;nJ
� � �

rnI ;1 rnI ;2 � � � rnI ;nJ

1CCA
where rk;m D FUNC2(ik; jm), k D 1; : : : ; nI ; m D 1; : : : ; nJ . ALPHA, BETA, CCC, COV, DCCS, GCHC,
SD, and SDUMMY and types of FUNC2.

� A function, FUNC3, that has three vector arguments L, I, and J, where L D .l1 l2 : : : lnL/
0, I D

.i1 i2 : : : inI /
0, and J D .j1 j2 : : : jnJ /

0, returns a matrix
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R D

0BB@
r1;1 r1;2 � � � r1;nLnJ
r2;1 r2;2 � � � r2;nLnJ
� � �

rnI ;1 rnI ;2 � � � rnI ;nLnJ

1CCA
where rk;m D FUNC3(lm; ik; jm), k D 1; : : : ; nI ; m D 1; : : : ; nLnJ , and lm and jm are the quotient
and remainder of m divided by nJ , respectively. ACH, AR, EACH, GCH, MA, PACH, QACH, TACH, and XL

are types of FUNC3.

The functions that refer to parameters can accept empty arguments or omit any number of last arguments.
The empty or omitted arguments are replaced with all possible values for those arguments. For example,
PROC VARMAX is used to fit a bivariate (k=2) VARX(1,1) model with three exogenous variables as follows:

model y1 y2 = x1 x2 x3 / p=1 xlag=3;

In order to restrict the third exogenous variable from having an effect on the first dependent variable, and to
restrict the first exogenous variable from having an effect on the second dependent variable, you can use the
following statement:

restrict XL({0 1 2 3}, 1, 3) = 0,
XL({0 1 2 3}, 2, 1) = 0;

Taking advantage of empty arguments, you can specify the preceding example as follows:

restrict XL( , 1, 3) = 0,
XL( , 2, 1) = 0;

To get all coefficients of the first lag exogenous variables on dependent variables, you can use XL(1, {1 2},

{1 2 3}) or XL(1, , ) or XL(1). To get all coefficients of exogenous variables on dependent variables,
you can use XL({0 1 2 3}, {1 2}, {1 2 3}), or XL( , , ) or XL() or even just XL.

Another type of function does not refer to parameters but generates useful matrices. Table 43.5 lists all
built-in functions supported by the RESTRICT statement.

Table 43.5 Functions Not Referring to Parameters

Function Description

DIAG(A) Creates a diagonal matrix from a vector or extracts the diagonal
elements of a matrix

I(n) Creates an n � n identity matrix
J(m,n,elem) Creates an m � n matrix with all elements equal to elem

SHAPE(A,m,n) Creates a m � n matrix with elements of matrix A

For more information about each function in Table 43.5, see the section “Details of Functions” on page 3063.
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Examples

The following examples show how to use the RESTRICT statement.

This example shows a bivariate (k=2) VAR(2) model:

proc varmax data=one;
model y1 y2 / p=2;
restrict AR(1,1,2)=0, AR(2,1,2)=0.3;

run;

The AR(1,1,2) and AR(2,1,2) parameters are fixed as AR(1,1,2)=0 and AR(2,1,2)=0.3, respectively,
and other parameters are to be estimated.

The following example shows a bivariate (k=2) VAR(1) model, estimated using the ML method:

proc varmax data=two;
model y1 y2 = / p=1 method=ml;
restrict cov(1,1)=cov(2,2), cov(1,2)=0;

run;

The COV(1,1) and COV(2,2) parameters are equal, and the correlation between the two series is fixed at
0. You can also express the preceding restrictions in matrix expressions as follows. This approach is very
convenient when the number of dependent variables is large:

proc varmax data=two;
model y1 y2 = / p=1 method=ml;
restrict cov = cov(1,1)*I(2);

run;

When restricting a linear combination of parameters to be 0, you can omit the equal sign. For example, the
following two RESTRICT statements are equivalent:

restrict AR(1)[1,1]-AR(1)[2,2], 2*MA(1)[1,2]-MA(1)[2,1];

restrict AR(1)[1,1]-AR(1)[2,2] = 0, 2*MA(1)[1,2]-MA(1)[2,1] = 0;

The following RESTRICT statement constrains four parameter estimates to be equal:

restrict AR(1)[1,1] = AR(1)[1,2],
AR(1)[1,2] = AR(1)[2,1],
AR(1)[2,1] = AR(1)[2,2];

This restriction can be abbreviated as follows:

restrict AR(1)[1,1] = AR(1)[1,2] = AR(1)[2,1] = AR(1)[2,2];

Or, in matrix expressions,

restrict AR(1,1:2,1:2) = J(2,2,AR(1,1,1));

The VARMA representation A.L/yt D ‚.L/"t , where A.L/ D Ik �A1L� � � � �ApLp and‚.L/ D Ik �
‚1L�� � ��‚qL

q , is said to be in final equation form ifA.L/ D a.L/Ik , where a.L/ D 1�a1L�� � ��apLp

is a scalar operator with ap ¤ 0. If p and k are large, it would be difficult and inconvenient to restrict AR
parameters element by element in standard form to estimate the VARMA model in final equation form.
However, when you use matrix expressions, the restrictions become very simple, as shown in the following
statement for a trivariate (k D 3) VARMA(p, q) model, where p might be any positive integer:
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restrict AR = AR(,1,1) @ I(3);

For the vector error correction models, the AR(1,.,.) parameters (that is, …) are not supported in the
RESTRICT statement, because AR(1) is in fact the product of the estimated parameters ˛ and the transpose of
ˇ. Any linear constraints on AR(1) should be regarded as nonlinear constraints on the estimated parameters.
For the same reason, the CONST(.) or LTREND(.) functions are not supported in the RESTRICT statement
if the ECTREND option in the COINTEG statement is specified. For example, the following statements are
supported:

model y1-y4 / p=2;
cointeg rank=1 ectrend;
restrict ALPHA + BETA = 1.0,

ECCONST;

However, neither of the following sets of statements is supported:

model y1-y4 / p=2;
cointeg rank=1 ectrend;
restrict AR(1,1,1) = 0;

model y1-y4 / p=2;
cointeg rank=1 ectrend;
restrict CONST(2) = 0.2;

Details of Operators

This section describes all operators that are available in the RESTRICT statement. Each subsection shows
how the operator is used, followed by a description of the operator.

Addition Operator: +
matrix1 + matrix2

matrix + scalar

matrix + vector

The addition operator (+) computes a new matrix whose elements are the sums of the corresponding elements
of matrix1 and matrix2. If matrix1 and matrix2 are both n�p matrices, then the addition operator adds
the element in the ith row and jth column of the first matrix to the element in the ith row and jth column
of the second matrix, for i D 1; : : : ; n; j D 1; : : : ; p. For example, {1 2 3, 4 5 6} + {7 8 9, 10 11

12} results in {8 10 12, 14 16 18}.

You can also use the addition operator as follows to conveniently add a value to each element of a matrix, to
each column of a matrix, or to each row of a matrix:

� When you use the matrix + scalar form, the scalar value is added to each element of the matrix.

� When you use the matrix + vector form, the vector is added to each row or column of the n � p
matrix.

– If you add an n � 1 column vector, each row of the vector is added to each row of the matrix.

– If you add a 1 � p row vector, each column of the vector is added to each column of the matrix.
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For example, you can obtain {2 3 4, 5 6 7} from {1 2 3, 4 5 6} + 1 or {1 2 3, 4 5 6} + {1 1

1} or {1 2 3, 4 5 6} + {1, 1}.

Comparison Operators: =, <, <=, >, >=
matrix1 = matrix2

matrix1 < matrix2

matrix1 <= matrix2

matrix1 > matrix2

matrix1 >= matrix2

The comparison operators (=, <, <=, >, >=) compare two matrices element by element and return a list of
equivalent restrictions on only scalar constants and parameters.

For example, the RESTRICT statement with matrix expressions

restrict AR(1,{1,2},{1,2}) = MA(2,{3,4},{3,4});

is transformed into the following equivalent RESTRICT statement with scalar parameters:

restrict AR(1,1,1) = MA(2,3,3),
AR(1,1,2) = MA(2,3,4),
AR(1,2,1) = MA(2,4,3),
AR(1,2,2) = MA(2,4,4);

You can also use the comparison operators to conveniently compare all elements of a matrix with a scalar:

� If either argument is a scalar, then the VARMAX procedure performs an elementwise comparison
between each element of the matrix and the scalar.

You can also compare an n � p matrix with a row or column vector:

� If the comparison is with an n � 1 column vector, the VARMAX procedure compares each row of the
vector to each row of the matrix.

� If the comparison is with a 1 � p row vector, the VARMAX procedure compares each column of the
vector to each column of the matrix.

For example, the following statements are equivalent:

restrict AR(1,1:2,1:3) >= 0.2;

restrict AR(1,1:2,1:3) >= {0.2, 0.2};

restrict AR(1,1:2,1:3) >= {0.2 0.2 0.2};

Concatenation Operator, Horizontal: ||
matrix1 k matrix2

The horizontal concatenation operator (||) produces a new matrix by horizontally joining matrix1 and
matrix2. The matrices must have the same number of rows, which is also the number of rows in the new
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matrix. The number of columns in the new matrix is the number of columns in matrix1 plus the number of
columns in matrix2.

For example, {1 1 1, 7 7 7} || {0 0 0, 8 8 8} returns {1 1 1 0 0 0, 7 7 7 8 8 8}.

Concatenation Operator, Vertical: //
matrix1 // matrix2

The vertical concatenation operator (//) produces a new matrix by vertically joining matrix1 and matrix2.
The matrices must have the same number of columns, which is also the number of columns in the new
matrix. The number of rows in the new matrix is the number of rows in matrix1 plus the number of rows in
matrix2.

For example, {1 1 1} // {0 0 0, 8 8 8} returns {1 1 1, 0 0 0, 8 8 8}.

Direct Product Operator: @
matrix1 @ matrix2

The direct product operator (@) computes a new matrix that is the direct product (also called the Kronecker
product) of matrix1 and matrix2. For matrices A and B, the direct product is denoted by A ˝ B. The
number of rows in the new matrix equals the product of the number of rows in matrix1 and the number of
rows in matrix2; the number of columns in the new matrix equals the product of the number of columns in
matrix1 and the number of columns in matrix2.

Specifically, if A is an n � p matrix and B is a m � q matrix, then the Kronecker product A ˝ B is the
following nm � pq block matrix:

A˝ B D

264A11B � � � A1pB
:::

: : :
:::

An1B � � � AnpB

375
For example, {1 2, 3 4} @ {0 2} returns {0 2 0 4, 0 6 0 8}, and {0 2} @ {1 2, 3 4} returns
{0 0 2 4, 0 0 6 8}. Note that the direct product of two matrices is not commutative.

Index Creation Operator: :
value1 : value2

The index creation operator (:) creates a column vector whose first element is value1, whose second element
is value1+1, and so on, until the last element, which is less than or equal to value2.

For example, 3 : 6 returns {3 4 5 6}.

If value1 is greater than value2, a reverse-order index is created. For example, 6 : 3 returns {6 5 4 3}.

Neither value1 nor value2 is required to be an integer.

Multiplication Operator, Elementwise: #
matrix1 # matrix2

matrix # scalar

matrix # vector



3062 F Chapter 43: The VARMAX Procedure

The elementwise multiplication operator (#) computes a new matrix whose elements are the products of the
corresponding elements of matrix1 and matrix2.

For example, {1 2, 3 4} # {4 8, 0 5} returns {4 16, 0 20}.

In addition to multiplying matrices that have the same dimensions, you can use the elementwise multiplication
operator to multiply a matrix and a scalar:

� When either argument is a scalar, each element in matrix is multiplied by the scalar value.

When you use the matrix # vector form, each row or column of the n � p matrix is multiplied by a
corresponding element of the vector:

� If you multiply by an n � 1 column vector, each row of the matrix is multiplied by the corresponding
row of the vector.

� If you multiply by a 1 � p row vector, each column of the matrix is multiplied by the corresponding
column of the vector.

For example, a 2 � 3 matrix can be multiplied on either side by a 2 � 3, 1 � 3, 2 � 1, or 1 � 1 scalar.

The product of elementwise multiplication is also known as the Schur or Hadamard product. Elementwise
multiplication (which uses the # operator) should not be confused with matrix multiplication (which uses
the * operator).

Multiplication Operator, Matrix: *
matrix1 * matrix2

The matrix multiplication operator (*) computes a new matrix by performing matrix multiplication. The first
matrix must have the same number of columns as the second matrix has rows. The new matrix has the same
number of rows as the first matrix and the same number of columns as the second matrix. That is, if A is an
n � p matrix and B is a p �m matrix, then the product A � B is an n �m matrix. The (i, j) element of the
product is the sum

Pp

kD1
AikBkj .

For example, {1 2, 3 4} * {1, 2} returns {5, 11}.

Sign Reversal Operator: –
- matrix

The sign reversal operator (�) computes a new matrix whose elements are formed by reversing the sign of
each element in matrix. The sign reversal operator is also called the unary minus operator.

For example, -{-1 7 6, 2 0 -8} returns {1 -7 -6, -2 0 8}.

Subscripts: [ ]
matrix[rows, columns]

matrix[elements]

Subscripts are used with matrices to select submatrices, where rows, columns, and elements are expressions
that evaluate to scalars or vectors. If these expressions are numeric, they must contain valid subscript values
of rows and columns, or the indices, in the argument matrix.
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For example, {1 2 3, 4 5 6, 7 8 9}[2,3] returns 6, {1 2 3, 4 5 6, 7 8 9}[2,1:3] returns {4
5 6}, and {1 2 3, 4 5 6, 7 8 9}[,3] returns {3, 6, 9}. Because the VARMAX procedure stores
matrices in row-major order, {11 22 33, 44 55 66, 77 88 99}[{3 5 9}] returns {33, 55, 99}.

Subtraction Operator: –
matrix1 - matrix2

matrix - scalar

matrix - vector

The subtraction operator (�) computes a new matrix whose elements are formed by subtracting the corre-
sponding elements of matrix2 from those of matrix1.

In addition to subtracting conformable matrices, you can also use the subtraction operator to subtract a scalar
from a matrix or subtract a vector from a matrix:

� When either argument is a scalar, the VARMAX procedure performs the subtraction between the scalar
and each element of the matrix argument. For example, when you use the matrix - scalar form,
the scalar value is subtracted from each element of the matrix.

� When you use the matrix - vector form, the vector is subtracted from each row or column of the
n � p matrix.

– If you subtract an n � 1 column vector, each row of the vector is subtracted from each row of the
matrix.

– If you subtract a 1 � p row vector, each column of the vector is subtracted from each column of
the matrix.

For example, {1 2 3, 4 5 6} - {1 1 1, 1 1 1} returns {0 1 2, 3 4 5}. The same results can be
obtained by {1 2 3, 4 5 6} - 1 or {1 2 3, 4 5 6} - {1 1 1} or {1 2 3, 4 5 6} - {1, 1}.

Transpose Operator: `
matrix`

The transpose operator, denoted by the backquote character (`), exchanges the rows and columns of matrix,
producing the transpose of matrix. If v is the value in the ith row and jth column of matrix, then the
transpose of matrix contains v in the jth row and ith column. If matrix contains n rows and p columns, the
transpose has p rows and n columns.

For example, {1 2, 3 4, 5 6}` returns {1 3 5, 2 4 6}.

Details of Functions

DIAG Function
DIAG(matrix)

The DIAG function creates a diagonal matrix from a vector or extracts the diagonal elements of a matrix. The
matrix argument can be either a square matrix or a vector.

If matrix is a vector, the DIAG function creates a matrix whose diagonal elements are the values in the vector.
All off-diagonal elements are zeros.
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If matrix is a square matrix, the DIAG function creates a vector from the diagonal elements of the matrix.

For example, DIAG({1 2 3, 4 5 6, 7 8 9}) returns {1, 5, 9}. Also, DIAG({1 5 9}) or DIAG({1,
5, 9}) or DIAG(DIAG({1 2 3, 4 5 6, 7 8 9})) returns {1 0 0, 0 5 0, 0 0 9}.

I Function
I(dim)

The I function creates an identity matrix that contains dim rows and columns. The diagonal elements of an
identity matrix are ones; all other elements are zeros. The value of dim must be an integer greater than or
equal to 1. Noninteger operands are rounded to the nearest integer.

For example, I(3) returns {1 0 0, 0 1 0, 0 0 1}.

J Function
J(nrow, ncol, value)

The J function creates a matrix that contains nrow rows and ncol columns, in which all elements are equal
to value.

The arguments nrow and ncol are both integers; value can be any expression that returns a linear combina-
tion of scalar constants and parameters.

For example, J(2, 3, 1) returns {1 1 1, 1 1 1}. J(2, 3, 5+2*AR(1,1,1)) returns the same result
as J(2, 3, 1) * (5+2*AR(1,1,1)).

SHAPE Function
SHAPE(matrix, nrow, ncol)

The SHAPE function creates a new matrix from data in matrix. The values nrow and ncol specify the
number of rows and columns, respectively, in the new matrix. The SHAPE function produces the result matrix
by traversing the argument matrix in row-major order until it reaches the specified number of elements. If
necessary, the SHAPE function reuses elements.

For example, SHAPE({1 2 3, 4 5 6}, 3, 2) returns {1 2, 3 4, 5 6}; SHAPE({1 2 3, 4 5 6},

5, 2) returns {1 2, 3 4, 5 6, 1 2, 3 4}; and SHAPE({1 2 3, 4 5 6}, 1, 4) returns {1 2 3

4}.

TEST Statement
TEST restriction, . . . , restriction ;

The TEST statement performs the Wald test for the joint linear hypothesis that is specified in the statement.
Each restriction specifies a linear hypothesis to be tested. If you specify more than one restriction, separate
them with commas. Specify the restrictions in the same manner as in the RESTRICT statement. For
information about how to define restriction by using matrix expressions, operators, and functions, see the
section “RESTRICT Statement” on page 3052. You can specify any number of TEST statements.

To use the TEST statement, you need to know the form of the model. If you do not specify the GARCH
statement, the COINTEG statement, or the ECM=, P=, Q=, or XLAG= option in the MODEL statement, then
the TEST statement is not applicable. Nonlinear restrictions on parameters are not supported.
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For information about the Wald test, see the section “Granger Causality Test” on page 3098.

The following is an example of the TEST statement for a bivariate (k=2) VAR(2) model:

proc varmax data=one;
model y1 y2 / p=2;
test AR(1,1,2) = 0, AR(2,1,2) = 0;

run;

After estimating the parameters, the TEST statement tests the null hypothesis that AR(1,1,2)=0 and
AR(2,1,2)=0. Like the RESTRICT statement, the preceding TEST statement can be abbreviated as follows:

test AR(1,1,2) = AR(2,1,2) = 0;

or

test AR(1,1,2), AR(2,1,2);

Note that the following statements are different from the preceding statement:

test AR(1,1,2);
test AR(2,1,2);

These two TEST statements are to test two null hypotheses separately: one is AR(1,1,2)=0, and the other is
AR(2,1,2)=0.

For the vector error correction models, you can test the hypothesis on the AR(1,.,.) parameters (that is,
…) by using the TEST statement, because asymptotically these parameters follow a normal distribution and
the Wald test can be applied. For the same reason, you can use the CONST(.) or LTREND(.) function in the
TEST statement if the ECTREND option in the COINTEG statement is specified. However, the BETA(.,.),
ECCONST(.), and ECLTREND(.) functions are not supported in the TEST statement. For example, the
following statements are supported:

model y1-y4 / p=2;
cointeg rank=1 ectrend;
test AR(1,1,1);
test CONST(2);

However, the following statements are not supported:

model y1-y4 / p=2;
cointeg rank=1 ectrend;
test BETA(1,1) = BETA(2,1) = 0;

or

model y1-y4 / p=2;
cointeg rank=1 ectrend;
test ECCONST(1) = 0.2;
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Details: VARMAX Procedure

Missing Values
The VARMAX procedure currently does not support missing values. PROC VARMAX uses the first
contiguous group of observations that have no missing values for any of the MODEL statement variables.
Observations at the beginning of the data set that have missing values for any MODEL statement variables
are not used or included in the output data set. At the end of the data set, observations can have dependent
(endogenous) variables with missing values and independent (exogenous) variables with nonmissing values.

VARMAX Model
The vector autoregressive moving-average model with exogenous variables is called the VARMAX(p,q,s)
model. The form of the model can be written as

yt D
pX
iD1

ˆiyt�i C
sX
iD0

‚�i xt�i C �t �
qX
iD1

‚i�t�i

where the output variables of interest, yt D .y1t ; : : : ; ykt /
0, can be influenced by other input variables,

xt D .x1t ; : : : ; xrt /0, which are determined outside of the system of interest. The variables yt are referred to
as dependent, response, or endogenous variables, and the variables xt are referred to as independent, input,
predictor, regressor, or exogenous variables. The unobserved noise variables, �t D .�1t ; : : : ; �kt /

0, are a
vector white noise process.

The VARMAX(p,q,s) model can be written

ˆ.B/yt D ‚�.B/xt C‚.B/�t

where

ˆ.B/ D Ik �ˆ1B � � � � �ˆpB
p

‚�.B/ D ‚�0 C‚
�
1B C � � � C‚

�
sB

s

‚.B/ D Ik �‚1B � � � � �‚qB
q

are matrix polynomials in B in the backshift operator, such that B iyt D yt�i , the ˆi and ‚i are k � k
matrices, and the ‚�i are k � r matrices.

The following assumptions are made:

� E.�t / D 0, E.�t�0t / D †, which is positive-definite, and E.�t�0s/ D 0 for t ¤ s.

� For stationarity and invertibility of the VARMAX process, the roots of jˆ.z/j D 0 and j‚.z/j D 0 are
outside the unit circle.
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� The exogenous (independent) variables xt are not correlated with residuals �t , E.xt�0t / D 0. The
exogenous variables can be stochastic or nonstochastic. When the exogenous variables are stochastic
and their future values are unknown, forecasts of these future values are needed to forecast the future
values of the endogenous (dependent) variables. On occasion, future values of the exogenous variables
can be assumed to be known because they are deterministic variables. The VARMAX procedure
assumes that the exogenous variables are nonstochastic if future values are available in the input
data set. Otherwise, the exogenous variables are assumed to be stochastic and their future values are
forecasted by assuming that they follow the VARMA(p,q) model, prior to forecasting the endogenous
variables, where p and q are the same as in the VARMAX(p,q,s) model.

State Space Representation

Another representation of the VARMAX(p,q,s) model is in the form of a state variable or a state space model,
which consists of a state equation

zt D F zt�1 CKxt CG�t

and an observation equation

yt D Hzt

where

zt D

266666666666666664

yt
:::

yt�pC1
xt
:::

xt�sC1
�t
:::

�t�qC1

377777777777777775
; K D

2666666666666666666664

‚�0
0k�r
:::

0k�r
Ir
0r�r
:::

0r�r
0k�r
:::

0k�r

3777777777777777777775

; G D

2666666666666666666664

Ik
0k�k
:::

0k�k
0r�k
:::

0r�k
Ik�k
0k�k
:::

0k�k

3777777777777777777775

F D

266666666666666666666664

ˆ1 � � � ˆp�1 ˆp ‚�1 � � � ‚�s�1 ‚�s �‚1 � � � �‚q�1 �‚q
Ik � � � 0 0 0 � � � 0 0 0 � � � 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 � � � Ik 0 0 � � � 0 0 0 � � � 0 0

0 � � � 0 0 0 � � � 0 0 0 � � � 0 0

0 � � � 0 0 Ir � � � 0 0 0 � � � 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 � � � 0 0 0 � � � Ir 0 0 � � � 0 0

0 � � � 0 0 0 � � � 0 0 0 � � � 0 0

0 � � � 0 0 0 � � � 0 0 Ik � � � 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 � � � 0 0 0 � � � 0 0 0 � � � Ik 0

377777777777777777777775
and

H D ŒIk; 0k�k; : : : ; 0k�k; 0k�r ; : : : ; 0k�r ; 0k�k; : : : ; 0k�k�
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On the other hand, it is assumed that xt follows a VARMA(p,q) model

xt D
pX
iD1

Aixt�i C at �
qX
iD1

Ciat�i

The model can also be expressed as

A.B/xt D C.B/at

where A.B/ D Ir �A1B � � � � �ApBp and C.B/ D Ir �C1B � � � � �CqBq are matrix polynomials in B,
and the Ai and Ci are r � r matrices. Without loss of generality, the AR and MA orders can be taken to be
the same as the VARMAX(p,q,s) model, and at and �t are independent white noise processes.

Under suitable conditions such as stationarity, xt is represented by an infinite order moving-average process

xt D A.B/�1C.B/at D ‰x.B/at D
1X
jD0

‰xj at�j

where ‰x.B/ D A.B/�1C.B/ D
P1
jD0‰

x
jB

j .

The optimal minimum mean squared error (minimum MSE) i-step-ahead forecast of xtCi is

xtCi jt D
1X
jDi

‰xj atCi�j

xtCi jtC1 D xtCi jt C‰xi�1atC1

For i > q,

xtCi jt D
pX
jD1

AjxtCi�j jt

The VARMAX(p,q,s) model has an absolutely convergent representation as

yt D ˆ.B/�1‚�.B/xt Cˆ.B/�1‚.B/�t
D ‰�.B/‰x.B/at Cˆ.B/�1‚.B/�t
D V.B/at C‰.B/�t

or

yt D
1X
jD0

Vj at�j C
1X
jD0

‰j �t�j

where ‰.B/ D ˆ.B/�1‚.B/ D
P1
jD0‰jB

j , ‰�.B/ D ˆ.B/�1‚�.B/, and V.B/ D ‰�.B/‰x.B/ DP1
jD0 VjB

j .
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The optimal (minimum MSE) i-step-ahead forecast of ytCi is

ytCi jt D
1X
jDi

Vj atCi�j C
1X
jDi

‰j �tCi�j

ytCi jtC1 D ytCi jt C Vi�1atC1 C‰i�1�tC1

for i D 1; : : : ; v with v D max.p; q C 1/. For i > q,

ytCi jt D
pX
jD1

ˆjytCi�j jt C
sX

jD0

‚�jxtCi�j jt

D

pX
jD1

ˆjytCi�j jt C‚�0xtCi jt C
sX

jD1

‚�jxtCi�j jt

D

pX
jD1

ˆjytCi�j jt C‚�0

pX
jD1

AjxtCi�j jt C
sX

jD1

‚�jxtCi�j jt

D

pX
jD1

ˆjytCi�j jt C
uX
jD1

.‚�0Aj C‚
�
j /xtCi�j jt

where u D max.p; s/.

Define …j D ‚�0Aj C‚
�
j . For i D v > q with v D max.p; q C 1/, you obtain

ytCvjt D
pX
jD1

ˆjytCv�j jt C
uX
jD1

…jxtCv�j jt for u � v

ytCvjt D
pX
jD1

ˆjytCv�j jt C
rX
jD1

…jxtCv�j jt for u > v

From the preceding relations, a state equation is

ztC1 D F zt CKx�t CGetC1

and an observation equation is

yt D Hzt

where

zt D

26666666666664

yt
ytC1jt
:::

ytCv�1jt
xt

xtC1jt
:::

xtCv�1jt

37777777777775
; x�t D

26664
xtCv�u

xtCv�uC1
:::

xt�1

37775 ; etC1 D
�
atC1
�tC1

�
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F D

26666666666664

0 Ik 0 � � � 0 0 0 0 � � � 0

0 0 Ik � � � 0 0 0 0 � � � 0
:::

:::
:::

: : :
:::

:::
:::

:::
: : :

:::

ˆv ˆv�1 ˆv�2 � � � ˆ1 …v …v�1 …v�2 � � � …1
0 0 0 � � � 0 0 Ir 0 � � � 0

0 0 0 � � � 0 0 0 Ir � � � 0
:::

:::
:::

: : :
:::

:::
:::

:::
: : :

:::

0 0 0 � � � 0 Av Av�1 Av�2 � � � A1

37777777777775

K D

266666666664

0 0 � � � 0

0 0 � � � 0
:::

:::
: : :

:::

…u …u�1 � � � …vC1
0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 0

377777777775
; G D

26666666666664

V0 Ik
V1 ‰1
:::

:::

Vv�1 ‰v�1
Ir 0r�k
‰x1 0r�k
:::

:::

‰xv�1 0r�k

37777777777775
and

H D ŒIk; 0k�k; : : : ; 0k�k; 0k�r ; : : : ; 0k�r �

Note that the matrix K and the input vector x�t are defined only when u > v.

Dynamic Simultaneous Equations Modeling
In the econometrics literature, the VARMAX(p,q,s) model is sometimes written in a form that is slightly
different than the one shown in the previous section. This alternative form is referred to as a dynamic
simultaneous equations model or a dynamic structural equations model.

Because E.�t�0t / D † is assumed to be positive-definite, there exists a lower triangular matrix A0 that has
ones on the diagonals such that A0†A00 D †d , where †d is a diagonal matrix that has positive diagonal
elements.

A0yt D
pX
iD1

Aiyt�i C
sX
iD0

C �i xt�i C A0�t �
qX
iD1

CiA0�t�i

where Ai D A0ˆi , C �i D A0‚
�
i , and Ci D A0‚iA�10 .

As an alternative form,

A0yt D
pX
iD1

Aiyt�i C
sX
iD0

C �i xt�i C at �
qX
iD1

Ciat�i

where Ai D A0ˆi , C �i D A0‚
�
i , Ci D A0‚iA

�1
0 , and at D A0�t . The covariance matrix of at is the

diagonal matrix †d . The PRINT=(DYNAMIC) option returns the parameter estimates that result from
estimating the model in this form.
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A dynamic simultaneous equations model involves a leading (lower triangular) coefficient matrix for yt at
lag 0 or a leading coefficient matrix for �t at lag 0. Such a representation of the VARMAX(p,q,s) model can
be more useful in certain circumstances than the standard representation. From the linear combination of the
dependent variables obtained by A0yt , you can easily see the relationship between the dependent variables in
the current time.

The following statements provide the dynamic simultaneous equations of the VAR(1) model:

proc iml;
sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
/* simulate the vector time series */
call varmasim(y,phi) sigma = sig n = 100 seed = 34657;
cn = {'y1' 'y2'};
create simul1 from y[colname=cn];
append from y;

quit;

data simul1;
set simul1;
date = intnx( 'year', '01jan1900'd, _n_-1 );
format date year4.;

run;

proc varmax data=simul1;
model y1 y2 / p=1 noint print=(dynamic);

run;

This is the same data set and model used in the section “Getting Started: VARMAX Procedure” on page 2978.
You can compare the results of the VARMA model form and the dynamic simultaneous equations model
form.
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Figure 43.44 Dynamic Simultaneous Equations (DYNAMIC Option)

The VARMAX Procedure

Covariances of
Innovations

Variable y1 y2

y1 1.28875 0.00000

y2 0.00000 1.29578

AR

Lag Variable y1 y2

0 y1 1.00000 0.00000

y2 -0.30845 1.00000

1 y1 1.15977 -0.51058

y2 0.18861 0.54247

Dynamic Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 AR1_1_1 1.15977 0.05508 21.06 0.0001 y1(t-1)

AR1_1_2 -0.51058 0.07140 -7.15 0.0001 y2(t-1)

y2 AR0_2_1 0.30845 y1(t)

AR1_2_1 0.18861 0.05779 3.26 0.0015 y1(t-1)

AR1_2_2 0.54247 0.07491 7.24 0.0001 y2(t-1)

In Figure 43.4 in the section “Getting Started: VARMAX Procedure” on page 2978, the covariance of �t
estimated from the VARMAX model form is

†� D

�
1:28875 0:39751

0:39751 1:41839

�
Figure 43.44 shows the results from estimating the model as a dynamic simultaneous equations model.
By the decomposition of †�, you get a diagonal matrix (†a) and a lower triangular matrix (A0) such as
†a D A0†�A

0
0 where

†a D

�
1:28875 0

0 1:29578

�
and A0 D

�
1 0

�0:30845 1

�
The lower triangular matrix (A0) is shown in the left side of the simultaneous equations model. The parameter
estimates in equations system are shown in the right side of the two-equations system.

The simultaneous equations model is written as�
1 0

�0:30845 1

�
yt D

�
1:15977 �0:51058

0:18861 0:54247

�
yt�1 C at
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The resulting two-equation system can be written as

y1t D 1:15977y1;t�1 � 0:51058y2;t�1 C a1t

y2t D 0:30845y1t C 0:18861y1;t�1 C 0:54247y2;t�1 C a2t

Impulse Response Function

Simple Impulse Response Function (IMPULSE=SIMPLE Option)

The VARMAX(p,q,s) model has a convergent representation

yt D ‰�.B/xt C‰.B/�t

where ‰�.B/ D ˆ.B/�1‚�.B/ D
P1
jD0‰

�
jB

j and ‰.B/ D ˆ.B/�1‚.B/ D
P1
jD0‰jB

j .

The elements of the matrices ‰j from the operator ‰.B/, called the impulse response, can be interpreted as
the response of a variable to a shock in another variable. Let  j;in be the (i, n) element of ‰j at lag j, where
n is the index for the impulse variable, and i is the index for the response variable (impulse! response); that
is to say,  j;in shows the reaction of the i-th variable to a unit shock in variable n, j periods ago, assuming
that the effect is not contaminated by other shocks (Lütkepohl 1993). For instance,  j;11 is an impulse
response to y1t ! y1t , and  j;12 is an impulse response to y2t ! y1t .

Accumulated Impulse Response Function (IMPULSE=ACCUM Option)

The accumulated impulse response function is the cumulative sum of the impulse response function, ‰a
l
DPl

jD0‰j .

Orthogonalized Impulse Response Function (IMPULSE=ORTH Option)

The MA representation of a VARMA(p,q) model with a standardized white noise innovation process offers
another way to interpret a VARMA(p,q) model. Since † is positive-definite, there is a lower triangular matrix
P such that † D PP 0. The alternate MA representation of a VARMA(p,q) model is written as

yt D ‰o.B/ut

where ‰o.B/ D
P1
jD0‰

o
jB

j , ‰oj D ‰jP , and ut D P�1�t .

The elements of the matrices ‰oj , called the orthogonal impulse response, can be interpreted as the effects of
the components of the standardized shock process ut on the process yt at lag j.
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Impulse Response of Transfer Function (IMPULSX=SIMPLE Option)

The coefficient matrix ‰�j from the transfer function operator ‰�.B/ can be interpreted as the effects that
changes in the exogenous variables xt have on the output variable yt at lag j; it is called an impulse response
matrix in the transfer function.

Accumulated Impulse Response of Transfer Function (IMPULSX=ACCUM Option)

The accumulated impulse response in the transfer function is the cumulative sum of the impulse response in
the transfer function, ‰�a

l
D
Pl
jD0‰

�
j .

The asymptotic distributions of the impulse functions can be seen in the section “VAR and VARX Modeling”
on page 3095.

The following statements provide the impulse response and the accumulated impulse response in the transfer
function for a VARX(1,0) model:

proc varmax data=grunfeld plot=impulse;
model y1-y3 = x1 x2 / p=1 lagmax=5

printform=univariate
print=(impulsx=(all) estimates);

run;

In Figure 43.45, the variables x1 and x2 are impulses, and the variables y1, y2, and y3 are responses.
The keyword STD stands for the standard errors of the elements. You can read the table that matches the
impulse ! response pairs, such as x1! y1, x1! y2, x1! y3, x2! y1, x2! y2, and x2! y3. In
the pair x1 ! y1, you can see the long-run responses of y1 to an impulse in x1 (the values are 1.69281,
0.35399, 0.09090, and so on for lag 0, lag 1, lag 2, and so on, respectively).
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Figure 43.45 Impulse Response in Transfer Function (IMPULSX= Option)

The VARMAX Procedure

Simple Impulse Response of Transfer
Function by Variable

Variable
Response\Impulse

Lag x1 x2

y1 0 1.69281 -0.00859

STD 0.54395 0.05361

1 0.35399 0.01727

STD 0.36482 0.03762

2 0.09090 0.00714

STD 0.17419 0.01592

3 0.05136 0.00214

STD 0.08203 0.00524

4 0.04717 0.00072

STD 0.07969 0.00229

5 0.04620 0.00040

STD 0.08216 0.00170

y2 0 -6.09850 2.57980

STD 5.07849 0.50056

1 -5.15484 0.45445

STD 3.89665 0.40534

2 -3.04168 0.04391

STD 1.56519 0.13268

3 -2.23797 -0.01376

STD 1.15163 0.08723

4 -1.98183 -0.01647

STD 1.08738 0.07844

5 -1.87415 -0.01453

STD 0.99384 0.07250

y3 0 -0.02317 -0.01274

STD 0.20418 0.02012

1 1.57476 -0.01435

STD 0.56132 0.05515

2 1.80231 0.00398

STD 0.61049 0.05896

3 1.77024 0.01062

STD 0.64476 0.06380

4 1.70435 0.01197

STD 0.62648 0.06353

5 1.63913 0.01187

STD 0.59511 0.06142

Figure 43.46 shows the responses of y1, y2, and y3 to a forecast error impulse in x1.
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Figure 43.46 Plot of Impulse Response in Transfer Function

Figure 43.47 shows the accumulated impulse response in transfer function.
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Figure 43.47 Accumulated Impulse Response in Transfer Function (IMPULSX= Option)

Accumulated Impulse Response of Transfer
Function by Variable

Variable
Response\Impulse

Lag x1 x2

y1 0 1.69281 -0.00859

STD 0.54395 0.05361

1 2.04680 0.00868

STD 0.36482 0.03762

2 2.13770 0.01582

STD 0.17419 0.01592

3 2.18906 0.01796

STD 0.08203 0.00524

4 2.23623 0.01867

STD 0.07969 0.00229

5 2.28243 0.01907

STD 0.08216 0.00170

y2 0 -6.09850 2.57980

STD 5.07849 0.50056

1 -11.25334 3.03425

STD 3.89665 0.40534

2 -14.29502 3.07816

STD 1.56519 0.13268

3 -16.53299 3.06440

STD 1.15163 0.08723

4 -18.51482 3.04793

STD 1.08738 0.07844

5 -20.38897 3.03340

STD 0.99384 0.07250

y3 0 -0.02317 -0.01274

STD 0.20418 0.02012

1 1.55159 -0.02709

STD 0.56132 0.05515

2 3.35390 -0.02311

STD 0.61049 0.05896

3 5.12414 -0.01249

STD 0.64476 0.06380

4 6.82848 -0.00052

STD 0.62648 0.06353

5 8.46762 0.01135

STD 0.59511 0.06142

Figure 43.48 shows the accumulated responses of y1, y2, and y3 to a forecast error impulse in x1.
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Figure 43.48 Plot of Accumulated Impulse Response in Transfer Function

The following statements provide the impulse response function, the accumulated impulse response function,
and the orthogonalized impulse response function with their standard errors for a VAR(1) model. Parts of the
VARMAX procedure output are shown in Figure 43.49, Figure 43.51, and Figure 43.53.

proc varmax data=simul1 plot=impulse;
model y1 y2 / p=1 noint lagmax=5

print=(impulse=(all))
printform=univariate;

run;

Figure 43.49 is the output in a univariate format associated with the PRINT=(IMPULSE=) option for the
impulse response function. The keyword STD stands for the standard errors of the elements. The matrix
in terms of the lag 0 does not print since it is the identity. In Figure 43.49, the variables y1 and y2 of the
first row are impulses, and the variables y1 and y2 of the first column are responses. You can read the
table matching the impulse ! response pairs, such as y1! y1, y1! y2, y2! y1, and y2! y2. For
example, in the pair of y1! y1 at lag 3, the response is 0.8055. This represents the impact on y1 of one-unit
change in y1 after 3 periods. As the lag gets higher, you can see the long-run responses of y1 to an impulse
in itself.
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Figure 43.49 Impulse Response Function (IMPULSE= Option)

The VARMAX Procedure

Simple Impulse Response by Variable

Variable
Response\Impulse

Lag y1 y2

y1 1 1.15977 -0.51058

STD 0.05508 0.05898

2 1.06612 -0.78872

STD 0.10450 0.10702

3 0.80555 -0.84798

STD 0.14522 0.14121

4 0.47097 -0.73776

STD 0.17191 0.15864

5 0.14315 -0.52450

STD 0.18214 0.16115

y2 1 0.54634 0.38499

STD 0.05779 0.06188

2 0.84396 -0.13073

STD 0.08481 0.08556

3 0.90738 -0.48124

STD 0.10307 0.09865

4 0.78943 -0.64856

STD 0.12318 0.11661

5 0.56123 -0.65275

STD 0.14236 0.13482

Figure 43.50 shows the responses of y1 and y2 to a forecast error impulse in y1 with two standard errors.
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Figure 43.50 Plot of Impulse Response

Figure 43.51 is the output in a univariate format associated with the PRINT=(IMPULSE=) option for the
accumulated impulse response function. The matrix in terms of the lag 0 does not print since it is the identity.
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Figure 43.51 Accumulated Impulse Response Function (IMPULSE= Option)

Accumulated Impulse Response by
Variable

Variable
Response\Impulse

Lag y1 y2

y1 1 2.15977 -0.51058

STD 0.05508 0.05898

2 3.22589 -1.29929

STD 0.21684 0.22776

3 4.03144 -2.14728

STD 0.52217 0.53649

4 4.50241 -2.88504

STD 0.96922 0.97088

5 4.64556 -3.40953

STD 1.51137 1.47122

y2 1 0.54634 1.38499

STD 0.05779 0.06188

2 1.39030 1.25426

STD 0.17614 0.18392

3 2.29768 0.77302

STD 0.36166 0.36874

4 3.08711 0.12447

STD 0.65129 0.65333

5 3.64834 -0.52829

STD 1.07510 1.06309

Figure 43.52 shows the accumulated responses of y1 and y2 to a forecast error impulse in y1 with two
standard errors.



3082 F Chapter 43: The VARMAX Procedure

Figure 43.52 Plot of Accumulated Impulse Response

Figure 43.53 is the output in a univariate format associated with the PRINT=(IMPULSE=) option for the
orthogonalized impulse response function. The two right-hand side columns, y1 and y2, represent the
y1_innovation and y2_innovation variables. These are the impulses variables. The left-hand side column
contains responses variables, y1 and y2. You can read the table by matching the impulse ! response pairs
such as y1_innovation ! y1, y1_innovation ! y2, y2_innovation ! y1, and y2_innovation ! y2.
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Figure 43.53 Orthogonalized Impulse Response Function (IMPULSE= Option)

Orthogonalized Impulse Response by
Variable

Variable
Response\Impulse

Lag y1 y2

y1 0 1.13523 0.00000

STD 0.08068 0.00000

1 1.13783 -0.58120

STD 0.10666 0.14110

2 0.93412 -0.89782

STD 0.13113 0.16776

3 0.61756 -0.96528

STD 0.15348 0.18595

4 0.27633 -0.83981

STD 0.16940 0.19230

5 -0.02115 -0.59705

STD 0.17432 0.18830

y2 0 0.35016 1.13832

STD 0.11676 0.08855

1 0.75503 0.43824

STD 0.06949 0.10937

2 0.91231 -0.14881

STD 0.10553 0.13565

3 0.86158 -0.54780

STD 0.12266 0.14825

4 0.66909 -0.73827

STD 0.13305 0.15846

5 0.40856 -0.74304

STD 0.14189 0.16765

In Figure 43.4, there is a positive correlation between "1t and "2t . Therefore, shock in y1 can be accompanied
by a shock in y2 in the same period. For example, in the pair of y1_innovation ! y2, you can see the
long-run responses of y2 to an impulse in y1_innovation .

Figure 43.54 shows the orthogonalized responses of y1 and y2 to a forecast error impulse in y1 with two
standard errors.
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Figure 43.54 Plot of Orthogonalized Impulse Response

Forecasting
The optimal (minimum MSE) l-step-ahead forecast of ytCl is

ytCljt D
pX
jD1

ˆjytCl�j jt C
sX

jD0

‚�jxtCl�j jt �
qX
jDl

‚j �tCl�j ; l � q

ytCljt D
pX
jD1

ˆjytCl�j jt C
sX

jD0

‚�jxtCl�j jt ; l > q

where ytCl�j jt D ytCl�j and xtCl�j jt D xtCl�j for l � j . For information about the forecasts xtCl�j jt ,
see the section “State Space Representation” on page 3067.
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Covariance Matrices of Prediction Errors without Exogenous (Independent) Variables

Under the stationarity assumption, the optimal (minimum MSE) l-step-ahead forecast of ytCl has an infinite
moving-average form, ytCljt D

P1
jDl ‰j �tCl�j . The prediction error of the optimal l-step-ahead forecast

is etCljt D ytCl � ytCljt D
Pl�1
jD0‰j �tCl�j , with zero mean and covariance matrix,

†.l/ D Cov.etCljt / D
l�1X
jD0

‰j†‰
0
j D

l�1X
jD0

‰oj‰
o0

j

where ‰oj D ‰jP with a lower triangular matrix P such that † D PP 0. Under the assumption of normality
of the �t , the l-step-ahead prediction error etCljt is also normally distributed as multivariate N.0;†.l//.
Hence, it follows that the diagonal elements �2i i .l/ of †.l/ can be used, together with the point forecasts
yi;tCljt , to construct l-step-ahead prediction intervals of the future values of the component series, yi;tCl .

The following statements use the COVPE option to compute the covariance matrices of the prediction
errors for a VAR(1) model. The parts of the VARMAX procedure output are shown in Figure 43.55 and
Figure 43.56.

proc varmax data=simul1;
model y1 y2 / p=1 noint lagmax=5

printform=both
print=(decompose(5) impulse=(all) covpe(5));

run;

Figure 43.55 is the output in a matrix format associated with the COVPE option for the prediction error
covariance matrices.

Figure 43.55 Covariances of Prediction Errors (COVPE Option)

The VARMAX Procedure

Prediction Error Covariances

Lead Variable y1 y2

1 y1 1.28875 0.39751

y2 0.39751 1.41839

2 y1 2.92119 1.00189

y2 1.00189 2.18051

3 y1 4.59984 1.98771

y2 1.98771 3.03498

4 y1 5.91299 3.04856

y2 3.04856 4.07738

5 y1 6.69463 3.85346

y2 3.85346 5.07010

Figure 43.56 is the output in a univariate format associated with the COVPE option for the prediction error
covariances. This printing format more easily explains the prediction error covariances of each variable.
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Figure 43.56 Covariances of Prediction Errors

Prediction Error Covariances
by Variable

Variable Lead y1 y2

y1 1 1.28875 0.39751

2 2.92119 1.00189

3 4.59984 1.98771

4 5.91299 3.04856

5 6.69463 3.85346

y2 1 0.39751 1.41839

2 1.00189 2.18051

3 1.98771 3.03498

4 3.04856 4.07738

5 3.85346 5.07010

Covariance Matrices of Prediction Errors in the Presence of Exogenous (Independent)
Variables

Exogenous variables can be both stochastic and nonstochastic (deterministic) variables. Considering the
forecasts in the VARMAX(p,q,s) model, there are two cases.

When exogenous (independent) variables are stochastic (future values not specified):

As defined in the section “State Space Representation” on page 3067, ytCljt has the representation

ytCljt D
1X
jDl

Vj atCl�j C
1X
jDl

‰j �tCl�j

and hence

etCljt D
l�1X
jD0

Vj atCl�j C
l�1X
jD0

‰j �tCl�j

Therefore, the covariance matrix of the l-step-ahead prediction error is given as

†.l/ D Cov.etCljt / D
l�1X
jD0

Vj†aV
0
j C

l�1X
jD0

‰j†�‰
0
j

where †a is the covariance of the white noise series at , and at is the white noise series for the VARMA(p,q)
model of exogenous (independent) variables, which is assumed not to be correlated with �t or its lags.

When future exogenous (independent) variables are specified:

The optimal forecast ytCljt of yt conditioned on the past information and also on known future values
xtC1; : : : ; xtCl can be represented as

ytCljt D
1X
jD0

‰�j xtCl�j C
1X
jDl

‰j �tCl�j
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and the forecast error is

etCljt D
l�1X
jD0

‰j �tCl�j

Thus, the covariance matrix of the l-step-ahead prediction error is given as

†.l/ D Cov.etCljt / D
l�1X
jD0

‰j†�‰
0
j

Decomposition of Prediction Error Covariances

In the relation †.l/ D
Pl�1
jD0‰

o
j‰

o0

j , the diagonal elements can be interpreted as providing a decomposition
of the l-step-ahead prediction error covariance �2i i .l/ for each component series yit into contributions from
the components of the standardized innovations �t .

If you denote the (i, n) element of ‰oj by  j;in, the MSE of yi;tChjt is

MSE.yi;tChjt / D E.yi;tCh � yi;tChjt /2 D
l�1X
jD0

kX
nD1

 2j;in

Note that
Pl�1
jD0  

2
j;in is interpreted as the contribution of innovations in variable n to the prediction error

covariance of the l-step-ahead forecast of variable i.

The proportion, !l;in, of the l-step-ahead forecast error covariance of variable i accounting for the innovations
in variable n is

!l;in D

l�1X
jD0

 2j;in=MSE.yi;tChjt /

The following statements use the DECOMPOSE option to compute the decomposition of prediction error
covariances and their proportions for a VAR(1) model:

proc varmax data=simul1;
model y1 y2 / p=1 noint print=(decompose(15))

printform=univariate;
run;

The proportions of decomposition of prediction error covariances of two variables are given in Figure 43.57.
The output explains that about 91.356% of the one-step-ahead prediction error covariances of the variable
y2t is accounted for by its own innovations and about 8.644% is accounted for by y1t innovations.
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Figure 43.57 Decomposition of Prediction Error Covariances (DECOMPOSE Option)

Proportions of Prediction
Error Covariances by Variable

Variable Lead y1 y2

y1 1 1.00000 0.00000

2 0.88436 0.11564

3 0.75132 0.24868

4 0.64897 0.35103

5 0.58460 0.41540

y2 1 0.08644 0.91356

2 0.31767 0.68233

3 0.50247 0.49753

4 0.55607 0.44393

5 0.53549 0.46451

Forecasting of the Centered Series

If the CENTER option is specified, the sample mean vector is added to the forecast.

Forecasting of the Differenced Series

If dependent (endogenous) variables are differenced, the final forecasts and their prediction error covariances
are produced by integrating those of the differenced series. However, if the PRIOR option is specified, the
forecasts and their prediction error variances of the differenced series are produced.

Let zt be the original series with some appended zero values that correspond to the unobserved past
observations. Let �.B/ be the k � k matrix polynomial in the backshift operator that corresponds to the
differencing specified by the MODEL statement. The off-diagonal elements of �i are zero, and the diagonal
elements can be different. Then yt D �.B/zt .

This gives the relationship

zt D ��1.B/yt D
1X
jD0

ƒjyt�j

where ��1.B/ D
P1
jD0ƒjB

j and ƒ0 D Ik .

The l-step-ahead prediction of ztCl is

ztCljt D
l�1X
jD0

ƒjytCl�j jt C
1X
jDl

ƒjytCl�j

The l-step-ahead prediction error of ztCl is

l�1X
jD0

ƒj
�
ytCl�j � ytCl�j jt

�
D

l�1X
jD0

0@ jX
uD0

ƒu‰j�u

1A �tCl�j
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Letting †z.0/ D 0, the covariance matrix of the l-step-ahead prediction error of ztCl , †z.l/, is

†z.l/ D

l�1X
jD0

0@ jX
uD0

ƒu‰j�u

1A†�
0@ jX
uD0

ƒu‰j�u

1A0

D †z.l � 1/C

0@ l�1X
jD0

ƒj‰l�1�j

1A†�
0@ l�1X
jD0

ƒj‰l�1�j

1A0

If there are stochastic exogenous (independent) variables, the covariance matrix of the l-step-ahead prediction
error of ztCl , †z.l/, is

†z.l/ D †z.l � 1/C

0@ l�1X
jD0

ƒj‰l�1�j

1A†�
0@ l�1X
jD0

ƒj‰l�1�j

1A0

C

0@ l�1X
jD0

ƒjVl�1�j

1A†a
0@ l�1X
jD0

ƒjVl�1�j

1A0

Tentative Order Selection

Sample Cross-Covariance and Cross-Correlation Matrices

Given a stationary multivariate time series yt , cross-covariance matrices are

�.l/ D EŒ.yt � �/.ytCl � �/0�

where � D E.yt /, and cross-correlation matrices are

�.l/ D D�1�.l/D�1

where D is a diagonal matrix with the standard deviations of the components of yt on the diagonal.

The sample cross-covariance matrix at lag l, denoted as C.l/, is computed as

O�.l/ D C.l/ D
1

T

T�lX
tD1

Qyt Qy0tCl

where Qyt is the centered data and T is the number of nonmissing observations. Thus, the (i, j) element of
O�.l/ is Oij .l/ D cij .l/. The sample cross-correlation matrix at lag l is computed as

O�ij .l/ D cij .l/=Œci i .0/cjj .0/�
1=2; i; j D 1; : : : ; k

The following statements use the CORRY option to compute the sample cross-correlation matrices and their
summary indicator plots in terms of C;�; and �, where + indicates significant positive cross-correlations, �
indicates significant negative cross-correlations, and � indicates insignificant cross-correlations:
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proc varmax data=simul1;
model y1 y2 / p=1 noint lagmax=3 print=(corry)

printform=univariate;
run;

Figure 43.58 shows the sample cross-correlation matrices of y1t and y2t . As shown, the sample autocorrela-
tion functions for each variable decay quickly, but are significant with respect to two standard errors.

Figure 43.58 Cross-Correlations (CORRY Option)

The VARMAX Procedure

Cross Correlations of
Dependent Series by Variable

Variable Lag y1 y2

y1 0 1.00000 0.67041

1 0.83143 0.84330

2 0.56094 0.81972

3 0.26629 0.66154

y2 0 0.67041 1.00000

1 0.29707 0.77132

2 -0.00936 0.48658

3 -0.22058 0.22014

Schematic Representation of Cross Correlations

Variable/Lag 0 1 2 3

y1 ++ ++ ++ ++

y2 ++ ++ .+ -+

+ is > 2*std error, - is < -2*std error, . is between

Partial Autoregressive Matrices

For each m D 1; 2; : : : ; p, you can define a sequence of matrices ˆmm, which is called the partial autore-
gression matrices of lag m, as the solution for ˆmm to the Yule-Walker equations of order m,

�.l/ D

mX
iD1

�.l � i/ˆ0im; l D 1; 2; : : : ; m

The sequence of the partial autoregression matrices ˆmm of order m has the characteristic property that if the
process follows the AR(p), then ˆpp D ˆp and ˆmm D 0 for m > p. Hence, the matrices ˆmm have the
cutoff property for a VAR(p) model, and so they can be useful in the identification of the order of a pure VAR
model.

The following statements use the PARCOEF option to compute the partial autoregression matrices:

proc varmax data=simul1;
model y1 y2 / p=1 noint lagmax=3

printform=univariate
print=(corry parcoef pcorr
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pcancorr roots);
run;

Figure 43.59 shows that the model can be obtained by an AR order m D 1 since partial autoregression
matrices are insignificant after lag 1 with respect to two standard errors. The matrix for lag 1 is the same as
the Yule-Walker autoregressive matrix.

Figure 43.59 Partial Autoregression Matrices (PARCOEF Option)

The VARMAX Procedure

Partial Autoregression

Lag Variable y1 y2

1 y1 1.14844 -0.50954

y2 0.54985 0.37409

2 y1 -0.00724 0.05138

y2 0.02409 0.05909

3 y1 -0.02578 0.03885

y2 -0.03720 0.10149

Schematic Representation of Partial Autoregression

Variable/Lag 1 2 3

y1 +- .. ..

y2 ++ .. ..

+ is > 2*std error, - is < -2*std error, . is between

Partial Correlation Matrices

Define the forward autoregression

yt D
m�1X
iD1

ˆi;m�1yt�i C um;t

and the backward autoregression

yt�m D
m�1X
iD1

ˆ�i;m�1yt�mCi C u�m;t�m

The matrices P.m/ defined by Ansley and Newbold (1979) are given by

P.m/ D †
�1=2
m�1ˆ

0
mm†

�1=2
m�1

where

†m�1 D Cov.um;t / D �.0/ �
m�1X
iD1

�.�i/ˆ0i;m�1
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and

†�m�1 D Cov.u�m;t�m/ D �.0/ �
m�1X
iD1

�.m � i/ˆ�
0

m�i;m�1

P.m/ are the partial cross-correlation matrices at lag m between the elements of yt and yt�m, given
yt�1; : : : ; yt�mC1. The matrices P.m/ have the cutoff property for a VAR(p) model, and so they can be
useful in the identification of the order of a pure VAR structure.

The following statements use the PCORR option to compute the partial cross-correlation matrices:

proc varmax data=simul1;
model y1 y2 / p=1 noint lagmax=3

print=(pcorr)
printform=univariate;

run;

The partial cross-correlation matrices in Figure 43.60 are insignificant after lag 1 with respect to two standard
errors. This indicates that an AR order of m D 1 can be an appropriate choice.

Figure 43.60 Partial Correlations (PCORR Option)

The VARMAX Procedure

Partial Cross Correlations by
Variable

Variable Lag y1 y2

y1 1 0.80348 0.42672

2 0.00276 0.03978

3 -0.01091 0.00032

y2 1 -0.30946 0.71906

2 0.04676 0.07045

3 0.01993 0.10676

Schematic Representation of Partial Cross
Correlations

Variable/Lag 1 2 3

y1 ++ .. ..

y2 -+ .. ..

+ is > 2*std error, - is < -2*std error, . is between

Partial Canonical Correlation Matrices

The partial canonical correlations at lag m between the vectors yt and yt�m, given yt�1; : : : ; yt�mC1, are
1 � �1.m/ � �2.m/ � � � � �k.m/. The partial canonical correlations are the canonical correlations between
the residual series um;t and u�m;t�m, where um;t and u�m;t�m are defined in the previous section. Thus, the
squared partial canonical correlations �2i .m/ are the eigenvalues of the matrix

fCov.um;t /g�1E.um;tu�
0

m;t�m/fCov.u
�
m;t�m/g

�1E.u�m;t�mu
0

m;t / D ˆ
�0

mmˆ
0

mm
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It follows that the test statistic to test for ˆm D 0 in the VAR model of order m > p is approximately

.T �m/ tr fˆ�
0

mmˆ
0

mmg � .T �m/

kX
iD1

�2i .m/

and has an asymptotic chi-square distribution with k2 degrees of freedom for m > p.

The following statements use the PCANCORR option to compute the partial canonical correlations:

proc varmax data=simul1;
model y1 y2 / p=1 noint lagmax=3 print=(pcancorr);

run;

Figure 43.61 shows that the partial canonical correlations �i .m/ between yt and yt�m are {0.918, 0.773},
{0.092, 0.018}, and {0.109, 0.011} for lags m D1 to 3. After lag m D1, the partial canonical correlations
are insignificant with respect to the 0.05 significance level, indicating that an AR order of m D 1 can be an
appropriate choice.

Figure 43.61 Partial Canonical Correlations (PCANCORR Option)

The VARMAX Procedure

Partial Canonical Correlations

Lag Correlation1 Correlation2 DF Chi-Square Pr > ChiSq

1 0.91783 0.77335 4 142.61 <.0001

2 0.09171 0.01816 4 0.86 0.9307

3 0.10861 0.01078 4 1.16 0.8854

The Minimum Information Criterion (MINIC) Method

The minimum information criterion (MINIC) method can tentatively identify the orders of a VARMA(p,q)
process (Spliid 1983; Koreisha and Pukkila 1989; Quinn 1980). The first step of this method is to obtain
estimates of the innovations series, �t , from the VAR(p�), where p� is chosen sufficiently large. The choice
of the autoregressive order, p�, is determined by use of a selection criterion. From the selected VAR(p�)
model, you obtain estimates of residual series

Q�t D yt �
p�X
iD1

Ô p�
i yt�i � Oıp� ; t D p� C 1; : : : ; T

In the second step, you select the order (p; q) of the VARMA model for p in .pmin W pmax/ and q in
.qmin W qmax/

yt D ı C
pX
iD1

ˆiyt�i �
qX
iD1

‚i Q�t�i C �t

which minimizes a selection criterion like SBC or HQ.

According to Lütkepohl (1993), the information criteria, namely Akaike’s information criterion (AIC), the
corrected Akaike’s information criterion (AICC), the final prediction error criterion (FPE), the Hannan-Quinn
criterion (HQC), and the Schwarz Bayesian criterion (SBC), are defined as
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AIC D log.j Q†j/C 2rbk=T
AICC D log.j Q†j/C 2rbk=.T � rb/

FPE D .
T C rb

T � rb
/kj Q†j

HQC D log.j Q†j/C 2rbk log.log.T //=T
SBC D log.j Q†j/C rbk log.T /=T

where Q† is the maximum likelihood estimate of the innovation covariance matrix †, rb is the number of
parameters in each mean equation, k is the number of dependent variables, and T is the number of observations
used to estimate the model. Compared to the definitions of AIC, AICC, HQC, and SBC discussed in the
section “Multivariate Model Diagnostic Checks” on page 3114, the preceding definitions omit some constant
terms and are normalized by T. More specifically, only the parameters in each of the mean equations are
counted; the parameters in the innovation covariance matrix † are not counted.

The following statements use the MINIC= option to compute a table that contains the information criterion
associated with various AR and MA orders:

proc varmax data=simul1;
model y1 y2 / p=1 noint minic=(p=3 q=3);

run;

Figure 43.62 shows the output associated with the MINIC= option. The criterion takes the smallest value at
AR order 1.

Figure 43.62 MINIC= Option

The VARMAX Procedure

Minimum Information Criterion Based on AICC

Lag MA 0 MA 1 MA 2 MA 3

AR 0 3.3574947 3.0331352 2.7080996 2.3049869

AR 1 0.5544431 0.6146887 0.6771732 0.7517968

AR 2 0.6369334 0.6729736 0.7610413 0.8481559

AR 3 0.7235629 0.7551756 0.8053765 0.8654079
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VAR and VARX Modeling
The pth-order VAR process is written as

yt � � D
pX
iD1

ˆi .yt�i � �/C �t or ˆ.B/.yt � �/ D �t

with ˆ.B/ D Ik �
Pp
iD1ˆiB

i .

Equivalently, it can be written as

yt D ı C
pX
iD1

ˆiyt�i C �t or ˆ.B/yt D ı C �t

with ı D .Ik �
Pp
iD1ˆi /�.

Stationarity

For stationarity, the VAR process must be expressible in the convergent causal infinite MA form as

yt D �C
1X
jD0

‰j �t�j

where‰.B/ D ˆ.B/�1 D
P1
jD0‰jB

j with
P1
jD0 jj‰j jj <1, where jjAjj denotes a norm for the matrix

A such as jjAjj2 D trfA0Ag. The matrix ‰j can be recursively obtained from the relation ˆ.B/‰.B/ D I ;
it is

‰j D ˆ1‰j�1 Cˆ2‰j�2 C � � � Cˆp‰j�p

where ‰0 D Ik and ‰j D 0 for j < 0.

The stationarity condition is satisfied if all roots of jˆ.z/j D 0 are outside of the unit circle. The stationarity
condition is equivalent to the condition in the corresponding VAR(1) representation, Yt D ˆYt�1 C "t ,
that all eigenvalues of the kp � kp companion matrix ˆ be less than one in absolute value, where Yt D
.y0t ; : : : ; y

0
t�pC1/

0, "t D .�0t ; 0
0; : : : ; 00/0, and

ˆ D

2666664
ˆ1 ˆ2 � � � ˆp�1 ˆp
Ik 0 � � � 0 0

0 Ik � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � Ik 0

3777775
If the stationarity condition is not satisfied, a nonstationary model (a differenced model or an error correction
model) might be more appropriate.

The following statements estimate a VAR(1) model and use the ROOTS option to compute the characteristic
polynomial roots:
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proc varmax data=simul1;
model y1 y2 / p=1 noint print=(roots);

run;

Figure 43.63 shows the output associated with the ROOTS option, which indicates that the series is stationary
since the modulus of the eigenvalue is less than one.

Figure 43.63 Stationarity (ROOTS Option)

The VARMAX Procedure

Roots of AR Characteristic Polynomial

Index Real Imaginary Modulus Radian Degree

1 0.77238 0.35899 0.8517 0.4351 24.9284

2 0.77238 -0.35899 0.8517 -0.4351 -24.9284

Parameter Estimation

Consider the stationary VAR(p) model

yt D ı C
pX
iD1

ˆiyt�i C �t

where y�pC1; : : : ; y0 are assumed to be available (for convenience of notation). This can be represented by
the general form of the multivariate linear model,

Y D XB CE or y D .X ˝ Ik/ˇ C e

where

Y D .y1; : : : ; yT /0

B D .ı; ˆ1; : : : ; ˆp/
0

X D .X0; : : : ; XT�1/
0

Xt D .1; y0t ; : : : ; y
0
t�pC1/

0

E D .�1; : : : ; �T /
0

y D vec.Y 0/

ˇ D vec.B 0/

e D vec.E 0/

with vec denoting the column stacking operator.

The conditional least squares estimator of ˇ is

Ǒ D ..X 0X/�1X 0 ˝ Ik/y



VAR and VARX Modeling F 3097

and the estimate of † is

O† D .T � .kp C 1//�1
TX
tD1

O�t O�t
0

where O�t is the residual vectors. Consistency and asymptotic normality of the LS estimator are that

p
T . Ǒ � ˇ/

d
! N.0; ��1p ˝†/

where X 0X=T converges in probability to �p and
d
! denotes convergence in distribution.

The (conditional) maximum likelihood estimator in the VAR(p) model is equal to the (conditional) least
squares estimator on the assumption of normality of the error vectors.

Asymptotic Distributions of Impulse Response Functions

As before, vec denotes the column stacking operator and vech is the corresponding operator that stacks the
elements on and below the diagonal. For any k � k matrix A, the commutation matrix Kk is defined as
Kkvec.A/ D vec.A0/; the duplication matrixDk is defined asDkvech.A/ D vec.A/; the elimination matrix
Lk is defined as Lkvec.A/ D vech.A/.

The asymptotic distribution of the impulse response function (Lütkepohl 1993) is

p
T vec. O‰j �‰j /

d
! N.0;Gj†ˇG

0
j / j D 1; 2; : : :

where †ˇ D ��1p ˝† and

Gj D
@vec.‰j /
@ˇ0

D

j�1X
iD0

J.ˆ0/j�1�i ˝‰i

where J D ŒIk; 0; : : : ; 0� is a k � kp matrix and ˆ is a kp � kp companion matrix.

The asymptotic distribution of the accumulated impulse response function is

p
T vec. O‰al �‰

a
l /

d
! N.0; Fl†ˇF

0
l / l D 1; 2; : : :

where Fl D
Pl
jD1Gj .

The asymptotic distribution of the orthogonalized impulse response function is

p
T vec. O‰oj �‰

o
j /

d
! N.0; Cj†ˇC

0
j C

NCj†� NC
0
j / j D 0; 1; 2; : : :

where C0 D 0, Cj D .‰o
0

0 ˝ Ik/Gj , NCj D .Ik ˝‰j /H ,

H D
@vec.‰o0/
@� 0

D L0kfLk.Ik2 CKk/.‰
o
0 ˝ Ik/L

0
kg
�1

and †� D 2DCk .†˝†/D
C0

k
with DC

k
D .D0

k
Dk/

�1D0
k

and � D vech.Ę/.
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Granger Causality Test

Let yt be arranged and partitioned in subgroups y1t and y2t with dimensions k1 and k2, respectively
(k D k1 C k2); that is, yt D .y01t ; y

0
2t /
0 with the corresponding white noise process �t D .�01t ; �

0
2t /
0.

Consider the VAR(p) model with partitioned coefficients ˆij .B/ for i; j D 1; 2 as follows:�
ˆ11.B/ ˆ12.B/

ˆ21.B/ ˆ22.B/

� �
y1t
y2t

�
D

�
ı1
ı2

�
C

�
�1t
�2t

�
The variables y1t are said to cause y2t , but y2t do not cause y1t if ˆ12.B/ D 0. The implication of this
model structure is that future values of the process y1t are influenced only by its own past and not by the past
of y2t , where future values of y2t are influenced by the past of both y1t and y2t . If the future y1t are not
influenced by the past values of y2t , then it can be better to model y1t separately from y2t .

Consider testing H0WCˇ D c, where C is a s � .k2p C k/ matrix of rank s and c is an s-dimensional vector
where s D k1k2p. Assuming that

p
T . Ǒ � ˇ/

d
! N.0; ��1p ˝†/

you get the Wald statistic

T .C Ǒ � c/0ŒC. O��1p ˝
O†/C 0��1.C Ǒ � c/

d
! �2.s/

For the Granger causality test, the matrix C consists of zeros or ones and c is the zero vector. For more
information about the Granger causality test, see Lütkepohl (1993).

VARX Modeling

The vector autoregressive model with exogenous variables is called the VARX(p,s) model. The form of the
VARX(p,s) model can be written as

yt D ı C
pX
iD1

ˆiyt�i C
sX
iD0

‚�i xt�i C �t

The parameter estimates can be obtained by representing the general form of the multivariate linear model,

Y D XB CE or y D .X ˝ Ik/ˇ C e

where

Y D .y1; : : : ; yT /0

B D .ı; ˆ1; : : : ; ˆp; ‚
�
0; : : : ; ‚

�
s /
0

X D .X0; : : : ; XT�1/
0

Xt D .1; y0t ; : : : ; y
0
t�pC1; x

0
tC1; : : : ; x

0
t�sC1/

0

E D .�1; : : : ; �T /
0

y D vec.Y 0/

ˇ D vec.B 0/

e D vec.E 0/
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The conditional least squares estimator of ˇ can be obtained by using the same method in a VAR(p) modeling.
If the multivariate linear model has different independent variables that correspond to dependent variables,
the SUR (seemingly unrelated regression) method is used to improve the regression estimates.

The following example fits the ordinary regression model:

proc varmax data=one;
model y1-y3 = x1-x5;

run;

This is equivalent to the REG procedure in the SAS/STAT software:

proc reg data=one;
model y1 = x1-x5;
model y2 = x1-x5;
model y3 = x1-x5;

run;

The following example fits the second-order lagged regression model:

proc varmax data=two;
model y1 y2 = x / xlag=2;

run;

This is equivalent to the REG procedure in the SAS/STAT software:

data three;
set two;
xlag1 = lag1(x);
xlag2 = lag2(x);

run;

proc reg data=three;
model y1 = x xlag1 xlag2;
model y2 = x xlag1 xlag2;

run;

The following example fits the ordinary regression model with different regressors:

proc varmax data=one;
model y1 = x1-x3, y2 = x2 x3;

run;

This is equivalent to the following SYSLIN procedure statements:

proc syslin data=one vardef=df sur;
endogenous y1 y2;
model y1 = x1-x3;
model y2 = x2 x3;

run;

From the output in Figure 43.25 in the section “Getting Started: VARMAX Procedure” on page 2978, you
can see that the parameters, XL0_1_2, XL0_2_1, XL0_3_1, and XL0_3_2 associated with the exogenous
variables, are not significant. The following example fits the VARX(1,0) model with different regressors:
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proc varmax data=grunfeld;
model y1 = x1, y2 = x2, y3 / p=1 print=(estimates);

run;

Figure 43.64 Parameter Estimates for the VARX(1, 0) Model

The VARMAX Procedure

XLag

Lag Variable x1 x2

0 y1 1.83231 _

y2 _ 2.42110

y3 _ _

As you can see in Figure 43.64, the symbol ‘_’ in the elements of matrix corresponds to endogenous variables
that do not take the denoted exogenous variables.

Seasonal Dummies and Time Trends
You can use the NSEASON= option to introduce seasonal dummies into the model, and the TREND= option
to introduce linear trend or both linear and quadratic trends into the model. The definition of the seasonal
dummies and trends starts from the first observation after skipping the presample and the observations that
have missing values. The size of the presample is max .p; s/, where p is the maximum number of lags of
AR terms and s is the maximum number of lags of exogenous variables; that is, the presample contains
fy�lC1; x�lC1; : : : ; y0; x0g, where l D max.p; s/.

The following statements fit a bivariate VARX(1, 2) model that has four seasonal periods and both linear and
quadratic time trends:

data One;
format date date9.;
do obs = 1 to 100;

date=intnx('quarter','01Jan1990'd,obs-1);
y1 = normal(1); y2 = normal(1); x = normal(1);
output;

end;
run;

proc varmax data=One;
model y1 y2 = x / nseason=4 xlag=2 p=1 trend=quad;

run;

In the following statements, the seasonal dummies and time trends are explicitly defined in the data set,
together with the lags of dependent and exogenous variables, and then the equivalent model is fit by the REG
procedure in SAS/STAT software:

data Two;
set one;
y1lag1 = lag(y1); y2lag1 = lag(y2);
xlag1 = lag(x); xlag2 = lag2(x);
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if (obs>2) then do;
ltrend = obs - 2;
qtrend = ltrend * ltrend;
const = 1;
if (mod(ltrend-2,4)=0) then sd1 = 1;
else sd1 = 0;
if (mod(ltrend-3,4)=0) then sd2 = 1;
else sd2 = 0;
if (mod(ltrend-4,4)=0) then sd3 = 1;
else sd3 = 0;

end;
run;

proc reg data=Two(firstobs=3);
model y1 = const sd1 sd2 sd3 ltrend qtrend

x xlag1 xlag2 y1lag1 y2lag1 / noint;
model y2 = const sd1 sd2 sd3 ltrend qtrend

x xlag1 xlag2 y1lag1 y2lag1 / noint;
run;

The first 11 observations in data set Two are output in Figure 43.65 to show what the seasonal dummies and
linear and quadratic time trends look like.

proc print data=Two(obs=11);
var date const sd1 sd2 sd3 ltrend qtrend;

run;

Figure 43.65 The First 11 Observations in Data Set Two

Obs date const sd1 sd2 sd3 ltrend qtrend

1 01JAN1990 . . . . . .

2 01APR1990 . . . . . .

3 01JUL1990 1 0 0 0 1 1

4 01OCT1990 1 1 0 0 2 4

5 01JAN1991 1 0 1 0 3 9

6 01APR1991 1 0 0 1 4 16

7 01JUL1991 1 0 0 0 5 25

8 01OCT1991 1 1 0 0 6 36

9 01JAN1992 1 0 1 0 7 49

10 01APR1992 1 0 0 1 8 64

11 01JUL1992 1 0 0 0 9 81
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Bayesian VAR and VARX Modeling
Consider the VAR(p) model

yt D ı Cˆ1yt�1 C � � � Cˆpyt�p C �t

or

y D .X ˝ Ik/ˇ C e

When the parameter vector ˇ has a prior multivariate normal distribution with known mean ˇ� and covariance
matrix Vˇ , the prior density is written as

f .ˇ/ D .
1

2�
/k
2p=2
jVˇ j

�1=2 expŒ�
1

2
.ˇ � ˇ�/V �1ˇ .ˇ � ˇ�/�

The likelihood function for the Gaussian process becomes

`.ˇjy/ D .
1

2�
/kT=2jIT ˝†j

�1=2
�

expŒ�
1

2
.y � .X ˝ Ik/ˇ/0.IT ˝†�1/.y � .X ˝ Ik/ˇ/�

Therefore, the posterior density is derived as

f .ˇjy/ / expŒ�
1

2
.ˇ � Ň/0 N†�1ˇ .ˇ � Ň/�

where the posterior mean is

Ň D ŒV �1ˇ C .X 0X ˝†�1/��1ŒV �1ˇ ˇ� C .X 0 ˝†�1/y�

and the posterior covariance matrix is

N†ˇ D ŒV
�1
ˇ C .X 0X ˝†�1/��1

In practice, the prior mean ˇ� and the prior variance Vˇ need to be specified. If all the parameters are
considered to shrink toward zero, the null prior mean should be specified. According to Litterman (1986), the
prior variance can be given by

vij .l/ D

�
.�=l/2 if i D j
.���i i=l�jj /

2 if i ¤ j

where vij .l/ is the prior variance of the (i, j) element of ˆl , � is the prior standard deviation of the
diagonal elements of ˆl , � is a constant in the interval .0; 1/, and �2i i is the ith diagonal element of †. The
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deterministic terms have diffused prior variance. In practice, you replace the �2i i by the diagonal element of
the ML estimator of † in the nonconstrained model.

For example, for a bivariate BVAR(2) model,

y1t D 0C �1;11y1;t�1 C �1;12y2;t�1 C �2;11y1;t�2 C �2;12y2;t�2 C �1t

y2t D 0C �1;21y1;t�1 C �1;22y2;t�1 C �2;21y1;t�2 C �2;22y2;t�2 C �2t

with the prior covariance matrix

Vˇ D Diag . 1; �2; .���1=�2/
2; .�=2/2; .���1=2�2/

2;

1; .���2=�1/
2; �2; .���2=2�1/

2; .�=2/2 /

For the Bayesian estimation of integrated systems, the prior mean is set to the first lag of each variable equal
to one in its own equation and all other coefficients at zero. For example, for a bivariate BVAR(2) model,

y1t D 0C 1 y1;t�1 C 0 y2;t�1 C 0 y1;t�2 C 0 y2;t�2 C �1t

y2t D 0C 0 y1;t�1 C 1 y2;t�1 C 0 y1;t�2 C 0 y2;t�2 C �2t

Forecasting of BVAR Modeling

The mean squared error (MSE) is used to measure forecast accuracy (Litterman 1986). The MSE of the
s-step-ahead forecast is

MSEs D
1

J � s C 1

J�sC1X
jD1

.Atj � F
s
tj
/2

where J is the number specified by NREP= option, tj is the time index of the observation to be forecasted in
repetition j, Atj is the actual value at time tj , and F stj is the forecast made s periods earlier. If there are not
enough observations, some MSEs might not be calculated.

Bayesian VARX Modeling

The Bayesian vector autoregressive model with exogenous variables is called the BVARX(p,s) model. The
form of the BVARX(p,s) model can be written as

yt D ı C
pX
iD1

ˆiyt�i C
sX
iD0

‚�i xt�i C �t

The parameter estimates can be obtained by representing the general form of the multivariate linear model,

y D .X ˝ Ik/ˇ C e

The prior means for the AR coefficients are the same as those specified in BVAR(p). The prior means for the
exogenous coefficients are set to zero.

Some examples of the Bayesian VARX model are as follows:
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model y1 y2 = x1 / p=1 xlag=1 prior;

model y1 y2 = x1 / p=(1 3) xlag=1 nocurrentx
prior=(lambda=0.9 theta=0.1);

VARMA and VARMAX Modeling
A zero-mean VARMA(p; q) process is written as

yt D
pX
iD1

ˆiyt�i C �t �
qX
iD1

‚i�t�i

or

ˆ.B/yt D ‚.B/�t

where ˆ.B/ D Ik �
Pp
iD1ˆiB

i and ‚.B/ D Ik �
Pq
iD1‚iB

i .

Stationarity and Invertibility

For stationarity and invertibility of the VARMA process, the roots of jˆ.z/j D 0 and j‚.z/j D 0 are outside
the unit circle.

Parameter Estimation

Under the assumption of normality of the �t with zero-mean vector and nonsingular covariance matrix †, the
conditional (approximate) log-likelihood function of a zero-mean VARMA(p,q) model is considered.

Define Y D .y1; : : : ; yT /0 and E D .�1; : : : ; �T /
0 with B iY D .y1�i ; : : : ; yT�i /0 and B iE D

.�1�i ; : : : ; �T�i /
0; define y D vec.Y 0/ and e D vec.E 0/. Then

y �
pX
iD1

.IT ˝ˆi /B
iy D e �

qX
iD1

.IT ˝‚i /B
ie

where B iy D vecŒ.B iY /0� and B ie D vecŒ.B iE/0�.

Then, the conditional (approximate) log-likelihood function can be written as (Reinsel 1997)

` D �
T

2
log j†j �

1

2

TX
tD1

�0t†
�1�t

D �
T

2
log j†j �

1

2
w0‚0�1.IT ˝†�1/‚�1w



VARMA and VARMAX Modeling F 3105

where w D y �
Pp
iD1.IT ˝ˆi /B

iy and ‚ is such that e �
Pq
iD1.IT ˝‚i /B

ie D ‚e. You can specify
METHOD=CML in the MODEL statement to apply conditional maximum likelihood estimation.

For the exact log-likelihood function of a VARMA model, the VARMA model is transformed into the
equivalent state space form and then the Kalman filtering method is applied.

The state space form of the zero-mean VARMA(p,q) model consists of a state equation

zt D F zt�1 CG�t

and an observation equation

yt D Hzt

where

zt D .y0t ; y
0
t�1; : : : ; y

0
t�.v�1/; �

0
t ; �t�1; : : : ; �

0
t�.q�1//

0

F D

26666666666664

ˆ1 � � � ˆv�1 ˆv �‚1 � � � �‚q�1 �‚q
Ik � � � 0 0 0 � � � 0 0
:::

: : : 0
:::

:::
: : :

:::
:::

0 � � � Ik 0 0 � � � 0 0

0 � � � 0 0 0 � � � 0 0

0 � � � 0 0 Ik � � � 0 0
:::

: : : 0
:::

:::
: : :

:::
:::

0 � � � 0 0 0 � � � Ik 0

37777777777775
; G D

2664
Ik

0k.v�1/�k
Ik

0k.q�1/�k

3775

and

H D ŒIk; 0k.vCq�1/�k�

where v D max.p; 1/ and ˆi D 0 for i > p.

The Kalman filtering approach is used to evaluate the likelihood function. The updating equation is

Ozt jt D Ozt jt�1 CKt�t jt�1

where

Kt D Pt jt�1H
0ŒHPt jt�1H

0��1

The prediction equation is

Ozt jt�1 D F Ozt�1jt�1; Pt jt�1 D FPt�1jt�1F 0 CG†G0

where Pt jt D ŒI �KtH�Pt jt�1 for t D 1; 2; : : : ; n.

The log-likelihood function can be expressed as

` D �
1

2

TX
tD1

Œlog j†t jt�1j C .yt � Oyt jt�1/0†�1t jt�1.yt � Oyt jt�1/�
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where Oyt jt�1 and †t jt�1 are determined recursively from the Kalman filtering method. To construct the
likelihood function from Kalman filtering, you obtain Oyt jt�1 D H Ozt jt�1, O�t jt�1 D yt � Oyt jt�1, and†t jt�1 D
HPt jt�1H

0.

When you specify METHOD=ML in the MODEL statement, the exact log likelihood is evaluated and used
in the maximum likelihood estimation.

Define the vector ˇ as

ˇ D .�01; : : : ; �
0
p; �
0
1; : : : ; �

0
q; vech.†//

0

where �i D vec.ˆi / and �i D vec.‚i /. All elements of ˇ are estimated through the preceding (condi-
tional) maximum likelihood method. The estimates of ˆi ; i D 1; : : : ; p, and ‚i ; i D 1; : : : ; q, are output
in the ParameterEstimates ODS table. The estimates of the covariance matrix (†) are output in the Co-
varianceParameterEstimates ODS table. If you specify the OUTEST=, OUTCOV, PRINT=(COVB), or
PRINT=(CORRB) option, you can see all elements of ˇ, including the covariance matrix †, in the parameter
estimates, covariance of parameter estimates, or correlation of parameter estimates. You can also apply the
BOUND, INITIAL, RESTRICT, and TEST statements to any elements of ˇ, including the covariance matrix
†. For more information, see the syntax of the corresponding statement.

The (conditional) log-likelihood equations are solved by iterative numerical methods such as quasi-Newton
optimization. The starting values for the AR and MA parameters are obtained from the least squares estimates.
Although the small-sample properties of CML estimates might not be as good as the ML estimates, the CML
method is much faster than the ML method. Depending on the sample size and number of parameters to be
estimated, the CML method can be hundreds or even thousands of times faster than the ML method. In the
following example code, the CML method is about 100 times faster than the ML method, with very similar
estimation and forecast results:

proc iml;
phi = (0.9 * I(4)) // (-0.7* I(4));
theta = 0.8 * I(4);
sig = I(4);
/* to simulate the vector time series */
call varmasim(y,phi,theta) sigma=sig n=400 seed=2;

cn = {'y1' 'y2' 'y3' 'y4'};
create simul6 from y[colname=cn];
append from y;
close;

quit;

proc varmax data=simul6;
model y1 y2 y3 y4 / noint p=2 q=1 method=cml;
nloptions pall maxit=5000 tech=qn;
output out=ocml back=12 lead=24;

run;

proc varmax data=simul6;
model y1 y2 y3 y4 / noint p=2 q=1 method=ml;
nloptions pall maxit=5000 tech=qn;
output out=oml back=12 lead=24;

run;
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Asymptotic Distribution of the Parameter Estimates

Under the assumptions of stationarity and invertibility for the VARMA model and the assumption that �t
is a white noise process, Ǒ is a consistent estimator for ˇ and

p
T . Ǒ � ˇ/ converges in distribution to the

multivariate normal N.0; V �1/ as T !1, where V is the asymptotic information matrix of ˇ.

Asymptotic Distributions of Impulse Response Functions

Defining the vector ˇ

ˇ D .�01; : : : ; �
0
p; �
0
1; : : : ; �

0
q/
0

the asymptotic distribution of the impulse response function for a VARMA(p; q) model is

p
T vec. O‰j �‰j /

d
! N.0;Gj†ˇG

0
j / j D 1; 2; : : :

where †ˇ is the covariance matrix of the parameter estimates and

Gj D
@vec.‰j /
@ˇ0

D

j�1X
iD0

H0.A0/j�1�i ˝ JAiJ0

where H D ŒIk; 0; : : : ; 0; Ik; 0; : : : ; 0�0 is a k.p C q/ � k matrix with the second Ik following after p block
matrices; J D ŒIk; 0; : : : ; 0� is a k � k.p C q/ matrix; A is a k.p C q/ � k.p C q/ matrix,

A D
�
A11 A12
A21 A22

�
where

A11 D

2666664
ˆ1 ˆ2 � � � ˆp�1 ˆp
Ik 0 � � � 0 0

0 Ik � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � Ik 0

3777775 A12 D

2666664
�‚1 � � � �‚q�1 �‚q
0 � � � 0 0

0 � � � 0 0
:::

: : :
:::

:::

0 � � � 0 0

3777775
A21 is a kq � kp zero matrix, and

A22 D

2666664
0 0 � � � 0 0

Ik 0 � � � 0 0

0 Ik � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � Ik 0

3777775
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An Example of a VARMA(1,1) Model

Consider a VARMA(1,1) model with mean zero,

yt D ˆ1yt�1 C �t �‚1�t�1

where �t is the white noise process with a mean zero vector and the positive-definite covariance matrix †.

The following IML procedure statements simulate a bivariate vector time series from this model to provide
test data for the VARMAX procedure:

proc iml;
sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
theta = {0.5 -0.2, 0.1 0.3};
/* to simulate the vector time series */
call varmasim(y,phi,theta) sigma=sig n=100 seed=34657;
cn = {'y1' 'y2'};
create simul3 from y[colname=cn];
append from y;

run;

The following statements fit a VARMA(1,1) model to the simulated data. You specify the order of the
autoregressive model by using the P= option and specify the order of moving-average model by using the
Q= option. You specify the quasi-Newton optimization in the NLOPTIONS statement as an optimization
method.

proc varmax data=simul3;
nloptions tech=qn;
model y1 y2 / p=1 q=1 noint print=(estimates);

run;

Figure 43.66 shows the initial values of parameters. The initial values were estimated by using the least
squares method.
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Figure 43.66 Start Parameter Estimates for the VARMA(1, 1) Model

The VARMAX Procedure

Optimization Start

Parameter Estimates

N Parameter Estimate

Gradient
Objective
Function

1 AR1_1_1 0.964299 -2.357098

2 AR1_2_1 0.481620 -3.773499

3 AR1_1_2 -0.363819 1.865051

4 AR1_2_2 0.457378 -10.778568

5 MA1_1_1 0.244355 -2.552198

6 MA1_2_1 -0.034093 2.716227

7 MA1_1_2 -0.006261 -0.147004

8 MA1_2_2 0.444636 0.141839

9 COV1_1 1.353584 2.765550

10 COV1_2 0.415649 -1.389416

11 COV2_2 1.445260 2.581735

Figure 43.67 shows the default option settings for the quasi-Newton optimization technique.

Figure 43.67 Default Criteria for the quasi-Newton Optimization

Minimum Iterations 0

Maximum Iterations 200

Maximum Function Calls 2000

ABSGCONV Gradient Criterion 0.00001

GCONV Gradient Criterion 1E-8

ABSFCONV Function Criterion 0

FCONV Function Criterion 2.220446E-16

FCONV2 Function Criterion 0

FSIZE Parameter 0

ABSXCONV Parameter Change Criterion 0

XCONV Parameter Change Criterion 0

XSIZE Parameter 0

ABSCONV Function Criterion -1.34078E154

Line Search Method 2

Starting Alpha for Line Search 1

Line Search Precision LSPRECISION 0.4

DAMPSTEP Parameter for Line Search .

Singularity Tolerance (SINGULAR) 1E-8

Figure 43.68 shows the iteration history of parameter estimates.
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Figure 43.68 Iteration History of Parameter Estimates

Iteration Restarts
Function

Calls
Active

Constraints
Objective
Function

Objective
Function

Change

Max Abs
Gradient
Element

Step
Size

Slope of
Search

Direction

1 0 3 0 121.22330 0.1526 5.2001 0.00384 -78.688

2 0 5 0 120.97740 0.2459 6.2584 3.214 -0.156

3 0 6 0 120.58286 0.3945 4.1004 0.948 -0.648

4 0 7 0 120.43152 0.1513 3.7834 1.000 -0.346

5 0 8 0 120.32992 0.1016 6.3797 1.000 -0.243

6 0 10 0 120.26832 0.0616 3.1048 0.407 -0.304

7 0 12 0 120.23311 0.0352 1.0747 0.983 -0.0731

8 0 14 0 120.22264 0.0105 0.6370 1.518 -0.0127

9 0 15 0 120.21560 0.00704 1.3563 4.650 -0.0056

10 0 16 0 120.21281 0.00279 1.2963 2.102 -0.0084

11 0 17 0 120.20951 0.00330 0.1634 1.139 -0.0061

12 0 19 0 120.20896 0.000542 0.1349 2.591 -0.0004

13 0 21 0 120.20884 0.000123 0.0662 1.883 -0.0001

14 0 22 0 120.20875 0.000093 0.1399 4.120 -0.0001

15 0 24 0 120.20871 0.000037 0.00917 1.073 -0.0001

16 0 26 0 120.20871 1.643E-6 0.00858 2.115 -155E-8

17 0 27 0 120.20871 7.704E-7 0.00543 5.409 -759E-9

Figure 43.69 shows the final parameter estimates.

Figure 43.69 Results of Parameter Estimates for the VARMA(1, 1) Model

The VARMAX Procedure

Optimization Results

Parameter Estimates

N Parameter Estimate

Gradient
Objective
Function

1 AR1_1_1 1.020117 0.003641

2 AR1_2_1 0.393557 0.000140

3 AR1_1_2 -0.388708 0.001311

4 AR1_2_2 0.551644 0.002479

5 MA1_1_1 0.330598 0.000131

6 MA1_2_1 -0.166999 0.000086321

7 MA1_1_2 -0.032507 -0.001133

8 MA1_2_2 0.587232 -0.000523

9 COV1_1 1.253624 0.005429

10 COV1_2 0.382094 -0.001152

11 COV2_2 1.322424 -0.000535

Figure 43.70 shows the AR coefficient matrix in terms of lag 1, the MA coefficient matrix in terms of lag 1,
the parameter estimates, and their significance, which is one indication of how well the model fits the data.
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Figure 43.70 Parameter Estimates for the VARMA(1, 1) Model

The VARMAX Procedure

Type of Model VARMA(1,1)

Estimation Method Maximum Likelihood Estimation

AR

Lag Variable y1 y2

1 y1 1.02012 -0.38871

y2 0.39356 0.55164

MA

Lag Variable e1 e2

1 y1 0.33060 -0.03251

y2 -0.16700 0.58723

Schematic Representation

Variable/Lag AR1 MA1

y1 +- +.

y2 ++ .+

+ is > 2*std error, - is < -2*std error, . is between, * is N/A

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 AR1_1_1 1.02012 0.10076 10.12 0.0001 y1(t-1)

AR1_1_2 -0.38871 0.09557 -4.07 0.0001 y2(t-1)

MA1_1_1 0.33060 0.14389 2.30 0.0237 e1(t-1)

MA1_1_2 -0.03251 0.14146 -0.23 0.8187 e2(t-1)

y2 AR1_2_1 0.39356 0.10210 3.85 0.0002 y1(t-1)

AR1_2_2 0.55164 0.08536 6.46 0.0001 y2(t-1)

MA1_2_1 -0.16700 0.15801 -1.06 0.2931 e1(t-1)

MA1_2_2 0.58723 0.14372 4.09 0.0001 e2(t-1)

Covariance Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

COV1_1 1.25362 0.17788 7.05 0.0001

COV1_2 0.38209 0.13484 2.83 0.0056

COV2_2 1.32242 0.18829 7.02 0.0001

The fitted VARMA(1,1) model with estimated standard errors in parentheses is given as

yt D

0BB@
1:01846 �0:38682

.0:10256/ .0:09644/

0:39182 0:55281

.0:10062/ .0:08422/

1CCA yt�1 C �t �

0BB@
0:32292 �0:02160

.0:14524/ .0:14203/

�0:16501 0:58576

.0:15704/ .0:14115/

1CCA �t�1
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and

�t � iid N.0;

0BB@
1:25202 0:37950

.0:17697/ .0:13401/

0:37950 1:31315

.0:13401/ .0:18610/

1CCA

VARMAX Modeling

A general VARMAX(p; q; s) process is written as

yt D ıt C
pX
iD1

ˆiyt�i C �t �
qX
iD1

‚i�t�i

or

ˆ.B/yt D ıt C‚.B/�t

where ˆ.B/ D Ik �
Pp
iD1ˆiB

i and ‚.B/ D Ik �
Pq
iD1‚iB

i . The vector ıt consists of all possible
deterministic terms, namely constant, seasonal dummies, linear trend, quadratic trend, and exogenous
variables. The vector ıt D �ct , where ct D .D0t x

0
t : : : x

0
t�s/

0; Dt D .1 dt;1 : : : dt;ns�1 t t
2/0; dt;i ; i D

1; : : : ; ns � 1, are seasonal dummies and ns is based on the NSEASON= option; � D .A ‚�0 : : : ‚
�
s /; A is

the parameter matrix corresponding to Dt and ‚�i for xt�i ; i D 0; : : : ; s.

The state space form of the VARMAX(p,q,s) model consists of a state equation

zt D F zt�1 C wt CG�t

and an observation equation

yt D Hzt

where

zt D .y0t ; y
0
t�1; : : : ; y

0
t�.v�1/; �

0
t ; �t�1; : : : ; �

0
t�.q�1/; c

0
tC1/

0

F D

26666666666664

ˆ1 � � � ˆv�1 ˆv �‚1 � � � �‚q�1 �‚q �

Ik � � � 0 0 0 � � � 0 0 0
:::

: : : 0
:::

:::
: : :

:::
:::

:::

0 � � � Ik 0 0 � � � 0 0 0

0 � � � 0 0 0 � � � 0 0 0

0 � � � 0 0 Ik � � � 0 0 0
:::

: : : 0
:::

:::
: : :

:::
:::

:::

0 � � � 0 0 0 � � � Ik 0 0

37777777777775
; G D

266664
Ik

0k.v�1/�k
Ik

0k.q�1/�k
0u�k

377775

and

H D ŒIk; 0.k.vCq�1/Cu/�k�
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where v D max .p; 1/, ˆi D 0 for i > p, and u is the dimension of ct .

Kalman filtering is used to evaluate the likelihood function. The updating equation is

Ozt jt D Ozt jt�1 CKt�t jt�1

where

Kt D Pt jt�1H
0ŒHPt jt�1H

0��1

The prediction equation is

Ozt jt�1 D F Ozt�1jt�1 C wt ; Pt jt�1 D FPt�1jt�1F 0 CG†G0

where Pt jt D ŒI �KtH�Pt jt�1 for t D 1; 2; : : : ; n.

The log-likelihood function can be expressed as

` D �
1

2

TX
tD1

Œlog j†t jt�1j C .yt � Oyt jt�1/0†�1t jt�1.yt � Oyt jt�1/�

where Oyt jt�1 and †t jt�1 are determined recursively from Kalman filtering. To construct the likelihood func-
tion from Kalman filtering, you obtain Oyt jt�1 D H Ozt jt�1, O�t jt�1 D yt � Oyt jt�1, and †t jt�1 D HPt jt�1H 0.

In the preceding state space form of a VARMAX model, the exogenous variables are treated as determined
terms, which implies that the values of the exogenous variables must be provided to forecast the out-of-sample
dependent variables. If you do not have the future values of the exogenous variables, either you predict the
exogenous variables in a separate model, or you express both the exogenous variables and the dependent
variables in one combined model and predict them together (Reinsel 1997).

The dimension of the state space vector of the Kalman filtering method for the VARMAX(p,q,s) model might
be large, so it might take a lot of time and memory for computing.

Two examples of VARMAX modeling follow:

model y1 y2 = x1 / q=1;
nloptions tech=qn;

model y1 y2 = x1 / p=1 q=1 xlag=1 nocurrentx;
nloptions tech=qn;
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Model Diagnostic Checks

Multivariate Model Diagnostic Checks

Log Likelihood
The log-likelihood function for the fitted model is reported in the LogLikelihood ODS table. The log-
likelihood functions for different models are defined as follows:

� For VARMAX models that are estimated through the (conditional) maximum likelihood method, see
the section “VARMA and VARMAX Modeling” on page 3104.

� For Bayesian VAR and VARX models, see the section “Bayesian VAR and VARX Modeling” on
page 3102.

� For (Bayesian) vector error correction models, see the section “Vector Error Correction Modeling” on
page 3119.

� For multivariate GARCH models, see the section “Multivariate GARCH Modeling” on page 3139.

� For VARFIMA and VARFIMAX models, see the section “VARFIMA and VARFIMAX Modeling” on
page 3150.

� For VAR and VARX models that are estimated through the least squares (LS) method, the log likelihood
is defined as

` D �
1

2
.T log j Q†j C kT /

where Q† is the maximum likelihood estimate of the innovation covariance matrix, k is the number of
dependent variables, and T is the number of observations used in the estimation.

Information Criteria
The information criteria include Akaike’s information criterion (AIC), the corrected Akaike’s information
criterion (AICC), the final prediction error criterion (FPE), the Hannan-Quinn criterion (HQC), and the
Schwarz Bayesian criterion (SBC, also referred to as BIC). These criteria are defined as

AIC D �2`C 2r

AICC D �2`C 2rT=.T � r � 1/

FPE D .
T C rb

T � rb
/kj Q†j

HQC D �2`C 2r log.log.T //
SBC D �2`C r log.T /

where ` is the log likelihood, r is the total number of parameters in the model, k is the number of dependent
variables, T is the number of observations that are used to estimate the model, rb is the number of parameters
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in each mean equation, and Q† is the maximum likelihood estimate of †. As suggested by Burnham and
Anderson (2004) for least squares estimation, the total number of parameters, r, must include the parameters
in the innovation covariance matrix. When comparing models, choose the model that has the smallest
criterion values.

For an example of the output, see Figure 43.4 earlier in this chapter.

Portmanteau Statistic
The portmanteau statistic, Qs , is used to test whether correlation remains on the model residuals. The null
hypothesis is that the residuals are uncorrelated. Let C�.l/ be the residual cross-covariance matrices, O��.l/
be the residual cross-correlation matrices as

C�.l/ D T
�1

T�lX
tD1

�t�
0
tCl

and

O��.l/ D OV
�1=2
� C�.l/ OV

�1=2
� and O��.�l/ D O��.l/0

where OV� D Diag. O�211; : : : ; O�
2
kk
/ and O�2i i are the diagonal elements of O†. The multivariate portmanteau test

defined in Hosking (1980) is

Qs D T
2
sX
lD1

.T � l/�1trf O��.l/ O��.0/�1 O��.�l/ O��.0/�1g

The statistic Qs has approximately the chi-square distribution with k2.s � p � q/ degrees of freedom. An
example of the output is displayed in Figure 43.7.

Univariate Model Diagnostic Checks

There are various ways to perform diagnostic checks for a univariate model. For more information, see
the section “Testing for Nonlinear Dependence: Heteroscedasticity Tests” on page 405 in Chapter 9, “The
AUTOREG Procedure.” An example of the output is displayed in Figure 43.8 and Figure 43.9.

� Durbin-Watson (DW) statistics: The DW test statistics test for the first order autocorrelation in the
residuals.

� Jarque-Bera normality test: This test is helpful in determining whether the model residuals represent a
white noise process. This tests the null hypothesis that the residuals have normality.

� F tests for autoregressive conditional heteroscedastic (ARCH) disturbances: F test statistics test for
the heteroscedastic disturbances in the residuals. This tests the null hypothesis that the residuals have
equal covariances

� F tests for AR disturbance: These test statistics are computed from the residuals of the univariate
AR(1), AR(1,2), AR(1,2,3), and AR(1,2,3,4) models to test the null hypothesis that the residuals are
uncorrelated.



3116 F Chapter 43: The VARMAX Procedure

Cointegration
This section briefly introduces the concepts of cointegration (Johansen 1995a).

Definition 1. (Engle and Granger 1987): If a series yt with no deterministic components can be repre-
sented by a stationary and invertible ARMA process after differencing d times, the series is integrated of
order d, that is, yt � I.d/.

Definition 2. (Engle and Granger 1987): If all elements of the vector yt are I.d/ and there exists a
cointegrating vector ˇ ¤ 0 such that ˇ0yt � I.d � b/ for any b > 0, the vector process is said to be
cointegrated CI.d; b/.

A simple example of a cointegrated process is the following bivariate system:

y1t D y2t C �1t

y2t D y2;t�1 C �2t

with �1t and �2t being uncorrelated white noise processes. In the second equation, y2t is a random walk,
�y2t D �2t , � � 1 � B . Differencing the first equation results in

�y1t D �y2t C��1t D �2t C �1t � �1;t�1

Thus, both y1t and y2t are I.1/ processes, but the linear combination y1t � y2t is stationary. Hence
yt D .y1t ; y2t /0 is cointegrated with a cointegrating vector ˇ D .1;�/0.

In general, if the vector process yt has k components, then there can be more than one cointegrating vector
ˇ0. It is assumed that there are r linearly independent cointegrating vectors with r < k, which make the
k � r matrix ˇ. The rank of matrix ˇ is r, which is called the cointegration rank of yt .

Common Trends

This section briefly discusses the implication of cointegration for the moving-average representation. Let yt
be cointegrated CI.1; 1/, then �yt has the Wold representation:

�yt D ı C‰.B/�t

where �t is iid.0;†/, ‰.B/ D
P1
jD0‰jB

j with ‰0 D Ik , and
P1
jD0 j j‰j j <1.

Assume that �t D 0 if t � 0 and y0 is a nonrandom initial value. Then the difference equation implies that

yt D y0 C ıt C‰.1/
tX
iD0

�i C‰
�.B/�t

where ‰�.B/ D .1 � B/�1.‰.B/ �‰.1// and ‰�.B/ is absolutely summable.

Assume that the rank of ‰.1/ is m D k � r . When the process yt is cointegrated, there is a cointegrating
k � r matrix ˇ such that ˇ0yt is stationary.
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Premultiplying yt by ˇ0 results in

ˇ0yt D ˇ0y0 C ˇ0‰�.B/�t

because ˇ0‰.1/ D 0 and ˇ0ı D 0.

Stock and Watson (1988) showed that the cointegrated process yt has a common trends representation derived
from the moving-average representation. Since the rank of ‰.1/ is m D k � r , there is a k � r matrix H1
with rank r such that ‰.1/H1 D 0. Let H2 be a k � m matrix with rank m such that H 02H1 D 0; then
A D C.1/H2 has rank m. The H D .H1;H2/ has rank k. By construction of H,

‰.1/H D Œ0; A� D ASm

where Sm D .0m�r ; Im/. Since ˇ0‰.1/ D 0 and ˇ0ı D 0, ı lies in the column space of ‰.1/ and can be
written

ı D ‰.1/ Qı

where Qı is a k-dimensional vector. The common trends representation is written as

yt D y0 C‰.1/Œ Qıt C
tX
iD0

�i �C‰
�.B/�t

D y0 C‰.1/HŒH�1 Qıt CH�1
tX
iD0

�i �C at

D y0 C A�t C at

and

�t D � C �t�1 C vt

where at D ‰�.B/�t , � D SmH�1 Qı, �t D SmŒH�1 Qıt CH�1
Pt
iD0 �i �, and vt D SmH�1�t .

Stock and Watson showed that the common trends representation expresses yt as a linear combination of m
random walks (�t ) with drift � plus I.0/ components (at /.

Test for the Common Trends

Stock and Watson (1988) proposed statistics for common trends testing. The null hypothesis is that the
k-dimensional time series yt has m common stochastic trends, where m � k and the alternative is that
it has s common trends, where s < m . The test procedure of m versus s common stochastic trends is
performed based on the first-order serial correlation matrix of yt . Let ˇ? be a k �m matrix orthogonal to
the cointegrating matrix such that ˇ

0

?
ˇ D 0 and ˇ

?
ˇ
0

?
D Im. Let zt D ˇ0yt and wt D ˇ

0

?
yt . Then

wt D ˇ0?y0 C ˇ
0
?ıt C ˇ

0
?‰.1/

tX
iD0

�i C ˇ
0
?‰
�.B/�t
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Combining the expression of zt and wt ,

�
zt
wt

�
D

�
ˇ0y0
ˇ
0

?
y0

�
C

�
0

ˇ
0

?
ı

�
t C

�
0

ˇ
0

?
‰.1/

� tX
iD1

�i

C

�
ˇ0‰�.B/

ˇ0
?
‰�.B/

�
�t

The Stock-Watson common trends test is performed based on the component wt by testing whether ˇ
0

?
‰.1/

has rank m against rank s.

The following statements perform the Stock-Watson test for common trends:

proc iml;
sig = 100*i(2);
phi = {-0.2 0.1, 0.5 0.2, 0.8 0.7, -0.4 0.6};
call varmasim(y,phi) sigma=sig n=100 initial=0

seed=45876;
cn = {'y1' 'y2'};
create simul2 from y[colname=cn];
append from y;

quit;

data simul2;
set simul2;
date = intnx( 'year', '01jan1900'd, _n_-1 );
format date year4. ;

run;

proc varmax data=simul2;
model y1 y2 / p=2 cointtest=(sw);

run;

In Figure 43.71, the first column is the null hypothesis that yt has m � k common trends; the second column
is the alternative hypothesis that yt has s < m common trends; the third column contains the eigenvalues
used for the test statistics; the fourth column contains the test statistics using AR(p) filtering of the data. The
table shows the output of the case p D 2.

Figure 43.71 Common Trends Test (COINTTEST=(SW) Option)

The VARMAX Procedure

Common Trend Test

H0:
Rank=m

H1:
Rank=s Eigenvalue Filter

5%
Critical
Value Lag

1 0 1.000906 0.09 -14.10 2

2 0 0.996763 -0.32 -8.80

1 0.648908 -35.11 -23.00

The test statistic for testing for 2 versus 1 common trends is more negative (–35.1) than the critical value
(–23.0). Therefore, the test rejects the null hypothesis, which means that the series has a single common
trend.
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Vector Error Correction Modeling
This section discusses the implication of cointegration for the autoregressive representation.

Consider the vector autoregressive process that has Gaussian errors defined by

yt D
pX
iD1

ˆiyt�i C �t

or

ˆ.B/yt D �t

where the initial values, y�pC1; : : : ; y0, are fixed and �t � N.0;†/. The AR operator ˆ.B/ can be
re-expressed as

ˆ.B/ D ˆ�.B/.1 � B/Cˆ.1/B

where

ˆ.1/ D Ik �ˆ1 �ˆ2 � � � � �ˆp; ˆ
�.B/ D Ik �

p�1X
iD1

ˆ�i B
i ; ˆ�i D �

pX
jDiC1

ˆj

The vector error correction model (VECM), also called the vector equilibrium correction model, is defined as

ˆ�.B/.1 � B/yt D ˛ˇ0yt�1 C �t

or

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C �t

where ˛ˇ0 D �ˆ.1/.

Granger Representation Theorem
Engle and Granger (1987) define

….z/ � .1 � z/Ik � ˛ˇ
0z �

p�1X
iD1

ˆ�i .1 � z/z
i

and the following assumptions hold:

1. j….z/j D 0) jzj > 1 or z D 1.

2. The number of unit roots, z D 1, is exactly k � r .
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3. ˛ and ˇ are k � r matrices, and their ranks are both r.

Then yt has the representation

yt D C

tX
iD1

�i C C
�.B/�t C y

�
0

where the Granger representation coefficient, C, is

C D ˇ?
�
˛0?ˆ.1/ˇ?

��1
˛0?

where the full-rank k � .k � r/ matrix ˇ? is orthogonal to ˇ and the full-rank k � .k � r/ matrix ˛? is
orthogonal to ˛. C �.B/�t D

P1
jD1 C

�
j �t�j is an I.0/ process, and y�0 depends on the initial values.

The Granger representation coefficient C can be defined only when the .k � r/ � .k � r/ matrix ˛0
?
ˆ.1/ˇ?

is invertible.

One motivation for the VECM(p) form is to consider the relation ˇ0yt D c as defining the underlying
economic relations. Assume that agents react to the disequilibrium error ˇ0yt � c through the adjustment
coefficient ˛ to restore equilibrium. The cointegrating vector, ˇ, is sometimes called the long-run parameter.

Consider a vector error correction model that has a deterministic term, Dt , which can contain a constant, a
linear trend, and seasonal dummy variables. Exogenous variables can also be included in the model. The
model has the form

�yt D …yt�1 C
p�1X
iD1

ˆ�i �yt�i C ADt C
sX
iD0

‚�i xt�i C �t

where … D ˛ˇ0.

The alternative vector error correction representation considers the error correction term at lag t � p and is
written as

�yt D
p�1X
iD1

ˆ
]
i�yt�i C…]yt�p C ADt C

sX
iD0

‚�i xt�i C �t

If the matrix … has a full rank (r D k), all components of yt are I.0/. On the other hand, yt are stationary in
difference if rank.…/ D 0. When the rank of the matrix … is r < k, there are k � r linear combinations
that are nonstationary and r stationary cointegrating relations. Note that the linearly independent vector
zt D ˇ0yt is stationary and this transformation is not unique unless r D 1. There does not exist a unique
cointegrating matrix ˇ because the coefficient matrix … can also be decomposed as

… D ˛MM�1ˇ0 D ˛�ˇ�
0

where M is an r � r nonsingular matrix.
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Test for Cointegration

The cointegration rank test determines the linearly independent columns of …. Johansen and Juselius
proposed the cointegration rank test by using the reduced rank regression (Johansen 1988, 1995b; Johansen
and Juselius 1990).

Different Specifications of Deterministic Trends
When you construct the VECM(p) form from the VAR(p) model, the deterministic terms in the VECM(p)
form can differ from those in the VAR(p) model. When there are deterministic cointegrated relationships
among variables, deterministic terms in the VAR(p) model are not present in the VECM(p) form. On the
other hand, if there are stochastic cointegrated relationships in the VAR(p) model, deterministic terms appear
in the VECM(p) form via the error correction term or as an independent term in the VECM(p) form. There
are five different specifications of deterministic trends in the VECM(p) form.

� Case 1: There is no separate drift in the VECM(p) form.

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C �t

� Case 2: There is no separate drift in the VECM(p) form, but a constant enters only via the error
correction term.

�yt D ˛.ˇ0;ˇ0/.y0t�1; 1/
0
C

p�1X
iD1

ˆ�i �yt�i C �t

� Case 3: There is a separate drift and no separate linear trend in the VECM(p) form.

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C ı0 C �t

� Case 4: There is a separate drift and no separate linear trend in the VECM(p) form, but a linear trend
enters only via the error correction term.

�yt D ˛.ˇ0;ˇ1/.y0t�1; t /
0
C

p�1X
iD1

ˆ�i �yt�i C ı0 C �t

� Case 5: There is a separate linear trend in the VECM(p) form.

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C ı0 C ı1t C �t

First, focus on Cases 1, 3, and 5 to test the null hypothesis that there are at most r cointegrating vectors. Let

Z0t D �yt
Z1t D yt�1
Z2t D Œ�y0t�1; : : : ; �y0t�pC1;Dt �

0

Z0 D ŒZ01; : : : ; Z0T �
0

Z1 D ŒZ11; : : : ; Z1T �
0

Z2 D ŒZ21; : : : ; Z2T �
0
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where Dt can be empty for Case 1, 1 for Case 3, and .1; t/ for Case 5.

In Case 2, Z1t and Z2t are defined as

Z1t D Œy0t�1; 1�
0

Z2t D Œ�y0t�1; : : : ; �y0t�pC1�
0

In Case 4, Z1t and Z2t are defined as

Z1t D Œy0t�1; t �
0

Z2t D Œ�y0t�1; : : : ; �y0t�pC1; 1�
0

Let ‰ be the matrix of parameters consisting of ˆ�1 , . . . , ˆ�p�1, A, and ‚�0 , . . . , ‚�s , where parameter A
corresponds with the regressors Dt . Then the VECM(p) form is rewritten in these variables as

Z0t D ˛ˇ
0Z1t C‰Z2t C �t

The log-likelihood function is given by

` D �
kT

2
log 2� �

T

2
log j†j

�
1

2

TX
tD1

.Z0t � ˛ˇ
0Z1t �‰Z2t /

0†�1.Z0t � ˛ˇ
0Z1t �‰Z2t /

The residuals, R0t and R1t , are obtained by regressing Z0t and Z1t on Z2t , respectively. The regression
equation of residuals is

R0t D ˛ˇ
0R1t C O�t

The crossproducts matrices are computed

Sij D
1

T

TX
tD1

RitR
0
jt ; i; j D 0; 1

Then the maximum likelihood estimator for ˇ is obtained from the eigenvectors that correspond to the r
largest eigenvalues of the following equation:

j�S11 � S10S
�1
00 S01j D 0

The eigenvalues of the preceding equation are squared canonical correlations between R0t and R1t , and
the eigenvectors that correspond to the r largest eigenvalues are the r linear combinations of yt�1, which
have the largest squared partial correlations with the stationary process �yt after correcting for lags and
deterministic terms. Such an analysis calls for a reduced rank regression of �yt on yt�1 corrected for
.�yt�1; : : : ; �yt�pC1;Dt /, as discussed by Anderson (1951). Johansen (1988) suggests two test statistics
to test the null hypothesis that there are at most r cointegrating vectors

H0 W �i D 0 for i D r C 1; : : : ; k
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Trace Test
The trace statistic for testing the null hypothesis that there are at most r cointegrating vectors is as follows:

�trace D �T

kX
iDrC1

log.1 � �i /

The asymptotic distribution of this statistic is given by

tr

(Z 1

0

.dW / QW 0
�Z 1

0

QW QW 0dr

��1 Z 1

0

QW .dW /0

)

where tr.A/ is the trace of a matrix A, W is the k � r dimensional Brownian motion, and QW is the Brownian
motion itself, or the de-meaned or detrended Brownian motion according to the different specifications of
deterministic trends in the vector error correction model.

Maximum Eigenvalue Test
The maximum eigenvalue statistic for testing the null hypothesis that there are at most r cointegrating vectors
is as follows:

�max D �T log.1 � �rC1/

The asymptotic distribution of this statistic is given by

maxf
Z 1

0

.dW / QW 0.

Z 1

0

QW QW 0dr/�1
Z 1

0

QW .dW /0g

where max.A/ is the maximum eigenvalue of a matrix A. Osterwald-Lenum (1992) provided detailed tables
of the critical values of these statistics.

The following statements use the JOHANSEN option to compute the Johansen cointegration rank trace test
of integrated order 1:

proc varmax data=simul2;
model y1 y2 / p=2 cointtest=(johansen=(normalize=y1));

run;

Figure 43.72 shows the output based on the model specified in the MODEL statement. An intercept term is
assumed. In the “Cointegration Rank Test Using Trace” table, the column Drift in ECM indicates that there
is no separate drift in the error correction model, and the column Drift in Process indicates that the process
has a constant drift before differencing. The “Cointegration Rank Test Using Trace” table shows the trace
statistics and p-values based on Case 3, and the “Cointegration Rank Test Using Trace under Restriction”
table shows the trace statistics and p-values based on Case 2. For a specified significance level, such as
5%, the output indicates that the null hypothesis that the series are not cointegrated (H0: Rank = 0) can be
rejected, because the p-values for both Case 2 and Case 3 are less than 0.05. The output also shows that the
null hypothesis that the series are cointegrated with rank 1 (H0: Rank = 1) cannot be rejected for either Case
2 or Case 3, because the p-values for these tests are both greater than 0.05.
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Figure 43.72 Cointegration Rank Test (COINTTEST=(JOHANSEN=) Option)

The VARMAX Procedure

Cointegration Rank Test Using Trace

H0:
Rank=r

H1:
Rank>r Eigenvalue Trace Pr > Trace

Drift in
ECM

Drift in
Process

0 0 0.4644 61.7522 <.0001 Constant Linear

1 1 0.0056 0.5552 0.4559

Cointegration Rank Test Using Trace Under Restriction

H0:
Rank=r

H1:
Rank>r Eigenvalue Trace Pr > Trace

Drift in
ECM

Drift in
Process

0 0 0.5209 76.3788 <.0001 Constant Constant

1 1 0.0426 4.2680 0.3741

Figure 43.73 shows which result, either Case 2 (the hypothesis H0) or Case 3 (the hypothesis H1), is
appropriate depending on the significance level. Since the cointegration rank is chosen to be 1 by the result
in Figure 43.72, look at the last row that corresponds to rank=1. Since the p-value is 0.054, the Case 2 cannot
be rejected at the significance level 5%, but it can be rejected at the significance level 10%. For modeling of
the two Case 2 and Case 3, see Figure 43.76 and Figure 43.77.

Figure 43.73 Cointegration Rank Test, Continued

Hypothesis of the Restriction

Hypothesis
Drift in
ECM

Drift in
Process

H0(Case 2) Constant Constant

H1(Case 3) Constant Linear

Hypothesis Test of the Restriction

Rank Eigenvalue
Restricted
Eigenvalue DF Chi-Square Pr > ChiSq

0 0.4644 0.5209 2 14.63 0.0007

1 0.0056 0.0426 1 3.71 0.0540

Figure 43.74 shows the estimates of long-run parameter (Beta) and adjustment coefficients (Alpha) based on
Case 3.

Figure 43.74 Cointegration Rank Test, Continued

Beta

Variable 1 2

y1 1.00000 1.00000

y2 -2.04869 -0.02854

Alpha

Variable 1 2

y1 -0.46421 -0.00502

y2 0.17535 -0.01275
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Using the NORMALIZE= option, the first row of the “Beta” table has 1. Considering that the cointegration
rank is 1, the long-run relationship of the series is

ˇ0yt D
�
1 �2:04869

� � y1
y2

�
D y1t � 2:04869y2t

y1t D 2:04869y2t

Figure 43.75 shows the estimates of long-run parameter (Beta) and adjustment coefficients (Alpha) based on
Case 2.

Figure 43.75 Cointegration Rank Test, Continued

Beta Under Restriction

Variable 1 2

y1 1.00000 1.00000

y2 -2.04366 -2.75773

1 6.75919 101.37051

Alpha Under Restriction

Variable 1 2

y1 -0.48015 0.01091

y2 0.12538 0.03722

Considering that the cointegration rank is 1, the long-run relationship of the series is

ˇ0yt D
�
1 �2:04366 6:75919

�24 y1
y2
1

35
D y1t � 2:04366 y2t C 6:75919

y1t D 2:04366 y2t � 6:75919

Estimation of Vector Error Correction Model

The preceding log-likelihood function is maximized for

Ǒ D S
�1=2
11 Œv1; : : : ; vr �

Ǫ D S01 Ǒ. Ǒ
0S11 Ǒ/

�1

O… D Ǫ Ǒ
0

O‰0 D .Z02Z2/
�1Z02.Z0 �Z1

O…0/

O† D .Z0 �Z2 O‰
0
�Z1 O…

0/0.Z0 �Z2 O‰
0
�Z1 O…

0/=T

The estimators of the orthogonal complements of ˛ and ˇ are

Ǒ
? D S11ŒvrC1; : : : ; vk�
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and

Ǫ? D S
�1
00 S01ŒvrC1; : : : ; vk�

Let # denote the parameter vector .vec.˛; ‰/0; vech.†/0/0. The covariance of parameter estimates O# is
obtained as the inverse of the negative Hessian matrix H � @2`

@#@# 0
. Because O… D Ǫ Ǒ0, the variance of O…

and the covariance between O… and O# are calculated as follows:

cov.vec. O…/; vec. O…// D . Ǒ ˝ Ik/cov.vec. Ǫ /; vec. Ǫ //. Ǒ ˝ Ik/0

cov.vec. O…/; O#/ D . Ǒ ˝ Ik/cov.vec. Ǫ /; O#/

For Case 2 (Case 4), because the coefficient vector Oı0 ( Oı1) for the constant term (the linear trend term) is the
product of Ǫ and Ǒ0 ( Ǒ1), the variance of Oı0 ( Oı1) and the covariance between Oı0 ( Oı1) and O# are calculated as
follows:

cov. Oıi ; Oıi / D . Ǒ0i ˝ Ik/cov.vec. Ǫ /; vec. Ǫ //. Ǒ
0
i ˝ Ik/

0; i D 0 or 1

cov. Oıi ; O#/ D . Ǒ0i ˝ Ik/cov.vec. Ǫ /; O#/; i D 0 or 1

The following statements are examples of fitting the five different cases of the vector error correction models
mentioned in the previous section.

For fitting Case 1,

model y1 y2 / p=2 noint;
cointeg rank=1 normalize=y1;

For fitting Case 2,

model y1 y2 / p=2;
cointeg rank=1 normalize=y1 ectrend;

For fitting Case 3,

model y1 y2 / p=2;
cointeg rank=1 normalize=y1;

For fitting Case 4,

model y1 y2 / p=2 trend=linear;
cointeg rank=1 normalize=y1 ectrend;

For fitting Case 5,

model y1 y2 / p=2 trend=linear;
cointeg rank=1 normalize=y1;

In the previous example, the output from the COINTTEST=(JOHANSEN) option shown in Figure 43.73
indicates that you can fit the model by using either Case 2 or Case 3 because the test of the restriction was
not significant at the 0.05 level, but was significant at the 0.10 level. Following both models are fit to show
the differences in the displayed output. Figure 43.76 is for Case 2, and Figure 43.77 is for Case 3.

For Case 2,
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proc varmax data=simul2;
model y1 y2 / p=2 print=(estimates);
cointeg rank=1 normalize=y1 ectrend;

run;

Figure 43.76 Parameter Estimation with the ECTREND Option

The VARMAX Procedure

Parameter Alpha * Beta' Estimates

Variable y1 y2 1

y1 -0.48015 0.98126 -3.24543

y2 0.12538 -0.25624 0.84748

AR Coefficients of Differenced Lag

DIF Lag Variable y1 y2

1 y1 -0.72759 -0.77463

y2 0.38982 -0.55173

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

D_y1 CONST1 -3.24543 0.33022 -9.83 <.0001 1, EC

AR1_1_1 -0.48015 0.04886 -9.83 <.0001 y1(t-1)

AR1_1_2 0.98126 0.09984 9.83 <.0001 y2(t-1)

AR2_1_1 -0.72759 0.04623 -15.74 <.0001 D_y1(t-1)

AR2_1_2 -0.77463 0.04978 -15.56 <.0001 D_y2(t-1)

D_y2 CONST2 0.84748 0.35394 2.39 0.0187 1, EC

AR1_2_1 0.12538 0.05236 2.39 0.0187 y1(t-1)

AR1_2_2 -0.25624 0.10702 -2.39 0.0187 y2(t-1)

AR2_2_1 0.38982 0.04955 7.87 <.0001 D_y1(t-1)

AR2_2_2 -0.55173 0.05336 -10.34 <.0001 D_y2(t-1)

Figure 43.76 can be reported as follows:

�yt D
�
�0:48015 0:98126 �3:24543

0:12538 �0:25624 0:84748

�24 y1;t�1
y2;t�1
1

35
C

�
�0:72759 �0:77463

0:38982 �0:55173

�
�yt�1 C �t

The keyword “EC” in the “Model Parameter Estimates” table means that the ECTREND option is used for
fitting the model.

For fitting Case 3,
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proc varmax data=simul2;
model y1 y2 / p=2 print=(estimates);
cointeg rank=1 normalize=y1;

run;

Figure 43.77 Parameter Estimation without the ECTREND Option

The VARMAX Procedure

Parameter Alpha * Beta'
Estimates

Variable y1 y2

y1 -0.46421 0.95103

y2 0.17535 -0.35923

AR Coefficients of Differenced Lag

DIF Lag Variable y1 y2

1 y1 -0.74052 -0.76305

y2 0.34820 -0.51194

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

D_y1 CONST1 -2.60825 1.32398 -1.97 0.0518 1

AR1_1_1 -0.46421 0.05474 -8.48 <.0001 y1(t-1)

AR1_1_2 0.95103 0.11215 8.48 <.0001 y2(t-1)

AR2_1_1 -0.74052 0.05060 -14.63 <.0001 D_y1(t-1)

AR2_1_2 -0.76305 0.05352 -14.26 <.0001 D_y2(t-1)

D_y2 CONST2 3.43005 1.39587 2.46 0.0159 1

AR1_2_1 0.17535 0.05771 3.04 0.0031 y1(t-1)

AR1_2_2 -0.35923 0.11824 -3.04 0.0031 y2(t-1)

AR2_2_1 0.34820 0.05335 6.53 <.0001 D_y1(t-1)

AR2_2_2 -0.51194 0.05643 -9.07 <.0001 D_y2(t-1)

Figure 43.77 can be reported as follows:

�yt D
�
�0:46421 0:95103

0:17535 �0:35293

�
yt�1 C

�
�0:74052 �0:76305

0:34820 �0:51194

�
�yt�1

C

�
�2:60825

3:43005

�
C �t
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A Test for the Long-Run Relations

Consider the example with the variables mt log real money, yt log real income, idt deposit interest rate,
and ibt bond interest rate. It seems a natural hypothesis that in the long-run relation, money and income
have equal coefficients with opposite signs. This can be formulated as the hypothesis that the cointegrated
relation contains only mt and yt through mt � yt . For the analysis, you can express these restrictions in the
parameterization of H such that ˇ D H�, where H is a known k � s matrix and  is the s � r.r � s < k/
parameter matrix to be estimated. For this example, H is given by

H D

2664
1 0 0

�1 0 0

0 1 0

0 0 1

3775
Restriction H0Wˇ D H�

When the linear restriction ˇ D H� is given, it implies that the same restrictions are imposed on all
cointegrating vectors. You obtain the maximum likelihood estimator of ˇ by reduced rank regression of �yt
on Hyt�1 corrected for .�yt�1; : : : ; �yt�pC1;Dt /, solving the following equation,

j�H 0S11H �H
0S10S

�1
00 S01H j D 0

for the eigenvalues 1 > �1 > � � � > �s > 0 and eigenvectors .v1; : : : ; vs/, Sij given in the preceding section.
Then choose O� D .v1; : : : ; vr/ that corresponds to the r largest eigenvalues, and the Ǒ is H O�.

The test statistic for H0Wˇ D H� is given by

T

rX
iD1

logf.1 � �i /=.1 � �i /g
d
! �2r.k�s/

If the series has no deterministic trend, the constant term should be restricted by ˛0
?
ı0 D 0 as in Case 2.

Then H is given by

H D

266664
1 0 0 0

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377775
The following statements test that 2 ˇ1 C ˇ2 D 0:

proc varmax data=simul2;
model y1 y2 / p=2;
cointeg rank=1 h=(1,-2) normalize=y1;

run;

Figure 43.78 shows the results of testing H0W 2ˇ1 C ˇ2 D 0. The input H matrix is H D .1 � 2/0. The
adjustment coefficient is reestimated under the restriction, and the test indicates that you cannot reject the
null hypothesis.
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Figure 43.78 Testing of Linear Restriction (H= Option)

The VARMAX Procedure

Beta Under
Restriction

Variable 1

y1 1.00000

y2 -2.00000

Alpha Under
Restriction

Variable 1

y1 -0.47404

y2 0.17534

Hypothesis Test

Index Eigenvalue
Restricted
Eigenvalue DF Chi-Square Pr > ChiSq

1 0.4644 0.4616 1 0.51 0.4738

Test for the Weak Exogeneity and Restrictions of Alpha

Consider a vector error correction model:

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C ADt C �t

Divide the process yt into .y01t ; y
0
2t /
0 with dimension k1 and k2 and the † into

† D

�
†11 †12
†21 †22

�
Similarly, the parameters can be decomposed as follows:

˛ D

�
˛1
˛2

�
ˆ�i D

�
ˆ�1i
ˆ�2i

�
A D

�
A1
A2

�
Then the VECM(p) form can be rewritten by using the decomposed parameters and processes:

�
�y1t
�y2t

�
D

�
˛1
˛2

�
ˇ0yt�1 C

p�1X
iD1

�
ˆ�1i
ˆ�2i

�
�yt�i C

�
A1
A2

�
Dt C

�
�1t
�2t

�

The conditional model for y1t given y2t is

�y1t D !�y2t C .˛1 � !˛2/ˇ0yt�1 C
p�1X
iD1

.ˆ�1i � !ˆ
�
2i /�yt�i

C.A1 � !A2/Dt C �1t � !�2t
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and the marginal model of y2t is

�y2t D ˛2ˇ0yt�1 C
p�1X
iD1

ˆ�2i�yt�i C A2Dt C �2t

where ! D †12†�122 .

The test of weak exogeneity of y2t for the parameters .˛1;ˇ/ determines whether ˛2 D 0. Weak exogeneity
means that there is no information about ˇ in the marginal model or that the variables y2t do not react to a
disequilibrium.

Restriction H0W˛ D J 

Consider the null hypothesis H0W˛ D J , where J is a k �m matrix with r � m < k.

From the previous residual regression equation

R0t D ˛ˇ
0R1t C O�t D J ˇ

0R1t C O�t

you can obtain

NJ 0R0t D  ˇ0R1t C NJ
0
O�t

J 0?R0t D J 0? O�t

where NJ D J.J 0J /�1 and J? is orthogonal to J such that J 0
?
J D 0.

Define

†JJ? D
NJ 0†J? and †J?J? D J

0
?†J?

and let ! D †JJ?†
�1
J?J?

. Then NJ 0R0t can be written as

NJ 0R0t D  ˇ
0R1t C !J

0
?R0t C

NJ 0 O�t � !J
0
? O�t

Using the marginal distribution of J 0
?
R0t and the conditional distribution of NJ 0R0t , the new residuals are

computed as

QRJ t D NJ 0R0t � SJJ?S
�1
J?J?

J 0?R0t

QR1t D R1t � S1J?S
�1
J?J?

J 0?R0t

where

SJJ? D
NJ 0S00J?; SJ?J? D J

0
?S00J?; and SJ?1 D J

0
?S01

In terms of QRJ t and QR1t , the MLE of ˇ is computed by using the reduced rank regression. Let

Sij:J? D
1

T

TX
tD1

QRit QR
0
jt ; for i; j D 1; J
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Under the null hypothesis H0W˛ D J , the MLE Q̌ is computed by solving the equation

j�S11:J? � S1J:J?S
�1
JJ:J?

SJ1:J? j D 0

Then Q̌ D .v1; : : : ; vr/, where the eigenvectors correspond to the r largest eigenvalues and are normalized
such that Q̌0S11:J? Q̌ D Ir ; Q̨ D JSJ1:J? Q̌. The likelihood ratio test for H0W˛ D J is

T

rX
iD1

logf.1 � �i /=.1 � �i /g
d
! �2r.k�m/

For more information, see Theorem 6.1 in Johansen and Juselius (1990).

The test of weak exogeneity of y2t is a special case of the test ˛ D J , considering J D .Ik1 ; 0/
0. Consider

the previous example with four variables ( mt ; yt ; ibt ; i
d
t ). If r D 1, you formulate the weak exogeneity of

(yt ; ibt ; i
d
t ) for mt as J D Œ0; I3�0 and the weak exogeneity of idt for (mt ; yt ; ibt ) as J D ŒI3; 0�0.

The following statements test the weak exogeneity of other variables, assuming r D 1:

proc varmax data=simul2;
model y1 y2 / p=2;
cointeg rank=1 exogeneity normalize=y1;

run;

Figure 43.79 shows that each variable is not the weak exogeneity of other variable.

Figure 43.79 Testing of Weak Exogeneity (EXOGENEITY Option)

The VARMAX Procedure

Testing Weak Exogeneity of Each
Variable

Variable DF Chi-Square Pr > ChiSq

y1 1 53.46 <.0001

y2 1 8.76 0.0031

General Tests and Restrictions on Parameters

The previous sections discuss some special forms of tests on ˇ and ˛, namely the long-run relations that
are expressed in the form H0Wˇ D H�, the weak exogeneity test, and the null hypotheses on ˛ in the form
H0W˛ D J . In fact, with the help of the RESRICT and BOUND statements, you can estimate the models
that have linear restrictions on any parameters to be estimated, which means that you can implement the
likelihood ratio (LR) test for any linear relationship between the parameters.

The restricted error correction model must be estimated through numerical optimization. You might need to
use the NLOPTIONS statement to try different options for the optimizer and the INITIAL statement to try
different starting points. This is essentially important because the ˛ and ˇ are usually not identifiable.

You can also use the TEST statement to apply the Wald test for any linear relationships between parameters
that are not long-run. Even more, you can test the constraints on ….D ˛ˇ0/ and ı0.D ˛ˇ0/ in Case 2 or
ı1.D ˛ˇ1/ in Case 4 when the constant term or linear trend is restricted to the error correction term.



Vector Error Correction Modeling F 3133

For more information and examples, see the section “Example 43.3: Analysis of Restricted Cointegrated
Systems” on page 3197.

Forecasting of the VECM

Consider the cointegrated moving-average representation of the differenced process of yt

�yt D ı C‰.B/�t

Assume that y0 D 0. The linear process yt can be written as

yt D ıt C
tX
iD1

t�iX
jD0

‰j �i

Therefore, for any l > 0,

ytCl D ı.t C l/C
tX
iD1

tCl�iX
jD0

‰j �i C

lX
iD1

l�iX
jD0

‰j �tCi

The l-step-ahead forecast is derived from the preceding equation:

ytCljt D .t C l/C
tX
iD1

tCl�iX
jD0

‰j �i

Note that

lim
l!1

ˇ0ytCljt D 0

since liml!1
PtCl�i
jD0 ‰j D ‰.1/ and ˇ0‰.1/ D 0. The long-run forecast of the cointegrated system shows

that the cointegrated relationship holds, although there might exist some deviations from the equilibrium
status in the short-run. The covariance matrix of the predict error etCljt D ytCl � ytCljt is

†.l/ D

lX
iD1

Œ.

l�iX
jD0

‰j /†.

l�iX
jD0

‰0j /�

When the linear process is represented as a VECM(p) model, you can obtain

�yt D …yt�1 C
p�1X
jD1

ˆ�j�yt�j C ı C �t

The transition equation is defined as

zt D F zt�1 C et
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where zt D .y0t�1; �y0t ; �y0t�1; : : : ; �y0t�pC2/
0 is a state vector and the transition matrix is

F D

2666664
Ik Ik 0 � � � 0

… .…Cˆ�1/ ˆ�2 � � � ˆ�p�1
0 Ik 0 � � � 0
:::

:::
:::

: : :
:::

0 0 � � � Ik 0

3777775
where 0 is a k � k zero matrix. The observation equation can be written

yt D ıt CHzt

where H D ŒIk; Ik; 0; : : : ; 0�.

The l-step-ahead forecast is computed as

ytCljt D ı.t C l/CHF lzt

Cointegration with Exogenous Variables

The error correction model with exogenous variables can be written as follows:

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C ADt C
sX
iD0

‚�i xt�i C �t

The following statements demonstrate how to fit VECMX(p; s), where p D 2 and s D 1 from the P=2 and
XLAG=1 options:

proc varmax data=simul3;
model y1 y2 = x1 / p=2 xlag=1;
cointeg rank=1;

run;

The following statements demonstrate how to BVECMX(2,1):

proc varmax data=simul3;
model y1 y2 = x1 / p=2 xlag=1

prior=(lambda=0.9 theta=0.1);
cointeg rank=1;

run;
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I(2) Model
The VARX(p,s) model can be written in the error correction form:

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C ADt C
sX
iD0

‚�i xt�i C �t

Let ˆ� D Ik �
Pp�1
iD1 ˆ

�
i .

If ˛ and ˇ have full-rank r, and rank.˛0
?
ˆ�ˇ?/ D k � r , then yt is an I.1/ process.

If the condition rank.˛0
?
ˆ�ˇ?/ D k � r fails and ˛0

?
ˆ�ˇ? has reduced-rank ˛0

?
ˆ�ˇ? D ��

0 where �
and � are .k � r/ � s matrices with s � k � r , then ˛? and ˇ? are defined as k � .k � r/ matrices of full
rank such that ˛0˛? D 0 and ˇ0ˇ? D 0.

If � and � have full-rank s, then the process yt is I.2/, which has the implication of I.2/ model for the
moving-average representation.

yt D B0 C B1t C C2
tX

jD1

jX
iD1

�i C C1

tX
iD1

�i C C0.B/�t

The matrices C1, C2, and C0.B/ are determined by the cointegration properties of the process, and B0 and
B1 are determined by the initial values. For more information, see Johansen (1995b).

The implication of the I.2/ model for the autoregressive representation is given by

�2yt D …yt�1 �ˆ��yt�1 C
p�2X
iD1

‰i�
2yt�i C ADt C

sX
iD0

‚�i xt�i C �t

where ‰i D �
Pp�1
jDiC1ˆ

�
i and ˆ� D Ik �

Pp�1
iD1 ˆ

�
i .

Test for I(2)

The I.2/ cointegrated model is given by the following parameter restrictions:

Hr;sW… D ˛ˇ
0 and ˛0?ˆ

�ˇ? D ��
0

where � and � are .k � r/� s matrices with 0 � s � k � r . Let H 0
r represent the I.1/ model where ˛ and ˇ

have full-rank r, let H 0
r;s represent the I.2/ model where � and � have full-rank s, and let Hr;s represent the

I.2/ model where � and � have rank � s. Table 43.6 shows the relation between the I.1/ models and the
I.2/ models.
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Table 43.6 Relation between the I.1/ and I.2/ Models

I.2/ I.1/

rnk � r � s k k � 1 � � � 1

0 H00 � H01 � � � � � H0;k�1 � H0k = H 0
0

1 H10 � � � � � H1;k�2 � H1;k�1 = H 0
1

:::
:::

:::
:::

:::
:::

k � 1 Hk�1;0 � Hk�1;1 = H 0
k�1

Johansen (1995b) proposed the two-step procedure to analyze the I.2/ model. In the first step, the values of
.r;˛;ˇ/ are estimated using the reduced rank regression analysis, performing the regression analysis �2yt ,
�yt�1, and yt�1 on �2yt�1; : : : ; �2yt�pC2; and Dt . This gives residuals R0t , R1t , and R2t , and residual
product moment matrices

Mij D
1

T

TX
tD1

RitR
0
jt for i; j D 0; 1; 2

Perform the reduced rank regression analysis �2yt on yt�1 corrected for �yt�1, �2yt�1; : : : ; �2yt�pC2;
and Dt , and solve the eigenvalue problem of the equation

j�M22:1 �M20:1M
�1
00:1M02:1j D 0

where Mij:1 DMij �Mi1M
�1
11 M1j for i; j D 0; 2.

In the second step, if .r;˛;ˇ/ are known, the values of .s; �;�/ are determined using the reduced rank regres-
sion analysis, regressing Ǫ 0

?
�2yt on Ǒ0

?
�yt�1 corrected for �2yt�1; : : : ; �2yt�pC2;Dt , and Ǒ0�yt�1.

The reduced rank regression analysis reduces to the solution of an eigenvalue problem for the equation

j�Mˇ?ˇ?:ˇ �Mˇ?˛?:ˇM
�1
˛?˛?:ˇ

M˛?ˇ?:ˇj D 0

where

Mˇ?ˇ?:ˇ D ˇ0?.M11 �M11ˇ.ˇ
0M11ˇ/

�1ˇ0M11/ˇ?

M 0ˇ?˛?:ˇ D M˛?ˇ?:ˇ D N̨
0
?.M01 �M01ˇ.ˇ

0M11ˇ/
�1ˇ0M11/ˇ?

M˛?˛?:ˇ D N̨
0
?.M00 �M01ˇ.ˇ

0M11ˇ/
�1ˇ0M10/ N̨?

where N̨ D ˛.˛0˛/�1.

The solution gives eigenvalues 1 > �1 > � � � > �s > 0 and eigenvectors .v1; : : : ; vs/. Then, the ML
estimators are

O� D .v1; : : : ; vs/

O� D M˛?ˇ?:ˇ O�
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The likelihood ratio test for the reduced rank model Hr;s with rank � s in the model Hr;k�r D H 0
r is given

by

Qr;s D �T

k�rX
iDsC1

log.1 � �i /; s D 0; : : : ; k � r � 1

The following statements simulate an I(2) process and compute the rank test to test for cointegrated order 2:

proc iml;
alpha = { 1, 1}; * alphaOrthogonal = { 1, -1};
beta = { 1, -0.5}; * betaOrthogonal = { 1, 2};

* alphaOrthogonal' * phiStar * betaOrthogonal = 0;
phiStar = { 1 0, 0 0.5};
A1 = 2 * I(2) + alpha * beta` - phiStar;
A2 = phiStar - I(2);
phi = A1 // A2;
sig = I(2);
/* to simulate the vector time series */
call varmasim(y,phi) sigma=sig n=200 seed=2;
cn = {'y1' 'y2'};
create simul4 from y[colname=cn];
append from y;
close;

quit;

proc varmax data=simul4;
model y1 y2 /noint p=2 cointtest=(johansen=(iorder=2));

run;

The last two columns in Figure 43.80 explain the cointegration rank test with integrated order 1. For a
specified significance level, such as 5%, the output indicates that the null hypothesis that the series are not
cointegrated (H0: r D 0) is rejected, because the p-value for this test, shown in the column Pr > Trace of I(1),
is less than 0.05. The results also indicate that the null hypothesis that there is a cointegrated relationship
with cointegration rank 1 (H0: r D 1) cannot be rejected at the 5% significance level, because the p-value
for the test statistic, 0.7961, is greater than 0.05. Because of this latter result, the rows in the table that are
associated with r D 1 are further examined. The test statistic, 0.0257, tests the null hypothesis that the series
are cointegrated order 2. The p-value that is associated with this test is 0.8955, which indicates that the null
hypothesis cannot be rejected at the 5% significance level.

Figure 43.80 Cointegrated I(2) Test (IORDER= Option)

The VARMAX Procedure

Cointegration Rank Test for I(2)

r\k-r-s 2 1
Trace
of I(1)

Pr > Trace
of I(1)

0 575.3784 1.1833 215.3097 <.0001

Pr > Trace of I(2) 0.0000 0.3223

1 0.0257 0.0986 0.7961

Pr > Trace of I(2) 0.8955
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Vector Error Correction Model in ARMA Form
The vector error correction model in ARMA form (the VEC-ARMA model) introduces MA terms and is
defined as follows:

�yt D ˛ˇ0yt�1 C
p�1X
iD1

ˆ�i �yt�i C �t �
qX
iD1

‚i�t�i

The determined terms and the exogenous variables can also be introduced into the model. Similar to the
VECM that has only AR terms, the constant term is constrained in the error correction term in Case 2 and the
linear trend term is similarly constrained in Case 4.

The model is estimated through the maximum likelihood method. The log likelihood of the model is defined
as

` D �
T

2
log j†j �

1

2

TX
tD1

e0t†
�1et

where

et D �yt � ˛ˇ0yt�1 �
p�1X
iD1

ˆ�i �yt�i C
qX
iD1

‚iet�i

conditional on the presample fy0; : : : ; y1�pg, and es D 0; s � 0.

You can specify a VEC-ARMA(2,1) model with cointegration rank 2 on the three-dimensional time series by
the following statements:

model y1-y3 / p=2 q=1;
cointeg rank=2;

For more information about modeling the cointegrated VARMA processes, see Lütkepohl (2007, Chapter
14).
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Multivariate GARCH Modeling
Stochastic volatility modeling is important in many areas, particularly in finance. To study the volatility of
time series, GARCH models are widely used because they provide a good approach to conditional variance
modeling.

BEKK Representation

Engle and Kroner (1995) propose a general multivariate GARCH model and call it a BEKK representation.
Let F.t � 1/ be the sigma field generated by the past values of �t , and let Ht be the conditional covariance
matrix of the k-dimensional random vector �t . Let Ht be measurable with respect to F.t � 1/; then the
multivariate GARCH model can be written as

�t jF.t � 1/ � N.0;Ht /

Ht D C C

qX
iD1

A0i�t�i�
0
t�iAi C

pX
iD1

G0iHt�iGi

where C, Ai , and Gi are k � k parameter matrices.

Consider the bivariate GARCH(1,1) model

Ht D

�
c11 c12
c12 c22

�
C

�
a11 a12
a21 a22

�0 �
�21;t�1 �1;t�1�2;t�1

�2;t�1�1;t�1 �22;t�1

� �
a11 a12
a21 a22

�
C

�
g11 g12
g21 g22

�0
Ht�1

�
g11 g12
g21 g22

�
or, representing the univariate model,

h11;t D c11 C a
2
11�

2
1;t�1 C 2a11a21�1;t�1�2;t�1 C a

2
21�

2
2;t�1

Cg211h11;t�1 C 2g11g21h12;t�1 C g
2
21h22;t�1

h12;t D c12 C a11a12�
2
1;t�1 C .a21a12 C a11a22/�1;t�1�2;t�1 C a21a22�

2
2;t�1

Cg11g12h11;t�1 C .g21g12 C g11g22/h12;t�1 C g21g22h22;t�1

h22;t D c22 C a
2
12�

2
1;t�1 C 2a12a22�1;t�1�2;t�1 C a

2
22�

2
2;t�1

Cg212h11;t�1 C 2g12g22h12;t�1 C g
2
22h22;t�1

For the BEKK representation of the bivariate GARCH(1,1) model, the SAS statements are

model y1 y2;
garch q=1 p=1 form=bekk;
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The multistep forecast of the conditional covariance matrix, HtChjt ; h D 1; 2; : : : ; is obtained recursively
through the formula

HtChjt D C C

h�1X
iD1

A0iHtCh�i jtAi C

qX
iDh

A0i�tCh�i�
0
tCh�iAi C

pX
iD1

G0iHtCh�i jtGi

where Hsjt D Hs for s � t .

CCC Representation

Bollerslev (1990) proposes a multivariate GARCH model with time-varying conditional variances and
covariances but constant conditional correlations.

The conditional covariance matrix Ht consists of

Ht D DtSDt

where Dt is a k � k stochastic diagonal matrix with element �i;t and S is a k � k time-invariant correlation
matrix with the typical element sij .

The element of Ht is

hij;t D sij�i;t�j;t i; j D 1; : : : ; k

Note that hi i;t D �2i;t ; i D 1; : : : ; k.

If you specify CORRCONSTANT=EXPECT, the element sij of the time-invariant correlation matrix S is

sij D
1

T

TX
tD1

�i;tp
hi i;t

�j;tp
hjj;t

where T is the sample size.

By default, or when you specify SUBFORM=GARCH, �2i;t follows a univariate GARCH process,

�2i;t D ci C

qX
lD1

ai i;l�
2
i;t�l C

pX
lD1

gi i;l�
2
i;t�1 i D 1; : : : ; k

As shown in many empirical studies, positive and negative innovations have different impacts on future
volatility. There is a long list of variations of univariate GARCH models that consider the asymmetricity.
Four typical variations follow:

� exponential GARCH (EGARCH) model (Nelson and Cao 1992)
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� quadratic GARCH (QGARCH) model (Engle and Ng 1993)

� threshold GARCH (TGARCH) model (Glosten, Jaganathan, and Runkle 1993; Zakoian 1994)

� power GARCH (PGARCH) model (Ding, Granger, and Engle 1993)

For more information about the asymmetric GARCH models, see Engle and Ng (1993). You can choose the
type of GARCH model of interest by specifying the SUBFORM= option.

The EGARCH model was proposed by Nelson (1991). Nelson and Cao (1992) argue that the nonnegativity
constraints in the GARCH model are too restrictive. The GARCH model, implicitly or explicitly, imposes the
nonnegative constraints on the parameters, whereas these parameters have no restrictions in the EGARCH
model. In the EGARCH model, the conditional variance is an asymmetric function of lagged disturbances,

ln.�2i;t / D ci C

qX
lD1

ai i;l

 
bi i;l

�i;t�l

�i;t�l
C j
�i;t�l

�i;t�l
j �

r
2

�

!
C

pX
lD1

gi i;l ln.�2i;t�l/ i D 1; : : : ; k

In the QGARCH model, the lagged errors’ centers are shifted from zero to some constant values,

�2i;t D ci C

qX
lD1

ai i;l.�i;t�l � bi i;l/
2
C

pX
lD1

gi i;l�
2
i;t�1 i D 1; : : : ; k

In the TGARCH model, each lagged squared error has an extra slope coefficient,

�2i;t D ci C

qX
lD1

.ai i;l C 1�i;t�l<0bi i;l/�
2
i;t�l C

pX
lD1

gi i;l�
2
i;t�1 i D 1; : : : ; k

where the indicator function 1�i;t<0 is one if �i;t < 0 and zero otherwise.

The PGARCH model not only considers the asymmetric effect but also provides a way to model the long
memory property in the volatility,

�
2�i
i;t D ci C

qX
lD1

ai i;l.j�i;t�l j � bi i;l�i;t�l/
2�i C

pX
lD1

gi i;l�
2�i
i;t�1 i D 1; : : : ; k

where �i > 0 and jbi i;l j � 1; l D 1; : : : ; q; i D 1; : : : ; k.

Note that the implemented TGARCH model is also well known as GJR-GARCH (Glosten, Jaganathan, and
Runkle 1993), which is similar to the threshold GARCH model proposed by Zakoian (1994) but not exactly
the same. In Zakoian’s model, the conditional standard deviation is a linear function of the past values of the
white noise. Zakoian’s model can be regarded as a special case of the PGARCH model when �i D 1=2.

The following formulas are recursively implemented to obtain the multistep forecast of conditional error
variance �2

i;tChjt
; i D 1; : : : ; k and h D 1; 2; : : ::
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� for the GARCH(p, q) model:

�2i;tChjt D ci C

h�1X
lD1

ai i;l�
2
i;tCh�ljt C

qX
lDh

ai i;l�
2
i;tCh�l C

pX
lD1

gi i;l�
2
i;tCh�1jt

� for the EGARCH(p, q) model:

ln.�2i;tChjt / D ci C

qX
lDh

ai i;l

 
bi i;l

�i;tCh�l

�i;tCh�l
C j
�i;tCh�l

�i;tCh�l
j �

r
2

�

!
C

pX
lD1

gi i;l ln.�2i;tCh�ljt /

� for the QGARCH(p, q) model:

�2i;tChjt D ci C

h�1X
lD1

ai i;l.�
2
i;tCh�ljt C b

2
i i;l/C

qX
lDh

ai i;l.�i;tCh�l � bi i;l/
2

C

pX
lD1

gi i;l�
2
i;tCh�1jt

� for the TGARCH(p, q) model:

�2i;tChjt D ci C

h�1X
lD1

.ai i;l C bi i;l=2/�
2
i;tCh�1jt C

qX
lDh

.ai i;l C 1�i;t�l<0bi i;l/�
2
i;t�l

C

pX
lD1

gi i;l�
2
i;tCh�1jt

� for the PGARCH(p, q) model:

�
2�i
i;tChjt

D ci C

h�1X
lD1

ai i;l..1C bi i;l/
2�i C .1 � bi i;l/

2�i /�
2�i
i;tCh�ljt

=2

C

qX
lDh

ai i;l.j�i;t�l j � bi i;l�i;t�l/
2�i C

pX
lD1

gi i;l�
2�i
i;tCh�1jt

In the preceding equations, �i;sjt D �i;s for s � t . Then, the multistep forecast of conditional covariance
matrix HtChjt ; h D 1; 2; : : :, is calculated by

HtChjt D DtChjtSDtChjt

where DtChjt is the diagonal matrix with element �i;tChjt ; i D 1; : : : ; k.
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DCC Representation

Engle (2002) proposes a parsimonious parametric multivariate GARCH model that has time-varying condi-
tional covariances and correlations.

The conditional covariance matrix Ht consists of

Ht D Dt�tDt

where Dt is a k � k stochastic diagonal matrix with the element �i;t and �t is a k � k time-varying matrix
with the typical element �ij;t .

The element of Ht is

hij;t D �ij;t�i;t�j;t i; j D 1; : : : ; k

Note that hi i;t D �2i;t ; i D 1; : : : ; k.

As in the CCC GARCH model, you can choose the type of GARCH model of interest by specifying the
SUBFORM= option.

In the GARCH model,

�2i;t D ci C

qX
lD1

ai i;l�
2
i;t�l C

pX
lD1

gi i;l�
2
i;t�1 i D 1; : : : ; k

In the EGARCH model, the conditional variance is an asymmetric function of lagged disturbances,

ln.�2i;t / D ci C

qX
lD1

ai i;l

 
bi i;l

�i;t�l

�i;t�l
C j
�i;t�l

�i;t�l
j �

r
2

�

!
C

pX
lD1

gi i;l ln.�2i;t�l/ i D 1; : : : ; k

In the QGARCH model, the lagged errors’ centers are shifted from zero to some constant values,

�2i;t D ci C

qX
lD1

ai i;l.�i;t�l � bi i;l/
2
C

pX
lD1

gi i;l�
2
i;t�1 i D 1; : : : ; k

In the TGARCH model, each lagged squared error has an extra slope coefficient,

�2i;t D ci C

qX
lD1

.ai i;l C 1�i;t�l<0bi i;l/�
2
i;t�l C

pX
lD1

gi i;l�
2
i;t�1 i D 1; : : : ; k

where the indicator function 1�i;t<0 is one if �i;t < 0 and zero otherwise.
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The PGARCH model not only considers the asymmetric effect but also provides another way to model the
long memory property in the volatility,

�
2�i
i;t D ci C

qX
lD1

ai i;l.j�i;t�l j � bi i;l�i;t�l/
2�i C

pX
lD1

gi i;l�
2�i
i;t�1 i D 1; : : : ; k

where �i > 0 and jbi i;l j � 1; l D 1; : : : ; qI i D 1; : : : ; k.

The conditional correlation estimator �ij;t is

�ij;t D
qij;t

p
qi i;tqjj;t

i; j D 1; : : : ; k

qij;t D .1 � ˛ � ˇ/sij C ˛
�i;t�1

�i;t�1

�j;t�1

�j;t�1
C ˇqij;t�1

where sij is the element of S, the unconditional correlation matrix.

If you specify CORRCONSTANT=EXPECT, the element sij of the unconditional correlation matrix S is

sij D
1

T

TX
tD1

�i;t

�i;t

�j;t

�j;t

where T is the sample size.

As shown in the CCC GARCH models, the following formulas are recursively implemented to obtain the
multistep forecast of conditional error variance �2

i;tChjt
; i D 1; : : : ; k and h D 1; 2; : : ::

� for the GARCH(p, q) model:

�2i;tChjt D ci C

h�1X
lD1

ai i;l�
2
i;tCh�ljt C

qX
lDh

ai i;l�
2
i;tCh�l C

pX
lD1

gi i;l�
2
i;tCh�1jt

� for the EGARCH(p, q) model:

ln.�2i;tChjt / D ci C

qX
lDh

ai i;l

 
bi i;l

�i;tCh�l

�i;tCh�l
C j
�i;tCh�l

�i;tCh�l
j �

r
2

�

!
C

pX
lD1

gi i;l ln.�2i;tCh�ljt /

� for the QGARCH(p, q) model:

�2i;tChjt D ci C

h�1X
lD1

ai i;l.�
2
i;tCh�ljt C b

2
i i;l/C

qX
lDh

ai i;l.�i;tCh�l � bi i;l/
2

C

pX
lD1

gi i;l�
2
i;tCh�1jt
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� for the TGARCH(p, q) model:

�2i;tChjt D ci C

h�1X
lD1

.ai i;l C bi i;l=2/�
2
i;tCh�1jt C

qX
lDh

.ai i;l C 1�i;t�l<0bi i;l/�
2
i;t�l

C

pX
lD1

gi i;l�
2
i;tCh�1jt

� for the PGARCH(p, q) model:

�
2�i
i;tChjt

D ci C

h�1X
lD1

ai i;l..1C bi i;l/
2�i C .1 � bi i;l/

2�i /�
2�i
i;tCh�ljt

=2

C

qX
lDh

ai i;l.j�i;t�l j � bi i;l�i;t�l/
2�i C

pX
lD1

gi i;l�
2�i
i;tCh�1jt

In the preceding equations, �i;sjt D �i;s for s � t . Then, the multistep forecast of conditional covariance
matrix HtChjt ; h D 1; 2; : : :, is calculated by

HtChjt D DtChjt�tChjtDtChjt

where DtChjt is the diagonal matrix with element �i;tChjt ; i D 1; : : : ; k, and �tChjt is the matrix with
element �ij;tChjt ; i; j D 1; : : : ; k,

�ij;tChjt D
qij;tChjt

p
qi i;tChjtqjj;tChjt

qij;tChjt D

(
.1 � ˛ � ˇ/sij C ˛

�i;t
�i;t

�j;t
�j;t
C ˇqij;t h D 1

.1 � ˛ � ˇ/sij C ˛qij;tCh�1jt C ˇqij;tCh�1jt h > 1

Estimation of GARCH Model

The log-likelihood function of the multivariate GARCH model is written without a constant term as

` D �
1

2

TX
tD1

Œlog jHt j C �0tH
�1
t �t �

where �t is calculated from the first-moment model (that is, the VARMAX model or VEC-ARMA model). The
log-likelihood function is maximized by an iterative numerical method such as quasi-Newton optimization.
The starting values for the regression parameters are obtained from the least squares estimates. The covariance
of �t is used as the starting value for the GARCH constant parameters, and the starting values for the other
GARCH parameters are either 10�6 or 10�3, depending on the GARCH model’s representation.
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Prediction of Endogenous (Dependent) Variables

In multivariate GARCH models, the optimal (minimum MSE) l-step-ahead forecast of endogenous variables
ytCljt uses the same formula as shown in the section “Forecasting” on page 3084. However, the exogenous
(independent) variables, if present, are always assumed to be nonstochastic (deterministic); that is, to predict
the endogenous variables, you must specify the future values of the exogenous variables. The prediction
error of the optimal l-step-ahead forecast is etCljt D ytCl � ytCljt D

Pl�1
jD0‰j �tCl�j , with zero mean and

covariance matrix,

†t .l/ D Cov.etCljt / D
l�1X
jD0

‰jHtCl�j jt‰
0
j

where HtChjt ; h D 1; : : : ; l; is the h-step-ahead forecast of the conditional covariance matrix. As empha-
sized by the subscript t, †t .l/ is time-dependent. In the OUT= data set, the forecast standard errors and
prediction intervals are constructed according to †t .l/. If you specify the COVPE option, the prediction
error covariances that are output in the CovPredictError and CovPredictErrorbyVar ODS tables are based on
the time-independent formula

†.l/ D

l�1X
jD0

‰j†‰
0
j

where † is the unconditional covariance matrix of innovations. The decomposition of the prediction error
covariances is also based on †.l/.

Covariance Stationarity

Define the multivariate GARCH process as

ht D
1X
iD1

G.B/i�1ŒcC A.B/�t �

where ht D vec.Ht /, c D vec.C0/, and �t D vec.�t�0t /. This representation is equivalent to a GARCH(p; q)
model by the following algebra:

ht D cC A.B/�t C
1X
iD2

G.B/i�1ŒcC A.B/�t �

D cC A.B/�t CG.B/
1X
iD1

G.B/i�1Œtmbc C A.B/�t �

D cC A.B/�t CG.B/ht

Defining A.B/ D
Pq
iD1.Ai ˝ Ai /

0B i and G.B/ D
Pp
iD1.Gi ˝Gi /

0B i gives a BEKK representation.

The necessary and sufficient conditions for covariance stationarity of the multivariate GARCH process are
that all the eigenvalues of A.1/CG.1/ are less than 1 in modulus.
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An Example of a VAR(1)–ARCH(1) Model

The following DATA step simulates a bivariate vector time series to provide test data for the multivariate
GARCH model:

data garch;
retain seed 16587;
esq1 = 0; esq2 = 0;
ly1 = 0; ly2 = 0;
do i = 1 to 1000;

ht = 6.25 + 0.5*esq1;
call rannor(seed,ehat);
e1 = sqrt(ht)*ehat;
ht = 1.25 + 0.7*esq2;
call rannor(seed,ehat);
e2 = sqrt(ht)*ehat;
y1 = 2 + 1.2*ly1 - 0.5*ly2 + e1;
y2 = 4 + 0.6*ly1 + 0.3*ly2 + e2;
if i>500 then output;
esq1 = e1*e1; esq2 = e2*e2;
ly1 = y1; ly2 = y2;

end;
keep y1 y2;

run;

The following statements fit a VAR(1)–ARCH(1) model to the data. For a VAR-ARCH model, you specify
the order of the autoregressive model with the P=1 option in the MODEL statement and the Q=1 option in
the GARCH statement. In order to produce the initial and final values of parameters, the TECH=QN option
is specified in the NLOPTIONS statement.

proc varmax data=garch;
model y1 y2 / p=1

print=(roots estimates diagnose);
garch q=1;
nloptions tech=qn;

run;

Figure 43.81 through Figure 43.85 show the details of this example. Figure 43.81 shows the initial values of
parameters.
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Figure 43.81 Start Parameter Estimates for the VAR(1)–ARCH(1) Model

The VARMAX Procedure

Optimization Start

Parameter Estimates

N Parameter Estimate

Gradient
Objective
Function

1 CONST1 2.249575 0.000082533

2 CONST2 3.902673 0.000401

3 AR1_1_1 1.231775 0.000105

4 AR1_2_1 0.576890 -0.004811

5 AR1_1_2 -0.528405 0.000617

6 AR1_2_2 0.343714 0.001811

7 GCHC1_1 9.929763 0.151293

8 GCHC1_2 0.193163 -0.014305

9 GCHC2_2 4.063245 0.370333

10 ACH1_1_1 0.001000 -0.667182

11 ACH1_2_1 0 -0.068905

12 ACH1_1_2 0 -0.734486

13 ACH1_2_2 0.001000 -3.127035

Figure 43.82 shows the final parameter estimates.

Figure 43.82 Results of Parameter Estimates for the VAR(1)–ARCH(1) Model

The VARMAX Procedure

Optimization Results

Parameter Estimates

N Parameter Estimate

Gradient
Objective
Function

1 CONST1 2.156865 0.000246

2 CONST2 4.048879 0.000105

3 AR1_1_1 1.224620 -0.001957

4 AR1_2_1 0.609651 0.000173

5 AR1_1_2 -0.534248 -0.000468

6 AR1_2_2 0.302599 -0.000375

7 GCHC1_1 8.238625 -0.000056090

8 GCHC1_2 -0.231183 -0.000021724

9 GCHC2_2 1.565459 0.000110

10 ACH1_1_1 0.374255 -0.000419

11 ACH1_2_1 0.035883 -0.000606

12 ACH1_1_2 0.057461 0.001636

13 ACH1_2_2 0.717897 -0.000149

Figure 43.83 shows the conditional variance by using the BEKK representation of the ARCH(1) model. The
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ARCH parameters are estimated as follows by the vectorized parameter matrices:

�t jF.t � 1/ � N.0;Ht /

Ht D

�
8:23863 �0:23118

�0:23118 1:56546

�
C

�
0:37426 0:05746

0:03588 0:71790

�0
�t�1�

0
t�1

�
0:37426 0:05746

0:03588 0:71790

�

Figure 43.83 ARCH(1) Parameter Estimates for the VAR(1)–ARCH(1) Model

The VARMAX Procedure

Type of Model VAR(1)-ARCH(1)

Estimation Method Maximum Likelihood Estimation

Representation Type BEKK

GARCH Model Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

GCHC1_1 8.23863 0.72663 11.34 0.0001

GCHC1_2 -0.23118 0.21434 -1.08 0.2813

GCHC2_2 1.56546 0.19407 8.07 0.0001

ACH1_1_1 0.37426 0.07502 4.99 0.0001

ACH1_2_1 0.03588 0.06974 0.51 0.6071

ACH1_1_2 0.05746 0.02597 2.21 0.0274

ACH1_2_2 0.71790 0.06895 10.41 0.0001

Figure 43.84 shows the AR parameter estimates and their significance.

The fitted VAR(1) model with the previous conditional covariance ARCH model is written as follows:

yt D
�
2:15687

4:04888

�
C

�
1:22462 �0:53425

0:60965 0:30260

�
yt�1 C �t

Figure 43.84 VAR(1) Parameter Estimates for the VAR(1)–ARCH(1) Model

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 CONST1 2.15687 0.21717 9.93 0.0001 1

AR1_1_1 1.22462 0.02542 48.17 0.0001 y1(t-1)

AR1_1_2 -0.53425 0.02807 -19.03 0.0001 y2(t-1)

y2 CONST2 4.04888 0.10663 37.97 0.0001 1

AR1_2_1 0.60965 0.01216 50.13 0.0001 y1(t-1)

AR1_2_2 0.30260 0.01491 20.30 0.0001 y2(t-1)

Figure 43.85 shows the roots of the AR and ARCH characteristic polynomials. The eigenvalues have a
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modulus less than one.

Figure 43.85 Roots for the VAR(1)–ARCH(1) Model

Roots of AR Characteristic Polynomial

Index Real Imaginary Modulus Radian Degree

1 0.76361 0.33641 0.8344 0.4150 23.7762

2 0.76361 -0.33641 0.8344 -0.4150 -23.7762

Roots of GARCH Characteristic Polynomial

Index Real Imaginary Modulus Radian Degree

1 0.52388 0.00000 0.5239 0.0000 0.0000

2 0.26661 0.00000 0.2666 0.0000 0.0000

3 0.26661 0.00000 0.2666 0.0000 0.0000

4 0.13569 0.00000 0.1357 0.0000 0.0000

VARFIMA and VARFIMAX Modeling
VAR and VARMA series are short-range dependent (SRD) in the sense that their autocovariance function dies
out exponentially fast with the increasing lag. However, in many financial and macroeconomics applications,
stationary yet persistent series arise, calling for models that have a slowly decaying autocovariance function
and that are therefore more suitable to capture long-range dependence in the data.

The VARFIMA model captures both long-range and short-range dependence dynamics in a multivariate
series. For a k-dimensional series yt D .y1t ; : : : ; ykt /

0; t D 1; : : : ; T; the VARFIMA.p;D; q/ model is
defined as

ˆ.B/yt D .I � B/�D‚.B/�t

where B and I are the backshift and identity operators; D D diag.dj / dj 2 .�1=2; 1=2/, are the LRD
parameters of the component series fyjtgt2Z, j D 1; : : : ; k; and f�tgt2Z is a k-dimensional white noise
series with zero mean E�t D 0 and covariance E�t�0t D †.

The fractional integration operator .I �B/�D allows for long memory in the series. On the other hand, ˆ.z/
and ‚.z/, which are the typical autoregressive and moving average matrix polynomials of orders p and q,
respectively, capture the short-range dependence.

The VARFIMA.p;D; q/ series satisfies the multivariate long-range dependence definitions given in Kecha-
gias and Pipiras (2015). Moreover, each component series fyjtgt2Z, j D 1; : : : ; k, satisfies the univariate
time and frequency domain LRD definitions given in Beran et al. (2013). The following sections briefly
review these definitions and show how you can detect long-range dependence in the data before fitting a
VARFIMA model.
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Autocorrelation and Spectral Density of VARFIMA Series

The diagonal components of the autocorrelation matrix function of a VARFIMA.p;D; q/ series satisfy the
univariate LRD time domain definition

�i .n/ � c1n
2di�1; i D 1; : : : ; k; as n!1

where an � bn implies that limn!1 an=bn D 1 and c1 > 0. Similarly, the diagonal components of the
spectral density matrix function of a VARFIMA.p;D; q/ series satisfy

fi .�/ � c2�
�2di ; i D 1; : : : ; k; as �! 0C

for some c2 > 0.

To obtain preliminary estimates of the LRD parameters, you can plot the logged periodogram values against
the log of the Fourier frequencies �j D 2�j=T , j D 1; : : : ; T=2; and then fit a line for frequencies near 0.
The slope of this line is expected to be equal to �2di (the exponent in the right-hand side of the preceding
relation). The following statements demonstrate this procedure for a synthetic VARFIMA.1;D; 1/ series
with T D 2,000 and true parameters d1 D 0:4, d2 D 0:3, ˆ11 D †11 D †22 D 3; †12 D 0:5, ˆ11 D 0:8,
ˆ12 D 0:3, ˆ21 D �0:2, ˆ22 D 0:1, ‚11 D 0:2, ‚12 D 0:4, ‚21 D 0, and ‚22 D 0:3:

data VARFIMA1D1;
time = _N_;
input y1 y2;

datalines;
1.495250048 2.694910375
4.503081454 1.42319642

... more lines ...

3.12049851 5.330308391
7.732287586 1.665071247
;

/* Compute the two periodograms */
proc spectra data = VARFIMA1D1 out = spectra;

var y1 y2;
run;

/* Convert to log scale */
data logspectra;

set spectra(firstobs=2);
/* compute Fourier frequencies */
j = _N_;
pi = constant('pi');
logfreq = log(2*pi*j/2000);

logpdg1 = log(P_01);
logpdg2 = log(P_02);

/* Introduce weights where regression will be performed */
wt = (1<= j <=100);
keep wt logfreq logpdg1 logpdg2;

run;
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/* Regression for log-periodogram of y1*/
proc autoreg data = logspectra(obs = 100);

model logpdg1 = logfreq;
run;

/* Regression for log-periodogram of y1*/
proc autoreg data = logspectra(obs = 100);

model logpdg2 = logfreq;
run;

The output from the two regressions is shown in Figure 43.86 and Figure 43.87.

Figure 43.86 Regression Estimates for y1

The AUTOREG Procedure

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 4.3279 0.2885 15.00 <.0001

logfreq 1 -0.9051 0.1245 -7.27 <.0001

Figure 43.87 Regression Estimates for y2

The AUTOREG Procedure

Parameter Estimates

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.0811 0.3172 6.56 <.0001

logfreq 1 -0.5227 0.1369 -3.82 0.0002

The following statements produce log-log plots of the two periodograms along with the regression lines:

/*Plot the periodograms in log-log scale*/
ods graphics on;

proc sgplot data = logspectra;
series x = logfreq y = logpdg1 / lineattrs = (pattern = solid);
reg y = logpdg1 x = logfreq / nomarkers weight = wt lineattrs =

(thickness = 1 color = 'red' );
inset "Slope = -0.905" / position = topright textattrs = (color = 'red');
xaxis label = 'log-frequency';
yaxis label = 'log-periodogram';
title 'Log-periodogram of y1';

run;

proc sgplot data = logspectra;
series x = logfreq y = logpdg2 / lineattrs = (pattern = solid);
reg y = logpdg2 x = logfreq / nomarkers weight = wt lineattrs =

(thickness = 1 color = 'red' );
inset "Slope = -0.523" / position = topright textattrs = (color = 'red');
xaxis label = 'log-frequency';
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yaxis label = 'log-periodogram';
title 'Log-periodogram of y2';

run;

The final plots are shown in Figure 43.88.

Figure 43.88 Log-Log Periodogram Plots for the Two Series

Dividing the slopes by 2 and removing the negative signs yields preliminary estimates for the LRD parameters,bd1 D 0:45 andbd2 D 0:26.

Estimation

Estimation of all the parameters in the VARFIMA model is performed using the conditional likelihood
Durbin-Levinson (CLDL) algorithm of Tsay (2010). This method uses the multivariate Durbin-Levinson
algorithm, whose order of complexity is O.T 2/, making it computationally feasible for small or medium
sample sizes.

The initial values of the LRD parameters are obtained by the semiparametric estimator of Geweke and
Porter-Hudak (1983). The initial values of the AR and MA parameters are obtained from least squares
estimation on the fractionally differenced series .I �B/Dyt . The LRD parameters are restricted in the range
.�1=2; 1=2/. If an initial LRD parameter estimate is outside this range, then the chosen starting value is
either �1=2C 10�6 or 1=2 � 10�6 for negative or positive initial semiparametric estimates, respectively.

Forecasting

One-step-ahead and multi-step-ahead forecasts for the VARFIMA series are based on a finite past. However,
the h-step-ahead forecast errors for h > 1 are based on the infinite past except for VARFIMA series that have
only MA components. In the latter case, the forecast errors are also based on a finite past.

The following statements plot the h-step-ahead forecasts, h D 1; : : : ; 36, for a bivariate synthetic
VARFIMA.1;D; 1/ series with T D 400 and true parameters d1 D 0:4, d2 D 0:3, ˆ11 D †11 D

†22 D 3; †12 D 0:5, ˆ11 D 0:8, ˆ12 D 0:3, ˆ21 D �0:2, ˆ22 D 0:1, ‚11 D 0:2, ‚12 D 0:4, ‚21 D 0,
and ‚22 D 0:3. The statements also specify initial values for d1 and d2 close to the true parameter values.

data VARFIMA1D1N4;
time = _N_;
input y1 y2;
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datalines;
0.55596529 2.114409393
-1.842925215 3.415027987

... more lines ...

-2.86707489 1.147627529
-0.195787414 0.820107072
;

proc varmax data = VARFIMA1D1N4 plots = (forecasts);
model y1 y2 / noint fi p=1 q=1;
initial d(1) = 0.45, d(2) = 0.25;
output out = forec back = 36 lead = 36;

run;

Figure 43.89 Plot of the Two Series and h-Step-Ahead Forecasts, h D 1; : : : ; 36

The BACK option in the preceding SAS statements is used to specify the point where the historical data ends
and multi-step-ahead forecasting begins. Note that the BACK option does not affect estimation. The latter is
performed using the whole data set, even when you specify the BACK option.

Impulse Response Functions

The impulse response functions of the VARFIMA series are calculated using the methodology of Chung
(2001). The following statements produce the first 12 simple, accumulated and orthogonal impulse response
functions and their corresponding standard errors for the VARFIMA.1;D; 1/ series of the preceding example.

proc varmax data = VARFIMA1D1N4 plots = (impulse);
model y1 y2 / noint fi p=1 q=1 print = (impulse = (all));

run;
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VARFIMAX Modeling

The VARFIMAX.p;D; q; s/ series is defined as

ˆ.B/yt C‚�.B/xt D .I � B/�D‚.B/�t

where xt D .x1t ; : : : ; xrt /0, t D 1; : : : ; T; is an r-dimensional time series vector of exogenous variables and
‚�.z/ is the order s matrix polynomial defined as ‚�.z/ D ‚�0 C‚

�
1z C � � � C‚

�
s z
s for some k � r real

matrices ‚�i , i D 1; : : : ; s.

The following statements estimate a bivariate VARFIMAX.1;D; 1; 0/ model:

model y1 y2 = x1 / fi p=1 q=1;

Conditional Forecasts and Scenario Analysis
Conditional forecasts and scenario analysis have been widely applied in macroeconomics. If you have
no knowledge of any future dependent variables or cannot use such information, you can perform only
unconditional forecasts. In contrast, conditional forecasts are forecasts conditional on some future paths of
dependent variables. Some typical examples of the usage of conditional forecasts and scenario analysis are
the stress tests that are conducted by the US Federal Reserve Board in the Comprehensive Capital Analysis
and Review (CCAR) and by the European Banking Authority (EBA) on euro area banks that are directly
supervised by the European Central Bank (ECB). For more information about conditional forecasts and
scenario analysis, see Waggoner and Zha (1999), Karlsson (2013), Bańbura, Giannone, and Lenza (2015),
Clark and McCracken (2017), and references therein.

According to Waggoner and Zha (1999), the conditions can be classified into two groups: soft conditions
and hard conditions. The soft conditions belong to the set of conditions in which the future values of some
dependent variables are restricted within certain ranges. The hard conditions belong to the set of conditions
in which the future values of some dependent variables are fixed to some single values.

In order to obtain the conditional forecasts under the soft conditions, you perform unconditional forecasts
first, and then select the simulated forecasts that satisfy the soft conditions. For example, for a trivariate VAR
model on y1, y2 and y3, two future y3 values are bounded—y3;TC1 � 0:10 and y3;TC2 � 0:15, where T is
the in-sample sample size. The following statement performs the unconditional forecasts and outputs the
simulated forecasts to the data set oucfsim:

condfore outsim=oucfsim;

The following statements select the forecasts that satisfy the soft conditions. The forecasts in the data set
scForecasts are the conditional forecasts under the soft conditions. You can use the UNIVARIATE procedure
or other procedures to get the mean, standard error, or quantiles of any future series of interest.

data scForecasts;
set oucfsim;
if (y3_1<=0.10 and y3_2>=0.15);

run;

You can define the hard conditions in a data set and then use the VARMAX procedure to pick up that data
set by specifying the SDATA= option in the CONDFORE statement. For example, for a trivariate VAR
model on y1, y2 and y3, two future y3 values are fixed—y3;TC1 D 0:05 and y3;TC2 D 0:10, where T is the
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in-sample sample size. The following statements define the hard conditions (that is, the scenario) in the data
set scenario1:

data scenario1;
y1=.; y2=.; y3 = 0.05; output;
y1=.; y2=.; y3 = 0.10; output;

run;

The following statements use the scenario data set and output the (statistics of the simulated) forecasts to
data set ocf:

condfore sdata=scenario1 out=ocf;

In fact, if all future values for a variable are missing, that variable can be omitted; that is, the following
statements generate a scenario equivalent to the one in scenario1:

data scenario2;
y3 = 0.05; output;
y3 = 0.10; output;

run;

If there is more than one scenario, you can put the additional scenarios in one data set and distinguish
them by using a numeric variable. The following statements define two scenarios and distinguish them
with myScenario. In the first scenario (myscenario=1), the future values of y3 are available in two periods:
y3;TC1 D 0:05 and y3;TC2 D 0:10. In the second scenario (myscenario=2), the future values of y3 are
available in four periods: y3;TC1 D 0:05, y3;TC2 D 0:10, y3;TC3 D 0:15, and y3;TC4 D 0:20.

data scenario3;
y3 = 0.05; myscenario=1; output;
y3 = 0.10; myscenario=1; output;
y3 = 0.05; myscenario=2; output;
y3 = 0.10; myscenario=2; output;
y3 = 0.15; myscenario=2; output;
y3 = 0.20; myscenario=2; output;

run;

The following statements use the scenarios in the data set scenario3 and output the (statistics of the simulated)
forecasts for two scenarios to data set ocf2:

condfore sdata=scenario3 sid=myscenario out=ocf2;

Future values of exogenous variables can be included in the scenario data set. The following list shows how
PROC VARMAX treats various cases of how future values of exogenous variables are provided:

� If you do not include any future values of exogenous variables in the DATA= data set in the PROC
VARMAX statement, you must include all future values of all exogenous variables for all forecast
horizons for all scenarios in the SDATA= data set in the CONDFORE statement. These values are used
in the conditional forecasts.

� If you include future values of exogenous variables for all forecast horizons in the DATA= data set in
the PROC VARMAX statement and you do not include any future values of exogenous variables in
the SDATA= data set in the CONDFORE statement, the future values of exogenous variables in the
DATA= data set in the PROC VARMAX statement are used in the conditional forecasts.
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� If you include future values of exogenous variables in both the DATA= data set in the PROC VARMAX
statement and the SDATA= data set in the CONDFORE statement, the future values in both data sets
are merged. During merging, nonmissing future values in the SDATA= data set in the CONDFORE
statement override the corresponding future values in the DATA= data set in the PROC VARMAX
statement. The merged future values of exogenous variables for all forecast horizons for each scenario
should not contain any missing values because they are used in the conditional forecasts.

Regardless of whether you use the DIF option or the DIFX option on exogenous variables, the future values
in the data set that is specified in the SDATA= option in the CONDFORE statement should be the future
values of original exogenous variables. However, if you use DIF or DIFY option on a dependent variable, the
future values of the correspondingly differenced dependent variable should be included in that data set.

Specifying the OUT= option in the CONDFORE statement creates a data set that contains the statistics of
the simulated h-step-ahead forecasts for each dependent variable in each scenario. The following output
variables can be created:

� the BY variables

� the ID variable

� STEP, a numeric variable that describes the forecast horizon

� variable_name_MEAN, a numeric variable that contains the mean of forecasts for the dependent
variable variable_name

� variable_name_STDERR, a numeric variable that contains the standard error of forecasts for the
dependent variable variable_name

� variable_name_MEDIAN, a numeric variable that contains the median of forecasts for the dependent
variable variable_name

� variable_name_LB, a numeric variable that contains the lower bound of the credible interval of
forecasts for the dependent variable variable_name

� variable_name_UB, a numeric variable that contains the upper bound of the credible interval of the
dependent variable variable_name

� the SID variable

Specifying the OUTSIM= option in the CONDFORE statement creates a data set that contains the simulated
forecasts for each Monte Carlo iteration. The following output variables can be created:

� the BY variables

� SIMID, a numeric variable that contains the index of Monte Carlo iterations

� variable_name_h, numeric variable that contains the h-step-ahead forecast for dependent variable
variable_name in the Monte Carlo iteration The range of h is from 1 to H when you specify LEAD=H
in the CONDFORE statement.

� the SID variable

An example that has more details is illustrated in the section “Example 43.5: Conditional Forecasts and
Scenario Analysis” on page 3217.
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Output Data Sets
The VARMAX procedure can create the OUT=, OUTEST=, OUTHT=, and OUTSTAT= data sets. In general,
if processing fails, the output is not recorded or is set to missing in the relevant output data set, and appropriate
error and/or warning messages are recorded in the log.

OUT= Data Set

The OUT= data set contains the forecast values that the OUTPUT statement produces. The following output
variables can be created:

� the BY variables

� the ID variable

� dependent (endogenous) variables in the MODEL statement. These variables contain the actual values
from the input data set.

� FORi, numeric variables that contain the forecasts. The FORi variables contain the forecasts for the ith
endogenous variable in the MODEL statement list. Forecasts are one-step-ahead predictions until the
end of the data or until the observation that is specified in the BACK= option. Multistep forecasts can
be computed after that point according to the LEAD= option.

� RESi, numeric variables that contain the residual for the forecast of the ith endogenous variable in
the MODEL statement list. For multistep forecast observations, the actual values are missing and the
RESi variables contain missing values.

� STDi, numeric variables that contain the standard deviation for the forecast of the ith endogenous
variable in the MODEL statement list. The values of the STDi variables can be used to construct
univariate confidence limits for the corresponding forecasts.

� LCIi, numeric variables that contain the lower confidence limits for the corresponding forecasts of the
ith endogenous variable in the MODEL statement list

� UCIi, numeric variables that contain the upper confidence limits for the corresponding forecasts of the
ith endogenous variable in the MODEL statement list

The OUT= data set contains the values shown in Table 43.7 and Table 43.8 for a bivariate case.

Table 43.7 OUT= Data Set

Obs ID Variable y1 FOR1 RES1 STD1 LCI1 UCI1

1 date y11 f11 r11 �11 l11 u11
2 date y12 f12 r12 �11 l12 u12
:::
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Table 43.8 OUT= Data Set Continued

Obs y2 FOR2 RES2 STD2 LCI2 UCI2

1 y21 f21 r21 �22 l21 u21
2 y22 f22 r22 �22 l22 u22
:::

Consider the following example:

proc varmax data=simul1 noprint;
id date interval=year;
model y1 y2 / p=1 noint;
output out=out lead=5;

run;

proc print data=out(firstobs=98);
run;

The output in Figure 43.90 shows part of the results of the OUT= data set for the preceding example.

Figure 43.90 OUT= Data Set

Log-periodogram of y2

Obs date y1 FOR1 RES1 STD1 LCI1 UCI1 y2 FOR2 RES2 STD2 LCI2 UCI2

98 1997 -0.58433 -0.13500 -0.44934 1.13523 -2.36001 2.09002 0.64397 -0.34932 0.99329 1.19096 -2.68357 1.98492

99 1998 -2.07170 -1.00649 -1.06522 1.13523 -3.23150 1.21853 0.35925 -0.07132 0.43057 1.19096 -2.40557 2.26292

100 1999 -3.38342 -2.58612 -0.79730 1.13523 -4.81113 -0.36111 -0.64999 -0.99354 0.34355 1.19096 -3.32779 1.34070

101 2000 . -3.59212 . 1.13523 -5.81713 -1.36711 . -2.09873 . 1.19096 -4.43298 0.23551

102 2001 . -3.09448 . 1.70915 -6.44435 0.25539 . -2.77050 . 1.47666 -5.66469 0.12369

103 2002 . -2.17433 . 2.14472 -6.37792 2.02925 . -2.75724 . 1.74212 -6.17173 0.65725

104 2003 . -1.11395 . 2.43166 -5.87992 3.65203 . -2.24943 . 2.01925 -6.20709 1.70823

105 2004 . -0.14342 . 2.58740 -5.21463 4.92779 . -1.47460 . 2.25169 -5.88782 2.93863

OUTEST= Data Set

The OUTEST= data set contains estimation results of the fitted model produced by the VARMAX statement.
The following output variables can be created:

� BY variables

� NAME, a character variable that contains the name of the endogenous (dependent) variables or the
name of the parameters for the covariance of the matrix of the parameter estimates if you specify the
OUTCOV option

� TYPE, a character variable that contains the value EST for parameter estimates, the value STD for
standard error of parameter estimates, and the value COV for the covariance of the matrix of the
parameter estimates if you specify the OUTCOV option
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� CONST, a numeric variable that contains the estimates of constant parameters and their standard errors

� SEASON_i , a numeric variable that contains the estimates of seasonal dummy parameters and their
standard errors, where i D 1; : : : ; .nseason � 1/, and nseason is based on the NSEASON= option

� LTREND, a numeric variable that contains the estimates of linear trend parameters and their standard
errors

� QTREND, a numeric variable that contains the estimates of quadratic trend parameters and their
standard errors

� XLl_i , numeric variables that contain the estimates of exogenous parameters and their standard errors,
where l is the lag lth coefficient matrix and i D 1; : : : ; r , where r is the number of exogenous variables

� ARl_i , numeric variables that contain the estimates of autoregressive parameters and their standard
errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k, where k is the number of endogenous
variables

� MAl_i , numeric variables that contain the estimates of moving-average parameters and their standard
errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k, where k is the number of endogenous
variables

� COV_i , numeric variables that contain the estimates of the covariance of innovations parameters when
the maximum likelihood method is applied, where i D 1; : : : ; k

� DCCAB, a numeric variable that contains the estimates of ˛ or ˇ in the correlation equation for DCC
representation and their standard errors

� CCC_i , numeric variables that contain the estimates of the conditional constant correlation parameters
for CCC representation, where i D 2; : : : ; k

� DCCS_i , numeric variables that contain the estimates of the unconditional correlation parameters for
DCC representation, where i D 2; : : : ; k

� GCHC_i , numeric variables that contain the estimates of the constant parameters of the covariance
matrix and their standard errors, where i D 1; : : : ; k for BEKK representation, k is the number of
endogenous variables, and i D 1 for CCC and DCC representations

� ACHl_i , numeric variables that contain the estimates of the ARCH parameters of the covariance matrix
and their standard errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k for BEKK, CCC,
and DCC representations, where k is the number of endogenous variables

� EACHl_i , numeric variables that contain the estimates of the exponential ARCH parameters of the
covariance matrix and their standard errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k
for CCC and DCC representations, where k is the number of endogenous variables

� PACHl_i , numeric variables that contain the estimates of the power ARCH parameters of the covariance
matrix and their standard errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k for CCC and
DCC representations, where k is the number of endogenous variables

� QACHl_i , numeric variables that contain the estimates of the quadratic ARCH parameters of the
covariance matrix and their standard errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k
for CCC and DCC representations, where k is the number of endogenous variables
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� TACHl_i , numeric variables that contain the estimates of the threshold ARCH parameters of the
covariance matrix and their standard errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k
for CCC and DCC representations, where k is the number of endogenous variables

� GCHl_i , numeric variables that contain the estimates of the GARCH parameters of the covariance
matrix and their standard errors, where l is the lag lth coefficient matrix and i D 1; : : : ; k for BEKK,
CCC, and DCC representations, where k is the number of endogenous variables

� LAMBDA, a numeric variable that contains the estimates of power parameters in the PGARCH model
for CCC and DCC representations and their standard errors

The OUTEST= data set contains the values shown in Table 43.9 for a bivariate case.

Table 43.9 OUTEST= Data Set

Obs NAME TYPE CONST AR1_1 AR1_2 AR2_1 AR2_2

1 y1 EST ı1 �1;11 �1;12 �2;11 �2;12
2 STD se(ı1) se(�1;11) se(�1;12) se(�2;11) se(�2;12)
3 y2 EST ı2 �1;21 �1;22 �2;21 �2;22
4 STD se(ı2) se(�1;21) se(�1;22) se(�2;21) se(�2;22)

Consider the following example:

proc varmax data=simul2 outest=est;
model y1 y2 / p=2 noint noprint;
cointeg rank=1 normalize=y1;

run;

proc print data=est;
run;

The output in Figure 43.91 shows the results of the OUTEST= data set.

Figure 43.91 OUTEST= Data Set

Log-periodogram of y2

Obs NAME TYPE AR1_1 AR1_2 AR2_1 AR2_2 COV_1 COV_2 ALPHA1 BETA1

1 y1 EST -0.46680 0.91295 -0.74332 -0.74621 94.7557 4.527 -0.46680 1.00000

2 STD 0.04786 0.09359 0.04526 0.04769 13.5365 10.303 0.04786 .

3 y2 EST 0.10667 -0.20862 0.40493 -0.57157 4.5268 109.570 0.10667 -1.95575

4 STD 0.05146 0.10064 0.04867 0.05128 10.3030 15.653 0.05146 .
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OUTHT= Data Set

The OUTHT= data set contains predictions of conditional covariance matrices of innovations of the fitted
GARCH model that the GARCH statement produces. The following output variables can be created:

� the BY variables, if BY-group processing is performed

� the ID variable, if the ID statement is specified

� Hi_j , numeric variables that contain the prediction of covariance, where 1 � i � j � k, where k is
the number of dependent variables

The OUTHT= data set contains the values shown in Table 43.10 for a bivariate case.

Table 43.10 OUTHT= Data Set

Obs H1_1 H1_2 H2_2

1 h111 h121 h221
2 h112 h122 h222
: : : :

The OUTHT= data set has the same number of observations as the OUT= data set. Both the OUTHT= and
OUT= data sets include any observations at the beginning of the data set that are skipped because of the
DIF=, DIFY=, DIFX=, P=, or XLAG= option and include the predicted observations at the end of the data set,
which correspond with the LEAD= specification. If you specify an ID statement together with the OUTHT=
and OUT= options, then the values of the ID variable in the two data sets correspond with one another.

Consider the following example of the OUTHT= option:

data garch;
set garch;
date = intnx( 'month', '01may1972'd, _n_-1 );
format date yymms.;

run;

proc varmax data=garch;
id date interval=month;
model y1 y2 / p=1;
garch q=1 outht=ht;
output out=og lead=6;

run;

proc print data=og(obs=8);
var date y1 for1 std1 lci1 uci1 y2 for2 std2 lci2 uci2;

run;

proc print data=ht(obs=8);
run;
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proc print data=og(firstobs=499);
var date y1 for1 std1 lci1 uci1 y2 for2 std2 lci2 uci2;

run;

proc print data=ht(firstobs=499);
run;

The output in Figure 43.92 and Figure 43.93 shows the first eight observations in the OUT= and OUTHT=
data sets, respectively. The first observation is skipped in the GARCH model estimation because of the
P=1 option, resulting in the missing values in the first observations in the OUT= and OUTHT= data sets.
The output in Figure 43.94 and Figure 43.95 shows the last eight observations in the OUT= and OUTHT=
data sets, respectively. In the OUT= data set, the standard deviations of the forecast of dependent variables
are time-variant. The last six observations in OUTHT= data set are the multistep forecast of conditional
covariance matrices of innovations.

Figure 43.92 First Part of OUT= Data Set

Log-periodogram of y2

Obs date y1 FOR1 STD1 LCI1 UCI1 y2 FOR2 STD2 LCI2 UCI2

1 1972/05 -4.4005 . . . . 1.83794 . . . .

2 1972/06 -8.0533 -4.2140 3.10387 -10.2975 1.86947 1.59720 1.92227 1.92885 -1.85820 5.70274

3 1972/07 -10.8362 -8.5587 3.21511 -14.8602 -2.25720 1.51833 -0.37752 1.33100 -2.98623 2.23118

4 1972/08 -6.0179 -11.9245 2.97553 -17.7564 -6.09254 -1.57445 -2.09795 1.75464 -5.53697 1.34108

5 1972/09 -7.8272 -4.3716 3.63437 -11.4949 2.75160 -0.03774 -0.09637 1.44118 -2.92102 2.72829

6 1972/10 -8.4293 -7.4084 3.14734 -13.5770 -1.23969 -0.40424 -0.73442 1.26093 -3.20580 1.73695

7 1972/11 -7.8156 -7.9499 2.89408 -13.6222 -2.27757 0.20642 -1.21238 1.26383 -3.68944 1.26469

8 1972/12 -8.0182 -7.5245 2.87208 -13.1537 -1.89535 0.43513 -0.65343 1.61823 -3.82511 2.51825

Figure 43.93 First Part of OUTHT= Data Set

Log-periodogram of y2

Obs date h1_1 h1_2 h2_2

1 1972/05 . . .

2 1972/06 9.6340 0.14073 3.72045

3 1972/07 10.3369 0.42643 1.77155

4 1972/08 8.8538 -1.19603 3.07876

5 1972/09 13.2086 1.36328 2.07699

6 1972/10 9.9058 -0.02914 1.58995

7 1972/11 8.3757 -0.29722 1.59728

8 1972/12 8.2489 -0.12736 2.61868
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Figure 43.94 Last Part of OUT= Data Set

Log-periodogram of y2

Obs date y1 FOR1 STD1 LCI1 UCI1 y2 FOR2 STD2 LCI2 UCI2

499 2013/11 -6.1917 -4.1545 2.88303 -9.8051 1.4962 6.09470 6.33899 1.43651 3.5235 9.1545

500 2013/12 -10.2133 -8.6817 2.97211 -14.5070 -2.8565 2.88544 2.11833 1.28490 -0.4000 4.6367

501 2014/01 . -11.8921 2.92171 -17.6186 -6.1657 . -1.30455 1.33400 -3.9191 1.3100

502 2014/02 . -11.7095 4.83388 -21.1837 -2.2353 . -3.59592 2.37237 -8.2457 1.0538

503 2014/03 . -10.2617 6.20050 -22.4145 1.8910 . -4.17796 3.77457 -11.5760 3.2201

504 2014/04 . -8.1778 7.02293 -21.9425 5.5869 . -3.47144 4.98630 -13.2444 6.3015

505 2014/05 . -6.0032 7.41997 -20.5461 8.5396 . -1.98718 5.81618 -13.3867 9.4123

506 2014/06 . -4.1332 7.56318 -18.9567 10.6904 . -0.21231 6.27549 -12.5120 12.0874

Figure 43.95 Last Part of OUTHT= Data Set

Log-periodogram of y2

Obs date h1_1 h1_2 h2_2

499 2013/11 8.31189 -0.42221 2.06356

500 2013/12 8.83341 -0.00565 1.65098

501 2014/01 8.53639 -0.48367 1.77955

502 2014/02 9.42359 -0.13271 2.47088

503 2014/03 9.55818 -0.00081 2.85906

504 2014/04 9.58107 0.04780 3.07044

505 2014/05 9.58585 0.06690 3.18347

506 2014/06 9.58718 0.07508 3.24331

OUTSTAT= Data Set

The OUTSTAT= data set contains estimation results of the fitted model produced by the VARMAX statement.
The following output variables can be created. The subindex i is 1; : : : ; k, where k is the number of
endogenous variables.

� the BY variables

� NAME, a character variable that contains the name of endogenous (dependent) variables

� SIGMA_i , numeric variables that contain the estimate of the innovation covariance matrix

� AICC, a numeric variable that contains the corrected Akaike’s information criterion value

� HQC, a numeric variable that contains the Hannan-Quinn’s information criterion value

� AIC, a numeric variable that contains the Akaike’s information criterion value

� SBC, a numeric variable that contains the Schwarz Bayesian’s information criterion value

� FPEC, a numeric variable that contains the final prediction error criterion value
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� LOGLIK, a numeric variable that contains the value of the log-likelihood function calculated at the
parameter estimates

� RSquare, a numeric variable that contains the value of the coefficient of determination

� FValue, a numeric variable that contains the F statistics

� PValue, a numeric variable that contains p-value for the F statistics

If the JOHANSEN= option is specified, the following items are added:

� Eigenvalue, a numeric variable that contains eigenvalues for the cointegration rank test of integrated
order 1

� RestrictedEigenvalue, a numeric variable that contains eigenvalues for the cointegration rank test of
integrated order 1 when the NOINT option is not specified

� Beta_i , numeric variables that contain long-run effect parameter estimates, ˇ

� Alpha_i , numeric variables that contain adjustment parameter estimates, ˛

If the JOHANSEN=(IORDER=2) option is specified, the following items are added:

� EValueI2_i , numeric variables that contain eigenvalues for the cointegration rank test of integrated
order 2

� EValueI1, a numeric variable that contains eigenvalues for the cointegration rank test of integrated
order 1

� Eta_i , numeric variables that contain the parameter estimates in integrated order 2, �

� Xi_i , numeric variables that contain the parameter estimates in integrated order 2, �

The OUTSTAT= data set contains the values shown Table 43.11 for a bivariate case.

Table 43.11 OUTSTAT= Data Set

Obs NAME SIGMA_1 SIGMA_2 AICC HQC AIC SBC

1 y1 �11 �12 aicc hqc aic sbc
2 y2 �21 �22 . . . .

Obs FPEC LOGLIK RSquare FValue PValue

1 fpec loglik R21 F1 prob1
2 . . R22 F2 prob2
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Obs EValueI2_1 EValueI2_2 EValueI1 Beta_1 Beta_2

1 e11 e12 e1 ˇ11 ˇ12
2 e21 . e2 ˇ21 ˇ21

Obs Alpha_1 Alpha_2 Eta_1 Eta_2 Xi_1 Xi_2

1 ˛11 ˛12 �11 �12 �11 �12
2 ˛21 ˛22 �21 �22 �21 �22

Consider the following example:

proc varmax data=simul2 outstat=stat;
model y1 y2 / p=2 noint noprint

cointtest=(johansen=(iorder=2));
cointeg rank=1 normalize=y1;

run;

proc print data=stat;
run;

The output in Figure 43.96 shows the results of the OUTSTAT= data set.

Figure 43.96 OUTSTAT= Data Set

Log-periodogram of y2

Obs NAME SIGMA_1 SIGMA_2 AICC HQC AIC SBC FPEC LOGLIK RSquare FValue PValue EValueI2_1

1 y1 94.7557 4.527 0 0 0 0 0 -551.049 0.93900 482.308 6.1637E-57 0.98486

2 y2 4.5268 109.570 . . . . . . 0.93912 483.334 5.6124E-57 0.81451

Obs EValueI2_2 EValueI1 Beta_1 Beta_2 Alpha_1 Alpha_2 Eta_1 Eta_2 Xi_1 Xi_2

1 0.95079 0.50864 1.00000 1.00000 -0.46680 0.007937 -0.012307 0.027030 54.1606 -52.3144

2 . 0.01108 -1.95575 -1.33622 0.10667 0.033530 0.015555 0.023086 -79.4240 -18.3308

Printed Output
The default printed output produced by the VARMAX procedure is described in the following list:

� descriptive statistics, which include the number of observations used, the names of the variables, their
means and standard deviations (STD), their minimums and maximums, the differencing operations
used, and the labels of the variables

� a type of model to fit the data and an estimation method

� a table of parameter estimates that shows the following for each parameter: the variable name for
the left-hand side of equation, the parameter name, the parameter estimate, the approximate standard
error, t value, the approximate probability (P r > jt j), and the variable name for the right-hand side of
equations in terms of each parameter
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� the innovation covariance matrix

� the information criteria

If PRINT=ESTIMATES is specified, the VARMAX procedure prints the following list with the default
printed output:

� the estimates of the constant vector (or seasonal constant matrix), the trend vector, the coefficient
matrices of the distributed lags, the AR coefficient matrices, and the MA coefficient matrices

� the ALPHA and BETA parameter estimates for the error correction model

� the schematic representation of parameter estimates

If PRINT=DIAGNOSE is specified, the VARMAX procedure prints the following list with the default printed
output:

� the cross-covariance and cross-correlation matrices of the residuals

� the tables of test statistics for the hypothesis that the residuals of the model are white noise:

– Durbin-Watson (DW) statistics

– F test for autoregressive conditional heteroscedastic (ARCH) disturbances

– F test for AR disturbance

– Jarque-Bera normality test

– portmanteau test

ODS Table Names
The VARMAX procedure assigns a name to each table that it creates. You can use these names to reference
the table when using the Output Delivery System (ODS) to select tables and create output data sets. These
names are listed in Table 43.12.

Table 43.12 ODS Tables Produced in the VARMAX Procedure

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
AccumImpulse Accumulated impulse response matrices IMPULSE=(ACCUM)

IMPULSE=(ALL)
AccumImpulsebyVar Accumulated impulse response by

variable
IMPULSE=(ACCUM)
IMPULSE=(ALL)

AccumImpulseX Accumulated transfer function matrices IMPULSX=(ACCUM)
IMPULSX=(ALL)

AccumImpulseXbyVar Accumulated transfer function by
variable

IMPULSX=(ACCUM)
IMPULSX=(ALL)
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Table 43.12 continued

ODS Table Name Description Option

Alpha ˛ coefficients JOHANSEN=
AlphaInECM ˛ coefficients when RANK=r PRINT=(ESTIMATES)

with ECM=
AlphaOnDrift ˛ coefficients under the restriction of a

deterministic term
JOHANSEN=

AlphaBetaInECM … D ˛ˇ0 coefficients when RANK=r PRINT=(ESTIMATES)
with ECM=

ANOVA Univariate model diagnostic checks for
the residuals

PRINT=DIAGNOSE

ARCoef AR coefficients PRINT=(ESTIMATES)
with P=

ARRoots Roots of AR characteristic polynomial ROOTS with P=
Beta ˇ coefficients JOHANSEN=
BetaInECM bˇ coefficients when RANK=r PRINT=(ESTIMATES)

with ECM=
BetaOnDrift ˇ coefficients under the restriction of a

deterministic term
JOHANSEN=

CCCCorrConstant Constant correlation matrix in the CCC
GARCH model

CORRCONSTANT=EXPECT
with FORM=CCC

Constant Constant estimates Without NOINT
CorrB Correlations of parameter estimates CORRB
CorrResiduals Correlations of residuals PRINT=DIAGNOSE
CorrResidualsbyVar Correlations of residuals by variable PRINT=DIAGNOSE
CorrResidualsGraph Schematic representation of correlations

of residuals
PRINT=DIAGNOSE

CorrXGraph Schematic representation of sample
correlations of independent series

CORRX

CorrYGraph Schematic representation of sample
correlations of dependent series

CORRY

CorrXLags Correlations of independent series CORRX
CorrXbyVar Correlations of independent series by

variable
CORRX

CorrYLags Correlations of dependent series CORRY
CorrYbyVar Correlations of dependent series by

variable
CORRY

CovarianceParameter-
Estimates

Covariance parameter estimates METHOD=ML without
the PRIOR= option, or
GARCH statement

CovB Covariances of parameter estimates COVB
CovInnovation Covariances of the innovations Default
CovPredictError Covariance matrices of the prediction

error
COVPE

CovPredictErrorbyVar Covariances of the prediction error by
variable

COVPE
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Table 43.12 continued

ODS Table Name Description Option

CovResiduals Covariances of residuals PRINT=DIAGNOSE
CovResidualsbyVar Covariances of residuals by variable PRINT=DIAGNOSE
CovXLags Covariances of independent series COVX
CovXbyVar Covariances of independent series by

variable
COVX

CovYLags Covariances of dependent series COVY
CovYbyVar Covariances of dependent series by

variable
COVY

DCCCorrConstant Unconditional correlation matrix in the
DCC GARCH model

CORRCONSTANT=EXPECT
with FORM=DCC

DecomposeCovPre-
dictError

Decomposition of the prediction error
covariances

DECOMPOSE

DecomposeCovPre-
dictErrorbyVar

Decomposition of the prediction error
covariances by variable

DECOMPOSE

DFTest Dickey-Fuller test DFTEST
DiagnostAR Test the AR disturbance for the residuals PRINT=DIAGNOSE
DiagnostWN Test the ARCH disturbance and

normality for the residuals
PRINT=DIAGNOSE

DynamicARCoef AR coefficients of the dynamic model DYNAMIC
DynamicConstant Constant estimates of the dynamic model DYNAMIC
DynamicCovInno-
vation

Covariances of the innovations of the
dynamic model

DYNAMIC

DynamicLinearTrend Linear trend estimates of the dynamic
model

DYNAMIC

DynamicMACoef MA coefficients of the dynamic model DYNAMIC
DynamicSConstant Seasonal constant estimates of the

dynamic model
DYNAMIC

DynamicParameter-
Estimates

Parameter estimates table of the dynamic
model

DYNAMIC

DynamicParameter-
Graph

Schematic representation of the
parameters of the dynamic model

DYNAMIC

DynamicQuadTrend Quadratic trend estimates of the dynamic
model

DYNAMIC

DynamicSeasonGraph Schematic representation of the seasonal
dummies of the dynamic model

DYNAMIC

DynamicXLagCoef Dependent coefficients of the dynamic
model

DYNAMIC

Hypothesis Hypothesis of different deterministic
terms in cointegration rank test

JOHANSEN=

HypothesisTest Test hypothesis of different deterministic
terms in cointegration rank test

JOHANSEN=

EigenvalueI2 Eigenvalues in integrated order 2 JOHANSEN=
(IORDER=2)
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Table 43.12 continued

ODS Table Name Description Option

Eta � coefficients JOHANSEN=
(IORDER=2)

InfiniteARRepresent Infinite order ar representation IARR
InfoCriteria Information criteria Default
LinearTrend Linear trend estimates TREND=
LogLikelihood Log likelihood Default
MACoef MA coefficients Q=
MARoots Roots of MA characteristic polynomial ROOTS with Q=
MaxTest Cointegration rank test using the

maximum eigenvalue
JOHANSEN=
(TYPE=MAX)

Minic Tentative order selection MINIC or MINIC=
ModelType Type of model Default
NObs Number of observations Default
OrthoImpulse Orthogonalized impulse response

matrices
IMPULSE=(ORTH) IM-
PULSE=(ALL)

OrthoImpulsebyVar Orthogonalized impulse response by
variable

IMPULSE=(ORTH) IM-
PULSE=(ALL)

ParameterEstimates Parameter estimates table Default
ParameterGraph Schematic representation of the

parameters
PRINT=ESTIMATES

PartialAR Partial autoregression matrices PARCOEF
PartialARGraph Schematic representation of partial

autoregression
PARCOEF

PartialCanCorr Partial canonical correlation analysis PCANCORR
PartialCorr Partial cross-correlation matrices PCORR
PartialCorrbyVar Partial cross-correlations by variable PCORR
PartialCorrGraph Schematic representation of partial

cross-correlations
PCORR

PortmanteauTest Chi-square test table for residual
cross-correlations

PRINT=DIAGNOSE

ProportionCovPre-
dictError

Proportions of prediction error
covariance decomposition

DECOMPOSE

ProportionCovPre-
dictErrorbyVar

Proportions of prediction error
covariance decomposition by variable

DECOMPOSE

RankTestI2 Cointegration rank test in integrated
order 2

JOHANSEN=
(IORDER=2)

RestrictMaxTest Cointegration rank test using the
maximum eigenvalue under the
restriction of a deterministic term

JOHANSEN=
(TYPE=MAX)
without NOINT

RestrictTraceTest Cointegration rank test using the trace
under the restriction of a deterministic
term

JOHANSEN=
(TYPE=TRACE)
without NOINT

QuadTrend Quadratic trend estimates TREND=QUAD
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Table 43.12 continued

ODS Table Name Description Option

SeasonGraph Schematic representation of the seasonal
dummies

PRINT=ESTIMATES
with NSEASON=

SConstant Seasonal constant estimates NSEASON=
SimpleImpulse Impulse response matrices IMPULSE=(SIMPLE)

IMPULSE=(ALL)
SimpleImpulsebyVar Impulse response by variable IMPULSE=(SIMPLE)

IMPULSE=(ALL)
SimpleImpulseX Impulse response matrices of transfer

function
IMPULSX=(SIMPLE)
IMPULSX=(ALL)

SimpleImpulseXbyVar Impulse response of transfer function by
variable

IMPULSX=(SIMPLE)
IMPULSX=(ALL)

Summary Simple summary statistics Default
SWTest Common trends test SW=
TraceTest Cointegration rank test using the trace JOHANSEN=

(TYPE=TRACE)
Xi � coefficient matrix JOHANSEN=

(IORDER=2)
XLagCoef Dependent coefficients XLAG=
YWEstimates Yule-Walker estimates YW

ODS Tables Created by the GARCH Statement
ARCHCoef ARCH coefficients Q=
GARCHCoef GARCH coefficients P=
GARCHConstant GARCH constant estimates PRINT=ESTIMATES
GARCHParameter-
Estimates

GARCH parameter estimates table Default

GARCHParameter-
Graph

Schematic representation of the garch
parameters

PRINT=ESTIMATES

GARCHRoots Roots of GARCH characteristic
polynomial

ROOTS

ODS Tables Created by the COINTEG Statement or the ECM Option in the MODEL Statement
AlphaAndBetaPa-
rameterEstimaters

Parameter estimates of ˛, ˇ, ˇ0, and ˇ1 Default

AlphaInECM ˛ coefficients when RANK=r PRINT=ESTIMATES
AlphaBetaInECM … D ˛ˇ0 coefficients when RANK=r PRINT=ESTIMATES
AlphaOnAlpha ˛ coefficients under the restriction of ˛ J=
AlphaOnBeta ˛ coefficients under the restriction of ˇ H=
AlphaTestResults Hypothesis testing of ˛ J=
BetaInECM ˇ coefficients when RANK=r PRINT=ESTIMATES
BetaOnBeta ˇ coefficients under the restriction of ˇ H=
BetaOnAlpha ˇ coefficients under the restriction of ˛ J=
BetaTestResults Hypothesis testing of ˇ H=
GrangerRepresent Coefficient of Granger representation PRINT=ESTIMATES
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Table 43.12 continued

ODS Table Name Description Option

HMatrix Restriction matrix for ˇ H=
JMatrix Restriction matrix for ˛ J=
WeakExogeneity Testing weak exogeneity of each

dependent variable with respect to BETA
EXOGENEITY

ODS Tables Created by the CAUSAL Statement
CausalityTest Granger causality test Default
GroupVars Two groups of variables Default

ODS Tables Created by the RESTRICT Statement
Restrict Restriction table Default

ODS Tables Created by the TEST Statement
Test Wald test Default

ODS Tables Created by the OUTPUT Statement
Forecasts Forecasts table Without NOPRINT

Note that the ODS table names suffixed by “byVar” can be obtained with the PRINTFORM=UNIVARIATE
option.

ODS Graphics
This section describes the use of ODS for creating statistical graphs with the VARMAX procedure.

When ODS GRAPHICS are in effect, the VARMAX procedure produces a variety of plots for each dependent
variable.

The plots available are as follows:

� The procedure displays the following plots for each dependent variable in the MODEL statement with
the PLOT= option in the VARMAX statement:

– impulse response function

– impulse response of the transfer function

– time series and predicted series

– prediction errors

– distribution of the prediction errors

– normal quantile of the prediction errors

– ACF of the prediction errors

– PACF of the prediction errors
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– IACF of the prediction errors

– log scaled white noise test of the prediction errors

� The procedure displays forecast plots for each dependent variable in the OUTPUT statement with the
PLOT= option in the VARMAX statement.

ODS Graph Names

The VARMAX procedure assigns a name to each graph it creates by using ODS. You can use these names to
reference the graphs when using ODS. The names are listed in Table 43.13.

Table 43.13 ODS Graphics Produced in the VARMAX
Procedure

ODS Table Name Plot Description Statement

ErrorACFPlot Autocorrelation function of prediction
errors

MODEL

ErrorIACFPlot Inverse autocorrelation function of
prediction errors

MODEL

ErrorPACFPlot Partial autocorrelation function of
prediction errors

MODEL

ErrorDiagnosticsPanel Diagnostics of prediction errors MODEL
ErrorNormalityPanel Histogram and Q-Q plot of prediction

errors
MODEL

ErrorDistribution Distribution of prediction errors MODEL
ErrorQQPlot Q-Q plot of prediction errors MODEL
ErrorWhiteNoisePlot White noise test of prediction errors MODEL
ErrorPlot Prediction errors MODEL
ModelPlot Time series and predicted series MODEL
DCCPanel Dynamic conditional covariances PROC
AccumulatedIRFPanel Accumulated impulse response function MODEL
AccumulatedIRFXPanel Accumulated impulse response of

transfer function
MODEL

OrthogonalIRFPanel Orthogonalized impulse response
function

MODEL

SimpleIRFPanel Simple impulse response function MODEL
SimpleIRFXPanel Simple impulse response of transfer

function
MODEL

ModelForecastsPlot Time series and forecasts OUTPUT
ForecastsOnlyPlot Forecasts OUTPUT
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Computational Issues

Computational Method

The VARMAX procedure uses numerous linear algebra routines and frequently uses the sweep operator
(Goodnight 1979) and the Cholesky root (Golub and Van Loan 1983).

In addition, the VARMAX procedure uses the nonlinear optimization (NLO) subsystem to perform nonlinear
optimization tasks for the maximum likelihood estimation. The optimization requires intensive computation.

Convergence Problems

For some data sets, the computation algorithm can fail to converge. Nonconvergence can result from a
number of causes, including flat or ridged likelihood surfaces and ill-conditioned data.

If you experience convergence problems, the following points might be helpful:

� Data that contain extreme values can affect results in PROC VARMAX. Rescaling the data can improve
stability.

� Changing the TECH=, MAXITER=, and MAXFUNC= options in the NLOPTIONS statement can
improve the stability of the optimization process.

� Specifying a different model that might fit the data more closely and might improve convergence.

Memory

Let T be the length of each series, k be the number of dependent variables, p be the order of autoregressive
terms, and q be the order of moving-average terms. The number of parameters to estimate for a VARMA(p; q)
model is

k C .p C q/k2 C k � .k C 1/=2

As k increases, the number of parameters to estimate increases very quickly. Furthermore, the memory
requirement for VARMA(p; q) quadratically increases as k and T increase.

For a VARMAX(p; q; s) model and GARCH-type multivariate conditional heteroscedasticity models, the
number of parameters to estimate and the memory requirements are considerable.

Computing Time

PROC VARMAX is computationally intensive, and execution times can be long. Extensive CPU time is
often required to compute the maximum likelihood estimates.
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Examples: VARMAX Procedure

Example 43.1: Analysis of United States Economic Variables
Consider the following four-dimensional system of US economic variables. Quarterly data for the years 1954
to 1987 are used (Lütkepohl 1993, Table E.3.).

title 'Analysis of US Economic Variables';
data us_money;

date=intnx( 'qtr', '01jan54'd, _n_-1 );
format date yyq. ;
input y1 y2 y3 y4 @@;
y1=log(y1);
y2=log(y2);
label y1='log(real money stock M1)'

y2='log(GNP in bil. of 1982 dollars)'
y3='Discount rate on 91-day T-bills'
y4='Yield on 20-year Treasury bonds';

datalines;
450.9 1406.8 0.010800000 0.026133333
453.0 1401.2 0.0081333333 0.025233333
459.1 1418.0 0.0087000000 0.024900000

... more lines ...

The following statements plot the series:

proc sgplot data=us_money;
series x=date y=y1 / lineattrs=(pattern=solid);
series x=date y=y2 / lineattrs=(pattern=dash);
yaxis label="Series";

run;

Output 43.1.1 shows the plot of the variables y1 and y2.
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Output 43.1.1 Plot of Data

The following statements plot the variables y3 and y4:

proc sgplot data=us_money;
series x=date y=y3 / lineattrs=(pattern=solid);
series x=date y=y4 / lineattrs=(pattern=dash);
yaxis label="Series";

run;

Output 43.1.2 shows the plot of the variables y3 and y4.
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Output 43.1.2 Plot of Data

The following statements perform the Dickey-Fuller test for stationarity, the Johansen cointegrated test
integrated order 2, and the exogeneity test. The VECM(2) is fit to the data.

proc varmax data=us_money;
id date interval=qtr;
model y1-y4 / p=2 lagmax=6 dftest

print=(iarr(3) estimates diagnose)
cointtest=(johansen=(iorder=2));

cointeg rank=1 normalize=y1 exogeneity;
run;

From the outputs shown in Output 43.1.5, you can see that the series has unit roots and is cointegrated in
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rank 1 with integrated order 1. The fitted VECM(2) is given as

�yt D

0BB@
0:0408

0:0860

0:0052

�0:0144

1CCAC
0BB@
�0:0140 0:0065 �0:2026 0:1306

�0:0281 0:0131 �0:4080 0:2630

�0:0022 0:0010 �0:0312 0:0201

0:0051 �0:0024 0:0741 �0:0477

1CCA yt�1

C

0BB@
0:3460 0:0913 �0:3535 �0:9690

0:0994 0:0379 0:2390 0:2866

0:1812 0:0786 0:0223 0:4051

0:0322 0:0496 �0:0329 0:1857

1CCA�yt�1 C �t

The � prefixed to a variable name implies differencing.

Output 43.1.3 through Output 43.1.16 show the details. Output 43.1.3 shows the descriptive statistics.

Output 43.1.3 Descriptive Statistics

Analysis of US Economic Variables

The VARMAX Procedure

Number of Observations 136

Number of Pairwise Missing 0

Simple Summary Statistics

Variable Type N Mean
Standard
Deviation Min Max Label

y1 Dependent 136 6.21295 0.07924 6.10278 6.45331 log(real money stock M1)

y2 Dependent 136 7.77890 0.30110 7.24508 8.27461 log(GNP in bil. of 1982 dollars)

y3 Dependent 136 0.05608 0.03109 0.00813 0.15087 Discount rate on 91-day T-bills

y4 Dependent 136 0.06458 0.02927 0.02490 0.13600 Yield on 20-year Treasury bonds

Output 43.1.4 shows the output for Dickey-Fuller tests for the nonstationarity of each series. The null
hypothesis is that there exists a unit root. All series have a unit root.

Output 43.1.4 Unit Root Tests

Unit Root Test

Variable Type Rho Pr < Rho Tau Pr < Tau

y1 Zero Mean 0.05 0.6934 1.14 0.9343

Single Mean -2.97 0.6572 -0.76 0.8260

Trend -5.91 0.7454 -1.34 0.8725

y2 Zero Mean 0.13 0.7124 5.14 0.9999

Single Mean -0.43 0.9309 -0.79 0.8176

Trend -9.21 0.4787 -2.16 0.5063

y3 Zero Mean -1.28 0.4255 -0.69 0.4182

Single Mean -8.86 0.1700 -2.27 0.1842

Trend -18.97 0.0742 -2.86 0.1803

y4 Zero Mean 0.40 0.7803 0.45 0.8100

Single Mean -2.79 0.6790 -1.29 0.6328

Trend -12.12 0.2923 -2.33 0.4170
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The Johansen cointegration rank test shows whether the series is integrated order either 1 or 2 as shown in
Output 43.1.5. The last two columns in Output 43.1.5 explain the cointegration rank test with integrated
order 1. The results indicate that there is a cointegrated relationship with cointegration rank 1 with respect
to the 0.05 significance level because the test statistic for the null hypothesis H0: r D 0 is 55.9633 and its
corresponding p-value is 0.0072, less than 0.05 (indicating that H0: r D 0 should be rejected), and the test
statistic for the null hypothesis H0: r D 1 is 20.6542 and its corresponding p-value is 0.3775, greater than
0.05 (indicating that H0: r D 1 cannot be rejected). Now, look at the row associated with r D 1. All p-values
of the tests for the null hypothesis that the series are integrated order 2 are zeros, less than 0.05 significance
level (indicating that the null hypothesis should be rejected).

Output 43.1.5 Cointegration Rank Test

Cointegration Rank Test for I(2)

r\k-r-s 4 3 2 1
Trace
of I(1)

Pr > Trace
of I(1)

0 384.6090 214.3790 107.9378 37.0252 55.9633 0.0072

Pr > Trace of I(2) 0.0000 0.0000 0.0000 0.0000

1 219.6239 89.2151 27.3261 20.6542 0.3775

Pr > Trace of I(2) 0.0000 0.0000 0.0000

2 73.6178 22.1328 2.6477 0.9803

Pr > Trace of I(2) 0.0000 0.0000

3 38.2943 0.0149 0.9031

Pr > Trace of I(2) 0.0000

Output 43.1.6 shows the estimates of the long-run parameter, ˇ, and the adjustment coefficient, ˛.

Output 43.1.6 Cointegration Rank Test, Continued

Beta

Variable 1 2 3 4

y1 1.00000 1.00000 1.00000 1.00000

y2 -0.46458 -0.63174 -0.69996 -0.16140

y3 14.51619 -1.29864 1.37007 -0.61806

y4 -9.35520 7.53672 2.47901 1.43731

Alpha

Variable 1 2 3 4

y1 -0.01396 0.01396 -0.01119 0.00008

y2 -0.02811 -0.02739 -0.00032 0.00076

y3 -0.00215 -0.04967 -0.00183 -0.00072

y4 0.00510 -0.02514 -0.00220 0.00016

Output 43.1.7 shows the estimates � and �.
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Output 43.1.7 Cointegration Rank Test, Continued

Eta

Variable 1 2 3 4

y1 52.74907 41.74502 -20.80403 55.77415

y2 -49.10609 -9.40081 98.87199 22.56416

y3 68.29674 -144.83173 -27.35953 15.51142

y4 121.25932 271.80496 85.85156 -130.11599

Xi

Variable 1 2 3 4

y1 -0.00842 -0.00052 -0.00208 -0.00250

y2 0.00141 0.00213 -0.00736 -0.00058

y3 -0.00445 0.00541 -0.00150 0.00310

y4 -0.00211 -0.00064 -0.00130 0.00197

Output 43.1.8 shows that the VECM(2) is fit to the data. The RANK=1 option in the COINTEG statement
produces the estimates of the long-run parameter, ˇ, and the adjustment coefficient, ˛.

Output 43.1.8 Parameter Estimates

Analysis of US Economic Variables

The VARMAX Procedure

Type of Model VECM(2)

Estimation Method Maximum Likelihood Estimation

Cointegrated Rank 1

Beta

Variable 1

y1 1.00000

y2 -0.46458

y3 14.51619

y4 -9.35520

Alpha

Variable 1

y1 -0.01396

y2 -0.02811

y3 -0.00215

y4 0.00510

Output 43.1.9 shows the parameter estimates in terms of the constant, the lag 1 coefficients (yt�1) that are
contained in the ˛ˇ0 estimates, and the coefficients that are associated with the lag 1 first differences (�yt�1).
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Output 43.1.9 Parameter Estimates, Continued

Constant

Variable Constant

y1 0.04076

y2 0.08595

y3 0.00518

y4 -0.01438

Parameter Alpha * Beta' Estimates

Variable y1 y2 y3 y4

y1 -0.01396 0.00648 -0.20263 0.13059

y2 -0.02811 0.01306 -0.40799 0.26294

y3 -0.00215 0.00100 -0.03121 0.02011

y4 0.00510 -0.00237 0.07407 -0.04774

AR Coefficients of Differenced Lag

DIF Lag Variable y1 y2 y3 y4

1 y1 0.34603 0.09131 -0.35351 -0.96895

y2 0.09936 0.03791 0.23900 0.28661

y3 0.18118 0.07859 0.02234 0.40508

y4 0.03222 0.04961 -0.03292 0.18568

Output 43.1.10 through Output 43.1.12 show the parameter estimates and their significance.
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Output 43.1.10 Parameter Estimates, Continued

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

D_y1 CONST1 0.04076 0.01418 2.87 0.0048 1

AR1_1_1 -0.01396 0.00495 -2.82 0.0056 y1(t-1)

AR1_1_2 0.00648 0.00230 2.82 0.0056 y2(t-1)

AR1_1_3 -0.20263 0.07191 -2.82 0.0056 y3(t-1)

AR1_1_4 0.13059 0.04634 2.82 0.0056 y4(t-1)

AR2_1_1 0.34603 0.06414 5.39 <.0001 D_y1(t-1)

AR2_1_2 0.09131 0.07334 1.25 0.2154 D_y2(t-1)

AR2_1_3 -0.35351 0.11024 -3.21 0.0017 D_y3(t-1)

AR2_1_4 -0.96895 0.20737 -4.67 <.0001 D_y4(t-1)

D_y2 CONST2 0.08595 0.01679 5.12 <.0001 1

AR1_2_1 -0.02811 0.00586 -4.79 <.0001 y1(t-1)

AR1_2_2 0.01306 0.00272 4.79 <.0001 y2(t-1)

AR1_2_3 -0.40799 0.08514 -4.79 <.0001 y3(t-1)

AR1_2_4 0.26294 0.05487 4.79 <.0001 y4(t-1)

AR2_2_1 0.09936 0.07594 1.31 0.1932 D_y1(t-1)

AR2_2_2 0.03791 0.08683 0.44 0.6632 D_y2(t-1)

AR2_2_3 0.23900 0.13052 1.83 0.0695 D_y3(t-1)

AR2_2_4 0.28661 0.24552 1.17 0.2453 D_y4(t-1)

D_y3 CONST3 0.00518 0.01608 0.32 0.7476 1

AR1_3_1 -0.00215 0.00562 -0.38 0.7024 y1(t-1)

AR1_3_2 0.00100 0.00261 0.38 0.7024 y2(t-1)

AR1_3_3 -0.03121 0.08151 -0.38 0.7024 y3(t-1)

AR1_3_4 0.02011 0.05253 0.38 0.7024 y4(t-1)

AR2_3_1 0.18118 0.07271 2.49 0.0140 D_y1(t-1)

AR2_3_2 0.07859 0.08313 0.95 0.3463 D_y2(t-1)

AR2_3_3 0.02234 0.12496 0.18 0.8584 D_y3(t-1)

AR2_3_4 0.40508 0.23506 1.72 0.0873 D_y4(t-1)

D_y4 CONST4 -0.01438 0.00803 -1.79 0.0758 1

AR1_4_1 0.00510 0.00281 1.82 0.0713 y1(t-1)

AR1_4_2 -0.00237 0.00130 -1.82 0.0713 y2(t-1)

AR1_4_3 0.07407 0.04072 1.82 0.0713 y3(t-1)

AR1_4_4 -0.04774 0.02624 -1.82 0.0713 y4(t-1)

AR2_4_1 0.03222 0.03632 0.89 0.3768 D_y1(t-1)

AR2_4_2 0.04961 0.04153 1.19 0.2345 D_y2(t-1)

AR2_4_3 -0.03292 0.06243 -0.53 0.5990 D_y3(t-1)

AR2_4_4 0.18568 0.11744 1.58 0.1164 D_y4(t-1)
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Output 43.1.11 Parameter Estimates, Continued

Alpha and Beta Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

D_y1 ALPHA1_1 -0.01396 0.00495 -2.82 0.0056 Beta[,1]'*_DEP_(t-1)

BETA1_1 1.00000 y1(t-1)

D_y2 ALPHA2_1 -0.02811 0.00586 -4.79 <.0001 Beta[,1]'*_DEP_(t-1)

BETA2_1 -0.46458 y2(t-1)

D_y3 ALPHA3_1 -0.00215 0.00562 -0.38 0.7024 Beta[,1]'*_DEP_(t-1)

BETA3_1 14.51619 y3(t-1)

D_y4 ALPHA4_1 0.00510 0.00281 1.82 0.0713 Beta[,1]'*_DEP_(t-1)

BETA4_1 -9.35520 y4(t-1)

Output 43.1.12 Parameter Estimates, Continued

Covariance Parameter Estimates

Parameter Estimate
Standard

Error t Value Pr > |t|

COV1_1 0.00005 0.00001 8.19 <.0001

COV1_2 0.00001 0.00001 2.78 0.0062

COV2_2 0.00007 0.00001 8.19 <.0001

COV1_3 -0.00001 0.00001 -1.60 0.1118

COV2_3 0.00002 0.00001 2.71 0.0077

COV3_3 0.00007 0.00001 8.19 <.0001

COV1_4 -0.00000 0.00000 -1.31 0.1936

COV2_4 0.00001 0.00000 3.29 0.0013

COV3_4 0.00002 0.00000 6.67 <.0001

COV4_4 0.00002 0.00000 8.19 <.0001

Output 43.1.13 shows the innovation covariance matrix estimates, the log-likelihood, the various information
criteria results, and the tests for white noise residuals. According to the portmanteau test results, the residuals
have significant correlations at lag 2 and 3, indicating that a VECM(3) model might be a better fit than the
VECM(2) model.
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Output 43.1.13 Diagnostic Checks

Covariances of Innovations

Variable y1 y2 y3 y4

y1 0.00005 0.00001 -0.00001 -0.00000

y2 0.00001 0.00007 0.00002 0.00001

y3 -0.00001 0.00002 0.00007 0.00002

y4 -0.00000 0.00001 0.00002 0.00002

Log-likelihood 2479.23

Information
Criteria

AICC -4859

HQC -4844.07

AIC -4886.46

SBC -4782.14

FPEC 2.23E-18

Schematic Representation of Cross Correlations of Residuals

Variable/Lag 0 1 2 3 4 5 6

y1 ++.. .... ++.. .... +... ..-- ....

y2 ++++ .... .... .... .... .... ....

y3 .+++ .... +.-. ..++ -... .... ....

y4 .+++ .... .... ..+. .... .... ....

+ is > 2*std error, - is < -2*std error, . is between

Portmanteau Test for Cross
Correlations of Residuals

Up To
Lag DF Chi-Square Pr > ChiSq

3 16 53.90 <.0001

4 32 74.03 <.0001

5 48 103.08 <.0001

6 64 116.94 <.0001

Output 43.1.14 describes how well each univariate equation fits the data. The residuals for y3 and y4 differ
from normality. Except for the residuals for y3, there are no AR effects on other residuals. Except for the
residuals for y4, there are no ARCH effects on other residuals.
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Output 43.1.14 Diagnostic Checks, Continued

Univariate Model ANOVA Diagnostics

Variable R-Square
Standard
Deviation F Value Pr > F

y1 0.6754 0.00712 32.51 <.0001

y2 0.3070 0.00843 6.92 <.0001

y3 0.1328 0.00807 2.39 0.0196

y4 0.0831 0.00403 1.42 0.1963

Univariate Model White Noise Diagnostics

Normality ARCH

Variable
Durbin

Watson Chi-Square Pr > ChiSq F Value Pr > F

y1 2.13418 7.19 0.0275 1.62 0.2053

y2 2.04003 1.20 0.5483 1.23 0.2697

y3 1.86892 253.76 <.0001 1.78 0.1847

y4 1.98440 105.21 <.0001 21.01 <.0001

Univariate Model AR Diagnostics

AR1 AR2 AR3 AR4

Variable F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F

y1 0.68 0.4126 2.98 0.0542 2.01 0.1154 2.48 0.0473

y2 0.05 0.8185 0.12 0.8842 0.41 0.7453 0.30 0.8762

y3 0.56 0.4547 2.86 0.0610 4.83 0.0032 3.71 0.0069

y4 0.01 0.9340 0.16 0.8559 1.21 0.3103 0.95 0.4358

The PRINT=(IARR) option provides the VAR(2) representation in Output 43.1.15.

Output 43.1.15 Infinite Order AR Representation

Infinite Order AR Representation

Lag Variable y1 y2 y3 y4

1 y1 1.33208 0.09780 -0.55614 -0.83836

y2 0.07125 1.05096 -0.16899 0.54955

y3 0.17903 0.07959 0.99113 0.42520

y4 0.03732 0.04724 0.04116 1.13795

2 y1 -0.34603 -0.09131 0.35351 0.96895

y2 -0.09936 -0.03791 -0.23900 -0.28661

y3 -0.18118 -0.07859 -0.02234 -0.40508

y4 -0.03222 -0.04961 0.03292 -0.18568

3 y1 0.00000 0.00000 0.00000 0.00000

y2 0.00000 0.00000 0.00000 0.00000

y3 0.00000 0.00000 0.00000 0.00000

y4 0.00000 0.00000 0.00000 0.00000

Output 43.1.16 shows whether each variable is the weak exogeneity of other variables. The variable y1 is not
the weak exogeneity of other variables, y2, y3, and y4; the variable y2 is not the weak exogeneity of other
variables, y1, y3, and y4; the variables y3 and y4 are the weak exogeneity of other variables.
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Output 43.1.16 Weak Exogeneity Test

Testing Weak Exogeneity of Each
Variable

Variable DF Chi-Square Pr > ChiSq

y1 1 6.55 0.0105

y2 1 12.54 0.0004

y3 1 0.09 0.7695

y4 1 1.81 0.1786

Example 43.2: Analysis of German Economic Variables
This example considers a three-dimensional VAR(2) model. The model contains the logarithms of a quarterly,
seasonally adjusted West German fixed investment, disposable income, and consumption expenditures. The
data used are in Lütkepohl (1993, Table E.1).

title 'Analysis of German Economic Variables';
data west;

date = intnx( 'qtr', '01jan60'd, _n_-1 );
format date yyq. ;
input y1 y2 y3 @@;
y1 = log(y1);
y2 = log(y2);
y3 = log(y3);
label y1 = 'logarithm of investment'

y2 = 'logarithm of income'
y3 = 'logarithm of consumption';

datalines;
180 451 415 179 465 421 185 485 434 192 493 448
211 509 459 202 520 458 207 521 479 214 540 487

... more lines ...

data use;
set west;
where date < '01jan79'd;
keep date y1 y2 y3;

run;

proc varmax data=use;
id date interval=qtr;
model y1-y3 / p=2 dify=(1)

print=(decompose(6) impulse=(stderr) estimates diagnose)
printform=both lagmax=3;

causal group1=(y1) group2=(y2 y3);
output lead=5;

run;
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First, the differenced data are modeled as a VAR(2) with the following result:

�yt D

0@ �0:016720:01577

0:01293

1AC
0@ �0:31963 0:14599 0:96122

0:04393 �0:15273 0:28850

�0:00242 0:22481 �0:26397

1A�yt�1

C

0@ �0:16055 0:11460 0:93439

0:05003 0:01917 �0:01020

0:03388 0:35491 �0:02223

1A�yt�2 C �t

The parameter estimates AR1_1_2, AR1_1_3, AR2_1_2, and AR2_1_3 are insignificant, and the VARX
model is fitted in the next step.

The detailed output is shown in Output 43.2.1 through Output 43.2.8.

Output 43.2.1 shows the descriptive statistics.

Output 43.2.1 Descriptive Statistics

Analysis of German Economic Variables

The VARMAX Procedure

Number of Observations 75

Number of Pairwise Missing 0

Observation(s) eliminated by differencing 1

Simple Summary Statistics

Variable Type N Mean
Standard
Deviation Min Max Difference Label

y1 Dependent 75 0.01811 0.04680 -0.14018 0.19358 1 logarithm of investment

y2 Dependent 75 0.02071 0.01208 -0.02888 0.05023 1 logarithm of income

y3 Dependent 75 0.01987 0.01040 -0.01300 0.04483 1 logarithm of consumption

Output 43.2.2 shows that a VAR(2) model is fit to the data.
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Output 43.2.2 Parameter Estimates

Analysis of German Economic Variables

The VARMAX Procedure

Type of Model VAR(2)

Estimation Method Least Squares Estimation

Constant

Variable Constant

y1 -0.01672

y2 0.01577

y3 0.01293

AR

Lag Variable y1 y2 y3

1 y1 -0.31963 0.14599 0.96122

y2 0.04393 -0.15273 0.28850

y3 -0.00242 0.22481 -0.26397

2 y1 -0.16055 0.11460 0.93439

y2 0.05003 0.01917 -0.01020

y3 0.03388 0.35491 -0.02223

Output 43.2.3 shows the parameter estimates and their significance.
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Output 43.2.3 Parameter Estimates, Continued

Schematic Representation

Variable/Lag C AR1 AR2

y1 . -.. ...

y2 + ... ...

y3 + .+. .+.

+ is > 2*std error, - is < -2*std error, . is between, * is N/A

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y1 CONST1 -0.01672 0.01723 -0.97 0.3352 1

AR1_1_1 -0.31963 0.12546 -2.55 0.0132 y1(t-1)

AR1_1_2 0.14599 0.54567 0.27 0.7899 y2(t-1)

AR1_1_3 0.96122 0.66431 1.45 0.1526 y3(t-1)

AR2_1_1 -0.16055 0.12491 -1.29 0.2032 y1(t-2)

AR2_1_2 0.11460 0.53457 0.21 0.8309 y2(t-2)

AR2_1_3 0.93439 0.66510 1.40 0.1647 y3(t-2)

y2 CONST2 0.01577 0.00437 3.60 0.0006 1

AR1_2_1 0.04393 0.03186 1.38 0.1726 y1(t-1)

AR1_2_2 -0.15273 0.13857 -1.10 0.2744 y2(t-1)

AR1_2_3 0.28850 0.16870 1.71 0.0919 y3(t-1)

AR2_2_1 0.05003 0.03172 1.58 0.1195 y1(t-2)

AR2_2_2 0.01917 0.13575 0.14 0.8882 y2(t-2)

AR2_2_3 -0.01020 0.16890 -0.06 0.9520 y3(t-2)

y3 CONST3 0.01293 0.00353 3.67 0.0005 1

AR1_3_1 -0.00242 0.02568 -0.09 0.9251 y1(t-1)

AR1_3_2 0.22481 0.11168 2.01 0.0482 y2(t-1)

AR1_3_3 -0.26397 0.13596 -1.94 0.0565 y3(t-1)

AR2_3_1 0.03388 0.02556 1.33 0.1896 y1(t-2)

AR2_3_2 0.35491 0.10941 3.24 0.0019 y2(t-2)

AR2_3_3 -0.02223 0.13612 -0.16 0.8708 y3(t-2)

Output 43.2.4 shows the innovation covariance matrix estimates, the various information criteria results, and
the tests for white noise residuals. The residuals are uncorrelated except at lag 3 for y2 variable.
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Output 43.2.4 Diagnostic Checks

Covariances of Innovations

Variable y1 y2 y3

y1 0.00213 0.00007 0.00012

y2 0.00007 0.00014 0.00006

y3 0.00012 0.00006 0.00009

Information
Criteria

AICC -1527.51

HQC -1536.46

AIC -1561.11

SBC -1499.27

FPEC 2.18E-11

Cross Correlations of Residuals

Lag Variable y1 y2 y3

0 y1 1.00000 0.13242 0.28275

y2 0.13242 1.00000 0.55526

y3 0.28275 0.55526 1.00000

1 y1 0.01461 -0.00666 -0.02394

y2 -0.01125 -0.00167 -0.04515

y3 -0.00993 -0.06780 -0.09593

2 y1 0.07253 -0.00226 -0.01621

y2 -0.08096 -0.01066 -0.02047

y3 -0.02660 -0.01392 -0.02263

3 y1 0.09915 0.04484 0.05243

y2 -0.00289 0.14059 0.25984

y3 -0.03364 0.05374 0.05644

Schematic Representation of Cross Correlations of
Residuals

Variable/Lag 0 1 2 3

y1 +.+ ... ... ...

y2 .++ ... ... ..+

y3 +++ ... ... ...

+ is > 2*std error, - is < -2*std error, . is between

Portmanteau Test for Cross
Correlations of Residuals

Up To
Lag DF Chi-Square Pr > ChiSq

3 9 9.69 0.3766

Output 43.2.5 describes how well each univariate equation fits the data. The residuals are off from the
normality, but have no AR effects. The residuals for y1 variable have the ARCH effect.
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Output 43.2.5 Diagnostic Checks Continued

Univariate Model ANOVA Diagnostics

Variable R-Square
Standard
Deviation F Value Pr > F

y1 0.1286 0.04615 1.62 0.1547

y2 0.1142 0.01172 1.42 0.2210

y3 0.2513 0.00944 3.69 0.0032

Univariate Model White Noise Diagnostics

Normality ARCH

Variable
Durbin

Watson Chi-Square Pr > ChiSq F Value Pr > F

y1 1.96269 10.22 0.0060 12.39 0.0008

y2 1.98145 11.98 0.0025 0.38 0.5386

y3 2.14583 34.25 <.0001 0.10 0.7480

Univariate Model AR Diagnostics

AR1 AR2 AR3 AR4

Variable F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F

y1 0.01 0.9029 0.19 0.8291 0.39 0.7624 1.39 0.2481

y2 0.00 0.9883 0.00 0.9961 0.46 0.7097 0.34 0.8486

y3 0.68 0.4129 0.38 0.6861 0.30 0.8245 0.21 0.9320

Output 43.2.6 is the output in a matrix format associated with the PRINT=(IMPULSE=) option for the
impulse response function and standard errors. The y3 variable in the first row is an impulse variable. The
y1 variable in the first column is a response variable. The numbers, 0.96122, 0.41555, –0.40789 at lag 1 to 3
are decreasing.
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Output 43.2.6 Impulse Response Function

Simple Impulse Response by Variable

Variable
Response\Impulse

Lag y1 y2 y3

y1 1 -0.31963 0.14599 0.96122

STD 0.12546 0.54567 0.66431

2 -0.05430 0.26174 0.41555

STD 0.12919 0.54728 0.66311

3 0.11904 0.35283 -0.40789

STD 0.08362 0.38489 0.47867

y2 1 0.04393 -0.15273 0.28850

STD 0.03186 0.13857 0.16870

2 0.02858 0.11377 -0.08820

STD 0.03184 0.13425 0.16250

3 -0.00884 0.07147 0.11977

STD 0.01583 0.07914 0.09462

y3 1 -0.00242 0.22481 -0.26397

STD 0.02568 0.11168 0.13596

2 0.04517 0.26088 0.10998

STD 0.02563 0.10820 0.13101

3 -0.00055 -0.09818 0.09096

STD 0.01646 0.07823 0.10280

The proportions of decomposition of the prediction error covariances of three variables are given in Out-
put 43.2.7. If you see the y3 variable in the first column, then the output explains that about 64.713% of the
one-step-ahead prediction error covariances of the variable y3t is accounted for by its own innovations, about
7.995% is accounted for by y1t innovations, and about 27.292% is accounted for by y2t innovations.
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Output 43.2.7 Proportions of Prediction Error Covariance Decomposition

Proportions of Prediction Error
Covariances by Variable

Variable Lead y1 y2 y3

y1 1 1.00000 0.00000 0.00000

2 0.95996 0.01751 0.02253

3 0.94565 0.02802 0.02633

4 0.94079 0.02936 0.02985

5 0.93846 0.03018 0.03136

6 0.93831 0.03025 0.03145

y2 1 0.01754 0.98246 0.00000

2 0.06025 0.90747 0.03228

3 0.06959 0.89576 0.03465

4 0.06831 0.89232 0.03937

5 0.06850 0.89212 0.03938

6 0.06924 0.89141 0.03935

y3 1 0.07995 0.27292 0.64713

2 0.07725 0.27385 0.64890

3 0.12973 0.33364 0.53663

4 0.12870 0.33499 0.53631

5 0.12859 0.33924 0.53217

6 0.12852 0.33963 0.53185

The table in Output 43.2.8 gives forecasts and their prediction error covariances.

Output 43.2.8 Forecasts

Forecasts

Variable Obs Time Forecast
Standard

Error

95%
Confidence
Limits

y1 77 1979:1 6.54027 0.04615 6.44982 6.63072

78 1979:2 6.55105 0.05825 6.43688 6.66522

79 1979:3 6.57217 0.06883 6.43725 6.70708

80 1979:4 6.58452 0.08021 6.42732 6.74173

81 1980:1 6.60193 0.09117 6.42324 6.78063

y2 77 1979:1 7.68473 0.01172 7.66176 7.70770

78 1979:2 7.70508 0.01691 7.67193 7.73822

79 1979:3 7.72206 0.02156 7.67980 7.76431

80 1979:4 7.74266 0.02615 7.69140 7.79392

81 1980:1 7.76240 0.03005 7.70350 7.82130

y3 77 1979:1 7.54024 0.00944 7.52172 7.55875

78 1979:2 7.55489 0.01282 7.52977 7.58001

79 1979:3 7.57472 0.01808 7.53928 7.61015

80 1979:4 7.59344 0.02205 7.55022 7.63666

81 1980:1 7.61232 0.02578 7.56179 7.66286

Output 43.2.9 shows that you cannot reject Granger noncausality from .y2; y3/ to y1 using the 0.05
significance level.
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Output 43.2.9 Granger Causality Tests

Granger-Causality Wald Test

Test DF Chi-Square Pr > ChiSq

1 4 6.37 0.1734

Test 1:  Group 1 Variables: y1

Group 2 Variables: y2 y3

The following SAS statements show that the variable y1 is the exogenous variable and fit the VARX(2,1)
model to the data:

proc varmax data=use;
id date interval=qtr;
model y2 y3 = y1 / p=2 dify=(1) difx=(1) xlag=1 lagmax=3

print=(estimates diagnose);
run;

The fitted VARX(2,1) model is written as�
�y2t
�y3t

�
D

�
0:01542

0:01319

�
C

�
0:02520

0:05130

�
�y1t C

�
0:03870

0:00363

�
�y1;t�1

C

�
�0:12258 0:25811

0:24367 �0:31809

��
�y2;t�1
�y3;t�1

�
C

�
0:01651 0:03498

0:34921 �0:01664

��
�y2;t�2
�y3;t�2

�
C

�
�1t
�2t

�
The detailed output is shown in Output 43.2.10 through Output 43.2.13.

Output 43.2.10 shows the parameter estimates in terms of the constant, the current and the lag one coefficients
of the exogenous variable, and the lag two coefficients of the dependent variables.
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Output 43.2.10 Parameter Estimates

Analysis of German Economic Variables

The VARMAX Procedure

Type of Model VARX(2,1)

Estimation Method Least Squares Estimation

Constant

Variable Constant

y2 0.01542

y3 0.01319

XLag

Lag Variable y1

0 y2 0.02520

y3 0.05130

1 y2 0.03870

y3 0.00363

AR

Lag Variable y2 y3

1 y2 -0.12258 0.25811

y3 0.24367 -0.31809

2 y2 0.01651 0.03498

y3 0.34921 -0.01664

Output 43.2.11 shows the parameter estimates and their significance.

Output 43.2.11 Parameter Estimates, Continued

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

y2 CONST1 0.01542 0.00443 3.48 0.0009 1

XL0_1_1 0.02520 0.03130 0.81 0.4237 y1(t)

XL1_1_1 0.03870 0.03252 1.19 0.2383 y1(t-1)

AR1_1_1 -0.12258 0.13903 -0.88 0.3811 y2(t-1)

AR1_1_2 0.25811 0.17370 1.49 0.1421 y3(t-1)

AR2_1_1 0.01651 0.13766 0.12 0.9049 y2(t-2)

AR2_1_2 0.03498 0.16783 0.21 0.8356 y3(t-2)

y3 CONST2 0.01319 0.00346 3.81 0.0003 1

XL0_2_1 0.05130 0.02441 2.10 0.0394 y1(t)

XL1_2_1 0.00363 0.02536 0.14 0.8868 y1(t-1)

AR1_2_1 0.24367 0.10842 2.25 0.0280 y2(t-1)

AR1_2_2 -0.31809 0.13546 -2.35 0.0219 y3(t-1)

AR2_2_1 0.34921 0.10736 3.25 0.0018 y2(t-2)

AR2_2_2 -0.01664 0.13088 -0.13 0.8992 y3(t-2)
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Output 43.2.12 shows the innovation covariance matrix estimates, the various information criteria results,
and the tests for white noise residuals. The residuals is uncorrelated except at lag 3 for y2 variable.

Output 43.2.12 Diagnostic Checks

Covariances of
Innovations

Variable y2 y3

y2 0.00014 0.00006

y3 0.00006 0.00009

Information
Criteria

AICC -1182.33

HQC -1177.94

AIC -1193.46

SBC -1154.52

FPEC 9.91E-9

Cross Correlations of
Residuals

Lag Variable y2 y3

0 y2 1.00000 0.56462

y3 0.56462 1.00000

1 y2 -0.02312 -0.05927

y3 -0.07056 -0.09145

2 y2 -0.02849 -0.05262

y3 -0.05804 -0.08567

3 y2 0.16071 0.29588

y3 0.10882 0.13002

Schematic Representation of Cross Correlations of
Residuals

Variable/Lag 0 1 2 3

y2 ++ .. .. .+

y3 ++ .. .. ..

+ is > 2*std error, - is < -2*std error, . is between

Portmanteau Test for Cross
Correlations of Residuals

Up To
Lag DF Chi-Square Pr > ChiSq

3 4 8.38 0.0787

Output 43.2.13 describes how well each univariate equation fits the data. The residuals are off from the
normality, but have no ARCH and AR effects.
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Output 43.2.13 Diagnostic Checks Continued

Univariate Model ANOVA Diagnostics

Variable R-Square
Standard
Deviation F Value Pr > F

y2 0.0897 0.01188 1.08 0.3809

y3 0.2796 0.00926 4.27 0.0011

Univariate Model White Noise Diagnostics

Normality ARCH

Variable
Durbin

Watson Chi-Square Pr > ChiSq F Value Pr > F

y2 2.02413 14.54 0.0007 0.49 0.4842

y3 2.13414 32.27 <.0001 0.08 0.7782

Univariate Model AR Diagnostics

AR1 AR2 AR3 AR4

Variable F Value Pr > F F Value Pr > F F Value Pr > F F Value Pr > F

y2 0.04 0.8448 0.04 0.9570 0.62 0.6029 0.42 0.7914

y3 0.62 0.4343 0.62 0.5383 0.72 0.5452 0.36 0.8379

Example 43.3: Analysis of Restricted Cointegrated Systems
The structural relationships between economic time series have been of interest for decades. Because of
the cointegration, the vector error correction model (VECM), introduced by Engle and Granger (1987), is
one of the most important tools for performing such analysis. Although there exist analytical solutions for a
nonrestricted VECM and some restricted VECMs in special forms, the estimation of a generally restricted
VECM relies on numerical methods. This section illustrates how to use the RESTRICT (or BOUND) and
TEST statements, together with the COINTEG statement, to estimate the restricted VECM and perform
the statistical tests. For more information about this topic, see Boswijk and Doornik (2004) and references
therein.

The data are simulated based on the VECM,

�yt D ˛ˇ0yt�1 Cˆ�1�yt�1 C‚�0xt C �t

D

2664
0:01 �0:02

�0:03 0:04

0:05 �0:06

0 0

3775� 1 0 �1 0

0 1 0 �1

�
yt�1

C

2664
�0:01 0:03 0:05 �0:02

0:02 �0:04 0:06 0:03

0 0 0:10 0

0 0 0 0:04

3775�yt�1 C

2664
0

0

0

0

3775 xt C �t ;

�t � iid N.0;†/;† D I4
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where I4 is the 4 � 4 identity matrix.

The following statements implement the simulation:

title 'Analysis of Restricted Cointegrated Systems';
proc iml;

alpha = {0.01 -0.02, -0.03 0.04, 0.05 -0.06, 0 0};
beta = {1 0, 0 1, -1 0, 0 -1};
phiStar = {-0.01 0.03 0.05 -0.02,

0.02 -0.04 0.06 0.03,
0 0 0.10 0,
0 0 0 0.04};

Pi = alpha * beta` ;
A1 = I(4) + Pi+ phiStar;
A2 = -phiStar;
phi = A1 // A2;
sig = I(4);

/* to simulate the vector time series */
T = 600;
myseed = 2;
call varmasim(y,phi) sigma=sig n=T seed=myseed;
x = J(T,1,0);
do i = 1 to T;

x[i] = normal(myseed);
end;
y = y || x;

cn = {'y1' 'y2' 'y3' 'y4' 'x'};
create simul5 from y[colname=cn];
append from y;
close;

quit;

Weak Exogeneity Tests

This example shows different methods for checking weak exogeneity.

The first method uses the EXOGENEITY option in the following statements, and the test results are shown
in Output 43.3.1:

/* Method 1 -- To use the EXOGENEITY option */
ods output LogLikelihood = tbl_ll_g;
proc varmax data=simul5;

model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2 exogeneity;

run;
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Output 43.3.1 Test Weak Exogeneity with the EXOGENEITY Option

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing Weak Exogeneity of Each
Variable

Variable DF Chi-Square Pr > ChiSq

y1 2 102.96 <.0001

y2 2 116.12 <.0001

y3 2 200.80 <.0001

y4 2 3.99 0.1357

The second method uses the RESTRICT statement and then the likelihood ratio (LR) test in the following
statements. The results are shown in Output 43.3.2. In theory, the first and second methods should have
exactly same statistics and p-values because they implement the same LR tests. However, because of the
difference between the analytical solution and the numerical solution for the restricted VECM, the statistics
are a little different, although for the 0.05 significance level they lead to the same correct conclusion: the
variable y1 is not the weak exogeneity of variables y2, y3, and y4; the variable y2 is not the weak exogeneity
of variables y1, y3, and y4; the variable y3 is not the weak exogeneity of variables y1, y2, and y4; the
variable y4 is the weak exogeneity of variables y1, y2, and y3.

/* Method 2 -- Use the RESTRICT statement and implement LR test */
%macro LRTestForVECM();

%do i = 1 %to 4;
ods output LogLikelihood = tbl_ll_r1_&i.;
proc varmax data=simul5;

model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
restrict alpha(&i.,1:2) = 0;

run;
%end;
proc iml;

use tbl_ll_g;
read all var {nValue1} into ll_g;
close;
%do i = 1 %to 4;

use tbl_ll_r1_&i.;
read all var {nValue1} into ll_r_&i.;
close;

%end;
DF = J(4,1,2);
ll_r = ll_r_1 // ll_r_2 // ll_r_3 // ll_r_4;
Stat = -2*(ll_r - ll_g);
pValue = 1-cdf("CHISQUARE", Stat, DF);
Test = {"H0: Alpha(1,)=0"} // {"H0: Alpha(2,)=0"}

// {"H0: Alpha(3,)=0"} // {"H0: Alpha(4,)=0"};
print Test DF Stat pValue;

quit;
%mend;
%LRTestForVECM();
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Output 43.3.2 Test Weak Exogeneity with the RESTRICT Statement and LR Tests

Analysis of Restricted Cointegrated Systems

Test DF Stat pValue

H0: Alpha(1,)=0 2 109.05157 0

H0: Alpha(2,)=0 2 124.56535 0

H0: Alpha(3,)=0 2 238.35505 0

H0: Alpha(4,)=0 2 5.0877698 0.0785606

The third method uses the TEST statement, which implements the Wald tests. Asymptotically, the Wald test
has the same distribution as the LR test.

/* Method 3 -- To use the TEST statement and the Wald test */
proc varmax data=simul5;

model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
test alpha(1,1:2) = 0;
test alpha(2,1:2) = 0;
test alpha(3,1:2) = 0;
test alpha(4,1:2) = 0;

run;

Based on the test results shown in Output 43.3.3, the same correct conclusion can be obtained at the 0.05
significance level: the variable y1 is not the weak exogeneity of variables y2, y3, and y4; the variable y2 is
not the weak exogeneity of variables y1, y3, and y4; the variable y3 is not the weak exogeneity of variables
y1, y2, and y4; the variable y4 is the weak exogeneity of variables y1, y2, and y3.

Output 43.3.3 Test Weak Exogeneity with the TEST Statement, Wald Tests

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 2 113.27 <.0001

2 2 129.15 <.0001

3 2 245.21 <.0001

4 2 4.81 0.0903

Identification

This example shows how important it is to identify ˛ and ˇ when applying the Wald test on ˛. First, in the
following statements, there are no constraints on ˇ:

proc varmax data=simul5;
model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
test alpha(1,2) = alpha(2,2) + alpha(3,2);

run;
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As shown in Output 43.3.4, based on the test results, the null hypothesis H0: ˛Œ1; 2� D ˛Œ2; 2� C ˛Œ3; 2�
should be rejected at the 0.05 significance level, although the true parameter values for the data generating
process indicate that H0 is correct.

Output 43.3.4 Importance of Identifying ˛ and ˇ in the Wald Test

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 1 21.44 <.0001

In the following statements, r2 constraints are now imposed on ˇ, where r is the cointegration rank:

proc varmax data=simul5;
model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
restrict beta(3:4,1:2) = -I(2);
test alpha(1,2) = alpha(2,2) + alpha(3,2);

run;

As shown in Output 43.3.5, the null hypothesis cannot be rejected at 0.05 significance level; that is to say, the
correct conclusion is achieved.

Output 43.3.5 Importance of Identifying ˛ and ˇ in the Wald Test, Continued

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 1 0.16 0.6869

Besides ˛, other short-run parameters in a VECM can also be tested by using the TEST statement. Because
short-run parameters other than ˛ are identified in a VECM, it is not necessary to impose additional constraints
on ˛ and ˇ. The following statements test the null hypothesis H0: ˆ�1 D 0:

proc varmax data=simul5;
model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
test ar(2);

run;

According to the results shown in Output 43.3.6, the null hypothesis should be rejected at the 0.05 significance
level.
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Output 43.3.6 Wald Tests for Short-Run Parameters

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 16 32.79 0.0079

The following statements test the null hypothesis H0: ‚�0 D 0:

proc varmax data=simul5;
model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
test xl;

run;

According to the results shown in Output 43.3.7, the null hypothesis cannot be rejected at the 0.05 significance
level.

Output 43.3.7 Wald Tests for Short-Run Parameters, Continued

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 4 6.01 0.1982

Besides the parameters that are estimated in a VECM, you can also use the TEST statement on ….D ˛ˇ0/,
and ı0 or ı1 for Case 2 or 4 when the constant or linear trend, respectively, is restricted in the error correction
term. However, keep in mind that the covariance matrix for these parameter estimates is singular when the
cointegration rank is less than the number of dependent variables; hence, you might not get the results for
some tests.

proc varmax data=simul5;
model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
test ar(1,4,1:4);
test ar(1,4,{1 3});

run;

As shown in Output 43.3.8, the first test on H0: …Œ4; � D 0 cannot be calculated, whereas the second test on
H0: …Œ4; 1� D …Œ4; 3� D 0 can be.
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Output 43.3.8 Wald Tests for …

Analysis of Restricted Cointegrated Systems

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 4

2 2 4.81 0.0903

Tests for Long-Run Parameter

This example focuses on testing the relationships on the long-run parameter ˇ. Here, only the following
specific form of hypothesis is discussed,

H0Wˇ D .H;�/

where H is a known k � r1 matrix, � is a freely varying k � .r � r1/ parameter matrix, k is the number of
dependent variables, r is the cointegration rank, and 0 � r1 � r . Other forms of hypothesis—for example,
H0: ˇ D .H1�1; : : : ;Hr�r/ or H0: Hvec.ˇ/ D h—are omitted, although they can also be implemented in
the same logic. The following statements test the null hypothesis that .1 0 � 1 0/0 is in the cointegrating
space that is spanned by ˇ:

/* Use the RESTRICT statement and LR test for restrictions on Beta. */
/* H0: Beta = [ H, phi ] where H is known and phi is free */
ods output LogLikelihood = tbl_ll_r2;
proc varmax data=simul5;

model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
restrict beta(,1) = {1, 0, -1, 0};
nloptions tech=qn maxit=5000;

run;

proc iml;
use tbl_ll_g;
read all var {nValue1} into ll_g;
close;
use tbl_ll_r2;
read all var {nValue1} into ll_r;
close;
DF = (4-2)*1; /* DF = (k-r)*r_1 */
Stat = -2*(ll_r - ll_g);
pValue = 1-cdf("CHISQUARE", stat, df);
Test = "H0: Beta[1,1:4] = {1 0 -1 0}'";
print Test DF Stat pValue;

quit;

According to the result shown in Output 43.3.9, the null hypothesis cannot be rejected at the 0.05 significance
level.
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Output 43.3.9 LR Tests on Long-Run Parameter ˇ

Analysis of Restricted Cointegrated Systems

Test DF Stat pValue

H0: Beta[1,1:4] = {1 0 -1 0}' 2 1.6194924 0.444971

The following statements test the null hypothesis that the cointegrating space is spanned by

.1 0 � 1 0; 0 1 0 � 1/0:

/* H0: Beta = H, where H is the true Beta for DGP */
ods output LogLikelihood = tbl_ll_r3;
proc varmax data=simul5;

model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
restrict beta = I(2) // (-I(2));
nloptions tech=qn maxit=5000;

run;

proc iml;
use tbl_ll_g;
read all var {nValue1} into ll_g;
close;
use tbl_ll_r3;
read all var {nValue1} into ll_r;
close;
DF = (4-2)*2; /* DF = (k-r)*r_1 */
Stat = -2*(ll_r - ll_g);
pValue = 1-cdf("CHISQUARE", stat, df);
Test = "H0: Beta = {1 0, 0 1, -1 0, 0 -1}";
print Test DF Stat pValue;

quit;

According to the result shown in Output 43.3.10, the null hypothesis cannot be rejected at the 0.05 significance
level.

Output 43.3.10 LR Tests on Long-Run Parameter ˇ, Continued

Analysis of Restricted Cointegrated Systems

Test DF Stat pValue

H0: Beta = {1 0, 0 1, -1 0, 0 -1} 4 1.5815435 0.8121055

The following statements test the null hypothesis that the cointegrating space is spanned by .1 0 1 0; 0 1 0 1/0,
the orthogonal matrix to the true ˇ for the data generating process:

/* H0: Beta = H, where H is the matrix orthogonal
to the true Beta for DGP */

ods output LogLikelihood = tbl_ll_r4;
proc varmax data=simul5;

model y1 y2 y3 y4 = x / noint p=2;
cointeg rank=2;
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restrict beta = {1 0, 0 1, 1 0, 0 1};
nloptions tech=qn maxit=5000;

run;

proc iml;
use tbl_ll_g;
read all var {nValue1} into ll_g;
close;
use tbl_ll_r4;
read all var {nValue1} into ll_r;
close;
DF = (4-2)*2; /* DF = (k-r)*r_1 */
Stat = -2*(ll_r - ll_g);
pValue = 1-cdf("CHISQUARE", stat, df);
Test = "H0: Beta = {1 0, 0 1, 1 0, 0 1}";
print Test DF Stat pValue;

quit;

According to the result shown in Output 43.3.11, the null hypothesis should be rejected at the 0.05 significance
level.

Output 43.3.11 LR Tests on Long-Run Parameter ˇ, Continued

Analysis of Restricted Cointegrated Systems

Test DF Stat pValue

H0: Beta = {1 0, 0 1, 1 0, 0 1} 4 227.68902 0

For the VECM, the BOUND statement can be regarded as an alias of the RESTRICT statement; that is,
you can directly replace any RESTRICT statement with a BOUND statement and get the same result. The
linear inequality constraints in the restricted cointegrated systems are not discussed in this section, although
they are also supported in the BOUND and RESTRICT statements. For more information, see the sections
“BOUND Statement” on page 3023 and “RESTRICT Statement” on page 3052.

Obtaining the numerical solution for the restricted VECM is not an easy task in most cases. You might need
to use the INITIAL and NLOPTIONS statements to tune the process. For more information, see the sections
“INITIAL Statement” on page 3033 and “NLOPTIONS Statement” on page 3051.

Example 43.4: Analysis of Euro Foreign Exchange Reference Rates
This example illustrates how to use and select the VARMA-GARCH model for exchange rates, a general
type of financial data. As shown in much of the literature, the financial variables are cross-correlated and
autocorrelated not only on first moments, but also on second moments. The VARMA-GARCH model and the
vector error correction GARCH model are often used to catch the stylized fact.

The data, downloaded from European Central Bank website (https://www.ecb.europa.eu), consist of
four pairs of daily foreign exchange reference rates: the euro and the Australian dollar (AUD), the euro and
the British pound sterling (GBP), the euro and the Japanese yen (JPY), and the euro and the US dollar (USD).
The full sample covers the period from January 4, 1999, to February 12, 2015 (4,127 days). In the following
statements, the series are logarithmically transformed, and the returns (in percentage) are calculated:

https://www.ecb.europa.eu
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title 'Analysis of Euro Foreign Exchange Reference Rates';
data eurofxrr;

input date : MMDDYY10. aud gbp jpy usd;
label aud='The euro and the Australian dollar'

usd='The euro and the U.S. dollar'
jpy='The euro and the Japanese yen'
gbp='The euro and the British pound sterling';

logAUD = log(AUD); logGBP = log(GBP);
logJPY = log(JPY); logUSD = log(USD);
rAUD = (logAUD - lag(logAUD))*100;
rGBP = (logGBP - lag(logGBP))*100;
rJPY = (logJPY - lag(logJPY))*100;
rUSD = (logUSD - lag(logUSD))*100;

datalines;
01/04/1999 1.9100 0.71110 133.73 1.1789
01/05/1999 1.8944 0.71220 130.96 1.1790
01/06/1999 1.8820 0.70760 131.42 1.1743
01/07/1999 1.8474 0.70585 129.43 1.1632

... more lines ...

02/10/2015 1.4522 0.74200 134.67 1.1297
02/11/2015 1.4606 0.73960 135.50 1.1314
02/12/2015 1.4761 0.73760 135.72 1.1328
;

Although it is well known that unit roots exist in the exchange rate series and they are not cointegrated, you
can use the following statements to verify:

/*--- Unit Roots and Cointegration in Log Exchange Rates ---*/

proc varmax data=eurofxrr;
model logAUD logGBP logJPY logUSD / p=2 dftest cointtest;

run;

According to the results of the Dickey-Fuller unit root tests shown in Output 43.4.1, the null hypothesis that
there is a unit root in each series cannot be rejected at the 5% significance level. The results of the Johansen
cointegration rank trace tests shown in Output 43.4.2 confirm that there is no cointegration between series
because the null hypothesis that the cointegration rank is 0, in both unrestricted and restricted cases, cannot
be rejected at the 5% significance level. Because there is no cointegration, you do not need to consider vector
error correction models; otherwise, the final selected model might be a vector error correction GARCH
model, instead of a VARMA-GARCH model.
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Output 43.4.1 Dickey-Fuller Unit Root Tests

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Unit Root Test

Variable Type Rho Pr < Rho Tau Pr < Tau

logAUD Zero Mean -1.05 0.4644 -1.08 0.2549

Single Mean -9.44 0.1549 -2.31 0.1683

Trend -13.85 0.2287 -2.63 0.2657

logGBP Zero Mean -0.57 0.5554 -0.59 0.4630

Single Mean -3.23 0.6297 -1.27 0.6445

Trend -11.11 0.3666 -2.27 0.4502

logJPY Zero Mean 0.00 0.6836 0.02 0.6894

Single Mean -6.11 0.3394 -1.73 0.4140

Trend -6.56 0.7000 -1.83 0.6901

logUSD Zero Mean -1.46 0.4014 -0.88 0.3346

Single Mean -3.29 0.6216 -1.27 0.6471

Trend -5.76 0.7638 -1.47 0.8394

Output 43.4.2 Johansen Cointegration Rank Trace Tests

Cointegration Rank Test Using Trace

H0:
Rank=r

H1:
Rank>r Eigenvalue Trace Pr > Trace

Drift in
ECM

Drift in
Process

0 0 0.0059 36.6836 0.3601 Constant Linear

1 1 0.0018 12.1427 0.9269

2 2 0.0008 4.7724 0.8319

3 3 0.0003 1.3036 0.2532

Cointegration Rank Test Using Trace Under Restriction

H0:
Rank=r

H1:
Rank>r Eigenvalue Trace Pr > Trace

Drift in
ECM

Drift in
Process

0 0 0.0060 37.1246 0.6151 Constant Constant

1 1 0.0018 12.1792 0.9921

2 2 0.0008 4.7941 0.9855

3 3 0.0003 1.3041 0.9066

Before modeling returns, you can test whether unit roots still exist in the differenced data with the following
statement:

/*--- Unit Roots in Returns and Model Specification ---*/
proc varmax data=eurofxrr;

model rAUD rGBP rJPY rUSD / p=2 dftest;
test const; test ar(1); test ar(2);

run;

Output 43.4.3 shows that there is no unit root in each differenced series.
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Output 43.4.3 Dickey-Fuller Unit Root Tests

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Unit Root Test

Variable Type Rho Pr < Rho Tau Pr < Tau

rAUD Zero Mean -4242.7 0.0001 -46.04 <.0001

Single Mean -4243.7 0.0001 -46.04 <.0001

Trend -4244.2 0.0001 -46.04 <.0001

rGBP Zero Mean -4358.4 0.0001 -46.67 <.0001

Single Mean -4358.4 0.0001 -46.67 <.0001

Trend -4358.5 0.0001 -46.66 <.0001

rJPY Zero Mean -4181.4 0.0001 -45.72 <.0001

Single Mean -4181.4 0.0001 -45.72 <.0001

Trend -4181.9 0.0001 -45.72 <.0001

rUSD Zero Mean -4306.8 0.0001 -46.40 <.0001

Single Mean -4306.8 0.0001 -46.39 <.0001

Trend -4307.4 0.0001 -46.39 <.0001

The preceding statements also test whether the constant and each of two lags of AR terms are 0. The test
results are shown in Output 43.4.4.

Output 43.4.4 Tests on Constant and AR Terms

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 4 0.46 0.9776

2 16 59.42 <.0001

3 16 15.67 0.4759

The null hypothesis that the constant term is 0 and the null hypothesis that the second lag AR term is 0 are
both accepted at the 5% significance level. However, the null hypothesis that the first lag AR term is 0 is
rejected at the 5% significance level. In the remaining model selection process, only the first lag AR term is
considered.

The following statements estimate a zero-mean VAR(1) model and also print some diagnostic results:

/*--- VAR Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1 print=(diagnose);

run;

Output 43.4.5 shows the information criteria for the estimated zero-mean VAR(1) model. In this example,
AICC is used as the criterion for model selection: the smaller the AICC, the better the model.
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Output 43.4.5 Information Criteria for the VAR Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -1745.29

HQC -1687.44

AIC -1745.64

SBC -1581.19

FPEC 0.011938

Diagnostics are printed because the PRINT=(DIAGNOSE) option is specified. As shown in Output 43.4.6,
the null hypotheses that there is no ARCH effect in each series are all rejected at the 5% significance level.

Output 43.4.6 Tests on ARCH Effects

Univariate Model White Noise Diagnostics

Normality ARCH

Variable
Durbin

Watson Chi-Square Pr > ChiSq F Value Pr > F

rAUD 1.99811 8277.31 <.0001 217.35 <.0001

rGBP 1.99601 2537.71 <.0001 315.25 <.0001

rJPY 2.00007 2456.22 <.0001 149.75 <.0001

rUSD 1.99959 1398.54 <.0001 157.85 <.0001

To find the right GARCH model, you can start with the VAR(1)-CCC-GARCH(1,1) model (which is usually
the fastest one to be estimated) as in the following statement:

/*--- VAR CCC GARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=ccc;

run;

Compared to the AICC for the zero-mean VAR(1) model (shown in Output 43.4.5), the AICC for VAR(1)-
CCC-GARCH(1,1) model, as shown in Output 43.4.7, dramatically decreases, which means that the ARCH
effects do play an important role and should be modeled.
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Output 43.4.7 Information Criteria for VAR CCC GARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -4646.77

HQC -4571.24

AIC -4647.35

SBC -4432.31

FPEC 0.011966

As indicated by its name, a basic assumption of the CCC GARCH model is that the conditional correlation is
time-invariant, which might not be true. The following statements estimate a BEKK GARCH model to see
whether modeling the conditional correlation could improve the model performance:

/*--- VAR BEKK GARCH Model ---*/

proc varmax data=eurofxrr outest=oediagbekk;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=bekk;

run;

As shown in Output 43.4.8, the AICC for the VAR BEKK GARCH model does get smaller than the AICC
for the CCC GARCH model (shown in Output 43.4.7). The smaller AICC implies that the assumption of the
CCC GARCH model might be inaccurate.

Output 43.4.8 Information Criteria for VAR BEKK GARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5667.7

HQC -5539.55

AIC -5669.38

SBC -5302.54

FPEC 0.011979

One shortcoming of the BEKK GARCH model is that it has too many parameters. In practice, especially
for a large number of dependent variables, the scalar BEKK GARCH model and the diagonal BEKK
GARCH model are often applied, as shown in the following statements. In the RESTRICT statement,
matrix operations are used; using matrix operations is much more concise than restricting tens of ARCH and
GARCH parameters one by one.
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/*--- VAR Scalar BEKK GARCH Model ---*/

proc varmax data=eurofxrr outest=oediagbekk;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=bekk;
restrict ach(1)=ach(1,1,1)*I(4), gch(1)=gch(1,1,1)*I(4);

run;

/*--- VAR Diagonal BEKK GARCH Model ---*/

proc varmax data=eurofxrr outest=oediagbekk;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=bekk;
restrict ach(1)=ach(1)#I(4), gch(1)=gch(1)#I(4);

run;

The AICCs for the scalar and diagonal BEKK GARCH models are shown in Output 43.4.9 and Out-
put 43.4.10, respectively, and both of them are larger than the AICC for the BEKK GARCH model (shown in
Output 43.4.8). Hence, so far, the VAR BEKK GARCH model is the best.

Output 43.4.9 Information Criteria for VAR Scalar BEKK GARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5615.11

HQC -5552.83

AIC -5615.51

SBC -5438.41

FPEC 0.011974

Output 43.4.10 Information Criteria for VAR Diagonal BEKK GARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5630.31

HQC -5554.78

AIC -5630.89

SBC -5415.85

FPEC 0.011978

Another type of multivariate GARCH model that is suitable for modeling the time-varying conditional
correlation is the dynamic conditional correlation (DCC) GARCH model, as indicated by its name. The
following statements estimate the DCC GARCH model:
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/*--- VAR DCC GARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc;

run;

As shown in Output 43.4.11, the AICC for the VAR DCC GARCH model is smaller than the AICC for the
VAR BEKK GARCH model (shown in Output 43.4.8), implying that the best model should be in the class of
DCC GARCH models.

Output 43.4.11 Information Criteria for VAR DCC GARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5689.43

HQC -5609.5

AIC -5690.08

SBC -5462.39

FPEC 0.011973

Could the DCC GARCH model be more parsimonious? The following statements use the sample correlation
matrix of the standardized residuals (saving six parameters) to calculate the unconditional correlation matrix
in the DCC GARCH model:

/*--- Parsimonious VAR DCC GARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc corrconst=expect;

run;

The AICC of the parsimonious VAR DCC GARCH model, as shown in Output 43.4.12, becomes a little
smaller. Hence, the best model so far is the parsimonious VAR DCC GARCH model.

Output 43.4.12 Information Criteria for the Parsimonious VAR DCC GARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5694.89

HQC -5628.19

AIC -5695.35

SBC -5505.6

FPEC 0.011973
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Another way to refine the model is to try different subforms of GARCH models for each series. The following
statements estimate the VAR DCC EGARCH model and produce Output 43.4.13:

/*--- VAR DCC EGARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc subform=egarch corrconst=expect;
nloptions maxit=5000 pall;

run;

The following statements estimate the VAR DCC PGARCH model and produce Output 43.4.14:

/*--- VAR DCC PGARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc subform=pgarch corrconst=expect;
nloptions maxit=5000 pall;

run;

The following statements estimate the VAR DCC QGARCH model and produce Output 43.4.15:

/*--- VAR DCC QGARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc subform=qgarch corrconst=expect;
nloptions maxit=5000 pall;

run;

The following statements estimate the VAR DCC TGARCH model and produce Output 43.4.16:

/*--- VAR DCC TGARCH Model ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc subform=tgarch corrconst=expect;
nloptions maxit=5000 pall;

run;

Comparing the AICCs shown in Output 43.4.13 through Output 43.4.16, you find that the AICC for the
VAR DCC PGARCH model is the smallest. Hence, the best model becomes the zero-mean VAR(1)-DCC-
PGARCH(1,1) model, whose unconditional correlation matrix is estimated by the sample correlation matrix
of the standardized residuals.
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Output 43.4.13 Information Criteria for the Parsimonious VAR DCC EGARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5704.33

HQC -5628.81

AIC -5704.92

SBC -5489.87

FPEC 0.011982

Output 43.4.14 Information Criteria for the Parsimonious VAR DCC PGARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5724.44

HQC -5640.1

AIC -5725.16

SBC -5484.82

FPEC 0.011974

Output 43.4.15 Information Criteria for the Parsimonious VAR DCC QGARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5696.97

HQC -5621.44

AIC -5697.55

SBC -5482.51

FPEC 0.011972
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Output 43.4.16 Information Criteria for the Parsimonious VAR DCC TGARCH Model

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5705.59

HQC -5630.06

AIC -5706.17

SBC -5491.13

FPEC 0.011973

Output 43.4.17 shows that most of the AR parameter estimates in the VAR DCC PGARCH model are not
significant.

Output 43.4.17 AR Parameter Estimates for the Parsimonious VAR DCC PGARCH Model

Model Parameter Estimates

Equation Parameter Estimate
Standard

Error t Value Pr > |t| Variable

rAUD AR1_1_1 0.05718 0.01790 3.19 0.0014 rAUD(t-1)

AR1_1_2 0.00042 0.02396 0.02 0.9859 rGBP(t-1)

AR1_1_3 -0.02305 0.01619 -1.42 0.1546 rJPY(t-1)

AR1_1_4 0.02005 0.02020 0.99 0.3211 rUSD(t-1)

rGBP AR1_2_1 0.02686 0.01147 2.34 0.0193 rAUD(t-1)

AR1_2_2 0.04512 0.01880 2.40 0.0164 rGBP(t-1)

AR1_2_3 -0.00462 0.01138 -0.41 0.6845 rJPY(t-1)

AR1_2_4 -0.04651 0.01475 -3.15 0.0016 rUSD(t-1)

rJPY AR1_3_1 0.05602 0.01845 3.04 0.0024 rAUD(t-1)

AR1_3_2 -0.05011 0.02697 -1.86 0.0632 rGBP(t-1)

AR1_3_3 -0.00181 0.01893 -0.10 0.9240 rJPY(t-1)

AR1_3_4 -0.00839 0.02226 -0.38 0.7061 rUSD(t-1)

rUSD AR1_4_1 0.03852 0.01513 2.55 0.0109 rAUD(t-1)

AR1_4_2 0.00566 0.02290 0.25 0.8048 rGBP(t-1)

AR1_4_3 0.00084 0.01477 0.06 0.9548 rJPY(t-1)

AR1_4_4 -0.03202 0.02011 -1.59 0.1115 rUSD(t-1)

The following statements test the significance of some parameter estimates:

/*--- Significance Of Some Parameter Estimates ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc subform=pgarch corrconst=expect;
nloptions maxit=5000 pall;
test ar(1, 1, 2:4), ar(1, 2, 3), ar(1, 3, 3:4), ar(1, 4, 2:4);

run;

As shown in Output 43.4.18, the null hypothesis that all nine of the parameters in the TEST statement are 0
cannot be rejected at the 5% significance level.
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Output 43.4.18 Test on Significance of Some Parameter Estimates

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Testing of the Parameters

Test DF Chi-Square Pr > ChiSq

1 9 7.36 0.6002

The following statements estimate the VAR DCC PGARCH model without those insignificant parameters:

/*--- VAR DCC PGARCH Model w/o Insignificant Parameters ---*/

proc varmax data=eurofxrr;
model rAUD rGBP rJPY rUSD / noint p=1;
garch p=1 q=1 form=dcc subform=pgarch corrconst=expect;
nloptions maxit=5000 pall;
restrict ar(1, 1, 2:4), ar(1, 2, 3), ar(1, 3, 3:4), ar(1, 4, 2:4);

run;

As shown in Output 43.4.19, the AICC does improve and decrease. Further refining the model is possible
but beyond the scope of this example. Hence, the best model, according to the AICC, is the zero-mean
VAR(1)-DCC-PGARCH(1,1) model without insignificant AR parameters, and its unconditional correlation
matrix is estimated by the sample correlation matrix of the standardized residuals.

Output 43.4.19 Information Criteria for the VAR DCC PGARCH Model without Insignificant Parameters

Analysis of Euro Foreign Exchange Reference Rates

The VARMAX Procedure

Information
Criteria

AICC -5735.05

HQC -5670.56

AIC -5735.48

SBC -5552.06

FPEC 0.011996

This example focuses only on using the information criterion to distinguish models. In practice, the forecast
performance of the model might be more important. The VARMAX procedure supports multistep forecasting
in both VARMAX-GARCH models and vector error correction GARCH models. Hence, although it is not
covered in this example, you can also use the VARMAX procedure and a criterion based on out-of-sample
forecast to perform model selection.
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Example 43.5: Conditional Forecasts and Scenario Analysis
Conditional forecasts incorporate future information and the uncertainty of parameters in the forecasts,
and they often provide more accurate forecasts than unconditional forecasts do. Clark and McCracken
(2017) evaluate conditional forecasts and focus on tests of bias, efficiency, and equal accuracy applied to
conditional forecasts from VAR models. In this example, a Monte Carlo experiment is created in order to
compare different types of forecasts; that is, 1,000 data sets are generated and the following forecasts are
compared: equation-based unconditional forecasts, simulation-based unconditional forecasts, simulation-
based conditional forecasts under hard conditions, and simulation-based conditional forecasts under soft
conditions.

Consider the following trivariate VAR(2) model:

yt D cC A1yt�1 C A2yt�2 C �t ; �t � N.0;†/

where

c D

0@ 2:425

0:054

�0:110

1A ; A1 D

0@ 0:234 �0:134 �0:057

0:029 0:575 0:200

0:059 0:038 1:006

1A

A2 D

0@ 0:164 �0:150 �0:165

�0:039 0:138 �0:184

0:031 0:019 �0:087

1A ; † D

0@ 9:265 0:296 0:553

0:296 1:746 0:184

0:553 0:184 0:752

1A
As indicated in Clark and McCracken (2017), the parameter values are equal to the OLS (ordinary least
squares) estimates of a VAR in GDP (gross domestic product) growth, inflation less a survey-based measure
of trend inflation, and the federal funds rate less a survey-based measure of trend, over a sample from 1961
to 2007. Many central banks require forecasts conditional on particular paths of policy instruments. This
example analyzes different scenarios of some known future information on the third variable that is related to
federal funds rate.

Conditional Forecasts and Scenario Analysis under Hard Conditions

This section considers the hard conditions, under which some future dependent variables are fixed to some
single values.

The following macro generates the data for analysis:

title 'Conditional Forecasts and Scenario Analysis';
%macro cfSimulateData(dgpi,T,lead,tblDGP,tblSample);

* dgpi: index of DGP;

* T: in-sample sample size;

* lead: future horizons;

* tblDGP: output table name for full-sample data;

* tblSample: output table name for in-sample data;
proc iml;

* simulate the data;

* trivariate VAR(2) model;
seed = 12345 + &dgpi.; * random seed;
n = 3; * dim of dependent variable;
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T = &T.; * in-sample sample size;
lead = &lead.; * future horizons;
p = 2; * AR order;

* parameter values;
const = {2.425, 0.054, -0.110};
phi = {0.234 -0.134 -0.057,

0.029 0.575 0.200,
0.059 0.038 1.006,
0.164 -0.150 -0.165,

-0.039 0.138 -0.184,
0.031 0.019 -0.087};

sigma = {9.265 0.296 0.553,
0.296 1.746 0.184,
0.553 0.184 0.752};

call varmasim(y,phi) sigma = sigma n = T+lead seed = seed;
mu = (inv(I(3)-phi[1:3,]-phi[4:6,])*const)`;
y = y + mu;
name={y1 y2 y3};
create &tblDGP. from y[colname=name];
append from y;
close;

quit;
data &tblSample.; set &tblDGP.(obs=&T.); run;

%mend;

The following macro constructs four scenarios that contain hard conditions. In scenario i; i D 1; : : : ; 4, the
first i future values of y3 are fixed (to their true values). In the real world, the true future values cannot be
known. Here, the true future values are used so that you can check later whether using more information
results in any advantage in conditional forecasts.

%macro hcConstructScenarios(T,tblDGP,tblScenarios);

* T: in-sample sample size;

* tblDGP: input table name for full-sample data;

* tblScenarios: output table name for scenarios;
data &tblScenarios.;

set &tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+1))
&tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+2))
&tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+3))
&tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+4))
&tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+1));

* scenario 1: y3(1) is known;
if(_N_=1) then do;

y1=.; y2=.; myscenario=1;
end;

* scenario 2: y3(1:2) is known;
if(_N_>1 and _N_<=3) then do;

y1=.; y2=.; myscenario=2;
end;

* scenario 3: y3(1:3) is known;
if(_N_>3 and _N_<=6) then do;

y1=.; y2=.; myscenario=3;
end;

* scenario 4: y3(1:4) is known;
if(_N_>6 and _N_<=10) then do;
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y1=.; y2=.; myscenario=4;
end;

* scenario 5: nothing is known (unconditional forecast);
if(_N_>10) then do;

y1=.; y2=.; y3=.; myscenario=5;
end;

run;
%mend;

The following macro estimates and performs several types of forecasts. The equation-based forecasts are
output to the OUT= data set that is specified in the OUTPUT statement. The conditional forecasts for
scenarios 1 to 4 and the unconditional forecasts (for scenario 5) are output to the OUT= data set that is
specified in the CONDFORE statement.

%macro hcEstimateAndForecast(tblSample,tblScenarios,alpha,lead,nmc,
tblF,tblCf,tblCfSim);

* tblSample: input table name for in-sample data;

* tblScenarios: input table name for scenarios;

* alpha: size of the confidence interval or credible interval;

* lead: future horizons;

* nmc: number of Monte Carlo iterations;

* tblF: output table name of equation-based point and interval forecasts;

* tblCf: output table name of conditionial point and interval forecasts;

* tblCfSim: output table name of simulated conditional forecasts;
proc varmax data=&tblSample.;

model y1 - y3 / p=2 prior noprint;
output alpha=&alpha. lead=&lead. out=&tblF. noprint;
condfore alpha=&alpha. lead=&lead. out=&tblCf. outsim=&tblCfSim.

sdata=&tblScenarios. sid=myscenario
parm=sampling(scenario) nbi=1000 nmc=&nmc.;

run;
%mend;

The following macro saves all types of forecasts for one simulated data set to one data set for evaluation:

%macro hcSaveForecasts(dgpi,T,lead,nScenarios,tblDGP,tblF,tblCf,tblAll);

* dgpi: index of DGP;

* T: in-sample sample size;

* lead: future horizons;

* nScenarios: number of scenarios;

* tblDGP: input table name for full-sample data;

* tblF: input table name of equation-based point and interval forecasts;

* tblCf: input table name of conditionial point and interval forecasts;

* tblAll: output table name of point and interval forecasts for all DGPs;
data forecasts;

set &tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+&lead.) keep=Y1 Y2);

* for notation convenience, name equation-based forecasts as S0;
set &tblF.(firstobs=%eval(&T.+1) obs=%eval(&T.+&lead.)

rename=( for1=Y1_S0 for2=Y2_S0
lci1=Y1_LB_S0 uci1=Y1_UB_S0
lci2=Y2_LB_S0 uci2=Y2_UB_S0)

keep=FOR1 LCI1 UCI1 FOR2 LCI2 UCI2);
%do i = 1 %to &nScenarios.;

set &tblCf.(where=(myscenario_S&i.=&i.)
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rename=( Y1_MEDIAN=Y1_S&i. Y2_MEDIAN=Y2_S&i.
Y1_LB=Y1_LB_S&i. Y1_UB=Y1_UB_S&i.
Y2_LB=Y2_LB_S&i. Y2_UB=Y2_UB_S&i.
myscenario=myscenario_S&i.)

keep=myscenario Y1_MEDIAN Y2_MEDIAN Y1_LB Y1_UB Y2_LB Y2_UB);
%end;
dgpIndex = &dgpi.;
h = _N_;
drop myscenario_S1 - myscenario_S&nScenarios.;

run;
proc append base=&tblAll. data=forecasts; run;

%mend;

The following macro evaluates the forecasts from different methods and under different conditions. The
accuracy of point forecasts is measured through the symmetric mean absolute percentage error (sMAPE),
which is used in the M4 Forecasting Competition. The sMAPE is defined as

sMAPE D
1

h

hX
iD1

2jyTCi � OyTCi j
jyTCi j C jOyTCi j

where T is the in-sample sample size, yTCi is the future value at T C i , OyTCi is the ith-step-ahead forecast,
and h is the forecasting horizon. The smaller the sMAPE, the better the forecasting method. In order to easily
compare the sMAPEs, the relative sMAPEs are calculated. The simulation-based unconditional forecasts
are used as the benchmark. As for the interval forecasts (that is, the confidence interval for equation-based
forecasts and the credible interval for simulation-based conditional and unconditional forecasts), first the
size is checked, and then the lengths of intervals are compared: if the size is correct, the smaller the interval
length, the more accurate and better the forecasting method.

%macro cfEvaluate(tblAll,lead,nSim,nScenarios,qScenario0,scenarioBM,tblEval);

* tblAll: input table name of point and interval forecasts for all DGPs;

* lead: future horizons;

* nSim: number of DGPs;

* nScenarios: number of scenarios;

* qScenario0: whether there is S0 for equation-based forecasts,
1 for yes and 0 for no;

* scenarioBM: the index of the benchmark scenario;

* tblEval: output table name for evaluation results;
proc iml;

use &tblAll.;
read all into d;
close;
lead = &lead.;
nSim = &nSim.;
nScenarios = &nScenarios. + &qScenario0.;
scenarioBM = &scenarioBM.;
nVars = 2;
sMAPE = J(lead,nScenarios*nVars,0);
rsMAPE = J(lead,nScenarios*nVars,0);
sizeCI = J(lead,nScenarios*nVars,0);
rLenCI = J(lead,nScenarios*nVars,0);
do iSim = 1 to nSim;

do h = 1 to lead;
do iScenario = 1 to nScenarios;
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do iVar = 1 to nVars;
yF=d[(iSim-1)*lead+h,

nVars+((iScenario-1)*nVars+(iVar-1))*3+1];
yFlb=d[(iSim-1)*lead+h,

nVars+((iScenario-1)*nVars+(iVar-1))*3+2];
yFub=d[(iSim-1)*lead+h,

nVars+((iScenario-1)*nVars+(iVar-1))*3+3];
yFlbBM=d[(iSim-1)*lead+h,

nVars+((scenarioBM-1)*nVars+(iVar-1))*3+2];
yFubBM=d[(iSim-1)*lead+h,

nVars+((scenarioBM-1)*nVars+(iVar-1))*3+3];
y =d[(iSim-1)*lead+h,iVar];

* symmetric Mean Absolute Percentage Error (sMAPE);
if(abs(yF)+abs(y)>0) then do;

sMAPE[h,(iVar-1)*nScenarios+iScenario] =
sMAPE[h,(iVar-1)*nScenarios+iScenario]

+ 2*abs(yF-y)/(abs(yF)+abs(y))/nSim;
end;

* size;
if(y>=yFlb & y<=yFub) then do;

sizeCI[h,(iVar-1)*nScenarios+iScenario] =
sizeCI[h,(iVar-1)*nScenarios+iScenario] + 1/nSim;

end;

* relative length;
if(yFubBM-yFlbBM>0) then do;

rLenCI[h,(iVar-1)*nScenarios+iScenario] =
rLenCI[h,(iVar-1)*nScenarios+iScenario]

+ (yFub-yFlb)/(yFubBM-yFlbBM)/nSim;
end;

end;
end;

end;
end;
do h = 2 to lead;

do iScenario = 1 to nScenarios;
do iVar = 1 to nVars;

sMAPE[h,(iVar-1)*nScenarios+iScenario] =
(sMAPE[h,(iVar-1)*nScenarios+iScenario]

+ sMAPE[h-1,(iVar-1)*nScenarios+iScenario]*(h-1))/h;
end;

end;
end;
do h = 1 to lead;

do iScenario = 1 to nScenarios;
do iVar = 1 to nVars;

* relative symmetric Mean Absolute Percentage Error;
rsMAPE[h,(iVar-1)*nScenarios+iScenario] =

sMAPE[h,(iVar-1)*nScenarios+iScenario]
/ sMAPE[h,(iVar-1)*nScenarios+scenarioBM];

end;
end;

end;

* rearrange results;
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n = ncol(sMAPE)/nVars;
evalResult = sMAPE[,1:n];
do iVar = 2 to nVars;

evalResult = evalResult // sMAPE[,(iVar-1)*n+1:iVar*n];
end;
do iVar = 1 to nVars;

evalResult = evalResult // rsMAPE[,(iVar-1)*n+1:iVar*n];
end;
do iVar = 1 to nVars;

evalResult = evalResult // sizeCI[,(iVar-1)*n+1:iVar*n];
end;
do iVar = 1 to nVars;

evalResult = evalResult // rLenCI[,(iVar-1)*n+1:iVar*n];
end;
evalResult = ((1:4)`@J(lead*nVars,1,1))

|| (J(4,1,1)@((1:nVars)`@J(lead,1,1)))
|| (J(4*nVars,1,1)@(1:lead)`)
|| evalResult;

create &tblEval. from evalResult;
append from evalResult;
close;

quit;
%mend;

The following macro incorporates all the previous macros to test the forecasts from different methods
(equation-based versus simulation-based) for different scenarios (unconditional versus four types of hard
conditions). All point and interval forecasts are saved in the data set that is specified by the tblAll argument.
All evaluation results are saved in the data set that is specified by the tblEval argument.

%macro hcTest(nSim,T,lead,alpha,nmc,nScenarios,qScenario0,scenarioBM,
tblAll,tblEval);

* nSim: number of DGPs;

* T: in-sample sample size;

* lead: future horizons;

* alpha: size of the confidence interval or credible interval;

* nmc: number of Monte Carlo iterations;

* nScenarios: number of scenarios;

* qScenario0: whether there is scenario 0 for equation-based forecasts,
1 for yes and 0 for no;

* scenarioBM: the index of the benchmark scenario;

* tblAll: output table name of point and interval forecasts for all DGPs;

* tblEval: output table name for evaluation results;
%do iSim = 1 %to &nSim.;

%cfSimulateData(&iSim.,&T.,&lead.,t1,t2);
%hcConstructScenarios(&T.,t1,t3);
%hcEstimateAndForecast(t2,t3,&alpha.,&lead.,&nmc.,of,ocf,ocfsim);
%hcSaveForecasts(&iSim.,&T.,&lead.,&nScenarios.,t1,of,ocf,&tblAll.);

%end;
%cfEvaluate(&tblAll.,&lead.,&nSim.,

&nScenarios.,&qScenario0.,&scenarioBM.,
&tblEval.);

%mend;

The following macro variables and macro set up and perform the test:
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%let nSim = 1000;
%let T = 200;
%let lead = 4;
%let alpha = 0.05;
%let nmc = 10000;
%let nScenarios = 5;
%let qScenario0 = 1;
%let scenarioBM = 6;

%hcTest(&nSim.,&T.,&lead.,&alpha.,&nmc.,
&nScenarios.,&qScenario0.,&scenarioBM.,
hcForecasts,hcEval);

In order to show the result in a good style, the following template is created and the macro applies the
template to the data set:

proc template;
define table hcEvalTemplate;

column col3 col4 col5 col6 col7 col8 col9;
define header hc;

text "Conditional Forecasts, Hard Conditions";
start=col5; end=col8;

end;
define column col3;

header="Horizon";
end;
define column col4;

header="Equation Based"; format=7.5;
end;
define column col5;

header="Scenario 1"; format=12.5;
end;
define column col6;

header="Scenario 2"; format=12.5;
end;
define column col7;

header="Scenario 3"; format=12.5;
end;
define column col8;

header="Scenario 4"; format=12.5;
end;
define column col9;

header="Unconditional"; format=12.5;
end;

end;
run;
%macro cfPrint(template,data);

data _NULL_;
set &data.;
file print ods=(template="&template.");
put _ODS_;

run;
%mend;
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The following macro calls print the sMAPEs for y1 and y2. Output 43.5.1 and Output 43.5.2 show that as
more future information from scenario 1 to 4 is used in the conditional forecasts, the sMAPEs get smaller,
which means that the accuracy of forecasts gets better.

%cfPrint(hcEvalTemplate, hcEval(where=(col1=1 and col2=1)));

%cfPrint(hcEvalTemplate, hcEval(where=(col1=1 and col2=2)));

Output 43.5.1 The sMAPEs for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.90307 0.90101 0.89794 0.89874 0.89419 0.90146

2 0.88474 0.88055 0.87737 0.87471 0.87234 0.88451

3 0.87674 0.87243 0.87309 0.86822 0.86664 0.87632

4 0.86908 0.86553 0.86553 0.86266 0.86129 0.86954

Output 43.5.2 The sMAPEs for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 1.07895 1.06867 1.07027 1.07053 1.06977 1.07941

2 1.16152 1.14704 1.15181 1.14594 1.14441 1.16143

3 1.22260 1.21487 1.21397 1.20050 1.19548 1.22251

4 1.27106 1.26842 1.26392 1.25277 1.24037 1.27112

The following macro calls print the relative sMAPEs for y1 and y2. Output 43.5.3 and Output 43.5.4 show
that the relative sMAPE for all conditional point forecasts is less than 1, which means that all of them have
better accuracy than the benchmark unconditional forecasts. The relative sMAPE for equation-based point
forecasts is very close to 1, which means that the accuracy of the equation-based forecasts is similar to that of
unconditional forecasts.

%cfPrint(hcEvalTemplate, hcEval(where=(col1=2 and col2=1)));

%cfPrint(hcEvalTemplate, hcEval(where=(col1=2 and col2=2)));
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Output 43.5.3 The Relative sMAPEs for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 1.00179 0.99951 0.99610 0.99698 0.99194 1.00000

2 1.00026 0.99552 0.99193 0.98892 0.98624 1.00000

3 1.00048 0.99556 0.99632 0.99076 0.98896 1.00000

4 0.99948 0.99540 0.99539 0.99209 0.99052 1.00000

Output 43.5.4 The Relative sMAPEs for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.99958 0.99005 0.99153 0.99177 0.99107 1.00000

2 1.00008 0.98760 0.99172 0.98666 0.98534 1.00000

3 1.00008 0.99375 0.99302 0.98200 0.97789 1.00000

4 0.99995 0.99788 0.99434 0.98556 0.97581 1.00000

The following macro calls print the sizes for y1 and y2. Output 43.5.5 and Output 43.5.6 show that the sizes
for all forecasts are very close to 0.95, which means all forecasts have the correct sizes.

%cfPrint(hcEvalTemplate, hcEval(where=(col1=3 and col2=1)));

%cfPrint(hcEvalTemplate, hcEval(where=(col1=3 and col2=2)));

Output 43.5.5 The Sizes for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.94700 0.94300 0.93600 0.94500 0.94800 0.94400

2 0.94900 0.94700 0.94100 0.94600 0.94700 0.95000

3 0.95100 0.94600 0.94300 0.95000 0.95300 0.95200

4 0.94400 0.94700 0.94500 0.94800 0.94200 0.93800
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Output 43.5.6 The Sizes for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.95400 0.95100 0.94700 0.94400 0.94700 0.94600

2 0.95000 0.94300 0.94100 0.94200 0.93200 0.94900

3 0.94900 0.94900 0.94600 0.94400 0.94300 0.94200

4 0.94100 0.94100 0.93700 0.94200 0.94400 0.94500

The following macro calls print the relative interval lengths for y1 and y2. Output 43.5.7 and Output 43.5.8
show that almost all conditional forecasts show smaller relative interval length than the benchmark un-
conditional forecasts show, which means that the conditional forecasts have better interval forecasts than
unconditional forecasts. The relative interval lengths for equation-based forecasts are all greater than 1, which
means that equation-based forecasts have worse interval forecasting ability than unconditional forecasts have.
The main reason might be that the unconditional forecasts account for the uncertainty of parameters but
equation-based forecasts do not.

%cfPrint(hcEvalTemplate, hcEval(where=(col1=4 and col2=1)));

%cfPrint(hcEvalTemplate, hcEval(where=(col1=4 and col2=2)));

Output 43.5.7 The Relative Interval Lengths for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 1.02290 0.99210 0.95616 0.95064 0.96477 1.00000

2 1.00814 1.00050 0.95801 0.94982 0.94094 1.00000

3 1.01348 0.98599 0.99613 0.97029 0.95520 1.00000

4 1.01754 1.00582 0.99147 1.00897 0.96589 1.00000

Output 43.5.8 The Relative Interval Lengths for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Hard Conditions

Horizon
Equation

Based Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 1.02990 1.00010 0.99527 0.97468 0.98016 1.00000

2 1.02772 0.98791 0.96935 0.97000 0.95431 1.00000

3 1.03613 1.01415 0.97397 0.97472 0.95715 1.00000

4 1.01918 0.97980 0.96314 0.96461 0.95298 1.00000
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Conditional Forecasts and Scenario Analysis under Soft Conditions

This section considers the soft conditions, under which some future dependent variables are bounded within
certain ranges instead of fixed to some single values.

The following macro estimates the model and outputs the unconditional forecasts. In the case of soft
conditions, only the unconditional forecasts are needed. When the SDATA= option in the CONDFORE
statement is not specified, unconditional forecasts are generated. The number of Monte Carlo iterations needs
to be large because later the simulated forecasts that satisfy the soft conditions are selected from the pool of
all unconditional forecasts.

%macro scEstimateAndForecast(tblSample,alpha,lead,nmc,tblUcf,tblUcfSim);

* tblSample: input table name for in-sample data;

* alpha: size of the credible interval;

* lead: future horizons;

* nmc: number of Monte Carlo iterations;

* tblUcf: output table name of unconditional point and interval
forecasts;

* tblUcfSim: output table name of simulated unconditional forecasts;
proc varmax data=&tblSample.;

model y1 - y3 / p=2 prior noprint;
condfore alpha=&alpha. lead=&lead. out=&tblUcf. outsim=&tblUcfSim.

parm=sampling nbi=1000 nmc=&nmc.;
run;

%mend;

The scenarios for four types of soft conditions are constructed from the following macro. To set up the correct
bounds, both the true DGP (data-generating process) and unconditional forecasts are used. In the real world,
the true DGP is not available, and those bound values reflect the scenarios of interest.

%macro scConstructScenarios(T,lead,tblDGP,tblUcf);

* T: in-sample sample size;

* lead: future horizons;

* tblDGP: input table name for full-sample data;

* tblUcf: input table name of unconditional point and interval
forecasts;

* four scenarios are implicitly output:
scenarios i, i=1 to 4: future y3 is known for

lb_j<=y3_j<=ub_j, j=1 to i, where lb_j and ub_j are lower and
upper bounds whose values are saved in the corresponding macro
variables, and y3_j is the j-step-ahead furture value of y3;

data _NULL_;
set &tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+&lead.) keep=Y3);
set &tblUcf.(keep=step Y3_MEDIAN Y3_LB Y3_UB);
array q[&lead.] q1 - q&lead.;
array lb[&lead.] lb1 - lb&lead.;
array ub[&lead.] ub1 - ub&lead.;
retain q lb ub;
if(Y3<=Y3_LB) then do;

q[step] = 1; ub[step] = Y3_LB;
end;
if (Y3>Y3_LB and Y3<=Y3_MEDIAN) then do;

q[step] = 2; lb[step] = Y3_LB; ub[step] = Y3_MEDIAN;
end;
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if (Y3>Y3_MEDIAN and Y3<=Y3_UB) then do;
q[step] = 3; lb[step] = Y3_MEDIAN; ub[step] =Y3_UB;

end;
if (Y3>Y3_UB) then do;

q[step] = 4; lb[step] = Y3_UB;
end;
if(_N_=&lead.) then do;

%do i = 1 %to &lead.;
call symputx("lb&i.",lb&i.,'G');
call symputx("ub&i.",ub&i.,'G');

%end;
end;

run;
%mend;

The simulated forecasts that satisfy each type of soft condition in each scenario are selected in the following
macro:

%macro scClassifySimulatedForecasts(lead,tblUcfSim,tblSCSim);

* lead: future horizons;

* tblUcfSim: output table name of simulated unconditional forecasts;

* tblSCSim: output table name of simulated conditional forecasts
under soft conditioins specified in the scenarios;

data &tblSCSim.;
set &tblUcfSim.;
array lb[&lead.] lb1 - lb&lead.;
array ub[&lead.] ub1 - ub&lead.;
array y3f[&lead.] y3_1 - y3_&lead.;
%do j = 1 %to &lead.;

lb[&j.]=&&lb&j.; ub[&j.]=&&ub&j.;
%end;
do myScenario=1 to 4;

outputCond = 1;
do i = 1 to myScenario;

if(outputCond=1) then do;
if(lb[i]=.) then do;

if(y3f[i]<=ub[i]) then outputCond=1;
else outputCond = 0;

end;
else do;

if(ub[i]=.) then do;
if(y3f[i]>lb[i]) then outputCond=1;
else outputCond = 0;

end;
else do;

if(y3f[i]>lb[i] and y3f[i]<=ub[i]) then outputCond=1;
else outputCond = 0;

end;
end;

end;
end;
if(outputCond=1) then output;

end;
run;
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proc sort data=&tblSCSim.; by myscenario; run;
%mend;

The point and interval forecasts for each scenario of soft conditions are generated from the following macro:

%macro scGetForecastStats(alpha,lead,tblSCSim,tblSCForecasts);

* alpha: size of the credible interval;

* lead: future horizons;

* tblSCSim: input table name of simulated conditional forecasts
under soft conditioins specified in the scenarios;

* tblSCForecasts: output table name of conditional point and interval
forecasts under soft conditioins specified in the scenarios;

data _NULL_;
lbPctl = &alpha./2*100;
ubPctl = 100-lbPctl;
call symputx("lbPctl",lbPctl,'G');
call symputx("ubPctl",ubPctl,'G');

run;
proc univariate data=&tblSCSim. noprint;

var y1_1 - y1_&lead. y2_1 - y2_&lead.;
output out=oucfx pctlpts=&lbPctl. &ubPctl. 50

pctlpre=%do j=1 %to &lead.; y1_&j. %end;
%do j=1 %to &lead.; y2_&j. %end;

pctlname=_lb _ub _median;
by myscenario;

run;
data &tblSCForecasts.;

set oucfx;
array y1f[&lead.] %do j=1 %to &lead.; Y1_&j._median %end; ;
array y1lb[&lead.] %do j=1 %to &lead.; Y1_&j._lb %end; ;
array y1ub[&lead.] %do j=1 %to &lead.; Y1_&j._ub %end; ;
array y2f[&lead.] %do j=1 %to &lead.; Y2_&j._median %end; ;
array y2lb[&lead.] %do j=1 %to &lead.; Y2_&j._lb %end; ;
array y2ub[&lead.] %do j=1 %to &lead.; Y2_&j._ub %end; ;
do i = 1 to &lead.;

Y1_MEDIAN = y1f[i];
Y1_LB = y1lb[i];
Y1_UB = y1ub[i];
Y2_MEDIAN = y2f[i];
Y2_LB = y2lb[i];
Y2_UB = y2ub[i];
step = i;
output;

end;
keep myscenario step y1_median y1_lb y1_ub y2_median y2_lb y2_ub;

run;
%mend;

The following macro saves all types of forecasts for one simulated data set to one data set for evaluation:

%macro scSaveForecasts(dgpi,T,lead,tblDGP,tblUcf,tblSCForecasts,tblAll);

* dgpi: index of DGP;

* T: in-sample sample size;

* lead: future horizons;

* tblDGP: input table name for full-sample data;
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* tblUcf: input table name of unconditional point and interval
forecasts;

* tblSCForecasts: input table name of conditional point and interval
forecasts under soft conditioins specified in the scenarios;

* tblAll: output table name of point and interval forecasts for all DGPs;
data forecasts;

set &tblDGP.(firstobs=%eval(&T.+1) obs=%eval(&T.+&lead.) keep=Y1 Y2);
%do i = 1 %to 4;

set &tblSCForecasts.( where=(myscenario_S&i.=&i.)
rename=( Y1_MEDIAN=Y1_S&i. Y2_MEDIAN=Y2_S&i.

Y1_LB=Y1_LB_S&i. Y1_UB=Y1_UB_S&i.
Y2_LB=Y2_LB_S&i. Y2_UB=Y2_UB_S&i.
myscenario=myscenario_S&i.)

keep=myscenario Y1_MEDIAN Y2_MEDIAN Y1_LB Y1_UB Y2_LB Y2_UB);
%end;
set &tblUcf.(

rename=( Y1_MEDIAN=Y1_S5 Y2_MEDIAN=Y2_S5
Y1_LB=Y1_LB_S5 Y1_UB=Y1_UB_S5
Y2_LB=Y2_LB_S5 Y2_UB=Y2_UB_S5 )

keep=Y1_MEDIAN Y2_MEDIAN Y1_LB Y1_UB Y2_LB Y2_UB);
dgpIndex = &dgpi.;
h = _N_;
drop myscenario_S1 - myscenario_S4;

run;

proc append base=&tblAll. data=forecasts; run;
%mend;

The following macro incorporates all previous macros to test the forecasts for different scenarios (uncondi-
tional versus four types of soft conditions). All point and interval forecasts are saved in the data set that is
specified in the tblAll argument. All evaluation results are saved in the data set that is specified in the tblEval
argument.

%macro scTest(nSim,T,lead,alpha,nmc,nScenarios,qScenario0,scenarioBM,
tblAll,tblEval);

* nSim: number of DGPs;

* T: in-sample sample size;

* lead: future horizons;

* alpha: size of the confidence interval or credible interval;

* nmc: number of Monte Carlo iterations;

* nScenarios: number of scenarios;

* qScenario0: whether there is S0 for equation-based forecasts,
1 for yes and 0 for no;

* scenarioBM: the index of the benchmark scenario;

* tblAll: output table name of point and interval forecasts for all DGPs;

* tblEval: output table name for evaluation results;
%do iSim = 1 %to &nSim.;

%cfSimulateData(&iSim.,&T.,&lead.,t1,t2);
%scEstimateAndForecast(t2,&alpha.,&lead.,&nmc.,oucf,oucfsim);
%scConstructScenarios(&T.,&lead.,t1,oucf);
%scClassifySimulatedForecasts(&lead.,oucfsim,oucfsimx);
%scGetForecastStats(&alpha.,&lead.,oucfsimx,oscf);
%scSaveForecasts(&iSim.,&T.,&lead.,t1,oucf,oscf,&tblAll.);

%end;
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%cfEvaluate(&tblAll.,&lead.,&nSim.,
&nScenarios.,&qScenario0.,&scenarioBM.,
&tblEval.);

%mend;

The following macro variables and macro set up and perform the test:

%let nSim = 1000;
%let T = 200;
%let lead = 4;
%let alpha = 0.50;
%let nmc = 100000;
%let nScenarios = 5;
%let qScenario0 = 0;
%let scenarioBM = 5;

%scTest(&nSim., &T.,&lead.,&alpha.,&nmc.,
&nScenarios.,&qScenario0.,&scenarioBM.,
scForecasts,scEval);

In order to show the result in a good style, the following template is created for the evaluation data set:

proc template;
define table scEvalTemplate;

column col3 col4 col5 col6 col7 col8;
define header sc;

text "Conditional Forecasts, Soft Conditions";
start=col4; end=col7;

end;
define column col3;

header="Horizon";
end;
define column col4;

header="Scenario 1"; format=12.5;
end;
define column col5;

header="Scenario 2"; format=12.5;
end;
define column col6;

header="Scenario 3"; format=12.5;
end;
define column col7;

header="Scenario 4"; format=12.5;
end;
define column col8;

header="Unconditional"; format=12.5;
end;

end;
run;

The following macro calls print the sMAPEs for y1 and y2 in Output 43.5.9 and Output 43.5.10, respectively.
An interesting fact is that as the horizon increases, the accuracy of forecasts for y1 in each scenario gets
better (which is not common) and the accuracy of forecasts for y2 in each scenario gets worse (which is
common). However, the forecasting methods can still be compared.
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%cfPrint(scEvalTemplate, scEval(where=(col1=1 and col2=1)));

%cfPrint(scEvalTemplate, scEval(where=(col1=1 and col2=2)));

Output 43.5.9 The sMAPEs for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.90733 0.89925 0.90273 0.89949 0.90144

2 0.88731 0.88271 0.88282 0.87862 0.88429

3 0.87891 0.87626 0.87505 0.86820 0.87613

4 0.87062 0.86864 0.86757 0.86206 0.86852

Output 43.5.10 The sMAPEs for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 1.06627 1.06999 1.06861 1.06688 1.07902

2 1.14420 1.14813 1.14674 1.14376 1.16096

3 1.20960 1.21150 1.20106 1.19365 1.22223

4 1.26086 1.26050 1.25022 1.24181 1.27045

The following macro calls print the relative sMAPEs for y1 and y2 in Output 43.5.11 and Output 43.5.12,
respectively. Most relative sMAPEs for conditional forecasts under soft conditions are less than 1, which
means that those conditional forecasts have a better accuracy than the unconditional forecasts have. The
forecasts in scenario 4, compared to other forecasts for each horizon, always have the smallest relative
sMAPEs, which means that the conditional forecasts under soft conditions successfully take the advantage of
the available future information.

%cfPrint(scEvalTemplate, scEval(where=(col1=2 and col2=1)));

%cfPrint(scEvalTemplate, scEval(where=(col1=2 and col2=2)));

Output 43.5.11 The Relative sMAPEs for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 1.00654 0.99757 1.00144 0.99784 1.00000

2 1.00342 0.99821 0.99834 0.99359 1.00000

3 1.00317 1.00014 0.99877 0.99094 1.00000

4 1.00242 1.00014 0.99891 0.99257 1.00000
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Output 43.5.12 The Relative sMAPEs for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.98818 0.99163 0.99035 0.98875 1.00000

2 0.98556 0.98894 0.98775 0.98518 1.00000

3 0.98966 0.99122 0.98268 0.97662 1.00000

4 0.99245 0.99217 0.98408 0.97746 1.00000

The following macro calls print the sizes for y1 and y2 in Output 43.5.13 and Output 43.5.14, respectively.
All sizes are around 0.5 (the nominal significance level), which means that all interval forecasts have the
correct size.

%cfPrint(scEvalTemplate, scEval(where=(col1=3 and col2=1)));

%cfPrint(scEvalTemplate, scEval(where=(col1=3 and col2=2)));

Output 43.5.13 The Sizes for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.50600 0.50900 0.51000 0.50600 0.49700

2 0.50000 0.50600 0.50300 0.51000 0.50500

3 0.50200 0.50300 0.49000 0.50100 0.50000

4 0.50800 0.50700 0.51300 0.51000 0.49900

Output 43.5.14 The Sizes for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.48900 0.48600 0.48800 0.48800 0.49300

2 0.49500 0.46200 0.46700 0.45900 0.49300

3 0.50800 0.49300 0.49500 0.49100 0.50600

4 0.47800 0.46100 0.46400 0.45900 0.47200

The following macro calls print the relative interval lengths for y1 and y2 in Output 43.5.15 and Output 43.5.16,
respectively. All conditional forecasts under soft conditions have a relative interval length of less than 1,
which means that the conditional forecasts provide better interval forecasts than unconditional forecasts,
given that all forecasts have the correct size. The smallest relative interval lengths for each horizon almost
always lie in the columns of scenario 4, which indicates that more information results in better interval
forecasts.
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%cfPrint(scEvalTemplate, scEval(where=(col1=4 and col2=1)));

%cfPrint(scEvalTemplate, scEval(where=(col1=4 and col2=2)));

Output 43.5.15 The Relative Interval Lengths for y1

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.97668 0.96309 0.95805 0.95808 1.00000

2 0.99957 0.97788 0.96682 0.95940 1.00000

3 0.99829 0.99797 0.98040 0.96568 1.00000

4 0.99659 0.99479 0.99352 0.97636 1.00000

Output 43.5.16 The Relative Interval Lengths for y2

Conditional Forecasts and Scenario Analysis

Conditional Forecasts, Soft Conditions

Horizon Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unconditional

1 0.98772 0.98616 0.98671 0.98540 1.00000

2 0.99356 0.97818 0.97409 0.97303 1.00000

3 0.99495 0.98684 0.97211 0.96640 1.00000

4 0.99775 0.99329 0.98459 0.97166 1.00000

In summary, you can make the following conclusions from the preceding results:

� Compared to simulation-based unconditional forecasts, equation-based unconditional forecasts have
similar accuracy for point forecasts but worse accuracy for interval forecasts, perhaps because the
equation-based method does not consider the uncertainty of parameters.

� Compared to simulation-based unconditional forecasts, simulation-based conditional forecasts under
hard or soft conditions have better accuracy for both point and interval forecasts. As more future
information becomes available, the conditional forecasts can become more accurate.
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Example 43.6: Numerous Examples
The following are examples of syntax for model fitting:

/* Data 'a' Generated Process */
proc iml;

sig = {1.0 0.5, 0.5 1.25};
phi = {1.2 -0.5, 0.6 0.3};
call varmasim(y,phi) sigma = sig n = 100 seed = 46859;
cn = {'y1' 'y2'};
create a from y[colname=cn];
append from y;

run;;

/* when the series has a linear trend */
proc varmax data=a;

model y1 y2 / p=1 trend=linear;
run;

/* Fit subset of AR order 1 and 3 */
proc varmax data=a;

model y1 y2 / p=(1,3);
run;

/* Check if the series is nonstationary */
proc varmax data=a;

model y1 y2 / p=1 dftest print=(roots);
run;

/* Fit VAR(1) in differencing */
proc varmax data=a;

model y1 y2 / p=1 print=(roots) dify=(1);
run;

/* Fit VAR(1) in seasonal differencing */
proc varmax data=a;

model y1 y2 / p=1 dify=(4) lagmax=5;
run;

/* Fit VAR(1) in both regular and seasonal differencing */
proc varmax data=a;

model y1 y2 / p=1 dify=(1,4) lagmax=5;
run;

/* Fit VAR(1) in different differencing */
proc varmax data=a;

model y1 y2 / p=1 dif=(y1(1,4) y2(1)) lagmax=5;
run;

/* Options related to prediction */
proc varmax data=a;

model y1 y2 / p=1 lagmax=3
print=(impulse covpe(5) decompose(5));
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run;

/* Options related to tentative order selection */
proc varmax data=a;

model y1 y2 / p=1 lagmax=5 minic
print=(parcoef pcancorr pcorr);

run;

/* Automatic selection of the AR order */
proc varmax data=a;

model y1 y2 / minic=(type=aic p=5);
run;

/* Compare results of LS and Yule-Walker Estimators */
proc varmax data=a;

model y1 y2 / p=1 print=(yw);
run;

/* BVAR(1) of the nonstationary series y1 and y2 */
proc varmax data=a;

model y1 y2 / p=1
prior=(lambda=1 theta=0.2 ivar);

run;

/* BVAR(1) of the nonstationary series y1 */
proc varmax data=a;

model y1 y2 / p=1
prior=(lambda=0.1 theta=0.15 ivar=(y1));

run;

/* Data 'b' Generated Process */
proc iml;

sig = { 0.5 0.14 -0.08 -0.03, 0.14 0.71 0.16 0.1,
-0.08 0.16 0.65 0.23, -0.03 0.1 0.23 0.16};

sig = sig * 0.0001;
phi = {1.2 -0.5 0. 0.1, 0.6 0.3 -0.2 0.5,

0.4 0. -0.2 0.1, -1.0 0.2 0.7 -0.2};
call varmasim(y,phi) sigma = sig n = 100 seed = 32567;
cn = {'y1' 'y2' 'y3' 'y4'};
create b from y[colname=cn];
append from y;

quit;

/* Cointegration Rank Test using Trace statistics */
proc varmax data=b;

model y1-y4 / p=2 lagmax=4 cointtest;
run;

/* Cointegration Rank Test using Max statistics */
proc varmax data=b;

model y1-y4 / p=2 lagmax=4 cointtest=(johansen=(type=max));
run;

/* Common Trends Test using Filter(Differencing) statistics */
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proc varmax data=b;
model y1-y4 / p=2 lagmax=4 cointtest=(sw);

run;

/* Common Trends Test using Filter(Residual) statistics */
proc varmax data=b;

model y1-y4 / p=2 lagmax=4 cointtest=(sw=(type=filtres lag=1));
run;

/* Common Trends Test using Kernel statistics */
proc varmax data=b;

model y1-y4 / p=2 lagmax=4 cointtest=(sw=(type=kernel lag=1));
run;

/* Cointegration Rank Test for I(2) */
proc varmax data=b;

model y1-y4 / p=2 lagmax=4 cointtest=(johansen=(iorder=2));
run;

/* Fit VECM(2) with rank=3 */
proc varmax data=b;

model y1-y4 / p=2 lagmax=4 print=(roots iarr);
cointeg rank=3 normalize=y1;

run;

/* Weak Exogenous Testing for each variable */
proc varmax data=b outstat=bbb;

model y1-y4 / p=2 lagmax=4;
cointeg rank=3 exogeneity normalize=y1;

run;

/* Hypotheses Testing for long-run and adjustment parameter */
proc varmax data=b outstat=bbb;

model y1-y4 / p=2 lagmax=4;
cointeg rank=3 normalize=y1

h=(1 0 0, 0 1 0, -1 0 0, 0 0 1)
j=(1 0 0, 0 1 0, 0 0 1, 0 0 0);

run;

/* ordinary regression model */
proc varmax data=grunfeld;

model y1 y2 = x1-x3;
run;

/* Ordinary regression model with subset lagged terms */
proc varmax data=grunfeld;

model y1 y2 = x1 / xlag=(1,3);
run;

/* VARX(1,1) with no current time Exogenous Variables */
proc varmax data=grunfeld;

model y1 y2 = x1 / p=1 xlag=1 nocurrentx;
run;
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/* VARX(1,1) with different Exogenous Variables */
proc varmax data=grunfeld;

model y1 = x3, y2 = x1 x2 / p=1 xlag=1;
run;

/* VARX(1,2) in difference with current Exogenous Variables */
proc varmax data=grunfeld;

model y1 y2 = x1 / p=1 xlag=2 difx=(1) dify=(1);
run;

Example 43.7: Illustration of ODS Graphics
This example illustrates the use of ODS Graphics. For information about the graphics available in the
VARMAX procedure, see the section “ODS Graphics” on page 3172.

The following statements use the SASHELP.WORKERS data set to study the time series of electrical workers
and its interaction with the series of masonry workers. The series and predict plots, the residual plot, and the
forecast plot are created in Output 43.7.1 through Output 43.7.3. These are a selection of the plots created by
the VARMAX procedure.

title "Illustration of ODS Graphics";
proc varmax data=sashelp.workers plot(unpack)=(residual model forecasts);

id date interval=month;
model electric masonry / dify=(1,12) noint p=1;
output lead=12;

run;
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Output 43.7.1 Series and Predicted Series Plots
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Output 43.7.2 Residual Plot
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Output 43.7.3 Series and Forecast Plots
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Overview: X11 Procedure
The X11 procedure, an adaptation of the U.S. Bureau of the Census X-11 Seasonal Adjustment program, sea-
sonally adjusts monthly or quarterly time series. The procedure makes additive or multiplicative adjustments
and creates an output data set containing the adjusted time series and intermediate calculations.

The X11 procedure also provides the X-11-ARIMA method developed by Statistics Canada. This method
fits an ARIMA model to the original series, then uses the model forecast to extend the original series. This
extended series is then seasonally adjusted by the standard X-11 seasonal adjustment method. The extension
of the series improves the estimation of the seasonal factors and reduces revisions to the seasonally adjusted
series as new data become available.

The X11 procedure incorporates sliding spans analysis. This type of analysis provides a diagnostic for
determining the suitability of seasonal adjustment for an economic series.

Seasonal adjustment of a series is based on the assumption that seasonal fluctuations can be measured in the
original series, Ot , t D 1; : : : ; n, and separated from trend cycle, trading-day, and irregular fluctuations. The
seasonal component of this time series, St , is defined as the intrayear variation that is repeated constantly
or in an evolving fashion from year to year. The trend cycle component, Ct , includes variation due to the
long-term trend, the business cycle, and other long-term cyclical factors. The trading-day component, Dt , is
the variation that can be attributed to the composition of the calendar. The irregular component, It , is the
residual variation. Many economic time series are related in a multiplicative fashion (Ot D StCtDtIt ). A
seasonally adjusted time series, CtIt , consists of only the trend cycle and irregular components.

Getting Started: X11 Procedure
The most common use of the X11 procedure is to produce a seasonally adjusted series. Eliminating the
seasonal component from an economic series facilitates comparison among consecutive months or quarters.
A plot of the seasonally adjusted series is often more informative about trends or location in a business cycle
than a plot of the unadjusted series.

The following example shows how to use PROC X11 to produce a seasonally adjusted series, CtIt , from an
original series Ot D StCtDtIt .

In the multiplicative model, the trend cycle component Ct keeps the same scale as the original series Ot ,
while St , Dt , and It vary around 1.0. In all printed tables and in the output data set, these latter components
are expressed as percentages, and thus will vary around 100.0 (in the additive case, they vary around 0.0).

The naming convention used in PROC X11 for the tables follows the original U.S. Bureau of the Census X-11
Seasonal Adjustment program specification (Shiskin, Young, and Musgrave 1967). Also, see the section
“Printed Output” on page 3284. This convention is outlined in Figure 44.1.
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The tables corresponding to parts A–C are intermediate calculations. The final estimates of the individual
components are found in the D tables: Table D10 contains the final seasonal factors, Table D12 contains
the final trend cycle, and Table D13 contains the final irregular series. If you are primarily interested in
seasonally adjusting a series without consideration of intermediate calculations or diagnostics, you only need
to look at Table D11, the final seasonally adjusted series.

For more information about the X-11-ARIMA tables, see Ladiray and Quenneville (2001).

Basic Seasonal Adjustment
Suppose you have monthly retail sales data starting in September 1978 in a SAS data set named SALES. At
this point you do not suspect that any calendar effects are present, and there are no prior adjustments that
need to be made to the data.

In this simplest case, you need only specify the DATE= variable in the MONTHLY statement, which
associates a SAS date value to each observation. To see the results of the seasonal adjustment, you must
request table D11, the final seasonally adjusted series, in a TABLES statement.

data sales;
input sales @@;
date = intnx( 'month', '01sep1978'd, _n_-1 );
format date monyy7.;

datalines;
112 118 132 129 121 135 148 148 136 119 104 118

... more lines ...

/*--- X-11 ARIMA ---*/
proc x11 data=sales;

monthly date=date;
var sales;
tables d11;

run;
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Figure 44.1 Basic Seasonal Adjustment

The X11 Procedure

Seasonal Adjustment of - sales

X-11 Seasonal Adjustment Program

U. S. Bureau of the Census

Economic Research and Analysis Division

November 1, 1968

The X-11 program is divided into seven major parts.

Part         Description

A.  Prior adjustments, if any

B.  Preliminary estimates of irregular component weights

and regression trading day factors

C.  Final estimates of above

D.  Final estimates of seasonal, trend-cycle and

irregular components

E.  Analytical tables

F.  Summary measures

G.  Charts

Series - sales

Period covered - 9/1978 to 8/1990

Type of run: multiplicative seasonal adjustment.

Selected Tables or Charts.

Sigma limits for graduating extreme values are 1.5 and 2.5

Irregular values outside of 2.5-sigma limits are excluded

from trading day regression

Figure 44.2 Basic Seasonal Adjustment

D11 Final Seasonally Adjusted Series

Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Total

1978 . . . . . . . . 123.507 125.776 124.735 129.870 503.887

1979 124.935 126.533 125.282 125.650 127.754 129.648 127.880 129.285 126.562 134.905 133.356 136.117 1547.91

1980 128.734 139.542 143.726 143.854 148.723 144.530 140.120 153.475 159.281 162.128 168.848 165.159 1798.12

1981 176.329 166.264 167.433 167.509 173.573 175.541 179.301 182.254 187.448 197.431 184.341 184.304 2141.73

1982 186.747 202.467 192.024 202.761 197.548 206.344 211.690 213.691 214.204 218.060 228.035 240.347 2513.92

1983 233.109 223.345 218.179 226.389 224.249 227.700 222.045 222.127 222.835 212.227 230.187 232.827 2695.22

1984 238.261 239.698 246.958 242.349 244.665 247.005 251.247 253.805 264.924 266.004 265.366 277.025 3037.31

1985 275.766 282.316 294.169 285.034 294.034 296.114 294.196 309.162 311.539 319.518 318.564 323.921 3604.33

1986 325.471 332.228 330.401 330.282 333.792 331.349 337.095 341.127 346.173 350.183 360.792 362.333 4081.23

1987 363.592 373.118 368.670 377.650 380.316 376.297 379.668 375.607 374.257 372.672 368.135 364.150 4474.13

1988 370.966 384.743 386.833 405.209 380.840 389.132 385.479 377.147 397.404 403.156 413.843 416.142 4710.89

1989 428.276 418.236 429.409 446.467 437.639 440.832 450.103 454.176 460.601 462.029 427.499 485.113 5340.38

1990 480.631 474.669 486.137 483.140 481.111 499.169 485.370 485.103 . . . . 3875.33

Avg 277.735 280.263 282.435 286.358 285.354 288.638 288.683 291.413 265.728 268.674 268.642 276.442

Total: 40324 Mean: 280.03 S.D.: 111.31
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You can compare the original series, Table B1, and the final seasonally adjusted series, Table D11, by plotting
them together. These tables are requested and named in the OUTPUT statement.

title 'Monthly Retail Sales Data (in $1000)';

proc x11 data=sales noprint;
monthly date=date;
var sales;
output out=out b1=sales d11=adjusted;

run;

proc sgplot data=out;
series x=date y=sales / markers

markerattrs=(color=red symbol='asterisk')
lineattrs=(color=red)
legendlabel="original" ;

series x=date y=adjusted / markers
markerattrs=(color=blue symbol='circle')
lineattrs=(color=blue)
legendlabel="adjusted" ;

yaxis label='Original and Seasonally Adjusted Time Series';
run;
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Figure 44.3 Plot of Original and Seasonally Adjusted Data

X-11-ARIMA
An inherent problem with the X-11 method is the revision of the seasonal factor estimates as new data become
available. The X-11 method uses a set of centered moving averages to estimate the seasonal components.
These moving averages apply symmetric weights to all observations except those at the beginning and end of
the series, where asymmetric weights have to be applied. These asymmetric weights can cause poor estimates
of the seasonal factors, which then can cause large revisions when new data become available.

While large revisions to seasonally adjusted values are not common, they can happen. When they do happen,
it undermines the credibility of the X-11 seasonal adjustment method.

A method to address this problem was developed at Statistics Canada (Dagum 1980, 1982a). This method,
known as X-11-ARIMA, applies an ARIMA model to the original data (after adjustments, if any) to forecast
the series one or more years. This extended series is then seasonally adjusted, allowing symmetric weights
to be applied to the end of the original data. This method was tested against a large number of Canadian
economic series and was found to greatly reduce the amount of revisions as new data were added.
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The X-11-ARIMA method is available in PROC X11 through the use of the ARIMA statement. The ARIMA
statement extends the original series either with a user-specified ARIMA model or by an automatic selection
process in which the best model from a set of five predefined ARIMA models is used.

The following example illustrates the use of the ARIMA statement. The ARIMA statement does not contain a
user-specified model, so the best model is chosen by the automatic selection process. Forecasts from this best
model are then used to extend the original series by one year. The following partial listing shows parameter
estimates and model diagnostics for the ARIMA model chosen by the automatic selection process:

proc x11 data=sales;
monthly date=date;
var sales;
arima;

run;

Figure 44.4 X-11-ARIMA Model Selection

Monthly Retail Sales Data (in $1000)

The X11 Procedure

Seasonal Adjustment of - sales

Conditional Least Squares Estimation

Parameter Estimate
Approx.

Std Error t Value Lag

MU 0.0001728 0.0009596 0.18 0

MA1,1 0.3739984 0.0893427 4.19 1

MA1,2 0.0231478 0.0892154 0.26 2

MA2,1 0.5727914 0.0790835 7.24 12

Conditional Least Squares Estimation

Variance  Estimate = 0.0014313

Std Error Estimate = 0.0378326

AIC                = -482.2412 *

SBC                = -470.7404 *

Number of Residuals= 131

* Does not include log determinant

Criteria Summary for Model 2: (0,1,2)(0,1,1)s, Log Transform

Box-Ljung Chi-square: 22.03 with 21 df Prob= 0.40

(Criteria prob > 0.05)

Test for over-differencing: sum of MA parameters = 0.57

(must be < 0.90)

MAPE - Last Three Years:     2.84 (Must be < 15.00 %)

- Last Year:            3.04

- Next to Last Year:    1.96

- Third from Last Year: 3.51

Table D11 (final seasonally adjusted series) is now constructed using symmetric weights on observations at
the end of the actual data. This should result in better estimates of the seasonal factors and, thus, smaller
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revisions in Table D11 as more data become available.

Syntax: X11 Procedure
The X11 procedure uses the following statements:

PROC X11 options ;
ARIMA options ;
BY variables ;
ID variables ;
MACURVES option ;
MONTHLY options ;
OUTPUT OUT=data set options ;
PDWEIGHTS option ;
QUARTERLY options ;
SSPAN options ;
TABLES table names ;
VAR variables ;

Either the MONTHLY or QUARTERLY statement must be specified, depending on the type of time series
data you have. The PDWEIGHTS and MACURVES statements can be used only with the MONTHLY
statement. The TABLES statement controls the printing of tables, while the OUTPUT statement controls the
creation of the OUT= data set.

Functional Summary
The statements and options controlling the X11 procedures are summarized in Table 44.1.

Table 44.1 Functional Summary

Description Statement Option

Data Set Options
Specify input data set PROC X11 DATA=
Write the trading-day regression results to an
output data set

PROC X11 OUTTDR=

Write the stable seasonality test results to an
output data set

PROC X11 OUTSTB=

Write table values to an output data set OUTPUT OUT=
Add extrapolated values to the output data set PROC X11 OUTEX
Add year ahead estimates to the output data set PROC X11 YRAHEADOUT
Write the sliding spans analysis results to an
output data set

PROC X11 OUTSPAN=

Printing Control Options
Suppress all printed output PROC X11 NOPRINT
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Table 44.1 continued

Description Statement Option

Suppress all printed ARIMA output ARIMA NOPRINT
Print all ARIMA output ARIMA PRINTALL
Print selected tables and charts TABLES
Print selected groups of tables MONTHLY PRINTOUT=

QUARTERLY PRINTOUT=
Print selected groups of charts MONTHLY CHARTS=

QUARTERLY CHARTS=
Print preliminary tables associated with
ARIMA processing

ARIMA PRINTFP

Specify number of decimals for printed tables MONTHLY NDEC=
QUARTERLY NDEC=

Suppress all printed SSPAN output SSPAN NOPRINT
Print all SSPAN output SSPAN PRINTALL

Date Information Options
Specify a SAS date variable MONTHLY DATE=

QUARTERLY DATE=
Specify the beginning date MONTHLY START=

QUARTERLY START=
Specify the ending date MONTHLY END=

QUARTERLY END=
Specify beginning year for trading-day
regression

MONTHLY TDCOMPUTE=

Declaring the Role of Variables
Specify BY-group processing BY
Specify the variables to be seasonally adjusted VAR
Specify identifying variables ID
Specify the prior monthly factor MONTHLY PMFACTOR=

Controlling the Table Computations
Use additive adjustment MONTHLY ADDITIVE

QUARTERLY ADDITIVE
Specify seasonal factor moving average length MACURVES
Specify the extreme value limit for trading-day
regression

MONTHLY EXCLUDE=

Specify the lower bound for extreme irregulars MONTHLY FULLWEIGHT=
QUARTERLY FULLWEIGHT=

Specify the upper bound for extreme irregulars MONTHLY ZEROWEIGHT=
QUARTERLY ZEROWEIGHT=

Include the length-of-month in trading-day
regression

MONTHLY LENGTH

Specify trading-day regression action MONTHLY TDREGR=
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Table 44.1 continued

Description Statement Option

Compute summary measure only MONTHLY SUMMARY
QUARTERLY SUMMARY

Modify extreme irregulars prior to trend MONTHLY TRENDADJ
Cycle estimation QUARTERLY TRENDADJ
Specify moving average length in trend MONTHLY TRENDMA=
Cycle estimation QUARTERLY TRENDMA=
Specify weights for prior trading-day factors PDWEIGHTS

PROC X11 Statement
PROC X11 options ;

The following options can appear in the PROC X11 statement:

DATA=SAS-data-set
specifies the input SAS data set used. If it is omitted, the most recently created SAS data set is used.

OUTEXTRAP
adds the extra observations used in ARIMA processing to the output data set.

When ARIMA forecasting/backcasting is requested, extra observations are appended to the ends of the
series, and the calculations are carried out on this extended series. The appended observations are not
normally written to the OUT= data set. However, if OUTEXTRAP is specified, these extra observations
are written to the output data set. If a DATE= variable is specified in the MONTHLY/QUARTERLY
statement, the date variable is extrapolated to identify forecasts/backcasts. The OUTEXTRAP option
can be abbreviated as OUTEX.

NOPRINT
suppresses any printed output. The NOPRINT option overrides any PRINTOUT=, CHARTS=, or
TABLES statement and any output associated with the ARIMA statement.

OUTSPAN=SAS-data-set
specifies the output data set to store the sliding spans analysis results. Tables A1, C18, D10, and D11
for each span are written to this data set. For more information, see the section “The OUTSPAN= Data
Set” on page 3281.

OUTSTB=SAS-data-set
specifies the output data set to store the stable seasonality test results (Table D8). All the information
in the analysis of variance table associated with the stable seasonality test is contained in the variables
written to this data set. For more information, see the section “OUTSTB= Data Set” on page 3282.
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OUTTDR=SAS-data-set
specifies the output data set to store the trading-day regression results (Tables B15 and C15). All the
information in the analysis of variance table associated with the trading-day regression is contained
in the variables written to this data set. This option is valid only when TDREGR=PRINT, TEST, or
ADJUST is specified in the MONTHLY statement. For more information, see the section “OUTTDR=
Data Set” on page 3282.

YRAHEADOUT
adds one-year-ahead forecast values to the output data set for Tables C16, C18, and D10. The original
purpose of this option was to avoid recomputation of the seasonal adjustment factors when new data
became available. While computing costs were an important factor when the X-11 method was
developed, this is no longer the case and this option is obsolete. For more information, see the section
“The YRAHEADOUT Option” on page 3277.

ARIMA Statement
ARIMA options ;

The ARIMA statement applies the X-11-ARIMA method to the series specified in the VAR statement. This
method uses an ARIMA model estimated from the original data to extend the series one or more years. The
ARIMA statement options control the ARIMA model used and the estimation, forecasting, and printing of
this model.

There are two ways of obtaining an ARIMA model to extend the series. A model can be given explicitly
with the MODEL= and TRANSFORM= options. Alternatively, the best-fitting model from a set of five
predefined models is found automatically whenever the MODEL= option is absent. For more information,
see the section “Details of Model Selection” on page 3278.

BACKCAST=n
specifies the number of years to backcast the series. The default is BACKCAST=0. For more
information, see the section “Effect of Backcast and Forecast Length” on page 3278.

CHICR=value
specifies the criteria for the significance level for the Box-Ljung chi-square test for lack of fit when
testing the five predefined models. The default is CHICR=0.05. The CHICR= option values must be
between 0.01 and 0.90. The hypothesis being tested is that of model adequacy. Nonrejection of the
hypothesis is evidence for an adequate model. Making the CHICR= value smaller makes it easier to
accept the model. For more information about the CHICR= option, see the section “Criteria Details”
on page 3279.

CONVERGE=value
specifies the convergence criterion for the estimation of an ARIMA model. The default value is 0.001.
The CONVERGE= value must be positive.
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FORECAST=n
specifies the number of years to forecast the series. The default is FORECAST=1. For more informa-
tion, see the section “Effect of Backcast and Forecast Length” on page 3278.

MAPECR=value
specifies the criteria for the mean absolute percent error (MAPE) when testing the five predefined
models. A small MAPE value is evidence for an adequate model; a large MAPE value results in the
model being rejected. The MAPECR= value is the boundary for acceptance/rejection. Thus a larger
MAPECR= value would make it easier for a model to pass the criteria. The default is MAPECR=15.
The MAPECR= option values must be between 1 and 100. For more information about the MAPECR=
option, see the section “Criteria Details” on page 3279.

MAXITER=n
specifies the maximum number of iterations in the estimation process. MAXITER must be between 1
and 60; the default value is 15.

METHOD=CLS

METHOD=ULS

METHOD=ML
specifies the estimation method. ML requests maximum likelihood, ULS requests unconditional least
squares, and CLS requests conditional least squares. METHOD=CLS is the default. The maximum
likelihood estimates are more expensive to compute than the conditional least squares estimates. In
some cases, however, they can be preferable. For further information about the estimation methods,
see the section “Estimation Details” on page 246 in Chapter 8, “The ARIMA Procedure.”

MODEL= ( P=n1 Q=n2 SP=n3 SQ=n4 DIF=n5 SDIF=n6 < NOINT > < CENTER >)
specifies the ARIMA model. The AR and MA orders are given by P=n1 and Q=n2, respectively, while
the seasonal AR and MA orders are given by SP=n3 and SQ=n4, respectively. The lag corresponding
to seasonality is determined by the MONTHLY or QUARTERLY statement. Similarly, differencing
and seasonal differencing are given by DIF=n5 and SDIF=n6, respectively.

For example,

arima model=( p=2 q=1 sp=1 dif=1 sdif=1 );

specifies a (2,1,1)(1,1,0)s model, where s, the seasonality, is either 12 (monthly) or 4 (quarterly). For
more examples of the MODEL= syntax, see the section “Details of Model Selection” on page 3278.

NOINT
suppresses the fitting of a constant (or intercept) parameter in the model. (That is, the parameter � is
omitted.)

CENTER
centers each time series by subtracting its sample mean. The analysis is done on the centered data.
Later, when forecasts are generated, the mean is added back. Note that centering is done after
differencing. The CENTER option is normally used in conjunction with the NOCONSTANT option of
the ESTIMATE statement.

For example, to fit an AR(1) model on the centered data without an intercept, use the following ARIMA
statement:
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arima model=( p=1 center noint );

NOPRINT
suppresses the normal printout generated by the ARIMA statement. Note that the effect of specifying
the NOPRINT option in the ARIMA statement is different from the effect of specifying the NOPRINT
in the PROC X11 statement, since the former only affects ARIMA output.

OVDIFCR=value
specifies the criteria for the over-differencing test when testing the five predefined models. When
the MA parameters in one of these models sum to a number close to 1.0, this is an indication of
over-parameterization and the model is rejected. The OVDIFCR= value is the boundary for this
rejection; values greater than this value fail the over-differencing test. A larger OVDIFCR= value
would make it easier for a model to pass the criteria. The default is OVDIFCR=0.90. The OVDIFCR=
option values must be between 0.80 and 0.99. For more information about the OVDIFCR= option, see
the section “Criteria Details” on page 3279.

PRINTALL
provides the same output as the default printing for all models fit and, in addition, prints an estimation
summary and chi-square statistics for each model fit. For more information, see the “Printed Output”
on page 3284.

PRINTFP
prints the results for the initial pass of X11 made to exclude trading-day effects. This option has an
effect only when the TDREGR= option specifies ADJUST, TEST, or PRINT. In these cases, an initial
pass of the standard X11 method is required to get rid of calendar effects before doing any ARIMA
estimation. Usually this first pass is not of interest, and by default no tables are printed. However,
specifying PRINTFP in the ARIMA statement causes any tables printed in the final pass to also be
printed for this initial pass.

TRANSFORM= (LOG) | LOG

TRANSFORM= ( constant ** power )
The ARIMA statement in PROC X11 allows certain transformations on the series before estimation.
The specified transformation is applied only to a user-specified model. If TRANSFORM= is specified
and the MODEL= option is not specified, the transformation request is ignored and a warning is
printed.

The LOG transformation requests that the natural log of the series be used for estimation. The resulting
forecast values are transformed back to the original scale.

A general power transformation of the form Xt ! .Xt C a/
b is obtained by specifying

transform= ( a ** b )

If the constant a is not specified, it is assumed to be zero. The specified ARIMA model is then estimated
using the transformed series. The resulting forecast values are transformed back to the original scale.
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BY Statement
BY variables ;

A BY statement can be used with PROC X11 to obtain separate analyses on observations in groups defined
by the BY variables. When a BY statement appears, the procedure expects the input DATA= data set to be
sorted in order of the BY variables.

ID Statement
ID variables ;

If you are creating an output data set, use the ID statement to put values of the ID variables, in addition to the
table values, into the output data set. The ID statement has no effect when an output data set is not created.
If the DATE= variable is specified in the MONTHLY or QUARTERLY statement, this variable is included
automatically in the OUTPUT data set. If no DATE= variable is specified, the variable _DATE_ is added.

The date variable (or _DATE_) values outside the range of the actual data (from ARIMA forecasting or
backcasting, or from YRAHEADOUT) are extrapolated, while all other ID variables are missing.

MACURVES Statement
MACURVES month=option . . . ;

The MACURVES statement specifies the length of the moving-average curves for estimating the seasonal
factors for any month. This statement can be used only with monthly time series data.

The month=option specifications consist of the month name (or the first three letters of the month name), an
equal sign, and one of the following option values:

’3’ specifies a three-term moving average for the month

’3X3’ specifies a three-by-three moving average

’3X5’ specifies a three-by-five moving average

’3X9’ specifies a three-by-nine moving average

STABLE specifies a stable seasonal factor (average of all values for the month)

For example, the statement

macurves jan='3' feb='3x3' march='3x5' april='3x9';

uses a three-term moving average to estimate seasonal factors for January, a 3 � 3 (a three-term moving
average of a three-term moving average) for February, a 3 � 5 (a three-term moving average of a five-term
moving average) for March, and a 3 � 9 (a three-term moving average of a nine-term moving average) for
April.

The numeric values used for the weights of the various moving averages and a discussion of the derivation of
these weights are given in Shiskin, Young, and Musgrave (1967). A general discussion of moving average
weights is given in Dagum (1985).



MONTHLY Statement F 3259

If the specification for a month is omitted, the X11 procedure uses a three-by-three moving average for the
first estimate of each iteration and a three-by-five average for the second estimate.

MONTHLY Statement
MONTHLY options ;

The MONTHLY statement must be used when the input data to PROC X11 are a monthly time series. The
MONTHLY statement specifies options that determine the computations performed by PROC X11 and what
is included in its output. Either the DATE= or START= option must be used.

The following options can appear in the MONTHLY statement:

ADDITIVE
performs additive adjustments. If the ADDITIVE option is omitted, PROC X11 performs multiplicative
adjustments.

CHARTS=STANDARD
CHARTS=FULL
CHARTS=NONE

specifies the charts produced by the procedure. The default is CHARTS=STANDARD, which specifies
12 monthly seasonal charts and a trend cycle chart. If you specify CHARTS=FULL (or CHARTS=ALL),
the procedure prints additional charts of irregular and seasonal factors. To print no charts, specify
CHARTS=NONE.

The TABLES statement can also be used to specify particular monthly charts to be printed. If no
CHARTS= option is given, and a TABLES statement is given, the TABLES statement overrides the
default value of CHARTS=STANDARD; that is, no charts (or tables) are printed except those specified
in the TABLES statement. However, if both the CHARTS= option and a TABLES statement are given,
the charts corresponding to the CHARTS= option and those requested by the TABLES statement are
printed.

For example, suppose you wanted only charts G1, the final seasonally adjusted series and trend
cycle, and G4, the final irregular and final modified irregular series. You would specify the following
statements:

monthly date=date;
tables g1 g4;

DATE=variable
specifies a variable that gives the date for each observation. The starting and ending dates are obtained
from the first and last values of the DATE= variable, which must contain SAS date values. The
procedure checks values of the DATE= variable to ensure that the input observations are sequenced
correctly. This variable is automatically added to the OUTPUT= data set if one is requested and
extrapolated if necessary. If the DATE= option is not specified, the START= option must be specified.

The DATE= option and the START= and END= options can be used in combination to subset a series
for processing. For example, suppose you have 12 years of monthly data (144 observations, no missing
values) beginning in January 1970 and ending in December 1981, and you wanted to seasonally adjust
only six years beginning in January 1974. Specifying
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monthly date=date start=jan1974 end=dec1979;

would seasonally adjust only this subset of the data. If instead you wanted to adjust the last eight years
of data, only the START= option is needed:

monthly date=date start=jan1974;

END=mmmyyyy
specifies that only the part of the input series ending with the month and year given be adjusted (for
example, END=DEC1970). For information about using the START= and END= options to subset a
series for processing, see the DATE=variable option.

EXCLUDE=value
excludes from the trading-day regression any irregular values that are more than value standard
deviations from the mean. The EXCLUDE=value must be between 0.1 and 9.9, with the default value
being 2.5.

FULLWEIGHT=value
assigns weights to irregular values based on their distance from the mean in standard deviation units.
The weights are used for estimating seasonal and trend cycle components. Irregular values less than
the FULLWEIGHT= value (in standard deviation units) are assigned full weights of 1, values that fall
between the ZEROWEIGHT= and FULLWEIGHT= limits are assigned weights linearly graduated
between 0 and 1, and values greater than the ZEROWEIGHT= limit are assigned a weight of 0.

For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3 standard deviations from the
mean would be assigned a graduated weight. The FULLWEIGHT=value must be between 0.1 and 9.9
but must be less than the ZEROWEIGHT=value. The default is FULLWEIGHT=1.5.

LENGTH
includes length-of-month allowance in computing trading-day factors. If this option is omitted,
length-of-month allowances are included with the seasonal factors.

NDEC=n
specifies the number of decimal places shown in the printed tables in the listing. This option has no
effect on the precision of the variable values in the output data set.

PMFACTOR=variable
specifies a variable containing the prior monthly factors. Use this option if you have previous
knowledge of monthly adjustment factors. The PMFACTOR= option can be used to make the
following adjustments:

� adjust the level of all or part of a series with discontinuities

� adjust for the influence of holidays that fall on different dates from year to year, such as the effect
of Easter on certain retail sales

� adjust for unreasonable weather influence on series, such as housing starts

� adjust for changing starting dates of fiscal years (for budget series) or model years (for automo-
biles)
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� adjust for temporary dislocating events, such as strikes

For more information and examples using the PMFACTOR= option, see the section “Prior Daily
Weights and Trading-Day Regression” on page 3276.

PRINTOUT=STANDARD | LONG | FULL | NONE
specifies the tables to be printed by the procedure. If the PRINTOUT=STANDARD option is specified,
between 17 and 27 tables are printed, depending on the other options that are specified. PRINT-
OUT=LONG prints between 27 and 39 tables, and PRINTOUT=FULL prints between 44 and 59 tables.
Specifying PRINTOUT=NONE results in no tables being printed; however, charts are still printed.
The default is PRINTOUT=STANDARD.

The TABLES statement can also be used to specify particular monthly tables to be printed. If no
PRINTOUT= option is specified, and a TABLES statement is given, the TABLES statement overrides
the default value of PRINTOUT=STANDARD; that is, no tables (or charts) are printed except those
given in the TABLES statement. However, if both the PRINTOUT= option and a TABLES statement
are specified, the tables corresponding to the PRINTOUT= option and those requested by the TABLES
statement are printed.

START=mmmyyyy
adjusts only the part of the input series starting with the specified month and year. When the DATE=
option is not used, the START= option gives the year and month of the first input observation—for
example, START=JAN1966. START= must be specified if DATE= is not given. If START= is specified
(and no DATE= option is given), and an OUT= data set is requested, a variable named _DATE_ is
added to the data set, giving the date value for each observation. For information about using the
START= and END= options to subset a series, see the DATE= variable option.

SUMMARY
specifies that the data are already seasonally adjusted and the procedure is to produce summary
measures. If the SUMMARY option is omitted, the X11 procedure performs seasonal adjustment of
the input data before calculating summary measures.

TDCOMPUTE=year
uses the part of the input series beginning with January of the specified year to derive trading-day
weights. If this option is omitted, the entire series is used.

TDREGR=NONE | PRINT | ADJUST | TEST
specifies the treatment of trading-day regression. TDREG=NONE omits the computation of the
trading-day regression. TDREG=PRINT computes and prints the trading-day regressions but does
not adjust the series. TDREG=ADJUST computes and prints the trading-day regression and adjusts
the irregular components to obtain preliminary weights. TDREG=TEST adjusts the final series if the
trading-day regression estimates explain significant variation on the basis of an F test (or residual
trading-day variation if prior weights are used). The default is TDREGR=NONE.

For more information and examples using the TDREGR= option, see the section “Prior Daily Weights
and Trading-Day Regression” on page 3276.

If ARIMA processing is requested, any value of TDREGR other than the default TDREGR=NONE
will cause PROC X11 to perform an initial pass (see the section “Details: X11 Procedure” on page 3268
and the PRINTFP option).
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The significance level reported in Table C15 should be viewed with caution. The dependent variable in
the trading-day regression is the irregular component formed by an averaging operation. This induces
a correlation in the dependent variable and hence in the residuals from which the F test is computed.
Hence the distribution of the trading-day regression F statistics differs from an exact F; for more
information, see Cleveland and Devlin (1980).

TRENDADJ
modifies extreme irregular values prior to computing the trend cycle estimates in the first iteration. If
the TRENDADJ option is omitted, the trend cycle is computed without modifications for extremes.

TRENDMA=9 | 13 | 23
specifies the number of terms in the moving average to be used by the procedure in estimating the
variable trend cycle component. The value of the TRENDMA= option must be 9, 13, or 23. If the
TRENDMA= option is omitted, the procedure selects an appropriate moving average. For information
about the number of terms in the moving average, see Shiskin, Young, and Musgrave (1967).

ZEROWEIGHT=value
assigns weights to irregular values based on their distance from the mean in standard deviation units.
The weights are used for estimating seasonal and trend cycle components. Irregular values beyond the
standard deviation limit specified in the ZEROWEIGHT= option are assigned zero weights. Values
that fall between the two limits (ZEROWEIGHT= and FULLWEIGHT=) are assigned weights linearly
graduated between 0 and 1. For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3
standard deviations from the mean would be assigned a graduated weight. The ZEROWEIGHT=value
must be between 0.1 and 9.9 but must be greater than the FULLWEIGHT=value. The default is
ZEROWEIGHT=2.5.

The ZEROWEIGHT option can be used in conjunction with the FULLWEIGHT= option to adjust
outliers from a monthly or quarterly series. For an illustration of this use, see Example 44.3 later in
this chapter.

OUTPUT Statement
OUTPUT OUT= SAS-data-set tablename=var1 var2 . . . ;

The OUTPUT statement creates an output data set containing specified tables. The data set is named by the
OUT= option.

OUT=SAS-data-set
If OUT= is omitted, the SAS System names the new data set by using the DATAn convention.

For each table to be included in the output data set, write the X11 table identification keyword, an
equal sign, and a list of new variable names:

tablename = var1 var2 . . .

The tablename keywords that can be used in the OUTPUT statement are listed in the section “Printed
Output” on page 3284. The following is an example of a VAR statement and an OUTPUT statement:
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var z1 z2 z3;
output out=out_x11 b1=s d11=w x y;

The variable s contains the Table B1 values for the variable z1, while the Table D11 values for variables
z1, z2, and z3 are contained in variables w, x, and y, respectively. As this example shows, the list of
variables following a tablename= keyword can be shorter than the VAR variable list.

In addition to the variables named by tablename =var1 var2 . . . , the ID variables, and BY variables,
the output data set contains a date identifier variable. If the DATE= option is given in the MONTHLY
or QUARTERLY statement, the DATE= variable is the date identifier. If no DATE= option is given, a
variable named _DATE_ is the date identifier.

PDWEIGHTS Statement
PDWEIGHTS day=w . . . ;

The PDWEIGHTS statement can be used to specify one to seven daily weights. The statement can only be
used with monthly series that are seasonally adjusted using the multiplicative model. These weights are used
to compute prior trading-day factors, which are then used to adjust the original series prior to the seasonal
adjustment process. Only relative weights are needed; the X11 procedure adjusts the weights so that they
sum to 7.0. The weights can also be corrected by the procedure on the basis of estimates of trading-day
variation from the input data.

For more information and examples using the PDWEIGHTS statement, see the section “Prior Daily Weights
and Trading-Day Regression” on page 3276.

Each day=w option specifies a weight (w) for the named day. The day can be any day, Sunday through
Saturday. The day keyword can be the full spelling of the day, or the three-letter abbreviation. For example,
SATURDAY=1.0 and SAT=1.0 are both valid. The weights w must be a numeric value between 0.0 and 10.0.

The following is an example of a PDWEIGHTS statement:

pdweights sun=.2 mon=.9 tue=1 wed=1 thu=1 fri=.8 sat=.3;

Any number of days can be specified with one PDWEIGHTS statement. The default weight value for any day
that is not specified is 0. If you do not use a PDWEIGHTS statement, the program computes daily weights if
TDREGR=ADJUST is specified. For more information, see Shiskin, Young, and Musgrave (1967).
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QUARTERLY Statement
QUARTERLY options ;

The QUARTERLY statement must be used when the input data are quarterly time series. This statement
includes options that determine the computations performed by the procedure and what is in the printed
output. The DATE= option or the START= option must be used.

The following options can appear in the QUARTERLY statement:

ADDITIVE
performs additive adjustments. If this option is omitted, the procedure performs multiplicative adjust-
ments.

CHARTS=STANDARD

CHARTS=FULL

CHARTS=NONE
specifies the charts to be produced by the procedure. The default value is CHARTS=STANDARD,
which specifies four quarterly seasonal charts and a trend cycle chart. If you specify CHARTS=FULL
(or CHARTS=ALL), the procedure prints additional charts of irregular and seasonal factors. To
print no charts, specify CHARTS=NONE. The TABLES statement can also be used to specify par-
ticular charts to be printed. The presence of a TABLES statement overrides the default value of
CHARTS=STANDARD; that is, if a TABLES statement is specified, and no CHARTS=option is
specified, no charts (nor tables) are printed except those given in the TABLES statement. However,
if both the CHARTS= option and a TABLES statement are given, the charts corresponding to the
CHARTS= option and those requested by the TABLES statement are printed.

For example, suppose you wanted only charts G1, the final seasonally adjusted series and trend cycle,
and G4, the final irregular and final modified irregular series. This is accomplished by specifying the
following statements:

quarterly date=date;
tables g1 g4;

DATE=variable
specifies a variable that gives the date for each observation. The starting and ending dates are obtained
from the first and last values of the DATE= variable, which must contain SAS date values. The
procedure checks values of the DATE= variable to ensure that the input observations are sequenced
correctly. This variable is automatically added to the OUTPUT= data set if one is requested, and
extrapolated if necessary. If the DATE= option is not specified, the START= option must be specified.

The DATE= option and the START= and END= options can be used in combination to subset a series
for processing. For example, suppose you have a series with 10 years of quarterly data (40 observations,
no missing values) beginning in ‘1970Q1’ and ending in ‘1979Q4’, and you want to seasonally adjust
only four years beginning in ‘1974Q1’ and ending in ‘1977Q4’. Specifying
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quarterly date=variable start='1974q1' end='1977q4';

seasonally adjusts only this subset of the data. If instead you wanted to adjust the last six years of data,
only the START= option is needed:

quarterly date=variable start='1974q1';

END=‘yyyyQq’
specifies that only the part of the input series ending with the quarter and year given be adjusted (for
example, END=’1973Q4’). The specification must be enclosed in quotes, and q must be 1, 2, 3, or 4.
For information about using the START= and END= options to subset a series, see the DATE= variable
option.

FULLWEIGHT=value
assigns weights to irregular values based on their distance from the mean in standard deviation units.
The weights are used for estimating seasonal and trend cycle components. Irregular values less than
the FULLWEIGHT= value (in standard deviation units) are assigned full weights of 1, values that fall
between the ZEROWEIGHT= and FULLWEIGHT= limits are assigned weights linearly graduated
between 0 and 1, and values greater than the ZEROWEIGHT= limit are assigned a weight of 0.

For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a value 1.3 standard deviations from the
mean would be assigned a graduated weight. The default is FULLWEIGHT=1.5.

NDEC=n
specifies the number of decimal places shown on the output tables. This option has no effect on the
precision of the variables in the output data set.

PRINTOUT=STANDARD
PRINTOUT=LONG
PRINTOUT=FULL
PRINTOUT=NONE

specifies the tables to print. If PRINTOUT=STANDARD is specified, between 17 and 27 tables are
printed, depending on the other options that are specified. PRINTOUT=LONG prints between 27 and
39 tables, and PRINTOUT=FULL prints between 44 and 59 tables. Specifying PRINTOUT=NONE
results in no tables being printed. The default is PRINTOUT=STANDARD.

The TABLES statement can also specify particular quarterly tables to be printed. If no PRINTOUT=
is given, and a TABLES statement is given, the TABLES statement overrides the default value of
PRINTOUT=STANDARD; that is, no tables (or charts) are printed except those given in the TABLES
statement. However, if both the PRINTOUT= option and a TABLES statement are given, the tables
corresponding to the PRINTOUT= option and those requested by the TABLES statement are printed.

START=’yyyyQq’
adjusts only the part of the input series starting with the quarter and year given. When the DATE=
option is not used, the START= option gives the year and quarter of the first input observation (for
example, START=’1967Q1’). The specification must be enclosed in quotes, and q must be 1, 2, 3, or 4.
START= must be specified if the DATE= option is not given. If START= is specified (and no DATE=
is given), and an OUTPUT= data set is requested, a variable named _DATE_ is added to the data set,
giving the date value for a given observation. For information about using the START= and END=
options to subset a series, see the DATE= option.
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SUMMARY
specifies that the input is already seasonally adjusted and that the procedure is to produce summary
measures. If this option is omitted, the procedure performs seasonal adjustment of the input data before
calculating summary measures.

TRENDADJ
modifies extreme irregular values prior to computing the trend cycle estimates. If this option is omitted,
the trend cycle is computed without modification for extremes.

ZEROWEIGHT=value
assigns weights to irregular values based on their distance from the mean in standard deviation
units. The weights are used for estimating seasonal and trend cycle components. Irregular values
beyond the standard deviation limit specified in the ZEROWEIGHT= option are assigned zero weights.
Values that fall between the two limits (ZEROWEIGHT= and FULLWEIGHT=) are assigned weights
linearly graduated between 0 and 1. For example, if ZEROWEIGHT=2 and FULLWEIGHT=1, a
value 1.3 standard deviations from the mean would be assigned a graduated weight. The default is
ZEROWEIGHT=2.5.

The ZEROWEIGHT option can be used in conjunction with the FULLWEIGHT= option to adjust
outliers from a monthly or quarterly series. For an illustration of this use, see Example 44.3 later in
this chapter.

SSPAN Statement
SSPAN options ;

The SSPAN statement applies sliding spans analysis to determine the suitability of seasonal adjustment for
an economic series.

The following options can appear in the SSPAN statement:

NDEC=n
specifies the number of decimal places shown on selected sliding span reports. This option has no
effect on the precision of the variables values in the OUTSPAN output data set.

CUTOFF=value
gives the percentage value for determining an excessive difference within a span for the seasonal factors,
the seasonally adjusted series, and month-to-month and year-to-year differences in the seasonally
adjusted series. The default value is 3.0. The use of the CUTOFF=value in determining the maximum
percent difference (MPD) is described in the section “Computational Details for Sliding Spans Analysis”
on page 3273. Caution should be used in changing the default CUTOFF=value. The empirical threshold
ranges found by the U.S. Census Bureau no longer apply when value is changed.

TDCUTOFF=value
gives the percentage value for determining an excessive difference within a span for the trading-day
factors. The default value is 2.0. The use of the TDCUTOFF=value in determining the maximum
percent difference (MPD) is described in the section “Computational Details for Sliding Spans Analysis”
on page 3273. Caution should be used in changing the default TDCUTOFF=value. The empirical
threshold ranges found by the U.S. Census Bureau no longer apply when the value is changed.
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NOPRINT
suppresses all sliding span reports. For more information about sliding span reports, see the section
“Computational Details for Sliding Spans Analysis” on page 3273.

PRINT
prints the summary sliding span reports S 0 through S 6.E.

PRINTALL
prints the summary sliding spans report S 0 through S 6.E, along with detail reports S 7.A through
S 7.E.

TABLES Statement
TABLES table names ;

The TABLES statement prints the tables specified in addition to the tables that are printed as a result of the
PRINTOUT= option in the MONTHLY or QUARTERLY statement. Table names are listed in Table 44.4
later in this chapter.

To print only selected tables, omit the PRINTOUT= option in the MONTHLY or QUARTERLY statement
and list the tables to be printed in the TABLES statement. For example, to print only the final seasonal factors
and final seasonally adjusted series, use the statement

tables d10 d11;

VAR Statement
VAR variables ;

The VAR statement is used to specify the variables in the input data set that are to be analyzed by the
procedure. Only numeric variables can be specified. If the VAR statement is omitted, all numeric variables
are analyzed except those appearing in a BY or ID statement or the variable named in the DATE= option in
the MONTHLY or QUARTERLY statement.
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Details: X11 Procedure

Historical Development of X-11
This section briefly describes the historical development of the standard X-11 seasonal adjustment method
and the later development of the X-11-ARIMA method. Most of the following discussion is based on a
comprehensive article by Bell and Hillmer (1984), which describes the history of X-11 and the justification
of using seasonal adjustment methods, such as X-11, given the current availability of time series software.
For further discussions about statistical problems associated with the X-11 method, see Ghysels (1990).

Seasonal adjustment methods began to be developed in the 1920s and 1930s, before there were suitable
analytic models available and before electronic computing devices were in existence. The lack of any suitable
model led to methods that worked the same for any series—that is, methods that were not model-based and
that could be applied to any series. Experience with economic series had shown that a given mathematical
form could adequately represent a time series only for a fixed length; as more data were added, the model
became inadequate. This suggested an approach that used moving averages. For further analysis of the
properties of X-11 moving averages, see Cleveland and Tiao (1976).

The basic method was to break up an economic time series into long-term trend, long-term cyclical movements,
seasonal movements, and irregular fluctuations.

Early investigators found that it was not possible to uniquely decompose the trend and cycle components.
Thus, these two were grouped together; the resulting component is usually referred to as the “trend cycle
component.”

It was also found that estimating seasonal components in the presence of trend produced biased estimates of
the seasonal components, but, at the same time, estimating trend in the presence of seasonality was difficult.
This eventually lead to the iterative approach used in the X-11 method.

Two other problems were encountered by early investigators. First, some economic series appear to have
changing or evolving seasonality. Secondly, moving averages were very sensitive to extreme values. The
estimation method used in the X-11 method allows for evolving seasonal components. For the second
problem, the X-11 method uses repeated adjustment of extreme values.

All of these problems encountered in the early investigation of seasonal adjustment methods suggested
the use of moving averages in estimating components. Even with the use of moving averages instead of a
model-based method, massive amounts of hand calculations were required. Only a small number of series
could be adjusted, and little experimentation could be done to evaluate variations on the method.

With the advent of electronic computing in the 1950s, work on seasonal adjustment methods proceeded
rapidly. These methods still used the framework previously described; variants of these basic methods could
now be easily tested against a large number of series.

Much of the work was done by Julian Shiskin and others at the U.S. Bureau of the Census beginning in
1954 and culminating after a number of variants into the X-11 Variant of the Census Method II Seasonal
Adjustment Program, which PROC X11 implements.

References for this work during this period include Shiskin and Eisenpress (1957), Shiskin (1958), and Marris
(1961). The authoritative documentation for the X-11 Variant is in Shiskin, Young, and Musgrave (1967).
This document is not equivalent to a program specification; however, the FORTRAN code that implements
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the X-11 Variant is in the public domain. A less detailed description of the X-11 Variant is given in US
Bureau of the Census (1969).

Development of the X-11-ARIMA Method

The X-11 method uses symmetric moving averages in estimating the various components. At the end of the
series, however, these symmetric weights cannot be applied. Either asymmetric weights have to be used, or
some method of extending the series must be found.

While various methods of extending a series have been proposed, the most important method to date has been
the X-11-ARIMA method developed at Statistics Canada. This method uses Box-Jenkins ARIMA models to
extend the series.

The Time Series Research and Analysis Division of Statistics Canada investigated 174 Canadian economic
series and found five ARIMA models out of twelve that fit the majority of series well and reduced revisions
for the most recent months. References that give details of various aspects of the X-11-ARIMA methodology
include Dagum (1980, 1982a, c, 1983, 1988), Laniel (1985), Lothian and Morry (1978a), and Huot et al.
(1986).

Differences between X11ARIMA/88 and PROC X11

The original implementation of the X-11-ARIMA method was by Statistics Canada in 1980 (Dagum 1980),
with later changes and enhancements made in 1988 (Dagum 1988). The calculations performed by PROC
X11 differ from those in X11ARIMA/88, which will result in differences in the final component estimates
provided by these implementations.

There are three areas where Statistics Canada made changes to the original X-11 seasonal adjustment method
in developing X11ARIMA/80 (Monsell 1984). These are (a) selection of extreme values, (b) replacement of
extreme values, and (c) generation of seasonal and trend cycle weights.

These changes have not been implemented in the current version of PROC X11. Thus the procedure produces
results identical to those from previous versions of PROC X11 in the absence of an ARIMA statement.

Additional differences can result from the ARIMA estimation. X11ARIMA/88 uses conditional least squares
(CLS), while CLS, unconditional least squares (ULS) and maximum likelihood (ML) are all available in
PROC X11 by using the METHOD= option in the ARIMA statement. Generally, parameters estimates will
differ for the different methods.

Implementation of the X-11 Seasonal Adjustment Method
The following steps describe the analysis of a monthly time series using multiplicative seasonal adjustment.
Additional steps used by the X-11-ARIMA method are also indicated. Equivalent descriptions apply for an
additive model if you replace divide with subtract where applicable.

In the multiplicative adjustment, the original series Ot is assumed to be of the form

Ot D CtStItPtDt

where Ct is the trend cycle component, St is the seasonal component, It is the irregular component, Pt is the
prior monthly factors component, and Dt is the trading-day component.
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The trading-day component can be further factored as

Dt D Dr;tDtr;t

where Dtr;t are the trading-day factors derived from the prior daily weights, and Dr;t are the residual
trading-day factors estimated from the trading-day regression. For further information about estimating
trading day variation, see Young (1965).

Additional Steps When Using the X-11-ARIMA Method

The X-11-ARIMA method consists of extending a given series by an ARIMA model and applying the usual
X-11 seasonal adjustment method to this extended series. Thus in the simplest case in which there are no
prior factors or calendar effects in the series, the ARIMA model selection, estimation, and forecasting are
performed first, and the resulting extended series goes through the standard X-11 steps described in the next
section.

If prior factor or calendar effects are present, they must be eliminated from the series before the ARIMA
estimation is done because these effects are not stochastic.

Prior factors, if present, are removed first. Calendar effects represented by prior daily weights are then
removed. If there are no further calendar effects, the adjusted series is extended by the ARIMA model, and
this extended series goes through the standard X-11 steps without repeating the removal of prior factors and
calendar effects from prior daily weights.

If further calendar effects are present, a trading-day regression must be performed. In this case it is necessary
to go through an initial pass of the X-11 steps to obtain a final trading-day adjustment. In this initial pass,
the series, adjusted for prior factors and prior daily weights, goes through the standard X-11 steps. At the
conclusion of these steps, a final series adjusted for prior factors and all calendar effects is available. This
adjusted series is then extended by the ARIMA model, and this extended series goes through the standard
X-11 steps again, without repeating the removal of prior factors and calendar effects from prior daily weights
and trading-day regression.

The Standard X-11 Seasonal Adjustment Method

The standard X-11 seasonal adjustment method consists of the following steps. These steps are applied to the
original data or the original data extended by an ARIMA model.

1. In step 1, the data are read, ignoring missing values until the first nonmissing value is found. If prior
monthly factors are present, the procedure reads prior monthly Pt factors and divides them into the
original series to obtain Ot=Pt D CtStItDtr;tDr;t .

Seven daily weights can be specified to develop monthly factors to adjust the series for trading-day
variation, Dtr;t ; these factors are then divided into the original or prior adjusted series to obtain
CtStItDr;t .

2. In steps 2, 3, and 4, three iterations are performed, each of which provides estimates of the seasonal St ,
trading-day Dr;t , trend cycle Ct , and irregular components It . Each iteration refines estimates of the
extreme values in the irregular components. After extreme values are identified and modified, final
estimates of the seasonal component, seasonally adjusted series, trend cycle, and irregular components
are produced. Step 2 consists of three substeps:
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a) During the first iteration, a centered, 12-term moving average is applied to the original series Ot
to provide a preliminary estimate OCt of the trend cycle curve Ct . This moving average combines
13 (a 2-term moving average of a 12-term moving average) consecutive monthly values, removing
the St and It . Next, it obtains a preliminary estimate bStIt by

bStIt D Ot

OCt

b) A moving average is then applied to the bStIt to obtain an estimate OSt of the seasonal factors.
bStIt is then divided by this estimate to obtain an estimate OIt of the irregular component. Next, a
moving standard deviation is calculated from the irregular component and is used in assigning a
weight to each monthly value for measuring its degree of extremeness. These weights are used
to modify extreme values in bStIt . New seasonal factors are estimated by applying a moving
average to the modified value of bStIt . A preliminary seasonally adjusted series is obtained by
dividing the original series by these new seasonal factors. A second estimate of the trend cycle is
obtained by applying a weighted moving average to this seasonally adjusted series.

c) The same process is used to obtain second estimates of the seasonally adjusted series and
improved estimates of the irregular component. This irregular component is again modified for
extreme values and then used to provide estimates of trading-day factors and refined weights for
the identification of extreme values.

3. Using the same computations, a second iteration is performed on the original series that has been
adjusted by the trading-day factors and irregular weights developed in the first iteration. The second
iteration produces final estimates of the trading-day factors and irregular weights.

4. A third and final iteration is performed using the original series that has been adjusted for trading-day
factors and irregular weights computed during the second iteration. During the third iteration, PROC
X11 develops final estimates of seasonal factors, the seasonally adjusted series, the trend cycle, and
the irregular components. The procedure computes summary measures of variation and produces a
moving average of the final adjusted series.

Sliding Spans Analysis

The motivation for sliding spans analysis is to answer the question, When is a economic series unsuitable for
seasonal adjustment? There have been a number of past attempts to answer this question: stable seasonality
F test; moving seasonality F test, Q statistics, and others.

Sliding spans analysis attempts to quantify the stability of the seasonal adjustment process, and hence quantify
the suitability of seasonal adjustment for a given series.

It is based on a very simple idea: for a stable series, deleting a small number of observations should not result
in greatly different component estimates compared with the original, full series. Conversely, if deleting a
small number of observations results in drastically different estimates, the series is unstable. For example, a
drastic difference in the seasonal factors (Table D10) might result from a dominating irregular component or
sudden changes in the seasonally component. When the seasonal component estimates of a series is unstable
in this manner, they have little meaning and the series is likely to be unsuitable for seasonal adjustment.

Sliding spans analysis, developed at the Statistical Research Division of the U.S. Census Bureau (Findley
et al. 1990; Findley and Monsell 1986), performs a repeated seasonal adjustment on subsets or spans of the
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full series. In particular, an initial span of the data, typically eight years in length, is seasonally adjusted,
and the Tables C18, the trading-day factors (if trading-day regression performed), D10, the seasonal factors,
and D11, the seasonally adjusted series are retained for further processing. Next, one year of data is deleted
from the beginning of the initial span and one year of data is added. This new span is seasonally adjusted
as before, with the same tables retained. This process continues until the end of the data is reached. The
beginning and ending dates of the spans are such that the last observation in the original data is also the last
observation in the last span. This is discussed in more detail in the following paragraphs.

The following notation for the components or differences computed in the sliding spans analysis follows
Findley et al. (1990). The meaning for the symbol Xt .k/ is component X in month (or quarter) t, computed
from data in the kth span. These components are now defined.

� Seasonal Factors (Table D10): St .k/

� Trading-Day Factors (Table C18): TDt .k/

� Seasonally Adjusted Data (Table D11): SAt .k/

� Month-to-Month Changes in the Seasonally Adjusted Data: MMt .k/

� Year-to-Year Changes in the Seasonally Adjusted Data: Y Yt .k/

The key measure is the maximum percent difference across spans. For example, consider a series that begins
in January 1972, ends in December 1984, and has four spans, each of length 8 years (see Figure 1 in Findley
et al. (1990), p. 346). Consider St .k/ the seasonal factor (Table D10) for month t for span k, and let Nt
denote the number of spans containing month t; that is,

Nt D fk W span k contains month tg

In the middle years of the series there is overlap of all four spans, and Nt will be 4. The last year of the series
will have only one span, while the beginning can have 1 or 0 spans depending on the original length.

Since we are interested in how much the seasonal factors vary for a given month across the spans, a natural
quantity to consider is

maxk�NtSt .k/ �mink�NtSt .k/

In the case of the multiplicative model, it is useful to compute a percentage difference; define the maximum
percentage difference (MPD) at time t as

MPDt D
maxk�Nt St .k/ �mink�Nt St .k/

mink�Nt St .k/

The seasonal factor for month t is then unreliable if MPDt is large. While no exact significance level can be
computed for this statistic, empirical levels have been established by considering over 500 economic series
(Findley et al. 1990; Findley and Monsell 1986). For these series it was found that for four spans, stable
series typically had less than 15% of the MPD values exceeding 3.0%, while in marginally stable series,
between 15% and 25% of the MPD values exceeded 3.0%. A series in which 25% or more of the MPD
values exceeded 3.0% is almost always unstable.

While these empirical values cannot be considered an exact significance level, they provide a useful empirical
basis for deciding if a series is suitable for seasonal adjustment. These percentage values are shifted down
when fewer than four spans are used.
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Computational Details for Sliding Spans Analysis

Length and Number of Spans

The algorithm for determining the length and number of spans for a given series was developed at the U.S.
Bureau of the Census, Statistical Research Division. A summary of this algorithm is as follows.

First, an initial length based on the MACURVE month=option specification is determined, and then the
maximum number of spans possible using this length is determined. If this maximum number exceeds four,
set the number of spans to four. If this maximum number is one or zero, there are not enough observations to
perform the sliding spans analysis. In this case a note is written to the log and the sliding spans analysis is
skipped for this variable.

If the maximum number of spans is two or three, the actual number of spans used is set equal to this maximum.
Finally, the length is adjusted so that the spans begin in January (or the first quarter) of the beginning year of
the span.

The remainder of this section gives the computation formulas for the maximum percentage difference (MPD)
calculations along with the threshold regions.

Seasonal Factors (Table D10)

For the additive model, the MPD is defined as

maxk�NtSt .k/ �mink�NtSt .k/

For the multiplicative model, the MPD is

MPDt D
maxk�Nt St .k/ �mink�Nt St .k/

mink�Nt St .k/

A series for which less than 15% of the MPD values of D10 exceed 3.0% is stable; between 15% and 25%
is marginally stable; and greater than 25% is unstable. Span reports S 2.A through S 2.C give the various
breakdowns for the number of times the MPD exceeded these levels.

Trading Day Factor (Table C18)

For the additive model, the MPD is defined as

maxk�NtTDt .k/ �mink�NtTDt .k/

For the multiplicative model, the MPD is

MPDt D
maxk�Nt TDt .k/ �mink�Nt TDt .k/

mink�Nt TDt .k/

The U.S. Census Bureau currently gives no recommendation concerning MPD thresholds for the trading-
day factors. Span reports S 3.A through S 3.C give the various breakdowns for MPD thresholds. When
TDREGR=NONE is specified, no trading-day computations are done, and this table is skipped.
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Seasonally Adjusted Data (Table D11)

For the additive model, the MPD is defined as

maxk�NtSAt .k/ �mink�NtSAt .k/

For the multiplicative model, the MPD is

MPDt D
maxk�Nt SAt .k/ �mink�Nt SAt .k/

mink�Nt SAt .k/

A series for which less than 15% of the MPD values of D11 exceed 3.0% is stable; between 15% and 25%
is marginally stable; and greater than 25% is unstable. Span reports S 4.A through S 4.C give the various
breakdowns for the number of times the MPD exceeded these levels.

Month-to-Month Changes in the Seasonally Adjusted Data

Some additional notation is needed for the month-to-month and year-to-year differences. Define N1t as

N1t D fk W span k contains month t and t � 1g

For the additive model, the month-to-month change for span k is defined as

MMt .k/ D SAt � SAt�1

while for the multiplicative model

MMt .k/ D
SAt � SAt�1

SAt�1

Since this quantity is already in percentage form, the MPD for both the additive and multiplicative model is
defined as

MPDt D maxk�N1tMMt .k/ �mink�N1tMMt .k/

The current recommendation of the U.S. Census Bureau is that if 35% or more of the MPD values of the
month-to-month differences of D11 exceed 3.0%, then the series is usually not stable; 40% exceeding this
level clearly marks an unstable series. Span reports S 5.A.1 through S 5.C give the various breakdowns for
the number of times the MPD exceeds these levels.

Year-to-Year Changes in the Seasonally Adjusted Data
First define N12t as

N12t D fk W span k contains month t and t � 12g

(Appropriate changes in notation for a quarterly series are obvious.)

For the additive model, the month-to-month change for span k is defined as

Y Yt .k/ D SAt � SAt�12
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while for the multiplicative model

Y Yt .k/ D
SAt � SAt�12

SAt�12

Since this quantity is already in percentage form, the MPD for both the additive and multiplicative model is
defined as

MPDt D maxk�N1tY Yt .k/ �mink�N1tY Yt .k/

The current recommendation of the U.S. Census Bureau is that if 10% or more of the MPD values of the
month-to-month differences of D11 exceed 3.0%, then the series is usually not stable. Span reports S 6.A
through S 6.C give the various breakdowns for the number of times the MPD exceeds these levels.

Data Requirements
The input data set must contain either quarterly or monthly time series, and the data must be in chronological
order. For the standard X-11 method, there must be at least three years of observations (12 for quarterly time
series or 36 for monthly) in the input data sets or in each BY group in the input data set if a BY statement is
used.

For the X-11-ARIMA method, there must be at least five years of observations (20 for quarterly time series
or 60 for monthly) in the input data sets or in each BY group in the input data set if a BY statement is used.

Missing Values
Missing values at the beginning of a series to be adjusted are skipped. Processing starts with the first
nonmissing value and continues until the end of the series or until another missing value is found.

Missing values are not allowed for the DATE= variable. The procedure terminates if missing values are found
for this variable.

Missing values found in the PMFACTOR= variable are replaced by 100 for the multiplicative model (default)
and by 0 for the additive model.

Missing values can occur in the output data set. If the time series specified in the OUTPUT statement is not
computed by the procedure, the values of the corresponding variable are missing. If the time series specified
in the OUTPUT statement is a moving average, the values of the corresponding variable are missing for the
first n and last n observations, where n depends on the length of the moving average. Additionally, if the time
series specified is an irregular component modified for extremes, only the modified values are given, and the
remaining values are missing.
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Prior Daily Weights and Trading-Day Regression
Suppose that a detailed examination of retail sales at ZXY Company indicates that certain days of the week
have higher amounts of sales. In particular, Thursday, Friday, and Saturday have approximately twice the
amount of sales as Monday, Tuesday, and Wednesday, and no sales occur on Sunday. This means that months
with five Saturdays would have higher amounts of sales than months with only four Saturdays.

This phenomenon is called a calendar effect; it can be handled in PROC X11 by using the PDWEIGHTS (prior
daily weights) statement or the TDREGR=option (trading-day regression). The PDWEIGHTS statement and
the TDREGR=option can be used separately or together.

If the relative weights are known (as in the preceding) it is appropriate to use the PDWEIGHTS statement. If
further residual calendar variation is present, TDREGR=ADJUST should also be used. If you know that a
calendar effect is present, but know nothing about the relative weights, use TDREGR=ADJUST without a
PDWEIGHTS statement.

In this example, it is assumed that the calendar variation is due to both prior daily weights and residual
variation. Thus both a PDWEIGHTS statement and TDREGR=ADJUST are specified.

Note that only the relative weights are needed; in the actual computations, PROC X11 normalizes the weights
to sum to 7.0. If a day of the week is not present in the PDWEIGHTS statement, it is given a value of zero.
Thus “sun=0” is not needed.

proc x11 data=sales;
monthly date=date tdregr=adjust;
var sales;
tables a1 a4 b15 b16 C14 C15 c18 d11;
pdweights mon=1 tue=1 wed=1 thu=2 fri=2 sat=2;
output out=x11out a1=a1 a4=a4 b1=b1 c14=c14

c16=c16 c18=c18 d11=d11;
run;

Tables of interest include A1, A4, B15, B16, C14, C15, C18, and D11. Table A4 contains the adjustment
factors derived from the prior daily weights; Table C14 contains the extreme irregular values excluded
from trading-day regression; Table C15 contains the trading-day-regression results; Table C16 contains the
monthly factors derived from the trading-day regression; and Table C18 contains the final trading-day factors
derived from the combined daily weights. Finally, Table D11 contains the final seasonally adjusted series.

Adjustment for Prior Factors
Suppose now that a strike at ZXY Company during July and August of 1988 caused sales to decrease an
estimated 50%. Since this is a one-time event with a known cause, it is appropriate to prior adjust the data to
reflect the effects of the strike. This is done in PROC X11 through the use of PMFACTOR=varname (prior
monthly factor) in the MONTHLY statement.

In the following example, the PMFACTOR variable is named PMF. Since the estimate of the decrease in
sales is 50%, PMF has a value of 50.0 for the observations corresponding to July and August 1988, and a
value of 100.0 for the remaining observations.

This prior adjustment on SALES is performed by replacing SALES with the calculated value
(SALES/PMF) * 100.0. A value of 100.0 for PMF leaves SALES unchanged, while a value of 50.0



The YRAHEADOUT Option F 3277

for PMF doubles SALES. This value is the estimate of what SALES would have been without the strike. The
following example shows how this prior adjustment is accomplished:

data sales2;
set sales;
if '01jul1988'd <= date <= '01aug1988'd then pmf = 50;
else pmf = 100;

run;

proc x11 data=sales2;
monthly date=date pmfactor=pmf;
var sales;
tables a1 a2 a3 d11;
output out=x11out a1=a1 a2=a2 a3=a3 d11=d11;

run;

Table A2 contains the prior monthly factors (the values of PMF), and Table A3 contains the prior adjusted
series.

The YRAHEADOUT Option
For monthly data, the YRAHEADOUT option affects only Tables C16 (regression trading-day adjustment
factors), C18 (trading-day factors from combined daily weights), and D10 (seasonal factors). For quarterly
data, only Table D10 is affected. Variables for all other tables have missing values for the forecast observations.
The forecast values for a table are included only if that table is specified in the OUTPUT statement.

Tables C16 and C18 are calendar effects that are extrapolated by calendar composition. These factors are
independent of the data once trading-day weights have been calculated. Table D10 is extrapolated by a linear
combination of past values. If N is the total number of nonmissing observations for the analysis variable, this
linear combination is given by

D10t D
1

2
.3 �D10t�12 �D10t�24/; t D N C 1; : : : ; N C 12

If the input data are monthly time series, 12 extra observations are added to the end of the output data set. (If
a BY statement is used, 12 extra observations are added to the end of each BY group.) If the input data are a
quarterly time series, four extra observations are added to the end of the output data set. (If a BY statement is
used, four extra observations are added to each BY group.)

The DATE= variable (or _DATE_) is extrapolated for the extra observations generated by the YRAHEADOUT
option, while all other ID variables will have missing values.

If ARIMA processing is requested, and if both the OUTEXTRAP and YRAHEADOUT options are specified
in the PROC X11 statement, an additional 12 (or 4) observations are added to the end of output data set for
monthly (or quarterly) data after the ARIMA forecasts, using the same linear combination of past values as
before.
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Effect of Backcast and Forecast Length
Based on a number of empirical studies (Dagum 1982a, b, c; Dagum and Laniel 1987), one year of forecasts
minimize revisions when new data become available. Two and three years of forecasts show only small gains.

Backcasting improves seasonal adjustment but introduces permanent revisions at the beginning of the series
and also at the end for series of length 8, 9, or 10 years. For series shorter than 7 years, the advantages of
backcasting outweigh the disadvantages (Dagum 1988).

Other studies (Pierce 1980; Bobbitt and Otto 1990; Buszuwski 1987) suggest “full forecasting”—that is,
using enough forecasts to allow symmetric weights for the seasonal moving averages for the most current
data. For example, if a 3 � 9 seasonal moving average was specified for one or more months by using the
MACURVES statement, five years of forecasts would be required. This is because the seasonal moving
averages are performed on calendar months separately, and the 3 � 9 is an 11-term centered moving average,
requiring five observations before and after the current observation. Thus

macurves dec='3x9';

would require five additional December values to compute the seasonal moving average.

Details of Model Selection
If an ARIMA statement is present but no MODEL= is given, PROC X11 estimates and forecasts five
predefined models and selects the best. This section describes the details of the selection criteria and the
selection process.

The five predefined models used by PROC X11 are the same as those used by X11ARIMA/88 from Statistics
Canada. These particular models, shown in Table 44.2, were chosen on the basis of testing a large number of
economics series (Dagum 1988) and should provide reasonable forecasts for most economic series.

Table 44.2 Five Predefined Models

Model # Specification Multiplicative Additive

1 (0,1,1)(0,1,1)s Log transform No transform
2 (0,1,2)(0,1,1)s Log transform No transform
3 (2,1,0)(0,1,1)s Log transform No transform
4 (0,2,2)(0,1,1)s Log transform No transform
5 (2,1,2)(0,1,1)s No transform No transform

The selection process proceeds as follows. The five models are estimated and one-step-ahead forecasts are
produced in the order shown in Table 44.2. As each model is estimated, the following three criteria are
checked:

� The mean absolute percent error (MAPE) for the last three years of the series must be less than 15%.

� The significance probability for the Box-Ljung chi-square for up to lag 24 for monthly (8 for quarterly)
must greater than 0.05.
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� The over-differencing criteria must not exceed 0.9.

The descriptions of these three criteria are given in the section “Criteria Details” on page 3279. The default
values for these criteria are those used by X11ARIMA/88 from Statistics Canada; these defaults can be
changed by the MAPECR=, CHICR=, and OVDIFCR= options.

A model that fails any one of these three criteria is excluded from further consideration. In addition, if the
ARIMA estimation fails for a given model, a warning is issued, and the model is excluded. The final set of
all models considered consists of those that pass all three criteria and are estimated successfully. From this
set, the model with the smallest MAPE for the last three years is chosen.

If all five models fail, ARIMA processing is skipped for the variable being processed, and the standard X-11
seasonal adjustment is performed. A note is written to the log with this information.

The chosen model is then used to forecast the series one or more years (determined by the FORECAST=
option in the ARIMA statement). These forecasts are appended to the original data (or the prior and
calendar-adjusted data).

If a BACKCAST= option is specified, the chosen model form is used, but the parameters are reestimated
using the reversed series. Using these parameters, the reversed series is forecast for the number of years
specified by the BACKCAST= option. These forecasts are then reversed and appended to the beginning of
the original series, or the prior and calendar-adjusted series, to produce the backcasts.

Note that the final selection rule (the smallest MAPE using the last three years) emphasizes the quality of
the forecasts at the end of the series. This is consistent with the purpose of the X-11-ARIMA methodology,
which is to improve the estimates of seasonal factors and thus minimize revisions to recent past data as new
data become available.

Criteria Details

Mean Absolute Percent Error (MAPE)
For the MAPE criteria testing, only the last three years of the original series (or prior and calendar adjusted
series) are used in computing the MAPE.

Let yt , t D 1; : : : ; n, be the last three years of the series, and denote its one-step-ahead forecast by Oyt , where
n D 36 for a monthly series and n D 12 for a quarterly series.

With this notation, the MAPE criteria are computed as

MAPE D
100

n

nX
tD1

jyt � Oyt j

jyt j

Box-Ljung Chi-Square
The Box-Ljung chi-square is a lack-of-fit test based on the model residuals. This test statistic is computed
using the Ljung-Box formula

�2m D n.nC 2/

mX
kD1

r2
k

.n � k/

where n is the number of residuals that can be computed for the time series, and

rk D

Pn�k
tD1 atatCkPn
tD1 a

2
t
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where the at ’s are the residual sequence. This formula has been suggested by Ljung and Box (1978) as
yielding a better fit to the asymptotic chi-square distribution. Some simulation studies of the finite sample
properties of this statistic are given by Davies, Triggs, and Newbold (1977) and by Ljung and Box (1978).

For monthly series, m D 24, while for quarterly series, m D 8.

Over-differencing Test
From Table 44.2 you can see that all models have a single seasonal MA factor and at most two nonseasonal
MA factors. Also, all models have seasonal and nonseasonal differencing. Consider model 2 applied to a
monthly series yt with E.yt / D �:

.1 � B1/.1 � B12/.yt � �/ D .1 � �1B � �2B
2/.1 � �3B

12/at

If �3 D 1:0, then the factors .1 � �3B12/ and .1 � B12/ will cancel, resulting in a lower-order model.

Similarly, if �1 C �2 D 1:0,

.1 � �1B � �2B
2/ D .1 � B/.1 � ˛B/

for some ˛¤0:0. Again, this results in cancellation and a lower-order model.

Since the parameters are not exact, it is not reasonable to require that

�3 < 1:0 and �1 C �2 < 1:0

Instead, an approximate test is performed by requiring that

�3 � 0:9 and �1 C �2 � 0:9

The default value of 0.9 can be changed by the OVDIFCR= option. Similar reasoning applies to the other
models.

ARIMA Statement Options for the Five Predefined Models

Table 44.3 lists the five predefined models and gives the equivalent MODEL= parameters in a PROC X11
ARIMA statement.

In all models except the fifth, a log transformation is performed before the ARIMA estimation for the multi-
plicative case; no transformation is performed for the additive case. For the fifth model, no transformation is
done for either case.

The multiplicative case is assumed in Table 44.3. The indicated seasonality s in the specification is either 12
(monthly) or 4 (quarterly). The MODEL statement assumes a monthly series.

Table 44.3 ARIMA Statements Options for Predefined Models

Model ARIMA Statement Options

(0,1,1)(0,1,1)s MODEL=( Q=1 SQ=1 DIF=1 SDIF=1 ) TRANSFORM=LOG
(0,1,2)(0,1,1)s MODEL=( Q=2 SQ=1 DIF=1 SDIF=1 ) TRANSFORM=LOG
(2,1,0)(0,1,1)s MODEL=( P=2 SQ=1 DIF=1 SDIF=1 ) TRANSFORM=LOG
(0,2,2)(0,1,1)s MODEL=( Q=2 SQ=1 DIF=2 SDIF=1 ) TRANSFORM=LOG
(2,1,2)(0,1,1)s MODEL=( P=2 Q=2 SQ=1 DIF=1 SDIF=1 )
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OUT= Data Set
The OUT= data set specified in the OUTPUT statement contains the BY variables, if any; the ID variables, if
any; and the DATE= variable if the DATE= option is given, or _DATE_ if the DATE= option is not specified.

In addition, the variables specified by the option

tablename= var1 var2 . . . varn

are placed in the OUT= data set. A list of tables available for monthly and quarterly series is given later, in
Table 44.4.

The OUTSPAN= Data Set
The OUTSPAN= option is specified in the PROC statement, and writes the sliding spans results to the
specified output data set. The OUTSPAN= data set contains the following variables:

� A1, a numeric variable that is a copy of the original series truncated to the current span. Note that
overlapping spans will contain identical values for this variable.

� C18, a numeric variable that contains the trading-day factors for the seasonal adjustment for the current
span

� D10, a numeric variable that contains the seasonal factors for the seasonal adjustment for the current
span

� D11, a numeric variable that contains the seasonally adjusted series for the current span

� DATE, a numeric variable that contains the date within the current span

� SPAN, a numeric variable that contains the current span. The first span is the earliest span—that is, the
one with the earliest starting date.

� VARNAME, a character variable containing the name of each variable in the VAR list. A separate
sliding spans analysis is performed on each variable in the VAR list.
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OUTSTB= Data Set
The output data set produced by the OUTSTB= option of the PROC X11 statement contains the information
in the analysis of variance on Table D8 (Final Unmodified S-I Ratios). This analysis of variance, following
Table D8 in the printed output, tests for stable seasonality (Shiskin, Young, and Musgrave 1967, Appendix
A). These data contain the following variables:

� VARNAME, a character variable containing the name of each variable in the VAR list

� TABLE, a character variable specifying the table from which the analysis of variance is per-
formed. When ARIMA processing is requested, and two passes of PROC X11 are required (when
TDREGR=PRINT, TEST, or ADJUST), Table D8 and the stable seasonality test are computed twice:
once in the initial pass, then again in the final pass. Both of these computations are put in the OUTSTB
data set and are identified by D18.1 and D18.2, respectively.

� SOURCE, a character variable corresponding to the “source” column in the analysis of variance table
following Table D8

� SS, a numeric variable containing the sum of squares associated with the corresponding source term

� DF, a numeric variable containing the degrees of freedom associated with the corresponding source
term

� MS, a numeric variable containing the mean square associated with the corresponding source term.
MS is missing for the source term “Total.”

� F, a numeric variable containing the F statistic for the “Between” source term. F is missing for all
other source terms.

� PROBF, a numeric variable containing the significance level for the F statistic. PROBF is missing for
the source terms “Total” and “Error.”

OUTTDR= Data Set
The trading-day regression results (Tables B15 and C15) are written to the OUTTDR= data set, which
contains the following variables:

� VARNAME, a character variable containing the name of the VAR variable being processed

� TABLE, a character variable containing the name of the table. It can have only the value B15 (Prelimi-
nary Trading-Day Regression) or C15 (Final Trading-Day Regression).

� _TYPE_, a character variable whose value distinguishes the three distinct table format types. These
types are (a) the regression, (b) the listing of the standard error associated with length-of-month, and
(c) the analysis of variance. The first seven observations in the OUTTDR= data set correspond to the
regression on days of the week; thus the _TYPE_ variable is given the value “REGRESS” (day-of-week
regression coefficient). The next four observations correspond to 31-, 30-, 29-, and 28-day months
and are given the value _TYPE_=LOM_STD (length-of-month standard errors). Finally, the last three
observations correspond to the analysis of variance table, and _TYPE_=ANOVA.
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� PARM, a character variable, further identifying the nature of the observation. PARM is set to blank for
the three _TYPE_=ANOVA observations.

� SOURCE, a character variable containing the source in the regression. This variable is missing for all
_TYPE_=REGRESS and LOM_STD.

� CWGT, a numeric variable containing the combined trading-day weight (prior weight + weight found
from regression). The variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.

� PRWGT, a numeric variable containing the prior weight. The prior weight is 1.0 if PDWEIGHTS are
not specified. This variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.

� COEFF, a numeric variable containing the calculated regression coefficient for the given day. This
variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.

� STDERR, a numeric variable containing the standard errors. For observations with
_TYPE_=REGRESS, this is the standard error corresponding to the regression coefficient. For
observations with _TYPE_=LOM_STD, this is standard error for the corresponding length-of-month.
This variable is missing for all _TYPE_=ANOVA.

� T1, a numeric variable containing the t statistic corresponding to the test that the combined weight
is different from the prior weight. This variable is missing for all _TYPE_=LOM_STD and
_TYPE_=ANOVA.

� T2, a numeric variable containing the t statistic corresponding to the test that the combined weight is
different from 1.0. This variable is missing for all _TYPE_=LOM_STD and _TYPE_=ANOVA.

� PROBT1, a numeric variable containing the significance level for t statistic T1. The variable is missing
for all _TYPE_=LOM_STD and _TYPE_=ANOVA.

� PROBT2, a numeric variable containing the significance level for t statistic T2. The variable is missing
for all _TYPE_=LOM_STD and _TYPE_=ANOVA.

� SS, a numeric variable containing the sum of squares associated with the corresponding source term.
This variable is missing for all _TYPE_=REGRESS and LOM_STD.

� DF, a numeric variable containing the degrees of freedom associated with the corresponding source
term. This variable is missing for all _TYPE_=REGRESS and LOM_STD.

� MS, a numeric variable containing the mean square associated with the corresponding source term.
This variable is missing for the source term ‘Total’ and for all _TYPE_=REGRESS and LOM_STD.

� F, a numeric variable containing the F statistic for the ‘Regression’ source term. The variable is
missing for the source terms ‘Total’ and ‘Error’ and for all _TYPE_=REGRESS and LOM_STD.

� PROBF, a numeric variable containing the significance level for the F statistic. This variable is missing
for the source term ‘Total’ and ‘Error’ and for all _TYPE_=REGRESS and LOM_STD.
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Printed Output
The output from PROC X11, both printed tables and the series written to the OUT= data set, depends on
whether the data are monthly or quarterly. For the printed tables, the output depends further on the value of
the PRINTOUT= option and the TABLE statement, along with other options specified.

The printed output is organized into tables identified by a part letter and a sequence number within the part.
The seven major parts of the X11 procedure are as follows:

A prior adjustments (optional)

B preliminary estimates of irregular component weights and regression trading-day factors

C final estimates of irregular component weights and regression trading-day factors

D final estimates of seasonal, trend cycle, and irregular components

E analytical tables

F summary measures

G charts

Table 44.4 describes the individual tables and charts. Most tables apply to both quarterly and monthly
series. Those that apply only to a monthly time series are indicated by an “M” in the notes section, while “P”
indicates that the table is not a time series, and is only printed, not output to the OUT= data set.

Table 44.4 Table Names and Descriptions

Table Description Notes

A1 Original series M
A2 Prior monthly adjustment factors M
A3 Original series adjusted for prior monthly factors M
A4 Prior trading-day adjustments M
A5 Prior adjusted or original series M
A13 ARIMA forecasts
A14 ARIMA backcasts
A15 Prior adjusted or original series extended by ARIMA

backcasts and forecasts
B1 Prior adjusted or original series
B2 Trend cycle
B3 Unmodified seasonal-irregular (S-I) ratios
B4 Replacement values for extreme S-I ratios
B5 Seasonal factors
B6 Seasonally adjusted series
B7 Trend cycle
B8 Unmodified S-I ratios
B9 Replacement values for extreme S-I ratios
B10 Seasonal factors
B11 Seasonally adjusted series
B13 Irregular series
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Table 44.4 continued

Table Description Notes

B14 Extreme irregular values excluded from trading-day regression M
B15 Preliminary trading-day regression M,P
B16 Trading-day adjustment factors M
B17 Preliminary weights for irregular components
B18 Trading-day factors derived from combined daily weights M
B19 Original series adjusted for trading-day and prior variation M
C1 Original series modified by preliminary weights and adjusted

for trading-day and prior variation
C2 Trend cycle
C4 Modified S-I ratios
C5 Seasonal factors
C6 Seasonally adjusted series
C7 Rrend cycle
C9 Modified S-I ratios
C10 Seasonal factors
C11 Seasonally adjusted series
C13 Irregular series
C14 Extreme irregular values excluded from trading-day regression M
C15 Final trading-day regression M,P
C16 Final trading-day adjustment factors derived from regression

coefficients
M

C17 Final weight for irregular components
C18 Final trading-day factors derived from combined daily weights M
C19 Original series adjusted for trading-day and prior variation M
D1 Original series modified for final weights and adjusted for

trading-day and prior variation
D2 Trend cycle
D4 Modified S-I ratios
D5 Seasonal factors
D6 Seasonally adjusted series
D7 Trend cycle
D8 Final unmodified S-I ratios
D9 Final replacement values for extreme S-I ratios
D10 Final seasonal factors
D11 Final seasonally adjusted series
D12 Final trend cycle
D13 Final irregular series
E1 Original series with outliers replaced
E2 Modified seasonally adjusted series
E3 Modified irregular series
E4 Ratios of annual totals P
E5 Percent changes in original series
E6 Percent changes in final seasonally adjusted series
F1 MCD moving average
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Table 44.4 continued

Table Description Notes

F2 Summary measures P
G1 Chart of final seasonally adjusted series and trend cycle P
G2 Chart of S-I ratios with extremes, S-I ratios without extremes,

and final seasonal factors
P

G3 Chart of S-I ratios with extremes, S-I ratios without extremes,
and final seasonal factors in calendar order

P

G4 Chart of final irregular and final modified irregular series P

The PRINTOUT= Option

The PRINTOUT= option controls printing for groups of tables. For information about specifying individual
tables, see the section “TABLES Statement” on page 3267. The following list gives the tables printed for
each value of the PRINTOUT= option:

STANDARD (26 tables) A1–A4, B1, C13–C19, D8–D13, E1–E6, F1, F2

LONG (40 tables) A1–A5, A13–A15, B1, B2, B7, B10, B13–B15, C1, C7, C10, C13–C19, D1,
D7–D11, D13, E1–E6, F1, F2

FULL (62 tables) A1–A5, A13–A15, B1–B11, B13–B19, C1–C11, C13–C19, D1, D2, D4–D12,
E1–E6, F1, F2

The actual number of tables printed depends on the options and statements specified. If a table is not
computed, it is not printed. For example, if TDREGR=NONE is specified, none of the tables associated with
the trading-day are printed.

The CHARTS= Option

Of the four charts listed in Table 44.4, G1 and G2 are printed by default (CHARTS=STANDARD). Charts G3
and G4 are printed when CHARTS=FULL is specified. For information about specifying individual charts,
see the section “TABLES Statement” on page 3267.

Stable, Moving, and Combined Seasonality Tests on the Final Unmodified SI Ratios
(Table D8)

PROC X11 displays four tests used to identify stable seasonality and moving seasonality and to measure
identifiable seasonality. These tests are displayed after Table D8. They are “Stable Seasonality Test,” “Moving
Seasonality Test,” “Nonparametric Test for the Presence of Seasonality Assuming Stability,” and “Summary
of Results and Combined Test for the Presence of Identifiable Seasonality.” The motivation, interpretation,
and statistical details of all these tests are now given.

Motivation
The seasonal component of this time series, St , is defined as the intrayear variation that is repeated constantly
(stable) or in an evolving fashion from year to year (moving seasonality). If the increase in the seasonal



Printed Output F 3287

factors from year to year is too large, then the seasonal factors will introduce distortion into the model. It is
important to determine if seasonality is identifiable without distorting the series.

To determine if stable seasonality is present in a series, PROC X11 computes a one-way analysis of variance
by using the seasons (months or quarters) as the factor on the Final Unmodified SI Ratios (Table D8). This is
the appropriate table to use because the removal of the trend cycle is equivalent to detrending. PROC X11
prints this test, labeled “Stable Seasonality Test,” immediately after the Table D8.

The X11 seasonal adjustment method tests for moving seasonality. Moving seasonality can be a source of
distortion when seasonal factors are used in the model. PROC X11 computes and prints a test for moving
seasonality. The test is a two-way analysis of variance that uses months (or quarters) and years. As in the
“Stable Seasonality Test,” this analysis of variance is performed on the Final Unmodified SI Ratios (Table
D8). PROC X11 prints this test, labeled “Moving Seasonality Test,” after the “Stable Seasonality Test.”

PROC X11 next computes a nonparametric Kruskal-Wallis chi-squared test for stable seasonality, “Nonpara-
metric Test for the Presence of Seasonality Assuming Stability.” The Kruskal-Wallis test is performed on the
ranks of the Final Unmodified SI Ratios (Table D8). For more information about the Kruskal-Wallis test, see
Lehmann and D’Abrera (2006, pp. 204–210).

The results of the preceding three tests are combined into a joint test to measure identifiable seasonality,
“Summary of Results and Combined Test for the Presence of Identifiable Seasonality.” This test combines
the two F tests previously described, along with the Kruskal-Wallis chi-squared test for stable seasonality,
to determine “identifiable” seasonality. This test is printed after “Nonparametric Test for the Presence of
Seasonality Assuming Stability.”

Interpretation and Statistical Details
The “Stable Seasonality Test” is a one-way analysis of variance on the “Final Unmodified SI Ratios” with
seasons (months or quarters) as the factor.

To determine whether stable seasonality is present in a series, PROC X11 computes a one-way analysis of
variance by using the seasons (months or quarters) as the factor on the Final Unmodified SI Ratios (Table
D8). This is the appropriate table to use because the removal of the trend cycle is similar to detrending.

A large F statistic and a small significance level are evidence that a significant amount of variation in the
SI-ratios is due to months or quarters, which in turn is evidence of seasonality; the null hypothesis of no
month/quarter effect is rejected.

Conversely, a small F statistic and a large significance level (close to 1.0) are evidence that variation due
to month or quarter could be due to random error, and the null hypothesis of no month/quarter effect is not
rejected. The interpretation and utility of seasonal adjustment are problematic under such conditions.

The F test for moving seasonality is performed by a two-way analysis of variance. The two factors are
seasons (months or quarters) and years. The years effect is tested separately; the null hypothesis is no effect
due to years after accounting for variation due to months or quarters. For more information about the moving
seasonality test, see Lothian (1984a, b, 1978) and Higginson (1975).

The significance level reported in both the moving and stable seasonality tests are only approximate. Table
D8, the Final Unmodified SI Ratios, is constructed from an averaging operation that induces a correlation
in the residuals from which the F test is computed. Hence the computed F statistic differs from an exact F
statistic; for more information, see Cleveland and Devlin (1980).
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The test for identifiable seasonality is performed by combining the F tests for stable and moving seasonality,
along with a Kruskal-Wallis test for stable seasonality. The following description is based on Lothian and
Morry (1978b); for more information, see Dagum (1988, 1983).

Let Fs and Fm denote the F value for the stable and moving seasonality tests, respectively. The combined
test is performed as shown in Table 44.5 and as follows:

1. If the null hypothesis of no stable seasonality is not rejected at the 0.10% significance level (PS �
0:001), then the series is considered to be nonseasonal. PROC X11 returns the conclusion, “Identifiable
Seasonality Not Present.”

2. If the null hypothesis in step 1 is rejected, then PROC X11 computes the following quantities:

T1 D
7

Fs

T2 D
3Fm

Fs

Let T denote the simple average of T1 and T2:

T D
.T1 C T2/

2

If the null hypothesis of no moving seasonality is rejected at the 5.0% significance level (PM < 0:05)
and if T � 1:0, the null hypothesis of identifiable seasonality not present is not rejected and PROC
X11 returns the conclusion, “Identifiable Seasonality Not Present.”

3. If the null hypothesis of identifiable seasonality not present has not been accepted, but T1 � 1:0,
T2 � 1:0, or the Kruskal-Wallis chi-squared test fails to reject at the 0.10% significance level
(PKW � 0:001), then PROC X11 returns the conclusion “Identifiable Seasonality Probably Not
Present.”

4. If the null hypotheses of no stable seasonality associated with the FS and Kruskal-Wallis chi-squared
tests are rejected and if none of the combined measures described in steps 2 and 3 fail, then the null
hypothesis of identifiable seasonality not present is rejected and PROC X11 returns the conclusion
“Identifiable Seasonality Present.”
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Figure 44.5 Combined Seasonality Test Flowchart

Tables Written to the OUT= Data Set

All tables that are time series can be written to the OUT= data set. However, depending on the specified
options and statements, not all tables are computed. When a table is not computed, but is requested in the
OUTPUT statement, the resulting variable has all missing values.

For example, if the PMFACTOR= option is not specified, Table A2 is not computed, and requesting this table
in the OUTPUT statement results in the corresponding variable having all missing values.
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The trading-day regression results, Tables B15 and C15, although not written to the OUT= data set, can be
written to an output data set; for more information, see the OUTTDR= option.

Printed Output Generated by Sliding Spans Analysis

Table S 0.A
Table S 0.A gives the variable name, the length and number of spans, and the beginning and ending dates of
each span.

Table S 0.B
Table S 0.B gives the summary of the two F tests performed during the standard X11 seasonal adjustments
for stable and moving seasonality on Table D8, the final SI ratios. These tests are described in the section
“Printed Output” on page 3284.

Table S 1.A
Table S 1.A gives the range analysis of seasonal factors. This includes the means for each month (or quarter)
within a span, the maximum percentage difference across spans for each month, and the average. The
minimum and maximum within a span are also indicated.

For example, for a monthly series and an analysis with four spans, the January row would contain a column
for each span, with the value representing the average seasonal factor (Table D10) over all January calendar
months occurring within the span. Beside each span column is a character column with either a MIN, MAX,
or blank value, indicating which calendar month had the minimum and maximum value over that span.

Denote the average over the jth calendar month in span k; k D 1; : : : ; 4, by NSj .k/; then the maximum percent
difference (MPD) for month j is defined by

MPDj D
maxkD1;:::;4 NSj .k/ �minkD1;:::;4 NSj .k/

minkD1;:::;4 NSj .k/

The last numeric column of Table S 1.A is the average value over all spans for each calendar month, with the
minimum and maximum row flagged as in the span columns.

Table S 1.B
Table S 1.B gives a summary of range measures for each span. The first column, Range Means, is calculated
by computing the maximum and minimum over all months or quarters in a span, then taking the difference.
The next column is the range ratio means, which is simply the ratio of the previously described maximum
and minimum. The next two columns are the minimum and maximum seasonal factors over the entire span,
while the range sf column is the difference of these. Finally, the last column is the ratio of the Max SF and
Min SF columns.

Breakdown Tables
Table S 2.A.1 begins the breakdown analysis for the various series considered in the sliding spans analysis.
The key concept here is the MPD described earlier in the section “Table S 1.A” on page 3290 and in the
section “Computational Details for Sliding Spans Analysis” on page 3273. For a month or quarter that
appears in two or more spans, the maximum percentage difference is computed and tested against a cutoff
level. If it exceeds this cutoff, it is counted as an instance of exceeding the level. It is of interest to see if such
instances fall disproportionately in certain months and years. Tables S 2.A.1 through S 6.A.3 display this
breakdown for all series considered.
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Table S 2.A.1
Table S 2.A.1 gives the monthly (quarterly) breakdown for the seasonal factors (Table D10). The first column
identifies the month or quarter. The next column is the number of times the MPD for D10 exceeded 3.0%,
followed by the total count. The last is the average maximum percentage difference for the corresponding
month or quarter.

Table S 2.A.2
Table S 2.A.2 gives the same information as Table S 2.A.1, but on a yearly basis.

Table S 2.A.3
The description of Table S 2.A.3 requires the definition of “Sign Change” and “Turning Point.”

First, some motivation. Recall that for a highly stable series, adding or deleting a small number of observations
should not affect the estimation of the various components of a seasonal adjustment procedure.

Consider Table D10, the seasonal factors in a sliding spans analysis that uses four spans. For a given
observation t, looking across the four spans, we can easily pick out large differences if they occur. More
subtle differences can occur when estimates go from above to below (or vice versa) a base level. In the case
of multiplicative model, the seasonal factors have a base level of 100.0. So it is useful to enumerate those
instances where both a large change occurs (an MPD value exceeding 3.0%) and a change of sign (with
respect to the base) occur.

Let B denote the base value (which in general depends on the component being considered and the model
type, multiplicative or additive). If, for span 1, St (1) is below B (that is, St .1/ � B is negative) and for some
subsequent span k, St .k/ is above B (that is, St .k/ � B is positive), then a positive “Change in Sign” has
occurred at observation t. Similarly, if, for span 1, St (1) is above B, and for some subsequent span k, St .k/
is below B, then a negative “Change in Sign” has occurred. Both cases, positive or negative, constitute a
“Change in Sign”; the actual direction is indicated in tables S 7.A through S 7.E, which are described below.

Another behavior of interest occurs when component estimates increase then decrease (or vice versa) across
spans for a given observation. Using the preceding example, the seasonal factors at observation t could first
increase, then decrease across the four spans.

This behavior, combined with an MPD exceeding the level, is of interest in questions of stability.

Again, consider Table D10, the seasonal factors in a sliding spans analysis that uses four spans. For a given
observation t (containing at least three spans), note the level of D10 for the first span. Continue across the
spans until a difference of 1.0% or greater occurs (or no more spans are left), noting whether the difference
is up or down. If the difference is up, continue until a difference of 1.0% or greater occurs downward (or
no more spans are left). If such an up-down combination occurs, the observation is counted as an up-down
turning point. A similar description occurs for a down-up turning point. Tables S 7.A through S 7.E, described
below, show the occurrence of turning points, indicating whether up-down or down-up. Note that it requires
at least three spans to test for a turning point. Hence Tables S 2.A.3 through S 6.A.3 show a reduced number
in the “Turning Point” row for the “Total Tested” column, and in Tables S 7.A through S 7.E, the turning
points symbols can occur only where three or more spans overlap.

With these descriptions of sign change and turning point, we now describe Table S 2.A.3. The first column
gives the type or category, the second column gives the total number of observations falling into the category,
the third column gives the total number tested, and the last column gives the percentage for the number found
in the category.
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The first category (row) of the table is for flagged observations—that is, those observations where the MPD
exceeded the appropriate cutoff level (3.0% is default for the seasonal factors). The second category is
for level changes, while the third category is for turning points. The fourth category is for flagged sign
changes—that is, for those observations that are sign changes, how many are also flagged. Note the total
tested column for this category equals the number found for sign change, reflecting the definition of the
fourth category.

The fifth column is for flagged turning points—that is, for those observations that are turning points, how
many are also flagged.

The footnote to Table S 2.A.3 gives the U.S. Census Bureau recommendation for thresholds, as described in
the section “Computational Details for Sliding Spans Analysis” on page 3273.

Table S 2.B
Table S 2.B gives the histogram of flagged for seasonal factors (Table D10) using the appropriate cutoff value
(default 3.0%). This table looks at the spread of the number of times the MPD exceeded the corresponding
level. The range is divided up into four intervals: 3.0%–4.0%, 4.0%–5.0%, 5.0%–6.0%, and greater than
6.0%. The first column shows the symbol used in Table S 7.A, the second column gives the range in interval
notation, and the last column gives the number found in the corresponding interval. Note that the sum of the
last column should agree with the “Number Found” column of the “Flagged MPD” row in Table S 2.A.3.

Table S 2.C
Table S 2.C gives selected percentiles for the MPD for the seasonal factors (Table D10).

Tables S 3.A.1 through S 3.A.3
These table relate to the trading-day factors (Table C18) and follow the same format as Tables S 2.A.1 through
S 2.A.3. The only difference between these tables and Tables S 2.A.1 through S 2.A.3 is the default cutoff
value of 2.0% instead of the 3.0% used for the seasonal factors.

Tables S 3.B, S 3.C
These tables, applied to the trading-day factors (Table C18), are the same format as Tables S 2.B through
S 2.C. The default cutoff value is different, with corresponding differences in the intervals in S 3.B.

Tables S 4.A.1 through S 4.A.3
These tables relate to the seasonally adjusted series (Table D11) and follow the same format as Tables S 2.A.1
through S 2.A.3. The same default cutoff value of 3.0% is used.

Tables S 4.B, S 4.C
These tables, applied to the seasonally adjusted series (Table D11), are the same format as Tables S 2.B
through S 2.C.

Tables S 5.A.1 through S 5.A.3
These tables relate to the month-to-month (or quarter-to-quarter) differences in the seasonally adjusted series,
and follow the same format as Tables S 2.A.1 through S 2.A.3. The same default cutoff value of 3.0% is used.

Tables S 5.B, S 5.C
These tables, applied to the month-to-month (or quarter-to-quarter) differences in the seasonally adjusted
series, are the same format as Tables S 2.B through S 2.C. The same default cutoff value of 3.0% is used.
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Tables S 6.A.1 through S 6.A.3
These tables relate to the year-to-year differences in the seasonally adjusted series, and follow the same
format as Tables S 2.A.1 through S 2.A.3. The same default cutoff value of 3.0% is used.

Tables S 6.B, S 6.C
These tables, applied to the year-to-year differences in the seasonally adjusted series, are the same format as
Tables S 2.B through S 2.C. The same default cutoff value of 3.0% is used.

Table S 7.A
Table S 7.A gives the entire listing of the seasonal factors (Table D10) for each span. The first column gives
the date for each observation included in the spans. Note that the dates do not cover the entire original data
set. Only those observations included in one or more spans are listed.

The next N columns (where N is the number of spans) are the individual spans starting at the earliest span.
The span columns are labeled by their beginning and ending dates.

Following the last span is the “Sign Change” column. As explained in the description of Table S 2.A.3, a
sign change occurs at a given observation when the seasonal factor estimates go from above to below, or
below to above, a base level. For the seasonal factors, 100.0 is the base level for the multiplicative model, 0.0
for the additive model. A blank value indicates no sign change, a “U” indicates a movement “upward” from
the base level and a “D” indicates a movement “downward” from the base level.

The next column is the “Turning Point” column. As explained in the description of Table S 2.A.3, a turning
point occurs when there is an upward then downward movement, or downward then upward movement, of
sufficient magnitude. A blank value indicates no turning point, a “U-D” indicates a movement “upward then
downward,” and a “D-U” indicates a movement “downward then upward.”

The next column is the maximum percentage difference (MPD). This quantity, described in the section
“Computational Details for Sliding Spans Analysis” on page 3273, is the main computation for sliding spans
analysis. A measure of how extreme the MPD value is given in the last column, the “Level of Excess” column.
The symbols used and their meaning are described in Table S 2.A.3. If a given observation has exceeded the
cutoff, the level of excess column is blank.

Table S 7.B
Table S 7.B gives the entire listing of the trading-day factors (Table C18) for each span. The format of this
table is exactly like that of Table S 7.A.

Table S 7.C
Table S 7.C gives the entire listing of the seasonally adjusted data (Table D11) for each span. The format of
this table is exactly like that of Table S 7.A except for the “Sign Change” column, which is not printed. The
seasonally adjusted data have the same units as the original data; there is no natural base level as in the case
of a percentage. Hence the sign change is not appropriate for D11.

Table S 7.D
Table S 7.D gives the entire listing of the month-to-month (or quarter-to-quarter) changes in seasonally
adjusted data for each span. The format of this table is exactly like that of Table S 7.A.



3294 F Chapter 44: The X11 Procedure

Table S 7.E
Table S 7.E gives the entire listing of the year-to-year changes in seasonally adjusted data for each span. The
format of this table is exactly like that of Table S 7.A.

Printed Output from the ARIMA Statement

The information printed by default for the ARIMA model includes the parameter estimates, their approximate
standard errors, t ratios, and variances, the standard deviation of the error term, and the AIC and SBC
statistics for the model. In addition, a criteria summary for the chosen model is given that shows the values
for each of the three test criteria and the corresponding critical values.

If the PRINTALL option is specified, a summary of the nonlinear estimation optimization and a table of
Box-Ljung statistics is also produced. If the automatic model selection is used, this information is printed for
each of the five predefined models. Finally, a model selection summary is printed, showing the final model
chosen.

ODS Table Names
PROC X11 assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 44.5.

NOTE: For monthly and quarterly tables, use the ODS names MonthlyTables and QuarterlyTables; For
brevity, only the MonthlyTables are listed here; the QuarterlyTables are simply duplicates. Printing of
individual tables can be specified by using the TABLES table_name, which is not listed here. Printing
groups of tables is specified in the MONTHLY and QUARTERLY statements by specifying the option
PRINTOUT=NONE|STANDARD|LONG|FULL. The default is PRINTOUT=STANDARD.

Table 44.5 ODS Tables Produced in PROC X11

ODS Table Name Description Option

ODS Tables Created by the MONTHLY and QUARTERLY Statements
Preface X11 Seasonal Adjustment Program

information giving credits, dates, and so on
Always printed
unless NOPRINT

A1 Table A1: original series
A2 Table A2: prior monthly
A3 Table A3: original series adjusted for prior

monthly factors
A4 Table A4: prior trading day adjustment

factors with and without length of month
adjustment

A5 Table A5: original series adjusted for priors
B1 Table B1: original series or original series

adjusted for priors
B2 Table B2: trend cycle—centered nn-term

moving average
B3 Table B3: unmodified SI ratios
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Table 44.5 continued

ODS Table Name Description Option

B4 Table B4: replacement values for extreme
SI ratios

B5 Table B5: seasonal factors
B6 Table B6: seasonally adjusted series
B7 Table B7: trend cycle—Henderson curve
B8 Table B8: unmodified SI ratios
B9 Table B9: replacement values for extreme

SI ratios
B10 Table B10: seasonal factors
B11 Table B11: seasonally adjusted series
B13 Table B13: irregular series
B15 Table B15: preliminary trading day

regression
B16 Table B16: trading day adjustment factors

derived from regression
B17 Table B17: preliminary weights for irregular

component
B18 Table B18: trading day adjustment factors

from combined weights
B19 Table B19: original series adjusted for

preliminary combined trading day weights
C1 Table C1: original series adjusted for

preliminary weights
C2 Table C2: trend cycle—centered nn-term

moving average
C4 Table C4: modified SI ratios
C5 Table C5: seasonal factors
C6 Table C6: seasonally adjusted series
C7 Table C7 trend cycle—Henderson curve
C9 Table C9: modified SI ratios
C10 Table C10: seasonal factors
C11 Table C11: seasonally adjusted series
C13 Table C13: irregular series
C15 Table C15: final trading day regression
C16 Table C16: trading day adjustment factors

derived from regression
C17 Table C17: final weights for irregular

component
C18 Table C18: trading day adjustment factors

from combined weights
C19 Table C19: original series adjusted for final

combined trading day weights
D1 Table D1: original series adjusted for final

weights nn-term moving average
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Table 44.5 continued

ODS Table Name Description Option

D4 Table D4: modified SI ratios
D5 Table D5: seasonal factors
D6 Table D6: seasonally adjusted series
D7 Table D7: trend cycle—Henderson curve
D8 Table D8: final unmodified SI ratios
D10 Table D10: final seasonal factors
D11 Table D11: final seasonally adjusted series
D12 Table D12: final trend cycle—Henderson

curve
D13 Table D13: final irregular series
E1 Table E1: original series modified for

extremes
E2 Table E2: modified seasonally adjusted

series
E3 Table E3: modified irregular series
E5 Table E5: month-to-month changes in

original series
E6 Table E6: month-to-month changes in final

seasonally adjusted series
F1 Table F1: MCD moving average
A13 Table A13: ARIMA forecasts ARIMA statement
A14 Table A14: ARIMA backcasts ARIMA statement
A15 Table A15: ARIMA extrapolation ARIMA statement

B14 Table B14: irregular values excluded from
trading day regression

C14 Table C14: irregular values excluded from
trading day regression

D9 Table D9: final replacement values

PriorDailyWgts Adjusted prior daily weights

TDR_0 Final/preliminary trading day regression,
part 1

MONTHLY only,
TDREGR=ADJUST,
TEST

TDR_1 Final/preliminary trading day regression,
part 2

MONTHLY only,
TDREGR=ADJUST,
TEST

StandErrors Standard errors of trading day adjustment
factors

MONTHLY only,
TDREGR=ADJUST,
TEST
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Table 44.5 continued

ODS Table Name Description Option

D9A Year-to-year change in irregular and
seasonal components and moving
seasonality ratio

StableSeasTest Stable seasonality test
StableSeasFTest Moving seasonality test
KruskalWallisTest Nonparametric test for the presence

of seasonality assuming stability
CombinedSeasonalityTest Summary of results and combined test

for the presence of identifiable seasonality

f2a F2 summary measures, part 1
f2b F2 summary measures, part 2
f2c F2 summary measures, part 3
f2d I/C ratio for monthly/quarterly span
f2f Average % change with regard to sign and

standard deviation over span

E4 Differences or ratios of annual totals for
original and adjusted series

ChartG1 Chart G1
ChartG2 Chart G2

ODS Tables Created by the ARIMA Statement
CriteriaSummary Criteria summary ARIMA statement
ConvergeSummary Convergence summary
ArimaEst ARIMA estimation results, part 1
ArimaEst2 ARIMA estimation results, part 2
Model_Summary Model summary
Ljung_BoxQ Table of Ljung-Box Q statistics
A13 Table A13: ARIMA forecasts
A14 Table A14: ARIMA backcasts
A15 Table A15: ARIMA extrapolation

ODS Tables Created by the SSPAN Statement
SPR0A_1 S 0.A sliding spans analysis, number, length

of spans
Default printing

SpanDates S 0.A sliding spans analysis: dates of spans
SPR0B S 0.B summary of F tests for stable and

moving seasonality
SPR1_1 S 1.A range analysis of seasonal factors
SPR1_b S 1.B summary of range measures
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Table 44.5 continued

ODS Table Name Description Option

SPRXA 2XA.1 breakdown of differences by month
or quarter

SPRXB_2 S X.B histogram of flagged observations
SPRXA_2 S X.A.2 breakdown of differences by year
MpdStats S X.C: statistics for maximum percentage

differences
S_X_A_3 S 2.X.3 breakdown summary of flagged

observations
SPR7_X S 7.X sliding spans analysis PRINTALL

Examples: X11 Procedure

Example 44.1: Component Estimation—Monthly Data
This example computes and plots the final estimates of the individual components for a monthly series. In
the first plot (Output 44.1.1), an overlaid plot of the original and seasonally adjusted data is produced. The
trend in the data is more evident in the seasonally adjusted data than in the original data. This trend is even
more clear in Output 44.1.3, the plot of Table D12, the trend cycle. Note that both the seasonal factors and
the irregular factors vary around 100, while the trend cycle and the seasonally adjusted data are in the scale
of the original data.

From Output 44.1.2 the seasonal component appears to be slowly increasing, while no apparent pattern exists
for the irregular series in Output 44.1.4.

data sales;
input sales @@;
date = intnx( 'month', '01sep1978'd, _n_-1 );
format date monyy7.;

datalines;
112 118 132 129 121 135 148 148 136 119 104 118

... more lines ...

proc x11 data=sales noprint;
monthly date=date;
var sales;
tables b1 d11;
output out=out b1=series d10=d10 d11=d11

d12=d12 d13=d13;
run;
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title 'Monthly Retail Sales Data (in $1000)';
proc sgplot data=out;

series x=date y=series / markers
markerattrs=(color=red symbol='asterisk')
lineattrs=(color=red)
legendlabel="original" ;

series x=date y=d11 / markers
markerattrs=(color=blue symbol='circle')
lineattrs=(color=blue)
legendlabel="adjusted" ;

yaxis label='Original and Seasonally Adjusted Time Series';
run;

Output 44.1.1 Plots of Original and Seasonally Adjusted Data

title 'Monthly Seasonal Factors (in percent)';
proc sgplot data=out;

series x=date y=d10 / markers markerattrs=(symbol=CircleFilled) ;
run;
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title 'Monthly Retail Sales Data (in $1000)';
proc sgplot data=out;

series x=date y=d12 / markers markerattrs=(symbol=CircleFilled) ;
run;

title 'Monthly Irregular Factors (in percent)';
proc sgplot data=out;

series x=date y=d13 / markers markerattrs=(symbol=CircleFilled) ;
run;

Output 44.1.2 Plot of D10, the Final Seasonal Factors
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Output 44.1.3 Plot of D12, the Final Trend Cycle
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Output 44.1.4 Plot of D13, the Final Irregular Series

Example 44.2: Components Estimation—Quarterly Data
This example is similar to Example 44.1, except quarterly data are used. Tables B1, the original series, and
D11, the final seasonally adjusted series, are printed by the TABLES statement. The OUTPUT statement
writes the listed tables to an output data set.

data quarter;
input date yyq6. +1 fy35rr 5.2;
format date yyq6.;

datalines;
1971Q1 6.59

... more lines ...

title 'Quarterly Retail Sales Data (in $1000)';
proc x11 data=quarter;

var fy35rr;
quarterly date=date;
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tables b1 d11;
output out=out b1=b1 d10=d10 d11=d11 d12=d12 d13=d13;

run;

Output 44.2.1 X11 Procedure Quarterly Example

Quarterly Retail Sales Data (in $1000)

The X11 Procedure

Seasonal Adjustment of - fy35rr

X-11 Seasonal Adjustment Program

U. S. Bureau of the Census

Economic Research and Analysis Division

November 1, 1968

The X-11 program is divided into seven major parts.

Part         Description

A.  Prior adjustments, if any

B.  Preliminary estimates of irregular component weights

and regression trading day factors

C.  Final estimates of above

D.  Final estimates of seasonal, trend-cycle and

irregular components

E.  Analytical tables

F.  Summary measures

G.  Charts

Series - fy35rr

Period covered - 1st Quarter 1971 to 4th Quarter 1976

B1 Original Series

Year 1st 2nd 3rd 4th Total

1971 6.590 6.010 6.510 6.180 25.290

1972 5.520 5.590 5.840 6.330 23.280

1973 6.520 7.350 9.240 10.080 33.190

1974 9.910 11.150 12.400 11.640 45.100

1975 9.940 8.160 8.220 8.290 34.610

1976 7.540 7.440 7.800 7.280 30.060

Avg 7.670 7.617 8.335 8.300

Total: 191.53 Mean: 7.9804 S.D.: 1.9424
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Output 44.2.2 X11 Procedure Quarterly Example, Table D11

D11 Final Seasonally Adjusted Series

Year 1st 2nd 3rd 4th Total

1971 6.877 6.272 6.222 5.956 25.326

1972 5.762 5.836 5.583 6.089 23.271

1973 6.820 7.669 8.840 9.681 33.009

1974 10.370 11.655 11.855 11.160 45.040

1975 10.418 8.534 7.853 7.947 34.752

1976 7.901 7.793 7.444 6.979 30.116

Avg 8.025 7.960 7.966 7.969

Total: 191.51 Mean: 7.9797 S.D.: 1.9059

Example 44.3: Outlier Detection and Removal
PROC X11 can be used to detect and replace outliers in the irregular component of a monthly or quarterly
series.

The weighting scheme used in measuring the “extremeness” of the irregulars is developed iteratively; thus
the statistical properties of the outlier adjustment method are unknown.

In this example, the data are simulated by generating a trend plus a random error. Two periods in the series
were made “extreme” by multiplying one generated value by 2.0 and another by 0.10. The additive model is
appropriate based on the way the data were generated. Note that the trend in the generated data was modeled
automatically by the trend cycle component estimation.

The detection of outliers is accomplished by considering Table D9, the final replacement values for extreme S-
I ratios. This table indicates which observations had irregular component values more than FULLWEIGHT=
standard deviation units from 0.0 (1.0 for the multiplicative model). The default value of the FULLWEIGHT=
option is 1.5; a larger value would result in fewer observations being declared extreme.

In this example, FULLWEIGHT=3.0 is used to isolate the extreme inflated and deflated values generated in
the DATA step. The value of ZEROWEIGHT= must be greater than FULLWEIGHT; it is given a value of
3.5.

A plot of the original and modified series, Output 44.3.2, shows that the deviation from the trend line for the
modified series is greatly reduced compared with the original series.

data a;
retain seed 99831;
do kk = 1 to 48;

x = kk + 100 + rannor( seed );
date = intnx( 'month', '01jan1970'd, kk-1 );
if kk = 20 then x = 2 * x;
else if kk = 30 then x = x / 10;
output;
end;

run;



Example 44.3: Outlier Detection and Removal F 3305

title 'Monthly Data with Outliers';
proc x11 data=a;

monthly date=date additive
fullweight=3.0 zeroweight=3.5;

var x;
table d9;
output out=b b1=original e1=e1;

run;

proc sgplot data=b;
series x=date y=original / markers

markerattrs=(color=red symbol='asterisk')
lineattrs=(color=red)
legendlabel="unmodified" ;

series x=date y=e1 / markers
markerattrs=(color=blue symbol='circle')
lineattrs=(color=blue)
legendlabel="modified" ;

yaxis label='Original and Outlier Adjusted Time Series';
run;

Output 44.3.1 Detection of Extreme Irregulars

Monthly Data with Outliers

The X11 Procedure

Seasonal Adjustment of - x

D9 Final Replacement Values for Extreme SI Ratios

Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

1970 . . . . . . . . . . . .

1971 . . . . . . . 11.180 . . . .

1972 . . . . . -10.671 . . . . . .

1973 . . . . . . . . . . . .
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Output 44.3.2 Plot of Modified and Unmodified Values
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Overview: X12 Procedure
The X12 procedure is an adaptation of the US Bureau of the Census X-12-ARIMA seasonal adjustment
program (US Bureau of the Census 2010). The X-12-ARIMA program was developed by the Time Series
Staff of the Statistical Research Division, US Census Bureau. The X-12-ARIMA seasonal adjustment
program contains components developed from Statistics Canada’s X-11-ARIMA program. The X-12-ARIMA
automatic modeling method is based on the work of Gómez and Maravall (1997a, b).

The Time Series Staff of the Statistical Research Division, US Census Bureau, has recently developed
a new program, X-13ARIMA-SEATS (US Bureau of the Census 2013). This program incorporates the
X-12-ARIMA functionality along with the SEATS functionality that was developed by Gómez and Maravall
(1997a, b). The X12 procedure includes improvements on X-12-ARIMA methods that are incorporated into
the X-13ARIMA-SEATS program.

Because the US Census Bureau has focused its new development on the X-13ARIMA-SEATS program, a
new X13 procedure has been developed to incorporate the X-13ARIMA-SEATS method.

NOTE: The functionality previously available in the X12 procedure is included in the new X13 procedure.
You can specify either of the following with the same results:

proc x12 ...

proc x13 ...

For documentation of the PROC X12 syntax and a description of its details, see Chapter 46, “The X13
Procedure.”
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Overview: X13 Procedure
The X13 procedure is an adaptation of the US Bureau of the Census X-13ARIMA-SEATS seasonal adjustment
program (US Bureau of the Census 2013c). The X-13ARIMA-SEATS program was developed by the Time
Series Staff of the Statistical Research Division, US Census Bureau, by incorporating the SEATS method into
the X-12-ARIMA seasonal adjustment program. The X-12-ARIMA seasonal adjustment program contains
components developed from Statistics Canada’s X-11-ARIMA program (US Bureau of the Census 2010).
The X-12-ARIMA automatic modeling method and the SEATS method are based on the work of Gómez and
Maravall (1997a, b).

The new X-13ARIMA-SEATS program incorporates the X-12-ARIMA functionality. It also incorporates
improvements on X-12-ARIMA methods. Because the X-12-ARIMA methods and improvements are
available in X-13ARIMA-SEATS, the new X13 procedure and the existing X12 procedure use the same
X-13ARIMA-SEATS methodology, and PROC X12 and PROC X13 are aliases for the same procedure.

The version of PROC X13 documented here was produced by converting the US Census Bureau’s FORTRAN
code to the SAS development language and adding typical SAS procedure syntax. This conversion work
was performed by SAS and resulted in the X13 procedure. Although several features were added during the
conversion, credit for the statistical aspects and general methodology of the X13 procedure belongs to the US
Census Bureau.
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The X13 procedure seasonally adjusts monthly or quarterly time series. The procedure makes additive
or multiplicative adjustments and creates an output data set that contains the adjusted time series and
intermediate calculations.

The X-13ARIMA-SEATS program includes the X-12-ARIMA program, which combines the capabilities of
the X-11 program (Shiskin, Young, and Musgrave 1967) and the X-11-ARIMA/88 program (Dagum 1988)
and also introduces some new features (Findley et al. 1998). One of the main enhancements in the X-12-
ARIMA program involves the use of a regARIMA model, a regression model with ARIMA (autoregressive
integrated moving average) errors. Thus, the X-12-ARIMA program contains methods developed by both
the US Census Bureau and Statistics Canada. In addition, the X-12-ARIMA automatic modeling routine
is based on the TRAMO (time series regression with ARIMA noise, missing values, and outliers) method
(Gómez and Maravall 1997a, b). The four major components of the X-12-ARIMA program are regARIMA
modeling, model diagnostics, seasonal adjustment that uses enhanced X-11 methodology, and post-adjustment
diagnostics. Statistics Canada’s X-11 method fits an ARIMA model to the original series, and then uses the
model forecasts to extend the original series. This extended series is then seasonally adjusted by the standard
X-11 seasonal adjustment method. The extension of the series improves the estimation of the seasonal factors
and reduces revisions to the seasonally adjusted series as new data become available.

Seasonal adjustment of a series is based on the assumption that seasonal fluctuations can be measured in the
original series, Ot , t D 1; . . . , n, and separated from trend cycle, trading day, and irregular fluctuations. The
seasonal component of this time series, St , is defined as the intrayear variation that is repeated consistently or
evolves slowly from year to year (Hillmer and Tiao 1982). The trend cycle component, Ct , includes variation
that is attributed to the long-term trend, the business cycle, and other long-term cyclical factors. The trading
day component, Dt , is the variation that can be attributed to the composition of the calendar. The irregular
component, It , is the residual variation. Many economic time series are related in a multiplicative fashion
(Ot D StCtDtIt ). Other economic series are related in an additive fashion (Ot D St C Ct CDt C It ). A
seasonally adjusted time series, CtIt or Ct C It , consists of only the trend cycle and irregular components.
For more information about the X-11 seasonal adjustment method, see Ladiray and Quenneville (2001).

Graphics are now available with the X13 procedure. For more information, see the section “ODS Graphics”
on page 3381.

Getting Started: X13 Procedure
The most common use of the X13 procedure is to produce a seasonally adjusted series. Eliminating the
seasonal component from an economic series facilitates comparison among consecutive months or quarters.
A plot of the seasonally adjusted series is often more informative about trends or location in a business cycle
than a plot of the unadjusted series.

The following example shows how to use PROC X13 to produce a seasonally adjusted series, CtIt , from an
original series Ot D StCtDtIt .

In the multiplicative model, the trend cycle component Ct keeps the same scale as the original series Ot ,
while St , Dt , and It vary around 1.0. In all displayed tables, these latter components are expressed as
percentages and thus vary around 100.0 (in the additive case, they vary around 0.0). However, in the output
data set, the data displayed as percentages in the displayed output are expressed as the decimal equivalent
and thus vary around 1.0 in the multiplicative case.
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The naming convention used in PROC X13 for the tables follows the convention used in the Census Bureau’s
X-13ARIMA-SEATS program; see X-13ARIMA-SEATS Reference Manual (US Bureau of the Census 2013c),
X-13ARIMA-SEATS Quick Reference for DOS (US Bureau of the Census 2013b), and X-13ARIMA-SEATS
Quick Reference for UNIX/Linux (US Bureau of the Census 2013a). Also see the section “Displayed Output,
ODS Table Names, and OUTPUT Tablename Keywords” on page 3376. The table names are outlined in
Table 46.15.

The tables that correspond to parts A through C are intermediate calculations. The final estimates of the
individual components are found in the D tables: Table D10 contains the final seasonal factors, Table D12
contains the final trend cycle, and Table D13 contains the final irregular series. If you are primarily interested
in seasonally adjusting a series without consideration of intermediate calculations or diagnostics, you need
to look only at Table D11, the final seasonally adjusted series. Tables in part E contain information about
extreme values and changes in the original and seasonally adjusted series. The tables in part F are seasonal
adjustment quality measures. Spectral analysis is performed in part G. For more information about the tables
produced by the X11 statement, see Ladiray and Quenneville (2001).

Basic Seasonal Adjustment
Suppose that you have monthly retail sales data starting in September 1978 in a SAS data set named SALES.
At this point, you do not suspect that any calendar effects are present, and there are no prior adjustments that
need to be made to the data.

In this simplest case, you need only specify the DATE= variable in the PROC X13 statement and request
seasonal adjustment in the X11 statement as shown in the following statements:

data sales;
set sashelp.air;
sales = air;
date = intnx( 'month', '01sep78'd, _n_-1 );
format date monyy.;

run;

proc x13 data=sales date=date;
var sales;
x11;
ods select d11;

run;

The results of the seasonal adjustment are in Table D11 (the final seasonally adjusted series) in the displayed
output shown in Figure 46.1.
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Figure 46.1 Basic Seasonal Adjustment

The X13 Procedure

Table D 11: Final Seasonally Adjusted Data
For Variable sales

Year JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Total

1978 . . . . . . . . 124.560 124.649 124.920 129.002 503.131

1979 125.087 126.759 125.252 126.415 127.012 130.041 128.056 129.165 127.182 133.847 133.199 135.847 1547.86

1980 128.767 139.839 143.883 144.576 148.048 145.170 140.021 153.322 159.128 161.614 167.996 165.388 1797.75

1981 175.984 166.805 168.380 167.913 173.429 175.711 179.012 182.017 186.737 197.367 183.443 184.907 2141.71

1982 186.080 203.099 193.386 201.988 198.322 205.983 210.898 213.516 213.897 218.902 227.172 240.453 2513.69

1983 231.839 224.165 219.411 225.907 225.015 226.535 221.680 222.177 222.959 212.531 230.552 232.565 2695.33

1984 237.477 239.870 246.835 242.642 244.982 246.732 251.023 254.210 264.670 266.120 266.217 276.251 3037.03

1985 275.485 281.826 294.144 286.114 293.192 296.601 293.861 309.102 311.275 319.239 319.936 323.663 3604.44

1986 326.693 330.341 330.383 330.792 333.037 332.134 336.444 341.017 346.256 350.609 361.283 362.519 4081.51

1987 364.951 371.274 369.238 377.242 379.413 376.451 378.930 375.392 374.940 373.612 368.753 364.885 4475.08

1988 371.618 383.842 385.849 404.810 381.270 388.689 385.661 377.706 397.438 404.247 414.084 416.486 4711.70

1989 426.716 419.491 427.869 446.161 438.317 440.639 450.193 454.638 460.644 463.209 427.728 485.386 5340.99

1990 477.259 477.753 483.841 483.056 481.902 499.200 484.893 485.245 . . . . 3873.15

Avg 277.330 280.422 282.373 286.468 285.328 288.657 288.389 291.459 265.807 268.829 268.774 276.446

Total: 40323 Mean: 280.02 S.D.: 111.31
Min: 124.56 Max: 499.2

You can compare the original series (Table A1) and the final seasonally adjusted series (Table D11) by
plotting them together as shown in Figure 46.2. These tables are requested in the OUTPUT statement and
are written to the OUT= data set. Note that the default variable name used in the output data set is the input
variable name followed by an underscore and the corresponding table name.

proc x13 data=sales date=date noprint;
var sales;
x11;
output out=out a1 d11;

run;

proc sgplot data=out;
series x=date y=sales_A1 / name = "A1" markers

markerattrs=(color=red symbol='asterisk')
lineattrs=(color=red);

series x=date y=sales_D11 / name= "D11" markers
markerattrs=(symbol='circle')
lineattrs=(color=blue);

yaxis label='Original and Seasonally Adjusted Time Series';
run;
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Figure 46.2 Plot of Original and Seasonally Adjusted Data
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Syntax: X13 Procedure
The X13 procedure uses the following statements:

PROC X13 options ;
VAR variables ;
BY variables ;
ID variables ;
EVENT variables < / options > ;
USERDEFINED variables ;
TRANSFORM options ;
ADJUST option ;
IDENTIFY options ;
PICKMDL options ;
AUTOMDL options ;
OUTLIER options ;
REGRESSION options ;
INPUT variables < / options > ;
ARIMA option ;
ESTIMATE options ;
X11 options ;
FORECAST options ;
CHECK options ;
SEATSDECOMP OUT= SAS-data-set < options > ;
OUTPUT OUT= SAS-data-set < YEARSEAS > tablename1 tablename2 . . . ;
TABLES tablename1 tablename2 . . . options ;

The statements used by PROC X13 perform basically the same function as the Census Bureau’s X-13ARIMA-
SEATS specs (specifications). Specs are used in X-13ARIMA-SEATS to control the computations and
output. The PROC X13 statement performs some of the same functions as the Series spec in the Census
Bureau’s X-13ARIMA-SEATS software. The ADJUST statement performs some of the same functions as
the Transform spec. The ARIMA, AUTOMDL, CHECK, ESTIMATE, FORECAST, IDENTIFY, OUTLIER,
PICKMDL, REGRESSION, TRANSFORM, and X11 statements are designed to perform the same functions
as the corresponding X-13ARIMA-SEATS specs, although full compatibility is not yet available. The Census
Bureau documentation X-13ARIMA-SEATS Reference Manual (US Bureau of the Census 2009) provides
added insight to the functionality of these statements. The SEATSDECOMP statement provides a SEATS
(signal extraction in ARIMA time series) seasonal decomposition for the B1 series that uses the same ARIMA
model as is used to model the series. For more information about SEATS, see Gómez and Maravall (1997a, b).
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Functional Summary
Table 46.1 summarizes the statements and options that control the X13 procedure.

Table 46.1 PROC X13 Functional Summary

Description Statement Option

Data Set Options
Specifies the auxiliary data set PROC X13 AUXDATA=
Specifies the input data set PROC X13 DATA=
Specifies the user-defined event definition
data set

PROC X13 INEVENT=

Specifies regression and ARIMA information PROC X13 MDLINFOIN=
Outputs regression and ARIMA information PROC X13 MDLINFOOUT=
Writes summary statistics to an output data set PROC X13 OUTSTAT=
Writes table values to an output data set OUTPUT OUT=
Appends forecasts to the OUTPUT OUT=
data set

X11 or FORECAST OUTFORECAST

Prefixes backcasts to the OUTPUT OUT=
data set

FORECAST OUTBACKCAST

Display Control Options
Suppresses all displayed output PROC X13 NOPRINT
Specifies the plots to be displayed PROC X13 PLOTS=
Specifies the type of spectral plot to be
displayed

PROC X13 PERIODOGRAM

Specifies the series for spectral analysis PROC X13 SPECTRUMSERIES=
Displays automatic model information AUTOMDL PRINT=
Specifies the number of lags in regARIMA
model residuals ACF and PACF tables and
plots

CHECK MAXLAG=

Displays regARIMA model residuals
information

CHECK PRINT=

Displays the iterations history ESTIMATE ITPRINT
Displays information about restarted iterations ESTIMATE PRINTERR
Specifies the differencing used in the ARIMA
model identification ACF and PACF tables and
plots

IDENTIFY DIFF=

Specifies the seasonal differencing used in the
ARIMA model identification ACF and PACF
tables and plots

IDENTIFY SDIFF=

Specifies the number of lags in ARIMA model
identification ACF and PACF tables and plots

IDENTIFY MAXLAG=

Displays regression model parameter estimates IDENTIFY PRINTREG
Requests tables that are not displayed by
default

TABLES
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Table 46.1 continued

Description Statement Option

Specifies that the summary line not be
displayed

TABLES NOSUM

Date Information Options
Specifies the date variable PROC X13 DATE=
Specifies the date of the first observation PROC X13 START=
Specifies the beginning or ending date or both
of the subset

PROC X13 SPAN=

Specifies the interval of the time series PROC X13 INTERVAL=
Specifies the interval of the time series PROC X13 SEASONS=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies identifying variables ID
Specifies the variables to be seasonally
adjusted

VAR

Specifies the user-defined variables that are
available for regression

USERDEFINED

Controlling the Table Computations
Suppresses trimming of leading and trailing
missing values (if they exist)

PROC X13 NOTRIMMISS

Transforms or prior-adjusts the series TRANSFORM FUNCTION=
Transforms or prior-adjusts the series TRANSFORM POWER=
Adjusts the series by using a predefined
adjustment variable

ADJUST PREDEFINED=

Specifies the likelihood function to be used for
estimating AR and MA parameters

ESTIMATE EXACT=

Specifies the maximum number of iterations
for estimating AR and MA parameters

ESTIMATE MAXITER

Specifies the convergence tolerance for
nonlinear estimation

ESTIMATE TOL=

Specifies size of forecast confidence limits FORECAST ALPHA=
Specifies the number of backcasts by which to
extend the series for seasonal adjustment

FORECAST NBACKCAST=

Specifies the number of forecasts by which to
extend the series for seasonal adjustment

FORECAST LEAD=

Specifies that one-step-ahead forecasts be
computed

FORECAST OUT1STEP

Specifying Outlier Detection Options
Specifies automatic outlier detection OUTLIER
Specifies the span for outlier detection OUTLIER SPAN=
Specifies the outlier types to be detected OUTLIER TYPE=
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Table 46.1 continued

Description Statement Option

Specifies the critical values for outlier
detection

OUTLIER CV=

Specifies the critical values for AO outlier
detection

OUTLIER AOCV=

Specifies the critical values for LS outlier
detection

OUTLIER LSCV=

Specifies the critical values for TC outlier
detection

OUTLIER TCCV=

Specifies the alpha value for outlier detection OUTLIER ALPHA=
Specifies the method for calculating the critical
value for outlier detection based on the alpha
value

OUTLIER CVMETHOD=

Specifies the number of level-shift outliers to
consider for forming a temporary level-shift

OUTLIER LSRUN=

Specifies the rate of decay for temporary
change outliers

OUTLIER TCRATE=

Specifies the method of adding outliers at each
iteration

OUTLIER METHOD=

Specifies the difference in critical values for
almost outliers

OUTLIER ALMOST=

Specifying the Regression Model
Specifies regression variables to be selected
using an AIC-based test

REGRESSION AICTEST=

Specifies predefined regression variables REGRESSION PREDEFINED=
Specifies user-defined regression variables REGRESSION USERVAR=
Specifies user-defined regression variables INPUT
Specifies user defined event regression
variables

EVENT

Specifies the method used to calculate the
means for the Easter regression variable

REGRESSION EASTERMEANS=

Specifies which types of regression effects are
not to be removed before seasonal adjustment

REGRESSION NOAPPLY=

Specifying the ARIMA Model
Uses the X-13ARIMA-SEATS TRAMO-based
method to choose a model

AUTOMDL

Chooses a regARIMA model from a set that
you specify

PICKMDL

Specifies the ARIMA part of the model ARIMA MODEL=
Specifying Automatic Model Detection Options
Specifies the maximum orders of ARMA
polynomials

AUTOMDL MAXORDER=

Specifies the maximum orders of differencing AUTOMDL MAXDIFF=
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Table 46.1 continued

Description Statement Option

Specifies the estimation method for identifying
difference orders

AUTOMDL DIFFID=

Specifies the maximum number of iterations
for exact likelihood for
DIFFID=EXACTFIRST

AUTOMDL DIFFIDITER=

Specifies the fixed orders of differencing AUTOMDL DIFFORDER=
Suppresses fitting of a constant parameter AUTOMDL NOINT
Specifies the preference for balanced models AUTOMDL BALANCED
Specifies Hannan-Rissanen initial estimation AUTOMDL HRINITIAL
Specifies default model acceptance based on
Ljung-Box Q

AUTOMDL ACCEPTDEFAULT

Specifies the acceptance value for
Ljung-Box Q

AUTOMDL LJUNGBOXLIMIT=

Specifies the percentage by which to reduce
the outlier critical value

AUTOMDL REDUCECV=

Specifies the critical value for ARMA
coefficients

AUTOMDL ARMACV=

Model Diagnostics
Examines the regARIMA model residuals CHECK

Specifying Seasonal Adjustment Options
Specifies seasonal adjustment X11
Specifies the mode of seasonal adjustment
decomposition

X11 MODE=

Specifies the seasonal filter X11 SEASONALMA=
Specifies the sigma limits X11 SIGMALIM=
Specifies the Henderson trend filter X11 TRENDMA=
Specifies the D11 calculation method X11 TYPE=
Specifies the adjustment factors to remove
from final seasonally adjusted series

X11 FINAL=

Specifies a method for reconciling the
seasonally adjusted series to the original series

X11 FORCE=

Specifies that SEATS seasonal decomposition
be output to a data set

SEATSDECOMP OUT=
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PROC X13 Statement
PROC X13 options ;

The PROC X13 statement provides information about the time series to be processed by PROC X13. Either
the DATE= or the START= option must be specified. If both options are specified, then a syntax error results
and the X13 procedure is not executed.

The original series is displayed in Table A1. If there are missing values in the original series and a regARIMA
model is specified or automatically selected, then Table MV1 is displayed. Table MV1 contains the original
series with missing values replaced by the predicted values from the fitted model. If outliers are identified
and Table A19 is added in the TABLES statement, then the outlier adjusted series is displayed in Table A19.
Table B1 is displayed when the original data are altered (for example, through an ARIMA model estimation,
prior adjustment factor, or regression) or the series is extended with forecasts.

Although the X-13ARIMA-SEATS method handles missing values, there are some restrictions. In order for
PROC X13 to process the series, no month or quarter can contain missing values for all years. For instance,
if the third quarter contained only missing values for all years, then processing is skipped for that series.
In addition, if more than half the values for a month or a quarter are missing, then a warning message is
displayed in the log file, and other errors might occur later in processing. If a series contains many missing
values, other methods of missing value replacement should be considered prior to seasonally adjusting the
series.

You can specify the following options in the PROC X13 statement:

AUXDATA=SAS-data-set
specifies an auxiliary input data set that contains user-defined variables, which are specified in the
INPUT statement, the USERVAR= option in the REGRESSION statement, or the USERDEFINED
statement. The AUXDATA= data set can also contain the date variable, which is specified in the
DATE= option in the PROC X13 statement. If the date variable is present, then the date variable is used
to align the observations in the auxiliary data set to the observations in the series that is being processed.
The date values must be sorted in ascending order with no gaps or duplications, and the interval
must match the interval of the series. If the date variable is not present or valid, then observations in
the auxiliary data set are matched by observation number to the series that is being processed. The
auxiliary data set does not support BY-group processing. The variables in the auxiliary data set are
applied to all BY groups, where the dates of the BY group correspond to the dates of the auxiliary data
set. Example 46.11 shows the use of the AUXDATA= data set.

DATA=SAS-data-set
specifies the input SAS data set to use. If this option is omitted, the most recently created SAS data set
is used.

DATE=variable

DATEVAR=variable
specifies a variable that gives the date for each observation. Unless specified in the SPAN= option,
the starting and ending dates are obtained from the first and last values of the BY group for the
DATE= variable, which must contain SAS date or datetime values. The procedure checks values of the
DATE= variable to ensure that the input observations are sequenced correctly in ascending order. If
the INTERVAL= option or the SEASONS= option is specified, the values of the date variable must
be consistent with the specified seasonality or interval. If neither the INTERVAL= option nor the
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SEASONS= option is specified, then the procedure tries to determine the type of data from the values
of the date variable. This variable is automatically added to the OUT= data set if a data set is requested
in an OUTPUT statement, and the date values for the variable are extrapolated if necessary. If the
DATE= option is not specified, the START= option must be specified.

INEVENT=SAS-data-set
specifies the input data set that defines any user-defined event variables. This option can be omitted
if events are not specified or if only SAS predefined events are specified in an EVENT statement.
For more information about the format of this data set, see the section “INEVENT= Data Set” on
page 3387.

INTERVAL=interval
specifies the frequency of the input time series. If the input data consist of quarterly observations,
then INTERVAL=QTR should be used. If the input data consist of monthly observations, then
INTERVAL=MONTH should be used. If the INTERVAL= option is not specified and SEASONS=4,
then INTERVAL=QTR is assumed; likewise, SEASONS=12 implies INTERVAL=MONTH. If both
the INTERVAL= option and the SEASONS= option are specified, the values should not be conflicting.
If neither the INTERVAL= option nor the SEASONS= option is specified and the START= option is
specified, then the data are assumed to be monthly. If a date variable is specified using the DATE=
option, it is not necessary to specify the INTERVAL= option or the SEASONS= option; however, if
specified, the values of the INTERVAL= option or the SEASONS= option should not be in conflict with
the values of the date variable. For more information about intervals, see Chapter 5, “Date Intervals,
Formats, and Functions.”

MDLINFOIN=SAS-data-set
specifies an optional input data set that contains model information that overrides information that is
contained in one or more of the TRANSFORM, REGRESSION, ARIMA, and AUTOMDL statements.
The SAS-data-set can contain BY-group, series names, and other information. For more information
about this data set, see the section “MDLINFOIN= and MDLINFOOUT= Data Sets” on page 3385.

You can supply the following model information in SAS-data-set:

� a single model for each series that is used to forecast the series.

� multiple models for each series. If multiple models are specified for a series, the PICKMDL
method is used to select from among the candidate models, and the selected model will be
used to generate the forecasts. For more information, see the “PICKMDL Model Selection” on
page 3374.

The MDLINFOIN= data set can include a variable that identifies different models. All observations
that have the same value for the model identification variable are considered to be relevant to the same
model. A single model can be considered to consist of all the observations for a BY group that consists
of the BY variables (if any), the _NAME_ variable if it exists, and the model identification variable
(whose default is _MODEL_). Even if the PICKMDL statement is not specified, but the MDLINFOIN=
data set contains a _MODEL_ variable and more than one model for a series, then the PICKMDL
method is automatically invoked to choose a model for that series.
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MDLINFOOUT=SAS-data-set
specifies the optional output data set that contains the transformation, regression, and ARIMA infor-
mation related to each seasonally adjusted series. The data set is sorted by the BY-group variables, if
any, and by series names. The MDLINFOOUT= data set can be used as input for the MDLINFOIN=
option. For more information, see the section “MDLINFOIN= and MDLINFOOUT= Data Sets” on
page 3385.

NOPRINT
suppresses any printed output.

NOTRIMMISS
suppresses the default, by which leading and trailing missing values are trimmed from each variable
listed (or implied) in the VAR statement. If you specify the NOTRIMMISS option, PROC X13
treats leading and trailing missing values in the same manner as it treats embedded missing values.
For information about the treatment of embedded missing values, see the section “Missing Values”
on page 3366. Missing values are not supported in the regression variables that you specify in the
REGRESSION, INPUT, or USERDEFINED statement; therefore, leading and trailing missing values
are always trimmed from user-defined regressors even if you specify NOTRIMMISS.

OUTSTAT=SAS-data-set
specifies an optional output data set which contains the summary statistics that related to each seasonally
adjusted series. The data set is sorted by the BY-group variables, if any, and by series names. For more
information, see the section “OUTSTAT= Data Set” on page 3389.

PERIODOGRAM
specifies that the PERIODOGRAM rather than the spectrum of the series be plotted in the G tables and
plots. If PERIODOGRAM is not specified, then the spectrum is plotted in the G tables.

PLOTS< (global-plot-options) > < = plot-request < (options) > >

PLOTS< (global-plot-options) > < = (plot-request < (options) > < . . . plot-request < (options) > >) >
controls the plots that are produced through ODS Graphics. When you specify only one plot request,
you can omit the parentheses around the plot request.

Following are some examples of the PLOTS= option:

plots=none
plots=all
plots=residual(none)
plots(only)=(series(acf pacf) residual(hist))

ODS Graphics must be enabled before you request plots. For example:

ods graphics on;

proc x13 data=sales date=date;
var sales;
identify diff=(0,1) sdiff=(0,1);

run;
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Since no specific plot is requested in this program, the default plots associated with the PROC X13 and
IDENTIFY statements are produced.

For general information about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS”
(SAS/STAT User’s Guide). If you have enabled ODS Graphics but do not specify any specific plot
request, then the default plots that are associated with each of the PROC X13 statements used in the
program are produced. Line printer plots are suppressed when ODS Graphics is enabled.

If NONE is specified in an option, then no plots are produced for that option. If ALL is specified
without NONE in an option, then all plots are produced for that option.

Global Plot Options
The global-plot-options apply to all relevant plots that are generated by the X13 procedure. The
following global-plot-option is supported:

ONLY
suppresses the default plots. Only the plots specifically requested are produced.

Specific Plot Options
The following list describes the specific plots and their options:

ALL
produces all plots that are appropriate for the particular analysis.

NONE
suppresses all plots.

ADJUSTED(< sa-plot-options >)

SA(< sa-plot-options >)
produces plots of the seasonally adjusted series that results from the decomposition specified in
the X11 statement. The SPECTRUM plot is produced by default.

The following sa-plot-options are available:

ALL
produces all seasonally adjusted plots.

NONE
suppresses all seasonally adjusted plots.

SPECTRUM
produces the spectral plot of Table G1. Table G1 is calculated based on the modified
seasonally adjusted series (Table E2). The data are first-differenced and transformed as
specified in the TRANSFORM statement. By default, the type of spectral estimate used to
calculate the spectral plot is the spectrum. If the PERIODOGRAM option is specified in the
PROC X13 statement, then the periodogram of the series is used to calculate the spectral
plot.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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FORECAST(< forecast-plot-options >)
produces the regARIMA model forecast plots if the FORECAST statement is specified. The
FORECAST plot is produced by default. The following forecast-plot-options are available:

ALL
produces all the forecast plots that are appropriate for the particular analysis.

FORECAST
plots the actual time series and its one-step-ahead forecast over the historical period, and
plots the forecast and its confidence bands over the forecast horizon. The OUT1STEP option
must be specified in the FORECAST statement in order for the X13 procedure to calculate
the one-step-ahead forecasts.

FORECASTONLY
plots the forecast and its confidence bands over the forecast horizon only.

MODELFORECASTS
plots the one-step-ahead model forecast and its confidence bands in the historical period;
plots the forecast and its confidence bands over the forecast horizon. The OUT1STEP option
must be specified in the FORECAST statement in order for the X13 procedure to calculate
the one-step-ahead forecasts.

MODELS
plots the one-step-ahead model forecast and its confidence bands in the historical period.
The OUT1STEP option must be specified in the FORECAST statement in order for the X13
procedure to calculate the one-step-ahead forecasts.

NONE
suppresses all the forecast plots.

TRANSFORECAST
plots the transformed time series and its one-step-ahead forecast over the historical period;
plots the forecast and its confidence bands over the forecast horizon. The OUT1STEP option
must be specified in the FORECAST statement in order for the X13 procedure to calculate
the one-step-ahead forecasts. The TRANSFORECAST plot is available only if the data have
been transformed using the TRANSFORM statement.

TRANSFORECASTONLY
plots the forecast of the transformed series and its confidence bands over the forecast horizon
only. The TRANSFORECASTONLY plot is available only if the data have been transformed
using the TRANSFORM statement.

TRANSMODELFORECASTS
plots the one-step-ahead model forecast of the transformed series and its confidence bands
in the historical period; plots the forecast and its confidence bands over the forecast horizon.
The OUT1STEP option must be specified in the FORECAST statement in order for the X13
procedure to calculate the one-step-ahead forecasts. The TRANSMODELFORECASTS
plot is available only if the data have been transformed using the TRANSFORM statement.
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TRANSMODELS
plots the one-step-ahead model forecast of the transformed series and its confidence bands in
the historical period. The OUT1STEP option must be specified in the FORECAST statement
in order for the X13 procedure to calculate the one-step-ahead forecasts. The TRANS-
MODELS plot is available only if the data have been transformed using the TRANSFORM
statement.

IRREGULAR(< ic-plot-options >)

IC(< ic-plot-options >)
produces plots of the irregular series that results from the decomposition specified in the X11
statement. The SPECTRUM plot is produced by default.

The following ic-plot-options are available:

ALL
produces all irregular plots.

NONE
suppresses all irregular plots.

SPECTRUM
produces the spectral plot of Table G2. Table G2 is calculated based on the modified
irregular series (Table E3). The data are first-differenced and transformed as specified in
the TRANSFORM statement. By default, the type of spectral estimate used to calculate the
spectral plot is the spectrum. If the PERIODOGRAM option is specified in the PROC X13
statement, then the periodogram of the series is used to calculate the spectral plot.

RESIDUAL(< residual-plot-options >)
produces the regARIMA model residual series plots if the CHECK statement is specified. The
ACF, PACF, HIST, SQACF, and SPECTRUM plots are produced by default. The following
residual-plot-options are available:

ACF
produces the plot of residual autocorrelations.

ALL
produces all the residual diagnostics plots that are appropriate for the particular analysis.

HIST
produces the histogram of the residuals and also the residual outliers and residual statistics
tables that describe the residual histogram.

NONE
suppresses all the residual diagnostics plots.

PACF
produces the plot of residual partial-autocorrelations if PRINT=PACF is specified in the
CHECK statement.
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SPECTRUM
produces the spectral plot of Table GRs. Table GRs is calculated based on the regARIMA
model residual series. By default, the type of spectral estimate used to calculate the spectral
plot is the spectrum. If the PERIODOGRAM option is specified in the PROC X13 statement,
then the periodogram of the series is used to calculate the spectral plot.

SQACF
produces the plot of squared residual autocorrelations.

SERIES(< series-plot-options >)
produces plots that are associated with the identification stage of the modeling. The ACF, PACF,
and SPECTRUM plots are produced by default. The following series-plot-options are available:

ACF
produces the plot of autocorrelations.

ALL
produces all the plots that are associated with the identification stage.

NONE
suppresses all plots that are associated with the identification stage.

PACF
produces the plot of partial-autocorrelations.

SPECTRUM
produces the spectral plot of Table G0. Table G0 is calculated based on either Table A1,
A19, B1, or E1, as specified by the SPECTRUMSERIES= option. The original data are
first-differenced and transformed as specified in the TRANSFORM statement. By default,
the type of spectral estimate that is used to calculate the spectral plot is the spectrum. If the
PERIODOGRAM option is specified in the PROC X13 statement, then the periodogram of
the series is used to calculate the spectral plot.

SEASONS=number
specifies the number of observations in a seasonal cycle. If the SEASONS= option is not specified
and INTERVAL=QTR, then SEASONS=4 is assumed. If the SEASONS= option is not specified and
INTERVAL=MONTH, then SEASONS=12 is assumed. If the SEASONS= option is specified, its
value should not conflict with the values of the INTERVAL= option or the values of the date variable.
For more information, see the descriptions of the START=, DATE=, and INTERVAL= options.

SPAN=(mmmyy ,mmmyy )

SPAN=(’yyQq’ ,’yyQq’ )
specifies the dates of the first and last observations to define a subset for processing. A single date in
parentheses is interpreted to be the starting date of the subset. To specify only the ending date, use
SPAN=(,mmmyy). If the starting or ending date is omitted, then the first or last date, respectively, of
the input data set or BY group is assumed. Because the dates are input as strings and the quarterly dates
begin with a numeric character, the specification for a quarterly date must be enclosed in quotation
marks. A four-digit year can be specified; if a two-digit year is specified, the value specified in the
YEARCUTOFF= SAS system option applies.
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SPECTRUMSERIES=table-name
specifies the table name of the series that is used in the spectrum of the original series (Table G0). The
table names that can be specified are A1, A19, B1, or E1. The default is B1.

START=mmmyy

START=’yyQq’

STARTDATE=mmmyy

STARTDATE=’yyQq’
specifies the date of the first observation. Unless the SPAN= option is used, the starting and ending
dates are the dates of the first and last observations, respectively. Either this option or the DATE= option
is required. When using this option, use either the INTERVAL= option or the SEASONS= option
to specify monthly or quarterly data. If neither the INTERVAL= option nor the SEASONS= option
is present, monthly data are assumed. Because the dates are input as strings and the quarterly dates
begin with a numeric character, the specification for a quarterly date must be enclosed in quotation
marks. A four-digit year can be specified; if a two-digit year is specified, the value specified in the
YEARCUTOFF= SAS system option applies. When using the START= option with BY processing,
the start date is applied to the first observation in each BY group.

ADJUST Statement
ADJUST option ;

The ADJUST statement adjusts the series for leap year and length-of-period factors prior to estimating a
regARIMA model. The “Prior Adjustment Factors” table is associated with the ADJUST statement.

The following option can appear in the ADJUST statement:

PREDEFINED=LOM | LOQ | LPYEAR
specifies length-of-month adjustment, length-of-quarter adjustment, or leap year adjustment. PREDE-
FINED=LOM and PREDEFINED=LOQ are equivalent because the actual adjustment is determined
by the interval of the time series. Also, because leap year adjustment is a limited form of length-of-
period adjustment, only one type of predefined adjustment can be specified. The PREDEFINED=
option should not be used in conjunction with PREDEFINED=TD or PREDEFINED=TD1COEF
in the REGRESSION statement or MODE=ADD or MODE=PSEUDOADD in the X11 statement.
PREDEFINED=LPYEAR cannot be specified unless the series is log transformed.

If the series is to be transformed by using a Box-Cox or logistic transformation, the series is first
adjusted according to the ADJUST statement, and then it is transformed.

In the case of a length-of-month adjustment for the series with observations Yt , each observation is
first divided by the number of days in that month, mt , and then multiplied by the average length of
month (30.4375), resulting in .30:4375 � Yt /=mt . Length-of-quarter adjustments are performed in a
similar manner, resulting in .91:3125 � Yt /=qt , where qt is the length in days of quarter t.

Forecasts of the transformed and adjusted data are transformed and adjusted back to the original scale
for output.
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ARIMA Statement
ARIMA option ;

The ARIMA statement specifies the ARIMA part of the regARIMA model. This statement defines a pure
ARIMA model if no REGRESSION statements, INPUT statements, or EVENT statements are specified. The
ARIMA part of the model can include multiplicative seasonal factors.

The following option can appear in the ARIMA statement:

MODEL=((p d q) (P D Q)s)
specifies the ARIMA model. The format follows standard Box-Jenkins notation (Box, Jenkins, and
Reinsel 1994). The nonseasonal AR and MA orders are given by p and q, respectively, while the
seasonal AR and MA orders are given by P and Q. The number of differences and seasonal differences
are given by d and D, respectively. The notation (p d q) and (P D Q) can also be specified as (p, d ,
q) and (P, D, Q). The maximum lag of any AR or MA parameter is 36. The maximum value of a
difference order, d or D, is 144. All values for p, d , q, P, D, and Q should be nonnegative integers.
The seasonality parameter, s, should be a positive integer. If s is omitted, it is set equal to the value
that is specified in the SEASONS= option in the PROC X13 statement.

For example, the following statements specify an ARIMA (2,1,1)(1,1,0)12 model:

proc x13 data=ICMETI seasons=12 start=jan1968;
arima model=((2,1,1)(1,1,0));

AUTOMDL Statement
AUTOMDL options ;

The AUTOMDL statement invokes the automatic model selection procedure of the X-13ARIMA-SEATS
method. This method is based largely on the TRAMO (time series regression with ARIMA noise, missing
values, and outliers) method by Gómez and Maravall (1997a, b). If the AUTOMDL statement is used without
the OUTLIER statement, then only missing values regressors are included in the regARIMA model. If both
the AUTOMDL and the OUTLIER statements are used, then both missing values regressors and regressors
for automatically identified outliers are included in the regARIMA model. For more information about
missing value regressors, see the section “Missing Values” on page 3366.

If both the AUTOMDL statement and the ARIMA statement are present, the ARIMA statement is ignored.
The ARIMA statement specifies the model, but the AUTOMDL statement allows the X13 procedure to select
the model. If the AUTOMDL statement is specified and a data set is specified in the MDLINFOIN= option
in the PROC X13 statement, then the AUTOMDL statement is ignored if the specified data set contains a
model specification for the series. If no model for the series is specified in the MDLINFOIN= data set, the
AUTOMDL or ARIMA statement is used to determine the model. Thus, it is possible to give a specific model
for some series and automatically identify the model for other series by using both the MDLINFOIN= option
and the AUTOMDL statement.

The AUTOMDL statement cannot be specified when the PICKMDL statement is also specified. The
AUTOMDL and PICKMDL statements each specify different methods of automatic model selection. So,
either one method must be used or the other method must be used to select a model.
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When the AUTOMDL statement is specified, the X13 procedure compares a model selected using a TRAMO
method to a default model. The TRAMO method is implemented first, and involves two parts: identifying
the orders of differencing and identifying the ARIMA model. The table “ARIMA Estimates for Unit Root
Identification” provides details about the identification of the orders of differencing, and the table “Results
of Unit Root Test for Identifying Orders of Differencing” shows the orders of differencing selected by
TRAMO. The table “Models Estimated by Automatic ARIMA Model Selection Procedure” provides details
regarding the TRAMO automatic model selection, and the table “Best Five ARIMA Models Chosen by
Automatic Modeling” ranks the best five models estimated using the TRAMO method. The “Comparison
of Automatically Selected Model and Default Model” table compares the model selected by the TRAMO
method to a default model. At this point in the processing, if the default model is selected over the TRAMO
model, then PROC X13 displays a note. No note is displayed if the TRAMO model is selected. The
Ljung-Box Q statistic is then checked for acceptance, and the results are displayed in the “Check of the
Residual Ljung-Box Q Statistic” table. The initial model selected at this point is displayed in the “Initial
Automatic Model Selection” table. PROC X13 then performs final checks for unit roots, overdifferencing,
and insignificant ARMA coefficients. The results of the final checks are displayed in the “Final Checks for
Identified Model” table, which also indicates changes to the model order if the orders are changed. The last
table, “Final Automatic Model Selection,” shows the results of the automatic model selection; if the orders
have been altered during the final checks, the Orders Altered column displays a value of Yes. An example of
the automatic modeling selection procedure is shown in Example 46.4.

The following options can appear in the AUTOMDL statement:

ACCEPTDEFAULT
specifies that the default model be chosen if its Ljung-Box Q is acceptable.

ARMACV=value
specifies the threshold value for the t statistics that are associated with the highest-order ARMA
coefficients. As a check of model parsimony, the parameter estimates and t statistics of the highest-
order ARMA coefficients are examined to determine whether the coefficient is insignificant. An
ARMA coefficient is considered to be insignificant if the t value that is displayed in the table “Exact
ARMA Maximum Likelihood Estimation” is below the value specified in the ARMACV= option and
the absolute value of the parameter estimate is reliably close to zero. The absolute value is considered
to be reliably close to zero if it is below 0.15 for 150 or fewer observations or is below 0.1 for more
than 150 observations. If the highest-order ARMA coefficient is found to be insignificant, then the
order of the ARMA model is reduced. For example, if AUTOMDL identifies a (3 1 1)(0 0 1) model
and the parameter estimate of the seasonal MA lag of order 1 is –0.09 and its t value is –0.55, then
the ARIMA model is reduced to at least (3 1 1)(0 0 0). After the model is reestimated, the check for
insignificant coefficients is performed again. If ARMACV=0.54 is specified in the preceding example,
then the coefficient is not found to be insignificant and the model is not reduced.

If a constant is allowed in the model and if the t value associated with the constant parameter estimate is
below the ARMACV= critical value, then the constant is considered to be insignificant and is removed
from the model. Note that if a constant is added to or removed from the model and then the ARIMA
model changes, then the t statistic for the constant parameter estimate also changes. Thus, changing
the ARMACV= value does not necessarily add or remove a constant term from the model.

The value specified in the ARMACV= option should be greater than zero. The default value is 1.0.
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BALANCED
specifies that the automatic modeling procedure prefer balanced models over unbalanced models. A
balanced model is one in which the sum of the AR, seasonal AR, differencing, and seasonal differencing
orders equals the sum of the MA and seasonal MA orders. Specifying BALANCED gives the same
preference as the TRAMO program. If BALANCED is not specified, all models are given equal
consideration.

DIFFID=CONDITIONAL | EXACT | EXACTFIRST
specifies the estimation to be used in automatic difference identification when Hannen-Rissanen fails.
You can specify the following values:

CONDITIONAL uses conditional likelihood estimation.

EXACT uses exact likelihood estimation.

EXACTFIRST attempts to estimate the parameters by using exact likelihood for the first diffiditer
iterations, where diffiditer is specified in the DIFFIDITER= option. If the estimation
does not converge within diffiditer iterations, then conditional likelihood is used to
estimate the parameters.

The effects of this option are displayed in the Estimation Method column in the “ARIMA Estimates for
Unit Root Identification” table. By default, DIFFID=EXACTFIRST.

DIFFIDITER=diffiditer
specifies the maximum number of exact likelihood estimation iterations when DIFFID=EXACTFIRST
is specified. If the number of iterations exceeds diffiditer , then conditional likelihood is used to estimate
the remaining iterations. The default value is 500; this default differs from the default value of 200 in
the US Census Bureau’s implementation of X-13ARIMA-SEATS.

DIFFORDER=(nonseasonal-order , seasonal-order )
specifies the fixed orders of differencing to be used in the automatic ARIMA model identification
procedure. When the DIFFORDER= option is used, only the AR and MA orders are automatically
identified. Acceptable values for the regular (nonseasonal) differencing orders are 0, 1, and 2;
acceptable values for the seasonal differencing orders are 0 and 1. If the MAXDIFF= option is also
specified, then the DIFFORDER= option is ignored. There are no default values for DIFFORDER.
If neither the DIFFORDER= option nor the MAXDIFF= option is specified, then the default is
MAXDIFF=(2,1).

HRINITIAL
specifies that Hannan-Rissanen estimation be done before exact maximum likelihood estimation to
provide initial values. If the HRINITIAL option is specified, then models for which the Hannan-
Rissanen estimation has an unacceptable coefficient are rejected.

LJUNGBOXLIMIT=value
specifies acceptance criteria for the confidence coefficient of the Ljung-Box Q statistic. If the Ljung-
Box Q for a final model is greater than this value, the model is rejected, the outlier critical value is
reduced, and outlier identification is redone with the reduced value. For more information, see the
REDUCECV option. The value specified in the LJUNGBOXLIMIT= option must be greater than 0
and less than 1. The default value is 0.95.
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MAXDIFF=(nonseasonal-order , seasonal-order )
specifies the maximum orders of regular and seasonal differencing for the automatic identification of
differencing orders. When MAXDIFF is specified, the differencing orders are identified first, and then
the AR and MA orders are identified. Acceptable values for the regular differencing orders are 1 and
2. The only acceptable value for the seasonal differencing order is 1. If both the MAXDIFF= option
and the DIFFORDER option= are specified, then the DIFFORDER= option is ignored. If neither the
DIFFORDER= nor the MAXDIFF= option is specified, the default is MAXDIFF=(2,1).

MAXORDER=(nonseasonal-order , seasonal-order )
specifies the maximum orders of nonseasonal and seasonal ARMA polynomials for the automatic
ARIMA model identification procedure. The maximum order for the nonseasonal ARMA parameters
is 4, and the maximum order for the seasonal ARMA is 2.

NOINT
suppresses the fitting of a constant or intercept parameter in the model.

PRINT=(option-list)
specifies the tables to be displayed in the output. You can specify one or more of the following options
(parentheses are optional; use a space between options):

NONE suppresses all automatic modeling output.

ALL includes all automatic modeling tables in the output if NONE is not specified
in the option-list .

ONLY specifies that only the listed tables be output.

AUTOCHOICE displays the tables titled “Comparison of Automatically Selected Model and
Default Model” and “Final Automatic Model Selection.” The “Comparison
of Automatically Selected Model and Default Model” table compares a
default model to the model chosen by the TRAMO-based automatic model-
ing method. The “Final Automatic Model Selection” table indicates which
model has been chosen automatically. These tables are output by default
unless NONE or ONLY is specified in the option-list .

AUTOCHOICEMDL displays the table “Models Estimated by Automatic ARIMA Model Selection
Procedure.” This table summarizes the various models that were considered
by the TRAMO automatic model selection method and their measures of fit.

AUTOLJUNGBOX displays the table “Check of the Residual Ljung-Box Q Statistic.” This
table is displayed only if the model is not accepted because the Ljung-Box
Q statistic is greater than the acceptance limit. The details of the test and
the changes made either to the model or to the model selection method are
displayed.

BEST5MODEL displays the table “Best Five ARIMA Models Chosen by Automatic Mod-
eling.” This table ranks the five best models that were considered by the
TRAMO automatic modeling method.

FINALCHECKS displays the table “Final Checks for Identified Model.” This table displays
the results of the final checks for model adequacy. The final checks can
result in the orders of the initially identified model being altered. Any order
changes or changes in the constant term are included in this table. This table
is output by default unless NONE or ONLY is specified in the option-list .
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INITCHOICEMDL displays the table “Initial Automatic Model Selection.” The “Comparison of
Automatically Selected Model and Default Model” table compares a default
model to the model chosen by the TRAMO-based automatic modeling
method. The chosen model can then be altered if the model fails the Ljung-
Box Q statistic test. The “Initial Automatic Model Selection” table indicates
which model has been chosen automatically after the Ljung-Box Q statistic
test. This table is output by default unless NONE or ONLY is specified in
the option-list .

UNITROOTTEST displays the table titled “Results of Unit Root Test for Identifying Orders
of Differencing.” This table displays the orders that were automatically
selected by the AUTOMDL statement. Unless the nonseasonal and seasonal
differences are specified using the DIFFORDER= option, the AUTOMDL
statement automatically identifies the orders of differencing. This table is
output by default unless NONE or ONLY is specified in the option-list .

UNITROOTTESTMDL displays the table titled “ARIMA Estimates for Unit Root Identification.”
This table summarizes the various models that were considered by the
TRAMO automatic selection method while it identified the orders of dif-
ferencing and the statistics associated with those models. The unit root
identification method first attempts to obtain the coefficients by using the
Hannan-Rissanen method. If Hannan-Rissanen estimation cannot be per-
formed, the algorithm attempts to obtain the coefficients by using conditional
likelihood estimation.

By default, PRINT=(UNITROOTTEST AUTOCHOICE INITCHOICEMDL FINALCHECKS).

REDUCECV=value
specifies the percentage by which the outlier critical value be reduced when a final model is found
to have an unacceptable confidence coefficient for the Ljung-Box Q statistic. This value should be
between 0 and 1. The default value is 0.14286.

BY Statement
BY variables ;

A BY statement can be used with PROC X13 to obtain separate analyses on observations in groups defined
by the BY variables. When a BY statement appears, the procedure expects the input DATA= data set to be
sorted in order of the BY variables.
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CHECK Statement
CHECK options ;

The CHECK statement produces statistics for diagnostic checking of residuals from the estimated regARIMA
model.

The following tables that are associated with diagnostic checking are displayed in the output: “Autocorrelation
of regARIMA Model Residuals,” “Partial Autocorrelation of regARIMA Model Residuals,” “Autocorrelation
of Squared regARIMA Model Residuals,” “Outliers of the Unstandardized Residuals,” “Summary Statistics
for the Unstandardized Residuals,” “Normality Statistics for regARIMA Model Residuals,” and “Table G Rs:
10*LOG(SPECTRUM) of the regARIMA Model Residuals.” If ODS graphics is enabled, the following plots
that are associated with diagnostic checking output are produced: the autocorrelation function (ErrorACF)
plot of the residuals, the partial autocorrelation function (ErrorPACF) plot of the residuals, the autocorrelation
function (SqErrorACF) plot of the squared residuals, a histogram (ResidualHistogram) of the residuals, and a
spectral plot (SpectralPlot) of the residuals. For more information about controlling the display of plots, see
the PLOTS=RESIDUAL option in the PROC X13 statement.

The residual histogram displayed by the X13 procedure shows the distribution of the unstandardized,
uncentered regARIMA model residuals; the residual histogram displayed by the US Census Bureau’s
X-13ARIMA-SEATS seasonal adjustment program displays standardized and mean-centered residuals.

The following options can appear in the CHECK statement:

MAXLAG=value
specifies the number of lags for the residual sample autocorrelation function (ACF) and partial
autocorrelation function (PACF). The default is 36 for monthly series and 12 for quarterly series. The
minimum value for MAXLAG= is 1.

For the table “Autocorrelation of Squared regARIMA Model Residuals” and the corresponding
SqErrorACF plot, the maximum number of lags calculated is 12 for monthly series and 4 for quarterly
series. The MAXLAG= option can only reduce the number of lags for this table and plot.

PRINT=(option-list)
specifies the diagnostic checking tables to be displayed. You can specify one or more of the following
options (parentheses are optional; use a space between options):

NONE suppresses diagnostic checking output. If PRINT=NONE is specified and
no other PRINT= option is specified, then none of the tables that are associ-
ated with diagnostic checking are displayed. However, PRINT=NONE has
no effect if other PRINT= options are specified in the CHECK statement.

ALL specifies that all tables related to diagnostic checking be displayed.

ACF displays the table titled “Autocorrelation of regARIMA Model Residuals.”

ACFSQUARED displays the table titled “Autocorrelation of Squared regARIMA Model
Residuals.”

NORM displays the table titled “Normality Statistics for regARIMA Model Resid-
uals.” Measures of normality included in this table are skewness, Geary’s a
statistic, and kurtosis.
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PACF displays the table titled “Partial Autocorrelation of regARIMA Model
Residuals.”

RESIDUALOUTLIER displays the table titled “Outliers of the Unstandardized Residuals” if
the residuals contain outliers. You can specify this option either as
PRINT=RESIDUALOUTLIER or PRINT=RESOUTLIER.

RESIDUALSTATISTICS displays the table titled “Summary Statistics for the Unstan-
dardized Residuals.” You can specify this option either as
PRINT=RESIDUALSTATISTICS or PRINT=RESSTAT.

SPECRESIDUAL displays the table titled “Table G Rs: 10*LOG(SPECTRUM) of the re-
gARIMA Model Residuals.”

By default, PRINT=(ACF ACFSQUARED NORM RESIDUALOUTLIER RESIDUALSTATISTICS
SPECRESIDUAL).

ESTIMATE Statement
ESTIMATE options ;

The ESTIMATE statement estimates the regARIMA model. The regARIMA model is specified by the
REGRESSION, INPUT, EVENT, and ARIMA statements or by the MDLINFOIN= data set in the PROC
X13 statement. Estimation output includes point estimates and standard errors for all estimated AR, MA,
and regression parameters; the maximum likelihood estimate of the variance �2; t statistics for individual
regression parameters; �2 statistics for assessing the joint significance of the parameters associated with
certain regression effects (if included in the model); and likelihood-based model selection statistics (if the
exact likelihood function is used). The regression effects for which �2 statistics are produced are fixed
seasonal effects.

Tables displayed in the output associated with estimation are “Exact ARMA Likelihood Estimation Iteration
Tolerances,” “Average Absolute Percentage Error in within-Sample Forecasts,” “ARMA Iteration History,”
“AR/MA Roots,” “Exact ARMA Likelihood Estimation Iteration Summary,” “Regression Model Parameter
Estimates,” “Chi-Squared Tests for Groups of Regressors,” “Exact ARMA Maximum Likelihood Estimation,”
and “Estimation Summary.”

The following options can appear in the ESTIMATE statement:

EXACT=ARMA | MA | NONE
specifies the likelihood function for estimation, likelihood evaluation, and forecasting. You can specify
the following values:

ARMA uses the likelihood function that is exact for both AR and MA parameters.

MA uses the likelihood function that is exact for MA parameters, but conditional for
AR parameters.

NONE uses the likelihood function that is conditional for both AR and MA parameters.

The ARMA estimation iterations are displayed in the “Iteration History” table, which is available when
the ITPRINT option is specified. By default, EXACT=ARMA.
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ITPRINT
displays the “Iteration History” table. This table includes detailed output for estimation iterations,
including log-likelihood values, parameters, counts of function evaluations, and iterations. It is useful
to examine the “Iteration History” table when errors occur within estimation iterations. By default,
only successful iterations are displayed, unless the PRINTERR option is specified. An unsuccessful
iteration is an iteration that is restarted due to a problem such as a root inside the unit circle. Successful
iterations have a status of 0. If restarted iterations are displayed, a note at the end of the table gives
definitions for status codes that indicate a restarted iteration. For restarted iterations, the number of
function evaluations and the number of iterations is –1, which is displayed as missing. If regression
parameters are included in the model, then both IGLS and ARMA iterations are included in the table.
The number of function evaluations is a cumulative total.

MAXITER=value
specifies the maximum number of iterations used in estimating the AR and MA parameters. For models
that include regression variables, this limit applies to the total number of ARMA iterations over all
iterations of the iterative generalized least squares (IGLS) algorithm. For models without regression
variables, value is the maximum number of iterations allowed for the set of ARMA iterations. By
default, MAXITER=1500.

PRINTERR
causes restarted iterations to be included in the “Iteration History” table if ITPRINT is specified;
creates the “Restarted Iterations” table if ITPRINT is not specified. Whether or not PRINTERR is
specified, a WARNING message is printed to the log file if any iteration is restarted during estimation.

TOL=value
specifies the convergence tolerance for the nonlinear estimation. Absolute changes in the log-likelihood
are compared to the TOL= value to check convergence of the estimation iterations. For models with
regression variables, the TOL= value is used to check convergence of the IGLS iterations (where
the regression parameters are reestimated for each new set of AR and MA parameters). For models
without regression variables, there are no IGLS iterations, and the TOL= value is then used to check
convergence of the nonlinear iterations that are used to estimate the AR and MA parameters. The
default value is TOL=0.00001. The minimum tolerance value is a positive value based on the machine
precision and the length of the series. If a tolerance less than the minimum supported value is specified,
an error message is displayed and the series is not processed.

EVENT Statement
EVENT variables < / options > ;

The EVENT statement specifies events to be included in the regression portion of the regARIMA model.
Multiple EVENT statements can be specified. Dummy variable values for EVENT variables are generated
by the X13 procedure, however, the EVENT variables are input as user-defined regression effects to the
X-13ARIMA-SEATS method. Thus, the EVENT variables are treated in the same manner as it treats variables
specified in the USERVAR= option in the REGRESSION statement. If a MDLINFOIN= data set is not
specified in the PROC X13 statement, then all variables specified in the EVENT statements are applied
to all BY groups and all time series that are processed. If a MDLINFOIN= data set is specified, then the
EVENT statements apply only if no regression information for the BY group and series is available in the
MDLINFOIN= data set. The events specified in the EVENT statements either must be SAS predefined events
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or must be defined in the data set specified in the INEVENT= option in the PROC X13 statement. For a
summary of SAS predefined events, see the section “SAS Predefined Events” on page 3367.

The EVENT statement can also be used to include outlier, level-shift, and temporary change regressors that
are available as predefined US Census Bureau variables in the X-13ARIMA-SEATS program. For example,
the following statements specify an additive outlier in January 1970 and a level-shift that begins in July 1971:

proc x13 data=ICMETI seasons=12 start=jan1968;
event AO01JAN1970D CBLS01JUL1971D;

The following statements specify an additive outlier in the second quarter 1970 and a temporary change that
begins in the fourth quarter 1971:

proc x13 data=ICMETI seasons=4 start='1970q1';
event AO01APR1970D TC01OCT1971D;

The following options can appear in the EVENT statement:

B=(value < F > . . . )
specifies initial or fixed values for the EVENT parameters in the order in which they appear in variables.
Each B= list applies to the variable list that immediately precedes the slash.

For example, the following statements set an initial value of 1 for the event, x:

event y ;
event x / b=1 2 ;

In this example, the B= option applies only to the second EVENT statement. The value 2 is discarded
because there is only one variable in the variable list.

To assign an initial value of 1 to the y regressor and 2 to the x regressor, use the following statements:

event y / b=1;
event x / b=2 ;

An F immediately following the numerical value indicates that this is not an initial value, but a fixed
value. For an example that uses fixed parameters, see Example 46.8. In PROC X13, individual
parameters can be fixed while other parameters in the same model are estimated.

USERTYPE=(values)
enables a user-defined variable to be processed in the same manner as a US Census predefined
variable. You can specify the following values: AO, CONSTANT, EASTER, HOLIDAY, LABOR,
LOM, LOMSTOCK, LOQ, LPYEAR, LS, RP, SCEASTER, SEASONAL, TC, TD, TDSTOCK,
THANKS, or USER. For example, the US Census Bureau EASTER(w) regression effects are included
in the “RegARIMA Holiday Component” table (A7). Specify USERTYPE=EASTER to include an
event variable that is processed exactly as the US Census predefined EASTER(w) variable, including
inclusion in the A7 table. The NOAPPLY= option in the REGRESSION statement also changes the
processing of variables based on the USERTYPE= value. Table 46.4 shows the regression types that
are associated with each regression effects table.

Each USERTYPE= list applies to the variable list that immediately precedes the slash. The same rules
for assigning B= values to regression variables apply for USERTYPE= options. For example, the
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following statements specify that the event in the variable MyEaster be processed exactly as the US
Census predefined LOM variable:

event MyLOM;
event MyEaster / usertype=LOM EASTER;

In this example, the USERTYPE= option applies only to the MyEaster variable in the second EVENT
statement. The USERTYPE value EASTER is discarded because there is only one variable in the
variable list.

To assign the USERTYPE value LOM to the MyLOM variable and EASTER to the MyEaster variable,
use the following statements:

event MyLOM / usertype=LOM;
event MyEaster / usertype=EASTER;

The following USERTYPE= options specify that the regression effect be removed from the seasonally
adjusted series: EASTER, HOLIDAY, LABOR, LOM, LOMSTOCK, LOQ, LPYEAR, SCEASTER,
SEASONAL, TD, TDSTOCK, THANKS, and USER. When a regression effect is removed from the
seasonally adjusted series, the level (mean) of the seasonally adjusted series can be altered. It is often
desirable to use a zero-mean (mean-adjusted) regressor for effects that are to be removed from the
seasonally adjusted series. For an example showing the effects of specifying a zero-mean regressor,
see Example 46.6.

FORECAST Statement
FORECAST options ;

The FORECAST statement uses the estimated model to forecast the time series. The output contains point
forecasts and forecast statistics for the transformed and original series. Whenever forecasts or backcasts
(or both) are generated and seasonal adjustment is performed, the forecasts and backcasts are appended to
the original series, and the seasonal adjustment procedures are applied to the forecast or backcast (or both)
extended series. If the FORECAST statement is not specified, but a regARIMA model is specified using
either the ARIMA or AUTOMDL statement, then the series is extended one year ahead by default.

Tables that contain forecasts, standard errors, and confidence limits are displayed in association with the
FORECAST statement. If the data are transformed, then two tables are displayed: one table for the original
data, and one table for the transformed data. Data from these tables can be output to a SAS data set using ODS.
The auxiliary variable _SCALE_ is included in forecast data sets that are output using ODS. The value of
_SCALE_ is “Original” or “Transformed” to indicate the scale of the data. The auxiliary variable can also be
used in ODS SELECT and ODS OUTPUT statements. For example, you can specify the following statements
to output the forecasts on the original scale to a data set forecasts and the forecasts on the transformed scale
to a data set Tforecasts:

ods output Original.ForecastCL=forecasts;
ods output Transformed.ForecastCL=Tforecasts;

The following options can appear in the FORECAST statement:
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ALPHA=˛
specifies the size of the upper and lower confidence limits, which are calculated as 1 � ˛, where ˛
must be between 0 and 1. By default, ALPHA=0.05, which produces 95% confidence intervals.

LEAD=value
specifies the number of periods ahead to forecast for regARIMA extension of the series. The default
is the number of periods in a year (4 or 12), and the maximum is 120. Setting LEAD=0 specifies
that the series not be extended by forecasts for seasonal adjustment. The LEAD= value also controls
the number of forecasts that are displayed in Table D10.A. However, if the series is not extended by
forecasts (LEAD=0), then the default year of forecasts is displayed in Table D10.A. Forecast values in
Table D10.A are calculated using the method shown on page 148 of Ladiray and Quenneville (2001)
based on values that are displayed in Table D10. The regARIMA forecasts affect the D10.A forecasts
only indirectly through the impact of the regARIMA forecasts on the seasonal factors that are shown
in Table D10. If the SEATSDECOMP statement is specified, then value is increased to the minimum
required for SEATS decomposition. For more information, see the section “SEATS Decomposition”
on page 3375.

NBACKCAST=value

BACKCAST=value

NBACK=value
specifies the number of periods to backcast for regARIMA extension of the series. The default is
NBACKCAST=0, which specifies that the series not be extended with backcasts. The maximum
number of backcasts is 120. When the OUTBACKCAST option is specified, the NBACKCAST= value
also controls the number of backcasts that are output to the OUT= data set specified in the OUTPUT
statement. If the SEATSDECOMP statement is specified, then value is increased to the minimum
required for SEATS decomposition. For more information, see the section “SEATS Decomposition”
on page 3375.

OUT1STEP
specifies that the one-step-ahead forecasts be computed and displayed in addition to the multistep
forecasts. The default is to compute and display only the multistep forecasts beginning at the forecast
horizon.

OUTBACKCAST

OUTBKCAST
determines whether backcasts are included in certain tables sent to the output data set. If OUTBACK-
CAST is specified, then backcast values are included in the output data set for tables A6, A7, A8, A9,
A10, B1, D10, D10B, D10D, D16, D16B, and D18. The default is not to include backcasts.

OUTFCST

OUTFORECAST
determines whether forecasts are included in certain tables sent to the output data set. If OUTFORE-
CAST is specified, then forecast values are included in the output data set for Tables A6, A7, A8, A9,
A10, B1, D10, D10B, D10D, D16, D16B, D18, and E18. The default is not to include forecasts. The
OUTFORECAST option can be specified in either the X11 statement or the FORECAST statement
with identical results.



ID Statement F 3341

ID Statement
ID variables ;

If you are creating an output data set, use the ID statement to copy values of the ID variables, in addition to
the table values, into the output data set. Or, if the VAR statement is omitted, all numeric variables that are
not identified as BY variables, ID variables, the DATE= variable, or user-defined regressors are processed
as time series. The ID statement has no effect when a VAR statement is specified and an output data set
is not created. If the DATE= variable is specified in the PROC X13 statement, this variable is included
automatically in the OUTPUT data set. If no DATE= variable is specified, the variable _DATE_ is added.

The date variable (or _DATE_ ) values outside the range of the actual data (from forecasting) are extrapolated,
while all other ID variables are missing in the forecast horizon.

IDENTIFY Statement
IDENTIFY options ;

The IDENTIFY statement produces plots of the sample autocorrelation function (ACF) and partial autocorre-
lation function (PACF) for identifying the ARIMA part of a regARIMA model. The sample ACF and PACF
are produced for all combinations of the nonseasonal and seasonal differences of the data specified by the
DIFF= and SDIFF= options.

The original series is first transformed as specified in the TRANSFORM statement.

If the model includes a regression component (specified using the REGRESSION, INPUT, and EVENT
statements or the MDLINFOIN= data set in the PROC X13 statement), both the transformed series and
the regressors are differenced at the highest order that is specified in the DIFF= and SDIFF= option. The
parameter estimates are calculated using the differenced data. Then the undifferenced regression effects
(with the exception of a constant term) are removed from the undifferenced data to produce undifferenced
regression residuals. The ACFs and PACFs are calculated for the specified differences of the undifferenced
regression residuals.

If the model does not include a regression component, then the ACFs and PACFs are calculated for the
specified differences of the transformed data.

Tables displayed in association with identification are “Autocorrelation of Model Residuals” and “Partial
Autocorrelation of Model Residuals.” If the model includes a regression component (specified using the
REGRESSION, INPUT, and EVENT statements or the MDLINFOIN= data set in the PROC X13 statement),
then the “Regression Model Parameter Estimates” table is also displayed if the PRINTREG option is specified.

The following options can appear in the IDENTIFY statement:

DIFF=(order , order , order )
specifies orders of nonseasonal differencing to use in model identification. The value 0 specifies
no differencing, the value 1 specifies one nonseasonal difference .1 � B/, the value 2 specifies two
nonseasonal differences .1 � B/2, and so forth. The ACFs and PACFs are produced for all orders
of nonseasonal differencing specified, in combination with all orders of seasonal differencing that
are specified in the SDIFF= option. The default is DIFF=(0). You can specify up to three values for
nonseasonal differences.
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MAXLAG=value
specifies the number of lags for the sample autocorrelation function (ACF) and partial autocorrelation
function (PACF) of the regression residuals for model identification. The default is 36 for monthly
series and 12 for quarterly series. MAXLAG applies to both tables and plots. The minimum value for
MAXLAG= is 1.

PRINTREG
causes the “Regression Model Parameter Estimates” table to be printed if the REGRESSION statement
is present. By default, this table is not printed.

SDIFF=(order , order , order )
specifies orders of seasonal differencing to use in model identification. The value 0 specifies no
seasonal differencing, the value 1 specifies one seasonal difference .1 � Bs/, the value 2 specifies two
seasonal differences .1 � Bs/2, and so forth. The value for s corresponds to the period specified in
the SEASONS= option in the PROC X13 statement. The value of the SEASONS= option is supplied
explicitly or is implicitly supplied through the INTERVAL= option or the values of the DATE= variable.
The ACFs and PACFs are produced for all orders of seasonal differencing specified, in combination
with all orders of nonseasonal differencing specified in the DIFF= option. The default is SDIFF=(0).
You can specify up to three values for seasonal differences.

For example, the following statement produces ACFs and PACFs for two levels of differencing: .1�B/
and .1 � B/.1 � Bs/:

identify diff=(1) sdiff=(0, 1);

INPUT Statement
INPUT variables < / options > ;

The INPUT statement specifies variables in the DATA= or AUXDATA= data set (which are specified in the
PROC X13 statement) that are to be used as regressors in the regression portion of the regARIMA model.
The variables in the data set should contain the values for each observation that define the regressor. Past
values of regression variables should also be included in the DATA= or AUXDATA= data set if the time
series listed in the VAR statement is to be extended with regARIMA backcasts. Similarly, future values of
regression variables should also be included in the DATA= or AUXDATA= data set if the time series listed in
the VAR statement is to be extended with regARIMA forecasts.

You can specify multiple INPUT statements. If you do not specify a MDLINFOIN= data set in the PROC
X13 statement, then all variables listed in the INPUT statements are applied to all BY groups and all time
series that are processed. If you specify a MDLINFOIN= data set, then the INPUT statements apply only if
no regression information for the BY group and series is available in the MDLINFOIN= data set.

The INPUT statement provides the same functionality as the USERVAR= option in the REGRESSION
statement. For more information about specifying user-defined regression variables, see the section “User-
Defined Regression Variables” on page 3370, Example 46.6, and Example 46.11.

The following options can appear in the INPUT statement:
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B=(value < F > . . . )
specifies initial or fixed values for the regression parameters in the order in which they appear in
variables. Each B= list applies to the variable list that immediately precedes the slash.

For example, the following statements set an initial value of 1 for the user-defined regressor, x:

input y ;
input x / b=1 2 ;

In this example, the B= option applies only to the second INPUT statement. The value 2 is discarded
because there is only one variable in the variable list.

To assign an initial value of 1 to the y regressor and 2 to the x regressor, use the following statements:

input y / b=1;
input x / b=2 ;

An F immediately following the numerical value indicates that this is not an initial value, but a fixed
value. For an example that uses fixed parameters, see Example 46.8. In PROC X13, individual
parameters can be fixed while other parameters in the same model are estimated.

USERTYPE=(values)
enables a user-defined variable to be processed in the same manner as a US Census predefined
variable. You can specify the following values: AO, CONSTANT, EASTER, HOLIDAY, LABOR,
LOM, LOMSTOCK, LOQ, LPYEAR, LS, RP, SCEASTER, SEASONAL, TC, TD, TDSTOCK,
THANKS, or USER. For example, the US Census Bureau EASTER(w) regression effects are included
the “RegARIMA Holiday Component” table (A7). Specify USERTYPE=EASTER to include a user-
defined variable that is processed exactly as the US Census predefined EASTER(w) variable, including
inclusion in the A7 table. The NOAPPLY= option in the REGRESSION statement also changes the
processing of variables based on the USERTYPE= value. Table 46.4 shows the regression types that
are associated with each regression effects table.

Each USERTYPE= list applies to the variable list that immediately precedes the slash. The same rules
for assigning B= values to regression variables apply for USERTYPE= options. For example, the
following statements specify that the user-defined regressor in the variable MyEaster be processed
exactly as the US Census predefined LOM variable:

input MyLOM;
input MyEaster / usertype=LOM EASTER;

In this example, the USERTYPE= option applies only to the MyEaster variable in the second INPUT
statement. The USERTYPE value EASTER is discarded because there is only one variable in the
variable list.

To assign the USERTYPE value LOM to the MyLOM variable and EASTER to the MyEaster variable,
use the following statements:
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input MyLOM / usertype=LOM;
input MyEaster / usertype=EASTER;

The following USERTYPE= options specify that the regression effect be removed from the seasonally
adjusted series: EASTER, HOLIDAY, LABOR, LOM, LOMSTOCK, LOQ, LPYEAR, SCEASTER,
SEASONAL, TD, TDSTOCK, THANKS, and USER. When a regression effect is removed from the
seasonally adjusted series, the level (mean) of the seasonally adjusted series can be altered. It is often
desirable to use a zero-mean (mean-adjusted) regressor for effects that are to be removed from the
seasonally adjusted series. For an example that specifies a zero-mean regressor, see Example 46.6.

OUTLIER Statement
OUTLIER options ;

The OUTLIER statement specifies that the X13 procedure perform automatic detection of additive point
outliers, temporary change outliers, level-shifts, or any combination of the three when using the specified
model. After outliers are identified, the appropriate regression variables are incorporated into the model
as “Automatically Identified Outliers,” and the model is reestimated. This procedure is repeated until no
additional outliers are found.

The OUTLIER statement also identifies potential outliers and lists them in the “Potential Outliers” table in
the displayed output. Potential outliers are identified by decreasing the critical value by the value that is
specified in the ALMOST= option.

In the output, the initial critical values used for outlier detection in a given analysis are displayed in the table
“Critical Values to Use in Outlier Detection.” Outliers that are detected and incorporated into the model are
displayed in the output in the table “Regression Model Parameter Estimates,” where the regression variable is
listed as “Automatically Identified.”

You can specify the following options:

ALMOST=value
specifies the difference between the critical value for an automatically identified outlier and a potential
outlier that is “almost” identified. value is subtracted from the critical value that is used to identify
outliers to form a critical value that more aggressively identifies potential outliers. Potential outliers
are not included in the regARIMA model. However, potential outliers are displayed in the “Potential
Outliers” table. value must be greater than 0. By default, ALMOST=0.5.

ALPHA=value
specifies the significance level to use for outlier identification, where critical values are calculated
based on value. Any critical value that is specified in the CV=, AOCV=, LSCV=, or TCCV= option
overrides the critical values that are calculated based on this option. value must be greater than 0 and
less than or equal to 0.1. If you do not specify this option or the CV= option, the X-13ARIMA-SEATS
method calculates the default initial critical value by assuming ALPHA=0.05.
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AOCV=value
specifies a critical value to use for additive point outliers. If you specify this option, it overrides any
default initial critical value for AO outliers. For more information, see the CV= option.

CV=value
specifies a default initial critical value to use for detecting all types of outliers. The absolute value of
the t statistic that is associated with an outlier parameter estimate is compared with value to determine
the significance of the outlier. If you do not specify this option, then the default initial critical value is
computed based on the ALPHA= option, the CVMETHOD= option, and the number of observations
for the model span that is used in the analysis. Table 46.2 shows initial critical values for various series
lengths, which are based on the default values of the ALPHA= option and CVMETHOD= option.
Increasing the critical value decreases the sensitivity of the outlier detection routine and can reduce the
number of observations that are treated as outliers. The automatic model identification process might
decrease the critical value by a certain percentage if the automatic model identification process fails to
identify an acceptable model.

Table 46.2 Default Critical Values for Outlier Identification

Number of Observations Outlier Critical Value

1 1.96
2 2.24
3 2.44
4 2.62
5 2.74
6 2.84
7 2.92
8 2.99
9 3.04
10 3.09
11 3.13
12 3.16
24 3.42
36 3.55
48 3.63
72 3.73
96 3.80
120 3.85
144 3.89
168 3.92
192 3.95
216 3.97
240 3.99
264 4.01
288 4.03
312 4.04
336 4.05
360 4.07
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CVMETHOD=CORRECTED | LJUNG
specifies the method to use to calculate the default initial critical value, based on the ALPHA= value
and the number of observations for the model span that is used in the analysis. You can specify the
following values:

CORRECTED uses a method that is a modification of the Ljung method in which critical
values are interpolated based on the number of observations in the model span.

LJUNG uses a method that is based on the asymptotic formula described in Ljung
(1993).

By default, CVMETHOD=CORRECTED.

LSCV=value
specifies a critical value to use for level-shift outliers. If you specify this option, it overrides any default
initial critical value for LS outliers. For more information, see the CV= option.

LSRUN=value
specifies the maximum number of successive level-shift outliers to combine to form a temporary
level-shift. Valid values for this option are 0 to 5, inclusive. If LSRUN=0 or LSRUN=1, no temporary
level-shifts are evaluated. The evaluation of the temporary level-shifts is displayed in the “Tests for
Cancellation of Level Shifts” table. By default, LSRUN=0.

METHOD=ADDALL | ADDONE
specifies whether to add outliers one at a time for each model estimation iteration or to add all outliers
at once for each model estimation iteration. You can specify the following values:

ADDALL includes all significant outliers as regressors in the model, and then reestimates the
model.

ADDONE adds the most significant outlier as a regressor in the model, and then reestimates
the model.

For both methods, all candidate points for outliers are evaluated at each iteration and model estimation
iterations continue until no remaining outliers are identified. By default, METHOD=ADDONE.

SPAN=(mmmyy ,mmmyy )

SPAN=(’yyQq’ ,’yyQq’ )
specifies the dates of the first and last observations to define a subset for searching for outliers. A
single date in parentheses is interpreted to be the starting date of the subset. To specify only the ending
date, use SPAN=(,mmmyy) or SPAN=(,’yyQq’). If the starting or ending date is omitted, then the first
or last date, respectively, of the input data set or BY group is assumed. Because the dates are input as
strings and the quarterly dates begin with a numeric character, the specification for a quarterly date
must be enclosed in quotation marks. A four-digit year can be specified. If a two-digit year is specified,
the value specified in the YEARCUTOFF= SAS system option applies.
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TCCV=value
specifies a critical value to use for temporary change (TC) outliers. If you specify this option, it
overrides any default initial critical value for TC outliers. For more information, see the CV= option.

TCRATE=value
specifies the rate of decay for temporary change outliers. value must be greater than 0 and less than 1.
The default value is .0:7/

12
period , where period is the number of observations in one year.

TYPE=NONE

TYPE=(outlier types)
lists the outlier types to be detected by the automatic outlier identification method. TYPE=NONE
turns off outlier detection. The valid outlier types are AO, LS, and TC. The default is TYPE=(AO LS).

OUTPUT Statement
OUTPUT OUT=SAS-data-set < YEARSEAS > tablename1 tablename2 . . . ;

The OUTPUT statement creates an output data set that contains specified tables. The data set is named by the
OUT= option.

OUT=SAS-data-set
names the data set to contain the specified tables. If the OUT= option is omitted, the data set is named
using the default DATAn convention.

YEARSEAS

YRSEAS
specifies that two additional variables be added to the OUT= data set. The two additional variables are
the variables _YEAR_ and _SEASON_. The variable _YEAR_ contains the year of the date identifying
the observation. The variable _SEASON_ contains the month for monthly data, or quarter for quarterly
data, of the date that identifies the observation. For monthly data, the value of _SEASON_ is between 1
and 12. For quarterly data, the value of _SEASON_ is between 1 and 4. The _YEAR_ and _SEASON_
variables are useful when creating seasonal plots.

tablename1 tablename2 . . .
specify X13 tablenames that correspond to the title label used by the US Census Bureau X-13ARIMA-
SEATS software. Specify one tablename for each table to be included in the output data set. Currently
available tablenames are A1, A2, A6, A7, A8, A8AO, A8LS, A8TC, A9, A10, A19, B1, B7, B13,
B17, B20, C1, C17, C20, D1, D7, D8, D8B, D8BX, D8BO, D8BL, D9, D10, D10B, D10D, D11,
D11A, D11F, D11R, D12, D13, D16, D16B, D18, E1, E2, E3, E5, E6, E6A, E6R, E7, E8, E18, and
MV1. Specifying D8B is equivalent to specifying D8, D8BX, D8BO, and D8BL because Table D
8.B displays the D8 series along with labels for extremes (D8BX), outliers (D8BO), and level shifts
(D8BL). If no table is specified in the OUTPUT statement, Table A1 is output to the OUT= data set by
default.

The tablenames that can be used in the OUTPUT statement are listed in the section “Displayed Output,
ODS Table Names, and OUTPUT Tablename Keywords” on page 3376. The following is an example
of a VAR statement and an OUTPUT statement:
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var sales costs;
output out=out_x13 b1 d11;

The default variable name used in the output data set is the input variable name followed by an
underscore and the corresponding table name. The variable sales_B1 contains the Table B1 values
for the variable sales, the variable costs_B1 contains the Table B1 values for the variable costs, the
variable sales_D11 contains the Table D11 values for the variable sales, and the variable costs_D11
contains the Table D11 values for the variable costs. If necessary, the variable name is shortened so
that the table name can be added. If the DATE= variable is specified in the PROC X13 statement, then
that variable is included in the output data set; otherwise, a variable named _DATE_ is written to the
OUT= data set as the date identifier.

PICKMDL Statement
PICKMDL options ;

The PICKMDL statement enables you to specify a variety of options for the PICKMDL method. The
PICKMDL method uses models that are specified in the MDLINFOIN= data set to choose a regARIMA
model. If the MDLINFOIN= option is not specified, then the PICKMDL method chooses a model from the
list shown in Table 46.14. Example 46.9 demonstrates the use of the PICKMDL statement.

The PICKMDL statement cannot be specified when the AUTOMDL statement is also specified. The
AUTOMDL and PICKMDL statements each specify different methods of automatic model selection. So
only one of these methods can be used to select a model.

For more information about using the US Census Bureau’s PICKMDL method for model selection, see the
section “PICKMDL Model Selection” on page 3374.

You can specify the following options in the PICKMDL statement:

ARIMAMISS= ARIMASTMT | ZEROORDERS
specifies the method for interpreting missing ARIMA information in a model that is present in the
MDLINFOIN= data set. You can specify the following values:

ARIMASTMT interprets missing information as the model that is specified in the MODEL= option
of the ARIMA statement. This option should not be specified if the MDLIN-
FOOUT= data set from a previous X13 procedure call is being used to replicate
previous results. However, the (0 0 0)(0 0 0) model is not always the most appro-
priate model to use as a default when no model has been specified. This option
enables you to specify default model orders.

ZEROORDERS interprets missing information as the (0 0 0)(0 0 0) model. This method is compati-
ble with the output from the MDLINFOOUT= option.

By default, ARIMAMISS=ZEROORDERS.
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MDLVAR=variable
specifies the variable in the MDLINFOIN= data set that identifies the models. A model identification
variable is not required in the data set if fewer than two models are specified for each series. By default,
MDLVAR= _MODEL_.

METHOD= BEST | FIRST
specifies the method for choosing the regARIMA model. You can specify the following values:

BEST chooses the best model.

FIRST chooses the first acceptable model.

By default, METHOD=FIRST.

REGRESSION Statement
REGRESSION regression-group-options ;

REGRESSION PREDEFINED= variables < / B=(value < F > . . . ) > ;

REGRESSION USERVAR= variables < / B=(value < F > . . . ) USERTYPE=(values) > ;

The REGRESSION statement includes regression variables in a regARIMA model or specifies regression
variables whose effects are to be removed by the IDENTIFY statement to aid in ARIMA model identification.
Include the PREDEFINED= option to select predefined regression variables. Include the USERVAR= option
to specify user-defined regression variables.

Table 46.3 shows the X-13ARIMA-SEATS tables that contain regression factors. Tables A8AO, A8LS, and
A8TC are available only when more than one outlier type is present in the model.

Table 46.3 X-13ARIMA-SEATS Regression Effects Tables

Table Regression Effects

A6 Trading day effects
A7 Holiday effects including Easter, Labor Day, and Thanksgiving-Christmas
A8 Combined effects of outliers, level-shifts, ramps, and temporary changes
A8AO Point outlier effects; available only when more than one outlier type is present in the model
A8LS Level-shift and ramp effects; available only when more than one outlier type is present in the model
A8TC Temporary change effects; available only when more than one outlier type is present in the model
A9 User-defined regression effects
A10 User-defined seasonal component effects

Missing values in the span of an input series automatically create missing value regressors. For more
information about missing values, see the NOTRIMMISS option in the PROC X13 statement and the section
“Missing Values” on page 3366.

Combining your model with additional predefined regression variables can result in a singularity problem.
To successfully perform the regression if a singularity occurs, you might need to alter either the model or the
choices of the regressors.



3350 F Chapter 46: The X13 Procedure

To seasonally adjust a series that uses a regARIMA model, the factors derived from regression are used as
multiplicative or additive factors, depending on the mode of seasonal decomposition. Therefore, regressors
that are appropriate to the mode of the seasonal decomposition should be defined, so that meaningful
combined adjustment factors can be derived and adjustment diagnostics can be generated. For example,
if a regARIMA model is applied to a log-transformed series, then the regression factors are expressed as
ratios, which match the form of the seasonal factors that are generated by the multiplicative or log-additive
adjustment modes. Conversely, if a regARIMA model is fit to the original series, then the regression factors
are measured on the same scale as the original series, which matches the scale of the seasonal factors that are
generated by the additive adjustment mode. Note that the default transformation (no transformation) and the
default seasonal adjustment mode (multiplicative) are in conflict. Thus, when you specify the X11 statement
and any of the REGRESSION, INPUT, or EVENT statements, you must also either use the TRANSFORM
statement to specify a transformation or use the MODE= option in the X11 statement to specify a different
mode to seasonally adjust the data that uses the regARIMA model.

According to Ladiray and Quenneville (2001), “X-12-ARIMA is based on the same principle [as the X-11
method] but proposes, in addition, a complete module, called Reg-ARIMA, that allows for the initial series
to be corrected for all sorts of undesirable effects. These effects are estimated using regression models with
ARIMA errors (Findley et al. [23]).” The REGRESSION, INPUT, and EVENT statements specify these
regression effects. Predefined effects that can be corrected in this manner are listed in the PREDEFINED=
option. You can create your own definitions to remove other effects by using the USERVAR= option and the
EVENT statement.

You can specify either the PREDEFINED= option or the USERVAR= option, but not both, in a single
REGRESSION statement. You can use multiple REGRESSION statements.

You can specify the following regression-group-options in the REGRESSION statement. The regression-
group-options apply to all regression variables in a regression group. For predefined regression variables, the
regression group is predefined. For user-defined regression variables, you can specify the regression group in
the USERTYPE= option.

AICTEST=(EASTER | TD | TD1COEF | TD1NOLPYEAR | TDNOLPYEAR | TDSTOCK | USER)
specifies that an AIC-based selection be used to determine whether a given set of regression variables
are to be included with the specified regARIMA model. For example, if you specify a trading day
model selection, then AIC values (with a correction for the length of the series, henceforth referred to
as AICC) are derived for models with and without the specified trading day variable. By default, the
model with a smaller AICC is used to generate forecasts, identify outliers, and so on. If you specify
more than one type of regressor, the AIC tests are performed sequentially in this order: (a) trading day
regressors, (b) Easter regressors, (c) user-defined regressors. If there are several variables of the same
type (for example, several trading day regressors), then AIC-based selection is applied to them as a
group. That is, either all variables of this type or none are included in the final model. If you do not
specify this option, no automatic AIC-based selection is performed.

If you use the AUTOMDL statement to identify the model and you also specify this option, then this
option affects the model selection process in the following manner:

� AIC-based selection tests are performed on the default model.

� A new series is created by removing the regression effects that are identified in the default model
from the original series. The automatic model identification process attempts to identify a model
that is based on the new series.
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� After a model is automatically identified, AIC-based selection tests that use the automatically
identified model are performed on the original series.

� The default model, including regressors that are identified by using AIC-based selection, is
compared to the automatically identified model, which also might include regressors that are
identified by using AIC-based selections. The regressors for the two models can differ.

For more information about the X-13ARIMA-SEATS automatic modeling method, see section 7.2 of
the X-13ARIMA-SEATS Reference Manual (US Bureau of the Census 2009).

EASTERMEANS=(YR400 | YR500 | SPAN)
specifies how the monthly means, which are used to remove seasonality from the EASTER predefined
regressor, are calculated. When PREDEFINED=EASTER(w) is specified in the REGRESSION
statement, monthly means are computed internally over the 500-year range from 1600 to 2099 by
default. These monthly means are then used to remove seasonality from the Easter effect prior to
calculating the Easter regression coefficient. The EASTERMEANS= option is ignored if no predefined
EASTER regressor is included in the regression model or if SCEASTER(w) is the only predefined
Easter regressor specified. You can specify the following values:

SPAN computes short-term monthly means rather than long-term monthly means to re-
move seasonality in the Easter effect. In this case, the monthly means are computed
over the same span of data that is used to calculate the coefficient of the EASTER(w)
regressor.

YR400 computes monthly means over the 400-year range from 1583 to 1982. This method
was used in earlier versions of the X-13ARIMA-SEATS methodology.

YR500 computes monthly means over the 500-year range from 1600 to 2099.

By default, EASTERMEANS=YR500.

NOAPPLY=(AO | HOLIDAY | LS | TC | TD | USER | USERSEASONAL)
specifies a list of the types of regression effects whose model-estimated values are not to be removed
from the original series before performing the seasonal adjustment calculations that are specified by
the X11 statement. The NOAPPLY= option applies to the regression component values displayed in
the X11 seasonal adjustment method regARIMA component tables as shown in Table 46.4.

Table 46.4 NOAPPLY= Types and Regression Effects

NOAPPLY= Option Regression Effects Table Description

AO A8AO Point outliers
HOLIDAY A7 Easter, Labor Day, and Thanksgiving-to-Christmas

holiday effects
LS A8LS Level changes and ramps
TC A8TC Temporary changes
TD A6 Trading day effects
USER A9 User-defined regression effects
USERSEASONAL A10 User-defined seasonal regression effects
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You can specify the following regression variable specification options in the REGRESSION statement.

PREDEFINED=CONSTANT | EASTER(value) | LABOR(value) | LOM | LOMSTOCK | LOQ | LPYEAR

PREDEFINED=SCEASTER(value) | SEASONAL | SINCOS(value . . . ) | TD | TD1COEF

PREDEFINED=TD1NOLPYEAR | TDNOLPYEAR | TDSTOCK(value) | THANK(value)
lists the predefined regression variables to be included in the model. Data values for these variables
are calculated by the program, mostly as functions of the calendar. Table 46.5 gives definitions for
the available predefined variables. The values LOM and LOQ are equivalent: the actual regression is
controlled by the SEASONS= option in the PROC X13 statement. You can specify multiple predefined
regression variables. The syntax for using both a length-of-month and a seasonal regression can be in
one of the following forms:

regression predefined=lom seasonal;

regression predefined=(lom seasonal);

regression predefined=lom predefined=seasonal;

The following restrictions apply when you use more than one predefined regression variable:

� You can specify only one of TD, TDNOLPYEAR, TD1COEF, or TD1NOLPYEAR.

� You cannot specify LPYEAR with TD, TD1COEF, LOM, LOMSTOCK, or LOQ.

� You cannot specify LOM or LOQ with TD or TD1COEF.

� If you specify the SINCOS predefined regression variable, then you must also specify the
INTERVAL= option or the SEASONS= option in the PROC X13 statement because there are
restrictions on this regression variable that are based on the frequency of the data.

The predefined regression variables, EASTER, LABOR, SCEASTER, SINCOS, TDSTOCK, and
THANK, require extra parameters. Only one TDSTOCK regressor can be implemented in the regression
model. If you specify multiple TDSTOCK variables, PROC X13 uses the last TDSTOCK variable
specified. For EASTER, LABOR, SCEASTER, SINCOS, and THANK, you can specify the variables
with different parameters to implement multiple regressors in the model. For example, the following
statement specifies two EASTER regressors with widths 7 and 14:

regression predefined=easter(7) easter(14);

For SINCOS, specifying a parameter includes both the sine and the cosine regressor except for the
highest order allowed (2 for quarterly data and 6 for monthly data.) For quarterly data, the following
statement is the most common use of the SINCOS variable; it includes three regressors in the model:

regression predefined=sincos(1,2);

For monthly data, the following statement is the most common use of the SINCOS variable; it includes
11 regressors in the model:
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regression predefined=sincos(1,2,3,4,5,6);

Table 46.5 Predefined Regression Variables in
X-13ARIMA-SEATS

Regression Effect Variable Definitions

.1 � B/�d .1 � Bs/�DI.t � 1/

Trend constant
CONSTANT

where I.t � 1/ D

(
1 for t � 1
0 for t < 1

E.w; t/ D 1
w
� nt and

nt is the number of the w days before Easter that fall in month
Easter holiday (or quarter) t. (Note: This variable is 0 except in February, March,
EASTER(w) and April (or first and second quarter).

It is nonzero in February only for w > 22.)
Restriction: 1 � w � 25.

Labor Day L.w; t/ D 1
w
� Œno. of the w days before Labor Day that fall in month t �

LABOR(w) (Note: This variable is 0 except in August and September.)
Restriction: 1 � w � 25.

Length-of-month mt � Nm where mt = length of month t (in days)
(monthly flow) and Nm D 30:4375 (average length of month)

LOM

Stock length-of-month
LOMSTOCK

SLOMt D

(
mt � Nm � �.l/ for t D 1
SLOMt�1 Cmt � Nm otherwise

where Nm and mt are defined in LOM and

�.l/ D

8̂̂̂̂
<̂
ˆ̂̂:
0:375 when first February in series is a leap year
0:125 when second February in series is a leap year
�0:125 when third February in series is a leap year
�0:375 when fourth February in series is a leap year

Length-of-quarter qt � Nq where qt = length of quarter t (in days)
(quarterly flow) and Nq D 91:3125 (average length of quarter)

LOQ
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Table 46.5 continued

Regression Effect Variable Definitions

Leap year
(monthly and quarterly flow)

LPYEAR
LYt D

8̂<̂
:
0:75 in leap year February (first quarter)
�0:25 in other Februaries (first quarter)
0 otherwise

Statistics Canada Easter If Easter falls before April w, let nE be the number of the w days
(monthly or quarterly flow) on or before Easter that fall in March. Then:

SCEASTER(w)

E.w; t/ D

8̂<̂
:
nE=w in March
�nE=w in April
0 otherwise

If Easter falls on or after April w, then E.w; t/ D 0.
(Note: This variable is 0 except in March and April (or first and
second quarter).) Restriction: 1 � w � 24.

Fixed seasonal
SEASONAL

M1;t D

8̂<̂
:
1 in January
�1 in December
0 otherwise

; : : : ;M11;t D

8̂<̂
:
1 in November
�1 in December
0 otherwise

Fixed seasonal sin.wj t /; cos.wj t /;
SINCOS(j) where wj D 2�j=s; 1 � j � s=2, and s is the seasonal period

SINCOS(j1; : : : ; jn) (drop sin.wj t / � 0 for j D s=2)
Restrictions: 1 � ji � s=2, 1 � n � s=2.

Trading day T1;t D (number of Mondays) – (number of Sundays)
TD, TDNOLPYEAR ; : : : ; T6;t D (number of Saturdays) – (number of Sundays)

One coefficient trading day (number of weekdays) � 5
2

(number of Saturdays and Sundays)
TD1COEF, TD1NOLPYEAR
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Table 46.5 continued

Regression Effect Variable Definitions

Stock trading day
TDSTOCK(w)

D1;t D

8̂<̂
:
1 Qwth day of month t is a Monday
�1 Qwth day of month t is a Sunday
0 otherwise

; : : : ;D6;t D

8̂<̂
:
1 Qwth day of month t is a Saturday
�1 Qwth day of month t is a Sunday
0 otherwise

where Qw is the smaller of w and the length of month t.
For end-of-month stock series, set w to 31; that is,
specify TDSTOCK(31). Restriction: 1 � w � 31.

Thanksgiving ThC.w; t/ D proportion of days from w days before Thanksgiving
THANK(w) through December 24 that fall in month t (negative values of w indicate

days after Thanksgiving).
(Note: This variable is 0 except in November and December.)
Restriction: �8 � w � 17.

USERVAR=(variables)
specifies variables in the DATA= or AUXDATA= data set (which are specified in the PROC X13
statement) that are to be used as regressors. The variables in the data set should contain the values
for each observation that define the regressor. Regression variables should also include future values
in the data set for the forecast horizon if the time series is to be extended with regARIMA forecasts.
Regression variables should include past values if the time series is to be extended with regARIMA
backcasts. Missing values are not permitted within the data span, including backcasts and forecasts, of
the user-defined regressors. Example 46.6 shows how to create an input data set that contains both the
series to be seasonally adjusted and a user-defined input variable. Example 46.11 shows how to create
an auxiliary data set that contains a user-defined input variable. For more information about specifying
user-defined regression variables, see the section “User-Defined Regression Variables” on page 3370.

All regression variables in the USERVAR= option apply to all time series to be seasonally adjusted
unless the MDLINFOIN= data set specifies different regression information. You cannot specify the
PREDEFINED= option and the USERVAR= option in the same REGRESSION statement; however,
you can specify multiple REGRESSION statements.

You can specify the following options for individual regression variables. Individual regression variable
options are specified in the PREDEFINED= and USERVAR= options after the slash. The B= option can be
specified in both the PREDEFINED= and USERVAR= options. Because the regression group is predefined
for predefined variables, you can specify the USERTYPE= option only in the USERVAR= option.
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B=(value < F > . . . )
specifies initial or fixed values for the regression parameters in the order in which they appear in a
PREDEFINED= or USERVAR= option. Each B= list applies to the PREDEFINED= or USERVAR=
variable list that immediately precedes the slash.

For example, the following statements set an initial value of 1 for the user-defined regressor, x:

regression predefined=LOM ;
regression uservar=x / b=1 2 ;

In this example, the B= option applies only to the USERVAR= option. The value 2 is discarded because
there is only one variable in the USERVAR= list.

To assign an initial value of 1 to the LOM regressor and 2 to the x regressor, use the following
statements:

regression predefined=LOM / b=1;
regression uservar=x / b=2 ;

An F immediately following the numerical value indicates that this is not an initial value, but a fixed
value. For an example that uses fixed parameters, see Example 46.8. In PROC X13, individual
parameters can be fixed while other parameters in the same model are estimated.

USERTYPE=(values)
enables a variable that you define to be processed in the same manner as a US Census predefined
variable. You can specify the following values: AO, CONSTANT, EASTER, HOLIDAY, LABOR,
LOM, LOMSTOCK, LOQ, LPYEAR, LS, RP, SCEASTER, SEASONAL, TC, TD, TDSTOCK,
THANKS, or USER. For example, the US Census Bureau EASTER(w) regression effects are included
the “RegARIMA Holiday Component” table (A7). Specify USERTYPE=EASTER to define a variable
that is processed exactly as the US Census predefined EASTER(w) variable, including inclusion in the
A7 table. Each USERTYPE= list applies to the USERVAR= variable list that immediately precedes the
slash. USERTYPE= does not apply to US Census predefined variables.

The same rules for assigning B= values to regression variables apply for USERTYPE= options. For
example, the following statements specify that the user-defined regressor in the variable MyEaster be
processed exactly as the US Census predefined LOM variable:

regression uservar=MyLOM;
regression uservar=MyEaster / usertype=LOM EASTER;

In this example, the USERTYPE= option applies only to the MyEaster variable in the second REGRES-
SION statement. The USERTYPE value EASTER is discarded because there is only one variable in
the USERVAR= list.

To assign the USERTYPE value LOM to the MyLOM variable and EASTER to the MyEaster variable,
use the following statements:
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regression uservar=MyLOM / usertype=LOM;
regression uservar=MyEaster / usertype=EASTER;

The following USERTYPE= options specify that the regression effect be removed from the seasonally
adjusted series: EASTER, HOLIDAY, LABOR, LOM, LOMSTOCK, LOQ, LPYEAR, SCEASTER,
SEASONAL, TD, TDSTOCK, THANKS, and USER. When a regression effect is removed from the
seasonally adjusted series, the level (mean) of the seasonally adjusted series can be altered. It is often
desirable to use a zero-mean (mean-adjusted) regressor for effects that are to be removed from the
seasonally adjusted series. For an example that specifies a zero-mean regressor, see Example 46.6.

SEATSDECOMP Statement (Experimental)
SEATSDECOMP OUT= SAS-data-set < options > ;

The SEATSDECOMP statement creates an output data set (named by the OUT= option) that contains the
SEATS decomposition series.

The following is an example of a VAR statement and a SEATSDECOMP statement:

var sales costs;
seatsdecomp out=SEATS_DECOMP;

The default variable name used in the output data set is the input variable name followed by an underscore
and the corresponding table name. Because the B1 series is used as the original input series for the
SEATS decomposition, the output data set SEATS_DECOMP from the example will contain the seasonal
decomposition variables in the following order:

sales_OS contains the Table B1 values for the variable sales.

sales_SC contains the SEATS decomposition seasonal component for the variable sales.

sales_TC contains the SEATS trend component values for the variable sales.

sales_SA contains the SEATS seasonally adjusted series for the variable sales.

sales_IC contains the SEATS irregular component for the variable sales.

costs_OS contains the Table B1 values for the variable costs.

costs_SC contains the SEATS decomposition seasonal component for the variable costs.

costs_TC contains the SEATS trend component values for the variable costs.

costs_SA contains the SEATS seasonally adjusted series for the variable costs.

costs_IC contains the SEATS irregular component for the variable costs.

If necessary, the variable name is shortened so that the component name can be added. If you specify the
DATE= variable in the PROC X13 statement, then that variable is included in the output data set; otherwise,
a variable named _DATE_ is written to the OUT= data set as the date identifier. For more information about
the output data set, see the section “SEATSDECOMP OUT= Data Set” on page 3384.

You can specify the following options in the SEATSDECOMP statement:
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LEAD=value
specifies the number of periods ahead to forecast for a regARIMA extension of the series. The default is
twice the number of periods in a year (8 or 24), and the maximum is 120. In the SEATS computations,
the number of backcasts and forecasts are the same, and the minimum number is also dependent
on the ARIMA model orders. For more information, see the section “SEATS Decomposition” on
page 3375. If you specify a LEAD= value that is less than the default, then the number of forecasts
specified in the LEAD= option are displayed in the OUT= data set. If the value of the LEAD= option
and NBACKCAST= options in the FORECAST statement are less than the required number for
SEATS decomposition, then the values of the LEAD= and NBACKCAST= options in the FORECAST
statement are increased.

NBACKCAST=value

BACKCAST=value

NBACK=value
specifies the number of periods to backcast for a regARIMA extension of the series. The default is
twice the number of periods in a year (8 or 24), and the maximum is 120. In the SEATS computations,
the number of backcasts and forecasts are the same, and the minimum number is also dependent on the
ARIMA model orders. For more information, see the section “SEATS Decomposition” on page 3375.
If you specify a NBACKCAST= value that is less than the default, then the number of backcasts
specified in the NBACKCAST= option are displayed in the OUT= data set. If the value of the LEAD=
option and NBACKCAST= option specified in the FORECAST statement are less than the required
number for SEATS decomposition when SEATSDECOMP is specified, then the value of LEAD= and
NBACKCAST= in the FORECAST statement will be increased.

OUT=SAS-data-set
names the data set to contain the SEATS decomposition series: original series, seasonal component,
trend component, seasonally adjusted series, irregular component. If the OUT= option is omitted, the
data set is named using the default DATAn convention.

YEARSEAS

YRSEAS
specifies that two additional variables be added to the OUT= data set: _YEAR_ and _SEASON_. The
variable _YEAR_ contains the year of the date that identifies the observation. The variable _SEASON_
contains the month for monthly data, or quarter for quarterly data, of the date that identifies the
observation. For monthly data, the value of _SEASON_ is between 1 and 12. For quarterly data, the
value of _SEASON_ is between 1 and 4. The _YEAR_ and _SEASON_ variables are useful when you
create seasonal plots.
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TABLES Statement
TABLES tablename1 tablename2 . . . options ;

The TABLES statement enables you to alter the display of the PROC X13 tables. You can specify the display
of tables that are not displayed by default by PROC X13, and the NOSUM option enables you to suppress
the printing of the period summary line in the time series tables.

tablename1 tablename2 . . .
specifies X13 tablenames that correspond to the title label used by the US Census Bureau X-13ARIMA-
SEATS software. For each table to be included in the displayed output, you must specify the X13
tablename keyword. Currently available tables are A19, B7, B13, B17, B20, C1, C20, D1, D7, E1,
E2, and E3. Although these tables are not displayed by default, their values are sometimes useful in
understanding the X-13ARIMA-SEATS method. For more information about the available tables, see
the section “Displayed Output, ODS Table Names, and OUTPUT Tablename Keywords” on page 3376.

NOSUM

NOSUMMARY

NOSUMMARYLINE
applies to the tables available for output in the OUTPUT Statement. By default, these tables include a
summary line that gives the average, total, or standard deviation for the historical data by period. The
NOSUM option suppresses the display of the summary line in the listing. Also, if the tables are output
with ODS, the summary line is not an observation in the data set. Thus, the output to the data set is
only the time series, both the historical data and the forecast data, if available.

TRANSFORM Statement
TRANSFORM options ;

The TRANSFORM statement transforms or adjusts the series prior to estimating a regARIMA model. With
this statement, the series can be Box-Cox (power) transformed. The “Prior Adjustment Factors” table is
associated with the TRANSFORM statement.

Only one of the following options can appear in the TRANSFORM statement:

POWER=value
transforms the input series, Yt , by using a Box-Cox power transformation,

Yt ! yt D

�
log.Yt / � D 0

�2 C .Y �t � 1/=� � ¤ 0

The power � must be specified (for example, POWER=0.33). The default is no transformation (� D 1);
that is, POWER=1. The log transformation (POWER=0), square root transformation (POWER=0.5),
and the inverse transformation (POWER=–1) are equivalent to the corresponding FUNCTION= option.
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Table 46.6 Power Values Related to the Census Bureau Function Argument

FUNCTION= Transformation Range for Yt Equivalent Power Argument

NONE Yt All values POWER=1
LOG log.Yt / Yt > 0 for all t POWER=0
SQRT 2.

p
Yt � 0:875/ Yt � 0 for all t POWER=0.5

INVERSE 2 � 1
Yt

Yt ¤ 0 for all t POWER=–1
LOGISTIC log. Yt

1�Yt
/ 0 < Yt < 1 for all t No equivalent

FUNCTION=NONE | LOG | SQRT | INVERSE | LOGISTIC | AUTO
specifies the transformation to be applied to the series prior to estimating a regARIMA model. The
transformation used by FUNCTION=NONE, LOG, SQRT, INVERSE, or LOGISTIC is related to
the POWER= option as shown in Table 46.6. FUNCTION=AUTO uses selection based on Akaike’s
information criterion (AIC) to decide between a log transformation and no transformation. The default
is FUNCTION=NONE.

However, the FUNCTION= and POWER= options are not completely equivalent. In some cases,
using the FUNCTION= option causes the program to automatically select other options. For example,
FUNCTION=NONE causes the default mode to be MODE=ADD in the X11 statement. Also, the
choice of transformation invoked by the FUNCTION=AUTO option can impact the default mode of
the X11 statement.

There are restrictions on the value used in the POWER= and FUNCTION= options when preadjustment
factors for seasonal adjustment are generated from a regARIMA model. When seasonal adjustment
is requested with the X11 statement, any value of the POWER option can be used for the purpose of
forecasting the series with a regARIMA model. However, this is not the case when factors generated
from the regression coefficients are used to adjust either the original series or the final seasonally
adjusted series. In this case, the only accepted transformations are the log transformation, which can be
specified as POWER=0 for multiplicative or log-additive seasonal adjustments, and no transformation,
which can be specified as POWER=1 for additive seasonal adjustments. If no seasonal adjustment
is performed, any POWER transformation can be used. The preceding restrictions also apply when
FUNCTION=NONE and FUNCTION=LOG are specified.

USERDEFINED Statement
USERDEFINED variables ;

The USERDEFINED statement is used to identify the variables in the input data set or auxiliary data set that
are available for user-defined regression. Only numeric variables can be specified. Specifying variables in
the USERDEFINED statement does not include the variables as regressors. If a variable is specified in the
INPUT statement or USERVAR= option in the REGRESSION statement, it is not necessary to include that
variable in the USERDEFINED statement. However, if a variable is specified in the MDLINFOIN= data set
in the PROC X13 statement and is not specified in an INPUT statement or in the USERVAR= option in the
REGRESSION statement, then the variable should be specified in the USERDEFINED statement in order to
make the variable available for regression.
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VAR Statement
VAR variables ;

The VAR statement specifies the variables in the input data set that are to be analyzed by the procedure. Only
numeric variables can be specified. If the VAR statement is omitted, all numeric variables are analyzed except
those that appear in a BY statement, ID statement, INPUT statement, or USERDEFINED statement; in the
USERVAR= option in the REGRESSION statement; or in the DATE= option in the PROC X13 statement.

X11 Statement
X11 options ;

The X11 statement is an optional statement for invoking seasonal adjustment by an enhanced version of the
methodology of the US Census Bureau X-11 and X-11Q programs. You can control the type of seasonal
adjustment decomposition calculated with the MODE= option. The output includes the final tables and
diagnostics for the X-11 seasonal adjustment method listed in Table 46.7. Tables B7, B13, B17, B20, C1, E1,
E2, E3, C20, D1, and D7 are not displayed by default; however, you can display these tables by requesting
them in the TABLES statement.

Table 46.7 Tables Related to X11 Seasonal Adjustment

Table Name Description

B1 Original series, adjusted for prior effects and forecast extended
B7 Preliminary trend-cycle, B iteration
B13 Irregular component, B iteration
B17 Preliminary weights for the irregular component
B20 Extreme values, B iteration
C1 Original series modified for outliers, trading day, and prior factors, C iteration
C17 Final weights for the irregular component
C20 Final extreme value adjustment factors
D1 Modified original data, D iteration
D7 Preliminary trend cycle, D iteration
D8 Final unmodified SI ratios (differences)
D8A F tests for stable and moving seasonality, D8
D8B Final unmodified SI ratios, with labels for outliers and extreme values
D9 Final replacement values for extreme SI ratios (differences), D iteration
D9A Moving seasonality ratios for each period
SeasonalFilter Seasonal filter statistics for Table D10
D10 Final seasonal factors
D10B Seasonal factors, adjusted for user-defined seasonal
D10D Final seasonal difference
D11 Final seasonally adjusted series
D11A Final seasonally adjusted series with forced yearly totals
D11R Rounded final seasonally adjusted series (with forced yearly totals)
TrendFilter Trend filter statistics for Table D12
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Table 46.7 continued

Table Name Description

D12 Final trend cycle
D13 Final irregular component
D16 Combined seasonal and trading day factors
D16B Final adjustment differences
D18 Combined calendar adjustment factors
E1 Original data modified for extremes
E2 Modified seasonally adjusted series
E3 Modified irregular series
E4 Ratio of yearly totals of original and seasonally adjusted series
E5 Percent changes (differences) in original series
E6 Percent changes (differences) in seasonally adjusted series
E6A Percent changes (differences) in seasonally adjusted series with forced yearly totals

(D11.A)
E6R Percent changes (differences) in rounded seasonally adjusted series (D11.R)
E7 Percent changes (differences) in final trend component series
E8 Percent changes (differences) in original series adjusted for calendar factors (A18)
E18 Final adjustment ratios (original series to seasonally adjusted series)
F2A–F2I X11 diagnostic summary
F3 Monitoring and quality assessment statistics
F4 Day of the week trading day component factors
G Spectral plots

For more information about the X-11 seasonal adjustment diagnostics, see Shiskin, Young, and Musgrave
(1967), Lothian and Morry (1978a), and Ladiray and Quenneville (2001).

You can specify the following options in the X11 statement:

FINAL=AO | LS | TC | USER |ALL

FINAL=(options)
lists the types of prior adjustment factors, obtained from the EVENT, REGRESSION, and OUTLIER
statements, that are to be removed from the final seasonally adjusted series. Additive outliers are
removed by specifying FINAL=AO. Level change and ramp outliers are removed by specifying
FINAL=LS. Temporary change outliers are removed by specifying FINAL=TC. User-defined regressors
or events (USERTYPE=USER) are removed by specifying FINAL=USER. All the preceding are
removed by specifying FINAL=ALL or by specifying all the options in parentheses, FINAL=(AO LS
TC USER). If this option is not specified, the final seasonally adjusted series contains these effects.

FORCE=TOTALS | ROUND | BOTH
specifies that the seasonally adjusted series be modified to: (a) force the yearly totals of the seasonally
adjusted series and the original series to be the same (FORCE=TOTALS), (b) adjust the seasonally
adjusted values for each calendar year so that the sum of the rounded seasonally adjusted series for
any year equals the rounded annual total (FORCE=ROUND), or (c) first force the yearly totals, then
round the adjusted series (FORCE=BOTH). When FORCE=TOTALS is specified, the differences
between the annual totals is distributed over the seasonally adjusted values in a way that approximately
preserves the month-to-month (or quarter-to-quarter) movements of the original series. For more
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information, see Huot (1975) and Cholette (1979). This forcing procedure is not recommended if
the seasonal pattern is changing or if trading day adjustment is performed. Forcing the seasonally
adjusted totals to be the same as the original series annual totals can degrade the quality of the seasonal
adjustment, especially when the seasonal pattern is undergoing change. It is not natural if trading day
adjustment is performed because the aggregate trading day effect over a year is variable and moderately
different from zero.

MODE=ADD | MULT | LOGADD | PSEUDOADD
determines the mode of the seasonal adjustment decomposition to be performed. The four option
choices correspond to additive, multiplicative, log-additive, and pseudo-additive decomposition, re-
spectively. If this option is omitted, the procedure performs multiplicative adjustments. Table 46.8
shows the values of the MODE= option and the corresponding models for the original (O) and the
seasonally adjusted (SA) series.

Table 46.8 Modes of Seasonal Adjustment and Their Models

Value of Mode Option Name Model for O Model for SA

MULT Multiplicative O D C � S � I SA D C � I
ADD Additive O D C C S C I SA D C C I
PSEUDOADD Pseudo-additive O D C � ŒS C I � 1� SA D C � I
LOGADD Log-additive log.O/ D C C S C I SA D exp.C C I /

OUTFORECAST

OUTFCST
determines whether forecasts are included in certain tables sent to the output data set. If OUTFORE-
CAST is specified, then forecast values are included in the output data set for Tables A6, A7, A8, A9,
A10, B1, D10, D10B, D10D, D16, D16B, D18, and E18. The default is not to include forecasts. The
OUTFORECAST option can be specified in either the X11 statement or the FORECAST statement
with identical results.

SEASONALMA=S3X1 | S3X3 | S3X5 | S3X9 | S3X15 | STABLE | X11DEFAULT | MSR

SEASONALMA=(filter-list-by-period)
specifies which seasonal moving average (also called “seasonal filter”) to use to estimate the seasonal
factors. These seasonal moving averages are n �m moving averages, meaning that an n-term simple
average is taken of a sequence of consecutive m-term simple averages. X11DEFAULT is the method
used by the US Census Bureau’s X-11-ARIMA program.

You can specify either a single filter option or a list. A single option indicates that all periods will
use the same filter or the same method of identifying the filter. Alternately, you can specify the
seasonal filters for each seasonal period by specifying SEASONALMA=(filter-list-by-period), where
(filter-list-by-period) lists the moving average filter for each period. For quarterly data, you must specify
four filters; for monthly data, you must specify 12 filters. In the filter-list-by-period , you can specify
S3X1, S3X3, S3X5, S3X9, or S3X15. For example, the following statement assigns a 3 � 1 moving
average filter to the first quarter of a quarterly series and a 3 � 3 moving average to the second, third,
and fourth quarters:
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X11 SEASONALMA=( S3X1 S3X3 S3X3 S3X3 );

Table 46.9 describes the seasonal filter options available for the entire series:

Table 46.9 X-13ARIMA-SEATS Seasonal Filter Options and
Descriptions

Filter Name Description of Filter

S3X1 A 3 � 1 moving average
S3X3 A 3 � 3 moving average
S3X5 A 3 � 5 moving average
S3X9 A 3 � 9 moving average
S3X15 A 3 � 15 moving average
STABLE Stable seasonal filter: a single seasonal factor for each calendar

month or quarter is generated by calculating the simple average of
all the values for each month or quarter (taken after detrending and
outlier adjustment)

X11DEFAULT Uses a 3 � 3 moving average to calculate the initial seasonal
factors in each iteration and a 3 � 5 moving average to calculate
the final seasonal factors

MSR Filter chosen automatically by using the moving seasonality ratio
of X-11-ARIMA/88 (Dagum 1988)

By default, SEASONALMA=MSR, which is the methodology of Statistic Canada’s X-11-ARIMA/88
program.

SIGMALIM=(lower limit , upper limit )

SIGMALIM=(lower limit )

SIGMALIM=( , upper limit )
specifies the lower and upper sigma limits in standard deviation units which are used to identify and
down-weight extreme irregular values in the internal seasonal adjustment computations. One or both
limits can be specified. The lower limit must be greater than 0 and not greater than the upper limit. If
the lower sigma limit is not specified, then it defaults to a value of 1.5. The default upper sigma limit is
2.5. The comma must be used if the upper limit is specified.

Table 46.10 shows the effect of the SIGMALIM= option on the weights that are applied to the internal
irregular values.
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Table 46.10 Weights for Irregular Values

Weight Sigma Limit

0 If jIt��j
�1;It

� upper limit

Partial weight If lower limit < jIt��j
�2;It

< upper limit

1 If jIt��j
�2;It

� lower limit

In Table 46.10, � is the theoretical mean of the irregular component, and �1;It and �2;It are the
respective estimates of the standard deviation of the irregular component before and after extreme
values are removed. The estimates of the standard deviation �1;It and �2;It vary with respect to t,
and they are the same if no extreme values are removed. If they are different (�2;It < �1;It ), then the
first line in Table 46.10 is reevaluated with �2;It . In the special case where the lower limit equals the
upper limit, the weight is 1 for jIt��j

�2;It
� lower limit , and 0 otherwise. For more information about

how extreme irregular values are handled in the X11 computations, see Ladiray and Quenneville 2001,
pp. 53–68, 122–125.

TRENDMA=value
specifies which Henderson moving average is used to estimate the final trend cycle. Any odd number
greater than one and less than or equal to 101 can be specified (for example, TRENDMA=23). If the
TRENDMA= option is not specified, the program selects a trend moving average based on statistical
characteristics of the data. For monthly series, a 9-, 13-, or 23-term Henderson moving average is
selected. For quarterly series, the program chooses either a 5- or a 7-term Henderson moving average.

TYPE=SA | SUMMARY | TREND
specifies the method used to calculate the final seasonally adjusted series (Table D11). The default
method is TYPE=SA. This method assumes that the original series has not been seasonally adjusted. For
method TYPE=SUMMARY, the trend cycle, irregular, trading day, and holiday factors are calculated,
but not removed from the seasonally adjusted series. Thus, for TYPE=SUMMARY, Table D11 is the
same as the original series. For TYPE=TREND, trading day, holiday, and prior adjustment factors are
removed from the original series to calculate the seasonally adjusted series (Table D11) and also are
used in the calculation of the final trend (Table D12).



3366 F Chapter 46: The X13 Procedure

Details: X13 Procedure

Data Requirements
The input data set must contain either quarterly or monthly time series, and the data must be sorted in
chronological order within each BY group. For the standard X-13ARIMA-SEATS method, there must be at
least three years of observations (12 for quarterly time series or 36 for monthly).

If an ARIMA model is specified in the ARIMA statement, AUTOMDL statement, PICKMDL statement,
or the MDLINFOIN= data set, then more than three years of observations might be required in order to fit
the ARIMA model and perform the computations associated with the seasonal decomposition and other
diagnostics.

The minimum number of observations applies to each series listed in the VAR statement and within each BY
group and is determined after any missing values are trimmed from the series.

Missing Values
PROC X13 can process a series with missing values.

Types of Missing Values

Missing values in a series are considered to be one of two types:

� A leading or trailing missing value occurs before the first nonmissing value or after the last nonmissing
value, respectively, in the span of a series. The span of a series can be determined either explicitly by
the SPAN= option or implicitly by the START= or DATE= option in the PROC X13 statement. By
default, leading and trailing missing values are ignored. If you specify the NOTRIMMISS option in
the PROC X13 statement, PROC X13 processes leading and trailing missing values according to the
X-13ARIMA-SEATS missing value method.

� An embedded missing value occurs between the first nonmissing value and the last nonmissing
value in the span of the series. PROC X13 processes embedded missing values according to the
X-13ARIMA-SEATS missing value method.

X-13ARIMA-SEATS Missing Value Method

When the X-13ARIMA-SEATS method encounters a missing value, it inserts an additive outlier for the
missing observation into the set of regression variables for the model of the series and then replaces the
missing observation with a value large enough to be considered an outlier during model estimation. After
the regARIMA model is estimated, the X-13ARIMA-SEATS method adjusts the original series by using
factors that are generated from these missing value outlier regressors. The adjusted values are estimates of
the missing values, and the adjusted series is displayed in Table MV1. The X-13ARIMA-SEATS missing
value method requires the use of a regARIMA model to replace the missing values. Thus, either an ARIMA
or AUTOMDL statement or the MDLINFOIN= option in the PROC X13 statement must be specified if there
are embedded missing values in the time series.
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SAS Predefined Events
SAS predefined events are summarized in this section. For complete details about SAS predefined events, see
the section “EVENTKEY Statement” in SAS Forecast Studio: User’s Guide.

Table 46.11 shows a summary of the SAS predefined event keywords. Table 46.12 lists the holiday date
keywords that can be used as SAS predefined events. Table 46.13 lists the seasonal date keywords that can be
used as SAS predefined events.

Table 46.11 Definitions for EVENTKEY Predefined Event
Keywords

Variable Name or Description Qualifier Options
Variable Name Format

AO<obs>OBS Outlier TYPE=POINT VALUE=1
AO<date>D BEFORE=(DURATION=0)
AO<datetime>DT AFTER=(DURATION=0)

LS<obs>OBS Level-shift TYPE=LS VALUE=1
LS<date>D BEFORE=(DURATION=0)
LS<datetime>DT AFTER=(DURATION=ALL)

TLS<obs>OBS<n> Temporary level-shift TYPE=LS VALUE=1
TLS<date>D<n> BEFORE=(DURATION=0)
TLS<datetime>DT<n> AFTER=(DURATION=<n>)

NLS<obs>OBS Negative level-shift TYPE=LS VALUE=–1
NLS<date>D BEFORE=(DURATION=0)
NLS<datetime>DT AFTER=(DURATION=ALL)

CBLS<obs>OBS US Census Bureau level-shift TYPE=LS VALUE=–1
CBLS<date>D SHIFT=–1
CBLS<datetime>DT BEFORE=(DURATION=ALL)

AFTER=(DURATION=0)

TC<obs>OBS Temporary change TYPE=TC VALUE=1
TC<date>D BEFORE=(DURATION=0)
TC<datetime>DT AFTER=(DURATION=ALL)

<date keyword> Date pulse TYPE=POINT VALUE=1
BEFORE=(DURATION=0)
AFTER=(DURATION=0)
PULSE=DAY
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Table 46.11 continued

Variable Name or Description Qualifier Options
Variable Name Format

LINEAR Polynomial trends TYPE=LIN
QUAD TYPE=QUAD
CUBIC TYPE=CUBIC

VALUE=1
BEFORE=(DURATION=ALL)
AFTER=(DURATION=ALL)
The default timing value is the 0
observation.

INVERSE Trends TYPE=INV
LOG TYPE=LOG

VALUE=1
BEFORE=(DURATION=0)
AFTER=(DURATION=ALL)
The default timing value is the 0
observation.

<seasonal Seasonal TYPE=POINT
keywords> PULSE= depends on keyword

VALUE=1
BEFORE=(DURATION=0)
AFTER=(DURATION=0)
Timing values are based on
keyword.

Table 46.12 Holiday Date Keywords and Definitions

Date Keyword Definition

BOXING December 26
CANADA July 1
CANADAOBSERVED July 1, or July 2 if July 1 is a Sunday
CHRISTMAS December 25
COLUMBUS Second Monday in October
EASTER Easter Sunday
FATHERS Third Sunday in June
HALLOWEEN October 31
JUNETEENTH June 19
JUNETEENTHUSG Juneteenth date observed by

US government for
Monday–Friday schedule
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Table 46.12 continued

Date Keyword Definition

JUNETEENTHUSPS Juneteenth date observed by
US government for
Monday–Saturday schedule
(US Postal Service)

LABOR First Monday in September
MLK Third Monday in January
MEMORIAL Last Monday in May
MOTHERS Second Sunday in May
NEWYEAR January 1
THANKSGIVING Fourth Thursday in November
THANKSGIVINGCANADA Second Monday in October
USINDEPENDENCE July 4
USPRESIDENTS Third Monday in February (since 1971)
VALENTINES February 14
VETERANS November 11
VETERANSUSG Veterans Day date that is observed by

US government for
Monday–Friday schedule

VETERANSUSPS Veterans Day date that is observed by
US government for
Monday–Saturday schedule
(US Post Office)

VICTORIA Monday on or preceding May 24

Table 46.13 Seasonal Date Keywords and Definitions

Date Keyword Definition

SECOND_1, . . . , SECOND_60 Specified second
MINUTE_1, . . . , MINUTE_60 Beginning of the specified minute
HOUR_1, . . . , HOUR_24 Beginning of the specified hour
SUNDAY, . . . , SATURDAY All Sundays, and so on, in the time series
WEEK_1, . . . , WEEK_53 First day of the nth week of the year

(PULSE=WEEK.n shifts this date for n ¤ 1)
TENDAY_1, TENDAY_4, The first day of the month
. . . , TENDAY_34
TENDAY_2, TENDAY_5, The 11th day of the month
. . . , TENDAY_35
TENDAY_3, TENDAY_6, The 21st day of the month
. . . , TENDAY_36
SEMIMONTH_1, SEMIMONTH_3, The first day of the month
. . . , SEMIMONTH_23
SEMIMONTH_2, SEMIMONTH_4, The 16th day of the month
. . . , SEMIMONTH_24
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Table 46.13 continued

Date Keyword Definition

JANUARY, . . . , DECEMBER The first day of the specified month
QTR_1, QTR_2, QTR_3, QTR_4 The first date of the quarter indicated after the

underscore
(PULSE=QTR.n shifts this date for n ¤ 1)

SEMIYEAR_1, SEMIYEAR_2 The first date of the semiyear
(PULSE=SEMIYEAR.n shifts this date for
n ¤ 1)

User-Defined Regression Variables
The X-13ARIMA-SEATS method enables you to define regression variables to be included in the regARIMA
model. A user-defined regression variable is composed of a value at each time series observation that you
provide; the entire variable is implemented as a regressor in the regARIMA model. The regARIMA model is
used in the seasonal decomposition process to extend the series prior to X11 decomposition. Because the
X-13ARIMA-SEATS method does not impute, forecast, nor backcast user-defined regression variables, you
must provide a nonmissing value at each observation in the span of the time series to be modeled and also
provide a nonmissing value at each observation to be forecast or backcast.

A user-defined regression variable can be included in either the PROC X13 DATA= or AUXDATA= data set.
You can supply the values for the user-defined regression variable by one of the following methods:

� You can include them in an auxiliary data set. The auxiliary data set should have a date variable that
corresponds to the date variable in the DATA= data set. The name of the auxiliary data set is specified
in the AUXDATA= option in the PROC X13 statement. The name of the date variable that exists
in both the DATA= and AUXDATA= data sets is specified in the DATE= option in the PROC X13
statement. The observations in the auxiliary data set must span the entire series plus any forecast and
backcast period.

� You can include them in the DATA= data set. Because the number of observations and the date values
are exactly the same for both user-defined regressors and time series values, you need to include
forecast and backcast values for user-defined regression variables beyond the span of the time series in
one of the following ways:

– You must specify leading missing values in the series to be seasonally adjusted for backcast
periods. You must specify trailing missing values in the series to be seasonally adjusted for
forecast periods. You must not use the NOTRIMMISS option in this case. The span of the series
to be seasonally adjusted that is implied by trimming the leading and trailing missing values will
be less than the span of the date values in the DATA= data set. Using this method, forecast error
cannot be computed for the forecast and backcast periods.

– You can use the SPAN= option in the PROC X13 statement to alter the span of the series to be
seasonally adjusted to allow for backcast and forecast periods within the span of the date values
in the DATA= data set. Using this method, forecast error can be computed for the forecast and
backcast periods.
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These methods of including user-defined regression variables in the regARMIA model are illustrated in
Example 46.6 and Example 46.11.

If missing values for the user-defined regression variable are present within the span of the time series,
including backcast and forecast observations, then an error message is displayed and the time series is not
processed. If the span of the user-defined regression variable, or the span after leading and trailing missing
values are trimmed, is not sufficient to cover the span of the series to be seasonally adjusted, including any
backcasts and forecasts, then an error message is also displayed, and the time series is not processed.

Combined Test for the Presence of Identifiable Seasonality
The seasonal component of a time series, St , is defined as the intrayear variation that is repeated constantly
(stable) or in an evolving fashion from year to year (moving seasonality). If the increase in the seasonal
factors from year to year is too large, then the seasonal factors introduce distortion into the model. It is
important to determine whether seasonality is identifiable without distorting the series.

For seasonality to be identifiable, the series should be identified as seasonal by using the “Test for the Presence
of Seasonality Assuming Stability” and “Nonparametric Test for the Presence of Seasonality Assuming
Stability.” Also, since the presence of moving seasonality can cause distortion, it is important to evaluate
the moving seasonality in conjunction with the stable seasonality to determine whether the seasonality is
identifiable. The results of these tests are displayed in “F tests for Seasonality” (Table D8.A) in the X13
procedure.

The test for identifiable seasonality is performed by combining the F tests for stable and moving seasonality,
along with a Kruskal-Wallis test for stable seasonality. The following description is based on Lothian and
Morry (1978b). Other details can be found in Dagum (1988, 1983).

Let Fs and Fm denote the F value for the stable and moving seasonality tests, respectively. The combined
test is performed as follows (see also Figure 46.3):

1. If the null hypothesis of no stable seasonality is not rejected at the 0.10% significance level (PS �
0:001), then the series is considered to be nonseasonal. PROC X13 returns the conclusion, “Identifiable
Seasonality Not Present.”

2. If the null hypothesis in step 1 is rejected, then PROC X13 computes the following quantities:

T1 D
7

Fs

T2 D
3Fm

Fs

Let T denote the simple average of T1 and T2:

T D
.T1 C T2/

2

If the null hypothesis of no moving seasonality is rejected at the 5.0% significance level (PM < 0:05)
and if T � 1:0, the null hypothesis of identifiable seasonality not present is not rejected and PROC
X13 returns the conclusion, “Identifiable Seasonality Not Present.”
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3. If the null hypothesis of identifiable seasonality not present has not been accepted, but T1 � 1:0,
T2 � 1:0, or the Kruskal-Wallis chi-squared test fails to reject at the 0.10% significance level
(PKW � 0:001), then PROC X13 returns the conclusion “Identifiable Seasonality Probably Not
Present.”

4. If the null hypotheses of no stable seasonality associated with the FS and Kruskal-Wallis chi-squared
tests are rejected and if none of the combined measures described in steps 2 and 3 fail, then the null
hypothesis of identifiable seasonality not present is rejected and PROC X13 returns the conclusion
“Identifiable Seasonality Present.”

Included in the displayed output of Table D8A is the table “Summary of Results and Combined Test for the
Presence of Identifiable Seasonality.” This table displays the T1, T2, and T values and the significance levels
for the stable seasonality test, the moving seasonality test, and the Kruskal-Wallis test. The last item in the
table is the result of the combined test for identifiable seasonality.
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Figure 46.3 Combined Seasonality Test Flowchart



3374 F Chapter 46: The X13 Procedure

Computations
For more information about the computations used in PROC X13, see the X-13ARIMA-SEATS Reference
Manual (US Bureau of the Census 2009).

For more information about the X-11 method of decomposition, see Seasonal Adjustment with the X-11
Method (Ladiray and Quenneville 2001).

PICKMDL Model Selection
You can request that the X-13ARIMA-SEATS method select a model in a manner similar to the method used
in X-11-ARIMA (Dagum 1988, 1983). Information about this model selection (PICKMDL) is based on the
description in the X-13ARIMA-SEATS Reference Manual (US Bureau of the Census 2009). You can request
the PICKMDL method in one of the following ways:

� by specifying the PICKMDL statement

� by specifying more than one value for the _MODEL_ variable in the MDLINFOIN= data set (subset by
BY group and series)

The default settings for the PICKMDL automatic model selection method classify a model as acceptable if
all of the following conditions are true:

� The absolute average percentage error of the extrapolated values within the last three years of data is
less than 15%.

� The p-value is greater than 5% for the fitted model’s Ljung-Box Q statistic test of the lack of correlation
in the model’s residuals.

� There are no signs of overdifferencing. Overdifferencing is indicated if the sum of the nonseasonal
MA parameter estimates (for models with at least one nonseasonal difference) is greater than 0.9.

If a data set is specified in the MDLINFOIN= option and the data set contains more than one model for a
series to be forecast, then the models described in the data set are candidates for the PICKMDL method
of model selection. If the MDLINFOIN= option is not specified, then the candidate models are shown in
Table 46.14, along with the order in which the models are considered. The order in which the model is
considered is important when METHOD=FIRST is specified in the PICKMDL statement.

Table 46.14 PICKMDL Method Default ARIMA Models

Order of Candidate Model ARIMA Model Orders

1 (0 1 1)(0 1 1)
2 (0 1 2)(0 1 1)
3 (2 1 0)(0 1 1)
4 (0 2 2)(0 1 1)
5 (2 1 2)(0 1 1)
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No model is selected when none of the models in the MDLINFOIN= data set are acceptable. For more
information about the output when no model is selected, see the section “Final Automatic Model Selection
Table” on page 3379.

The regARIMA model consists of a transformation, a regression component, and an ARIMA model compo-
nent. For each series, the following conditions hold:

� If no regression is specified in the MDLINFOIN= data set model but regressors are specified using the
INPUT, EVENT, or REGRESSION statements, then the ARIMA models from the MDLINFOIN=
data set are tested in conjunction with the regression variables specified in the INPUT, EVENT, and
REGRESSION statements.

� If no ARIMA model is specified in the MDLINFOIN= data set but an ARIMA model is specified using
an ARIMA statement or TRANSFORM statement, then the regression information from each model
specified in the MDLINFOIN= data set is used in conjunction with the ARIMA model specified by the
TRANSFORM and ARIMA statements.

� If no model information is specified in the MDLINFOIN= data set, then any model information
specified by the TRANSFORM, INPUT, REGRESSION, EVENT, and ARIMA statements is used,
and the PICKMDL statement is not in effect for that series.

SEATS Decomposition
PROC X13 can decompose the B1 series by using the SEATS decomposition method described in Gómez
and Maravall (1997a, b). The SEATS decomposition method is planned for inclusion in the US Census
Bureau’s X13 program, which is not yet available for release.

The SEATS method requires the series to be extended with the same number of backcast and forecast
observations. The number of observations backcast and forecast must meet the following minimum criteria:

� The number of forecast and backcast observations must be at least twice the number of observations in
a year, with a minimum of 8.

� The number of forecast and backcast observations must be at least 2� .qCQ � s/, where the ARIMA
model used to extend the series is .pdq/.PDQ/s in standard Box-Jenkins notation.

� The number of forecast and backcast observations must be at least p C d C q C .P CD CQ/ � s,
where the ARIMA model used to extend the series is .pdq/.PDQ/s in standard Box-Jenkins notation.

If you specify the SEATSDECOMP statement and the number of forecasts or backcasts (either the default
number or the number you specify) is not sufficient for SEATS decomposition, then the number of forecasts
or backcasts is increased to the minimum required.
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Displayed Output, ODS Table Names, and OUTPUT Tablename Keywords
The options specified in PROC X13 control both the tables produced by the procedure and the tables available
for output to the OUT= data set specified in the OUTPUT statement.

The displayed output is organized into tables identified by a part letter and a sequence number within the part.
The seven major parts of the X13 procedure are as follows:

A prior adjustments and regARIMA components (optional)

B preliminary estimates of irregular component weights and trading day regression factors (X-11 method)

C final estimates of irregular component weights and trading day regression factors

D final estimates of seasonal, trend cycle, and irregular components

E analytical tables

F summary measures

G charts

Table 46.15 describes the individual tables and charts. “P” indicates that the table is only displayed and is
not available for output to the OUT= data set. Data from displayed tables can be extracted into data sets by
using the Output Delivery System (ODS). For more information about the SAS Output Delivery System,
see the SAS Output Delivery System: User’s Guide. For more information about the features of the ODS
Graphics system, including the many ways that you can control or customize the plots that are produced by
SAS procedures, see Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

When tables available through the OUTPUT statement are output using ODS, the summary line is included
in the ODS output by default. The summary line gives the average, standard deviation, or total by each
period. The value –1 for YEAR indicates that the summary line is a total; the value –2 for YEAR indicates
that the summary line is an average; and the value –3 for YEAR indicates that the line is a standard deviation.
The value of YEAR for historical and forecast values is greater than or equal to zero. Thus, a negative value
indicates a summary line. You can suppress the summary line altogether by specifying the NOSUM option in
the TABLES statement. However, the NOSUM option also suppresses the display of the summary line in the
displayed table.

“T” indicates that the table is available using the OUTPUT statement, but is not displayed by default; you
must request that these tables be displayed by using the TABLES Statement. If there is no notation in the
“Notes” column, then the table is available directly using the OUTPUT statement, without specifying the
TABLES statement. If a table is not computed, then it is not displayed; if it is requested in the OUTPUT
statement, then the variable in the OUT= data set contains missing values. The actual number of tables
displayed depends on the options and statements specified.

Table 46.15 Table Names and Descriptions

Table Description Notes

Tables Associated with Model Order Identification
ModelDescription Regression model used in ARIMA model identification P
ACF Autocorrelation function P
PACF Partial autocorrelation function P

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=odsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 46.15 continued

Table Description Notes

Tables Associated with Automatic Modeling
UnitRootTestModel ARIMA estimates for unit root identification P
UnitRootTest Results of unit root test for identifying orders of

differencing
P

AutoChoiceModel Models estimated by automatic ARIMA model
selection procedure

P

AutoLjungBox Check of the residual Ljung-Box Q statistic P
Best5Model Best five ARIMA models chosen by automatic

modeling
P

AutomaticModelChoice Comparison of automatically selected model and
default model

P

InitialModelChoice Initial automatic model selection P
FinalModelChecks Final checks for identified model P
FinalModelChoice Final automatic model selection P

Diagnostic Tables
ErrorACF Autocorrelation of regARIMA model residuals P
ErrorPACF Partial autocorrelation of regARIMA model residuals P
SqErrorACF Autocorrelation of squared regARIMA model residuals P
ResidualOutliers Outliers of the unstandardized residuals P
ResidualStatistics Summary statistics for the unstandardized residuals P
NormalityStatistics Normality statistics for regARIMA model residuals P
G Spectral analysis of regARIMA model residuals P

Modeling Tables
MissingExtreme Extreme or missing values P
ARMAIterationTolerances Exact ARMA likelihood estimation iteration tolerances P
IterHistory ARMA iteration history P
OutlierDetection Critical values to use in outlier detection P
PotentialOutliers Potential outliers P
TLSTest Tests for cancellation of level-shifts P
ARMAIterationSummary Exact ARMA likelihood estimation iteration summary P
ModelDescription Model description for regARIMA model estimation P
RegParameterEstimates Regression model parameter estimates P
RegressorGroupChiSq Chi-squared tests for groups of regressors P
ARMAParameterEstimates Exact ARMA maximum likelihood estimation P
AvgFcstErr Average absolute percentage error in within-sample or

without-sample forecasts or backcasts
P

Roots Seasonal or nonseasonal AR or MA roots P
MLESummary Estimation summary P
ForecastCL Forecasts, standard errors, and confidence limits P
MV1 Original series adjusted for missing value regressors
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Table 46.15 continued

Table Description Notes

Sequenced Tables
A1 Original series
A2 Prior-adjustment factors
A6 RegARIMA trading day component
A7 RegARIMA holiday component
A8 RegARIMA combined outlier component
A8AO RegARIMA AO outlier component
A8LS RegARIMA level change outlier component
A8TC RegARIMA temporary change outlier component
A9 RegARIMA user-defined regression component
A10 RegARIMA user-defined seasonal component
A19 RegARIMA outlier adjusted original data T
B1 Prior-adjusted or original series
B7 Preliminary trend-cycle, B iteration T
B13 Irregular component, B iteration T
B17 Preliminary weights for the irregular component T
B20 Extreme values, B iteration T
C1 Original series modified for outliers, trading day, and

prior factors, C iteration
T

C17 Final weight for irregular components
C20 Final extreme value adjustment factors T
D1 Modified original data, D iteration T
D7 Preliminary trend cycle, D iteration T
D8 Final unmodified SI ratios
D8A Seasonality tests P
D8B Final unmodified SI ratios, with labels for outliers and

extreme values
D9 Final replacement values for extreme SI ratios
D9A Moving seasonality ratio P
SeasonalFilter Seasonal filter statistics for Table D10 P
D10 Final seasonal factors
D10B Seasonal factors, adjusted for user-defined seasonal
D10D Final seasonal difference
D11 Final seasonally adjusted series
D11A Final seasonally adjusted series with forced yearly

totals
D11F Factors applied to get adjusted series with forced

yearly totals
D11R Rounded final seasonally adjusted series (with forced

yearly totals)
TrendFilter Trend filter statistics for Table D12 P
D12 Final trend cycle
D13 Final irregular series
D16 Combined adjustment factors
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Table 46.15 continued

Table Description Notes

D16B Final adjustment differences
D18 Combined calendar adjustment factors
E1 Original data modified for extremes
E2 Modified seasonally adjusted series
E3 Modified irregular series
E4 Ratios of annual totals P
E5 Percent changes in original series
E6 Percent changes in final seasonally adjusted series
E6A Percent changes (differences) in seasonally adjusted

series with forced yearly totals (D11.A)
E6R Percent changes (differences) in rounded seasonally

adjusted series (D11.R)
E7 Differences in final trend cycle
E8 Percent changes (differences) in original series

adjusted for calendar factors (A18)
E18 Final adjustment ratios (original series to seasonally

adjusted series)
F2A-I Summary measures P
F3 Quality assessment statistics P
F4 Day of the week trading day component factors P
G Spectral analysis P

Final Automatic Model Selection Table
When the PICKMDL statement is specified and no model is selected, then the model in the “Final Automatic
Model Selection” table is displayed as “(*, *, *) (*, *, *)” and an error message is displayed in both the log
file and the output. If the “Final Automatic Model Selection” table is output to a data set, the model orders
are output as –1, indicating the failure to select a model. For more information about PICKMDL model
selection, see the section “PICKMDL Model Selection” on page 3374.
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Table D 8.B
Table D8B displays the same series as Table D8. However, additional information is provided about the D8
series. The following values are displayed as labels for each observation of the series:

� The first label column indicates whether the D8 series value is extreme as determined by the X-11
extreme value method. An extreme observation is marked with an asterisk in the first label column.
This data value is 0 or 1. If D8B or D8BX is specified in the OUTPUT statement, this value is output
as the D8BX series to the data set that is specified in the OUT= option in the OUTPUT statement.

� The second label column contains the number of AO, TC, or RP outliers, if any, that affect the
observation. This data value is 0 if no outliers affect the observation. Only the nonzero values are
displayed in the table. If D8B or D8BO is specified in the OUTPUT statement, the number of outliers
is output as the D8BO series to the data set that is specified in the OUT= option in the OUTPUT
statement.

� The third label column indicates whether the observation is affected by level shift outliers as determined
by an X-13ARIMA-SEATS method. This data value contains the number of level shifts that affect
the observation. A nonzero value is displayed as “L”. If D8B or D8BL is specified in the OUTPUT
statement, the data values are output as the D8BL series to the data set that is specified in the OUT=
option in the OUTPUT statement.

If any observations in Table D 8.B are affected by extremes, outliers, or level shifts, then notes that indicate
the number of observations affected in each category are displayed at the end of the table.

Using Auxiliary Variables to Subset Output Data Sets
The X13 procedure can produce more than one table with the same name. For example, the following
IDENTIFY statement produces ACF and PACF tables for two levels of differencing:

identify diff=(1) sdiff=(0, 1);

Auxiliary variables in the output data can be used to subset the data. In this example, the auxiliary variables
Diff and SDiff specify the levels of regular and seasonal differencing that are used to compute the ACF. The
following statements show how to retrieve the ACF results for the first differenced series:

ods select acf;
ods output acf=acf;
proc x13 data=sashelp.air date=date;

identify diff=(1) sdiff=(0,1);
run;
title "Regular Difference=1 Seasonal Difference=0";
data acfd1D0;

set acf(where=(Diff=1 and Sdiff=0));
run;

In addition to any BY variables, the auxiliary variables in the ACF and PACF data sets are _NAME_, _TYPE_,
Transform, Adjust, Regressors, Diff, and SDiff. Auxiliary variables can be related to the group as shown
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in the Results Viewer (for example, BY variables, _NAME_, and _TYPE_). However, they can also be
variables in the template where printing is suppressed by using PRINT=OFF. Auxiliary variables such as
Transform, Adjust, and Regressors are not displayed in the ACF and PACF tables because similar information
is displayed in the ModelDescription table that immediately precedes the ACF and PACF tables. The variables
Diff and SDiff are not displayed because the levels of differencing are included in the title of the ACF and
PACF tables.

The BY variables and the _NAME_ variable are available for all ODS OUTPUT data sets that are produced
by the X13 procedure. The _TYPE_ variable is available for all ODS OUTPUT data sets that are produced
during the model identification and model estimation stages. The _TYPE_ variable enables you to determine
whether data in a table, such as the ModelDescription table, originated from the model identification stage or
the model estimation stage.

The forecast data sets contain the auxiliary variable _SCALE_. The value of _SCALE_ is “Original” or
“Transformed” to indicate the scale of the data. The auxiliary variable _SCALE_ is the same as the group in
the Results Viewer. It is not displayed in the forecast tables because the table titles indicate the scale of the
data.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the X13 procedure.

The graphs available through ODS Graphics are ACF plots, PACF plots, a residual histogram, spectral graphs,
and forecasting plots. ACF and PACF plots for regARIMA model identification are not available unless
the IDENTIFY statement is used. ACF plots, PACF plots, the residual histogram, and the residual spectral
graph for diagnosis of the regARIMA model residuals are not available unless the CHECK statement is
used. Forecasting plots are not available unless the FORECAST statement is used. A spectral plot of the
original series is always available; however, additional spectral plots are provided when the X11 statement
and CHECK statement are used. When ODS Graphics is not enabled, the ACF, PACF, and spectral analysis
are displayed as columns of a table. The residual histogram is available only when ODS Graphics is enabled.
To obtain a table that contains values related to the residual histogram, use the ODS OUTPUT statement.

ODS Graph Names

PROC X13 assigns a name to each graph it creates by using ODS. You can use these names to selectively
reference the graphs. The names are listed in Table 46.16.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=statug&docsetTarget=titlepage.htm
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Table 46.16 ODS Graphs Produced by PROC X13

ODS Graph Name Plot Description PROC X13 PLOTS= Option

ACFPlot Autocorrelation of
regression residuals

SERIES(ACF)

ErrorACFPlot Autocorrelation of
regARIMA model
residuals

RESIDUAL(ACF)

ErrorPACFPlot Partial autocorrelation
of regARIMA model
residuals

RESIDUAL(PACF)

ForecastsOnlyPlot Forecasts only of the
original series

FORECAST(FORECASTONLY)

ForecastsOnlyPlot Forecasts only of the
transformed series

FORECAST(TRANSFORECASTONLY)

ForecastsPlot Forecasts of the
original series

FORECAST(FORECAST)

ForecastsPlot Forecasts of the
transformed series

FORECAST(TRANSFORECAST)

ModelForecastsPlot Model and forecasts of
the original series

FORECAST(MODELFORECASTS)

ModelForecastsPlot Model and forecasts of
the transformed series

FORECAST(TRANSMODELFORECASTS)

ModelPlot Model of the original
series

FORECAST(MODELS)

ModelPlot Model of the
transformed series

FORECAST(TRANSMODELS)

PACFPlot Partial autocorrelation
of regression residuals

SERIES(PACF)

ResidualHistogram Distribution of
regARIMA residuals

RESIDUAL(HIST)

SpectralPlot Spectral plot of the
seasonally adjusted
series

ADJUSTED(SPECTRUM)

SpectralPlot Spectral plot of
irregular series

IRREGULAR(SPECTRUM)

SpectralPlot Spectral plot of the
regARIMA model
residuals

RESIDUAL(SPECTRUM)

SpectralPlot Spectral plot of the
original series

SERIES(SPECTRUM)

SqErrorACFPlot Autocorrelation of
squared regARIMA
model residuals

RESIDUAL(SQACF)
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OUT= Data Set
You can use the OUTPUT statement to output the component series computed in the X-13ARIMA-SEATS
decomposition.

The OUT= data set specified in the OUTPUT statement contains the BY variables (if any), the ID variables (if
any), and the DATE= variable if the DATE= option is specified or the variable _DATE_ if the DATE= option
is not specified. If user-defined regressor variables or EVENT variables are specified, they are included. In
addition, the various components specified by the table names in the OUTPUT statement are included in the
OUT= data set.

The OUTPUT OUT= data set can contain the following variables:

BY variables are the BY variables used to subset the series by BY groups. The BY variables
included in this data set match the BY variables, if any, used to process the series in
the DATA= data set.

ID variables enable the series observations to be identified using further information. The ID
variables included in this data set match the ID variables, if any, specified in the ID
statement and input from the DATA= data set.

DATE variable is the time ID variable used to process the time series. It is either the variable
specified in the DATE= option in the PROC X13 statement or the variable _DATE_
generated by the START= option in the PROC X13 statement.

_YEAR_ variable contains a value for the year of the date variable for the observation. This variable is
included in the OUT= data set if YEARSEAS is specified in the OUTPUT statement.

_SEASON_ variable contains a value for the month or quarter of the date variable for the observation.
This variable is included in the OUT= data set if YEARSEAS is specified in the
OUTPUT statement.

User-defined variables are variables specified in the INPUT statement or the USERVAR= option in the
REGRESSION statement. The values of these variables are copied from the DATA=
data set or from the AUXDATA= data set.

EVENT variables variables specified in the EVENT statement. The values of these variables are
computed based on the event definition and the dates of the time series observations.

Table variables contains the data from the X-13ARIMA-SEATS decomposition tables: A1, A2, A6,
A7, A8, A8AO, A8LS, A8TC, A9, A10, A19, B1, B7, B13, B17, B20, C1, C17,
C20, D1, D7, D8, D8BX, D8BO, D8BL, D9, D10, D10B, D10D, D11, D11A, D11F,
D11R, D12, D13, D16, D16B, D18, E1, E2, E3, E5, E6, E6A, E6R, E7, E8, E18,
and MV1. The variable name used in the output data set is the input variable name
followed by an underscore and the corresponding table name.
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SEATSDECOMP OUT= Data Set
You can use the SEATSDECOMP statement to output the component series that is computed using the
SEATS method of seasonal decomposition.

The OUT= data set specified in the SEATSDECOMP statement contains the BY variables (if any), the ID
variables (if any), and either the DATE= variable if the DATE= option is specified or the variable _DATE_ if
the DATE= option is not specified. If user-defined regressor variables or EVENT variables are specified, they
are included. In addition, the five components computed by the SEATS decomposition method are included
in the OUT= data set for each series.

The SEATSDECOMP OUT= data set can contain the following variables:

BY variables are the BY variables used to subset the series by BY groups. The BY variables
included in this data set match the BY variables (if any) that are used to process the
series in the DATA= data set.

ID variables enable the series observations to be identified using further information. The ID
variables included in this data set match the ID variables (if any) that are specified in
the ID statement and input from the DATA= data set.

DATE variable is the time ID variable used to process the time series. It is either the variable
specified in the DATE= option in the PROC X13 statement or the variable _DATE_
that is generated by the START= option in the PROC X13 statement.

_YEAR_ variable contains a value for the year of the date variable for the observation. This variable is
included in the OUT= data set if YEARSEAS is specified in the OUTPUT statement.

_SEASON_ variable contains a value for the month or quarter of the date variable for the observation.
This variable is included in the OUT= data set if YEARSEAS is specified in the
OUTPUT statement.

User-defined variables are variables specified in the INPUT statement or the USERVAR= option in the
REGRESSION statement. The values of these variables are copied from the DATA=
data set or from the AUXDATA= data set.

EVENT variables are variables that are specified in the EVENT statement. The values of these are
computed based on the event definition and the dates of the time series observations.

Component variables contains the data from the SEATS decomposition tables. The variable name used
in the output data set is the input variable name followed by an underscore and the
corresponding table name.

<variable>_OS contains the original series for SEATS decomposition. This is the B1 series from the
X-13ARIMA-SEATS method.

<variable>_SC contains the seasonal component series that is calculated by SEATS decomposition.

<variable>_TC contains the trend component series that is calculated by SEATS decomposition.

<variable>_SA contains the seasonally adjusted series that is calculated by SEATS decomposition.

<variable>_IC contains the irregular series that is calculated by SEATS decomposition.
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Special Data Sets
The X13 procedure can read a MDLINFOIN= input data set and output a MDLINFOOUT= data set. The
structure of both of these data sets is the same. The difference is that when the MDLINFOIN= data set is read,
only information relative to specifying a model is processed, whereas the MDLINFOOUT= data set contains
the results of estimating a model. The X13 procedure can also read data sets that contain event definition
data. The structure of these data sets is the same as in the SAS High-Performance Forecasting system.

MDLINFOIN= and MDLINFOOUT= Data Sets

The MDLINFOIN= and MDLINFOOUT= data sets can contain one or more of the following variables:

BY variables enable the model information to be specified by BY groups. BY variables can be
included in this data set that match the BY variables used to process the series. If no
BY variables are included, then the models specified by _NAME_ in the MDLINFOIN=
data set apply to all BY groups in the DATA= data set.

_NAME_ contains the variable name of the time series to which a particular model is to be applied.
Omit the _NAME_ variable if you are specifying the same model for all series in a BY
group.

_MODEL_ contains a name to identify the model for this observation. You can specify a name other
than _MODEL_ in the MDLVAR= option in the PICKMDL statement. The _MODEL_
variable is an ID variable; all observations that have the same value of this variable
belong to the same model. This variable is used to identify different model candidates
when the PICKMDL method is used to choose a model; it is not needed if only a single
model is specified.

_MODELTYPE_ specifies whether the observation contains regression or ARIMA information. The value
of _MODELTYPE_ should be either REG to supply regression information or ARIMA to
supply model information. If valid regression information exists in the MDLINFOIN=
data set for a BY group and series being processed, then the REGRESSION, INPUT,
and EVENT statements are ignored for that BY group and series. Likewise, if valid
ARIMA model information exists in the data set, then the AUTOMDL, ARIMA, and
TRANSFORM statements are ignored. Valid values for the other variables in the data
set depend on the value of the _MODELTYPE_ variable. Although other values of
_MODELTYPE_ might be permitted in other SAS procedures, PROC X13 recognizes
only REG and ARIMA.

_MODELPART_ further qualifies the regression information in the observation. For _MODEL-
TYPE_=REG, valid values of _MODELPART_ are INPUT, EVENT, and PREDEFINED.
A value of INPUT indicates that this observation refers to the user-defined variable
whose name is given in _DSVAR_. Likewise, a value of EVENT indicates that the
observation refers to the SAS or user-defined event whose name is given in _DSVAR_.
PREDEFINED indicates that the name given in _DSVAR_ is a predefined US Census
Bureau variable. If only ARIMA model information is included in the data set (that
is, all observations have _MODELTYPE_=ARIMA), then the _MODELPART_ variable
can be omitted. For observations where _MODELTYPE_=ARIMA, valid values for
_MODELPART_ are FORECAST, “.”, or blank.
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_COMPONENT_ further qualifies the regression or ARIMA information in the observation. For _MODEL-
TYPE_=REG, the only valid value of _COMPONENT_ is SCALE. For _MODELTYPE_=
ARIMA, the valid values of _COMPONENT_ are TRANSFORM, CONSTANT, NON-
SEASONAL, and SEASONAL. TRANSFORM indicates that the observation contains
the information that would be supplied in the TRANSFORM statement. CONSTANT is
specified to control the constant term in the model. NONSEASONAL and SEASONAL
refer to the AR, MA, and differencing terms in the ARIMA model.

_PARMTYPE_ further qualifies the regression or ARIMA information in the observation. For _MODEL-
TYPE_=REG, the value of _PARMTYPE_ is the same as the value of the USERTYPE=
option in the REGRESSION statement. Since the USERTYPE= option applies only to
user-defined events and variables, the value of _PARMTYPE_ does not alter processing
in observations where _MODELPART_=PREDEFINED. However, it is consistent to
use a value for _PARMTYPE_ that matches the US Census Bureau predefined variable.
For the constant term in the model information, _PARMTYPE_ should be SCALE. For
transformation information, the value of _PARMTYPE_ should be NONE, LOG, LOGIT,
SQRT, or BOXCOX. For _MODELTYPE_=ARIMA, valid values of _PARMTYPE_ are
AR, MA, and DIF.

_DSVAR_ specifies the variable name associated with the current observation. For _MODEL-
TYPE_=REG, the value of _DSVAR_ is the name of the user-defined variable, the event,
or the US Census Bureau predefined variable. For _MODELTYPE_=ARIMA, _DSVAR_
should match the name of the series being processed. If the ARIMA model information
applies to more than one series, then _DSVAR_ can be blank or “.”, equivalently.

_VALUE_ contains a numerical value that is used as a parameter for certain types of informa-
tion. For example, the PREDEFINED=EASTER(6) option in the REGESSION state-
ment is implemented in the MDLINFOIN= data set by using _DSVAR_=EASTER and
_VALUE_=6. For a BOXCOX transformation, _VALUE_ is set equal to the � parameter
value. For _COMPONENT_=SEASONAL, if _VALUE_ is nonmissing, then _VALUE_ is
used as the seasonal period. If _VALUE_ is missing for _COMPONENT_=SEASONAL,
then the seasonal period is determined by the interval of the series.

_FACTOR_ applies only to the AR and MA portions of the ARIMA model. The value of _FACTOR_
identifies the factor of the given AR or MA term. Therefore, the value of _FACTOR_ is
the same for all observations that are related to the same factor.

_LAG_ identifies the degree for differencing and AR and MA lags. If _COMPO-
NENT_=SEASONAL, then the value in _LAG_ is multiplied by the seasonal period
indicated by the value of _VALUE_.

_SHIFT_ contains the shift value for transfer functions. This value is not processed by PROC
X13, but it might be processed by other procedures in which transfer functions can be
specified.

_NOEST_ indicates whether a parameter associated with the observation is to be estimated.
For example, the NOINT option is indicated by _COMPONENT_=CONSTANT with
_NOEST_=1 and _EST_=0. _NOEST_=1 indicates that the value in _EST_ is a fixed
value. _NOEST_ pertains to the constant term, to AR and MA parameters, and to
regression parameters.
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_EST_ contains an initial or fixed value for a parameter associated with the observation that
is to be estimated. _NOEST_=1 indicates the value in _EST_ is a fixed value. _EST_
pertains to the constant term, to AR and MA parameters, and to regression parameters.

_STDERR_ contains output information about estimated parameters. The variable _STDERR_ is
not processed by the MDLINFOIN= data set for PROC X13. In the MDLINFOOUT=
data set, _STDERR_ contains the standard error that pertains to the estimated parameter
in the variable _EST_.

_TVALUE_ contains output information about estimated parameters. The variable _TVALUE_ is
not processed by the MDLINFOIN= data set for PROC X13. In the MDLINFOOUT=
data set, _TVALUE_ contains the t value that pertains to the estimated parameter in the
variable _EST_.

_PVALUE_ contains output information about estimated parameters. The variable _PVALUE_ is
not processed by the MDLINFOIN= data set for PROC X13. In the MDLINFOOUT=
data set, _PVALUE_ contains the p-value that pertains to the estimated parameter in the
variable _EST_.

_LABEL_ contains a character string. The value of the variable _LABEL_ does not affect the
model that is input when the data set is specified in the MDLINFOIN= option. The
user can store any string in the variable _LABEL_. If a model is selected from the
MDLINFOIN= data set, then the value of the variable _LABEL_ (if any) for the first
observation corresponding to that model is output to the MDLINFOOUT= data set (if
specified).

INEVENT= Data Set

The INEVENT= data set can contain the following variables. When a variable is omitted from the data set,
that variable is assumed to have the default value for all observations. The default values are specified in the
list.

_NAME_ specifies the event variable name. _NAME_ is displayed with the case preserved.
Since _NAME_ is a SAS variable name, the event can be referenced by using any
case. The _NAME_ variable is required; there is no default.

_CLASS_ specifies the class of event: SIMPLE, COMBINATION, PREDEFINED. The default
for _CLASS_ is SIMPLE.

_KEYNAME_ contains either a date keyword (SIMPLE EVENT), a predefined event variable name
(PREDEFINED EVENT), or an event name (COMBINATION EVENT). All _KEY-
NAME_ values are displayed in upper case. However, if the _KEYNAME_ value
refers to an event name, then the actual name can be of mixed case. The default for
_KEYNAME_ is no keyname, designated by “.”.

_STARTDATE_ contains either the date timing value or the first date timing value to use in a do-list.
The default for _STARTDATE_ is no date, designated by a missing value.

_ENDDATE_ contains the last date timing value to use in a do-list. The default for _ENDDATE_ is
no date, designated by a missing value.

_DATEINTRVL_ contains the interval for the date do-list. The default for _DATEINTRVL_ is no interval,
designated by “.”.
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_STARTDT_ contains either the datetime timing value or the first datetime timing value to use in a
do-list. The default for _STARTDT_ is no datetime, designated by a missing value.

_ENDDT_ contains the last datetime timing value to use in a do-list. The default for _ENDDT_
is no datetime, designated by a missing value.

_DTINTRVL_ contains the interval for the datetime do-list. The default for _DTINTRVL_ is no
interval, designated by “.”.

_STARTOBS_ contains either the observation number timing value or the first observation number
timing value to use in a do-list. The default for _STARTOBS_ is no observation
number, designated by a missing value.

_ENDOBS_ contains the last observation number timing value to use in a do-list. The default for
_ENDOBS_ is no observation number, designated by a missing value.

_OBSINTRVL_ contains the interval length of the observation number do-list. The default for _OB-
SINTRVL_ is no interval, designated by “.”.

_TYPE_ specifies the type of event. The valid values of _TYPE_ are POINT, LS, RAMP,
TR, TEMPRAMP, TC, LIN, LINEAR, QUAD, CUBIC, INV, INVERSE, LOG, and
LOGARITHMIC. The default for _TYPE_ is POINT.

_VALUE_ specifies the value for nonzero observation. The default for _VALUE_ is 1.0.

_PULSE_ specifies the interval that defines the units for the duration values. The default for
_PULSE_ is no interval, designated by “.”.

_DUR_BEFORE_ specifies the number of durations before the timing value. The default for
_DUR_BEFORE_ is 0.

_DUR_AFTER_ specifies the number of durations after the timing value. The default for
_DUR_AFTER_ is 0.

_SLOPE_BEF_ determines whether the curve is GROWTH or DECAY before the timing value
for _TYPE_=RAMP, _TYPE_=TEMPRAMP, and _TYPE_=TC. Valid values are
GROWTH and DECAY. The default for _SLOPE_BEF_ is GROWTH.

_SLOPE_AFT_ determines whether the curve is GROWTH or DECAY after the timing value
for _TYPE_=RAMP, _TYPE_=TEMPRAMP, and _TYPE_=TC. Valid values are
GROWTH and DECAY. The default for _SLOPE_AFT_ is GROWTH unless
_TYPE_=TC; then the default is DECAY.

_SHIFT_ specifies the number of _PULSE_= intervals to shift the timing value. The shift can
be positive (forward in time) or negative (backward in time). If _PULSE_= is not
specified, then the shift is in observations. The default for _SHIFT_ is 0.

_TCPARM_ specifies the parameter for EVENT of TYPE=TC. The default for _TCPARM_ is 0.5.

_RULE_ specifies the rule to use when combining events or when timing values of an event
overlap. The valid values of _RULE_ are ADD, MAX, MIN, MINNZ, MINMAG,
and MULT. The default for _RULE_ is ADD.

_PERIOD_ specifies the frequency interval at which the event should be repeated. If this value
is missing, then the event is not periodic. The default for _PERIOD_ is no interval,
designated by “.”.

_LABEL_ specifies the label or description for the event. If a label is not specified, then the
default label value is displayed as “.”. For events that produce dummy variables,
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either the user-supplied label or the default label is used. For COMPLEX events, the
_LABEL_ value is merely a description of the group of events.

OUTSTAT= Data Set

The OUTSTAT= data set can contain the following variables:

BY variables sorts the statistics into BY groups. BY variables are included in this data set that match
the BY variables used to process the series.

NAME specifies the variable name of the time series to which the statistics apply.

STAT describes the statistic that is stored in VALUE or CVALUE. STAT takes the following
values:

Period the period of the series, 4 or 12.

Mode the mode of the seasonal adjustment from the X11 statement. Possi-
ble values are ADD, MULT, LOGADD, and PSEUDOADD.

Start the beginning of the model span expressed as monyyyy for monthly
series or yyyyQq for quarterly series.

End the end of the model span expressed as monyyyy for monthly series
or yyyyQq for quarterly series.

NbFcst the number of forecast observations.

SigmaLimLower the lower sigma limit in standard deviation units.

SigmaLimUpper the upper sigma limit in standard deviation units.

pLBQ_24 the Ljung-Box Q statistic of the residuals at lag 24, for monthly series.
Note that lag 12 (pLBQ_12) and lag 16 (pLBQ_16) are included in
the data set for quarterly series.

D8Fs the stable seasonality F test value from Table D8.

D8Fm the moving seasonality F test value from Table D8.

ISRatio the final irregular-to-seasonal ratio from Table F 2.H.

SMA_ALL the final seasonal moving average filter for all periods.

RSF the residual seasonality F test value for Table D11 for the entire
series.

RSF3 the residual seasonality F test value for Table D11 for the last three
years.

RSFA the residual seasonality F test value for Table D11.A for the entire
series.

RSF3A the residual seasonality F test value for Table D11.A for the last three
years.

RSFR the residual seasonality F test value for Table D11.R for the entire
series.

RSF3R the residual seasonality F test value for Table D11.R for the last three
years.
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TMA the Henderson trend moving average filter selected.

ICRatio the final irregular-to-trend cycle ratio from Table F 2.H.

E5sd the standard deviation from Table E5.

E6sd the standard deviation from Table E6.

E6Asd the standard deviation from Table E6.A.

MCD months of cyclical dominance.

Q the overall level Q from Table F3.

Q2 Q overall level without M2 from Table F3.

FMT indicates whether the format is numeric or character. FMT=“NUM” if the value is numeric
and stored in the VALUE variable. FMT=“CHAR” if the value is a string and stored in the
CVALUE variable.

VALUE contains the numerical value of the statistic or missing if the statistic is of type character.

CVALUE contains the character value of the text statistic or blank if the statistic is of type numeric.

Examples: X13 Procedure

Example 46.1: ARIMA Model Identification
This example shows typical PROC X13 statements that are used for ARIMA model identification. This
example invokes the X13 procedure and uses the TRANSFORM and IDENTIFY statements. It specifies
the time series data, takes the logarithm of the series (TRANSFORM statement), and generates ACFs and
PACFs for the specified levels of differencing (IDENTIFY statement). The ACFs and PACFs for DIFF=1 and
SDIFF=1 are shown in Output 46.1.1, Output 46.1.2, Output 46.1.3, and Output 46.1.4. The data set is the
same as in the section “Basic Seasonal Adjustment” on page 3314.

The graphical displays are available when ODS Graphics is enabled. For more information about the graphics
available in the X13 procedure, see the section “ODS Graphics” on page 3381.

proc x13 data=sales date=date;
var sales;
transform power=0;
identify diff=(0,1) sdiff=(0,1);

run;
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Output 46.1.1 ACFs (Nonseasonal Order=1 Seasonal Order=1)

The X13 Procedure

Autocorrelation of Regression Residuals for ARIMA
Model Identification

For Variable sales

Differencing:  Nonseasonal Order=1 Seasonal Order=1

Lag Correlation
Standard

Error Chi-Square DF Pr > ChiSq

1 -0.34112 0.08737 15.5957 1 <.0001

2 0.10505 0.09701 17.0860 2 0.0002

3 -0.20214 0.09787 22.6478 3 <.0001

4 0.02136 0.10101 22.7104 4 0.0001

5 0.05565 0.10104 23.1387 5 0.0003

6 0.03080 0.10128 23.2709 6 0.0007

7 -0.05558 0.10135 23.7050 7 0.0013

8 -0.00076 0.10158 23.7050 8 0.0026

9 0.17637 0.10158 28.1473 9 0.0009

10 -0.07636 0.10389 28.9869 10 0.0013

11 0.06438 0.10432 29.5887 11 0.0018

12 -0.38661 0.10462 51.4728 12 <.0001

13 0.15160 0.11501 54.8664 13 <.0001

14 -0.05761 0.11653 55.3605 14 <.0001

15 0.14957 0.11674 58.7204 15 <.0001

16 -0.13894 0.11820 61.6452 16 <.0001

17 0.07048 0.11944 62.4045 17 <.0001

18 0.01563 0.11975 62.4421 18 <.0001

19 -0.01061 0.11977 62.4596 19 <.0001

20 -0.11673 0.11978 64.5984 20 <.0001

21 0.03855 0.12064 64.8338 21 <.0001

22 -0.09136 0.12074 66.1681 22 <.0001

23 0.22327 0.12126 74.2099 23 <.0001

24 -0.01842 0.12436 74.2652 24 <.0001

25 -0.10029 0.12438 75.9183 25 <.0001

26 0.04857 0.12500 76.3097 26 <.0001

27 -0.03024 0.12514 76.4629 27 <.0001

28 0.04713 0.12520 76.8387 28 <.0001

29 -0.01803 0.12533 76.8943 29 <.0001

30 -0.05107 0.12535 77.3442 30 <.0001

31 -0.05377 0.12551 77.8478 31 <.0001

32 0.19573 0.12569 84.5900 32 <.0001

33 -0.12242 0.12799 87.2543 33 <.0001

34 0.07775 0.12888 88.3401 34 <.0001

35 -0.15245 0.12924 92.5584 35 <.0001

36 -0.01000 0.13061 92.5767 36 <.0001

Note: The P-values approximate the probability of observing a Chi-Square at least this large when the model fitted is correct. When
DF is positive, small values of P, customarily those below 0.05, indicate model inadequacy.
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Output 46.1.2 Plot for ACFs (Nonseasonal Order=1 Seasonal Order=1)
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Output 46.1.3 PACFs (Nonseasonal Order=1 Seasonal Order=1)

Partial Autocorrelations of
Regression Residuals for

ARIMA Model Identification

For Variable sales

Differencing:
Nonseasonal Order=1

Seasonal Order=1

Lag Correlation
Standard

Error

1 -0.34112 0.08737

2 -0.01281 0.08737

3 -0.19266 0.08737

4 -0.12503 0.08737

5 0.03309 0.08737

6 0.03468 0.08737

7 -0.06019 0.08737

8 -0.02022 0.08737

9 0.22558 0.08737

10 0.04307 0.08737

11 0.04659 0.08737

12 -0.33869 0.08737

13 -0.10918 0.08737

14 -0.07684 0.08737

15 -0.02175 0.08737

16 -0.13955 0.08737

17 0.02589 0.08737

18 0.11482 0.08737

19 -0.01316 0.08737

20 -0.16743 0.08737

21 0.13240 0.08737

22 -0.07204 0.08737

23 0.14285 0.08737

24 -0.06733 0.08737

25 -0.10267 0.08737

26 -0.01007 0.08737

27 0.04378 0.08737

28 -0.08995 0.08737

29 0.04690 0.08737

30 -0.00490 0.08737

31 -0.09638 0.08737

32 -0.01528 0.08737

33 0.01150 0.08737

34 -0.01916 0.08737

35 0.02303 0.08737

36 -0.16488 0.08737
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Output 46.1.4 Plot for PACFs (Nonseasonal Order=1 Seasonal Order=1)

Example 46.2: Model Estimation
After studying the output from Example 46.1 and identifying the ARIMA part of the model as, for example,
(0 1 1)(0 1 1) 12, you can replace the IDENTIFY statement with the ARIMA and ESTIMATE statements as
follows:

proc x13 data=sales date=date;
var sales;
transform power=0;
arima model=( (0,1,1)(0,1,1) );
estimate;

run ;

The parameter estimates and estimation summary statistics are shown in Output 46.2.1.
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Output 46.2.1 Estimation Data

The X13 Procedure

Exact ARMA Likelihood Estimation
Iteration Tolerances

For Variable sales

Maximum Total ARMA Iterations 1500

Convergence Tolerance 1.0E-05

Average absolute
percentage error in

within-sample forecasts:

For Variable sales

Last year: 2.81

Last-1 year: 6.38

Last-2 year: 7.69

Last three years: 5.63

Exact ARMA Likelihood Estimation
Iteration Summary

For Variable sales

Number of ARMA iterations 6

Number of Function Evaluations 19

Exact ARMA Maximum Likelihood Estimation

For Variable sales

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal MA 1 0.40181 0.07887 5.09 <.0001

Seasonal MA 12 0.55695 0.07626 7.30 <.0001

Estimation Summary

For Variable sales

Number of Observations 144

Number of Residuals 131

Number of Parameters Estimated 3

Variance Estimate 1.3E-03

Standard Error Estimate 3.7E-02

Standard Error of Variance 1.7E-04

Log likelihood 244.6965

Transformation Adjustment -735.2943

Adjusted Log likelihood -490.5978

AIC 987.1956

AICC (F-corrected-AIC) 987.3845

Hannan Quinn 990.7005

BIC 995.8211
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Example 46.3: Seasonal Adjustment
Assuming that the model in Example 46.2 is satisfactory, a seasonal adjustment that uses forecast extension
can be performed by adding the X11 statement to the procedure. By default, the data are forecast one year
ahead at the end of the series.

ods output D8A#1=SalesD8A_1;
ods output D8A#2=SalesD8A_2;
ods output D8A#3=SalesD8A_3;
ods output D8A#4=SalesD8A_4;
proc x13 data=sales date=date;

var sales;
transform power=0;
arima model=( (0,1,1)(0,1,1) );
estimate;
x11;

run;

title 'Stable Seasonality Test';
proc print data=SalesD8A_1 LABEL;
run;

title 'Nonparametric Stable Seasonality Test';
proc print data=SalesD8A_2 LABEL;
run;

title 'Moving Seasonality Test';
proc print data=SalesD8A_3 LABEL;
run;

title 'Combined Seasonality Test';
proc print data=SalesD8A_4 LABEL NOOBS;

var _NAME_ Name1 Label1 cValue1;
run;

Table D8A, which contains the seasonality tests, is shown in Output 46.3.1.

Output 46.3.1 Table D8A as Displayed

The X13 Procedure

Table D 8.A: F-tests for Seasonality
For Variable sales

Test for the Presence of Seasonality Assuming
Stability

Sum of
Squares DF

Mean
Square F-Value

Between Months 23571.41 11 2142.855 190.9544 **

Residual 1481.28 132 11.22182

Total 25052.69 143

** Seasonality present at the 0.1 percent level.
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Output 46.3.1 continued

Nonparametric Test for the
Presence of Seasonality

Assuming Stability

Kruskal-Wallis
Statistic DF

Probability
Level

131.9546 11 .00%

Seasonality present at the one percent level.

Moving Seasonality Test

Sum of
Squares DF

Mean
Square F-Value

Between Years 259.2517 10 25.92517 3.370317 **

Error 846.1424 110 7.692204

**Moving seasonality present at the one percent level.

Summary of Results and Combined Test for the Presence
of Identifiable Seasonality

Seasonality Tests: Probability Level

Stable Seasonality F-test 0.000

Moving Seasonality F-test 0.001

Kruskal-Wallis Chi-square Test 0.000

Combined Measures: Value

T1 = 7/F_Stable 0.04

T2 = 3*F_Moving/F_Stable 0.05

T = (T1 + T2)/2 0.04

Combined Test of Identifiable Seasonality: Present

The four ODS statements in the preceding example direct output from the D8A tables into four data sets:
SalesD8A_1, SalesD8A_2, SalesD8A_3, and SalesD8A_4. It is best to direct the output to four different
data sets because the four tables associated with Table D8A have varying formats. The ODS data sets are
shown in Output 46.3.2, Output 46.3.3, Output 46.3.4, and Output 46.3.5.

Output 46.3.2 Table D8A Output in Data Set SalesD8A_1

Stable Seasonality Test

Obs _NAME_ FT_SRC
Sum of

Squares DF
Mean

Square F-Value FT_AST

1 sales Between Months 23571.41 11 2142.855 190.9544 **

2 sales Residual 1481.28 132 11.22182 .

3 sales Total 25052.69 143 . .
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Output 46.3.3 Table D8A Output in Data Set SalesD8A_2

Nonparametric Stable Seasonality Test

Obs _NAME_
Kruskal-Wallis

Statistic DF
Probability

Level

1 sales 131.9546 11 .00%

Output 46.3.4 Table D8A Output in Data Set SalesD8A_3

Moving Seasonality Test

Obs _NAME_ FT_SRC
Sum of

Squares DF
Mean

Square F-Value FT_AST

1 sales Between Years 259.2517 10 25.92517 3.370317 **

2 sales Error 846.1424 110 7.692204 .

Output 46.3.5 Table D8A Output in Data Set SalesD8A_4

Combined Seasonality Test

_NAME_ Name1 Label1 cValue1

sales Seasonality Tests: Probability Level

sales

sales P_STABLE Stable Seasonality F-test 0.000

sales P_MOV Moving Seasonality F-test 0.001

sales P_KW Kruskal-Wallis Chi-square Test 0.000

sales

sales Combined Measures: Value

sales

sales T1 T1 = 7/F_Stable 0.04

sales T2 T2 = 3*F_Moving/F_Stable 0.05

sales T T = (T1 + T2)/2 0.04

sales

sales IDSeasTest Combined Test of Identifiable Seasonality: Present

Example 46.4: RegARIMA Automatic Model Selection
This example demonstrates regARIMA modeling and TRAMO-based automatic model selection, which is
available with the AUTOMDL statement. ODS SELECT statements are used to limit the displayed output to
the model selection and estimation stages. The same data set is used as in the previous examples.

title 'TRAMO Automatic Model Identification';
ods select UnitRootTestModel

UnitRootTest
AutoChoiceModel
Best5Model
AutomaticModelChoice
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InitialModelChoice
FinalModelChecks
FinalModelChoice
AutomdlNote;

proc x13 data=sales date=date;
var sales;
transform function=log;
regression predefined=td;
automdl maxorder=(1,1)

print=all;
estimate;
x11;
output out=out a1 a2 a6 b1 c17 c20 d1 d7 d8 d9 d10

d11 d12 d13 d16 d18;
run;

proc print data=out(obs=21);
title 'Output Variables Related to Trading Day Regression';

run;

The automatic model selection output is shown in Output 46.4.1, Output 46.4.2, and Output 46.4.3. The
first table, “ARIMA Estimate for Unit Root Identification” in Output 46.4.1, gives details of the method
that TRAMO uses to automatically select the orders of differencing. The second table, “Results of Unit
Root Test for Identifying Orders of Differencing” in Output 46.4.1, shows that a regular difference order of 1
and a seasonal difference order of 1 has been determined by TRAMO. The third table, “Models Estimated
by Automatic ARIMA Model Selection Procedure” in Output 46.4.2, shows all the models examined by
the TRAMO-based method. The fourth table, “Best Five ARIMA Models Chosen by Automatic Modeling”
in Output 46.4.3, shows the top five models in order of rank and their BIC2 statistic. The fifth table,
“Comparison of Automatically Selected Model and Default Model” in Output 46.4.3, compares the model
selected by the TRAMO model to the default regARIMA model of the X-13ARIMA-SEATS method. The
sixth table, “Initial Automatic Model Selection” in Output 46.4.3, shows which model was selected between
the two models that are compared in the table “Comparison of Automatically Selected Model and Default
Model.” (When available, the table “Check of the Residual Ljung-Box Q Statistic” in Output 46.4.3 contains
additional information about the initial model choice.) The seventh table, “Final Checks for Identified Model”
in Output 46.4.3, displays the results of the final model checks for model adequacy. The eighth table, “Final
Automatic Model Selection” in Output 46.4.3, shows which model was actually selected.
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Output 46.4.1 Output from the AUTOMDL Statement

TRAMO Automatic Model Identification

The X13 Procedure

ARIMA Estimates for Unit Root Identification

For Variable sales

ARMA

Model
Number

Estimation
Method Estimated Model Parameter Estimate

1 H-R ( 2, 0, 0) ( 1, 0, 0) NS_AR_1 0.67540

H-R ( 2, 0, 0) ( 1, 0, 0) NS_AR_2 0.28425

H-R ( 2, 0, 0) ( 1, 0, 0) S_AR_12 0.91963

2 H-R ( 1, 1, 1) ( 1, 0, 1) NS_AR_1 0.13418

H-R ( 1, 1, 1) ( 1, 0, 1) S_AR_12 0.98500

H-R ( 1, 1, 1) ( 1, 0, 1) NS_MA_1 0.47884

H-R ( 1, 1, 1) ( 1, 0, 1) S_MA_12 0.51726

3 H-R ( 1, 1, 1) ( 1, 1, 1) NS_AR_1 -0.39269

H-R ( 1, 1, 1) ( 1, 1, 1) S_AR_12 0.06223

H-R ( 1, 1, 1) ( 1, 1, 1) NS_MA_1 -0.09570

H-R ( 1, 1, 1) ( 1, 1, 1) S_MA_12 0.58536

Results of Unit Root Test for
Identifying Orders of

Differencing

For Variable sales

Regular
difference

order

Seasonal
difference

order
Mean

Significant

1 1 no
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Output 46.4.2 Output from the AUTOMDL Statement

Models estimated by Automatic ARIMA Model Selection procedure

For Variable sales

ARMA Statistics of Fit

Model
Number Estimated Model Parameter Estimate BIC BIC2

1 ( 3, 1, 0) ( 0, 1, 0) NS_AR_1 -0.33524

( 3, 1, 0) ( 0, 1, 0) NS_AR_2 -0.05558

( 3, 1, 0) ( 0, 1, 0) NS_AR_3 -0.15649

( 3, 1, 0) ( 0, 1, 0) 1024.469 -3.40549

2 ( 3, 1, 0) ( 0, 1, 1) NS_AR_1 -0.33186

( 3, 1, 0) ( 0, 1, 1) NS_AR_2 -0.05823

( 3, 1, 0) ( 0, 1, 1) NS_AR_3 -0.15200

( 3, 1, 0) ( 0, 1, 1) S_MA_12 0.55279

( 3, 1, 0) ( 0, 1, 1) 993.7880 -3.63970

3 ( 3, 1, 0) ( 1, 1, 0) NS_AR_1 -0.38673

( 3, 1, 0) ( 1, 1, 0) NS_AR_2 -0.08768

( 3, 1, 0) ( 1, 1, 0) NS_AR_3 -0.18143

( 3, 1, 0) ( 1, 1, 0) S_AR_12 -0.47336

( 3, 1, 0) ( 1, 1, 0) 1000.224 -3.59057

4 ( 3, 1, 0) ( 1, 1, 1) NS_AR_1 -0.34352

( 3, 1, 0) ( 1, 1, 1) NS_AR_2 -0.06504

( 3, 1, 0) ( 1, 1, 1) NS_AR_3 -0.15728

( 3, 1, 0) ( 1, 1, 1) S_AR_12 -0.12163

( 3, 1, 0) ( 1, 1, 1) S_MA_12 0.47073

( 3, 1, 0) ( 1, 1, 1) 998.0548 -3.60713

5 ( 0, 1, 0) ( 0, 1, 1) S_MA_12 0.60446

( 0, 1, 0) ( 0, 1, 1) 996.8560 -3.61628

6 ( 0, 1, 1) ( 0, 1, 1) NS_MA_1 0.36272

( 0, 1, 1) ( 0, 1, 1) S_MA_12 0.55599

( 0, 1, 1) ( 0, 1, 1) 986.6405 -3.69426

7 ( 1, 1, 0) ( 0, 1, 1) NS_AR_1 -0.32734

( 1, 1, 0) ( 0, 1, 1) S_MA_12 0.55834

( 1, 1, 0) ( 0, 1, 1) 987.1500 -3.69037

8 ( 1, 1, 1) ( 0, 1, 1) NS_AR_1 0.17838

( 1, 1, 1) ( 0, 1, 1) NS_MA_1 0.52871

( 1, 1, 1) ( 0, 1, 1) S_MA_12 0.56212

( 1, 1, 1) ( 0, 1, 1) 991.2363 -3.65918

9 ( 0, 1, 1) ( 0, 1, 0) NS_MA_1 0.36005

( 0, 1, 1) ( 0, 1, 0) 1017.770 -3.45663
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Output 46.4.3 Output from the AUTOMDL Statement

Best Five ARIMA Models Chosen by
Automatic Modeling

For Variable sales

Rank Estimated Model BIC2

1 ( 0, 1, 1) ( 0, 1, 1) -3.69426

2 ( 1, 1, 0) ( 0, 1, 1) -3.69037

3 ( 1, 1, 1) ( 0, 1, 1) -3.65918

4 ( 0, 1, 0) ( 0, 1, 1) -3.61628

5 ( 0, 1, 1) ( 0, 1, 0) -3.45663

Comparison of Automatically Selected Model and Default Model

For Variable sales

Statistics of Fit

Source of Candidate Models Estimated Model

Confidence
Coefficient

of the
Ljung-Box
Q Statistic

Residual
Standard

Error

Number
of

Outliers

Automatic Model Choice ( 0, 1, 1) ( 0, 1, 1) 0.62561 0.03546 0

Airline Model (Default) ( 0, 1, 1) ( 0, 1, 1) 0.62561 0.03546 0

Initial Automatic Model Selection

For Variable sales

Source of Model Estimated Model

Automatic Model Choice ( 0, 1, 1) ( 0, 1, 1)

Final Checks for Identified Model

For Variable sales

Test Result Model Change

Check for Unit Roots No unit root. No Change

Check for Nonseasonal Overdifferencing Nonseasonal MA not within 0.001 of 1.0 - model passes. No Change

Check for insignificant ARMA coefficients No insignificant ARMA coefficients found. No Change

Final Automatic Model Selection

For Variable sales

Source of Model
Orders
Altered Estimated Model

Automatic Model Choice No ( 0, 1, 1) ( 0, 1, 1)

Table 46.17 and Output 46.4.4 illustrate the regARIMA modeling method. Table 46.17 shows the relationship
between the output variables in PROC X13 that results from a regARIMA model. Note that some of these
formulas apply only to this example. Output 46.4.4 shows the values of these variables for the first 21
observations in the example.
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Table 46.17 regARIMA Output Variables and Descriptions

Table Title Type Formula

A1 Time series data (for the span analyzed) Data Input
A2 Prior-adjustment factors leap year (from

trading day regression) adjustments
Factor Calculated from regression

A6 RegARIMA trading day component leap
year prior adjustments included from
Table A2

Factor Calculated from regression

B1 Original series (prior adjusted) Data B1 D A1=A6*
(adjusted for regARIMA factors) *Because only TD specified

C17 Final weights for irregular component Factor Calculated using moving standard
deviation

C20 Final extreme value adjustment factors Factor Calculated using C16 and C17
D1 Modified original data, D iteration Data D1 D B1=C20**

D1 D C19=C20
**C19 D B1 in this example

D7 Preliminary trend cycle, D iteration Data Calculated using Henderson
moving average

D8 Final unmodified SI ratios Factor D8 D B1=D7***
D8 D C19=D7
***TD specified in regression

D9 Final replacement values for SI ratios Factor If C17 shows extreme values,
D9 D D1=D7;
D9 D : otherwise

D10 Final seasonal factors Factor Calculated using moving averages
D11 Final seasonally adjusted data Data D11 D B1=D10****

(also adjusted for trading day) D11 D C19=D10
****B1 D C19 for this example

D12 Final trend cycle Data Calculated using Henderson moving
average

D13 Final irregular component Factor D13 D D11=D12
D16 Combined adjustment factors (includes

seasonal, trading day factors)
Factor D16 D A1=D11

D18 Combined calendar adjustment factors Factor D18 D D16=D10
(includes trading day factors) D18 D A6*****

*****Regression TD is the only calendar
adjustment factor in this example
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Output 46.4.4 Output Variables Related to Trading Day Regression

Output Variables Related to Trading Day Regression

Obs DATE sales_A1 sales_A2 sales_A6 sales_B1 sales_C17 sales_C20 sales_D1 sales_D7 sales_D8

1 SEP78 112 1.00000 1.01328 110.532 1.00000 1.00000 110.532 124.138 0.89040

2 OCT78 118 1.00000 0.99727 118.323 1.00000 1.00000 118.323 124.905 0.94731

3 NOV78 132 1.00000 0.98960 133.388 1.00000 1.00000 133.388 125.646 1.06161

4 DEC78 129 1.00000 1.00957 127.777 1.00000 1.00000 127.777 126.231 1.01225

5 JAN79 121 1.00000 0.99408 121.721 1.00000 1.00000 121.721 126.557 0.96179

6 FEB79 135 0.99115 0.99115 136.205 1.00000 1.00000 136.205 126.678 1.07521

7 MAR79 148 1.00000 1.00966 146.584 1.00000 1.00000 146.584 126.825 1.15580

8 APR79 148 1.00000 0.99279 149.075 1.00000 1.00000 149.075 127.038 1.17347

9 MAY79 136 1.00000 0.99406 136.813 1.00000 1.00000 136.813 127.433 1.07360

10 JUN79 119 1.00000 1.01328 117.440 1.00000 1.00000 117.440 127.900 0.91822

11 JUL79 104 1.00000 0.99727 104.285 1.00000 1.00000 104.285 128.499 0.81156

12 AUG79 118 1.00000 0.99678 118.381 1.00000 1.00000 118.381 129.253 0.91589

13 SEP79 115 1.00000 1.00229 114.737 0.98630 0.99964 114.778 130.160 0.88151

14 OCT79 126 1.00000 0.99408 126.751 0.88092 1.00320 126.346 131.238 0.96581

15 NOV79 141 1.00000 1.00366 140.486 1.00000 1.00000 140.486 132.699 1.05869

16 DEC79 135 1.00000 0.99872 135.173 1.00000 1.00000 135.173 134.595 1.00429

17 JAN80 125 1.00000 0.99406 125.747 0.00000 0.95084 132.248 136.820 0.91906

18 FEB80 149 1.02655 1.03400 144.100 1.00000 1.00000 144.100 139.215 1.03509

19 MAR80 170 1.00000 0.99872 170.217 1.00000 1.00000 170.217 141.559 1.20245

20 APR80 170 1.00000 0.99763 170.404 1.00000 1.00000 170.404 143.777 1.18520

21 MAY80 158 1.00000 1.00966 156.489 1.00000 1.00000 156.489 145.925 1.07239

Obs sales_D9 sales_D10 sales_D11 sales_D12 sales_D13 sales_D16 sales_D18

1 . 0.90264 122.453 124.448 0.98398 0.91463 1.01328

2 . 0.94328 125.438 125.115 1.00258 0.94070 0.99727

3 . 1.06320 125.459 125.723 0.99790 1.05214 0.98960

4 . 0.99534 128.375 126.205 1.01720 1.00487 1.00957

5 . 0.97312 125.083 126.479 0.98896 0.96735 0.99408

6 . 1.05931 128.579 126.587 1.01574 1.04994 0.99115

7 . 1.17842 124.391 126.723 0.98160 1.18980 1.00966

8 . 1.18283 126.033 126.902 0.99315 1.17430 0.99279

9 . 1.06125 128.916 127.257 1.01303 1.05495 0.99406

10 . 0.91663 128.121 127.747 1.00293 0.92881 1.01328

11 . 0.81329 128.226 128.421 0.99848 0.81107 0.99727

12 . 0.91135 129.897 129.316 1.00449 0.90841 0.99678

13 0.88182 0.90514 126.761 130.347 0.97249 0.90722 1.00229

14 0.96273 0.93820 135.100 131.507 1.02732 0.93264 0.99408

15 . 1.06183 132.306 132.937 0.99525 1.06571 1.00366

16 . 0.99339 136.072 134.720 1.01004 0.99212 0.99872

17 0.96658 0.97481 128.996 136.763 0.94321 0.96902 0.99406

18 . 1.06153 135.748 138.996 0.97663 1.09762 1.03400

19 . 1.17965 144.295 141.221 1.02177 1.17814 0.99872

20 . 1.18499 143.802 143.397 1.00283 1.18218 0.99763

21 . 1.06005 147.624 145.591 1.01397 1.07028 1.00966
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Example 46.5: Automatic Outlier Detection
This example demonstrates the use of the OUTLIER statement to automatically detect and remove outliers
from a time series to be seasonally adjusted. The data set is the same as in the section “Basic Seasonal
Adjustment” on page 3314 and the previous examples. Adding the OUTLIER statement to Example 46.3
requests that outliers be detected by using the default critical value as described in the section “OUTLIER
Statement” on page 3344. The tables associated with outlier detection for this example are shown in
Output 46.5.1. The first table shows the critical values; the second table shows that a single potential outlier
was identified; the third table shows the estimates for the ARMA parameters. Since no outliers are included
in the regression model, the “Regression Model Parameter Estimates” table is not displayed. Because only
a potential outlier was identified, and not an actual outlier, in this case the A1 series and the B1 series are
identical.

title 'Automatic Outlier Identification';
proc x13 data=sales date=date;

var sales;
transform function=log;
arima model=( (0,1,1)(0,1,1) );
outlier;
estimate;
x11;
output out=nooutlier a1 b1 d10;

run ;

Output 46.5.1 PROC X13 Output When Potential Outliers Are Identified

Automatic Outlier Identification

The X13 Procedure

Critical Values to use in
Outlier Detection

For Variable sales

Begin SEP1978

End AUG1990

Observations 144

Method Add One

AO Critical Value 3.889838

LS Critical Value 3.889838

Note: The following time series values might later be identified as outliers when data are added or revised.  They were not identified as
outliers in this run either because their test t-statistics were slightly below the critical value or because they were eliminated
during the backward deletion step of the identification procedure, when a non-robust t-statistic is used.

Potential Outliers

For Variable sales

Type
of

Outlier Date

t
Value

for
AO

t
Value

for
LS

AO NOV1989 -3.48 -1.51
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Output 46.5.1 continued

Exact ARMA Maximum Likelihood Estimation

For Variable sales

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal MA 1 0.40181 0.07887 5.09 <.0001

Seasonal MA 12 0.55695 0.07626 7.30 <.0001

In the next example, reducing the critical value to 3.3 causes the outlier identification routine to more
aggressively identify outliers as shown in Output 46.5.2. The first table shows the critical values. The second
table shows that three additive outliers and a level-shift have been included in the regression model. The third
table shows how the inclusion of outliers in the model affects the ARMA parameters.

proc x13 data=sales date=date;
var sales;
transform function=log;
arima model=((0,1,1) (0,1,1));
outlier cv=3.3;
estimate;
x11;
output out=outlier a1 a8 a8ao a8ls b1 d10;

run;

proc print data=outlier(obs=45);
run;

Output 46.5.2 PROC X13 Output When Outliers Are Identified

Automatic Outlier Identification

The X13 Procedure

Critical Values to use in
Outlier Detection

For Variable sales

Begin SEP1978

End AUG1990

Observations 144

Method Add One

AO Critical Value 3.3

LS Critical Value 3.3

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

Automatically Identified AO JAN1981 Est 0.09590 0.02168 4.42 <.0001

LS FEB1983 Est -0.09673 0.02488 -3.89 0.0002

AO OCT1983 Est -0.08032 0.02146 -3.74 0.0003

AO NOV1989 Est -0.10323 0.02480 -4.16 <.0001
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Output 46.5.2 continued

Exact ARMA Maximum Likelihood Estimation

For Variable sales

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal MA 1 0.33205 0.08239 4.03 <.0001

Seasonal MA 12 0.49647 0.07676 6.47 <.0001

The first 45 observations of the A1, A8, A8AO, A8LS, B1, and D10 series are displayed in Output 46.5.3.
You can confirm the following relationships from the data:

A8 D A8AO � A8LS

B1 D A1=A8

The seasonal factors are stored in the variable sales_D10.
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Output 46.5.3 PROC X13 Output Series Related to Outlier Detection

Automatic Outlier Identification

Obs DATE sales_A1 sales_A8 sales_A8AO sales_A8LS sales_B1 sales_D10

1 SEP78 112 1.10156 1.00000 1.10156 101.674 0.90496

2 OCT78 118 1.10156 1.00000 1.10156 107.121 0.94487

3 NOV78 132 1.10156 1.00000 1.10156 119.830 1.04711

4 DEC78 129 1.10156 1.00000 1.10156 117.107 1.00119

5 JAN79 121 1.10156 1.00000 1.10156 109.844 0.94833

6 FEB79 135 1.10156 1.00000 1.10156 122.553 1.06817

7 MAR79 148 1.10156 1.00000 1.10156 134.355 1.18679

8 APR79 148 1.10156 1.00000 1.10156 134.355 1.17607

9 MAY79 136 1.10156 1.00000 1.10156 123.461 1.07565

10 JUN79 119 1.10156 1.00000 1.10156 108.029 0.91844

11 JUL79 104 1.10156 1.00000 1.10156 94.412 0.81206

12 AUG79 118 1.10156 1.00000 1.10156 107.121 0.91602

13 SEP79 115 1.10156 1.00000 1.10156 104.397 0.90865

14 OCT79 126 1.10156 1.00000 1.10156 114.383 0.94131

15 NOV79 141 1.10156 1.00000 1.10156 128.000 1.04496

16 DEC79 135 1.10156 1.00000 1.10156 122.553 0.99766

17 JAN80 125 1.10156 1.00000 1.10156 113.475 0.94942

18 FEB80 149 1.10156 1.00000 1.10156 135.263 1.07172

19 MAR80 170 1.10156 1.00000 1.10156 154.327 1.18663

20 APR80 170 1.10156 1.00000 1.10156 154.327 1.18105

21 MAY80 158 1.10156 1.00000 1.10156 143.433 1.07383

22 JUN80 133 1.10156 1.00000 1.10156 120.738 0.91930

23 JUL80 114 1.10156 1.00000 1.10156 103.490 0.81385

24 AUG80 140 1.10156 1.00000 1.10156 127.093 0.91466

25 SEP80 145 1.10156 1.00000 1.10156 131.632 0.91302

26 OCT80 150 1.10156 1.00000 1.10156 136.171 0.93086

27 NOV80 178 1.10156 1.00000 1.10156 161.589 1.03965

28 DEC80 163 1.10156 1.00000 1.10156 147.972 0.99440

29 JAN81 172 1.21243 1.10065 1.10156 141.864 0.95136

30 FEB81 178 1.10156 1.00000 1.10156 161.589 1.07981

31 MAR81 199 1.10156 1.00000 1.10156 180.653 1.18661

32 APR81 199 1.10156 1.00000 1.10156 180.653 1.19097

33 MAY81 184 1.10156 1.00000 1.10156 167.036 1.06905

34 JUN81 162 1.10156 1.00000 1.10156 147.064 0.92446

35 JUL81 146 1.10156 1.00000 1.10156 132.539 0.81517

36 AUG81 166 1.10156 1.00000 1.10156 150.695 0.91148

37 SEP81 171 1.10156 1.00000 1.10156 155.234 0.91352

38 OCT81 180 1.10156 1.00000 1.10156 163.405 0.91632

39 NOV81 193 1.10156 1.00000 1.10156 175.206 1.03194

40 DEC81 181 1.10156 1.00000 1.10156 164.312 0.98879

41 JAN82 183 1.10156 1.00000 1.10156 166.128 0.95699

42 FEB82 218 1.10156 1.00000 1.10156 197.901 1.09125

43 MAR82 230 1.10156 1.00000 1.10156 208.795 1.19059

44 APR82 242 1.10156 1.00000 1.10156 219.688 1.20448

45 MAY82 209 1.10156 1.00000 1.10156 189.731 1.06355
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From the two previous examples, you can examine how outlier detection affects the seasonally adjusted
series. Output 46.5.4 shows a plot of A1 versus B1 in the series where outliers are detected. B1 has been
adjusted for the additive outliers and the level-shift.

proc sgplot data=outlier;
series x=date y=sales_A1 / name='A1' markers

markerattrs=(color=red symbol='circle')
lineattrs=(color=red);

series x=date y=sales_B1 / name='B1' markers
markerattrs=(color=black symbol='asterisk')
lineattrs=(color=black);

yaxis label='Original and Outlier Adjusted Time Series';
run;

Output 46.5.4 Original Series and Outlier Adjusted Series

Output 46.5.5 compares the seasonal factors (Table D10) of the series unadjusted for outliers to the series
adjusted for outliers. The seasonal factors are based on the B1 series.

data both;
merge nooutlier(rename=(sales_D10=unadj_D10)) outlier;

run;
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title 'Results of Outlier Identification on Final Seasonal Factors';
proc sgplot data=both;

series x=date y=unadj_D10 / name='unadjusted' markers
markerattrs=(color=red symbol='circle')
lineattrs=(color=red)
legendlabel='Unadjusted for Outliers';

series x=date y=sales_D10 / name='adjusted' markers
markerattrs=(color=blue symbol='asterisk')
lineattrs=(color=blue)
legendlabel='Adjusted for Outliers';

yaxis label='Final Seasonal Factors';
run;

Output 46.5.5 Seasonal Factors Based on Original and Outlier Adjusted Series
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Example 46.6: User-Defined Regressors
This example demonstrates the use of the USERVAR= option in the REGRESSION statement to include
user-defined regressors in the regARIMA model. The user-defined regressors must be defined as nonmissing
values for the span of the series being modeled plus any backcast or forecast values. Suppose you have the
data set SALESDATA with 132 monthly observations beginning in January 1949.

title 'Data Set to be Seasonally Adjusted';
data salesdata;

set sashelp.air(obs=132);
run;

Because the regARIMA model forecasts one year ahead, you must define the regressor for 144 observations
that start in January 1949. You can construct a simple length-of-month regressor by using the following
DATA step:

title 'User-defined Regressor for Data to be Seasonally Adjusted';
data regressors(keep=date LengthOfMonth);

set sashelp.air;
LengthOfMonth = INTNX('MONTH',date,1) - date;

run;

In this example, the two data sets are merged to use them as input to PROC X13. You can also use the
AUXDATA= data set to input user-defined regressors. For more information, see Example 46.11. The BY
statement is used to align the regressors with the time series by the time ID variable DATE.

title 'Data Set Containing Series and Regressors';
data datain;

merge regressors salesdata;
by date;

run;

proc print data=datain(firstobs=121);
run;

The last 24 observations of the input data set are displayed in Output 46.6.1. The regressor variable is defined
for one year (12 observations) beyond the span of the time series to be seasonally adjusted.
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Output 46.6.1 PROC X13 Input Data Set with User-Defined Regressor

Data Set Containing Series and Regressors

Obs DATE LengthOfMonth AIR

121 JAN59 31 360

122 FEB59 28 342

123 MAR59 31 406

124 APR59 30 396

125 MAY59 31 420

126 JUN59 30 472

127 JUL59 31 548

128 AUG59 31 559

129 SEP59 30 463

130 OCT59 31 407

131 NOV59 30 362

132 DEC59 31 405

133 JAN60 31 .

134 FEB60 29 .

135 MAR60 31 .

136 APR60 30 .

137 MAY60 31 .

138 JUN60 30 .

139 JUL60 31 .

140 AUG60 31 .

141 SEP60 30 .

142 OCT60 31 .

143 NOV60 30 .

144 DEC60 31 .

The DATAIN data set is now ready to be used as input to PROC X13. The DATE= variable and the user-defined
regressors are automatically excluded from the variables to be seasonally adjusted.

title 'regARIMA Model with User-defined Regressor';
proc x13 data=datain date=DATE interval=MONTH plots=none;

transform function=log;
regression uservar=LengthOfMonth / usertype=lom;
automdl;
x11;
output out=out a1 d11;

run;

The parameter estimates for the regARIMA model are shown in Output 46.6.2
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Output 46.6.2 PROC X13 Output for User-Defined Regression Parameter

regARIMA Model with User-defined Regressor

The X13 Procedure

Regression Model Parameter Estimates

For Variable AIR

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined LengthOfMonth Est 0.04683 0.01834 2.55 0.0119

Exact ARMA Maximum Likelihood Estimation

For Variable AIR

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal MA 1 0.33678 0.08506 3.96 0.0001

Seasonal MA 12 0.54078 0.07726 7.00 <.0001

Another way to include user-defined regressors in the regARIMA model is to specify the SPAN= option in the
PROC X13 statement. The following user-defined regressor is similar to the one defined previously. However,
this length-of-month regressor is mean adjusted. Using a zero-mean regressor prevents the regressor from
altering the level of the series. In this instance, the series to be seasonally adjusted, AIR, and the regression
variable, LengthOfMonth, have nonmissing observations at all time periods in the data set DATAIN.

title 'User-defined Regressor for Data to be Seasonally Adjusted, Mean Adjusted';
data datain(keep=date AIR LengthOfMonth);

set sashelp.air;
LengthOfMonth = INTNX('MONTH',date,1) - date - 30.4375;

run;

Because the default forecast period is one year ahead, the span of the series must be limited to one year
before the end of the regression variable definition to forecast using the regression variable LengthOfMonth,

title 'regARIMA Model with Zero-Mean User-defined Regressor';
proc x13 data=datain date=DATE interval=MONTH span=(,DEC1959) plots=none;

transform function=log;
regression uservar=LengthOfMonth / usertype=lom;
automdl;
x11;
output out=outzm a1 d11;

run;

The parameter estimates for the regARIMA model that are estimated using a zero-mean regressor are shown
in Output 46.6.3
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Output 46.6.3 PROC X13 Output for Zero-Mean User-Defined Regression Parameter

regARIMA Model with Zero-Mean User-defined Regressor

The X13 Procedure

Regression Model Parameter Estimates

For Variable AIR

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined LengthOfMonth Est 0.04683 0.01834 2.55 0.0119

Exact ARMA Maximum Likelihood Estimation

For Variable AIR

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal MA 1 0.33678 0.08506 3.96 0.0001

Seasonal MA 12 0.54078 0.07726 7.00 <.0001

Specifying USERTYPE=LOM causes the regression effect to be removed from the seasonally adjusted series.
The effect of the mean of the regression variable on the seasonally adjusted series can be seen by examining
the plots of the original series and the seasonally adjusted series.

title 'regARIMA Model with Non-Zero-Mean User-Defined Regressor';
proc sgplot data=out;

series x=date y=air_A1 / name = "A1" markers
markerattrs=(color=red symbol='asterisk')
lineattrs=(color=red);

series x=date y=air_D11 / name= "D11" markers
markerattrs=(symbol='circle')
lineattrs=(color=blue);

yaxis label='Original and Seasonally Adjusted Time Series';
run;

title 'regARIMA Model with Zero-Mean User-Defined Regressor';
proc sgplot data=outzm;

series x=date y=air_A1 / name = "A1" markers
markerattrs=(color=red symbol='asterisk')
lineattrs=(color=red);

series x=date y=air_D11 / name= "D11" markers
markerattrs=(symbol='circle')
lineattrs=(color=blue);

yaxis label='Original and Seasonally Adjusted Time Series';
run;

The graph of the original and seasonally adjusted series in Output 46.6.4 shows that the level of the seasonally
adjusted series has been altered due to the user-defined regressor. The graph of the original and seasonally
adjusted series in Output 46.6.5 shows that the level of the seasonally adjusted series is the same as the
original series since the user-defined regressor has zero-mean.
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Output 46.6.4 Plot of Original and Seasonally Adjusted Data
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Output 46.6.5 Plot of Original and Seasonally Adjusted Data (Zero-Mean Regressor)

When actual values are available for the forecast periods, information about forecast error is available in the
output. Output 46.6.6 shows the table “Forecasts and Standard Errors of the Transformed Data on the Original
Scale” for a series with missing values in the forecast period. Output 46.6.7 shows the table “Forecasts and
Standard Errors of the Transformed Data on the Original Scale” for a series with actual values in the forecast
period. Thus, it is more desirable to use SPAN= option to limit the span of a series if the actual values are
available for the forecast period.
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Output 46.6.6 PROC X13 Forecasts for Series Extended with Missing Values

Forecasts and Standard Errors of the
Transformed Data

On the Original scale

For Variable AIR

Date Forecast
Standard

Error

95%
Confidence

Limits

JAN1960 419.600 14.85053 391.509 449.705

FEB1960 416.480 19.05188 380.826 455.472

MAR1960 466.697 22.66762 424.402 513.208

APR1960 454.468 24.53242 408.951 505.051

MAY1960 473.876 27.91366 422.353 531.684

JUN1960 547.601 34.74893 483.769 619.855

JUL1960 623.318 42.20549 546.139 711.405

AUG1960 631.731 45.30824 549.231 726.623

SEP1960 527.221 39.81839 455.011 610.890

OCT1960 462.774 36.63020 396.605 539.984

NOV1960 407.155 33.64286 346.608 478.277

DEC1960 452.702 38.91914 382.913 535.212

Output 46.6.7 PROC X13 Forecasts for Series with Actual Values in Forecast Periods

Forecasts and Standard Errors of the Transformed Data

On the Original scale

For Variable AIR

Date Data Forecast
Forecast

Error
Standard

Error t Value

95%
Confidence

Limits

JAN1960 417.000 419.600 -2.600 14.85053 -0.18 391.509 449.705

FEB1960 391.000 416.480 -25.480 19.05188 -1.34 380.826 455.472

MAR1960 419.000 466.697 -47.697 22.66762 -2.10 424.402 513.208

APR1960 461.000 454.468 6.532 24.53242 0.27 408.951 505.051

MAY1960 472.000 473.876 -1.876 27.91366 -0.07 422.353 531.684

JUN1960 535.000 547.601 -12.601 34.74893 -0.36 483.769 619.855

JUL1960 622.000 623.318 -1.318 42.20549 -0.03 546.139 711.405

AUG1960 606.000 631.731 -25.731 45.30824 -0.57 549.231 726.623

SEP1960 508.000 527.221 -19.221 39.81839 -0.48 455.011 610.890

OCT1960 461.000 462.774 -1.774 36.63020 -0.05 396.605 539.984

NOV1960 390.000 407.155 -17.155 33.64286 -0.51 346.608 478.277

DEC1960 432.000 452.702 -20.702 38.91914 -0.53 382.913 535.212
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Example 46.7: MDLINFOIN= and MDLINFOOUT= Data Sets
This example illustrates the use of MDLINFOIN= and MDLINFOOUT= data sets. Using the data set shown,
PROC X13 step identifies the model with outliers as displayed in Output 46.7.1. Output 46.7.2 shows the
data set that represents the chosen model.

data b1;
input y @@;
datalines;
112 118 132 129
121 135 148 148
136 119 104 118
115 126 141 135
125 149 270 170
158 133 114 140

;

title 'Model Identification Output to MDLINFOOUT= Data Set';
proc x13 data=b1 start='1980q1' interval=qtr MdlInfoOut=mdl;

automdl;
outlier;

run ;

proc print data=mdl;
run;

Output 46.7.1 Displayed Model Identification with Outliers

Model Identification Output to MDLINFOOUT= Data Set

The X13 Procedure

Critical Values to use in
Outlier Detection

For Variable y

Begin 1980Q1

End 1985Q4

Observations 24

Method Add One

AO Critical Value 3.419415

LS Critical Value 3.419415

Final Automatic Model Selection

For Variable y

Source of Model
Orders
Altered Estimated Model

Automatic Model Choice No ( 2, 1, 0) ( 0, 0, 0)



Example 46.7: MDLINFOIN= and MDLINFOOUT= Data Sets F 3419

Output 46.7.1 continued

Regression Model Parameter Estimates

For Variable y

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

Automatically Identified AO 1984Q3 Est 102.36589 5.96584 17.16 <.0001

Exact ARMA Maximum Likelihood Estimation

For Variable y

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal AR 1 0.40892 0.20213 2.02 0.0554

2 -0.53710 0.20975 -2.56 0.0178

Output 46.7.2 PROC X13 MDLINFOOUT= Data Set Model with Outlier Detection

Model Identification Output to MDLINFOOUT= Data Set

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 y REG EVENT SCALE AO AO01JUL1984D . .

2 y ARIMA FORECAST NONSEASONAL DIF y . .

3 y ARIMA FORECAST NONSEASONAL AR y . 1

4 y ARIMA FORECAST NONSEASONAL AR y . 1

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 0 102.366 5.96584 17.1587 0.000000 .

2 1 . . . . . . .

3 1 . 0 0.409 0.20213 2.0231 0.055385 .

4 2 . 0 -0.537 0.20975 -2.5606 0.017830 .

Suppose that after examining the output from the preceding example, you decide that an Easter regressor
should be added to the model. The following statements create a data set with the model identified above and
adds a US Census Bureau Predefined Easter(25) regressor. The new model data set to be used as input in the
MDLINFOIN= option is displayed in the data set shown in Output 46.7.3.

data pluseaster;
_NAME_ = 'y';
_MODELTYPE_ = 'REG';
_MODELPART_ = 'PREDEFINED';
_COMPONENT_ = 'SCALE';
_PARMTYPE_ = 'EASTER';
_DSVAR_ = 'EASTER';
_VALUE_ = 25;

run;

data mdlpluseaster;
set mdl;

run;

title 'Model with Easter(25) Regression Added';
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proc append base=mdlpluseaster data=pluseaster force;
run;

proc print data=mdlpluseaster;
run;

Output 46.7.3 MDLINFOIN= Data Set Model with Easter(25) Regression Added

Model with Easter(25) Regression Added

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 y REG EVENT SCALE AO AO01JUL1984D . .

2 y ARIMA FORECAST NONSEASONAL DIF y . .

3 y ARIMA FORECAST NONSEASONAL AR y . 1

4 y ARIMA FORECAST NONSEASONAL AR y . 1

5 y REG PREDEFINED SCALE EASTER EASTER 25 .

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 0 102.366 5.96584 17.1587 0.000000 .

2 1 . . . . . . .

3 1 . 0 0.409 0.20213 2.0231 0.055385 .

4 2 . 0 -0.537 0.20975 -2.5606 0.017830 .

5 . . . . . . . .

The following statements estimate the regression and ARIMA parameters by using the model described in
the new data set mdlpluseaster. The results of estimating the new model are shown in Output 46.7.4.

proc x13 data=b1 start='1980q1' interval=qtr
MdlInfoIn=mdlpluseaster MdlInfoOut=mdl2;
estimate;

run;

Output 46.7.4 Estimate Model with Added Easter(25) Regression

Model with Easter(25) Regression Added

The X13 Procedure

Regression Model Parameter Estimates

For Variable y

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

Easter Easter[25] Est 6.73250 4.73335 1.42 0.1696

User Defined AO01JUL1984D Est 105.83795 6.12689 17.27 <.0001

Exact ARMA Maximum Likelihood Estimation

For Variable y

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal AR 1 0.45233 0.20676 2.19 0.0401

2 -0.54855 0.21583 -2.54 0.0190

The new model estimation results are displayed in the data set mdl2 shown in Output 46.7.5.
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proc print data=mdl2;
run;

Output 46.7.5 MDLINFOOUT= Data Set, Estimation of Model with Easter(25) Regression Added

Model with Easter(25) Regression Added

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 y REG PREDEFINED SCALE EASTER EASTER 25 .

2 y REG EVENT SCALE AO AO01JUL1984D . .

3 y ARIMA FORECAST NONSEASONAL DIF y . .

4 y ARIMA FORECAST NONSEASONAL AR y . 1

5 y ARIMA FORECAST NONSEASONAL AR y . 1

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 0 6.733 4.73335 1.4224 0.16961 .

2 . . 0 105.838 6.12689 17.2743 0.00000 .

3 1 . . . . . . .

4 1 . 0 0.452 0.20676 2.1877 0.04014 .

5 2 . 0 -0.549 0.21583 -2.5415 0.01899 .

Example 46.8: Setting Regression Parameters
This example illustrates the use of fixed regression parameters in PROC X13. Suppose that you have the
same data set as in the section “Basic Seasonal Adjustment” on page 3314. You can specify the following
statements to use TRAMO to automatically identify a model that includes a US Census Bureau Easter(25)
regressor:

title 'Estimate Easter(25) Parameter';
proc x13 data=sales date=date MdlInfoOut=mdlout1;

var sales;
regression predefined=easter(25);
automdl;

run ;

The displayed results are shown in Output 46.8.1.

Output 46.8.1 Automatic Model ID with Easter(25) Regression

Estimate Easter(25) Parameter

The X13 Procedure

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

Easter Easter[25] Est -5.09298 3.50786 -1.45 0.1489
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Output 46.8.1 continued

Exact ARMA Maximum Likelihood Estimation

For Variable sales

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal AR 1 0.62148 0.09279 6.70 <.0001

2 0.23354 0.10385 2.25 0.0262

3 -0.07191 0.09055 -0.79 0.4285

Nonseasonal MA 1 0.97377 0.03771 25.82 <.0001

Seasonal MA 12 0.10558 0.10205 1.03 0.3028

The MDLINFOOUT= data set, mdlout1, that contains the model and parameter estimates is shown in
Output 46.8.2.

proc print data=mdlout1;
run;

Output 46.8.2 MDLINFOOUT= Data Set, Estimation of Automatic Model ID with Easter(25) Regression

Estimate Easter(25) Parameter

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales REG PREDEFINED SCALE EASTER EASTER 25 .

2 sales ARIMA FORECAST NONSEASONAL DIF sales . .

3 sales ARIMA FORECAST SEASONAL DIF sales . .

4 sales ARIMA FORECAST NONSEASONAL AR sales . 1

5 sales ARIMA FORECAST NONSEASONAL AR sales . 1

6 sales ARIMA FORECAST NONSEASONAL AR sales . 1

7 sales ARIMA FORECAST NONSEASONAL MA sales . 1

8 sales ARIMA FORECAST SEASONAL MA sales . 2

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 0 -5.09298 3.50786 -1.4519 0.14894 .

2 1 . . . . . . .

3 1 . . . . . . .

4 1 . 0 0.62148 0.09279 6.6980 0.00000 .

5 2 . 0 0.23354 0.10385 2.2488 0.02621 .

6 3 . 0 -0.07191 0.09055 -0.7942 0.42851 .

7 1 . 0 0.97377 0.03771 25.8240 0.00000 .

8 1 . 0 0.10558 0.10205 1.0346 0.30277 .

To fix the Easter(25) parameter while adding a regressor that is weighted according to the number of Saturdays
in a month, either use the REGRESSION and EVENT statements or create a MDLINFOIN= data set. The
following statements show the method for using the REGRESSION statement to fix the EASTER parameter
and the EVENT statement to add the SATURDAY regressor. The output is shown in Output 46.8.3.
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title 'Use SAS Statements to Alter Model';
proc x13 data=sales date=date MdlInfoOut=mdlout2grm;

var sales;
regression predefined=easter(25) / b=-5.029298 F;
event Saturday;
automdl;

run ;

Output 46.8.3 Automatic Model ID with Fixed Easter(25) and Saturday Regression

Use SAS Statements to Alter Model

The X13 Procedure

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined Saturday Est 3.23225 1.16701 2.77 0.0064

Easter Easter[25] Fixed -5.02930 . . .

Exact ARMA Maximum Likelihood Estimation

For Variable sales

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal AR 1 -0.32506 0.08256 -3.94 0.0001

To fix the EASTER regressor and add the new SATURDAY regressor by using a DATA step, you can create
the data set mdlin2 as shown. The data set mdlin2 is displayed in Output 46.8.4.

title 'Use a SAS DATA Step to Create a MdlInfoIn= Data Set';
data plusSaturday;

_NAME_ = 'sales';
_MODELTYPE_ = 'REG';
_MODELPART_ = 'EVENT';
_COMPONENT_ = 'SCALE';
_PARMTYPE_ = 'USER';
_DSVAR_ = 'SATURDAY';

run;

data mdlin2;
set mdlout1;
if ( _DSVAR_ = 'EASTER' ) then do;

_NOEST_ = 1;
_EST_ = -5.029298;
end;

run;

proc append base=mdlin2 data=plusSaturday force;
run;
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proc print data=mdlin2;
run;

Output 46.8.4 MDLINFOIN= Data Set, Fixed Easter(25) and Added Saturday Regression, Previously
Identified Model

Use a SAS DATA Step to Create a MdlInfoIn= Data Set

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales REG PREDEFINED SCALE EASTER EASTER 25 .

2 sales ARIMA FORECAST NONSEASONAL DIF sales . .

3 sales ARIMA FORECAST SEASONAL DIF sales . .

4 sales ARIMA FORECAST NONSEASONAL AR sales . 1

5 sales ARIMA FORECAST NONSEASONAL AR sales . 1

6 sales ARIMA FORECAST NONSEASONAL AR sales . 1

7 sales ARIMA FORECAST NONSEASONAL MA sales . 1

8 sales ARIMA FORECAST SEASONAL MA sales . 2

9 sales REG EVENT SCALE USER SATURDAY . .

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 1 -5.02930 3.50786 -1.4519 0.14894 .

2 1 . . . . . . .

3 1 . . . . . . .

4 1 . 0 0.62148 0.09279 6.6980 0.00000 .

5 2 . 0 0.23354 0.10385 2.2488 0.02621 .

6 3 . 0 -0.07191 0.09055 -0.7942 0.42851 .

7 1 . 0 0.97377 0.03771 25.8240 0.00000 .

8 1 . 0 0.10558 0.10205 1.0346 0.30277 .

9 . . . . . . . .

The data set mdlin2 can be used to replace the regression and model information contained in the REGRES-
SION, EVENT, and AUTOMDL statements. Note that the model specified in the mdlin2 data set is the same
model as the automatically identified model. The following example uses the mdlin2 data set as input; the
results are displayed in Output 46.8.5:

title 'Alter the Model by Updating the MdlInfoIn= Data Set';
proc x13 data=sales date=date MdlInfoIn=mdlin2 MdlInfoOut=mdlout2DS;

var sales;
estimate;

run ;
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Output 46.8.5 Estimate MDLINFOIN= File for Model with Fixed Easter(25) and Saturday Regression,
Previously Identified Model

Alter the Model by Updating the MdlInfoIn= Data Set

The X13 Procedure

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined SATURDAY Est 3.41762 1.07641 3.18 0.0019

Easter Easter[25] Fixed -5.02930 . . .

Exact ARMA Maximum Likelihood Estimation

For Variable sales

Parameter Lag Estimate
Standard

Error t Value Pr > |t|

Nonseasonal AR 1 0.62225 0.09175 6.78 <.0001

2 0.30429 0.10109 3.01 0.0031

3 -0.14862 0.08859 -1.68 0.0958

Nonseasonal MA 1 0.97125 0.03798 25.57 <.0001

Seasonal MA 12 0.11692 0.10000 1.17 0.2445

The following statements specify almost the same information as contained in the data set mdlin2. The
ARIMA statement specifies the lags of the model. However, the initial AR and MA parameter values are the
default. When using the mdlin2 data set as input, the initial values can be specified. The results are displayed
in Output 46.8.6.

title 'Use SAS Statements to Alter Model';
proc x13 data=sales date=date MdlInfoOut=mdlout3grm;

var sales;
regression predefined=easter(25) / b=-5.029298 F;
event Saturday;
arima model=((3 1 1)(0 1 1));
estimate;

run ;

proc print data=mdlout3grm;
run;
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Output 46.8.6 MDLINFOOUT= Statement, Fixed Easter(25) and Added Saturday Regression, Previously
Identified Model

Use SAS Statements to Alter Model

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales REG EVENT SCALE USER Saturday . .

2 sales REG PREDEFINED SCALE EASTER EASTER 25 .

3 sales ARIMA FORECAST NONSEASONAL DIF sales . .

4 sales ARIMA FORECAST SEASONAL DIF sales . .

5 sales ARIMA FORECAST NONSEASONAL AR sales . 1

6 sales ARIMA FORECAST NONSEASONAL AR sales . 1

7 sales ARIMA FORECAST NONSEASONAL AR sales . 1

8 sales ARIMA FORECAST NONSEASONAL MA sales . 1

9 sales ARIMA FORECAST SEASONAL MA sales . 2

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 0 3.41760 1.07640 3.1750 0.00187 .

2 . . 1 -5.02930 . . . .

3 1 . . . . . . .

4 1 . . . . . . .

5 1 . 0 0.62228 0.09175 6.7825 0.00000 .

6 2 . 0 0.30431 0.10109 3.0103 0.00314 .

7 3 . 0 -0.14864 0.08859 -1.6779 0.09579 .

8 1 . 0 0.97128 0.03796 25.5881 0.00000 .

9 1 . 0 0.11684 0.10000 1.1684 0.24481 .

The MDLINFOOUT= data set provides a method for comparing the results of the model identification. The
data set mdlout3grm that results from using the MODEL= option in the ARIMA statement can be compared
to the data set mdlout2DS that results from using the MDLINFOIN= data set with initial values for the AR
and MA parameters. The mdlout2DS data set is shown in Output 46.8.7, and the results of the comparison are
shown in Output 46.8.8. The slight difference in the estimated parameters can be attributed to the difference
in the initial values for the AR and MA parameters.

title 'Model Produced by Updating the MdlInfoIn= Data Set';
proc print data=mdlout2DS;
run;
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Output 46.8.7 MDLINFOOUT= Data Set, Fixed Easter(25) and Added Saturday Regression, Previously
Identified Model

Model Produced by Updating the MdlInfoIn= Data Set

Obs _NAME_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales REG EVENT SCALE USER SATURDAY . .

2 sales REG PREDEFINED SCALE EASTER EASTER 25 .

3 sales ARIMA FORECAST NONSEASONAL DIF sales . .

4 sales ARIMA FORECAST SEASONAL DIF sales . .

5 sales ARIMA FORECAST NONSEASONAL AR sales . 1

6 sales ARIMA FORECAST NONSEASONAL AR sales . 1

7 sales ARIMA FORECAST NONSEASONAL AR sales . 1

8 sales ARIMA FORECAST NONSEASONAL MA sales . 1

9 sales ARIMA FORECAST SEASONAL MA sales . 2

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . 0 3.41762 1.07641 3.1750 0.00187 .

2 . . 1 -5.02930 . . . .

3 1 . . . . . . .

4 1 . . . . . . .

5 1 . 0 0.62225 0.09175 6.7817 0.00000 .

6 2 . 0 0.30429 0.10109 3.0100 0.00314 .

7 3 . 0 -0.14862 0.08859 -1.6776 0.09584 .

8 1 . 0 0.97125 0.03798 25.5711 0.00000 .

9 1 . 0 0.11692 0.10000 1.1691 0.24450 .

title 'Compare Results of SAS Statement Input and MdlInfoIn= Input';
proc compare base= mdlout3grm compare=mdlout2DS;
var _EST_;
run ;

Output 46.8.8 Compare Parameter Estimates from Different MDLINFOOUT= Data Sets

Compare Results of SAS Statement Input and MdlInfoIn= Input

                                                                                
                                                                                
                     Value Comparison Results for Variables                     
                                                                                
           __________________________________________________________           
                      ||  Value of Parameter Estimate                           
                      ||       Base    Compare                                  
                  Obs ||      _EST_      _EST_      Diff.     % Diff            
            ________  ||  _________  _________  _________  _________            
                      ||                                                        
                   1  ||     3.4176     3.4176  0.0000229   0.000671            
                   5  ||     0.6223     0.6222  -0.000033  -0.005274            
                   6  ||     0.3043     0.3043  -0.000021  -0.006975            
                   7  ||    -0.1486    -0.1486  0.0000237    -0.0159            
                   8  ||     0.9713     0.9713  -0.000024  -0.002461            
                   9  ||     0.1168     0.1169  0.0000765     0.0655            
           __________________________________________________________           
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Example 46.9: Creating an MDLINFO= Data Set for Use with the PICKMDL
Statement

This example illustrates how you can create a data set for use in the PICKMDL statement that contains five
commonly used ARIMA models:

� ARIMA (0 1 1)(0 1 1)s

� ARIMA (0 1 2)(0 1 1)s

� ARIMA (2 1 0)(0 1 1)s

� ARIMA (0 2 2)(0 1 1)s

� ARIMA (2 1 2)(0 1 1)s

The following macro code creates a MDLINFOIN= data set for a general ARIMA model:

%macro makemodel(name,p,d,q,sp,sd,sq,model);
data "&name" (keep= _MODELTYPE_ _MODELPART_ _COMPONENT_

_DSVAR_ _PARMTYPE_ _FACTOR_ _LAG_
_LABEL_ );

length _MODELTYPE_ _MODELPART_ _COMPONENT_ _DSVAR_
_PARMTYPE_ $32;

length _FACTOR_ _LAG_ 8;
length _LABEL_ $32;

_MODELTYPE_="ARIMA";
_MODELPART_="FORECAST";
_DSVAR_=".";

_LABEL_="("||"&p"||" "||"&d"||" "||"&q"||")("||
"&sp"||" "||"&sd"||" "||"&sq"||")s";

/* nonseasonal AR factors */
_COMPONENT_="NONSEASONAL";
_PARMTYPE_="AR";
_FACTOR_=1;
do _LAG_=1 to &p;

output;
end;

/* seasonal AR factors */
_COMPONENT_="SEASONAL";
_PARMTYPE_="AR";
_FACTOR_=2;
do _LAG_=1 to &sp;

output;
end;
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/* nonseasonal MA factors */
_COMPONENT_="NONSEASONAL";
_PARMTYPE_="MA";
_FACTOR_=1;
do _LAG_=1 to &q;

output;
end;

/* seasonal MA factors */
_COMPONENT_="SEASONAL";
_PARMTYPE_="MA";
_FACTOR_=2;
do _LAG_=1 to &sq;

output;
end;

/* nonseasonal DIF */
_COMPONENT_="NONSEASONAL";
_PARMTYPE_="DIF";
_FACTOR_=1;
_LAG_=1;
do i_=1 to &d;

output;
end;

/* seasonal DIF */
_COMPONENT_="SEASONAL";
_PARMTYPE_="DIF";
_FACTOR_=2;
_LAG_=1;
do i_=1 to &sd;

output;
end;

run;
data sasuser.&name;

length _MODEL_ $32;
set "&name";
_MODEL_ = "&model";

run;

%mend makemodel;

The following SAS statements use the macro to generate a data set with some commonly used models for use
in the PICKMDL statement:

%makemodel(x13mdl1,0,1,1,0,1,1,Model1);
%makemodel(x13mdl2,0,1,2,0,1,1,Model2);
%makemodel(x13mdl3,2,1,0,0,1,1,Model3);
%makemodel(x13mdl4,0,2,2,0,1,1,Model4);
%makemodel(x13mdl5,2,1,2,0,1,1,Model5);

data Models;
length _NAME_ $32;
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set sasuser.x13mdl1 sasuser.x13mdl2 sasuser.x13mdl3
sasuser.x13mdl4 sasuser.x13mdl5;

_NAME_ = 'sales';
run;

The Models data set is shown in Output 46.9.1.

title '5 Commonly Used Models';
proc print data=Models;
run ;
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Output 46.9.1 A Data Set That Contains Models for Use with the PICKMDL Statement

5 Commonly Used Models

Obs _NAME_ _MODEL_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _DSVAR_

1 sales Model1 ARIMA FORECAST NONSEASONAL .

2 sales Model1 ARIMA FORECAST SEASONAL .

3 sales Model1 ARIMA FORECAST NONSEASONAL .

4 sales Model1 ARIMA FORECAST SEASONAL .

5 sales Model2 ARIMA FORECAST NONSEASONAL .

6 sales Model2 ARIMA FORECAST NONSEASONAL .

7 sales Model2 ARIMA FORECAST SEASONAL .

8 sales Model2 ARIMA FORECAST NONSEASONAL .

9 sales Model2 ARIMA FORECAST SEASONAL .

10 sales Model3 ARIMA FORECAST NONSEASONAL .

11 sales Model3 ARIMA FORECAST NONSEASONAL .

12 sales Model3 ARIMA FORECAST SEASONAL .

13 sales Model3 ARIMA FORECAST NONSEASONAL .

14 sales Model3 ARIMA FORECAST SEASONAL .

15 sales Model4 ARIMA FORECAST NONSEASONAL .

16 sales Model4 ARIMA FORECAST NONSEASONAL .

17 sales Model4 ARIMA FORECAST SEASONAL .

18 sales Model4 ARIMA FORECAST NONSEASONAL .

19 sales Model4 ARIMA FORECAST NONSEASONAL .

20 sales Model4 ARIMA FORECAST SEASONAL .

21 sales Model5 ARIMA FORECAST NONSEASONAL .

22 sales Model5 ARIMA FORECAST NONSEASONAL .

Obs _PARMTYPE_ _FACTOR_ _LAG_ _LABEL_

1 MA 1 1 (0 1 1)(0 1 1)s

2 MA 2 1 (0 1 1)(0 1 1)s

3 DIF 1 1 (0 1 1)(0 1 1)s

4 DIF 2 1 (0 1 1)(0 1 1)s

5 MA 1 1 (0 1 2)(0 1 1)s

6 MA 1 2 (0 1 2)(0 1 1)s

7 MA 2 1 (0 1 2)(0 1 1)s

8 DIF 1 1 (0 1 2)(0 1 1)s

9 DIF 2 1 (0 1 2)(0 1 1)s

10 AR 1 1 (2 1 0)(0 1 1)s

11 AR 1 2 (2 1 0)(0 1 1)s

12 MA 2 1 (2 1 0)(0 1 1)s

13 DIF 1 1 (2 1 0)(0 1 1)s

14 DIF 2 1 (2 1 0)(0 1 1)s

15 MA 1 1 (0 2 2)(0 1 1)s

16 MA 1 2 (0 2 2)(0 1 1)s

17 MA 2 1 (0 2 2)(0 1 1)s

18 DIF 1 1 (0 2 2)(0 1 1)s

19 DIF 1 1 (0 2 2)(0 1 1)s

20 DIF 2 1 (0 2 2)(0 1 1)s

21 AR 1 1 (2 1 2)(0 1 1)s

22 AR 1 2 (2 1 2)(0 1 1)s
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Output 46.9.1 continued

5 Commonly Used Models

Obs _NAME_ _MODEL_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _DSVAR_

23 sales Model5 ARIMA FORECAST NONSEASONAL .

24 sales Model5 ARIMA FORECAST NONSEASONAL .

25 sales Model5 ARIMA FORECAST SEASONAL .

26 sales Model5 ARIMA FORECAST NONSEASONAL .

27 sales Model5 ARIMA FORECAST SEASONAL .

Obs _PARMTYPE_ _FACTOR_ _LAG_ _LABEL_

23 MA 1 1 (2 1 2)(0 1 1)s

24 MA 1 2 (2 1 2)(0 1 1)s

25 MA 2 1 (2 1 2)(0 1 1)s

26 DIF 1 1 (2 1 2)(0 1 1)s

27 DIF 2 1 (2 1 2)(0 1 1)s

The following statements request that the PICKMDL method be used to choose a model from the list of
models that are defined in the Models data set. The default METHOD=FIRST option chooses the first
acceptable model. The chosen model is shown in the mdlchosen data set in Output 46.9.2.

proc x13 data=sales date=date mdlinfoin=Models mdlinfoout=mdlchosen;
var sales;
transform function=log;
pickmdl method=first;

run;

title 'Chosen Model';
proc print data=mdlchosen;
run ;

Output 46.9.2 The Model Chosen from the Five Commonly Used Models

Chosen Model

Obs _NAME_ _MODEL_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales MODEL1 ARIMA FORECAST TRANSFORM LOG sales . .

2 sales MODEL1 ARIMA FORECAST NONSEASONAL DIF sales . .

3 sales MODEL1 ARIMA FORECAST SEASONAL DIF sales . .

4 sales MODEL1 ARIMA FORECAST NONSEASONAL MA sales . 1

5 sales MODEL1 ARIMA FORECAST SEASONAL MA sales . 2

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . . . . . . . (0 1 1)(0 1 1)s

2 1 . . . . . . . (0 1 1)(0 1 1)s

3 1 . . . . . . . (0 1 1)(0 1 1)s

4 1 . 0 0.40181 0.078870 5.09458 .000001192 . (0 1 1)(0 1 1)s

5 1 . 0 0.55695 0.076255 7.30369 2.4359E-11 . (0 1 1)(0 1 1)s

The following statements reverse the order of the models in the input data set. The default METHOD=FIRST
option is used to select the model. The chosen model is shown in the mdlchosen data set in Output 46.9.3.
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With METHOD=FIRST, a different model is chosen because the order is changed.

data Models;
length _NAME_ $32;
set sasuser.x13mdl5 sasuser.x13mdl4 sasuser.x13mdl3

sasuser.x13mdl2 sasuser.x13mdl1 ;
_NAME_ = 'sales';

run;

proc x13 data=sales date=date mdlinfoin=Models mdlinfoout=mdlchosen;
var sales;
transform function=log;
pickmdl method=first;

run;

title 'Chosen Model';
proc print data=mdlchosen;
run ;

Output 46.9.3 The Model Chosen from the Five Commonly Used Models, Reversed Order

Chosen Model

Obs _NAME_ _MODEL_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales MODEL3 ARIMA FORECAST TRANSFORM LOG sales . .

2 sales MODEL3 ARIMA FORECAST NONSEASONAL DIF sales . .

3 sales MODEL3 ARIMA FORECAST SEASONAL DIF sales . .

4 sales MODEL3 ARIMA FORECAST NONSEASONAL AR sales . 1

5 sales MODEL3 ARIMA FORECAST NONSEASONAL AR sales . 1

6 sales MODEL3 ARIMA FORECAST SEASONAL MA sales . 1

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . . . . . . . (2 1 0)(0 1 1)s

2 1 . . . . . . . (2 1 0)(0 1 1)s

3 1 . . . . . . . (2 1 0)(0 1 1)s

4 1 . 0 -0.36159 0.086055 -4.20188 0.00005 . (2 1 0)(0 1 1)s

5 2 . 0 -0.06366 0.086141 -0.73905 0.46120 . (2 1 0)(0 1 1)s

6 1 . 0 0.56109 0.072814 7.70588 0.00000 . (2 1 0)(0 1 1)s

The following example shows the use of PICKMDL statement option METHOD=BEST to select the model.
The chosen model is shown in the mdlchosen data set in Output 46.9.4. With METHOD=BEST, a different
model is chosen than either of the previous models chosen. Because the order in which the models occur in
the MDLINFOIN= data set affects model selection when METHOD=FIRST is specified, it is a common
practice to list models from the simplest model to the most complex in the MDLINFOIN= data set that is
used in conjunction with the PICKMDL statement.

proc x13 data=sales date=date mdlinfoin=Models mdlinfoout=mdlchosen;
var sales;
transform function=log;
pickmdl method=best;

run;
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title 'Chosen Model';
proc print data=mdlchosen;
run ;

Output 46.9.4 The Model Chosen from the Five Commonly Used Models, METHOD=BEST

Chosen Model

Obs _NAME_ _MODEL_ _MODELTYPE_ _MODELPART_ _COMPONENT_ _PARMTYPE_ _DSVAR_ _VALUE_ _FACTOR_

1 sales MODEL2 ARIMA FORECAST TRANSFORM LOG sales . .

2 sales MODEL2 ARIMA FORECAST NONSEASONAL DIF sales . .

3 sales MODEL2 ARIMA FORECAST SEASONAL DIF sales . .

4 sales MODEL2 ARIMA FORECAST NONSEASONAL MA sales . 1

5 sales MODEL2 ARIMA FORECAST NONSEASONAL MA sales . 1

6 sales MODEL2 ARIMA FORECAST SEASONAL MA sales . 2

Obs _LAG_ _SHIFT_ _NOEST_ _EST_ _STDERR_ _TVALUE_ _PVALUE_ _STATUS_ _SCORE_ _LABEL_

1 . . . . . . . . (0 1 2)(0 1 1)s

2 1 . . . . . . . (0 1 2)(0 1 1)s

3 1 . . . . . . . (0 1 2)(0 1 1)s

4 1 . 0 0.39613 0.086126 4.59937 0.00001 . (0 1 2)(0 1 1)s

5 2 . 0 0.03961 0.086163 0.45967 0.64652 . (0 1 2)(0 1 1)s

6 1 . 0 0.55903 0.076446 7.31277 0.00000 . (0 1 2)(0 1 1)s

Example 46.10: Illustration of ODS Graphics
This example illustrates the use of ODS Graphics. Using the same data set as in the section “Basic Seasonal
Adjustment” on page 3314 and the previous examples, a spectral plot of the original series is displayed in
Output 46.10.1.

The graphical displays are available when ODS Graphics is enabled. For specific information about the
graphics available in the X13 procedure, see the section “ODS Graphics” on page 3381.

proc x13 data=sales date=date;
var sales;

run;
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Output 46.10.1 Spectral Plot for Original Data

Example 46.11: AUXDATA= Data Set
This example demonstrates the use of the AUXDATA= data set to input user-defined regressors for use in the
regARIMA model. User-defined regressors are often economic indicators, but in this example a user-defined
regressor is generated in the following statements:

data auxreg(keep=date lengthofmonth);
set sales;
lengthofmonth = (INTNX('MONTH',date,1) - date) - (365/12);
format date monyy.;

run;

When you use the AUXDATA= data set, it is not necessary to merge the user-defined regressor data set with
the DATA= data set. The following statements input the regressor lengthofmonth in the data set auxreg. The
regressor lengthofmonth is specified in the REGRESSION statement, and the data set auxreg is specified in
the AUXDATA= option in the PROC X13 statement.
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title 'Align lengthofmonth Regressor from Auxreg to First Three Years';
ods select regParameterEstimates;
proc x13 data=sales(obs=36) date=date auxdata=auxreg;

var sales;
regression uservar=lengthofmonth;
arima model=((0 1 1) (0 1 1));
estimate;

run;

title 'Align lengthofmonth Regressor from Auxreg to Second Three Years';
ods select regParameterEstimates;
proc x13 data=sales(firstobs=37 obs=72) date=date auxdata=auxreg;

var sales;
regression uservar=lengthofmonth;
arima model=((0 1 1) (0 1 1));
estimate;

run;

Output 46.11.1 and Output 46.11.2 display the parameter estimates for the two series.

Output 46.11.1 Using Regressors in the AUXDATA= Data for the First Three Years of Series

Align lengthofmonth Regressor from Auxreg to First Three Years

The X13 Procedure

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined lengthofmonth Est 2.98046 5.36251 0.56 0.5840

Output 46.11.2 Using Regressors in the AUXDATA= Data for the Second Three Years of Series

Align lengthofmonth Regressor from Auxreg to Second Three Years

The X13 Procedure

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined lengthofmonth Est -0.51216 8.43145 -0.06 0.9521

The X13 procedure uses the date variable in the sales data set and the auxreg data set to align the user-defined
regressors.

In the following example, the DATA= data set salesby contains BY groups. The X13 procedure aligns the
regressor in the auxreg data set to each BY group in the salesby data set according to the variable date that is
specified by the DATE= option in the PROC X13 statement. The variable date must be present in the auxreg
data set to align the values.
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data salesby;
set sales(obs=72);
if ( _n_ < 37 ) then by=1;
else by=2;

run;
ods select regParameterEstimates;
title 'Align lengthofmonth Regressor from Auxreg to BY Groups';
proc x13 data=salesby date=date auxdata=auxreg;

var sales;
by by;
regression uservar=lengthofmonth;
arima model=((0 1 1) (0 1 1));
estimate;

run;

The results in Output 46.11.3 match the previous results in Output 46.11.1 and Output 46.11.2.

Output 46.11.3 Using Regressors in the AUXDATA= Data with BY Groups

Align lengthofmonth Regressor from Auxreg to BY Groups

The X13 Procedure

by=1

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined lengthofmonth Est 2.98046 5.36251 0.56 0.5840

Align lengthofmonth Regressor from Auxreg to BY Groups

The X13 Procedure

by=2

Regression Model Parameter Estimates

For Variable sales

Type Parameter NoEst Estimate
Standard

Error t Value Pr > |t|

User Defined lengthofmonth Est -0.51216 8.43145 -0.06 0.9521
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Overview: SASECRSP Interface Engine

Introduction
The SASECRSP interface engine in SAS/ETS software enables SAS users to access and process time
series, events, portfolios, and group data that reside in Center for Research in Security Prices databases
(CRSPAccess data). It also provides a seamless interface between CRSP and SAS data processing. Currently,
the SASECRSP engine supports access of CRSP US Stock Databases and CRSP Indices Databases.

Opening a Database
The SASECRSP interface engine uses the LIBNAME statement to enable you to specify which CRSPAccess
database you want to access and how you want to select time series or events from that database.

To specify the database, you supply the combination of a physical path to indicate the location of the CRSPAc-
cess data files and a set identifier (SETID) to identify the selected database from those available at the physical
path. Specify one SETID from Table 47.1. Notice that the CRSP environment variable CRSPDB_SASCAL
must be defined before the SASECRSP engine can access the CRSPAccess database calendars that provide
the time ID variables and enable the libref to be assigned successfully. If your database SETID is 250, use the
SASEXCCM interface to access your data. For more information about the SASEXCCM interface engine,
see Chapter 56, “The SASEXCCM Interface Engine.” Because CRSP no longer supports the CPZ data
format, the SASECRSP engine no longer supports the SETID 200 (CRSP/Compustat Merged, CCM) data
access.

Table 47.1 CRSPAccess Databases SETIDs

SETID Data Set

10 CRSP Stock, daily data
20 CRSP Stock, monthly data
400 CRSP Indices data, monthly index groups
420 CRSP Indices data, monthly index series
440 CRSP Indices data, daily index groups
460 CRSP Indices data, daily index series

Usually you do not want to open the entire CRSPAccess database, so for efficiency and ease of use, the
SASECRSP engine supports a variety of options for performing data selection on your CRSPAccess database
by using the LIBNAME statement. These options enable you to open and retrieve data for only the portion of
the database that you want. The availability of some of these options depends on the type of database that
you open.
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CRSP US Stock Databases

When accessing the CRSP US Stock Databases, you can select which securities to access by specifying
their PERMNOs with the PERMNO= option. A PERMNO is CRSP’s unique permanent issue identification
number and the primary key for its stock databases. Alternatively, a number of secondary keys can be
used to select stock data. For example, you can use the PERMCO= option to read selected securities based
on CRSP’s unique permanent company identification number, PERMCO. A full list of possible keys for
accessing CRSP Stock data is shown in Table 47.2.

Table 47.2 Keys for Accessing CRSP Stock Data

Key Access By

PERMNO CRSP’s unique permanent issue identification number.
This is the primary key for CRSP Stock Databases.

PERMCO CRSP’s unique permanent company identification number
CUSIP CUSIP number
HCUSIP Historical CUSIP
SICCD Standard industrial classification (SIC) code
TICKER Ticker symbol (for active companies only)

CRSP/Compustat Merged Databases—No Longer Supported by the SASECRSP Engine

Use the SASEXCCM interface engine instead of the SASECRSP interface engine to access your Xpressfeed
CCM data. The SASEXCCM interface engine provides data item handling access methods by using
CRSPAccess version 3.23. For a detailed description of this new SAS/ETS interface engine, see Chapter 56,
“The SASEXCCM Interface Engine.”

Because CRSPAccess version 3.23 does not support CPZ data (legacy Compustat data format for SETID
200), the SASECRSP engine issues the following error messages when you specify the SETID=200 option
and/or the CRSPLINKPATH= option:

ERROR: Use the SASEXCCM engine instead of the SASECRSP engine for CCM access.
The CPZ data format needed for SETID=200 and the CRSPLINKPATH= options
was last shipped in July 2011 and is no longer supported by CRSP.
Use of the SASECRSP engine for this purpose is not allowed:
Depreciated calendar configurations can result in fatal errors,
corrupted memory, tracebacks, exceptions, or incorrect results
for all libref assignments that follow the deassignment
of a CCM/CRSPLINKPATH libref.

ERROR: Engine is unable to open crspdb CPZ200606
with SETID 200. Check that your CRSP database contains the
crsp_ca_ref_2.bin file.



3446 F Chapter 47: The SASECRSP Interface Engine

CRSP Indices Databases

When accessing the CRSP Indices Databases, you can select which indices to access by specifying their
INDNOs. INDNO is the primary key for the CRSP Indices Databases. You can specify which INDNO to use
by specifying the INDNO= option. No secondary key access is supported for CRSP Indices. A full list of
possible keys for accessing CRSP Indices data is shown in Table 47.3.

Table 47.3 Keys for Accessing CRSP Indices Data

Key Access By

INDNO CRSP’s unique permanent index identifier number. This is
the primary key for CRSP Indices Databases. It enables
you to specify which index series or groups you want to
select.

Regardless of which database you access, you can always use the INSET= and RANGE= options for
subsetting and selection. The RANGE= option subsets the data by date. The INSET= option enables you to
specify which issues or companies to select from the CRSP Indices data by using an input SAS data set.

Using Your Opened Database
After the libref is assigned, the database is opened. You can retrieve data for any member that you want in
the opened database. For a complete description of available data sets and their fields, see the section “Data
Elements Reference: SASECRSP Interface Engine” on page 3460. You can also use the SAS DATA step
to perform further subsetting and to store the resulting time series in a SAS data set. Because CRSP and
SAS use three different date representations, you can use the CRSP date formats, informats, and functions
that the SASECRSP engine provides for your data processing needs. For more information about dates in
the SASECRSP engine, see the section “Understanding CRSP Date Formats, Informats, and Functions” on
page 3456 and Example 47.6 later in this chapter.

The SASECRSP engine supports Linux X64 (64-bit), Solaris Sun Ultra Sparc, Solaris on Intel x86, and
Windows. Windows no longer requires you to install the CRSPAccess API, because it is now distributed
automatically by your SAS/ETS installation. Prior to running SASECRSP, your Windows setup requires that
the environment variable, CRSPDB_SASCAL, be set to the path where your database calendar files reside.
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Getting Started: SASECRSP Interface Engine

Structure of a SAS Data Set That Contains Time Series Data
SAS requires time series data to be in a specific form that is recognizable by the SAS System. This form is a
two-dimensional array, called a SAS data set, whose columns correspond to series variables and whose rows
correspond to measurements of these variables at certain points in time. The time at which observations are
recorded can be included in the data set as a time ID variable. Because CRSP sets the date at the end of a time
period instead of at the beginning, the SASECRSP interface engine follows this convention. For example, the
time ID variable for any particular month in a monthly time series is set to the last trading day of that month.

The SASECRSP engine provides several different time ID variables, depending on the data member that is
opened. For most members, a time ID variable named CALDT is provided. CALDT provides a day-based
calendar date and is in a CRSP date format. The dates are stored as an offset in an array of trading days
or a trading-day calendar. Five different CRSP trading-day calendars are available; which calendar is used
depends on the frequency of the data member. For example, the CRSP date for a daily time series refers to a
daily trading-day calendar.

The five trading-day calendar frequencies are annual, quarterly, monthly, weekly, and daily. For convenience,
the format and informat for the frequency field are set so that the CRSP date is automatically converted to an
integer date representation when viewed or printed. For data programming, the SASECRSP engine provides
23 different user functions for date conversions between CRSP, SAS, and integer dates.

Reading CRSP Data Files
The SASECRSP engine supports reading time series, events, portfolios, and group data from CRSPAccess
databases. The SETID that you specify determines the database that is read. For a list of possible databases,
see Table 47.1. The CRSP environment variable CRSPDB_SASCAL must be defined before the SASECRSP
engine can access the CRSPAccess database calendars that provide the time ID variables and enable the libref
to be successfully assigned.

Using the SAS DATA Step
You can store the selected series in a SAS data set by using the SAS DATA step. You can also perform other
operations on your data inside the DATA step. After the data are stored in a SAS data set, you can use them
as you would use data in any other SAS data set.
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Using SAS Procedures
You can print the output SAS data set by using the PRINT procedure, and you can report information about
the contents of your data set by using the CONTENTS procedure.

You can also create a view of the CRSPAccess database by using the SQL procedure in conjunction with a
SASECRSP libref.

Using the SAS Windowing Environment
You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment. To
do so, select the SASECRSP engine libref in the LIBNAME window that you have previously defined in your
LIBNAME statement. You can view your SAS output observations by double-clicking the desired output
data set libref in the LIBNAME window of the SAS windowing environment. Type Viewtable on the SAS
command line to view any of your SASECRSP engine tables, views, or librefs for both input and output data
sets.

Before you use the Viewtable command, it is recommended that you store your output data sets in a physical
folder or library that is separate from the folder or library used for your input databases. (The default location
for output data sets is the SAS Work library.)

Using CRSP Date Formats, Informats, and Functions
Historically, CRSP has used two different methods to represent dates, and SAS has used a third. The
SASECRSP engine provides 23 functions, 15 informats, and 10 formats to enable you to easily translate
the dates from one internal representation to another. For more information, see the section “Understanding
CRSP Date Formats, Informats, and Functions” on page 3456.

Syntax: SASECRSP Interface Engine
The SASECRSP engine uses standard engine syntax. The options that the SASECRSP engine uses are
summarized in Table 47.4.
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Table 47.4 Summary of SASECRSP Engine Options

Option Description

SETID= Specifies which CRSP database subset to open.
This option is required. See Table 47.1 for a complete list
of supported SETIDs

PERMNO= Specifies a CRSP PERMNO to be selected for access
PERMCO= Specifies a CRSP PERMCO to be selected for access
CUSIP= Specifies a current CUSIP to be selected for access
HCUSIP= Specifies a historic CUSIP to be selected for access
TICKER= Specifies a ticker to be selected for access (for active

companies only)
SICCD= Specifies a SIC code to be selected for access
INDNO= Specifies a CRSP INDNO to be selected for access
RANGE= Specifies the range of data to keep in format

'YYYYMMDD-YYYYMMDD'
INSET= Uses a SAS data set named Setname as input for issues

The LIBNAME libref SASECRSP Statement
LIBNAME libref SASECRSP ’physical name ’ options ;

The physical name that the LIBNAME statement requires should point to the directory of CRSPAccess data
files where the CRSP database that you want to open is located. Note that the physical name must end in a
slash for UNIX environments and a backslash for Windows environments.

The CRSP environment variable CRSPDB_SASCAL must be defined before the SASECRSP engine can
access the CRSPAccess database calendars. The CRSP environment variable CRSPDB_SASCAL is nec-
essary for the SASECRSP libref to be assigned successfully. This environment variable should be defined
automatically either by the CRSP software installation or, in later versions, by the CRSP data installation.
Because occasionally the variable is not set properly, always check to ensure that the CRSPDB_SASCAL
environment variable is set to the location where your most recent CRSP data reside. Remember to include
the final slash or backslash as required.

After the libref is assigned, you can access any of the available data sets or members within the opened
database. For a complete description of available data sets and their fields, see the section “Data Elements
Reference: SASECRSP Interface Engine” on page 3460.

You can specify the following options.

SETID=crsp_setidnumber
specifies the CRSP database that you want to read from. SETID= is a required option. Choose one
SETID from the six possible values in Table 47.1. The SETID limits the frequency selection of time
series that are included in the SAS data set.

For example, to access monthly CRSP US Stock data, you would use the following statements:



3450 F Chapter 47: The SASECRSP Interface Engine

LIBNAME myLib sasecrsp 'physical-name'
SETID=20;

PERMNO=crsp_permnumber
enables you to select data from your CRSP database by the PERMNO (or other keys) that you specify.
A PERMNO is CRSP’s unique permanent issue identification number. There is no limit to the number
of crsp_permnumber options that you can use. By default, the SASECRSP engine reads all keys for
the CRSPAccess database that you specified in your SASECRSP libref.

From a performance standpoint, the PERMNO= option enables efficient random access and reads only
the data for the PERMNOs specified.

For example, the following LIBNAME statement reads data only for Microsoft Corporation
(PERMNO=10107) and International Business Machines Corporation (PERMNO=12490) by using
the primary PERMNO key and thus is very efficient:

LIBNAME myLib sasecrsp 'physical-name'
SETID=20
PERMNO=10107
PERMNO=12490;

The PERMCO=, CUSIP=, HCUSIP=, SICCD=, TICKER=, and INDNO= options behave similarly,
and you can use them in conjunction with or in place of the PERMNO= option. For example, you
could use the following statement to access monthly data for Microsoft and IBM:

LIBNAME myLib sasecrsp 'physical-name'
SETID=20
TICKER='MSFT'
CUSIP=59491810;

Details about the use of the other key selection options (PERMCO, CUSIP, HCUSIP, TICKER, SICCD,
and INDNO) follow.

PERMNOs that you specify by using this option can select the companies or issues to keep for CRSP
US Stock data, but PERMNO is not a supported option for CRSP Indices data. Use the INDNO=
option with the CRSP Indices data and use the PERMNO= option with the CRSP US Stock data.
Details about the use of key selection options for each type of database follow.

STK Databases

PERMNO is the primary key for CRSP Stock data. Every valid PERMNO that you specify with the
PERMNO= option keeps exactly one issue.

IND Databases

INDNO is the primary key for accessing CRSP Indices data. PERMNO is not available as a key for
the IND (CRSP Indices) Databases; use INDNO for efficient access of the IND Databases.
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PERMCO=crsp_permcompany
is similar to the PERMNO= option in that it enables you to use the CRSP’s unique permanent company
identification key (PERMCO) to select the companies or issues to keep. There is no limit to the number
of crsp_permcompany options that you can use.

STK Databases

PERMCO is a secondary key for accessing CRSP US Stock data. One PERMCO can map to multiple
PERMNOs. Access by a PERMCO key is equivalent to access by all mapped PERMNOs.

IND Databases

Use INDNO for accessing CRSP Indices data. PERMCO is not available as a key for accessing CRSP
Indices data; use INDNO instead.

CUSIP=crsp_cusip
is similar to the PERMNO= option in that it enables you to use the CUSIP key to select the companies
or issues to keep. There is no limit to the number of crsp_cusip options that you can use.

STK Databases

CUSIP is a secondary key for accessing CRSP US Stock data. One CUSIP maps to one PERMNO.

IND Databases

Use INDNO for accessing CRSP Indices data. CUSIP is not available as a key for accessing CRSP
Indices Databases; use INDNO instead.

HCUSIP=crsp_hcusip
is similar to the PERMNO= option in that it enables you to use the historical CUSIP key, HCUSIP, to
select the companies or issues to keep. There is no limit to the number of crsp_hcusip options that you
can use.

STK Databases

HCUSIP is a secondary key for accessing CRSP US Stock Databases. One HCUSIP maps to one
PERMNO.

IND Databases

Use INDNO for accessing CRSP Indices Databases. HCUSIP is not available as a key for accessing
CRSP Indices Databases; use INDNO instead.

TICKER=crsp_ticker
is similar to the PERMNO= option in that it enables you to use the TICKER key to select the companies
or issues to keep. There is no limit to the number of crsp_ticker options that you can use.

STK Databases

TICKER is a secondary key for accessing CRSP US Stock Databases. One TICKER maps to one
PERMNO. NOTE: Some PERMNOs are inaccessible by the TICKER key.

IND Databases

Use INDNO for accessing CRSP Indices Databases. TICKER is not available as a key for accessing
CRSP Indices Databases; use INDNO instead.
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SICCD=crsp_siccd
is similar to the PERMNO= option in that it enables you to use the Standard Industrial Classification
(SIC) code (SICCD) to select the companies or issues to keep. There is no limit to the number of
crsp_siccd options that you can use.

STK Databases

SICCD is a secondary key for accessing CRSP US Stock Databases. One SICCD can map to multiple
PERMNOs. All PERMNOs that have been classified once under the specified SICCD are mapped and
the data for them are retrieved. Access by the SICCD key is equivalent to access by all PERMNOs that
have ever been classified under the specified SICCD key.

IND Databases

Use INDNO for accessing CRSP Indices Databases. SICCD is not available as a key for accessing
CRSP Indices Databases; use INDNO instead.

INDNO=crsp_indno
is similar to the PERMNO= option in that it enables you to use CRSP’s permanent index number
INDNO to select the companies or issues to keep. There is no limit to the number of crsp_indno
options that you can use.

STK Databases

INDNO is not available as a key for accessing CRSP US Stock Databases, but it can be used in the
combined CRSP US Stock and Indices Databases.

IND Databases

INDNO is the primary key for accessing CRSP Indices Databases. Every INDNO that you specify
keeps exactly one index series or group.

For example, you can use the following statement to access the CRSP NYSE Value-Weighted and
Equal-Weighted daily market indices:

LIBNAME myLib3 sasecrsp 'physical-name'
SETID=460
INDNO=1000000 /* Value-Weighted */
INDNO=1000001; /* Equal-Weighted */

RANGE=’crsp_begdt-crsp_enddt’
limits the time range of data that are read from your CRSPAccess database. Specify this option in
your LIBNAME libref SASECRSP statement, where crsp_begdt is the beginning date of the range in
'YYYYMMDD' format and crsp_enddt is the ending date of the range in 'YYYYMMDD' format.

For example, to access monthly stock data for Microsoft Corporation and for International Business
Machines Corporation for the first quarter of 1999, you can use the following statement:

LIBNAME myLib sasecrsp 'physical-name'
SETID=20
PERMNO=10107
PERMNO=12490
RANGE='19990101-19990331';
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The specified beginning and ending dates are interpreted as calendar dates.

You can use the RANGE= option for all members of CRSP US Stock and Indices Databases. CRSP
data members are associated with only one date, and all CRSP data members have a date resolution to
the day. For example, monthly time series, although they are monthly, resolve to the last trading day of
the month.

INSET=‘setname[,keyfieldname,keyfieldtype,date1field,date2field]’
specifies a SAS data set named setname as input for issues. The SASECRSP engine assumes that a
default PERMNO field that contains selected CRSP PERMNOs is present in the data set. If optional
parameters are used, they must all be specified. The only acceptable shorthand for dropping the
parameters is to drop those at the very end, assuming they are all being omitted. Dropped parameters
use their defaults.

You can specify the following parameters:

keyfieldname labels the field that contains the keys to be selected. If unspecified, the
default is PERMNO.

keyfieldtype specifies the CRSPAccess key type of the provided keys. Possible key
types are: PERMNO, PERMCO, CUSIP, HCUSIP, TICKER, SICCD,
or INDNO. If unspecified, the default is “PERMNO”.

date1field specifies the beginning date of the specific date range restriction being
applied to this key. If either date1field or date2field is omitted, then
by default there is no date range restriction.

date2field specifies the ending date of the specific date range restriction being
applied to this key. If either date1field or date2field is omitted, then
by default there is no date range restriction.

Individual date range restrictions that you specify by using the INSET= option can be used in com-
bination with the RANGE= option in the LIBNAME statement. In such a case, only data from the
intersection of the individual date restriction and the global RANGE= option date restriction are read.
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Details: SASECRSP Interface Engine

Using the INSET= Option
The following examples illustrate the use of the INSET= option.

Basic INSET= Option Use: Providing a List of PERMNOs

This example uses the INSET= option to extract monthly data for a portfolio of three companies. No date
range restriction is used.

data testin1;
permno = 10107; output;
permno = 12490; output;
permno = 14322; output;

run;

LIBNAME mstk sasecrsp 'physical-name'
SETID=20
INSET='testin1';

proc print data=mstk.stkhead (keep=permno permco begdt enddt hcomnam htick);
run;

General Use of the INSET= Option to Specify Lists of Keys

This example illustrates the use of the INSET= option to select a few index series from the CRSP Indices
data, and securities from the CRSP US Stock data. The libref ind2 is used for accessing the CRSP Indices
data by using the two specified INDNO keys. The libref sec3 is used to access the CRSP US Stock data by
using the three specified TICKER keys. Note the use of shorthand in specifying the INSET= option. The
date1field , date2field , and datetype arguments are all omitted, so the default of no range restriction applies
(though the range restriction set by the RANGE= option in the LIBNAME statement still applies). For more
information, including sample output, see Example 47.4.

data indices;
indno=1000000; output; /* NYSE Value-Weighted Market Index */
indno=1000001; output; /* NYSE Equal-Weighted Market Index */

run;

libname ind2 sasecrsp "%sysget(CRSP_MSTK)" setid=420
inset='indices,INDNO,INDNO' range='19990101-19990401';

title2 'Total Returns for NYSE Value- and Equal-Weighted Market Indices';
proc print data=ind2.tret label;
run;

data securities;
ticker='BAC'; output; /* Bank of America */
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ticker='DUK'; output; /* Duke Energy */
ticker='GSK'; output; /* GlaxoSmithKline */

run;

libname sec3 sasecrsp "%sysget(CRSP_MSTK)" setid=20
inset='securities,TICKER,TICKER'
range='19970820-19970920';

title2 'PERMNOs and General Header Info of Selected TICKERs';
proc print data=sec3.stkhead (keep=permno htick htsymbol) label;
run;

title3 'Average Price for Bank of America, Duke and GlaxoSmithKline';
proc print data=sec3.prc label; run;

Key-Specific Date Range Restriction with the INSET= Option

Suppose you not only want to select keys with your INSET= option, but you also want to specify a date
range restriction for each key individually. The following statements show how to do this. Again, shorthand
enables you to omit the date1field and date2field arguments. The dates that are provided default to a calendar
interpretation. For more information, including the sample output, see Example 47.5.

title2 'INSET=testin2 uses date ranges along with PERMNOs:';
title3 '10107, 12490, 14322, 25788';
title4 'Begin dates and end dates for each permno are used in the INSET';

data testin2;
permno = 10107; date1 = 19980731; date2 = 19981231; output;
permno = 12490; date1 = 19970101; date2 = 19971231; output;
permno = 14322; date1 = 19950731; date2 = 19960131; output;
permno = 25778; date1 = 19950101; date2 = 19950331; output;

run;

libname mstk2 sasecrsp "%sysget(CRSP_MSTK)" setid=20
inset='testin2,PERMNO,PERMNO,DATE1,DATE2';

data b;
set mstk2.prc;

run;

proc print data=b;
run;



3456 F Chapter 47: The SASECRSP Interface Engine

The SAS Output Data Set
You can use the SAS DATA step to write the selected CRSP data to a SAS data set. This enables you to easily
analyze the data by using SAS. When you specify the name of the output data set in the DATA statement, the
engine supervisor creates a SAS data set by using the specified name in either the SAS Work library or, if
specified, the User library.

The contents of the SAS data set include the date of each observation, the series name of each series read
from the CRSPAccess database, event variables, and the label or description of each series/event or array.

You can use PROC PRINT and PROC CONTENTS to print your output data set and its contents. Alternatively,
you can view your SAS output observations by opening the desired output data set in a SAS Explorer window.
You can also use PROC SQL with the SASECRSP engine libref to create a custom view of your data.

In general, CRSP missing values are represented as ‘.’ in the SAS data set. When accessing the CRSP US
STOCK data, the SASECRSP engine uses the mapping shown in Table 47.5 for converting CRSP missing
values into SAS missing codes.

Table 47.5 Mapping of CRSP Stock Missing Values to SAS Missing Codes

CRSP Stock SAS Condition

–99 . No valid price
–88 .A Out of range
–77 .B Off-exchange
–66 .C No valid previous price
–55 .D No delisting information
–44 .E No valid comparison for an excess return

Understanding CRSP Date Formats, Informats, and Functions
CRSP has historically used two different methods to represent dates, whereas SAS has used a third. The
three formats are SAS dates, CRSP dates, and integer dates. The SASECRSP engine provides 23 functions,
15 informats, and 10 formats to enable you to easily translate the dates from one internal representation to
another. A SASECRSP engine libref must be assigned prior to your use of the CRSP date formats, informats,
and functions. See “Example 47.6: Converting Dates by Using the CRSP Date Functions” on page 3488.

SAS dates are stored internally as the number of days since January 1, 1960. The SAS method is an industry
standard that provides a great deal of flexibility, including a wide variety of informats, formats, and functions.

CRSP dates are designed to ease time series storage and access. Internally, the dates are stored as an offset
in an array of trading days or a trading-day calendar. There are five different CRSP trading-day calendars:
Annual, Quarterly, Monthly, Weekly, and Daily. In this sense, there are five different types of CRSP dates,
one for each frequency of calendar that it references. The CRSP method provides fewer missing values and
makes trading period calculations very easy. However, many valid calendar dates are not available in the
CRSP trading calendars, and you must be careful when you use other dates.

Integer dates are a way to represent dates that are platform-independent and maintain the correct sort order.
However, the distance between dates is not maintained.
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The best way to illustrate the various date formats is to use some sample data. Table 47.6 shows date
representations for CRSP daily and monthly data.

Table 47.6 Date Representations for Daily and Monthly Data

Date SAS Date CRSP Date CRSP Date Integer Date
(Daily) (Monthly)

July 31, 1962 942 21 440 19620731
August 31, 1962 973 44 441 19620831
Dec. 30, 1998 14,243 9190 NA* 19981230
Dec. 31, 1998 14,244 9191 877 19981231
*Not available if an exact match is requested.

Having an understanding of the internal differences in representing SAS dates, CRSP dates, and CRSP
integer dates helps you use the SASECRSP engine formats, informats, and functions effectively. Always
keep in mind the frequency of the CRSP calendar that you are accessing when you specify a CRSP date.

The CRSP Date Formats

CRSP dates use two types of formats, and five frequencies are available for each type. The two types are exact
dates (CRSPDT*) and range dates (CRSPDR*), where the ‘*’ can be A for annual, Q for quarterly, M for
monthly, W for weekly, or D for daily. The ten types are CRSPDTA, CRSPDTQ, CRSPDTM, CRSPDTW,
CRSPDTD, CRSPDRA, CRSPDRQ, CRSPDRM, CRSPDRW, and CRSPDRD.

Table 47.7 shows some samples that use the monthly and daily calendar as examples. The Annual (CRSPDTA
and CRSPDRA), Quarterly (CRSPDTQ and CRSPDRQ), and Weekly (CRSPDTW and CRSPDRW) formats
work analogously.

Table 47.7 Sample CRSPDT Formats for Daily and Monthly Data

CRSP Date CRSPDTD CRSPDRD CRSPDTM CRSPDRM
Date Daily,

Monthly
Daily Date Daily

Range
Monthly
Date

Monthly Range

July 31, 1962 21, 440 19620731 19620731� 19620731 19620630,
19620731

August 31, 1962 44, 441 19620831 19620831� 19620831 19620801,
19620831

Dec. 30, 1998 9190, NA* 19981230 19981230� NA* NA*
Dec. 31, 1998 9191, 877 19981231 19981231� 19981231 19981201,

19981231
�Daily ranges look similar to monthly ranges if they are Mondays or immediately
follow a trading holiday.
*When you are working with exact matches, no CRSP monthly date exists for December 30, 1998.
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The @CRSP Date Informats

CRSP dates use three types of informats, and five frequencies are available for each type. The three
types are exact (@CRSPDT*), range (@CRSPDR*), and backward (@CRSPDB*) dates, where the ‘*’
can be A for annual, Q for quarterly, M for monthly, W for weekly, or D for daily. The 15 formats
are @CRSPDTA, @CRSPDTQ, @CRSPDTM, @CRSPDTW, @CRSPDTD, @CRSPDRA, @CRSPDRQ,
@CRSPDRM, @CRSPDRW, @CRSPDRD, @CRSPDBA, @CRSPDBQ, @CRSPDBM, @CRSPDBW,
and @CRSPDBD.

The five CRSPDT* informats find exact matches only. The five CRSPDR* informats look for an exact match,
and if an exact match is not found, they go forward, matching the CRSPDR* formats. The five CRSPDB*
informats look for an exact match, and if an exact match is not found, they go backward.

Table 47.8 shows a sample that uses only the CRSP monthly calendar as an example. The daily, weekly,
quarterly, and annual frequencies work analogously.

Table 47.8 Sample @CRSP Date Informats Using Monthly Data

Input Date CRSP Date CRSP Date CRSP Date CRSPDTM CRSPDRM
(Integer Date) CRSPDTM CRSPDRM CRSPDBM Monthly

Date
Monthly
Range

19620731 440 440 440 19620731 19620630 to
19620731

19620815 .(missing) 441 440 See below� See below*
19620831 441 441 441 19620831 19620801 to

19620831
�Missing values are preserved. If 441, then 19620831. If 440, then 19620731.
*Missing values are preserved. If 441, then 19620801 to 19620831. If 440, then
19620630 to 19620731.

The CRSP Date Functions

Table 47.9 shows the 22 date functions that the SASECRSP engine provides. The engine uses these functions
internally, but they are also available to end users. There are seven groups of functions. The first four groups
have five functions each, one for each CRSP calendar frequency. The next two functions are for converting
between SAS and integer date formats.



Understanding CRSP Date Formats, Informats, and Functions F 3459

Table 47.9 CRSP Date Functions

Function Function Argument Argument Return
Group Name One Two Value

CRSP dates to integer dates for December 31, 1998

Annual crspdcia 74 None 19981231
Quarterly crspdciq 293 None 19981231
Monthly crspdcim 877 None 19981231
Weekly crspdciw 1905 None 19981231
Daily crspdcid 9191 None 19981231

CRSP dates to SAS dates for December 31, 1998

Annual crspdcsa 74 None 14,244
Quarterly crspdcsq 293 None 14,244
Monthly crspdcsm 877 None 14,244
Weekly crspdcsw 1905 None 14,244
Daily crspdcsd 9191 None 14,244

Integer dates to CRSP dates exact is illustrated, but can be forward or backward

Annual crspdica 19981231 0 74
Quarterly crspdicq 19981231 0 293
Monthly crspdicm 19981231 0 877
Weekly crspdicw 19981231 0 1905
Daily crspdicd 19981231 0 9191

SAS dates to CRSP dates exact is illustrated, but can be forward or backward

Annual crspdsca 14,244 0 74
Quarterly crspdscq 14,244 0 293
Monthly crspdscm 14,244 0 877
Weekly crspdscw 14,244 0 1905
Daily crspdscd 14,244 0 9191

Integer dates to SAS dates for December 31, 1998

Integer to SAS crspdi2s 19981231 None 14,244

SAS dates to integer dates for December 31, 1998

SAS to Integer crspds2i 14,244 None 19981231
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Data Elements Reference: SASECRSP Interface Engine
Data sets are made available based on the type of CRSP database that you open. Table 47.10 and Table 47.11
show summary views of the two types of CRSP databases (Stock and Indices) and the data sets that they
make available. Tables that contain details about the data sets, including their specific fields, immediately
follow the summary tables. You can also see the available data sets for an opened database via the SAS
Explorer by opening a SASECRSP engine libref that you previously assigned.

Table 47.10 Summary of All Available Data Sets by CRSP Database Type: Stock

CRSP
Database

Data Set Name Reference Table Title Reference
Table

CRSP US
Stock
Database
(STOCK)

STKHEAD Header Identification and Summary Data Table 47.12
NAMES Name History Array Table 47.13
DISTS Distribution Event Array Table 47.14
SHARES Shares Outstanding Observation Array Table 47.15
DELIST Delisting History Array Table 47.16
NASDIN NASDAQ Information Array Table 47.17
PRC Price or Bid/Ask Average Time Series Table 47.18
RET Returns Time Series Table 47.18
BIDLO Bid or Low Price Time Series Table 47.18
ASKHI Ask or High Price Time Series Table 47.18
BID Bid Time Series Table 47.18
ASK Ask Time Series Table 47.18
RETX Returns Without Dividends Time Series Table 47.18
SPREAD Spread Between Bid and Ask Table 47.18
ALTPRC Price Alternate Time Series Table 47.18
VOL Volume Time Series Table 47.18
NUMTRD Number of Trades Time Series Table 47.18
ALTPRCDT Price Alternate Date Time Series Table 47.18
PORT1 Portfolio Data for Portfolio Type 1 Table 47.19
PORT2 Portfolio Data for Portfolio Type 2 Table 47.19
PORT3 Portfolio Data for Portfolio Type 3 Table 47.19
PORT4 Portfolio Data for Portfolio Type 4 Table 47.19
PORT5 Portfolio Data for Portfolio Type 5 Table 47.19
PORT6 Portfolio Data for Portfolio Type 6 Table 47.19
PORT7 Portfolio Data for Portfolio Type 7 Table 47.19
PORT8 Portfolio Data for Portfolio Type 8 Table 47.19
PORT9 Portfolio Data for Portfolio Type 9 Table 47.19
GROUP16 Group Data for Group Type 16 Table 47.19
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Table 47.11 Summary of All Available Data Sets by CRSP Database Type: Indices

CRSP
Database

Data Set Name Reference Table Title Reference
Table

CRSP
Indices
Database
(IND)

INDHEAD Index Header Data Table 47.20
REBAL Index Rebalancing History Arrays Table 47.21
REBAL Index Rebalancing History Group Arrays Table 47.22
LIST Index Membership List Arrays Table 47.23
LIST Index Membership List Groups Arrays Table 47.24
USDCNT Portfolio Used Count Array Table 47.25
TOTCNT Portfolio Total Count Array Table 47.26
USDCNT Portfolio Used Count Time Series Groups Table 47.27
TOTCNT Portfolio Total Count Time Series Groups Table 47.28
USDVAL Portfolio Used Value Array Table 47.29
TOTVAL Portfolio Total Value Array Table 47.30
USDVAL Portfolio Used Value Time Series Groups Table 47.31
TOTVAL Portfolio Total Value Time Series Groups Table 47.32
TRET Total Returns Time Series Table 47.33
ARET Appreciation Returns Time Series Table 47.34
IRET Income Returns Time Series Table 47.35
TRET Total Returns Time Series Groups Table 47.36
ARET Income Returns Time Series Groups Table 47.37
IRET Income Returns Time Series Groups Table 47.38
TIND Total Return Index Levels Time Series Table 47.39
AIND Appreciation Index Levels Time Series Table 47.40
IIND Income Index Levels Time Series Table 47.41
TIND Total Return Index Levels Groups Table 47.42
AIND Appreciation Index Levels Groups Table 47.43
IIND Income Index Levels Time Series Groups Table 47.44

Available CRSP Stock Data Sets

STKHEAD Data Set—Header Identification and Summary Data

Table 47.12 STKHEAD Data Set—Header Identification and
Summary Data

Field Label Type

PERMNO PERMNO Numeric
PERMCO PERMCO Numeric
COMPNO NASDAQ Company Number Numeric
ISSUNO NASDAQ Issue Number Numeric
HEXCD Exchange Code Header Numeric
HSHRCD Share Code Header Numeric
HSICCD Standard Industrial Classification Code Numeric
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Table 47.12 continued

Field Label Type

BEGDT Begin of Stock data Numeric
ENDDT End of Stock data Numeric
DLSTCD Delisting Code Header Numeric
HCUSIP CUSIP Header Character
HTICK Ticker Symbol Header Character
HCOMNAM Company Name Header Character
HTSYMBOL Trading Symbol Header Character
HNAICS North American Industry Classification Header Character
HPRIMEXC Primary Exchange Header Character
HTRDSTAT Trading Status Header Character
HSECSTAT Security Status Header Character

NAMES Data Set—Name History Array

Table 47.13 NAMES Data Set—Name History Array

Field Label Type

PERMNO PERMNO Numeric
NAMEDT Names Date Numeric
NAMEENDT Names Ending Date Numeric
SHRCD Share Code Numeric
EXCHCD Exchange Code Numeric
SICCD Standard Industrial Classification Code Numeric
NCUSIP CUSIP Numeric
TICKER Ticker Symbol Character
COMNAM Company Name Character
SHRCLS Share Class Numeric
TSYMBOL Trading Symbol Character
NAICS North American Industry Classification System Character
PRIMEXCH Primary Exchange Character
TRDSTAT Trading Status Character
SECSTAT Security Status Character

DISTS Data Set—Distribution Event Array

Table 47.14 DISTS Data Set—Distribution Event Array

Field Label Type

PERMNO PERMNO Numeric
DISTCD Distribution Code Numeric
DIVAMT Dividend Cash Amount Numeric
FACPR Factor to Adjust Price Numeric
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Table 47.14 continued

Field Label Type

FACSHR Factor to Adjust Share Numeric
DCLRDT Distribution Declaration Date Numeric
EXDT Ex-Distribution Date Numeric
RCRDDT Record Date Numeric
PAYDT Payment Date Numeric
ACPERM Acquiring PERMNO Numeric
ACCOMP Acquiring PERMCO Numeric

SHARES Data Set—Shares Outstanding Observation Array

Table 47.15 SHARES Data Set—Shares Outstanding
Observation Array

Field Label Type

PERMNO PERMNO Numeric
SHROUT Shares Outstanding Numeric
SHRSDT Shares Observation Date Numeric
SHRENDDT Shares Observation End Date Numeric
SHRFLG Shares Outstanding Observation Flag Numeric

DELIST Data Set—Delisting History Array

Table 47.16 DELIST Data Set—Delisting History Array

Field Label Type

PERMNO PERMNO Numeric
DLSTDT Delisting Date Numeric
DLSTCD Delisting Code Numeric
NWPERM New PERMNO Numeric
NWCOMP New PERMCO Numeric
NEXTD Delisting Next Price Date Numeric
DLAMT Delisting Amount Numeric
DLRETX Delisting Return Without Dividends Numeric
DLPRC Delisting Price Numeric
DLPDT Delisting Amount Date Numeric
DLRET Delisting Return Numeric
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NASDIN Data Set—NASDAQ Information Array

Table 47.17 NASDIN Data Set—NASDAQ Information Array

Field Label Type

PERMNO PERMNO Numeric
TRTSCD NASDAQ Traits Code Numeric
TRTSDT NASDAQ Traits Date Numeric
TRTSENDT NASDAQ Traits End Date Numeric
NMSIND NASDAQ National Market Indicator Numeric
MMCNT Market Maker Count Numeric
NSDINX NASD Index Code Numeric

STOCK Time Series Data Sets

Table 47.18 STOCK Time Series Data Sets

Data Set Name, Long
Name

Field Label Type

PRC PERMNO PERMNO Numeric
Price or Bid/Ask CALDT Calendar Trading Date Numeric
Average Time Series PRC Price or Bid/Ask Aver Numeric

RET PERMNO PERMNO Numeric
Returns Time Series CALDT Calendar Trading Date Numeric

RET Returns Numeric

ASKHI PERMNO PERMNO Numeric
Ask or High Price CALDT Calendar Trading Date Numeric
Time Series ASKHI Ask or High Price Numeric

BIDLO PERMNO PERMNO Numeric
Bid or Low Price CALDT Calendar Trading Date Numeric
Time Series BIDLO Bid or Low Price Numeric

BID PERMNO PERMNO Numeric
Bid Time Series CALDT Calendar Trading Date Numeric

BID Bid Numeric

ASK PERMNO PERMNO Numeric
Ask Time Series CALDT Calendar Trading Date Numeric

ASK Ask Numeric

RETX PERMNO PERMNO Numeric
Returns without CALDT Calendar Trading Date Numeric
Dividends RETX Returns w/o Dividends Numeric

SPREAD PERMNO PERMNO Numeric
Spread Between Bid CALDT Calendar Trading Date Numeric
and Ask Time Series SPREAD Spread Between Bid Ask Numeric
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Table 47.18 continued

Data Set Name, Long
Name

Field Label Type

ALTPRC PERMNO PERMNO Numeric
Price Alternate CALDT Calendar Trading Date Numeric
Time Series ALTPRC Price Alternate Numeric

VOL PERMNO PERMNO Numeric
Volume Time Series CALDT Calendar Trading Date Numeric

VOL Volume Numeric

NUMTRD PERMNO PERMNO Numeric
Number of Trades CALDT Calendar Trading Date Numeric
Time Series NUMTRD Number of Trades Numeric

ALTPRCDT PERMNO PERMNO Numeric
Alternate Price CALDT Calendar Trading Date Numeric
Date Time Series ALTPRCDT Alternate Price Date Numeric

Portfolio and Group Data Sets

Table 47.19 Portfolio and Group Data Sets

Data Set Fields Label Type

PORT1 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT1 Portfolio Assignment for Portfolio Type 1 Numeric
Type 1 STAT1 Portfolio Statistic for Portfolio Type 1 Numeric

PORT2 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT2 Portfolio Assignment for Portfolio Type 2 Numeric
Type 2 STAT2 Portfolio Statistic for Portfolio Type 2 Numeric

PORT3 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT3 Portfolio Assignment for Portfolio Type 3 Numeric
Type 3 STAT3 Portfolio Statistic for Portfolio Type 3 Numeric

PORT4 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT4 Portfolio Assignment for Portfolio Type 4 Numeric
Type 4 STAT4 Portfolio Statistic for Portfolio Type 4 Numeric

PORT5 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT5 Portfolio Assignment for Portfolio Type 5 Numeric
Type 5 STAT5 Portfolio Statistic for Portfolio Type 5 Numeric
PORT6 PERMNO PERMNO Numeric
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Table 47.19 continued

Data Set Fields Label Type

Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT6 Portfolio Assignment for Portfolio Type 6 Numeric
Type 6 STAT6 Portfolio Statistic for Portfolio Type 6 Numeric

PORT7 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT7 Portfolio Assignment for Portfolio Type 7 Numeric
Type 7 STAT7 Portfolio Statistic for Portfolio Type 7 Numeric

PORT8 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT8 Portfolio Assignment for Portfolio Type 8 Numeric
Type 8 STAT8 Portfolio Statistic for Portfolio Type 8 Numeric

PORT9 PERMNO PERMNO Numeric
Portfolio data CALDT Calendar Trading Date Numeric
for Portfolio PORT9 Portfolio Assignment for Portfolio Type 9 Numeric
Type 9 STAT9 Portfolio Statistic for Portfolio Type 9 Numeric

GROUP16 PERMNO PERMNO Numeric
Group data GRPDT Group Beginning Date Numeric
for Group GRPENDDT Group Ending Date Numeric
Type 16 GRPFLAG Group Flag of Associated Index Numeric

GRPSU Group Subflag Numeric

Available CRSP Indices Data Sets

INDHEAD Data Set—CRSP Index Header Data

Table 47.20 INDHEAD Data Set—CRSP Index Header Data

Field Label Type

INDNO Permanent index identification number Numeric
INDCO Permanent index group identification number Numeric
PRIMFLAG Index primary link Numeric
PORTNUM Portfolio number if subset series Numeric
INDNAME Index Name Character
GROUPNAM Index Group Name Character
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REBAL Data Set—Index Rebalancing History Arrays

Table 47.21 REBAL Data Set—Index Rebalancing History
Arrays

Field Label Type

INDNO INDNO Numeric
RBEGDT Rebalancing beginning date Numeric
RENDDT Rebalancing ending date Numeric
USDCNT Count used as of rebalancing Numeric
MAXCNT Maximum count during period Numeric
TOTCNT Available count as of rebalancing Numeric
ENDCNT Count at end of period Numeric
MINID Identifier at minimum value Numeric
MAXID Identifier at maximum value Numeric
MINSTA Smallest statistic in period Numeric
MAXSTA Largest statistic in period Numeric
MEDSTA Median statistic in period Numeric
AVGSTA Average statistic in period Numeric

REBAL Group Data Set—Index Rebalancing History Group Array

Table 47.22 REBAL Group Data Set—Index Rebalancing
History Group Array

Field Label Type

INDNO INDNO Numeric
RBEGDT1 Rebalancing beginning date for port 1 Numeric
RBEGDT2 Rebalancing beginning date for port 2 Numeric
RBEGDT3 Rebalancing beginning date for port 3 Numeric
RBEGDT4 Rebalancing beginning date for port 4 Numeric
RBEGDT5 Rebalancing beginning date for port 5 Numeric
RBEGDT6 Rebalancing beginning date for port 6 Numeric
RBEGDT7 Rebalancing beginning date for port 7 Numeric
RBEGDT8 Rebalancing beginning date for port 8 Numeric
RBEGDT9 Rebalancing beginning date for port 9 Numeric
RBEGDT10 Rebalancing beginning date for port 10 Numeric
RENDDT1 Rebalancing ending date for port 1 Numeric
RENDDT2 Rebalancing ending date for port 2 Numeric
RENDDT3 Rebalancing ending date for port 3 Numeric
RENDDT4 Rebalancing ending date for port 4 Numeric
RENDDT5 Rebalancing ending date for port 5 Numeric
RENDDT6 Rebalancing ending date for port 6 Numeric
RENDDT7 Rebalancing ending date for port 7 Numeric
RENDDT8 Rebalancing ending date for port 8 Numeric
RENDDT9 Rebalancing ending date for port 9 Numeric
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Table 47.22 continued

Field Label Type

RENDDT10 Rebalancing ending date for port 10 Numeric
USDCNT1 Count used as of rebalancing for port 1 Numeric
USDCNT2 Count used as of rebalancing for port 2 Numeric
USDCNT3 Count used as of rebalancing for port 3 Numeric
USDCNT4 Count used as of rebalancing for port 4 Numeric
USDCNT5 Count used as of rebalancing for port 5 Numeric
USDCNT6 Count used as of rebalancing for port 6 Numeric
USDCNT7 Count used as of rebalancing for port 7 Numeric
USDCNT8 Count used as of rebalancing for port 8 Numeric
USDCNT9 Count used as of rebalancing for port 9 Numeric
USDCNT10 Count used as of rebalancing for port10 Numeric
MAXCNT1 Maximum count during period for port 1 Numeric
MAXCNT2 Maximum count during period for port 2 Numeric
MAXCNT3 Maximum count during period for port 3 Numeric
MAXCNT4 Maximum count during period for port 4 Numeric
MAXCNT5 Maximum count during period for port 5 Numeric
MAXCNT6 Maximum count during period for port 6 Numeric
MAXCNT7 Maximum count during period for port 7 Numeric
MAXCNT8 Maximum count during period for port 8 Numeric
MAXCNT9 Maximum count during period for port 9 Numeric
MAXCNT10 Maximum count during period for port 10 Numeric
TOTCNT1 Available count as of rebalancing for port 1 Numeric
TOTCNT2 Available count as of rebalancing for port 2 Numeric
TOTCNT3 Available count as of rebalancing for port 3 Numeric
TOTCNT4 Available count as of rebalancing for port 4 Numeric
TOTCNT5 Available count as of rebalancing for port 5 Numeric
TOTCNT6 Available count as of rebalancing for port 6 Numeric
TOTCNT7 Available count as of rebalancing for port 7 Numeric
TOTCNT8 Available count as of rebalancing for port 8 Numeric
TOTCNT9 Available count as of rebalancing for port 9 Numeric
TOTCNT10 Available count as of rebalancing for port10 Numeric
ENDCNT1 Count at end of period for port 1 Numeric
ENDCNT2 Count at end of period for port 2 Numeric
ENDCNT3 Count at end of period for port 3 Numeric
ENDCNT4 Count at end of period for port 4 Numeric
ENDCNT5 Count at end of period for port 5 Numeric
ENDCNT6 Count at end of period for port 6 Numeric
ENDCNT7 Count at end of period for port 7 Numeric
ENDCNT8 Count at end of period for port 8 Numeric
ENDCNT9 Count at end of period for port 9 Numeric
ENDCNT10 Count at end of period for port 10 Numeric
MINID1 Identifier at minimum value for port 1 Numeric
MINID2 Identifier at minimum value for port 2 Numeric
MINID3 Identifier at minimum value for port 3 Numeric
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Table 47.22 continued

Field Label Type

MINID4 Identifier at minimum value for port 4 Numeric
MINID5 Identifier at minimum value for port 5 Numeric
MINID6 Identifier at minimum value for port 6 Numeric
MINID7 Identifier at minimum value for port 7 Numeric
MINID8 Identifier at minimum value for port 8 Numeric
MINID9 Identifier at minimum value for port 9 Numeric
MINID10 Identifier at minimum value for port 10 Numeric
MAXID1 Identifier at maximum value for port 1 Numeric
MAXID2 Identifier at maximum value for port 2 Numeric
MAXID3 Identifier at maximum value for port 3 Numeric
MAXID4 Identifier at maximum value for port 4 Numeric
MAXID5 Identifier at maximum value for port 5 Numeric
MAXID6 Identifier at maximum value for port 6 Numeric
MAXID7 Identifier at maximum value for port 7 Numeric
MAXID8 Identifier at maximum value for port 8 Numeric
MAXID9 Identifier at maximum value for port 9 Numeric
MAXID10 Identifier at maximum value for port 10 Numeric
MINSTA1 Smallest statistic in period for port 1 Numeric
MINSTA2 Smallest statistic in period for port 2 Numeric
MINSTA3 Smallest statistic in period for port 3 Numeric
MINSTA4 Smallest statistic in period for port 4 Numeric
MINSTA5 Smallest statistic in period for port 5 Numeric
MINSTA6 Smallest statistic in period for port 6 Numeric
MINSTA7 Smallest statistic in period for port 7 Numeric
MINSTA8 Smallest statistic in period for port 8 Numeric
MINSTA9 Smallest statistic in period for port 9 Numeric
MINSTA10 Smallest statistic in period for port 10 Numeric
MAXSTA1 Largest statistic in period for port 1 Numeric
MAXSTA2 Largest statistic in period for port 2 Numeric
MAXSTA3 Largest statistic in period for port 3 Numeric
MAXSTA4 Largest statistic in period for port 4 Numeric
MAXSTA5 Largest statistic in period for port 5 Numeric
MAXSTA6 Largest statistic in period for port 6 Numeric
MAXSTA7 Largest statistic in period for port 7 Numeric
MAXSTA8 Largest statistic in period for port 8 Numeric
MAXSTA9 Largest statistic in period for port 9 Numeric
MAXSTA10 Largest statistic in period for port 10 Numeric
MEDSTA1 Median statistic in period for port 1 Numeric
MEDSTA2 Median statistic in period for port 2 Numeric
MEDSTA3 Median statistic in period for port 3 Numeric
MEDSTA4 Median statistic in period for port 4 Numeric
MEDSTA5 Median statistic in period for port 5 Numeric
MEDSTA6 Median statistic in period for port 6 Numeric
MEDSTA7 Median statistic in period for port 7 Numeric
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Table 47.22 continued

Field Label Type

MEDSTA8 Median statistic in period for port 8 Numeric
MEDSTA9 Median statistic in period for port 9 Numeric
MEDSTA10 Median statistic in period for port 10 Numeric
AVGSTA1 Average statistic in period for port 1 Numeric
AVGSTA2 Average statistic in period for port 2 Numeric
AVGSTA3 Average statistic in period for port 3 Numeric
AVGSTA4 Average statistic in period for port 4 Numeric
AVGSTA5 Average statistic in period for port 5 Numeric
AVGSTA6 Average statistic in period for port 6 Numeric
AVGSTA7 Average statistic in period for port 7 Numeric
AVGSTA8 Average statistic in period for port 8 Numeric
AVGSTA9 Average statistic in period for port 9 Numeric
AVGSTA10 Average statistic in period for port 10 Numeric

LIST Data Set—Index Membership List Arrays

Table 47.23 LIST Data Set—Index Membership List Arrays

Field Label Type

INDNO INDNO Numeric
PERMNO Issue identifier Numeric
BEGDT First date included Numeric
ENDDT Last date included Numeric
SUBIND Code for subcategory of list Numeric
WEIGHT Weight during range Numeric

LIST Group Data Set—Index Membership List Group Arrays

Table 47.24 LIST Group Data Set—Index Membership List
Group Arrays

Field Label Type

INDNO INDNO Numeric
PERMNO1 Issue identifier Numeric
BEGDT1 First date included Numeric
ENDDT1 Last date included Numeric
SUBIND1 Code for subcategory of list Numeric
WEIGHT1 Weight during range Numeric



Available CRSP Indices Data Sets F 3471

USDCNT Data Set—Portfolio Used Count Array

Table 47.25 USDCNT Data Set—Portfolio Used Count Array

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
USDCNT Portfolio Used Count Numeric

TOTCNT Data Set—Portfolio Total Count Array

Table 47.26 TOTCNT Data Set—Portfolio Total Count Array

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TOTCNT Portfolio Used Count Numeric

USDCNT Group Data Set—Portfolio Used Time Series Group

Table 47.27 USDCNT Group Data Set—Portfolio Used Time
Series Group

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
USDCNT1 Used Count for Port 1 Numeric
USDCNT2 Used Count for Port 2 Numeric
USDCNT3 Used Count for Port 3 Numeric
USDCNT4 Used Count for Port 4 Numeric
USDCNT5 Used Count for Port 5 Numeric
USDCNT6 Used Count for Port 6 Numeric
USDCNT7 Used Count for Port 7 Numeric
USDCNT8 Used Count for Port 8 Numeric
USDCNT9 Used Count for Port 9 Numeric
USDCNT10 Used Count for Port 10 Numeric
USDCNT11 Used Count for Port 11 Numeric
USDCNT12 Used Count for Port 12 Numeric
USDCNT13 Used Count for Port 13 Numeric
USDCNT14 Used Count for Port 14 Numeric
USDCNT15 Used Count for Port 15 Numeric
USDCNT16 Used Count for Port 16 Numeric
USDCNT17 Used Count for Port 17 Numeric
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TOTCNT Group Data Set—Portfolio Total Count Time Series Groups

Table 47.28 TOTCNT Group Data Set—Portfolio Total Count
Time Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TOTCNT1 Total Count for Port 1 Numeric
TOTCNT2 Total Count for Port 2 Numeric
TOTCNT3 Total Count for Port 3 Numeric
TOTCNT4 Total Count for Port 4 Numeric
TOTCNT5 Total Count for Port 5 Numeric
TOTCNT6 Total Count for Port 6 Numeric
TOTCNT7 Total Count for Port 7 Numeric
TOTCNT8 Total Count for Port 8 Numeric
TOTCNT9 Total Count for Port 9 Numeric
TOTCNT10 Total Count for Port10 Numeric
TOTCNT11 Total Count for Port11 Numeric
TOTCNT12 Total Count for Port12 Numeric
TOTCNT13 Total Count for Port13 Numeric
TOTCNT14 Total Count for Port14 Numeric
TOTCNT15 Total Count for Port15 Numeric
TOTCNT16 Total Count for Port16 Numeric
TOTCNT17 Total Count for Port17 Numeric

USDVAL Data Set—Portfolio Used Value Array

Table 47.29 USDVAL Data Set—Portfolio Used Value Array

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
USDVAL Portfolio Used Value Numeric

TOTVAL Data Set—Portfolio Total Value Array

Table 47.30 TOTVAL Data Set—Portfolio Total Value Array

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TOTVAL Portfolio Total Value Numeric
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USDVAL Group Data Set—Portfolio Used Value Time Series Groups

Table 47.31 USDVAL Group Data Set—Portfolio Used Value
Time Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
USDVAL1 Used Value for Port 1 Numeric
USDVAL2 Used Value for Port 2 Numeric
USDVAL3 Used Value for Port 3 Numeric
USDVAL4 Used Value for Port 4 Numeric
USDVAL5 Used Value for Port 5 Numeric
USDVAL6 Used Value for Port 6 Numeric
USDVAL7 Used Value for Port 7 Numeric
USDVAL8 Used Value for Port 8 Numeric
USDVAL9 Used Value for Port 9 Numeric
USDVAL10 Used Value for Port 10 Numeric
USDVAL11 Used Value for Port 11 Numeric
USDVAL12 Used Value for Port 12 Numeric
USDVAL13 Used Value for Port 13 Numeric
USDVAL14 Used Value for Port 14 Numeric
USDVAL15 Used Value for Port 15 Numeric
USDVAL16 Used Value for Port 16 Numeric
USDVAL17 Used Value for Port 17 Numeric

TOTVAL Group Data Set—Portfolio Total Value Time Series Groups

Table 47.32 TOTVAL Group Data Set—Portfolio Total Value
Time Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TOTVAL1 Total Value for Port 1 Numeric
TOTVAL2 Total Value for Port 2 Numeric
TOTVAL3 Total Value for Port 3 Numeric
TOTVAL4 Total Value for Port 4 Numeric
TOTVAL5 Total Value for Port 5 Numeric
TOTVAL6 Total Value for Port 6 Numeric
TOTVAL7 Total Value for Port 7 Numeric
TOTVAL8 Total Value for Port 8 Numeric
TOTVAL9 Total Value for Port 9 Numeric
TOTVAL10 Total Value for Port10 Numeric
TOTVAL11 Total Value for Port11 Numeric
TOTVAL12 Total Value for Port12 Numeric
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Table 47.32 continued

Field Label Type

TOTVAL13 Total Value for Port13 Numeric
TOTVAL14 Total Value for Port14 Numeric
TOTVAL15 Total Value for Port15 Numeric
TOTVAL16 Total Value for Port16 Numeric
TOTVAL17 Total Value for Port17 Numeric

TRET Data Set—Total Returns Time Series

Table 47.33 TRET Data Set—Total Returns Time Series

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TRET Total Returns Numeric

ARET Data Set—Appreciation Returns Time Series

Table 47.34 ARET Data Set—Appreciation Returns Time Series

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
ARET Appreciation Returns Time Series Numeric

IRET Data Set—Income Returns Time Series

Table 47.35 IRET Data Set—Income Returns Time Series

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
IRET Income Returns Numeric
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TRET Group Data Set—Total Returns Time Series Groups

Table 47.36 TRET Group Data Set—Total Returns Time Series
Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TRET1 Total Returns for Port 1 Numeric
TRET2 Total Returns for Port 2 Numeric
TRET3 Total Returns for Port 3 Numeric
TRET4 Total Returns for Port 4 Numeric
TRET5 Total Returns for Port 5 Numeric
TRET6 Total Returns for Port 6 Numeric
TRET7 Total Returns for Port 7 Numeric
TRET8 Total Returns for Port 8 Numeric
TRET9 Total Returns for Port 9 Numeric
TRET10 Total Returns for Port 10 Numeric
TRET11 Total Returns for Port 11 Numeric
TRET12 Total Returns for Port 12 Numeric
TRET13 Total Returns for Port 13 Numeric
TRET14 Total Returns for Port 14 Numeric
TRET15 Total Returns for Port 15 Numeric
TRET16 Total Returns for Port 16 Numeric
TRET17 Total Returns for Port 17 Numeric

ARET Group Data Set—Appreciation Returns Time Series Groups

Table 47.37 ARET Group Data Set—Appreciation Returns Time
Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
ARET1 Appreciation Returns for Port 1 Numeric
ARET2 Appreciation Returns for Port 2 Numeric
ARET3 Appreciation Returns for Port 3 Numeric
ARET4 Appreciation Returns for Port 4 Numeric
ARET5 Appreciation Returns for Port 5 Numeric
ARET6 Appreciation Returns for Port 6 Numeric
ARET7 Appreciation Returns for Port 7 Numeric
ARET8 Appreciation Returns for Port 8 Numeric
ARET9 Appreciation Returns for Port 9 Numeric
ARET10 Appreciation Returns for Port 10 Numeric
ARET11 Appreciation Returns for Port 11 Numeric
ARET12 Appreciation Returns for Port 12 Numeric
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Table 47.37 continued

Field Label Type

ARET13 Appreciation Returns for Port 13 Numeric
ARET14 Appreciation Returns for Port 14 Numeric
ARET15 Appreciation Returns for Port 15 Numeric
ARET16 Appreciation Returns for Port 16 Numeric
ARET17 Appreciation Returns for Port 17 Numeric

IRET Group Data Set—Income Returns Time Series Groups

Table 47.38 IRET Group Data Set—Income Returns Time
Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
IRET1 Income Returns for Port 1 Numeric
IRET2 Income Returns for Port 2 Numeric
IRET3 Income Returns for Port 3 Numeric
IRET4 Income Returns for Port 4 Numeric
IRET5 Income Returns for Port 5 Numeric
IRET6 Income Returns for Port 6 Numeric
IRET7 Income Returns for Port 7 Numeric
IRET8 Income Returns for Port 8 Numeric
IRET9 Income Returns for Port 9 Numeric
IRET10 Income Returns for Port 10 Numeric
IRET11 Income Returns for Port 11 Numeric
IRET12 Income Returns for Port 12 Numeric
IRET13 Income Returns for Port 13 Numeric
IRET14 Income Returns for Port 14 Numeric
IRET15 Income Returns for Port 15 Numeric
IRET16 Income Returns for Port 16 Numeric
IRET17 Income Returns for Port 17 Numeric

TIND Data Set—Total Return Index Levels Time Series

Table 47.39 TIND Data Set—Total Return Index Levels Time
Series

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TIND Total Return Index Levels Numeric
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AIND Data Set—Appreciation Index Levels Time Series

Table 47.40 AIND Data Set—Appreciation Index Levels Time
Series

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
AIND Appreciation Index Levels Numeric

IIND Data Set—Income Index Levels Time Series

Table 47.41 IIND Data Set—Income Index Levels Time Series

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
IIND Income Index Levels Numeric

TIND Group Data Set—Total Return Index Levels Time Series Groups

Table 47.42 TIND Group Data Set—Total Return Index Levels
Time Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
TIND1 Total Return Index Levels for Port 1 Numeric
TIND2 Total Return Index Levels for Port 2 Numeric
TIND3 Total Return Index Levels for Port 3 Numeric
TIND4 Total Return Index Levels for Port 4 Numeric
TIND5 Total Return Index Levels for Port 5 Numeric
TIND6 Total Return Index Levels for Port 6 Numeric
TIND7 Total Return Index Levels for Port 7 Numeric
TIND8 Total Return Index Levels for Port 8 Numeric
TIND9 Total Return Index Levels for Port 9 Numeric
TIND10 Total Return Index Levels for Port 10 Numeric
TIND11 Total Return Index Levels for Port 11 Numeric
TIND12 Total Return Index Levels for Port 12 Numeric
TIND13 Total Return Index Levels for Port 13 Numeric
TIND14 Total Return Index Levels for Port 14 Numeric
TIND15 Total Return Index Levels for Port 15 Numeric
TIND16 Total Return Index Levels for Port 16 Numeric
TIND17 Total Return Index Levels for Port 17 Numeric
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AIND Group Data Set—Appreciation Index Levels Groups

Table 47.43 AIND Group Data Set—Appreciation Index Levels
Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
AIND1 Appreciation Index Levels for Port 1 Numeric
AIND2 Appreciation Index Levels for Port 2 Numeric
AIND3 Appreciation Index Levels for Port 3 Numeric
AIND4 Appreciation Index Levels for Port 4 Numeric
AIND5 Appreciation Index Levels for Port 5 Numeric
AIND6 Appreciation Index Levels for Port 6 Numeric
AIND7 Appreciation Index Levels for Port 7 Numeric
AIND8 Appreciation Index Levels for Port 8 Numeric
AIND9 Appreciation Index Levels for Port 9 Numeric
AIND10 Appreciation Index Levels for Port 10 Numeric
AIND11 Appreciation Index Levels for Port 11 Numeric
AIND12 Appreciation Index Levels for Port 12 Numeric
AIND13 Appreciation Index Levels for Port 13 Numeric
AIND14 Appreciation Index Levels for Port 14 Numeric
AIND15 Appreciation Index Levels for Port 15 Numeric
AIND16 Appreciation Index Levels for Port 16 Numeric
AIND17 Appreciation Index Levels for Port 17 Numeric

IIND Group Data Set—Income Index Levels Time Series Groups

Table 47.44 IIND Group Data Set—Income Index Levels Time
Series Groups

Field Label Type

INDNO INDNO Numeric
CALDT Calendar Trading Date Numeric
IIND1 Income Index Levels for Port 1 Numeric
IIND2 Income Index Levels for Port 2 Numeric
IIND3 Income Index Levels for Port 3 Numeric
IIND4 Income Index Levels for Port 4 Numeric
IIND5 Income Index Levels for Port 5 Numeric
IIND6 Income Index Levels for Port 6 Numeric
IIND7 Income Index Levels for Port 7 Numeric
IIND8 Income Index Levels for Port 8 Numeric
IIND9 Income Index Levels for Port 9 Numeric
IIND10 Income Index Levels for Port 10 Numeric
IIND11 Income Index Levels for Port 11 Numeric
IIND12 Income Index Levels for Port 12 Numeric
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Table 47.44 continued

Field Label Type

IIND13 Income Index Levels for Port 13 Numeric
IIND14 Income Index Levels for Port 14 Numeric
IIND15 Income Index Levels for Port 15 Numeric
IIND16 Income Index Levels for Port 16 Numeric
IIND17 Income Index Levels for Port 17 Numeric

Examples: SASECRSP Interface Engine

Example 47.1: Specifying PERMNOs and Range in the LIBNAME Statement
The following statements show how to set up a LIBNAME statement to extract data for certain selected
PERMNOs during a specific time period. The result is shown in Output 47.1.1.

title2 'Define a range inside the data range';
title3 'My range is ( 19950101-19960630 )';

libname _all_ clear;
libname testit1 sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"

setid=20
permno=81871 /* Desired PERMNOs are selected */
permno=82200 /* via the libname PERMNO= option */
permno=82224
permno=83435
permno=83696
permno=83776
permno=84788
range='19950101-19960630';

proc print data=testit1.ask;
run;
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Output 47.1.1 ASK Monthly Time Series Data with RANGE= Option

Define a range inside the data range
My range is ( 19950101-19960630 )

Obs PERMNO CALDT ASK

1 81871 19950731 18.25000

2 81871 19950831 19.25000

3 81871 19950929 26.00000

4 81871 19951031 26.00000

5 81871 19951130 25.50000

6 81871 19951229 24.25000

7 81871 19960131 22.00000

8 81871 19960229 32.50000

9 81871 19960329 30.25000

10 81871 19960430 33.75000

11 81871 19960531 27.50000

12 81871 19960628 30.50000

13 82200 19950831 49.50000

14 82200 19950929 62.75000

15 82200 19951031 88.00000

16 82200 19951130 138.50000

17 82200 19951229 139.25000

18 82200 19960131 164.25000

19 82200 19960229 51.00000

20 82200 19960329 41.62500

21 82200 19960430 61.25000

22 82200 19960531 68.25000

23 82200 19960628 62.50000

24 82224 19950929 46.50000

25 82224 19951031 48.50000

26 82224 19951130 47.75000

27 82224 19951229 49.75000

28 82224 19960131 49.00000

29 82224 19960229 47.00000

30 82224 19960329 53.00000

31 82224 19960430 55.50000

32 82224 19960531 54.25000

33 82224 19960628 51.00000

34 83435 19960430 30.25000

35 83435 19960531 28.00000

36 83435 19960628 21.00000

37 83696 19960628 19.12500
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Example 47.2: Using the LIBNAME Statement to Access All Keys
To set up the libref to access all keys, no key options such as PERMNO=, TICKER=, or GVKEY= are
specified in the LIBNAME statement and no INSET= option is used. Any of these options cause the
SASECRSP engine to limit access to specified keys or specified insets. When no such options are specified,
the SASECRSP engine correctly defaults to selecting all keys in the database. Other LIBNAME statement
options, such as the RANGE= option, can still be used normally to limit the time span of the data—in other
words, to define the date range of observations.

This example does not use key-specifying options. This forces the engine to default to all PERMNOs in the
monthly STK database. The range that is specified in the LIBNAME statement behaves normally, and data
are limited to the first two months of 1995.

title2 'Define a range inside the data range ';
title3 'My range is ( 19950101-19950228 )';

libname _all_ clear;
libname testit2 sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"

setid=20
range='19950101-19950228';

data a;
set testit2.ask(obs=30);

run;

proc print data=a;
run;

The result is shown in Output 47.2.1.
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Output 47.2.1 All PERMNOs of ASK Monthly Time Series Data with RANGE= Option

Define a range inside the data range
My range is ( 19950101-19950228 )

Obs PERMNO CALDT ASK

1 10001 19950131 8.00000

2 10001 19950228 8.00000

3 10002 19950131 13.50000

4 10002 19950228 13.50000

5 10003 19950131 2.12500

6 10003 19950228 2.25000

7 10009 19950131 18.00000

8 10009 19950228 18.75000

9 10010 19950131 5.37500

10 10010 19950228 4.87500

11 10011 19950131 14.62500

12 10011 19950228 13.50000

13 10012 19950131 2.25000

14 10012 19950228 2.12500

15 10016 19950131 7.00000

16 10016 19950228 8.50000

17 10018 19950131 1.12500

18 10018 19950228 1.12500

19 10019 19950131 10.62500

20 10019 19950228 11.62500

21 10021 19950131 11.75000

22 10021 19950228 12.00000

23 10025 19950131 18.50000

24 10025 19950228 19.00000

25 10026 19950131 11.00000

26 10026 19950228 11.75000

27 10028 19950131 1.87500

28 10028 19950228 2.00000

29 10032 19950131 12.50000

30 10032 19950228 12.75000
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Example 47.3: Accessing One PERMNO without the RANGE= Option
The SASECRSP engine defaults to providing access to the entire range of available data when you do not
restrict the range (that is, when you do not use the RANGE= option).

This example shows access of the entire range of available data for one particular PERMNO extracted from
the monthly data set.

title2 'Select only PERMNO = 81871';
title3 'Valid trading dates (19890131--19981231)';
title4 'No range option, leave wide open';

libname _all_ clear;
libname testit3 sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"

setid=20
permno=81871;

data c;
set testit3.ask;

run;

proc print data=c;
run;

The result is shown in Output 47.3.1.
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Output 47.3.1 PERMNO=81871 of ASK Monthly Time Series Data without RANGE= Option

Select only PERMNO = 81871
Valid trading dates (19890131--19981231)

No range option, leave wide open

Obs PERMNO CALDT ASK

1 81871 19950731 18.25000

2 81871 19950831 19.25000

3 81871 19950929 26.00000

4 81871 19951031 26.00000

5 81871 19951130 25.50000

6 81871 19951229 24.25000

7 81871 19960131 22.00000

8 81871 19960229 32.50000

9 81871 19960329 30.25000

10 81871 19960430 33.75000

11 81871 19960531 27.50000

12 81871 19960628 30.50000

13 81871 19960731 26.12500

14 81871 19960830 19.12500

15 81871 19960930 19.50000

16 81871 19961031 14.00000

17 81871 19961129 18.75000

18 81871 19961231 24.25000

19 81871 19970131 29.75000

20 81871 19970228 24.37500

21 81871 19970331 15.00000

22 81871 19970430 18.25000

23 81871 19970530 25.12500

24 81871 19970630 31.12500

25 81871 19970731 35.00000

26 81871 19970829 33.00000

27 81871 19970930 26.81250

28 81871 19971031 18.37500

29 81871 19971128 16.50000

30 81871 19971231 16.25000

31 81871 19980130 22.75000

32 81871 19980227 21.00000

33 81871 19980331 22.50000

34 81871 19980430 16.12500

35 81871 19980529 11.12500

36 81871 19980630 13.43750

37 81871 19980731 22.87500

38 81871 19980831 17.75000

39 81871 19980930 24.25000

40 81871 19981030 26.00000
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Example 47.4: Specifying Keys by Using the INSET= Option
The INSET= option enables you to select any companies or issues for which you want data. This example
selects two CRSP Index Series from the CRSP Indices data, and four securities from the CRSP US Stock
data for data extraction. Note that because each CRSP database might be in a different location and must be
opened separately, a total of two different librefs are used, one for each database.

data indices;
indno=1000000; output; /* NYSE Value-Weighted Market Index */
indno=1000001; output; /* NYSE Equal-Weighted Market Index */

run;

libname _all_ clear;
libname ind2 sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"

setid=420
inset='indices,INDNO,INDNO'
range='19990101-19990401';

title2 'Total Returns for NYSE Value- and Equal-Weighted Market Indices';
proc print data=ind2.tret label;
run;

Output 47.4.1 shows the result of selecting two CRSP Index Series from the CRSP Indices data.

Output 47.4.1 IND Data Extracted Using INSET= Option

Total Returns for NYSE Value- and Equal-Weighted Market Indices

Obs INDNO

Calendar
Trading
Date

Total
Returns

1 1000000 19990129 0.012583

2 1000000 19990226 -0.024169

3 1000000 19990331 0.028691

4 1000001 19990129 -0.007700

5 1000001 19990226 -0.041183

6 1000001 19990331 0.015101

The following statements select three securities from the CRSP US Stock data by using TICKER keys in the
INSET= option for data extraction:

data securities;
ticker='BAC'; output; /* Bank of America */
ticker='DUK'; output; /* Duke Energy */
ticker='GSK'; output; /* GlaxoSmithKline */

run;

libname sec3 sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"
setid=20
inset='securities,TICKER,TICKER'
range='19970820-19970920';
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title2 'PERMNOs and General Header Info of Selected TICKERs';
proc print data=sec3.stkhead(keep=permno htick htsymbol) label;
run;
title3 'Average Price for Bank of America, Duke and GlaxoSmithKline';
proc print data=sec3.prc label;
run;

Output 47.4.2 shows the STK header data for the TICKER keys that are specified by using the INSET=
option.

Output 47.4.2 STK Header Data Extracted Using INSET= Option

PERMNOs and General Header Info of Selected TICKERs

Obs PERMNO

Ticker
Symbol
Header

Trading
Symbol
Header

1 59408 BAC BAC

2 27959 DUK DUK

3 75064 GSK GSK

Output 47.4.3 shows the STK price data for the TICKER keys that are specified by using the INSET= option.

Output 47.4.3 STK Price Data Extracted Using INSET= Option

PERMNOs and General Header Info of Selected TICKERs
Average Price for Bank of America, Duke and GlaxoSmithKline

Obs PERMNO

Calendar
Trading

Date

Price or
Bid/Ask
Average

1 59408 19970829 59.75000

2 27959 19970829 48.43750

3 75064 19970829 39.93750

Example 47.5: Specifying Ranges for Individual Keys with the INSET= Option
Insets enable you to define options that are specific to each individual key. This example uses an inset to
select four PERMNOs and specifies a different date restriction for each PERMNO.

title2 'INSET=testin2 uses date ranges along with PERMNOs:';
title3 '10107, 12490, 14322, 25788';
title4 'Begin dates and end dates for each permno are used in the INSET';

data testin2;
permno = 10107; date1 = 19980731; date2 = 19981231; output;
permno = 12490; date1 = 19970101; date2 = 19971231; output;
permno = 14322; date1 = 19950731; date2 = 19960131; output;
permno = 25778; date1 = 19950101; date2 = 19950331; output;

run;
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libname _all_ clear;
libname mstk2 sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"

setid=20
inset='testin2,PERMNO,PERMNO,DATE1,DATE2';

data b;
set mstk2.prc;

run;

proc print data=b;
run;

Output 47.5.1 shows CRSP US Stock price time series data selected by PERMNO in the INSET= option,
where each PERMNO has its own time span specified in the INSET= option.

Output 47.5.1 PRC Monthly Time Series Using the INSET= Option

INSET=testin2 uses date ranges along with PERMNOs:
10107, 12490, 14322, 25788

Begin dates and end dates for each permno are used in the INSET

Obs PERMNO CALDT PRC

1 10107 19980731 109.93750

2 10107 19980831 95.93750

3 10107 19980930 110.06250

4 10107 19981030 105.87500

5 10107 19981130 122.00000

6 10107 19981231 138.68750

7 12490 19970131 156.87500

8 12490 19970228 143.75000

9 12490 19970331 137.25000

10 12490 19970430 160.50000

11 12490 19970530 86.50000

12 12490 19970630 90.25000

13 12490 19970731 105.75000

14 12490 19970829 101.37500

15 12490 19970930 106.00000

16 12490 19971031 98.50000

17 12490 19971128 109.50000

18 12490 19971231 104.62500

19 14322 19950731 32.62500

20 14322 19950831 32.37500

21 14322 19950929 36.87500

22 14322 19951031 34.00000

23 14322 19951130 39.37500

24 14322 19951229 39.00000

25 14322 19960131 41.50000

26 25778 19950131 49.87500

27 25778 19950228 57.25000

28 25778 19950331 59.37500
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Example 47.6: Converting Dates by Using the CRSP Date Functions
This example shows how to use the CRSP date functions and formats. The CRSPDTD formats are used for
all the crspdt variables, and the 'YYMMDD' format is used for the sasdt variables.

title2 'OUT= Data Set';
title3 'CRSP Functions for sasecrsp';

libname _all_ clear;

/* Always assign the LIBNAME sasecrsp first */
libname mstk sasecrsp "/r/tappan/vol/vol1/crsp1/data201212/MIZ201212/"

setid=20;

data a (keep = crspdt crspdt2 crspdt3
sasdt sasdt2 sasdt3
intdt intdt2 intdt3);

format crspdt crspdt2 crspdt3 crspdtd8.;
format sasdt sasdt2 sasdt3 yymmdd6.;
format intdt intdt2 intdt3 8.;
format exact 2.;
crspdt = 1;
sasdt = '2jul1962'd;
intdt = 19620702;
exact = 0;

/* Call the CRSP date to Integer function*/
intdt2 = crspdcid(crspdt);

/* Call the SAS date to Integer function*/
intdt3 = crspds2i(sasdt);

/* Call the Integer to CRSP date function*/
crspdt2 = crspdicd(intdt,exact);

/* Call the SAS date to CRSP date conversion function*/
crspdt3 = crspdscd(sasdt,exact);

/* Call the CRSP date to SAS date conversion function*/
sasdt2 = crspdcsd(crspdt);

/* Call the Integer to SAS date conversion function*/
sasdt3 = crspdi2s(intdt);

run;

title3 'PROC PRINT showing data for sasecrsp';
proc print data=a;
run;

title3 'PROC CONTENTS showing formats for sasecrsp';
proc contents data=a;
run;
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Output 47.6.1 shows the OUT= data set that is created by the DATA step.

Output 47.6.1 Date Conversions by Using the CRSP Date Functions

OUT= Data Set
PROC PRINT showing data for sasecrsp

Obs crspdt crspdt2 crspdt3 sasdt sasdt2 sasdt3 intdt intdt2 intdt3

1 19251231 19620702 19620702 620702 251231 620702 19620702 19251231 19620702

Output 47.6.2 shows the contents of the OUT= data set by alphabetically listing the variables and their
attributes.

Output 47.6.2 Contents of Date Conversions by Using the CRSP Date Functions

Alphabetic List of Variables and
Attributes

# Variable Type Len Format

1 crspdt Num 8 CRSPDTD8.

2 crspdt2 Num 8 CRSPDTD8.

3 crspdt3 Num 8 CRSPDTD8.

7 intdt Num 8 8.

8 intdt2 Num 8 8.

9 intdt3 Num 8 8.

4 sasdt Num 8 YYMMDD6.

5 sasdt2 Num 8 YYMMDD6.

6 sasdt3 Num 8 YYMMDD6.
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Overview: SASEFAME Interface Engine
The SASEFAME interface engine provides a seamless interface between Fame and SAS data to enable SAS
users to access and process time series, case series, and formulas that reside in a Fame database.

Fame is an integrated, front-to-back market data and historical database solution for storing and managing
real-time and high-volume time series data that are used by leading institutions in the financial, energy, and
public sectors, as well as by third-party content aggregators, software vendors, and individual investors. Fame
provides real-time market data feeds and end-of-day data, a web-based desktop solution, application hosting,
data delivery components, and tools for performing analytic modeling.

The SASEFAME engine uses the LIBNAME statement to enable you to specify the time series that you want
to read from the Fame database and how you want to convert the selected time series to the same time scale.
You can then use the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set. You can perform more analysis (if desired) either in the same SAS session or in a later session.

The SASEFAME interface engine supports Windows and Linux Opteron hosts that use Fame 11.5. Although
SASEFAME is no longer available on the AIX and Solaris hosts, you can still get remote access to Fame data
on those hosts by using SASEFAME from a Windows or Linux Opteron host to connect to the MCADBS
or master server on the AIX and Solaris hosts. For more information about MarketMap (formerly Fame)
servers, see Guide to MarketMap Database Servers, formerly known as Guide to Fame Database Servers.
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Getting Started: SASEFAME Interface Engine

Setup for SAS and FAME
If not already defined by your system administrator, define a system environment variable named FAME to
point to the folder where FAME is installed. On Windows 64-bit install of FAME, this will usually be a
location named:

C:\Program Files (x86)\FAME

It is the same folder where the FAME license files reside (fameid.txt and nameid.txt). Edit your system PATH
environment variable to include the location of the FAME executable. On the 64-bit WINDOWS install of
FAME CHLI you will add this to your system PATH environment variable:

%FAME%\64

On Unix, the location of the FAME folder can vary, but may look like this:

/usr/local/famelib11

and you could define your FAME environment variable like this:

export FAME=/usr/local/famelib11

On Unix, it is also necessary to define the load library path for the FAME CHLI executable. This definition
may look something like this:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$FAME/hli/64"

Structure of a SAS Data Set That Contains Time Series Data
The SAS System represents time series data in a two-dimensional array, called a SAS data set, whose columns
correspond to series variables and whose rows correspond to measurements of these variables at certain
time periods. The time periods at which observations are recorded can be included in the data set as a time
ID variable. The SASEFAME engine provides a time ID variable named DATE. The DATE variable can be
represented by any of the time intervals shown in the section “Mapping Fame Frequencies to SAS Time
Intervals” on page 3506.
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Reading and Converting Fame Database Time Series
The SASEFAME engine supports reading and converting time series that reside in Fame databases. The
SASEFAME engine uses Fame’s Work database to temporarily store the converted time series. All series
that are specified by the Fame wildcard are written to the Fame Work database. For conversion of very large
databases, you might want to define the FAME_TEMP environment variable to point to a location where there
is ample space for the Fame Work database.

The SASEFAME engine provides seamless access to Fame databases via Fame’s C host language interface
(CHLI). Fame expressions that contain formulas and Fame functions can be input to the engine via the
INSET= option.

The SASEFAME engine finishes the CHLI whenever a fatal error occurs. To restart the engine after a fatal
error, terminate the current SAS session and open a new SAS session.

Using the SAS DATA Step
You can store the converted series in a SAS data set by using the SAS DATA step. You can also perform
other operations on your data inside the DATA step. After your data are stored in a SAS data set, you can use
this data set as you would any other SAS data set.

Using SAS Procedures
You can print the output SAS data set by using the PRINT procedure and report information about the
contents of your data set by using the CONTENTS procedure, as in Example 48.1. You can create a view of
the Fame database by using the SQL procedure’s USING clause to reference the SASEFAME engine in your
libref. See Example 48.5.

Using the SAS Windowing Environment
You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment. To do
so, select the SASEFAME engine libref in the LIBNAME window that you have previously defined in your
LIBNAME statement. You can view your SAS output observations by double-clicking the desired output
data set libref in the LIBNAME window of the SAS windowing environment. Type Viewtable on the SAS
command line to view any of your SASEFAME engine tables, views, or librefs both for input and output
data sets. Before you use the Viewtable command, it is recommended that you store your output data sets
in a physical folder or library that is separate from the folder or library used for your input databases. (The
default location for output data sets is the SAS Work library.)
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Remote Fame Data Access
The remote access feature of the SASEFAME engine uses the MarketMap (Fame) CHLI to communicate
with your remote server (master or MCADBS). It is available to licensed MarketMap customers who have
the CHLI on both their remote and client machines.

For an example that uses the master server, see Example 48.7, where you simply provide the frdb_m port
number and node name of your Fame master server in your SASEFAME engine libref. For more information,
see the section “Start the Master Server” in Guide to MarketMap Database Servers.

For an example that uses the MCADBS remote server, see Example 48.18, where you specify an explicit
connection with the CONNECT=YES option, and you specify the service, host, and name of the connection
by using the TO_SERVICE= option, ON_HOST= option, and AS_NAME= options, respectively. In addition,
you specify the USER= and PASS= options for the connection. For more information, see the section “Start
the MCADBS Server” in Guide to MarketMap Database Servers.

Creating Views of Time Series by Using SASEFAME LIBNAME Options
You can perform selection based on names of your time series simply by using Fame wildcard specifications
in the SASEFAME engine WILDCARD= option.

You can limit the time span of time series data by specifying a beginning and ending date range in the
SASEFAME engine RANGE= option.

It is also easy to use the SAS input data set INSET= option to create a specific view of your Fame data. You
can create multiple views by using multiple LIBNAME statements with customized options that are tailored
to the unique views that you want to create.

You can list the INSET variables that you want to keep in your SAS data set by using the KEEP= clause.
When you use INSET variables in conjunction with the input data set that you specify in the INSET= option,
the SASEFAME engine can show any or all of your expression groups in the same view or in multiple views.
The INSET= option defines the valid set of expression groups that you can reference in the KEEP= clause, as
shown in Example 48.16.

The INSET variables define the BY variables that enable you to view cross sections (slices) of your data.
When you use INSET variables in conjunction with the WHERE clause and the CROSSLIST= option, the
SASEFAME engine can show any or all of your BY groups in the same view or in multiple views. When
you use the INSET= option along with a WHERE clause that specifies the BY variables that you want to
use in your view, you must also use the CROSSLIST= option, as shown in Example 48.10. You can use the
CROSSLIST= option without using the INSET= option, as shown in Example 48.8 and Example 48.9.
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Syntax: SASEFAME Interface Engine
The SASEFAME interface engine uses standard engine syntax. Table 48.1 summarizes the options used by
the SASEFAME engine.
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Table 48.1 Summary of LIBNAME libref SASEFAME Statement Options

Option Description

AS_DB= Specifies the channel name to use for a local database;
used when Fame expressions or formulas need to resolve
in a Fame child process.

AS_NAME= Specifies the name to use for an explicit connection for
remote access; used with the CONNECT=YES option.

CONNECT= Specifies whether or not you want to use an explicit named
connection for remote access, which you name in the
AS_NAME= option

CONVERT= Specifies the Fame frequency and the Fame technique
CROSSLIST= Specifies a Fame crosslist fame_namelist to perform

selection based on the crossproduct of two Fame namelists
DBVERSION= Echoes the present version number of the Fame Work

database in the SAS log
DEBUG= Specifies whether or not you need diagnostic message

logging in the SAS log window
FAMEOUT= Specifies the Fame data object class/type that you want

output to the SAS data set
INSET= Uses a SAS data set named setname and KEEP=

fame_expression_group as selection input variables or
WHERE= fame_bygroup as selection input for BY
variables

ON_HOST= Specifies the remote Fame MCADBS server node name to
connect to; used with the CONNECT=YES option.

PASS= Specifies the password for the connection, which should
match the password that you use as the adduser parameter
in your Fame FRDB facsq command; used with the
USER= option (for remote access).

RANGE= Specifies the range of data to keep in 'ddmmmyyy' –
'ddmmmyyyy' format

TO_SERVICE= Specifies the port number that you started the MCADBS
service on, which is the same port that you specified in the
-p argument in the mcadbs.exe command on your
MCADBS server; used with the CONNECT=YES option
(for remote access).

TUNEFAME= Tunes the Fame database engine’s use of memory to
reduce I/O in favor of a bigger virtual memory for caching
database objects

TUNECHLI= Tunes the CHLI database engine’s use of memory to
reduce I/O in favor of a bigger virtual memory for caching
database objects

USER= Specifies the user name for the connection, which should
match the user name you use as the adduser parameter in
your Fame FRDB facsq command; used with the PASS=
option (for remote access).

WILDCARD= Specifies a Fame wildcard to match data object series
names within the Fame database
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LIBNAME libref SASEFAME Statement
LIBNAME libref SASEFAME ‘physical name’ options ;

Because ‘physical name’ specifies the location of the folder where your Fame database resides, it should end
in a backslash if you are in a Windows environment or a forward slash if you are in a UNIX environment.

If you are accessing a remote Fame database using an implicit connection in the Fame CHLI, you can use the
following syntax for ‘physical name’:

‘#port_number @hostname physical_path_name ’

You can specify the following options.

AS_DB=fame_db_name

OPEN_AS= fame_db_name
specifies the Fame database ID to use in the Fame OPEN command, which is often the same as the
name of the database (without the .db extension). In Fame, you can retrieve a list of open database ID
names by using the Fame command TYPE @OPEN.DB. Use this option when you get this error:

ERROR: From cfmfame: Error from a FAME-like server, error from
cfmferr is: \Variable{XXXX} not found

For a more complete discussion of opening a local Fame database, see the section “Opening a Local
Fame Database” on page 3502.

AS_NAME=“fame_channel_name”

NAME= “fame_channel_name”
specifies the Fame channel name to use in the Fame CONNECT command for remote database
access. In Fame, you can retrieve a list of open channel names by using the Fame command TYPE
@OPEN.CONNECTIONS. For a more complete discussion of opening a remote Fame database on
an MCADBS server, see Example 48.18.

CONNECT=YES | IMPLICIT | NO

CONNECTION=YES | IMPLICIT | NO
specifies whether or not the connection is an explicit connection.

YES specifies that the connection is explicit.

IMPLICIT specifies that the connection is implicit.

NO specifies that the connection is implicit.

An explicit connection also requires the TO_SERVICE= , ON_HOST=, AS_NAME=, USER=, and
PASS= options. When an implicit connection is specified, these additional options are not used; instead
the details of the connection are given inside the physical path name in the SASEFAME LIBNAME
statement with the special syntax described in the section “LIBNAME libref SASEFAME Statement”
on page 3498. For more information about implicit Fame connections, see the section “Opening
Databases on Implicit Connections” in MarketMap Fame 11.5 Online Help at the following URL:

https://fame.sungard.com/support_secure/fame/online_help_115/commands_and_options/
opening_databases_implicit_connections.htm
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For more information about explicit Fame connections, see the section “Opening Databases on Explicit
Connections” in the MarketMap Fame 11.5 Online Help at the following URL:

https://fame.sungard.com/support_secure/fame/online_help_115/commands_and_options/
opening_databases_explicit_connections.htm

CONVERT=( FREQ=fame_frequency TECH=fame_technique)

CONV=( FREQ=fame_frequency TECH=fame_technique)
specifies the Fame frequency and the Fame technique, just as you would in the Fame CONVERT
function. There are four possible values for fame_technique: Constant (default), Cubic, Discrete, and
Linear . Table 48.2 shows the Fame frequencies that are supported by the SASEFAME engine.

For a more complete discussion of Fame frequencies and SAS time intervals, see the section “Mapping
Fame Frequencies to SAS Time Intervals” on page 3506. For all possible fame_frequency values, see
the section “Understanding Frequencies” in the User’s Guide to Fame. For example:

LIBNAME libref sasefame 'physical-name'
CONVERT=(TECH=CONSTANT FREQ=TWICEMONTHLY);

CROSSLIST=( < fame_namelist1, > fame_namelist2 )

CROSS=( < fame_namelist1, > fame_namelist2 )
performs a crossproduct of the members of the first namelist with the members of the second namelist,
using a glue symbol “.” to join the two. If one of the time series that are listed in fame_namelist2
does not exist, the SASEFAME engine stops processing the remainder of the namelist. For more
information, see the section “Performing the Crosslist Selection Function” on page 3510.

DBVERSION=ON | OFF
specifies whether or not to display the version number of the Fame Work database. DBVERSION=ON
specifies that the SAS log show the version number (3 or 4) of the Fame Work database. By default,
DBVERSION=OFF.

DEBUG= ON | OFF (default)
specifies that additional diagnostic information in the SAS log be reported. When you specify
DEBUG=ON, the information about Fame commands that are outlined in the SAS log by debug tracing
can be valuable for diagnosing and identifying the issues that cause errors when you are using the
SASEFAME engine. By default, DEBUG=OFF. See Example 48.18 for a detailed SAS log that is
created when you specify DEBUG=ON.

FAMEOUT=fame_data_object_class_type
specifies the class and type of the Fame data series objects to include in your SAS output data set.
The possible values for fame_data_object_class_type are FORMULA, TIME, BOOLEAN, CASE,
DATE, and STRING. Case series can be numeric, boolean, string, and date, or they can be generated
using formulas that resolve to series. The SASEFAME engine resolves all formulas that belong to the
type of series data object that you specify in the FAMEOUT= option. If the FAMEOUT= option is
not specified, numeric time series are output to the SAS data set. FAMEOUT=CASE defaults to case
series of numeric type. If you want another type of case series in your output, then you must specify it.
Scalar data objects are not supported.
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INSET=(setname KEEP=fame_expression_group )

INSET=(setname KEEPLIST=fame_expression_group )
specifies the name of a SAS data set (setname) and selects series that are generated by the expressions
defined in fame_expression_group. You can define fame_expression_group by using Fame functions
and Fame expressions. It is important to specify the length of the longest expression, or expressions
might be truncated because the default length is the first defined variable in the DATA step. The INSET
(input data set) must output each expression statement as a character string ending with a semicolon,
enclosed in single quotation marks, and followed by another semicolon and an output statement. For
more about using the INSET= option to define a group of selected series that are generated by Fame
expressions, see the section “Performing the Keeplist Expression Function” on page 3508.

INSET=(setname WHERE=fame_bygroup )
specifies a SAS data set (setname) as input for a BY group such as a ticker, and uses the fame_bygroup
to select time series that are named using the following convention. Selected variable names are glued
together by the BY-group name (such as a ticker symbol) concatenated with the glue character (such as
DOT) to the series name that is specified in the CROSSLIST= option or in the fame_bygroup.

For more information, see the section “Performing the Crosslist Selection Function” on page 3510.

ON_HOST=“fame_hostname”

HOST= “fame_hostname”
specifies the Fame host name to use in the Fame CONNECT command, which is the name of the
host or node that is running as the MCADBS server. You can see the host name when you use the
MCADBS command with the show option. For a more complete discussion of using the MCADBS
command with the show option, see the section “Using the MCADBS Show Function” on page 3504.

PASS=“fame_password”

PASSWORD= “fame_password”
specifies the Fame password to use in the Fame CONNECT command, which is the password for
the user name designated in the adduser function in the facsq access control command. For a more
complete discussion about managing and monitoring your Fame server processes, see the section
“Managing Fame Server Processes for Remote Access” on page 3503.

RANGE=’fame_begdt ’d-’fame_enddt ’d

DATERANGE=’fame_begdt ’d-’fame_enddt ’d

DATE=’fame_begdt ’d-’fame_enddt ’d

DATECASE=’fame_begdt ’d-’fame_enddt ’d
limits the time range of data that are read from your Fame database. The string fame_begdt is the
beginning date in 'ddmmmyyyy' format, and the string fame_enddt is the ending date of the range in
'ddmmmyyyy' format; both strings must be enclosed in single quotation marks and followed by the
letter 'd'.

For example, to read a series with a date range that spans the first quarter of 1999, you could use the
following statement:

LIBNAME test sasefame 'physical name of test database'
RANGE='01jan1999'd - '31mar1999'd;
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TO_SERVICE=“fame_service_portnumber”

SERVICE= “fame_service_portnumber”
specifies the Fame service port number to use in the Fame CONNECT command, which is the same
port number that you use in your MCADBS command for the name port (-n option). For a more
complete discussion about managing and monitoring your Fame server processes, see the section
“Managing Fame Server Processes for Remote Access” on page 3503.

TUNEFAME=NODES fameengine_size_virtual_memory_MB
specifies the number of megabytes to use for the cache size for the Fame API (CHLI). The
fameengine_size_virtual_memory_MB can range from a minimum of 0.1 MB (100 KB) to a maximum
of 17,592,186,000,000 MB. For more information, see Example 48.17.

TUNECHLI=NODES famechliengine_size_virtual_memory_MB
specifies the number of megabytes to use for the cache size for the Fame API (CHLI). The famech-
liengine_size_virtual_memory_MB can range from a minimum of 0.1 MB (100 KB) to a maximum of
17,592,186,000,000 MB. For more information, see Example 48.17.

USER=“fame_username”

USERNAME= “fame_username”
specifies the Fame user name to use in the Fame CONNECT command, which corresponds to the
password and user name designated in the adduser function in the facsq access control command.
For a more complete discussion about managing and monitoring your Fame server processes, see the
section “Managing Fame Server Processes for Remote Access” on page 3503.

WILDCARD="fame_wildcard"

WILD="fame_wildcard"
limits the time series read from the Fame database. By default, the SASEFAME engine reads all time
series in the Fame database that you name in your SASEFAME libref. The fame_wildcard is a quoted
string that contains the Fame wildcard you want to use. The wildcard is used for matching against the
data object names of series that you want to select from the Fame database that resides in the library
you are assigning.

For more information about using wildcards, see the section “Specifying Wildcards” in the User’s
Guide to Fame.

For example, to read all time series in the TEST library that is being accessed by the SASEFAME
engine, you would specify the following statement:

LIBNAME test sasefame 'physical name of test database'
WILDCARD="?";

To read series that have names such as A_DATA, B_DATA, and C_DATA, you could specify the
following statement:

LIBNAME test sasefame 'physical name of test database'
WILDCARD="^_DATA";
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When you use the WILDCARD= option, you limit the number of series that are read and converted
to the desired frequency. This option can help you save resources when processing large databases
or when processing a large number of observations, such as daily or hourly frequencies. Because the
SASEFAME engine uses the Fame Work database to store the converted time series, using wildcards is
recommended to prevent your workspace from getting too large. When the FAMEOUT= option is also
specified, the wildcard is applied to the type of data object series that you specify in the FAMEOUT=
option.

Details: SASEFAME Interface Engine

Opening a Local Fame Database
Fame databases often contain expressions and formulas that resolve to a series. In order for Fame to resolve
the expressions and formulas a channel is opened to the local database to a Fame-like server that is invoked
by the SASEFAME interface engine so that the selected series are complete.

For example, the following SAS code generates the SAS log after it, which shows the OPEN command that
is used to open the local training database on the Fame channel named TR, enabling the Fame Crosslist to
resolve all the time series values for all the tickers included in the inset’s BY group (TICK) :

libname lib5 sasefame "\\tappan\crsp1\fame10"
as_db="TR"
debug=ON
convert=(frequency=business technique=constant)
inset=( inseta where=tick )
crosslist=

({adjust, close, high, low, open, volume, uclose, uhigh, ulow, uopen, uvolume})

data trout;
set lib5.training;

run;

Here is an excerpt of the information shown in the SAS log (on Windows), which is created by using the
DEBUG=ON option:

NOTE: The SASEFAME engine is using Version 11.43000 of the HLI.

len4=2
SIMPLE FAMECMD for local open is: \\tappan\crsp1\fame10/training
len4= 2
FAME COMMAND line 1004 is:
OPEN <ACCESS READ> """\\tappan\crsp1\fame10/training""" AS TR

It is important to note that the SAS SET command for local access uses the database name, training (without
the .db extension), in the DATA step. This is in contrast to the SET statement for remote MCADBS server
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access, which uses the channel name in the SAS SET statement, as shown in Example 48.18. For more
information about opening and closing local Fame databases, see the section “Opening and Closing Local
Databases” in Online Help for MarketMap Analytic Studio at the following URL:

https://fame.sungard.com/support_secure/fame/online_help/commands_and_options/
opening_local_databases.htm

Managing Fame Server Processes for Remote Access
Whether you use a master server or an MCADBS server, the appropriate configuration file is necessary. For
the master server, on UNIX, your configuration file might look like this:

cat master1.config
security access all
dbback $FAME/frdb/dbback

Your master command could look like this:

$FAME/frdb/master -p \#5555 -s master1.config > master1.log &

For more information about the master server command, visit the following URL:

https://fame.sungard.com/support_secure/fame/online_help_115/
servers/master_server_command.htm

To manage your MCADBS Fame server processes, you can start the FACS daemon on your Fame server. On
Windows, enter the facsd command in the command window (if that is your Fame server):

%FAME%\frdb\64\facsd -d U:\fame940\doc\ -p 2990 -o U:\fame940\test\facs
-s U:\fame940\doc\facsd.config

After you start the FACS daemon this way, you can use it for user authentication, access control, and
accounting and logging facilities of Fame access control and accounting. To set up authentication, you can
use the facsq command as follows:

%FAME%\frdb\64\facsq -p 2990 adduser <fame_username> <fame_password>

The user name and password in the adduser function are the same as those that are specified in the
SASEFAME LIBNAME statement’s USER= and PASS= options.

For a more complete discussion of the FACS daemon and configuration file, visit the following URLs:
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https://fame.sungard.com/support_secure/fame/online_help_115/
servers/facs_server_command.htm

https://fame.sungard.com/support_secure/fame/online_help_115/
facs/facsd_access_control_command.htm

https://fame.sungard.com/support_secure/fame/online_help_115/
facs/facsq_access_control_command.htm

Next you start your Fame server. The MCADBS server command, on Windows, looks like this:

C:\PROGRA~2\FAME\frdb\64\mcadbs.exe -n 2960 -p 2961 -s U:\fame940\doc\mcadbs.config
-o U:\fame940\doc\mcadbs.log

For a more complete discussion, see the section “Start the MCADBS Server” in Guide to MarketMap
Database Servers.

After starting the server, you can ask for information about the MACDBS server, as shown in the following
section, “Using the MCADBS Show Function” on page 3504.

Using the MCADBS Show Function
When you have the MCADBS server running, you can get detailed information about the server by using the
MCADBS show function as follows:

C:\Users\saskff>%FAME%\frdb\64\mcadbs -n 2960 show

This results in the following report:

MCADBS Release 11.4 64-bit Copyright (C) 2014 by SunGard. All rights reserved.

Operating System: Windows 6.1 Service Pack 1
Hostname: d79286
Server pid: 7404
Listen Port: 2961
Name Port: 2960
Client Limit: 25
Idle client timer: 3600
Inactive client timer: 600
Next expiration: Fri Oct 17 12:11:39 2014
Request timeout: none
Preserve search: OFF
Configuration file: U:\fame940\doc\mcadbs.config

Server Logging:
Main log file: U:\fame940\doc\mcadbs.log
Logging levels:
Default: detail
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Security Rules: Enforced by FACS
Primary Daemon: 2990@localhost in use
when unavailable: Retry
Secondary Daemon: none configured
Request Count: 1
Last access Time: Fri Oct 17 11:11:39 2014

Frdb Secure Settings: Specified in configuration file
Handshake: BEST
Transport: NEVER

Procedure code files:
LOADED FILE
YES C:\PROGRA~2\FAME\sutil\adjdiv.pc
YES C:\PROGRA~2\FAME\fdsutil\splfunc.pc

Databases:
Channel name Status Clients/Limit File
TR Open 0/20 C:\PROGRA~2\FAME\util\trainin
g.db
SAMPLEV4 Open 0/20 C:\PROGRA~2\FAME\util\samplev
4.db
DRIECON Open 0/20 C:\PROGRA~2\FAME\util\driecon
.db
OPT Open 0/0 C:\PROGRA~2\FAME\util\opt.db

No Active Clients

The host name, d79286, is listed in the first few lines of the report, after the operating system details.

SAS Output Data Set
You can use the SAS DATA step to write the selected time series from your Fame database to a SAS data
set. This enables you to easily analyze the data by using the SAS System. You can specify the name of the
output data set in the DATA statement. This causes the engine supervisor to create a SAS data set by using
the specified name in either the SAS Work library or, if specified, the Sasuser library. For more information
about naming your SAS data set, see the section “SAS Data Sets: Data Set Names” in SAS Programmers
Guide: Essentials.

The contents of the SAS data set that contains time series include the date of each observation, the name of
each series read from the Fame database as specified by the WILDCARD= option, and the label or Fame
description of each series. Missing values are represented as ‘.’ in the SAS data set. You can see the available
data sets in the SAS LIBNAME window of the SAS windowing environment by selecting the SASEFAME
libref in the LIBNAME window that you have previously used in your LIBNAME statement. You can use
PROC PRINT and PROC CONTENTS to print your output data set and its contents. You can use PROC
SQL and the SASEFAME engine to create a view of your SAS data set. You can view your SAS output
observations by double-clicking the desired output data set libref in the LIBNAME window of the SAS
windowing environment.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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The DATE variable in the SAS data set contains the date of the observation. For Fame weekly intervals that
end on a Friday, Fame reports the date on the Friday that ends the week, whereas the SAS System reports the
date on the Saturday that begins the week.

A more detailed discussion of how to map Fame frequencies to SAS time intervals follows. For other types
of data, such as Boolean case series, numeric case series, date case series, string case series, and extracting
source for formulas, see Example 48.11, Example 48.12, Example 48.13, Example 48.14, and Example 48.15,
respectively.

Mapping Fame Frequencies to SAS Time Intervals
Table 48.2 summarizes the mapping of Fame frequencies to SAS time intervals. Fame frequencies often have
a sample unit in parentheses after the keyword frequency. This sample unit is an end-of-interval unit. SAS
dates are represented by beginning-of-interval notation.

For more information about SAS time intervals, see Chapter 5, “Date Intervals, Formats, and Functions.”

For more information about Fame frequencies, see the section “Understanding Frequencies” in the User’s
Guide to Fame.

Table 48.2 Mapping Fame Frequencies

Fame Frequency SAS Time Interval

WEEKLY (SUNDAY) WEEK.2
WEEKLY (MONDAY) WEEK.3
WEEKLY (TUESDAY) WEEK.4
WEEKLY (WEDNESDAY) WEEK.5
WEEKLY (THURSDAY) WEEK.6
WEEKLY (FRIDAY) WEEK.7
WEEKLY (SATURDAY) WEEK.1

BIWEEKLY (ASUNDAY) WEEK2.2
BIWEEKLY (AMONDAY) WEEK2.3
BIWEEKLY (ATUESDAY) WEEK2.4
BIWEEKLY (AWEDNESDAY) WEEK2.5
BIWEEKLY (ATHURSDAY) WEEK2.6
BIWEEKLY (AFRIDAY) WEEK2.7
BIWEEKLY (ASATURDAY) WEEK2.1
BIWEEKLY (BSUNDAY) WEEK2.9
BIWEEKLY (BMONDAY) WEEK2.10
BIWEEKLY (BTUESDAY) WEEK2.11
BIWEEKLY (BWEDNESDAY) WEEK2.12
BIWEEKLY (BTHURSDAY) WEEK2.13
BIWEEKLY (BFRIDAY) WEEK2.14
BIWEEKLY (BSATURDAY) WEEK2.8

BIMONTHLY (NOVEMBER) MONTH2.2
BIMONTHLY MONTH2.1
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Table 48.2 continued

Fame Frequency SAS Time Interval

QUARTERLY (OCTOBER) QTR.2
QUARTERLY (NOVEMBER) QTR.3
QUARTERLY QTR.1

ANNUAL (JANUARY) YEAR.2
ANNUAL (FEBRUARY) YEAR.3
ANNUAL (MARCH) YEAR.4
ANNUAL (APRIL) YEAR.5
ANNUAL (MAY) YEAR.6
ANNUAL (JUNE) YEAR.7
ANNUAL (JULY) YEAR.8
ANNUAL (AUGUST) YEAR.9
ANNUAL (SEPTEMBER) YEAR.10
ANNUAL (OCTOBER) YEAR.11
ANNUAL (NOVEMBER) YEAR.12
ANNUAL YEAR.1

SEMIANNUAL (JULY) SEMIYEAR.2
SEMIANNUAL (AUGUST) SEMIYEAR.3
SEMIANNUAL (SEPTEMBER) SEMIYEAR.4
SEMIANNUAL (OCTOBER) SEMIYEAR.5
SEMIANNUAL (NOVEMBER) SEMIYEAR.6
SEMIANNUAL SEMIYEAR.1

YPP Not supported
PPY Not supported

SECONDLY SECOND
MINUTELY MINUTE
HOURLY HOUR

DAILY DAY
BUSINESS WEEKDAY
TENDAY TENDAY
TWICEMONTHLY SEMIMONTH
MONTHLY MONTH
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Performing the Keeplist Expression Function
This section shows how to use the INSET= option to define a group of selected series that are generated by
Fame expressions. It is important to use the LENGTH statement to avoid truncating the longest expression in
the group defined by the BY variable EXPRESS. NOTE: The EXPRESS variable is assigned the character
string expression and is shown in Table 48.3. The following statements create an input data set, INSETA, and
print it:

data inseta; /* Use this for training database */
length express $52;
express='{ibm.high,ibm.low,ibm.close};'; output;
express='crosslist({gm,f,c},{volume});'; output;
express='cvx.close;'; output;
express='mave(ibm.close,30);'; output;
express='cvx.close+ibm.close;'; output;
express='ibm.close;'; output;
express='close * shares/sum(close * shares);'; output;
express='sum(pep.volume);'; output;
express='mave(pep.close,20);'; output;

run;

proc print
data=inseta;

run;

Next you can name the input data set that you want to use in the INSET= option, followed by the KEEP=
variable that specifies the expression group you want to keep. Only series variables that are defined in the
selected expression group are output to the output data set. You can define up to eight different expression
groups in an INSET= option.

libname lib5 sasefame "C:\PROGRA~1\FAME10\util"
wildcard="?"
convert=(frequency=business technique=constant)
range='23jul1997'd - '25jul1997'd
inset=( inseta KEEP=express)
;

data trout;
set lib5.trainten;

run;

title1 'TRAINING DB, Pricing Time Series for Expressions in INSET=';
title2 'OUT=TROUT from the PRINT Procedure';
proc print data=trout;
run;

Table 48.3 shows the eight expressions that are defined in INSETA.
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Table 48.3 SAS Input Data Set, INSETA, Defined for Use in the
INSET= Option

Observation EXPRESS

1 cvx.close;
2 ibm.high,ibm.low,ibm.close;
3 mave(ibm.close,30);
4 crosslist(gm,f,c,volume);
5 cvx.close+ibm.close;
6 ibm.close;
7 sum(pep.volume);
8 mave(pep.close,20);

Table 48.4 shows the output data set, TROUT. The output data set names each derived variable SASTEMPn by
appending the number, n, to match the observation number of the input data set’s expression for that variable.
For example, SASTEMP1 names the series derived by ‘cvx.close’ in observation 1, and SASTEMP3 names
the series derived by the expression ‘mave(ibm.close,30);’ in observation 3. Because SASTEMP2 is a simple
name list of three series, the original series names are used.

Table 48.4 TRAINING DB, Pricing Timeseries for Expressions in
INSETA for OUT=TROUT from the PRINT Procedure

DATE C.VOLUME VOLUME GM.VOLUME IBM.CLOSE IBM.HIGH
23JUL1997 33791.88 45864.05 37392 52.5625 53.5000
24JUL1997 41828.85 29651.34 27771 53.9063 54.2188
25JUL1997 46979.83 36716.77 24969 53.5000 54.2188

IBM.LOW SASTEMP1 SASTEMP3 SASTEMP5 SASTEMP6 SASTEMP8
51.5938 38.4063 . 90.9688 52.5625 .
52.2500 38.4375 . 92.3438 53.9063 .
52.8125 39.0000 . 92.5000 53.5000 .

Note that SASTEMP3 and SASTEMP8 have no observations in the date range July 23, 1997, to July 25,
1997, so the missing value symbol ‘.’ appears for those observations.
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Performing the Crosslist Selection Function
There are two methods of performing the crosslist selection function. The first method uses two Fame
namelists, and the second method uses one namelist and one BY group specified in the WHERE= clause of
the INSET= option.

For example, suppose that your Fame database has a string case series named TICKER, so that when the
Fame NL function is used on TICKER, it returns the following namelist:

Ticker = {AOL, C, CVX, F, GM, HPQ, IBM, INDUA, INTC, SPX, SUNW, XOM}

Also suppose your time series are named in fame_namelist2 as

{adjust, close, high, low, open, volume, uclose, uhigh, ulow, uopen, uvolume}

When you specify the following statements, the 132 variables shown in Table 48.5 are selected by the
CROSSLIST= option:

LIBNAME test sasefame 'physical name of test database'
RANGE='01jan1999'd - '31mar1999'd
CROSSLIST=(nl(ticker),

{adjust, close, high, low, open, volume,
uclose, uhigh, ulow, uopen, uvolume})

;

Table 48.5 SAS Variables Selected by CROSSLIST= Option

AOL.ADJUST C.ADJUST CVX.ADJUST F.ADJUST
AOL.CLOSE C.CLOSE CVX.CLOSE F.CLOSE
AOL.HIGH C.HIGH CVX.HIGH F.HIGH
AOL.LOW C.LOW CVX.LOW F.LOW
AOL.OPEN C.OPEN CVX.OPEN F.OPEN
AOL.UCLOSE C.UCLOSE CVX.UCLOSE F.UCLOSE
AOL.UHIGH C.UHIGH CVX.UHIGH F.UHIGH
AOL.ULOW C.ULOW CVX.ULOW F.ULOW
AOL.UOPEN C.UOPEN CVX.UOPEN F.UOPEN
AOL.UVOLUME C.UVOLUME CVX.UVOLUME F.UVOLUME
AOL.VOLUME C.VOLUME CVX.VOLUME F.VOLUME
GM.ADJUST HPQ.ADJUST IBM.ADJUST INDUA.ADJUST
GM.CLOSE HPQ.CLOSE IBM.CLOSE INDUA.CLOSE
GM.HIGH HPQ.HIGH IBM.HIGH INDUA.HIGH
GM.LOW HPQ.LOW IBM.LOW INDUA.LOW
GM.OPEN HPQ.OPEN IBM.OPEN INDUA.OPEN
GM.UCLOSE HPQ.UCLOSE IBM.UCLOSE INDUA.UCLOSE
GM.UHIGH HPQ.UHIGH IBM.UHIGH INDUA.UHIGH
GM.ULOW HPQ.ULOW IBM.ULOW INDUA.ULOW
GM.UOPEN HPQ.UOPEN IBM.UOPEN INDUA.UOPEN
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Table 48.5 continued

GM.UVOLUME HPQ.UVOLUME IBM.UVOLUME INDUA.UVOLUME
GM.VOLUME HPQ.VOLUME IBM.VOLUME INDUA.VOLUME
INTC.ADJUST SPX.ADJUST SUNW.ADJUST XOM.ADJUST
INTC.CLOSE SPX.CLOSE SUNW.CLOSE XOM.CLOSE
INTC.HIGH SPX.HIGH SUNW.HIGH XOM.HIGH
INTC.LOW SPX.LOW SUNW.LOW XOM.LOW
INTC.OPEN SPX.OPEN SUNW.OPEN XOM.OPEN
INTC.UCLOSE SPX.UCLOSE SUNW.UCLOSE XOM.UCLOSE
INTC.UHIGH SPX.UHIGH SUNW.UHIGH XOM.UHIGH
INTC.ULOW SPX.ULOW SUNW.ULOW XOM.ULOW
INTC.UOPEN SPX.UOPEN SUNW.UOPEN XOM.UOPEN
INTC.UVOLUME SPX.UVOLUME SUNW.UVOLUME XOM.UVOLUME
INTC.VOLUME SPX.VOLUME SUNW.VOLUME XOM.VOLUME

Instead of using two namelists, you can use the WHERE= clause in an INSET= option to perform the
crossproduct of the BY variables specified in your input data set via the WHERE= clause and the members
named in your namelist. The following statements define a SAS input data set named INSETA to use as input
for the CROSSLIST= option instead of using the Fame namelist:

DATA INSETA;
LENGTH tick $5;

/* AOL, C, CVX, F, GM, HPQ, IBM, INDUA, INTC, SPX, SUNW, XOM */
tick='AOL'; output;
tick='C'; output;
tick='CVX'; output;
tick='F'; output;
tick='GM'; output;
tick='HPQ'; output;
tick='IBM'; output;
tick='INDUA'; output;
tick='INTC'; output;
tick='SPX'; output;
tick='SUNW'; output;
tick='XOM'; output;

RUN;

LIBNAME test sasefame 'physical name of test database'
RANGE='01jan1999'd - '31mar1999'd
INSET=(inseta, where=tick)
CROSSLIST=(

{adjust, close, high, low, open, volume,
uclose, uhigh, ulow, uopen, uvolume})

;

Using a SAS INSET statement with a WHERE clause and using a Fame namelist in the CROSSLIST=
statement are equivalent ways of performing the same selection function. In the preceding example, the Fame
ticker namelist corresponds to the SAS input data set’s BY variable named TICK.

Note that the fame_bygroup that you specify in the WHERE= clause must match the BY-variable name used
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in your input data set in order for the CROSSLIST= option to perform the desired selection. If one of the
time series listed in fame_namelist2 does not exist, the SASEFAME engine stops processing the remainder
of the namelist. For complete results, make sure that your fame_namelist2 is accurate and does not name
unknown variables. The same holds true for fame_namelist1 and the BY-variable values named in the input
data set and used in the WHERE= clause.

Examples: SASEFAME Interface Engine
In this section, the examples were run on Windows, so the physical names used in the LIBNAME libref
SASEFAME statement reflect the syntax necessary for that platform. In general, Windows environments use
backslashes in their path name, and the UNIX environments use forward slashes.

Example 48.1: Converting an Entire Fame Database
To enable conversion of all time series, no wildcard is specified, so the default “?” wildcard is used. Always
consider both the number of time series and the number of observations generated by the conversion process.
The converted series reside in the Fame Work database during the SAS DATA step. You can further limit
your resulting SAS data set by using KEEP, DROP, or WHERE statements inside your DATA step.

The following statements convert a Fame database and print out its contents:

options pagesize=60 linesize=80 validvarname=any ;
%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir sasefame "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* Read in oecd1.db data from the Organization */
/* For Economic Cooperation and Development */
where date between '01jan88'd and '31dec93'd;

run;

proc print data=mydir.a;
run;

In the preceding example, the Fame database is called OECD1.DB, and it resides in the famedir directory.
The DATA statement names the SAS output data set a that will reside in mydir. All time series in the
Fame OECD1.DB database will be converted to an annual frequency and reside in the mydir.a SAS data set.
Because the time series variable names contain the special glue symbol ‘.’, the SAS option statement specifies
VALIDVARNAME=ANY. For more information about this option, see SAS System Options: Reference. The

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lesysoptsref&docsetTarget=titlepage.htm
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Fame environment variable is the location of the Fame installation. In the Windows environment, the log
would look like this:

1 options validvarname=any;

2 %let FAME=%sysget(FAME);
3 %put(&FAME);
(C:\PROGRA~1\FAME)
4 %let FAMETEMP=%sysget(FAME_TEMP);
5 %put(&FAMETEMP);
(\\ge\U11\saskff\fametemp\)
6
7 libname famedir sasefame "&FAME\util"
8 convert=(freq=annual technique=constant);
NOTE: Libref FAMEDIR was successfully assigned as follows:

Engine: FAMECHLI
Physical Name: C:\PROGRA~1\FAME\util

9
10 libname mydir '\\dntsrc\usrtmp\saskff';
NOTE: Libref MYDIR was successfully assigned as follows:

Engine: V9
Physical Name: \\dntsrc\usrtmp\saskff

11
12 data mydir.a; /* add data set to mydir */
13 set famedir.oecd1;
AUS.DIRDES -- SERIES (NUMERIC by ANNUAL)
AUS.DIRDES copied to work data base as AUS.DIRDES.

For more about the glue DOT character, see the section “Gluing Names Together” in the User’s Guide to
Fame. In the preceding log, the variable name AUS.DIRDES uses the glue DOT between AUS and DIRDES.

The PROC PRINT statement produces the results shown in Output 48.1.1, which displays all observations in
the mydir.a SAS data set.
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Output 48.1.1 Listing of OUT=MYDIR.A of the OECD1 Fame Data

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 . . . . . 18310.70 1737.00 2214

3 1990 . . . . . 18874.20 1859.20 2347

4 1991 . . . . . . 1959.60 2488

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

4 . . . . . . . 89908.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00 . . . .

4 . . . . . . . .

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD ITA.DIRDES ITA.HERD JPN.DIRDES JPN.HERD NLD.DIRDES

1 49.6000 37.0730 . . 1861.50 2699927 9657.20 2014073 883

2 50.2000 39.0130 10.3000 786.762 1968.00 2923504 10405.90 2129372 945

3 51.7000 . 11.0000 902.498 2075.00 3183071 . 2296992 .

4 . . 11.8000 990.865 2137.80 3374000 . . .

Obs NLD.HERD NOR.DIRDES NOR.HERD NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES

1 2105 . . . . 111.5 10158.20 .

2 2202 308.900 2771.40 78.7000 143.800 . . 1076

3 . . . . . . . .

4 . 352.000 3100.00 . . . . .

Obs SWE.HERD TUR.DIRDES TUR.HERD USA.DIRDES USA.HERD YUG.DIRDES YUG.HERD

1 . 174.400 74474 20246.20 20246.20 233.000 29.81

2 11104 212.300 143951 22159.50 22159.50 205.100 375.22

3 . . . 23556.10 23556.10 . 2588.50

4 . . . 24953.80 24953.80 . .
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Example 48.2: Reading Time Series from the Fame Database
This example uses the Fame WILDCARD= option to limit the number of series converted. The following
statements show how to read only series whose names begin with WSPCA:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname lib1 sasefame "%sysget(FAME_DATA)"
wildcard="wspca?"
convert=(technique=constant freq=twicemonthly );

libname lib2 "%sysget(FAME_TEMP)";

data lib2.twild(label='Annual Series from the FAMEECON.db');
set lib1.subecon;
where date between '01jan93'd and '31dec93'd;
/* keep only */
keep date wspca;

run;

proc contents data=lib2.twild;
run;

proc print data=lib2.twild;
run;

Output 48.2.1 and Output 48.2.2 show the results of using WILDCARD=“WSPCA?”.

Output 48.2.1 Contents of OUT=LIB2.TWILD of the SUBECON Fame Data

The CONTENTS ProcedureThe CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

1 DATE Num 8 DATE9. 9. Date of Observation

2 WSPCA Num 8 STANDARD & POOR'S WEEKLY BOND YIELD: COMPOSITE, A

The WILDCARD=“WSPCA?” option limits reading to only those series whose names begin with WSPCA.
The KEEP statement further restricts the SAS data set to include only the series named WSPCA and the
DATE variable. The time interval that is used for the conversion is TWICEMONTHLY.
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Output 48.2.2 Listing of OUT=LIB2.TWILD of the SUBECON Fame Data

Obs DATE WSPCA

1 01JAN1993 8.59400

2 16JAN1993 8.50562

3 01FEB1993 8.47000

4 16FEB1993 8.31000

5 01MAR1993 8.27000

6 16MAR1993 8.29250

7 01APR1993 8.32400

8 16APR1993 8.56333

9 01MAY1993 8.37867

10 16MAY1993 8.26313

11 01JUN1993 8.21333

12 16JUN1993 8.14400

13 01JUL1993 8.09067

14 16JUL1993 8.09937

15 01AUG1993 7.98533

16 16AUG1993 7.91600

Example 48.3: Writing Time Series to the SAS Data Set
The following statements use the DROP statement to exclude certain time series from the SAS data set. (You
can also use the KEEP statement to include certain series in the SAS data set.)

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir sasefame "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
drop 'ita.dirdes'n--'jpn.herd'n 'tur.dirdes'n--'usa.herd'n;
where date between '01jan88'd and '31dec93'd;

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
title2 "Drop Using N-literals";

proc print data=mydir.a;
run;

Output 48.3.1 shows the results.
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Output 48.3.1 Listing of OUT=MYDIR.A of the OECD1 Fame Data

OECD1: TECH=Constant, FREQ=Annual
Drop Using N-literals

OECD1: TECH=Constant, FREQ=Annual
Drop Using N-literals

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 . . . . . 18310.70 1737.00 2214

3 1990 . . . . . 18874.20 1859.20 2347

4 1991 . . . . . . 1959.60 2488

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

4 . . . . . . . 89908.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00 . . . .

4 . . . . . . . .

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD NLD.DIRDES NLD.HERD NOR.DIRDES NOR.HERD

1 49.6000 37.0730 . . 883 2105 . .

2 50.2000 39.0130 10.3000 786.762 945 2202 308.900 2771.40

3 51.7000 . 11.0000 902.498 . . . .

4 . . 11.8000 990.865 . . 352.000 3100.00

Obs NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES SWE.HERD YUG.DIRDES YUG.HERD

1 . . 111.5 10158.20 . . 233.000 29.81

2 78.7000 143.800 . . 1076 11104 205.100 375.22

3 . . . . . . . 2588.50

4 . . . . . . . .

Note that the SAS option VALIDVARNAME=ANY was used at the beginning of this example because
special characters are present in the time series names. SAS variables that contain certain special characters
are called n-literals and are referenced in SAS code, as shown in this example.

You can rename your SAS variables by using the RENAME statement. The following statements show how to
use n-literals when selecting variables that you want to keep and how to rename some of your kept variables:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir sasefame "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);
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libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* keep and rename */
keep date 'ita.dirdes'n--'jpn.herd'n 'tur.dirdes'n--'usa.herd'n;
rename 'ita.dirdes'n='italy.dirdes'n

'jpn.dirdes'n='japan.dirdes'n
'tur.dirdes'n='turkey.dirdes'n
'usa.dirdes'n='united.states.of.america.dirdes'n ;

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
title2 "keep statement using n-literals";
title3 "rename statement using n-literals";

proc print data=mydir.a;
run;

Output 48.3.2 shows the results.

Output 48.3.2 Listing of OUT=MYDIR.A of the OECD1 Fame Data

OECD1: TECH=Constant, FREQ=Annual
keep statement using n-literals
rename statement using n-literals

OECD1: TECH=Constant, FREQ=Annual
keep statement using n-literals
rename statement using n-literals

Obs DATE italy.dirdes ITA.HERD japan.dirdes JPN.HERD turkey.dirdes TUR.HERD

1 1985 1344.90 1751008 8065.70 1789780 144.800 22196

2 1986 1460.60 2004453 8290.10 1832575 136.400 26957

3 1987 1674.40 2362102 9120.80 1957921 121.900 32309

4 1988 1861.50 2699927 9657.20 2014073 174.400 74474

5 1989 1968.00 2923504 10405.90 2129372 212.300 143951

6 1990 2075.00 3183071 . 2296992 . .

7 1991 2137.80 3374000 . . . .

Obs united.states.of.america.dirdes USA.HERD

1 14786.00 14786.00

2 16566.90 16566.90

3 18326.10 18326.10

4 20246.20 20246.20

5 22159.50 22159.50

6 23556.10 23556.10

7 24953.80 24953.80
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Example 48.4: Limiting the Time Range of Data
You can also limit the time range of the data in the SAS data set by using the RANGE= option in the
LIBNAME statement or the WHERE statement in the DATA step to process the time ID variable DATE only
when it falls in the range you are interested in.

All data for 1988, 1989, and 1990 are included in the SAS data set that is generated by using the
RANGE=’01JAN1988’D - ’31DEC1990’D option or the WHERE DATE BETWEEN ’01JAN88’D AND
’31DEC90’D statement. The difference is that the RANGE= option uses less space in the Fame Work
database. If you have a very large database and you want to use less space in your Fame Work database while
you are processing the OECD1 database, you should use the RANGE= option as shown in the following
statements:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir SASEFAME "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant)
range='01jan1988'd - '31dec1990'd;

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* range on the libref restricts the dates *
* read from famedir's oecd1 database */

run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
proc print data=mydir.a;
run;

Output 48.4.1 shows the results.
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Output 48.4.1 OECD1 Fame Data Using the RANGE= Option

OECD1: TECH=Constant, FREQ=AnnualOECD1: TECH=Constant, FREQ=Annual

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 . . . . . 18310.70 1737.00 2214

3 1990 . . . . . 18874.20 1859.20 2347

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00 . . . .

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD ITA.DIRDES ITA.HERD JPN.DIRDES JPN.HERD NLD.DIRDES

1 49.6000 37.0730 . . 1861.5 2699927 9657.20 2014073 883

2 50.2000 39.0130 10.3000 786.762 1968.0 2923504 10405.90 2129372 945

3 51.7000 . 11.0000 902.498 2075.0 3183071 . 2296992 .

Obs NLD.HERD NOR.DIRDES NOR.HERD NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES

1 2105 . . . . 111.5 10158.20 .

2 2202 308.900 2771.40 78.7000 143.800 . . 1076

3 . . . . . . . .

Obs SWE.HERD TUR.DIRDES TUR.HERD USA.DIRDES USA.HERD YUG.DIRDES YUG.HERD

1 . 174.400 74474 20246.20 20246.20 233.000 29.81

2 11104 212.300 143951 22159.50 22159.50 205.100 375.22

3 . . . 23556.10 23556.10 . 2588.50

The following statements show how you can use the WHERE statement in the DATA step to process the time
ID variable DATE only when it falls in the range you are interested in:

options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname famedir SASEFAME "%sysget(FAME_DATA)"
convert=(freq=annual technique=constant);

libname mydir "%sysget(FAME_TEMP)";

data mydir.a; /* add data set to mydir */
set famedir.oecd1;
/* where only */
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where date between '01jan88'd and '31dec90'd;
run;

title1 "OECD1: TECH=Constant, FREQ=Annual";
proc print data=mydir.a;
run;

In Output 48.4.2, you can see that the result from the WHERE statement is the same as the result in
Output 48.4.1 from using the RANGE= option.

Output 48.4.2 OECD1 Fame Data Using the WHERE Statement

OECD1: TECH=Constant, FREQ=AnnualOECD1: TECH=Constant, FREQ=Annual

Obs DATE AUS.DIRDES AUS.HERD AUT.DIRDES AUT.HERD BEL.DIRDES BEL.HERD CAN.DIRDES CAN.HERD

1 1988 750 1072.90 . . 374 16572.70 1589.60 2006

2 1989 . . . . . 18310.70 1737.00 2214

3 1990 . . . . . 18874.20 1859.20 2347

Obs CHE.DIRDES CHE.HERD DEU.DIRDES DEU.HERD DNK.DIRDES DNK.HERD ESP.DIRDES ESP.HERD

1 632.100 1532 3538.60 8780.00 258.100 2662 508.200 55365.5

2 . 1648 3777.20 9226.60 284.800 2951 623.600 69270.5

3 . . 2953.30 9700.00 . . 723.600 78848.0

Obs FIN.DIRDES FIN.HERD FRA.DIRDES FRA.HERD GBR.DIRDES GBR.HERD GRC.DIRDES GRC.HERD

1 247.700 1602.0 2573.50 19272.00 2627.00 1592.00 60.600 6674.50

2 259.700 1725.5 2856.50 21347.80 2844.10 1774.20 119.800 14485.20

3 271.000 1839.0 3005.20 22240.00 . . . .

Obs IRL.DIRDES IRL.HERD ISL.DIRDES ISL.HERD ITA.DIRDES ITA.HERD JPN.DIRDES JPN.HERD NLD.DIRDES

1 49.6000 37.0730 . . 1861.5 2699927 9657.20 2014073 883

2 50.2000 39.0130 10.3000 786.762 1968.0 2923504 10405.90 2129372 945

3 51.7000 . 11.0000 902.498 2075.0 3183071 . 2296992 .

Obs NLD.HERD NOR.DIRDES NOR.HERD NZL.DIRDES NZL.HERD PRT.DIRDES PRT.HERD SWE.DIRDES

1 2105 . . . . 111.5 10158.20 .

2 2202 308.900 2771.40 78.7000 143.800 . . 1076

3 . . . . . . . .

Obs SWE.HERD TUR.DIRDES TUR.HERD USA.DIRDES USA.HERD YUG.DIRDES YUG.HERD

1 . 174.400 74474 20246.20 20246.20 233.000 29.81

2 11104 212.300 143951 22159.50 22159.50 205.100 375.22

3 . . . 23556.10 23556.10 . 2588.50

For more information about the KEEP, DROP, RENAME, and WHERE statements, see SAS Programmers
Guide: Essentials.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Example 48.5: Creating a View Using the SQL Procedure and the
SASEFAME Engine

The following statements create a view of OECD data by using the SQL procedure’s FROM and USING
clauses. For more information about SQL views, see the SAS SQL Procedure User’s Guide.

title1 'famesql5: PROC SQL Dual Embedded Libraries w/ FAME option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

title2 'OECD1: Dual Embedded Library Allocations with FAME Option';
proc sql;

create view fameview as
select date, 'fin.herd'n

from lib1.oecd1
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual),
libname temp "%sysget(FAME_TEMP)";

quit;

title2 'OECD1: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

Output 48.5.1 shows the results.

Output 48.5.1 Printout of the Fame View of OECD Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
OECD1: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
OECD1: Print of View from Embedded Library with FAME Option

Obs DATE FIN.HERD

1 1985 1097.00

2 1986 1234.00

3 1987 1401.30

4 1988 1602.00

5 1989 1725.50

6 1990 1839.00

7 1991 .

The following statements create a view of the DRI Basic Economic data by using the SQL procedure’s FROM
and USING clauses:

title2 'SUBECON: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=sqlproc&docsetTarget=titlepage.htm
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%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

proc sql;
create view fameview as
select date, gaa

from lib1.subecon
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual),
libname temp "%sysget(FAME_TEMP)";

quit;

title2 'SUBECON: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

Output 48.5.2 shows the results.
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Output 48.5.2 Printout of the Fame View of DRI Basic Economic Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
SUBECON: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option

SUBECON: Print of View from Embedded Library with FAME Option

Obs DATE GAA

1 1946 .

2 1947 .

3 1948 23174

4 1949 19003

5 1950 24960

6 1951 21906

7 1952 20246

8 1953 20912

9 1954 21056

10 1955 27168

11 1956 27638

12 1957 26723

13 1958 22929

14 1959 29729

15 1960 28444

16 1961 28226

17 1962 32396

18 1963 34932

19 1964 40024

20 1965 47941

21 1966 51429

22 1967 49164

23 1968 51208

24 1969 49371

25 1970 44034

26 1971 52352

27 1972 62644

28 1973 81645

29 1974 91028

30 1975 89494

31 1976 109492

32 1977 130260

33 1978 154357

34 1979 173428

35 1980 156096

36 1981 147765

37 1982 113216

38 1983 133495

39 1984 146448

40 1985 128522

41 1986 111338

42 1987 160785

43 1988 210532

44 1989 201637

45 1990 218702

46 1991 210666
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Output 48.5.2 continued

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
SUBECON: Print of View from Embedded Library with FAME Option

Obs DATE GAA

47 1992 .

48 1993 .

The following statements create a view of the DB77 database by using the SQL procedure’s FROM and
USING clauses:

title2 'DB77: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

proc sql;
create view fameview as

select date, ann, 'qandom.x'n
from lib1.db77
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual),
libname temp "%sysget(FAME_TEMP)";

quit;

title2 'DB77: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

Output 48.5.3 shows the results.
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Output 48.5.3 Printout of the Fame View of DB77 Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DB77: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DB77: Print of View from Embedded Library with FAME Option

Obs DATE ANN QANDOM.X

1 1959 . 0.56147

2 1960 . 0.51031

3 1961 . .

4 1962 . .

5 1963 . .

6 1964 . .

7 1965 . .

8 1966 . .

9 1967 . .

10 1968 . .

11 1969 . .

12 1970 . .

13 1971 . .

14 1972 . .

15 1973 . .

16 1974 . .

17 1975 . .

18 1976 . .

19 1977 . .

20 1978 . .

21 1979 . .

22 1980 100 .

23 1981 101 .

24 1982 102 .

25 1983 103 .

26 1984 104 .

27 1985 105 .

28 1986 106 .

29 1987 107 .

30 1988 109 .

31 1989 111 .

The following statements create a view of the Data Resources Incorporated (DRI) Basic Economic data by
using the SQL procedure’s FROM and USING clauses:

title2 'DRIECON: Dual Embedded Library Allocations with FAME Option';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

proc sql;
create view fameview as
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select date, husts
from lib1.driecon
using libname lib1 sasefame "%sysget(FAME_DATA)"

convert=(tech=constant freq=annual)
range='01jan1980'd - '01jan2006'd ,

libname temp "%sysget(FAME_TEMP)";
quit;

title2 'DRIECON: Print of View from Embedded Library with FAME Option';
proc print data=fameview;
run;

The SAS option VALIDVARNAME=ANY is used at the beginning of this example because special characters
are present in the time series names. The output from this example shows how each Fame view is the
output of the SASEFAME engine’s processing. Different engine options could have been used in the USING
LIBNAME clause if desired. Output 48.5.4 shows the results.

Output 48.5.4 Printout of the Fame View of DRI Basic Economic Data

famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DRIECON: Print of View from Embedded Library with FAME Option
famesql5: PROC SQL Dual Embedded Libraries w/ FAME option
DRIECON: Print of View from Embedded Library with FAME Option

Obs DATE HUSTS

1 1980 1292.2

2 1981 1084.2

3 1982 1062.2

4 1983 1703.0

5 1984 1749.5

6 1985 1741.8

7 1986 1805.4

8 1987 1620.5

9 1988 1488.1

10 1989 1376.1

11 1990 1192.7

12 1991 1013.9

13 1992 1199.7

14 1993 1287.6

15 1994 1457.0

16 1995 1354.1

17 1996 1476.8

18 1997 1474.0

19 1998 1616.9

20 1999 1666.5

21 2000 1568.7

22 2001 1602.7

23 2002 1704.9

24 2003 .
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Example 48.6: Reading Other Fame Data Objects with the FAMEOUT= Option
This example shows how you can designate the data objects that are output to your SAS data set by using the
FAMEOUT= option. In this example, the FAMEOUT=FORMULA option selects the formulas and their
source definitions to be output. The RANGE= option is ignored because no time series are selected when
FAMEOUT=FORMULA is specified.

options validvarname=any ls=90;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname lib6 sasefame "%sysget(FAME_DATA)"
fameout=formula
convert=(frequency=business technique=constant)
range='02jan1995'd - '25jul1997'd
wildcard="?YIELD?" ;

data crout;
set lib6.training;
keep 'S.GM.YIELD.A'n -- 'S.XON.YIELD.A'n ;

run;

title1 'Formulas from the TRAINING DB, FAMEOUT=FORMULA Option';
title2 'Using WILDCARD="?YIELD?"';
proc contents

data=crout;
run;

Output 48.6.1shows the results.
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Output 48.6.1 Contents of OUT=CROUT from the FAMEOUT=FORMULA Option of the Fame
TRAINING Data
Formulas from the TRAINING DB, FAMEOUT=FORMULA Option

Using WILDCARD="?YIELD?"

The CONTENTS Procedure

Formulas from the TRAINING DB, FAMEOUT=FORMULA Option
Using WILDCARD="?YIELD?"

The CONTENTS Procedure

Alphabetic List of Variables and
Attributes

# Variable Type Len

1 S.GM.YIELD.A Char 82

2 S.GM__PP.YIELD.A Char 82

3 S.HWP.YIELD.A Char 82

4 S.IBM.YIELD.A Char 82

5 S.INDUT.YIELD.A Char 82

6 S.SPAL.YIELD.A Char 82

7 S.SPALN.YIELD.A Char 82

8 S.SUNW.YIELD.A Char 82

9 S.XOM.YIELD.A Char 82

10 S.XON.YIELD.A Char 82

The FAMEOUT=FORMULA option restricts the SAS data set to include only formulas. The WILD-
CARD=“?YIELD?” option further limits the selection of formulas to those whose names contain “YIELD”.

options validvarname=any linesize=79;

title1 'Formulas from the TRAINING DB, FAMEOUT=FORMULA Option';
title2 'Using WILDCARD="?YIELD?"';
proc print

data=crout noobs;
run;

Output 48.6.2 shows the results.
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Output 48.6.2 Listing of OUT=CROUT from the FAMEOUT=FORMULA Option of the Fame
TRAINING Data
Formulas from the TRAINING DB, FAMEOUT=FORMULA Option

Using WILDCARD="?YIELD?"
Formulas from the TRAINING DB, FAMEOUT=FORMULA Option

Using WILDCARD="?YIELD?"

S.GM.YIELD.A S.GM__PP.YIELD.A

(%SPLC2TF(C37044210X01, IAD_DATE.H,
IAD.H)/C37044210X01.CLOSE)*C37044210X01.ADJUST

(%SPLC2TF(C37044210X01, IAD_DATE.H,
IAD.H)/C37044210X01.CLOSE)*C37044210X01.ADJUST

S.HWP.YIELD.A S.IBM.YIELD.A

(%SPLC2TF(C42823610X01, IAD_DATE.H,
IAD.H)/C42823610X01.CLOSE)*C42823610X01.ADJUST

(%SPLC2TF(C45920010X01, IAD_DATE.H,
IAD.H)/C45920010X01.CLOSE)*C45920010X01.ADJUST

S.INDUT.YIELD.A S.SPAL.YIELD.A

(%SPLC2TF(C00000110X00, IAD_DATE.H,
IAD.H)/C00000110X00.CLOSE)*C00000110X00.ADJUST

(%SPLC2TF(C00000117X00, IAD_DATE.H,
IAD.H)/C00000117X00.CLOSE)*C00000117X00.ADJUST

S.SPALN.YIELD.A S.SUNW.YIELD.A

(%SPLC2TF(C00000117X00, IAD_DATE.H,
IAD.H)/C00000117X00.CLOSE)*C00000117X00.ADJUST

(%SPLC2TF(C86681010X60, IAD_DATE.H,
IAD.H)/C86681010X60.CLOSE)*C86681010X60.ADJUST

S.XOM.YIELD.A S.XON.YIELD.A

(%SPLC2TF(C30231G10X01, IAD_DATE.H,
IAD.H)/C30231G10X01.CLOSE)*C30231G10X01.ADJUST

(%SPLC2TF(C30231G10X01, IAD_DATE.H,
IAD.H)/C30231G10X01.CLOSE)*C30231G10X01.ADJUST

Additional examples of the FAMEOUT= option are shown in Example 48.11, Example 48.12, Example 48.13,
Example 48.14, and Example 48.15.

Example 48.7: Remote Fame Access by Using Fame CHLI
When you run Fame in a client/server environment and also have Fame CHLI capability to enable access
to the server, you can access Fame remote data. Access the remote data by specifying the port number
of the TCP/IP service that is defined for the frdb_m and the node name of the Fame master server in the
physical path. In this example, the Fame server node name is STONES, and the port number is 5555, as was
designated in the Fame master command. For more information about starting your Fame master server, see
the section “Starting the Master Server” in Guide to Fame Database Servers.

options ls=78;
title1 "DRIECON Database, Using FAME with Remote Access via CHLI";
options validvarname=any;
libname test1 sasefame '#5555@stones $FAME/util';

data a;
set test1.driecon;
keep YP ZA ZB;
where date between '01jan98'd and '31dec03'd;

run;

proc means data=a n;
run;
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Output 48.7.1 shows the results.

Output 48.7.1 Summary Statistics for the Remote FAME Data

DRIECON Database, Using FAME with Remote Access via CHLI

The MEANS Procedure

DRIECON Database, Using FAME with Remote Access via CHLI

The MEANS Procedure

Variable Label N

YP
ZA
ZB

PERSONAL INCOME
CORPORATE PROFITS AFTER TAX EXCLUDING IVA
CORPORATE PROFITS BEFORE TAX EXCLUDING IVA

5
4
4

Example 48.8: Selecting Time Series by Using the CROSSLIST= Option and
KEEP Statement

This example shows how to use two Fame namelists to perform selection. Note that fame_namelist1 could
be easily generated using the Fame WILDLIST function. For more about the WILDLIST function, see the
section “The WILDLIST Function” in the Fame Command Reference, Volume 2, Functions. In the following
statements, four tickers are selected in fame_namelist1, but when you use the KEEP statement, the resulting
data set contains only the desired IBM ticker:

options validvarname=any;

libname lib8 sasefame "%sysget(FAME_DATA)"
convert=(frequency=business technique=constant)
crosslist=(

{ IBM,SPALN,SUNW,XOM },
{ adjust, close, high, low, open, volume,
uclose, uhigh, ulow,uopen,uvolume }

);

data trout;
/* eleven companies, keep only the IBM ticker this time */
set lib8.training;
where date between '01mar02'd and '20mar02'd;
keep IBM: ;

run;

title1 'TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=';
proc contents

data=trout;
run;

proc print
data=trout;

run;

Output 48.8.1 and Output 48.8.2 show the results.
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Output 48.8.1 Contents of the IBM Time Series in the Fame TRAINING Data

TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=

The CONTENTS Procedure

TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=

The CONTENTS Procedure

Alphabetic List of Variables
and Attributes

# Variable Type Len

1 IBM.ADJUST Num 8

2 IBM.CLOSE Num 8

3 IBM.HIGH Num 8

4 IBM.LOW Num 8

5 IBM.OPEN Num 8

6 IBM.UCLOSE Num 8

7 IBM.UHIGH Num 8

8 IBM.ULOW Num 8

9 IBM.UOPEN Num 8

10 IBM.UVOLUME Num 8

11 IBM.VOLUME Num 8
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Output 48.8.2 Listing of Ticker IBM Time Series in the Fame TRAINING Data

TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=TRAINING DB, Pricing Timeseries for IBM Ticker in CROSSLIST=

Obs IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 1 103.020 103.100 98.500 98.600 103.020 103.100

2 1 105.900 106.540 103.130 103.350 105.900 106.540

3 1 105.670 106.500 104.160 104.250 105.670 106.500

4 1 106.300 107.090 104.750 105.150 106.300 107.090

5 1 103.710 107.500 103.240 107.300 103.710 107.500

6 1 105.090 107.340 104.820 104.820 105.090 107.340

7 1 105.240 105.970 103.600 104.350 105.240 105.970

8 1 108.500 108.850 105.510 105.520 108.500 108.850

9 1 107.180 108.650 106.700 108.300 107.180 108.650

10 1 106.600 107.950 106.590 107.020 106.600 107.950

11 1 106.790 107.450 105.590 106.550 106.790 107.450

12 1 106.350 108.640 106.230 107.100 106.350 108.640

13 1 107.490 108.050 106.490 106.850 107.490 108.050

14 1 105.500 106.900 105.490 106.900 105.500 106.900

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 98.500 98.600 104890 104890

2 103.130 103.350 107650 107650

3 104.160 104.250 75617 75617

4 104.750 105.150 76874 76874

5 103.240 107.300 109720 109720

6 104.820 104.820 107260 107260

7 103.600 104.350 86391 86391

8 105.510 105.520 110640 110640

9 106.700 108.300 64086 64086

10 106.590 107.020 53335 53335

11 105.590 106.550 108640 108640

12 106.230 107.100 53048 53048

13 106.490 106.850 46148 46148

14 105.490 106.900 48367 48367

Example 48.9: Selecting Time Series by Using the CROSSLIST= Option and
Fame Namelist

This example demonstrates selection by using the CROSSLIST= option. Only the ticker “IBM” is specified
in the KEEP statement from the 11 companies in the Fame ticker namelist.

options validvarname=any;

libname lib9 sasefame "%sysget(FAME_DATA)"
convert=(frequency=business technique=constant)
range='07jul1997'd - '25jul1997'd
crosslist=( nl(ticker),

{ adjust, close, high, low, open, volume,
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uclose, uhigh, ulow, uopen, uvolume }
);

data crout;
/* eleven companies in the FAME ticker namelist */
set lib9.training;
keep IBM: ;

run;

title1 'TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=';
title2 'Using TICKER Namelist';
proc print data=crout;
run;

proc contents data=crout;
run;

Output 48.9.1 and Output 48.9.2 show the results.
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Output 48.9.1 Listing of OUT=CROUT Using CROSSLIST= Option in the Fame TRAINING Data

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using TICKER Namelist

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using TICKER Namelist

Obs IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 0.5 47.2500 47.7500 47.0000 47.5000 94.500 95.500

2 0.5 47.8750 47.8750 47.2500 47.2500 95.750 95.750

3 0.5 48.0938 48.3438 47.6563 48.0000 96.188 96.688

4 0.5 47.8750 48.0938 47.0313 47.3438 95.750 96.188

5 0.5 47.8750 48.6875 47.8125 47.9063 95.750 97.375

6 0.5 47.6250 48.2188 47.0000 47.8125 95.250 96.438

7 0.5 48.0000 48.1250 46.6875 47.4375 96.000 96.250

8 0.5 48.8125 49.0000 47.6875 47.8750 97.625 98.000

9 0.5 49.8125 50.8750 48.5625 48.9063 99.625 101.750

10 0.5 52.2500 52.6250 50.0000 50.0000 104.500 105.250

11 0.5 51.8750 53.1563 51.0938 52.6250 103.750 106.313

12 0.5 51.5000 51.7500 49.6875 50.0313 103.000 103.500

13 0.5 52.5625 53.5000 51.5938 52.1875 105.125 107.000

14 0.5 53.9063 54.2188 52.2500 52.8125 107.813 108.438

15 0.5 53.5000 54.2188 52.8125 53.9688 107.000 108.438

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 94.000 95.000 129012 64506

2 94.500 94.500 102796 51398

3 95.313 96.000 177276 88638

4 94.063 94.688 127900 63950

5 95.625 95.813 137724 68862

6 94.000 95.625 128976 64488

7 93.375 94.875 149612 74806

8 95.375 95.750 215440 107720

9 97.125 97.813 315504 157752

10 100.000 100.000 463480 231740

11 102.188 105.250 328184 164092

12 99.375 100.063 368276 184138

13 103.188 104.375 219880 109940

14 104.500 105.625 204088 102044

15 105.625 107.938 146600 73300
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Output 48.9.2 Contents of OUT=CROUT Using CROSSLIST= Option in the Fame TRAINING Data

Alphabetic List of Variables
and Attributes

# Variable Type Len

1 IBM.ADJUST Num 8

2 IBM.CLOSE Num 8

3 IBM.HIGH Num 8

4 IBM.LOW Num 8

5 IBM.OPEN Num 8

6 IBM.UCLOSE Num 8

7 IBM.UHIGH Num 8

8 IBM.ULOW Num 8

9 IBM.UOPEN Num 8

10 IBM.UVOLUME Num 8

11 IBM.VOLUME Num 8

Example 48.10: Selecting Time Series by Using the CROSSLIST= Option and
WHERE=TICK

Instead of having a Fame namelist with the ticker symbols for companies whose data you are interested in,
you can designate an input SAS data set (INSETA) that specifies the tickers to select. Specify your selection
by using the WHERE clause in the INSET= option as follows:

options validvarname=any;

data inseta;
length tick $5;
/* need $5 so SPALN is not truncated */

tick='AOL'; output;
tick='C'; output;
tick='CPQ'; output;
tick='CVX'; output;
tick='F'; output;
tick='GM'; output;
tick='HWP'; output;
tick='IBM'; output;
tick='SPALN'; output;
tick='SUNW'; output;
tick='XOM'; output;

run;

libname lib10 sasefame "%sysget(FAME_DATA)"
convert=(frequency=business technique=constant)
range='07jul1997'd - '25jul1997'd
inset=( inseta where=tick )
crosslist=

( {adjust, close, high, low, open, volume,
uclose, uhigh, ulow,uopen,uvolume} );
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data trout;
/* eleven companies with unique TICKs specified in INSETA */
set lib10.training;
keep IBM: ;

run;

title1 'TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=';
title2 'Using INSET with WHERE=TICK';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 48.10.1 and Output 48.10.2 show the results.
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Output 48.10.1 Listing of OUT=TROUT Using CROSSLIST= and INSET= Options in the Fame
TRAINING Data

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using INSET with WHERE=TICK

TRAINING DB, Pricing Timeseries for Eleven Tickers in CROSSLIST=
Using INSET with WHERE=TICK

Obs IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 0.5 47.2500 47.7500 47.0000 47.5000 94.500 95.500

2 0.5 47.8750 47.8750 47.2500 47.2500 95.750 95.750

3 0.5 48.0938 48.3438 47.6563 48.0000 96.188 96.688

4 0.5 47.8750 48.0938 47.0313 47.3438 95.750 96.188

5 0.5 47.8750 48.6875 47.8125 47.9063 95.750 97.375

6 0.5 47.6250 48.2188 47.0000 47.8125 95.250 96.438

7 0.5 48.0000 48.1250 46.6875 47.4375 96.000 96.250

8 0.5 48.8125 49.0000 47.6875 47.8750 97.625 98.000

9 0.5 49.8125 50.8750 48.5625 48.9063 99.625 101.750

10 0.5 52.2500 52.6250 50.0000 50.0000 104.500 105.250

11 0.5 51.8750 53.1563 51.0938 52.6250 103.750 106.313

12 0.5 51.5000 51.7500 49.6875 50.0313 103.000 103.500

13 0.5 52.5625 53.5000 51.5938 52.1875 105.125 107.000

14 0.5 53.9063 54.2188 52.2500 52.8125 107.813 108.438

15 0.5 53.5000 54.2188 52.8125 53.9688 107.000 108.438

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 94.000 95.000 129012 64506

2 94.500 94.500 102796 51398

3 95.313 96.000 177276 88638

4 94.063 94.688 127900 63950

5 95.625 95.813 137724 68862

6 94.000 95.625 128976 64488

7 93.375 94.875 149612 74806

8 95.375 95.750 215440 107720

9 97.125 97.813 315504 157752

10 100.000 100.000 463480 231740

11 102.188 105.250 328184 164092

12 99.375 100.063 368276 184138

13 103.188 104.375 219880 109940

14 104.500 105.625 204088 102044

15 105.625 107.938 146600 73300
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Output 48.10.2 Contents of OUT=TROUT Using CROSSLIST= and INSET= Options in the Fame
TRAINING Data

Alphabetic List of Variables
and Attributes

# Variable Type Len

1 IBM.ADJUST Num 8

2 IBM.CLOSE Num 8

3 IBM.HIGH Num 8

4 IBM.LOW Num 8

5 IBM.OPEN Num 8

6 IBM.UCLOSE Num 8

7 IBM.UHIGH Num 8

8 IBM.ULOW Num 8

9 IBM.UOPEN Num 8

10 IBM.UVOLUME Num 8

11 IBM.VOLUME Num 8

Example 48.11: Selecting Boolean Case Series with the FAMEOUT= Option
This example shows how to extract all Boolean case series from the Fame ALLTYPES database. The following
statements write all Boolean case series to the SAS data set BOOOUT:

title1 '***famallt: FAMEOUT Option, Different Type Values***';
options validvarname=any;

%let FAME=%sysget(FAME);
%put(&FAME);
%let FAMETEMP=%sysget(FAME_TEMP);
%put(&FAMETEMP);

libname lib4 sasefame "%sysget(FAME_DATA)"
fameout=boolcase wildcard="?" ;

data booout;
set lib4.alltypes;

run;

title1 'ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series';
title2 'Using FAMEOUT=CASE BOOLEAN Option without Range';
proc contents

data=booout;
run;

proc print
data=booout;

run;

Output 48.11.1 and Output 48.11.2 show the results for the Boolean case.
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Output 48.11.1 Contents of OUT=BOOOUT Using FAMEOUT=BOOLCASE for Boolean Case Series

ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range

The CONTENTS Procedure

ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range

The CONTENTS Procedure

Alphabetic List of
Variables and Attributes

# Variable Type Len

1 BOO0 Num 8

2 BOO1 Num 8

3 BOO2 Num 8

4 BOOM Num 8

5 BOO_RES Num 8

Output 48.11.2 Listing of OUT=BOOOUT Using FAMEOUT=BOOLCASE for Boolean Case Series

ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range
ALLTYPES FAMEOUT=BOOLCASE for Boolean Case Series
Using FAMEOUT=CASE BOOLEAN Option without Range

Obs BOO0 BOO1 BOO2 BOOM BOO_RES

1 0 1 0 1 .

2 0 0 1 0 .

3 0 0 0 251 .

4 0 1 1 1 .

5 0 1 0 1 .

6 0 0 . 0 .

7 0 0 . 0 .

8 0 1 . 1 .

9 0 . 0 . .

10 0 . . . .

11 1 . . . .

12 1 . . . .

13 1 . 1 . .

14 1 . . . .

15 1 . . . .

16 1 . . . .

17 1 . 0 . .

18 1 . . . .

19 1 . . . .

20 1 . . . .
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Example 48.12: Selecting Numeric Case Series with the FAMEOUT= Option
This example extracts numeric case series. In addition to the already existing numeric case series in the Fame
database, you can also have formulas that expand to numeric case series. The SASEFAME engine resolves
all formulas that belong to the class and type of series data object that you specify in the FAMEOUT= option.
The following statements write all numeric case series to the SAS data set CSOUT:

libname lib5 sasefame "%sysget(FAME_DATA)"
fameout=case wildcard="?" ;

data csout;
set lib5.alltypes;

run;

title1 'Using FAMEOUT=CASE Option without Range';
title2 'ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series';
proc contents

data=csout;
run;

proc print
data=csout;

run;

Output 48.12.1 and Output 48.12.2 show the results.

Output 48.12.1 Contents of OUT=CSOUT Using FAMEOUT=CASE and Open Wildcard for Numeric
Case Series

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

The CONTENTS Procedure

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

The CONTENTS Procedure

Alphabetic List of
Variables and Attributes

# Variable Type Len

1 FRM1 Num 8

2 NUM0 Num 8

3 NUM1 Num 8

4 NUM2 Num 8

5 NUMM Num 8

6 NUM_RES Num 8

7 PRC0 Num 8

8 PRC1 Num 8

9 PRC2 Num 8

10 PRCM Num 8

11 PRC_RES Num 8
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Output 48.12.2 Listing of OUT=CSOUT Using FAMEOUT=CASE and Open Wildcard for Numeric
Case Series

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

Using FAMEOUT=CASE Option without Range
ALLTYPES, FAMEOUT=CASE and Open Wildcard for Numeric Case Series

Obs FRM1 NUM0 NUM1 NUM2 NUMM NUM_RES PRC0 PRC1 PRC2 PRCM PRC_RES

1 0.00000 -9 0 1.33333 0 . -18 0 1.33333 0 .

2 1.00000 -8 1 1.00000 1 . -16 1 1.00000 1 .

3 0.66667 -7 2 0.66667 1.7014E38 . -14 2 0.66667 1.7014E38 .

4 3.00000 -6 3 0.33333 3 . -12 3 0.33333 3 .

5 4.00000 -5 4 0.00000 4 . -10 4 0.00000 4 .

6 . -4 5 . 5 . -8 5 . 5 .

7 . -3 6 . 6 . -6 6 . 6 .

8 7.00000 -2 7 . 7 . -4 7 . 7 .

9 . -1 . -1.33333 . . -2 . -1.33333 . .

10 . 0 . . . . 0 . . . .

11 . 1 . . . . 2 . . . .

12 . 2 . . . . 4 . . . .

13 . 3 . -2.66667 . . 6 . -2.66667 . .

14 . 4 . . . . 8 . . . .

15 . 5 . . . . 10 . . . .

16 . 6 . . . . 12 . . . .

17 . 7 . -4.00000 . . 14 . -4.00000 . .

18 . 8 . . . . 16 . . . .

19 . 9 . . . . 18 . . . .

20 . 10 . . . . 20 . . . .

Example 48.13: Selecting Date Case Series with the FAMEOUT= Option
This example shows how to extract date case series. In addition to the existing date case series in the Fame
database, you can have formulas that resolve to date case series. The SASEFAME engine resolves all
formulas that belong to the class and type of series data object that you specify in the FAMEOUT= option.
The following statements write all date case series to the SAS data set CDOUT:

libname lib6 sasefame "%sysget(FAME_DATA)"
fameout=datecase wildcard="?" ;

data cdout;
set lib6.alltypes;

run;

title1 'Using FAMEOUT=DATECASE Option without Range';
title2 'ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series';
proc contents

data=cdout;
run;

proc print
data=cdout;
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run;

Output 48.13.1 and Output 48.13.2 show the results.

Output 48.13.1 Contents of OUT=CDOUT Using FAMEOUT=DATECASE

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

The CONTENTS Procedure

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

The CONTENTS Procedure

Alphabetic List of Variables and
Attributes

# Variable Type Len Format Informat

1 DAT0 Num 8 YEAR4. 4.

2 DAT1 Num 8 YEAR4. 4.

3 DAT2 Num 8 YEAR4. 4.

4 DATM Num 8 YEAR4. 4.

5 FRM2 Num 8 YEAR4. 4.

Output 48.13.2 Listing of OUT=CDOUT Using FAMEOUT=DATECASE

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

Using FAMEOUT=DATECASE Option without Range
ALLTYPES: FAMEOUT=DATECASE and Open Wildcard for Date Case Series

Obs DAT0 DAT1 DAT2 DATM FRM2

1 1991 1981 1987 1981 1987

2 1992 1982 1986 1982 1986

3 1993 1983 1985 1983 1985

4 1994 1984 1984 1984 1984

5 1995 1985 1983 1985 1983

6 1996 1986 . 1986 .

7 1997 1987 . 1987 .

8 1998 1988 . 1988 .

9 1999 . 1979 . 1979

10 2000 . . . .

11 2001 . . . .

12 2002 . . . .

13 2003 . 1975 . .

14 2004 . . . .

15 2005 . . . .

16 2006 . . . .

17 2007 . 1971 . .

18 2008 . . . .

19 2009 . . . .

20 2010 . . . .



3544 F Chapter 48: The SASEFAME Interface Engine

Example 48.14: Selecting String Case Series with the FAMEOUT= Option
This example shows how to extract string case series. In addition to the existing string case series in your
Fame database, you can have formulas that resolve to string case series. The SASEFAME engine resolves all
formulas that belong to the class and type of series data object that you specify in the FAMEOUT= option.
The following statements write all string case series to the SAS data set CSTROUT:

libname lib7 sasefame "%sysget(FAME_DATA)"
fameout=stringcase wildcard="?" ;

data cstrout;
set lib7.alltypes;

run;

title1 'Using FAMEOUT=STRINGCASE Option without Range';
title2 'ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series';
proc contents

data=cstrout;
run;

proc print
data=cstrout;

run;

Output 48.14.1 and Output 48.14.2 show the results.

Output 48.14.1 Contents of OUT=CSTROUT Using FAMEOUT=STRINGCASE and Open Wildcard for
String Case Series

Using FAMEOUT=STRINGCASE Option without Range
ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

The CONTENTS Procedure

Using FAMEOUT=STRINGCASE Option without Range
ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

The CONTENTS Procedure

Alphabetic List of
Variables and

Attributes

# Variable Type Len

1 STR0 Char 16

2 STR1 Char 16

3 STR2 Char 16

4 STRM Char 16
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Output 48.14.2 Listing of OUT=CSTROUT Using FAMEOUT=STRINGCASE and Open Wildcard for String
Case Series
Using FAMEOUT=STRINGCASE Option without Range

ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series
Using FAMEOUT=STRINGCASE Option without Range

ALLTYPES, FAMEOUT=STRINGCASE and Open Wildcard for String Case Series

Obs STR0 STR1 STR2 STRM

1 -9 0 1.333333 0

2 -8 1 1 1

3 -7 2 0.6666667 2

4 -6 3 0.3333333 3

5 -5 4 0 4

6 -4 5 5

7 -3 6

8 -2 7 7

9 -1 -1.333333

10 0

11 1

12 2

13 3 -2.666667

14 4

15 5

16 6

17 7 -4

18 8

19 9

20 10

Example 48.15: Extracting Source for Formulas
This example shows how to extract the source for all the formulas in the Fame database by using the
FAMEOUT=FORMULA and WILDCARD=“?” options. The following statements show the source of all
formulas written to the SAS data set CFOROUT. Another example of the FAMEOUT=FORMULA option is
shown in Example 48.6.

libname lib8 sasefame "%sysget(FAME_DATA)"
fameout=formula wildcard="?" ;

data cforout;
set lib8.alltypes;

run;

title1 'Using FAMEOUT=FORMULA Option without Range';
proc contents

data=cforout;
run;

Output 48.15.1 and Output 48.15.2 show the results.
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Output 48.15.1 Contents of OUT=CFOROUT Using FAMEOUT=FORMULA and Open Wildcard

Using FAMEOUT=FORMULA Option without Range

The CONTENTS Procedure

Using FAMEOUT=FORMULA Option without Range

The CONTENTS Procedure

Alphabetic List of
Variables and

Attributes

# Variable Type Len

1 S.DFRM Char 27

2 S.FRM1 Char 27

3 S.FRM2 Char 27

title3 'ALLTYPES, FAMEOUT=FORMULA, and Open Wildcard for FORMULA Series';
proc print

data=cforout noobs;
run;

Output 48.15.2 Listing of OUT=CFOROUT Using FAMEOUT=FORMULA and Open Wildcard

Using FAMEOUT=FORMULA Option without Range

ALLTYPES, FAMEOUT=FORMULA, and Open Wildcard for FORMULA Series

Using FAMEOUT=FORMULA Option without Range

ALLTYPES, FAMEOUT=FORMULA, and Open Wildcard for FORMULA Series

S.DFRM S.FRM1 S.FRM2

IF DBOO THEN DPRC ELSE DNUMIF BOO1 THEN NUM1 ELSE NUM2IF BOO0 THEN DAT1 ELSE DAT2

If you want all series of every type, you can merge the resulting data sets. For more information about
merging SAS data sets, see SAS Programmers Guide: Essentials.

Example 48.16: Reading Time Series by Defining Fame Expression Groups in
the INSET= Option with the KEEP= Clause

To keep all the numeric time series that are listed in the expressions given in the input data set, INSETA, use
the INSET=( setname KEEPLIST=fame_expression_group ) and WILDCARD=“?” options. The following
statements show how to select time series that are specified in a KEEP expression group and are written to
the SAS output data set:

data inseta; /* Use this for d8690 training database */
length express $52;
express='cvx.close;'; output;
express='{ibm.high,ibm.low,ibm.close};'; output;
express='mave(ibm.close,30);'; output;
express='crosslist({gm,f,c},{volume});'; output;
express='cvx.close+ibm.close;'; output;
express='ibm.close;'; output;
express='sum(pep.volume);'; output;
express='mave(pep.close,20);'; output;

run;

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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title1 'TRAINING DB, Pricing Timeseries for Expressions in INSET=';
proc print

data=inseta;
run;

Output 48.16.1 shows the expressions that are stored as observations in the input data set, INSETA.

Output 48.16.1 Listing of INSETA Defining Fame Expression Group

TRAINING DB, Pricing Timeseries for Expressions in INSET=

Obs express

1 cvx.close;

2 {ibm.high,ibm.low,ibm.close};

3 mave(ibm.close,30);

4 crosslist({gm,f,c},{volume});

5 cvx.close+ibm.close;

6 ibm.close;

7 sum(pep.volume);

8 mave(pep.close,20);

The following statements show how to use the INSET= option to keep all time series that are represented in
the input data set, INSETA, as the group variable EXPRESS:

libname libX sasefame "%sysget(FAME_DATA)"
wildcard="?"
convert=(frequency=business technique=constant)
range='23jul1997'd - '25jul1997'd
inset=( inseta KEEP=express)
;

data trout;
set libX.trainten;

run;

title1 'TRAINING DB, Pricing Timeseries for Expressions in INSET=';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 48.16.2 and Output 48.16.3 show the results.
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Output 48.16.2 Listing of TROUT Using INSETA with KEEP=EXPRESS

TRAINING DB, Pricing Timeseries for Expressions in INSET=TRAINING DB, Pricing Timeseries for Expressions in INSET=

Obs DATE C.VOLUME VOLUME GM.VOLUME IBM.CLOSE IBM.HIGH IBM.LOW SASTEMP1

1 23JUL1997 33791.88 45864.05 37392 52.5625 53.5000 51.5938 76.8125

2 24JUL1997 41828.85 29651.34 27771 53.9063 54.2188 52.2500 76.8750

3 25JUL1997 46979.83 36716.77 24969 53.5000 54.2188 52.8125 78.0000

Obs SASTEMP3 SASTEMP5 SASTEMP6 SASTEMP8

1 47.0894 129.375 52.5625 37.6118

2 47.4289 130.781 53.9063 37.6250

3 47.7392 131.500 53.5000 37.6546

Output 48.16.3 Listing of Contents of TROUT

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

2 C.VOLUME Num 8

1 DATE Num 8 DATE9. 9. Date of Observation

4 GM.VOLUME Num 8

5 IBM.CLOSE Num 8

6 IBM.HIGH Num 8

7 IBM.LOW Num 8

8 SASTEMP1 Num 8

9 SASTEMP3 Num 8

10 SASTEMP5 Num 8

11 SASTEMP6 Num 8

12 SASTEMP8 Num 8

3 VOLUME Num 8

Example 48.17: Optimizing Cache Sizes with the TUNEFAME= and
TUNECHLI= Options

This example shows how to use the TUNEFAME= option, the TUNECHLI= option, and a RANGE= option
to select pricing time series in the TRAINTEN database. The selected time series are written to the SAS
output data set. The Fame database engine’s virtual memory is given in megabytes (MB), so this example
sets the cache size to 100 MB. The Fame CHLI engine’s virtual memory is also given in megabytes (MB),
so this example sets the CHLI cache size to 100 MB. These two settings correspond to the default settings.
Both the Fame 4GL engine and the Fame CHLI engine can use a cache size that ranges from 0.1 MB to
17,592,186,000,000 MB.

libname lib5 sasefame "%sysget(FAME_DATA)"
wildcard="?UHIGH"
tunefame=nodes 100
tunechli=nodes 100
convert=(frequency=business technique=constant)
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range='23jul1997'd - '25jul1997'd
;

data trout(drop=C:);
set lib5.trainten;

run;
title1 'TRAINTEN DB, Pricing Time Series, TUNEFAME=NODES and TUNECHLI=NODES Options';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 48.17.1 and Output 48.17.2 show the results.

Output 48.17.1 Listing of TRAINING DB, Pricing Time Series, TUNEFAME=NODES,
and TUNECHLI=NODES Options

TRAINTEN DB, Pricing Time Series, TUNEFAME=NODES and TUNECHLI=NODES
Options

TRAINTEN DB, Pricing Time Series, TUNEFAME=NODES and TUNECHLI=NODES
Options

Obs DATE DJ30IN.UHIGH DJ__30.UHIGH F.UHIGH F___I.UHIGH GM.UHIGH GM__PP.UHIGH

1 23JUL1997 8199.15 8199.15 41.0625 41.0625 59.1250 59.1250

2 24JUL1997 8174.53 8174.53 42.0000 42.0000 59.2500 59.2500

3 25JUL1997 8200.31 8200.31 41.5000 41.5000 57.8125 57.8125

Obs HPQ.UHIGH HWP.UHIGH IBM.UHIGH INDUT.UHIGH INTC.UHIGH JAVA.UHIGH JAVAD.UHIGH

1 67.3125 67.3125 107.000 8199.15 90.750 46.9375 46.9375

2 65.8750 65.8750 108.438 8174.53 90.625 46.8750 46.8750

3 66.1250 66.1250 108.438 8200.31 91.125 47.3750 47.3750

Obs KO.UHIGH PEP.UHIGH SPAL.UHIGH SPALN.UHIGH SPALNS.UHIGH SPX.UHIGH SP_CI.UHIGH

1 70.7500 38.4375 941.800 941.800 941.800 941.800 941.800

2 70.4375 38.0625 941.510 941.510 941.510 941.510 941.510

3 70.9375 38.7500 945.650 945.650 945.650 945.650 945.650

Obs SP__50.UHIGH SP___C.UHIGH SUNW.UHIGH XOM.UHIGH XON.UHIGH

1 941.800 941.800 46.9375 63.125 63.125

2 941.510 941.510 46.8750 62.000 62.000

3 945.650 945.650 47.3750 63.000 63.000
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Output 48.17.2 Listing of Contents of TROUT for TUNEFAME=NODES and TUNECHLI=NODES Options

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

1 DATE Num 8 DATE9. 9. Date of Observation

2 DJ30IN.UHIGH Num 8

3 DJ__30.UHIGH Num 8

4 F.UHIGH Num 8

5 F___I.UHIGH Num 8

6 GM.UHIGH Num 8

7 GM__PP.UHIGH Num 8

8 HPQ.UHIGH Num 8

9 HWP.UHIGH Num 8

10 IBM.UHIGH Num 8

11 INDUT.UHIGH Num 8

12 INTC.UHIGH Num 8

13 JAVA.UHIGH Num 8

14 JAVAD.UHIGH Num 8

15 KO.UHIGH Num 8

16 PEP.UHIGH Num 8

17 SPAL.UHIGH Num 8

18 SPALN.UHIGH Num 8

19 SPALNS.UHIGH Num 8

20 SPX.UHIGH Num 8

21 SP_CI.UHIGH Num 8

22 SP__50.UHIGH Num 8

23 SP___C.UHIGH Num 8

24 SUNW.UHIGH Num 8

25 XOM.UHIGH Num 8

26 XON.UHIGH Num 8

For more information about tuning the use of virtual memory, read about TUNE CACHE nodes in the section
“TUNE CACHE Option” in the online document Fame 10 Online Help.

Example 48.18: Remote Access Using the MCADBS Server
Instead of accessing the local Fame training database, as shown in Example 48.10, this example shows how
to access the remote Fame training database that is located on a remote Fame MCADBS server whose host
name is “txa006”. First, specify an explicit connection by using the CONNECT=YES option. Then name
the connection in the AS_NAME= option, specify the host name of the remote MCADBS server in the
ON_HOST= option, and specify the service to use in the TO_SERVICE= option. In addition, specify the
user name and password for the connection by using the USER= and PASS= options. Designate an input
SAS data set (INSETZ) that specifies the tickers to select, and specify your selection by using the WHERE
clause in the INSET= option as follows:
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option validvarname=any;

data insetz;
length tick $6;
/* need $6 so DJ30IN is not truncated */

tick='C'; output;
tick='CVX'; output;
tick='DJ30IN'; output;
tick='F'; output;
tick='HPQ'; output;
tick='IBM'; output;
tick='INTC'; output;
tick='KO'; output;
tick='ORCL'; output;
tick='PEP'; output;
tick='SPX'; output;
tick='XOM'; output;
tick='YUM'; output;

run;

libname lib10 sasefame "C:\PROGRA~1\FAME\util"
debug=on
connect=yes to_service="2961" on_host="txa006" as_name="C"
user="famekff" pass="XXXXXXXXX"
convert=(frequency=business technique=constant)
range='07jul1997'd - '25jul1997'd
inset=( insetz where=tick )
crosslist=

( {adjust, close, high, low, open, volume,
uclose, uhigh, ulow, uopen, uvolume} );

data trout;
/* thirteen companies with unique TICKs specified in INSETZ */
/* Use tr since this is the MCADBS dbid for the training.db */
set lib10.tr;
keep DATE IBM: ; /* only keep IBM for brevity of output results */

run;

title1 'TRAINING DB, Pricing Timeseries for IBM';
title2 'Using INSET with WHERE=TICK.';
proc print data=trout;
run;

proc contents data=trout;
run;

Output 48.18.1 and Output 48.18.2 show the results.
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Output 48.18.1 Listing of OUT=TROUT Using CROSSLIST= and INSET= Options in the Fame
MCADBS Remote TRAINING Data

TRAINING DB, Pricing Timeseries for IBM
Using INSET with WHERE=TICK.

TRAINING DB, Pricing Timeseries for IBM
Using INSET with WHERE=TICK.

Obs DATE IBM.ADJUST IBM.CLOSE IBM.HIGH IBM.LOW IBM.OPEN IBM.UCLOSE IBM.UHIGH

1 07JUL1997 0.5 47.2500 47.7500 47.0000 47.5000 94.500 95.500

2 08JUL1997 0.5 47.8750 47.8750 47.2500 47.2500 95.750 95.750

3 09JUL1997 0.5 48.0938 48.3438 47.6563 48.0000 96.188 96.688

4 10JUL1997 0.5 47.8750 48.0938 47.0313 47.3438 95.750 96.188

5 11JUL1997 0.5 47.8750 48.6875 47.8125 47.9063 95.750 97.375

6 14JUL1997 0.5 47.6250 48.2188 47.0000 47.8125 95.250 96.438

7 15JUL1997 0.5 48.0000 48.1250 46.6875 47.4375 96.000 96.250

8 16JUL1997 0.5 48.8125 49.0000 47.6875 47.8750 97.625 98.000

9 17JUL1997 0.5 49.8125 50.8750 48.5625 48.9063 99.625 101.750

10 18JUL1997 0.5 52.2500 52.6250 50.0000 50.0000 104.500 105.250

11 21JUL1997 0.5 51.8750 53.1563 51.0938 52.6250 103.750 106.313

12 22JUL1997 0.5 51.5000 51.7500 49.6875 50.0313 103.000 103.500

13 23JUL1997 0.5 52.5625 53.5000 51.5938 52.1875 105.125 107.000

14 24JUL1997 0.5 53.9063 54.2188 52.2500 52.8125 107.813 108.438

15 25JUL1997 0.5 53.5000 54.2188 52.8125 53.9688 107.000 108.438

Obs IBM.ULOW IBM.UOPEN IBM.UVOLUME IBM.VOLUME

1 94.000 95.000 129012 64506

2 94.500 94.500 102796 51398

3 95.313 96.000 177276 88638

4 94.063 94.688 127900 63950

5 95.625 95.813 137724 68862

6 94.000 95.625 128976 64488

7 93.375 94.875 149612 74806

8 95.375 95.750 215440 107720

9 97.125 97.813 315504 157752

10 100.000 100.000 463480 231740

11 102.188 105.250 328184 164092

12 99.375 100.063 368276 184138

13 103.188 104.375 219880 109940

14 104.500 105.625 204088 102044

15 105.625 107.938 146600 73300
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Output 48.18.2 Contents of OUT=TROUT Using CROSSLIST= and INSET= Options in the Fame
MCADBS Remote TRAINING Data

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

1 DATE Num 8 DATE9. 9. Date of Observation

2 IBM.ADJUST Num 8

3 IBM.CLOSE Num 8

4 IBM.HIGH Num 8

5 IBM.LOW Num 8

6 IBM.OPEN Num 8

7 IBM.UCLOSE Num 8

8 IBM.UHIGH Num 8

9 IBM.ULOW Num 8

10 IBM.UOPEN Num 8

11 IBM.UVOLUME Num 8

12 IBM.VOLUME Num 8

The DEBUG=ON option gives tracing information in the SAS log that shows the Fame CHLI commands that
are used to communicate with the remote server. This debugging information can be useful in explaining the
communication between the client and server machines. An abbreviated version of the SAS log follows:

NOTE: Libref LIB10 was successfully assigned as follows:
Engine: SASEFAME
Physical Name: C:\PROGRA~1\FAME\util

155
156 data trout;
157 set lib10.tr;
NOTE: The SASEFAME engine is using Version 11.43000 of the HLI.
len4=0
FAME COMMAND line 913 is:
OPEN <ACCESS READ> tr ON C; OVERWRITE ON; GLUE DOT;
ITEM ALIAS ON
STATUS from first OPEN is: 0
FAME COMMAND line 1255 is: GLUE DOT; LOOP FOR LCV IN CROSSLIST
({C,CVX,DJ30IN,F,HPQ,IBM,INTC,KO,ORCL,PEP,SPX,XOM,YUM},{ADJUST,CLOSE,HIGH,LOW,
OPEN,VOLUME,UCLOSE,UHIGH,ULOW,UOPEN,UVOLUME}); NEW WORK'LCV = LCV; END LOOP;
STATUS from LOOP for LCV in CROSSLIST is: 0
setting the dbkey to the wkkey which is: 0
STATUS from cfmopcn is: 0
cfmopdc dbname line 1459 is: tr
STATUS from cfmopdc is: 0
C.ADJUST -- SERIES (NUMERIC by BUSINESS)
FAME COMMAND line 2300 is: IGNORE ON;
C.CLOSE -- SERIES (NUMERIC by BUSINESS)
.
.
.
YUM.VOLUME -- SERIES (NUMERIC by BUSINESS)
FAME COMMAND line 2300 is: IGNORE ON;
entering fmoinfo, nobs=-1
C.ADJUST -- SERIES (NUMERIC by BUSINESS)
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C.CLOSE -- SERIES (NUMERIC by BUSINESS)
.
.
.
IBM.ADJUST -- SERIES (NUMERIC by BUSINESS)
IBM.CLOSE -- SERIES (NUMERIC by BUSINESS)
IBM.HIGH -- SERIES (NUMERIC by BUSINESS)
IBM.LOW -- SERIES (NUMERIC by BUSINESS)
IBM.OPEN -- SERIES (NUMERIC by BUSINESS)
IBM.UCLOSE -- SERIES (NUMERIC by BUSINESS)
IBM.UHIGH -- SERIES (NUMERIC by BUSINESS)
IBM.ULOW -- SERIES (NUMERIC by BUSINESS)
IBM.UOPEN -- SERIES (NUMERIC by BUSINESS)
IBM.UVOLUME -- SERIES (NUMERIC by BUSINESS)
IBM.VOLUME -- SERIES (NUMERIC by BUSINESS)
.
.
.
YUM.UOPEN -- SERIES (NUMERIC by BUSINESS)
YUM.UVOLUME -- SERIES (NUMERIC by BUSINESS)
YUM.VOLUME -- SERIES (NUMERIC by BUSINESS)
entering fmoinfo, nobs=-1
entering fmoinfo, nobs=8637
158 run;

entering fmoinfo, nobs=8637
inside fmoinfo, nobs=8637
NOTE: There were 8637 observations read from the data set LIB10.TR.
NOTE: The data set WORK.TROUT has 8637 observations and 144 variables.

Because you specify the DEBUG=ON option, the SAS log includes the Fame commands and reports the
status of the Fame CHLI commands that are issued during the execution of the SAS DATA step. The first
Fame command shown is OPEN; it is important to note that instead of using training in the SAS SET
statement, it is necessary to use the database ID, tr. For the MCADBS server, a list of databases is given in
the mcadbs.config file, which for the host txa006 contains the following information:

# The databases to open
OPEN %OL% %FAME%\util\training.db TR

# Clients refer to this as TR.

The first OPEN command listed in the SAS log (inside the FAME command) refers to the named connection,
C:

OPEN <ACCESS READ> tr ON C;

So the connection is named C, which is specified in the AS_NAME= option in the SASEFAME LIBNAME
statement.
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Overview: SASEFRED Interface Engine
The SASEFRED interface engine enables SAS users to retrieve economic data from the FRED website,
which is hosted by the Economic Research Division of the Federal Reserve Bank of St. Louis. FRED stands
for Federal Reserve Economic Data. The FRED databases contain more than 61,000 economic data time
series from 48 national and international sources, both public and private. These time series are updated
at annual, quarterly, monthly, weekly, and daily intervals. The economic time series on the FRED website
contain observation or measurement periods that are associated with data values.

The SASEFRED interface engine uses the LIBNAME statement to enable you to specify how to subset your
FRED data and how to aggregate the selected time series at the same update frequency. You can then use the
SAS DATA step to perform further subsetting and to store the resulting time series in a SAS data set. You
can perform more analysis (if desired) either in the same SAS session or in a later session.

The SASEFRED interface engine supports 64-bit Windows and Linux X64 (LAX) platforms.

Note that the SASEFRED engine uses the FRED API, but it is not endorsed or certified by the Federal Reserve
Bank of St. Louis, and that by using the SASEFRED interface, you are agreeing to comply with the FRED
terms of use, which are described on the web page at the following URL: https://api.stlouisfed.
org/terms_of_use.html.

Getting Started: SASEFRED Interface Engine
You can query the Federal Reserve Economic Data (FRED) databases to retrieve the observations or data
values for a list of economic time series by specifying the series ID of each time series that you want to read
into SAS and by specifying your unique FRED API key. To obtain your own unique API key, visit the FRED
website at the following URL:

https://api.stlouisfed.org/api_key.html

The FRED API key is a 32-character alphanumeric lowercase string, such as ‘abcdefghijklmnopqrstu-
vwxyz123456’, and is represented by ’XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX’ in the
APIKEY= option in the following example. In addition, the example URLs in this section and in the
section “Details: SASEFRED Interface Engine” on page 3569 use the same FRED API key as the argument
your_fred_apikey .

After you have your assigned FRED API key and you have agreed to the terms of use, before downloading any
copyright-protected data series, be aware that you are solely responsible for obtaining copyright permissions
for any copyright-protected time series that you download (other than for personal use). To obtain a list of
the copyright-protected data series, visit the web page at the following URL:

https://api.stlouisfed.org/fred/series/search?search_text=copyright&api_key=your_fred_apikey

Now that your are informed about the terms of use of the FRED data, you can use your FRED API key to
access the FRED data, as shown in the following example.

The following statements enable you to access the exports of goods and services time series data from January
1, 1960, to January 1, 2012, on an annual basis. The observations are sorted by the time ID variable DATE.

https://api.stlouisfed.org/terms_of_use.html
https://api.stlouisfed.org/terms_of_use.html
https://api.stlouisfed.org/api_key.html
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options validvarname=any;

title 'Retrieve Data for the Exports of Goods and Services';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=exportgs
XMLMAP="%sysget(FRED)exportgs.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='bopxgsa';

data export_gsa;
set fred.exportgs ;

run;

proc contents data=export_gsa; run;
proc print data=export_gsa(obs=15); run;

Figure 49.1 Getting Started with Exports of Goods and Services: export_gsa(obs=15)

Retrieve Data for the Exports of Goods and Services

Obs date realtime_start realtime_end BOPXGSA

1 1960-01-01 2018-09-04 2018-09-04 25.940

2 1961-01-01 2018-09-04 2018-09-04 26.403

3 1962-01-01 2018-09-04 2018-09-04 27.722

4 1963-01-01 2018-09-04 2018-09-04 29.620

5 1964-01-01 2018-09-04 2018-09-04 33.341

6 1965-01-01 2018-09-04 2018-09-04 35.285

7 1966-01-01 2018-09-04 2018-09-04 38.926

8 1967-01-01 2018-09-04 2018-09-04 41.333

9 1968-01-01 2018-09-04 2018-09-04 45.543

10 1969-01-01 2018-09-04 2018-09-04 49.220

11 1970-01-01 2018-09-04 2018-09-04 56.640

12 1971-01-01 2018-09-04 2018-09-04 59.677

13 1972-01-01 2018-09-04 2018-09-04 67.222

14 1973-01-01 2018-09-04 2018-09-04 91.242

15 1974-01-01 2018-09-04 2018-09-04 120.897

The XML data that the FRED website returns are placed in a file named by the OUTXML= option, in
this case, EXPORTGS.xml. Note that the XML file extension is excluded from the file name given in the
OUTXML= option. When the SET statement is executed, the XML data is read into a SAS data set named
Exportgs.sas7bdat, which resides in the location given inside the string enclosed in double quotation marks
in the SASEFRED LIBNAME statement. So, in the preceding example, if the FRED environment variable is
set to

/sasusr/fred/test/

then the SAS data set created from reading the downloaded XML file is placed into
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/sasusr/fred/test/exportgs.sas7bdat

An equivalent LIBNAME statement that does not use any environment variables could be as follows:

Libname fred sasefred "/sasusr/fred/test/"
OUTXML=exportgs
XMLMAP="/sasusr/fred/test/exportgs.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='bopxgsa';

You could also use either a SAS macro variable or a system environment variable to store the value of your
FRED API key so that the key does not appear explicitly in your SAS code. The XML map that is created
is assigned the full path name specified by the XMLMAP= option. The IDLIST= option specifies the list
of time series that you want to retrieve. This option accepts a string, enclosed in single quotation marks,
that denotes a list of one or more time series that you select (keep) in the resulting SAS data set. The result,
Export_gsa, is named in the DATA step and is shown in Figure 49.1. It is more efficient to use the DATA step
to store your FRED data in a SAS data set and then refer to the SAS data set directly in your PROC PRINT
or PROC SGPLOT statement, but you can also refer to the SASEFRED libref directly, as in the following
statement:

proc print data=fred.exportgs; run;

This statement uses the member name, exportgs, in the PROC PRINT statement; this usage corresponds to
specifying the OUTXML=EXPORTGS option. Although using this statement might seem easier, it is not as
efficient, because every time you use the SASEFRED libref, the FRED interface reads the entire XML file
again into SAS. It is best to refer to the SAS data set repeatedly rather than invoking the interface engine
repeatedly. For another example that uses more SASEFRED LIBNAME statement options, see the section
“Reading Price Data by Using Indices” on page 3572.

Syntax: SASEFRED Interface Engine
The SASEFRED interface engine uses standard engine syntax to read the observations or data values for one
or more economic time series. Table 49.1 summarizes the options that the SASEFRED engine uses. There
are two required options: APIKEY=’fred_apikey’ and ID_LIST=’fred_idlist’.

Table 49.1 Summary of LIBNAME libref SASEFRED Options

Option Description

AGG= Specifies the aggregation method used for frequency aggregation. The valid
aggregation arguments are ’avg’, ’sum’, and ‘eop’; the default is ‘avg’.

APIKEY= Specifies the required FRED access key that enables you to access the data that the
FRED website provides

AUTOMAP= Specifies whether or not to overwrite the existing XML map file
CONNECT= Specifies whether or not you need the connect method for a secure connection via a

proxy server. You must specify the PROXY= option when you use the
CONNECT=ON option. See the PROXY= option.
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Table 49.1 continued

Option Description

DEBUG= Specifies whether or not you need diagnostic message logging in the SAS log
window

END= Specifies the end date for the observation period ('YYYY-MM-DD' formatted string,
optional; the default is 1776-07-04 (earliest available))

FORMAT= Specifies a file extension that indicates the type of file to retrieve. Only XML is
supported.

FREQ= Specifies the reporting frequency of the selected data (lower frequency to aggregate
values to): ‘m’ for monthly, ‘d’ for daily. The FRED frequency aggregation feature
converts higher-frequency data series to lower-frequency time series (such as
converting a monthly time series to an annual time series). For the complete list of
frequencies, see Table 49.2.

IDLIST= Specifies a list of time series IDs for accessing FRED data. To select more than one
time series, list the unique time series IDs, separated by commas.

LIMIT= Specifies the maximum number of observations (rows) to return (integer between 1
and 100,000, optional; the default is 100,000)

MAPREF= Specifies the fileref used for the map file assignment
OFFSET= Specifies the number of rows (observations) to skip in the returned data set
OUTPUT= Specifies an output type. The valid output arguments are ‘1’ for Observations by

Real-Time Period; ‘2’ for Observations by Vintage Date, All Observations; ‘3’ for
Observations by Vintage Date, New and Revised Observations Only; and ‘4’ for
Observations, Initial Release Only (integer, optional; the default is ‘1’).

OUTXML= Specifies the name of the output SAS data set and the XML file(s) requested by the
IDLIST= option. When more than one time series ID is listed in the IDLIST=
option, then the SASEFRED engine appends the positional integer (‘1’ for the first
time series ID, ‘2’ for the second time series ID, and so on) to the name specified by
the OUTXML= option.

PROXY= Specifies the proxy server that you want to use (if you have trouble connecting
without specifying a proxy). If you also need the connect method for a secure
connection, use the CONNECT=ON option in addition to the PROXY= option. See
the CONNECT= option.

RTSTART= Specifies the real-time start date for the observation period ('YYYY-MM-DD'
formatted string, optional; the default is today)

RTEND= Specifies the real-time end date for the observation period ('YYYY-MM-DD'
formatted string, optional; the default is today)

SORT= Specifies the order of the results in ascending or descending observation_date order.
The valid sort arguments are ‘asc’ and ‘desc’; the default is ‘asc’.

START= Specifies the start date for the observation period ('YYYY-MM-DD' formatted
string, optional; the default is 9999-12-31 (latest available))

UNITS= Specifies a data value transformation. The valid units arguments are ‘lin’, ‘chg’,
‘ch1’, ‘pch’, ‘pc1’, ‘pca’, ‘cch’, ‘cca’, and ‘log’; the default is ‘lin’. For more
information about units, see Table 49.3.



3562 F Chapter 49: The SASEFRED Interface Engine

Table 49.1 continued

Option Description

URL= Specifies a URL from which to request useful information about available releases,
vintage dates, tags, categories, sources, and series. The information is downloaded
from the specified URL and stored in the XFREDTPU data set (a temporary utility
data set), which can then be saved or renamed to a permanent SAS data set.

USER= Specifies the location of the writable folder where you permanently store data sets
that have one-level names

VINTAGE= Specifies one or more dates in history. Vintage dates are used to download data as
they existed on that specific date in history ('YYYY-MM-DD' formatted string,
optional; by default no vintage dates are set). You can request one or many vintage
dates at a time; dates are in 'YYYY-MM-DD' format and are separated by commas
(no blanks allowed). For multiple vintage dates, specify OUTPUT=2 for all
observations or OUTPUT=3 for only new or revised observations.

XMLMAP= specifies the fully qualified name of the location where the XMLmap file is
automatically stored. By default, XMLMAP=Fred.map.

The LIBNAME libref SASEFRED Statement
LIBNAME libref SASEFRED 'physical-name' options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory of
FRED data files in which the downloaded FRED XML data are stored.

You must specify the following arguments:

“physical name”
specifies the location of the folder where your FRED XML data reside. Enclose the physical name in
double quotation marks, and end it with a backslash if the folder is in a Windows environment or a
forward slash if it is in a UNIX environment.

APIKEY='fred_apikey '
specifies the FRED access key that enables you to access the data provided by the FRED website. The
FRED access key is a 32-character alphanumeric lowercase string. You can request your fred_apikey
by visiting the website at the following URL:

https://api.stlouisfed.org/api_key.html

IDLIST='fred_idlist '
specifies the list of time series to be included in the output SAS data set. This list is comma-delimited
and must be enclosed in single quotation marks.

You can also specify the following options.

https://api.stlouisfed.org/api_key.html
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AGG='AVG' | 'EOP' | 'SUM'
specifies the aggregation method used for frequency aggregation. You can specify the following

values:

'AVG' aggregates by averaging the frequencies.

'EOP' aggregates by using the end of the period.

'SUM' aggregates by summing the frequencies.

By default, AGG='AVG'. This option has no effect if the frequency option (FREQ=) is not specified.

AUTOMAP=REPLACE | REUSE
specifies which XMLmap file to use. You can specify the following values:

REPLACE overwrites the existing XMLmap file and uses the most current XMLmap that is
generated by the SASEFRED engine and named in the XMLMAP= option.

REUSE uses a preexisting XMLmap file that is named in the XMLMAP= option.

CONNECT=ON | OFF
specifies whether or not to use the connect method along with the PROXY= option.NOTE: You must
use the PROXY= option and specify your proxy server in addition to the CONNECT=ON option
when you want to use the connect method. For more information about a secure connection, see the
PROXY= option.

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log window. This information
can be very useful for troubleshooting a problem. DEBUG=OFF redirects the SAS debug logging to a
temporary file in the current working folder. You can specify a different folder to store the resulting log
information (in the USER folder) when you specify the USER=option. DEBUG= OFF is the default.
Use DEBUG=ON to see all the log messages (including debug information) in the SAS log. For more
information about the USER folder, see the USER= option.

END='fred_enddate'
specifies the end date for the time series in the format 'YYYY-MM-DD'. The default is 9999-12-31
(latest available).

FORMAT=fred_xmlformat
specifies the format of the file to be received from the FRED website. Although FRED can report data
in many formats, the SASEFRED engine for 9.4 supports the XML format (default).

FREQ='fred_frequency '
specifies a lower frequency to aggregate values to. The FRED frequency aggregation feature converts
higher-frequency time series to lower-frequency time series (such as converting a daily time series to
a monthly time series). In FRED, the highest frequency is daily, and the lowest frequency is annual.
There is no default value for no frequency aggregation. The valid frequency arguments are presented
in Table 49.2.

NOTE: An error is returned if you specify a frequency that is higher than the native frequency of the
series. For example, if a series has the native frequency ‘Annually’, it is not possible to aggregate
the series to the higher ‘Monthly’ frequency by using the frequency parameter value ‘m’. To find the
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native frequency of an economic time series, enter the following URL in your web browser. The output
includes the ‘Frequency’ field, which shows native frequency of that time series.

https://api.stlouisfed.org/fred/series?series_id=DJCA&api_key=your_fred_apikey

NOTE: When a single time series is specified in the IDLIST= option and the FREQ= option is not
specified or is an empty string, then the native frequency of that time series is used as the reporting
frequency. When multiple time series are specified in the IDLIST= option, then the ‘Annual’ frequency
is used as the reporting frequency unless the reporting frequency is specified in the FREQ= option. If
any time series in the IDLIST= option list have a lower native frequency than the requested frequency,
then those time series are dropped from the list and excluded from the output.

Table 49.2 FRED Frequency Codes

Frequency
Code

Description

d Displays data on a daily basis
w Displays data on a weekly basis
bw Displays data on a biweekly basis
m Displays data on a monthly basis
q Displays data on a quarterly basis
sa Displays data on a semiannual basis
a Displays data on an annual basis
wef Displays data on a weekly (ending Friday) basis
weth Displays data on a weekly (ending Thursday) basis
wew Displays data on a weekly (ending Wednesday) basis
wetu Displays data on a weekly (ending Tuesday) basis
wem Displays data on a weekly (ending Monday) basis
wesu Displays data on a weekly (ending Sunday) basis
wesa Displays data on a weekly (ending Saturday) basis
bwew Displays data on a biweekly (ending Wednesday) basis
bwem Displays data on a biweekly (ending Monday) basis

LIMIT=fred_limit
specifies the maximum number of rows (time series observations) to return, where fred_limit is an
integer between 1 and 100,000. LIMIT= is optional, and the default is LIMIT=100000.

MAPREF=fred_xmlmapref
specifies the fileref used for the map assignment. For an example of the SASEFRED engine that uses
the MAPREF= and the XMLMAP= options in the FILENAME statement to assign a file name, as in
the following, see the section “Reading Price Data by Using Indices” on page 3572:

FILENAME MyMap "/sasusr/fred/test/gstart.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML
data file, and to name your SAS data set created from reading the XML data into SAS. The resulting
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SAS data set is placed in the folder designated by ‘physical-name’, and you can reference it by using
the myLib libref in your SASEFRED LIBNAME statement. This is shown in the section “Getting
Started: SASEFRED Interface Engine” on page 3558, inside the DATA step in the SET statement. The
SET statement reads observations from the input data set myLib.gstart and stores them in a SAS data
set named Company_pvol.

OFFSET=fred_offset
specifies the number of rows (time series observations) to skip before reading the time series observa-
tions from the FRED database, where fred_offset is an optional nonnegative integer. If you specify
both the OFFSET= and LIMIT= options, the number of rows specified in the OFFSET= option is
skipped before the count begins of the number of rows (specified in the LIMIT= option) that are
returned. By default, OFFSET=0.

OUTPUT=1 | 2 | 3 | 4
specifies the type of the file to be received from the FRED website. You can specify the following
values:

1 specifies the type Observations by Real-Time Period.

2 specifies the type Observations by Vintage Date, All Observations.

3 specifies the type Observations by Vintage Date, New and Revised Observations Only.

4 specifies the type Observations, Initial Release Only.

If OUTPUT=1 and UNITS='lin', then you must specify a START= date that is later than the series
observation start date, Obs_Start. If OUTPUT=3 or OUTPUT=4, then you must specify UNITS='lin'.

OUTXML=fred_xmlfile
specifies the name of both the XML file (downloaded) and the SAS data set created when the XML
data are read into SAS. Each FRED time series that is listed in the IDS= option is given a positional
numeral: 1 for the first time series ID in the ID= option, 2 for the second time series ID, and so on.
The SASEFRED engine appends this numeral to the file name of the XML of each data set that the
website returns. When all the XML files are retrieved, the data are merged into a SAS data set. When
only one FRED time series ID is specified in the ID= option, the file name has the numeral 1 appended
to the OUTXML file name. By default, OUTXML=FRED, which creates a file named FRED1.xml
in the current working directory. The SAS data set created when the XML data are read into SAS is
placed in the folder specified by the physical path in the LIBNAME libref SASEFRED statement.

PROXY=“fred_proxyserver”
specifies which proxy server to use. This option is not required. The specified proxy server is used only
when a connection-refused error or a connection-timed-out error occurs. For fred_proxyserver , specify
the server’s HTTP address followed by a colon and the port number, and enclose that string in double
quotation marks; for example, PROXY="http://inetgw.unx.sas.com:8118". See also the CONNECT=
option.

RTEND='fred_rtenddate'
specifies the real-time end date for the time series in the format 'YYYY-MM-DD'. When you use the
OUTPUT=4 option, it is important to specify RTSTART=’1776-07-04’ and RTEND=’9999-12-31’to
get the available observations for the initial release of the data. Failure to do so can result in no
observations being returned for the requested series. The default is today.
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RTSTART='fred_rtstartdate'
specifies the real-time start date for the time series in the format 'YYYY-MM-DD'. When you use the
OUTPUT=4 option, it is important to specify RTSTART=’1776-07-04’ and RTEND=’9999-12-31’to
get the available observations for the initial release of the data. Failure to do so can result in no
observations being returned for the requested series. The default is today.

SORT='ASC' | 'DSC'
specifies the order of the time series observations. You can specify the following values:

'ASC' specifies that the time series observations are in ascending order.

'DSC' specifies that the time series observations are in descending order.

By default, SORT='ASC'.

START='fred_startdate'
specifies the start date for the time series in the format 'YYYY-MM-DD'. The default is 1776-07-04
(earliest available). When you use the OUTPUT=1 option (observation by real-time period) and the
UNITS=‘chg’ option, it is important to specify a date in the START= option that is later than the series
observation start date, Obs_Start. Failure to do so forces the SASEFRED interface engine to change
UNITS=‘chg’ to UNITS=‘lin’.

UNITS='fred_units'
specifies the data value transformation. The valid units arguments are ‘lin’, ‘chg’, ‘ch1’, ‘pch’,
‘pc1’, ‘pca’, ‘cch’, ‘cca’, and ‘log’. the default is UNITS=‘lin’ (for no transformation). The details
of the arguments and the corresponding formulas are presented in Table 49.3. When you specify
UNITS=‘chg’ and OUTPUT=1 (observation by real-time period), it is important to specify a date in
the START= option that is later than the series observation start date, Obs_Start. Failure to do so
forces the SASEFRED interface engine to change UNITS=‘chg’ to UNITS=‘lin’.

Table 49.3 FRED Transformation UNITS Codes

Units Code Description Formula

chg Change xt � xt�1
ch1 Change from one year ago xt � xt�N
pch Percentage change . xt

xt�1
� 1/ � 100

pc1 Percentage change from one year ago . xt
xt�N

� 1/ � 100

pca Compounded annual rate of change . xt
xt�1

/N � 1/ � 100

cch Continuously compounded rate of change .ln.xt / � ln.xt�1// � 100
cca Continuously compounded annual rate of change ..ln.xt / � ln.xt�1//100/ �N
log Natural log ln.xt /
xt is the value of series x at time period t. N is the number of observations per year that
differs by frequency: daily (N=260), annual (N=1), monthly (N=12), quarterly (N=4),
biweekly (N=26), and weekly (N=52).
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URL="fred_url_link/< query_type?< query_option=value > >< LIMIT=limit >"
queries for useful information (such as categories, tags, groups, and releases) and stores the information
in a temporary utility data set named XFREDTPU. Specify the following fields within double quotation
marks:

fred_url_link/
specifies the base FRED URL that you want to use. The fred_url_link in the following example
is ‘https://api.stlouisfed.org/fred/’. The required APIKEY= option completes the FRED URL
request. An example follows:

URL="https://api.stlouisfed.org/fred/series/
vintagedates?series_id=N500C1A027NBEA"

APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

query_type?query_option
specifies the type of information that you want to query. You can specify the following
query_types and query_options:

series/vintagedates?series_id=series_id
requests the vintage dates for the specified series_id , which you must also specify in the

IDLIST= option. For an example of this type of query, see Example 49.7.

release/series?release_id=release
requests a list of the available series for the specified release. For an example of this type of
query, see Example 49.8.

source/releases?

source/releases?source_id=source_id
requests a list of the releases available today or available for a specified source_id . For an
example of this type of query, see Example 49.14.

You can also narrow this type of query by specifying the source_id ; then only the releases
that are available for the specified source are stored in the XFREDTPU data set. For an
example of this type of query, see Example 49.11.

tags/series?tags_names=value-list
requests a list of the series that are available and whose tag names match the specified
value-list . For an example of this type of query, see Example 49.9.

category/series?category_id=category_id
requests a list of the series that are available and whose category ID matches the specified
category_id . For an example of this type of query, see Example 49.12.

sources?

requests a list of the sources available for today’s date. For an example of this type of query,
see Example 49.13.
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series/categories?series_id=series_ID
requests a list of the categories available for a specified series_ID. For an example of this
type of query, see Example 49.10.

LIMIT=limit
limits the number of query results that are returned, where limit must be an integer between
1 and 100,000, inclusive. By default, LIMIT=1000 for releases and release date requests and
LIMIT=100,000 for time series requests.

USER=“user-folder-location”
specifies the location of the writable folder where you permanently store SAS data sets that have one-
level names. Enclose the user-folder-location in double quotation marks, and end it with a backslash if
the folder is in a Windows environment or a forward slash if it is in a UNIX environment. Use the
USER= option to redirect the current working folder when you see this error: Insufficient authorization
to access. This error can occur if your SAS environment does not allow you to have write access in the
current working folder.

VINTAGE='fred_vintage_date1,fred_vintage_date2,. . . ,fred_vintage_dateN '
specifies one or more vintage dates in history. The fred_vintage_dates are represented in
'YYYY-MM-DD' format and are used to download the data for a time series as it existed on that
specific date in history. The dates in the list are separated by commas (no blanks are allowed). When
requesting multiple vintage dates, specify OUTPUT=2 to retrieve all observations or OUTPUT=3 to
retrieve only new or revised observations. The default setting is no vintage dates.

Archival Federal Reserve economic data (ALFRED) enable you to retrieve vintage versions of economic
data that were available on specific dates in history. To retrieve vintage versions of various time series,
enter the following URL in your web browser:

https://alfred.stlouisfed.org/

To see a list of available vintage dates for each series, refer to the FRED documentation at the web
page with the following URL:

https://api.stlouisfed.org/docs/fred/series_vintagedates.html

XMLMAP=fred_xmlmapfile
specifies the fully qualified name of the location where the XMLmap file is automatically stored. By
default, XMLMAP=Fred.map.

https://alfred.stlouisfed.org/
https://api.stlouisfed.org/docs/fred/series_vintagedates.html
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Details: SASEFRED Interface Engine
The SASEFRED interface engine enables SAS users to access both ArchivaL Federal Reserve Economic
Data (ALFRED) and FRED data that are provided by the FRED website. Normal use is called FRED
mode, for which the real-time period is the current day (today). In FRED mode, you are using the current
facts: the information about the past that is available today. Economic data sources, releases, series, and
observations can change their names or their observation data values over time. The real-time period marks
when information was true or when information was known until it changed. Economic data sources, releases,
series, and observations are all assigned a real-time period. For most URL requests, the default real-time
period is today. This can be thought of as FRED mode. ALFRED users can change the real-time period to
retrieve information that was known as of a point in history. ALFRED uses vintage dates, which are release
dates for a series, excluding the release dates when the data values did not change.

Available Sources That Provide FRED Time Series Data
To obtain a list of the available sources of economic data, enter the following URL in your web browser.
Table 49.4 shows some of the sources available.

https://api.stlouisfed.org/fred/sources?api_key=your_fred_apikey

Table 49.4 Some Available Sources of Economic Data

ID Name

1 Board of Governors of the Federal Reserve System
3 Federal Reserve Bank of Philadelphia
4 Federal Reserve Bank of St. Louis
6 Federal Financial Institutions Examination Council
11 Dow Jones & Company
13 Institute for Supply Management
15 The White House: Council of Economic Advisers
16 The White House: Office of Management and Budget
17 US Congress: Congressional Budget Office
18 US Department of Commerce: Bureau of Economic Analysis
19 US Department of Commerce: Census Bureau
21 US Department of Housing and Urban Development

You can use the URL= option to store today’s available sources (and associated information about the sources)
in a SAS data set. For more information, see the sources query option. For an example see Example 49.13.

You can also use the URL= option to store today’s available releases (and associated information about
the releases) in a SAS data set. For more information, see the releases query option. For an example see
Example 49.14.

https://www.federalreserve.gov/
https://www.philadelphiafed.org/
https://www.stlouisfed.org/
https://www.ffiec.gov/
http://www.dowjones.com
https://www.ismworld.org/
https://www.whitehouse.gov/cea/
https://www.whitehouse.gov/omb/
https://www.cbo.gov/
http://www.bea.gov/
https://www.census.gov/
http://www.hud.gov/
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FRED API Key
The API key that is used in these examples,‘abcdefghijklmnopqrstuvwxyz123456’, is for demonstration
purposes only. To successfully download data from the FRED website, use your own FRED API key, which
is a 32-character alphanumeric lowercase string. You can request your own API key by visiting the website
at the following URL:

https://api.stlouisfed.org/api_key.html

Available Releases for Each Source That Provides FRED Time Series Data
Each of the FRED sources might have several releases. To get a list of the releases for a specific source, enter
the following URL in your web browser and specify the ID that corresponds to that source. For example, the
response to this request retrieves a list of all releases for Dow Jones & Company (source_ID=11).

https://api.stlouisfed.org/fred/source/releases?source_id=11&api_key=your_fred_apikey

Table 49.5 shows the list of releases for Dow Jones & Company.

Table 49.5 Releases for Dow Jones & Company

Release ID Name URL

72 Daily Treasury Inflation-Indexed
Securities

--

102 Wall Street Journal http://online.wsj.com/public/us
197 Dow Jones Averages http://www.djaverages.com

Available Time Series for Each Release ID
Each release of economic sources contains several time series. To get the list of time series for a specific
release, enter the following URL in your web browser and specify the ID that corresponds to that release.
For example, the following URL retrieves a list of all time series for the Dow Jones Averages release
(release_ID=197):

https://api.stlouisfed.org/fred/release/series?release_id=197&api_key=your_fred_apikey

Table 49.6 shows all the time series that are included in the Dow Jones Averages release.

Table 49.6 Time Series for the Release of Dow Jones Averages

Series ID Title Start End Frequency

DJCA Dow Jones Composite Average 1934-01-02 2012-11-23 Daily
DJIA Dow Jones Industrial Average 1896-05-26 2012-11-23 Daily
DJTA Dow Jones Transportation Average 1896-10-26 2012-11-23 Daily
DJUA Dow Jones Utility Average 1929-01-02 2012-11-23 Daily

https://api.stlouisfed.org/api_key.html
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You can use the URL= option to store the list of available time series for a particular release in a SAS data
set. For more information, see the release/series query option.

Available Native Frequency for Each Series ID
To find the native frequency of an economic time series, enter the following URL in your web browser. The
output includes the “Frequency” field, which shows the native frequency of that time series.

https://api.stlouisfed.org/fred/series?series_id=DJCA&api_key=your_fred_apikey

The response to the preceding request follows. As the response shows, the native frequency of the Dow Jones
Composite Average (DJCA) time series is Daily (frequency=Daily).

<series id="DJCA" realtime_start="2012–11–26" realtime_end="2012–11–26" title="Dow Jones Composite
Average" observation_start="1934–01–02" observation_end="2012–11–23" frequency="Daily, Close"
frequency_short="D" units="Index" units_short="Index" seasonal_adjustment="Not Seasonally Adjusted"
seasonal_adjustment_short="NSA" last_updated="2012–11–26 09:05:12–06" popularity="48">

Vintage Dates for Each Series ID
Vintage dates are the release dates for a time series, excluding those releases in which the data did not change.
To obtain a list of vintage dates for a particular series, you can enter the following URL in your web browser
and specify the series ID of the series that you are interested in. For example, the following URL retrieves a
list of all vintage dates for the MICH series, showing the median expected price change (the next 12 months
from the Survey of Consumers):

https://api.stlouisfed.org/fred/series/vintagedates?series_id=MICH&api_key=your_fred_apikey

The resulting list of observations is too long to show here—172 vintage dates, ranging from 1999-02-26 to
2013-05-31. You can get only the vintage dates that you want by specifying the VINTAGE= option.

You can use the URL= option to store the list of available vintage dates for a particular time series in a SAS
data set. For more information, see the series/vintagedates query option.

SAS Output Data Set
You can use the SAS DATA step to write the selected FRED data to a SAS data set. This enables you to
use SAS software to easily analyze the data. If you specify the name of the output data set in the DATA
statement, the engine supervisor creates a SAS data set that has the specified name in either the SAS Work
library or, if specified, the User library.

The contents of the SAS data set include the date of each observation and the series name of each series that
is read from the FRED data source.

The SASEFRED interface engine maintains the sort order, so the time series are sorted in the resulting SAS
data set by the order specified in the SORT= option, by date (time ID), and by variable (time series item
name).
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You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASEFRED libref to create a custom view of your
data.

SAS OUTXML File
The SAS XML (XML format) data that are returned from the FRED website are placed in a file named by
the OUTXML= option. The SAS XML data file is placed in the current working directory, but the SAS data
set created by reading the XML data into SAS is placed in the location that is specified by the physical-name
in the LIBNAME libref SASEFRED statement, which is described in the section “The LIBNAME libref
SASEFRED Statement” on page 3562.

SAS XML Map File
The XML map that (by default) is automatically created is assigned the full path name given by the
XMLMAP= option in your LIBNAME libref SASEFRED statement. The map file is either reused
(not overwritten) if you specify AUTOMAP=REUSE or overwritten by a new map if you specify AU-
TOMAP=REPLACE (the default). The SASEFRED engine invokes the XMLV2 engine to create the map
and to read the data into SAS.

XFREDTPU SAS Data Set
You can use the URL= option to query for useful information such as categories, tags, groups, and releases
and store the information in a temporary utility data set named XFREDTPU. After you have this information,
you can use it for selecting the data you want to include in a subsequent SASEFRED libref statement. For
more information about the seven possible types of XFREDTPU contents, see the URL= option.

Reading Price Data by Using Indices
The following statements enable you to access the S&P 500 Stock Price Index (IDLIST=SP500) and the
Wilshire 5000 Price Index (IDLIST=WILL5000PR) on a monthly basis:

options validvarname=any;
title 'FRED Data: SP500 Stock Index and Wilshire 5000 Price Index';
LIBNAME myLib sasefred "%sysget(FRED)"

OUTXML=gstart
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FRED)gstart.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='sp500,will5000pr'
START='2011-01-01'
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END='2012-01-01'
FREQ='m'
FORMAT=xml
;

data stock_price;
set myLib.gstart ;

run;

proc contents data=stock_price; run;
proc print data=stock_price; run;

Figure 49.2 FRED Data: stock_price

FRED Data: SP500 Stock Index and Wilshire 5000 Price Index

Obs date realtime_start realtime_end SP500 WILL5000PR

1 2011-01-01 2018-09-04 2018-09-04 1282.62 13368.14

2 2011-02-01 2018-09-04 2018-09-04 1321.12 13772.27

3 2011-03-01 2018-09-04 2018-09-04 1304.49 13610.85

4 2011-04-01 2018-09-04 2018-09-04 1331.51 13920.50

5 2011-05-01 2018-09-04 2018-09-04 1338.31 13967.83

6 2011-06-01 2018-09-04 2018-09-04 1287.29 13434.50

7 2011-07-01 2018-09-04 2018-09-04 1325.18 13848.15

8 2011-08-01 2018-09-04 2018-09-04 1185.31 12296.04

9 2011-09-01 2018-09-04 2018-09-04 1173.88 12144.13

10 2011-10-01 2018-09-04 2018-09-04 1207.22 12459.48

11 2011-11-01 2018-09-04 2018-09-04 1226.41 12684.75

12 2011-12-01 2018-09-04 2018-09-04 1243.32 12850.31

13 2012-01-01 2018-09-04 2018-09-04 1300.58 13465.23

The SASEFRED interface engine supports the XML format. The XML data that the FRED website returns
are placed in a file named by the OUTXML= option. The XML map that is automatically created is assigned
the full path name specified by the XMLMAP= option, and the fileref that is used for the map assignment is
specified by the MAPREF= option. In the preceding example, the SASEFRED engine uses the MAPREF=
and XMLMAP= options in the FILENAME statement to assign a file name:

FILENAME MyMap "%sysget(FRED)gstart.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name the
map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML data file
and to name your SAS data set created when reading the XML data into SAS; it is described in the section
“SAS OUTXML File” on page 3572. The SAS data set is placed in the folder designated by ‘physical-name’,
which is described in the section “The LIBNAME libref SASEFRED Statement” on page 3562. You can
refer to your data by using the myLib libref in your SASEFRED LIBNAME statement. The myLib libref is
shown inside the DATA step in the SET statement. The SET statement reads observations from the input data
set myLib.gstart and stores them in a SAS data set named stock_price, as shown in Figure 49.2. You can also
use the SAS DATA step to perform further processing and to store the resulting time series in a SAS data set;
this process is described in the section “SAS Output Data Set” on page 3571.

To specify the list of time series that you want to retrieve, use the IDLIST= option. This option accepts a
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string enclosed in single quotation marks that denotes a list of time series that you select for the resulting SAS
data set. The series IDs are separated by commas, so valid time series IDs cannot contain embedded commas
or quotes. The stock_price data set contains two time series variables, sp500 and will5000pr, as specified
in the IDLIST= option, and the observation range is controlled by the START= and END= options. The
stock_price data set contains observations that range from January 1, 2011, to January 1, 2012, as specified
by the START= and END= options. The frequency of the data is monthly, as indicated by the ‘m’ in the
FREQ= option.

NOTE: The ‘%20’ is a special character for URL encoding of blanks. If the time series ID that you name in
the IDLIST= option contains a blank, you must use the ‘%20’ wherever the blank appears in the time series
name. If the time series ID contains an underscore, then you must use an underscore in the time series name.
The underscore and the blank are not equivalent in the FRED databases, so make sure that you use the ‘%20’
(URL encoded space) to designate blank characters.

Examples: SASEFRED Interface Engine

Example 49.1: Retrieving Data for Multiple Time Series
This example shows how to use multiple time series IDs to retrieve the average balance of payment basis
data for the exports (BOPXGS) and imports (BOPMGS) of goods and services for the last 15 years, starting
1997-01-01 and ending 2011-01-01, with an annual frequency.

options validvarname=any;

title 'Retrieve Balance of Payment Data for the Exports and Imports';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=fredex01
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FRED)fredex01.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='bopxgs,bopmgs'
START='1997-01-01'
END='2011-01-01'
FREQ='a'
OUTPUT=1
AGG='avg'
FORMAT=xml;

data export_import;
set fred.fredex01 ;

run;
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proc contents data=export_import; run;
proc print data=export_import; run;

Output 49.1.1 Retrieve Balance of Payment Data for the Exports and Imports

Retrieve Balance of Payment Data for the Exports and Imports

Obs date realtime_start realtime_end BOPXGS BOPMGS

1 1997-01-01 2018-09-04 2018-09-04 233.614 -260.682

2 1998-01-01 2018-09-04 2018-09-04 233.293 -274.829

3 1999-01-01 2018-09-04 2018-09-04 241.824 -306.479

4 2000-01-01 2018-09-04 2018-09-04 268.064 -361.193

5 2001-01-01 2018-09-04 2018-09-04 250.634 -341.011

6 2002-01-01 2018-09-04 2018-09-04 243.652 -348.391

7 2003-01-01 2018-09-04 2018-09-04 254.367 -377.839

8 2004-01-01 2018-09-04 2018-09-04 289.490 -441.961

9 2005-01-01 2018-09-04 2018-09-04 320.775 -499.336

10 2006-01-01 2018-09-04 2018-09-04 363.212 -553.641

11 2007-01-01 2018-09-04 2018-09-04 412.059 -588.403

12 2008-01-01 2018-09-04 2018-09-04 458.632 -635.814

13 2009-01-01 2018-09-04 2018-09-04 393.685 -489.628

14 2010-01-01 2018-09-04 2018-09-04 462.232 -585.896

15 2011-01-01 2018-09-04 2018-09-04 530.359 -667.515

Example 49.2: Retrieving Data by Using the Vintage Date
This example shows how to use the vintage date to retrieve data for exports of goods and services as they
existed on that specific date in history. OUTPUT=3 retrieves the new and revised observations only, by the
vintage date (VINTAGE=2012-06-14). If OUTPUT=3, then you must specify UNITS=‘lin’. In this example,
the UNITS= option is not specified, so it assumes its default value, which is ‘lin’. Specifying a different
argument for the UNITS= option (such as ‘chg’) is invalid for OUTPUT= 3, so ’chg’ is replaced by the
default value (‘lin’).

options validvarname=any;

title 'Retrieve Data for the Exports of Goods and Service by Using Vintage Date';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=fredex02
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FRED)fredex02.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='bopxgsa'
VINTAGE='2012-06-14'
OUTPUT=3
FORMAT=xml;
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data export_vin;
set fred.fredex02 ;

run;

proc contents data=export_vin; run;
proc print data=export_vin; run;

Output 49.2.1 Retrieve Data for the Exports of Goods and Services by Using the Vintage Date

Retrieve Data for the Exports of Goods and Service by Using Vintage Date

Obs date BOPXGSA_20120614

1 2009-01-01 1578.95

2 2010-01-01 1842.49

3 2011-01-01 2103.37

Example 49.3: Selecting Time Series When Native Frequency Is Less Than
Requested Frequency

This example shows how to retrieve data for multiple time series that have different default frequencies.
The time series are Domestic Financial Commercial Paper Outstanding (DFINCP), Domestic Nonfinancial
Commercial Paper Outstanding (DNFINCP), Foreign Financial Commercial Paper Outstanding (FFINCP),
Foreign Nonfinancial Commercial Paper Outstanding (FNFINCP), and Total Credit Market Assets Held
by Domestic Financial Sectors (ABSITCMAHDFS). The native frequency of the first four time series is
‘Weekly’, and the native frequency of the last time series (ABSITCMAHDFS) is ‘Quarterly’. Note that the
requested frequency as it is specified by the FREQ= option is ‘Weekly’ (FREQ=w). The native frequency of
the last time series (ABSITCMAHDFS) is lower than the requested frequency. Therefore, this time series is
excluded from the list, and only the observations that correspond to the first four time series are presented. If
you want to retrieve the observations for all five time series, then the value of the FREQ= option needs to be
less than or equal to all the native frequencies (here, weekly and quarterly). In this case, the valid frequency
parameters would be ‘q’, ‘sa’, and ‘a’. See Example 49.4.

options validvarname=any;

title 'Selecting Time Series When Native Frequency Is Less Than Requested Frequency';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=fredex03
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FRED)fredex03.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='dfincp,dnfincp,ffincp,fnfincp,absitcmahdfs'
START='2010-01-01'
END='2010-05-20'
FREQ='w'
OUTPUT=1
FORMAT=xml;
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data diffNative_freqw;
set fred.fredex03 ;

run;

proc contents data=diffNative_freqw; run;
proc print data=diffNative_freqw; run;

Output 49.3.1 Selecting Time Series When Native Frequency Is Less Than Requested Frequency

Selecting Time Series When Native Frequency Is Less Than Requested Frequency

Obs date realtime_start realtime_end DFINCP DNFINCP FFINCP FNFINCP

1 2010-01-06 2018-09-04 2018-09-04 295.054 86.8596 248.616 23.8856

2 2010-01-13 2018-09-04 2018-09-04 314.999 90.1067 241.583 25.8316

3 2010-01-20 2018-09-04 2018-09-04 314.914 90.1316 230.257 27.4812

4 2010-01-27 2018-09-04 2018-09-04 369.981 83.0086 232.741 31.3198

5 2010-02-03 2018-09-04 2018-09-04 350.079 84.0037 225.006 33.9657

6 2010-02-10 2018-09-04 2018-09-04 363.930 81.3051 223.740 36.1989

7 2010-02-17 2018-09-04 2018-09-04 366.676 83.3095 226.199 38.5436

8 2010-02-24 2018-09-04 2018-09-04 385.767 77.1368 231.789 39.0183

9 2010-03-03 2018-09-04 2018-09-04 366.789 78.7137 227.760 40.0659

10 2010-03-10 2018-09-04 2018-09-04 380.090 79.1665 229.252 40.0679

11 2010-03-17 2018-09-04 2018-09-04 360.517 84.4703 224.233 39.3736

12 2010-03-24 2018-09-04 2018-09-04 355.081 82.7266 218.491 39.8009

13 2010-03-31 2018-09-04 2018-09-04 352.737 90.5517 217.746 40.0196

14 2010-04-07 2018-09-04 2018-09-04 335.231 95.7690 217.607 40.0318

15 2010-04-14 2018-09-04 2018-09-04 329.418 93.4277 209.170 40.3218

16 2010-04-21 2018-09-04 2018-09-04 326.826 93.1071 211.769 41.5639

17 2010-04-28 2018-09-04 2018-09-04 358.923 95.2686 203.359 41.9364

18 2010-05-05 2018-09-04 2018-09-04 353.777 91.2651 200.806 43.4400

19 2010-05-12 2018-09-04 2018-09-04 358.531 90.6654 190.294 43.2211

20 2010-05-19 2018-09-04 2018-09-04 330.038 92.3970 180.534 40.9393

Example 49.4: Selecting Time Series When Native Frequency Is Greater Than
Requested Frequency

This example shows how to retrieve data for multiple time series that have different default frequencies.
The time series are Domestic Financial Commercial Paper Outstanding (DFINCP), Domestic Nonfinancial
Commercial Paper Outstanding (DNFINCP), Foreign Financial Commercial Paper Outstanding (FFINCP),
Foreign Nonfinancial Commercial Paper Outstanding (FNFINCP), and Total Credit Market Assets Held
by Domestic Financial Sectors (ABSITCMAHDFS). The native frequency of the first four time series is
‘Weekly’, and the native frequency of the last time series (ABSITCMAHDFS) is ‘Quarterly’. The requested
frequency as it is specified by the FREQ= option is ‘Quarterly’ (FREQ=q). The native frequency of all five
time series is either greater than or equal to the requested frequency. Hence, the output includes the data for
all time series.
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options validvarname=any;

title 'Selecting Time Series When Native Frequency Is Greater Than Requested Frequency';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=fredex04
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FRED)fredex04.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='dfincp,dnfincp,ffincp,fnfincp,absitcmahdfs'
START='2010-01-01'
END='2010-05-20'
FREQ='q'
OUTPUT=1
FORMAT=xml;

data diffNative_freqq;
set fred.fredex04;

run;

proc contents data=diffNative_freqq; run;
proc print data=diffNative_freqq; run;

Output 49.4.1 Selecting Time Series When Native Frequency Is Greater Than Requested Frequency

Selecting Time Series When Native Frequency Is Greater Than Requested Frequency

Obs date realtime_start realtime_end DFINCP DNFINCP FFINCP FNFINCP ABSITCMAHDFS

1 2010-01-01 2018-09-04 2018-09-04 352.047 83.9608 229.032 35.0440 2580.17

2 2010-04-01 2018-09-04 2018-09-04 341.667 98.4974 186.949 38.0259 2451.48

Example 49.5: Specifying One Series ID with Multiple Vintage Dates for the
OUTPUT=2 Option

This example demonstrates how to request the CBI time series, which show the change in private industries
for three different vintage dates: 1947-08-17, 1966-08-11, and 1994-08-26. Using the early range of
START=’1942-01-01’and END=’1947-04-01’, you can get an idea of how the changes show up for each
vintage date. If you specify OUTPUT=2, each time series is named by concatenating the series ID to the
vintage date with an underscore.

options validvarname=any;

title 'Specifying One Series ID with Multiple Vintage Dates for OUTPUT=2 Option';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=fredex05
AUTOMAP=replace
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MAPREF=MyMap
XMLMAP="%sysget(FRED)fredex05.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='CBI'
VINTAGE='1947-08-17,1966-08-11,1994-08-26'
START='1942-01-01'
END='1947-04-01'
FREQ='q'
OUTPUT=2
UNITS='lin'
FORMAT=xml;

data threeVinsCBI;
set fred.fredex05;

run;

proc contents data=threeVinsCBI; run;
proc print data=threeVinsCBI; run;

Output 49.5.1 Specifying One Series ID with Multiple Vintage Dates for OUTPUT=2 Option

Specifying One Series ID with Multiple Vintage Dates for OUTPUT=2 Option

Obs date CBI_19470817 CBI_19660811 CBI_19940826

1 1942-01-01 3.9 . .

2 1942-04-01 3.6 . .

3 1942-07-01 -0.9 . .

4 1942-10-01 -0.9 . .

5 1943-01-01 -2.4 . .

6 1943-04-01 -2.1 . .

7 1943-07-01 1.1 . .

8 1943-10-01 -1.5 . .

9 1944-01-01 -2.4 . .

10 1944-04-01 -3.2 . .

11 1944-07-01 -1.0 . .

12 1944-10-01 -1.3 . .

13 1945-01-01 -2.8 . .

14 1945-04-01 -1.5 . .

15 1945-07-01 0.1 . .

16 1945-10-01 -0.8 . .

17 1946-01-01 2.3 5.9 5.7

18 1946-04-01 2.0 8.8 8.6

19 1946-07-01 4.9 6.1 5.9

20 1946-10-01 5.4 4.7 4.5

21 1947-01-01 2.7 0.4 0.4

22 1947-04-01 1.5 -1.0 -1.2
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Example 49.6: Specifying Two Series IDs with Multiple Vintage Dates and
Descending Sort Order

This example demonstrates how to request the ADJRES and ADJRESN time series, which show the St.
Louis adjusted reserves, the first of which is seasonally adjusted and the second of which is not seasonally
adjusted. The request is made for three different vintage dates, but only 2006-08-31 and 2013-06-13 yield
data when you use the range of START=’2004-01-01’and END=’2012-12-01’. If you specify OUTPUT=2,
each time series is named by concatenating the series ID to the vintage date with an underscore. For brevity,
Output 49.6.1 shows only the first 10 and last 10 observations. The sort order is descending; that is why the
dates start with the most recent observation and continue in biweekly (ending Wednesday) periods to the
least recent.

options validvarname=any;

title 'Specifying Two Series IDs with Multiple Vintage Dates and Descending Sort Order';
libname _all_ clear;
libname fred sasefred "%sysget(FRED)"

OUTXML=fredex06
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FRED)fredex06.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='ADJRES,ADJRESN'
VINTAGE='2003-07-31,2006-08-31,2013-06-13'
START='2004-01-01'
END='2012-12-01'
FREQ='bw'
OUTPUT=2
AGG='avg'
SORT='desc'
FORMAT=xml;

data fredPDD;
set fred.fredex06;

run;

proc contents data=fredPDD; run;

%macro pri20nom(datname);
data lastob;

set &datname nobs=last;
last10=last-9;
if last>20 then

call symput('print10',last10);
else

call symput('print10',19);
run;
data getall20;

set &datname(obs=10) &datname(firstobs=&print10);
run;
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proc print data=getall20; run;
%mend pri20nom;

title3 "First 10/Last 10 Obs, IDLIST=ADJRES,ADJRESN, and SORT=Descending";
%pri20nom(fredPDD);

Output 49.6.1 Specifying Two Series IDs with Multiple Vintage Dates and Descending Sort Order—First
10 and Last 10 Observations

Specifying Two Series IDs with Multiple Vintage Dates and Descending Sort Order

First 10/Last 10 Obs, IDLIST=ADJRES,ADJRESN, and SORT=Descending

Obs date ADJRES_20130613 ADJRES_20060831 ADJRESN_20130613 ADJRESN_20060831

1 2012-11-28 1591.92 . 1583.96 .

2 2012-11-14 1583.90 . 1583.90 .

3 2012-10-31 1573.04 . 1568.32 .

4 2012-10-17 1563.23 . 1560.10 .

5 2012-10-03 1511.02 . 1518.58 .

6 2012-09-19 1587.55 . 1563.74 .

7 2012-09-05 1583.80 . 1594.89 .

8 2012-08-22 1618.63 . 1615.40 .

9 2012-08-08 1652.49 . 1639.27 .

10 2012-07-25 1620.07 . 1629.79 .

11 2004-05-12 95.89 95.871 94.74 94.720

12 2004-04-28 96.25 96.154 97.79 97.693

13 2004-04-14 93.38 93.293 93.38 93.293

14 2004-03-31 94.81 94.718 93.67 93.582

15 2004-03-17 94.28 94.146 93.91 93.769

16 2004-03-03 94.13 94.096 95.73 95.696

17 2004-02-18 92.05 92.001 93.24 93.197

18 2004-02-04 96.25 96.192 95.10 95.038

19 2004-01-21 96.54 96.511 97.60 97.573

20 2004-01-07 96.06 96.044 100.00 99.982

Example 49.7: Vintage Dates for a Specific Series with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the VINTAGE_DATE and
VINTAGE_DATES data sets for a specified series and how to create a permanent data set named VINDAT1 in
the MyLib SAS library.1 You must specify the series in both the URL= option and the IDLIST= option.

1Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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options validvarname=any;

title 'Specifying the URL= Option to Create the VINTAGE_DATES Data Set';
libname _all_ clear;
libname mylib "< path to your folder for data >";
libname fred1 sasefred "%sysget(FRED)"

URL="https://api.stlouisfed.org/fred/series/vintagedates?series_id=N5005C1A027NBEA"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST= 'N5005C1A027NBEA'
;

data mylib.vindat1;
set fred1.XFREDtpu;

run;

proc print
data=mylib.vindat1;

run;

proc contents
data=mylib.vindat1;

run;

The list of available vintage dates for the N5005C1A027NBEA series is read from the XFREDtpu.xml file
that is downloaded by the SASEFRED engine. The contents are shown in Output 49.7.1. The engine
automatically maps the data in the XML file and reads the data into the XFREDTPU data set when the SET
statement is executed. When the DATA step runs, the data in the temporary utility data set are read and stored
in the permanent data set named vindat1.sas7bdat in the MyLib library. A side effect of the DATA step is the
automatic creation of two SAS data sets, named vintage_date.sas7bdat and vintage_dates.sas7bdat, in the
FRED1 library’s location.
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Output 49.7.1 Specifying the URL= Option to Create the VINTAGE_DATES Data Set

Specifying the URL= Option to Create the VINTAGE_DATES Data Set

Obs vintage_dates_ORDINAL vintage_date_ORDINAL vintage_date

1 1 1 2013-02-28

2 1 2 2013-03-28

3 1 3 2013-05-30

4 1 4 2013-07-31

5 1 5 2014-03-27

6 1 6 2014-05-29

7 1 7 2014-07-30

8 1 8 2015-03-27

9 1 9 2015-05-29

10 1 10 2015-07-30

11 1 11 2016-03-25

12 1 12 2016-05-27

13 1 13 2016-07-29

14 1 14 2017-03-30

15 1 15 2017-05-26

16 1 16 2017-07-28

17 1 17 2017-10-27

18 1 18 2018-03-28

19 1 19 2018-05-30

20 1 20 2018-07-27

Example 49.8: Series for a Specific Release with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the SERIES and SERIESS
data sets for a specified release and how to create a permanent data set named SERIES2 in the MyLib SAS
library:2

options validvarname=any;

title 'Specifying the URL= Option to Create the SERIES Data Set';
libname _all_ clear;
libname fred2 sasefred "%sysget(FRED)"

URL="https://api.stlouisfed.org/fred/release/series?release_id=51"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
;

2Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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data series2;
set fred2.XFREDtpu;

run;

proc contents
data=series2;

run;

%macro pri10nom(datname);
data lastob;

set &datname nobs=last;
last5=last-4;
if last>10 then

call symput('print5',last5);
else

call symput('print5',9);
run;
data getall10;

set &datname(obs=5) &datname(firstobs=&print5);
run;
proc print data=getall10; run;
%mend pri10nom;

title3 "First 5/Last 5 Obs, SERIES2 Data Set";
%pri10nom(series2);

The returned data are stored in the XFREDTPU data set and are copied to the permanent data set named
series2.sas7bdat in the MyLib library. A side effect of the DATA step is the automatic creation of two SAS
data sets, named series.sas7bdat and seriess.sas7bdat, in the FRED2 library’s location. Many series are
returned for release_id=51; Output 49.8.1 shows only the first and last five observations of the SERIES data
set.
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Output 49.8.1 Specifying the URL= Option to Create the SERIES Data Set—First 5 and Last 5 Observations

Specifying the URL= Option to Create the SERIES Data Set

First 5/Last 5 Obs, SERIES2 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end

1 1 1 BOMTVLM133S 2018-09-04 2018-09-04

2 1 2 BOMVGMM133S 2018-09-04 2018-09-04

Obs series_title series_observation_start series_observation_end series_frequency series_frequency_short

1 U.S. Imports of
Services - Travel

1992-01-01 2017-09-01 Monthly M

2 U.S. Imports of Services:
U.S. Government
Miscellaneous Services
(DISCONTINUED)

1992-01-01 2013-12-01 Monthly M

Obs series_units series_units_short series_seasonal_adjustment series_seasonal_adjustment_short

1 Million of
Dollars

Mil. of $ Seasonally Adjusted SA

2 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

Obs series_last_updated series_popularity series_group_popularity series_notes

1 2017-11-03
08:12:15-05

2 2 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf

2 2014-10-20
09:27:37-05

1 1 BEA has introduced new table presentations,
including a new presentation of services, as part of a
comprehensive restructuring of BEA’s international
economic accounts.For more information see
http://www.bea.gov/international/revision-2014.htm.
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Output 49.8.1 continued

Specifying the URL= Option to Create the SERIES Data Set

First 5/Last 5 Obs, SERIES2 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end

3 1 3 BOMVJMM133S 2018-09-04 2018-09-04

4 1 4 BOMVMPM133S 2018-09-04 2018-09-04

Obs series_title series_observation_start series_observation_end series_frequency series_frequency_short

3 U.S. Imports of
Services - Direct
Defense Expenditures
(DISCONTINUED)

1992-01-01 2013-12-01 Monthly M

4 U.S. Imports of
Services - Passenger
Fares

1992-01-01 2017-09-01 Monthly M

Obs series_units series_units_short series_seasonal_adjustment series_seasonal_adjustment_short

3 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

4 Million of
Dollars

Mil. of $ Seasonally Adjusted SA

Obs series_last_updated series_popularity series_group_popularity series_notes

3 2014-10-20
09:26:44-05

2 2 BEA has introduced new table presentations,
including a new presentation of services, as part of a
comprehensive restructuring of BEA’s international
economic accounts.For more information see
http://www.bea.gov/international/revision-2014.htm.

4 2017-11-03
08:12:15-05

1 1 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf
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Output 49.8.1 continued

Specifying the URL= Option to Create the SERIES Data Set

First 5/Last 5 Obs, SERIES2 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end

5 1 5 BOMVOMM133S 2018-09-04 2018-09-04

6 1 556 ITXMARM133S 2018-09-04 2018-09-04

Obs series_title series_observation_start series_observation_end series_frequency series_frequency_short

5 U.S. Imports of
Services - Other Private
Services
(DISCONTINUED)

1992-01-01 2013-12-01 Monthly M

6 U.S. Exports of Services:
Maintenance and Repair
Services, not included
elsewhere

1999-01-01 2018-06-01 Monthly M

Obs series_units series_units_short series_seasonal_adjustment series_seasonal_adjustment_short

5 Million of
Dollars

Mil. of $ Seasonally Adjusted SA

6 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

Obs series_last_updated series_popularity series_group_popularity series_notes

5 2014-10-20
09:25:54-05

1 1 BEA has introduced new table presentations,
including a new presentation of services, as part of a
comprehensive restructuring of BEA’s international
economic accounts.For more information see
http://www.bea.gov/international/revision-2014.htm.

6 2018-08-03
08:01:04-05

1 1 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf
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Output 49.8.1 continued

Specifying the URL= Option to Create the SERIES Data Set

First 5/Last 5 Obs, SERIES2 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end

7 1 557 ITXOBSM133S 2018-09-04 2018-09-04

8 1 558 ITXTAEM133S 2018-09-04 2018-09-04

Obs series_title series_observation_start series_observation_end series_frequency series_frequency_short

7 U.S. Exports of Services:
Other Business Services

1999-01-01 2018-06-01 Monthly M

8 U.S. Exports of Services:
Travel (for All Purposes
Including Education)

1999-01-01 2018-06-01 Monthly M

Obs series_units series_units_short series_seasonal_adjustment series_seasonal_adjustment_short

7 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

8 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

Obs series_last_updated series_popularity series_group_popularity series_notes

7 2018-08-03
08:01:04-05

1 1 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf

8 2018-08-03
08:01:04-05

3 3 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf
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Output 49.8.1 continued

Specifying the URL= Option to Create the SERIES Data Set

First 5/Last 5 Obs, SERIES2 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end

9 1 559 ITXTCIM133S 2018-09-04 2018-09-04

10 1 560 ITXTRAM133S 2018-09-04 2018-09-04

Obs series_title series_observation_start series_observation_end series_frequency series_frequency_short

9 U.S. Exports of Services:
Telecommunications,
Computer, and
Information Services

1999-01-01 2018-06-01 Monthly M

10 U.S. Exports of Services:
Transport

1999-01-01 2018-06-01 Monthly M

Obs series_units series_units_short series_seasonal_adjustment series_seasonal_adjustment_short

9 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

10 Millions of
Dollars

Mil. of $ Seasonally Adjusted SA

Obs series_last_updated series_popularity series_group_popularity series_notes

9 2018-08-03
08:01:04-05

2 2 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf

10 2018-08-03
08:01:04-05

2 2 Further information related to the international trade
data can be found at
https://www.census.gov/foreign-trade/data/index.html 
Methodology details can be found at
https://www.census.gov/foreign-trade/Press-Release/
current_press_release/explain.pdf
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Example 49.9: Series for Specific Tags with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the SERIES and SERIESS data
sets for specified tag names and how to create a permanent data set named TAGS_SERIES4 in the MyLib
SAS library:3

options validvarname=any;

title 'Specifying the URL= Option to Create the TAGS_SERIES4 Data Set.';
libname _all_ clear;
libname mylib "< path to your folder for data >";
libname fred4 sasefred "%sysget(FRED)"

debug=on
URL="https://api.stlouisfed.org/fred/tags/series?tag_names=slovenia;food;oecd"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
;

data mylib.tags_series4;
set fred4.XFREDtpu;

run;

proc print
data=mylib.tags_series4(obs=2);

run;

proc contents
data=mylib.tags_series4;

run;

The returned data are stored in the XFREDTPU data set and are copied to the permanent data set named
tags_series4.sas7bdat in the MyLib library. A side effect of the DATA step is the automatic creation of two
SAS data sets, named series.sas7bdat and seriess.sas7bdat, in the FRED4 library’s location. Many series
are returned for the specified tag names; the OBS=2 option in the DATA statement in the PROC PRINT step
prints only two of them. Output 49.9.1 shows the first two observations of the TAGS_SERIES4 data set.

3Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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Output 49.9.1 Specifying the URL= Option to Create the TAGS_SERIES4 Data Set

Specifying the URL= Option to Create the TAGS_SERIES4 Data Set.

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end

1 1 1 CPGDFD02SIA657N 2018-09-04 2018-09-04

2 1 2 CPGDFD02SIA659N 2018-09-04 2018-09-04

Specifying the URL= Option to Create the TAGS_SERIES4 Data Set.

Obs series_title series_observation_start series_observation_end series_frequency series_frequency_short

1 Consumer Price
Index: Total Food
Excluding
Restaurants for
Slovenia

1996-01-01 2017-01-01 Annual A

2 Consumer Price
Index: Total Food
Excluding
Restaurants for
Slovenia

1996-01-01 2017-01-01 Annual A

Specifying the URL= Option to Create the TAGS_SERIES4 Data Set.

Obs series_units series_units_short series_seasonal_adjustment series_seasonal_adjustment_short

1 Growth Rate
Previous
Period

Growth Rate
Previous Period

Not Seasonally Adjusted NSA

2 Growth Rate
Same Period
Previous
Year

Growth Rate Same
Period Previous Yr.

Not Seasonally Adjusted NSA



3592 F Chapter 49: The SASEFRED Interface Engine

Output 49.9.1 continued

Specifying the URL= Option to Create the TAGS_SERIES4 Data Set.

Obs series_last_updated series_popularity series_group_popularity series_notes

1 2018-03-09
15:10:44-06

1 1 OECD descriptor ID: CPGDFD02 OECD unit ID: GP
OECD country ID: SVN  All OECD data should be
cited as follows: OECD, "Main Economic
Indicators - complete database", Main Economic
Indicators
(database),http://dx.doi.org/10.1787/data-00052-en
(Accessed on date) Copyright, 2016, OECD.
Reprinted with permission.

2 2018-03-09
15:22:46-06

0 1 OECD descriptor ID: CPGDFD02 OECD unit ID: GY
OECD country ID: SVN  All OECD data should be
cited as follows: OECD, "Main Economic
Indicators - complete database", Main Economic
Indicators
(database),http://dx.doi.org/10.1787/data-00052-en
(Accessed on date) Copyright, 2016, OECD.
Reprinted with permission.

Example 49.10: Categories for a Specific Series with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the CATEGORY and CAT-
EGORIES data sets and how to create a permanent data set named SERIES_CAT7 in the MyLib SAS
library:4

options validvarname=any;

title 'Specifying the URL= Option to Create the SERIES_CAT7 Data Set';
libname _all_ clear;
libname mylib "< path to your folder for data >";
libname fred7 sasefred "%sysget(FRED)"

debug=on
URL="https://api.stlouisfed.org/fred/series/categories?series_id=EXJPUS"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
IDLIST='EXJPUS'
;

data mylib.series_cat7;
set fred7.XFREDtpu;

run;

4Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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proc print
data=mylib.series_cat7;

run;

proc contents
data=mylib.series_cat7;

run;

The returned data are stored in the XFREDTPU data set and are copied to the permanent data set named
series_cat7.sas7bdat in the MyLib library. A side effect of the DATA step is the automatic creation of two
SAS data sets, named category.sas7bdat and categories.sas7bdat, in the FRED7 library’s location. Two
categories are returned for the specified series ID, as shown in Output 49.10.1.

Output 49.10.1 Specifying the URL= Option to Create the SERIES_CAT7 Data Set

Specifying the URL= Option to Create the SERIES_CAT7 Data Set

Obs categories_ORDINAL category_ORDINAL category_id category_name category_parent_id

1 1 1 95 Monthly Rates 15

2 1 2 275 Japan 158

Example 49.11: Categories for a Specific Source with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the RELEASE and RELEASES
data sets for a specific source and how to create a permanent data set named REL8 in the MyLib SAS library:5

options validvarname=any;

title 'Specifying the URL= Option to Create the REL8 Data Set';
libname _all_ clear;
libname mylib "< path to your folder for data >";
libname fred8 sasefred "%sysget(FRED)"

debug=on
URL="https://api.stlouisfed.org/fred/source/releases?source_id=11"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
;

data mylib.rel8;
set fred8.XFREDtpu;

run;

5Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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proc print
data=mylib.rel8;

run;

proc contents
data=mylib.rel8;

run;

Output 49.11.1 Specifying the URL= Option to Create the REL8 Data Set

Specifying the URL= Option to Create the REL8 Data Set

Obs releases_ORDINAL release_ORDINAL release_id release_realtime_start

1 1 1 72 2018-09-04

2 1 2 102 2018-09-04

Obs release_realtime_end release_name release_press_release release_link

1 2018-09-04 Daily Treasury Inflation-Indexed Securities false

2 2018-09-04 Wall Street Journal true http://online.wsj.com/public/us

Example 49.12: Series for a Specific Category with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the SERIES data set for a
specific category and how to create a permanent data set named SERIES_CAT5 in the MyLib SAS library:6

options validvarname=any;

title 'Specifying the URL= Option to Create the SERIES_CAT5 Data Set';
libname _all_ clear;
libname mylib "< path to your folder for data >";
libname fred5 sasefred "%sysget(FRED)"

debug=on
URL="https://api.stlouisfed.org/fred/category/series?category_id=125"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
;

data mylib.series_cat5;
set fred5.XFREDtpu;

run;

6Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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proc print
data=mylib.series_cat5;

run;

proc contents
data=mylib.series_cat5;

run;

The returned data are stored in the XFREDTPU data set and are copied to the permanent data set named
series_cat5.sas7bdat in the MyLib library. A side effect of the DATA step is the automatic creation of two
SAS data sets, named series.sas7bdat and seriess.sas7bdat, in the FRED5 library’s location. The series that
are returned for the specified category ID are shown in Output 49.12.1.
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Output 49.12.1 Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end series_title

1 1 1 AITGCBN 2018-09-04 2018-09-04 Advance U.S.
International Trade in
Goods: Balance

2 1 2 AITGCBS 2018-09-04 2018-09-04 Advance U.S.
International Trade in
Goods: Balance

3 1 3 BOPBCA 2018-09-04 2018-09-04 Balance on Current
Account
(DISCONTINUED)

4 1 4 BOPBCAA 2018-09-04 2018-09-04 Balance on Current
Account
(DISCONTINUED)

5 1 5 BOPBCAN 2018-09-04 2018-09-04 Balance on Current
Account
(DISCONTINUED)

6 1 6 BOPBGS 2018-09-04 2018-09-04 Balance on Goods
and Services
(DISCONTINUED)

7 1 7 BOPBGSA 2018-09-04 2018-09-04 Balance on Goods
and Services
(DISCONTINUED)

8 1 8 BOPBGSN 2018-09-04 2018-09-04 Balance on Goods
and Services
(DISCONTINUED)

9 1 9 BOPBII 2018-09-04 2018-09-04 Balance on
Investment Income
(DISCONTINUED)

10 1 10 BOPBIIA 2018-09-04 2018-09-04 Balance on
Investment Income
(DISCONTINUED)
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_observation_start series_observation_end series_frequency series_frequency_short series_units

1 2018-07-01 2018-07-01 Monthly M Millions of
Dollars

2 2018-07-01 2018-07-01 Monthly M Millions of
Dollars

3 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

4 1960-01-01 2013-01-01 Annual A Billions of
Dollars

5 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

6 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

7 1960-01-01 2013-01-01 Annual A Billions of
Dollars

8 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

9 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

10 1960-01-01 2013-01-01 Annual A Billions of
Dollars
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_units_short series_seasonal_adjustment series_seasonal_adjustment_short series_last_updated

1 Mil. of $ Not Seasonally Adjusted NSA 2018-08-28
07:51:02-05

2 Mil. of $ Seasonally Adjusted SA 2018-08-28
07:51:01-05

3 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:28-05

4 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:28-05

5 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:28-05

6 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:28-05

7 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:28-05

8 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:28-05

9 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:27-05

10 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:27-05
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_popularity series_group_popularity series_notes

1 7 33 This advance estimate represents the current month statistics of nearly
complete coverage. The current month statistics reflecting complete
coverage is available on the Census website at the U.S. International Trade
in Goods and Services report (FT-900)
https://www.census.gov/foreign-trade/statistics/historical/index.html   For
more information on data collection and methodology, see
https://www.census.gov/econ/indicators/methodology.html

2 32 33 This advance estimate represents the current month statistics of nearly
complete coverage. The current month statistics reflecting complete
coverage is available on the Census website at the U.S. International Trade
in Goods and Services report (FT-900)
https://www.census.gov/foreign-trade/statistics/historical/index.html, the
corresponding series in FRED is at
https://fred.stlouisfed.org/series/BOPGTB   For more information on data
collection and methodology, see
https://www.census.gov/econ/indicators/methodology.html

3 18 22 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

4 8 22 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

5 1 22 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

6 3 9 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

7 7 9 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

8 1 9 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

9 1 3 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

10 2 3 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end series_title

11 1 11 BOPBIIN 2018-09-04 2018-09-04 Balance on
Investment Income
(DISCONTINUED)

12 1 12 BOPBM 2018-09-04 2018-09-04 Balance on
Merchandise Trade
(DISCONTINUED)

13 1 13 BOPBMA 2018-09-04 2018-09-04 Balance on
Merchandise Trade
(DISCONTINUED)

14 1 14 BOPBMN 2018-09-04 2018-09-04 Balance on
Merchandise Trade
(DISCONTINUED)

15 1 15 BOPBSV 2018-09-04 2018-09-04 Balance on Services
(DISCONTINUED)

16 1 16 BOPBSVA 2018-09-04 2018-09-04 Balance on Services
(DISCONTINUED)

17 1 17 BOPBSVN 2018-09-04 2018-09-04 Balance on Services
(DISCONTINUED)

18 1 18 BOPCAT 2018-09-04 2018-09-04 Capital Account
Transactions, Net
(DISCONTINUED)

19 1 19 BOPCATA 2018-09-04 2018-09-04 Capital Account
Transactions, Net
(DISCONTINUED)

20 1 20 BOPCATN 2018-09-04 2018-09-04 Capital Account
Transactions, Net
(DISCONTINUED)

21 1 21 BOPG 2018-09-04 2018-09-04 Unilateral Transfers,
Net
(DISCONTINUED)
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_observation_start series_observation_end series_frequency series_frequency_short series_units

11 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

12 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

13 1960-01-01 2013-01-01 Annual A Billions of
Dollars

14 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

15 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

16 1960-01-01 2013-01-01 Annual A Billions of
Dollars

17 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

18 1989-10-01 2014-01-01 Quarterly Q Billions of
Dollars

19 1989-01-01 2013-01-01 Annual A Billions of
Dollars

20 1989-10-01 2014-01-01 Quarterly Q Billions of
Dollars

21 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_units_short series_seasonal_adjustment series_seasonal_adjustment_short series_last_updated

11 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:27-05

12 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:27-05

13 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:27-05

14 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:27-05

15 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:27-05

16 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:27-05

17 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:27-05

18 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:26-05

19 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:26-05

20 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:26-05

21 Bil. of $ Seasonally Adjusted SA 2014-06-18
08:41:26-05



Example 49.12: Series for a Specific Category with the URL= Option F 3603

Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_popularity series_group_popularity series_notes

11 1 3 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

12 4 10 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

13 6 10 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

14 1 10 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

15 1 4 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

16 4 4 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

17 0 4 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

18 1 5 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

19 4 5 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

20 1 5 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

21 9 10 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end series_title

22 1 22 BOPGA 2018-09-04 2018-09-04 Unilateral Transfers,
Net
(DISCONTINUED)

23 1 23 BOPGN 2018-09-04 2018-09-04 Unilateral Transfers,
Net
(DISCONTINUED)

24 1 24 BOPGSTB 2018-09-04 2018-09-04 Trade Balance:
Goods and Services,
Balance of Payments
Basis

25 1 25 BOPGTB 2018-09-04 2018-09-04 Trade Balance:
Goods, Balance of
Payments Basis

26 1 26 BOPSTB 2018-09-04 2018-09-04 Trade Balance:
Services, Balance of
Payments Basis

27 1 27 IEABC 2018-09-04 2018-09-04 Balance on current
account

28 1 28 IEABCA 2018-09-04 2018-09-04 Balance on current
account

29 1 29 IEABCG 2018-09-04 2018-09-04 Balance on goods

30 1 30 IEABCGA 2018-09-04 2018-09-04 Balance on goods

31 1 31 IEABCGN 2018-09-04 2018-09-04 Balance on goods

32 1 32 IEABCGS 2018-09-04 2018-09-04 Balance on goods
and services

33 1 33 IEABCGSA 2018-09-04 2018-09-04 Balance on goods
and services

34 1 34 IEABCGSN 2018-09-04 2018-09-04 Balance on goods
and services

35 1 35 IEABCN 2018-09-04 2018-09-04 Balance on current
account

36 1 36 IEABCP 2018-09-04 2018-09-04 Balance on capital
account

37 1 37 IEABCPA 2018-09-04 2018-09-04 Balance on capital
account

38 1 38 IEABCPI 2018-09-04 2018-09-04 Balance on primary
income

39 1 39 IEABCPIA 2018-09-04 2018-09-04 Balance on primary
income



Example 49.12: Series for a Specific Category with the URL= Option F 3605

Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_observation_start series_observation_end series_frequency series_frequency_short series_units

22 1960-01-01 2013-01-01 Annual A Billions of
Dollars

23 1960-01-01 2014-01-01 Quarterly Q Billions of
Dollars

24 1992-01-01 2018-06-01 Monthly M Millions of
Dollars

25 1992-01-01 2018-06-01 Monthly M Millions of
Dollars

26 1992-01-01 2018-06-01 Monthly M Millions of
Dollars

27 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

28 1999-01-01 2017-01-01 Annual A Millions of
Dollars

29 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

30 1999-01-01 2017-01-01 Annual A Millions of
Dollars

31 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

32 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

33 1999-01-01 2017-01-01 Annual A Millions of
Dollars

34 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

35 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

36 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

37 1999-01-01 2017-01-01 Annual A Millions of
Dollars

38 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

39 1999-01-01 2017-01-01 Annual A Millions of
Dollars
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_units_short series_seasonal_adjustment series_seasonal_adjustment_short series_last_updated

22 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:25-05

23 Bil. of $ Not Seasonally Adjusted NSA 2014-06-18
08:41:25-05

24 Mil. of $ Seasonally Adjusted SA 2018-08-03
08:01:03-05

25 Mil. of $ Seasonally Adjusted SA 2018-08-03
08:01:03-05

26 Mil. of $ Seasonally Adjusted SA 2018-08-03
08:01:03-05

27 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:01-05

28 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:01-05

29 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:03-05

30 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:15-05

31 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:14-05

32 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:03-05

33 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:02-05

34 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:14-05

35 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:02-05

36 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:01-05

37 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:02-05

38 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:02-05

39 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:05-05



Example 49.12: Series for a Specific Category with the URL= Option F 3607

Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_popularity series_group_popularity series_notes

22 1 10 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

23 1 10 This series has been discontinued as a result of the comprehensive
restructuring of the international economic accounts
(http://www.bea.gov/international/modern.htm). For a crosswalk of the old
and new series in FRED see:
http://research.stlouisfed.org/CompRevisionReleaseID49.xlsx.

24 68 68 Further information related to the international trade data can be found at
https://www.census.gov/foreign-trade/data/index.html  Methodology details
can be found at
https://www.census.gov/foreign-trade/Press-Release/current_press_release/
explain.pdf

25 45 45 This series represents monthly statistics of complete coverage. The advance
estimate of the current month of nearly complete coverage is available on
FRED at https://fred.stlouisfed.org/series/AITGCBS  Further information
related to the international trade data can be found at
https://www.census.gov/foreign-trade/data/index.html  Methodology details
can be found at
https://www.census.gov/foreign-trade/Press-Release/current_press_release/
explain.pdf

26 23 23 Further information related to the international trade data can be found at
https://www.census.gov/foreign-trade/data/index.html  Methodology details
can be found at
https://www.census.gov/foreign-trade/Press-Release/current_press_release/
explain.pdf

27 40 57 Calculated by subtracting the imports of goods and services and income
payments (debits) from the exports of goods and services and income
receipts (credits)

28 50 57 Calculated by subtracting the imports of goods and services and income
payments (debits) from the exports of goods and services and income
receipts (credits)

29 2 8 Calculated by subtracting the imports of goods from the exports of goods

30 7 8 Calculated by subtracting the imports of goods from the exports of goods

31 1 8 Calculated by subtracting the imports of goods from the exports of goods

32 11 29 Calculated by subtracting the imports of goods and services from the exports
of goods and services

33 25 29 Calculated by subtracting the imports of goods and services from the exports
of goods and services

34 2 29 Calculated by subtracting the imports of goods and services from the exports
of goods and services

35 24 57 Calculated by subtracting the imports of goods and services and income
payments (debits) from the exports of goods and services and income
receipts (credits)

36 44 49 Calculated by subtracting the capital transfer payments and other debits from
the capital transfer receipts and other credits

37 29 49 Calculated by subtracting the capital transfer payments and other debits from
the capital transfer receipts and other credits

38 17 19 Calculated by subtracting the primary income payments from the primary
income receipts

39 3 19 Calculated by subtracting the primary income payments from the primary
income receipts
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs seriess_ORDINAL series_ORDINAL series_id series_realtime_start series_realtime_end series_title

40 1 40 IEABCPIN 2018-09-04 2018-09-04 Balance on primary
income

41 1 41 IEABCPN 2018-09-04 2018-09-04 Balance on capital
account

42 1 42 IEABCS 2018-09-04 2018-09-04 Balance on services

43 1 43 IEABCSA 2018-09-04 2018-09-04 Balance on services

44 1 44 IEABCSI 2018-09-04 2018-09-04 Balance on
secondary income

45 1 45 IEABCSIA 2018-09-04 2018-09-04 Balance on
secondary income

46 1 46 IEABCSIN 2018-09-04 2018-09-04 Balance on
secondary income

47 1 47 IEABCSN 2018-09-04 2018-09-04 Balance on services

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_observation_start series_observation_end series_frequency series_frequency_short series_units

40 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

41 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

42 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

43 1999-01-01 2017-01-01 Annual A Millions of
Dollars

44 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

45 1999-01-01 2017-01-01 Annual A Millions of
Dollars

46 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars

47 1999-01-01 2018-01-01 Quarterly Q Millions of
Dollars
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Output 49.12.1 continued

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_units_short series_seasonal_adjustment series_seasonal_adjustment_short series_last_updated

40 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:14-05

41 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:03-05

42 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:03-05

43 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:14-05

44 Mil. of $ Seasonally Adjusted SA 2018-06-20
07:51:05-05

45 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:04-05

46 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:14-05

47 Mil. of $ Not Seasonally Adjusted NSA 2018-06-20
07:51:14-05

Specifying the URL= Option to Create the SERIES_CAT5 Data Set

Obs series_popularity series_group_popularity series_notes

40 1 19 Calculated by subtracting the primary income payments from the primary
income receipts

41 19 49 Calculated by subtracting the capital transfer payments and other debits from
the capital transfer receipts and other credits

42 3 6 Calculated by subtracting the imports of services from the exports of services

43 4 6 Calculated by subtracting the imports of services from the exports of services

44 1 3 Calculated by subtracting the secondary income (current transfer) payments
from the secondary income (current transfer) receipts

45 2 3 Calculated by subtracting the secondary income (current transfer) payments
from the secondary income (current transfer) receipts

46 1 3 Calculated by subtracting the secondary income (current transfer) payments
from the secondary income (current transfer) receipts

47 1 6 Calculated by subtracting the imports of services from the exports of services
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Example 49.13: Sources for Today’s Date with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the first 10 sources (LIMIT=10)
for the SOURCES6 data set for today’s date and how to create a permanent data set named SOURCES6 in
the MyLib SAS library:7

options validvarname=any;

title 'Specifying the URL= Option to Create the SOURCES6 Data Set';
libname _all_ clear;
libname mylib "< path to your folder for data >";

libname fred6 sasefred "%sysget(FRED)"
debug=on
URL="https://api.stlouisfed.org/fred/sources?limit=10"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
;

data mylib.sources6;
set fred6.XFREDtpu;

run;

proc print
data=mylib.sources6;

run;

proc contents
data=mylib.sources6;

run;

The returned data are stored in the XFREDTPU data set and are copied to the permanent data set named
sources6.sas7bdat in the MyLib library. A side effect of the DATA step is the automatic creation of two SAS
data sets, named source.sas7bdat and sources.sas7bdat, in the FRED6 library’s location. Many sources
could be returned for today’s date, but the LIMIT=10 option obtains only the first 10 sources, as shown in
Output 49.13.1.

7Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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Output 49.13.1 Specifying the URL= Option to Create the SOURCES6 Data Set

Specifying the URL= Option to Create the SOURCES6 Data Set

Obs sources_ORDINAL source_ORDINAL source_id source_realtime_start

1 1 1 1 2018-09-04

2 1 2 3 2018-09-04

3 1 3 4 2018-09-04

4 1 4 6 2018-09-04

5 1 5 11 2018-09-04

6 1 6 14 2018-09-04

7 1 7 15 2018-09-04

8 1 8 16 2018-09-04

9 1 9 17 2018-09-04

10 1 10 18 2018-09-04

Obs source_realtime_end source_name source_link

1 2018-09-04 Board of Governors of the Federal Reserve System (US) http://www.federalreserve.gov/

2 2018-09-04 Federal Reserve Bank of Philadelphia http://www.philadelphiafed.org/

3 2018-09-04 Federal Reserve Bank of St. Louis http://www.stlouisfed.org/

4 2018-09-04 Federal Financial Institutions Examination Council (US) http://www.ffiec.gov/

5 2018-09-04 Dow Jones & Company http://www.dowjones.com

6 2018-09-04 University of Michigan https://www.umich.edu/

7 2018-09-04 Council of Economic Advisers (US) http://www.whitehouse.gov/cea/

8 2018-09-04 U.S. Office of Management and Budget http://www.whitehouse.gov/omb/

9 2018-09-04 U.S. Congressional Budget Office http://www.cbo.gov/

10 2018-09-04 U.S. Bureau of Economic Analysis http://www.bea.gov/

Example 49.14: Releases Available for Today’s Date with the URL= Option
The following statements demonstrate how to use the URL= option to obtain the first 10 observations
(LIMIT=10) of the REL3 data set for today’s date and how to create a permanent data set named REL3 in the
MyLib SAS library:8

options validvarname=any;

title 'Specifying the URL= Option to Create the REL3 Data Set';
libname _all_ clear;
libname mylib "< path to your folder for data >";
libname fred3 sasefred "%sysget(FRED)"

debug=on

8Disclaimer: SAS may reference other websites or content or resources for use at Customer’s sole discretion. SAS has no control
over any websites or resources that are provided by companies or persons other than SAS. Customer acknowledges and agrees
that SAS is not responsible for the availability or use of any such external sites or resources, and does not endorse any advertising,
products, or other materials on or available from such websites or resources. Customer acknowledges and agrees that SAS is not
liable for any loss or damage that may be incurred by Customer or its end users as a result of the availability or use of those external
sites or resources, or as a result of any reliance placed by Customer or its end users on the completeness, accuracy, or existence of
any advertising, products, or other materials on, or available from, such websites or resources.
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URL="https://api.stlouisfed.org/fred/releases?limit=10"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
;

data mylib.rel3;
set fred3.XFREDtpu;

run;

proc print
data=mylib.rel3;

run;

proc contents
data=mylib.rel3;

run;

The returned data are stored in the XFREDTPU data set and are copied to the permanent data set named
rel3.sas7bdat in the MyLib library. A side effect of the DATA step is the automatic creation of two SAS
data sets, named release.sas7bdat and releases.sas7bdat, in the FRED3 library’s location. Hundreds of
available releases could be returned for today, but the LIMIT=10 option obtains only the first 10 releases, as
shown in Output 49.14.1.
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Output 49.14.1 Specifying the URL= Option to Create the REL3 Data Set

Specifying the URL= Option to Create the REL3 Data Set

Obs releases_ORDINAL release_ORDINAL release_id release_realtime_start release_realtime_end release_name

1 1 1 9 2018-09-04 2018-09-04 Advance Monthly
Sales for Retail and
Food Services

2 1 2 10 2018-09-04 2018-09-04 Consumer Price
Index

3 1 3 11 2018-09-04 2018-09-04 Employment Cost
Index

4 1 4 13 2018-09-04 2018-09-04 G.17 Industrial
Production and
Capacity Utilization

5 1 5 14 2018-09-04 2018-09-04 G.19 Consumer
Credit

6 1 6 15 2018-09-04 2018-09-04 G.5 Foreign
Exchange Rates

7 1 7 17 2018-09-04 2018-09-04 H.10 Foreign
Exchange Rates

8 1 8 18 2018-09-04 2018-09-04 H.15 Selected
Interest Rates

9 1 9 19 2018-09-04 2018-09-04 H.3 Aggregate
Reserves of
Depository
Institutions and the
Monetary Base

10 1 10 20 2018-09-04 2018-09-04 H.4.1 Factors
Affecting Reserve
Balances
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Output 49.14.1 continued

Specifying the URL= Option to Create the REL3 Data Set

Obs release_press_release release_link release_notes

1 true http://www.census.gov/retail/ The U.S. Census Bureau conducts the Advance
Monthly Retail Trade and Food Services Survey to
provide an early estimate of monthly sales by kind of
business for retail and food service firms located in
the United States. Each month, questionnaires are
mailed to a probability sample of approximately 4,700
employer firms selected from the larger Monthly
Retail Trade Survey. Advance sales estimates are
computed using a link relative estimator. For each
detailed industry, we compute a ratio of current-to
previous month weighted sales using data from units
for which we have obtained usable responses for
both the current and previous month. For each
detailed industry, the advance total sales estimates
for the current month is computed by multiplying this
ratio by the preliminary sales estimate for the
previous month (derived from the larger MRTS) at the
appropriate industry level. Total estimates for broader
industries are computed as the sum of the detailed
industry estimates. The link relative estimate is used
because imputation is not performed for most
nonrespondents in MARTS. For a limited number of
nonresponding companies that have influential effects
on the estimates, sales may be estimated based on
historical performance of that company. The monthly
estimates are benchmarked to the annual survey
estimates from the Annual Retail Trade Survey once
available. The estimates are adjusted for seasonal
variation and holiday and trading day differences.
Additional information on MARTS and MRTS can be
found on the Census Bureau website at:
www.census.gov/retail. Description of the survey as
provided by the Census,
https://census.gov/retail/marts/www/marts_current.pdf

2 true http://www.bls.gov/cpi/

3 true http://www.bls.gov/ncs/ect/

4 true http://www.federalreserve.gov/releases/g17/

5 true http://www.federalreserve.gov/releases/g19/

6 true http://www.federalreserve.gov/releases/g5/

7 true http://www.federalreserve.gov/releases/h10/

8 true http://www.federalreserve.gov/releases/h15/

9 true http://www.federalreserve.gov/releases/h3/

10 true http://www.federalreserve.gov/releases/h41/
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Overview: SASEHAVR Interface Engine
The SASEHAVR interface engine is a seamless interface between Haver Analytics and SAS data processing
that enables SAS users to read economic and financial time series data that reside in a Haver Analytics DLX
(Data Link Express) database. The Haver Analytics DLX economic and financial database offerings include
U.S. economic indicators, specialized databases, and financial indicators; data about industry, industrial
countries, emerging markets, and international organizations; forecasts and as-reported data; and data about
U.S. regional services. For more information, see the section “Data Elements Reference: Haver Analytics
DLX Database Profile” on page 3630.

The SASEHAVR engine uses the LIBNAME statement to enable you to specify how to subset your Haver
data and how to aggregate the selected time series at the same frequency. You can then use the SAS DATA
step to perform further subsetting and to store the resulting time series in a SAS data set. You can perform
more analysis (if desired) either in the same SAS session or in a later session.

The SASEHAVR engine supports both 32-bit and 64-bit Windows hosts. Haver Analytics supplies two
versions of the DLX application programming interface (API), one for 32-bit applications (dlxapi32.dll) and
one for 64-bit applications (dlxapi64.dll). Choose the appropriate application, either 32-bit or 64-bit, for your
platform. You can follow the instructions for setting up your installation of the Haver API in the section
“Setting Up the Haver Analytics DLX Application Programming Interface” on page 3618.

Getting Started: SASEHAVR Interface Engine

Setting Up the Haver Analytics DLX Application Programming Interface
If this is your first time using the SASEHAVR interface engine on your Windows machine, then it is necessary
to follow these setup instructions. If you have already used the SASEHAVR interface, then just check the file
version number of your already installed dlxapi32.dll (or dlxapi64.dll). For 32-bit installations, the file version
is 1.1.9.0, and for 64-bit installations, the file version is 2.0.0.1. The Haver API version number appears
in the SAS log the first time you assign a SASEHAVR libref. In Windows Explorer, you can see a file’s
properties, including its version number, by hovering the mouse pointer over the file icon. Alternatively, you
can right-click on the file icon to bring up the properties and click the Details tab to see the version number.

To set up the Haver Analytics API on your machine, visit the SAS Technical Support download site at the
following URL:

http://ftp.sas.com/techsup/download/base/

First, create a folder on your system drive (usually designated as C:), and name the folder HAVER. Create an
environment variable named HAVER as follows:

HAVER=C:\HAVER\

If your SAS system is 32-bit, then download the files dlxapi32.h, dlxapi32.dll, and dlxapi32.lib to your HAVER
folder. If your SAS system is 64-bit, then download the files dlxapi64.h, dlxapi64.dll, and dlxapi64.lib to your
HAVER folder. Second, prepend the location of your HAVER folder to the system environment variable
(%PATH%) as follows, so that the SASEHAVR engine can find your downloaded Haver API files:

http://ftp.sas.com/techsup/download/base/
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PATH=C:\HAVER\;%PATH%

Reboot your system to complete the Haver API setup.

Structure of a SAS Data Set That Contains Time Series Data
SAS represents time series data in a two-dimensional array called a SAS data set whose columns correspond
to series variables and whose rows correspond to measurements of these variables at certain time periods.
The time periods at which observations are recorded can be included in the data set as time ID variables. The
SASEHAVR engine provides a time ID variable called DATE. The DATE variable can be represented in any of
the time intervals shown in the section “Mapping Haver Frequencies to SAS Time Intervals” on page 3626.

Reading and Converting Haver DLX Time Series
The SASEHAVR engine supports reading and converting all selected time series that reside in Haver DLX
databases. The SASEHAVR engine enables you to limit the range of data by specifying the START= and
END= options in the LIBNAME statement. Start dates and end dates are recommended to help save resources
when you are processing large databases or a large number of observations.

The SASEHAVR engine enables you to convert or aggregate all selected time series to a desired frequency.
By default, the SASEHAVR engine selects the time series variables that match the frequency of the first
selected variable. To select variables of one specific frequency, use the FREQ= option. If no selection criteria
are specified, the first selected variable is the first physical DLX record read from the Haver database. To force
aggregation of all selected variables to the frequency specified by the FREQ= option, use the FORCE=FREQ
option. The AGGMODE= option enables you to specify a strict or relaxed aggregation method; by default,
AGGMODE=RELAXED. Aggregation is supported only from a more frequent time interval to a less frequent
time interval, such as from weekly to monthly. If a conversion to a more frequent frequency is attempted, all
missing values are returned by the Haver DLX API. For more information, see the section “Aggregating to
Quarterly Frequency Using the FORCE=FREQ Option” on page 3629. The FORCE= option is ignored if the
FREQ= option is not specified.

Using the SAS DATA Step
If desired, you can store your selected time series in a SAS data set by using the SAS DATA step. You can
further subset your data by using the WHERE, KEEP, or DROP statement in your DATA step.

For more efficient subsetting of time series by Haver variables, Haver groups, Haver sources, Haver short
sources, Haver long sources, or Haver geographic codes, you can use the corresponding KEEP=, GROUP=,
SOURCE=, SHORTSOURCE=, LONGSOURCE=, GEOGCODE1=, or GEOGCODE2= option in the
LIBNAME libref SASEHAVR statement. To see the available Haver selection key values, including
geographic codes, short sources, and long sources for your database, specify the OUTSELECT=ON option.
From the OUTSELECT= option output, you can use convenient wildcard symbols to create the selection list
for your next LIBNAME libref SASEHAVR statement.
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There are three wildcard symbols: ‘*’, ‘?’, and ‘#’. The ‘*’ wildcard corresponds to any character string and
includes any string pattern that corresponds to that position in the matching variable name. The ‘?’ stands for
any single alphanumeric character. Lastly, the ‘#’ wildcard corresponds to a single numeric character.

You can also deselect time series by Haver variables, by Haver groups, by Haver sources, by Haver short
sources, by Haver long sources, or by Haver geographic codes, by using the corresponding DROP=, DROP-
GROUP=, DROPSOURCE=, DROPSHORT=, DROPLONG=, DROPGEOG1=, or DROPGEOG2= option.
These options also support wildcards.

After your selected data are stored in a SAS data set, you can use these data as you would any other SAS data
set.

Using the SAS Windowing Environment
You can see the available data sets in the SAS LIBNAME window of the SAS windowing environment
by selecting the SASEHAVR libref in the LIBNAME window that you have previously defined in your
LIBNAME statement. You can view your SAS output observations by double-clicking on the desired output
data set libref in the LIBNAME window of the SAS windowing environment. You can type Viewtable on
the SAS command line to view your SASEHAVR tables, views, or librefs.

Before you use Viewtable, it is recommended that you store your output data sets in a physical folder or
library that is separate from the folder or library used for your input databases. (The default location for
output data sets is the SAS Work library.) If you do not follow this guideline, you will receive the following
error message for each input database that does not have the selected options in the SASEHAVR libref that
you double-clicked:

ERROR: No variable selected with current options.

Syntax: SASEHAVR Interface Engine
The SASEHAVR engine uses standard engine syntax. Table 50.1 summarizes the options used in the
LIBNAME libref SASEHAVR statement.

Table 50.1 Summary of LIBNAME libref SASEHAVR Statement
Options

Option Description

FREQUENCY= Specifies the Haver frequency
START= Specifies a Haver start date to limit the selection of time series to

those that begin with the specified date
END= Specifies a Haver end date to limit the selection of time series to

those that end with the specified date
KEEP= Specifies a list of comma-delimited Haver variables to keep in the

output SAS data set
DROP= Specifies a list of comma-delimited Haver variables to drop from

the output SAS data set



LIBNAME libref SASEHAVR Statement F 3621

Table 50.1 continued

Option Description

GROUP= Specifies a list of comma-delimited Haver groups to keep in the
output SAS data set

DROPGROUP= Specifies a list of comma-delimited Haver groups to drop from the
output SAS data set

SOURCE= Specifies a list of comma-delimited Haver sources to keep in the
output SAS data set

DROPSOURCE= Specifies a list of comma-delimited Haver sources to drop from the
output SAS data set

SHORT= Specifies a list of comma-delimited Haver short sources to keep in
the output SAS data set

DROPSHORT= Specifies a list of comma-delimited Haver short sources to drop
from the output SAS data set

LONG= Specifies a list of comma-delimited Haver long sources to keep in
the output SAS data set

DROPLONG= Specifies a list of comma-delimited Haver long sources to drop
from the output SAS data set

GEOG1= Specifies a list of comma-delimited Haver geography1 codes to
keep in the output SAS data set

DROPGEOG1= Specifies a list of comma-delimited Haver geography1 codes to
drop from the output SAS data set

GEOG2= Specifies a list of comma-delimited Haver geography2 codes to
keep in the output SAS data set

DROPGEOG2= Specifies a list of comma-delimited Haver geography2 codes to
drop from the output SAS data set

OUTSELECT= Specifies what values the output data are to contain
FORCE=FREQ Specifies that all selected time series variables be aggregated to the

frequency specified in the FREQ= option
AGGMODE= Specifies the aggregation method used for aggregating time series

(STRICT or RELAXED)

LIBNAME libref SASEHAVR Statement
LIBNAME libref sasehavr ‘physical name’ options ;

The ‘physical name’ specifies the location of the folder where your Haver DLX database resides.

You can use the following options in the LIBNAME libref SASEHAVR statement:
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FREQ=haver_frequency

FREQUENCY=haver_frequency

INTERVAL=haver_frequency
specifies the Haver frequency. All Haver frequencies are supported by the SASEHAVR engine.
Accepted frequency values are annual, year, yearly, quarter, quarterly, qtr, monthly, month, mon,
week.1, week.2, week.3, week.4, week.5, week.6, week.7, weekly, week, daily, and day.

START=start_date

STARTDATE=start_date

STDATE=start_date

BEGIN=start_date
specifies the start date for the time series in the form YYYYMMDD.

END=end_date

ENDDATE=end_date

ENDATE=end_date
specifies the end date for the time series in the form YYYYMMDD.

KEEP=“haver_variable_list”
specifies the list of Haver variables to be included in the output SAS data set. This list is comma-
delimited and must be surrounded by double quotation marks.

DROP=“haver_variable_list”
specifies the list of Haver variables to be excluded from the output SAS data set. This list is comma-
delimited and must be surrounded by double quotation marks.

GROUP=“haver_group_list”

KEEPGROUP=“haver_group_list”
specifies the list of Haver groups to be included in the output SAS data set. This list is comma-delimited
and must be surrounded by double quotation marks.

DROPGROUP=“haver_group_list”
specifies the list of Haver groups to be excluded from the output SAS data set. This list is comma-
delimited and must be surrounded by double quotation marks.

SOURCE=“haver_source_list”

KEEPSOURCE=“haver_source_list”
specifies the list of Haver sources to be included in the output SAS data set. This list is comma-delimited
and must be surrounded by double quotation marks.

DROPSOURCE=“haver_source_list”
specifies the list of Haver sources to be excluded from the output SAS data set. This list is comma-
delimited and must be surrounded by double quotation marks.
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SHORT=“haver_shortsource_list”

KEEPSHORT=“haver_shortsource_list”

SHORTSOURCE=“haver_shortsource_list”
specifies the list of Haver short sources to be included in the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.

DROPSHORT=“haver_shortsource_list”

DROPSHORTSOURCE=“haver_shortsource_list”
specifies the list of Haver short sources to be excluded from the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.

LONG=“haver_longsource_list”

KEEPLONG=“haver_longsource_list”

LONGSOURCE=“haver_longsource_list”
specifies the list of Haver long sources to be included in the output SAS data set. This list is comma-
delimited and must be surrounded by double quotation marks.

DROPLONG=“haver_longsource_list”

DROPLONGSOURCE=“haver_longsource_list”
specifies the list of Haver long sources to be excluded from the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.

GEOG1=“haver_geographycode1_list”

KEEPGEOG1=“haver_geographycode1_list”

GEOGCODE1=“haver_geographycode1_list”
specifies the list of Haver geography1 codes to be included in the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.

DROPGEOG1=“haver_geographycode1_list”

DROPGEOGCODE1=“haver_geographycode1_list”
specifies the list of Haver geography1 codes to be excluded from the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.

GEOG2=“haver_geographycode2_list”

KEEPGEOG2=“haver_geographycode2_list”

GEOGCODE2=“haver_geographycode2_list”
specifies the list of Haver geography2 codes to be included in the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.

DROPGEOG2=“haver_geographycode2_list”

DROPGEOGCODE2=“haver_geographycode2_list”
specifies the list of Haver geography2 codes to be excluded from the output SAS data set. This list is
comma-delimited and must be surrounded by double quotation marks.
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OUTSELECT=ON | OFF
specifies what the output data set shows. OUTSELECT=ON specifies that the output data set show
values of selection keys (such as geography codes, groups, sources, short sources, and long sources)
for each selected variable name (time series) in the database. OUTSELECT=OFF specifies that
the output data set show the observations in the range for all selected time series. The default is
OUTSELECT=OFF.

AGGMODE=STRICT | RELAXED
specifies whether the SASEHAVR engine uses a strict or relaxed aggregation method when converting
time series from a higher to lower frequency.

A strict aggregation method returns a missing value whenever there is a missing observation in a time
period. For instance, if a monthly time series has a missing value for the month of February 2005, then
attempting to aggregate to a quarterly frequency results in a missing value for the first quarter of 2005.
The SAS log reports the status of this option.

When a relaxed aggregation method is used, some observations can be missing, but the relaxed
method returns an aggregated value calculated from the nonmissing data points according to the series
aggregation type (average, sum, or end of period). Average type only needs one valid (nonmissing) data
point to calculate the average. Sum type needs all the data points to be available in order to sum the
values. End of period type calculates the end of period value if there is at least one valid (nonmissing)
data point in the aggregated span. It returns the last available valid data point in the aggregated span.
The default is AGGMODE=RELAXED.

FORCE=FREQ
specifies that the selected variables be aggregated to the frequency in the FREQ= option. Aggregation
is supported only from a more frequent time interval to a less frequent time interval, such as from
weekly to monthly. For sample output and suggested error recovery from attempting a conversion that
yields missing values when a higher frequency conversion is specified, see the section “Aggregating to
Quarterly Frequency Using the FORCE=FREQ Option” on page 3629. This option is ignored if the
FREQ= option is not set. For a more complete discussion of Haver frequencies and SAS time intervals,
see the section “Mapping Haver Frequencies to SAS Time Intervals” on page 3626.

Following is an example of the LIBNAME libref SASEHAVR statement:

LIBNAME libref sasehavr 'physical-name'
FREQ=MONTHLY;

By default, the SASEHAVR engine reads all time series in the Haver database that you reference by libref .
The start_date is specified in the form YYYYMMDD. The start date is used to delimit the data to a specified
start date.

For example, to read the time series in the TEST library starting on July 4, 1996, specify the following
statement:

LIBNAME test sasehavr 'physical-name'
STARTDATE=19960704;

When you use the START= option, you limit the range of observations that are read from the time series
and that are converted to the desired frequency. Start dates can help save resources when processing large
databases or when processing a large number of observations. It is also possible to select specific variables to
be included or excluded from the SAS data set by using the KEEP= or DROP= option, respectively.
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LIBNAME test sasehavr 'physical-name'
KEEP="ABC*, XYZ??";

LIBNAME test sasehavr 'physical-name'
DROP="*SC*, #T#";

When the KEEP= or DROP= option is used, the resulting SAS data set keeps or drops the variables that you
select in that option. Three wildcards are available: ‘*’, ‘?’, and ‘#’. The ‘*’ wildcard corresponds to any
character string and includes any string pattern that corresponds to that position in the matching variable name.
The ‘?’ means that any single alphanumeric character is valid. The ‘#’ wildcard corresponds to a single
numeric character. You can also select time series in your data by using the GROUP=, SOURCE=, SHORT=,
LONG=, GEOG1=, or GEOG2= option to select on the group name, source name, short source name, long
source name, geography1 code, or geography2 code, respectively. Alternatively, you can deselect time
series by using the DROPGROUP=, DROPSOURCE=, DROPSHORT=, DROPLONG=, DROPGEOG1=, or
DROPGEOG2= option, respectively.

Following are examples that perform variable selection (or deselection) based on groups or sources:

LIBNAME test sasehavr 'physical-name'
GROUP="CBA, *ZYX";

LIBNAME test sasehavr 'physical-name'
DROPGROUP="TKN*, XCZ?";

LIBNAME test sasehavr 'physical-name'
SOURCE="FRB";

LIBNAME test sasehavr 'physical-name'
DROPSOURCE="NYSE";

The SASEHAVR engine selects only the variables that are of the specified frequency in the FREQ= option.
If this option is not specified, the SASEHAVR engine selects the variables that match the frequency of the
first selected variable. If no other selection criteria are specified, by default the first selected variable is the
first physical DLX record read from the Haver database. You can specify the FORCE=FREQ option to force
the aggregation of all variables selected to be of the frequency specified in the FREQ= option. Aggregation
is supported only from a more frequent time interval to a less frequent time interval, such as from weekly
to monthly. For suggested recovery from using a frequency that does not aggregate the data appropriately,
see the section “Aggregating to Quarterly Frequency Using the FORCE=FREQ Option” on page 3629. The
FORCE= option is ignored if the FREQ= option is not specified. The AGGMODE= STRICT option is used
when a strict aggregation method is desired. The default value for AGGMODE is RELAXED, the same
method that was used in prior releases of the SASEHAVR engine.
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Details: SASEHAVR Interface Engine

SAS Output Data Set
You can use the SAS DATA step to write the Haver converted series to a SAS data set so that you can
easily analyze the data using the SAS System. You can specify the name of the output data set in the DATA
statement. This causes the engine supervisor to create a SAS data set with the specified name in either the
SAS Work library or, if specified, the Sasuser library.

When OUTSELECT=OFF (the default), the contents of the SAS data set include the date of each observation,
the name of each series read from the Haver database, and the label or Haver description of each series.
Missing values are represented as ‘.’ in the SAS data set. You can use the PRINT procedure and the
CONTENTS procedure to print your output data set and its contents. You can use the SQL procedure along
with the SASEHAVR engine to create a view of your SAS data set.

The DATE variable in the SAS data set contains the date of the observation. The SASEHAVR engine
automatically maps the Haver intervals to the appropriate corresponding SAS intervals.

When OUTSELECT=ON, the OUT= data set does not contain the observations of all time series. Instead,
each observation contains the name of the time series, the source of the time series, the geography1 code,
the geography2 code, the short source, and the long source for that time series. In addition, the contents
of the OUT= data set shows every selected time series name and label. For more information about the
OUTSELECT=ON option, see Output 50.11.1 and Output 50.11.2.

A more detailed discussion of how to map Haver frequencies to SAS time intervals follows.

Mapping Haver Frequencies to SAS Time Intervals
Table 50.2 summarizes the mapping of Haver frequencies to SAS time intervals. For more information, see
Chapter 5, “Date Intervals, Formats, and Functions.”

Table 50.2 Mapping Haver Frequencies to SAS Time Intervals

Haver Frequency SAS Time Interval FREQ=

ANNUAL YEAR YEARLY
QUARTERLY QTR QTRLY
MONTHLY MONTH MON
WEEKLY (SUNDAY) WEEK.1 WEEK.1
WEEKLY (MONDAY) WEEK.2 WEEK.2
WEEKLY (TUESDAY) WEEK.3 WEEK.3
WEEKLY (WEDNESDAY) WEEK.4 WEEK.4
WEEKLY (THURSDAY) WEEK.5 WEEK.5
WEEKLY (FRIDAY) WEEK.6 WEEK.6
WEEKLY (SATURDAY) WEEK.7 WEEK.7
WEEKLY WEEK.1-WEEK.7 WEEKLY WEEKLY
DAILY WEEKDAY17W DAY
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Error Recovery for the SASEHAVR Interface Engine
Common errors are easy to avoid by noting the valid dates that are specified in the warning messages in your
SAS log. Often you can get rid of errors by removing the date restriction (START= and END= options), by
removing the FORCE=FREQ option, or by deleting the FREQ= option so that the frequency defaults to the
original frequency rather than attempting a conversion.

Following are some common error scenarios and how to handle them.

Using the Optimum Range for Best Output Results

Suppose you see the following warnings in your SAS log:

libname kgs2 sasehavr "%sysget(HAVER_DATA)"
start= 19550101 end=19600105
keep="FCSEED, FCSEEI, FCSEEM, BGSX, BGSM, FXDUSBC"
group="I01, F56, M02, R30"
source="JPM,CEN,OMB" ;

NOTE: Libref KGS2 was successfully assigned as follows:
Engine: SASEHAVR
Physical Name: C:\haver

data kgse9;
set kgs2.haver;

NOTE: Defaulting to MONTHLY frequency.
WARNING: Start date (19550101) is not a valid date.

Engine is ignoring your start date and using
default. Setting the default Haver start date to 7001.

WARNING: End date (19600105) is not a valid date.
Engine is ignoring your end date and using
default. Setting the default Haver end date to 10103.

run;

NOTE: There were 375 observations read from the data set KGS2.HAVER.
NOTE: The data set WORK.KGSE9 has 375 observations and 4 variables.

The important diagnostic to note here is the warning message that tells you that the data start in January
1970 (Haver date 7001) and end in March 2001 (Haver date 10103). Since the specified range falls outside
the range of data, no observations are in range. So the engine uses the default range stated in the warning
messages. Change the START= and END= options to overlap the results in data that span from JAN1970
to MAR2001. To view the entire range of selected data, remove the START= and END= options from the
LIBNAME statement:

libname kgs sasehavr "%sysget(HAVER_DATA)"
keep="FCSEED, FCSEEI, FCSEEM, BGSX, BGSM, FXDUSBC"
group="I01, F56, M02, R30"
source="JPM,CEN,OMB" ;

NOTE: Libref KGS was successfully assigned as follows:
Engine: SASEHAVR
Physical Name: C:\haver
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data kgse5;
set kgs.haver;

NOTE: Defaulting to MONTHLY frequency.
run;

NOTE: There were 375 observations read from the data set KGS.HAVER.
NOTE: The data set WORK.KGSE5 has 375 observations and 4 variables.

Using a Valid Range of Data with START= and END= Options

In this example, an error about an invalid range is issued:

libname lib1 sasehavr "%sysget(HAVER_DATA)" freq=Weekly
start=20060301 end=20060531;

NOTE: Libref LIB1 was successfully assigned as follows:
Engine: SASEHAVR
Physical Name: C:\haver

libname lib2 "\\dntsrc\usrtmp\saskff" ;
NOTE: Libref LIB2 was successfully assigned as follows:

Engine: V9
Physical Name: \\dntsrc\usrtmp\saskff

data lib2.wweek;
set lib1.intwkly;

ERROR: No observations found inside RANGE.
The valid range for HAVER dates is (610104-1050318).

ERROR: No observations found in specified range.
keep date m11: ;

run;

WARNING: The variable date in the DROP, KEEP, or RENAME list
has never been referenced.

WARNING: The variable m11: in the DROP, KEEP, or RENAME list
has never been referenced.

NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set LIB2.WWEEK may be incomplete.

When this step was stopped there were 0
observations and 0 variables.

WARNING: Data set LIB2.WWEEK was not replaced because this step was stopped.

The important diagnostic message is the first error statement, which tells you that the range of Haver dates
is not valid for the specified frequency. A valid range is one that overlaps the dates (610104–1050318).
Removing the range altogether causes the engine to output the entire range of data.

libname lib1 sasehavr "%sysget(HAVER_DATA)" freq=Weekly;

NOTE: Libref LIB1 was successfully assigned as follows:
Engine: SASEHAVR
Physical Name: C:\haver

libname lib2 "\\dntsrc\usrtmp\saskff" ;
NOTE: Libref LIB2 was successfully assigned as follows:

Engine: V9
Physical Name: \\dntsrc\usrtmp\saskff
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data lib2.wweek;
set lib1.intwkly;
keep date m11: ;

run;

NOTE: There were 2307 observations read from the data set LIB1.INTWKLY.
NOTE: The data set LIB2.WWEEK has 2307 observations and 35 variables.

Since the START= and END= options give day-based dates, it is important to use dates that correspond to the
FREQ= option when giving a range of dates, especially with weekly frequencies such as WEEK.1–WEEK.7.
Since FREQ=WEEK.4 selects weeks that begin on Wednesday, the start and end dates need to be specified as
Wednesday dates.

libname lib1 sasehavr "%sysget(HAVER_DATA)" freq=Week.4
start=20050302 end=20050309;

NOTE: Libref LIB1 was successfully assigned as follows:
Engine: SASEHAVR
Physical Name: \\tappan\crsp1\haver

title2 'Weekly dataset with freq=week.4 range is small';
libname lib2 "\\dntsrc\usrtmp\saskff" ;
NOTE: Libref LIB2 was successfully assigned as follows:

Engine: V9
Physical Name: \\dntsrc\usrtmp\saskff

data lib2.wweek;
set lib1.intwkly;
keep date m11: ;

run;

NOTE: There were 2 observations read from the data set LIB1.INTWKLY.
NOTE: The data set LIB2.WWEEK has 2 observations and 25 variables.

Giving bad dates (for example, Tuesday dates) for a Wednesday FREQ=WEEK.4 results in the following
error:

ERROR: Fatal error in GetDate routine.
Remove the range statement or change the START= date to
be consistent with the freq=option.

ERROR: No observations found in specified range.

Aggregating to Quarterly Frequency Using the FORCE=FREQ Option

In the next example, six time series are selected by the KEEP= option. Their frequencies are annual, monthly,
and quarterly, so when the FREQ=WEEKLY and FORCE=FREQ options are used, a diagnostic appears
in the log stating that the engine is forcing the frequency to QUARTERLY for better date alignment of
observations. The first selected variable is BALO, which is a quarterly time series and causes the default
choice of FREQ to be quarterly.

title1 '***HAVKWC.SAS: KEEP= option tests with wildcards***';

%setup( ets );

/*----------------*/
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/* Wildcard: * */
/*----------------*/

title2 "keep=B*, G*, I*";
title3 "6 valid variables are: BALO BGSM BGSX BPBCA G IUM";
libname lib1 sasehavr 'C:\haver\' keep="B*, G*, I*"

freq=weekly force=freq;
NOTE: Libref LIB1 was successfully assigned as follows:

Engine: SASEHAVR
Physical Name: C:\haver\

data wc;
set lib1.haver;

WARNING: Earliest Start Date in DLX Database matches QUARTERLY frequency
better than the specified WEEKLY frequency.
Engine is forcing the frequency to QUARTERLY for better date
alignment of observations.

run;

NOTE: There were 221 observations read from the data set LIB1.HAVER.
NOTE: The data set WORK.WC has 221 observations and 7 variables.

Note that the time series IUM is an annual frequency. The attempt to convert to a quarterly frequency
produces all missing values in the output range because aggregation produces only missing values when
forced to go from a lower frequency to a higher frequency.

Data Elements Reference: Haver Analytics DLX Database Profile
The Haver DLX economic and financial database offerings include U.S. economic indicators, specialized
databases, financial indicators, industry, industrial countries, emerging markets, international organizations,
forecasts and as-reported data, and U.S. regional service. Table 50.3 is a list of available databases and their
descriptions, in the order in which they appear on the Haver Analytics website.

Table 50.3 Available Data Offerings

Database
Name

Offering Type Description

USECON U.S. economic
indicators

U.S. economic, financial data

USNA U.S. economic
indicators

Complete U.S. NIPA accounts from the Bureau of
Economic Analysis (BEA)

SURVEYS U.S. economic
indicators

Business and consumer expectations, surveys

SURVEYW U.S. economic
indicators

Business and consumer expectations, weekly
surveys

CPIDATA U.S. economic
indicators

Consumer price indexes (CPI), monthly, in CPI
detailed report
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Table 50.3 continued

Database
Name

Offering Type Description

PPI U.S. economic
indicators

Producer price indexes (PPI), by the Bureau of
Labor Statistics (BLS)

PPIR U.S. economic
indicators

Producer price indexes by the Bureau of Labor
Statistics (BLS)

LABOR U.S. economic
indicators

Employment and earnings by the Bureau of Labor
Statistics (BLS)

EMPL U.S. economic
indicators

Household employment survey, monthly, by the
Bureau of Labor Statistics (BLS)

CEW U.S. economic
indicators

Covered employment and wages, monthly,
quarterly

OES U.S. economic
indicators

Occupational employment statistics

IP U.S. economic
indicators

Industrial production and capacity utilization by
the Federal Reserve Board (FRB)

FFUNDS U.S. economic
indicators

Flow of funds data by the Federal Reserve Board
(FRB)

CAPSTOCK U.S. economic
indicators

Capital stock by the Bureau of Economic
Analysis (BEA)

USINT U.S. economic
indicators

U.S. international trade (TIC) data by country and
product

HWOL Specialized
databases

Help wanted online, monthly

CBDB Specialized
databases

Conference Board database, monthly, by The
Conference Board (TCB)

BCI Specialized
databases

U.S. business cycle indicators, by The Conference
Board (TCB)

UMSCA Specialized
databases

Consumer Sentiment Survey from the University
of Michigan

FIBERUS Specialized
databases

U.S. FIBER business cycle indicators from the
Foundation of International Business and
Economic Research (FIBER)

FIBER Specialized
databases

FIBER business cycle indicators from the
Foundation of International Business and
Economic Research (FIBER)

DAILY Financial
indicators

U.S. daily statistics data

INTDAILY Financial
indicators

Country daily statistics

WEEKLY Financial
indicators

U.S. weekly statistics

INTWKLY Financial
indicators

Country weekly statistics
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Table 50.3 continued

Database
Name

Offering Type Description

MSCID Financial
indicators

Morgan Stanley Capital International, daily

MSCIW Financial
indicators

Morgan Stanley Capital International, weekly

MSCIM Financial
indicators

Morgan Stanley Capital International, monthly

MSCIE Financial
indicators

Morgan Stanley Capital International enhanced
indexed module

SPD Financial
indicators

Standard & Poor’s industry groups, daily

SPW Financial
indicators

Standard & Poor’s industry groups, weekly

SPM Financial
indicators

Standard & Poor’s industry groups, monthly

SPAH Financial
indicators

Standard & Poor’s Analysts’ Handbook, yearly

FFUTURES Financial
indicators

Financial futures from the Chicago Mercantile
Exchange

OPTIONF Financial
indicators

Financial options on the 30-day federal funds
futures, daily

EMBI Financial
indicators

Emerging Markets Bond Index from J. P. Morgan

CMAADV Financial
indicators

Sovereign CDS spreads from CMA Datavision

CMAEMG Financial
indicators

Sovereign CDS spreads from CMA Datavision

BONDINDX Financial
indicators

U.S. bond indexes, from Barclays Capital,
Citigroup, Merrill Lynch, and Standard & Poors

EPFREIN Financial
indicators

Equity fund flows, advanced economies, from
EPFR Global Data

EPFREEM Financial
indicators

Equity fund flows, emerging markets, from EPFR
Global Data

EPFRBIN Financial
indicators

Bond fund flows, advanced economies, from
EPFR Global Data

EPFRBEM Financial
indicators

Bond fund flows, emerging markets, from EPFR
Global Data

EPFRBMM Financial
indicators

Bond fund flows, money market, from EPFR
Global Data

EPFRECA Financial
indicators

Equity fund country allocations from EPFR
Global Data

EPFRBCA Financial
indicators

Bond country allocations from EPFR Global Data
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Table 50.3 continued

Database
Name

Offering Type Description

EPFRECF Financial
indicators

Equity country flows from EPFR Global Data

EPFRBCF Financial
indicators

Bond country flows from EPFR Global Data

EPFRESA Financial
indicators

Equity fund sector and industry allocations from
EPFR Global Data

EPFRESF Financial
indicators

Equity fund sector flows from EPFR Global Data

EPFRDF Financial
indicators

Daily equity and bond fund flows from EPFR
Global Data

ICI Financial
indicators

Mutual fund activity from the Investment
Company Institute

QFR Financial
indicators

Quarterly financial report by the Federal Reserve
Board (FRB)

MBAMTG Financial
indicators

Mortgage delinquency rates by the Mortgage
Bankers Association

DLINQ Financial
indicators

Consumer delinquency rates, monthly, by the
American Bankers Association

FDIC Financial
indicators

FDIC banking statistics TIC data from the
Quarterly Banking Profile

GOVFIN Financial
indicators

U.S. government financial statistics by the U.S.
Treasury

INDUSTRY Industry U.S. industry statistics, from the U.S. Department
of Agriculture, trade associations

USDA Industry World agriculture statistics, from the U.S.
Department of Agriculture (USDA)

REALTOR Industry Home sales from the National Association of
Realtors

CREALTOR Industry Home sales from the National Association of
Realtors

PREALTOR Industry Pending home sales from the National
Association of Realtors

NARRCI Industry Confidence index and housing survey, monthly
HOUSING Industry Housing statistics
WBMS Industry Metal statistics
CREA Industry Canadian housing statistics, monthly, quarterly,

annually
CMDTY Industry Daily commodity markets
BALTIC Industry Baltic freight markets
WARDS Industry Automotive statistics, from Ward’s Automotive

Group
WARDSINT Industry Automotive statistics, from Ward’s Automotive

Group
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Table 50.3 continued

Database
Name

Offering Type Description

ASM Industry Annual Survey of Manufactures from the U.S.
Census Bureau

RAILSHAR Industry Railcar loadings from the Association of
American Railroads and Atlantic Systems

OGJ Industry -
Energy

U.S. and international energy statistics

OGJANN Industry -
Energy

U.S. and international energy statistics

OILWKLY Industry -
Energy

Weekly oil statistics

JODI Industry -
Energy

Oil world database from the Joint Organisations
Data Initiative (JODI)

EEI Industry -
Energy

U.S. electric output, weekly

OMI Industry -
Energy

Oil market intelligence

NGW Industry -
Energy

Natural gas week

WGI Industry -
Energy

World gas intelligence

G10+ Advanced
economies

Country summary statistics by Haver Analytics

JAPAN Advanced
economies

Japan from Nomura Research Institute

JAPANW Advanced
economies

Japan from Nomura Research Institute, weekly

CANADA Advanced
economies

Canada from Statistics Canada and the Bank of
Canada

UK Advanced
economies

United Kingdom, from the Office of National
Statistics and the Bank of England

GERMANY Advanced
economies

Germany, from the Deutsche Bundesbank,
Statistisches Bundesamt, Ifo, and the Ministry of
France

FRANCE Advanced
economies

France, Statistics from INSEE (France’s National
Statistical Office), the Bank of France, and the
Ministry of France

ITALY Advanced
economies

Italy, from Istituto Nazionale di Statistica, Banca
d’Italia, the Ministry of Economy and Finance

SPAIN Advanced
economies

Spain, from Instituto Nacional de Estadística and
Banco de España

IRELAND Advanced
economies

Ireland, from the Central Statistics Office and
Central Bank
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Table 50.3 continued

Database
Name

Offering Type Description

NORDIC Advanced
economies

Norway, Sweden, Denmark, Finland

ALPMED Advanced
economies

Austria, Switzerland, Greece, Portugal

BENELUX Advanced
economies

Belgium, Netherlands, Luxembourg, monthly

ANZ Advanced
economies

Australia and New Zealand

EMERGE Emerging
markets

Country summary statistics by Haver Analytics

EMERGELA Emerging
markets

Latin American macroeconomic data

EMERGECW Emerging
markets

Central and Eastern Europe and Western Asia

EMERGEMA Emerging
markets

Middle East and African emerging markets

EMERGEPR Emerging
markets

Asia/Pacific Rim emerging markets

CHINA Emerging
markets

CEIC Premium China Database, from CEIC Data
Company Ltd. (CEIC)

INDIA Emerging
markets

CEIC Premium India Database, from CEIC

ASEANR Regional
country detail

ASEAN countries (Indonesia, Malaysia,
Philippines, Singapore, Thailand, and Vietnam)

ANZR Regional
country detail

Australia and New Zealand

CANADAR Regional
country detail

Canada

CHINAR Regional
country detail

China

FRANCER Regional
country detail

France

GERMANR Regional
country detail

Germany

ITALYR Regional
country detail

Italy

JAPANR Regional
country detail

Japan

SPAINR Regional
country detail

Spain

ALPMEDR Regional
country detail

Switzerland
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Table 50.3 continued

Database
Name

Offering Type Description

UKR Regional
country detail

United Kingdom

INTSRVYS Other country
detail

Country surveys, private sources

ESG Other country
detail

Environmental, social, and governance indicators

MKTPMI Other country
detail

Purchasing managers surveys for 26 countries

PMIGL Other country
detail

Purchasing managers surveys for world

PMIEU Other country
detail

Purchasing managers surveys for the European
Union

PMIASIA Other country
detail

Purchasing managers surveys for Asia

PMIUS Other country
detail

Purchasing managers surveys for the United States

UKSRVYS Other country
detail

United Kingdom surveys

UKHPI Other country
detail

United Kingdom Halifax housing prices

CHINAFT Other country
detail

FT China confidential

FIBER Other country
detail

Fiber business cycle indicators

EURODATA International
organizations

European Union data from Eurostat, the European
Central Bank, and the European Commission

EUNA International
organizations

European national accounts

EUSRVYS International
organizations

European surveys

EUFIN International
organizations

European financial data

EUGOV International
organizations

European government finance

AMECO International
organizations

European macro forecasts

EUINT International
organizations

European international transactions

EULABOR International
organizations

European labor

EUPOP International
organizations

European demographics
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Table 50.3 continued

Database
Name

Offering Type Description

OECDMEI International
organizations

Organisation for Economic Co-operation and
Development (OECD) main economic indicators

OECDNAQ International
organizations

OECD Quarterly National Accounts

OECDLFS International
organizations

OECD labor force survey

OECDNA International
organizations

OECD Annual National Accounts

OECDGOV International
organizations

OECD government finance

OECDFIN International
organizations

OECD Financial Accounts and Financial Balance
Sheets

OECDFDI International
organizations

OECD foreign direct investment data

OUTLOOK International
organizations

OECD Economic Outlook

IFS International
organizations

International Financial Statistics from the
International Monetary Fund (IMF)

IFSANN International
organizations

International Financial Statistics, annual, from the
International Monetary Fund (IMF)

IMFBOP International
organizations

Balance of Payment Statistics from the
International Monetary Fund (IMF)

IMFBOPA International
organizations

Annual Balance of Payment Statistics from the
International Monetary Fund (IMF)

IMFDOT International
organizations

Direction of Trade Statistics from the
International Monetary Fund (IMF)

IMFDOTM International
organizations

Direction of Trade Statistics, monthly, from the
International Monetary Fund (IMF)

IMFWEO International
organizations

Analysis and projections of economic
development at the global level from the
International Monetary Fund (IMF)

IMFREO International
organizations

Regional economic outlook

CPIS International
organizations

Coordinated portfolio investment survey

BIS International
organizations

International banking statistics

WDI International
organizations

World development indicators

WBPRICES International
organizations

World commodity prices from the World
Development Prospects Group (Pink sheets)

QEDS International
organizations

Quarterly external debt statistics
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Table 50.3 continued

Database
Name

Offering Type Description

WBDEBT International
organizations

Debt statistics

UNPOP International
organizations

United Nations population projections

INTPOP International
organizations

U.S. Census Bureau international demographics

WFE International
organizations

World Federation of Exchanges

MA4CAST Forecasts and
as-reported data

Short-term U.S. economic forecasts from
Macro-economic Advisers

MA4CSTL Forecasts and
as-reported data

Long-term U.S. economic forecasts from
Macro-economic Advisers

FELATA Forecasts and
as-reported data

Focus economics consensus

FEAANZ Forecasts and
as-reported data

Focus economics consensus

FEMAJR Forecasts and
as-reported data

Focus economics consensus

FEMAEF Forecasts and
as-reported data

Focus economics consensus

FEEEUR Forecasts and
as-reported data

Focus economics consensus

FECMDTY Forecasts and
as-reported data

Focus economics consensus

FELATAH Forecasts and
as-reported data

Focus economics consensus

FEAANZH Forecasts and
as-reported data

Focus economics consensus

FEMAJRH Forecasts and
as-reported data

Focus economics consensus

FEMEAFH Forecasts and
as-reported data

Focus economics consensus

FEEEURH Forecasts and
as-reported data

Focus economics consensus

FECMDTH Forecasts and
as-reported data

Focus economics consensus

BLUECHPC Forecasts and
as-reported data

Blue Chip consensus economic indicators

BLUECHIP Forecasts and
as-reported data

Blue Chip consensus economic indicators

FX4CASTS Forecasts and
as-reported data

FX4CASTS consensus
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Table 50.3 continued

Database
Name

Offering Type Description

FX4CE Forecasts and
as-reported data

FX4CASTS consensus

OEFQMACR Forecasts and
as-reported data

Global macroeconomic forecasts from Oxford
Economic Forecasting

OEFAMACR Forecasts and
as-reported data

Global macroeconomic forecasts from Oxford
Economic Forecasting

OEFQIND Forecasts and
as-reported data

Global industry from Oxford Economic
Forecasting

EIUIAMER Forecasts and
as-reported data

Market indicators and forecasts (America) from
the Economist Intelligence Unit (EIU)

EIUIASIA Forecasts and
as-reported data

Market indicators and forecasts (Asia) from the
Economist Intelligence Unit (EIU)

EIUIEEUR Forecasts and
as-reported data

Market indicators and forecasts (Eastern Europe)
from the Economist Intelligence Unit (EIU)

EIUIMENA Forecasts and
as-reported data

Market indicators and forecasts from the
Economist Intelligence Unit (EIU)

EIUISUBS Forecasts and
as-reported data

Market indicators and forecasts from the
Economist Intelligence Unit (EIU)

EIUIWEUR Forecasts and
as-reported data

Market indicators and forecasts (Western Europe)
from the Economist Intelligence Unit (EIU)

EIUIREGS Forecasts and
as-reported data

Market indicators and forecasts from the
Economist Intelligence Unit (EIU)

EIUDAMER Forecasts and
as-reported data

Country data (America) from the Economist
Intelligence Unit (EIU)

EIUDASIA Forecasts and
as-reported data

Country data (Asia) from the Economist
Intelligence Unit (EIU)

EIUDEEUR Forecasts and
as-reported data

Country data (Eastern Europe) from the
Economist Intelligence Unit (EIU)

EIUDMENA Forecasts and
as-reported data

Country data from the Economist Intelligence
Unit (EIU)

EIUDSUBS Forecasts and
as-reported data

Country data from the Economist Intelligence
Unit (EIU)

EIUDWEUR Forecasts and
as-reported data

Country data (Western Europe) from the
Economist Intelligence Unit (EIU)

EIUDREGS Forecasts and
as-reported data

Country data from the Economist Intelligence
Unit (EIU)

IIFDATA Forecasts and
as-reported data

Institute of International Finance forecasts

PMAOEUR Forecasts and
as-reported data

Property market analysis forecasts

PMAREUR Forecasts and
as-reported data

Property market analysis forecasts
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Table 50.3 continued

Database
Name

Offering Type Description

PMALEUR Forecasts and
as-reported data

Property market analysis forecasts

PMAOASIA Forecasts and
as-reported data

Property market analysis forecasts

PMARASIA Forecasts and
as-reported data

Property market analysis forecasts

PMALASIA Forecasts and
as-reported data

Property market analysis forecasts

PMAOUS Forecasts and
as-reported data

Property market analysis forecasts

PMALUS Forecasts and
as-reported data

Property market analysis forecasts

AS1REPNA Forecasts and
as-reported data

Action Economics forecast medians and
as-reported data

MMSAMER Forecasts and
as-reported data

MMS survey medians and as-first-reported data
(America) from MMS International

MMSEUR Forecasts and
as-reported data

MMS survey medians and as-first-reported data
(Europe) from MMS International

MMSASIA Forecasts and
as-reported data

MMS survey medians and as-first-reported data
(Asia) from MMS International

SURVEYS Forecasts and
as-reported data

Economic survey forecasts

AS4CAST Forecasts and
as-reported data

Historical economic forecasts

ASREPGDP Forecasts and
as-reported data

As-reported U.S. gross domestic product from the
Bureau of Economic Analysis (BEA)

LABORR U.S. regional Monthly payroll employment from the Bureau of
Labor Statistics (BLS)

EMPLR U.S. regional Labor force and unemployment from the Bureau
of Labor Statistics (BLS)

EMPLC U.S. regional Labor force and unemployment from the Bureau
of Labor Statistics (BLS)

CEWR U.S. regional Covered employment and wages
BEAEMPL U.S. regional Annual employment by industry
BEAEMPM U.S. regional Annual employment by industry
PERMITS U.S. regional Residential building permits
PERMITY U.S. regional Residential building permits
PERMITP U.S. regional Residential building permits
PERMITC U.S. regional Residential building permits
PERMITA U.S. regional Residential building permits
REGIONAL U.S. regional Selected regional indicators
REGIONW U.S. regional Selected regional indicators
PIQR U.S. regional Personal income
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Table 50.3 continued

Database
Name

Offering Type Description

PIR U.S. regional Personal income
PIRMSA U.S. regional Personal income
PICOUNTY U.S. regional Personal income
PIRC1 to 9 U.S. regional Personal income
MBAMTG U.S. regional Mortgage delinquency rates from the Mortgage

Bankers Association
DLINQR U.S. regional Consumer delinquency rates from the American

Bankers Association
FALOAN U.S. regional Real estate and construction delinquency rates by

Foresight Analytics
BANKRUPT U.S. regional Bankruptcies by county and metropolitan

statistical area
GSP U.S. regional Gross state product from the Bureau of Economic

Analysis (BEA)
GDPMSA U.S. regional Gross domestic product by metropolitan statistical

area (MSA)
ASMR U.S. regional Annual survey of manufacturers by state
USPOP U.S. regional Population by age and sex
USPOPC U.S. regional Population by age and sex
PORTS U.S. regional Trade by port
EXPRQ1 to 9 U.S. regional Exports by industry and country from the World

Institute for Strategic Economic Research and the
U.S. Census Bureau

EXPORTSR U.S. regional Exports by industry and country from the World
Institute for Strategic Economic Research and the
U.S. Census Bureau

GOVFINR U.S. regional Government financial statistics from the U.S.
Census Bureau and the Rockefeller Institute of
Government

FDICR U.S. regional FDIC banking statistics



3642 F Chapter 50: The SASEHAVR Interface Engine

Examples: SASEHAVR Interface Engine
Before running the following sample code, set your HAVER_DATA environment variable to point to the
SAS/ETS SASMISC folder that contains sample Haver databases. The provided sample data files are
HAVERD.DAT, HAVERD.IDX, HAVERW.IDX, and HAVERW.DAT. In the following example, the Haver
database is called haverw, and it resides in the directory lib1. The DATA statement names the SAS output
data set hwouty, which will reside in the Work library.

Example 50.1: Examining the Contents of a Haver Database
To see which time series are in your Haver database, use the CONTENTS procedure with the SASEHAVR
LIBNAME statement to read the contents.

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=yearly start=19920101
end=20041231
force=freq;

data hwouty;
set lib1.haverw;

run;

title1 'Haver Analytics Database, HAVERW.DAT';
title2 'PROC CONTENTS for Time Series converted to yearly frequency';
proc contents data=hwouty;
run;

All time series in the Haver haverw database are listed alphabetically in Output 50.1.1.

Output 50.1.1 Examining the Contents of Haver Analytics Database, haverw.dat

Haver Analytics Database, HAVERW.DAT
PROC CONTENTS for Time Series converted to yearly frequency

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 YEAR4. Date of Observation

2 FA Num 8 Total Assets: All Commercial Banks (SA, Bil.$)

3 FCM1M Num 8 1-Month Treasury Bill Market Bid Yield at Constant Maturity (%)

4 FM1 Num 8 Money Stock: M1 (SA, Bil.$)

5 FTA1MA Num 8 Treasury 4-Week Bill: Total Amount Accepted (Bil$)

6 FTB3 Num 8 3-Month Treasury Bills, Auction (% p.a.)

7 LICN Num 8 Unemployment Insurance: Initial Claims, State Programs (NSA, Thous)

You could also use the following SAS statements to create a SAS data set named hwouty and to print its
contents:
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libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=yearly
start=19920101
end=20041231
force=freq;

data hwouty;
set lib1.haverw;

run;

title1 'Haver Analytics Database, Frequency=yearly, infile=haverw.dat';
title2 'Define a range inside the data range for OUT= dataset,';
title3 'Using the START=19920101 END=20041231 LIBNAME options.';

proc print data=hwouty;
run;

The preceding LIBNAME LIB1 statement specifies that all time series in the haverw database be converted
to a yearly frequency but to select only the range of data from January 1, 1992, to December 31, 2004. The
resulting SAS data set, hwouty, is shown in Output 50.1.2.

Output 50.1.2 Defining a Range inside the Data Range for Yearly Time Series

Haver Analytics Database, Frequency=yearly, infile=haverw.dat
Define a range inside the data range for OUT= dataset,

Using the START=19920101 END=20041231 LIBNAME options.

Obs DATE FA FCM1M FM1 FTA1MA FTB3 LICN

1 1992 3466.3 . 965.31 . 3.45415 407.340

2 1993 3624.6 . 1077.69 . 3.01654 342.304

3 1994 3875.8 . 1144.85 . 4.28673 342.726

4 1995 4209.3 . 1142.70 . 5.51058 357.038

5 1996 4399.1 . 1106.46 . 5.02096 351.358

6 1997 4820.3 . 1069.23 . 5.06885 321.513

7 1998 5254.8 . 1079.56 . 4.80726 317.077

8 1999 5608.1 . 1101.14 . 4.66154 298.921

9 2000 6115.4 . 1104.07 . 5.84644 303.726

10 2001 6436.2 2.31368 1136.31 11.753 3.44471 402.583

11 2002 7024.9 1.63115 1192.03 18.798 1.61548 402.796

12 2003 7302.9 1.02346 1268.40 16.089 1.01413 399.137

13 2004 7950.5 1.26642 1337.89 13.019 1.37557 341.338
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Example 50.2: Viewing Quarterly Time Series from a Haver Database
The following statements specify a quarterly frequency conversion of all time series for the period spanning
April 1, 2001, to December 31, 2004:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=quarterly
start=20010401
end=20041231
force=freq;

data hwoutq;
set lib1.haverw;

run;

title1 'Haver Analytics Database, Frequency=quarterly, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20010401 END=20041231 LIBNAME options.';

proc print data=hwoutq;
run;

The resulting SAS data set hwoutq is shown in Output 50.2.1.

Output 50.2.1 Defining a Range inside the Data Range for Quarterly Time Series

Haver Analytics Database, Frequency=quarterly, infile=haverw.dat
Define a range inside the data range for OUT= dataset

Using the START=20010401 END=20041231 LIBNAME options.

Obs DATE FA FCM1M FM1 FTA1MA FTB3 LICN

1 2001Q2 6225.4 . 1115.75 . 3.68308 356.577

2 2001Q3 6425.9 2.98167 1157.90 12.077 3.27615 368.408

3 2001Q4 6436.2 2.00538 1169.62 11.753 1.95308 477.685

4 2002Q1 6396.3 1.73077 1186.92 22.309 1.72615 456.292

5 2002Q2 6563.5 1.72769 1183.30 17.126 1.72077 368.592

6 2002Q3 6780.0 1.69231 1189.89 21.076 1.64769 352.892

7 2002Q4 7024.9 1.37385 1207.80 18.798 1.36731 433.408

8 2003Q1 7054.5 1.17846 1231.41 24.299 1.15269 458.746

9 2003Q2 7319.6 1.08000 1262.24 14.356 1.05654 386.185

10 2003Q3 7238.6 0.92000 1286.21 16.472 0.92885 361.346

11 2003Q4 7302.9 0.91538 1293.76 16.089 0.91846 390.269

12 2004Q1 7637.3 0.90231 1312.43 21.818 0.91308 400.585

13 2004Q2 7769.8 0.94692 1332.75 12.547 1.06885 310.508

14 2004Q3 7949.5 1.34923 1343.79 21.549 1.49393 305.862

15 2004Q4 7950.5 1.82429 1362.60 13.019 2.01731 348.400
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Example 50.3: Viewing Monthly Time Series from a Haver Database
The following statements convert weekly time series to a monthly frequency:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=monthly
start=20040401
end=20041231
force=freq;

data hwoutm;
set lib1.haverw;

run;

title1 'Haver Analytics Database, Frequency=monthly, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040401 END=20041231 LIBNAME options.';

proc print data=hwoutm;
run;

The result from using the range of April 1, 2004, to December 31, 2004, is shown in Output 50.3.1.

Output 50.3.1 Defining a Range inside the Data Range for Monthly Time Series

Haver Analytics Database, Frequency=monthly, infile=haverw.dat
Define a range inside the data range for OUT= dataset

Using the START=20040401 END=20041231 LIBNAME options.

Obs DATE FA FCM1M FM1 FTA1MA FTB3 LICN

1 APR2004 7703.8 0.9140 1325.73 16.946 0.93900 325.90

2 MAY2004 7704.7 0.9075 1332.96 25.043 1.03375 294.24

3 JUN2004 7769.8 1.0275 1339.50 12.547 1.26625 315.45

4 JUL2004 7859.5 1.1840 1330.13 21.823 1.34900 357.32

5 AUG2004 7890.0 1.3650 1347.84 25.213 1.48000 276.70

6 SEP2004 7949.5 1.5400 1352.40 21.549 1.65000 270.70

7 OCT2004 7967.6 1.6140 1355.28 21.322 1.74750 304.24

8 NOV2004 8053.4 1.9125 1366.06 21.862 2.05625 335.85

9 DEC2004 7950.5 1.9640 1365.60 13.019 2.20200 416.15
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Example 50.4: Viewing Weekly Time Series from a Haver Database
The following statements show weekly data that span from September 1, 2004, to December 31, 2004:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=weekly
start=20040901
end=20041231;

data hwoutw;
set lib1.haverw;

run;

title1 'Haver Analytics Database, Frequency=weekly, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040901 END=20041231 LIBNAME options.';

proc print data=hwoutw;
run;

Output 50.4.1 shows the output.

Output 50.4.1 Defining a Range inside the Data Range for Weekly Time Series

Haver Analytics Database, Frequency=weekly, infile=haverw.dat
Define a range inside the data range for OUT= dataset

Using the START=20040901 END=20041231 LIBNAME options.

Obs DATE FA FCM1M FM1 FTA1MA FTB3 LICN

1 29AUG2004 7890.0 1.39 1360.8 27.342 1.515 275.2

2 05SEP2004 7906.2 1.46 1353.7 25.213 1.580 273.7

3 12SEP2004 7962.7 1.57 1338.3 25.255 1.635 250.6

4 19SEP2004 7982.1 1.57 1345.6 15.292 1.640 275.8

5 26SEP2004 7987.9 1.56 1359.7 15.068 1.685 282.7

6 03OCT2004 7949.5 1.54 1366.0 21.549 1.710 279.6

7 10OCT2004 7932.4 1.56 1362.3 17.183 1.685 338.7

8 17OCT2004 7956.9 1.59 1350.1 17.438 1.680 279.8

9 24OCT2004 7957.3 1.63 1346.0 12.133 1.770 317.6

10 31OCT2004 7967.6 1.75 1362.7 21.322 1.855 305.5

11 07NOV2004 7954.1 1.84 1350.4 22.028 1.950 354.8

12 14NOV2004 8009.7 1.89 1354.8 25.495 2.045 311.9

13 21NOV2004 7938.3 1.93 1364.5 24.000 2.075 356.0

14 28NOV2004 8053.4 1.99 1381.3 24.424 2.155 320.7

15 05DEC2004 8010.7 2.05 1379.3 21.862 2.195 472.7

16 12DEC2004 8054.8 2.08 1355.1 22.178 2.210 370.6

17 19DEC2004 8019.2 1.98 1358.3 12.066 2.200 374.7

18 26DEC2004 7995.5 1.89 1366.3 12.787 2.180 446.6
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Example 50.5: Viewing Daily Time Series from a Haver Database
Consider viewing the Haver Analytics daily database named haverd. The contents of this database can be
seen by submitting the following DATA step:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=daily
start=20041201
end=20041231;

data hwoutd;
set lib1.haverd;

run;

title1 'Haver Analytics Database, HAVERD.DAT';
title2 'PROC CONTENTS for Time Series converted to daily frequency';
proc contents data=hwoutd;
run;

Output 50.5.1 shows the output of PROC CONTENTS with the time ID variable DATE followed by the time
series variables FCM10, FCM1M, FFED, FFP1D, FXAUS, and TCC with their corresponding attributes such
as type, length, format, and label.

Output 50.5.1 Examining the Contents of a Daily Haver Analytics Database, haverd.dat

Haver Analytics Database, HAVERD.DAT
PROC CONTENTS for Time Series converted to daily frequency

The CONTENTS Procedure

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 DATE9. Date of Observation

2 FCM10 Num 8 10-Year Treasury Note Yield at Constant Maturity (Avg, % p.a.)

3 FCM1M Num 8 1-Month Treasury Bill Market Bid Yield at Constant Maturity (%)

4 FFED Num 8 Federal Funds [Effective] Rate (% p.a.)

5 FFP1D Num 8 1-Day AA Financial Commercial Paper (% per annum)

6 FXAUS Num 8 Foreign Exchange Rate: Australia (US$/Australian$)

7 TCC Num 8 Treasury: Closing Operating Cash Balance (Today, Mil.$)
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Example 50.6: Limiting the Range of Time Series from a Haver Database
The following statements limit the range of data to the month of December:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=daily
start=20041201
end=20041231;

data hwoutd;
set lib1.haverd;

run;

title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20041201 END=20041231 LIBNAME options.';

proc print data=hwoutd;
run;

Note that Output 50.6.1 for daily conversion shows the frequency as the SAS time interval for WEEKDAY.

Output 50.6.1 Defining a Range inside the Data Range for Daily Time Series

Haver Analytics Database, Frequency=daily, infile=haverd.dat
Define a range inside the data range for OUT= dataset

Using the START=20041201 END=20041231 LIBNAME options.

Obs DATE FCM10 FCM1M FFED FFP1D FXAUS TCC

1 01DEC2004 4.38 2.06 2.04 2.01 0.7754 7564

2 02DEC2004 4.40 2.06 2.00 1.98 0.7769 8502

3 03DEC2004 4.27 2.06 1.98 1.96 0.7778 7405

4 06DEC2004 4.24 2.09 2.04 1.98 0.7748 7019

5 07DEC2004 4.23 2.08 1.99 1.99 0.7754 15520

6 08DEC2004 4.14 2.08 2.01 1.98 0.7545 12329

7 09DEC2004 4.19 2.07 2.05 2.03 0.7532 5441

8 10DEC2004 4.16 2.07 2.09 2.07 0.7495 6368

9 13DEC2004 4.16 2.04 2.18 2.13 0.7592 11395

10 14DEC2004 4.14 2.01 2.24 2.22 0.7566 13695

11 15DEC2004 4.09 1.98 2.31 2.27 0.7652 39765

12 16DEC2004 4.19 1.93 2.26 2.24 0.7563 33640

13 17DEC2004 4.21 1.95 2.23 2.20 0.7607 32764

14 20DEC2004 4.21 1.97 2.26 2.21 0.7644 36216

15 21DEC2004 4.18 1.92 2.24 2.21 0.7660 35056

16 22DEC2004 4.21 1.84 2.25 2.22 0.7656 34599

17 23DEC2004 4.23 1.83 2.34 2.08 0.7654 24467

18 24DEC2004 . . 2.27 . 0.7689 26898

19 27DEC2004 4.30 1.90 2.24 2.26 0.7777 31874

20 28DEC2004 4.31 1.88 2.24 2.24 0.7787 30513

21 29DEC2004 4.33 1.76 2.23 2.23 0.7709 34754

22 30DEC2004 4.27 1.68 2.24 2.18 0.7785 20045

23 31DEC2004 4.24 1.89 1.97 2.18 0.7805 24690
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Example 50.7: Using the WHERE Statement to Subset Time Series from a
Haver Database

Using a WHERE statement in the DATA step can be useful for further subsetting.

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=daily start=20041101 end=20041231;

data hwoutd;
set lib1.haverd;
where date between '01nov2004'd and '01dec2004'd;

run;

title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20041101 END=20041231 LIBNAME options.';
title4 'Subset further: where date between 01nov2004 and 31dec2004.';
proc print data=hwoutd;
run;

Output 50.7.1 shows that the time slice of November 1, 2004, to December 31, 2004, is narrowed further by
the DATE test in the WHERE statement to stop at December 1, 2004.
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Output 50.7.1 Defining a Range Using the WHERE Statement, START=20041101, and END=20041231

Haver Analytics Database, Frequency=daily, infile=haverd.dat
Define a range inside the data range for OUT= dataset

Using the START=20041101 END=20041231 LIBNAME options.
Subset further: where date between 01nov2004 and 31dec2004.

Obs DATE FCM10 FCM1M FFED FFP1D FXAUS TCC

1 01NOV2004 4.11 1.79 1.83 1.80 0.7460 35111

2 02NOV2004 4.10 1.86 1.74 1.74 0.7447 34091

3 03NOV2004 4.09 1.83 1.73 1.73 0.7539 14862

4 04NOV2004 4.10 1.85 1.77 1.75 0.7585 23304

5 05NOV2004 4.21 1.86 1.76 1.75 0.7620 19872

6 08NOV2004 4.22 1.88 1.80 1.84 0.7578 21095

7 09NOV2004 4.22 1.89 1.79 1.81 0.7618 16390

8 10NOV2004 4.25 1.88 1.92 1.85 0.7592 12872

9 11NOV2004 . . 1.92 . . 12872

10 12NOV2004 4.20 1.91 2.02 1.96 0.7685 28926

11 15NOV2004 4.20 1.92 2.06 2.03 0.7719 10480

12 16NOV2004 4.21 1.93 1.98 1.95 0.7728 13417

13 17NOV2004 4.14 1.90 1.99 1.93 0.7833 10506

14 18NOV2004 4.12 1.91 1.99 1.94 0.7786 6293

15 19NOV2004 4.20 1.98 1.99 1.93 0.7852 5100

16 22NOV2004 4.18 1.98 2.01 1.96 0.7839 6045

17 23NOV2004 4.19 1.99 2.00 1.95 0.7860 18135

18 24NOV2004 4.20 1.98 2.02 1.89 0.7863 14109

19 25NOV2004 . . 2.02 . . 14109

20 26NOV2004 4.24 2.01 2.01 1.97 0.7903 20588

21 29NOV2004 4.34 2.02 2.03 2.00 0.7852 24322

22 30NOV2004 4.36 2.07 2.02 2.04 0.7723 18033

23 01DEC2004 4.38 2.06 2.04 2.01 0.7754 7564

Example 50.8: Using the KEEP Option to Subset Time Series from a Haver
Database

To select specific time series, you can use the KEEP= or DROP= option as follows:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=daily
start=20041101
end=20041231
keep="FCM*";

data hwoutd;
set lib1.haverd;

run;

title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
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title3 ' Using the START=20041101 END=20041231 LIBNAME options.';
title4 ' Subset further: Using keep="FCM*" LIBNAME option ';
proc print data=hwoutd;
run;

Output 50.8.1 shows two series that are selected by using KEEP="FCM*" in the LIBNAME statement.
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Output 50.8.1 Using the KEEP Option and Defining a Range Using START=20041101 and END=20041231

Haver Analytics Database, Frequency=daily, infile=haverd.dat
Define a range inside the data range for OUT= dataset

Using the START=20041101 END=20041231 LIBNAME options.
Subset further: Using keep="FCM*" LIBNAME option

Obs DATE FCM10 FCM1M

1 01NOV2004 4.11 1.79

2 02NOV2004 4.10 1.86

3 03NOV2004 4.09 1.83

4 04NOV2004 4.10 1.85

5 05NOV2004 4.21 1.86

6 08NOV2004 4.22 1.88

7 09NOV2004 4.22 1.89

8 10NOV2004 4.25 1.88

9 11NOV2004 . .

10 12NOV2004 4.20 1.91

11 15NOV2004 4.20 1.92

12 16NOV2004 4.21 1.93

13 17NOV2004 4.14 1.90

14 18NOV2004 4.12 1.91

15 19NOV2004 4.20 1.98

16 22NOV2004 4.18 1.98

17 23NOV2004 4.19 1.99

18 24NOV2004 4.20 1.98

19 25NOV2004 . .

20 26NOV2004 4.24 2.01

21 29NOV2004 4.34 2.02

22 30NOV2004 4.36 2.07

23 01DEC2004 4.38 2.06

24 02DEC2004 4.40 2.06

25 03DEC2004 4.27 2.06

26 06DEC2004 4.24 2.09

27 07DEC2004 4.23 2.08

28 08DEC2004 4.14 2.08

29 09DEC2004 4.19 2.07

30 10DEC2004 4.16 2.07

31 13DEC2004 4.16 2.04

32 14DEC2004 4.14 2.01

33 15DEC2004 4.09 1.98

34 16DEC2004 4.19 1.93

35 17DEC2004 4.21 1.95

36 20DEC2004 4.21 1.97

37 21DEC2004 4.18 1.92

38 22DEC2004 4.21 1.84

39 23DEC2004 4.23 1.83

40 24DEC2004 . .

41 27DEC2004 4.30 1.90

42 28DEC2004 4.31 1.88

43 29DEC2004 4.33 1.76
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Output 50.8.1 continued

Haver Analytics Database, Frequency=daily, infile=haverd.dat
Define a range inside the data range for OUT= dataset

Using the START=20041101 END=20041231 LIBNAME options.
Subset further: Using keep="FCM*" LIBNAME option

Obs DATE FCM10 FCM1M

44 30DEC2004 4.27 1.68

45 31DEC2004 4.24 1.89

You can use the DROP option to drop specific variables from a Haver database. To specify this option, use
DROP= instead of KEEP=.

Example 50.9: Using the SOURCE Option to Subset Time Series from a Haver
Database

You can use the SOURCE= or DROPSOURCE= option to select specific variables that belong to a certain
source, similar to the way you use the KEEP= or DROP= option.

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=daily
start=20041101
end=20041223
source="FRB";

data hwoutd;
set lib1.haverd;

run;

title1 'Haver Analytics Database, Frequency=daily, infile=haverd.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20041101 END=20041223 LIBNAME options.';
title4 ' Subset further: Using source="FRB" LIBNAME option';
proc print data=hwoutd;
run;

Output 50.9.1 shows two series that are selected by using SOURCE="FRB" in the LIBNAME statement.
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Output 50.9.1 Using the SOURCE Option and Defining a Range Using START=20041101 and
END=20041223
Haver Analytics Database, Frequency=daily, infile=haverd.dat

Define a range inside the data range for OUT= dataset
Using the START=20041101 END=20041223 LIBNAME options.

Subset further: Using source="FRB" LIBNAME option

Obs DATE FCM10 FFED FFP1D FXAUS

1 01NOV2004 4.11 1.83 1.80 0.7460

2 02NOV2004 4.10 1.74 1.74 0.7447

3 03NOV2004 4.09 1.73 1.73 0.7539

4 04NOV2004 4.10 1.77 1.75 0.7585

5 05NOV2004 4.21 1.76 1.75 0.7620

6 08NOV2004 4.22 1.80 1.84 0.7578

7 09NOV2004 4.22 1.79 1.81 0.7618

8 10NOV2004 4.25 1.92 1.85 0.7592

9 11NOV2004 . 1.92 . .

10 12NOV2004 4.20 2.02 1.96 0.7685

11 15NOV2004 4.20 2.06 2.03 0.7719

12 16NOV2004 4.21 1.98 1.95 0.7728

13 17NOV2004 4.14 1.99 1.93 0.7833

14 18NOV2004 4.12 1.99 1.94 0.7786

15 19NOV2004 4.20 1.99 1.93 0.7852

16 22NOV2004 4.18 2.01 1.96 0.7839

17 23NOV2004 4.19 2.00 1.95 0.7860

18 24NOV2004 4.20 2.02 1.89 0.7863

19 25NOV2004 . 2.02 . .

20 26NOV2004 4.24 2.01 1.97 0.7903

21 29NOV2004 4.34 2.03 2.00 0.7852

22 30NOV2004 4.36 2.02 2.04 0.7723

23 01DEC2004 4.38 2.04 2.01 0.7754

24 02DEC2004 4.40 2.00 1.98 0.7769

25 03DEC2004 4.27 1.98 1.96 0.7778

26 06DEC2004 4.24 2.04 1.98 0.7748

27 07DEC2004 4.23 1.99 1.99 0.7754

28 08DEC2004 4.14 2.01 1.98 0.7545

29 09DEC2004 4.19 2.05 2.03 0.7532

30 10DEC2004 4.16 2.09 2.07 0.7495

31 13DEC2004 4.16 2.18 2.13 0.7592

32 14DEC2004 4.14 2.24 2.22 0.7566

33 15DEC2004 4.09 2.31 2.27 0.7652

34 16DEC2004 4.19 2.26 2.24 0.7563

35 17DEC2004 4.21 2.23 2.20 0.7607

36 20DEC2004 4.21 2.26 2.21 0.7644

37 21DEC2004 4.18 2.24 2.21 0.7660

38 22DEC2004 4.21 2.25 2.22 0.7656

39 23DEC2004 4.23 2.34 2.08 0.7654
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Example 50.10: Using the GROUP Option to Subset Time Series from a Haver
Database

You can use the GROUP= or DROPGROUP= option to select specific variables that belong to a certain group,
similar to the way you use the KEEP= or DROP= option.

Output 50.10.1, Output 50.10.2, and Output 50.10.3 show three different cross sections of the same database,
haverw, by specifying three unique GROUP= options: GROUP="F*" in LIBNAME LIB1, GROUP="M*" in
LIBNAME LIB2, and GROUP="E*" in LIBNAME LIB3.

The following statements specify GROUP="F*" in the LIBNAME LIB1 statement:

libname lib1 sasehavr "%sysget(HAVER_DATA)"
freq=week.6
force=freq
start=20040102
end=20041001
group="F*";

data hwoutwA;
set lib1.haverw;

run;

title1 'Haver Analytics Database, Frequency=week.6, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040102 END=20041001 LIBNAME options.';
title4 ' Subset further: Using group="F*" LIBNAME option';
proc print data=hwoutwA;
run;

Output 50.10.1 shows the output.
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Output 50.10.1 Using the GROUP=F* Option and Defining a Range

Haver Analytics Database, Frequency=week.6, infile=haverw.dat
Define a range inside the data range for OUT= dataset

Using the START=20040102 END=20041001 LIBNAME options.
Subset further: Using group="F*" LIBNAME option

Obs DATE FCM1M FTA1MA FTB3

1 01JAN2004 0.86 16.089 0.885

2 08JAN2004 0.88 12.757 0.920

3 15JAN2004 0.84 12.141 0.870

4 22JAN2004 0.79 12.593 0.875

5 29JAN2004 0.86 17.357 0.890

6 05FEB2004 0.90 21.759 0.920

7 12FEB2004 0.90 21.557 0.920

8 19FEB2004 0.92 21.580 0.915

9 26FEB2004 0.96 21.390 0.930

10 04MAR2004 0.97 24.119 0.940

11 11MAR2004 0.96 24.294 0.930

12 18MAR2004 0.94 23.334 0.945

13 25MAR2004 0.95 21.400 0.930

14 01APR2004 0.95 21.818 0.945

15 08APR2004 0.94 17.255 0.930

16 15APR2004 0.92 14.143 0.915

17 22APR2004 0.89 14.136 0.935

18 29APR2004 0.87 16.946 0.970

19 06MAY2004 0.89 22.772 0.985

20 13MAY2004 0.89 23.113 1.060

21 20MAY2004 0.91 25.407 1.040

22 27MAY2004 0.94 25.043 1.050

23 03JUN2004 0.97 27.847 1.130

24 10JUN2004 1.01 27.240 1.230

25 17JUN2004 1.05 17.969 1.390

26 24JUN2004 1.08 12.159 1.315

27 01JUL2004 1.11 12.547 1.355

28 08JUL2004 1.14 21.303 1.320

29 15JUL2004 1.16 25.024 1.315

30 22JUL2004 1.21 25.327 1.330

31 29JUL2004 1.30 21.823 1.425

32 05AUG2004 1.34 21.631 1.465

33 12AUG2004 1.37 28.237 1.470

34 19AUG2004 1.36 26.070 1.470

35 26AUG2004 1.39 27.342 1.515

36 02SEP2004 1.46 25.213 1.580

37 09SEP2004 1.57 25.255 1.635

38 16SEP2004 1.57 15.292 1.640

39 23SEP2004 1.56 15.068 1.685

40 30SEP2004 1.54 21.549 1.710

The following statements specify GROUP="M*" in the LIBNAME LIB2 statement:
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libname lib2 sasehavr "%sysget(HAVER_DATA)"
freq=week.6
force=freq start=20040102
end=20041001
group="M*";

data hwoutwB;
set lib2.haverw;

run;

title1 'Haver Analytics Database, Frequency=week.6, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040102 END=20041001 LIBNAME options.';
title4 ' Subset further: Using group="M*" LIBNAME option';
proc print data=hwoutwB;
run;

Output 50.10.2 shows the output.
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Output 50.10.2 Using the GROUP=M* Option and Defining a Range

Haver Analytics Database, Frequency=week.6, infile=haverw.dat
Define a range inside the data range for OUT= dataset

Using the START=20040102 END=20041001 LIBNAME options.
Subset further: Using group="M*" LIBNAME option

Obs DATE FA FM1

1 31DEC2003 7302.9 1298.2

2 07JAN2004 7351.2 1294.3

3 14JAN2004 7378.5 1286.8

4 21JAN2004 7434.7 1296.7

5 28JAN2004 7492.4 1305.1

6 04FEB2004 7510.4 1303.1

7 11FEB2004 7577.8 1309.1

8 18FEB2004 7648.7 1317.0

9 25FEB2004 7530.6 1321.1

10 03MAR2004 7546.7 1316.2

11 10MAR2004 7602.0 1312.7

12 17MAR2004 7603.0 1324.0

13 24MAR2004 7625.5 1337.6

14 31MAR2004 7637.3 1337.9

15 07APR2004 7667.4 1327.3

16 14APR2004 7692.5 1321.8

17 21APR2004 7698.4 1322.2

18 28APR2004 7703.8 1331.6

19 05MAY2004 7686.8 1342.5

20 12MAY2004 7734.6 1325.5

21 19MAY2004 7695.8 1330.1

22 26MAY2004 7704.7 1337.7

23 02JUN2004 7715.1 1329.0

24 09JUN2004 7754.0 1324.4

25 16JUN2004 7753.2 1336.4

26 23JUN2004 7796.2 1345.8

27 30JUN2004 7769.8 1351.4

28 07JUL2004 7852.3 1330.1

29 14JUL2004 7852.8 1326.3

30 21JUL2004 7854.7 1323.5

31 28JUL2004 7859.5 1340.6

32 04AUG2004 7847.9 1337.3

33 11AUG2004 7888.7 1340.1

34 18AUG2004 7851.8 1347.3

35 25AUG2004 7890.0 1360.8

36 01SEP2004 7906.2 1353.7

37 08SEP2004 7962.7 1338.3

38 15SEP2004 7982.1 1345.6

39 22SEP2004 7987.9 1359.7

40 29SEP2004 7949.5 1366.0

The following statements specify GROUP="E*" in the LIBNAME LIB3 statement:
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libname lib3 sasehavr "%sysget(HAVER_DATA)"
freq=week.6
force=freq
start=20040102
end=20041001
group="E*";

data hwoutwC;
set lib3.haverw;

run;

title1 'Haver Analytics Database, Frequency=week.6, infile=haverw.dat';
title2 ' Define a range inside the data range for OUT= dataset';
title3 ' Using the START=20040102 END=20041001 LIBNAME options.';
title4 ' Subset further: Using group="E*" LIBNAME option';
proc print data=hwoutwC;
run;

Output 50.10.3 shows the output.
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Output 50.10.3 Using the GROUP=E* Option and Defining a Range

Haver Analytics Database, Frequency=week.6, infile=haverw.dat
Define a range inside the data range for OUT= dataset

Using the START=20040102 END=20041001 LIBNAME options.
Subset further: Using group="E*" LIBNAME option

Obs DATE LICN

1 02JAN2004 552.8

2 09JAN2004 677.9

3 16JAN2004 490.8

4 23JAN2004 382.3

5 30JAN2004 406.3

6 06FEB2004 433.2

7 13FEB2004 341.6

8 20FEB2004 328.2

9 27FEB2004 342.1

10 05MAR2004 339.0

11 12MAR2004 312.1

12 19MAR2004 304.5

13 26MAR2004 296.8

14 02APR2004 304.2

15 09APR2004 350.7

16 16APR2004 335.0

17 23APR2004 313.7

18 30APR2004 283.2

19 07MAY2004 292.8

20 14MAY2004 297.1

21 21MAY2004 294.0

22 28MAY2004 304.1

23 04JUN2004 308.2

24 11JUN2004 312.4

25 18JUN2004 322.5

26 25JUN2004 318.7

27 02JUL2004 349.9

28 09JUL2004 444.5

29 16JUL2004 394.4

30 23JUL2004 315.7

31 30JUL2004 282.1

32 06AUG2004 291.5

33 13AUG2004 268.0

34 20AUG2004 272.1

35 27AUG2004 275.2

36 03SEP2004 273.7

37 10SEP2004 250.6

38 17SEP2004 275.8

39 24SEP2004 282.7

40 01OCT2004 279.6
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Example 50.11: Using the OUTSELECT=ON Option to View the Key Selection
Variables in a Haver Database

Suppose you want to select your time series based on geography codes or source codes. To construct your
wildcard for selection, first run with the OUTSELECT=ON option to see the possible values for each selection
key.

Libname lib1 sasehavr "%sysget(HAVER_DATA)"
outselect=on ;

data validD1;
set lib1.haverd;

run;

title1 'OUTSELECT=ON, Print the OUT= Data Set';
title2 'Shows the Values for Key Selection Variables:';
title3 'Name, Source, Geog1, Geog2, Shortsrc, Longsrc';
title4 'OUTSELECT=ON, the CONTENTS Procedure with Variable Names and Labels';
proc print data=validD1;
run;

proc contents data=validD1;
run;

Output 50.11.1 shows the output values for each key selection variable.

Output 50.11.1 OUTSELECT=ON Option Shows the Values for Key Selection Variables

OUTSELECT=ON, Print the OUT= Data Set
Shows the Values for Key Selection Variables:
Name, Source, Geog1, Geog2, Shortsrc, Longsrc

OUTSELECT=ON, the CONTENTS Procedure with Variable Names and Labels

Obs NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC FCM10 FCM1M FFED FFP1D FXAUS TCC

1 NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC

2 FCM10 FRB 0000000 FRB Federal Reserve Board

3 FCM1M UST 0000000 FRB Federal Reserve Board

4 FFED FRB 0000000 FRB Federal Reserve Board

5 FFP1D FRB 0000000 FRB Federal Reserve Board

6 FXAUS FRB 0000000 FRBNY Federal Reserve Bank of
New York

7 TCC UST 0000000 TREASURY U.S. Treasury

If you also want to see a list of all the variables and their corresponding labels for this OUTSELECT=ON
data set, you can run the CONTENTS procedure.

Output 50.11.2 shows the contents of the output data set.
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Output 50.11.2 OUTSELECT=ON Option Shows the Contents of HAVERD.DAT

Alphabetic List of Variables and Attributes

# Variable Type Len Label

7 FCM10 Char 8 10-Year Treasury Note Yield at Constant Maturity (Avg, % p.a.)

8 FCM1M Char 8 1-Month Treasury Bill Market Bid Yield at Constant Maturity (%)

9 FFED Char 8 Federal Funds [Effective] Rate (% p.a.)

10 FFP1D Char 8 1-Day AA Financial Commercial Paper (% per annum)

11 FXAUS Char 8 Foreign Exchange Rate: Australia (US$/Australian$)

3 GEOG1 Char 8 DLXRECORD.Geography1

4 GEOG2 Char 8 DLXRECORD.Geography2

6 LONGSRC Char 70 DLXRECORD.LongSource

1 NAME Char 10 DLXRECORD.VarName

5 SHORTSRC Char 10 DLXRECORD.ShortSourc

2 SOURCE Char 6 DLXRECORD.Source

12 TCC Char 8 Treasury: Closing Operating Cash Balance (Today, Mil.$)

Example 50.12: Selecting Variables Based on Short Source Key Code
Using the information from Example 50.11, you can now select time series by using selection keys such as
the SHORT= , GEOG1=, or GEOG2= option. Since the short source values are nontrivial in the database
haverd, it is best in this case to use the SHORT= option. For more information about using geography codes
as selection keys, see Output 50.13.1 for the GEOG1= option and Output 50.13.2 for the GEOG2= option.

Libname lib1 sasehavr "%sysget(HAVER_DATA)"
short="GOLDMAN, FRB, CRB";

data validE2;
set lib1.haverd;
where date between '18jan2005'd and '29mar2005'd;

run;

title1 'SHORT= option list: GOLDMAN, FRB, CRB';
title2 'Should contain these time series:';
title3 'FCM10, FCM1M, FFED, FFP1D';
title4 'SHORT= option, Print the OUT= ValidE2 Data Set';
proc print data=validE2;
run;

title4 'SHORT= option, Print the Contents of OUT= ValidE2 Data Set';
proc contents data=validE2;
run;

Output 50.12.1 shows the output for the SHORT= option.
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Output 50.12.1 SHORT= Option Shows the Selected Variables

SHORT= option list: GOLDMAN, FRB, CRB
Should contain these time series:
FCM10, FCM1M, FFED, FFP1D

SHORT= option, Print the OUT= ValidE2 Data Set

Obs DATE FCM10 FCM1M FFED FFP1D

1 18JAN2005 4.21 2.05 2.31 2.30

2 19JAN2005 4.20 1.95 2.19 2.22

3 20JAN2005 4.17 1.89 2.25 2.22

4 21JAN2005 4.16 2.02 2.26 2.19

5 24JAN2005 4.14 2.05 2.26 2.22

6 25JAN2005 4.20 2.13 2.29 2.22

7 26JAN2005 4.21 2.16 2.33 2.26

8 27JAN2005 4.22 2.16 2.39 2.30

9 28JAN2005 4.16 2.12 2.48 2.37

10 31JAN2005 4.14 2.06 2.50 2.47

11 01FEB2005 4.15 2.23 2.40 2.47

12 02FEB2005 4.15 2.22 2.29 2.45

13 03FEB2005 4.18 2.18 2.49 2.46

14 04FEB2005 4.09 2.20 2.51 2.45

15 07FEB2005 4.07 2.27 2.50 2.47

16 08FEB2005 4.05 2.34 2.48 2.45

17 09FEB2005 4.00 2.34 2.50 2.45

18 10FEB2005 4.07 2.35 2.51 2.47

19 11FEB2005 4.10 2.36 2.50 2.48

20 14FEB2005 4.08 2.37 2.51 2.50

21 15FEB2005 4.10 2.40 2.53 2.54

22 16FEB2005 4.16 2.39 2.48 2.45

23 17FEB2005 4.19 2.40 2.50 2.47

24 18FEB2005 4.27 2.39 2.51 2.45

25 21FEB2005 . . 2.51 .

26 22FEB2005 4.29 2.43 2.57 2.49

27 23FEB2005 4.27 2.47 2.53 2.48

28 24FEB2005 4.29 2.48 2.55 2.52

29 25FEB2005 4.27 2.50 2.54 2.52

30 28FEB2005 4.36 2.51 2.52 2.58

31 01MAR2005 4.38 2.55 2.39 2.51

32 02MAR2005 4.38 2.54 2.48 2.44

33 03MAR2005 4.39 2.55 2.51 2.49

34 04MAR2005 4.32 2.56 2.50 2.46

35 07MAR2005 4.31 2.59 2.51 2.49

36 08MAR2005 4.38 2.61 2.49 2.47

37 09MAR2005 4.52 2.60 2.50 2.45

38 10MAR2005 4.48 2.60 2.52 2.49

39 11MAR2005 4.56 2.60 2.51 2.48

40 14MAR2005 4.52 2.62 2.59 2.53

41 15MAR2005 4.54 2.70 2.61 2.60

42 16MAR2005 4.52 2.68 2.57 2.50

43 17MAR2005 4.47 2.68 2.68 2.58

44 18MAR2005 4.51 2.70 2.70 2.68
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Output 50.12.1 continued

SHORT= option list: GOLDMAN, FRB, CRB
Should contain these time series:
FCM10, FCM1M, FFED, FFP1D

SHORT= option, Print the OUT= ValidE2 Data Set

Obs DATE FCM10 FCM1M FFED FFP1D

45 21MAR2005 4.53 2.72 2.71 2.72

46 22MAR2005 4.63 2.77 2.72 2.68

47 23MAR2005 4.61 2.72 2.73 2.69

48 24MAR2005 4.60 2.70 2.75 2.62

49 25MAR2005 . . 2.80 2.59

50 28MAR2005 4.64 2.69 2.79 2.79

51 29MAR2005 . . . 2.76

If you also want to see a list of all the variables and their corresponding labels for this data set, you can run
the CONTENTS procedure.

Output 50.12.2 shows the output.

Output 50.12.2 SHORT= Option Shows the Contents of the validE2 Data Set

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 DATE9. Date of Observation

2 FCM10 Num 8 10-Year Treasury Note Yield at Constant Maturity (Avg, % p.a.)

3 FCM1M Num 8 1-Month Treasury Bill Market Bid Yield at Constant Maturity (%)

4 FFED Num 8 Federal Funds [Effective] Rate (% p.a.)

5 FFP1D Num 8 1-Day AA Financial Commercial Paper (% per annum)

Example 50.13: Selecting Variables Based on Geography Key Codes
Since the haverd database did not have interesting geography codes, the following statements access the
INTWKLY database by using its more complete geography key codes to select the desired time series from the
specified geography codes:

Libname lib1 sasehavr "%sysget(HAVER_DATA_NEW)"
outselect=on

keep="R273RF3,X924USBE,R023DF,R273G1,F023A,F158FBS,F023ACR,X156VEB,F023ACE";

data valid1(keep=NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC);
set lib1.intwkly;

run;

title1 'OUTSELECT=ON, Print the OUT= Data Set';
title2 'Shows the Values for Key Selection Variables:';
title3 'Name, Source, Geog1, Geog2, Shortsrc, Longsrc';
title4 'OUTSELECT=ON, the CONTENTS Procedure with Variable Names and Labels';
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proc print data=valid1;
run;

Libname lib2 sasehavr "%sysget(HAVER_DATA_NEW)"
geog1="156";

data valid2(
keep=date R273RF3 X924USBE R023DF R273G1 F023A F158FBS F023ACR X156VEB F023ACE);
set lib2.intwkly;

run;

title1 'Only one GEOG1 Code, 156, contains time series X156VEB';
title2 'Select Geography Code 1 Option:';
title3 'GEOG1= option';
title4 'Only Time Series X156VEB has Geog1 = 156';

proc contents
data=valid2;

run;

Libname lib3 sasehavr "%sysget(HAVER_DATA_NEW)"
geog2="299";

data valid3(
keep=date R273RF3 X924USBE R023DF R273G1 F023A F158FBS F023ACR X156VEB F023ACE);
set lib3.intwkly;

run;

title1 'Only one GEOG2 Code, 299, contains time series X156VEB';
title2 'Select Geography Code 2 Option:';
title3 'GEOG2= option';
title4 'Only Time Series X156VEB has Geog2 = 299';

proc contents
data=valid3;

run;

title1 'Compare GEOG1 Code 156';
title2 'Over nonmissing values range';
title3 'With GEOG2 Code 299';
title4 'Over nonmissing values range';

proc compare listall briefsummary criterion=1.0e-5
base=valid2(
where=( date between '09jan1998'd and '28dec2007'd ))
compare=valid3(
where=( date between '09jan1998'd and '28dec2007'd ));

run;

Output 50.13.1, Output 50.13.2, Output 50.13.3, and Output 50.13.4 show the output.
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Output 50.13.1 OUTSELECT=ON Option Shows the Values for Key Selection Variables

OUTSELECT=ON, Print the OUT= Data Set
Shows the Values for Key Selection Variables:
Name, Source, Geog1, Geog2, Shortsrc, Longsrc

OUTSELECT=ON, the CONTENTS Procedure with Variable Names and Labels

Obs NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC

1 NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC

2 F023A STLF 023 ECB European Central Bank

3 F023ACE STLF 023 ECB European Central Bank

4 F023ACR STLF 023 ECB European Central Bank

5 F158FBS --- 158 JMoF Ministry of Finance

6 R023DF --- 023 ECB European Central Bank

7 X156VEB STLF 156 299 BOCAN Bank of Canada

8 X924USBE STLF 924 111 SAFE China State Administration of Foreign Exchange

Output 50.13.2 Only One GEOG1 Code, 156, Contains Time Series X156VEB

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 DATE9. Date of Observation

2 X156VEB Num 8 Canada: Venezuelan Bolivar Noon Exchange Rate (C$/Bolivar)

Output 50.13.3 Only One GEOG2 Code, 299, Contains Time Series X156VEB

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 DATE9. Date of Observation

2 X156VEB Num 8 Canada: Venezuelan Bolivar Noon Exchange Rate (C$/Bolivar)

Output 50.13.4 Comparing GEOG1 and GEOG2 Access of INTWKLY Haver DLX Database

OUTSELECT=ON, Print the OUT= Data Set
Shows the Values for Key Selection Variables:
Name, Source, Geog1, Geog2, Shortsrc, Longsrc

OUTSELECT=ON, the CONTENTS Procedure with Variable Names and Labels

Obs NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC

1 NAME SOURCE GEOG1 GEOG2 SHORTSRC LONGSRC

2 F023A STLF 023 ECB European Central Bank

3 F023ACE STLF 023 ECB European Central Bank

4 F023ACR STLF 023 ECB European Central Bank

5 F158FBS --- 158 JMoF Ministry of Finance

6 R023DF --- 023 ECB European Central Bank

7 X156VEB STLF 156 299 BOCAN Bank of Canada

8 X924USBE STLF 924 111 SAFE China State Administration of Foreign Exchange
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Output 50.13.4 continued

Only one GEOG1 Code, 156, contains time series X156VEB
Select Geography Code 1 Option:

GEOG1= option
Only Time Series X156VEB has Geog1 = 156

The CONTENTS Procedure

Data Set Name WORK.VALID2 Observations 2404

Member Type DATA Variables 2

Engine V9 Indexes 0

Created 05/11/2017 11:42:49 Observation Length 16

Last Modified 05/11/2017 11:42:49 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_64

Encoding wlatin1  Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 4062

Obs in First Data Page 2404

Number of Data Set Repairs 0

ExtendObsCounter YES

Filename C:\Users\saskff\AppData\Local\Temp\SAS Temporary Files\_TD9704_D79286_\valid2.sas7bdat

Release Created 9.0401M5

Host Created X64_7PRO

Owner Name BUILTIN\Administrators

File Size 128KB

File Size (bytes) 131072

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 DATE9. Date of Observation

2 X156VEB Num 8 Canada: Venezuelan Bolivar Noon Exchange Rate (C$/Bolivar)
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Output 50.13.4 continued

Only one GEOG2 Code, 299, contains time series X156VEB
Select Geography Code 2 Option:

GEOG2= option
Only Time Series X156VEB has Geog2 = 299

The CONTENTS Procedure

Data Set Name WORK.VALID3 Observations 682

Member Type DATA Variables 2

Engine V9 Indexes 0

Created 05/11/2017 11:59:46 Observation Length 16

Last Modified 05/11/2017 11:59:46 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation WINDOWS_64

Encoding wlatin1  Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 4062

Obs in First Data Page 682

Number of Data Set Repairs 0

ExtendObsCounter YES

Filename C:\Users\saskff\AppData\Local\Temp\SAS Temporary Files\_TD9704_D79286_\valid3.sas7bdat

Release Created 9.0401M5

Host Created X64_7PRO

Owner Name BUILTIN\Administrators

File Size 128KB

File Size (bytes) 131072

Alphabetic List of Variables and Attributes

# Variable Type Len Format Label

1 DATE Num 8 DATE9. Date of Observation

2 X156VEB Num 8 Canada: Venezuelan Bolivar Noon Exchange Rate (C$/Bolivar)

Compare GEOG1 Code 156
Over nonmissing values range

With GEOG2 Code 299
Over nonmissing values range

                             The COMPARE Procedure                              
                   Comparison of WORK.VALID2 with WORK.VALID3                   
                 (Method=RELATIVE(2.22E-09), Criterion=0.00001)                 
                                                                                
NOTE: No unequal values were found. All values compared are exactly equal.      
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Overview: SASENOAA Interface Engine
The SASENOAA interface engine enables SAS programmers to retrieve severe weather data from the
National Oceanic and Atmospheric Administration (NOAA) Severe Weather Data Inventory (SWDI) web
service, which is hosted jointly by the NOAA’s National Environmental Satellite Data and Information
Service (NESDIS), the US Department of Commerce National Climatic Data Center (NCDC), the University
of North Carolina at Asheville’s National Environmental Modeling and Analysis Center (NEMAC), and the
Renaissance Computing Institute (RENCI) at UNC Asheville.

The SWDI web service offers access to severe weather data such as tornado vortex signatures; mesocyclone
signatures; the digital mesocyclone detection algorithm; hail data; storm cell structure; preliminary local
storm reports; and severe thunderstorm, tornado, flash flood, and special marine warnings. The SWDI
lightning data are not accessible to the public, so they are not supported by the SASENOAA interface engine.

It is important to note that the absence of SWDI weather data for a geographic region or time period does not
necessarily indicate that severe weather did not occur at that place or time; instead, the interpretation should
be that severe weather was not detected or reported by NOAA’s SWDI data sources. In addition, because
much of the SWDI’s information is derived from radar data, its usefulness is primarily that it provides data
that indicates probable conditions for an event rather than confirming the actual occurrence of an event.

The SASENOAA interface engine uses the LIBNAME statement to enable you to specify how to retrieve
your NOAA Severe Weather data and which weather data time series or storm events you want to retrieve
based on date range and weather station location. You can then use the SAS DATA step to perform further
subsetting and to store the resulting time series in a SAS data set or in map files (such as Google Earth’s
KMZ files or Esri shapefiles). You can perform more analysis (if desired) either in the same SAS session or
in a later session. You can map your results in Google Maps by importing the resulting KML file, or you
can map your results in SAS by using PROC MAPIMPORT and PROC GMAP to create a map from the
resulting Esri shapefiles (which have the file name extension .shp).

The SASENOAA interface engine is supported on SAS running on Linux X64 (LAX) and Windows. Although
the SASENOAA engine uses the NOAA SWDI API, it is not endorsed or certified by either NOAA or the
National Weather Service. By using the SASENOAA interface engine, you are agreeing to comply with the
NOAA SWDI terms of use, which are described on the web page at the following URL:

http://www.weather.gov/disclaimer/

http://www.weather.gov/disclaimer/
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Getting Started: SASENOAA Interface Engine
You can query the SWDI data sets to retrieve the observations or data values for a list of time series or events
by specifying the data format (FORMAT= option), the data set to access (NOAASET= option), and the date
range (RANGE= option).

The SASENOAA engine’s FORMAT= option supports three formats: XML (default), SHP, and KMZ. The
XML format stores the weather data results in a SAS data set (.sas7bdat) named in the OUTXML= option,
and when applicable, in two additional data sets: one for message text output (_M.sas7bdat), and another for
statistics output (_S.sas7bdat).

The SHP format produces a ZIP file that contains four Esri shapefiles (with the extensions .shp, .shx, .dbf,
and .prj). The SASENOAA interface unzips the SHP ZIP file to surface the four Esri files. The KMZ format
produces a ZIP file (with the extension .kmz) that can be opened in virtual globe software such as Google
Earth. The SASENOAA engine unzips the KMZ file to produce the resulting KML file, which can then be
imported into Google Maps to create a detailed map of the SWDI time series data.

The NOAASET= option is required. You can specify one of the following Next-Generation Radar (NEXRAD)
Level III types: nx3tvs (tornado vortex signatures), nx3meso (mesocyclone signatures), nx3mda (digital
mesocyclone detection algorithm), nx3hail (hail signatures), or nx3structure (storm cell structure information).
You can also specify two other types: plsr (preliminary local storm reports) and warn (severe thunderstorm,
tornado, flash flood, and special marine warnings).

After you specify both the NOAASET= option and the format, you must also use the RANGE= option to
specify the date range of the data that you are selecting for output, as shown in the following example.

The statements that follow enable you to access the severe weather tornado vortex signature (TVS) events
that are recorded in the nx3tvs database for the date range beginning May 5, 2006, and ending May 6, 2006.
The observations are sorted in chronological order (the datetime variable is ztime). The output is shown in
Figure 51.1.

options validvarname=any;

title 'Retrieve Tornado Vortex Signature Data for the Range 20060505:20060506';
libname mylib "/sasusr/noaa/doc/";
libname noaa sasenoaa "physical path to the folder where you want the NOAA data"

NOAASET=nx3tvs
RANGE='20060505:20060506'
OUTXML=cinco
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(NOAA_DATA)cinco.map"
FORMAT=xml;

data mylib.mycinco;
set noaa.cinco;

run;
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proc contents data=mylib.mycinco; run;
proc print data=mylib.mycinco(obs=10); run;

Figure 51.1 NX3TVS Data for May 5 to May 6, 2006

Retrieve Tornado Vortex Signature Data for the Range 20060505:20060506

Obs ztime wsr_id cell_id cell_type range azimuth max_shear mxdv shape

1 2006-05-05T00:05:50 KBMX Q0 TVS 7 217 403 116 POINT (-86.8535716274277
33.0786326913943)

2 2006-05-05T00:10:02 KBMX Q0 TVS 5 208 421 120 POINT (-86.8165772540846
33.0982820681588)

3 2006-05-05T00:12:34 KSJT P2 TVS 49 106 17 52 POINT (-99.5771091971025
31.1421609654838)

4 2006-05-05T00:17:31 KSJT B4 TVS 40 297 25 62 POINT (-101.188161700093
31.672392833416)

5 2006-05-05T00:29:13 KMAF H4 TVS 53 333 34 111 POINT (-102.664426480293
32.7306917937698)

6 2006-05-05T00:31:25 KLBB N0 TVS 51 241 24 78 POINT (-102.70047613441
33.2380072329615)

7 2006-05-05T00:33:25 KMAF H4 TVS 52 334 46 145 POINT (-102.6393683028
32.7226656893341)

8 2006-05-05T00:37:37 KMAF H4 TVS 50 334 34 107 POINT (-102.621904684258
32.6927081076156)

9 2006-05-05T00:41:51 KMAF H4 TVS 51 335 29 91 POINT (-102.614794815627
32.714139844846)

10 2006-05-05T00:44:33 KLBB N0 TVS 46 245 35 100 POINT (-102.643380529494
33.3266446067682)

The XML data that the NOAA SWDI web service returns are placed in a file that is named by the OUTXML=
option—in this case, CINCO1.xml. Note that the SASENOAA engine appends a numeral to the XML file name,
and the file extension (.xml) is excluded from the file name that appears in the OUTXML= option. The NOAA
data reside in the location that is given inside the string enclosed in double quotation marks in the SASENOAA
LIBNAME statement. So, if the NOAA_DATA environment variable is set to /sasusr/noaa/test/, then
the NOAA data is located in the folder /sasusr/noaa/test. An equivalent LIBNAME statement that
does not use any environment variables could be as follows:

libname noaa sasenoaa "physical path to the folder where you want the NOAA data"
NOAASET=nx3tvs
RANGE='20060505:20060506'
OUTXML=cinco
XMLMAP="/sasusr/noaa/test/cinco.map"
AUTOMAP=replace
MAPREF=MyMap
FORMAT=xml;

The XML map that is created is assigned the full path name that the XMLMAP= option specifies. The
SASENOAA engine appends a numeral to the XML file name to prevent file names from being overwritten
during multiple read requests.

The RANGE= option specifies the start date and end date for the range of days for which you want to retrieve
data. This option accepts a string, enclosed in single quotation marks, that gives start and end dates (in
'YYYYMMDD' format) so that only the recorded severe weather events from the selected dates are included.
The result, MYCINCO, is named in the DATA step and is shown in Figure 51.1.
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It is more efficient to use the DATA step to store your NOAA SWDI data in a SAS data set and then refer to
the SAS data set directly in your PROC statements. You can also refer to the SASENOAA libref directly, as
in the statement

proc print data=noaa.cinco(obs=10);

The PROC PRINT statement uses the member name, CINCO; this usage corresponds to the OUT-
XML=CINCO option. Although using this statement might seem easier, it is not as efficient, because
every time you use the SASENOAA libref, the SASENOAA interface engine reads the entire XML file
into SAS again. So it is better to refer to the SAS data set repeatedly than to invoke the interface engine
repeatedly.

The SASENOAA interface engine supports the XML format by placing the XML data that the NOAA SWDI
web service returns in a file named by the OUTXML= option. The XML map that is automatically created
is assigned the full path name specified by the XMLMAP= option, and the fileref that is used for the map
assignment is specified by the MAPREF= option. In the preceding sample code, the SASENOAA engine
uses the MAPREF= and XMLMAP= options in the FILENAME statement to assign a file name:

FILENAME MyMap "/sasusr/noaa/test/cinco.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name the
map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML data file;
it is described in the section “SAS OUTXML File” on page 3689. The XML data file is placed in the folder
that is designated by physical-name, which is described in the section “The LIBNAME libref SASENOAA
Statement” on page 3677. You can refer to your data by using the NOAA libref defined in your SASENOAA
LIBNAME statement. The NOAA libref is shown inside the DATA step in the SET statement. The SET
statement reads observations from the input data set Noaa.cinco and stores them in a SAS data set named
Mycinco, as shown in Figure 51.1. You can also use the SAS DATA step to perform further processing and to
store the resulting time series in a SAS data set; this process is described in the section “SAS Output Data
Set” on page 3687.

In summary, to specify the NOAA SWDI data set that you want to retrieve, use the NOAASET= option. This
required option accepts a string that names the desired NOAA data set, in this case, NOAASET=NX3TVS.
The RANGE= option is also required and selects the date range based on the ztime variable, which is the time
ID variable for the resulting SAS data set. The Mycinco data set contains the NX3TVS data variables whose
observation range is controlled by the RANGE= option. The Mycinco data set contains observations that start
May 5, 2006, and end the same day, as specified by the end date May 6, 2006, which is excluded from the
selected data. NOTE: The begin date on the RANGE= option is inclusive, but the end date is exclusive of the
data.
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Syntax: SASENOAA Interface Engine
The SASENOAA interface engine uses standard engine syntax to read the observations or data values for
NOAA SWDI data sets that can each contain one or more events or time series. Table 51.1 summarizes the
options that the SASENOAA engine uses.

Table 51.1 Summary of LIBNAME libref SASENOAA Options

Option Description

AUTOMAP= Specifies whether or not to overwrite the existing XML map file
BBOX= Specifies the geographic area to report on by defining a bounding box in the format

'minLon,minLat,maxLon,maxLat' for minimum longitude, minimum
latitude, maximum longitude, maximum latitude. For example:
BBOX=‘-91,30,-90,31’.

CENTER= Specifies the center point ‘longitude,latitude’ (to nearest tenth of a degree) of the
geographic area to retrieve data for. Use this option with the RADIUS= option to
complete the specification.

CONNECT= Specifies whether or not you need the connect method for a secure connection via a
proxy server. You must specify the PROXY= option when you specify
CONNECT=ON.

DEBUG= Specifies whether or not you need diagnostic message logging in the SAS log
window

FILTERBY= Specifies the weather station to retrieve data for
FILTERBYCONDITION= Specifies the condition for selection of the weather station
FORMAT= Specifies a file extension that indicates the type of file to retrieve. Only XML, SHP,

and KMZ file types are supported for the SASENOAA engine.
ID= Specifies an ID to retrieve the text message in the warning or the preliminary local

storm report databases
KMZMAP= Specifies the fully qualified file name for the KMZ map that the SASENOAA

engine creates. This file name is usually the same as the one in the OUTKMZ=
option.

LIMIT= Specifies the maximum number of observations to use in the report
NOAASET= Specifies the required NOAA data set name to access in the Severe Weather Data

Inventory
OFFSET= Specifies the offset to the number of observations to start the report
OUTKMZ= Specifies the name for the downloaded KMZ file. The SASENOAA engine also

unzips the KMZ file and gives the KML file this name.
OUTSHP= Specifies the name for the downloaded SHP ZIP file. The SASENOAA engine also

unzips the SHP file and uses this name for the four Esri shapefiles.
OUTXML= Specifies the name for the XML data that are downloaded from the SWDI web

service containing the time series/event data. This name is also used to create the
SAS data sets that contain the SWDI data.

PROXY= Specifies the proxy server that you want to use (if you have trouble connecting
without specifying a proxy). If you also need the connect method for a secure
connection, use the CONNECT=ON option in addition to the PROXY= option. See
the CONNECT= option.
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Table 51.1 continued

Option Description

RADIUS= Specifies the radius (in miles, measured from the CENTER= option value’s
coordinates) of the geographic area to retrieve data for. This option must be used
with the CENTER= option.

RANGE= Specifies the start date and end date for reading the severe weather data in
'YYYYMMDD:YYYYMMDD' format. The range must be within the same calendar
year unless you are requesting statistics only by also specifying the STAT= option.
The start date is inclusive of the data, but the end date is exclusive of the data. There
is a special option (PERIODOFRECORD) that returns the valid range availability
of data for the requested data set specified in the NOAASET= option.

SHPMAP= Specifies the fully qualified file name for the SHP map that the SASENOAA engine
creates. This file name is usually the same as the one in the OUTSHP= option.

STAT= Specifies the statistical operation that you want to perform on the requested severe
weather data

TILE= Specifies the coordinates of a geographic location to the nearest tenth of a degree.
For the earlier example of –95.45,36.88, the matching tile would contain values
from –95.4500 to –95.5499 and from 36.8500 to 36.9499.

XMLMAP= Specifies the fully qualified file name for the XML map that the SASENOAA
engine creates. This file name is usually the same as the one in the OUTXML=
option.

The LIBNAME libref SASENOAA Statement
LIBNAME libref SASENOAA ‘physical-name’ options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory where
you want the NOAA Severe Weather Data Inventory (SWDI) files to be downloaded and stored. The required
physical-name argument specifies the location of the folder where your SWDI XML or data shapefiles reside.
The physical-name should end with a backslash if you are in a Windows environment and a forward slash if
you are in a UNIX environment. The designated folder that is specified in the physical-name argument must
already exist before you submit the LIBNAME libref SASENOAA statement.

You can specify the following options in the LIBNAME libref SASENOAA statement.

AUTOMAP=REPLACE | REUSE
specifies whether or not to overwrite the existing XML map file.

REPLACE specifies that the XML map file be overwritten, and ensures that the most
current XML map that is generated by the SASENOAA engine and named by
the XMLMAP= option is used.

REUSE specifies that the XML map file not be overwritten, and ensures that a pre-
existing XML map file that is named by the XMLMAP= option is used.

By default, AUTOMAP=REPLACE. The AUTOMAP= option is used only with the XML format (the
default).
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BBOX=‘noaa_bbox_coordinates’
specifies the coordinates that define the bounding box in the format 'minLon,minLat,maxLon,maxLat'.
This option enables you to select the severe weather data that lie within the geographic area bounded
by the box that is defined within the intersections of the specified paired sets of parallels and meridians.

CENTER=‘noaa_center_coordinates’
specifies the center coordinates (longitude, latitude) of a geographic area that, when used along with
the RADIUS= option, enable you to select the severe weather data from within the circle whose center
is at the specified coordinates (CENTER= option) and of the specified radius (RADIUS= option). An
example request follows for “Get all nx3tvs occurring on May 6, 2006, within 15 miles of latitude =
32.7 and longitude = –102.0 and return as XML”:

LIBNAME libref sasenoaa 'physical-name'
FORMAT=xml
NOAASET=nx3tvs
RANGE='20060506:20060507'
RADIUS='15.0'
CENTER='-102.0,32.7'
OUTXML=mytvs;

CONNECT=ON | OFF
specifies whether or not to use the connect method along with the PROXY= option. NOTE: You must
use the PROXY= option and specify your proxy server in addition to the CONNECT=ON option
when you want to use the connect method. For more information about a secure connection, see the
PROXY= option.

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log window. This information
can be very useful for troubleshooting a problem.

FILTERBY=‘noaa_filterby_column_value_pair ’
specifies the column name and column value, separated by a colon, to filter the data by. Most often,
the column name is WSR_ID and the column value is one of the NEXRAD III weather station ICAO
codes shown in Table 51.2.

FILTERBYCONDITION=‘noaa_filterbyCond_column_cond_pair ’
specifies the column name and condition value, separated by a colon, to filter the data by. Most often,
the column name is WSR_ID and the condition is AND | OR. An example request follows:

LIBNAME libref sasenoaa 'physical-name'
FORMAT=xml
NOAASET=nx3hail
RANGE='20110521:20110522'
FILTERBY='WSR_ID:KFWS'
FILTERBYCONDITION='WSR_ID:or'
OUTXML=byNexR;

See also the FILTERBY= option.
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FORMAT=XML | KMZ | SHP
specifies the format of the file to be retrieved from the NOAA SWDI web service. Although this service
can report data in many formats, the SASENOAA engine supports only the XML, SHP, and KMZ
formats. When you specify FORMAT=XML, the downloaded data file is named by the OUTXML=
option and mapped using the fully designated physical file name specified in the XMLMAP= option.
Similarly, when you specify FORMAT=KMZ, use the OUTKMZ= and KMZMAP= options to name
your results; and when you specify FORMAT=SHP, use the OUTSHP= and SHPMAP= options to
name your results. NOTE: Only one format specification is allowed in each SASENOAA LIBNAME
statement.

ID=‘noaa_id_messageno’
specifies the message number to retrieve the complete text of the message for the data set specified in
the NOAASET= option. ID numbers can be read from the ID column in the results data set (named
in the OUTXML= option) for either the warn or plsr data set. The ID= option is used with either the
warn or plsr data set to retrieve the entire message that matches the message number indicated in the
ID= option for the desired data set, either the NOAA severe storm warnings (warn data set) or the
preliminary local storm reports (plsr data set). See Example 51.1 for sample code that shows that the
output from the ID= option is placed in the SAS data set named by appending _M to the member name
specified in the OUTXML= option.

KMZMAP=noaa_kmzmapfile
specifies the fully qualified name of the location where the KMZ map file (zipped KML map file) is
automatically stored.

LIMIT=noaa_limit
limits the number of observations in the results data set. Specify a number from 1 to 10,000,000.

MAPREF=noaa_xmlmapref
specifies the fileref to use for the map assignment. For an example of the SASENOAA engine that
uses the MAPREF= and XMLMAP= options in the FILENAME statement to assign a file name, as in
the following, see the section “Getting Started: SASENOAA Interface Engine” on page 3673:

FILENAME MyMap "/sasusr/playpens/saskff/noaa/test/gstart.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML
data file. It is placed in the folder that is designated by physical-name in your SASENOAA LIBNAME
statement, and you can reference it by using the myLib libref. This is shown in the section “Getting
Started: SASENOAA Interface Engine” on page 3673, inside the DATA step in the SET statement.
The SET statement reads observations from the input data set myLib.GSTART and stores them in a
SAS data set named ShearV.

NOAASET=noaa_data set_SWDI_dsname
specifies the name of the NOAA SWDI data set that you want to access. Use one of the following
names: nx3tvs, nx3meso, nx3mda, nx3hail, nx3structure, plsr, or warn. For a complete description of
each data set, see the section “Details: SASENOAA Interface Engine” on page 3682.
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OFFSET=noaa_offset
specifies a starting row number (offset) in the results to use as your first observation in the results data
set.

OUTKMZ=noaa_kmzfile
specifies the name of the file where the KMZ data (FORMAT=KMZ) that are returned from the
SWDI web service are stored. It is recommended that you specify the OUTKMZ= option when the
FORMAT=KMZ option is specified. In cases where the two options do not correspond, the FORMAT=
option overrides the designated OUTKMZ= option.

NOTE: The KMZ format produces a ZIP file whose name contains the corresponding file extension
(.kmz). The SASENOAA engine automatically unzips the KMZ file to produce a KML map file. The
KMZMAP= option gives the name and location of the resulting .kml file.

OUTSHP=noaa_shpfile
specifies the name of the file where the SHP data (FORMAT=SHP) that are returned from the
SWDI web service are stored. It is recommended that you specify the OUTSHP= option when the
FORMAT=SHP option is specified. In cases where the two options do not correspond, the FORMAT=
option overrides the designated OUTSHP= option.

NOTE: The SHP format produces a ZIP file whose name contains the corresponding file extension
(.shp). The SASENOAA engine automatically unzips the SHP file to produce four Esri map files with
the file extensions .dbf, .prj, .shp, and .shx. For example, if OUTSHP=MYSBY and FORMAT=SHP,
then the files that contain the SWDI data are named MYSBY.dbf, MYSBY.prj, MYSBY.shp, and
MYSBY.shx.

OUTXML=noaa_xmlfile
specifies the name of the file where the XML data (FORMAT=XML), KMZ data (FORMAT=KMZ),
or SHP data (FORMAT=SHP) that are returned from the SWDI web service are stored. When
FORMAT=XML, additional SAS data sets are provided by the SASENOAA engine, depending on
two options: ID= and STAT=. When an ID= option is also specified, the engine appends _M to the
OUTXML= specification to name the resulting SAS data set that contains the message text that the
SWDI web service returns. When the STAT= option is also specified, the engine appends _S to the
OUTXML= specification to name the resulting data set that contains the counts from the statistical
operation that is performed.

It is recommended that you specify the OUTXML= option when the FORMAT=XML option is
specified. In cases where the two options do not correspond, the FORMAT= option overrides the
designated OUTXML= option.

PROXY=“noaa_proxyserver”
specifies which proxy server to use. This option is not required. The specified proxy server is used
only when a connection-refused error or a connection-timed-out error occurs. For noaa_proxyserver ,
specify the server’s HTTP address followed by a colon and the port number, and enclose that string
in double quotation marks; for example, PROXY="http://inetgw.unx.sas.com:8118". See also the
CONNECT= option.
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RADIUS=‘noaa_radius’
specifies the search radius (in miles) of the area to retrieve the severe weather data for. The current
limit for the search radius is 15 miles. This option must be used with the CENTER= option.

RANGE=‘noaa_range’
specifies the date range to report severe (past) weather for. The format for noaa_range is
'YYYYMMDD:YYYYMMDD'. The range must fall within the period of record for the desired data
set. The NOAA SWDI data web service returns the period of record for the requested data set (in this
case, nx3hail) at the following URL:

http://www.ncdc.noaa.gov/swdiws/xml/nx3hail/periodOfRecord

It also returns a begin date and end date, giving the available time range of data to choose from.
Although the limit for a range is one year, often only a few days of data are requested, unless the
STAT= option is used. More than one year is allowed in the RANGE= option when you also use the
STAT= option to request the COUNT, which returns only the number of observations in the results data
set.

SHPMAP=noaa_shpmapfile
specifies the fully qualified name of the location where the SHP map file (zipped Esri shapefiles) is
automatically stored.

STAT=‘noaa_stat_op’
specifies the statistical operation that you want to perform on the requested severe weather data. You
can specify one of the following values for noaa_stat_op within single quotes:

COUNT returns number of results only (no actual data).

COUNTGROUPBY:WSR_ID returns number of results for each BY group (each
WSR_ID that returns data).

TILESUM:longitude,latitude returns daily feature counts for a tenth-of-a-degree grid
centered at the specified coordinates.

Although the SASENOAA engine automatically checks the statistics to make sure there is a nonzero
observation count before requesting the specified data, it is often useful to use the STAT= option to
determine the best geographic area and the best date range to retrieve severe weather data that are of
the most interest. Output from the STAT= option is placed in the SAS data set named by appending _S
to the member name specified in the OUTXML= option.

TILE=‘noaa_tile_coordinates’
specifies that you want to search for severe weather data in the geographic area within a 0.1 degree tile
that is centered at the specified coordinates (longitude, latitude).

XMLMAP=noaa_xmlmapfile
specifies the fully qualified name of the location where the XML map file is automatically stored.

http://www.ncdc.noaa.gov/swdiws/xml/nx3hail/periodOfRecord
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Details: SASENOAA Interface Engine
The SASENOAA interface engine enables SAS programmers to access the NOAA Severe Weather Data
Inventory (SWDI) data sets. All dates and times are in Greenwich mean time (GMT), and all latitude and
longitude values for input parameters and output data are in the World Geodetic System 1984 (WGS84)
datum, the standard for geospatial information.

NOAA Severe Weather Data Inventory Data Sets
The following data sets are supported:

NX3TVS NEXRAD level III tornado vortex signatures

NX3MESO NEXRAD level III mesocyclone signatures

NX3MDA NEXRAD level III digital mesocyclone detection algorithm

NX3HAIL NEXRAD level III hail signatures

NX3STRUCTURE NEXRAD level III storm cell structure information

PLSR Preliminary local storm reports

WARN Severe thunderstorm, tornado, flash flood, and special marine warnings

To display details about the available inventory for the NEXRAD level III data sets, enter the following URL
in your browser:

http://www.ncdc.noaa.gov/swdiws/xml

The result is a list of available SWDI web service data sets, each with a description, begin date, end date,
tile summary allowed (yes or no), and ID query allowed (yes or no). The web page at the following URL
describes the column definitions and units for each NEXRAD III product and includes a discussion about
accuracy:

http://www.ncdc.noaa.gov/swdiws/csv/nx3hail:inv

NOAA NEXRAD Sites and Their ICAO Codes and Coordinates
A list of the NEXRAD sites and their corresponding WSR_ID codes, also known as International Civil
Aviation Organization (ICAO) codes, is given in Table 51.2. For examples of how to use this important
BY variable, WSR_ID, to subset and gather statistics about NOAA SWDI data, see Example 51.6 and
Example 51.4.

http://www.ncdc.noaa.gov/swdiws/xml
http://www.ncdc.noaa.gov/swdiws/csv/nx3hail:inv
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Table 51.2 List of NEXRAD Sites and Their Coordinates

State City ICAO Location
Identifier

Coordinates

PR San Juan TJUA 18:1155998ıN 66:0780644ıW
ME Loring AFB KCBW 46:0391944ıN 67:8066033ıW
ME Portland KGYX 43:8913555ıN 70:2565545ıW
VT Burlington KCXX 44:5109941ıN 73:166424ıW
MA Boston KBOX 41:9558919ıN 71:1369681ıW
NY Albany KENX 42:5865699ıN 74:0639877ıW
NY Binghamton KBGM 42:1997045ıN 75:9847015ıW
NY Buffalo KBUF 42:9488055ıN 78:7369108ıW
NY Montague KTYX 43:7556319ıN 75:6799918ıW
NY New York City KOKX 40:8655093ıN 72:8638548ıW
DE Dover AFB KDOX 38:8257651ıN 75:4400763ıW
PA Philadelphia KDIX 39:9470885ıN 74:4108027ıW
PA Pittsburgh KPBZ 40:5316842ıN 80:2179515ıW
PA State College KCCX 40:9228521ıN 78:0038738ıW
WV Charleston KRLX 38:3110763ıN 81:7229015ıW
VA Norfolk/Richmond KAKQ 36:9840475ıN 77:007342ıW
VA Roanoke KFCX 37:0242098ıN 80:2736664ıW
VA Sterling KLWX 38:9753957ıN 77:4778444ıW
NC Morehead City KMHX 34:7759313ıN 76:8762571ıW
NC Raleigh/Durham KRAX 35:6654967ıN 78:4897855ıW
NC Wilmington KLTX 33:9891631ıN 78:4291059ıW
SC Charleston KCLX 32:6554866ıN 81:0423124ıW
SC Columbia KCAE 33:9487579ıN 81:1184281ıW
SC Greer KGSP 34:8833435ıN 82:2200757ıW
GA Atlanta KFFC 33:3635771ıN 84:565866ıW
GA Moody AFB KVAX 30:8903853ıN 83:0019021ıW
GA Robins AFB KJGX 32:6755239ıN 83:3508575ıW
FL Eglin AFB KEVX 30:5649908ıN 85:921559ıW
FL Jacksonville KJAX 30:4846878ıN 81:7018917ıW
FL Key West KBYX 24:5974996ıN 81:7032355ıW
FL Melbourne KMLB 28:1131808ıN 80:6540988ıW
FL Miami KAMX 25:6111275ıN 80:412747ıW
FL Tallahassee KTLH 30:397568ıN 84:3289116ıW
FL Tampa KTBW 27:7054701ıN 82:40179ıW
AL Birmingham KBMX 33:1722806ıN 86:7698425ıW
AL Fort Rucker KEOX 31:4605622ıN 85:4592401ıW
AL Huntsville KHTX 34:930508ıN 86:0837388ıW
AL Maxwell AFB KMXX 32:5366608ıN 85:7897848ıW
AL Mobile KMOB 30:6795378ıN 88:2397816ıW
MS Brandon/Jackson KDGX 32:2797358ıN 89:9846309ıW
MS Columbus AFB KGWX 33:8967796ıN 88:3293915ıW
TN Knoxville/Tri Cities KMRX 36:168538ıN 83:401779ıW
TN Memphis KNQA 35:3447802ıN 89:8734534ıW
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Table 51.2 continued

State City ICAO Location
Identifier

Coordinates

TN Nashville KOHX 36:2472389ıN 86:5625185ıW
KY Fort Campbell KHPX 36:7368894ıN 87:2854328ıW
KY Jackson KJKL 37:590762ıN 83:313039ıW
KY Louisville KLVX 37:9753058ıN 85:9438455ıW
KY Paducah KPAH 37:0683618ıN 88:7720257ıW
OH Cleveland KCLE 41:4131875ıN 81:8597451ıW
OH Wilmington KILN 39:5083314ıN 83:8176925ıW
MI Detroit/Pontiac KDTX 42:6999677ıN 83:471809ıW
MI Gaylord KAPX 44:907106ıN 84:719817ıW
MI Grand Rapids KGRR 42:893872ıN 85:5449206ıW
MI Marquette KMQT 46:5311443ıN 87:5487131ıW
IN Evansville KVWX 38:2603901ıN 87:7246553ıW
IN Indianapolis KIND 39:7074962ıN 86:2803675ıW
IN North Webster KIWX 41:3586356ıN 85:7000488ıW
IL Chicago KLOT 41:6044264ıN 88:084361ıW
IL Lincoln KILX 40:150544ıN 89:336842ıW
WI Green Bay KGRB 44:4984644ıN 88:111124ıW
WI La Crosse KARX 43:822766ıN 91:1915767ıW
WI Milwaukee KMKX 42:9678286ıN 88:5506335ıW
MN Duluth KDLH 46:8368569ıN 92:2097433ıW
MN Minneapolis/St. Paul KMPX 44:8488029ıN 93:5654873ıW
IA Davenport KDVN 41:611556ıN 90:5809987ıW
IA Des Moines KDMX 41:7311788ıN 93:7229235ıW
MO Kansas City KEAX 38:8102231ıN 94:2644924ıW
MO Springfield KSGF 37:235223ıN 93:4006011ıW
MO St. Louis KLSX 38:6986863ıN 90:682877ıW
AR Fort Smith KSRX 35:2904423ıN 94:3619075ıW
AR Little Rock KLZK 34:8365261ıN 92:2621697ıW
LA Fort Polk KPOE 31:1556923ıN 92:9762596ıW
LA Lake Charles KLCH 30:125382ıN 93:2161188ıW
LA New Orleans KLIX 30:3367133ıN 89:8256618ıW
LA Shreveport KSHV 32:450813ıN 93:8412774ıW
TX Amarillo KAMA 35:2334827ıN 101:7092478ıW
TX Austin/San Antonio KEWX 29:7039802ıN 98:028506ıW
TX Brownsville KBRO 25:9159979ıN 97:4189526ıW
TX Corpus Christi KCRP 27:7840203ıN 97:511234ıW
TX Dallas/Ft. Worth KFWS 32:5730186ıN 97:3031911ıW
TX Dyess AFB KDYX 32:5386009ıN 99:2542863ıW
TX El Paso KEPZ 31:8731115ıN 106:697942ıW
TX Fort Hood KGRK 30:7217637ıN 97:3829627ıW
TX Houston/Galveston KHGX 29:4718835ıN 95:0788593ıW
TX Laughlin AFB KDFX 29:2730823ıN 100:2802312ıW
TX Lubbock KLBB 33:6541242ıN 101:814149ıW
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Table 51.2 continued

State City ICAO Location
Identifier

Coordinates

TX Midland/Odessa KMAF 31:9433953ıN 102:1894383ıW
TX San Angelo KSJT 31:3712815ıN 100:4925227ıW
OK Frederick KFDR 34:3620014ıN 98:9766884ıW
OK Oklahoma City KTLX 35:3333873ıN 97:2778255ıW
OK Tulsa KINX 36:1750977ıN 95:5642802ıW
OK Vance AFB KVNX 36:7406166ıN 98:1279409ıW
KS Dodge City KDDC 37:7608043ıN 99:9688053ıW
KS Goodland KGLD 39:3667737ıN 101:7004341ıW
KS Topeka KTWX 38:996998ıN 96:232618ıW
KS Wichita KICT 37:6545724ıN 97:4431461ıW
NE Grand Island/Hastings KUEX 40:320966ıN 98:4418559ıW
NE North Platte KLNX 41:9579623ıN 100:5759609ıW
NE Omaha KOAX 41:3202803ıN 96:3667971ıW
SD Aberdeen KABR 45:4558185ıN 98:4132046ıW
SD Rapid City KUDX 44:1248485ıN 102:8298157ıW
SD Sioux Falls KFSD 43:5877467ıN 96:7293674ıW
ND Bismarck KBIS 46:7709329ıN 100:7605532ıW
ND Grand Forks (Mayville) KMVX 47:5279417ıN 97:3256654ıW
ND Minot AFB KMBX 48:39303ıN 100:8644378ıW
MT Billings KBLX 45:8537632ıN 108:6068165ıW
MT Glasgow KGGW 48:2064536ıN 106:6252971ıW
MT Great Falls KTFX 47:4595023ıN 111:3855368ıW
MT Missoula KMSX 47:0412971ıN 113:9864373ıW
WY Cheyenne KCYS 41:1519308ıN 104:8060325ıW
WY Riverton KRIW 43:0660779ıN 108:4773731ıW
CO Denver KFTG 39:7866156ıN 104:5458126ıW
CO Grand Junction KGJX 39:0619824ıN 108:2137012ıW
CO Pueblo KPUX 38:4595034ıN 104:1816223ıW
NM Albuquerque KABX 35:1497579ıN 106:8239576ıW
NM Cannon AFB KFDX 34:6341569ıN 103:6186427ıW
NM Holloman AFB KHDX 33:0768844ıN 106:1200923ıW
AZ Flagstaff KFSX 34:574449ıN 111:198367ıW
AZ Phoenix KIWA 33:289111ıN 111:6700092ıW
AZ Tucson KEMX 31:8937186ıN 110:6304306ıW
AZ Yuma KYUX 32:4953477ıN 114:6567214ıW
UT Cedar City KICX 37:5931771ıN 112:8637719ıW
UT Salt Lake City KMTX 41:2627795ıN 112:4480081ıW
ID Boise KCBX 43:4902104ıN 116:2360436ıW
ID Pocatello/Idaho Falls KSFX 43:1055967ıN 112:6860487ıW
NV Elko KLRX 40:7396933ıN 116:8025529ıW
NV Las Vegas KESX 35:7012894ıN 114:8918277ıW
NV Reno KRGX 39:7541931ıN 119:4620597ıW
CA Beale AFB KBBX 39:4956958ıN 121:6316557ıW
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Table 51.2 continued

State City ICAO Location
Identifier

Coordinates

CA Edwards AFB KEYX 35:0979358ıN 117:5608832ıW
CA Eureka KBHX 40:4986955ıN 124:2918867ıW
CA Los Angeles KVTX 34:4116386ıN 119:1795641ıW
CA Sacramento KDAX 38:5011529ıN 121:6778487ıW
CA San Diego KNKX 32:9189891ıN 117:041814ıW
CA San Francisco KMUX 37:155152ıN 121:8984577ıW
CA San Joaquin Valley KHNX 36:3142088ıN 119:6320903ıW
CA Santa Ana Mountains KSOX 33:8176452ıN 117:6359743ıW
CA Vandenberg AFB KVBX 34:8383137ıN 120:3977805ıW
HI Kauai PHKI 21:8938762ıN 159:5524585ıW
HI Kohala PHKM 20:1254606ıN 155:778054ıW
HI Molokai PHMO 21:1327531ıN 157:1802807ıW
HI South Shore PHWA 19:0950155ıN 155:5688846ıW
OR Medford KMAX 42:0810766ıN 122:7173334ıW
OR Pendleton KPDT 45:6906118ıN 118:8529301ıW
OR Portland KRTX 45:7150308ıN 122:9650542ıW
WA Langley Hill KLGX 47:116806ıN 124:10625ıW
WA Seattle/Tacoma KATX 48:1945614ıN 122:4957508ıW
WA Spokane KOTX 47:6803744ıN 117:6267797ıW
AK Bethel PABC 60:791987ıN 161:876539ıW
AK Fairbanks/Pedro Dome PAPD 65:0351238ıN 147:5014222ıW
AK Kenai PAHG 60:6156335ıN 151:2832296ıW
AK King Salmon PAKC 58:6794558ıN 156:6293335ıW
AK Middleton Island PAIH 59:46194ıN 146:30111ıW
AK Nome PAEC 64:5114973ıN 165:2949071ıW
AK Sitka/Biorka Island PACG 56:85214ıN 135:552417ıW
GU Andersen AFB PGUA 13:455965ıN 144:8111022ıE
NA Lajes Field, Azores LPLA 38:73028ıN 27:32167ıW
SK Camp Humphreys, South Korea RKSG 37:207652ıN 127:285614ıE
SK Kunsan Air Base, South Korea RKJK 35:92417ıN 126:62222ıE
JP Kadena Air Base, Japan RODN 26:30194ıN 127:90972ıE
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SAS Output Data Set
You can use a SAS DATA step to write the selected NOAA Severe Weather Data Inventory data to a SAS
data set. This enables you to use SAS software to easily perform data analysis. If you specify the name of
the output data set in the DATA statement, the SAS engine supervisor creates a SAS data set that has the
specified name in either the SAS Work library or, if specified, the SAS User library.

The contents of the SAS data sets are described in the section “Examples: SASENOAA Interface Engine”
on page 3690 and summarized in Table 51.3 through Table 51.7. Each type of SWDI data set contains its
own columns and variables, and the resulting SAS data set is named by the OUTXML= option specification.
When the ID= option is used, another SAS data set is created with _M appended to the original data set name,
and if the STAT= option is used, then another data set is created with _S appended to the original data set
name.

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASENOAA engine libref to create a custom view
of your data.

Table 51.3 NX3HAIL NEXRAD Level III Hail Data Set

Variable Name Description

wsr_id NEXRAD or Terminal Doppler Weather Radar (TDWR) site ID
cell_id Cell ID unique to radar site
prob Probability of hail (percentage)
sevprob Probability of severe hail (percentage)
maxsize Maximum size of hail (in)

Table 51.4 NX3MESO NEXRAD Level III Legacy Mesocyclone Data Set

Variable Name Description

wsr_id NEXRAD or Terminal Doppler Weather Radar (TDWR) site ID
cell_id Cell ID unique to radar site
cell_type ‘Meso’, ‘3dc shr’, or ‘unc shr’
range Range (naut. miles)
azimuth Azimuth (deg)
base_height Base height of feature (kft)
height Height of feature (kft)
radial_diam Diameter of feature along range axis (naut. mi)
az_diam Diameter of feature in azimuth angle (deg)
shear Wind shear (E-3/s)
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Table 51.5 NX3STRUCTURE NEXRAD Level III Storm Structure Data Set

Variable Name Description

wsr_id NEXRAD or Terminal Doppler Weather Radar (TDWR) site ID
cell_id Cell ID unique to radar site
range Range (naut. mi)
azimuth Azimuth (deg)
vil Vertically integrated liquid (kg/m2)
max_reflect Maximum reflectivity (dbz)

Table 51.6 NX3TVS NEXRAD Level III Tornado Vortex Signature Data Set

Variable Name Description

wsr_id NEXRAD or Terminal Doppler Weather Radar (TDWR) site ID
cell_id Cell ID unique to radar site
range Range (naut. mi)
azimuth Azimuth (deg)
max_shear Maximum shear (E-3/s)
mxdv Maximum delta-velocity (knots)

Table 51.7 NX3MDA NEXRAD Level III Digital Mesocyclone Detection Algorithm Data Set

Variable Name Description

wsr_id NEXRAD or Terminal Doppler Weather Radar (TDWR) site ID
cell_id Cell ID unique to radar site
str_rank Strength ranking
scit_id ID in storm cell identification and tracking (SCIT) algorithm
range Range (naut. mi)
azimuth Azimuth (deg)
ll_rot_vel Low-level rotational velocity (kt)
ll_dv Low-level delta-velocity (kt)
ll_base Base (kft)
depth_kft Depth (kft)
dpth_stmrl Storm-relative depth (percentage)
max_rv_kft Maximum rotational velocity height (kft)
max_rv_kts Maximum rotational velocity (knots)
tvs Tornado vortex signature (yes or no)
motion_deg Motion direction (deg)
motion_kts Motion speed (kts)
msi Mesocyclone strength index

The storm cell identification and tracking (SCIT) algorithm is an enhanced WSR-88D algorithm that is
outside the scope of this chapter, but this section briefly summarizes some of the variables in the NX3MDA
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data set. Storm-relative depth is the ratio (expressed in percentage) of meso-depth divided by the storm depth
as determined by the SCIT algorithm’s cell. Strength ranking and mesocyclone strength index (MSI) are
nondimensional numbers that provide a way to determine the 3D-integrated intensity value of the detection.

Max_rv_kft is the height (in kilofeet) at which maximum rotational velocity was detected; it might or might
not be associated with the lowest radar elevation angle. Max_rv_kts is the rotational velocity in knots; it
might or might not be associated with the lowest radar elevation angle. The variables ll_rot_vel, ll_dv, and
ll_base are always associated with the lowest elevation angle, so max_ and ll_ values are sometimes identical.

SAS OUTXML File
The SAS XML (XML format) data that are returned by the NOAA SWDI web service are placed in a file that
is named by the OUTXML= option. The SASENOAA interface engine creates a separate XML file for each
SAS data set that is created. By default, OUTXML=NOAA, which creates a file named NOAA.xml in the
current working directory. The SAS data set created when the XML data are read into SAS is placed in the
folder specified by the physical path in the LIBNAME libref SASENOAA statement, which is described in
the section “The LIBNAME libref SASENOAA Statement” on page 3677. The name that you specify in
the OUTXML= option is also used to form the names of other data sets, but a suffix is added to the name to
maintain the identity of the file, such as _M for the message file data set (ID= option) and _S for the statistics
results data set (STAT= option).

SAS XML Map File
The XML map that (by default) is automatically created is assigned the full path name that is given by
the XMLMAP= option in your LIBNAME libref SASENOAA statement. The map file is either reused
(not overwritten) if you specify AUTOMAP=REUSE or overwritten by a new map if you specify AU-
TOMAP=REPLACE (the default). The SASENOAA interface engine invokes the XMLV2 engine to create
the map and to read the data into SAS.

Virtual Globe Mapping Output and ZIP Files
When you specify the FORMAT=KMZ option, the SASENOAA interface engine requests the SWDI data in
KMZ format. This results in the retrieval of a zipped KML file, which is then unzipped, saved with the .kml
extension, and named by the OUTKMZ= option. In addition, the corresponding KMZ file is saved in the
location specified by the fully qualified file name given in the KMZMAP= option. You can then use virtual
globe software provided by Google Maps to import your KML data so that you can visualize the results both
geospatially and timewise by holding the mouse pointer over each data point to see the variable values that
correspond to the requested NOAA data set.

When you specify the FORMAT=SHP option, the SASENOAA engine requests the SWDI data in SHP
format. This results in the retrieval of a zipped SHP file, which is then unzipped; the four resulting files are
saved with the extensions .dbf, .prj, .shp, and .shx and named by the OUTSHP= option. In addition, the
corresponding SHP ZIP file is saved in the location that is specified by the fully qualified file name given in
the SHPMAP= option. You can then use virtual globe software such as SAS Bridge for Esri or use PROC
MAPIMPORT and PROC GMAP to map your results.
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SAS KMZ Map File

The KMZ map (by default) is automatically created and placed in the file that is named by the fully
qualified file name specified in the KMZMAP= option of the LIBNAME libref SASENOAA statement. The
SASENOAA interface engine invokes PROC HTTP to create the map and to read the KMZ data into SAS.

SAS OUTKMZ File

The SAS KMZ (zipped KML format) data that are returned by the NOAA SWDI web service are placed
in a file that is named by the OUTKMZ= option. The SASENOAA interface engine unzips the KMZ file
and creates a separate KML file for each SASENOAA engine libref. The SAS KML data file is given the
name specified by the OUTKMZ= option and is placed in the location that is specified by the physical-name
in your LIBNAME libref SASENOAA statement, which is described in the section “The LIBNAME libref
SASENOAA Statement” on page 3677.

SAS OUTSHP File

The SAS SHP (zipped Esri shapefiles format) data that are returned by the NOAA SWDI web service
are placed in a file that is named by the OUTSHP= option. The SASENOAA interface engine creates a
separate SHP ZIP file for each SASENOAA engine libref. The SASENOAA engine unzips the SHP data file,
creating four files that are given the name specified by the OUTSHP= option plus the four file extensions
(.dbf, .prj, .shp, and .shx). The four files are saved in the location that is specified by the physical-name
in your LIBNAME libref SASENOAA statement, which is described in the section “The LIBNAME libref
SASENOAA Statement” on page 3677.

SAS SHP Map File

The SHP map (by default) is automatically created and placed in the file that is named by the fully qualified file
name specified in the SHPMAP= option of the LIBNAME libref SASENOAA statement. The SASENOAA
interface engine invokes PROC HTTP to create the map and to read the SHP data into SAS.

Examples: SASENOAA Interface Engine

Example 51.1: Retrieving Severe Storm Warning Data with ID= Option for a
Specific Date

This example shows how to use the RANGE= option to retrieve severe storm warning data for a specific date.
It also shows how to use the ID= option to read the message text for one ID (ID=‘397190’). When the ID=
option is used, there are two output data sets. The first data set consists of the warning results data (named
C1nco in the OUTXML= option), which contain the actual list of storm warnings for the date range that
is specified in the RANGE= option. The second data set, C1nco_M, contains the text of the message ID
specified in the ID= option, which in this example is 397190.

The output of the PRINT procedure for the Myc1nco data set is shown in Output 51.1.1.
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options validvarname=any;

title 'Retrieve Warning Data with ID= Option for May 5, 2006';
libname mylib "/sasusr/noaa/doc/";

libname noaa sasenoaa "%sysget(NOAA_DATA)"
noaaset=warn
id='397190' /* create c1nco_m data set */
range='20060505:20060506'
outXml=c1nco /* create c1nco data set */
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)cinco.map"
format=xml;

data mylib.myc1nco;
set noaa.c1nco;

run;

proc contents data=mylib.myc1nco; run;
proc print data=mylib.myc1nco(obs=5); run;

Output 51.1.1 NOAA Severe Storm Warnings with ID= Option for May 5, 2006

Retrieve Warning Data with ID= Option for May 5, 2006

Obs ztime_start ztime_end id warningtype issuewfo messageid

1 2006-05-04T11:57:00 2006-05-05T05:45:00 397088 FLASH FLOOD KSGF 41157

2 2006-05-04T22:50:00 2006-05-05T00:15:00 397156 SPECIAL MARINE KLIX 42251

3 2006-05-04T22:50:00 2006-05-05T00:15:00 397157 SPECIAL MARINE KLIX 42251

4 2006-05-04T23:07:00 2006-05-05T00:00:00 397161 SEVERE
THUNDERSTORM

KSHV 42307

5 2006-05-04T23:10:00 2006-05-05T00:00:00 397162 SEVERE
THUNDERSTORM

KJAN 42310

Obs shape

1 POLYGON ((-95.02 37.64, -95.02 37.02, -94.57 37.03, -94.59 36.52, -94.1 36.51, -94.12 37.62, -95.02 37.64))

2 POLYGON ((-90.06 29.34, -89.8 29.15, -89.55 29.26, -89.61 29.27, -89.6 29.35, -89.67 29.31, -89.77 29.33, -89.75 29.41,
-89.81 29.43, -89.83 29.49, -89.93 29.51, -89.94 29.48, -90.07 29.55, -90.17 29.51, -90.06 29.43, -90.06 29.34))

3 POLYGON ((-90.06 29.34, -89.8 29.15, -89.55 29.26, -89.61 29.27, -89.6 29.35, -89.67 29.31, -89.77 29.33, -89.75 29.41,
-89.81 29.43, -89.83 29.49, -89.93 29.51, -89.94 29.48, -90.07 29.55, -90.17 29.51, -90.06 29.43, -90.06 29.34))

4 POLYGON ((-94.09 31.63, -94.04 31.6, -93.95 31.6, -93.93 31.61, -93.84 31.6, -93.8 31.71, -93.84 31.78, -94.11 31.78,
-94.13 31.63, -94.09 31.63))

5 POLYGON ((-91.57 33.33, -91.73 33.01, -91.17 33.02, -91.14 33.07, -91.2 33.14, -91.09 33.16, -91.14 33.29, -91.57 33.33))

The data sets, C1nco and C1nco_M, reside in the test folder, because the NOAA_DATA environment variable
is defined to be the test folder, and that is the physical path given in the SASENOAA LIBNAME statement
inside the double quotes:

libname noaa sasenoaa "/sasusr/noaa/test/"



3692 F Chapter 51: The SASENOAA Interface Engine

NOTE: The DATA step that creates the Mylib.Myc1nco data set reads only the C1nco data into the document
folder that is specified by the Mylib libref:

libname mylib "/sasusr/noaa/doc/";

But the other data set, which contains the message text data set, C1nco_M, is not copied into the document
folder; instead it remains in the test folder where it was originally created by the SASENOAA engine. You
could also copy it into the document folder using the following code:

libname myMes "/sasusr/noaa/test/";

data mylib.myc1nco_M;
set myMes.c1nco_M;

run;

You should not use the SASENOAA engine libref (NOAA) to access the already created SAS data set
C1nco_M, because the message results were already placed in that data set automatically when you ran the
example code to download the XML from the SWDI web service. The ID= option causes the SASENOAA
engine to create the second data set, C1nco_M. After you read the data into SAS, you should use the normal
Base SAS engine to access the resulting SAS data sets, by using the myMes libref in the SET statement that
invokes the Base SAS engine.

Example 51.2: Retrieving a Preliminary Local Storm Report by Using a
Bounding Box

This example shows how to use a bounding box (by specifying the BBOX= option) to define the geographic
area to retrieve a preliminary local storm report (PLSR) starting May 5 and ending May 10 (not including
May 10). The output is shown in Output 51.2.1 for the data set My8bb and in Output 51.2.2 for the data set
My8bb_M.

options validvarname=any;

title 'Retrieve the NOAA SWDI PLSR Data for a Bounding Box';
libname mylib "/sasusr/noaa/doc/";

libname noaa sasenoaa "%sysget(NOAA_DATA)"
noaaset=plsr
range='20060505:20060510'
bbox='-91,30,-90,31'
id='427200'
outXml=my8BB
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)my8BB.map"
format=xml
;

data mylib.PLSRbb;
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set noaa.my8BB;
run;

proc contents data=mylib.PLSRbb; run;
proc print data=mylib.PLSRbb; run;

Output 51.2.1 Preliminary Local Storm Report for a Bounding Box with the RANGE= Option

Retrieve the NOAA SWDI PLSR Data for a Bounding Box

Obs ztime id event magnitude city county state source shape

1 2006-05-09T02:20:00 427540 HAIL 1 5 E
KENTWOOD

TANGIPAHOA LA TRAINED
SPOTTER

POINT
(-90.43
30.93)

2 2006-05-09T02:40:00 427536 HAIL 1 MOUNT
HERMAN

WASHINGTON LA TRAINED
SPOTTER

POINT
(-90.3
30.96)

3 2006-05-09T02:40:00 427537 TSTM WND
DMG

-9999 MOUNT
HERMAN

WASHINGTON LA TRAINED
SPOTTER

POINT
(-90.3
30.96)

4 2006-05-09T03:00:00 427199 HAIL 0 FRANKLINTON WASHINGTON LA AMATEUR
RADIO

POINT
(-90.14
30.85)

5 2006-05-09T03:17:00 427200 TORNADO -9999 5 S
FRANKLINTON

WASHINGTON LA LAW
ENFORCEMENT

POINT
(-90.14
30.78)

The RANGE= option selects only the storm reports for dates from May 5 to May 10, 2006 (not including
May 10), and the BBOX= option limits the data returned to the geographic area defined by the intersection of
the specified coordinates: minimum longitude,

minimum latitude, maximum longitude, and maximum latitude. The ID=‘427200’ option returns additional
data in the SAS data set my8bb_M for the storm event that has that ID, and the results can be viewed using
the following sample code. NOTE: The SASENOAA engine appends _M to the name specified in the
OUTXML= option for these additional data.

libname myreport "/sasusr/noaa/test/";

proc contents data=myreport.my8bb_m; run;
proc print data=myreport.my8bb_m; run;

Output 51.2.2 Preliminary Local Storm Report for Tornado Event, ID=427200

Retrieve the NOAA SWDI PLSR Data for a Bounding Box

Obs remarks swdiXmlResponse_ORDINAL result_ORDINAL

1 TORNADO MOVED ACROSS HWY 25 BLEW TWO CARS IN THE DITCH
AND DEBRIS ON HWY.

1 1
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Example 51.3: Retrieving Mesocyclone Data for a Specific Date
This example shows how to retrieve mesocyclone data for a specific date. The NX3MESO legacy database
displays information about the existence and nature of rotations associated with thunderstorms. Numerical
output includes the azimuth, range, and height of the mesocyclone. Output 51.3.1 shows the NX3MESO data
for RANGE=‘20060505:20060506’. NOTE: The end date, May 6, 2006, is exclusive of the data.

title 'Mesocyclone Data for May 5, 2006';
options validvarname=any;
libname mylib "/sasusr/noaa/doc/";

libname noaa sasenoaa "%sysget(NOAA_DATA)"
noaaset=nx3meso
range='20060505:20060506' /* stat='countGroupBy:WSR_ID' */
outxml=c3nco
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)c3nco.map"
format=xml
;

data mylib.myc3nco;
set noaa.c3nco;

run;

proc contents data=mylib.myc3nco; run;
proc print data=mylib.myc3nco(obs=10); run;
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Output 51.3.1 Mesocyclone Data for May 5, 2006

Mesocyclone Data for May 5, 2006

Obs ztime wsr_id cell_id cell_type range azimuth base_height

1 2006-05-05T00:00:45 KLBB P0 MESO 122 165 16.5

2 2006-05-05T00:00:45 KLBB G0 UNC SHR 53 226 15.0

3 2006-05-05T00:00:45 KLBB S0 UNC SHR 73 223 13.5

4 2006-05-05T00:00:54 KFWS R4 UNC SHR 59 224 17.1

5 2006-05-05T00:00:59 KDYX A2 UNC SHR 114 247 16.3

6 2006-05-05T00:00:59 KDYX Y0 UNC SHR 97 183 23.2

7 2006-05-05T00:01:55 KIND NULL UNC SHR 15 125 0.9

8 2006-05-05T00:01:57 KEWX L1 MESO 93 319 15.5

9 2006-05-05T00:01:57 KEWX L1 UNC SHR 103 316 17.8

10 2006-05-05T00:01:57 KEWX L1 UNC SHR 97 317 16.4

Obs top_height height radial_diam az_diam shear shape

1 21.5 16.5 1.9 4.2 9 POINT (-101.197496803559 31.6843740429353)

2 15.0 15.0 2.0 3.7 7 POINT (-102.569931348078 33.0369811650688)

3 13.5 13.5 1.8 3.7 8 POINT (-102.798000555293 32.7586300599108)

4 17.1 17.1 4.0 3.2 32 POINT (-98.1051400587857 31.861696176778)

5 16.3 16.3 2.0 3.4 9 POINT (-101.306015945194 31.7772827698164)

6 23.2 23.2 1.5 6.9 6 POINT (-99.3523385786414 30.9200780684841)

7 0.9 0.9 2.3 1.1 76 POINT (-86.0151526678541 39.5642056660823)

8 24.7 20.0 5.7 7.6 12 POINT (-99.2095322445991 30.8712677231185)

9 17.8 17.8 2.0 2.2 8 POINT (-99.4144574037648 30.9345286761316)

10 16.4 16.4 5.3 7.6 5 POINT (-99.3092294394828 30.8829373004521)

The results are sorted by the ztime variable, along with WSR_ID, which is a BY variable that can be
referenced in the STAT= option (such as STAT=‘COUNTGROUPBY:WSR_ID’) or in the FILTERBY=
option (such as FILTERBY=‘WSR_ID:KBLX’). For a list of possible values for WSR_ID, see the ICAO
Location Identifiers column in Table 51.2.

Example 51.4: Retrieving Hail Data for One Weather Station
This example shows how to use the FILTERBY= and FILTERBYCONDITION= options to retrieve the data
for one weather station (WSR_ID=KFWS) by using the hail storm data from the NX3HAIL database for May
21, 2011. The output is shown in Output 51.4.1.

options validvarname=any;

title 'Retrieve NX3HAIL Data for WSR_ID=KFWS on May 21, 2011';
libname mylib "/sasusr/noaa/doc/";

libname noaa sasenoaa "%sysget(NOAA_DATA)"
noaaset=nx3hail
range='20110521:20110522'
filterBy='WSR_ID:KFWS'
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filterByCondition='WSR_ID:or'
outXml=myCby
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)myCby.map"
format=XML
;

data mylib.HAILbyC;
set noaa.myCby;

run;

proc contents data=mylib.HAILbyC; run;
proc print data=mylib.HAILbyC(obs=10); run;

Output 51.4.1 Severe Hail Storm Data Using FILTERBY= Option for Weather Station KFWS on May 21,
2011
Retrieve NX3HAIL Data for WSR_ID=KFWS on May 21, 2011

Obs ztime wsr_id cell_id prob sevprob maxsize shape

1 2011-05-21T00:09:38 KFWS I3 100 80 1.75 POINT (-96.6051331772435 31.0844364854615)

2 2011-05-21T00:09:38 KFWS U8 100 30 0.75 POINT (-96.7920955739634 31.1345064213377)

3 2011-05-21T00:09:38 KFWS R0 100 40 1.00 POINT (-96.1199975968128 31.4803477097816)

4 2011-05-21T00:09:38 KFWS G6 100 40 1.00 POINT (-96.8664936098099 31.0651213629879)

5 2011-05-21T00:09:38 KFWS E9 100 50 1.00 POINT (-96.5897740989292 31.4208018135191)

6 2011-05-21T00:09:38 KFWS L8 100 50 1.25 POINT (-96.253873691341 31.5350758385099)

7 2011-05-21T00:09:38 KFWS X1 100 50 1.00 POINT (-95.4408845222209 31.6765991602025)

8 2011-05-21T00:09:38 KFWS I1 100 60 1.25 POINT (-96.9732130383308 30.9606322478281)

9 2011-05-21T00:09:38 KFWS R7 100 70 1.50 POINT (-96.5356562569208 31.3319818714777)

10 2011-05-21T00:18:07 KFWS I1 100 70 1.75 POINT (-96.8885614582821 31.0263076915164)

You can see that the output data set, myCby, returns only the data for WSR_ID=‘KFWS’ because of the
FILTERBY= and FILTERBYCONDITION= options.

Example 51.5: Retrieving Tornado Vortex Signature Data within a Distance
Specified by a Center and a Radius

When you specify NOAASET=NX3TVS, you retrieve data that show an intense gate-to-gate azimuthal shear
associated with tornadic-scale rotation. This example shows how to search the NX3TVS database by using
the RADIUS= and CENTER= options to retrieve tornado vortex signature data for the date range from May
5 to May 16, 2006. The output is shown in Output 51.5.1.

options validvarname=any;

title 'Tornado Vortex Signatures with CENTER= and RADIUS= Options for a Date Range';
libname mylib "/sasusr/noaa/doc/";

libname noaa sasenoaa "%sysget(NOAA_DATA)"
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noaaset=nx3tvs
range='20060505:20060516'
radius='15.0'
center='-102.0,32.7'
outxml=my2CR
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)my2CR.map"
format=xml
;

data mylib.TVS2CR;
set noaa.my2CR;

run;

proc contents data=mylib.TVS2CR; run;
proc print data=mylib.TVS2CR(obs=10); run;

Output 51.5.1 NX3TVS Data Search Using CENTER= and RADIUS= Options

Tornado Vortex Signatures with CENTER= and RADIUS= Options for a Date Range

Obs ztime wsr_id cell_id cell_type range azimuth max_shear mxdv shape

1 2006-05-05T00:05:50 KBMX Q0 TVS 7 217 403 116 POINT (-86.8535716274277
33.0786326913943)

2 2006-05-05T00:10:02 KBMX Q0 TVS 5 208 421 120 POINT (-86.8165772540846
33.0982820681588)

3 2006-05-05T00:12:34 KSJT P2 TVS 49 106 17 52 POINT (-99.5771091971025
31.1421609654838)

4 2006-05-05T00:17:31 KSJT B4 TVS 40 297 25 62 POINT (-101.188161700093
31.672392833416)

5 2006-05-05T00:29:13 KMAF H4 TVS 53 333 34 111 POINT (-102.664426480293
32.7306917937698)

6 2006-05-05T00:31:25 KLBB N0 TVS 51 241 24 78 POINT (-102.70047613441
33.2380072329615)

7 2006-05-05T00:33:25 KMAF H4 TVS 52 334 46 145 POINT (-102.6393683028
32.7226656893341)

8 2006-05-05T00:37:37 KMAF H4 TVS 50 334 34 107 POINT (-102.621904684258
32.6927081076156)

9 2006-05-05T00:41:51 KMAF H4 TVS 51 335 29 91 POINT (-102.614794815627
32.714139844846)

10 2006-05-05T00:44:33 KLBB N0 TVS 46 245 35 100 POINT (-102.643380529494
33.3266446067682)
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Example 51.6: Retrieving Digital Mesocyclone Detection Algorithm Data for a
Specific Date

The digital mesocyclone detection algorithm data (NX3MDA) are the successor to the legacy mesocyclone data
(NX3MESO) and are designed to display information about the existence and nature of rotations associated
with thunderstorms. Numerical output includes the azimuth, range, and height of the mesocyclone. This
example retrieves these data for June 8, 2016. The first 10 observations are shown in Output 51.6.1.

options validvarname=any;

title 'Digital Mesocyclone Detection Algorithm Data for June 8, 2016';
libname mylib "/sasusr/noaa/doc/";
libname noaa sasenoaa "%sysget(NOAA_DATA)"

noaaset=nx3mda
range='20160608:20160609'
stat='countGroupBy:WSR_ID' /* need this to create c9nco_S */
outXml=c9nco
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)c9nco.map"
format=xml
;

data mylib.myc9nco;
set noaa.c9nco;

run;

proc contents data=mylib.myc9nco; run;
proc print data=mylib.myc9nco(obs=10); run;
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Output 51.6.1 Digital Mesocyclone Detection Algorithm Data for June 8, 2016

Digital Mesocyclone Detection Algorithm Data for June 8, 2016

Obs ztime wsr_id cell_id str_rank scit_id range azimuth ll_rot_vel ll_dv ll_base depth_kft

1 2016-06-08T00:01:10 KBOX 955 3 F5 88 49 17 17 10 13

2 2016-06-08T00:01:10 KBOX 956 3 F5 91 48 17 19 11 18

3 2016-06-08T00:01:14 KCXX 497 7L D6 14 86 51 30 2 2

4 2016-06-08T00:05:22 KCXX 117 5L D6 13 107 38 54 1 2

5 2016-06-08T00:08:07 KDEN 183 3 X1 20 242 14 14 5 19

6 2016-06-08T00:08:55 KRIW 614 7L B6 34 276 48 41 3 6

7 2016-06-08T00:09:20 KEPZ 788 6 A6 76 33 31 62 8 11

8 2016-06-08T00:10:20 KBOX 956 3 F5 93 49 14 20 11 18

9 2016-06-08T00:10:59 KDEN 203 3 X1 20 242 17 16 5 19

10 2016-06-08T00:10:59 KDEN 204 3 X1 18 232 30 26 10 12

Obs dpth_stmrl max_rv_kft max_rv_kts tvs motion_deg motion_kts msi shape

1 100 14 22 N 278 14 1843 POINT (-69.6306900686946 42.9087204366999)

2 100 19 28 N 353 33 1721 POINT (-69.6019306665078 42.9609951364008)

3 47 2 63 N -999 -999 6050 POINT (-72.84057763236 44.5268104383833)

4 44 2 49 N 311 5 4750 POINT (-72.8767138260852 44.4472967220186)

5 0 11 29 N 226 14 1819 POINT (-104.906667800608 39.5707779820797)

6 39 3 48 N -999 -999 4293 POINT (-109.246654714611 43.1226528729933)

7 67 8 31 N -999 -999 3187 POINT (-105.878317682481 32.9347703082943)

8 100 19 22 N 305 15 1480 POINT (-69.5437406633111 42.962259402214)

9 0 11 26 N -999 -999 1964 POINT (-104.906667800608 39.5707779820797)

10 0 15 31 N -999 -999 1726 POINT (-104.831639940611 39.5427723681603)

The SASENOAA engine creates a temporary data set named OUTTP1 that shows the recorded feature
(mesocyclone detection algorithm) count for each BY group by WSR_ID. The count represents the num-
ber of mesocyclones detected by that weather station. This information can be helpful for determin-
ing which geographic area to focus on and is generated automatically by the engine when you specify
STAT=‘COUNTGROUPBY:WSR_ID’. The SASENOAA engine does not save this data set unless the
STAT= option is specified; this results in a saved statistics data set that is named by appending _S to the name
specified in the OUTXML= option, as shown by the following statements:

libname mystats "/sasusr/noaa/test/";

proc contents data=mystats.c9nco_S; run;
proc print data=mystats.c9nco_S(obs=20); run;
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Output 51.6.2 Digital Mesocyclone Detection Algorithm Statistics Data for June 8, 2016

Digital Mesocyclone Detection Algorithm Data for June 8, 2016

Obs wsr_id count

1 KOTX 120

2 KPDT 113

3 KBOX 90

4 KMSX 23

5 KCXX 22

6 KRTX 20

7 KLGX 18

8 KAMA 15

9 KPUX 13

10 KEPZ 12

11 KTLX 8

12 KCBW 6

13 KDDC 5

14 KGYX 4

15 KTFX 4

16 KHDX 3

17 KMCO 3

18 KDEN 3

19 KRIW 3

20 KAMX 3

For brevity, only the first 10 out of 525 observations are printed by using the OBS= option in the PROC
PRINT statement for Output 51.6.1. The first 20 observations of the statistics data set c9nco_S are shown in
Output 51.6.2.

In Example 51.8, another method is used to subset results by location when you use the TILE= option. In
Example 51.7, the STAT= option is used to collect statistics based on a tile summary in a data set (Mytile_S).

Example 51.7: Retrieving Tornado Vortex Signature Data Statistics by Using
Tile Summary Statistics

This example retrieves tornado vortex signature data statistics for the range from May 5 to May 16, 2009,
but only returns the actual NX3TVS data for 11 days starting on May 5, 2006. NOTE: The NOAA SWDI
web service allows a range longer than one year for statistics reporting, but it allows only up to a year for the
range of data that you retrieve. The SASENOAA engine uses the specified start and end dates unless the
range exceeds one year (of data retrieval). When the range exceeds one year, the SASENOAA engine issues
an invalid range warning and defaults to a different end date. The new end date uses an end year that matches
the start date’s year. Sometimes this default behavior might generate an end date that precedes the start date,
resulting in only one day (corresponding to the start date) of data retrieved for the OUTXML= options results
file.

This example generates an 11-day default range when the end year is changed to 2006 (from 2009); the
results in the Mytile data set are shown in Output 51.7.1. The Mytile_S data set shows the recorded feature
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(tornado vortex signature) count for the specified tile in the tile summary specification, and it includes the
centerlat, centerlon, day (date), fcount (feature count for that day), and shapefile. The count represents the
number of tornado vortex signatures detected within the tile summary coordinates. This information can be
helpful for determining which geographic area and dates to focus on.

options validvarname=any;

title 'Retrieve NOAA NX3TVS Tile Summary Statistics and Data for Date Range';
libname mylib "/sasusr/noaa/doc/";

libname noaa sasenoaa "%sysget(NOAA_DATA)"
noaaset=nx3tvs
range='20060505:20090516'
stat='tilesum:-102.0,32.7'
outXml=mytile
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)mytile.map";
format=xml
;

data mylib.stattil;
set noaa.mytile;

run;

proc contents data=mylib.stattil; run;
proc print data=mylib.stattil(obs=10); run;

Output 51.7.1 Retrieve NOAA NX3TVS Tile Summary Statistics and Data for Date Range

Retrieve NOAA NX3TVS Tile Summary Statistics and Data for Date Range

Obs ztime wsr_id cell_id cell_type range azimuth max_shear mxdv shape

1 2006-05-05T00:05:50 KBMX Q0 TVS 7 217 403 116 POINT (-86.8535716274277
33.0786326913943)

2 2006-05-05T00:10:02 KBMX Q0 TVS 5 208 421 120 POINT (-86.8165772540846
33.0982820681588)

3 2006-05-05T00:12:34 KSJT P2 TVS 49 106 17 52 POINT (-99.5771091971025
31.1421609654838)

4 2006-05-05T00:17:31 KSJT B4 TVS 40 297 25 62 POINT (-101.188161700093
31.672392833416)

5 2006-05-05T00:29:13 KMAF H4 TVS 53 333 34 111 POINT (-102.664426480293
32.7306917937698)

6 2006-05-05T00:31:25 KLBB N0 TVS 51 241 24 78 POINT (-102.70047613441
33.2380072329615)

7 2006-05-05T00:33:25 KMAF H4 TVS 52 334 46 145 POINT (-102.6393683028
32.7226656893341)

8 2006-05-05T00:37:37 KMAF H4 TVS 50 334 34 107 POINT (-102.621904684258
32.6927081076156)

9 2006-05-05T00:41:51 KMAF H4 TVS 51 335 29 91 POINT (-102.614794815627
32.714139844846)

10 2006-05-05T00:44:33 KLBB N0 TVS 46 245 35 100 POINT (-102.643380529494
33.3266446067682)
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NOTE: The date range that is specified in the RANGE= option is invalid for the OUTXML data because
it spans more than one year, but the STAT= option can use the longer range (as specified) to report the tile
summary statistics. For the file specified in the OUTXML= option, the SASENOAA engine issues a warning
that the range is invalid, and it changes the end year to the same year as the start year in an attempt to keep
the range under one year. In this example, for brevity, OBS=10 is specified in the PROC PRINT statement.
You can use the following statements to generate the statistics results, which are shown in Output 51.7.2.
NOTE: The data that are shown in Output 51.7.2 are restricted only by the date range, not by the tile summary
coordinates. To restrict the data results by the coordinates of a tile, use the TILE= option as shown in
Example 51.8.

libname mystats "/sasusr/noaa/test/";

proc contents data=mystats.mytile_S; run;
proc print data=mystats.mytile_S; run;

Output 51.7.2 Tornado Vortex Signature Statistics Using the STAT=TILESUM Option

Retrieve NOAA NX3TVS Tile Summary Statistics and Data for Date Range

Obs day centerlat centerlon fcount shape

1 2007-03-29 32.7 -102 2 POLYGON ((-102.05 32.65, -102.05 32.75, -101.95 32.75, -101.95 32.65, -102.05
32.65))

2 2007-09-07 32.7 -102 1 POLYGON ((-102.05 32.65, -102.05 32.75, -101.95 32.75, -101.95 32.65, -102.05
32.65))

3 2008-05-27 32.7 -102 4 POLYGON ((-102.05 32.65, -102.05 32.75, -101.95 32.75, -101.95 32.65, -102.05
32.65))

4 2008-06-20 32.7 -102 2 POLYGON ((-102.05 32.65, -102.05 32.75, -101.95 32.75, -101.95 32.65, -102.05
32.65))

5 2009-04-11 32.7 -102 1 POLYGON ((-102.05 32.65, -102.05 32.75, -101.95 32.75, -101.95 32.65, -102.05
32.65))

NOTE: You can get one day of results for the OUTXML= option by using an end date that is earlier than the
start date specified in the RANGE= option. Furthermore, in this example, because both the specified start
and end dates are in May, if the specified end date had been May 1, 2009, instead of May 16, 2009, then
the statistics results would have been very similar, but the XML file would contain only the results for May
5, 2006. The SASENOAA engine forces the range to use the same year when the specified range exceeds
one year. This can sometimes result in an invalid end date that precedes the start date, but the SASENOAA
engine then discards the end date so that the range spans only one day, which is the start date.

Example 51.8: Retrieving Tornado Vortex Signature Data by Using Tile
Coordinates

This example retrieves the tornado vortex signature (TVS) data for the range May 5 to May 16, 2006, but it
selects only the data that fall inside the geographic area defined by the specified tile’s longitude and latitude
coordinates (to the nearest tenth of a degree). Output 51.8.1 shows five observations within range of the
coordinates specified in the TILE= option.
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options validvarname=any;

title 'Retrieve NOAA NX3TVS Using TILE= Option with a Date Range';
libname mylib "/sasusr/noaa/doc/";
libname noaa sasenoaa "%sysget(NOAA_DATA)"

noaaset=nx3tvs
range='20060505:20060516'
tile='-102.12,32.62'
outXml=my2TL
automap=replace
mapref=MyMap
xmlmap="%sysget(NOAA_DATA)my2TL.map"
format=xml
;

data mylib.TVStil;
set noaa.my2TL;

run;

proc contents data=mylib.TVStil; run;
proc print data=mylib.TVStil; run;

Output 51.8.1 Using the TILE= Option to Retrieve TVS Data for a Date Range

Retrieve NOAA NX3TVS Using TILE= Option with a Date Range

Obs ztime wsr_id cell_id cell_type range azimuth max_shear mxdv shape

1 2006-05-06T00:41:29 KMAF D9 TVS 37 6 39 85 POINT (-102.112726356403
32.5574494581267)

2 2006-05-06T03:56:18 KMAF N4 TVS 39 3 30 73 POINT (-102.14873079873
32.5933553250156)

3 2006-05-06T03:56:18 KMAF N4 TVS 42 4 20 52 POINT (-102.131167022161
32.6426287452898)

4 2006-05-06T04:00:30 KMAF N4 TVS 38 5 35 86 POINT (-102.123671677514
32.5751241756203)

5 2006-05-06T04:04:44 KMAF N4 TVS 41 8 24 62 POINT (-102.076389686189
32.6209390786829)

NOTE: You could add the option STAT=‘COUNTGROUPBY:WSR_ID’, and the statistics would be stored
in a data set named My2TL_S. The statistics results data show all the reporting weather stations by WSR_ID
for the specified date range and the summary count of TVS features recorded for each station.

If you want to see a Google map of the same tile’s NX3TVS data, you can rerun this example with the
FORMAT=KMZ, KMZMAP=, and OUTKMZ= options to download the corresponding KML file. After you
import it to Google My Maps, you see a map like the one shown in Output 51.8.2. When you click on the
rightmost data point, you can examine the details of that particular location on the map.
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Output 51.8.2 Screen Shot of Google Earth Map of the NX3TVS Data for TILE=-102.12,32.62

Example 51.9: Mapping Hail Data in a Geospatial Framework (KMZ Format)
for a Specific Weather Station

This example retrieves the same hail data as in Example 51.4, but instead of requesting the XML format, it
requests the KMZ format, so that you can look at the data in a geospatial framework such as that provided by
Google Maps.

options validvarname=any;

title 'Retrieve NOAA NX3HAIL Data for WSR_ID=KFWS on May 21, 2011';
libname mylib "/sasusr/noaa/doc/";
libname noaa sasenoaa "%sysget(NOAA_DATA)"

debug=on
noaaset=nx3hail
range='20110521:20110522'
filterBy='WSR_ID:KFWS'
filterByCondition='WSR_ID:or'
outkmz=myK2by
automap=replace
mapref=MyMap
kmxmap="%sysget(NOAA_DATA)myK2by.kmz"
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format=kmz
;

data mylib.HAILby2;
set noaa.myK2by;

run;

proc contents data=mylib.HAILby2; run;
proc print data=mylib.HAILby2; run;

Output 51.9.1 Using FORMAT= KMZ Option to Retrieve NX3HAIL Data for WSR_ID:KFWS

Files in the ZIP file

Obs memname isFolder memcount

1 swdi-export.kml 0 1

NOTE: The KMZ file shown in Output 51.9.1 is automatically unzipped and renamed MYK2BY.kml by the
SASENOAA engine.

Output 51.9.2 shows the Google Earth map for the observations within range of the weather station designated
by the filter WSR_ID=KFWS. When you import your KML file (MYK2BY.kml) into Google My Maps, you
can examine the details of each set of mapped coordinates on the map by clicking on the data point you want
to look at.

Output 51.9.2 Screen Shot of Google Earth Map of the NX3HAIL Data in MYK2BY.kml
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Example 51.10: Mapping Hail Data in a Geospatial Framework (SHP Format)
for a Specific Weather Station

This example retrieves the same hail data as in Example 51.9, but instead of requesting the KMZ format, it
requests the SHP format, so that you can look at the data in a geospatial framework such as that provided
by Esri mapping software. Output 51.10.1 shows the retrieved Esri shapefiles that contain the data for the
observations within range of the weather station designated by the filter WSR_ID=KFWS.

options validvarname=any;

title 'Retrieve NOAA NX3HAIL Data for WSR_ID=KFWS on May 21, 2011';
libname mylib "/sasusr/noaa/doc/";
libname noaa sasenoaa "%sysget(NOAA_DATA)"

debug=on
noaaset=nx3hail
range='20110521:20110522'
filterBy='WSR_ID:KFWS'
filterByCondition='WSR_ID:or'
outshp=mySby
automap=replace
mapref=MyMap
shpmap="%sysget(NOAA_DATA)mySby.map"
format=shp
;

data mylib.HAILbyS;
set noaa.mySby;

run;

proc contents data=mylib.HAILbyS; run;
proc print data=mylib.HAILbyS; run;

Output 51.10.1 Using FORMAT= SHP Option to Retrieve NX3HAIL Data for WSR_ID:KFWS

Files in the ZIP file

Obs memname isFolder memcount

1 swdi-nx3hail-all-20180904-035109-488.dbf 0 4

2 swdi-nx3hail-all-20180904-035109-488.prj 0 4

3 swdi-nx3hail-all-20180904-035109-488.shp 0 4

4 swdi-nx3hail-all-20180904-035109-488.shx 0 4

NOTE: The SASENOAA engine automatically unzips the ZIP file that contains the four shapefiles and
renames them MYSBY.dbf, MYSBY.prj, MYSBY.shp, and MYSBY.shx.
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Overview: SASEOECD Interface Engine
The SASEOECD interface engine enables SAS users to retrieve time series data from the Organisation for
Economic Co-operation and Development (OECD) website. This website offers access to statistical data
on topics such as agriculture and fisheries, economy, education, employment, energy, environment, finance,
health, industry and entrepreneurship, innovation, insurance and pensions, international migration, internet
economy, investment, rural and urban development, science and technology, social and welfare issues, tax,
trade, and transport, as well as access to the OECD.Stat data warehouse. Time series are offered in yearly,
semesterly, quarterly, and monthly frequencies.

The SASEOECD interface engine uses the LIBNAME statement to enable you to download OECD online
data from the website at the following URL:

http://stats.oecd.org/

It also enables you to specify which time series you want to retrieve, by using the corresponding data set
ID and keysets. You specify the time range of the retrieved data by using a start date and an end date. You
can then use the SAS DATA step to perform further subsetting, retrieve the data, and store the resulting time
series in a SAS data set. You can view a list of all OECD databases on the web page at the following URL:

http://www.oecd.org/statistics/listofoecddatabases.htm

The SASEOECD interface engine supports Linux X64 (LAX) and Windows. Although the SASEOECD
engine uses the OECD’s sdmx-json statistical online API, it is not endorsed or certified by the Organisation
for Economic Co-operation and Development. By using the SASEOECD interface engine, you are agreeing
to comply with the terms of use, which are described on the web page at the following URL:

http://www.oecd.org/termsandconditions/

To get started using the SASEOECD engine, follow the steps in the next section, which enable you to view
the MEI_CLI (Composite Leading Indicators in the Main Economic Indicators) database to retrieve the time
series CSCICP03, also known as “OECD Standardized CCI, Amplitude adjusted (Long term average=100,
sa).” Understanding how each OECD data set is organized enables you to write the SAS code to access the
data. The sample SAS code for accessing the OECD’s MEI_CLI data set appears at the end of the section.

http://stats.oecd.org/
http://www.oecd.org/statistics/listofoecddatabases.htm
http://www.oecd.org/termsandconditions/
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Getting Started: SASEOECD Interface Engine
You can query the OECD API by using the graphical user interface (GUI) at

http://stats.oecd.org

The OECD documentation on the web page at the following URL describes how to use the OECD GUI:

https://stats.oecd.org/Content/themes/OECD/static/help/WBOS%20User%
20Guide%20(EN).PDF

Using the OECD Graphical User Interface
Step 1: Go to the web page at the following URL. This is where you start to build your query for retrieving
OECD data.

http://stats.oecd.org

Step 2: On the left side, click Popular Queries and select Composite Leading Indicators. You can view
the default selection of Main Economic Indicators (MEI) data for Composite Leading Indicators on the main
screen.

Step 3: Choose Customize ISelection. The selection keys (also called dimensions) are shown. They
are Subject, Country, and Time & Frequency. Click Subject and then select the box labeled OECD
Standardized CCI, Amplitude adjusted (Long term average=100), sa. When you hover the mouse
pointer over CCI, the subject code is displayed as CSCICP03. In the sample code at the end of this section,
the INSET0= data set defines Key0 as CSCICP03 in KeyList0.

Step 4: Click Country (in the same Customize selection window). Now select the countries that you want
to retrieve the data for, which in this case are Australia, Germany, and Japan. When you hover the mouse
pointer over each country name, you can see its corresponding country code. In the sample code at the end of
this section, the INSET1= data set defines Key1 as AUS, DEU, and JPN in KeyList1.

Step 5: Click Time & Frequency (in the same Customize selection window). Select the monthly frequency.
Click Select date range, and choose a start date of 2015M9 and an end date of 2017M8.

Step 6: Click View data. If you get an error, repeat steps 2 through 6. Then select Export IDeveloper API,
and click the Generate API queries button.

Step 7: The Data query box shows the URL for the selected data that you want to retrieve:

http://stats.oecd.org/SDMX-JSON/data/MEI_CLI/CSCICP03.AUS+DEU+JPN.M/all?
startTime=2015-09&endTime=2017-08&dimensionAtObservation=allDimensions

Step 8: From the generated API query, find the data set code, MEI_CLI, which follows ‘SDMX-JSON/data/’
in the generated API query (URL). In the sample code at the end of this section, the SETID= option is set to
MEI_CLI.

Step 9: The dimensions are described in the API query (URL) after the OECD data set code and are separated
by periods. In the sample code, Key0 (in KeyList0) gives the subject as ‘CSCICP03’; Key1 (in KeyList1)
gives the country as ‘AUS’, ‘DEU’, and ‘JPN’; and Key2 (in KeyList2) gives the frequency as ‘M’.

http://stats.oecd.org
https://stats.oecd.org/Content/themes/OECD/static/help/WBOS%20User%20Guide%20(EN).PDF
https://stats.oecd.org/Content/themes/OECD/static/help/WBOS%20User%20Guide%20(EN).PDF
http://stats.oecd.org
http://stats.oecd.org/SDMX-JSON/data/MEI_CLI/CSCICP03.AUS+DEU+JPN.M/all?startTime=2015-09&endTime=2017-08&dimensionAtObservation=allDimensions
http://stats.oecd.org/SDMX-JSON/data/MEI_CLI/CSCICP03.AUS+DEU+JPN.M/all?startTime=2015-09&endTime=2017-08&dimensionAtObservation=allDimensions
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Step 10: In the sample code at the end of this section, the START= and ENDTIME= options are defined
using the startTime= and endTime= parameters from the generated API query. The format of the START=
and END= options is shown in Table 52.2.

The statements at the end of this section enable you to access the setID MEI_CLI (Composite Leading
Indicators in the Main Economic Indicators database) to retrieve the time series CSCICP03, also known as
“OECD Standardized CCI, Amplitude adjusted (Long term average=100, sa).”

The SETID= option specifies the data set’s ID code in order to retrieve data from the OECD library of data.
You can view the data set from the OECD website by referring to the data set code at the following URL,
which in this example is MEI_CLI:

http://stats.oecd.org/Index.aspx?DataSetCode=MEI_CLI

To specify the INSETn= option, name the SAS input data set for each of the three keysets that define your
selection: INSET0=KEYLIST0, INSET1=KEYLIST1, and INSET2=KEYLIST2.

The OUT= option specifies both the name of the resulting JSON file(s) and the name of the SAS data set
(MEI3C).

The range of the retrieved data is determined by the START= and END= options. Because this example
retrieves monthly data, the start date (2015-09) and the end date (2017-08) are specified in “YYYY-MM”
format.

The JSON data that the OECD website returns are placed in a file that is named by the OUT= option—in this
case, MEI3C.json. NOTE: The SASEOECD engine appends a numeral to the JSON file name, and the file
extension (.json) is excluded from the file name that appears in the OUT= option. When the SET statement is
executed, the JSON data are read (and merged) into a SAS data set named MEI3C.sas7bdat, which resides
in the location that is specified inside the string enclosed in double quotation marks in the SASEOECD
LIBNAME statement.

The result, MEI3C, is named in the DATA step in the SET statement and is shown in Output 52.1. The
preceding example uses three keysets. These keysets are used to request data for every possible combination
of each key’s values. Some combinations produce data, and some do not, but after each combination’s
requested data are downloaded, the results are merged into one data set. These data are shown in Output 52.1.

For another example that uses more SASEOECD LIBNAME statement options, see the section “Examples:
SASEOECD Interface Engine” on page 3734.

options validvarname=any;

title 'Retrieve MEI_CLI Data for Australia, Japan, and Germany';

libname mylib "<physical path to the folder where you want the OECD data>";

/* specify selection keys; key0 is the time series */
data keylist0; /* See Step 3 */

length key0 $8;
key0='CSCICP03'; output;

run;

/* select Australia, Japan, and Germany; key1 is country */
data keylist1; /* See Step 4 */

length key1 $3;

http://stats.oecd.org/Index.aspx?DataSetCode=MEI_CLI
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key1='AUS'; output;
key1='JPN'; output;
key1='DEU'; output;

run;

/* select monthly data; key2 is frequency */
data keylist2; /* See Step 5 */

length key2 $2;
key2='M'; output;

run;

title1 "Main Economic Indicators Database from the OECD";
title2 "Request MEI_CLI for These Countries: AUS, JPN, DEU";
libname oecd saseoecd "<physical path to the folder where you want the OECD data>"

setid=MEI_CLI /* Step 2 */
inset0=keylist0 /* Step 3 */
inset1=keylist1 /* Step 4 */
inset2=keylist2 /* Step 5 */
out=MEI3C
start='2015-09' /* Step 10*/
end='2017-08'
;

data mylib.myMEI;
set oecd.MEI3C; /* MEI3C is specified in the OUT= option */

run;

title3 "The mylib.myMEI Data Set";
proc print data=mylib.myMEI; run;
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Figure 52.1 Consumer Confidence Index for Australia, Japan, and Germany

Main Economic Indicators Database from the OECD
Request MEI_CLI for these Countries: AUS, JPN, DEU

The mylib.myMEIData Set

Obs date CSCICP03.AUS.M CSCICP03.JPN.M CSCICP03.DEU.M

1 2015-09 99.4900 99.595 100.672

2 2015-10 99.6672 99.724 100.441

3 2015-11 99.8371 99.856 100.327

4 2015-12 99.8557 99.862 100.254

5 2016-01 99.7833 99.751 100.159

6 2016-02 99.7672 99.585 100.109

7 2016-03 99.7160 99.533 100.159

8 2016-04 99.7133 99.517 100.315

9 2016-05 99.8706 99.562 100.507

10 2016-06 99.9318 99.649 100.650

11 2016-07 99.9117 99.728 100.680

12 2016-08 99.9346 99.819 100.654

13 2016-09 99.9570 99.882 100.639

14 2016-10 99.9430 99.861 100.687

15 2016-11 99.8424 99.841 100.782

16 2016-12 99.7033 99.962 100.859

17 2017-01 99.6738 100.080 100.898

18 2017-02 99.7439 100.168 100.919

19 2017-03 99.7743 100.223 101.081

20 2017-04 99.7246 100.214 101.316

21 2017-05 99.6234 100.211 101.509

22 2017-06 99.5179 100.206 101.647

23 2017-07 99.4763 100.227 101.674

24 2017-08 99.4944 100.256 101.625
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Syntax: SASEOECD Interface Engine
The SASEOECD interface engine uses standard engine syntax to read the observations or data values for one
or more time series from an OECD data set. Table 52.1 summarizes the options that the SASEOECD engine
uses.

Table 52.1 Summary of LIBNAME libref SASEOECD Options

Option Description

DEBUG= Specifies whether to include diagnostic message logging in the SAS log window
ENDTIME= Specifies the end date for the retrieved data
INSETn= Specifies the name of the input data set that contains values for a particular keyset,

such as subject, measure, country, and frequency, where n < 10, and begins with n = 0
OUT= Specifies the name of the SAS data set and the JSON file, which contains the data that

the SASEOECD interface engine returns
SETID= Specifies the required OECD data set code that enables you to access the data that the

OECD website provides
START= Specifies the start date for the retrieved data

The LIBNAME libref SASEOECD Statement
LIBNAME libref SASEOECD ‘physical-name’ options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory
of OECD data files in which the downloaded OECD JSON data are stored. The required physical-name
argument specifies the location of the folder where your OECD JSON data reside. It should end with a
backslash if you are in a Windows environment or a forward slash if you are in a UNIX environment.

You can specify the following options:

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log window. This information
can be very useful for troubleshooting a problem.

ENDTIME=oecd_endTime
specifies the end date for requesting OECD data. Specify oecd_endTime in one of the formats shown
in Table 52.2. The valid data range of available data varies with each OECD data set. You can check
data availability by selecting the period that you want to download on the OECD data set’s web page
and using the Export window to select the Developer API tab. You can preview the generated URL
link for downloading the selected data by clicking Generate API queries. The URL for the data query
shows the time period in the request. The OECD URL parameter, &EndTime=, corresponds to the
SASEOECD engine’s ENDTIME= option.
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INSETn=oecd_keylist_name
specifies the name of the input data set, INSETn, that contains the key values to select the data that you
want to retrieve. There are n + 1 insets, depending on the dimensions of the OECD data set, where n
cannot exceed 9. Key0 is defined in INSET0, Key1 is defined in INSET1, and so on, up to Keyn, which
is defined in INSETn, where n < 10.

OUT=oecd_jsonfile
specifies the name of both the JSON file (downloaded) and the SAS data set that is created when the
JSON data are read into SAS. You can use the OUT= option to name your JSON data file. It is stored
in the SAS Work library. The SAS data set that is created (when the JSON data are read into SAS) is
stored in the folder specified by physical-name, and you can refer to it by using the myLib libref in
your SASEOECD LIBNAME statement.

SETID='oecd_setid '
specifies the OECD data set ID or code that enables you to access the data set corresponding to that
code. The data set ID or code is the same one that you use on the OECD web page at the following
URL:

http://stats.oecd.org/Index.aspx?DataSetCode=<your_data_set_code>

For a list of some of the available OECD data sets and their key fields, see Table 52.5 in the section
“Data Elements Reference: SASEOECD Interface Engine” on page 3720.

START=oecd_start
specifies the start date for requesting OECD data. Specify oecd_start in one of the formats shown in
Table 52.2.

Table 52.2 Formats for START= Option and ENDTIME= Option

Interval or Frequency Format

Year YYYY
Year-semester YYYY-S1 – YYYY-S2
Year-quarter YYYY-Q1 – YYYY-Q4
Year-month YYYY-M1 – YYYY-M12

The valid data range for available data varies with each OECD data set. You can check data availability
by selecting the period that you want to download on the data set’s web page and using the Export
window to select the Developer API tab. You can preview the generated URL link for downloading the
selected data by clicking Generate API queries. The URL for the data query shows the time period
in the request. The OECD URL parameter, &StartTime=, corresponds to the SASEOECD engine’s
START= option.
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Details: SASEOECD Interface Engine
The SASEOECD interface engine enables SAS users to access time series data that are stored in OECD data
sets that the OECD website provides. Every OECD data set is identified by a unique set of keys (a keyset). A
data set must have at least one key (excluding the date/time) and can have up to ten keys. The SASEOECD
engine retrieves each time series and names each one by concatenating the n keysets that are stored in the
following format:

key0.key1.key2.<. . . up to keyn>

The keys are listed on the OECD web page for each data set at the following URL:

http://www.oecd.org/statistics/listofoecddatabases.htm

Click the data set symbol to view the web page that gives the details for that data set.

Customizing Your Selection Keys
In the OECD GUI for your OECD data set, from the Customize menu click Selection to view the defining
keysets for that data set. When you select a key, you see all the possible choices for selecting the values for
that key. Check or clear the box next to each key value to select or deselect it. After you make a selection for
each key listed on the Selection menu, you can proceed to exporting the selected OECD data.

Exporting Your Data
From the Export menu, click Developer API to view the query necessary to retrieve your selected data in
JSON format. Complete the query builder form if you want to be notified about updates to the OECD’s
application interface (API). Click Generate API queries to see the URL query for your data selection. If
you want, you can use this URL to specify the key values in each inset for your SAS code. The keys are
separated by periods, and the order of the keys in the URL shows Key0 first, Key1 second (after the dot), and
so on, up to Keyn. Each ‘+’ separates the values for that key.

Dimensions of the OECD Data
When you specify the SETID= option, you give the OECD data set code for the data set that you want to
access. The SASEOECD engine checks the OECD website for the validity of the specified data set code by
requesting its data-flow structure. If the request is successful, the SETID is validated, and the SASEOECD
engine prints the data-flow information about the selection keys available for the requested OECD data. The
dimensions (key values) for SETID=MEI_CLI are given in Table 52.3.

http://www.oecd.org/statistics/listofoecddatabases.htm
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Table 52.3 Dimensions of the MEI_CLI Data Set

Obs keyPosition id name role

1 0 SUBJECT Subject
2 1 LOCATION Country REF_AREA
3 2 FREQUENCY Frequency FREQ
4 3 TIME_PERIOD Time TIME_PERIOD

Key position 0 corresponds to Key0 in the first inset (INSET=KEYLIST0). Key position 1 corresponds
to Key1 in the second inset (INSET=KEYLIST1). Key position 2 corresponds to Key2 in the third inset
(INSET=KEYLIST2).

The last key position, Time_Period, is determined by the options START= and ENDTIME=.

SAS INSET Data Sets
The query URL for the MEI_CLI data set that selects the three keys (SUBJECT=CSCICP03, COUN-
TRY=Australia, Germany and Japan, TIME/FREQUENCY=MONTHLY) looks like this:

http://stats.oecd.org/SDMX-JSON/data/MEI_CLI/CSCICP03.AUS+DEU+JPN.M/
all?startTime=2016-04&endTime=201803

The keys are shown in the part of the preceding URL that follows the data set code:

CSCICP03.AUS+DEU+JPN.M/all?startTime=2016-04&endTime=201803

The keys end at the slash preceding “all”:

CSCICP03.AUS+DEU+JPN.M

The key types are separated by periods. The first key is “CSCICP03”, which is named Key0.

As shown in the following code, the first inset, KeyList0, contains the Key0 value for subject, which is
“CSCICP03”. Because there is only one subject (time series) in the request, there is only one value listed for
Key0.

/* specify selection keys; key0 is the time series */
data keylist0;

length key0 $8;
key0='CSCICP03'; output;

run;

In KeyList0, use a LENGTH statement so that the string “CSCICP03” is not truncated. It is a good idea to use
a LENGTH statement to account for the maximum number of bytes that a key value can have. This ensures
that SAS does not truncate the key values in any of the input data sets, so that the key values match the ones
expected in the OECD data set.
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The second key type is found in “AUS+DEU+JPN”, so it is named Key1 and has three values separated by
“+”. As shown in the following code, the second inset, KeyList1, contains the key values for country. Each
value of country must have its own output line, so there are three output lines, each with a different country
value. There are three values listed for Key1:

/* select Australia, Japan, and Germany */
data keylist1;

length key1 $3;
key1='AUS'; output;
key1='JPN'; output;
key1='DEU'; output;

run;

The third key type, which follows the second, is “M” and is named Key2. The third inset defines the frequency
as monthly. The SASEOECD engine can provide only one frequency per libref view. If you want, you can
specify another SASEOECD LIBNAME statement, using a different inset for another frequency.

The following inset for frequency defines Key2, which is contained in KeyList2:

/* select monthly data */
data keylist2;

length key2 $2;
key2='M'; output;

run;

Building the URL Request for OECD Data
The SASEOECD interface engine takes the crossproduct of all the insets’ key values. Before you request the
MEI_CLI data set, the SASEOECD engine takes the crossproduct of KeyList0 with KeyList1 and KeyList2.
Each row in Table 52.4 represents a request for time series data. If data are returned, then the SASEOECD
engine names the time series by using that row’s values (separated by ‘.’). The first time series is named
“CSCICP03.AUS.M”, the second is named “CSCICP03.JPN.M”, and the third is named “CSCICP03.DEU.M”.

Table 52.4 Cross-Key Data Set for MEI_CLI

Obs Key0 Key1 Key2

1 CSCICP03 AUS M
2 CSCICP03 JPN M
3 CSCICP03 DEU M
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SAS Output Data Set
You can use a SAS DATA step to write the selected OECD data to a SAS data set. This enables you to use
SAS software to easily analyze the data. If you specify the name of the output data set in the DATA statement,
the SAS engine supervisor creates a SAS data set that has the specified name in the location specified by the
SASEOECD libref’s physical-name.

The contents of the SAS data set include the date of each observation and the name of each time series that is
read from the OECD website.

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASEOECD libref to create a custom view of your
data.

Because each SASEOECD libref results in retrieving the requested data from the OECD website, it is best to
use a DATA step to store the data. You should avoid the inefficient use of the SASEOECD libref that follows:

proc print data=oecd.MEI3C; run;

This statement uses the member name, MEI3C, in the PROC PRINT statement that invokes the OECD libref
to run the SASEOECD engine. It is more efficient to refer to the SAS data set myMEI repeatedly than to
invoke the interface engine repeatedly. This use of the member name, MEI3C, corresponds to specifying the
OUT=MEI3C option. Although using this statement might seem easier, it is not as efficient, because every
time you use the SASEOECD libref, the SASEOECD engine reads the entire JSON file into SAS again.

Data Elements Reference: SASEOECD Interface Engine
Table 52.5 lists the OECD data set codes (setIDs) and respective selection keys for each data set. This table is
not exhaustive, nor is it complete, because the OECD website is updated constantly. Consult the website
for current OECD data set codes and customized selection keys. For most OECD data sets, the time is not
represented in a key or inset, but instead is defined by the start and end dates. Time or frequency is included
in Table 52.5 for information purposes, but it is usually not used in the INSETn= option if the data are
available only in one frequency. NOTE: The table is organized by topic rather than alphabetically so that it
matches the order of the OECD catalog online.

Table 52.5 OECD Data Set Codes and Keys

Data Set Code Key0 Key1 . . . Keyn

****** Agriculture/Fisheries ******
HIGH_AGLINK_2017 COUNTRY COMMODITY VARIABLE TIME (2016–2026)
HIGH_AGLINK_2016 COUNTRY COMMODITY VARIABLE TIME (2015–2025)
MON2017_REFERENCE_TABLE Country PSECSE_indicator Unit Time (1986–2017)
MON2016_REFERENCE_TABLE Country PSECSE_indicator Unit Time (1986–2015)
FISH_FSE Country Variable Unit Year (2008–2015)
FISH_PAT_RD Country Indicator Measure Time (2000–2015)
FISH_NLD Species Measure Country Year (2000–2014)
FISH_NLF Species Measure Country Year (2000–2014)
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Table 52.5 continued

Data Set Code Key0 Key1 . . . Keyn

FISH_FLD Species Measure Country Year (2000–2014)
FISH_AQUA Species Measure Country Year (2000–2014)
FISH_TRADE COUNTRY COMMODITY FLOW MEASURE YEAR (2003–2016)
FISH_EMPL Country Economic_Sector Gender Occupation_Rate Year (2000–2014)
FISH_FLEET Fleet Measure Country Year (2000–2014)
FISH_INLAND Country Species Measure Year (2000–2014)
FISH_PAT_DEV Inventor_Country Family_Size Technology_Domain Time (2005–2013)
FISH_PAT_COL_RATE Country Variable Technology_Domain Time (2000–2013)
FISH_PAT_COL Country Partner Technology_Domain Time (2000–2013)
FISH_PAT_DIFF Patent_Office Technology_Domain Coverage Time (2000–2013)

****** Detailed Aid Statistics ******
CRS1 —-needs subscription to the OECD library———————
RIOMARKERS Donor Recipient Sector Marker Score Amount_Type Year (2002–2016)
GENDER —-needs subscription—————————————–
DACDEFL Donor Deflator_Base_Year Year (2000–2014)
DACGEO Donor Recipient Series Year (2006–2015)
DACIND Recipient Indicator Year (2014–2015)
DACSECTOR Donor Recipient Sector Year (2007–2015)
TABLE1 Donor Part Aid_Type Fund_Flows Amount_Type Year (2007–2016)
TABLE2A Donor Part Aid_Type Fund_Flows Amount_Type Year (2007–2016)
TABLE2B Recipient Donor Part Aid_Type Amount_Type Year (2006–2015)
TABLE3A Recipient Donor Part Aid_Type Amount_Type Year (2007–2016)
TABLE4 Recipient Donor Part Aid_Type Amount_Type Year (2007–2016)
TABLE5 Donor Sector Aid_Type Amount_Type Year (2007–2016)
TABLE7B Donor Tying_Status Aid_Type Year (2014–20150
REF_TOTAL_ODF Recipient Type Part_Type Year (2007–2016)
REF_TOTAL_OFFICIAL Recipient Donor Aid_Type Part Year (2007–2016)
REF_TOTAL_RECPTS Recipient Donor Part Year (2007–2016)

****** Economy ******
CPA Donor Recipient Amount_Type Year (2010–2019)
FSS Donor Recipient Amount_Type Disbursement_Year Survey_Year

(2012–2016)
GIDDB2014 Region Country Income_Group Variables Time (2014)
GIDDB2012 Region Income_Group Country Variable Year (2012)
EO101_INTERNET Country Variable Time_&_Frequency Annual (1960–2018),

(1960Q1–2018Q4)
EO100_INTERNET Country Variable Time_&_Frequency Annual (1960–2018),

(1960Q1–2018Q4)
EO99_INTERNET Country Variable Time_&_Frequency Annual (1960–2017),

(1960Q1–2017Q4)
EO98_OUTLOOK98 Country Variable Time_&_Frequency Annual (1960–2016),

(1960Q1–2016Q4)
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EO97_OUTLOOK97 Country Variable Time_&_Frequency Annual (1960–2017),
(1960Q1–2017Q4)

. .

. .

. .
EO87_OUTLOOK87 Country Variable Time_&_Frequency Annual (1960–2011),

(1960Q1–2017Q4)
CSPCUBE Subject Country Year
FACTBOOK2015_PUB Subject Country Year
FACTBOOK2014_PUB Subject Country Year
CRISIS Indicator Country Time_Period (Annual Semester Quarterly Monthly)
CSP2012 Subject Country Year
CSP2010 Subject Country Year
MEI_BOP6 Country Subject Measure Frequency
MEI_BTS_COS Country Subject Measure Time_&_Frequency
MEI_CLI Country Subject Measure Time_&_Frequency
MEI_FIN Country Subject Measure Time_&_Frequency
MEI_TRD Country Subject Measure Time_&_Frequency
KEI Country Subject Measure Time_&_Frequency
EAR_MEI Country Subject Measure Time_&_Frequency
STLABOUR Country Subject Measure Time_&_Frequency
LAB_REG_VAC Country Subject Time_&_Frequency
ULC_EEQ Country Subject Measure Time_&_Frequency
MEI Country Subject Measure Time_&_Frequency
MEI_PRICES Country Subject Measure Time_&_Frequency
G20_PRICES Country Subject Measure Time_&_Frequency
PRICES_COICOP Country Subject Measure Time_&_Frequency
MEI_CPI_WEIGHTS Country Weights Measure Time_&_Frequency
MEI_PRICES_PPI Country Subject Measure Time_&_Frequency
MEI_CTRY_WEIGHTS Country Country_Weights Subject Measure Time_&_Frequency
PPGDP Indicator Country Time (Annual)
CPL Indicator Country Country_Currency Time (annual, semesters, quarters,

months)
RPPI_TARGET Country Subject Geographical_Coverage Measure Time_&_Frequency
RPPI Country Subject Geographical_Coverage Measure Time_&_Frequency
HOUSE_PRICES Country Indicator Time (Annual, semesters, quarters)
MEI_REAL Subject Country Time & Frequency (Annual, Quarterly, Monthly)
MEI_ARCHIVE Country Variable Edition Time_&_Frequency
SNA_TABLE1 Country Transaction Measure Year
SNA_TABLE2 Country Transaction Measure Year
SNA_TABLE3 Country Transaction Measure Year
SNA_TABLE4 Country Transaction Measure Year
SNA_TABLE9B Country Transaction Sector Measure Year
SNA_TABLE8 Country Transaction Activity Measure Year
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SNA_TABLE8A Country Transaction Activity Measure Year
SNA_TABLE9 Country Transaction Activity Measure Year
SNA_TABLE9A Country Transaction Activity Measure Year
SNA_TABLE5 Country Transaction Measure Year
SNA_TABLE7 Country Transaction Activity Measure Year
SNA_TABLE7A Country Transaction Activity Measure Year
SNA_TABLE14A Country Transaction Sector Measure Year (annual)
QASA_TABLE801 Country Transaction Sector Measure Adjusted Period_&_Frequency
SNA_TABLE13 Country Transaction Sector Measure Year (annual)
SNA_TABLE6 Country Transaction Activity Measure Year (annual)
SNA_TABLE6A Country Transaction Activity Measure Year (annual)
QASA_7HH Country Transaction Sector Measure Adjustment Period_&_Frequency

(annual, semesters, quarters)
7HA_A_Q Country Transaction Type Measure Time_&_Frequency (annual, quarters)
HH_DASH Country Indicator Time_&_Frequency (annual, quarterly)
NAAG Country Indicator Time (annual)
FIN_IND_FA Country Indicator Time (annual)
SNA_TABLE610R Country Transaction Sector Measure Time (annual)
QASA_TABLE610R Country Transaction Sector Measure Adjusted Time (annual, semesters,

quarters)
SNA_TABLE620R Country Transaction Sector Measure Time (annual)
QASA_TABLE620R Country Transaction Sector Measure Adjusted Time (annual, semesters,

quarters)
FIN_IND_FBS Country Indicator Time (annual)
SNA_TABLE710R Country Transaction Sector Measure Time (annual)
QASA_TABLE710R Country Transaction Sector Measure Adjusted Time (annual, semesters,

quarters)
SNA_TABLE720R Country Transaction Sector Measure Time (annual)
QASA_TABLE720R Country Transaction Sector Measure Adjusted Time (annual, semesters,

quarters)
SNA_TABLE11 Country Transaction Function Sector Measure Year (annual)
SNA_TABLE12 Country Transaction Function Sector Measure Year (annual)
SNA_TABLE10 Country Transaction Function Sector Measure Year (annual)
EXP_COFOG_SPECIAL COFOG_Special Transaction Sector Country Year (annual)
REVENUE_OUT Type_of_Revenues Sector Country Year (annual)
QNA Country Subject Measure Period_&_Frequency (annual, quarterly)
SNA_TABLE50 Country Transaction Sector Measure Year (annual)
GOV_DEBT Country Type Frequency
SNA_TABLE30 Country Transaction Product Measure Year (annual)
SNA_TABLE31 Country Transaction Activity Measure Year (annual)
SNA_TABLE40 Country Transaction Product Flow Measure Year (annual)
SNA_TABLE41 Country Transaction Activity Measure Year (annual)
SNA_TABLE42 Country Transaction Activity Measure Year (annual)
SNA_TABLE43 Country Transaction Product Flow Measure Year (annual)
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SNA_TABLE44 Country Transaction Product Valuation Measure Year (annual)
SNA_TABLE1_SNA93 Country Transaction Measure Year (annual)
SNA_TABLE2_SNA93 Country Transaction Measure Year (annual)
SNA_TABLE3_SNA93 Country Transaction Measure Year (annual)
SNA_TABLE9B_SNA93 Country Transaction Sector Measure Year (annual)
SNA_TABLE8_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE8A_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE9_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE9A_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE5_SNA93 Country Transaction Measure Year (annual)
SNA_TABLE7_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE7A_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE14A_SNA93 Country Transaction Activity Measure Year (annual)
QASA_TABLE801 Country Transaction Sector Measure Adjusted Period_&_Frequency

(annual, semesters, quarters)
SNA_TABLE13_SNA93 Country Transaction Sector Measure Year (annual)
SNA_TABLE6_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE6A_SNA93 Country Transaction Activity Measure Year (annual)
SNA_TABLE610 Country Transaction Sector Measure Year (annual)
QASA_TABLE610 Country Transaction Sector Measure Adjusted Period_&_Frequency

(annual, semesters, quarters)
SNA_TABLE620 Country Transaction Sector Measure Year (annual)
QASA_TABLE620 Country Transaction Sector Measure Adjusted Period_&_Frequency

(annual, semesters, quarters)
SNA_TABLE710 Country Transaction Sector Measure Year (annual)
QASA_TABLE710 Country Transaction Sector Measure Adjusted Period_&_Frequency

(annual, semesters, quarters)
SNA_TABLE720 Country Transaction Sector Measure Year (annual)
QASA_TABLE720 Country Transaction Sector Measure Adjusted Period_&_Frequency

(annual, semesters, quarters)
SNA_TABLE11_SNA93 Country Transaction Function Sector Measure Year (annual)
SNA_TABLE12_SNA93 Country Transaction Sector Measure Year (annual)
SNA_TABLE10_SNA93 Country Transaction Sector Measure Year (annual)
QASA_TABLE7PSD Country Transaction Sector Measure Adjusted Time

(annual, semesters, quarters)
PMR Indicator Country Year
PROFSVC Indicator Profession Country Year
ETCR Indicator Country Year
RETAIL Indicator Country Year

****** Education ******
EAG_GRAD_ENTR_RATES Country Gender Age International_Students_Exclusion

Education_Level&Program_Orientation Indicator Year
EAG_GRAD_ENTR_FIELD Country Sex Field Education_Level Indicator Year
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EAG_GRAD_ENTR_SHARE Country Gender Education_Level&Program_Orientation Indicator Year
EAG_PERS_RATIO Country Education_Level Reference_Sector Indicator Year
EAG_PERS_SHARE_AGE Country Education_Level Indicator Sex Age Year
EAG_ENRL_RATE_AGE Country Age Intensity Sex Education_Level

Category_of_Education Indicator Year
EAG_PERS_SHARE_INST Country Reference_Sector Indicator Education_Level Year
EAG_PERS_SHARE_CATEGORY Country Age Education_Level&Program_Orientation Indicator Sex

Intensity Year
EAG_ENRL_MOBILES_FIELDS Country Indicator Education_Level Field_of_Education Year
EAG_ENRL_MOBILES_ORIGIN Country Indicator Country_of_Origin Education_Level Year
EAG_TRANS Country ISCED-A Gender Age Education&Labour_Force_Status

Indicator Measure Year
EAG_NEAC Country ISCED-2011A_Education_Level Gender Age Field Measure

Indicator Reference_Year
EAG_FIN_RATIO_CATEGORY Country Education_Level&Program_Orientation Indicator

Type_of_Expenditure Reference_Sector Counterpart_Sector Year
CHAPTER_A_EAG2014_NEW GPS_Variables Country Time (annual)
CHAPTER_B_EAG2014 GPS_Variables Country Time (annual)
CHAPTER_C_EAG2014 GPS_Variables Country Time (annual)
CHAPTER_D_EAG2014 GPS_Variables Country Time (annual)
EDU_CLASS Country Reference_Sector Education_Level Type_of_Personnel Year
EDU_FIN_NATURE Country ISCED-2011_Education_Level ISCED-2011_Category

Type_of_Expenditure Counterpart_Sector Year
EDU_FIN_SOURCE Country Reference_Sector ISCED-2011_Education_Level

ISCED-2011P_Category Type_of_Expenditure Counterpart_Sector Year
EDU_PERS_AGE Country Sex Age Education_Level Category_of_Education Year
EDU_PERS_INST Country Sex Reference_Sector Intensity Education_Level

Category_of_Education Type_of_Personnel Unit_of_Measure Year
EDU_ENRL_AGE Country Sex Age Intensity Education_Level Category_of_Education Year
EDU_ENRL_FIELD Country Sex Field_of_Education Country_of_Origin Education_Level

Category_of_Education Year
EDU_ENRL_INST Country Sex Reference_Sector Intensity Education_Level

Category_of_Education Unit_of_Measure Year
EDU_FIN_STUD Country Reference_Sector Intensity Education_Level

Category_of_Education Unit_of_Measure Year
EDU_ENRL_MOBILE Country Sex Country_of_Origin Education_Level Category_of_Education

Year
EDU_ENTR_AGE Country Sex Age Country_of_Origin Education_Level

Category_of_Education Year
EDU_ENTR_FIELD Country Sex Field_of_Education Education_Level Category_of_Education

Year
EDU_GRAD_AGE Country Sex Age Country_of_Origin Education_Level

Category_of_Education Year
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EDU_GRAD_FIELD Country Sex Field_of_Education Country_of_Origin Education_Level
Category_of_Education Year

EDU_GRAD_MOBILE Country Sex Country_of_Origin Education_Level Category_of_Education
Year

EDU_PERS_MANA Country Sex Intensity Education_Level Category_of_Education Variable
Unit_of_Measure Year

EDU_DEM Country Sex Age Year
RFIN1 Country Year Education_Level Program_Orientation Funding_Source

Type_of_Transactions
RPERS Country Year Education_Level Program_Orientation Type_of_Institution

Intensity_of_Participation Age_Groups Gender Personnel_Category
RFIN2 Country Year Education_Level Program_Orientation Service_Provider

Nature_of_Expenditure
RFOREIGN Country Year Education_Level Program_Destination

Foreign_International_Category
Program_Orientation Gender Country_of_Origin

RGRADAGE Country Year Education_Level Program_Destination Program_Duration
Program_Orientation Type_of_Institution Type_of_Counts Age_Groups
Gender

RGRADSTY Country Year Education_Level Program_Destination Program_Duration
Program_Orientation Field_of_Education Gender

RNENTAGE Country Year Education_Level Program_Destination Age_Groups Gender
ROVERAGE Country Year Education_Level Program_Orientation Type_of_Institution

Intensity_of_Participation Adjusted_to_Finance_Personnel_Data
RENRLAGE Country Year Education_Level Program_Destination Program_Orientation

Intensity_of_Participation Age_Groups Gender
RENRL Country Year Education_Level Program_Destination Program_Orientation

Intensity_of_Participation Type_of_Institution Gender
RPOP Country Year Age_Groups Gender Status_of_Population
TALIS_EDUGPS Variables_EDUGPS Country Units Time
TALIS Variables_EDUGPS Country Units Time

****** Employment (Jobs) ******
ALFS_SUMTAB Country Subject Time&Frequency (annual)
ALFS_POP_VITAL Country Subject Time&Frequency (annual- 1995–2015 only)
ALFS_POP_LABOUR Country Subject Sex Time&Frequency (annual- 2000–2016 only)
POP_PROJ Country Sex Age Variant Time
ALFS_EMP Country Subject Sex Time&Frequency (annual)
DEC_I Country Time Sex Series (annual)
MIN2AVE Country Time Series
MW_CURP Country Time Pay_Period (annual, 5 pay periods=hourly, daily, weekly,

monthly annual)
RMW Country Time Series Pay_Period (annual, 2 pay periods=hourly, annual)
ANHRS Country Time&Frequency Employment_Status (annual)
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AVE_HRS Country Time&Frequency Sex Age Employment_Status Job_Type (annual)
USLHRS_I Country Time&Frequency Sex Age Employment_Status Hour_Bands

(annual)
USLHRS_D Country Time&Frequency Sex Age Employment_Status Hour_Bands

(annual)
DW_D Country Time&Frequency Sex Age Desire_to_Work&Available_to_Work

(annual)
DW_I Country Time&Frequency Sex Age Desire_to_Work&Available_to_Work

Series (annual)
ECONSH_D Country Time&Frequency Sex Age Employment_Status (annual)
ECONSH_I Country Time&Frequency Sex Age Employment_Status Series (annual)
TENURE_AVE Country Time&Frequency Sex Age Employment_Status Job_Tenure

(annual)
TENURE_DIS Country Time&Frequency Sex Age Employment_Status Job_Tenure

(annual)
TEMP_D Country Time&Frequency Sex Age Employment_Status Series (annual)
TEMP_I Country Time&Frequency Sex Age Employment_Status Series (annual)
FTPTC_D Country Time&Frequency Sex Age Employment_Status Series (annual)
FTPTC_I Country Time&Frequency Sex Age Employment_Status Series (annual)
FTPTN_D Country Time&Frequency Sex Age Employment_Status Series (annual)
FTPTN_I Country Time&Frequency Sex Age Employment_Status Series (annual)
INVPT_D Country Time&Frequency Sex Age Employment_Status
INVPT_I Country Time&Frequency Sex Age Employment_Status Series (annual)
LFS_D Country Time&Frequency Sex Age Series (annual)
LFS_SEXAGE_I_R Country Time&Frequency Sex Age Series (annual)
LFS_SEXAGE_I_C Country Time&Frequency Sex Age Series (annual)
DUR_D Country Time&Frequency Sex Age Duration (annual)
AVD_DUR Country Time&Frequency Sex Age (annual)
DUR_I Country Time&Frequency Sex Age Duration (annual)
JOBQ Country Overall_Measure Components Age Sex Education Time (annual)
JOBQ_I Country Overall_Measure Components Age Sex Education Time (annual)
LMPEXP Country Programs Measure Time&Frequency (annual)
EPL_CD Country Time
EPL_OV Country Time Series
EPL_R Country Time Series (annual)
EPL_T Country Time Series (annual)
UN_DEN Country Time
U_D_D Country Time&Frequency Source Series (annual)
AV_AN_WAGE Country Time Series (annual)

****** Environment ******
AIR_GHG Country Pollutant Variable Year (annual)
AIR_EMISSIONS Country Pollutant Variable Year (annual)
AEA Country Pollutant Activity Measure Year (annual)
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EXP_PM2_5 Country Macroregion Microregion Variable Year (annual)
EXP_PM2_5_FUA Country Metropolitan_Area Variable Year (annual)
WATER_RESOURCES Country Variable Period Year (annual)
WATER_ABSTRACT Country Source Variable Year (annual)
WATER_TREAT Variable Country Year (annual)
WATER_QUALITY Country Variable Year (annual)
MUNW Country Variable Year (annual)
WSECTOR Country Variable Year (annual)
MATERIAL_RESOURCES Country Variable Group Year (annual)
LAND_USE Country Variable Year (annual)
FOREST Country Variable Year (annual)
WILD_LIFE IUCN_Category Species Country (no date)
PAT_DEV Inventor_Country Family_Size Technology_Domain Year (annual)
PAT_COL_RATE Country Variable Technology_Domain Year (annual)
PAT_COL Country Partner Technology_Domain Year (annual)
PAT_DIFF Patent_Office Technology_Domain Coverage Year (annual)
EAMFP Country Variable Year (annual)
EPER Country Tables Sector Industry Expenditure Measure Year (annual)
ENV_ENVPOLICY Country Variable Domain Year (annual)
GREEN_GROWTH Country Variable Year (annual)

****** Finance ******
BPF1 Item Bank Country Year (annual)
7IA_A_Q Country Transaction Sector Measure Time&Frequency

(annual, quarterly)
QASA_7II_INDIC Country Indicator Time
QASA_7II Country Transaction Sector Measure Adjustment Time&Frequency

****** Health ******
HEALTH_STAT Variable Measure Country Year (annual)
HEALTH_LVNG Variable Measure Country Year (annual)
HEALTH_REAC Variable Measure Country Year (annual)
HEALTH_PROC Variable Measure Country Year (annual)
HEALTH_HCQI Country Periods Indicator Gender Age_Group Value (annual)
HEALTH_HPMC Variable Measure Country Year (annual)
HEALTH_LTCR Variable Measure Country Year (annual)
HEALTH_WFMI Country Variable Country_of_Origin Year (annual)
SHA Financing_Scheme Function Provider Measure Country Year (annual)
SHA_FS Financing_Scheme Revenues_of_Financing_Schemes Measure Country

Year (annual)
SHA_FP Provider Factor_of_Provision Measure Country Year (annual)
SHA_HK Provider Type_of_Asset Measure Country Year (annual)
HEALTH_PROT Variable Measure Country Year (annual)
HEALTH_DEMR Variable Measure Country Year (annual)
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HEALTH_ECOR Variable Measure Country Year (annual)

****** Industry and Entrepreneurship ******
AMNE_IN Economic_Variable Industry Partner_Country Declaring_Country

Year (annual)
AMNE_IN_PARTNER Economic_Variable Industry Partner_Country Declaring_Country

Year (annual)
AMNE_OUT_PARTNER Economic_Variable Industry Partner_Country Declaring_Country

Year (annual)
AMNE_OUT Economic_Variable Industry Partner_Country Declaring_Country

Year (annual)
MTC Importer_Country Exporter_Country Type_of_Goods Transport_Mode

Transport_Cost_Measures Commodity Year (annual)
TES3 Indicator Reporter_Country Flow Partner_Country&Zone Sector_ISIC

Year (annual)
TEC3_REV4 Indicator Reporter_Country Flow Partner_Country&Zone

Sector_ISIC Year (annual)
TSEC1 Indicator Reporter_Country Flow Partner_Zone Size_Class

ISIC_Sector Year (annual)
TEC1_REV4 Indicator Reporter_Country Flow Partner_Zone Size_Class

ISIC_Sector_Rev4 Year (annual)
TSEC2 Indicator Reporter_Country Flow Partner_Zone Top_Enterprises

ISIC_Sector Year (annual)
TEC2_REV4 Indicator Reporter_Country Flow Partner_Zone Top_Enterprises

ISIC_Sector_Rev4 Year (annual)
TSEC4 Indicator Reporter_Country Flow Partner_Zone

Partner_Countries_Class ISIC_Sector Year (annual)
TEC4_REV4 Indicator Reporter_Country Flow Partner_Zone

Partner_Countries ISIC_Sector_Rev4 Year (annual)
TSEC5 Indicator Reporter_Country Flow Partner_Zone Commodity_Group

ISIC_Sector Year (annual)
TEC5_REV4 Indicator Reporter_Country Flow Partner_Zone Commodity_Group

ISIC_Sector_Rev4 Year (annual)
SDBS_BDI_ISIC4 Country Variable ISIC4 Size_Class Time (annual)
SDBS_BDI ISIC3 Variable Size_Class Country Year (annual)
SSIS_BSC_ISIC4 Country Variable ISIC4 Source Size_Class Time (annual)
SSIS_BSC ISIC3 Source Variable Size_Class Country Year (annual)
TIMELY_BDS_ISIC4 Country Variable Measure ISIC4 Time (annual, semesters, quarters)
STAN08BIS Country Variable Industry Time (annual)
STANINDICATORS Country Variable Industry Time (annual)
STANI4 Country Variable Industry Time (annual)
ANBERD_REV4 Country Variable Industry Time (annual)
ANBERD2011_REV3 Country Variable Industry Time (annual)
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BTDIXE_I4 Reporting_Country Flow Partner_Country End_Use
Industry_Activity Variable Time (annual)

BTDIXE_I3 Reporting_Country Flow Partner_Country End_Use_Category
Industry_Activity Variable Time (annual)

IOTS Variable Country Time Row_Sector_From Column_Sector_To (annual)
STAN_IO_LEONTIEF Country Period Row_Sector Column_Sector

(mid-1990s, early 2000s, mid-2000s)
STAN_IO_LEONTIEF_DOM Country Period Row_Sector Column_Sector

(mid-1990s, early 2000s, mid-2000s)
STAN_IO_M_X Country Import_Type Period Sector
(mid-1990s, early 2000s,
mid-2000s)

****** Innovation ******
PATS_COOP Patent_Office Type_of_International_Cooperation_in_Patenting

Country Partner_Country Reference_Date Time (annual)
PATS_IPC Patents_Office&Patents_Families Reference_Country Country

Technology_Domains&IPC Reference_Date Time (annual)
PATS_REGION Patent_Office Reference_Region Regions

Total_Patents&By_Technologies Time (annual)
PDB_LV Country Subject Measure Time (annual)
PDB_GR Country Subject Measure Time (annual)
PDB_I4 Country Subject Measure Activity Time (annual)

****** Insurance and Pensions ******
BSI Currency Variable Insurance_Type Insurer_Type Country Year

(annual)
PT2 Country Year Currency Variable Ownership Premium_Type

Insurance_Type DB_RA Contract_Type (annual)
PT9 Country Year Currency Variable Ownership Insurance_Type DB_RA

(annual)
PT7 Country Currency Variable Ownership Insurance_Type DB_RA Year

(annual)
PT8 Country Currency Variable Ownership Insurance_Type DB_RA Year

(annual)
INSIND Year Country Indicator (annual)
PT3 Country Year Currency Variable Ownership Premium_Type Risk_Type

Insurance_Type DB_RA (annual)
PT4 Country Year Currency Variable Premium_Type BA_SUB Insurance_Type

DB_RA Partner_Country (annual)
PT5 Country Year Currency Variable Premium_Type DB_RA Class (annual)
PT1 Country Year Variable Ownership Insurance_Type Employer_Type
PT6 Country Variable Ownership Investment_Type Insurance_Type

Destination Insurer_Type Country Year
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PNN_NEW Pension_Plan_Type Definiton_Type Contract_Type Variable Measure
Country Year

PNNI_NEW Pension_Plan_Type Definiton_Type Contract_Type Variable Measure
Country Year

PPRF Country Type_of_Fund Valuation_Method Asset_Class Variable Year
PAG Country Indicator Year

****** Migration ******
MIG Country_of_Birth/Nationality Variable Gender Country Year

****** Investment ******
FDI_AGGR_SUMM Reporting_Country Measure Measurement_Principle Type_of_FDI

Time (annual,semesters,quarters)
FDI_FLOW_SUMM Reporting_Country Measure Measurement_Principle Type_of_FDI

Type_of_Entity Accounting_Entry FDI_Components Time
(annual,semesters,quarters)

FDI_FLOW_CTRY Reporting_Country Currency Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry Level_of_Counterpart
Partner_Country/Territory Year (annual)

FDI_FLOW_IND Accounting_Entry Level_of_Counterpart Partner_Country/Territory
Economic_Activity Year (annual)

FDI_INC_AGGR Reporting_Country Measure Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry FDI_Components Time
(annual,semesters,quarters)

FDI_INC_CTRY Reporting_Country Currency Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry Level_of_Counterpart
Partner_Country/Territory Year (annual)

FDI_INC_IND Reporting_Country Currency Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry Level_of_Counterpart
Partner_Country/Territory Year (annual)

FDI_INC_AGGR Reporting_Country Measure Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry FDI_Components Time
(annual)

FDI_POS_CTRY Reporting_Country Currency Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry Level_of_Counterpart
Partner_Country/Territory Year (annual)

FDI_POS_IND Reporting_Country Currency Measurement_Principle Type_of_FDI
Type_of_Entity Accounting_Entry Level_of_Counterpart
Partner_Country/Territory Economic_Activity Year
(annual)

FDI_BOP_IIP Series Measure Country Year (annual, semesters, quarters)
FDI_FLOW_INDUSTRY Type_of_FDI Industry Currency Reporting_Country Year (annual)
FDI_FLOW_PARTNER Type_of_FDI Partner_Country Currency Reporting_Country Year

(annual)
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FDI_POSITION_INDUSTRY Type_of_FDI Industry Currency Reporting_Country Year (annual)
FDI_POSITION_PARTNER Type_of_FDI Partner_Country Currency Reporting_Country Year

(annual)
FDIINDEX Country Sector/Industry Type_of_Restriction Series Year (annual)

****** Regional, Rural, and Urban Development ******
REGION_DEMOGR Territory_Level_and_Typology Region Indicator Gender Position Year

(annual)
REGION_ECONOM Territory_Level_and_Typology Region SNA_Classification Indicator

Measure Position Year (annual)
REGION_LABOUR Territory_Level_and_Typology Region Indicator Gender Position Year

(annual)
REGION_SOCIAL Territory_Level_and_Typology Region Indicator Gender Position Year

(annual)
REGION_INNOVATION Territory_Level_and_Typology Region Indicator Position Year

(annual)
CITES Metropolitan_Areas Variables Year (annual)
RWB Regions Indicator Measure Time (annual)
SNGF Sector Transaction Measure Country Time (annual)

****** Science and Technology Filter ******
MSTI_PUB MSTI_Variables Country Year (annual)
BERD_INDUSTRY_ISIC4 Country Industry Measure Classification_Criteria Year (annual)
BERD_INDUSTRY Industry Measure Classification_Criteria Country Year (annual)
BERD_FUNDS Industry Source_of_Funds Measure Country Year (annual)
BERD_COST Industry Type_of_Costs Measure Country Year (annual)
BERD_SIZE Size_Class Source_of_Funds Measure Country Year (annual)
GERD_SCIENCE Sector_of_Performance Field_of_Sciences Measure Country Year

(annual)
GERD_OBJECTIVE_NABS2007 Sector_of_Performance Socio_Economic_Objective Measure Country

Year (annual)
GERD_FUNDS Sector_of_Performance Source_of_Funds Measure Country Year

(annual)
GERD_COST Sector_of_Performance Type_of_Costs Measure Country Year

(annual)
ONRD_FUNDS Sector_of_Performance Source_of_Funds Measure

Field_of_Sciences Country Year (annual)
ONRD_COST Sector_of_Performance Measure Type_of_Costs Field_of_Sciences

Country Year (annual)
RD_ACTIVITY Sector_of_Performance Type_of_Costs Type_of_RD Measure

Country Year (annual)
GBAORD_NABS2007 GBAORD_Socio_Economic_Objective Measure Country Year (annual)
PERS_INDUSTRY Industry Measure Occupation_Criteria Gender Country Year
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Table 52.5 continued

Data Set Code Key0 Key1 . . . Keyn

PERS_SCIENCE Field_of_Sciences Sector_of_Employment Measure Gender
Occupation_Criteria Country Year

PERS_QUAL Sector_of_Employment Qualification Gender Measure
Occupation_Criteria Country Year

PATS_COOP Patent_Office Type_of_International_Cooperation_in_Patenting
Country Partner_Country Reference_Date Time

PATS_REGION Patent_Office Reference_Region Regions
Total_Patents_and_by_Technologies Time

AMNE_IN Economic_Variable Industry Partner_Country Declaring_Country
Year

AMNE_IN_PARTNER Economic_Variable Industry Partner_Country Declaring_Country
Year

AMNE_OUT_PARTNER Economic_Variable Industry Partner_Country Declaring_Country
Year

AMNE_OUT Economic_Variable Industry Partner_Country Declaring_Country
Year

STAN08BIS Country Variable Industry Time

****** Wealth ******
WEALTH Country Variable Age_Groups Time
BLI Country Indicator Measure Inequality
GENDER_EDU Country Indicator Sex Age_Group Time
GENDER_ENT1 Country Indicator Sex Age Time
CITIES Metropolitan_Areas Variables Year
SOCX_REF Variable Country Year

****** Tax ******
TABLE_I4 Country Income_as_a_Percentage_of_the_Average_Wage

Marginal_Tax_Rates_and_Wedges Year
REVAUT Tax Government Year (Austria)
REVBEL Tax Government Year (Belgium)
REVCAN Tax Government Year (Canada)
REVCHL Tax Government Year (Chile)
REV Level_of_Government Tax_Revenue Indicator Country Year
REVCZE Tax Government Year (Czech Republic)
REVDNK Tax Government Year (Denmark)
REVEST Tax Government Year (Estonia)
REVFIN Tax Government Year (Finland)
REVFRA Tax Government Year (France)
REVDEU Tax Government Year (Germany)
REVGRC Tax Government Year (Greece)
REVHUN Tax Government Year (Hungary)
REVISL Tax Government Year (Iceland)
REVIRL Tax Government Year (Ireland)
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Table 52.5 continued

Data Set Code Key0 Key1 . . . Keyn

REVISR Tax Government Year (Israel)
REVITA Tax Government Year (Italy)
REVJPN Tax Government Year (Japan)
REVKOR Tax Government Year (Korea)
REVLUX Tax Government Year (Luxembourg)
REVMEX Tax Government Year (Mexico)
REVNLD Tax Government Year (Netherlands)
REVNZL Tax Government Year (New Zealand)
REVNOR Tax Government Year (Norway)
REVPOL Tax Government Year (Poland)
REVPRT Tax Government Year (Portugal)
REVSVK Tax Government Year (Slovak Republic)
REVSVN Tax Government Year (Slovenia)
REVESP Tax Government Year (Spain)
REVSWE Tax Government Year (Sweden)
REVCHE Tax Government Year (Switzerland)
REVTUR Tax Government Year (Turkey)
REVGBR Tax Government Year (United Kingdom)
REVUSA Tax Government Year (United States)

Examples: SASEOECD Interface Engine

Example 52.1: Retrieving OECD Gross Domestic Product Data for One Region
You can start building an OECD query for this example on the web page at the following URL:

http://stats.oecd.org/index.aspx?datasetcode=SNA_TABLE1_SNA93

Select Customize ISelection, which shows the dimension values that are the key values for Country,
Transaction, and Measure. Select Euro area (17 countries) from the Country list. Select Gross domestic
product (output approach) from the Transaction box, and Current prices from the Measure list. Specify
the Observation period to limit the time range to the span 1995 to 2013. On the Export tab, select Developer
API. Then click Generate API queries.

The Data query box shows the URL for the key values that you selected for Country, Transaction, and
Measure:

http://stats.oecd.org/sdmx-json/data/SNA_TABLE1_SNA93/EA17.B1_GA.C/all?
startTime=1995&endTime=2013

In your SAS code, use SETID=SNA_TABLE1_SNA93 to indicate the OECD data set. Next, you can specify
the INSETn= options by using n=0,1,2 for Country, Transaction, and Measure, respectively. The SAS
code is shown after the next paragraph, followed by the output, which is shown in Output 52.1.1.

http://stats.oecd.org/index.aspx?datasetcode=SNA_TABLE1_SNA93
http://stats.oecd.org/sdmx-json/data/SNA_TABLE1_SNA93/EA17.B1_GA.C/all?startTime=1995&endTime=2013
http://stats.oecd.org/sdmx-json/data/SNA_TABLE1_SNA93/EA17.B1_GA.C/all?startTime=1995&endTime=2013
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The SET statement reads observations from the input data set myLib.GSTART and stores them in a SAS data
set named myGDP. When you specify the INSETn= option, you name the SAS input data set for each of
the n keysets that define your selection of data. The SASEOECD engine takes the crossproduct of all the
insets and creates a temporary data set named CrossKey. Each row in CrossKey defines a unique time series
request. Not every row in CrossKey yields meaningful data. Only the rows that contain valid data are placed
in a JSON file. When a request for data (using the values in each row) generates a valid JSON file, the file
is named by concatenating the OUT= option name to the observation number (n) in the CrossKey data set
that corresponds to the row whose values generated the request. When all the data are retrieved, they are
placed in a SAS data set that is named by the OUT= option and that is located in the folder specified by the
physical-name in the LIBNAME libref SASEOECD statement.

options validvarname=any;

data keylist0;
length key0 $8;
key0='EA17'; output; /* country is euro area; 17 countries */

run;

data keylist1;
length key1 $8;
key1='B1_GA'; output; /* transaction is GDP; output approach */

run;

data keylist2;
length key2 $2;
key2='C'; output; /* measure is current prices */

run;

title 'Request GDP for EA_17 in Current Prices';
LIBNAME myLib saseoecd "physical path to your folder for storing the OECD data"

setid=SNA_TABLE1_SNA93
inset0=keylist0
inset1=keylist1
inset2=keylist2
out=gstart
;

data myGDP;
set myLib.gstart ;

run;

proc print data=myGDP; run;
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Output 52.1.1 GDP for EA_17 in Current Prices

Request GDP for EA_17 in Current Prices

Obs date EA17.B1_GA.C

1 1995 5576144.4

2 1996 5807311.6

3 1997 5938589.4

4 1998 6168716.0

5 1999 6446962.4

6 2000 6783429.6

7 2001 7084189.5

8 2002 7330227.7

9 2003 7546644.2

10 2004 7859959.2

11 2005 8145054.4

12 2006 8564223.2

13 2007 9030671.4

14 2008 9243012.4

15 2009 8921464.1

16 2010 9167722.2

17 2011 9423758.6

18 2012 9483205.2

19 2013 9579227.7

Example 52.2: Retrieving the Short-Term Labor Market Statistics for Australia
This example shows how to retrieve OECD labor statistics data for one country, Australia, starting in the
third quarter of 2014 and ending in the third quarter of 2017. The output is shown in Output 52.2.1, which
contains two variables, Date and AUS.LREM64FE.STSA.Q. The SASEOECD engine automatically sets the
VALIDVARNAME=ANY option to allow for the special character ‘.’ in the SAS variable’s series name.

The SETID= option names the OECD data set to retrieve the data from, whose OECD data set code is
STLABOUR. The following URL describes the StLabour data set:

http://stats.oecd.org/Index.aspx?DataSetCode=STLABOUR

Key0 selects Australia as the country key (in INSET0=KEYLIST0), Key1 selects the LREM64E time series in
the subject key (in INSET1=KEYLIST1), Key2 selects STSA as the measure key (in INSET2=KEYLIST2),
and Key3 selects the quarterly frequency, Q (in INSET3=KEYLIST3). The START= and END= options
define the date range of the retrieved data.

options validvarname=any;

data keylist0;
length key0 $3;
key0='AUS'; output; /* country is Australia */

run;

data keylist1;

http://stats.oecd.org/Index.aspx?DataSetCode=STLABOUR
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length key1 $8;
key1='LREM64FE'; output; /* subject is employment rate */

run;

data keylist2;
length key2 $8;
key2='STSA'; output; /* measure is level, rate, or quantity series, s.a. */

run;

data keylist3; /* quarterly data */
length key3 $1;
key3='Q'; output;

run;

title 'Request LREM64FE for AUS in STSA, Quarterly Data';
LIBNAME myLib saseoecd "physical path to your folder for storing the OECD data"

setid=STLABOUR
inset0=keylist0
inset1=keylist1
inset2=keylist2
inset3=keylist3
start='2014-Q3'
end='2017-Q3'
;

data mylab;
set myLib.stlab;

run;

proc print data=mylab; run;

Output 52.2.1 Short-Term Labor Market Statistics for AUS in STSA

Request LREM64FE for AUS in STSA, Quarterly Data

Obs date AUS.LREM64FE.STSA.Q

1 2014-Q3 66.0799

2 2014-Q4 65.9477

3 2015-Q1 66.3210

4 2015-Q2 66.6583

5 2015-Q3 66.8309

6 2015-Q4 67.4171

7 2016-Q1 67.4288

8 2016-Q2 67.4313

9 2016-Q3 67.3130

10 2016-Q4 67.2861

11 2017-Q1 67.4236

12 2017-Q2 67.8598

13 2017-Q3 68.3549
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Example 52.3: Retrieving Bank Profitability Statistics for USA, NMEC, and
RUS

This example shows how to retrieve OECD bank profitability statistics data for three country codes, starting
in 1999 and ending in 2009. (NMEC stands for nonmember economies, which include Russia, China, and
the Baltic States.) The output is shown in Output 52.3.1. The SETID= option names the OECD data set to
retrieve the data from, whose OECD data set code is BPF1. The following URL describes the BPF1 data set:

http://stats.oecd.org/Index.aspx?DataSetCode=BPF1

Key0 selects three time series, BALSH_TOT, BT25TE, and BT26TE; Key1 selects all banks; and Key2 selects
three country codes, USA, NMEC, and RUS. The START= and END= options define the date range of data,
1999 to 2009.

options validvarname=any;

data keylist0;
length key0 $16;
key0='BALSH_TOT'; output;
key0='BT25TE'; output;
key0='BT26TE'; output;

run;

data keylist1;
length key1 $8;
key1='ALL'; output;

run;

data keylist2;
length key2 $8;
key2='USA'; output;
key2='NMEC'; output;
key2='RUS'; output;

run;

title 'Request BPF1 for USA,NMEC and RUS, Annual Data';
LIBNAME myLib saseoecd "physical path to your folder for storing the OECD data"

setid=BPF1
inset0=keylist0
inset1=keylist1
inset2=keylist2
out=BALBK
start='1999'
end='2009'
format=json;

data myBALBK;
set myLib.BALBK;

run;

http://stats.oecd.org/Index.aspx?DataSetCode=BPF1
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proc contents data=myBALBK; run;
proc print data=myBALBK; run;

Output 52.3.1 Bank Profitability Statistics for All Banks in USA, NMEC, and RUS

Request BPF1 for USA,NMEC and RUS, Annual Data

Obs date BT25TE.ALL.USA BT25TE.ALL.RUS BT26TE.ALL.USA BT26TE.ALL.RUS

1 1999 7369962.21 . 7178077.12 .

2 2000 7961767.68 . 7665864.94 .

3 2001 8446191.68 . 8203979.68 .

4 2002 9045488.03 . 8745839.85 .

5 2003 9623188.18 . 9334338.10 .

6 2004 10666422.03 7100603.24 10144805.11 6211876.94

7 2005 11488389.41 9696238.07 11077405.72 8188661.85

8 2006 12608105.99 13963452.60 12048247.70 11398436.75

9 2007 13835998.40 20125125.35 13222052.20 16765276.56

10 2008 14737224.66 28022328.54 14286520.14 23047657.84

11 2009 14113123.71 29430025.19 14425174.18 28372699.99

Example 52.4: Retrieving Fisheries and Aquaculture Employment for the
Czech Republic

This example shows how to retrieve OECD fisheries and aquaculture statistics data for the Czech Republic
(CZE), starting in 2009 and ending in 2016. The output is shown in Output 52.4.1. The SETID= option names
the OECD data set to retrieve the data from, whose OECD data set code is FISH_EMPL. The following URL
describes the Fish_Empl data set:

http://stats.oecd.org/Index.aspx?DataSetCode=FISH_EMPL

Key0 selects one country code, CZE (Czech Republic). Key1 selects the economic sector, ETOT, the total by
economic sector. Key2 selects two genders, MAL (male) and FEM (female). Key3 selects two occupation
rates, PA (part time) and FU (full time). The START= and END= options define the date range of data, 2009
to 2016.

options validvarname=any;

data keylist0;
length key0 $3;
key0='CZE'; output;

run;

data keylist1;
length key1 $8;
key1='ETOT'; output;

run;

data keylist2;
length key2 $3;

http://stats.oecd.org/Index.aspx?DataSetCode=FISH_EMPL


3740 F Chapter 52: The SASEOECD Interface Engine

key2='MAL'; output;
key2='FEM'; output;

run;

data keylist3;
length key3 $3;
key3='PA'; output;
key3='FU'; output;

run;

title 'Request FISH_EMPL Data, Annual Data';
LIBNAME myLib saseoecd "physical path to your folder for storing the OECD data"

setid=FISH_EMPL
inset0=keylist0
inset1=keylist1
inset2=keylist2
inset3=keylist3
out=FISHEMP
start='2009'
end='2016'
;

data myfish;
set myLib.fishemp;

run;

proc print data=myfish; run;

Output 52.4.1 Fisheries and Aquaculture Employment Data for CZE

Request FISH_EMPL Data, Annual Data

Obs date CZE.ETOT.MAL.FU CZE.ETOT.FEM.FU

1 2009 1248 287

2 2010 1277 286

3 2011 1277 286

4 2012 1277 286

Example 52.5: Retrieving the Trade by Enterprise Characteristics by
Ownership Statistics for the United Kingdom

This example shows how to retrieve OECD trade by enterprise statistics data for one country, the United
Kingdom, starting in 2011 and ending in 2015. The output is shown in Output 52.5.1, which contains
three variables, Date, 2.GBR.1.TOTAL.D.TOTAL, and 2.GBR.2.TOTAL.D.TOTAL. The SASEOECD engine
automatically sets the VALIDVARNAME=ANY option to allow for the special character ‘.’ in the SAS
variable’s series name.

The SETID= option names the OECD data set to retrieve the data from, whose OECD data set code is
TEC7_REV4. The following URL describes the TEC7_REV4 data set:

http://stats.oecd.org/Index.aspx?DataSetCode=TEC7_REV4

http://stats.oecd.org/Index.aspx?DataSetCode=TEC7_REV4
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Key0, in INSET0=KEYLIST0, selects trade value as the indicator key. Key1, in INSET1=KEYLIST1, selects
United Kingdom as the reporting country. Key2, in INSET2=KEYLIST2, selects the flow, 1 for imports
and 2 for exports. Key3, in INSET3=KEYLIST3, selects the zone or partner country as the total. Key4, in
INSET4=KEYLIST4, selects the ownership as domestic or foreign. Key5, in INSET5=KEYLIST5, selects
the ISIC sectors (rev 4) as domestically controlled enterprises. The START= and END= options define the
date range of data, 2011 to 2015.

options validvarname=any;

data keylist0;
length key0 $2;
key0='2'; output; /* indicator is trade value */

run;

data keylist1;
length key1 $3;
key1='GBR'; output; /* reporting country is United Kingdom */

run;

data keylist2;
length key2 $2;
key2='1'; output; /* flow is imports */
key2='2'; output; /* flow is exports */

run;

data keylist3;
length key3 $8;
key3='TOTAL'; output; /* partner country or zone is Total */

run;

data keylist4;
length key4 $3;
key4='D'; output; /* ownership is domestically controlled enterprises */

run;

data keylist5;
length key5 $8;
key5='TOTAL'; output; /* ISIC Sectors is total economy */

run;

title 'Request TEC7_REV4 Data for United Kingdom';

LIBNAME myLib saseoecd "physical path to your folder for storing the OECD data"
setid=TEC7_REV4
inset0=keylist0
inset1=keylist1
inset2=keylist2
inset3=keylist3
inset4=keylist4
inset5=keylist5
out=TR7
start='2011'
end='2015'
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;

data mytech;
set myLib.TR7;

run;

proc print data=mytech; run;

Output 52.5.1 Trade by Enterprise Characteristics - TEC by Ownership (Domestic or Foreign)

Request TEC7_REV4 Data for United Kingdom

Obs date 2.GBR.1.TOTAL.D.TOTAL 2.GBR.2.TOTAL.D.TOTAL

1 2011 231974 197155

2 2012 229010 182009

3 2014 217146 184752

4 2015 166213 139466
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Overview: SASEQUAN Interface Engine
The SASEQUAN interface engine enables SAS users to retrieve economic and other time series data from
the Quandl website, which is hosted by Quandl. The Quandl website offers access to 8 million time series
data sets from 400 sources in finance, economics, society, health, energy, demography, and more. These
time series are updated at annual, quarterly, monthly, weekly, and daily intervals. The time series on the
Quandl website contain observation or measurement periods that are associated with data values. Although
the Quandl API also supports data tables, the SASEQUAN engine does not support data tables at this time.

The SASEQUAN interface engine uses the LIBNAME statement to enable you to specify how to subset your
Quandl data and how to collapse the selected time series to the same update frequency. You can then use the
SAS DATA step to perform further subsetting and to store the resulting time series in a SAS data set. You
can perform more analysis (if desired) either in the same SAS session or in a later session.

The SASEQUAN interface engine supports Linux X64 (LAX) and Windows. Although the SASEQUAN
engine uses the Quandl API (default is version 3), it is not endorsed or certified by Quandl. By using the
SASEQUAN interface engine, you are agreeing to comply with the Quandl terms of use, which are described
on the web page at the following URL: https://www.quandl.com/about/terms.

Getting Started: SASEQUAN Interface Engine
You can query the Quandl data set to retrieve the observations or data values for a list of time series by
specifying the Quandl code of the data set. The Quandl code consists of a source code and a table code for
the data set that contains the time series that you want to read into SAS. You must also specify your unique
Quandl API key (authentication token for unlimited access). To obtain your own unique API key, visit the
Quandl website at the following URL: https://www.quandl.com/users/sign_up.

The Quandl API key is a 20-character mixed-case alphanumeric string, such as “abCDefghiJKLMn123456,”
and is represented by ’XXXXXXXXXXXXXXXXXXXX’ in the APIKEY= option in the following example.
In addition, the example URLs in this section and in the section “Examples: SASEQUAN Interface Engine”
on page 3755 use the same Quandl API key as the argument your_quan_apikey .

After you have your assigned Quandl API key and have agreed to the Quandl terms of use, you are almost
ready to download Quandl data. Before you download, make sure you have the necessary rights to work with
the data.

Now that your are informed about the terms of use of the Quandl data, you can use your Quandl API key to
access the Quandl data, as shown in the following example.

The statements that follow enable you to access oil prices from the National Stock Exchange of India’s time
series data from September 1, 2013, to November 5, 2013, on a daily basis. The observations are sorted by
the time ID variable DATE. The output is shown in Output 53.1.

options validvarname=any;
title 'Retrieve Data for Oil India Limited Prices';
libname quan sasequan "physical path to the folder where you want the QUANDL data"

OUTXML=oiltd
XMLMAP="%sysget(QUANDL)oiltd.map"

https://www.quandl.com/about/terms
https://www.quandl.com/users/sign_up
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APIKEY='XXXXXXXXXXXXXXXXXXXX'
IDLIST='NSE/OIL';

data oil_gsa;
set quan.oiltd;

run;

proc contents data=oil_gsa; run;
proc print data=oil_gsa(firstobs=1328 obs=1342); run;

Figure 53.1 Oil India Limited Prices: Oil_Gsa (FIRSTOBS=1328 OBS=1342)

Retrieve Data for Oil India Limited Prices

Obs date Open High Low Last Close

Total
Trade

Quantity
Turnover
(Lacs)

1328 2015-02-02 536.20 540.90 530.25 534.00 533.25 201704 1077.25

1329 2015-02-03 539.80 541.00 526.25 531.50 531.35 923694 4910.35

1330 2015-02-04 541.00 550.45 536.40 545.50 548.75 485793 2644.40

1331 2015-02-05 548.85 549.00 538.25 540.50 540.05 877473 4742.75

1332 2015-02-06 536.50 552.90 536.50 545.35 547.00 358329 1962.28

1333 2015-02-09 545.00 553.75 530.00 540.00 543.00 608323 3332.38

1334 2015-02-10 540.00 546.45 527.00 531.45 530.85 326785 1759.67

1335 2015-02-11 532.00 536.40 529.10 530.30 530.95 116276 618.56

1336 2015-02-12 534.65 536.00 528.00 531.95 531.65 189407 1006.99

1337 2015-02-13 521.00 525.90 495.10 504.00 500.20 895268 4542.81

1338 2015-02-16 505.00 513.90 495.00 495.00 499.00 379163 1909.42

1339 2015-02-18 501.80 506.50 494.40 500.95 501.10 261958 1314.47

1340 2015-02-19 503.30 506.00 494.15 497.00 497.30 161816 806.24

1341 2015-02-20 499.00 502.90 493.00 494.30 494.40 220134 1092.32

1342 2015-02-23 500.00 500.00 485.20 487.80 487.30 194121 952.37

The XML data that the Quandl website returns are placed in a file that is named by the OUTXML= option—in
this case, OILTD1.xml. Note that the SASEQUAN engine appends a numeral to the XML file name, and the
file extension (.xml) is excluded from the file name that appears in the OUTXML= option. This XML data
file resides in the current working directory. These data are read into a SAS data set in the folder location that
is given inside the string enclosed in double quotation marks in the SASEQUAN LIBNAME statement. So,
in the preceding example, if the QUANDL environment variable is defined as

/sasusr/quan/test/

Then the SAS data set (created when the XML file is read into SAS) is located at

/sasusr/quan/test/OIL_GSA.sas7bdat

An equivalent LIBNAME statement that does not use any environment variables could be as follows:

libname quan sasequan "/sasusr/quan/test/"
OUTXML=oiltd
XMLMAP="/sasusr/quan/test/oiltd.map"
APIKEY='XXXXXXXXXXXXXXXXXXXX'
IDLIST='NSE/OIL';



3746 F Chapter 53: The SASEQUAN Interface Engine

You could also use either a SAS macro variable or a system environment variable to store the value of your
Quandl API key so that the key does not appear explicitly in your SAS code. The XML map that is created
is assigned the full path name that the XMLMAP= option specifies. The SASEQUAN engine appends a
numeral to the XML file name to indicate the position of the Quandl code in the IDLIST= option.

The IDLIST= option specifies the list of Quandl data sets (that contain time series) that you want to retrieve.
This option accepts a string, enclosed in single quotation marks, that denotes a list of one or more Quandl
data sets that you select (keep) in the resulting SAS data set. The result, OILTD, is named in the DATA step
and is shown in Figure 53.1. The preceding example uses only one Quandl code, which is in the first position
of the IDLIST= option, so the numeral 1 is appended to the name of the XML file, resulting in OILTD1.xml.

It is more efficient to use the DATA step to store your Quandl data in a SAS data set and then refer to the SAS
data set directly in your PROC PRINT or PROC SGPLOT statement. You can also refer to the SASEQUAN
libref directly, as in the statement

proc print data=quan.oiltd; run;

This statement uses the member name, OILTD, in the PROC PRINT statement; this usage corresponds to
specifying the OUTXML=OILTD option. Although using this statement might seem easier, it is not as
efficient, because every time you use the SASEQUAN libref, the Quandl interface engine reads the entire
XML file into SAS again. So it is better to refer to the SAS data set repeatedly than to invoke the interface
engine repeatedly.

Syntax: SASEQUAN Interface Engine
The SASEQUAN interface engine uses standard engine syntax to read the observations or data values
for one or more Quandl data sets that can contain one or more time series in each data set. Table 53.1
summarizes the options that the SASEQUAN engine uses. In addition, there is one required option:
API_KEY=’quan_api_key’.
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Table 53.1 Summary of LIBNAME libref SASEQUAN Options

Option Description

APIKEY= Specifies the required Quandl access key that enables you to access the data that the
Quandl website provides

AUTOMAP= Specifies whether or not to overwrite the existing XML map file
COLLAPSE= Specifies the reporting frequency (lower frequency to collapse the output results to).

The valid reporting frequencies are daily, weekly, monthly, quarterly, annual, and
none.

COLUMN= Specifies one column (time series) to keep in the output results. The rest of the
columns are dropped from the output results. When more than one ID is specified in
the IDLIST= option, the specified column index is kept for each ID.

CONNECT= Specifies whether or not to use the connect method for a secure connection via a
proxy server. You must specify the PROXY= option when you use the
CONNECT=ON option. See the PROXY= option.

DEBUG= Specifies whether or not to include diagnostic message logging in the SAS log
window

END= Specifies the end date (trim_end) for the observation period ('YYYY-MM-DD'
formatted string, optional; the default is 1776-07-04 (earliest available))

FORMAT= Specifies a file extension that indicates the type of file to retrieve. Only XML is
supported for the SASEQUAN interface engine.

FREQ= Specifies the frequency of the selected data: daily, weekly, monthly, quarterly, or
annual. When the IDLIST= option contains more than one Quandl code, the
FREQ= option aggregates higher-frequency data series to lower-frequency time
series (such as converting a monthly time series to an annual time series).

IDLIST= Specifies a list of Quandl codes for Quandl data set codes for accessing Quandl time
series data. To select more than one data set, list the unique Quandl codes, separated
by commas. There is a limit of nine Quandl codes in the IDLIST= option.

MAPREF= Specifies the fileref used for the map file assignment
OUTXML= Specifies the name of the output SAS data set and the XML file(s) requested by the

IDLIST= option. When more than one time series ID is listed in the IDLIST=
option, the SASEQUAN engine appends the positional integer (1 f
or the first time series ID, 2 for the second time series ID, and so on) to the name
specified by the OUTXML= option.

PROXY= Specifies the proxy server that you want to use (if you have trouble connecting
without specifying a proxy). If you also need the connect method for a secure
connection, use the CONNECT=ON option in addition to the PROXY= option. See
the CONNECT= option.

ROWS= Specifies the maximum number of observations (rows) to return (integer between 1
and 100,000, optional; the default is 100,000)

SORT= Specifies the order of the results in ascending or descending observation-date order.
The valid sort arguments are asc and desc; the default is asc.

START= Specifies the start date (trim_start) for the observation period ('YYYY-MM-DD'
formatted string, optional; the default is 9999-12-31 (latest available))

TRANS= Specifies the transformation method to be used for data transformation. The valid
transformation arguments are DIFF, RDIFF, RDIFF_FROM, CUMUL,
NORMALIZE, and NONE; the default is NONE. See Table 53.2 for formulas.

XMLMAP= Specifies the fully qualified name of the location where the XMLmap file is
automatically stored. By default, XMLMAP=Quan.map.
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The LIBNAME libref SASEQUAN Statement
LIBNAME libref SASEQUAN ‘physical-name’ options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory where
the SAS data set is stored that contains the downloaded Quandl data. The required physical-name argument
specifies the location of the folder where your SAS data set resides. It should end with a backslash if you are
in a Windows environment and a forward slash if you are in a UNIX environment.

You can specify the following options in the LIBNAME libref SASEQUAN statement.

APIKEY='quan_apikey '
specifies the Quandl authentication token or access key that enables you to access the data that the
Quandl website provides. The Quandl access key is a 20-character mixed-case alphanumeric string,
and it is required. It must be enclosed in single quotation marks. You can request your quan_apikey by
visiting the website at the following URL:

https://www.quandl.com/users/sign_up

AUTOMAP=REPLACE | REUSE
specifies whether or not to overwrite the existing XML map file. You can specify the following values:

REPLACE specifies that the XML map file be overwritten, and ensures that the most
current XML map that is generated by the SASEQUAN engine and named by
the XMLMAP= option is used.

REUSE specifies that the XML map file not be overwritten, and ensures that a pre-
existing XML map file that is named by the XMLMAP= option is used.

By default, AUTOMAP=REPLACE.

COLLAPSE=DAILY | WEEKLY | MONTHLY | QUARTERLY | ANNUAL | NONE
specifies the frequency to which you want to collapse the reporting frequency. You can specify the
following values:

DAILY collapses the report to a daily frequency.

WEEKLY collapses the report to a weekly frequency.

MONTHLY collapses the report to a monthly frequency.

QUARTERLY collapses the report to a quarterly frequency.

ANNUAL collapses the report to an annual frequency.

NONE does not collapse the report.

This option is not required. By default, COLLAPSE=NONE when IDLIST=option specifies one
Quandl code, but when the IDLIST= option specifies more than one Quandl code, the default for the
collapse frequency is set to the same frequency that is specified in the FREQ= option.

The Quandl frequency-collapsing feature reports the native (higher-frequency) time series at a lower
frequency (the collapse frequency). When you collapse the frequency of a data set, Quandl returns
the last observation for the given period. So if you collapse a daily data set to monthly, you get a

https://www.quandl.com/users/sign_up
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sample of the original data set in which the observation for each month is the last data point available
for that month. When you specify more than one Quandl code in the IDLIST= option, it is important
to check that the from date and to date of every selected series use the same fiscal year, so that the
reporting interval of the merged date values from all the data sets aligns to the same date for the first
observation in the range. For example, if multiple Quandl codes are listed in the IDLIST= option,
some annual time series have from dates that start in January, and some annual time series have from
dates that start in June, then the merged data set will have observation dates reported for both January
and June (if COLLAPSE=NONE), resulting in a semiannual interval instead of an annual interval
in the merged data. To preserve the annual frequency, specify COLLAPSE=ANNUAL so that each
annual time series aligns with the appropriate annual date in the merged data set. The COLLAPSE=
option is applied to each Quandl data set that is specified in the IDLIST= option, so that when the
data sets are merged, the reporting frequency is equal to the COLLAPSE= frequency. The resulting
merged SAS data set contains the same data as the Quandl “supersets” that were created from the same
Quandl codes in the IDLIST= option. Although Quandl supersets are no longer supported by Quandl,
newer Quandl API methods are available for merging multiple time series by using the Quandl Excel
Add-In. The SASEQUAN interface engine uses the Quandl data sets API to request each time series
in the IDLIST= option, enabling you to seamlessly store the merged time series in one SAS data set.
For more information about the various available methods for Quandl data access, see the web page at
following URL: https://www.quandl.com/docs/api#data-organization.

NOTE: The COLLAPSE=MONTHLY option reports the daily, weekly, and monthly native frequencies
of the time series at a monthly frequency (the collapse frequency). If you specify an annual native fre-
quency time series in the IDLIST= option, then it will not be selected when COLLAPSE=MONTHLY
is specified. Only the time series that have native frequencies higher than the reporting frequency
specified in the COLLAPSE= option are selected.

NOTE: It is highly recommended that you use the COLLAPSE= option when you specify more than
one Quandl code in the IDLIST= option.

CAUTION: If the COLLAPSE=NONE option is specified, then undesirable time intervals can occur
when you specify more than one Quandl code in the IDLIST= option.

COLUMN=quan_column_index
specifies the column index that you want to keep in the output results. Specify only one column index,
and it will be applied to each Quandl code (ID) that is specified in the IDLIST= option. For example,
if there are three columns of data, you can specify COLUMN=1 to keep the first column, COLUMN=2
to keep the second column, or COLUMN=3 to keep the third column.

CONNECT=ON | OFF
specifies whether or not to use the connect method along with the PROXY= option. NOTE: You must
use the PROXY= option and specify your proxy server in addition to the CONNECT=ON option when
you want to use the connect method. For more information about secure connections, see the PROXY=
option.

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log window. This information
can be very useful for troubleshooting a problem.

https://www.quandl.com/docs/api#data-organization
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END='quan_enddate'
specifies the end date for the time series in the format 'YYYY-MM-DD'. This option is not required,
and the default is 9999-12-31 (latest available). The date must be enclosed in single quotation marks.

FORMAT=XML
specifies the format of the file to be received from the Quandl website. Although Quandl can report
data in many formats, the SASEQUAN engine supports only the XML format.

FREQ=DAILY | WEEKLY | MONTHLY | QUARTERLY | ANNUAL
specifies a lower frequency to aggregate values to. The FREQ= option also selects only those time
series that aggregate to the specified frequency. In Quandl data, the highest frequency is daily, and the
lowest frequency is annual. You can specify the following values:

DAILY selects time series that aggregate to a daily frequency.

WEEKLY selects time series that aggregate to a weekly frequency.

MONTHLY selects time series that aggregate to a monthly frequency.

QUARTERLY selects time series that aggregate to a quarterly frequency.

ANNUAL selects time series that aggregate to an annual frequency.

The FREQ= option is not required, and the default value is the native frequency of the Quandl data set.

NOTE: An error is returned if you specify a frequency higher than the native frequency of the selected
series. For example, if a series has the native frequency “Annual,” it is not possible to aggregate the
series to the higher “Monthly” frequency. To find the native frequency of a time series, enter the time
series’ Quandl code (in the database_code and dataset_code fields) in the following URL in your web
browser:

https://www.quandl.com/api/v3/datasets/database_code/dataset_code/data.xml

The output gives you the time series data along with its native frequency, which is given in the
“Frequency” field.

NOTE: When you specify a single Quandl code in the IDLIST= option and the FREQ= option is not
specified or is an empty string, the native frequency of the time series in that data set is used as the
reporting frequency unless you specify the reporting frequency in the COLLAPSE= option. When you
specify multiple data sets (and time series) in the IDLIST= option, the “Annual” frequency is used as
the default frequency unless you specify the reporting frequency in the COLLAPSE= option. If any
time series in the IDLIST= option have a lower native frequency than the specified frequency, then
those time series are dropped from the list and excluded from the output.

IDLIST='quan_idlist '
specifies the list of Quandl codes for the data sets that contain the time series to be included in the
output SAS data set. There is a limit of nine Quandl codes in the IDLIST= option. This list is
comma-delimited and must be enclosed in single quotation marks.
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MAPREF=quan_xmlmapref
specifies the fileref to use for the map assignment. For an example of the SASEQUAN engine that uses
the MAPREF= and XMLMAP= options in the FILENAME statement in order to assign a file name, as
in the following, see the section “Getting Started: SASEQUAN Interface Engine” on page 3744:

FILENAME MyMap "%sysget(QUANDL)oiltd.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML
data file. It is placed in the current working directory. For more information, see the section “SAS
OUTXML File” on page 3754. The SET statement (see the section “Getting Started: SASEQUAN
Interface Engine” on page 3744) reads observations from the input data set OILTD and stores them in a
SAS data set named OIL_GSA.

OUTXML=quan_xmlfile
specifies the name of the file where the XML data that are returned from the Quandl website are stored.
Each Quandl code that is listed in the IDLIST= option is given a positional numeral: 1 for the first code
in the IDLIST, 2 for the second code in the IDLIST, and so on. The engine appends this numeral to the
file name of the XML of each data set that the website returns. When all the XML files are retrieved,
the data are merged into a SAS data set. When only one Quandl code is used in the IDLIST= option,
the file name has the numeral 1 appended to the OUTXML file name. By default, OUTXML=QUAN,
which creates a file named QUAN1.xml in the current working directory. The SAS data set that is
created when the XML data are read into SAS is placed in the folder specified by the physical path in
the LIBNAME libref SASEQUAN statement.

PROXY=“quan_proxyserver”
specifies which proxy server to use. This option is not required. The specified proxy server is used
only when a connection-refused error or a connection-timed-out error occurs. For quan_proxyserver ,
specify the server’s HTTP address followed by a colon and the port number, and enclose that string
in double quotation marks; for example, PROXY="http://inetgw.unx.sas.com:8118". See also the
CONNECT= option.

ROWS=quan_rows

LIMIT=quan_rows
specifies the maximum number of rows (time series observations) to return, which is an integer between
1 and 100,000. This option is not required. By default, ROWS=100000.

SORT=ASC | DESC

ORDER=ASC | DESC
specifies the order in which to sort the date of time series observations. You can specify the following
values:

ASC sorts time series observations in ascending date order.

DESC sorts time series observations in descending date order.

This option is not required. By default, SORT=ASC.
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START='quan_startdate'
specifies the start date for the time series in the format 'YYYY-MM-DD'. This option is not required,
and the default is 1776-07-04 (earliest available). The date must be enclosed in single quotation marks.

TRANS=CUMUL | DIFF | NORMALIZE | RDIFF | RDIFF_FROM | NONE

TRANSFORMATION=CUMUL | DIFF | NORMALIZE | RDIFF | RDIFF_FROM | NONE
specifies the data value transformation. You can specify the following values:

CUMUL performs the cumulative function.

DIFF performs the difference function.

NORMALIZE performs the normalize function.

RDIFF performs the ratio difference function.

RDIFF_FROM gives the latest (nearest to the end date) value as a percentage increment.

NONE performs no transformation on the data.

This option is not required. By default, TRANS=NONE. The details of the arguments and the
corresponding function formulas are presented in Table 53.2.

Table 53.2 Quandl Transformation Codes

Trans Code Description Formula

cumul Cumulative sum xt C xt�1 C � � � C xt�N
diff Row-on-row change xt � xt�1
normalize Scale series to start at

100
. xt
xt�N

/ � 100

rdiff Row-on-row percentage
change

.xt�xt�1
xt�1

/

rdiff_from Latest value as
percentage increment

.xlatest�xt
xt

/

xt is the value of series x at time period t. N is the number of observations per year,
which differs by frequency: Daily .N D 260/, Annual .N D 1/, Monthly .N D 12/,
Quarterly .N D 4/, and Weekly .N D 52/.

XMLMAP=quan_xmlmapfile
specifies the fully qualified name of the location where the XML map file is automatically stored.
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Details: SASEQUAN Interface Engine
The SASEQUAN interface engine enables SAS users to access time series data that are stored in Quandl data
sets that the Quandl website provides. Every Quandl data set is identified by a unique ID. For example, the
Prague Stock Index is uniquely identified by the code PRAGUESE/PX, which you can view by visiting the
website at the following URL:

https://www.quandl.com/data/PRAGUESE/PX-Prague-Stock-Index-PX

The unique code for any data set is always visible on the data set page, next to the words “Quandl Code.”

Quandl API Key
The API key that is used in these examples, abCDefghiJKLMn123456, is for demonstration purposes only. To
successfully download data from the Quandl website, use your own Quandl API key, which is a 20-character
mixed-case alphanumeric string. You can request your own API key by visiting the website at the following
URL:

https://www.quandl.com/users/sign_up

Available Sources That Provide Quandl Economic Time Series Data
To obtain a list of the available sources of Quandl economic data, visit the website at the following URL:

https://blog.quandl.com/api-for-economic-data

Useful Lists for Easy Downloading of Quandl Time Series Data
You can use the Quandl data browser to get a list of Quandl codes for the available time series for a specific
database. Enter the following URL in your web browser and click on the category or the particular link for
that source:

https://www.quandl.com/search?query=

For example, to find the Quandl codes for the Dow Jones Industrial Average Index, you can enter the
following URL in your web browser:

https://www.quandl.com/search?query=dow%20jones%20industrial%20average%
20index

To see only the free databases, select the free filter in the browser box. The 19 free databases are listed along
with each time series Quandl codes.

https://www.quandl.com/data/PRAGUESE/PX-Prague-Stock-Index-PX
https://www.quandl.com/users/sign_up
https://blog.quandl.com/api-for-economic-data
https://www.quandl.com/search?query=
https://www.quandl.com/search?query=dow%20jones%20industrial%20average%20index
https://www.quandl.com/search?query=dow%20jones%20industrial%20average%20index
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Available Time Series for Each Quandl Code
To download all the data set codes and data set names available in the FRED (Federal Reserve Economic
Data) database, enter the following URL in your web browser:

https://www.quandl.com/api/v3/databases/FRED/codes?api_key=YOURAPIKEY

SAS Output Data Set
You can use a SAS DATA step to write the selected Quandl data to a SAS data set. This enables you to use
SAS software to easily analyze the data. If you specify the name of the output data set in the DATA statement,
the engine supervisor creates a SAS data set that has the specified name in either the SAS Work library or, if
specified, the SAS User library.

The contents of the SAS data set include the date of each observation and the series name of each series that
is read from the Quandl data source.

The SASEQUAN interface engine maintains the sort order, so the time series are sorted in the resulting SAS
data set by the order that is specified in the SORT= option, by date (time ID), and by variable (time series
item name).

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure along with your SASEQUAN libref to create a custom view of
your data.

SAS OUTXML File
The SAS XML (XML format) data that are returned from the Quandl website are placed in a file that is named
by the OUTXML= option. The SASEQUAN interface engine creates a separate XML file for each Quandl
code that is listed in the IDLIST= option. The engine numbers each data set’s XML file in the order in which
it appears in the IDLIST= option, so the first data set has a 1 concatenated to the file name, the second data
set has a 2 concatenated to the file name, and so on. In instances of the IDLIST= option that contain more
than one Quandl code, the variable names also have the same numeral concatenated to them. This naming
convention enables the engine to merge all the selected time series into one SAS data set while preserving the
identity of each time series. The SAS XML data file is placed in the current working directory, but the SAS
data set (created by reading the XML data into SAS) is placed in the folder specified by the physical-name
in the LIBNAME libref SASEQUAN statement, which is described in the section “The LIBNAME libref
SASEQUAN Statement” on page 3748.
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SAS XML Map File
The XML map that (by default) is automatically created is assigned the full path name that is given by
the XMLMAP= option in your LIBNAME libref SASEQUAN statement. The map file is either reused
(not overwritten) if you specify AUTOMAP=REUSE or overwritten by a new map if you specify AU-
TOMAP=REPLACE (the default). The SASEQUAN interface engine invokes the XMLV2 engine to create
the map and to read the data into SAS.

Examples: SASEQUAN Interface Engine

Example 53.1: Retrieving Historical Price Data for Oil India Limited
This example shows how to use one Quandl code, NSE/OIL, to retrieve historical prices for Oil India Limited,
starting September 1, 2013, and ending November 5, 2013, with a daily frequency. The output is shown in
Output 53.1.1.

options validvarname=any;

title 'Historical Prices for Oil India Limited';
libname mylib "/sasusr/quan/doc/";

/* export QUANDL=/sasusr/quan/test/ */
libname myQoil sasequan "%sysget(QUANDL)"

apikey='XXXXXXXXXXXXXXXXXXXX'
idlist='NSE/OIL'
format=XML
outXml=oil
automap=replace
mapref=MyMap
xmlmap="%sysget(QUANDL)oil.map"
start='2013-09-01'
end='2013-11-05'
freq='daily'
collapse='daily'
;

data mylib.oilall;
set myQoil.oil;

run;

proc contents data=mylib.oilall; run;
proc print data=mylib.oilall; run;
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Output 53.1.1 Historical Prices for Oil India Limited

Historical Prices for Oil India Limited

Obs date Open High Low Last Close

Total
Trade

Quantity
Turnover
(Lacs)

1 2013-09-02 435.95 441.65 427.20 431.00 431.45 174437 755.45

2 2013-09-03 439.90 439.90 427.00 428.50 429.05 199749 860.41

3 2013-09-04 435.00 435.00 426.15 429.50 429.45 790295 3396.42

4 2013-09-05 430.00 439.95 430.00 435.00 432.60 586678 2539.29

5 2013-09-06 437.00 450.00 433.30 445.25 445.15 543652 2402.79

6 2013-09-10 450.00 465.00 446.10 462.10 460.65 663553 2997.61

7 2013-09-11 462.00 485.00 461.00 466.00 466.70 371647 1733.05

8 2013-09-12 458.05 466.00 446.10 448.70 448.10 211533 959.45

9 2013-09-13 452.50 484.00 448.15 471.05 470.25 826546 3884.01

10 2013-09-16 483.70 484.00 458.80 476.00 467.00 335598 1593.84

11 2013-09-17 467.00 479.20 460.35 473.00 475.55 241830 1148.25

12 2013-09-18 471.20 481.85 471.20 480.00 479.70 182343 868.29

13 2013-09-19 485.00 499.00 476.00 491.10 493.75 457626 2236.70

14 2013-09-20 493.00 493.00 459.00 472.15 466.50 295333 1393.19

15 2013-09-23 466.75 487.00 464.00 480.00 480.40 273803 1302.58

16 2013-09-24 481.90 481.90 464.10 466.00 465.80 314456 1486.22

17 2013-09-25 467.90 473.30 466.10 470.15 470.35 738597 3472.11

18 2013-09-26 471.00 473.70 447.30 453.00 451.95 537088 2434.72

19 2013-09-27 456.70 462.00 450.10 452.00 454.30 345246 1571.16

20 2013-09-30 449.70 457.80 435.00 435.25 437.40 394564 1742.00

21 2013-10-01 437.15 449.35 432.00 449.00 447.90 308033 1367.86

22 2013-10-03 448.00 461.00 444.15 457.10 458.90 197974 898.93

23 2013-10-04 456.95 464.00 455.55 461.50 461.10 227214 1047.43

24 2013-10-07 464.90 471.45 450.00 468.00 464.40 240571 1098.48

25 2013-10-08 467.00 471.65 461.00 463.00 462.25 208627 964.45

26 2013-10-09 462.00 465.80 456.75 465.50 465.10 101852 472.35

27 2013-10-10 465.10 468.50 459.20 460.30 462.25 339738 1578.62

28 2013-10-11 465.00 468.70 457.00 467.50 463.25 213591 983.10

29 2013-10-14 464.65 467.90 461.00 464.10 463.95 125129 580.40

30 2013-10-15 464.00 471.80 456.55 459.30 460.55 407231 1877.01

31 2013-10-17 460.50 465.00 452.50 453.20 454.40 220366 1009.36

32 2013-10-18 457.00 465.95 457.00 465.00 464.55 185891 857.04

33 2013-10-21 465.00 471.90 458.70 468.00 468.85 114130 531.62

34 2013-10-22 468.85 473.20 461.15 465.70 466.65 198435 924.12

35 2013-10-23 463.05 469.50 451.40 456.00 457.65 469852 2152.30

36 2013-10-24 458.00 462.95 452.00 452.00 453.40 246085 1126.66

37 2013-10-25 458.00 460.05 450.00 454.00 454.65 272926 1238.47

38 2013-10-28 455.00 459.70 445.10 457.00 454.10 173547 785.17

39 2013-10-29 457.00 469.30 451.50 464.00 459.95 258106 1179.18

40 2013-10-30 460.20 467.80 453.95 463.50 463.25 301971 1391.67

41 2013-10-31 463.00 481.00 456.00 473.00 473.85 472301 2221.88

42 2013-11-01 470.10 481.00 464.50 480.00 475.05 318091 1495.83

43 2013-11-03 479.00 482.20 475.25 476.00 477.70 34250 163.85

44 2013-11-05 475.05 476.90 465.10 467.05 469.35 190319 894.87
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Example 53.2: Retrieving Data by Using Three Quandl Codes
This example shows how to use three Quandl codes of different native frequencies to retrieve quarterly data
for corporate profits after tax (FRED/CP), gross domestic product (FRED/GDP), and total consumer credit
owned and securitized, outstanding (TOTALSL). The output is shown in Output 53.2.1.

title 'Retrieve Data for Three Time Series: FRED/CP, FRED/GDP, FRED/TOTALSL';
options validvarname=any;
libname mylib "/sasusr/quan/doc/";

/* export QUANDL=/sasusr/quan/test/ */
libname myQ3 sasequan "%sysget(QUANDL)"

OUTXML=fred3
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(QUANDL)fred3.map"
APIKEY='XXXXXXXXXXXXXXXXXXXX'
IDLIST='FRED/CP,FRED/GDP,FRED/TOTALSL'
FORMAT=xml
START='2009-07-01'
END='2013-07-01'
FREQ='quarterly'
COLLAPSE='quarterly'
;

data mylib.thrall;
set myQ3.fred3;
label Value_1 = "Corporate Profits After Tax";
label Value_2 = "Gross Domestic Product, 1 Decimal";
label Value_3 = "Total Consumer Credit Owned and Securitized, Outstanding";

run;

proc contents data=mylib.thrall; run;
proc print data=mylib.thrall label; run;
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Output 53.2.1 Retrieve Data for Corporate Profits after Tax, Gross Domestic Product, Total Consumer
Credit Owned and Securitized, Outstanding

Retrieve Data for Three Time Series: FRED/CP, FRED/GDP, FRED/TOTALSL

Obs date

Corporate
Profits

After Tax

Gross
Domestic
Product,

1
Decimal

Total
Consumer

Credit
Owned and
Securitized,
Outstanding

1 2009-09-30 1346.76 14420.31 2573.28

2 2009-12-31 1462.69 14628.02 2555.02

3 2010-03-31 1530.36 14721.35 2536.75

4 2010-06-30 1516.85 14926.10 2520.00

5 2010-09-30 1599.90 15079.92 2519.34

6 2010-12-31 1598.83 15240.84 2646.81

7 2011-03-31 1463.90 15285.83 2672.78

8 2011-06-30 1528.83 15496.19 2694.73

9 2011-09-30 1539.11 15591.85 2719.13

10 2011-12-31 1616.77 15796.46 2757.07

11 2012-03-31 1879.81 16019.76 2791.08

12 2012-06-30 1801.44 16152.26 2835.89

13 2012-09-30 1818.05 16257.15 2871.41

14 2012-12-31 1785.65 16358.86 2918.26

15 2013-03-31 1766.30 16569.59 2965.75

16 2013-06-30 1757.43 16637.93 3001.79

17 2013-09-30 1792.61 16848.75 3016.12

Example 53.3: Retrieving Data for the NIKKEI JASDAQ Stock Average Index
This example shows how to use one Quandl code, NIKKEI/JASDAQ, to retrieve the price data for the Nikkei
JASDAQ Stock Average Index, which is adjusted by ‘Dow adjustment’ starting June 6, 2018, and ending
September 5, 2018, with a daily native frequency. The output is shown in Output 53.3.1.

options validvarname=any;

title 'NIKKEI JASDAQ Stock Average Index ';
libname mylib "/sasusr/quan/doc/";

/* export QUANDL=/sasusr/quan/test/ */
libname myTOP20 sasequan "%sysget(QUANDL)"

apikey='XXXXXXXXXXXXXXXXXXXX'
idlist='NIKKEI/JASDAQ'
format=XML
outXml=jasdaq
automap=replace
mapref=MyMap
xmlmap="%sysget(QUANDL)jasdaq.map"
start='2018-06-06'
end='2018-09-05'
;
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data mylib.jasdaq;
set myTOP20.jasdaq;

run;

proc contents data=mylib.jasdaq; run;
proc print data=mylib.jasdaq(obs=35); run;

Output 53.3.1 Nikkei JASDAQ Stock Average Index

NIKKEI JASDAQ Stock Average Index

Obs date Close Open High Low

1 2018-06-06 3907.41 3913.23 3917.36 3905.34

2 2018-06-07 3933.74 3914.68 3935.19 3914.68

3 2018-06-08 3941.61 3934.10 3943.73 3933.06

4 2018-06-11 3952.23 3948.19 3954.03 3938.48

5 2018-06-12 3973.26 3959.92 3975.52 3959.09

6 2018-06-13 3986.03 3977.64 3992.52 3976.86

7 2018-06-14 3981.57 3986.62 3992.63 3980.35

8 2018-06-15 3982.55 3987.93 3993.61 3980.99

9 2018-06-18 3961.87 3987.07 3987.64 3961.83

10 2018-06-19 3915.70 3962.23 3966.99 3910.45

11 2018-06-20 3920.83 3907.19 3922.85 3873.82

12 2018-06-21 3937.68 3924.71 3941.55 3923.49

13 2018-06-22 3915.78 3922.79 3923.16 3911.95

14 2018-06-25 3879.36 3925.20 3933.50 3879.36

15 2018-06-26 3863.49 3856.32 3865.59 3844.95

16 2018-06-27 3864.89 3860.42 3873.45 3855.71

17 2018-06-28 3841.51 3861.01 3862.19 3835.74

18 2018-06-29 3858.22 3849.27 3861.69 3847.24

19 2018-07-02 3826.76 3870.04 3873.97 3826.76

20 2018-07-03 3793.89 3834.64 3852.70 3786.55

21 2018-07-04 3756.89 3783.17 3783.17 3756.89

22 2018-07-05 3679.18 3751.35 3755.01 3679.18

23 2018-07-06 3726.65 3690.47 3729.66 3689.75

24 2018-07-09 3786.09 3740.70 3787.65 3740.56

25 2018-07-10 3800.95 3803.56 3812.56 3799.99

26 2018-07-11 3773.61 3793.23 3793.23 3766.19

27 2018-07-12 3785.08 3775.21 3787.75 3772.72

28 2018-07-13 3793.95 3794.26 3799.79 3790.64

29 2018-07-17 3783.91 3798.85 3798.85 3782.67

30 2018-07-18 3811.59 3795.29 3814.14 3794.90

31 2018-07-19 3808.67 3815.16 3816.76 3806.12

32 2018-07-20 3804.74 3807.20 3816.57 3801.28

33 2018-07-23 3808.96 3802.41 3809.87 3800.50

34 2018-07-24 3827.92 3819.47 3830.40 3816.96

35 2018-07-25 3847.30 3842.70 3849.16 3838.82
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Example 53.4: Collapsing Data for the Nikkei JASDAQ Stock Average Index
This example shows how to collapse daily data to a weekly interval by using the same Quandl code as in
Example 53.3, NIKKEI/JASDAQ, to retrieve the price data for the Nikkei JASDAQ Stock Average Index,
starting June 6, 2018, and ending September 5, 2018, with a daily native frequency. You collapse the data to
a weekly frequency by using the COLLAPSE= option. The output is shown in Output 53.4.1.

options validvarname=any;

title 'NIKKEI JASDAQ Stock Average index, COLLAPSE=WEEKLY Option';
libname mylib "/sasusr/quan/doc/";

/* export QUANDL=/sasusr/quan/test/ */
libname myTOP20 sasequan "%sysget(QUANDL)"

apikey='XXXXXXXXXXXXXXXXXXXX'
idlist='NIKKEI/JASDAQ'
format=XML
outXml=jasdaqW
automap=replace
mapref=MyMap
xmlmap="%sysget(QUANDL)jasdaqw.map"
start='2018-06-06'
end='2018-09-05'
collapse=weekly
;

data mylib.jasdaqW;
set myTOP20.jasdaqW;

run;

proc contents data=mylib.jasdaqW; run;
proc print data=mylib.jasdaqW; run;

Output 53.4.1 Nikkei JASDAQ Stock Average Index, with COLLAPSE=WEEKLY

NIKKEI JASDAQ Stock Average index, COLLAPSE=WEEKLY Option

Obs date Close Open High Low

1 2018-06-10 3941.61 3934.10 3943.73 3933.06

2 2018-06-17 3982.55 3987.93 3993.61 3980.99

3 2018-06-24 3915.78 3922.79 3923.16 3911.95

4 2018-07-01 3858.22 3849.27 3861.69 3847.24

5 2018-07-08 3726.65 3690.47 3729.66 3689.75

6 2018-07-15 3793.95 3794.26 3799.79 3790.64

7 2018-07-22 3804.74 3807.20 3816.57 3801.28

8 2018-07-29 3848.39 3852.38 3854.14 3845.81

9 2018-08-05 3788.41 3813.30 3815.53 3788.41

10 2018-08-12 3745.27 3761.36 3763.16 3743.09

11 2018-08-19 3701.70 3700.83 3707.66 3697.72

12 2018-08-26 3742.90 3734.55 3744.46 3732.05

13 2018-09-02 3823.35 3806.85 3825.29 3804.67

14 2018-09-09 3778.37 3792.62 3800.86 3778.37



Example 53.5: Transforming Data for the Nikkei JASDAQ Stock Average Index F 3761

Example 53.5: Transforming Data for the Nikkei JASDAQ Stock Average Index
This example shows how to transform daily data by using the DIFF transformation and the same Quandl code
as in Example 53.3 and Example 53.4, NIKKEI/JASDAQ, to retrieve the price data for the Nikkei JASDAQ
Stock Average Index, starting June 6, 2018, and ending September 5, 2018, with a daily native frequency.
You collapse the data to a weekly frequency by using the COLLAPSE= option and perform a transformation
by using the TRANS= option. Specify a range by using START=‘2018-06-06’ and END=‘2018-09-05’, a
collapse frequency by using COLLAPSE=WEEKLY, and a transformation function by using TRANS=DIFF.
The output is shown on Output 53.5.1.

options validvarname=any;

title 'NIKKEI JASDAQ Stock Average Index, TRANS=DIFF Option';
libname mylib "/sasusr/quan/doc/";

/* export QUANDL=/sasusr/quan/test/ */
libname myTOP20 sasequan "%sysget(QUANDL)"

apikey='XXXXXXXXXXXXXXXXXXXX'
idlist='NIKKEI/JASDAQ'
format=XML
outXml=jasdaqX
automap=replace
mapref=MyMap
xmlmap="%sysget(QUANDL)jasdaqX.map"
start='2018-06-06'
end='2018-09-05'
collapse=weekly
trans=diff
;

data mylib.jasdaqX;
set myTOP20.jasdaqX;

run;

proc contents data=mylib.jasdaqX; run;
proc print data=mylib.jasdaqX; run;
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Output 53.5.1 Nikkei JASDAQ Stock Average Index, Weekly Data with TRANS=DIFF

NIKKEI JASDAQ Stock Average Index, TRANS=DIFF Option

Obs date Close Open High Low

1 2018-06-17 40.94 53.83 49.88 47.93

2 2018-06-24 -66.77 -65.14 -70.45 -69.04

3 2018-07-01 -57.56 -73.52 -61.47 -64.71

4 2018-07-08 -131.57 -158.80 -132.03 -157.49

5 2018-07-15 67.30 103.79 70.13 100.89

6 2018-07-22 10.79 12.94 16.78 10.64

7 2018-07-29 43.65 45.18 37.57 44.53

8 2018-08-05 -59.98 -39.08 -38.61 -57.40

9 2018-08-12 -43.14 -51.94 -52.37 -45.32

10 2018-08-19 -43.57 -60.53 -55.50 -45.37

11 2018-08-26 41.20 33.72 36.80 34.33

12 2018-09-02 80.45 72.30 80.83 72.62

13 2018-09-09 -44.98 -14.23 -24.43 -26.30

Example 53.6: Reading Data from Multiple Quandl Data Sets to Merge
Multiple Time Series

This example shows how to read data from three Quandl data sets by using the Quandl codes
EIA/ELEC_PLANT_CONS_EG_BTU_57692_ALL_ALL_M, BUNDESBANK/BBK01_WT5511, and
YALE/SPCOMP to retrieve oil, gold, and S&P Composite prices, dividends, and earnings data. There
are eleven time series (one for fuel, one for gold, and nine for the S&P Composite), taken from three
different Quandl data sets: DOE/RWTC, BUNDESBANK/BBK01_WT5511, and YAHOO/INDEX_GSPC,
respectively. Because the Fuel, Gold, and S&P Composite columns are all from monthly native frequency
data sets, you can use the “Annual” collapse frequency to minimize the missing values in the output. Specify
a range by using START=‘2010-12-31’ and END=‘2016-12-31’, and specify a collapse frequency by using
COLLAPSE=ANNUAL. The output is shown in Output 53.6.1.

options validvarname=any;

title 'Fuels Used for Generating Electricity, Gold, and S&P Composite Stock
Time Series';

libname mylib "/sasusr/quan/doc/"

/* export QUANDL=/sasusr/quan/test/ */
libname mysup sasequan "%sysget(QUANDL)"

apikey='XXXXXXXXXXXXXXXXXXXX'
idlist='EIA/ELEC_PLANT_CONS_EG_BTU_57692_ALL_ALL_M,BUNDESBANK/BBK01_WT5511,YALE/SPCOMP'
format=XML
outXml=Tsupe
automap=replace
mapref=MyMap
xmlmap="%sysget(QUANDL)Tsupe.map"
start='2010-12-31'
end='2016-12-31'
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collapse=annual
;

data mylib.Tsupe;
set mysup.Tsupe;
label Value_1 = "Electric Fuel Consumption";
label Value_2= "Gold Price (USD)";
label 'S&P Composite_3'n= "S&P Composite from SPCOMP";
label Dividend_3= "Dividend (SPCOMP)";
label Earnings_3= "Earnings (SPCOMP)";
label CPI_3= "CPI (SPCOMP)";
label 'Long Interest Rate_3'n= "Long Interest Rate (SPCOMP)";
label 'Real Price_3'n= "Real Price (SPCOMP)";
label 'Real Dividend_3'n= "Real Dividend (SPCOMP)";
label 'Real Earnings_3'n= "Real Earnings (SPCOMP)";
label 'Cyclically Adjusted PE Ratio_3'n= "Cyclically Adjusted PE Ratio (SPCOMP)";

run;

proc contents data=mylib.Tsupe; run;
proc print data=mylib.Tsupe label; run;

Output 53.6.1 Reading from Multiple Quandl Data Sets: Fuel, Gold, and S&P Composite Data Using
COLLAPSE= Option

Fuels Used for Generating Electricity, Gold, and S&P Composite Stock Time Series

Obs date
Electric Fuel

Consumption

Gold
Price

(USD)

S&P
Composite

from
SPCOMP

Dividend
(SPCOMP)

Earnings
(SPCOMP)

CPI
(SPCOMP)

Long
Interest

Rate
(SPCOMP)

1 2010-12-31 0 1410.25 1241.53 22.73 77.35 219.179 3.29

2 2011-12-31 764 1574.50 1243.32 26.43 86.95 225.672 1.98

3 2012-12-31 1472 1664.00 1422.29 31.25 86.51 229.601 1.72

4 2013-12-31 1042 1201.50 1807.78 34.99 100.20 233.049 2.90

5 2014-12-31 688 1199.25 2054.27 39.44 102.31 234.812 2.21

6 2015-12-31 1398 1062.25 2054.08 43.39 86.53 236.525 2.24

7 2016-12-31 1425 1237.70 2246.63 45.70 94.55 241.432 2.49

Obs
Real Price
(SPCOMP)

Real
Dividend

(SPCOMP)

Real
Earnings

(SPCOMP)

Cyclically
Adjusted
PE Ratio

(SPCOMP)

1 1429.08 26.1638 89.035 22.3964

2 1389.97 29.5474 97.206 20.5236

3 1562.84 34.3381 95.059 21.2383

4 1957.03 37.8788 108.473 24.8619

5 2207.18 42.3756 109.925 26.7941

6 2190.99 46.2820 92.297 25.9654

7 2347.67 47.7552 98.802 27.8651
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Overview: SASERAIN Interface Engine
The SASERAIN interface engine enables SAS users to retrieve weather data from the World Weather Online
website. This website offers access to time series of weather data such as temperature, precipitation (rainfall),
weather description, weather icon, and wind speed. These time series are updated at intervals that the user
selects. The weather time series on the World Weather Online website contain observation or measurement
periods that are associated with data values.

The SASERAIN interface engine uses the LIBNAME statement to enable you to download World Weather
Online data and to specify which weather data time series you want to retrieve based on location. You can
then use the SAS DATA step to perform further subsetting and to store the resulting time series in a SAS data
set.

There are two types of major weather application interfaces (APIs) that return World Weather Online data
for the SASERAIN engine. The first type is a local weather API that returns forecasting data and current
conditions data, which usually start with today and end with tomorrow’s forecast. You can request up to
15 days of premium local weather forecast data. The SASERAIN engine supports only the premium local
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weather API because World Weather Online has discontinued the nonpremium API. The default range for the
SASERAIN engine is 2 days. You can use the premium local weather forecast API if you subscribe to the
premium service and also specify your premium API key. The premium API key provides a maximum date
range of 15 days.

The second type of API is a historical weather API that returns past weather. When you have a premium
subscription, you can use a range that starts as early as July 1, 2008.

When no dates are specified, the default type of data that the SASERAIN interface engine returns is the local
forecast weather data. NOTE: The SASERAIN interface uses the past weather API whenever a range of
dates is specified by a start date and an end date.

You can choose to retrieve the following types of data for a single location or multiple locations:

� current conditions only

� local weather forecast only

� both current conditions and the local weather forecast

� 24-hour weather forecast only (the frequency is auto-set to 3 hours over one 24-hour period)

� historical (past) weather for a specified date range

The SASERAIN interface engine supports Linux X64 (LAX) and Windows. Although the SASERAIN
engine uses the World Weather Online API, it is not endorsed or certified by World Weather Online. By using
the SASERAIN interface engine, you are agreeing to comply with the World Weather Online terms of use,
which are described on the web page at the following URL:

https://www.worldweatheronline.com/terms-and-conditions.aspx

Getting Started: SASERAIN Interface Engine
You can query the World Weather Online database to retrieve the observations or data values for a list of time
series by specifying the World Weather Online code for the location (q-code). The World Weather Online
q-code consists of a location code such as one for City and Country, latitude and longitude, IP address, US
zip code, UK/Canadian postal code, or airport code (IATA). To specify more than one location, list each
q-code in the QUERY= option, and separate the locations with a semicolon. Neither a comma nor a blank
can be used as a separator between the q-codes, because one q-code can contain any number of commas or
blanks.

You must also specify your unique World Weather Online premium API key (authentication token). To obtain
your own unique API key, visit the World Weather Online website at the following URL:

https://developer.worldweatheronline.com/login.aspx

For more information about the web service (including pricing and premium service information), visit the
website at the following URL:

https://developer.worldweatheronline.com/api/faq.aspx

https://www.worldweatheronline.com/terms-and-conditions.aspx
https://developer.worldweatheronline.com/login.aspx
https://developer.worldweatheronline.com/api/faq.aspx
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The World Weather Online API key is a 31-character mixed-case alphanumeric string, such as “abCDefghi-
jklmnopqrstuv123456789,” and is represented by ’XXXXXXXXXXXXXXXXXXXXXXXXXXXXX’ in
the APIKEY= option in the following example. In addition, the example URLs in this section and in the
section “Examples: SASERAIN Interface Engine” on page 3778 use the same World Weather Online API
key as the argument your_rain_apikey .

After you have your assigned World Weather Online API key and have agreed to the World Weather Online
terms of use, you can use your API key to access the World Weather Online data, as shown in the following
example.

The statements that follow enable you to access the weather for London, Paris, and Dubai. For brevity of
output, the request is for only one day (NUM_OF_DAYS=1), which starts with today. The FX24=YES
option returns observations at a frequency of every 3 hours with an additional observation for the 24-hour
average (the value of the TIME variable is 24), and the observations are sorted in chronological order. For
brevity, only the current conditions output is shown in Figure 54.1.

options validvarname=any;

title 'Retrieve Weather Data for London, Paris, and Dubai';
libname mylib "/sasusr/rain/doc";
libname rain saserain "/sasusr/rain/test"

QUERY='London,United Kingdom;Paris,France;Dubai,United Arab Emirates'
FX24=yes
CONDITIONS=yes
OUTXML=tricky
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="/sasusr/rain/test/tricky.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
NUM_OF_DAYS=1
FORMAT=xml;

data mylib.my24a;
set rain.tricky;

run;
proc contents data=mylib.my24a; run;
proc print data=mylib.my24a; run;

libname condo "/sasusr/rain/test";
data mylib.mycca;

set condo.cc_tricky;
run;

proc contents data=mylib.mycca; run;
proc print data=mylib.mycca; run;
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Figure 54.1 Current Conditions for London, Paris, and Dubai

Retrieve Weather Data for London, Paris, and Dubai

Obs AreaName Country Region weatherDesc winddir16Point observation_time oc

1 London United Kingdom City of London, Greater London Clear ESE 21:13:00 1

2 Paris France Ile-de-France Clear ESE 21:13:00 2

3 Dubai United Arab Emirates Dubai Clear S 21:14:00 3

Obs latitude longitude temp_C temp_F weatherCode windspeedMiles windspeedKmph

1 51.517 -0.106 16 61 113 12 19

2 48.867 2.333 16 61 113 4 6

3 25.252 55.280 30 86 113 4 7

Obs winddirDegree precipMM humidity visibility pressure cloudcover FeelsLikeC FeelsLikeF

1 110 0.2 55 10 1012 0 16 61

2 120 0.0 55 10 1014 0 16 61

3 180 0.0 43 10 1007 0 31 87

The XML data that the World Weather Online website returns are placed in a file that is named by the OUT-
XML= option—in this case, TRICKY1.xml. NOTE: The SASERAIN engine appends a numeral to the XML
file name, and the file extension (.xml) is excluded from the file name that appears in the OUTXML= option.
When the SET statement is executed, the XML data are read into a SAS data set named TRICKY.sas7bdat,
which resides in the location given inside the string enclosed in double quotation marks in the SASERAIN
LIBNAME statement.

You could use either a SAS macro variable or a system environment variable to store the value of your World
Weather Online API key so that the key does not appear explicitly in your SAS code. The XML map that is
created is assigned the full path name that the XMLMAP= option specifies. The SASERAIN engine appends
a numeral to the XML file name to indicate the position of the World Weather Online location code in the
QUERY= option.

The QUERY= option specifies the list of World Weather Online locations that you want to retrieve weather
data for. This option accepts a string, enclosed in single quotation marks, that denotes a list of one or more
World Weather Online locations that you select (keep) in the resulting SAS data set. The result, TRICKY,
is named in the DATA step and is shown in Figure 54.1. The preceding example uses three World Weather
Online location codes. London, which is in the first position of the QUERY= option, has the numeral 1
appended to the name of the XML file, resulting in TRICKY1.xml. Paris is in the second position of the
QUERY= option, so the numeral 2 is appended to the name of the XML file, resulting in TRICKY2.xml. Dubai
is in the third position of the QUERY= option, so the numeral 3 is appended to the name of the XML file,
resulting in TRICKY3.xml. The SASERAIN engine merges the three XML files to produce one merged output
data set named TRICKY.sas7bdat. The current conditions data set is named CC_TRICKY. The second DATA
step uses the SET statement to read the current conditions data into a new data set named MYCCA. These
data are shown in Figure 54.1.

It is more efficient to use the DATA step to store your World Weather Online data in a SAS data set and then
refer to the SAS data set directly in your PROC PRINT or PROC SGPLOT statement. You can also refer to
the SASERAIN libref directly, as in the statement
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proc print data=rain.tricky;

This statement uses the member name, TRICKY, in the PROC PRINT statement which invokes the RAIN
libref to run the SASERAIN engine. This usage of the member name, TRICKY, corresponds to specifying the
OUTXML=TRICKY option. Although using this statement might seem easier, it is not as efficient, because
every time you use the SASERAIN libref, the SASERAIN interface engine reads the entire XML file into
SAS again. So it is better to refer to the SAS data set repeatedly than to invoke the interface engine repeatedly.
For another example that uses more SASERAIN LIBNAME statement options, see the section “Examples:
SASERAIN Interface Engine” on page 3778.

Syntax: SASERAIN Interface Engine
The SASERAIN interface engine uses standard engine syntax to read the observations or data values for one or
more World Weather Online data sets that can each contain one or more time series. Table 54.1 summarizes the
options that the SASERAIN engine uses. In addition, there is one required option: APIKEY=’rain_api_key’.

Table 54.1 Summary of LIBNAME libref SASERAIN Options

Option Description

APIKEY= Specifies the required World Weather Online access key that enables you to access
the data that the World Weather Online website provides

AUTOMAP= Specifies whether or not to overwrite the existing XML map file
CONDITIONS= Specifies whether or not to return only the current weather conditions upon output.

CONDITIONS=YES means that variables for both the current conditions and the
weather forecast appear in the output. The default (NO) means that only the local
weather forecast variables appear in the output.

CONNECT= Specifies whether or not you need the connect method for a secure connection via a
proxy server. You must specify the PROXY= option when you use the
CONNECT=ON option.

DATE= Specifies the beginning date for past weather data for the specified range: specify
the start date in 'YYYY-MM-DD' format.

DAY= Specifies that the local weather forecast is to be current weather, not past weather.
When you specify either today or tomorrow, you get today’s weather forecast. This
is used with the NUM_OF_DAYS= option to specify a range for obtaining local
weather forecast data.

DEBUG= Specifies whether or not to include diagnostic message logging in the SAS log
window

ENDDATE= Specifies the end date for past weather for the specified range: specify the end date
in 'YYYY-MM-DD' format. The end date must have the same month and year as
the DATE= option.

FORECAST= Specifies whether or not to return the weather forecast for a given postal code, zip
code, and latitude/longitude values

FORMAT= Specifies a file extension that indicates the type of file to retrieve. Only XML is
supported for the SASERAIN interface engine.
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Table 54.1 continued

Option Description

FREQ= Specifies the frequency (interval) of the selected weather forecast data as a character
string, such as DAILY, 24HOURLY, HOURLY, 3HOURLY, 6HOURLY,
12HOURLY, or DAY/NIGHT

FX24= Specifies whether or not to return the 24-hour weather forecast at a three-hour
interval for a given location (city and country, postal code, zip code, or latitude and
longitude)

NUM_OF_DAYS= Specifies the number of days to report (starting from today). This is used for
reading the local weather forecast data. The default for the SASERAIN engine is 2
days of forecast data, and the maximum is 15 days (premium weather API).

OUTCC= Specifies the name of the current conditions SAS data set, which contains current
conditions data returned by the World Weather Online API. This option is ignored
when CONDITIONS=NO. For more information, see the CONDITIONS= option.

OUTXML= Specifies the name of the SAS data set and the XML file, which usually contains the
weather forecast data returned by the World Weather Online API. When you do not
specify the OUTCC= option, the SASERAIN interface prepends ‘CC_’ to the name
specified in the OUTXML= option to create the name for the current conditions
SAS data set. See the OUTCC= option.

PROXY= Specifies the proxy server that you want to use (if you have trouble connecting
without specifying a proxy). If you also need the connect method for a secure
connection, use the CONNECT=ON option in addition to the PROXY= option. See
the CONNECT= option.

QUERY= Specifies a required list of World Weather Online location codes. To select more
than one location, list the World Weather Online query codes (q-codes), separated
by semicolons. There is a limit of nine World Weather Online location codes in the
QUERY= option. This is a required option.

TP= Specifies the time period (interval) of the selected weather forecast data in number
of hours: 1, 3, 6 (default), 12, or 24 hours.

XMLMAP= Specifies the fully qualified file name for the XML map that the SASERAIN engine
creates. This file name is usually the same as the one in the OUTXML= option.

The LIBNAME libref SASERAIN Statement
LIBNAME libref SASERAIN ‘physical-name’ options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory of
World Weather Online data files in which the downloaded World Weather Online XML data are stored. The
required physical-name argument specifies the location of the folder where your World Weather Online XML
data reside. It should end with a backslash if you are in a Windows environment and a forward slash if you
are in a UNIX environment.

You can specify the following options in the LIBNAME libref SASERAIN statement.



The LIBNAME libref SASERAIN Statement F 3771

APIKEY=‘rain_apikey ’
specifies the World Weather Online authentication token or access key that enables you to access the
data that the World Weather Online website provides. This access key is a 29-character mixed-case
alphanumeric string, and it is required. It must be enclosed in single quotation marks. You can request
your rain_apikey by visiting the website at the following URL:

https://www.worldweatheronline.com/developer/signup.aspx

AUTOMAP=REPLACE | REUSE
specifies whether or not to overwrite the existing XML map file.

REPLACE specifies that the XML map file be overwritten, and ensures that the most
current XML map that is generated by the SASERAIN engine and named by
the XMLMAP= option is used.

REUSE specifies that the XML map file not be overwritten, and ensures that a pre-
existing XML map file that is named by the XMLMAP= option is used.

By default, AUTOMAP=REPLACE.

CONDITIONS=ONLYCC | YES | NO
specifies whether or not to return only current conditions data. CONDITIONS=ONLYCC enables the
SASERAIN interface to output the current conditions data but not the forecast data. For more about
current conditions, see Table 54.2.

ONLYCC specifies that only the current conditions be output.

YES specifies that the current conditions be output.

NO specifies that the current conditions variables be excluded from the output.

By default, the SASERAIN engine uses CONDITIONS=NO and FORECAST=YES. Specify CONDI-
TIONS=YES to create both the current conditions output data set (named in the OUTCC= option) and
the weather forecast output data set (named in the OUTXML= option). When the OUTCC= option
is not specified, the prefix ‘CC_’ is added to the name specified in the OUTXML= option. For more
information, see the FORECAST= and OUTCC= options. The SASERAIN engine issues a warning
when both past weather and current conditions are selected in the same SASERAIN LIBNAME
statement.

https://www.worldweatheronline.com/developer/signup.aspx
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Table 54.2 Current Conditions Forecast Variables

Variable Name Description

observation_time Time in UTC 'hhmm tt' format. For example: 06:45
AM or 11:34 PM.

temp_C Temperature in degrees Celsius
windspeedMiles Wind speed in miles per hour
windspeedKmph Wind speed in kilometers per hour
winddirDegree Wind direction in degrees
winddir16Point Wind direction on a 16-point compass
weatherCode Weather condition code
weatherDesc Weather condition description
weatherIconUrl URL for weather icon
precipMM Precipitation in millimeters
precipInches Precipitation in inches
humidity Humidity in percentage
visibility Visibility in kilometers
visibilityMiles Visibility in miles
pressure Atmospheric pressure in millibars
pressureInches Atmospheric pressure in inches
cloudcover Cloud cover in percentage

CONNECT=ON | OFF
specifies whether or not to use the connect method along with the PROXY= option. NOTE: You must
use the PROXY= option and specify your proxy server in addition to the CONNECT=ON option
when you want to use the connect method. For more information about a secure connection, see the
PROXY= option.

DATE=rain_date_start
specifies the start date for requesting past (historical) weather data: specify 'YYYY-MM-DD' (format
for the rain_date_start). The earliest start date for premium users is July 1, 2008.

DAY=TODAY | TOMORROW
specifies the start date for the local current weather forecast: specify today or tomorrow, but results are
the same—they start today. If you want a start date other than today, then use the DATE= option. Use
the NUM_OF_DAYS= option to specify the number of days to report.

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log window. This information
can be very useful for troubleshooting a problem.

ENDDATE=rain_date_enddate
specifies the end date for the range to report past weather: 'YYYY-MM-DD' (format for the
rain_date_enddate). The earliest start date (which you specify in the DATE= option) for premium past
weather is July 1, 2008, but the ENDDATE= option must have the same month and year as the start
date. The date must be enclosed in single quotation marks. The ENDDATE= option

is not required, and the default range is 2 days.
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FORECAST=YES | NO
specifies whether or not to return the weather forecast for a given location (city and country, postal code,
zip code, or latitude and longitude values). By default, the SASERAIN engine uses FORECAST=YES.
For more about weather forecast variables, see Table 54.3. When the type of data is not specified in the
LIBNAME statement options, the SASERAIN engine defaults to normal weather forecast data and
automatically defaults to the FX=YES option. Use either the FX24= option or the FX= option (but not
both). When you specify FX24=YES, you do not need to specify any interval (FREQ= option) or any
range specification, because the default is 24 hours of data at an interval of every 3 hours (and an extra
observation for the 24-hour average).

Table 54.3 Weather Forecast Variables

Variable Name Description

date Local forecast date in 'YYYY-MM-DD' format. For
example: 2013-05-31.

maxtempC Maximum temperature of the day in degrees Celsius
maxtempF Maximum temperature of the day in degrees Fahrenheit
mintempC Minimum temperature of the day in degrees Celsius
mintempF Minimum temperature of the day in degrees Fahrenheit
uvIndex Ultraviolet radiation index
time Local time in 'hmm' format. For example: 100 or 1500.
tempC Temperature in degrees Celsius
tempF Temperature in degrees Fahrenheit
windspeedMiles Wind speed in miles per hour
windspeedKmph Wind speed in kilometers per hour
windspeedKnots Wind speed in knots
windspeedMeterSec Wind speed in meters per second
winddirDegree Wind direction in degrees
winddir16Point Wind direction on a 16-point compass
weatherCode Weather condition code
weatherDesc Weather condition description
weatherIconUrl URL for weather icon
precipMM Precipitation in millimeters
precipinches Precipitation in inches
humidity Humidity in percentage
visibility Visibility in kilometers
visibilityMiles Visibility in miles
pressure Atmospheric pressure in millibars
pressureInches Atmospheric pressure in inches
cloudcover Cloud cover in percentage
chanceofrain Chance of rain (precipitation) in percentage
chanceofwindy Chance of being windy in percentage
chanceofovercast Chance of being cloudy in percentage
chanceofsunny Chance of being sunny in percentage
chanceoffrost Chance of frost in percentage
chanceoffog Chance of fog in percentage
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Table 54.3 continued

Variable Name Description

chanceofsnow Chance of snow in percentage
chanceofthunder Chance of thunder in percentage

FORMAT=XML
specifies the format of the file to be retrieved from the World Weather Online website. Although
World Weather Online can report data in many formats, the SASERAIN engine supports only the XML
format.

FREQ=DAILY | HOURLY | 3HOURLY | 6HOURLY | 12HOURLY | 24HOURLY | DAY/NIGHT
specifies the frequency of the weather data. In World Weather Online weather forecast data, the highest
frequency is hourly, and the lowest frequency is daily.

The FREQ= option is not required, and the default interval value is 6 hours.

FX24=YES | NO
specifies whether or not to return the 24-hour weather forecast at a three-hour interval for city/country,
postal code, zip code, and latitude/longitude values. By default, the SASERAIN engine uses FX24=NO.
When the type of data is not specified in the LIBNAME statement options, the SASERAIN engine
defaults to normal weather forecast data and automatically defaults to the FX=YES option. NOTE: Use
either the FX24= option or the FX= option (but not both). When you specify FX24=YES, you do not
need to specify any interval (FREQ= option) or any range specification, because the default is 24 hours
of data at an interval of 3 hours, but there is also an extra observation for the 24-hour averages for the
reported variables.

MAPREF=rain_xmlmapref
specifies the fileref to use for the map assignment. For an example of the SASERAIN engine that uses
the MAPREF= and XMLMAP= options in the FILENAME statement in order to assign a file name, as
in the following statement, see the section “Examples: SASERAIN Interface Engine” on page 3778:

FILENAME MyMap "/sasusr/rain/test/gstart.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML
data file. It is placed in the current working folder. The SAS data set that is created (when the XML
data are read into SAS) is placed in the folder specified by physical-name, and you can reference it
by using the myLib libref in your SASERAIN LIBNAME statement. This is shown in the section
“Examples: SASERAIN Interface Engine” on page 3778, inside the DATA step in the SET statement.
The SET statement reads observations from the input data set myLib.GSTART and stores them in a
SAS data set named HowCool.
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NUM_OF_DAYS=rain_numdays
specifies the number of days to report local weather (starting from today). The maximum is 15 days.

OUTCC=rain_outcc
specifies the name of the SAS data set where the current conditions data that are returned from the
World Weather Online website are stored. When OUTCC= option is not specified, the SASERAIN
interface stores the current conditions data in a SAS data set named by adding the prefix ‘CC_’ to the
name specified in the OUTXML= option. If there is no request for current conditions data, then the
OUTCC= option is ignored.

OUTXML=rain_xmlfile
specifies the name of both the XML file (downloaded) and the SAS data set created when the XML
data are read into SAS. Each World Weather Online location code that is listed in the QUERY= option
is given a positional numeral: 1 for the first code in the QUERY= option, 2 for the second code, and so
on. The SASERAIN engine appends this numeral to the file name of the XML of each data set that the
website returns. When all the XML files are retrieved, the data are merged into a SAS data set. When
only one World Weather Online location code is specified in the QUERY= option, the file name has
the numeral 1 appended to the OUTXML file name. By default, OUTXML=RAIN, which creates a
file named RAIN1.xml in the current working directory. The SAS data set that is created when the XML
data are read into SAS is placed in the folder specified by the physical path in the LIBNAME libref
SASERAIN statement.

PROXY=“rain_proxyserver”
specifies which proxy server to use. This option is not required. The specified proxy server is used only
when a connection-refused error or a connection-timed-out error occurs. For rain_proxyserver , specify
the server’s HTTP address followed by a colon and the port number, and enclose that string in double
quotation marks; for example, PROXY="http://inetgw.unx.sas.com:8118". See also the CONNECT=
option.

QUERY=‘rain_qcode_list’
specifies the list of World Weather Online locations for the data sets that contain the time series to be
included in the output SAS data set. There is a limit of nine World Weather Online location codes in
the QUERY= option. The argument ‘rain_qcode_list’ is semicolon-delimited and must be enclosed in
single quotation marks. For example:

QUERY='QCODE1;QCODE2;...QcodeN'}

Each QCODE specifies a weather data location in one of the following location formats:

Latitude,Longitude specifies the location of the selected weather forecast in decimal degrees
(XX.XXX,XX.XXX).

UScityName,State specifies the location of the selected US city and state.

cityName,Country specifies the location of the selected city in the specified country, or if the
location is in the United States, you can specify cityName,State.

IPaddress specifies the location by using the Internet Protocol address in
XXX.XXX.XXX.XXX format.

USzipcode specifies the location by using the US zip code format.
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UK_CANpostalcode specifies the location by using the United Kingdom or Canadian postal
code format.

You can specify a maximum of nine q-code locations in the QUERY= option, separated by semicolons.
Each q-code can contain commas, blanks, or both. The QUERY= option is required.

TP=1 | 3 | 6 | 12 | 24
specifies the number of hours in a time period. In World Weather Online weather forecast data, the
highest frequency is 1 (hourly), and the lowest frequency is 24 (daily).

The TP= option is not required, and the default interval value is 6 hours.

XMLMAP=rain_xmlmapfile
specifies the fully qualified name of the location where the XML map file is automatically stored.

Details: SASERAIN Interface Engine
The SASERAIN interface engine enables SAS users to access time series data that are stored in World
Weather Online data sets that the World Weather Online website provides. Every World Weather Online
data set is identified by a unique location code ID (which you specify in the QUERY= option). For example,
London (England) is uniquely identified by the latitude and longitude that you obtain by using the search
API on the web

page with the following URL:

https://api.worldweatheronline.com/premium/v1/search.ashx?query=LONDON,
UNITED%20KINGDOM&key=XXXXXXXXXXXXXXXXXXXXXXXXXXXX

When you specify the QUERY= option (for one to nine locations), the SASERAIN engine automatically
calls the search API to find the unique latitude and longitude for each location that you want. If the request is
ambiguous (too vague), then the SASERAIN engine issues a warning that it is using the best first match, and
then lists the three possible matches that were searched. If the wrong latitude and longitude for a location
were selected, you c

an rerun the SASERAIN engine with a different QUERY= option from the list of possibilities that best
match your desired location. NOTE: It is best to specify latitude and longitude if you are having difficulty
pinpointing your desired location.
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World Weather Online API Key
The API key that is used in these examples, ’XXXXXXXXXXXXXXXXXXXXXXXXXXXXX’, is for
demonstration only. To successfully download data from the World Weather Online website, use your own
World Weather Online API key, which is a 29-character mixed-case alphanumeric string. You can request
your own API key by visiting the website at the following URL:

https://www.worldweatheronline.com/developer/signup.aspx.

SAS Output Data Set
You can use a SAS DATA step to write the selected World Weather Online data to a SAS data set. This
enables you to use SAS software to easily analyze the data. If you specify the name of the output data set in
the DATA statement, the SAS engine supervisor creates a SAS data set that has the specified name in either
the SAS Work library or, if specified, the SAS User library.

The contents of the SAS data set include the date of each observation and the name of each location whose
weather data is read from the World Weather Online website.

The SASERAIN interface engine maintains the sort order, so the locations (q-codes) are sorted in the resulting
SAS data set by the order that you specify in the QUERY= option, by date (time ID), and by variable (time
series item name).

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASERAIN libref to create a custom view of your
data.

SAS OUTXML File
The SAS XML (XML format) data that are returned from the World Weather Online website are placed in a
file that is named by the OUTXML= option. The SASERAIN interface engine creates a separate XML file
for each World Weather Online code that you list in the QUERY= option. The engine numbers each data set’s
XML file in the order in which it appears in the QUERY= option, so the first data set has a 1 concatenated
to the file name, the second data set has a 2 concatenated to the file name, and so on. When the QUERY=
option contains more than one World Weather Online code, the variable names also have the same numeral
concatenated to them. This naming convention enables the engine to merge all the selected time series into
one SAS data set while preserving the identity of each time series. The SAS XML data are placed in the
current working directory. The SAS data set created when the XML data are read into SAS is placed in the
location specified by the physical-name in the LIBNAME libref SASERAIN statement, which is described in
the section “The LIBNAME libref SASERAIN Statement” on page 3770.

https://www.worldweatheronline.com/developer/signup.aspx
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SAS XML Map File
The XML map that (by default) is automatically created is assigned the full path name that you specify
in the XMLMAP= option in your LIBNAME libref SASERAIN statement. The map file is either reused
(not overwritten) if you specify AUTOMAP=REUSE or overwritten by a new map if you specify AU-
TOMAP=REPLACE (the default). The SASERAIN interface engine invokes the XMLV2 engine to create
the map and to read the data into SAS.

Examples: SASERAIN Interface Engine

Example 54.1: Retrieving Weather Forecast Data for One Location
When you are specifying one location by city, it is important to also specify the country. Because spaces are
allowed in city names and country names, a comma (without spaces) is required to separate the city name
from the country name. The following statements enable you to access the World Weather Online data for
Paris. The output is shown in Output 54.1.1.

options validvarname=any;

title 'World Weather Online Data for Paris';
LIBNAME myLib saserain "%sysget(RAIN_DATA)"

OUTXML=gstart
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(RAIN_DATA)gstart.map"
APIKEY='XXXXXXXXXXXXXXXXXXXX'
QUERY='Paris,France'
FORMAT=xml
NUM_OF_DAYS=1;

data howCool;
set myLib.gstart ;

run;

proc contents data=howCool; run;
proc print data=howCool(obs=6); run;
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Output 54.1.1 World Weather Online Data for Paris

World Weather Online Data for Paris

Obs date AreaName Country Region oc latitude longitude maxtempC maxtempF mintempC

1 2018-05-11 Paris France Ile-de-France 1 48.8670 2.33300 24 74 15

2 2018-05-11 Paris France Ile-de-France 1 48.8670 2.33300 24 74 15

3 2018-05-11 Paris France Ile-de-France 1 48.8670 2.33300 24 74 15

4 2018-05-11 Paris France Ile-de-France 1 48.8670 2.33300 24 74 15

Obs mintempF totalSnow_cm sunHour uvIndex time tempC tempF windspeedMiles windspeedKmph

1 59 0 5.8 6 0 12 53 5 8

2 59 0 5.8 6 600 13 56 4 7

3 59 0 5.8 6 1200 20 68 7 11

4 59 0 5.8 6 1800 22 71 7 11

Obs winddirDegree winddir16Point weatherCode weatherDesc precipMM humidity visibility pressure

1 138 SE 113 Clear 0 65 10 1021

2 80 E 113 Clear 0 75 20 1020

3 148 SSE 116 Partly cloudy 0 40 20 1017

4 156 SSE 113 Sunny 0 46 20 1015

Obs cloudcover HeatIndexC HeatIndexF DewPointC DewPointF WindChillC WindChillF WindGustMiles

1 6 13 55 7 44 11 52 6

2 0 13 56 9 48 13 55 5

3 0 22 71 6 43 20 68 8

4 6 22 72 9 49 22 71 8

Obs WindGustKmph FeelsLikeC FeelsLikeF chanceofrain chanceofremdry chanceofwindy chanceofovercast

1 9 11 52 0 83 0 33

2 8 13 55 0 87 0 0

3 13 20 68 0 88 0 16

4 13 22 71 0 81 0 27

Obs chanceofsunshine chanceoffrost chanceofhightemp chanceoffog chanceofsnow chanceofthunder

1 82 0 0 0 0 0

2 91 0 0 0 0 0

3 87 0 0 0 0 0

4 76 0 3 0 0 0

The SASERAIN interface engine supports the XML format. The XML data that the World Weather Online
website returns are placed in a file named by the OUTXML= option (GSTART). The XML map that is
automatically created is assigned the full path name specified by the XMLMAP= option, and the fileref that
is used for the map assignment is specified by the MAPREF= option. Because the XMLMAP= option is
specified as /sasusr/rain/test/, the SASERAIN engine uses the MAPREF= and XMLMAP= options in the
FILENAME statement to assign a file name:

FILENAME MyMap "/sasusr/rain/test/gstart.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML
data file; it is described in the section “SAS OUTXML File” on page 3777. The XML data file is placed
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in the current working folder and the SAS data set that is created when the XML data are read into SAS
is placed in the location specified by physical-name, which is described in the section “The LIBNAME
libref SASERAIN Statement” on page 3770. You can refer to your data by using the myLib libref in your
SASERAIN LIBNAME statement. The myLib libref is shown inside the DATA step in the SET statement.
The SET statement reads observations from the input data set myLib.gstart and stores them in a SAS data
set named HowCool, as shown in Figure 54.1.1. You can also use the SAS DATA step to perform further
processing and to store the resulting time series in a SAS data set; this process is described in the section
“SAS Output Data Set” on page 3777.

To specify the list of World Weather Online data sets that you want to retrieve, use the QUERY= option.
This option accepts a string, enclosed in single quotation marks, that denotes a list of World Weather Online
location codes that specify the places where you want the weather forecast data to be selected for the resulting
SAS data set. The World Weather Online location codes are separated by semicolons, so valid World Weather
Online codes cannot contain embedded semicolons or quotes. The HowCool data set contains the local
weather forecast variables The observation range is controlled by the NUM_OF_DAYS= option, which is
a required option. The HowCool data set contains observations that start today and end the same day, as
specified by the NUM_OF_DAYS option. The frequency of the data is the six-hour default, because the
FREQ= option is not specified.

NOTE: The “%20” is a special character for URL encoding of blanks. If the World Weather Online code
that you name in the QUERY= option contains a blank, the SASERAIN engine uses “%20” wherever the
blank appears in the World Weather Online code. If the World Weather Online code contains an underscore,
then you must use an underscore in the QUERY= option. The underscore and the blank are not equivalent in
World Weather Online databases.

Example 54.2: Retrieving the Two-Day Local Weather Forecast for One
Location

The statements that follow enable you to access the weather for London for two days (NUM_OF_DAYS=2),
which starts with today. The observations are given at a frequency of every 24 hours and are sorted in
chronological order. The output is shown in Output 54.2.1.

options validvarname=any;

title 'Retrieve Two Day Weather Forecast for London';
libname mylib "/sasusr/rain/doc/";
libname rain saserain "%sysget(RAIN_DATA)"

QUERY='London,United Kingdom'
OUTXML=foggy
XMLMAP="%sysget(RAIN_DATA)foggy.map"
APIKEY='XXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
NUM_OF_DAYS=2
TP=24
FORMAT=xml;

data mylib.london_fog;
set rain.foggy;

run;
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proc contents data=mylib.london_fog; run;
proc print data=mylib.london_fog; run;

Output 54.2.1 London Weather for Today and Tomorrow: London_fog

Retrieve Two Day Weather Forecast for London

Obs date AreaName Country Region oc latitude longitude maxtempC maxtempF mintempC

1 2018-05-11 London United
Kingdom

City of London, Greater
London

1 51.5170 -0.106 18 64 12

2 2018-05-12 London United
Kingdom

City of London, Greater
London

1 51.5170 -0.106 14 57 7

Obs mintempF totalSnow_cm sunHour uvIndex time tempC tempF windspeedMiles windspeedKmph

1 54 0 0 6 24 18 64 9 14

2 44 0 0 2 24 14 57 4 6

Obs winddirDegree winddir16Point weatherCode weatherDesc precipMM humidity visibility pressure

1 161 SSE 299 Moderate rain at
times

0.70000 57 18 1016

2 178 S 296 Light rain 7.20000 74 17 1013

Obs cloudcover HeatIndexC HeatIndexF DewPointC DewPointF WindChillC WindChillF WindGustMiles

1 53 14 58 6 42 14 57 11

2 79 13 55 9 48 12 54 5

Obs WindGustKmph FeelsLikeC FeelsLikeF chanceofrain chanceofremdry chanceofwindy chanceofovercast

1 17 14 57 87 0 0 87

2 7 12 54 93 0 0 88

Obs chanceofsunshine chanceoffrost chanceofhightemp chanceoffog chanceofsnow chanceofthunder

1 0 0 0 0 0 0

2 0 0 0 0 0 0

The XML data that the World Weather Online website returns are placed in a file that is named by the
OUTXML= option—in this case, FOGGY1.xml. NOTE: The SASERAIN engine appends a numeral to the
XML file name, and the file extension (.xml) is excluded from the file name that appears in the OUTXML=
option. The SAS data set created when the XML data file is read into SAS is placed in the location that is
specified inside the string enclosed in double quotation marks in the SASERAIN LIBNAME statement.

You could use either a SAS macro variable or a system environment variable to store the value of your World
Weather Online API key so that the key does not appear explicitly in your SAS code. The XML map that is
created is assigned the full path name that the XMLMAP= option specifies. The SASERAIN engine appends
a numeral to the XML file name to indicate the position of the World Weather Online location code in the
QUERY= option.
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The QUERY= option specifies the list of World Weather Online locations that you want to retrieve weather
data for. This option accepts a string, enclosed in single quotation marks, that consists of one or more World
Weather Online locations that you select (keep) in the resulting SAS data set. The result, FOGGY, is named
in the DATA step and is shown in Figure 54.2.1. The preceding example uses only one World Weather Online
code, which is in the first position of the QUERY= option, so the numeral 1 is appended to the name of the
XML file, resulting in FOGGY1.xml.

It is more efficient to use the DATA step to store your World Weather Online data in a SAS data set and then
refer to the SAS data set directly in your PROC PRINT or PROC GPLOT statement. You can also refer to
the SASERAIN libref directly, as in the statement

proc print data=rain.foggy;

This statement uses the member name, FOGGY, in the PROC PRINT statement; this usage corresponds to
specifying the OUTXML=FOGGY option. Although using this statement might seem easier, it is not as
efficient, because every time you use the SASERAIN libref, the SASERAIN interface engine reads the entire
XML file into SAS again. So it is better to refer to the SAS data set repeatedly than to invoke the interface
engine repeatedly.

Example 54.3: Retrieving the Local Weather Forecast for One Location
This example shows how to use one World Weather Online location query to retrieve weather data for Dubai,
starting today and ending tomorrow (num_of_days=2), with a 24-hour frequency. The output is shown in
Output 54.3.1.

options validvarname=any;

title 'Retrieve Weather Data for Dubai';
libname mylib "/sasusr/rain/doc/";
libname myplace saserain "%sysget(RAIN_DATA)"

apikey='XXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
query='Dubai,United Arab Emirates'
format=XML
outXml=dubhot
automap=replace
mapref=MyMap
xmlmap="%sysget(RAIN_DATA)dubhot.map"
num_of_days=2
tp=24
;

data mylib.hotdub;
set myplace.dubhot;

run;

proc contents data=mylib.hotdub; run;
proc print data=mylib.hotdub; run;
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Output 54.3.1 Local Weather for Dubai

Retrieve Weather Data for Dubai

Obs date AreaName Country Region oc latitude longitude maxtempC maxtempF mintempC mintempF

1 2018-05-12 Dubai United Arab
Emirates

Dubai 1 25.2520 55.2800 38 101 29 84

2 2018-05-13 Dubai United Arab
Emirates

Dubai 1 25.2520 55.2800 40 103 30 86

Obs totalSnow_cm sunHour uvIndex time tempC tempF windspeedMiles windspeedKmph winddirDegree

1 0 0 12 24 38 101 8 14 178

2 0 0 12 24 40 103 17 28 224

Obs winddir16Point weatherCode weatherDesc precipMM humidity visibility pressure cloudcover HeatIndexC

1 S 116 Partly cloudy 0 33 20 1005 0 34

2 SW 116 Partly cloudy 0 35 20 1003 4 36

Obs HeatIndexF DewPointC DewPointF WindChillC WindChillF WindGustMiles WindGustKmph FeelsLikeC

1 92 15 59 33 91 15 25 34

2 97 16 62 35 95 31 49 36

Obs FeelsLikeF chanceofrain chanceofremdry chanceofwindy chanceofovercast chanceofsunshine

1 92 0 80 0 42 79

2 97 0 93 2 43 75

Obs chanceoffrost chanceofhightemp chanceoffog chanceofsnow chanceofthunder

1 0 96 0 0 0

2 0 92 0 0 0

Example 54.4: Retrieving the Local Weather Forecast for Three Locations
This example shows how to retrieve World Weather Online data for three locations (London, Paris, and
Dubai), starting today and ending today (num_of_days=1), with a 24-hour frequency. The output is shown in
Output 54.4.1.

options validvarname=any;

title 'Retrieve Weather Data for Three Cities';
libname mylib "/sasusr/rain/doc/";
libname rain saserain "%sysget(RAIN_DATA)"
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apikey='XXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
query='London,United Kingdom;Paris,France;Dubai,United Arab Emirates'
format=XML
outXml=tricity
automap=replace
mapref=MyMap
xmlmap="%sysget(RAIN_DATA)tricity.map"
num_of_days=1
tp=24
;

data mylib.threecit;
set rain.tricity;

run;

proc contents data=mylib.threecit; run;
proc print data=mylib.threecit; run;



Example 54.4: Retrieving the Local Weather Forecast for Three Locations F 3785

Output 54.4.1 Local Weather for London, Paris, and Dubai

Retrieve Weather Data for Three Cities

Obs date AreaName Country Region oc latitude longitude maxtempC maxtempF mintempC

1 2018-05-11 London United
Kingdom

City of London, Greater
London

1 51.5170 -0.1060 18 64 12

2 2018-05-11 Paris France Ile-de-France 2 48.8670 2.3330 22 71 15

3 2018-05-12 Dubai United Arab
Emirates

Dubai 3 25.2520 55.2800 38 101 29

Obs mintempF totalSnow_cm sunHour uvIndex time tempC tempF windspeedMiles windspeedKmph

1 54 0 0 6 24 18 64 9 14

2 58 0 0 6 24 22 71 6 10

3 84 0 0 12 24 38 101 8 14

Obs winddirDegree winddir16Point weatherCode weatherDesc precipMM humidity visibility pressure

1 161 SSE 299 Moderate rain at
times

0.70000 57 18 1016

2 119 ESE 116 Partly cloudy 0.00000 52 19 1017

3 178 S 116 Partly cloudy 0.00000 33 20 1005

Obs cloudcover HeatIndexC HeatIndexF DewPointC DewPointF WindChillC WindChillF WindGustMiles

1 53 14 58 6 42 14 57 11

2 13 16 61 6 42 16 60 7

3 0 34 92 15 59 33 91 15

Obs WindGustKmph FeelsLikeC FeelsLikeF chanceofrain chanceofremdry chanceofwindy chanceofovercast

1 17 14 57 87 0 0 87

2 12 16 60 0 87 0 33

3 25 34 92 0 80 0 42

Obs chanceofsunshine chanceoffrost chanceofhightemp chanceoffog chanceofsnow chanceofthunder

1 0 0 0 0 0 0

2 88 0 0 0 0 0

3 79 0 96 0 0 0
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Example 54.5: Retrieving Current Conditions for One Location
This example shows how to retrieve current conditions data for one location, Paris. Output 54.5.1 shows the
current weather conditions data.

title 'Current Conditions for Paris';

options validvarname=any;

libname mylib "/sasusr/rain/doc/";

libname myRain saserain "%sysget(RAIN_DATA)"
apikey='XXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
query='Paris,France'
num_of_days=1
conditions=onlycc
outxml=parcon
automap=replace
mapref=MyMap
xmlmap="%sysget(RAIN_DATA)parcon.map"
format=xml
;

data mylib.parcon;
set myRain.parcon;

run;

proc contents data=mylib.parcon; run;
proc print data=mylib.parcon; run;

Output 54.5.1 Local Current Weather Conditions for Paris

Current Conditions for Paris

Obs AreaName Country Region observation_time oc latitude longitude temp_C temp_F

1 Paris France Ile-de-France 21:14:00 1 48.867 2.333 16 61

Obs weatherCode weatherDesc windspeedMiles windspeedKmph winddirDegree winddir16Point

1 113 Clear 4 6 120 ESE

Obs precipMM humidity visibility pressure cloudcover FeelsLikeC FeelsLikeF

1 0 55 10 1014 0 16 61
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Example 54.6: Retrieving Historical Weather Data for Two Cities for a Date
Range

This example shows how to retrieve past weather data for two locations (London and Paris) by using a
date range. The historical (past) weather API is invoked because the DATE= and ENDDATE= options are
specified. The concept of current conditions does not have any meaning when you specify past dates, so the
historical weather data are returned instead of the current conditions. The output is shown in Output 54.6.1.
When you specify past dates, the same data are returned whether or not you specify the CC= option. The
SAS log shows the following warning:

*****WARNING: Using historical (past) weather API, so current conditions are
not reported.

options validvarname=any;

title 'Historical Weather for Date Range MAY 01, 2017 - MAY 02, 2017 for
London and Paris';

libname mylib "/sasusr/rain/doc/";

libname myRain saserain "%sysget(RAIN_DATA)"
apikey='XXXXXXXXXXXXXXXXXXXX'
query='London,United Kingdom;Paris,France'
date='2017-05-01'
enddate='2017-05-02'
tp=24
cc=onlycc
format=XML
outXml=rainex05
automap=replace
mapref=MyMap
xmlmap="%SYSGET(RAIN_DATA)rainex05.map"
;

data mylib.cc3day;
set myRain.rainex05;

run;

proc contents data=mylib.cc3day; run;
proc print data=mylib.cc3day; run;
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Output 54.6.1 Historical Weather Data for Date Range for London and Paris

Historical Weather for Date Range MAY 01, 2017 - MAY 02, 2017 for London and Paris

Obs date AreaName Country Region oc latitude longitude maxtempC maxtempF mintempC mintempF

1 2017-05-01 London United
Kingdom

City of London,
Greater London

1 51.5170 -0.10600 15 59 8 47

2 2017-05-01 Paris France Ile-de-France 2 48.8670 2.33300 15 59 8 47

3 2017-05-02 London United
Kingdom

City of London,
Greater London

1 51.5170 -0.10600 17 62 8 46

4 2017-05-02 Paris France Ile-de-France 2 48.8670 2.33300 14 58 5 41

Obs totalSnow_cm sunHour uvIndex time tempC tempF windspeedMiles windspeedKmph winddirDegree

1 0 0 0 24 15 59 10 17 123

2 0 0 0 24 15 59 10 15 231

3 0 0 0 24 17 62 9 14 47

4 0 0 0 24 14 58 6 10 38

Obs winddir16Point weatherCode weatherDesc precipMM humidity visibility pressure cloudcover HeatIndexC

1 ESE 353 Light rain
shower

2.80000 85 9 1003 71 11

2 SW 176 Patchy rain
possi

1.70000 67 10 1010 67 12

3 NE 353 Light rain
shower

2.70000 82 10 1018 40 11

4 NE 176 Patchy rain
possi

1.40000 66 9 1016 43 10

Obs HeatIndexF DewPointC DewPointF WindChillC WindChillF WindGustMiles WindGustKmph FeelsLikeC FeelsLikeF

1 51 8 47 9 48 15 24 9 48

2 53 5 41 11 52 20 32 11 52

3 53 8 47 10 50 13 21 10 50

4 51 5 41 10 49 9 15 10 49

References
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Overview: SASEWBGO Interface Engine
The SASEWBGO interface engine enables SAS programmers to retrieve time series data from the World
Bank Group Open (WBGO) data website, hosted by the World Bank Group, which consists of the following
five organizations:

IBRD International Bank of Reconstruction and Development, which lends to middle-income and
creditworthy low-income countries

IDA International Development Association, which provides interest-free loans and grants to govern-
ments of the poorest countries

IFC International Finance Corporation, which focuses exclusively on the private sector by helping
developing countries achieve sustainable growth through investment financing, capital mobilization
in international financial markets, and advisory services to businesses and governments

MIGA Multilateral Investment Guarantee Agency, which offers political risk insurance (guarantees) to
investors and lenders to promote foreign direct investment in developing countries to support
economic growth, reduce poverty, and improve people’s lives

ICSID International Centre for Settlement of Investment Disputes, which provides international facilities
for conciliation and arbitration of investment disputes

The first two organizations, the IBRD and the IDA, make up the World Bank.

The World Bank Group Open data catalog contains the databases listed on the web page at the following
URL:

http://datacatalog.worldbank.org/

The most popular is the World Development Indicators (WDI) database. This database presents the most
current and accurate global development data available, including national, regional, and global estimates.
The SASEWBGO interface engine supports access to the WDI database, but it also provides access to
time series in other WBGO databases, such as the Global Economic Monitor (GEM) and the Special Data
Dissemination Standard (SDDS). For a complete list of WBGO databases, see Table 55.5.

The SASEWBGO interface engine uses the LIBNAME statement to enable you to specify how to retrieve
your WBGO data by specifying a country list, a list of time series indicators, a range of years, and an optional
page number and number of observations per page to report. You can then use the SAS DATA step to perform
further subsetting and to store the resulting time series in a SAS data set. You can perform more analysis (if
desired) either in the same SAS session or in a later session.

The SASEWBGO interface engine is supported on SAS running on Linux X64 (LAX) and Windows.

Although the SASEWBGO engine uses the WBGO API, it is not endorsed or certified by the World Bank
Group. By using the SASEWBGO interface, you are agreeing to comply with the WBGO terms of use,
which are described on the web page at the following URL:

http://data.worldbank.org/summary-terms-of-use

 http://datacatalog.worldbank.org/
http://data.worldbank.org/summary-terms-of-use
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Getting Started: SASEWBGO Interface Engine
You can query the World Bank Group Open Data (WDI) database to retrieve the observations or data values
for a list of economic time series by specifying the series ID (indicator) of each time series that you want to
read into SAS and by specifying a list of the countries for which you want to retrieve the time series.

Before downloading any copyright-protected data series, be aware that you are solely responsible for obtaining
copyright permissions for any copyright-protected time series that you download (other than for personal
use). To obtain a list of the copyright-protected data series, visit the web page at the following URL:

http://data.worldbank.org/restricted-data

Now that your are informed about the terms of use of the WBGO data, you can access these data, as shown
in the following example.

The following statements enable you to access the time series data for gross domestic product per capita in
current US dollars for Brazil and China for the seven years starting with 2010 and ending with 2016 (on an
annual basis). The observations are sorted by the COUNTRY_ID and the time ID variable DATE. Specify
the ISO three-letter or ISO two-letter country code for each country for which you want to retrieve time
series, separated by a semicolon. In the following LIBNAME statement, you specify the COUNTRYLIST=
option by giving the ISO three-letter code for China as ‘chn’ and the ISO three-letter code for Brazil as ‘bra’,
separated by a semicolon.

options validvarname=any;

title 'Retrieve Data for GDP per Capita for Brazil and China';
libname wbgo sasewbgo "%sysget(WBGO)"

OUTXML=gdpgs
XMLMAP="%sysget(WBGO)gdpgs.map"
COUNTRYLIST='chn;bra'
IDLIST='NY.GDP.PCAP.CD'
RANGE='2010:2016';

data gdp_gsa;
set wbgo.gdpgs ;

run;

proc contents data=gdp_gsa; run;
proc print data=gdp_gsa; run;

http://data.worldbank.org/restricted-data
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Figure 55.1 Getting Started with Gross Domestic Product per Capita: gdp_gsa

Retrieve Data for GDP per Capita for Brazil and China

Obs country_id country date NY.GDP.PCAP.CD total_count

1 BR Brazil 2010 11121.42 14

2 BR Brazil 2011 13047.24 14

3 BR Brazil 2012 12179.69 14

4 BR Brazil 2013 12106.21 14

5 BR Brazil 2014 11917.79 14

6 BR Brazil 2015 8677.77 14

7 BR Brazil 2016 . 14

8 CN China 2010 4560.51 14

9 CN China 2011 5633.80 14

10 CN China 2012 6337.88 14

11 CN China 2013 7077.77 14

12 CN China 2014 7683.50 14

13 CN China 2015 8069.21 14

14 CN China 2016 . 14

The XML data that the WBGO website returns are placed in a file named by the OUTXML= option—in
this case, GDPGS.xml. Note that the XML file extension is excluded from the file name specified in the
OUTXML= option. When the SET statement is executed, the XML data are read into a SAS data set named
Gdp_gsa.sas7bdat, which resides in the location specified by the string enclosed in double quotation marks
in the SASEWBGO LIBNAME statement. So, in the preceding example, assume that you use the following
SASEWBGO LIBNAME statement:

libname wbgo sasewbgo "/sasusr/playpens/saskff/wbgo/test/"

Then, the SAS data set is named by the OUTXML= option specification, created by reading the downloaded
XML file, and placed in the location

/sasuser/playpens/saskff/wbgo/test/gdpgs.sas7bdat

The XML map that is created is assigned the full path name specified by the XMLMAP= option. The
IDLIST= option specifies the list of time series indicators that you want to retrieve. This option accepts a
string, enclosed in single quotation marks, that denotes a list of one or more time series that you select (keep)
in the resulting SAS data set. The result, Gdp_gsa, is named in the DATA step and shown in Figure 55.1.
The Total_count gives the total number of available observation values in the requested range. Example 55.9
demonstrates how to use multiple SASEWBGO LIBNAME statements to access the entire range of data.

It is more efficient to use the DATA step to store your WBGO data in a SAS data set and then refer to the
SAS data set directly in later SAS program steps, but you can also refer to the SASEWBGO SAS library
reference (libref) directly, as in the following statements:

proc print data=wbgo.gdpgs; run;

This statement uses the member name, gdpgs, in the PROC PRINT statement; this usage corresponds to
specifying the OUTXML=GDPGS option. Although using this statement might seem easier, it is not as
efficient, because every time you use the SASEWBGO libref, the SASEWBGO engine reads the entire
XML file into SAS. So it is better to refer to the SAS data set repeatedly than to invoke the interface engine
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repeatedly. See Example 55.1 for sample code that demonstrates how to retrieve multiple time series from
one country (China).

Syntax: SASEWBGO Interface Engine
The SASEWBGO interface engine uses standard engine syntax to read the observations or data values for
one or more time series indicators for one or more countries. Table 55.1 summarizes the options that the
SASEWBGO engine uses. Two options are required: COUNTRYLIST= and IDLIST= .

Table 55.1 Summary of LIBNAME libref SASEWBGO Options

Option Description

AUTOMAP= Specifies whether or not to overwrite the existing XML map file
COUNTRYLIST= Specifies the ISO three-letter or two-letter code for each country for which to

retrieve time series. When you specify more than one country code, use a semicolon
as a delimiter and enclose the country list in single quotes. This option also enables
you to specify region IDs or income-level IDs for aggregating your selected time
series.

DEBUG= Specifies whether or not to include diagnostic messages in the SAS log
FREQ= Specifies whether to retrieve quarterly (Q), monthly (M), or yearly (Y) values. The

FREQ= option is used only in conjunction with the MRV= option.
GAPFILL= Specifies whether or not to backfill missing values: if data are not available, the API

backtracks to the next available period. This option is used only with the MRV=
option (the maximum number of backtracked periods is limited by the MRV value
specified).

IDLIST= Specifies a list of time series IDs (indicators) for accessing WBGO data. To select
more than one time series, list the unique time series indicators, separated by
commas.

LANG= Specifies the language to use for text fields returned by the SASEWBGO engine
MAPREF= Specifies the fileref used for the map file assignment
MRV= Specifies the number of observations retrieved relative to the most recent value
OUTXML= Specifies the name of the output SAS data set and the XML file(s) requested by the

IDLIST= option. When you specify more than one time series ID in the IDLIST=
option, the SASEWBGO engine appends the positional integer (‘1’ for the first time
series ID, ‘2’ for the second time series ID, and so on) to the name specified by the
OUTXML= option.

PAGE= Specifies the page number of the data to retrieve in the returned data
PER_PAGE= Specifies the number of observations to view in one page of the retrieved data
RANGE= Specifies the range of observations for the retrieved data, such as ‘2000:2001’ for

annual data, ‘2009M01:2010M08’ for monthly data, and ‘2009Q1:2010Q3’ for
quarterly data

SORT= Specifies the order of the results in ascending or descending order by observation
date. The valid sort arguments are ‘asc’ and ‘desc’; the default is ‘asc’.
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Table 55.1 continued

Option Description

URL= Specifies a URL from which to request useful information about countries based on
income level, time series indicators based on source ID, or time series indicators
based on topic ID. The information is downloaded from the web page at the
specified URL and stored in the XWBGOTPU data set (a temporary utility data set),
which can then be saved or renamed to a permanent SAS data set.

XMLMAP= Specifies the fully qualified name of the location where the XMLmap file is
automatically stored. By default, XMLMAP=Wbgo.map.

The LIBNAME libref SASEWBGO Statement
LIBNAME libref SASEWBGO 'physical-name' options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory of
WBGO data files in which the downloaded WBGO XML data are stored.

You must specify the following arguments:

“physical name”
specifies the location of the folder where your WBGO XML data reside. Enclose the physical name in
double quotation marks, and end it with a backslash if the folder is in a Windows environment or a
forward slash if it is in a UNIX environment.

COUNTRYLIST='wbgo_countrylist '
specifies the list of country codes, region IDs, or income-level IDs to be included in the output SAS
data set. See Table 55.2 and Table 55.3 for the IDs available for each aggregation type. This list is
semicolon-delimited and must be enclosed in single quotation marks. To list all countries, specify 'all'.
Otherwise, you can use the following information to designate the countries listed in the World Bank
API. The World Bank uses the ISO three-letter and two-letter codes to represent most of the countries,
with the following exceptions:

� Three-letter code differences: Andorra, Democratic Republic of the Congo, Isle of Man, Romania,
Timor-Leste, West Bank and Gaza

� Two-letter code differences: Democratic Republic of the Congo, Serbia, Timor-Leste, Republic
of Yemen, West Bank and Gaza

� Countries not using ISO codes: Channel Islands, Kosovo

For more information about country codes, visit the web page at the following URL:

http://www.nationsonline.org/oneworld/country_code_list.htm

http://www.nationsonline.org/oneworld/country_code_list.htm
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IDLIST='wbgo_idlist '
specifies the list of time series indicators to be included in the output SAS data set. This list is
comma-delimited and must be enclosed in single quotation marks. The crossproduct of the country list
and the ID list defines the cross sections of the resulting SAS output data set. For a complete list of
available indicators, visit the web page at the following URL:

http://api.worldbank.org/v2/indicators

You can also specify the following options.

AUTOMAP=REPLACE | REUSE
specifies which XMLmap file to use. You can specify the following values:

REPLACE overwrites the existing XMLmap file and uses the most current XMLmap that is
generated by the SASEWBGO engine and specified in the XMLMAP= option.

REUSE uses a preexisting XMLmap file that is specified in the XMLMAP= option.

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log. This information can
be very useful for troubleshooting a problem.

FREQ=M | Q | Y | A
specifies the frequency of the file to be retrieved from the WBGO website. This option is used only in
conjunction with the MRV= option. M is monthly, Q is quarterly, and Y (or A) is yearly (annual). By
default, FREQ=Y.

GAPFILL=Y | N
specifies whether or not to backfill the unavailable (missing) values in the data retrieved from the
WBGO website. This option is used only in conjunction with the MRV= option.

LANGUAGE=EN | ES | FR
specifies the language of the text fields for the retrieved data. The following languages are supported:
English (EN), Spanish (ES), and French (FR). The SASEWBGO engine does not support Chinese or
Arabic. By default, LANGUAGE=EN.

MAPREF=wbgo_xmlmapfileref
specifies the fileref used for the map assignment. The SASEWBGO engine uses the MAPREF= and
XMLMAP= options in the FILENAME statement to assign a file name, as in the following:

FILENAME MyMap "/sasusr/playpens/saskff/wbgo/test/gstart.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your
XML data file and to name the SAS data set that you created by reading the XML data into SAS. The
resulting SAS data set is placed in the folder designated by ‘physical-name’, and you can reference it
by using the myLib libref in your SASEWBGO LIBNAME statement. This is shown in Example 55.1,
inside the DATA step in the SET statement. In the example, the SET statement reads observations from
the input data set myLib.g2start and stores them in a SAS data set named Gdp2chn.

http://api.worldbank.org/v2/indicators
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MRV=wbgo_mrv
specifies the number of observations to retrieve relative to the most recent value. You must specify this
option when you specify either the GAPFILL= or FREQ= option.

OUTXML=wbgo_xmlfile
specifies the name of both the XML file (downloaded) and the SAS data set created when the XML
data are read into SAS. Each WBGO time series that you list in the IDS= option is given a positional
numeral: 1 for the first time series ID listed in the ID= option, 2 for the second time series ID listed,
and so on. The SASEWBGO engine appends this numeral to the file name of the XML of each data
set that the website returns. When all the XML files are retrieved, the data are merged into a SAS
data set. When you specify only one WBGO time series ID in the ID= option, the file name has the
numeral 1 appended to the OUTXML= file name. By default, OUTXML=WBGO, which creates a file
named WBGO1.xml in the current working directory. The SAS data set that is created when the XML
data are read into SAS is placed in the folder specified by the physical path in the LIBNAME libref
SASEWBGO statement.

PAGE=wbgo_page
specifies the page number of the data to retrieve. Only one page is retrieved for a request, but the page
total can be quite large. By default, the first page is retrieved when the page number is not specified.
When you want to see more data than what is retrieved for the first page, make another request by
specifying the PAGE= option with the number of the page that you want to retrieve. For the page
number, you must specify an integer between 1 and the total page count given by the DATA_PAGES
variable in the SAS data set named OUTXML1.sas7bdat, which can be viewed in the SAS listing.

PER_PAGE=wbgo_perpage
specifies the number of observations per page of the data to retrieve. The default is 50 observations per
page. You can set the per-page number that you want to retrieve by using this option. The per-page
count is given by the DATA_PER_PAGE in the SAS data set named OUTXML1.sas7bdat, which can be
viewed in the SAS listing. If you want the entire range of data to be downloaded all at once (in one
page), you can specify the PER_PAGE= option to be the value of the TOTAL_COUNT that is given in
the output SAS data set named by your OUTXML= option. See Example 55.9 for an example of a
SAS macro that enables you to download the entire range of data in one page.

RANGE='wbgo_range'
specifies the date range of the data that you want to retrieve in the following formats:

'yyyy:yyyy ' designates the start year and end year for the range of annual time series; for example,
RANGE=2000:2001.

'yyyyQn:yyyyQn' designates the start year and quarter (n) and the end year and quarter (n) for the
quarterly time series; for example, RANGE=2009Q1:2010Q3.

'yyyyMnn:yyyyMnn' designates the start year and month (nn) and the end year and month (nn) for
the monthly time series; for example, RANGE=2009M01:2010M08.

For quarterly time series, n is an integer between 1 and 4. For monthly time series, nn is an integer
between 1 and 12. Most series in the WDI database are annual. For more information about quarterly
and monthly data, consult the World Bank data catalog by visiting the website at the following URL:

http://datacatalog.worldbank.org/

See Example 55.7 for sample code that retrieves Quarterly External Debt Statistics data, and see
Example 55.8 for sample code that retrieves monthly Global Economic Monitor commodities data.

http://datacatalog.worldbank.org/
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SORT=ASC | DESC
specifies the order of the time series observations. You can specify the following values:

ASC specifies that the dates for the time series observations be in ascending order (within each
country’s cross section of data).

DESC specifies that the dates for the time series observations be in descending order (within each
country’s cross section of data).

By default, SORT='ASC'.

URL="wbgo_url_link/< query_type?< query_option=value > >< LIMIT=obs_limit >"
queries for useful information, such as listing countries by income level, indicators by source ID, or
indicators by topic ID. The SASEWBGO engine stores the information in a temporary utility data set
named XWBGOTPU. Specify the following fields in double quotation marks:

wbgo_url_link/
specifies the base WBGO URL that you want to use. The wbgo_url_link in the following example
is ‘http://api.worldbank.org/’.

URL="http://api.worldbank.org/topic/5/indicator?format=xml"

query_type?query_option
specifies the type of information that you want to query. You can specify the following
query_types and query_options:

countries?incomeLevels=income_level_code
retrieves the countries available for a specified income level, such as

URL="http://api.worldbank.org/countries?incomeLevel=LIC"

source/source_id/indicators?format=xml
retrieves the series indicators available for a specified source ID, such as

URL="http://api.worldbank.org/source/1/indicators?format=xml"

topic/topic_id/indicator?format=xml
retrieves the series indicators available for a specified topic ID, such as

URL="http://api.worldbank.org/topic/5/indicator?format=xml"

For a list of available sources, topics, and income levels, see Table 55.4, Table 55.5, and Table 55.2,
respectively.

LIMIT=obs_limit
specifies the maximum number of observations to retrieve.



3798 F Chapter 55: The SASEWBGO Interface Engine

XMLMAP=wbgo_xmlmapfile
specifies the fully qualified name of the location where the XMLmap file is automatically stored. By
default, XMLMAP=Wbgo.map.

Details: SASEWBGO Interface Engine
The SASEWBGO interface engine enables SAS programmers to access time series World Bank Group Open
(WBGO) data that the WBGO website provides. Time series selection is provided by the IDLIST= option
and the COUNTRYLIST= option. Because both options are required, the SASEWBGO engine issues an
error message if either option is not specified. See the Table 55.6 for a list of time series indicators available
from the World Development Indicators (WDI) database. For a list of country codes (both the ISO two-letter
and three-letter codes), visit the web page at the following URL:

http://www.nationsonline.org/oneworld/country_code_list.htm

For a list of available time series indicators, see the section “Available Time Series Data Reference: SASEW-
BGO Interface Engine” on page 3810.

Available Income Levels and Regions to Aggregate WBGO Time Series
Data
In addition to aggregating your data based on country ID, you can also aggregate your selected
data by specifying income-level IDs or region IDs in the COUNTRYLIST= option. To get a list
of the available income levels of WBGO data, enter the following URL in your web browser:
http://api.worldbank.org/incomeLevels?format=xml. Table 55.2 shows the income levels that
are available.

Table 55.2 Income Levels of the World Bank Group Open Data

Income-Level ID Income-Level Name

HIC High income
HPC Heavily indebted poor countries (HIPC)
LIC Low income
LMC Lower middle income
LMY Low and middle income
MIC Middle income
NOC High income: nonOECD
OEC High income: OECD
UMC Upper middle income

To get a list of the regions for WBGO data, enter the following URL in your web browser:

http://api.worldbank.org/v2/regions?format=xml

Table 55.3 shows the regions that are available.

http://www.nationsonline.org/oneworld/country_code_list.htm
http://api.worldbank.org/v2/regions?format=xml
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Table 55.3 Regions of the World Bank Group Open Data

Region ID Region Name

AFR Africa
ANR Andean Region
ARB Arab World
CAA Sub-Saharan Africa (IFC classification)
CEA East Asia and the Pacific (IFC classification)
CEB Central Europe and the Baltics
CEU Europe and Central Asia (IFC classification)
CLA Latin America and the Caribbean (IFC classification)
CME Middle East and North Africa (IFC classification)
CSA South Asia (IFC classification)
CSS Caribbean small states
EAP East Asia and Pacific (excluding high income; developing only)
EAR Early-demographic dividend
EAS East Asia and Pacific (all income levels)
ECA Europe and Central Asia (excluding high income; developing only)
ECS Europe and Central Asia (all income levels)
EMU EURO area
EUU European Union
FCS Fragile and conflict-affected situations
HPC Heavily indebted poor countries
LAC Latin America and the Caribbean (developing only)
LCN Latin America and the Caribbean (all income levels)
LCR Latin America and the Caribbean
LDC Least developed countries: UN classification
LTE Late-demographic dividend
MCA Central America
MDE Middle East (developing only)
MEA Middle East and North Africa (all income levels)
MNA Middle East and North Africa (excluding high income; developing only)
NAC North America
NAF North Africa
NLS Non-resource-rich Sub-Saharan Africa, of which landlocked
NRS Non-resource-rich Sub-Saharan Africa
OED OECD members
OSS Other small states
PRE Pre-demographic dividend
PSS Pacific Island small states
PST Post-demographic dividend
RRS Resource-rich Sub-Saharan Africa countries
RSO Resource-rich Sub-Saharan Africa countries, of which oil exporters
SAS South Asia
SCE Southern Cone
SSA Sub-Saharan Africa (developing only)
SSF Sub-Saharan Africa (all income levels)
SST Small states
SXZ Sub-Saharan Africa excluding South Africa
WLD All countries (world)
XZN Sub-Saharan Africa excluding South Africa and Nigeria
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Available Topics That Provide WBGO Time Series Data
To get a list of the available topics of WBGO data, enter the following URL in your web browser:

http://api.worldbank.org/v2/topics?format=xml

Table 55.4 shows the topics that are available.

Table 55.4 Topics of the World Bank Group Open Data

Topic
ID

Topic Name and Description

1 Agriculture and Rural Development
For the 70% of the world’s poor who live in rural areas, agriculture is the main source
of income and employment. But depletion and degradation of land and water pose serious
challenges to producing enough food and other agricultural products to sustain livelihoods
here and meet the needs of urban populations. Data presented here include measures of
agricultural inputs, outputs, and productivity compiled by the United Nations’ Food and
Agriculture Organization.

2 Aid Effectiveness
Aid effectiveness is the impact that aid has in reducing poverty and inequality, increasing
growth, building capacity, and accelerating achievement of the Millennium Development
Goals set by the international community. Indicators here cover aid received as well as
progress in reducing poverty and improving education, health, and other measures of human
welfare.

3 Economy and Growth
Economic growth is central to economic development. When national income grows,
real people benefit. While there is no known formula for stimulating economic growth, data
can help policy makers better understand their countries’ economic situations and guide any
work toward improvement. Data here cover measures of economic growth, such as gross
domestic product (GDP) and gross national income (GNI). They also include indicators that
represent factors known to be relevant to economic growth, such as capital stock,
employment, investment, savings, consumption, government spending, imports, and exports.

4 Education
Education is one of the most powerful instruments for reducing poverty and inequality and
lays a foundation for sustained economic growth. The World Bank compiles data on
education inputs, participation, efficiency, and outcomes. Data on education are compiled by
the United Nations Educational, Scientific, and Cultural Organization (UNESCO) Institute
for Statistics from official responses to surveys and from reports provided by education
authorities in each country.

5 Energy and Mining
The world economy needs ever-increasing amounts of energy to sustain economic growth,
raise living standards, and reduce poverty. But today’s trends in energy use are not
sustainable. As the world’s population grows and economies become more industrialized,
nonrenewable energy sources will become scarcer and more costly. Data here on energy
production, use, dependency, and efficiency are compiled by the World Bank from the
International Energy Agency and the Carbon Dioxide Information Analysis Center.

http://api.worldbank.org/v2/topics?format=xml
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Table 55.4 continued

Topic
ID

Topic Name and Description

6 Environment
Natural and man-made environmental resources—fresh water, clean air, forests, grasslands,
marine resources, and agro-ecosystems—provide sustenance and a foundation for social and
economic development. The need to safeguard these resources crosses all borders. Today,
the World Bank is one of the key promoters and financiers of environmental upgrading in
the developing world. Data here cover forests, biodiversity, emissions, and pollution. Other
indicators relevant to the environment are found under data pages for Agriculture and Rural
Development, Energy and Mining, Infrastructure, and Urban Development.

7 Financial Sector
An economy’s financial markets are critical to its overall development. Banking systems and
stock markets enhance growth, the main factor in poverty reduction. Strong financial
systems provide reliable and accessible information that lowers transaction costs, which in
turn bolsters resource allocation and economic growth. Indicators here include the size and
liquidity of stock markets; the accessibility, stability, and efficiency of financial systems; and
international migration and workers’ remittances, which affect growth and social welfare in
both sending and receiving countries.

8 Health
Improving health is central to the Millennium Development Goals, and the public sector
is the main provider of health care in developing countries. To reduce inequities, many
countries have emphasized primary health care, including immunization, sanitation, access
to safe drinking water, and safe motherhood initiatives. Data here cover health systems,
disease prevention, reproductive health, nutrition, and population dynamics. Data are from
the United Nations Population Division, World Health Organization, United Nations
Children’s Fund, Joint United Nations Programme on HIV/AIDS, and other sources.

9 Infrastructure
Infrastructure helps determine the success of manufacturing and agricultural activities.
Investments in water, sanitation, energy, housing, and transport also improve lives and help
reduce poverty. And new information and communication technologies promote growth,
improve delivery of health and other services, expand the reach of education and support
social and cultural advances. Data here are compiled from such sources as the International
Road Federation, Containerisation International, the International Civil Aviation
Organization, the International Energy Association, and the International
Telecommunications Union.

10 Social Protection and Labor
The supply of labor available in an economy includes people who are employed, those who
are unemployed but seeking work, and first-time job seekers. Not everyone who works is
included: unpaid workers, family workers, and students are often omitted, while some
countries do not count members of the armed forces. Data on labor and employment are
compiled by the International Labour Organization (ILO) from labor force surveys,
censuses, establishment censuses and surveys, and administrative records such as
employment exchange registers and unemployment insurance schemes.

11 Poverty
For countries with an active poverty monitoring program, the World Bank—in collaboration
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Table 55.4 continued

Topic
ID

Topic Name and Description

with national institutions, other development agencies, and civil society—regularly conducts
analytical work to assess the extent and causes of poverty and inequality, examine the
impact of growth and public policy, and review household survey data and measurement
methods. Data here include poverty and inequality measures generated from analytical
reports, from national poverty monitoring programs, and from the World Bank’s
Development Research Group, which has been producing internationally comparable and
global poverty estimates and lines since 1990.

12 Private Sector
Private markets drive economic growth, tapping initiative and investment to create
productive jobs and raise incomes. Trade is also a driver of economic growth as it integrates
developing countries into the world economy and generates benefits for their people. Data
on the private sector and trade are from the World Bank Group’s Private Participation in
Infrastructure Project Database, Enterprise Surveys, and Doing Business Indicators, as well
as from the International Monetary Fund’s Balance of Payments database and International
Financial Statistics, the UN Commission on Trade and Development, the World Trade
Organization, and other sources.

13 Public Sector
Effective governments improve people’s standard of living by ensuring access to essential
services—health, education, water and sanitation, electricity, transport—and the opportunity
to live and work in peace and security. Data here include World Bank staff assessments of
country performance in economic management, structural policies, policies for social
inclusion and equity, and public sector management and institutions for the poorest
countries. Also included are indicators on revenues and expenses from the International
Monetary Fund’s Government Finance Statistics, and on tax policies from various sources.

14 Science and Technology
Technological innovation, often fueled by governments, drives industrial growth and helps
raise living standards. Data here aim to shed light on countries’ technology base: research
and development, scientific and technical journal articles, high-technology exports, royalty
and license fees, and patents and trademarks. Sources include the UNESCO Institute for
Statistics, the US National Science Board, the UN Statistics Division, the International
Monetary Fund, and the World Intellectual Property Organization.

15 Social Development
Data here cover child labor, gender issues, refugees, and asylum seekers. Children in
many countries work long hours, often combining studying with work for pay. The data on
their paid work are from household surveys conducted by the International Labour
Organization (ILO), the United Nations Children’s Fund (UNICEF), the World Bank, and
national statistical offices. Gender disparities are measured using a compilation of data on
key topics such as education, health, labor force participation, and political participation.
Data on refugees are from the United Nations High Commissioner for Refugees
complemented by statistics on Palestinian refugees under the mandate of the United Nations
Relief and Works Agency.
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Table 55.4 continued

Topic
ID

Topic Name and Description

16 Urban Development
Cities can be tremendously efficient. It is easier to provide water and sanitation to people
living closer together, while access to health, education, and other social and cultural
services is also much more readily available. However, as cities grow, the cost of meeting
basic needs increases, as does the strain on the environment and natural resources. Data on
urbanization, traffic and congestion, and air pollution are from the United Nations
Population Division, World Health Organization, International Road Federation, World
Resources Institute, and other sources.

17 Gender
Gender equality is a core development objective in its own right. It is also smart
development policy and sound business practice. It is integral to economic growth, business
growth, and good development outcomes. Gender equality can boost productivity, enhance
prospects for the next generation, build resilience, and make institutions more representative
and effective. In December 2015, the World Bank Group Board discussed its new Gender
Equality Strategy 2016–2023, which aims to address persistent gaps and proposed a
sharpened focus on more and better gender data. The World Bank Group is continually
scaling up commitments and expanding partnerships to fill significant gaps in gender data.
The database hosts the latest sex-disaggregated data and gender statistics covering
demography, education, health, access to economic opportunities, public life and
decision-making, and agency.

18 Millennium Development Goals
Achieve the following by 2015: To eradicate extreme poverty and hunger; to achieve
universal primary education; to promote gender equality and empower women; to reduce
child mortality; to improve maternal health; to combat HIV/AIDS, malaria, and other
diseases; to ensure environmental sustainability; to develop a global partnership for
development.

19 Climate Change
Climate change is expected to hit developing countries the hardest. Its effects—higher
temperatures, changes in precipitation patterns, rising sea levels, and more frequent
weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are
recent gains in the fight against poverty, hunger, and disease, and the lives and livelihoods of
billions of people in developing countries. Addressing climate change requires
unprecedented global cooperation across borders. The World Bank Group is helping support
developing countries and contributing to a global solution, while tailoring its approach to the
differing needs of developing country partners. Data here cover climate systems, exposure
to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators
relevant to climate change are found under other data pages, particularly Environment,
Agriculture and Rural Development, Energy and Mining, Health, Infrastructure, Poverty,
and Urban Development.
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Table 55.4 continued

Topic
ID

Topic Name and Description

20 External Debt
Debt statistics provide a detailed picture of debt stocks and flows of developing countries.
Data presented as part of the Quarterly External Debt Statistics take a closer look at the
external debt of high-income countries and emerging markets to enable a more complete
understanding of global financial flows. The Quarterly Public Sector debt database provides
further data on public sector valuation methods; tiers of debt for central, state, and local debt
instruments; and clearly defined government, as well as extra-budgetary agencies and funds.
Data are gathered from national statistical organizations and central banks as well as by
various major multilateral institutions and World Bank staff.

21 Trade
Trade is a key means to fight poverty and achieve the Millennium Development Goals,
specifically by improving developing country access to markets and by supporting a
rules-based, predictable trading system. In cooperation with other international development
partners, the World Bank launched the Transparency in Trade Initiative to provide free and
easy access to data on country-specific trade policies.

Available Sources of WBGO Time Series Data
To get a list of the available sources of WBGO economic time series data, enter the following URL in your
web browser:

http://api.worldbank.org/v2/sources

Table 55.5 shows some of the sources available.

http://api.worldbank.org/v2/sources
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Table 55.5 Sources of the World Bank Group Open Data

Source ID Name

11 Africa Development Indicators
26 Corporate Scorecard
41 Country Partnership Strategy for India
31 Country Policy and Institutional Assessment (CPIA)
1 Doing Business
12 Education Statistics
13 Enterprise Surveys
30 Exporter Dynamics Database: Country-Year
33 G20 Basic Set of Financial Inclusion Indicators
14 Gender Statistics
27 GEP Economic Prospects
15 Global Economic Monitor
21 Global Economic Monitor (GEM) Commodities
32 Global Financial Development
28 Global Findex (Global Financial Inclusion database)
34 Global Partnership for Education
29 Global Social Protection
16 Health Nutrition and Population Statistics
39 Health Nutrition and Population Statistics by Wealth Quintile
40 Health Nutrition and Population Statistics: Population Estimates and Projections
45 Indonesia Database for Policy and Economic Research (INDO-DAPOER)
6 International Debt Statistics
18 International Development Association - Results Measurement System
25 Jobs for Knowledge Platform
54 Joint External Debt Hub (JEDH)
37 LAC Equity Lab
19 Millennium Development Goals
24 Povstats
23 Quarterly External Debt Statistics/GDDS (New)
22 Quarterly External Debt Statistics/SDDS (New)
20 Quarterly Public Sector Debt
44 Readiness for Investment in Sustainable Energy (RISE)
36 Statistical Capacity Indicators
5 Subnational Malnutrition Database
50 Subnational Population
38 Subnational Poverty
46 Sustainable Development Goals
35 Sustainable Energy for All
43 Wealth Accounting
2 World Development Indicators
3 Worldwide Governance Indicators

You can use the URL= option to retrieve the series indicators available for a specified source ID. For an
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example, see Example 55.5.

You can use the URL= option to retrieve the series indicators available for a specified topic ID. For an
example, see Example 55.6.

You can also use the URL= option to retrieve the country codes available for a specified income level.
For more about income levels, see the section “Available Countries for a Specified Income Level” (which
follows).

Available Countries for a Specified Income Level
Each of the WBGO income levels has a corresponding country list. To get a list of countries for a specific
income level, such as low income level (LIC), use the following URL= option in your LIBNAME statement:

title 'WBGO Data for Low-Income-Level Countries';
LIBNAME myLib sasewbgo "<physical path name>"

URL="http://api.worldbank.org/countries?incomeLevel=LIC&format=xml";

data LICinc;
set myLib.XWBGOTPU ;

run;

proc contents data=LICinc; run;
proc print data=LICinc; run;
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Figure 55.2 WBGO Data for Low-Income-Level Countries

WBGO Data for Low-Income-Level Countries

Obs country_id iso2Code name capitalCity longitude

1 AFG AF Afghanistan Kabul 69.176

2 BDI BI Burundi Bujumbura 29.364

3 BEN BJ Benin Porto-Novo 2.632

4 BFA BF Burkina Faso Ouagadougou -1.534

5 CAF CF Central African Republic Bangui 21.641

6 COD CD Congo, Dem. Rep. Kinshasa 15.322

7 COM KM Comoros Moroni 43.242

8 ERI ER Eritrea Asmara 38.918

9 ETH ET Ethiopia Addis Ababa 38.747

10 GIN GN Guinea Conakry -13.700

11 GMB GM Gambia, The Banjul -16.589

12 GNB GW Guinea-Bissau Bissau -15.180

13 HTI HT Haiti Port-au-Prince -72.329

14 LBR LR Liberia Monrovia -10.796

15 MDG MG Madagascar Antananarivo 45.717

16 MLI ML Mali Bamako -7.500

17 MOZ MZ Mozambique Maputo 32.571

18 MWI MW Malawi Lilongwe 33.770

19 NER NE Niger Niamey 2.107

20 NPL NP Nepal Kathmandu 85.316

21 PRK KP Korea, Dem. People’s Rep. Pyongyang 125.754

22 RWA RW Rwanda Kigali 30.059

Obs latitude incomeLevel_id incomeLevel lendingType_id lendingType

1 34.5228 LIC Low income IDX IDA

2 -3.3784 LIC Low income IDX IDA

3 6.4779 LIC Low income IDX IDA

4 12.3605 LIC Low income IDX IDA

5 5.6306 LIC Low income IDX IDA

6 -4.3250 LIC Low income IDX IDA

7 -11.6986 LIC Low income IDX IDA

8 15.3315 LIC Low income IDX IDA

9 9.0227 LIC Low income IDX IDA

10 9.5167 LIC Low income IDX IDA

11 13.4495 LIC Low income IDX IDA

12 11.8037 LIC Low income IDX IDA

13 18.5392 LIC Low income IDX IDA

14 6.3004 LIC Low income IDX IDA

15 -20.4667 LIC Low income IDX IDA

16 13.5667 LIC Low income IDX IDA

17 -25.9664 LIC Low income IDX IDA

18 -13.9899 LIC Low income IDX IDA

19 13.5140 LIC Low income IDX IDA

20 27.6939 LIC Low income IDX IDA

21 39.0319 LIC Low income LNX Not classified

22 -1.9533 LIC Low income IDX IDA
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Figure 55.2 continued

WBGO Data for Low-Income-Level Countries

Obs country_id iso2Code name capitalCity longitude

23 SEN SN Senegal Dakar -17.473

24 SLE SL Sierra Leone Freetown -13.213

25 SOM SO Somalia Mogadishu 45.325

26 SSD SS South Sudan Juba 31.600

27 TCD TD Chad N'Djamena 15.045

28 TGO TG Togo Lome 1.226

29 TZA TZ Tanzania Dodoma 35.738

30 UGA UG Uganda Kampala 32.573

31 ZWE ZW Zimbabwe Harare 31.067

Obs latitude incomeLevel_id incomeLevel lendingType_id lendingType

23 14.7247 LIC Low income IDX IDA

24 8.4821 LIC Low income IDX IDA

25 2.0752 LIC Low income IDX IDA

26 4.8500 LIC Low income IDX IDA

27 12.1048 LIC Low income IDX IDA

28 6.1228 LIC Low income IDX IDA

29 -6.1749 LIC Low income IDX IDA

30 0.3143 LIC Low income IDX IDA

31 -17.8312 LIC Low income IDB Blend

Available Time Series for a Specified Source ID
Each source in the WBGO data has many time series. To get the list of time series indicators for a specific
source ID (for example, source_id=1), use the following URL= option in your LIBNAME statement:

LIBNAME myLib sasewbgo "<physical path name>"
URL="http://api.worldbank.org/source/1/indicators?format=xml";

See Example 55.5 for the sample code.
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Available Time Series for a Specified Topic ID
Each topic in the WBGO data has many time series. To get the list of time series indicators for a specific
topic ID (for example, topic_id=5), use the following URL= option in your LIBNAME statement:

LIBNAME myLib sasewbgo "<physical path name>"
URL="http://api.worldbank.org/topic/5/indicator?format=xml";

See Example 55.6 for the sample code.

SAS Output Data Set
You can use the SAS DATA step to write the selected WBGO data to a SAS data set. This enables you to use
SAS software to easily analyze the data.

The contents of the SAS data set include the date of each observation and the indicator of each series that is
read from the WBGO data source.

The SASEWBGO interface engine maintains the sort order, so the time series are sorted in the resulting SAS
data set by the order specified in the SORT= option, by date (time ID), and by variable (time series indicator).

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASEWBGO libref to create a custom view of your
data.

SAS OUTXML File
The SAS XML (XML format) data that are retrieved from the WBGO website are placed in a file named
by the OUTXML= option. The SAS XML data file is placed in the current working directory, but the SAS
data set that is created by reading the XML data into SAS is placed in the location that is specified by the
physical-name in the LIBNAME libref SASEWBGO statement, which is described in the section “The
LIBNAME libref SASEWBGO Statement” on page 3794.
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SAS XML Map File
The XML map that (by default) is automatically created is assigned the full path name given by the
XMLMAP= option in your LIBNAME libref SASEWBGO statement. The map file is either reused
(not overwritten) if you specify AUTOMAP=REUSE or overwritten by a new map if you specify AU-
TOMAP=REPLACE (the default). The SASEWBGO engine invokes the XMLV2 engine to create the map
and to read the data into SAS.

XWBGOTPU SAS Data Set
You can use the URL= option to query for useful information such as income-level categories, sources, and
topics and store the information in a temporary utility data set named XWBGOTPU. After you have this
information, you can use it to select the data that you want to include in a subsequent SASEWBGO libref
statement. For more information about the three possible types of XWBGOTPU contents, see the URL=
option.

Available Time Series Data Reference: SASEWBGO Interface Engine
Table 55.6 shows the 2010 WDI time series indicators available for the IDLIST= option. Each indicator is
unique. When you specify multiple indicators, separate them with commas.

Table 55.6 List of 2010 WDI Indicators

Indicator Description

NY.ADJ.SVNX.GN.ZS Adjusted net savings, excluding particulate emission damage (% of GNI)
NY.ADJ.SVNX.CD Adjusted net savings, excluding particulate emission damage (current US$)
NY.ADJ.SVNG.GN.ZS Adjusted net savings, including particulate emission damage (% of GNI)
NY.ADJ.SVNG.CD Adjusted net savings, including particulate emission damage (current US$)
NY.ADJ.DCO2.GN.ZS Adjusted savings: carbon dioxide damage (% of GNI)
NY.ADJ.DCO2.CD Adjusted savings: carbon dioxide damage (current US$)
NY.ADJ.DKAP.GN.ZS Adjusted savings: consumption of fixed capital (% of GNI)
NY.ADJ.DKAP.CD Adjusted savings: consumption of fixed capital (current US$)
NY.ADJ.AEDU.GN.ZS Adjusted savings: education expenditure (% of GNI)
NY.ADJ.AEDU.CD Adjusted savings: education expenditure (current US$)
NY.ADJ.DNGY.GN.ZS Adjusted savings: energy depletion (% of GNI)
NY.ADJ.DNGY.CD Adjusted savings: energy depletion (current US$)
NY.ADJ.ICTR.GN.ZS Adjusted savings: gross savings (% of GNI)
NY.ADJ.DMIN.GN.ZS Adjusted savings: mineral depletion (% of GNI)
NY.ADJ.DMIN.CD Adjusted savings: mineral depletion (current US$)
NY.ADJ.DFOR.GN.ZS Adjusted savings: net forest depletion (% of GNI)
NY.ADJ.DFOR.CD Adjusted savings: net forest depletion (current US$)
NY.ADJ.NNAT.GN.ZS Adjusted savings: net national savings (% of GNI)
NY.ADJ.NNAT.CD Adjusted savings: net national savings (current US$)
NY.ADJ.DPEM.GN.ZS Adjusted savings: particulate emission damage (% of GNI)
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Table 55.6 continued

Indicator Description

NY.ADJ.DPEM.CD Adjusted savings: particulate emission damage (current US$)
SP.ADO.TFRT Adolescent fertility rate (births per 1,000 women ages 15–19)
SP.POP.DPND Age dependency ratio (% of working-age population)
SP.POP.DPND.OL Age dependency ratio, old (% of working-age population)
SP.POP.DPND.YG Age dependency ratio, young (% of working-age population)
AG.LND.IRIG.AG.ZS Agricultural irrigated land (% of total agricultural land)
AG.LND.AGRI.ZS Agricultural land (% of land area)
AG.LND.AGRI.K2 Agricultural land (sq. km)
AG.AGR.TRAC.NO Agricultural machinery, tractors
AG.LND.TRAC.ZS Agricultural machinery, tractors per 100 sq. km of arable land
EN.ATM.METH.AG.ZS Agricultural methane emissions (% of total)
EN.ATM.NOXE.AG.ZS Agricultural nitrous oxide emissions (% of total)
TX.VAL.AGRI.ZS.UN Agricultural raw materials exports (% of merchandise exports)
TM.VAL.AGRI.ZS.UN Agricultural raw materials imports (% of merchandise imports)
EA.PRD.AGRI.KD Agriculture value added per worker (constant 2000 US$)
NV.AGR.TOTL.ZS Agriculture, value added (% of GDP)
NV.AGR.TOTL.KD.ZG Agriculture, value added (annual % growth)
NV.AGR.TOTL.KD Agriculture, value added (constant 2000 US$)
NV.AGR.TOTL.KN Agriculture, value added (constant LCU)
NV.AGR.TOTL.CN Agriculture, value added (current LCU)
NV.AGR.TOTL.CD Agriculture, value added (current US$)
IS.AIR.GOOD.MT.K1 Air transport, freight (million ton-km)
IS.AIR.PSGR Air transport, passengers carried
IS.AIR.DPRT Air transport, registered carrier departures worldwide
EG.USE.COMM.CL.ZS Alternative and nuclear energy (% of total energy use)
ER.H2O.FWAG.ZS Annual freshwater withdrawals, agriculture (% of total freshwater withdrawal)
ER.H2O.FWDM.ZS Annual freshwater withdrawals, domestic (% of total freshwater withdrawal)
ER.H2O.FWIN.ZS Annual freshwater withdrawals, industry (% of total freshwater withdrawal)
ER.H2O.FWTL.ZS Annual freshwater withdrawals, total (% of internal resources)
ER.H2O.FWTL.K3 Annual freshwater withdrawals, total (billion cubic meters)
AG.LND.ARBL.ZS Arable land (% of land area)
AG.LND.ARBL.HA.PC Arable land (hectares per person)
AG.LND.ARBL.HA Arable land (hectares)
SH.STA.ARIC.ZS ARI treatment (% of children under 5 taken to a health provider)
MS.MIL.TOTL.TF.ZS Armed forces personnel (% of total labor force)
MS.MIL.TOTL.P1 Armed forces personnel, total
MS.MIL.XPRT.KD Arms exports (constant 1990 US$)
MS.MIL.MPRT.KD Arms imports (constant 1990 US$)
IC.TAX.METG Average number of times firms spent in meetings with tax officials
AG.LND.PRCP.MM Average precipitation in depth (mm per year)
IC.CUS.DURS.EX Average time to clear exports through customs (days)
FB.BNK.CAPA.ZS Bank capital to assets ratio (%)
FD.RES.LIQU.AS.ZS Bank liquid reserves to bank assets ratio (%)
FB.AST.NPER.ZS Bank nonperforming loans to total gross loans (%)
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Table 55.6 continued

Indicator Description

VC.BTL.DETH Battle-related deaths (number of people)
TM.TAX.MRCH.BC.ZS Binding coverage, all products (%)
TM.TAX.MANF.BC.ZS Binding coverage, manufactured products (%)
TM.TAX.TCOM.BC.ZS Binding coverage, primary products (%)
EN.BIR.THRD.NO Bird species, threatened
SP.DYN.CBRT.IN Birth rate, crude (per 1,000 people)
SH.STA.BRTC.ZS Births attended by skilled health staff (% of total)
TM.TAX.MRCH.BR.ZS Bound rate, simple mean, all products (%)
TM.TAX.MANF.BR.ZS Bound rate, simple mean, manufactured products (%)
TM.TAX.TCOM.BR.ZS Bound rate, simple mean, primary products (%)
IQ.WEF.CUST.XQ Burden of customs procedure, WEF (1=extremely inefficient to 7=extremely

efficient)
IC.BUS.NREG.ZS Business entry rate (new registrations as % of total)
IC.BUS.DISC.XQ Business extent of disclosure index (0=less disclosure to 10=more disclosure)
GC.BAL.CASH.GD.ZS Cash surplus/deficit (% of GDP)
GC.BAL.CASH.CN Cash surplus/deficit (current LCU)
GC.DOD.TOTL.GD.ZS Central government debt, total (% of GDP)
GC.DOD.TOTL.CN Central government debt, total (current LCU)
AG.YLD.CREL.KG Cereal yield (kg per hectare)
NE.GDI.STKB.KN Changes in inventories (constant LCU)
NE.GDI.STKB.CN Changes in inventories (current LCU)
NE.GDI.STKB.CD Changes in inventories (current US$)
BN.RES.INCL.CD Changes in net reserves (BoP, current US$)
NV.MNF.CHEM.ZS.UN Chemicals (% of value added in manufacturing)
SL.AGR.0714.ZS Child employment in agriculture (% of economically active children ages 7–14)
SL.AGR.0714.FE.ZS Child employment in agriculture, female (% of female economically active children

ages 7–14)
SL.AGR.0714.MA.ZS Child employment in agriculture, male (% of male economically active children

ages 7–14)
SL.MNF.0714.ZS Child employment in manufacturing (% of economically active children ages 7–14)
SL.MNF.0714.FE.ZS Child employment in manufacturing, female (% of female economically active

children ages 7–14)
SL.MNF.0714.MA.ZS Child employment in manufacturing, male (% of male economically active children

ages 7–14)
SL.SRV.0714.ZS Child employment in services (% of economically active children ages 7–14)
SL.SRV.0714.FE.ZS Child employment in services, female (% of female economically active children

ages 7–14)
SL.SRV.0714.MA.ZS Child employment in services, male (% of male economically active children ages

7–14)
SE.PRM.UNCR Children out of school, primary
SE.PRM.UNER.FE Children out of school, primary, female
SE.PRM.UNER.MA Children out of school, primary, male
SH.MLR.TRET.ZS Children with fever receiving antimalarial drugs (% of children under age 5 with

fever)
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Table 55.6 continued

Indicator Description

FM.AST.GOVT.CN Claims on governments and other public entities (current LCU)
FM.AST.GOVT.ZG.M2 Claims on governments, etc. (annual growth as % of M2)
FM.AST.PRVT.ZG.M2 Claims on private sector (annual growth as % of M2)
EN.ATM.CO2E.KD.GD CO2 emissions (kg per 2000 US$ of GDP)
EN.ATM.CO2E.PP.GD.KD CO2 emissions (kg per 2005 PPP $ of GDP)
EN.ATM.CO2E.PP.GD CO2 emissions (kg per PPP $ of GDP)
EN.ATM.CO2E.KT CO2 emissions (kt)
EN.ATM.CO2E.PC CO2 emissions (metric tons per capita)
EN.ATM.CO2E.EG.ZS CO2 intensity (kg per kg of oil equivalent energy use)
EG.USE.CRNW.ZS Combustible renewables and waste (% of total energy)
EG.USE.CRNW.KT.OE Combustible renewables and waste (metric tons of oil equivalent)
DT.NFL.PCBO.CD Commercial banks and other lending (PPG + PNG) (NFL, current US$)
TX.VAL.SERV.CD.WT Commercial service exports (current US$)
TM.VAL.SERV.CD.WT Commercial service imports (current US$)
BX.GSR.CMCP.ZS Communications, computer, etc. (% of service exports, BoP)
BM.GSR.CMCP.ZS Communications, computer, etc. (% of service imports, BoP)
SH.MED.CMHW.P3 Community health workers (per 1,000 people)
GC.XPN.COMP.ZS Compensation of employees (% of expense)
GC.XPN.COMP.CN Compensation of employees (current LCU)
SP.REG.BRTH.ZS Completeness of birth registration (%)
SP.REG.BRTH.RU.ZS Completeness of birth registration, rural (%)
SP.REG.BRTH.UR.ZS Completeness of birth registration, urban (%)
SP.DTH.INFR.ZS Completeness of infant death reporting (% of reported infant deaths to estimated

infant deaths)
SP.DTH.REPT.ZS Completeness of total death reporting (% of reported total deaths to estimated total

deaths)
TX.VAL.OTHR.ZS.WT Computer, communications, and other services (% of commercial service exports)
TM.VAL.OTHR.ZS.WT Computer, communications, and other services (% of commercial service imports)
FP.CPI.TOTL Consumer price index (2005 = 100)
SN.ITK.SALT.ZS Consumption of iodized salt (% of households)
IS.SHP.GOOD.TU Container port traffic (TEU: 20-foot equivalent units)
SP.DYN.CONU.ZS Contraceptive prevalence (% of women ages 15–49)
IC.REG.COST.PC.ZS Cost of business start-up procedures (% of GNI per capita)
IC.EXP.COST.CD Cost to export (US$ per container)
IC.IMP.COST.CD Cost to import (US$ per container)
IQ.CPA.HRES.XQ CPIA building human resources rating (1=low to 6=high)
IQ.CPA.BREG.XQ CPIA business regulatory environment rating (1=low to 6=high)
IQ.CPA.DEBT.XQ CPIA debt policy rating (1=low to 6=high)
IQ.CPA.ECON.XQ CPIA economic management cluster average (1=low to 6=high)
IQ.CPA.REVN.XQ CPIA efficiency of revenue mobilization rating (1=low to 6=high)
IQ.CPA.PRES.XQ CPIA equity of public resource use rating (1=low to 6=high)
IQ.CPA.FINS.XQ CPIA financial sector rating (1=low to 6=high)
IQ.CPA.FISP.XQ CPIA fiscal policy rating (1=low to 6=high)
IQ.CPA.GNDR.XQ CPIA gender equality rating (1=low to 6=high)
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Table 55.6 continued

Indicator Description

IQ.CPA.MACR.XQ CPIA macroeconomic management rating (1=low to 6=high)
IQ.CPA.SOCI.XQ CPIA policies for social inclusion/equity cluster average (1=low to 6=high)
IQ.CPA.ENVR.XQ CPIA policy and institutions for environmental sustainability rating (1=low to

6=high)
IQ.CPA.PROP.XQ CPIA property rights and rule-based governance rating (1=low to 6=high)
IQ.CPA.PUBS.XQ CPIA public sector management and institutions cluster average (1=low to 6=high)
IQ.CPA.FINQ.XQ CPIA quality of budgetary and financial management rating (1=low to 6=high)
IQ.CPA.PADM.XQ CPIA quality of public administration rating (1=low to 6=high)
IQ.CPA.PROT.XQ CPIA social protection rating (1=low to 6=high)
IQ.CPA.STRC.XQ CPIA structural policies cluster average (1=low to 6=high)
IQ.CPA.TRAD.XQ CPIA trade rating (1=low to 6=high)
IQ.CPA.TRAN.XQ CPIA transparency, accountability, and corruption in the public sector rating (1=low

to 6=high)
IC.CRD.INFO.XQ Credit depth of information index (0=low to 6=high)
AG.PRD.CROP.XD Crop production index (1999–2001 = 100)
BN.CAB.XOKA.GD.ZS Current account balance (% of GDP)
BN.CAB.XOKA.CD Current account balance (BoP, current US$)
BX.TRF.CURR.CD Current transfers, receipts (BoP, current US$)
GC.TAX.IMPT.ZS Customs and other import duties (% of tax revenue)
GC.TAX.IMPT.CN Customs and other import duties (current LCU)
IT.PRT.NEWS.P3 Daily newspapers (per 1,000 people)
SP.DYN.CDRT.IN Death rate, crude (per 1,000 people)
DT.TDS.DPPF.XP.ZS Debt service (PPG and IMF only, % of exports, excluding workers’ remittances)
DT.TDS.DPPG.CD Debt service on external debt, public and publicly guaranteed (PPG) (TDS, current

US$)
DT.TDS.DECT.CD Debt service on external debt, total (TDS, current US$)
PA.NUS.ATLS DEC alternative conversion factor (LCU per US$)
FR.INR.DPST Deposit interest rate (%)
SN.ITK.DPTH Depth of hunger (kilocalories per person per day)
SH.STA.ORCF.ZS Diarrhea treatment (% of children under 5 receiving oral rehydration and continued

feeding)
NY.GDP.DISC.KN Discrepancy in expenditure estimate of GDP (constant LCU)
NY.GDP.DISC.CN Discrepancy in expenditure estimate of GDP (current LCU)
IC.EXP.DOCS Documents to export (number)
IC.IMP.DOCS Documents to import (number)
FS.AST.DOMS.GD.ZS Domestic credit provided by banking sector (% of GDP)
FS.AST.PRVT.GD.ZS Domestic credit to private sector (% of GDP)
IC.BUS.EASE.XQ Ease of doing business index (1=most business-friendly regulations)
SL.TLF.0714.FE.ZS Economically active children, female (% of female children ages 7–14)
SL.TLF.0714.MA.ZS Economically active children, male (% of male children ages 7–14)
SL.TLF.0714.SW.ZS Economically active children, study and work (% of economically active children,

ages 7–14)
SL.TLF.0714.SW.FE.ZS Economically active children, study and work, female (% of female economically

active children, ages 7–14)
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Table 55.6 continued

Indicator Description

SL.TLF.0714.SW.MA.ZS Economically active children, study and work, male (% of male economically active
children, ages 7–14)

SL.TLF.0714.ZS Economically active children, total (% of children ages 7–14)
SL.TLF.0714.WK.ZS Economically active children, work only (% of economically active children, ages

7–14)
SL.TLF.0714.WK.FE.ZS Economically active children, work only, female (% of female economically active

children, ages 7–14)
SL.TLF.0714.WK.MA.ZS Economically active children, work only, male (% of male economically active

children, ages 7–14)
EN.AGR.EMPL Economically active population in agriculture (number)
EG.USE.ELEC.KH.PC Electric power consumption (kWh per capita)
EG.USE.ELEC.KH Electric power consumption (kWh)
EG.ELC.LOSS.ZS Electric power transmission and distribution losses (% of output)
EG.ELC.LOSS.KH Electric power transmission and distribution losses (kWh)
EG.ELC.PROD.KH Electricity production (kWh)
EG.ELC.COAL.ZS Electricity production from coal sources (% of total)
EG.ELC.COAL.KH Electricity production from coal sources (kWh)
EG.ELC.HYRO.ZS Electricity production from hydroelectric sources (% of total)
EG.ELC.HYRO.KH Electricity production from hydroelectric sources (kWh)
EG.ELC.NGAS.ZS Electricity production from natural gas sources (% of total)
EG.ELC.NGAS.KH Electricity production from natural gas sources (kWh)
EG.ELC.NUCL.ZS Electricity production from nuclear sources (% of total)
EG.ELC.NUCL.KH Electricity production from nuclear sources (kWh)
EG.ELC.PETR.ZS Electricity production from oil sources (% of total)
EG.ELC.PETR.KH Electricity production from oil sources (kWh)
SM.EMI.TERT.ZS Emigration rate of tertiary educated (% of total tertiary educated population)
SL.AGR.EMPL.FE.ZS Employees, agriculture, female (% of female employment)
SL.AGR.EMPL.MA.ZS Employees, agriculture, male (% of male employment)
SL.IND.EMPL.FE.ZS Employees, industry, female (% of female employment)
SL.IND.EMPL.MA.ZS Employees, industry, male (% of male employment)
SL.SRV.EMPL.FE.ZS Employees, services, female (% of female employment)
SL.SRV.EMPL.MA.ZS Employees, services, male (% of male employment)
SL.AGR.EMPL.ZS Employment in agriculture (% of total employment)
SL.IND.EMPL.ZS Employment in industry (% of total employment)
SL.SRV.EMPL.ZS Employment in services (% of total employment)
SL.EMP.TOTL.SP.FE.ZS Employment to population ratio, 15+, female (%)
SL.EMP.TOTL.SP.MA.ZS Employment to population ratio, 15+, male (%)
SL.EMP.TOTL.SP.ZS Employment to population ratio, 15+, total (%)
SL.EMP.1524.SP.FE.ZS Employment to population ratio, ages 15–24, female (%)
SL.EMP.1524.SP.MA.ZS Employment to population ratio, ages 15–24, male (%)
SL.EMP.1524.SP.ZS Employment to population ratio, ages 15–24, total (%)
EG.IMP.CONS.ZS Energy imports, net (% of energy use)
EG.EGY.PROD.KT.OE Energy production (kt of oil equivalent)
EN.ATM.METH.IN.ZS Energy-related methane emissions (% of total)



3816 F Chapter 55: The SASEWBGO Interface Engine

Table 55.6 continued

Indicator Description

EN.ATM.NOXE.IN.ZS Energy-related nitrous oxide emissions (% of total)
EG.USE.PCAP.KG.OE Energy use (kg of oil equivalent per capita)
EG.USE.COMM.GD.PP.KD Energy use (kg of oil equivalent) per $1,000 GDP (constant 2005 PPP)
EG.USE.COMM.KT.OE Energy use (kt of oil equivalent)
SH.STA.BFED.ZS Exclusive breastfeeding (% of children under 6 months)
SE.XPD.PRIM.PC.ZS Expenditure per student, primary (% of GDP per capita)
SE.XPD.SECO.PC.ZS Expenditure per student, secondary (% of GDP per capita)
SE.XPD.TERT.PC.ZS Expenditure per student, tertiary (% of GDP per capita)
GC.XPN.TOTL.GD.ZS Expense (% of GDP)
GC.XPN.TOTL.CN Expense (current LCU)
TX.VAL.MRCH.XD.WD Export value index (2000 = 100)
TX.QTY.MRCH.XD.WD Export volume index (2000 = 100)
NY.EXP.CAPM.KN Exports as a capacity to import (constant LCU)
NE.EXP.GNFS.ZS Exports of goods and services (% of GDP)
NE.EXP.GNFS.KD.ZG Exports of goods and services (annual % growth)
BX.GSR.GNFS.CD Exports of goods and services (BoP, current US$)
NE.EXP.GNFS.KD Exports of goods and services (constant 2000 US$)
NE.EXP.GNFS.KN Exports of goods and services (constant LCU)
NE.EXP.GNFS.CN Exports of goods and services (current LCU)
NE.EXP.GNFS.CD Exports of goods and services (current US$)
BX.GSR.TOTL.CD Exports of goods, services, and income (BoP, current US$)
NE.RSB.GNFS.ZS External balance on goods and services (% of GDP)
NE.RSB.GNFS.KN External balance on goods and services (constant LCU)
NE.RSB.GNFS.CN External balance on goods and services (current LCU)
NE.RSB.GNFS.CD External balance on goods and services (current US$)
DT.DOD.DECT.GN.ZS External debt stocks (% of GNI)
DT.DOD.DLXF.CD External debt stocks, long-term (DOD, current US$)
DT.DOD.DPNG.CD External debt stocks, private nonguaranteed (PNG) (DOD, current US$)
DT.DOD.DPPG.CD External debt stocks, public and publicly guaranteed (PPG) (DOD, current US$)
DT.DOD.DSTC.CD External debt stocks, short-term (DOD, current US$)
DT.DOD.DECT.CD External debt stocks, total (DOD, current US$)
SH.XPD.EXTR.ZS External resources for health (% of total expenditure on health)
SH.DYN.AIDS.FE.ZS Female adults with HIV (% of population ages 15+ with HIV)
SP.DYN.TFRT.IN Fertility rate, total (births per woman)
AG.CON.FERT.PT.ZS Fertilizer consumption (% of fertilizer production)
AG.CON.FERT.ZS Fertilizer consumption (kilograms per hectare of arable land)
AG.CON.FERT.MT Fertilizer consumption (metric tons)
NE.CON.TOTL.KD Final consumption expenditure (constant 2000 US$)
NE.CON.TOTL.KN Final consumption expenditure (constant LCU)
NE.CON.TOTL.CN Final consumption expenditure (current LCU)
NE.CON.TOTL.CD Final consumption expenditure (current US$)
NE.CON.TETC.ZS Final consumption expenditure, etc. (% of GDP)
NE.CON.TETC.KD.ZG Final consumption expenditure, etc. (annual % growth)
NE.CON.TETC.KD Final consumption expenditure, etc. (constant 2000 US$)
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Table 55.6 continued

Indicator Description

NE.CON.TETC.KN Final consumption expenditure, etc. (constant LCU)
NE.CON.TETC.CN Final consumption expenditure, etc. (current LCU)
NE.CON.TETC.CD Final consumption expenditure, etc. (current US$)
CM.FIN.INTL.GD.ZS Financing via international capital markets (gross inflows, % of GDP)
IC.FRM.FREG.ZS Firms formally registered when operations started (% of firms)
IC.FRM.TRNG.ZS Firms offering formal training (% of firms)
IC.FRM.BNKS.ZS Firms using banks to finance investment (% of firms)
IC.FRM.FEMO.ZS Firms with female participation in ownership (% of firms)
EN.FSH.THRD.NO Fish species, threatened
IT.BBD.USEC.CD Fixed broadband internet access tariff (US$ per month)
IT.NET.BBND Fixed broadband internet subscribers
IT.NET.BBND.P2 Fixed broadband internet subscribers (per 100 people)
TX.VAL.FOOD.ZS.UN Food exports (% of merchandise exports)
TM.VAL.FOOD.ZS.UN Food imports (% of merchandise imports)
AG.PRD.FOOD.XD Food production index (1999–2001 = 100)
NV.MNF.FBTO.ZS.UN Food, beverages, and tobacco (% of value added in manufacturing)
BN.KLT.DINV.CD Foreign direct investment, net (BoP, current US$)
BX.KLT.DINV.WD.GD.ZS Foreign direct investment, net inflows (% of GDP)
BX.KLT.DINV.CD.WD Foreign direct investment, net inflows (BoP, current US$)
BM.KLT.DINV.GD.ZS Foreign direct investment, net out flows (% of GDP)
AG.LND.FRST.ZS Forest area (% of land area)
AG.LND.FRST.K2 Forest area (sq. km)
EG.USE.COMM.FO.ZS Fossil fuel energy consumption (% of total)
TX.VAL.FUEL.ZS.UN Fuel exports (% of merchandise exports)
TM.VAL.FUEL.ZS.UN Fuel imports (% of merchandise imports)
NY.GDP.MKTP.KD GDP (constant 2000 US$)
NY.GDP.MKTP.KN GDP (constant LCU)
NY.GDP.MKTP.CN GDP (current LCU)
NY.GDP.MKTP.CD GDP (current US$)
NY.GDP.DEFL.ZS GDP deflator (base year varies by country)
NY.GDP.MKTP.KD.ZG GDP growth (annual %)
NY.GDP.PCAP.KD GDP per capita (constant 2000 US$)
NY.GDP.PCAP.KN GDP per capita (constant LCU)
NY.GDP.PCAP.CD GDP per capita (current US$)
NY.GDP.PCAP.KD.ZG GDP per capita growth (annual %)
NY.GDP.PCAP.PP.KD GDP per capita, PPP (constant 2005 international $)
NY.GDP.PCAP.PP.CD GDP per capita, PPP (current international $)
SL.GDP.PCAP.EM.KD GDP per person employed (constant 1990 PPP $)
EG.GDP.PUSE.KO.PP.KD GDP per unit of energy use (constant 2005 PPP $ per kg of oil equivalent)
EG.GDP.PUSE.KO.PP GDP per unit of energy use (PPP $ per kg of oil equivalent)
NY.GDP.MKTP.PP.KD GDP, PPP (constant 2005 international $)
NY.GDP.MKTP.PP.CD GDP, PPP (current international $)
ER.BDV.TOTL.XQ GEF benefits index for biodiversity (0 = no biodiversity potential to 100 =

maximum)
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Table 55.6 continued

Indicator Description

NE.CON.GOVT.ZS General government final consumption expenditure (% of GDP)
NE.CON.GOVT.KD.ZG General government final consumption expenditure (annual % growth)
NE.CON.GOVT.KD General government final consumption expenditure (constant 2000 US$)
NE.CON.GOVT.KN General government final consumption expenditure (constant LCU)
NE.CON.GOVT.CN General government final consumption expenditure (current LCU)
NE.CON.GOVT.CD General government final consumption expenditure (current US$)
SI.POV.GINI GINI index
NY.GNP.MKTP.CN GNI (current LCU)
NY.GNP.MKTP.CD GNI (current US$)
NY.GNP.PCAP.CD GNI per capita, Atlas method (current US$)
NY.GNP.PCAP.PP.CD GNI per capita, PPP (current international $)
NY.GNP.ATLS.CD GNI, Atlas method (current US$)
NY.GNP.MKTP.PP.CD GNI, PPP (current international $)
GC.XPN.GSRV.ZS Goods and services expense (% of expense)
GC.XPN.GSRV.CN Goods and services expense (current LCU)
BX.GSR.MRCH.CD Goods exports (BoP, current US$)
BM.GSR.MRCH.CD Goods imports (BoP, current US$)
GC.REV.GOTR.ZS Grants and other revenue (% of revenue)
GC.REV.GOTR.CN Grants and other revenue (current LCU)
NE.GDI.TOTL.ZS Gross capital formation (% of GDP)
NE.GDI.TOTL.KD.ZG Gross capital formation (annual % growth)
NE.GDI.TOTL.KD Gross capital formation (constant 2000 US$)
NE.GDI.TOTL.KN Gross capital formation (constant LCU)
NE.GDI.TOTL.CN Gross capital formation (current LCU)
NE.GDI.TOTL.CD Gross capital formation (current US$)
NY.GDY.TOTL.KD Gross domestic income (constant 2000 US$)
NY.GDY.TOTL.KN Gross domestic income (constant LCU)
NY.GDS.TOTL.ZS Gross domestic savings (% of GDP)
NY.GDS.TOTL.KN Gross domestic savings (constant LCU)
NY.GDS.TOTL.CN Gross domestic savings (current LCU)
NY.GDS.TOTL.CD Gross domestic savings (current US$)
NE.GDI.FTOT.ZS Gross fixed capital formation (% of GDP)
NE.GDI.FTOT.KD.ZG Gross fixed capital formation (annual % growth)
NE.GDI.FTOT.KD Gross fixed capital formation (constant 2000 US$)
NE.GDI.FTOT.KN Gross fixed capital formation (constant LCU)
NE.GDI.FTOT.CN Gross fixed capital formation (current LCU)
NE.GDI.FTOT.CD Gross fixed capital formation (current US$)
SE.PRM.GINT.FE.ZS Gross intake rate in grade 1, female (% of relevant age group)
SE.PRM.GINT.MA.ZS Gross intake rate in grade 1, male (% of relevant age group)
SE.PRM.GINT.ZS Gross intake rate in grade 1, total (% of relevant age group)
NE.DAB.TOTL.ZS Gross national expenditure (% of GDP)
NE.DAB.TOTL.KD Gross national expenditure (constant 2000 US$)
NE.DAB.TOTL.KN Gross national expenditure (constant LCU)
NE.DAB.TOTL.CN Gross national expenditure (current LCU)
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Table 55.6 continued

Indicator Description

NE.DAB.TOTL.CD Gross national expenditure (current US$)
NY.GNY.TOTL.KN Gross national income (constant LCU)
NY.GNS.ICTR.ZS Gross savings (% of GDP)
NY.GNS.ICTR.GN.ZS Gross savings (% of GNI)
NY.GNS.ICTR.CN Gross savings (current LCU)
NY.GNS.ICTR.CD Gross savings (current US$)
NY.GDP.FCST.KD Gross value added at factor cost (constant 2000 US$)
NY.GDP.FCST.KN Gross value added at factor cost (constant LCU)
NY.GDP.FCST.CN Gross value added at factor cost (current LCU)
NY.GDP.FCST.CD Gross value added at factor cost (current US$)
SH.XPD.PCAP Health expenditure per capita (current US$)
SH.XPD.PCAP.PP.KD Health expenditure per capita, PPP (constant 2005 international $)
SH.XPD.PRIV.ZS Health expenditure, private (% of GDP)
SH.XPD.PUBL.ZS Health expenditure, public (% of GDP)
SH.XPD.PUBL.GX.ZS Health expenditure, public (% of government expenditure)
SH.XPD.PUBL Health expenditure, public (% of total health expenditure)
SH.XPD.TOTL.ZS Health expenditure, total (% of GDP)
GB.TAX.CMAR.ZS Highest marginal tax rate, corporate rate (%)
GB.TAX.IMAR.CD Highest marginal tax rate, individual (on income exceeding, US$)
GB.TAX.IMAR.ZS Highest marginal tax rate, individual rate (%)
TX.VAL.TECH.MF.ZS High-technology exports (% of manufactured exports)
TX.VAL.TECH.CD High-technology exports (current US$)
SH.MED.BEDS.ZS Hospital beds (per 1,000 people)
NE.CON.PRVT.KD.ZG Household final consumption expenditure (annual % growth)
NE.CON.PRVT.KD Household final consumption expenditure (constant 2000 US$)
NE.CON.PRVT.KN Household final consumption expenditure (constant LCU)
NE.CON.PRVT.CN Household final consumption expenditure (current LCU)
NE.CON.PRVT.CD Household final consumption expenditure (current US$)
NE.CON.PRVT.PC.KD Household final consumption expenditure per capita (constant 2000 US$)
NE.CON.PRVT.PC.KD.ZG Household final consumption expenditure per capita growth (annual %)
NE.CON.PETC.ZS Household final consumption expenditure, etc. (% of GDP)
NE.CON.PETC.KD.ZG Household final consumption expenditure, etc. (annual % growth)
NE.CON.PETC.KD Household final consumption expenditure, etc. (constant 2000 US$)
NE.CON.PETC.KN Household final consumption expenditure, etc. (constant LCU)
NE.CON.PETC.CN Household final consumption expenditure, etc. (current LCU)
NE.CON.PETC.CD Household final consumption expenditure, etc. (current US$)
NE.CON.PRVT.PP.KD Household final consumption expenditure, PPP (constant 2005 international $)
NE.CON.PRVT.PP.CD Household final consumption expenditure, PPP (current international $)
IT.TVS.HOUS.ZS Households with television (%)
DT.DOD.MWBG.CD IBRD loans and IDA credits (DOD, current US$)
TX.VAL.ICTG.ZS.UN ICT goods exports (% of total goods exports)
TM.VAL.ICTG.ZS.UN ICT goods imports (% total goods imports)
BX.GSR.CCIS.ZS ICT service exports (% of service exports, BoP)
BX.GSR.CCIS.CD ICT service exports (BoP, current US$)
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Table 55.6 continued

Indicator Description

IQ.CPA.IRAI.XQ IDA resource allocation index (1=low to 6=high)
SH.IMM.IDPT Immunization, DPT (% of children ages 12–23 months)
SH.IMM.MEAS Immunization, measles (% of children ages 12–23 months)
TM.VAL.MRCH.XD.WD Import value index (2000 = 100)
TM.QTY.MRCH.XD.WD Import volume index (2000 = 100)
NE.IMP.GNFS.ZS Imports of goods and services (% of GDP)
NE.IMP.GNFS.KD.ZG Imports of goods and services (annual % growth)
BM.GSR.GNFS.CD Imports of goods and services (BoP, current US$)
NE.IMP.GNFS.KD Imports of goods and services (constant 2000 US$)
NE.IMP.GNFS.KN Imports of goods and services (constant LCU)
NE.IMP.GNFS.CN Imports of goods and services (current LCU)
NE.IMP.GNFS.CD Imports of goods and services (current US$)
BM.GSR.TOTL.CD Imports of goods, services, and income (BoP, current US$)
SH.STA.ACSN Improved sanitation facilities (% of population with access)
SH.STA.ACSN.RU Improved sanitation facilities, rural (% of rural population with access)
SH.STA.ACSN.UR Improved sanitation facilities, urban (% of urban population with access)
SH.H2O.SAFE.ZS Improved water source (% of population with access)
SH.H2O.SAFE.RU.ZS Improved water source, rural (% of rural population with access)
SH.H2O.SAFE.UR.ZS Improved water source, urban (% of urban population with access)
SH.TBS.INCD Incidence of tuberculosis (per 100,000 people)
BM.GSR.FCTY.CD Income payments (BoP, current US$)
BX.GSR.FCTY.CD Income receipts (BoP, current US$)
SI.DST.10TH.10 Income share held by highest 10%
SI.DST.05TH.20 Income share held by highest 20%
SI.DST.FRST.10 Income share held by lowest 10%
SI.DST.FRST.20 Income share held by lowest 20%
SI.DST.02ND.20 Income share held by second 20%
SI.DST.03RD.20 Income share held by third 20%
SI.DST.04TH.20 Income share held by fourth 20%
NV.IND.TOTL.ZS Industry, value added (% of GDP)
NV.IND.TOTL.KD.ZG Industry, value added (annual % growth)
NV.IND.TOTL.KD Industry, value added (constant 2000 US$)
NV.IND.TOTL.KN Industry, value added (constant LCU)
NV.IND.TOTL.CN Industry, value added (current LCU)
NV.IND.TOTL.CD Industry, value added (current US$)
FP.CPI.TOTL.ZG Inflation, consumer prices (annual %)
NY.GDP.DEFL.KD.ZG Inflation, GDP deflator (annual %)
IC.FRM.CORR.ZS Informal payments to public officials (% of firms)
IE.ICT.TOTL.GD.ZS Information and communication technology expenditure (% of GDP)
IE.ICT.TOTL.CD Information and communication technology expenditure (current US$)
IE.ICT.PCAP.CD Information and communication technology expenditure per capita (current US$)
TX.VAL.INSF.ZS.WT Insurance and financial services (% of commercial service exports)
TM.VAL.INSF.ZS.WT Insurance and financial services (% of commercial service imports)
BX.GSR.INSF.ZS Insurance and financial services (% of service exports, BoP)
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Indicator Description

BM.GSR.INSF.ZS Insurance and financial services (% of service imports, BoP)
VC.HOM.ITEN.P5.HE Intentional homicide rate (per 100,000 people, CTS and national sources)
VC.HOM.ITEN.P5.LE Intentional homicide rate (per 100,000 people, WHO)
GC.XPN.INTP.ZS Interest payments (% of expense)
GC.XPN.INTP.RV.ZS Interest payments (% of revenue)
GC.XPN.INTP.CN Interest payments (current LCU)
FR.INR.LNDP Interest rate spread (lending rate minus deposit rate, %)
VC.IDP.TOTL Internally displaced persons (number)
IT.NET.BNDW.PC International internet bandwidth (bits per person)
IT.NET.BNDW International internet bandwidth (Mbps)
SM.POP.TOTL.ZS International migrant stock (% of population)
SM.POP.TOTL International migrant stock, total
ST.INT.XPND.MP.ZS International tourism, expenditures (% of total imports)
ST.INT.XPND.CD International tourism, expenditures (current US$)
ST.INT.TRNX.CD International tourism, expenditures for passenger transport items (current US$)
ST.INT.TVLX.CD International tourism, expenditures for travel items (current US$)
ST.INT.ARVL International tourism, number of arrivals
ST.INT.DPRT International tourism, number of departures
ST.INT.RCPT.XP.ZS International tourism, receipts (% of total exports)
ST.INT.RCPT.CD International tourism, receipts (current US$)
ST.INT.TRNR.CD International tourism, receipts for passenger transport items (current US$)
ST.INT.TVLR.CD International tourism, receipts for travel items (current US$)
IT.INT.TTRF.MN.PC International voice traffic (minutes per person)
IT.INT.TTRF.MN International voice traffic (out and in, minutes)
IT.NET.USER Internet users
IT.NET.USER.P2 Internet users (per 100 people)
IE.PPI.ENGY.CD Investment in energy with private participation (current US$)
IE.PPI.TELE.CD Investment in telecoms with private participation (current US$)
IE.PPI.TRAN.CD Investment in transport with private participation (current US$)
IE.PPI.WATR.CD Investment in water and sanitation with private participation (current US$)
IC.FRM.ISOC.ZS ISO certification ownership (% of firms)
SL.TLF.PRIM.ZS Labor force with primary education (% of total)
SL.TLF.PRIM.FE.ZS Labor force with primary education, female (% of female labor force)
SL.TLF.PRIM.MA.ZS Labor force with primary education, male (% of male labor force)
SL.TLF.SECO.ZS Labor force with secondary education (% of total)
SL.TLF.SECO.FE.ZS Labor force with secondary education, female (% of female labor force)
SL.TLF.SECO.MA.ZS Labor force with secondary education, male (% of male labor force)
SL.TLF.TERT.ZS Labor force with tertiary education (% of total)
SL.TLF.TERT.FE.ZS Labor force with tertiary education, female (% of female labor force)
SL.TLF.TERT.MA.ZS Labor force with tertiary education, male (% of male labor force)
SL.TLF.TOTL.FE.ZS Labor force, female (% of total labor force)
SL.TLF.TOTL.IN Labor force, total
SL.TLF.CACT.FE.ZS Labor participation rate, female (% of female population ages 15+)
SL.TLF.CACT.MA.ZS Labor participation rate, male (% of male population ages 15+)
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Indicator Description

SL.TLF.CACT.ZS Labor participation rate, total (% of total population ages 15+)
AG.LND.TOTL.K2 Land area (sq. km)
AG.LND.CREL.HA Land under cereal production (hectares)
IC.EXP.DURS Lead time to export (days)
LP.EXP.DURS.MD Lead time to export, median case (days)
IC.IMP.DURS Lead time to import (days)
LP.IMP.DURS.MD Lead time to import, median case (days)
FR.INR.LEND Lending interest rate (%)
SP.DYN.LE00.FE.IN Life expectancy at birth, female (years)
SP.DYN.LE00.MA.IN Life expectancy at birth, male (years)
SP.DYN.LE00.IN Life expectancy at birth, total (years)
SH.MMR.RISK Lifetime risk of maternal death (1 in: rate varies by country)
IS.SHP.GCNW.XQ Liner shipping connectivity index (maximum value in 2004 = 100)
FS.LBL.LIQU.GD.ZS Liquid liabilities (M3) as % of GDP
CM.MKT.LDOM.NO Listed domestic companies, total
SE.ADT.LITR.FE.ZS Literacy rate, adult female (% of females ages 15 and above)
SE.ADT.LITR.MA.ZS Literacy rate, adult male (% of males ages 15 and above)
SE.ADT.LITR.ZS Literacy rate, adult total (% of people ages 15 and above)
SE.ADT.1524.LT.FE.ZS Literacy rate, youth female (% of females ages 15–24)
SE.ADT.1524.LT.MA.ZS Literacy rate, youth male (% of males ages 15–24)
SE.ADT.1524.LT.ZS Literacy rate, youth total (% of people ages 15–24)
AG.PRD.LVSK.XD Livestock production index (1999–2001 = 100)
LP.LPI.TRAC.XQ Logistics performance index: Ability to track and trace consignments (1=low to

5=high)
LP.LPI.LOGS.XQ Logistics performance index: Competence and quality of logistics services (1=low

to 5=high)
LP.LPI.ITRN.XQ Logistics performance index: Ease of arranging competitively priced shipments

(1=low to 5=high)
LP.LPI.CUST.XQ Logistics performance index: Efficiency of customs clearance process (1=low to

5=high)
LP.LPI.TIME.XQ Logistics performance index: Frequency with which shipments reach consignee

within scheduled or expected time (1=low to 5=high)
LP.LPI.OVRL.XQ Logistics performance index: Overall (1=low to 5=high)
LP.LPI.INFR.XQ Logistics performance index: Quality of trade and transport-related infrastructure

(1=low to 5=high)
SL.UEM.LTRM.ZS Long-term unemployment (% of total unemployment)
SL.UEM.LTRM.FE.ZS Long-term unemployment, female (% of female unemployment)
SL.UEM.LTRM.MA.ZS Long-term unemployment, male (% of male unemployment)
IC.FRM.CRIM.ZS Losses due to theft, robbery, vandalism, and arson (% sales)
SH.STA.BRTW.ZS Low-birthweight babies (% of births)
NV.MNF.MTRN.ZS.UN Machinery and transport equipment (% of value added in manufacturing)
SH.STA.STNT.ZS Malnutrition prevalence, height for age (% of children under 5)
SH.STA.MALN.ZS Malnutrition prevalence, weight for age (% of children under 5)
EN.MAM.THRD.NO Mammal species, threatened



Available Time Series Data Reference: SASEWBGO Interface Engine F 3823

Table 55.6 continued

Indicator Description

IC.GOV.DURS.ZS Management time dealing with officials (% of management time)
TX.VAL.MANF.ZS.UN Manufactures exports (% of merchandise exports)
TM.VAL.MANF.ZS.UN Manufactures imports (% of merchandise imports)
NV.IND.MANF.ZS Manufacturing, value added (% of GDP)
NV.IND.MANF.KD.ZG Manufacturing, value added (annual % growth)
NV.IND.MANF.KD Manufacturing, value added (constant 2000 US$)
NV.IND.MANF.KN Manufacturing, value added (constant LCU)
NV.IND.MANF.CN Manufacturing, value added (current LCU)
NV.IND.MANF.CD Manufacturing, value added (current US$)
ER.MRN.PTMR.ZS Marine protected areas (% of total surface area)
ER.MRN.PTMR.NO Marine protected areas (number)
CM.MKT.LCAP.GD.ZS Market capitalization of listed companies (% of GDP)
CM.MKT.LCAP.CD Market capitalization of listed companies (current US$)
SH.STA.MMRT Maternal mortality ratio (modeled estimate, per 100,000 live births)
TX.VAL.MRCH.CD.WT Merchandise exports (current US$)
TX.VAL.MRCH.WL.CD Merchandise exports by the reporting economy (current US$)
TX.VAL.MRCH.RS.ZS Merchandise exports by the reporting economy, residual (% of total merchandise

exports)
TX.VAL.MRCH.R1.ZS Merchandise exports to developing economies in East Asia and Pacific (% of total

merchandise exports)
TX.VAL.MRCH.R2.ZS Merchandise exports to developing economies in Europe and Central Asia (% of

total merchandise exports)
TX.VAL.MRCH.R3.ZS Merchandise exports to developing economies in Latin America and the Caribbean

(% of total merchandise exports)
TX.VAL.MRCH.R4.ZS Merchandise exports to developing economies in the Middle East and North Africa

(% of total merchandise exports)
TX.VAL.MRCH.R5.ZS Merchandise exports to developing economies in South Asia (% of total

merchandise exports)
TX.VAL.MRCH.R6.ZS Merchandise exports to developing economies in Sub-Saharan Africa (% of total

merchandise exports)
TX.VAL.MRCH.OR.ZS Merchandise exports to developing economies outside region (% of total

merchandise exports)
TX.VAL.MRCH.WR.ZS Merchandise exports to developing economies within region (% of total

merchandise exports)
TX.VAL.MRCH.HI.ZS Merchandise exports to high-income economies (% of total merchandise exports)
TM.VAL.MRCH.CD.WT Merchandise imports (current US$)
TM.VAL.MRCH.WL.CD Merchandise imports by the reporting economy (current US$)
TM.VAL.MRCH.RS.ZS Merchandise imports by the reporting economy, residual (% of total merchandise

imports)
TM.VAL.MRCH.R1.ZS Merchandise imports from developing economies in East Asia and Pacific (% of

total merchandise imports)
TM.VAL.MRCH.R2.ZS Merchandise imports from developing economies in Europe and Central Asia (% of

total merchandise imports)
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Indicator Description

TM.VAL.MRCH.R3.ZS Merchandise imports from developing economies in Latin America and the
Caribbean (% of total merchandise imports)

TM.VAL.MRCH.R4.ZS Merchandise imports from developing economies in the Middle East and North
Africa (% of total merchandise imports)

TM.VAL.MRCH.R5.ZS Merchandise imports from developing economies in South Asia (% of total
merchandise imports)

TM.VAL.MRCH.R6.ZS Merchandise imports from developing economies in Sub-Saharan Africa (% of total
merchandise imports)

TM.VAL.MRCH.OR.ZS Merchandise imports from developing economies outside region (% of total
merchandise imports)

TM.VAL.MRCH.WR.ZS Merchandise imports from developing economies within region (% of total
merchandise imports)

TM.VAL.MRCH.HI.ZS Merchandise imports from high-income economies (% of total merchandise
imports)

TG.VAL.TOTL.GD.ZS Merchandise trade (% of GDP)
EN.ATM.METH.KT.CE Methane emissions (kt of CO2 equivalent)
MS.MIL.XPND.ZS Military expenditure (% of central government expenditure)
MS.MIL.XPND.GD.ZS Military expenditure (% of GDP)
MS.MIL.XPND.CN Military expenditure (current LCU)
IT.TEL.TOTL Mobile and fixed-line telephone subscribers
IT.TEL.TOTL.P2 Mobile and fixed-line telephone subscribers (per 100 people)
IT.TEL.TOTL.EM Mobile and fixed-line telephone subscribers per employee
IT.MBL.USEC.CD Mobile cellular prepaid tariff (US$ per month)
IT.CEL.SETS Mobile cellular subscriptions
IT.CEL.SETS.P2 Mobile cellular subscriptions (per 100 people)
FM.LBL.MONY.CN Money (current LCU)
FM.LBL.MQMY.CN Money and quasi money (M2) (current LCU)
FM.LBL.MQMY.GD.ZS Money and quasi money (M2) as % of GDP
FM.LBL.MQMY.IR.ZS Money and quasi money (M2) to total reserves ratio
FM.LBL.MQMY.ZG Money and quasi money growth (annual %)
SP.DYN.AMRT.FE Mortality rate, adult, female (per 1,000 female adults)
SP.DYN.AMRT.MA Mortality rate, adult, male (per 1,000 male adults)
SH.DYN.CHLD.FE Mortality rate, female child (per 1,000 female children age one)
SP.DYN.IMRT.IN Mortality rate, infant (per 1,000 live births)
SH.DYN.CHLD.MA Mortality rate, male child (per 1,000 male children age one)
SH.DYN.MORT Mortality rate, under-5 (per 1,000)
IS.VEH.NVEH.P3 Motor vehicles (per 1,000 people)
DT.TDS.MLAT.PG.ZS Multilateral debt service (% of public and publicly guaranteed debt service)
DT.TDS.MLAT.CD Multilateral debt service (TDS, current US$)
TT.PRI.MRCH.XD.WD Net barter terms of trade index (2000 = 100)
DC.DAC.AUSL.CD Net bilateral aid flows from DAC donors, Australia (current US$)
DC.DAC.AUTL.CD Net bilateral aid flows from DAC donors, Austria (current US$)
DC.DAC.BELL.CD Net bilateral aid flows from DAC donors, Belgium (current US$)
DC.DAC.CANL.CD Net bilateral aid flows from DAC donors, Canada (current US$)



Available Time Series Data Reference: SASEWBGO Interface Engine F 3825

Table 55.6 continued

Indicator Description

DC.DAC.DNKL.CD Net bilateral aid flows from DAC donors, Denmark (current US$)
DC.DAC.CECL.CD Net bilateral aid flows from DAC donors, European Commission (current US$)
DC.DAC.FINL.CD Net bilateral aid flows from DAC donors, Finland (current US$)
DC.DAC.FRAL.CD Net bilateral aid flows from DAC donors, France (current US$)
DC.DAC.DEUL.CD Net bilateral aid flows from DAC donors, Germany (current US$)
DC.DAC.GRCL.CD Net bilateral aid flows from DAC donors, Greece (current US$)
DC.DAC.IRLL.CD Net bilateral aid flows from DAC donors, Ireland (current US$)
DC.DAC.ITAL.CD Net bilateral aid flows from DAC donors, Italy (current US$)
DC.DAC.JPNL.CD Net bilateral aid flows from DAC donors, Japan (current US$)
DC.DAC.KORL.CD Net bilateral aid flows from DAC donors, Korea, Rep. (current US$)
DC.DAC.LUXL.CD Net bilateral aid flows from DAC donors, Luxembourg (current US$)
DC.DAC.NLDL.CD Net bilateral aid flows from DAC donors, Netherlands (current US$)
DC.DAC.NZLL.CD Net bilateral aid flows from DAC donors, New Zealand (current US$)
DC.DAC.NORL.CD Net bilateral aid flows from DAC donors, Norway (current US$)
DC.DAC.PRTL.CD Net bilateral aid flows from DAC donors, Portugal (current US$)
DC.DAC.ESPL.CD Net bilateral aid flows from DAC donors, Spain (current US$)
DC.DAC.SWEL.CD Net bilateral aid flows from DAC donors, Sweden (current US$)
DC.DAC.CHEL.CD Net bilateral aid flows from DAC donors, Switzerland (current US$)
DC.DAC.TOTL.CD Net bilateral aid flows from DAC donors, Total (current US$)
DC.DAC.GBRL.CD Net bilateral aid flows from DAC donors, United Kingdom (current US$)
DC.DAC.USAL.CD Net bilateral aid flows from DAC donors, United States (current US$)
BN.TRF.KOGT.CD Net capital account (BoP, current US$)
BN.TRF.CURR.CD Net current transfers (BoP, current US$)
NY.TRF.NCTR.KN Net current transfers from abroad (constant LCU)
NY.TRF.NCTR.CN Net current transfers from abroad (current LCU)
NY.TRF.NCTR.CD Net current transfers from abroad (current US$)
FM.AST.DOMS.CN Net domestic credit (current LCU)
BN.KAC.EOMS.CD Net errors and omissions, adjusted (BoP, current US$)
DT.NFL.BLAT.CD Net financial flows, bilateral (NFL, current US$)
DT.NFL.MIBR.CD Net financial flows, IBRD (NFL, current US$)
DT.NFL.MIDA.CD Net financial flows, IDA (NFL, current US$)
DT.NFL.IMFC.CD Net financial flows, IMF concessional (NFL, current US$)
DT.NFL.IMFN.CD Net financial flows, IMF nonconcessional (NFL, current US$)
DT.NFL.MLAT.CD Net financial flows, multilateral (NFL, current US$)
DT.NFL.MOTH.CD Net financial flows, others (NFL, current US$)
DT.NFL.RDBC.CD Net financial flows, RDB concessional (NFL, current US$)
DT.NFL.RDBN.CD Net financial flows, RDB nonconcessional (NFL, current US$)
FM.AST.NFRG.CN Net foreign assets (current LCU)
BN.GSR.FCTY.CD Net income (BoP, current US$)
NY.GSR.NFCY.KN Net income from abroad (constant LCU)
NY.GSR.NFCY.CN Net income from abroad (current LCU)
NY.GSR.NFCY.CD Net income from abroad (current US$)
GC.FIN.DOMS.GD.ZS Net incurrence of liabilities, domestic (% of GDP)
GC.FIN.DOMS.CN Net incurrence of liabilities, domestic (current LCU)
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Indicator Description

GC.FIN.FRGN.GD.ZS Net incurrence of liabilities, foreign (% of GDP)
GC.FIN.FRGN.CN Net incurrence of liabilities, foreign (current LCU)
SE.PRM.NINT.ZS Net intake rate in grade 1 (% of official school-age population)
SE.PRM.NINT.FE.ZS Net intake rate in grade 1, female (% of official school-age population)
SE.PRM.NINT.MA.ZS Net intake rate in grade 1, male (% of official school-age population)
SM.POP.NETM Net migration
DT.ODA.ODAT.XP.ZS Net ODA received (% of central government expense)
DT.ODA.ODAT.GN.ZS Net ODA received (% of GNI)
DT.ODA.ODAT.GI.ZS Net ODA received (% of gross capital formation)
DT.ODA.ODAT.MP.ZS Net ODA received (% of imports of goods and services)
DT.ODA.ODAT.PC.ZS Net ODA received per capita (current US$)
DT.ODA.OATL.KD Net official aid received (constant 2008 US$)
DT.ODA.OATL.CD Net official aid received (current US$)
DT.ODA.ALLD.KD Net official development assistance and official aid received (constant 2008 US$)
DT.ODA.ALLD.CD Net official development assistance and official aid received (current US$)
DT.ODA.ODAT.KD Net official development assistance received (constant 2008 US$)
DT.ODA.ODAT.CD Net official development assistance received (current US$)
DT.NFL.IFAD.CD Net official flows from UN agencies, IFAD (current US$)
DT.NFL.UNAI.CD Net official flows from UN agencies, UNAIDS (current US$)
DT.NFL.UNDP.CD Net official flows from UN agencies, UNDP (current US$)
DT.NFL.UNFP.CD Net official flows from UN agencies, UNFPA (current US$)
DT.NFL.UNCR.CD Net official flows from UN agencies, UNHCR (current US$)
DT.NFL.UNCF.CD Net official flows from UN agencies, UNICEF (current US$)
DT.NFL.UNRW.CD Net official flows from UN agencies, UNRWA (current US$)
DT.NFL.UNTA.CD Net official flows from UN agencies, UNTA (current US$)
DT.NFL.WFPG.CD Net official flows from UN agencies, WFP (current US$)
NY.TAX.NIND.KN Net taxes on products (constant LCU)
NY.TAX.NIND.CN Net taxes on products (current LCU)
NY.TAX.NIND.CD Net taxes on products (current US$)
BN.GSR.MRCH.CD Net trade in goods (BoP, current US$)
BN.GSR.GNFS.CD Net trade in goods and services (BoP, current US$)
IC.BUS.NREG New businesses registered (number)
EN.ATM.NOXE.KT.CE Nitrous oxide emissions (thousand metric tons of CO2 equivalent)
SH.MED.NUMW.P3 Nurses and midwives (per 1,000 people)
PA.NUS.FCRF Official exchange rate (LCU per US$, period average)
TX.VAL.MMTL.ZS.UN Ores and metals exports (% of merchandise exports)
TM.VAL.MMTL.ZS.UN Ores and metals imports (% of merchandise imports)
EE.BOD.WRKR.KG Organic water pollutant (BOD) emissions (kg per day per worker)
EE.BOD.TOTL.KG Organic water pollutant (BOD) emissions (kg per day)
GC.XPN.OTHR.ZS Other expense (% of expense)
GC.XPN.OTHR.CN Other expense (current LCU)
EN.ATM.GHGO.KT.CE Other greenhouse gas emissions, HFC, PFC, and SF6 (thousand metric tons of CO2

equivalent)
NV.MNF.OTHR.ZS.UN Other manufacturing (% of value added in manufacturing)
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Indicator Description

GC.TAX.OTHR.RV.ZS Other taxes (% of revenue)
GC.TAX.OTHR.CN Other taxes (current LCU)
SH.XPD.OOPC.ZS Out-of-pocket health expenditure (% of private expenditure on health)
SH.VST.OUTP Outpatient visits per capita
IS.VEH.PCAR.P3 Passenger cars (per 1,000 people)
IP.PAT.NRES Patent applications, nonresidents
IP.PAT.RESD Patent applications, residents
AG.LND.CROP.ZS Permanent cropland (% of land area)
SE.PRM.PRS5.FE.ZS Persistence to grade 5, female (% of cohort)
SE.PRM.PRS5.MA.ZS Persistence to grade 5, male (% of cohort)
SE.PRM.PRS5.ZS Persistence to grade 5, total (% of cohort)
SE.PRM.PRSL.FE.ZS Persistence to last grade of primary, female (% of cohort)
SE.PRM.PRSL.MA.ZS Persistence to last grade of primary, male (% of cohort)
SE.PRM.PRSL.ZS Persistence to last grade of primary, total (% of cohort)
IT.CMP.PCMP Personal computers
IT.CMP.PCMP.P2 Personal computers (per 100 people)
SH.MED.PHYS.ZS Physicians (per 1,000 people)
EN.HPT.THRD.NO Plant species (higher), threatened
EN.ATM.PM10.MC.M3 PM10, country level (micrograms per cubic meter)
SP.POP.0014.TO.ZS Population ages 0–14 (% of total)
SP.POP.1564.TO.ZS Population ages 15–64 (% of total)
SP.POP.65UP.TO.ZS Population ages 65 and above (% of total)
IT.CEL.COVR.ZS Population covered by mobile cellular network (%)
EN.POP.DNST Population density (people per sq. km of land area)
SP.POP.GROW Population growth (annual %)
EN.URB.LCTY Population in the largest city
EN.URB.LCTY.UR.ZS Population in the largest city (% of urban population)
EN.URB.MCTY Population in urban agglomerations of more than 1 million
EN.URB.MCTY.TL.ZS Population in urban agglomerations of more than 1 million (% of total population)
SP.POP.TOTL.FE.ZS Population, female (% of total)
SP.POP.TOTL Population, total
BX.PEF.TOTL.CD.WD Portfolio equity, net inflows (BoP, current US$)
DT.NFL.BOND.CD Portfolio investment, bonds (PPG + PNG) (NFL, current US$)
BN.KLT.PTXL.CD Portfolio investment, excluding LCFAR (BoP, current US$)
SI.POV.GAPS Poverty gap at $1.25 a day (PPP) (%)
SI.POV.GAP2 Poverty gap at $2 a day (PPP) (%)
SI.POV.NAGP Poverty gap at national poverty line (%)
SI.POV.RUGP Poverty gap at rural poverty line (%)
SI.POV.URGP Poverty gap at urban poverty line (%)
SI.POV.DDAY Poverty head count ratio at $1.25 a day (PPP) (% of population)
SI.POV.2DAY Poverty head count ratio at $2 a day (PPP) (% of population)
SI.POV.NAHC Poverty head count ratio at national poverty line (% of population)
SI.POV.RUHC Poverty head count ratio at rural poverty line (% of rural population)
SI.POV.URHC Poverty head count ratio at urban poverty line (% of urban population)
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Table 55.6 continued

Indicator Description

PA.NUS.PPPC.RF PPP conversion factor (GDP) to market exchange rate ratio
PA.NUS.PPP PPP conversion factor, GDP (LCU per international $)
PA.NUS.PRVT.PP PPP conversion factor, private consumption (LCU per international $)
SH.STA.ANVC.ZS Pregnant women receiving prenatal care (%)
VC.PKP.TOTL.UN Presence of peacekeepers (number of troops, police, and military observers in

mandate)
DT.DOD.PVLX.EX.ZS Present value of external debt (% of exports of goods, services, and income)
DT.DOD.PVLX.GN.ZS Present value of external debt (% of GNI)
DT.DOD.PVLX.CD Present value of external debt (current US$)
SH.HIV.1524.FE.ZS Prevalence of HIV, female (% ages 15–24)
SH.HIV.1524.MA.ZS Prevalence of HIV, male (% ages 15–24)
SH.DYN.AIDS.ZS Prevalence of HIV, total (% of population ages 15–49)
SH.STA.OWGH.ZS Prevalence of overweight (% of children under 5)
SN.ITK.DEFC.ZS Prevalence of undernourishment (% of population)
SH.STA.WAST.ZS Prevalence of wasting (% of children under 5)
SE.PRM.CMPT.FE.ZS Primary completion rate, female (% of relevant age group)
SE.PRM.CMPT.MA.ZS Primary completion rate, male (% of relevant age group)
SE.PRM.CMPT.ZS Primary completion rate, total (% of relevant age group)
SE.PRM.DURS Primary education, duration (years)
SE.PRM.ENRL Primary education, pupils
SE.PRM.ENRL.FE.ZS Primary education, pupils (% female)
SE.PRM.TCHR Primary education, teachers
SE.PRM.TCHR.FE.ZS Primary education, teachers (% female)
SE.PRM.AGES Primary school starting age (years)
IC.CRD.PRVT.ZS Private credit bureau coverage (% of adults)
IC.WRH.PROC Procedures to build a warehouse (number)
IC.LGL.PROC Procedures to enforce a contract (number)
IC.PRP.PROC Procedures to register property (number)
SE.SEC.PROG.ZS Progression to secondary school (%)
SE.SEC.PROG.FE.ZS Progression to secondary school, female (%)
SE.SEC.PROG.MA.ZS Progression to secondary school, male (%)
SG.GEN.PARL.ZS Proportion of seats held by women in national parliaments (%)
DT.TDS.DPPG.XP.ZS Public and publicly guaranteed debt service (% of exports, excluding workers’

remittances)
DT.TDS.DPPG.GN.ZS Public and publicly guaranteed debt service (% of GNI)
IC.CRD.PUBL.ZS Public credit registry coverage (% of adults)
SE.XPD.TOTL.GD.ZS Public spending on education, total (% of GDP)
SE.XPD.TOTL.GB.ZS Public spending on education, total (% of government expenditure)
EP.PMP.DESL.CD Pump price for diesel fuel (US$ per liter)
EP.PMP.SGAS.CD Pump price for gasoline (US$ per liter)
SE.PRM.ENRL.TC.ZS Pupil-teacher ratio, primary
SE.SEC.ENRL.TC.ZS Pupil-teacher ratio, secondary
IQ.WEF.PORT.XQ Quality of port infrastructure, WEF (1=extremely underdeveloped to 7=well

developed and efficient by international standards)
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Indicator Description

FM.LBL.QMNY.CN Quasi money (current LCU)
FS.LBL.QLIQ.GD.ZS Quasi-liquid liabilities (% of GDP)
IS.RRS.TOTL.KM Rail lines (total route-km)
IS.RRS.GOOD.MT.K6 Railways, goods transported (million ton-km)
IS.RRS.PASG.KM Railways, passengers carried (million passenger-km)
SE.ENR.PRIM.FM.ZS Ratio of female to male primary enrollment (%)
SE.ENR.SECO.FM.ZS Ratio of female to male secondary enrollment (%)
SE.ENR.TERT.FM.ZS Ratio of female to male tertiary enrollment (%)
SE.ENR.PRSC.FM.ZS Ratio of girls to boys in primary and secondary education (%)
SE.ADT.1524.LT.FM.ZS Ratio of young literate females to males (% ages 15–24)
PX.REX.REER Real effective exchange rate index (2005 = 100)
FR.INR.RINR Real interest rate (%)
SM.POP.REFG Refugee population by country or territory of asylum
SM.POP.REFG.OR Refugee population by country or territory of origin
ER.H2O.INTR.PC Renewable internal freshwater resources per capita (cubic meters)
ER.H2O.INTR.K3 Renewable internal freshwater resources, total (billion cubic meters)
SE.PRM.REPT.FE.ZS Repeaters, primary, female (% of female enrollment)
SE.PRM.REPT.MA.ZS Repeaters, primary, male (% of male enrollment)
SE.PRM.REPT.ZS Repeaters, primary, total (% of total enrollment)
SE.SEC.REPT.FE.ZS Repeaters, secondary, female (% of female enrollment)
SE.SEC.REPT.MA.ZS Repeaters, secondary, male (% of male enrollment)
SE.SEC.REPT.ZS Repeaters, secondary, total (% of total enrollment)
GB.XPD.RSDV.GD.ZS Research and development expenditure (% of GDP)
SP.POP.SCIE.RD.P6 Researchers in R&D (per million people)
IT.RES.USEC.CD Residential fixed-line telephone tariff (US$ per month)
GC.REV.XGRT.GD.ZS Revenue, excluding grants (% of GDP)
GC.REV.XGRT.CN Revenue, excluding grants (current LCU)
IC.LGL.EMPL.XQ Rigidity of employment index (0=less rigid to 100=more rigid)
FR.INR.RISK Risk premium on lending (prime rate minus treasury bill rate, %)
IS.ROD.DNST.K2 Road density (km of road per 100 sq. km of land area)
IS.ROD.DESL.KT Road sector diesel fuel consumption (kt of oil equivalent)
IS.ROD.DESL.PC Road sector diesel fuel consumption per capita (kt of oil equivalent)
IS.ROD.ENGY.ZS Road sector energy consumption (% of total energy consumption)
IS.ROD.ENGY.KT Road sector energy consumption (kt of oil equivalent)
IS.ROD.ENGY.PC Road sector energy consumption per capita (kt of oil equivalent)
IS.ROD.SGAS.KT Road sector gasoline fuel consumption (kt of oil equivalent)
IS.ROD.SGAS.PC Road sector gasoline fuel consumption per capita (kt of oil equivalent)
IS.ROD.GOOD.MT.K6 Roads, goods transported (million ton-km)
IS.ROD.PSGR.K6 Roads, passengers carried (million passenger-km)
IS.ROD.PAVE.ZS Roads, paved (% of total roads)
IS.ROD.TOTL.KM Roads, total network (km)
BM.GSR.ROYL.CD Royalty and license fees, payments (BoP, current US$)
BX.GSR.ROYL.CD Royalty and license fees, receipts (BoP, current US$)
SP.RUR.TOTL Rural population
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Indicator Description

SP.RUR.TOTL.ZS Rural population (% of total population)
SP.RUR.TOTL.ZG Rural population growth (annual %)
CM.MKT.INDX.ZG S&P Global Equity Indices (annual % change)
SE.PRE.ENRR School enrollment, preprimary (% gross)
SE.PRE.ENRR.FE School enrollment, preprimary, female (% gross)
SE.PRE.ENRR.MA School enrollment, preprimary, male (% gross)
SE.PRM.ENRR School enrollment, primary (% gross)
SE.PRM.NENR School enrollment, primary (% net)
SE.PRM.ENRR.FE School enrollment, primary, female (% gross)
SE.PRM.NENR.FE School enrollment, primary, female (% net)
SE.PRM.ENRR.MA School enrollment, primary, male (% gross)
SE.PRM.NENR.MA School enrollment, primary, male (% net)
SE.PRM.PRIV.ZS School enrollment, primary, private (% of total primary)
SE.SEC.ENRR School enrollment, secondary (% gross)
SE.SEC.NENR School enrollment, secondary (% net)
SE.SEC.ENRR.FE School enrollment, secondary, female (% gross)
SE.SEC.NENR.FE School enrollment, secondary, female (% net)
SE.SEC.ENRR.MA School enrollment, secondary, male (% gross)
SE.SEC.NENR.MA School enrollment, secondary, male (% net)
SE.SEC.PRIV.ZS School enrollment, secondary, private (% of total secondary)
SE.TER.ENRR School enrollment, tertiary (% gross)
SE.TER.ENRR.FE School enrollment, tertiary, female (% gross)
SE.TER.ENRR.MA School enrollment, tertiary, male (% gross)
IP.JRN.ARTC.SC Scientific and technical journal articles
SE.SEC.DURS Secondary education, duration (years)
SE.SEC.ENRL.GC Secondary education, general pupils
SE.SEC.ENRL.GC.FE.ZS Secondary education, general pupils (% female)
SE.SEC.ENRL Secondary education, pupils
SE.SEC.ENRL.FE.ZS Secondary education, pupils (% female)
SE.SEC.TCHR Secondary education, teachers
SE.SEC.TCHR.FE.ZS Secondary education, teachers (% female)
SE.SEC.TCHR.FE Secondary education, teachers, female
SE.SEC.ENRL.VO Secondary education, vocational pupils
SE.SEC.ENRL.VO.FE.ZS Secondary education, vocational pupils (% female)
SE.SEC.AGES Secondary school starting age (years)
IT.NET.SECR Secure internet servers
IT.NET.SECR.P6 Secure internet servers (per 1 million people)
BX.GSR.NFSV.CD Service exports (BoP, current US$)
BM.GSR.NFSV.CD Service imports (BoP, current US$)
NV.SRV.TETC.ZS Services, etc., value added (% of GDP)
NV.SRV.TETC.KD.ZG Services, etc., value added (annual % growth)
NV.SRV.TETC.KD Services, etc., value added (constant 2000 US$)
NV.SRV.TETC.KN Services, etc., value added (constant LCU)
NV.SRV.TETC.CN Services, etc., value added (current LCU)
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Indicator Description

NV.SRV.TETC.CD Services, etc., value added (current US$)
TM.TAX.MRCH.IP.ZS Share of tariff lines with international peaks, all products (%)
TM.TAX.MANF.IP.ZS Share of tariff lines with international peaks, manufactured products (%)
TM.TAX.TCOM.IP.ZS Share of tariff lines with international peaks, primary products (%)
TM.TAX.MRCH.SR.ZS Share of tariff lines with specific rates, all products (%)
TM.TAX.MANF.SR.ZS Share of tariff lines with specific rates, manufactured products (%)
TM.TAX.TCOM.SR.ZS Share of tariff lines with specific rates, primary products (%)
SL.EMP.INSV.FE.ZS Share of women employed in the nonagricultural sector (% of total nonagricultural

employment)
DT.DOD.DSTC.XP.ZS Short-term debt (% of exports of goods, services, and income)
DT.DOD.DSTC.ZS Short-term debt (% of total external debt)
DT.DOD.DSTC.IR.ZS Short-term debt (% of total reserves)
SH.PRV.SMOK.FE Smoking prevalence, females (% of adults)
SH.PRV.SMOK.MA Smoking prevalence, males (% of adults)
GC.REV.SOCL.ZS Social contributions (% of revenue)
GC.REV.SOCL.CN Social contributions (current LCU)
IC.REG.PROC Start-up procedures to register a business (number)
CM.MKT.TRAD.GD.ZS Stocks traded, total value (% of GDP)
CM.MKT.TRAD.CD Stocks traded, total value (current US$)
CM.MKT.TRNR Stocks traded, turnover ratio (%)
IC.LGL.CRED.XQ Strength of legal rights index (0=weak to 10=strong)
GC.XPN.TRFT.ZS Subsidies and other transfers (% of expense)
GC.XPN.TRFT.CN Subsidies and other transfers (current LCU)
AG.SRF.TOTL.K2 Surface area (sq. km)
SP.DYN.TO65.FE.ZS Survival to age 65, female (% of cohort)
SP.DYN.TO65.MA.ZS Survival to age 65, male (% of cohort)
TM.TAX.MRCH.SM.AR.ZS Tariff rate, applied, simple mean, all products (%)
TM.TAX.MANF.SM.AR.ZS Tariff rate, applied, simple mean, manufactured products (%)
TM.TAX.TCOM.SM.AR.ZS Tariff rate, applied, simple mean, primary products (%)
TM.TAX.MRCH.WM.AR.ZS Tariff rate, applied, weighted mean, all products (%)
TM.TAX.MANF.WM.AR.ZS Tariff rate, applied, weighted mean, manufactured products (%)
TM.TAX.TCOM.WM.AR.ZS Tariff rate, applied, weighted mean, primary products (%)
TM.TAX.MRCH.SM.FN.ZS Tariff rate, most favored nation, simple mean, all products (%)
TM.TAX.MANF.SM.FN.ZS Tariff rate, most favored nation, simple mean, manufactured products (%)
TM.TAX.TCOM.SM.FN.ZS Tariff rate, most favored nation, simple mean, primary products (%)
TM.TAX.MRCH.WM.FN.ZS Tariff rate, most favored nation, weighted mean, all products (%)
TM.TAX.MANF.WM.FN.ZS Tariff rate, most favored nation, weighted mean, manufactured products (%)
TM.TAX.TCOM.WM.FN.ZS Tariff rate, most favored nation, weighted mean, primary products (%)
IC.TAX.PAYM Tax payments (number)
GC.TAX.TOTL.GD.ZS Tax revenue (% of GDP)
GC.TAX.TOTL.CN Tax revenue (current LCU)
GC.TAX.EXPT.ZS Taxes on exports (% of tax revenue)
GC.TAX.EXPT.CN Taxes on exports (current LCU)
GC.TAX.GSRV.RV.ZS Taxes on goods and services (% of revenue)
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Indicator Description

GC.TAX.GSRV.VA.ZS Taxes on goods and services (% value added of industry and services)
GC.TAX.GSRV.CN Taxes on goods and services (current LCU)
GC.TAX.YPKG.RV.ZS Taxes on income, profits, and capital gains (% of revenue)
GC.TAX.YPKG.ZS Taxes on income, profits, and capital gains (% of total taxes)
GC.TAX.YPKG.CN Taxes on income, profits, and capital gains (current LCU)
GC.TAX.INTT.RV.ZS Taxes on international trade (% of revenue)
GC.TAX.INTT.CN Taxes on international trade (current LCU)
SP.POP.TECH.RD.P6 Technicians in R&D (per million people)
SP.MTR.1519.ZS Teenage mothers (% of women ages 15–19 who have had children or are currently

pregnant)
IT.TEL.INVS.RV.ZS Telecommunications investment (% of revenue)
IT.TEL.INVS.CN Telecommunications investment (current LCU)
IT.TEL.REVN.GD.ZS Telecommunications revenue (% GDP)
IT.TEL.REVN.CN Telecommunications revenue (current LCU)
IT.TEL.EMPL.TO Telephone employees, total
IT.MLT.MAIN Telephone lines
IT.MLT.MAIN.P2 Telephone lines (per 100 people)
NY.TTF.GNFS.KN Terms of trade adjustment (constant LCU)
ER.LND.PTLD.TR.ZS Terrestrial protected areas (% of total surface area)
ER.LND.PTLD.TR.NO Terrestrial protected areas (number)
NV.MNF.TXTL.ZS.UN Textiles and clothing (% of value added in manufacturing)
IC.WRH.DURS Time required to build a warehouse (days)
IC.LGL.DURS Time required to enforce a contract (days)
IC.FRM.DURS Time required to obtain an operating license (days)
IC.PRP.DURS Time required to register property (days)
IC.REG.DURS Time required to start a business (days)
IC.TAX.DURS Time to prepare and pay taxes (hours)
IC.ISV.DURS Time to resolve insolvency (years)
IC.BUS.TOTL Total businesses registered (number)
DT.TDS.DECT.EX.ZS Total debt service (% of exports of goods, services, and income)
DT.TDS.DECT.GN.ZS Total debt service (% of GNI)
SE.PRM.TENR Total enrollment, primary (% net)
SE.PRM.TENR.FE Total enrollment, primary, female (% net)
SE.PRM.TENR.MA Total enrollment, primary, male (% net)
FI.RES.TOTL.DT.ZS Total reserves (% of total external debt)
FI.RES.TOTL.CD Total reserves (includes gold, current US$)
FI.RES.TOTL.MO Total reserves in months of imports
FI.RES.XGLD.CD Total reserves minus gold (current US$)
IC.TAX.TOTL.CP.ZS Total tax rate (% of profit)
NE.TRD.GNFS.ZS Trade (% of GDP)
BG.GSR.NFSV.GD.ZS Trade in services (% of GDP)
IP.TMK.AGGD Trademark applications, aggregate direct
IP.TMK.NRES Trademark applications, direct nonresident
IP.TMK.RESD Trademark applications, direct resident
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Indicator Description

IP.TMK.MDRD Trademark applications, Madrid
IP.TMK.TOTL Trademark applications, total
SE.PRM.TCAQ.ZS Trained teachers in primary education (% of total teachers)
SE.PRM.TCAQ.FE.ZS Trained teachers in primary education, female (% of female teachers)
SE.PRM.TCAQ.MA.ZS Trained teachers in primary education, male (% of male teachers)
TX.VAL.TRAN.ZS.WT Transport services (% of commercial service exports)
TM.VAL.TRAN.ZS.WT Transport services (% of commercial service imports)
BX.GSR.TRAN.ZS Transport services (% of service exports, BoP)
BM.GSR.TRAN.ZS Transport services (% of service imports, BoP)
TX.VAL.TRVL.ZS.WT Travel services (% of commercial service exports)
TM.VAL.TRVL.ZS.WT Travel services (% of commercial service imports)
BX.GSR.TRVL.ZS Travel services (% of service exports, BoP)
BM.GSR.TRVL.ZS Travel services (% of service imports, BoP)
SH.TBS.DTEC.ZS Tuberculosis case detection rate (all forms)
SH.TBS.CURE.ZS Tuberculosis treatment success rate (% of registered cases)
SL.UEM.PRIM.ZS Unemployment with primary education (% of total unemployment)
SL.UEM.PRIM.FE.ZS Unemployment with primary education, female (% of female unemployment)
SL.UEM.PRIM.MA.ZS Unemployment with primary education, male (% of male unemployment)
SL.UEM.SECO.ZS Unemployment with secondary education (% of total unemployment)
SL.UEM.SECO.FE.ZS Unemployment with secondary education, female (% of female unemployment)
SL.UEM.SECO.MA.ZS Unemployment with secondary education, male (% of male unemployment)
SL.UEM.TERT.ZS Unemployment with tertiary education (% of total unemployment)
SL.UEM.TERT.FE.ZS Unemployment with tertiary education, female (% of female unemployment)
SL.UEM.TERT.MA.ZS Unemployment with tertiary education, male (% of male unemployment)
SL.UEM.TOTL.FE.ZS Unemployment, female (% of female labor force)
SL.UEM.TOTL.MA.ZS Unemployment, male (% of male labor force)
SL.UEM.TOTL.ZS Unemployment, total (% of total labor force)
SL.UEM.1524.FE.ZS Unemployment, youth female (% of female labor force ages 15–24)
SL.UEM.1524.MA.ZS Unemployment, youth male (% of male labor force ages 15–24)
SL.UEM.1524.ZS Unemployment, youth total (% of total labor force ages 15–24)
SP.UWT.TFRT Unmet need for contraception (% of married women ages 15–49)
SP.URB.TOTL Urban population
SP.URB.TOTL.IN.ZS Urban population (% of total)
SP.URB.GROW Urban population growth (annual %)
DT.DOD.DIMF.CD Use of IMF credit (DOD, current US$)
SH.MLR.NETS.ZS Use of insecticide-treated bed nets (% of under-5 population)
IC.FRM.OUTG.ZS Value lost from electrical outages (% of sales)
IS.VEH.ROAD.K1 Vehicles (per km of road)
SN.ITK.VITA.ZS Vitamin A supplementation coverage rate (% of children ages 6–59 months)
SL.EMP.VULN.FE.ZS Vulnerable employment, female (% of female employment)
SL.EMP.VULN.MA.ZS Vulnerable employment, male (% of male employment)
SL.EMP.VULN.ZS Vulnerable employment, total (% of total employment)
SP.DYN.WFRT Wanted fertility rate (births per woman)
EE.BOD.CHEM.ZS Water pollution, chemical industry (% of total BOD emissions)
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Indicator Description

EE.BOD.CGLS.ZS Water pollution, clay and glass industry (% of total BOD emissions)
EE.BOD.FOOD.ZS Water pollution, food industry (% of total BOD emissions)
EE.BOD.MTAL.ZS Water pollution, metal industry (% of total BOD emissions)
EE.BOD.OTHR.ZS Water pollution, other industry (% of total BOD emissions)
EE.BOD.PAPR.ZS Water pollution, paper and pulp industry (% of total BOD emissions)
EE.BOD.TXTL.ZS Water pollution, textile industry (% of total BOD emissions)
EE.BOD.WOOD.ZS Water pollution, wood industry (% of total BOD emissions)
FP.WPI.TOTL Wholesale price index (2005 = 100)
BM.TRF.PWKR.CD.DT Workers’ remittances and compensation of employees, paid (current US$)
BX.TRF.PWKR.DT.GD.ZS Workers’ remittances and compensation of employees, received (% of GDP)
BX.TRF.PWKR.CD.DT Workers’ remittances and compensation of employees, received (current US$)
BX.TRF.PWKR.CD Workers’ remittances, receipts (BoP, current US$)

Examples: SASEWBGO Interface Engine

Example 55.1: Reading Gross Domestic Product Data
This example shows how to access three of China’s GDP time series.

options validvarname=any;

title 'WBGO Data: Gross Domestic Product (3 Series) for China';
LIBNAME myLib sasewbgo "%sysget(WBGO)"

OUTXML=g2start
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)g2start.map"
COUNTRYLIST='chn'
IDLIST='NY.GDP.PCAP.CD,NY.GDP.PCAP.KN,NY.GDP.PCAP.PP.KD'
RANGE='2010:2016'
;

data gdp2chn;
set myLib.g2start ;

run;

proc contents data=gdp2chn; run;
proc print data=gdp2chn(drop=total_count); run;
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Output 55.1.1 WBGO Data: Gross Domestic Product for China

WBGO Data: Gross Domestic Product (3 Series) for China

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

1 CN 2010 China 4560.51 30876.04 9525.82

2 CN 2011 China 5633.80 33658.85 10384.37

3 CN 2012 China 6337.88 36126.73 11145.75

4 CN 2013 China 7077.77 38737.58 11951.25

5 CN 2014 China 7683.50 41354.61 12758.65

6 CN 2015 China 8069.21 43991.55 13572.19

7 CN 2016 China . . .

The SASEWBGO interface engine supports the XML format. The XML data that the WBGO website returns
are placed in a file specified by the OUTXML= option. The XML map that is automatically created is
assigned the full path name specified by the XMLMAP= option, and the fileref that is used for the map
assignment is specified by the MAPREF= option.

To specify the list of time series that you want to retrieve, use the IDLIST= option. This option accepts
a string enclosed in single quotation marks that denotes a list of time series indicators that you select for
the resulting SAS data set. The series IDs (indicators) are separated by commas, so valid time series IDs
cannot contain embedded commas or quotes. The gdp2chn data set contains three time series variables
(NY.GDP.PCAP.CD, NY.GDP.PCAP.KN, and NY.GDP.PCAP.PP.KD), as specified in the IDLIST= option, and
the observation range is controlled by the RANGE=’2010:2016’ option. The gdp2chn data set contains
observations that range from the year 2010 to the year 2016, as specified by the RANGE= option. The
frequency of the data is annual (default).

NOTE: The string ‘%20’ is a special character for URL encoding of blanks. If the time series ID that you
name in the IDLIST= option contains a blank, you must use ‘%20’ wherever the blank appears in the time
series name. If the time series ID contains an underscore, then you must use an underscore in the time series
indicator. The blank and the underscore are not equivalent in the WBGO databases, so make sure that you
use ‘%20’ (URL encoded space) to designate blank characters.

Example 55.2: Retrieving Data for All Countries
This example shows how to get the GDP data for all countries by using the COUNTRYLIST=’all’ option.
Because the amount of data retrieved shows only the first 50 observations (default for the PER_PAGE=
option), and the total number of observations is large, use the PAGE= option to request a particular page of
the data, such as PAGE=22.

options validvarname=any;

title 'Retrieve GDP Data for All Countries';
libname wbgo sasewbgo "%sysget(WBGO)"

OUTXML=gdp5all
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)gdp5all.map"
COUNTRYLIST='all'
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IDLIST='NY.GDP.PCAP.CD,NY.GDP.PCAP.KN,NY.GDP.PCAP.PP.KD'
RANGE='2010:2016'
PAGE=22
;

data mygdp5all;
set wbgo.gdp5all;

run;

proc contents data=mygdp5all; run;
proc print data=mygdp5all(drop=total_count); run;
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Output 55.2.1 Retrieve Page 22 of the GDP Data for All Countries

Retrieve GDP Data for All Countries

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

1 KG 2010 Kyrgyz Republic 880.04 5823.04 2790.17

2 KG 2011 Kyrgyz Republic 1123.88 6095.25 2920.60

3 KG 2012 Kyrgyz Republic 1177.97 5989.30 2869.84

4 KG 2013 Kyrgyz Republic 1282.44 6512.52 3120.54

5 KG 2014 Kyrgyz Republic 1279.77 6640.03 3181.64

6 KG 2015 Kyrgyz Republic 1103.23 6730.38 3224.93

7 KG 2016 Kyrgyz Republic . . .

8 KR 2010 Korea, Rep. 22151.21 25608148.70 30440.40

9 KR 2011 Korea, Rep. 24155.83 26354109.25 31327.13

10 KR 2012 Korea, Rep. 24453.97 26836944.34 31901.07

11 KR 2013 Korea, Rep. 25997.88 27495854.26 32684.32

12 KR 2014 Korea, Rep. 27989.35 28299495.75 33639.61

13 KR 2015 Korea, Rep. 27221.52 28927885.85 34386.57

14 KR 2016 Korea, Rep. . . .

15 KW 2010 Kuwait 37725.14 10812.03 73695.13

16 KW 2011 Kuwait 47551.38 11195.45 76308.59

17 KW 2012 Kuwait 50903.90 11307.55 77072.68

18 KW 2013 Kuwait 48463.15 10883.36 74181.33

19 KW 2014 Kuwait 43332.41 10473.15 71385.35

20 KW 2015 Kuwait 29300.58 10285.67 70107.46

21 KW 2016 Kuwait . . .

22 LA 2010 Lao PDR 1138.53 5017261.37 3974.42

23 LA 2011 Lao PDR 1297.54 5330025.85 4222.18

24 LA 2012 Lao PDR 1445.42 5663415.57 4486.27

25 LA 2013 Lao PDR 1700.53 6043604.38 4787.44

26 LA 2014 Lao PDR 1754.90 6391686.61 5063.17

27 LA 2015 Lao PDR 1818.44 6747791.59 5345.26

28 LA 2016 Lao PDR . . .

29 LB 2010 Lebanon 8763.80 13211422.42 16281.25

30 LB 2011 Lebanon 8728.57 12726446.73 15683.58

31 LB 2012 Lebanon 8773.93 12128041.25 14946.13

32 LB 2013 Lebanon 8388.97 11397616.85 14045.98

33 LB 2014 Lebanon 8148.64 10930630.89 13470.49

34 LB 2015 Lebanon 8047.65 10621081.57 13089.01

35 LB 2016 Lebanon . . .

36 LS 2010 Lesotho 1189.78 9647.47 2405.31

37 LV 2010 Latvia 11329.90 8551.80 18251.01

38 LV 2011 Latvia 13798.21 9249.87 19740.79

39 LV 2012 Latvia 13799.24 9739.85 20786.49

40 LV 2013 Latvia 15033.15 10130.06 21619.28

41 LV 2014 Latvia 15710.17 10440.60 22282.03

42 LV 2015 Latvia 13654.85 10814.68 23080.36

43 LV 2016 Latvia . . .

44 XK 2010 Kosovo 3283.21 2334.54 7927.14

45 XK 2011 Kosovo 3736.84 2421.55 8222.59

46 XK 2012 Kosovo 3600.89 2469.92 8386.82

47 XK 2013 Kosovo 3877.54 2528.42 8585.48
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Output 55.2.1 continued

Retrieve GDP Data for All Countries

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

48 XK 2014 Kosovo 4053.63 2562.47 8701.07

49 XK 2015 Kosovo 3552.39 2692.36 9142.15

50 XK 2016 Kosovo . . .

Output 55.2.1 shows the data for the Kyrgyz Republic, the Republic of Korea, the Lao PDR, Lebanon, Latvia,
and Kosovo. The SASEWBGO engine gives the information about the total number of pages (data_pages),
the requested page number (data_page), the number of observations per page (data_per_page), and the total
number of observations (data_total) in the SAS listing.

Example 55.3: Setting the Number of Observations Retrieved in One Page of
Data

This example shows how to change the number of observations retrieved in one page of data by using the
PER_PAGE= option.

options validvarname=any;

title 'Using the PER_PAGE= Option';
libname wbgo sasewbgo "%sysget(WBGO)"

OUTXML=gdp2all
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)gdp2all.map"
COUNTRYLIST='all'
IDLIST='NY.GDP.PCAP.CD,NY.GDP.PCAP.KN,NY.GDP.PCAP.PP.KD'
RANGE='2010:2016'
PER_PAGE=75
PAGE=2
;

data mygdp2all;
set wbgo.gdp2all;

run;

proc contents data=mygdp2all; run;
proc print data=mygdp2all(drop=total_count); run;
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Output 55.3.1 Using the PER_PAGE= Option

Using the PER_PAGE= Option

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

1 EU 2010 European Union 33659.49 34102.24

2 EU 2011 European Union 36388.14 34703.81

3 EU 2012 European Union 34194.29 34465.67

4 EU 2013 European Union 35538.40 34454.35

5 EU 2014 European Union 36556.18 34925.59

6 EU 2015 European Union 32017.85 35630.30

7 EU 2016 European Union . .

8 F1 2010 Fragile and conflict affected situations 1442.59 3767.37

9 F1 2011 Fragile and conflict affected situations 1526.36 3487.21

10 F1 2012 Fragile and conflict affected situations 1608.75 3637.13

11 F1 2013 Fragile and conflict affected situations 1680.72 3757.76

12 F1 2014 Fragile and conflict affected situations 1707.85 3782.48

13 F1 2015 Fragile and conflict affected situations 1538.06 3764.78

14 F1 2016 Fragile and conflict affected situations . .

15 T7 2015 Europe & Central Asia (IDA & IBRD
countries)

7615.89 18272.72

16 T7 2016 Europe & Central Asia (IDA & IBRD
countries)

. .

17 V3 2010 Late-demographic dividend 6189.91 11953.74

18 V3 2011 Late-demographic dividend 7496.73 12695.17

19 V3 2012 Late-demographic dividend 7960.94 13339.92

20 V3 2013 Late-demographic dividend 8521.98 13968.77

21 V3 2014 Late-demographic dividend 8806.57 14552.57

22 V3 2015 Late-demographic dividend 8202.95 15053.94

23 V3 2016 Late-demographic dividend . .

24 XD 2010 High income 39186.00 40020.75

25 XD 2011 High income 42091.13 40679.52

26 XD 2012 High income 41862.04 41010.75

27 XD 2013 High income 42064.55 41356.46

28 XD 2014 High income 42642.93 41951.53

29 XD 2015 High income 39944.76 42644.17

30 XD 2016 High income . .

31 XE 2010 Heavily indebted poor countries (HIPC) 736.77 1809.26

32 XE 2011 Heavily indebted poor countries (HIPC) 801.50 1847.01

33 XE 2012 Heavily indebted poor countries (HIPC) 841.34 1901.76

34 XE 2013 Heavily indebted poor countries (HIPC) 885.39 1957.21

35 XE 2014 Heavily indebted poor countries (HIPC) 911.84 2009.42

36 XE 2015 Heavily indebted poor countries (HIPC) 872.62 2053.44

37 XE 2016 Heavily indebted poor countries (HIPC) . .

38 XF 2010 IBRD only 4579.19 9682.38

39 XF 2011 IBRD only 5362.30 10165.91

40 XF 2012 IBRD only 5613.09 10558.15

41 XF 2013 IBRD only 5877.05 10971.21

42 XF 2014 IBRD only 5988.02 11356.02

43 XF 2015 IBRD only 5591.85 11727.12

44 XF 2016 IBRD only . .

45 XG 2010 IDA total 1098.07 3099.10
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Output 55.3.1 continued

Using the PER_PAGE= Option

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

46 XG 2011 IDA total 1222.43 3175.26

47 XG 2012 IDA total 1295.31 3260.86

48 XG 2013 IDA total 1378.28 3369.77

49 XG 2014 IDA total 1448.60 3484.63

50 XG 2015 IDA total 1404.64 3556.01

51 XG 2016 IDA total . .

52 XH 2010 IDA blend 1607.03 4612.70

53 XH 2011 IDA blend 1817.97 4746.07

54 XH 2012 IDA blend 1957.30 4878.44

55 XH 2013 IDA blend 2086.81 5027.44

56 XH 2014 IDA blend 2190.68 5208.79

57 XH 2015 IDA blend 2093.90 5330.54

58 XH 2016 IDA blend . .

59 XI 2010 IDA only 812.06 2245.82

60 XI 2011 IDA only 887.46 2290.93

61 XI 2012 IDA only 922.80 2352.32

62 XI 2013 IDA only 980.38 2441.41

63 XI 2014 IDA only 1032.89 2520.95

64 XI 2015 IDA only 1020.30 2566.24

65 XI 2016 IDA only . .

66 ZJ 2010 Latin America & Caribbean 8908.36 13790.02

67 ZJ 2011 Latin America & Caribbean 10007.82 14234.93

68 ZJ 2012 Latin America & Caribbean 9982.55 14481.17

69 ZT 2010 IDA & IBRD total 3684.66 7983.19

70 ZT 2011 IDA & IBRD total 4289.38 8345.89

71 ZT 2012 IDA & IBRD total 4484.02 8641.89

72 ZT 2013 IDA & IBRD total 4690.06 8957.66

73 ZT 2014 IDA & IBRD total 4779.42 9252.37

74 ZT 2015 IDA & IBRD total 4466.77 9524.03

75 ZT 2016 IDA & IBRD total . .

Output 55.3.1 shows the data for page 2 (when PER_PAGE=75) for the countries with the following country
IDs: EU, F1, T7, V3, XD, XE, XF, XG, XH, XI, ZJ, and ZT. Most of these country codes are aggregated
subsets, based on debt, income level, or location.
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Example 55.4: Sorting Time Series in Descending Order Using the Sort=
Option

This example shows how to retrieve data that are sorted in descending order (within each country’s BY
group).

options validvarname=any;

title 'Using the SORT= Option';
libname wbgo sasewbgo "%sysget(WBGO)"

OUTXML=gdpdes
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)gdpdes.map"
COUNTRYLIST='chn;bra'
IDLIST='NY.GDP.PCAP.CD,NY.GDP.PCAP.KN,NY.GDP.PCAP.PP.KD'
RANGE='2010:2016'
PER_PAGE=25
SORT=desc
;

data mygdpdesc;
set wbgo.gdpdes;

run;

proc contents data=mygdpdesc; run;
proc print data=mygdpdesc(drop=total_count); run;

Output 55.4.1 Using the SORT= Option

Using the SORT= Option

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

1 BR 2016 Brazil . . .

2 BR 2015 Brazil 8677.77 8743.15 14532.98

3 BR 2014 Brazil 11917.79 9163.63 15231.91

4 BR 2013 Brazil 12106.21 9198.86 15290.46

5 BR 2012 Brazil 12179.69 9012.48 14980.66

6 BR 2011 Brazil 13047.24 8925.68 14836.38

7 BR 2010 Brazil 11121.42 8666.76 14406.01

8 CN 2016 China . . .

9 CN 2015 China 8069.21 43991.55 13572.19

10 CN 2014 China 7683.50 41354.61 12758.65

11 CN 2013 China 7077.77 38737.58 11951.25

12 CN 2012 China 6337.88 36126.73 11145.75

13 CN 2011 China 5633.80 33658.85 10384.37

14 CN 2010 China 4560.51 30876.04 9525.82

Output 55.4.1 shows the results of using the SORT= option to sort each country’s observations in descending
order (most recent observation first). There are only 25 observations because the PER_PAGE=25 option
is specified, and the default page is the first page of observations. The SASEWBGO engine defaults to
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SORT=ASC (ascending dates) within each BY group (country).

Example 55.5: Retrieving a List of Indicators for a Specified Source Using the
URL= Option

This example demonstrates how to use the URL= option to retrieve a list of available time series indicators
from a specified source.

options validvarname=any;

title 'Retrieve a List of Indicators for a Specified Source Using the URL= Option';
libname wbgo sasewbgo "%sysget(WBGO)"

url="http://api.worldbank.org/source/1/indicators?format=xml";

data my1source;
set wbgo.XWBGOTPU;

run;

proc contents data=my1source; run;
proc print data=my1source; run;
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Output 55.5.1 Specifying the URL= Option for a List of Indicators from a Specified Source

Retrieve a List of Indicators for a Specified Source Using the URL= Option

Obs topic_id topic indicator_id name source_id source

1 12 Private
Sector

IC.TAX.PAYM Tax payments (number) 1 Doing
Business

2 13 Public Sector IC.TAX.PAYM Tax payments (number) 1 Doing
Business

3 12 Private
Sector

IC.TAX.DURS Time to prepare and pay taxes (hours) 1 Doing
Business

4 13 Public Sector IC.TAX.DURS Time to prepare and pay taxes (hours) 1 Doing
Business

5 . IC.RP.TIME Time required to register property (days) 1 Doing
Business

6 . IC.RP.PROC Procedures required to register property (number) 1 Doing
Business

7 . IC.RP.COST Cost to register property (% of property value) 1 Doing
Business

8 12 Private
Sector

IC.REG.PROC Start-up procedures to register a business (number) 1 Doing
Business

9 12 Private
Sector

IC.REG.DURS Time required to start a business (days) 1 Doing
Business

10 . IC.REG.COST Cost to start a business (% of income per capita) 1 Doing
Business

11 . IC.REG.CAP Minimum paid-in capital required to start a business (%
of income per capita)

1 Doing
Business

12 7 Financial
Sector

IC.PI.SR Extent of shareholder rights index (0-10.5) 1 Doing
Business

13 7 Financial
Sector

IC.PI.SOGS Strength of governance structure index (0-10.5) 1 Doing
Business

14 . IC.PI.SHAR Ease of shareholder suits index (0 to 10) 1 Doing
Business

15 7 Financial
Sector

IC.PI.SG Extent of shareholder governance index (0-10) 1 Doing
Business

16 . IC.PI.INV Strength of investor protection index (0 to 10) 1 Doing
Business

17 . IC.PI.DISCL Extent of disclosure index (0 to 10) 1 Doing
Business

18 . IC.PI.DIR Extent of director liability index (0 to 10) 1 Doing
Business

19 7 Financial
Sector

IC.PI.CT Extent of corporate transparency index (0-9) 1 Doing
Business

20 7 Financial
Sector

IC.PI.CIR Extent of conflict of interest regulation index (0-10) 1 Doing
Business

21 . IC.LIC.TIME Time required to build a warehouse (days) 1 Doing
Business

22 . IC.LIC.NUM Procedures required to build a warehouse (number) 1 Doing
Business

23 7 Financial
Sector

IC.LGL.CRED.XQ Strength of legal rights index (0=weak to 12=strong) 1 Doing
Business

24 12 Private
Sector

IC.LGL.CRED.XQ Strength of legal rights index (0=weak to 12=strong) 1 Doing
Business

25 13 Public Sector IC.LGL.CRED.XQ Strength of legal rights index (0=weak to 12=strong) 1 Doing
Business

26 7 Financial
Sector

IC.ISV.SOIF Strength of insolvency framework index (0-16) 1 Doing
Business

27 7 Financial
Sector

IC.ISV.RP Reorganization proceedings index (0-3) 1 Doing
Business



3844 F Chapter 55: The SASEWBGO Interface Engine

Output 55.5.1 continued

Retrieve a List of Indicators for a Specified Source Using the URL= Option

Obs topic_id topic indicator_id name source_id source

28 . IC.ISV.RECRT Resolving insolvency: recovery rate (cents on the
dollar)

1 Doing
Business

29 7 Financial
Sector

IC.ISV.OTCM Outcome (0 as piecemeal sale and 1 as going concern) 1 Doing
Business

30 7 Financial
Sector

IC.ISV.MODA Management of debtor's assets index (0-6) 1 Doing
Business

31 12 Private
Sector

IC.ISV.DURS Time to resolve insolvency (years) 1 Doing
Business

32 7 Financial
Sector

IC.ISV.CPI Creditor participation index (0-4) 1 Doing
Business

33 . IC.ISV.COST Resolving insolvency: cost (% of estate) 1 Doing
Business

34 7 Financial
Sector

IC.ISV.COP Commencement of proceedings index (0-3) 1 Doing
Business

35 12 Private
Sector

IC.IMP.DOCS Documents to import (number) 1 Doing
Business

36 21 Trade IC.IMP.DOCS Documents to import (number) 1 Doing
Business

37 . IC.GE.TIME Time required to connect to electricity (days) 1 Doing
Business

38 . IC.GE.NUM Procedures required to connect to electricity (number) 1 Doing
Business

39 . IC.GE.COST Cost to get electricity(% of income per capita) 1 Doing
Business

40 . IC.EXP.TIME.IMP Trade: Time to import (days) 1 Doing
Business

41 . IC.EXP.TIME.EXP Trade: Time to export (day) 1 Doing
Business

42 . IC.EXP.DOCS.IMP Trade: Documents to import (number) 1 Doing
Business

43 12 Private
Sector

IC.EXP.DOCS Documents to export (number) 1 Doing
Business

44 21 Trade IC.EXP.DOCS Documents to export (number) 1 Doing
Business

45 . IC.EXP.COST.IMP Trade: Cost to import (US$ per container) 1 Doing
Business

46 . IC.EXP.COST.EXP Trade: Cost to export (US$ per container) 1 Doing
Business

47 . IC.EC.TIME Time required to enforce a contract (days) 1 Doing
Business

48 . IC.EC.PROC Procedures required to enforce a contract (number) 1 Doing
Business

49 . IC.EC.COST Cost to enforce a contract (% of claim) 1 Doing
Business

50 . IC.DCP.TIME Time required to build a warehouse (days) 1 Doing
Business

51 . IC.DCP.PROC Procedures required to build a warehouse (number) 1 Doing
Business

52 . IC.DCP.COST Cost to build a warehouse (% of income per capita) 1 Doing
Business

53 7 Financial
Sector

IC.CRD.PUBL.ZS Public credit registry coverage (% of adults) 1 Doing
Business

54 12 Private
Sector

IC.CRD.PUBL.ZS Public credit registry coverage (% of adults) 1 Doing
Business
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Output 55.5.1 continued

Retrieve a List of Indicators for a Specified Source Using the URL= Option

Obs topic_id topic indicator_id name source_id source

55 13 Public Sector IC.CRD.PUBL.ZS Public credit registry coverage (% of adults) 1 Doing
Business

56 7 Financial
Sector

IC.CRD.PRVT.ZS Private credit bureau coverage (% of adults) 1 Doing
Business

57 12 Private
Sector

IC.CRD.PRVT.ZS Private credit bureau coverage (% of adults) 1 Doing
Business

58 7 Financial
Sector

IC.CRD.INFO.XQ Depth of credit information index (0=low to 8=high) 1 Doing
Business

59 12 Private
Sector

IC.CRD.INFO.XQ Depth of credit information index (0=low to 8=high) 1 Doing
Business

60 19 Climate
Change

IC.BUS.EASE.XQ Ease of doing business index (1=most
business-friendly regulations)

1 Doing
Business

61 12 Private
Sector

IC.BUS.EASE.XQ Ease of doing business index (1=most
business-friendly regulations)

1 Doing
Business

Output 55.5.1 shows the list of indicators for the specified source. Each indicator can be listed in more that
one topic, so an indicator might be listed multiple times in the results.

Example 55.6: Retrieving a List of Indicators for a Specified Topic Using the
URL= Option

This example demonstrates how to use the URL= option to retrieve a list of available time series indicators
for a specified topic.

options validvarname=any;
title 'Retrieve a List of Indicators for a Specified Topic ID Using the URL= Option';
libname wbgo sasewbgo "%sysget(WBGO)"

url="http://api.worldbank.org/topic/5/indicator?format=xml"
page=2;

data my5top2;
set wbgo.XWBGOTPU;

run;

proc contents data=my5top2; run;
proc print data=my5top2; run;
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Output 55.6.1 Specifying the URL= Option for a List of Indicators for a Specified Topic

Retrieve a List of Indicators for a Specified Topic ID Using the URL= Option

Obs topic_id topic indicator_id name source_id source

1 5 Energy & Mining TX.VAL.MMTL.ZS.UN Ores and metals exports (% of
merchandise exports)

2 World Development
Indicators

2 12 Private Sector TX.VAL.MMTL.ZS.UN Ores and metals exports (% of
merchandise exports)

2 World Development
Indicators

3 21 Trade TX.VAL.MMTL.ZS.UN Ores and metals exports (% of
merchandise exports)

2 World Development
Indicators

4 5 Energy & Mining TX.VAL.FUEL.ZS.UN Fuel exports (% of merchandise
exports)

2 World Development
Indicators

5 12 Private Sector TX.VAL.FUEL.ZS.UN Fuel exports (% of merchandise
exports)

2 World Development
Indicators

6 21 Trade TX.VAL.FUEL.ZS.UN Fuel exports (% of merchandise
exports)

2 World Development
Indicators

7 5 Energy & Mining TM.VAL.MMTL.ZS.UN Ores and metals imports (% of
merchandise imports)

2 World Development
Indicators

8 12 Private Sector TM.VAL.MMTL.ZS.UN Ores and metals imports (% of
merchandise imports)

2 World Development
Indicators

9 21 Trade TM.VAL.MMTL.ZS.UN Ores and metals imports (% of
merchandise imports)

2 World Development
Indicators

Output 55.6.1 shows page 2 of the results. You can retrieve page 1 by removing the PAGE=2 option from the
LIBNAME statement. Even though an indicator is selected based on the specified topic ID, all corresponding
topics for that selected indicator are listed in the results.
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Example 55.7: Retrieving Quarterly External Debt Statistics for Multiple
Countries

This example demonstrates how to retrieve quarterly external debt statistics (SDDS database) for multiple
countries.

title 'Retrieve Quarterly External Debt Statistics';
options validvarname=any;
libname wbgo sasewbgo "%sysget(WBGO)"

countrylist='aus;gbr;usa'
idlist='DT.DOD.DSTM.CD.GG.AR.US,DT.DOD.DECT.CD.GG.AR.US,DT.DOD.DSTC.CD.GG.AR.US,

DT.DOD.DSCD.CD.GG.AR.US'
range='2014Q2:2016Q3'
outxml=debtext
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)debtext.map"
;

data mydebtext;
set wbgo.debtext;

run;

proc contents data=mydebtext; run;
proc print data=mydebtext(drop=total_count); run;
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Output 55.7.1 Retrieving Quarterly External Debt Statistics for RANGE=2014Q2:2016Q3

Retrieve Quarterly External Debt Statistics

Obs country_id date country DT.DOD.DSTM.CD.GG.AR.US DT.DOD.DECT.CD.GG.AR.US

1 AU 2014Q2 Australia 877943996.271996 230884199019.599

2 AU 2014Q3 Australia 732542399.999998 221594513599.999

3 AU 2014Q4 Australia 405999000 219181225800

4 AU 2015Q1 Australia 799279800.000002 216317787400.001

5 AU 2015Q2 Australia 989952000.000003 210507264000.001

6 AU 2015Q3 Australia 2361669000 202583392000

7 AU 2015Q4 Australia 1569328800 210205309600.001

8 AU 2016Q1 Australia 1451767200 223233709400

9 AU 2016Q2 Australia 765620600 217335256800

10 AU 2016Q3 Australia 861427000.000001 227638761000

11 GB 2014Q2 United Kingdom 35603150000 769223942500

12 GB 2014Q3 United Kingdom 43396378000 778274180000

13 GB 2014Q4 United Kingdom 42427226400 725384921600

14 GB 2015Q1 United Kingdom 44417760000 718726480000

15 GB 2015Q2 United Kingdom 52587712600 761210165600

16 GB 2015Q3 United Kingdom 52217684400 766756112200

17 GB 2015Q4 United Kingdom 59665739700 787293458700

18 GB 2016Q1 United Kingdom 53548913700 781558630800

19 GB 2016Q2 United Kingdom 52640966400 793917168000

20 GB 2016Q3 United Kingdom 65296221900 805056961800

21 US 2014Q2 United States 627915000000 6112395000000

22 US 2014Q3 United States 614327000000 6184334000000

Obs DT.DOD.DSTC.CD.GG.AR.US DT.DOD.DSCD.CD.GG.AR.US

1 878885996.267996 0

2 733417599.999998 0

3 406819200 0

4 800806600.000002 0

5 990720000.000003 0

6 2362370000 0

7 1571520600 0

8 1452532900 0

9 765620600 0

10 861427000.000001 0

11 38018713000 338996500

12 46828156000 341398000

13 46649190400 273140000

14 49173000000 282680000

15 59542927600 342652400

16 64770538500 352616800

17 72044050400 280079100

18 65962859400 286619700

19 65619120000 315619200

20 80591498000 346058700

21 627915000000 0

22 614327000000 0



Example 55.8: Retrieving Monthly Global Economic Monitor Commodities for the World F 3849

Output 55.7.1 continued

Retrieve Quarterly External Debt Statistics

Obs country_id date country DT.DOD.DSTM.CD.GG.AR.US DT.DOD.DECT.CD.GG.AR.US

23 US 2014Q4 United States 671935000000 6223507000000

24 US 2015Q1 United States 702602000000 6346408000000

25 US 2015Q2 United States 701641000000 6283783000000

26 US 2015Q3 United States 667370000000 6199521000000

27 US 2015Q4 United States 724796000000 6304108000000

28 US 2016Q1 United States 725397000000 6348303000000

29 US 2016Q2 United States 684183000000 6288511000000

30 US 2016Q3 United States 695986000000 6202705000000

Obs DT.DOD.DSTC.CD.GG.AR.US DT.DOD.DSCD.CD.GG.AR.US

23 671935000000 0

24 702602000000 .

25 701641000000 .

26 667370000000 .

27 724796000000 .

28 725397000000 .

29 684183000000 0

30 695986000000 0

Output 55.7.1 shows the results for all three countries listed in the COUNTRYLIST= option. Four time series
are specified in the IDLIST= option. The sort order of the observations defaults to ascending dates within
each country’s cross section of data.

Example 55.8: Retrieving Monthly Global Economic Monitor Commodities for
the World

This example demonstrates how to retrieve monthly Global Economic Monitor (GEM) commodities for the
world.

title 'Retrieve Monthly Global Economic Monitor (GEM) Commodities';
options validvarname=any;
libname wbgo sasewbgo "%sysget(WBGO)"

countrylist='WLD'
idlist='KSOYBEAN_MEAL,SOYBEAN_MEAL,SOYBEAN_OIL,KSOYBEAN_OIL,IFERTILIZERS'
range='2016M01:2017M02'
outxml=wldcomm
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)wldcomm.map"
;

data mywldcomm;
set wbgo.wldcomm;

run;
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proc contents data=mywldcomm; run;
proc print data=mywldcomm(drop=total_count); run;

Output 55.8.1 Retrieving Monthly GEM Commodities for RANGE=2016M01:2017M02

Retrieve Monthly Global Economic Monitor (GEM) Commodities

Obs country_id date country KSOYBEAN_MEALSOYBEAN_MEAL SOYBEAN_OIL KSOYBEAN_OIL IFERTILIZERS

1 1W 2016M01 World 333 727 85.9793

2 1W 2016M02 World 326 758 81.4727

3 1W 2016M03 World 325 761 77.2456

4 1W 2016M04 World 355 796 77.0739

5 1W 2016M05 World 434 791 76.5381

6 1W 2016M06 World 467 798 74.8202

7 1W 2016M07 World 441 788 71.1164

8 1W 2016M08 World 403 814 70.6859

9 1W 2016M09 World 372 829 71.1946

10 1W 2016M10 World 367 858 71.3148

11 1W 2016M11 World 369 880 72.8405

12 1W 2016M12 World 365 907 73.2496

13 1W 2017M01 World 382 872 76.3966

14 1W 2017M02 World 383 835 77.1153

Output 55.8.1 shows the results for the world (WLD) listed in the COUNTRYLIST= option. Five time series
are specified in the IDLIST= option. For the specified range, the KSOYBEAN_MEAL and KSOYBEAN_OIL
time series contain all missing values.

Example 55.9: Retrieving the Full Range of Data in One Page
This example demonstrates the use of the PER_PAGE= option inside the SAS macro named X.

options validvarname=any;

title 'Retrieve the Entire Range of Data Observations in One Page';
%macro x(per_page=);

%let i=&per_page;
%if &i<=50 %then %do;

libname wbgo sasewbgo "%sysget(WBGO)"
OUTXML=gdpMall
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)gdpMall.map"
COUNTRYLIST='all'
IDLIST='NY.GDP.PCAP.CD,NY.GDP.PCAP.KN,NY.GDP.PCAP.PP.KD'
RANGE='2010:2016'
PER_PAGE=&i
PAGE=1;
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data mygdpMall;
set wbgo.gdpMall;

run;

proc contents data=mygdpMall; run;
proc print data=mygdpMall; run;

proc sql noprint;
select t.total_count into :allnobs
from work.mygdpMall t;

quit;

%if &allnobs>50 %then %do;
libname wbgo sasewbgo "%sysget(WBGO)"

OUTXML=gdpTall
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(WBGO)gdpTall.map"
COUNTRYLIST='all'
IDLIST='NY.GDP.PCAP.CD,NY.GDP.PCAP.KN,NY.GDP.PCAP.PP.KD'
RANGE='2010:2016'
PER_PAGE=&allnobs
PAGE=1;

data mygdpTall;
set wbgo.gdpTall;

run;
%end;

%end;
%mend;

%x(per_page=50); /* call the X macro with PER_PAGE=50 */

proc contents data=mygdpTall; run;
proc print data=mygdpTall(drop=total_count firstobs=1800 obs=1848); run;
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Output 55.9.1 Retrieving Entire Range of Data in One Page for GDP Per Capita for All Countries

Retrieve the Entire Range of Data Observations in One Page

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

1800 ZF 2010 Sub-Saharan Africa (excluding high
income)

1553.46 . 3236.66

1801 ZF 2011 Sub-Saharan Africa (excluding high
income)

1700.69 . 3291.03

1802 ZF 2012 Sub-Saharan Africa (excluding high
income)

1735.65 . 3324.51

1803 ZF 2013 Sub-Saharan Africa (excluding high
income)

1775.97 . 3397.66

1804 ZF 2014 Sub-Saharan Africa (excluding high
income)

1793.44 . 3468.49

1805 ZF 2015 Sub-Saharan Africa (excluding high
income)

1592.88 . 3486.21

1806 ZF 2016 Sub-Saharan Africa (excluding high
income)

. . .

1807 ZG 2010 Sub-Saharan Africa 1554.41 . 3238.42

1808 ZG 2011 Sub-Saharan Africa 1701.71 . 3292.91

1809 ZG 2012 Sub-Saharan Africa 1736.71 . 3326.47

1810 ZG 2013 Sub-Saharan Africa 1777.29 . 3399.69

1811 ZG 2014 Sub-Saharan Africa 1794.73 . 3470.52

1812 ZG 2015 Sub-Saharan Africa 1594.17 . 3488.27

1813 ZG 2016 Sub-Saharan Africa . . .

1814 ZJ 2010 Latin America & Caribbean 8908.36 . 13790.02

1815 ZJ 2011 Latin America & Caribbean 10007.82 . 14234.93

1816 ZJ 2012 Latin America & Caribbean 9982.55 . 14481.17

1817 ZJ 2013 Latin America & Caribbean 10118.35 . 14730.09

1818 ZJ 2014 Latin America & Caribbean 10015.45 . 14735.30

1819 ZJ 2015 Latin America & Caribbean 8450.33 . 14638.17

1820 ZJ 2016 Latin America & Caribbean . . .

1821 ZM 2010 Zambia 1456.13 6985.19 3263.39

1822 ZM 2011 Zambia 1635.59 7154.84 3342.65

1823 ZM 2012 Zambia 1724.76 7467.76 3488.85

1824 ZM 2013 Zambia 1839.52 7609.13 3554.89

1825 ZM 2014 Zambia 1726.99 7725.61 3609.31

1826 ZM 2015 Zambia 1304.88 7710.66 3602.33

1827 ZM 2016 Zambia . . .

1828 ZQ 2010 Middle East & North Africa 7114.36 . 16827.86

1829 ZQ 2011 Middle East & North Africa 8355.46 . 17023.64

1830 ZQ 2012 Middle East & North Africa 8752.06 . 17157.05

1831 ZQ 2013 Middle East & North Africa 8711.85 . 17234.27

1832 ZQ 2014 Middle East & North Africa 8492.88 . 17422.23

1833 ZQ 2015 Middle East & North Africa 7398.65 . 17617.79

1834 ZQ 2016 Middle East & North Africa . . .

1835 ZT 2010 IDA & IBRD total 3684.66 . 7983.19

1836 ZT 2011 IDA & IBRD total 4289.38 . 8345.89

1837 ZT 2012 IDA & IBRD total 4484.02 . 8641.89

1838 ZT 2013 IDA & IBRD total 4690.06 . 8957.66

1839 ZT 2014 IDA & IBRD total 4779.42 . 9252.37

1840 ZT 2015 IDA & IBRD total 4466.77 . 9524.03



References F 3853

Output 55.9.1 continued

Retrieve the Entire Range of Data Observations in One Page

Obs country_id date country NY.GDP.PCAP.CD NY.GDP.PCAP.KN NY.GDP.PCAP.PP.KD

1841 ZT 2016 IDA & IBRD total . . .

1842 ZW 2010 Zimbabwe 674.27 650.14 1388.97

1843 ZW 2011 Zimbabwe 768.56 713.17 1523.62

1844 ZW 2012 Zimbabwe 850.83 771.74 1648.75

1845 ZW 2013 Zimbabwe 905.50 788.34 1684.23

1846 ZW 2014 Zimbabwe 931.20 800.01 1709.14

1847 ZW 2015 Zimbabwe 924.14 785.41 1677.97

1848 ZW 2016 Zimbabwe . . .

Output 55.9.1 shows the results for all countries (ALL) listed in the COUNTRYLIST= option. Three time
series are specified in the IDLIST= option. For the entire specified range, for years 2010–2016, the time
series have a total of 1,848 observation values.

The X macro shows how to obtain the total observation count by first requesting only 50 observations
(PER_PAGE=50, PAGE=1) in the first SASEWBGO LIBNAME statement. The SAS data set that the
SASEWBGO engine creates is named GdpMall by the OUTXML= option in the first SASEWBGO LIB-
NAME statement. The PROC SQL SELECT statement stores the total number of observations from the SAS
variable TOTAL_COUNT in the SAS macro variable named ALLNOBS. This allows the second SASEWBGO
LIBNAME statement to use the total observation count in the PER_PAGE= option so that all 1,848 observa-
tions are downloaded in one page. The SAS data set gdpTall contains all 1,848 observations. For brevity,
only the last 48 observations are shown in Output 55.9.1.
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Overview: SASEXCCM Interface Engine
The SASEXCCM interface engine enables SAS users to access the CRSP/Compustat Merged (CCM)
Database, which is created from data delivered via Compustat’s Xpressfeed product, the CRSP US Stock
(STK) Database, and the CRSP US Stock and Indices (IND) Database. The SASEXCCM engine provides a
seamless interface for CRSP, Compustat, and SAS data processing.

The SASEXCCM engine uses the LIBNAME statement to specify which database to open and what parts of
the database to access.

To specify the database, you supply the combination of a physical path to indicate the location of the data files
(CCM, STK, or IND data) and a set identifier (SETID) to identify the database that you want to access from
those available at the physical path. The SASEXCCM engine supports data-item-handling access methods
for the SETIDs in Table 56.1.

The SASECRSP engine no longer supports COMPUSTAT access. Instead, use the SASEXCCM engine,
SETID 250, to read your CRSP/Compustat Merged data.

Table 56.1 CRSP Database SETIDs

SETID Data Set

10 CRSP Stock, daily data
20 CRSP Stock, monthly data
250 CRSP/Compustat Merged data
400 CRSP Indices data, monthly index groups
420 CRSP Indices data, monthly index series
440 CRSP Indices data, daily index groups
460 CRSP Indices data, daily index series

Getting Started: SASEXCCM Interface Engine
To specify what parts of the database to access, you supply two things: the appropriate keys for companies or
securities that you want to access, and the list of data items that you want to retrieve.

When accessing CCM data, you select the companies that you want to access by specifying the GVKEY for
each company. A GVKEY is Compustat’s unique identifier and primary key. CRSP uses KYGVKEY to
refer to GVKEY in the CCM database. Use the GVKEY= option to specify which GVKEY to include. If no
GVKEYs are specified, data for all companies are retrieved. You can use the KEEP= KYGVKEY CONM
option to obtain a list of all companies (including their name and GVKEY) in the CCM database, as shown
in Example 56.5.

For example, the following statements access the CCM database to retrieve annual sales data for IBM
(GVKEY=6066) and Microsoft (GVKEY=12141):
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LIBNAME myLib sasexccm 'physical-name'
SETID=250
GVKEY=6066 /* IBM */
GVKEY=12141 /* MSFT */
ITEMLIST='SALE';

data yrlysale;
set myLib.annitem;

run;

When accessing CRSP US Stock (STK) data, you select the securities you want to access by specifying their
PERMNOs. A PERMNO is CRSP’s unique permanent issue identification number and the primary key for
its stock databases. You specify a PERMNO by using the PERMNO= option. If no PERMNOs are specified,
data for all securities in the database are retrieved. You can use this feature to obtain a list of all PERMNOs
in the STK database.

For example, the following statements access the STK database to retrieve monthly shares data for IBM
(PERMNO=12490) and Microsoft (PERMNO=10107):

LIBNAME myLib sasexccm 'physical-name'
SETID=20
PERMNO=12490 /* IBM */
PERMNO=10107 /* MSFT */
ITEMLIST="MSHROUT.*;MSHRFLG.*";

data mshares_all;
set myLib.mshares;

run;

When accessing CRSP US Stock and Indices (IND) data, you select the security and indices data from the
CRSP Daily or Monthly Stock and Indices database by specifying their INDNOs. An INDNO is the primary
key for CRSP Indices Databases. You specify an INDNO by using the INDNO= option. If no INDNOs are
specified, data for all securities in the database are retrieved. You can use this feature to obtain a list of all
INDNOs in the IND database.

For example, the following statements access the IND database to retrieve monthly Consumer Price Index
data (INDNO=1000709):

LIBNAME myLib sasexccm 'physical-name'
SETID=420
INDNO=1000709 /* Consumer Price Index */
ITEMLIST=
"MREBAL.*;MRBBEGDT.*;MRBENDDT.*;MRUSDCNT.*;MMINID.*;MMAXID.*;MMINSTAT.*";

data mindts_all;
set myLib.mindhdr;
set myLib.mrebal;

run;

To specify the list of data items that you want to retrieve, use the ITEMLIST= option. This option accepts
a string that denotes a list of requested data items and the reporting format (for example, data format,
population source, consolidation level, and so on) in standard CRSP notation by using CRSP’s unique
mnemonic text name itm_name and the mnemonic tag keyset. For more information about CRSP notation,
see the ITEMLIST= option in the section “The LIBNAME libref SASEXCCM Statement” on page 3859.
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After the SAS library reference (libref) is assigned by the LIBNAME statement, the database is opened.
The selected data are organized into groups such as ANNITEM for annual time series data or LINK for
event-based CRSP/Compustat link data. You can also use the SAS DATA step to perform further subsetting
and to store the resulting time series in a SAS data set.

The SASEXCCM engine supports Linux X64 (LAX), Solaris X64 (SAX), Solaris SPARC (S64), and
Windows. Windows no longer requires you to install the CRSPAccess API, because it is now distributed
automatically by your SAS/ETS installation. Your Windows setup does not require any special environment
variables.

Syntax: SASEXCCM Interface Engine
The SASEXCCM interface engine uses standard engine syntax. Options that the SASEXCCM engine uses
are summarized in Table 56.2. The SETID= and ITEMLIST= options are required.

Table 56.2 Summary of LIBNAME libref

Option Description

SETID= Specifies which CRSP database at the physical path to
open. For the complete list of supported SETIDs, see
Table 56.1.

GVKEY= Specifies a Compustat GVKEY for accessing CCM data.
To select more than one GVKEY, use this option multiple
times. See Example 56.1 and Example 56.2.

GVIIDKEY= Specifies a composite GVKEY.IID for accessing security
related items by both GVKEY and IID.

PERMNO= Specifies a CRSP PERMNO for accessing STK data. To
select more than one PERMNO, use this option multiple
times.

INDNO= Specifies a CRSP INDNO for accessing IND data. To
select more than one INDNO, use this option multiple
times.

ITEMLIST= Specifies the selected data items to be accessed. This
option accepts a string in standard CRSP notation.
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The LIBNAME libref SASEXCCM Statement
LIBNAME libref SASEXCCM ’physical-name’ SETID=crsp_setidnumber options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory of
CRSP data files where the CRSP database that you want to open is located. The required physical-name
argument must end in a slash for UNIX environments and a backslash for Windows environments. The
required SETID=crsp_setidnumber argument specifies the CRSP database that you want to read from.
Choose one SETID from these values: 10, 20, 250, 400, 420, 440, and 460. For example, the following
statement accesses the CCM database and retrieves the annual sales data for IBM (GVKEY=6066):

LIBNAME myLib SASEXCCM 'physical-name' SETID=250 GVKEY=6066 ITEMLIST='SALE';

You can specify the following options:

GVKEY=crsp_gvkey
selects the companies or issues whose data you want to retrieve. Specify the GVKEY (Compustat’s
permanent SPC identifier) for the crsp_gvkey . There is no limit to the number of GVKEY= options
that you can specify. If no GVKEY= options are specified, all GVKEYs in the database are selected.

For example, the following statement accesses the CCM database to retrieve annual sales data for IBM
(GVKEY=6066) and Microsoft (GVKEY=12141):

LIBNAME myLib sasexccm 'physical-name'
SETID=250
GVKEY=6066 /* IBM */
GVKEY=12141 /* MSFT */
ITEMLIST='SALE';

GVIIDKEY='crsp_gviidkey '
selects the companies and issues whose data you want to retrieve. Specify both the GVKEY and the
IID (Compustat’s permanent issue identifier) by concatenating the two with a ‘.’ and enclosing them in
double quotation marks. There is no limit to the number of GVIIDKEY= options that you can specify.
The following members use GVIIDKEY access: IDXCST_HIS, MTHSEC, SECHIST, SECURITY,
SEC_MDIVFN, SEC_MSPTFN, SEC_MTHSPT, SEC_SPIND, SEC_TS_ITM, and SPIDX_CST.

For example, the following statements access the CCM database to retrieve the security member
that gives security header information for Microsoft issue ID=01, IBM issue ID=01, and some other
companies’ issues shown in the GVIIDKEY= options:

LIBNAME crsp sasexccm 'physical-name'
SETID=250
GVIIDKEY="12141.01" /* MSFT issue id 01 */
GVIIDKEY="6066.01" /* IBM issue id 01 */
GVIIDKEY="6008.01" /* INTC issue id 01 */
GVIIDKEY="12142.01" /* ORCL issue id 01 */
GVIIDKEY="62634.01" /* YHOO issue id 01 */
GVIIDKEY="5047.01" /* GE issue id 01 */
GVIIDKEY="7866.01" /* NYT issue id 01 */
GVIIDKEY="7866.02" /* NYTAB issue id 02 */



3860 F Chapter 56: The SASEXCCM Interface Engine

ITEMLIST="DLDTEI;DLRSNI;DSCI;EPF;EXCHG;IID;IID_SEQ_NUM;ISIN;SBEGDT;SENDDT;SCUSIP;
!SEDOL;SSECSTAT;TIC;TPCI";

data headersecurity;
set crsp.security;

run;

PERMNO=crsp_permno
selects the companies or issues whose data you want to retrieve. Specify a CRSP company issue’s
PERMNO for the crsp_permno. There is no limit to the number of PERMNO= options that you can
specify. If no PERMNO= options are specified, all PERMNOs in the database are selected.

For example, the following statements access the STK database to retrieve monthly shares data for
IBM (PERMNO=12490) and Microsoft (PERMNO=10107):

LIBNAME myLib sasexccm 'physical-name'
SETID=20
PERMNO=12490 /* IBM */
PERMNO=10107 /* MSFT */
ITEMLIST="MSHROUT.*;MSHRFLG.*";

data mshares_all;
set myLib.mshares;

run;

INDNO=crsp_indno
selects the time series or the group data from the index whose data you want to retrieve. Specify a
CRSP Index’s INDNO for the crsp_indno. There is no limit to the number of INDNO= options that
you can specify. If no INDNO= options are specified, all INDNOs in the database are selected.

For example, the following statements access the IND database to retrieve monthly consumer price
index data (INDNO=1000709):

LIBNAME myLib sasexccm 'physical-name'
SETID=420
INDNO=1000709 /* Consumer Price Index */
ITEMLIST=
"MREBAL.*;MRBBEGDT.*;MRBENDDT.*;MRUSDCNT.*;MMINID.*;MMAXID.*;MMINSTAT.*";

data mindts_all;
set myLib.mindhdr;
set myLib.mrebal;

run;

ITEMLIST="crsp_itemlist"
specifies the items and groups of interest for selection based on keysets, which define the reporting
format that you want. Specify a string in CRSP standard notation for crsp_itemlist . For an overview of
items, groups, and reporting formats, see the section “Data Reference: Introduction” on page 3863.
Reference sections that are based on CRSP documentation follow the overview. For more information,
see the CRSPAccess User Guide for the CRSP/Compustat Merged Database, the CRSP US Stock and
Indices Database, and the CRSP US Treasury Database.

The CRSP standard notation has the form
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[global_section:]list_section

The list_section consists of a semicolon-delimited string of list elements in the form

list_element[;list_element]

Each list_element can be an item or group name. You can also specify a particular keyset for the item
or group by appending a period and its keyset number. For example, “sale.2” selects the sales item for
keyset 2, which contains the industrial format, consolidated information, and standardized summary
data from the latest annual filing.

The optional global_section holds flags that modify all elements in the list section. The following flags
are recognized:

f adds applicable and populated footnote items for every item selected. For example,
“f:sale;at;ceq” selects sales, total assets, and common equity items with default keysets
and available footnotes for the selected items.

d adds applicable and populated data code items for every item selected. For example,
“d:sale;at;ceq” selects sales, total assets, and common equity items with default keysets and
available data codes for the selected items.

k.list applies the list of keysets to all items in the list that do not have a specified keyset. The list
can be either * to select all available keysets or #-#,#... to select keysets by their number.
For example, “k.1:sale;at;ceq” selects the default keyset, keyset 1, for all items.

The following LIBNAME statement shows how to access the CCM database to retrieve the annual
sales data and quarterly total assets data for IBM (GVKEY=6066) and Microsoft (GVKEY=12141):

LIBNAME myLib sasexccm 'physical-name'
SETID=250
GVKEY=6066 /* IBM */
GVKEY=12141 /* MSFT */
ITEMLIST='f:sale;actq';

After the libref is assigned, you can access any of the available groups (members) within the opened
database:

STK daily For more information about groups in the Daily Stock Database, SETID 10, see the
section “Daily STK Data Groups” on page 3868.

STK mthly For more information about groups in the Monthly Stock Database, SETID 20, see
the section “Monthly STK Data Groups” on page 3869.

CCM For more information about groups in the CRSP/Compustat Merged Databases,
SETID 250, see the section “CCM Data Groups” on page 3866.

IND mthly grp For more information about groups in the Monthly Indices Group Data Database,
SETID 400, see the section “Monthly IND Group Data Group Names” on
page 3870.
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IND mthly ts For more information about groups in the Monthly Indices Time Series Database,
SETID 420, see the section “Monthly IND Time Series Data Group Names” on
page 3871.

IND daily grp For more information about groups in the Daily Indices Group Data Database,
SETID 440, see the section “Daily IND Group Data Group Names” on page 3870.

IND daily ts For more information about groups in the Daily Indices Time Series Database,
SETID 460, see the section “Daily IND Time Series Data Group Names” on
page 3872.

Details: SASEXCCM Interface Engine

SAS Output Data Set
You can use the SAS DATA step to write the selected CRSP or Compustat data to a SAS data set. This
enables you to easily analyze the data by using SAS software. If you specify the name of the output data set
in the DATA statement, the engine supervisor creates a SAS data set that has the specified name in either the
SAS Work library or, if specified, the User library.

The contents of the SAS data set include the DATE of each observation, the series name of each series read
from the CRSPAccess database, event variables, and the label or description of each series, event, or array.

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASEXCCM libref to create a custom view of your
data.

Missing Values
In general, CRSP missing values are represented as ‘.’ in the SAS data set. When accessing the CCM
database, the SASEXCCM engine interprets missing values according to the conditions and codes defined by
Compustat and represents them as SAS missing codes, as shown in Table 56.3.

Table 56.3 Mapping of Compustat and SAS Missing Codes

Missing Value Missing
Code

Condition

0.0001 . No data for data item
0.0002 .S Data are available only on a semi-annual basis
0.0003 .A Data are available only on an annual basis
0.0004 .C Combined into other item
0.0007 .N Data are not meaningful
0.0008 .I Reported as insignificant
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Missing value codes conform with Compustat’s Strategic Insight and binary conventions for missing values.
For more information about how CRSP handles Compustat missing codes, see the section “Notes on Missing
Values” in the second chapter of the CRSP/Compustat Merged Database Guide.

Data Reference: Introduction
Data reference details are presented for items, keysets, and groups available from four CRSPAccess databases
in this order: CCM database, STK databases, and IND databases. In addition to summary tables, sample SAS
statements show how to generate a customized list of item names available from each group for a particular
database.

CCM Data Items
The CRSP/Compustat Merged (CCM) database is organized by company and security according to Compu-
stat’s Permanent SPC Identifier (GVKEY) and Compustat’s Permanent Issue Identifier (IID). An identifying
relationship exists between IID and GVKEY. The two identifiers must be accessed as a pair to properly
identify a Compustat security. One GVKEY can have multiple IIDs. The SASEXCCM interface engine
provides the GVIIDKEY= option to provide access to Compustat securities through the composite key
designated by “GVKEY.IID”.

CCM data are broken down into items, and items can be further qualified by a set of secondary keys. CRSP
calls these known collections of keys and values a keyset, and it assigns a numeric code and mnemonic tag to
each unique collection. Each keyset represents different output series. Items are also organized into groups
for selection and presentation. A group can include other groups, or a group can include items. Items can
belong to more than one group. Sometimes groups are also called members.

For example, the Compustat data item SALE has secondary keys for industry format, data format, population
source, and consolidation level. A different value of company sales can be available for any combination of
these keys, such as a combination that represents the originally reported sales or the final restated sales from
a later filing. The SALE data item is a part of the ANNITEM (Annual Time Series Items, including footnotes
and data codes) group.

The CCM database contains data items provided by Compustat in addition to structures and supplementary
data items provided by CRSP. All data items include a mnemonic and a field name. This section provides a
summary of Compustat data items whose mnemonic differs in the CCM database, and a summary of the
supplementary data items provided by CRSP. For more information about the Compustat data items, refer
to your Compustat data documentation or see http://www.compustatresources.com/support/
index.html. For more information about the supplementary CRSP data items, see your CCM Database
Guide.

http://www.compustatresources.com/support/index.html
http://www.compustatresources.com/support/index.html
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Table 56.4 Items with Different CRSP and Compustat Names

Compustat Mnemonic CRSP itm_name Description Definition

BETA XPFBETA Data item Xpressfeed beta
DVPSXM XDVPXSM Data item Index monthly dividend
PRC XPFPRC Data item Participation rights certificates
PRCCM XPRCCM Data item Index price close monthly
PRCHM XPRCHM Data item Index price high monthly
PRCLM XPRCLM Data item Index price low monthly
PRC_DC XPFPRC_DC Data code Participation rights certificates data code
PRC_FN XPFPRC_FN Footnote Participation rights certificates footnote
RET XPFRET Data item Total real estate property
RET_DC XPFRET_DC Data code Total real estate property data code
RET_FN XPFRET_FN Footnote Total real estate property footnote
YEAR YEARQ Data item Year quarterly

Supplemental CRSP data items are organized into groups. For a list of the supplemental data groups, see the
section “CCM Data Groups” on page 3866.

CCM Keysets
Compustat items can be qualified by a set of secondary keys. This collection of secondary keys and values
creates a keyset that assigns a numeric code and mnemonic tag to each unique collection. Each keyset
represents different output series. For example, one keyset might represent originally reported sales, and
another might represent the final restated sales from a later filing. Full details about keysets can be found in
the CRSP/Compustat Merged Database Guide. For your convenience, Table 56.5 summarizes the keysets.
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Table 56.5 Summary of CCM Keysets

Keyset Tag Keyset Description

0 Indices
1 STD Industrial format, consolidated information, standardized presentation
2 SUMM Industrial format, standardized summary data (StdSumData) from the latest annual filing
3 PRES Industrial format, StdSumData collected prior to company amendment
4 FS Financial services format, consolidated information, standardized presentation
5 PFO Industrial format, pro forma reporting, standardized presentation
6 PFAS Pre-FASB reporting
7 SFAS Industrial format, pre-FASB reporting, standardized presentation
8 PRE Industrial format, StdSumData collected from the latest annual filing
10 PDIV Industrial format, pre-divestiture reporting, standardized presentation
11 DOM Domestic
12 SUPF Industrial format, pre-FASB reporting, StdSumData from the latest annual filing
14 STD1 Industrial format, consolidated information, standardized presentation, rank 1
15 FSFO Financial services format, pro forma reporting, standardized presentation
16 FS1 Financial services format, consolidated information, standardized presentation, rank 1
17 FS2 Financial services format, consolidated information, standardized presentation, rank 2
18 SUFS Industrial format, pro forma reporting, StdSumData from the latest annual filing
19 PDI1 Industrial format, pre-divestiture reporting, standardized presentation, rank 1
20 PFA1 Industrial format, pre-FASB reporting, standardized presentation, rank 1
21 SUPD Industrial format, pre-divestiture reporting, StdSumData from the latest annual filing
22 FS3 Financial services format, consolidated information, standardized presentation, rank 3
23 PDI2 Industrial format, consolidated information, standardized presentation, rank 2
24 CONS Consolidated information
25 STD2 Industrial format, consolidated information, standardized presentation, rank 2
26 STD3 Industrial format, consolidated information, standardized presentation, rank 3
27 STD4 Industrial format, consolidated information, standardized presentation, rank 4
28 STD5 Industrial format, consolidated information, standardized presentation, rank 5
29 PFA2 Industrial format, pre-FASB reporting, standardized presentation, rank 2
30 PFA3 Industrial format, pre-FASB reporting, standardized presentation, rank 3
31 CUSD Calendar-based reporting in US dollars
32 FUSD Fiscal-based reporting in US dollars
33 CCAD Calendar-based reporting in Canadian dollars
34 FCAD Fiscal-based reporting in Canadian dollars
35 PFA4 Industrial format, pre-FASB reporting, standardized presentation, rank 4
36 PFO2 Industrial format, pro forma reporting, standardized presentation, rank 2
37 PFO1 Industrial format, pro forma reporting, standardized presentation, rank 1
38 PRE1 Industrial format, standardized data collected before company amendment, rank 1
39 FFO1 Financial services format, pro forma reporting, standardized presentation, rank 1
40 FS4 Financial services format, consolidated information, standardized presentation, rank 4
41 GICS Industry code type Global Industry Classification Standard
43 FORD Pro forma reporting
44 BSTD Bank format, consolidated information, standardized presentation
45 BSUMM Bank format, consolidated information, StdSumData from the latest annual filing
46 BPFO Bank format, pro forma reporting, standard presentation
47 BASTD Bank format, consolidated information, average standardized presentation
48 BASUMM Bank format, average standardized summary presentation from the latest annual filing
49 BAPFO Bank format, pro forma reporting, average standardized presentation
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CCM Data Groups
CCM items are organized into groups for ease of selection and presentation. Each group is given a group
name. These names are unique and do not overlap with item names. A group can be made up of either items
or other groups. Items can belong to more than one group. Table 56.6 provides a summary of some groups.
For more information about CCM data groups, see your CCM Database Guide.

Table 56.6 Selected Xpressfeed Primary and CRSP Supplemental Groups

Item Name Description

MASTER CCM company ID and range data
COMPANY CCM company header information
IDX_INDEX CCM idx_index header information
SPIND Standard & Poor’s (S&P) index header (pre-GICS)
COMPHIST CCM company header history
CSTHIST CST header history
LINK Link history
LINKUSED CCM company CRSP link used data
LINKRNG CCM company CRSP link range data
ADJFACT CCM company adjustment factor history
HGIC CCM company GICS code history
OFFTITL CCM company officer title data
CCM_FILEDATE CCM company filing date data
CCM_IPCD CCM industry presentation code data
SECURITY CCM security header information
SECHIST CCM security header history
SEC_MTHSPT CCM security monthly split events
SEC_MSPT_FN CCM security monthly split event footnotes
SEC_MDIV_FN CCM security monthly dividend event footnotes
SEC_SPIND CCM security S&P information events
IDXCST_HIS CCM security historical index constituents
SPIDX_CST CCM security S&P index constituent events
CCM_SEGCUR CCM operating segment currency rate data
CCM_SEGSRC CCM operating segment source data
CCM_SEGPROD CCM operating segment product data
CCM_SEGCUST CCM operating segment customer data
CCM_SEGDTL CCM operating segment detail data
CCM_SEGITM CCM operating segment item data
CCM_SEGNAICS CCM operating segment NAICS data
CCM_SEGGEO CCM operating segment geographic data
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Daily STK Data Items
You can generate a customized list of item names available in the daily stock database (SETID=10) by
running the following sample statements for each group name in Table 56.8:

libname dstock sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=10 permno=12490
itemlist="group_name.*";

proc contents data=dstock.group_name; run;

The following statements generate an item list of all the item names available in the group named
STKHDR_ID:

libname crsp sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=10 permno=12490
itemlist="STKHDR_ID.*";

proc contents data=crsp.stkhdr_id; run;

The item names in group STKHDR_ID are listed in Table 56.7.

Table 56.7 US Daily Stock Items in Group STKHDR_ID

Item Name Description

BEGDT Begdt
COMPNO COMPNO
CUSIP CUSIP
ENDDT Enddt
HCOMNAM Latest company name
HDLSTCD DEL
HEXCD EX
HPRIMEXCH Ex1
HSECSTAT Sst
HSHRCD SH
HSICCD SIC
HSNAICS Naics
HSUBEXCH Ex2
HTICK Htick
HTRDSTAT Tst
HTSYMBOL Symbol
ISSUNO Issuno
KYPERMNO PERMNO
PERMCO PERMCO
PERMNO PERMNO
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Daily STK Data Groups
Daily stock groups are shown in Table 56.8.

Table 56.8 US Daily Stock Group Names

Group Name Description

STKHDR_ID Stock header (summary)
STKHDR_ALL All stock headers
STKHDR_RNG Stock header plus ranges
LSTKHDR_RNG Stock header plus calendar index ranges
NAMES_SHORT Name history (short list)
NAMES Name history
NAMES_ALL All names
DISTS Distribution events
ADJDISTS Daily adjusted distribution events
SHARES Shares outstanding observations
RSHARES Raw shares outstanding observations
ADJSHARES Daily adjusted shares outstanding observations
DELIST Delisting history
ADJDELIST Adjusted delisting events
NASDIN NASDAQ information history
DLY_DATA Daily price summary time series
DLY_ADJDATA Daily adjusted price summary time series
DSTK_TS Daily time series
DLY_WGT Daily price, shares, and returns
DLY_ADJ_WGT Daily adjusted price, shares, and returns
DLY_LVL Daily index level
DLY_RET Daily returns
PORTF Portfolio data
GROUP Group membership data
DLY_TS_NAT Daily time series (native only)
DSTK_VOLUME Volume
DSTK_CAP Capitalization
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Monthly STK Data Items
You can generate a customized list of item names available in the monthly stock database by running the
following sample statements for each group name in Table 56.9:

libname crsp sasexccm
"/r/tappan/vol/vol1/crsp1/data201008_little/MIZ201006/"
setid=20 permno=12490
itemlist="group_name.*";

proc contents data=crsp.group_name; run;

Monthly STK Data Groups
Monthly stock groups are shown in Table 56.9.

Table 56.9 US Monthly Stock Group Names

Group Name Description

MSTKHDR_ID Stock header (summary)
MSTKHDR_RNG Stock header plus ranges
LMSTKHDR_RNG Stock header plus calendar index ranges
MNAMES_SHORT Name history (short list)
MNAMES Name history
MNAMES_ALL All MNAMES (monthly name histories)
MDISTS Distribution events
MADJDISTS Monthly adjusted distribution events
MSHARES Shares outstanding observations
RMSHARES Raw shares outstanding observations
MADJSHARES Monthly adjusted shares outstanding observations
MDELIST Delisting history
MADJDELIST Adjusted delisting events
MNASDIN NASDAQ information history
MTH_DATA Monthly price summary time series
MTH_ADJDATA Monthly adjusted price summary time series
MTH_TS Monthly time series
MTH_WGT Monthly price, shares, and returns
MTH_ADJ_WGT Monthly adjusted price, shares, and returns
MTH_LVL Monthly index level
MTH_RET Monthly returns
MPORTF Portfolio data
MGROUP Group membership data
MTH_TS_NAT Monthly time series (native only)
MSTK_VOLUME Volume
MSTK_CAP Capitalization
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IND Group Data Item Names
You can generate a customized list of available indices group data item names by running the following
sample statements for each daily or monthly group name from Table 56.10 or Table 56.11 and substituting
the corresponding SETID, data path, and actual daily (or monthly) group name for the group_name:

libname crsp sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=440
indno=1000040
itemlist="group_name.*";

proc contents data=crsp.group_name; run;

Monthly IND Group Data Group Names
The monthly group indices data consist of the groups listed in Table 56.10.

Table 56.10 US IND Monthly Group Data Group Names

Group Name Description

MINDHDRG Monthly index group header
MINDSUMMG Monthly index group summary
MLISTG Monthly index group list history
MREBALG Monthly index group rebalancing history
MREBALG_ALL Monthly index group rebalancing
MTHGIND_LVL Monthly index group levels
MTHGIND_RET Monthly index group returns
MTHGIND_TS Monthly index group series
MTHGIND_VAL Monthly index group values

Daily IND Group Data Group Names
The daily group indices data consist of the groups listed in Table 56.11.
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Table 56.11 US IND Daily Group Data Group Names

Group Name Description

INDHDRG Index group header
INDSUMMG Index group summary
LISTG Index group list history
REBALG Index group rebalancing history
REBALG_ALL Index group rebalancing
DLYGIND_LVL Index group levels
DLYGIND_RET Index group returns
DLYGIND_TS Index group series
DLYGIND_VAL Index group values

IND Time Series Data Item Names
You can generate a customized list of available item names by running the following sample statements
for each daily or monthly time series group name from Table 56.12 or Table 56.13 and substituting the
corresponding SETID, data path, and actual daily (or monthly) time series group name for the group_name:

libname daycrsp sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=460
indno=1000040
itemlist="group_name.*";

proc contents data=daycrsp.group_name; run;

Monthly IND Time Series Data Group Names
The monthly indices data consist of the groups listed in Table 56.12.

Table 56.12 US IND Monthly Series Data Group Names

Group Name Description

MINDHDR Monthly index header
MINDSUMM Monthly index summary
MLIST Monthly index list history
MREBAL Monthly index rebalancing history
MREBAL_ALL Monthly index rebalancing
MTHIND_LVL Monthly index levels
MTHIND_RET Monthly index returns
MTHIND_TS Monthly index series
MTHIND_VAL Monthly index values
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Daily IND Time Series Data Group Names
The daily indices data consist of the groups listed in Table 56.13.

Table 56.13 US IND Daily Time Series Data Group Names

Group Name Description

INDHDR Index header
INDSUMM Index summary
LIST Index list history
REBAL Index rebalancing history
REBAL_ALL Index rebalancing
DLYIND_LVL Index levels
DLYIND_RET Index returns
DLYIND_TS Index series
DLYIND_VAL Index values

Examples: SASEXCCM Interface Engine

Example 56.1: Retrieving SALE Data for One GVKEY
This simple example shows how to retrieve SALE data for one particular GVKEY=6066 (IBM). Because the
ITEMLIST= option does not specify a keyset, the default (standard) keyset, KEYSET_TAG=STD, is selected.
For brevity, a subset of the data that contains the most recent figures is specified by the WHERE statement.

title 'Retrieve SALE data for IBM';
libname _all_ clear;

libname crsp sasexccm "/thirdparty/crspdata/CMZ201201/"
setid=250
gvkey=6066
itemlist="sale";

data recentsales;
set crsp.annitem;
where datadate >= '1jan2000'd;

proc print data=recentsales;
run;
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Output 56.1.1 SALE Data for GVKEY=6066

Retrieve SALE data for IBM

Obs KYGVKEY KEYSET_TAG DATADATE SALE

1 6066 STD 20001229 88396.0000

2 6066 STD 20011231 85866.0000

3 6066 STD 20021231 81186.0000

4 6066 STD 20031231 89131.0000

5 6066 STD 20041231 96293.0000

6 6066 STD 20051230 91134.0000

7 6066 STD 20061229 91424.0000

8 6066 STD 20071231 98786.0000

9 6066 STD 20081231 103630.0000

10 6066 STD 20091231 95758.0000

11 6066 STD 20101231 99871.0000

Example 56.2: Retrieving SALE Data for Multiple Companies
This example shows how to retrieve several data items for several GVKEYs. Note how the item offtitl is
not an annual item and is stored in its own member. The default (standard) keyset is used for all items. For
brevity, a subset of the data that contains the most recent figures is specified by the WHERE statement.

title 'Retrieve Sales, Revenue, Liabilities, and Officer data for IBM and MSFT';
libname _all_ clear;

libname crsp sasexccm "/thirdparty/crspdata/CMZ201201/"
setid=250
gvkey=6066
gvkey=12141
itemlist="sale;revt;lct;offtitl";

data recentannitems;
set crsp.annitem;
where datadate >= '1jan2000'd;

proc print data=recentannitems;
proc print data=crsp.offtitl;
run;
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Output 56.2.1 Data Items for IBM and Microsoft

Retrieve Sales, Revenue, Liabilities, and Officer data for IBM and MSFT

Obs KYGVKEY KEYSET_TAG DATADATE SALE REVT LCT

1 6066 STD 20001229 88396.0000 88396.0000 36406.0000

2 6066 STD 20011231 85866.0000 85866.0000 35119.0000

3 6066 STD 20021231 81186.0000 81186.0000 34550.0000

4 6066 STD 20031231 89131.0000 89131.0000 37900.0000

5 6066 STD 20041231 96293.0000 96293.0000 39798.0000

6 6066 STD 20051230 91134.0000 91134.0000 35152.0000

7 6066 STD 20061229 91424.0000 91424.0000 40091.0000

8 6066 STD 20071231 98786.0000 98786.0000 44310.0000

9 6066 STD 20081231 103630.0000 103630.0000 42435.0000

10 6066 STD 20091231 95758.0000 95758.0000 36002.0000

11 6066 STD 20101231 99871.0000 99871.0000 40562.0000

12 12141 STD 20000630 22956.0000 22956.0000 9755.0000

13 12141 STD 20010629 25296.0000 25296.0000 11132.0000

14 12141 STD 20020628 28365.0000 28365.0000 12744.0000

15 12141 STD 20030630 32187.0000 32187.0000 13974.0000

16 12141 STD 20040630 36835.0000 36835.0000 14969.0000

17 12141 STD 20050630 39788.0000 39788.0000 16877.0000

18 12141 STD 20060630 44282.0000 44282.0000 22442.0000

19 12141 STD 20070629 51122.0000 51122.0000 23754.0000

20 12141 STD 20080630 60420.0000 60420.0000 29886.0000

21 12141 STD 20090630 58437.0000 58437.0000 27034.0000

22 12141 STD 20100630 62484.0000 62484.0000 26147.0000

23 12141 STD 20110630 69943.0000 69943.0000 28774.0000

Retrieve Sales, Revenue, Liabilities, and Officer data for IBM and MSFT

Obs KYGVKEY OFID OFCD OFNM

1 6066 1911113 CE Ms. Virginia M. Rometty

2 6066 1911113 DI Ms. Virginia M. Rometty

3 6066 1911113 PR Ms. Virginia M. Rometty

4 6066 1911114 CB Mr. Samuel J. Palmisano

5 6066 1911114 DI Mr. Samuel J. Palmisano

6 6066 1911115 CF Mr. Mark Loughridge

7 6066 1911116 TO Mr. Rodney C. Adkins

8 12141 1873964 CE Mr. Steven A. Ballmer

9 12141 1873964 DI Mr. Steven A. Ballmer

10 12141 1873965 CB Mr. William Henry Gates III

11 12141 1873965 DI Mr. William Henry Gates III

12 12141 1873966 CO Mr. Brain Kevin Turner

13 12141 1873967 CF Mr. Peter S. Klein
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Example 56.3: Retrieving Data from Different Keysets
This example shows how to retrieve several data items from different keysets. You request data about
research and development (R&D) expenses (XRD) and net income (NI) over all available keysets by using
the itm_name.* syntax in the ITEMLIST= option. Note that data are not available for all items in all keysets.
For brevity, a subset of the data that contains the most recent figures is specified by the WHERE statement.

title 'Retrieve R&D Expenses and Net Income for IBM';
libname _all_ clear;

libname crsp sasexccm "/thirdparty/crspdata/CMZ201201/"
setid=250
gvkey=6066
itemlist="xrd.*;ni.*";

data recent;
set crsp.annitem;
where datadate >= '1jan2001'd;

proc print data=recent;
run;

Output 56.3.1 R&D Expenses and Net Income for GVKEY=6066

Retrieve R&D Expenses and Net Income for IBM

Obs KYGVKEY KEYSET_TAG DATADATE XRD NI

1 6066 STD 20011231 4620.0000 7723.0000

2 6066 STD 20021231 4754.0000 3579.0000

3 6066 STD 20031231 5077.0000 7583.0000

4 6066 STD 20041231 5167.0000 8430.0000

5 6066 STD 20051230 5379.0000 7934.0000

6 6066 STD 20061229 5682.0000 9492.0000

7 6066 STD 20071231 5754.0000 10418.0000

8 6066 STD 20081231 6015.0000 12334.0000

9 6066 STD 20091231 5523.0000 13425.0000

10 6066 STD 20101231 5720.0000 14833.0000

11 6066 SUMM 20011231 . 6484.0000

12 6066 SUMM 20021231 . 2376.0000

13 6066 SUMM 20031231 . 6558.0000

14 6066 SUMM 20041231 . 7479.0000

15 6066 SUMM 20051230 . 7934.0000

16 6066 SUMM 20061229 . 9492.0000

17 6066 SUMM 20071231 . 10418.0000

18 6066 SUMM 20081231 . 12334.0000

19 6066 SUMM 20091231 . 13425.0000

20 6066 SUMM 20101231 . 14833.0000
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Example 56.4: Retrieving Items by Using Global Options
This example shows how to retrieve data on total assets (ATQ) and after tax gain or loss (GLAQ) by using
the global option for turning on footnote items, which uses the following syntax:

ITEMLIST="f:itm_name1;itm_name2;....itm_nameN"

The default (standard) keyset is used for all items. For brevity, a subset of the data that contains the most
recent figures is specified by the WHERE statement.

title 'Retrieve data for IBM with Footnotes';
libname _all_ clear;

libname crsp sasexccm "/thirdparty/crspdata/CMZ201201/"
setid=250
gvkey=6066
itemlist="f:atq;glaq";

data recent;
set crsp.qtritem;
where datadate >= '1jan2004'd;

proc print data=recent;
run;
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Output 56.4.1 Data Items with Footnotes

Retrieve data for IBM with Footnotes

Obs KYGVKEY KEYSET_TAG DATADATE ATQ ATQ_FN1 GLAQ GLAQ_FN

1 6066 STD 20040331 101825.0000 JR .

2 6066 STD 20040630 99582.0000 JR .

3 6066 STD 20040930 100676.0000 JR .

4 6066 STD 20041231 109183.0000 JR .

5 6066 STD 20050331 104899.0000 .

6 6066 STD 20050630 103388.0000 732.5550 NC

7 6066 STD 20050930 101009.0000 0.0000 NC

8 6066 STD 20051230 105748.0000 0.0000 NC

9 6066 STD 20060331 102468.0000 .

10 6066 STD 20060630 103377.0000 .

11 6066 STD 20060929 104155.0000 .

12 6066 STD 20061229 103234.0000 29.2500 NR

13 6066 STD 20070330 101619.0000 .

14 6066 STD 20070629 102548.0000 81.0000

15 6066 STD 20070928 108609.0000 0.0000

16 6066 STD 20071231 120431.0000 0.0000

17 6066 STD 20080331 121823.0000 .

18 6066 STD 20080630 120928.0000 .

19 6066 STD 20080930 115910.0000 .

20 6066 STD 20081231 109524.0000 .

21 6066 STD 20090331 101944.0000 193.7000 NR

22 6066 STD 20090630 103655.0000 0.0000 NR

23 6066 STD 20090930 103675.0000 0.0000 NR

24 6066 STD 20091231 109022.0000 0.0000 NR

25 6066 STD 20100331 105208.0000 390.3600 NC

26 6066 STD 20100630 103420.0000 0.0000 NR

27 6066 STD 20100930 107174.0000 0.0000 NR

28 6066 STD 20101231 113452.0000 0.0000 NR

29 6066 STD 20110331 112960.0000 .

30 6066 STD 20110630 113474.0000 .

31 6066 STD 20110930 110158.0000 .
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Example 56.5: Retrieving All GVKEYs and Company Names
This example shows how to retrieve the GVKEY and name for every company in the CCM database.

title 'Retrieve All GVKEYs and Company Names';
libname _all_ clear;

libname crsp sasexccm "/thirdparty/crspdata/CMZ201201/"
setid=250
itemlist="company";

proc contents data=crsp.company;
proc print data=crsp.company(keep=kygvkey conm obs=20);
run;

For brevity, only the first 20 observations are shown, and only KYGVKEY and CONM are kept in Output 56.5.1.

Output 56.5.1 First 20 GVKEYS and Company Names

Retrieve All GVKEYs and Company Names

The CONTENTS Procedure

Data Set Name CRSP.COMPANY Observations .

Member Type DATA Variables 38

Engine CRSPCCM Indexes 0

Created 08/31/2018 15:36:23 Observation Length 3232

Last Modified 08/31/2018 15:36:23 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation Default

Encoding Default
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Output 56.5.1 continued

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

33 ADD1 Char 68 65. 65. ADD1

34 ADD2 Char 68 65. 65. ADD2

35 ADD3 Char 68 65. 65. ADD3

36 ADD4 Char 68 65. 65. ADD4

37 ADDZIP Char 24 24. 24. ADDZIP

38 BUSDESC Char 2000 2000. 2000. BUSDESC

2 CIK Char 12 10. 10. CIK

20 CITY Char 104 104. 104. CITY

5 CONM Char 256 255. 255. CONM

29 CONML Char 104 100. 100. CONML

7 COSTAT Char 4 1. 1. COSTAT

19 COUNTY Char 104 100. 100. COUNTY

9 DLDTE Num 8 8. 8. DLDTE

10 DLRSN Char 12 8. 8. DLRSN

3 EIN Char 12 10. 10. EIN

32 FAX Char 24 18. 18. FAX

15 FIC Char 16 3. 3. FIC

6 FYRC Num 8 2. 2. FYRC

24 GGROUP Char 12 4. 4. GGROUP

25 GIND Char 12 6. 6. GIND

23 GSECTOR Char 12 2. 2. GSECTOR

26 GSUBIND Char 12 8. 8. GSUBIND

14 IDBFLAG Char 12 1. 1. IDBFLAG

17 INCORP Char 12 8. 8. INCORP

8 IPODATE Num 8 8. 8. IPODATE

1 KYGVKEY Num 8 6. 6. GVKEY

16 LOC Char 4 3. 3. LOC

22 NAICS Char 8 6. 6. NAICS

31 PHONE Char 24 18. 18. PHONE

12 PRICAN Char 12 8. 8. PRICAN

13 PRIROW Char 12 8. 8. PRIROW

11 PRIUSA Char 12 8. 8. PRIUSA

21 SIC Num 8 4. 4. SIC

27 SPCINDCD Num 8 4. 4. SPCINDCD

28 SPCSECCD Num 8 4. 4. SPCSECCD

18 STATE Char 12 8. 8. STATE

4 STKO Num 8 1. 1. STKO

30 WEBURL Char 68 60. 60. WEBURL
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Output 56.5.1 continued

Retrieve All GVKEYs and Company Names

Obs KYGVKEY CONM

1 1000 A & E PLASTIK PAK INC

2 1001 A & M FOOD SERVICES INC

3 1002 AAI CORP

4 1003 A.A. IMPORTING CO INC

5 1004 AAR CORP

6 1005 A.B.A. INDUSTRIES INC

7 1006 ABC INDS INC

8 1007 ABKCO INDUSTRIES INC

9 1008 ABM COMPUTER SYSTEMS INC

10 1009 ABS INDUSTRIES INC

11 1010 ACF INDUSTRIES HOLDING CORP

12 1011 ACS ENTERPRISES INC

13 1012 ACS INDUSTRIES INC

14 1013 ADC TELECOMMUNICATIONS INC

15 1014 ADDSCO INDUSTRIES INC

16 1015 ADI ELECTRONICS INC

17 1016 AEC INC

18 1017 AEL INDUSTRIES  -CL A

19 1018 AES TECHNOLOGY SYSTEMS INC

20 1019 AFA PROTECTIVE SYSTEMS INC

Example 56.6: Retrieving Stock Time Series by PERMNO
This example shows how to retrieve the MPRC, MASK, and MBID time series by using PERMNO key
access in the STK database. For brevity, the WHERE= option in the DATA step selects a range of MCALDT
for 25 observations.

title 'Retrieve IBM Monthly PRC, ASK, and BID by PERMNO Access';
libname _all_ clear;

libname crsp sasexccm
"/r/tappan/vol/vol1/crsp1/data201008_little/MIZ201006/"
setid=20
permno=12490
itemlist="MPRC;MASK;MBID";

data mstkts_all( where=( mcaldt >= '30jun2008'd) ) ;
set crsp.mstk_ts;

run;
proc contents data=mstkts_all;
run;
proc print data=mstkts_all;
run;
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Output 56.6.1 IBM’s Monthly PRC, ASK, and BID by PERMNO

Retrieve IBM Monthly PRC, ASK, and BID by PERMNO Access

The CONTENTS Procedure

Data Set Name WORK.MSTKTS_ALL Observations 25

Member Type DATA Variables 5

Engine V9 Indexes 0

Created 08/31/2018 15:36:26 Observation Length 40

Last Modified 08/31/2018 15:36:26 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64

Encoding latin1  Western (ISO)

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 1632

Obs in First Data Page 25

Number of Data Set Repairs 0

Filename /sastmp/SAS_work52B3000070AC_lax94d01/mstkts_all.sas7bdat

Release Created 9.0401M6

Host Created Linux

Inode Number 21281373

Access Permission rw-r--r--

Owner Name saskff

File Size 128KB

File Size (bytes) 131072

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

1 KYPERMNO Num 8 6. 6. PERMNO

4 MASK Num 8 12.5 12.5 Ask

5 MBID Num 8 12.5 12.5 Bid

2 MCALDT Num 8 YYMMDDN8. YYMMDD8. Caldt

3 MPRC Num 8 12.5 12.5 Prc
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Output 56.6.1 continued

Retrieve IBM Monthly PRC, ASK, and BID by PERMNO Access

Obs KYPERMNO MCALDT MPRC MASK MBID

1 12490 20080630 118.53000 118.63000 118.28000

2 12490 20080731 127.98000 127.93000 127.99000

3 12490 20080829 121.73000 121.77000 121.74000

4 12490 20080930 116.96000 116.19000 116.09000

5 12490 20081031 92.97000 93.54000 92.92000

6 12490 20081128 81.60000 81.72000 81.60000

7 12490 20081231 84.16000 84.22000 84.09000

8 12490 20090130 91.65000 91.73000 91.71000

9 12490 20090227 92.03000 92.18000 92.16000

10 12490 20090331 96.89000 97.10000 97.10000

11 12490 20090430 103.21000 103.39000 103.31000

12 12490 20090529 106.28000 106.38000 106.40000

13 12490 20090630 104.42000 104.38000 104.34000

14 12490 20090731 117.93000 118.01000 117.93000

15 12490 20090831 118.05000 118.06000 118.04000

16 12490 20090930 119.61000 119.56000 119.56000

17 12490 20091030 120.61000 120.63000 120.62000

18 12490 20091130 126.35000 126.43000 126.42000

19 12490 20091231 130.89999 130.89000 130.84000

20 12490 20100129 122.39000 122.32000 122.30000

21 12490 20100226 127.16000 127.22000 127.21000

22 12490 20100331 128.25000 128.30000 128.25999

23 12490 20100430 129.00000 128.89000 128.86000

24 12490 20100528 125.26000 125.17000 125.08000

25 12490 20100630 123.48000 123.41000 123.38000

Example 56.7: Retrieving Stock and Indices Monthly Time Series by INDNO
This example shows how to retrieve monthly time series by using INDNO key access in the IND database.
For brevity, the WHERE= option in the DATA step selects a recent range of MCALDT.

title 'Retrieve Several Monthly Time Series by INDNO Access';
libname _all_ clear;

libname crsp sasexccm
"/r/tappan/vol/vol1/crsp1/data201008_little/MIZ201006/"
setid=420
indno=1000040 indno=1000060 indno=1000080
itemlist="MAIND;MARET;MIIND";

data mindts_all ( where=( mcaldt >= '30jun2009'd) );
set crsp.mthind_ts;

run;

proc print data=mindts_all; run;
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Output 56.7.1 Monthly Time Series by INDNO

Retrieve Several Monthly Time Series by INDNO Access

Obs KYINDNO MCALDT MAIND MARET MIIND

1 1000040 20090630 806.96 -0.015017 333.67

2 1000040 20090731 873.04 0.081896 334.25

3 1000040 20090831 902.23 0.033436 335.08

4 1000040 20090930 938.68 0.040394 335.72

5 1000040 20091030 912.56 -0.027819 336.24

6 1000040 20091130 964.47 0.056883 337.16

7 1000040 20091231 982.11 0.018287 337.88

8 1000040 20100129 949.37 -0.033339 338.31

9 1000040 20100226 978.72 0.030920 339.13

10 1000040 20100331 1037.53 0.060087 339.79

11 1000040 20100430 1054.85 0.016696 340.25

12 1000040 20100528 968.99 -0.081403 341.07

13 1000040 20100630 920.85 -0.049681 341.73

14 1000060 20090630 1258.17 0.034083 180.28

15 1000060 20090731 1356.35 0.078031 180.36

16 1000060 20090831 1378.50 0.016334 180.59

17 1000060 20090930 1454.80 0.055349 180.68

18 1000060 20091030 1401.98 -0.036304 180.75

19 1000060 20091130 1468.60 0.047513 181.08

20 1000060 20091231 1555.54 0.059201 181.19

21 1000060 20100129 1470.06 -0.054949 181.25

22 1000060 20100226 1530.69 0.041239 181.49

23 1000060 20100331 1641.63 0.072481 181.61

24 1000060 20100430 1686.83 0.027533 181.69

25 1000060 20100528 1544.38 -0.084447 181.93

26 1000060 20100630 1440.70 -0.067137 182.02

27 1000080 20090630 823.64 -0.004569 305.33

28 1000080 20090731 890.39 0.081042 305.78

29 1000080 20090831 916.85 0.029715 306.46

30 1000080 20090930 956.86 0.043638 306.94

31 1000080 20091030 928.44 -0.029699 307.34

32 1000080 20091130 979.35 0.054839 308.12

33 1000080 20091231 1006.14 0.027352 308.68

34 1000080 20100129 967.73 -0.038177 309.01

35 1000080 20100226 999.85 0.033197 309.68

36 1000080 20100331 1062.61 0.062762 310.20

37 1000080 20100430 1082.91 0.019104 310.55

38 1000080 20100528 994.02 -0.082082 311.22

39 1000080 20100630 940.73 -0.053606 311.73



3884 F Chapter 56: The SASEXCCM Interface Engine

Example 56.8: Retrieving Stock and Indices Daily Time Series by INDNO
This example shows how to retrieve daily time series by using INDNO key access of the IND database. For
brevity, the WHERE= option in the DATA step selects a recent range of CALDT.

title 'Retrieve Several Daily Time Series by INDNO Access';
libname _all_ clear;

libname crsp sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=460
indno=1000040 indno=1000060 indno=1000080
itemlist="TOTCNT;TOTVAL;TRET";

data dindts_all ( where=( caldt >= '15jun2010'd) );
set crsp.dlyind_ts;

run;

proc print data=dindts_all; run;
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Output 56.8.1 Daily Time Series by INDNO

Retrieve Several Daily Time Series by INDNO Access

Obs KYINDNO CALDT TOTCNT TOTVAL TRET

1 1000040 20100615 2668 11859837753.20 0.023096

2 1000040 20100616 2669 11841138158.33 -0.001545

3 1000040 20100617 2670 11852139584.84 0.000916

4 1000040 20100618 2671 11873916422.35 0.001838

5 1000040 20100621 2672 11839008747.57 -0.003009

6 1000040 20100622 2672 11627382000.00 -0.017709

7 1000040 20100623 2672 11594378306.30 -0.002811

8 1000040 20100624 2673 11402808548.54 -0.016525

9 1000040 20100625 2675 11479692502.15 0.006645

10 1000040 20100628 2674 11414419071.77 -0.003311

11 1000040 20100629 2674 11051115070.31 -0.031777

12 1000040 20100630 2674 10987117493.51 -0.008165

13 1000060 20100615 2740 3408075602.72 0.027565

14 1000060 20100616 2741 3408111567.48 -0.000031

15 1000060 20100617 2741 3410846831.87 0.000734

16 1000060 20100618 2741 3414496996.34 0.001222

17 1000060 20100621 2738 3383308305.95 -0.009517

18 1000060 20100622 2741 3343876276.79 -0.011656

19 1000060 20100623 2741 3331677101.72 -0.003784

20 1000060 20100624 2741 3277142757.63 -0.016425

21 1000060 20100625 2740 3289059489.28 0.003588

22 1000060 20100628 2739 3281646245.81 -0.002116

23 1000060 20100629 2741 3156605732.63 -0.038661

24 1000060 20100630 2741 3117034325.97 -0.012478

25 1000080 20100615 5408 15267913355.93 0.024090

26 1000080 20100616 5410 15249249725.81 -0.001207

27 1000080 20100617 5411 15262986416.71 0.000875

28 1000080 20100618 5412 15288413418.68 0.001701

29 1000080 20100621 5410 15222317053.52 -0.004462

30 1000080 20100622 5413 14971258276.79 -0.016364

31 1000080 20100623 5413 14926055408.02 -0.003029

32 1000080 20100624 5414 14679951306.17 -0.016503

33 1000080 20100625 5415 14768751991.42 0.005962

34 1000080 20100628 5413 14696065317.58 -0.003044

35 1000080 20100629 5415 14207720802.94 -0.033314

36 1000080 20100630 5415 14104151819.47 -0.009123
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Example 56.9: Retrieving Information for Availability of Group INDNOs
This example shows how to retrieve header information about group data and how to obtain a list of all the
available INDNO keys in the IND database. The INDNO= option is intentionally omitted so that a default
list is generated of all INDNOs in the database that are available for SETID 440.

title 'Retrieve Header Information for a Complete INDNO list';
libname _all_ clear;

libname crsp sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=440
itemlist="INDNOG.*;INDCOG.*;INDNAMEG.*;GROUPNAMEG.*";

data dgindts_all;
set crsp.indhdrg;

run;

proc print data=dgindts_all(keep=kyindno indnameg); run;

Output 56.9.1 Daily Group Indices Header by INDNO

Retrieve Header Information for a Complete INDNO list

Obs KYINDNO INDNAMEG

1 1000012 CRSP NYSE Market Capitalization Deciles

2 1000032 CRSP Amex Market Capitalization Deciles

3 1000052 CRSP NYSE/Amex Market Capitalization Deciles

4 1000072 CRSP Nasdaq Market Capitalization Deciles

5 1000092 CRSP NYSE/Amex/Nasdaq Market Capitalization Deciles

6 1000112 CRSP NYSE/Amex Beta Deciles

7 1000132 CRSP NYSE/Amex Standard Deviation Deciles

8 1000152 CRSP Nasdaq Beta Deciles

9 1000172 CRSP Nasdaq Standard Deviation Deciles

Example 56.10: Retrieving Daily Group Time Series by the INDNO= Option
This example shows how to retrieve daily group time series by using the INDNO keys in the IND database
that were found in Example 56.9.

title 'Retrieve Daily Group Time Series by INDNO';
libname _all_ clear;

libname crsp sasexccm
"/thirdparty/crspdata/DIZ201006/"
setid=440
indno=1000012 indno=1000032
itemlist="AINDG.*;ARETG.*;USDCNTG.*;USDVALG.*";
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data dgindts_all ( where=( caldt >= '29jun2010'd) );
set crsp.dlygind_ts;

run;

proc print data=dgindts_all; run;
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Output 56.10.1 Daily Group Indices Time Series by INDNO

Retrieve Daily Group Time Series by INDNO

Obs KYINDNO KEYSET_TAG CALDT AINDG ARETG USDCNTG USDVALG

1 1000012 1 20100629 7830.32 -0.027881 212 18621519.46

2 1000012 1 20100630 7818.16 -0.001553 212 18102340.54

3 1000012 2 20100629 2152.53 -0.029494 218 41076860.87

4 1000012 2 20100630 2138.40 -0.006568 218 39865355.36

5 1000012 3 20100629 2062.74 -0.030899 221 68226374.39

6 1000012 3 20100630 2050.86 -0.005761 221 66118281.02

7 1000012 4 20100629 1889.98 -0.034272 220 109562324.72

8 1000012 4 20100630 1876.58 -0.007090 220 105767265.49

9 1000012 5 20100629 2452.63 -0.037792 219 176873704.06

10 1000012 5 20100630 2426.61 -0.010609 219 170189222.39

11 1000012 6 20100629 2352.25 -0.036727 218 273518451.00

12 1000012 6 20100630 2326.55 -0.010923 218 263473022.01

13 1000012 7 20100629 1744.62 -0.036671 221 441993909.25

14 1000012 7 20100630 1728.12 -0.009454 221 425785496.41

15 1000012 8 20100629 1837.74 -0.034768 217 728682180.02

16 1000012 8 20100630 1823.06 -0.007989 217 703347314.23

17 1000012 9 20100629 1539.83 -0.037301 217 1551328686.76

18 1000012 9 20100630 1528.09 -0.007619 217 1493462838.15

19 1000012 10 20100629 687.77 -0.029865 219 7887915836.89

20 1000012 10 20100630 682.07 -0.008285 219 7652344301.36

21 1000032 1 20100629 50180.52 -0.028314 46 421298.09

22 1000032 1 20100630 49647.30 -0.010626 46 409369.47

23 1000032 2 20100629 9074.88 -0.018115 53 1027381.77

24 1000032 2 20100630 8999.49 -0.008307 53 1008770.94

25 1000032 3 20100629 7605.46 -0.021016 49 1357042.08

26 1000032 3 20100630 7647.77 0.005564 49 1328521.95

27 1000032 4 20100629 4864.93 -0.019350 49 1882198.23

28 1000032 4 20100630 4862.58 -0.000483 49 1845777.95

29 1000032 5 20100629 3830.96 -0.019162 52 2935672.46

30 1000032 5 20100630 3836.25 0.001382 52 2879419.36

31 1000032 6 20100629 1985.95 -0.023069 49 3471137.55

32 1000032 6 20100630 1994.63 0.004371 49 3391061.96

33 1000032 7 20100629 1737.15 -0.026127 50 5429238.78

34 1000032 7 20100630 1723.08 -0.008097 50 5287388.16

35 1000032 8 20100629 985.90 -0.043221 49 8751647.84

36 1000032 8 20100630 982.62 -0.003332 49 8373396.28

37 1000032 9 20100629 2012.69 -0.035989 47 13946079.35

38 1000032 9 20100630 2008.03 -0.002314 47 13444178.17

39 1000032 10 20100629 580.82 -0.034960 48 77397528.18

40 1000032 10 20100630 574.67 -0.010592 48 74691749.11
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Example 56.11: Retrieving Monthly Group Time Series by the INDNO= Option
This example shows how to retrieve monthly group time series by using the INDNO= option.

title 'Retrieve Monthly Group Time Series by INDNO';
libname _all_ clear;

libname crsp sasexccm
"/r/tappan/vol/vol1/crsp1/data201008_little/MIZ201006/"
setid=400
indno=1000357
itemlist="MTRETG.*;MUSDCNTG.*;MUSDVALG.*";

data mgindts_all ( where=( mcaldt >= '01apr2010'd) );
set crsp.mthgind_ts;

run;

proc contents data=mgindts_all; run;
proc print data=mgindts_all; run;

Output 56.11.1 Monthly Group Indices Time Series by INDNO

Retrieve Monthly Group Time Series by INDNO

The CONTENTS Procedure

Data Set Name WORK.MGINDTS_ALL Observations 51

Member Type DATA Variables 6

Engine V9 Indexes 0

Created 08/31/2018 15:36:41 Observation Length 64

Last Modified 08/31/2018 15:36:41 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64

Encoding latin1  Western (ISO)
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Output 56.11.1 continued

Engine/Host Dependent Information

Data Set Page Size 65536

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 1021

Obs in First Data Page 51

Number of Data Set Repairs 0

Filename /sastmp/SAS_work52B3000070AC_lax94d01/mgindts_all.sas7bdat

Release Created 9.0401M6

Host Created Linux

Inode Number 21127249

Access Permission rw-r--r--

Owner Name saskff

File Size 128KB

File Size (bytes) 131072

Alphabetic List of Variables and Attributes

# Variable Type Len Format Informat Label

2 KEYSET_TAG Char 24 6. 6. KEYSET

1 KYINDNO Num 8 7. 7. Indno

3 MCALDT Num 8 YYMMDDN8. YYMMDD8. Caldt

4 MTRETG Num 8 11.6 11.6 Tret

5 MUSDCNTG Num 8 8. 8. Usdcnt

6 MUSDVALG Num 8 15.2 15.2 Usdval



Example 56.11: Retrieving Monthly Group Time Series by the INDNO= Option F 3891

Output 56.11.1 continued

Retrieve Monthly Group Time Series by INDNO

Obs KYINDNO KEYSET_TAG MCALDT MTRETG MUSDCNTG MUSDVALG

1 1000357 1 20100430 0.008174 175 8536273485.00

2 1000357 1 20100528 -0.080409 175 8591982134.00

3 1000357 1 20100630 -0.049665 175 7875937725.00

4 1000357 2 20100430 0.027565 185 1788689604.00

5 1000357 2 20100528 -0.075078 185 1840767431.00

6 1000357 2 20100630 -0.050972 185 1704852934.00

7 1000357 3 20100430 0.040804 190 932695901.00

8 1000357 3 20100528 -0.069991 188 969616974.00

9 1000357 3 20100630 -0.060083 187 895650676.00

10 1000357 4 20100430 0.037353 184 564387964.00

11 1000357 4 20100528 -0.079216 183 582823225.00

12 1000357 4 20100630 -0.070191 183 537053252.00

13 1000357 5 20100430 0.042394 227 478255773.00

14 1000357 5 20100528 -0.081422 228 500248663.00

15 1000357 5 20100630 -0.057584 227 457590748.00

16 1000357 6 20100430 0.057838 222 322738641.00

17 1000357 6 20100528 -0.078382 222 343700243.00

18 1000357 6 20100630 -0.081953 222 317307907.00

19 1000357 7 20100430 0.050365 292 287694406.00

20 1000357 7 20100528 -0.066656 291 301676691.00

21 1000357 7 20100630 -0.071452 292 283193837.00

22 1000357 8 20100430 0.065176 358 220136974.00

23 1000357 8 20100528 -0.075101 355 233544237.00

24 1000357 8 20100630 -0.071157 354 215763356.00

25 1000357 9 20100430 0.069557 514 180205516.00

26 1000357 9 20100528 -0.083660 514 193398849.00

27 1000357 9 20100630 -0.078070 520 180564497.00

28 1000357 10 20100430 0.096078 1374 134793898.00

29 1000357 10 20100528 -0.087666 1371 149100089.00

30 1000357 10 20100630 -0.079349 1368 137743847.00

31 1000357 11 20100430 0.011533 360 10324963089.00

32 1000357 11 20100528 -0.079468 360 10432749564.00

33 1000357 11 20100630 -0.049897 360 9580790659.00

34 1000357 12 20100430 0.040203 601 1975339638.00

35 1000357 12 20100528 -0.075396 599 2052688862.00

36 1000357 12 20100630 -0.062350 597 1890294676.00

37 1000357 13 20100430 0.057194 872 830570020.00

38 1000357 13 20100528 -0.073486 868 878921171.00

39 1000357 13 20100630 -0.075456 868 816265100.00

40 1000357 14 20100430 0.080906 1888 314999414.00

41 1000357 14 20100528 -0.085404 1885 342498939.00

42 1000357 14 20100630 -0.078624 1888 318308344.00

43 1000357 15 20100430 0.016137 961 12300302728.00

44 1000357 15 20100528 -0.078799 959 12485438427.00

45 1000357 15 20100630 -0.051949 957 11471085335.00

46 1000357 16 20100430 0.063714 2760 1145569435.00

47 1000357 16 20100528 -0.076828 2753 1221420110.00
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Output 56.11.1 continued

Retrieve Monthly Group Time Series by INDNO

Obs KYINDNO KEYSET_TAG MCALDT MTRETG MUSDCNTG MUSDVALG

48 1000357 16 20100630 -0.076345 2756 1134573445.00

49 1000357 17 20100430 0.020191 3721 13445872162.00

50 1000357 17 20100528 -0.078623 3712 13706858536.00

51 1000357 17 20100630 -0.054145 3713 12605658779.00
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Overview: SASEXFSD Interface Engine
The SASEXFSD interface engine enables SAS users to access both FactSet data and FactSet-sourced data
that are provided by the FactSet OnDemand service (formerly known as FASTFetch). This service provides
access to many FactSet Data Sources and to many other databases. This chapter focuses on accessing
the FactSet Fundamentals database, but additional databases and data types are available for use with the
SASEXFSD interface engine. For a more comprehensive list of available data, enter the following URL in
your web browser:

http://www.factset.com/data

For detailed descriptions of other databases that you can access, refer to the FactSet workstation Online
Assistant.

The SASEXFSD engine uses the LIBNAME statement to specify which factlet (provided by FactSet) to use
to open a database and what parts of the database to access. Factlets are functions that encapsulate business
logic and data collection procedures. The technology is capable of cross referencing and dealing with time
series for a large amount of data.

To specify the factlet, name one of the supported factlets that are listed in Table 57.1. Table 57.5 shows where
to find a summary of each factlet’s options.

Table 57.1 Supported FactSet OnDemand Factlets

Supported Factlet Example

ExtractEconData Example 57.1, Example 57.2
ExtractEconData (cont.) Example 57.3, Example 57.4, Example 57.5
ExtractFormulaHistory Example 57.6, Example 57.7, Example 57.8
ExtractDataSnapshot Example 57.9, Example 57.10
ExtractBenchmarkDetail Example 57.11, Example 57.12
ExtractOFDBItem Example 57.13
ExtractOFDBUniverse Example 57.14
ExtractScreenUniverse Example 57.15

The Prefix column in Table 57.2 contains the parameters that you are most likely to refer to when requesting
data, but each factlet has its own set of optional parameters and default settings. Often the items that you
select use a prefix (see the Prefix column) to designate the database where the item resides. Because the
availability of data libraries and their contents are constantly changing, Table 57.2 is included for instructional
purposes only.

Table 57.2 Sample Databases Available through FactSet

Prefix Database

ff FactSet Fundamentals
fe FactSet Estimates
fg FactSet Global
p FactSet Prices—Security Price Data

http://www.factset.com/data
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Table 57.2 shows only a subset of the available FactSet databases. For a more comprehensive list that also
includes third-party databases available through FactSet, refer to the FactSet Online Assistant, page ID 2014.

To specify the data library, specify both a physical path to indicate the location of the data files (XML data
returned from FactSet OnDemand) and the LIBNAME statement options to specify which factlet to use to
request data items and the desired key IDs (identifiers, such as tickers or country codes) for your selection.
The orientation of the data that are returned is ETI, entity-time-item, and is kept with sorted keys (entities
or BY groups); each observation is indexed by time interval, and each time series data item is organized in
columns by item name (time series variable name). The SASEXFSD engine supports the parameters that are
required for each supported factlet.

Use the SASEXFSD engine to access all available data library items. To get started, look at the FactSet
Fundamentals data items in Table 57.3.

For a complete list of data items for every category, refer to the FactSet Online Assistant, page ID 16331.
FactSet workstation user name and serial number credentials are necessary to launch the FactSet Online
Assistant from the FactSet workstation. A FactSet representative can provide these credentials.

Because the availability of data libraries and their contents are constantly changing, Table 57.3 is included
for instructional purposes only. At the time of this writing, the available data list and items for the FactSet
Fundamentals database are as shown in Table 57.3.

Table 57.3 FactSet Fundamentals Database Sets

Formulas by Category Data Items (SAS Variable Names) in Category

Identifiers FF_CUSIP, FF_DISCL_ID, FF_ISIN, FF_SEDOL, FF_TICKER,
FF_WS_ID

Balance sheet FF_ASSETS, FF_BDEBT, FF_GW, FF_INVEN_FG,
FF_PPE_DEP, FF_PPE_GROSS, FF_PAY_ACCT

Income statement FF_COGS, FF_DEP_EXP, FF_DIL_ADJ, FF_EBIT,
FF_EQ_AFF_INC, FF_EXP_OPER, FF_GROSS_INC

Cash flow FF_DEBT_CF, FF_DIV_CF, FF_FIN_CF, FF_CAPEX,
FF_INVEST_CF, FF_INVEST_PURCH_CF,
FF_SALE_ASSAETS_BUS_CF

Ratios FF_ASSETS_EQ, FF_DEBT_EQ, FF_LIFE_INS,
FF_LOAN_ASSETS, FF_NET_CAP_REQUIRE, FF_RD_SALES

Market data FF_ACQ_DATE, FF_DIV_RATE, FF_ENTITY_TYPE,
FF_PRICE_CLOSE, FF_PRICE_HIGH_52WK

Corporate data and classifications FF_GEN_IND, FF_IND_GRP, FF_MAJOR_SUBIND,
FF_SIC_CODE, FF_EMP_NUM

Financial records FF_ACTG_STANDARD, FF_COVERAGE, FF_CURN_DOC,
FF_DEPS_BK, FF_FREQ_CODE, FF_US_GAAP_AVAIL

For a comprehensive list of FactSet Fundamentals data items, refer to the FactSet Online Assistant, page ID
15099. If the page is not found, enter “FactSet Fundamentals” in the search box near the top of the page.
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Getting Started: SASEXFSD Interface Engine
To specify the parts of the database that you want to access, you supply two things: the list of IDs for the
companies or securities that you want to access, and the list of data items that you want to retrieve.

When accessing company or security data, use the ExtractFormulaHistory factlet. Use the IDS= option to
specify the list of IDs that identify the companies that you want to access by specifying the entity ID (such as
the ticker symbol) for each company.

For example, the following statements access the FactSet Fundamentals database for monthly sales data
(ff_sales) and the Prices database for pricing data (p_price) for IBM (ID=’ibm’) and for FactSet Research
Systems (ID=’fds’). To include both IDs in the same request, specify IDS=’ibm,fds’; to include both data
items in the same request, specify ITEMS=’p_price,ff_sales’, as follows:

options validvarname=any;

LIBNAME myLib sasexfsd "%sysget(FACTSET)"
DEBUG=on
FACTLET=ExtractFormulaHistory
FORMAT=sml
OUTXML=gstart1
AUTOMAP=replace
MAPREF=MyMap
XMLMAP="%sysget(FACTSET)gstart1.map"
IDS='ibm,fds'
ITEMS='p_price,ff_sales'
DATES='20110130:20110631:m'
ORIENTATION=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';
;

data company_pvol;
set myLib.gstart1;

run;

proc contents data=company_pvol; run;
proc print data=company_pvol; run;
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Figure 57.1 Getting Started with ExtractFormulaHistory: Company_pvol

Obs FQL_ENTITY date p_price ff_sales

1 ibm 01-31-2011 162.000 99870.00

2 ibm 02-28-2011 161.880 99870.00

3 ibm 03-31-2011 163.070 99870.00

4 ibm 04-30-2011 170.580 99870.00

5 ibm 05-31-2011 168.930 99870.00

6 ibm 06-30-2011 171.550 99870.00

7 fds 01-31-2011 100.800 641.06

8 fds 02-28-2011 104.880 641.06

9 fds 03-31-2011 104.730 641.06

10 fds 04-30-2011 109.410 641.06

11 fds 05-31-2011 110.860 641.06

12 fds 06-30-2011 102.320 641.06

The SASEXFSD engine supports only the SAS XML (SML) format and the ETI orientation. The XML data
that are returned from the FactSet OnDemand service are placed in a file specified by the OUTXML= option.
The XML map that is automatically created is assigned the full path name specified by the XMLMAP=
option, and the fileref that is used for the map assignment is specified by the MAPREF= option. In the
preceding example, the SASEXFSD engine uses the MAPREF= and XMLMAP= options in the FILENAME
statement to assign a file name:

FILENAME MyMap "%sysget(FACTSET)gstart1.map";

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name the
map, and how you refer to it with a fileref. You can use the OUTXML= option to name your XML data file;
this is described in the section “SAS OUTXML File” on page 3916. This data file is placed in the folder
designated by “physical-name”, which is described in the section “Syntax: SASEXFSD Interface Engine” on
page 3898. You can refer to your data by using the myLib libref in your SASEXFSD LIBNAME statement.
In the preceding program, this statement appears inside the DATA step in the SET statement, which names
the input data set myLib.gstart1 and causes the reading of the GSTART1.xml file to be input and stored in the
SAS data set Company_pvol.

The Company_pvol data set contains two time series variables (data items), p_price and ff_sales, as specified
in the ITEMS= option, and the observation range is controlled by the DATES= option. The prefixes, ff_ and
p_, are the database designators for the FactSet Fundamentals and Prices databases, respectively, as shown in
Table 57.2. The Company_pvol data set contains observations that range from January 30, 2011, to June 31,
2011, as specified in the DATES= option. The frequency of the data is monthly, as specified by the “m” at
the end of the DATES= option. Figure 57.1 shows the results.

To specify the list of data items that you want to retrieve, use the ITEMS= option. This option accepts a
string, enclosed in single quotation marks, that denotes a list of data items that you are selecting for the
resulting SAS data set. The data item names are separated by commas, so valid item names cannot contain
embedded commas or quotation marks. The prefix in each data item name designates the data source as
defined in the Prefix column of Table 57.2.

After the libref is assigned by the LIBNAME statement, the database is opened. The selected data are
organized into group entities (BY groups) that are sorted by date. In Figure 57.1, the tickers are the BY
groups, and within each ticker, the observations are sorted by the time ID variable DATE.
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You can also use the SAS DATA step to perform further subsetting and to store the resulting time series in a
SAS data set.

The SASEXFSD engine is supported on 64-bit Windows and Linux X64 (LAX) platforms.

Syntax: SASEXFSD Interface Engine
The SASEXFSD interface engine uses standard engine syntax. Table 57.4 summarizes the options that the
SASEXFSD engine supports. In addition, there are two required options: USERNAME=’fact_username’
and PASS=’fact_password’.

Table 57.4 Summary of LIBNAME libref SASEXFSD Statement
Options

Option Description

CAL= Specifies the calendar that replicates the PSETCAL function
CONNECT= Specifies whether or not you need the connect method for a secure connection via a

proxy server. You must specify the PROXY= option when you use the
CONNECT=ON option. See the PROXY= option.

CONV= Specifies the conversion technique for aggregating periods, when a data series of a
higher frequency is converted to a lower frequency; for example, converting a
quarterly series to an annual series (such as SUM, AVERAGE, or AVERAGENP)

CURRENCY= Specifies a currency in which the data are returned, using a three-character ISO
code, such as USD for US dollars or EUR for euros

DATE= Specifies one date in 'YYYYMMDD' format (default is 0B, for today’s date)
DATES= Specifies a list with the start date, end date, and frequency, separated by colons (:)
DBSOURCE= Specifies a standardized database source name, such as EWIN_ECON, GI_ECON,

OECD_MEI, FDS_ECON, FDS_COM, or the default, a null string, which uses the
standardized economic data (EWIN_ECON_RGDPR_Y)

DEBUG= Specifies whether or not to include diagnostic message logging in the SAS log
window

DIST= Specifies the distribution technique for spreading over periods when a data series of
a lower frequency is distributed to a higher frequency; for example, distributing an
annual series to a quarterly series (such as STEP, EVEN, or NONE)

END= Specifies the end date for the selected data range (in 'YYYYMMDD' format)
FACTLET= Specifies which factlet you want to use. For the complete list, see Table 57.5.
FORMAT= Specifies a FactSet format. Only SAS XML format (SML format) is supported.
FQLFLAG= Sets dates to use FQL instead of screening; FQLFLAG=N (default) or Y
FREQ= Specifies the reporting frequency of the selected data, such as M for monthly and D

for daily. For the complete list of frequencies, see Table 57.20.
FUNCTION= Adds the FQL function property to change data value; for example,

FUNCTION=ZSCORE
IDS= Specifies a list of FactSet keys or entity identifiers for accessing FactSet OnDemand

data. To select more than one ID, list the unique entity identifiers separated by
commas.
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Table 57.4 continued

Option Description

ISON= Specifies whether the company (security), such as SP500 or MSCI_WORLD, is on
the specified database or index. For a list of additional ISON= option examples,
refer to the FactSet Online Assistant, page ID 2014.

ISONPARAMS= Specifies the parameters used by the ISON code
ITEM= Specifies one FactSet data item name (time series name)
ITEMS= Specifies a list of FactSet data items for accessing FactSet data sources. To select

more than one item, list the data item names, separated by commas.
NAME= Specifies whether to see the names of each security along with the CUSIP
NFB= Specifies the “no-feel-back” option in FQL codes. If you do not use the NFB=

option, the returned data series contains NAs where the data are not available
(default is NFB=1).

OFDB= Specifies the OFDB file name
ORIENTATION= Specifies the layout of the selected data items for access. Only the ETI

(entity-time-item) orientation is supported.
PERIOD= Specifies the time interval between the data points (observations) in a time series.

The valid period parameters are ANN, QTR, SEMI, MON, YTD, YTD_SEMI,
LTM, LTM_SEMI, and SEMI-ANN. The default is ANN.

PROXY= Specifies the proxy server that you want to use (if you have trouble connecting
without specifying a proxy). If you also need the connect method for a secure
connection, use the CONNECT=ON option in addition to the PROXY= option. See
the CONNECT= option.

SCREEN= Specifies the screen file that contains a single user-defined screen for viewing
CUSIPs

START= Specifies the start date for the selected data range (in 'YYYYMMDD' format)
UNIVERSE= Specifies the one account or benchmark. Use this instead of the IDS= option.
UNIVERSEGROUP= Default value is EQUITY; for DEBT securities, use UNIVERSEGROUP=DEBT

The LIBNAME libref SASEXFSD Statement
LIBNAME libref SASEXFSD ‘physical-name’ FACTLET=fact_factletname options ;

The LIBNAME statement assigns a SAS library reference (libref) to the physical path of the directory of
FactSet data files where the downloaded FactSet XML data are stored. Because the required ‘physical name’
argument specifies the location of the folder where your FactSet XML data reside, it should end in a backslash
if you are in a Windows environment and a forward slash if you are in a UNIX environment.

FACTLET=fact_factletname specifies the FactSet factlet that you want to use to download your data. Choose
one factlet from these possible values: ExtractEconData, ExtractFormulaHistory, ExtractDataSnapshot,
ExtractBenchmarkDetail, ExtractOFDBItem, ExtractOFDBUniverse, and ExtractScreenUniverse. (See
Table 57.1.)

For example, the following statements access the FactSet database for daily dividend yield data for IBM:
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LIBNAME myLib SASEXFSD 'physical-name' FACTLET==ExtractFormulaHistory
IDS='ibm'
ITEMS='FG_DIV_YLD'
FREQ=d
USER='username'
PASS='password';

After the libref is assigned, you can access the data items for the IDs (keys) from the requested factlet.

You can specify the following options in the LIBNAME libref SASEXFSD statement.

FACTLET=fact_factletname
Each factlet type has its own set of parameters (shown in Table 57.5 in the Factlet Options Table
column), allowing flexibility and easy access to FactSet data. For more details about each factlet, refer
first to the Factlet Description Section listed in Table 57.5. If you need more information, refer to the
Online Assistant, page ID 16948. If the factlet is not listed on that page, then enter the factlet name in
the search window of the Online Assistant to retrieve additional information about using the factlet.

Table 57.5 Summary of Factlet Options

Factlet Name Factlet Description Section Factlet Options
Table

ExtractEconData “The ExtractEconData Factlet” on page 3904 Table 57.10
ExtractFormulaHistory “The ExtractFormulaHistory Factlet” on page 3908 Table 57.12
ExtractDataSnapshot “The ExtractDataSnapshot Factlet” on page 3909 Table 57.13
ExtractBenchmarkDetail “The ExtractBenchmarkDetail Factlet” on page 3910 Table 57.15
ExtractOFDBItem “The ExtractOFDBItem Factlet” on page 3912 Table 57.16
ExtractOFDUniverse “The ExtractOFDBUniverse Factlet” on page 3913 Table 57.17
ExtractScreenUniverse “The ExtractScreenUniverse Factlet” on page 3914 Table 57.18

IDS=fact_ids
specifies a list of FactSet IDs (entity identifiers or keys) for accessing FactSet OnDemand data. To
select more than one ID, list the unique entity identifiers, separated by commas (as shown in the
following statements). Examples of FactSet IDs include CUSIPs, tickers, SEDOLs, Quick Code,
and CINS (CUSIP International Numbering System). For more information, see Example 57.6 and
Example 57.7.

LIBNAME myLib sasexfsd 'physical-name'
ids='IBM,MSFT'
ITEMS='p_price,p_volume,ca_sales';

UNIVERSE=fact_uni
specifies the universe of securities that passes the specified screening criteria. Up to 500 securities can
be returned when this option is specified together with the FACTLET=ExtractFormulaHistory option.
This limit is due to the US_UNIV function that is used within the ExtractFormulaHistory factlet to
fetch the universe. You can also specify this option together with the FACTLET=ExtractDataSnapshot
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option, but because the data that are returned as of one specified date, there is no limit on the number
of securities that can be returned.

LIBNAME myLib sasexfsd 'physical-name'
factlet=ExtractFormulaHistory
universe="URANKX((FS_PARENT_EQUITY=CUSIP AND EC_MKT_CAP(0,'CUR=USD')>10

AND P_PRICE(0,USD)>5 AND CONTAINS(P_EXCOUNTRY,'UNITED STATES'))=1,
EC_MKT_CAP(0,'CUR=USD'))<=500S"

items='p_price(0,-4,M)';

ITEMS='fact_itemlist '
specifies the items and groups of interest for selection based on IDs (keys). Use FactSet’s Formula
Lookup for a complete list of data items, which is described in the FactSet Online Assistant.

Because the availability of data libraries and their contents are constantly changing, the following
tables are included for instructional purposes only. Many other databases are available that are not
shown in Table 57.6 to Table 57.9.

Table 57.6 Some FactSet Data Items

Data Source Table Reference Online Assistant Page ID

FactSet Fundamentals Data Items Table 57.7 Page ID 15099
FactSet Global Formula Library Also see Online

Assistant Sidebar
Page IDs 13299, 16664

FactSet Global Indices Formulas Table 57.8 Page ID 14336
Global Constituents Formulas Table 57.9 Page ID 15086

Table 57.7 Some FactSet Fundamentals Data Items

Data Source Online Assistant Page ID

Consolidated Items (FF_) Page ID 16331
Debt Capital Structure Page ID 16235
Enhancements to Legacy Formulas Page ID 16248
Annual Items (FA_)

Balance Sheet Page ID 15120
Income Statement Page ID 15121
Funds Flow Statement Page ID 15122
Financial Ratios Page ID 15123
Per Share and Valuation Page ID 15124
Multiple Share Information Page ID 15125
Accounting Policies and Methods Page ID 15126
Segment Data Page ID 15127

Monthly Items (FM_)
Monthly Data Page ID 15128
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Table 57.8 FactSet Global Indices Formulas

Data Source Online Assistant Page ID

Using FG Indices Formulas Page ID 14337
Database Descriptions for Global Indices Page ID 14338

Table 57.9 Global Constituents Formulas

Global Constituents Formula Items

Benchmark Constituent Classification FG_CONST_CLASS
Benchmark Constituent Country FG_CONST_COUNTRY
Benchmark Constituent Currency FG_CONST_CURRENCY
Benchmark Constituent Date FG_CONST_DATE
Benchmark Constituent Float Factor FG_CONST_FLOAT_FACTOR
Benchmark Constituent Identifier FG_CONST_IDENTIFIER
Benchmark Constituent Latest Update FG_CONST_UPDATE
Benchmark Constituent Market Value FG_CONST_MCAP
Benchmark Constituent Name FG_CONST_NAME
Benchmark Constituent Price FG_CONST_PRICE
Benchmark Constituent Shares FG_CONST_SHARES
Benchmark Constituent Style Factor FG_CONST_STYLE_FACTOR
Benchmark Constituent Total Return - 1 Day FG_CONST_TRET_1D
Benchmark Constituent Valuation FG_CONST_VALUATION
Benchmark Constituent Weights FG_CONST_WEIGHT
Benchmark Constituents FG_CONSTITUENTS

For more information, see the FactSet Online Assistant, page ID 1931. To see each data source’s list of
available data items, use the search feature of the FactSet Online Assistant. You can open any page
in the FactSet Online Assistant by entering the appropriate page ID number in the page ID window,
which is located below the search window.

DATES='fact_startdate:fact_enddate:fact_freqcode'
specifies the start date, end date, and frequency, separated by colons (:). For more information, see the
section “Specifying Date Ranges and Frequency Codes” on page 3916. An alternative to using the
DATES= option is to use the START=, END=, and FREQ= options.

DEBUG=ON | OFF
specifies whether or not to include diagnostic message logging in the SAS log window. This information
can be very useful for troubleshooting a problem.

PERIOD=fact_period
specifies the periodic frequencies of the actual data points (observations) in a time series. The valid
period parameters are ANN, QTR, SEMI, MON, YTD, YTD_SEMI, LTM, LTM_SEMI, and SEMI-
ANN. The default is ANN.
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OUTXML=fact_xmlfile
specifies the name of both the XML file (downloaded from the FactSet OnDemand service) and the SAS
data set created when the XML data are read into SAS. You can use the OUTXML= option to name
your XML data file, which is placed in the current working directory. By default, OUTXML=FAST,
which creates a file named FAST1.xml in the current working directory. The SAS data set created
when the XML data are read into SAS is placed in the folder specified by the physical path in the
LIBNAME libref SASEXFSD statement.

AUTOMAP=fact_automap
specifies whether to overwrite the existing XML map file (AUTOMAP=REPLACE) or whether not to
overwrite the existing XML map file (AUTOMAP=REUSE). You can set fact_automap to REUSE so
that a pre-existing XML map named by the XMLMAP= option is used. You can set fact_automap to
REPLACE so that the most current XML map generated by the SASEXFSD engine and named by the
XMLMAP= option is used.

XMLMAP=fact_xmlmapfile
specifies the fully qualified name of the file where the XML map is automatically stored.

MAPREF=fact_xmlmapref
specifies the fileref to be used for the map assignment.

You can use the MAPREF= and XMLMAP= options to control where the map resides, what you name
the map, and how you refer to it with a fileref. You can use the OUTXML= option to name your
XML data file. These data are read into SAS and placed in a SAS data set in the folder designated
by “physical-name”, and you can reference the data by using the myLib libref in your SASEXFSD
LIBNAME statement. This is shown in the section “Getting Started: SASEXFSD Interface Engine”
on page 3896. The following FILENAME statement is generated by the SASEXFSD interface engine
by using the fileref, MyMap, from the MAPREF=MyMap option and from the fully designated file
name in the XMLMAP= option:

FILENAME MyMap "%sysget(FACTSET)gstart1.map";

FORMAT=fact_xmlformat
specifies the SAS XML (SML) format, which is the only format that the SASEXFSD engine supports.

ORIENTATION=fact_xmlorient
specifies the ETI orientation, which is the only orientation that the SASEXFSD engine supports. The
ETI orientation means that the data are returned and stored in entity-time-item logical layout.

PROXY=“fact_proxyserver”
specifies which proxy server to use. This option is not required. The specified proxy server is used only
when a connection-refused error or a connection-timed-out error occurs. For fact_proxyserver , specify
the server’s HTTP address followed by a colon and the port number, and enclose that string in double
quotation marks; for example, PROXY="http://inetgw.unx.sas.com:8118". See also the CONNECT=
option.
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CONNECT=ON | OFF
specifies whether or not to use the connect method along with the PROXY= option. NOTE: You must
use the PROXY= option and specify your proxy server in addition to the CONNECT=ON option
when you want to use the connect method. For more information about a secure connection, see the
PROXY= option.

USERNAME=‘fact_username’
specifies the FactSet user name that enables you to access the data provided by the FactSet OnDemand
service.

PASS='fact_password '
specifies the password that is paired with the user name to enable you to access the data provided by
the FactSet OnDemand service. NOTE: These FactSet OnDemand user name and password credentials
are different from your FactSet workstation login credentials. A FactSet representative can provide
these credentials.

The ExtractEconData Factlet
The ExtractEconData factlet provides access to a broad array of macroeconomic content, interest rates
and yields, country indices, and various exchange rate measures from both the FactSet Economics and the
Standardized Economic databases. The ExtractEconData factlet uses the options listed in Table 57.10 to
extract Economic data items for a list of country IDs or for no country IDs over time.

The DBSOURCE= option specifies a standardized database source name, such as EWIN_ECON, GI_ECON,
OECD_MEI, FDS_ECON, FDS_COM, or the default, a null string, which uses the Standardized Economic
data (EWIN_ECON_RGDPR_Y). Use the IDS= option to specify one or more country IDs based on the
database source. For the complete list of country IDs that work with the standardized codes for the FactSet
Economics database, see Table 57.11.

Use the ITEM= option to specify an FQL item based on the database source. You can also use the ITEM=
option with the downloading syntax for Economic Request Codes described in the FactSet Online Assistant,
page ID 11794, and shown in Example 57.2. Example 57.2 uses the shorthand FQL syntax in the ITEM=
option to retrieve the same time series data items.

The SASEXFSD engine supports retrieval of the following FQL_entities: ECON_EXPR_DATA,
SPEC_ID_DATA, FDS_ECON_DATA, EIU_ECON_DATA, CNS_ECON_DATA, EURO_STAT_DATA,
IBJ_NIKKO_DATA, IMF_IFS_DATA, NTCS_ECON_DATA, OECD_OTLK_DATA, OECD_MEI_DATA,
ONS_ECON_DATA, TCB_BCI_DATA, TCB_CCI_DATA, CEIC_ECON_DATA, and CEIC_CHINA_DATA.

A FactSet representative can provide you with permissions to access the databases that contain the time
series data that you are interested in. For an example of using ECON_EXPR_DATA, see Example 57.3.
For more information about using ECON_EXPR_DATA and SPEC_ID_DATA, see the section “Down-
loading Economic Function Codes to Excel” in the FactSet Online Assistant, page ID 12308. You can
replace options such as START=, END=, FREQ=, CONV=, DIST=, NFB=, and FUNCTION= by using
the corresponding placement of each option’s value in the FQL downloading syntax. In this example,
ITEM="FDS_ECON_DATA(’FRBIPSB50001’, -121,-1,m,step,average)" gives the database source name
(FDS_ECON), time series name (FRBIPSB50001), start and end dates, monthly frequency, distribution
(step), and conversion (average); no-feel-back defaults to 1.
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For the complete list of the data series codes available with the standardized FactSet Economics database, see
the ExtractEconData appendix, linked in the FactSet Online Assistant, page ID 16948. The data are available
at monthly, quarterly, and annual frequencies, as denoted by the _M, _Q, and _Y suffixes in the code.

Use the FREQ= option to specify the frequency of the data, and use the DATES= option to specify a date
range for selecting time series data. For more information, see the section “Frequency” in the FactSet Online
Assistant, page ID 11794.

You can use the CONV= option to specify CONV=SUM, AVERAGE, AVERAGENP, or none (the default is
none).

You can use the DIST= option to specify DIST=STEP (step distribution), EVEN, or none (the default).

You can use the NFB= option to specify your no-feel-back setting (0, 1, or 2) to indicate full feel-back, no
feel-back (the default), or feel-back until most recent data point, respectively (do not fill in data past the last
available data point).

You can use the FUNCTION= option to apply an economic function to the data values of the time series
(such as FUNCTION=ZSCORE). For a list of economic functions, see the FactSet Online Assistant, page ID
12308.

The ORIENTATION= option supports only ETI, which is the default.
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Table 57.10 ExtractEconData Factlet Options

Option Description

IDS= Specifies a string array with a list of the country identifiers from the
Standardized Economic database

ITEMS= Specifies the economic series mnemonic (for example, US GDP
database source [mnemonic] is
FDS_ECON[BEANIPAA191RL1@US])

DATES= Specifies a date string such as 'YYYYMMDD:YYYYMMDD:F' or
relative dates ’-1b:-4b:m’

START= Specifies the numeric start date in 'YYYYMMDD' format
END= Specifies the numeric end date in 'YYYYMMDD' format
FREQ= Specifies the valid FQL frequencies, such as M, D, W, Q, and Y.

Note: For economic request codes, a frequency argument is
necessary to retrieve the data.

DBSOURCE= Specifies a standardized database source name, such as
EWIN_ECON, GI_ECON, OECD_MEI, FDS_ECON, FDS_COM,
or the default, a null string, which uses the Standardized Economic
data (EWIN_ECON_RGDPR_Y)

CONV= Specifies the conversion technique for aggregating periods, when a
data series of a higher frequency is converted to a lower frequency;
for example, you can use this option to convert a quarterly series to
an annual series (for example, SUM, AVERAGE, or AVERAGENP,
which excludes NAs).

DIST= Specifies the distribution technique for spreading over periods when
a data series of a lower frequency is distributed to a higher
frequency; for example, you can use it to distribute an annual series
to a quarterly series (such as STEP, EVEN, or NONE).

NFB= Specifies the optional “no-feel-back” argument in FQL codes. If you
do not specify the NFB= option, the returned data series contains
NAs where the data are not available (default is NFB=1). If you
want the data to “feel back” over NAs to find the last actual data
point and carry these data forward, specify either NFB=0 or NFB=2.

FUNCTION= Adds FQL function property to change data value; for example,
FUNCTION=ZSCORE

ORIENTATION= Specifies an optional orientation (default is ETI, entity-time-item)
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Table 57.11 Country Identifiers

Country Country ID Country Country ID

Argentina CC_AR Lithuania CC_LT
Australia CC_AU Luxembourg CC_LU
Austria CC_AT Malaysia CC_MY
Azerbaijan CC_AZ Malta CC_MT
Bangladesh CC_BD Mexico CC_MX
Belarus CC_BY Morocco CC_MA
Belgium CC_BE Netherlands CC_NL
Bolivia CC_BO New Zealand CC_NZ
Brazil CC_BR Nigeria CC_NG
Bulgaria CC_BG Norway CC_NO
Canada CC_CA Pakistan CC_PK
Chile CC_CL Panama CC_PA
China CC_CN Paraguay CC_PY
Colombia CC_CO Peru CC_PE
Costa Rica CC_CR Philippines CC_PH
Croatia CC_HR Poland CC_PL
Cyprus CC_CY Portugal CC_PT
Czech Republic CC_CZ Romania CC_RO
Denmark CC_DK Russia CC_RU
Dominican Republic CC_DO Saudi Arabia CC_SA
Ecuador CC_EC Singapore CC_SG
Egypt CC_EG Slovakia CC_SK
Estonia CC_EE Slovenia CC_SI
Finland CC_FI South Africa CC_ZA
France CC_FR South Korea CC_KR
Germany CC_DE Spain CC_ES
Greece CC_GR Sri Lanka CC_LK
Hong Kong CC_HK Sweden CC_SE
Hungary CC_HU Switzerland CC_CH
Iceland CC_IS Taiwan CC_TW
India CC_IN Thailand CC_TH
Indonesia CC_ID Turkey CC_TR
Ireland CC_IE Ukraine CC_UA
Israel CC_IL United Kingdom CC_GB
Italy CC_IT United States CC_US
Japan CC_JP Uruguay CC_UY
Jordan CC_JO Uzbekistan CC_UZ
Kazakhstan CC_KK Venezuela CC_VE
Latvia CC_LV Vietnam CC_VN
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The ExtractFormulaHistory Factlet
The ExtractFormulaHistory factlet is used for extracting one or more items for one security, for an index,
or for a list of securities over time. ExtractFormulaHistory uses the FactSet Query Language (FQL). The
ExtractFormulaHistory factlet uses the options listed in Table 57.12, such as the IDS= option, which specifies
the IDs for one or more securities, or the ISON= and ISONPARAMS= options, which specify an FQL
formula that extracts the universe along with any ISON parameters necessary for the ISON code. You can
use the START=, END=, and FREQ= options or the DATES= option to specify a date range for selecting
time series data. You can select data items by using the ITEMS= option, but only the name/value pairs
syntax (not the standard FQL syntax) is supported. The ITEMS= option designates multiple shortcut items or
item/statistic combinations. You can use any instance of the Formula Library for the ITEMS= option.

The PERIOD= option is used for FactSet Fundamentals database codes to specify the estimate period of
the data that you want to select. The CAL= option enables you to set your calendar in the same way
that the PSETCAL function in FQL works. You can specify the CAL= option to be LOCAL, FIVEDAY,
FIVEDAYEOM, SEVENDAY, or an exchange code. The list of exchange codes is available in the FactSet
Online Assistant, page ID 16610. The ORIENTATION= option is supported only for ETI (entity-time-item),
so that your SAS output data set is organized by key entities such as CUSIP or ticker, by date so that
observations are kept in time series order, and by item. ETI is the default setting for orientation.

Table 57.12 ExtractFormulaHistory Factlet Options

Option Description

IDS= Specifies one or more securities; for example, IDS=IBM,MSFT,FDS
ISON= Specifies the FQL value that extracts the universe; for example, ISON_SP500 is

entered as ISON=SP500, and ISON_MSCI_WORLD(0,1) is written as
ISON=MSCI_WORLD.

ISONPARAMS= Specifies the ISON codes that use parameters; for example,
ISON_MSCI_WORLD(0,1) is written as ISONPARAMS=0,1.

UNIVERSE= Specifies the universe.
DATES= Specifies a date string such as 'YYYYMMDD:YYYYMMDD:F' or relative dates

-1b:-4b:m
START= Specifies a valid FQL date; START=0 is the default
END= Specifies a valid FQL date; END=0 is the default
FREQ= Specifies a valid FQL frequencies; for example, M, D, Y. See Table 57.20.
ITEMS= Specifies one or more FQL items (only the name/value pair syntax is supported; for

example, ff_sales, p_price)
PERIOD= Specifies valid time intervals between the data points (observations) in a time series;

for example, ANN, QTR, and SEMI-ANN; PERIOD=ANN is the default.
ORIENTATION= Specifies an optional orientation (default is currently ETI)
CAL= Specifies the calendar setting that replicates the PSETCAL function; for example,

LOCAL, FIVEDAY, FIVEDAYEOM, and SEVENDAY, for exchange code
CAL=AAM (for a list of exchange codes, see the FactSet Online Assistant, page ID
16610)
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The ExtractDataSnapshot Factlet
The ExtractDataSnapshot factlet is used for efficiently extracting multiple items as of a single date, for
a universe of both equity and fixed income securities. It uses the FactSet Screening Language to extract
data for a large universe of securities as of a single date. The ExtractDataSnapshot factlet uses the options
listed in Table 57.13, such as the IDS= option, which specifies the IDS for one or more securities, or you
can specify fixed securities by using the UNIVERSEGROUP= option. If you want to access only current
constituents, use the ISON= option to specify your ISON codes instead of using the IDS= option. If your
ISON code uses parameters, then use the ISONPARAMS= option to specify the parameters for the code that
you use in your ISON= option. Use DATE=YYYYMMDD to specify the day that your snapshot is for, or
use the START=, END=, and FREQ= options for the FQL scalar data item date that you are interested in.
Use the ITEMS= option to specify one or more screening items. The SASEXFSD engine does not support
the standard screening syntax, so use the name/value pair syntax instead. For example, instead of using
ITEMS=’FF_SALES(QTR,20110401)’, use ITEMS=’FF_SALES’ PERIOD=QTR REL_DATE=20110401
in your LIBNAME libref SASEXFSD statement. Specify the UNIVERSEGROUP= option to choose between
the EQUITY group and the DEBT group. The CAL= option enables you to set your calendar in the same
way that the PSETCAL function in FQL works. You can specify the CAL= option to be LOCAL, FIVEDAY,
FIVEDAYEOM, SEVENDAY, or an exchange code. The list of exchange codes is available in the FactSet
Online Assistant, page ID 16610. The ORIENTATION= option is supported only for ETI (entity-time-item),
which is also the default.
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Table 57.13 ExtractDataSnapshot Factlet Options

Option Description

IDS= Specifies one or more securities; for example, IDS=’IBM,MSFT’.
Fixed securities are used in conjunction with
UNIVERSEGROUP=DEBT (for example, IDS=88579EAE).

ISON= Specifies a screening code that extracts the universe; for example,
ISON_SP500 is entered as ISON=SP500, and
ISON_MSCI_WORLD(0,1) is entered as ISON=MSCI_WORLD.

ISONPARAMS= Specifies ISON codes that use parameters; for example,
ISON_MSCI_WORLD(0,1) is written as ISONPARAMS=0,1.

DATE= Specifies one date in the format 'YYYYMMDD' (default is 0B, for
today’s date)

START= Specifies a valid start date; START=0 is the default.
END= Specifies a valid end date; END=0 is the default.
FREQ= Specifies a valid frequency; for example, M, D, Y. See Table 57.20.
ITEMS= Specifies one or more screening items (only the name/value pair

syntax is supported)
PERIOD= Specifies a valid time interval between the data points (observations)

in a time series; for example, ANN, QTR, SEMI-ANN;
PERIOD=ANN is the default.

UNIVERSEGROUP= Specifies the universe group. The default value is EQUITY; for DEBT
securities, specify UNIVERSEGROUP=DEBT.

ORIENTATION= Specifies an optional orientation (default is ETI)
CAL= Specifies a calendar setting that replicates the PSETCAL function; for

example, LOCAL, FIVEDAY, FIVEDAYEOM, and SEVENDAY, for
exchange code CAL=AAM (for a list of exchange codes, refer to the
FactSet Online Assistant, page ID 16610)

The ExtractBenchmarkDetail Factlet
The ExtractBenchmarkDetail factlet is used for retrieving a more comprehensive overview of the index
constituent data for a benchmark, without requiring the additional codes and calculations that are needed
with the ExtractFormulaHistory factlet. ExtractBenchmarkDetail uses default output in which the identifiers
are sorted in descending order by weight in the index, and each row shows the index ID, company ID, date,
ticker, and weight. Any additional items are displayed at the end of each row.

The ExtractBenchmarkDetail factlet uses the options that are listed in Table 57.15, such
as the IDS= option, which specifies the IDs for one or more benchmarks (indexes). Use
DATES=’YYYYMMDD:YYYYMMDD:freq’ to specify the range of dates in 'start:end:freq'
format.

You can designate dates in absolute or relative form, as shown in Table 57.14. Absolute dates specify a day in
'MM/DD/YYYY' format (such as 7/11/1999), a month end in 'MM/YYYY' format (such as 6/1999), a fiscal
quarter end in 'YY/FQ' or 'YYY/FQ' format (such as 1999/1F, 2000/3F, or 2001/2F), a calendar quarter
end in 'YY/CQ' or 'YYYY/CQ' format (such as 1999/1C, 00/3C, or 2001/1C), or a fiscal year end in 'YY'
or 'YYYY' format (such as 2000, 01, or 1999).
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Table 57.14 ExtractBenchmarkDetail Factlet Relative Date Arguments

Relative Date
Argument

Description

D 0D is the most recent trading day; –1D is one trading day prior.
AW 0AW is the most recent trading day; –1AW is the one actual week (7 days) prior to

the most recent trading day.
W 0W is the last day of the most recent trading week (usually Friday); –1W is the

last trading day of the prior week.
AM 0AM is the most recent trading day; –1AM is the same day, one actual month

prior.
M 0M is the last trading day of the most recent month; –1M is the last trading day of

the prior month.
AQ 0AQ is the most recent trading day; –1AQ is the same day 3 months prior.
Q 0Q is the last trading day of the company’s most recent fiscal quarter; –1Q is the

last day of the prior fiscal quarter.
CQ 0CQ is the last trading day of the most recent calendar quarter (March, June,

September, or December); –1CQ is the last trading day of the prior calendar
quarter.

AY 0AY is the most recent trading day; –1AY is one actual year (365 days) prior.
Y 0Y is the last trading day of the company’s most recent fiscal year; –1Y is the last

trading day of the prior fiscal year.
CY 0CY is the last trading day of the most recent calendar year (the last trading day in

December); –1CY is the last trading day of the prior calendar year.

Use the ITEMS= option to specify one or more screening items, such as p_price or ca_sales. The CUTOFF=
option specifies the number of holdings to show. The default is to show all instances. The optional
MATCHDATE= option is used to limit the output to not repeat the dates that “feel back” to a holiday.
The default behavior (no MATCHDATE= option) repeats the dates that “feel back” to a holiday. The
MATCHDATE= option is always used with a frequency argument set to B, which indicates business days.
Use MATCHDATE=ON for better response time and to limit the large amount of data being returned. The
UNIVERSEGROUP= option is necessary only when you specify UNIVERSEGROUP=DEBT. By default,
UNIVERSEGROUP=EQUITY.
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Table 57.15 ExtractBenchmarkDetail Factlet Options

Option Description

IDS= Specifies one or more benchmarks; for example, IDS=SP50, R.3000
DATES= Specifies one or more dates entered in 'start:end:freq' format,

’20101215:20100115:d’
ITEMS= Specifies one or more screening items (such as ITEMS=’p_price,

ca_sales’). FQL items are named with a preceding underscore.
CUTOFF= Specifies an optional number of holdings to show; default (no cutoff)

displays all instances.
MATCHDATE= Specifies an optional argument that turns off the default behavior, in

which dates are repeated when “feeling back” to a holiday. It is always
used with a frequency argument set to B (indicating business days).

UNIVERSEGROUP= Specifies the universe group. The default value is EQUITY. For fixed
income indices, specify UNIVERSEGROUP=DEBT.

The ExtractOFDBItem Factlet
The ExtractOFDBItem factlet provides access to a list of securities and multiple data items for a range of dates
uploaded into a single Open FactSet Database (OFDB). An OFDB is a high-performance multidimensional
database system that securely stores proprietary numeric and textual data in FactSet.The ExtractOFDBItem
factlet uses the options listed in Table 57.16, such as the OFDB= option, which specifies the OFDB file. Use
either the IDS= option, which specifies the IDs for one or more securities, or the ISON= and ISONPARAMS=
options, which specify an FQL formula (ISON code) that extracts the universe along with any ISON
parameters necessary for the ISON code. Use the ITEMS= option to specify one or more items in the OFDB
file. Use the DATES= option to specify a date range in 'YYYYMMDD:YYYYMMDD:freq' format, or use
FQL dates when FQLFLAG=Y (yes). By default, FQLFLAG=N (no). The DATESONLY= option specifies
whether only the dates in the OFDB file are reported. By default, DATESONLY=N. The ORIENTATION=
option supports only ETI, which is the default.
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Table 57.16 ExtractOFDBItem Factlet Options

Option Description

OFDB= Specifies the OFDB file
IDS= Specifies one or more securities; for example, IDS=IBM, GM
ISON= Specifies the FQL value that extracts the universe; for example, ISON_SP500 is

entered as ISON=SP500, and ISON_MSCI_WORLD(0,1) is written as
ISON=MSCI_WORLD.

ISONPARAMS= Specifies the parameters for the ISON codes that use parameters; for example,
ISON_MSCI_WORLD(0,1) is written as ISONPARAMS=0,1.

ITEMS= Specifies one or more data items from the OFDB file
DATES= Specifies dates in the format 'YYYYMMDD:YYYYMMDD:F' or relative dates in

relative format, such as -1b:-4b:m
DATE= Specifies one date in the format 'YYYYMMDD' (default is 0B, for today’s date)
DATESONLY= Specifies that dates are reported from the OFDB file only when the option is set

to Y (default is N)
FQLFLAG= Sets dates to use FQL instead of screening; FQLFLAG=N (default) or Y
ORIENTATION= Specifies an optional orientation (default is currently ETI)

The ExtractOFDBUniverse Factlet
The ExtractOFDBUniverse factlet uses the options that are listed in Table 57.17 to extract a list of CUSIPs
that belong to a single OFDB file or ISON code. Use the OFDB= option to specify a OFDB file, and use the
DATE= option to specify the date for showing the list of CUSIPs.

Table 57.17 ExtractOFDBUniverse Factlet Options

Option Description

OFDB= Specifies the OFDB file
DATE= Specifies one date in 'YYYYMMDD' format only; DATE="" specifies the most

recent date.
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The ExtractScreenUniverse Factlet
The ExtractScreenUniverse factlet is used for extracting a list of CUSIPs stored in a single FactSet screen.
On the FactSet workstation, a user can screen for equity and fixed income securities based on specified
criteria and store a list of companies by using FactSet Universal Screening for equity or debt securities.
The ExtractScreenUniverse factlet uses the options that are listed in Table 57.18 to extract a list of CUSIPs
that belong to a single user-defined screen. Use the SCREEN= option to specify a screen file, and use the
NAME= option to specify whether or not to make the names of the corresponding securities visible. Specify
NAME=Y (yes) to view the security names for each CUSIP in the screen. NAME=N (no) is the default, for
which security names are not shown with the CUSIP list. Because screen file names can contain blanks and
special characters, enclose the screen file name in single quotation marks:

options validvarname=any;

LIBNAME myFast sasexfsd "%sysget(FACTSET)"
debug=on
factlet=ExtractScreenUniverse
screen='factset:1 Week EPS Estimate Revisions - FactSet Consensus'
name=y
format=sml
outXml=sasscrn4
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)sasscrn4.map"
period=QTR
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX'
;

Table 57.18 ExtractScreenUniverse Factlet Options

Option Description

SCREEN= Specifies a screen file
NAME= Specifies whether security names are to be visible.

NAME=Y indicates yes to show names; default is N,
indicating that no names are shown.
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Details: SASEXFSD Interface Engine

FactSet Data and FactSet Sourced Data
The SASEXFSD interface engine enables SAS users to access both FactSet data and FactSet sourced data that
are provided by the FactSet OnDemand service. FactSet OnDemand offerings can provide access to many
databases. Because the list of available data is constantly changing, Table 57.19 is included for instructional
purposes only. Many other data offerings are available that are not shown in Table 57.19.

Table 57.19 Sample FactSet Data Types

Pricing and IPO Data
Estimates
Broker Research
Commodity Benchmarks
Equity Benchmarks
Fixed Income Benchmarks
Mutual Fund/Account Return Data
Economic Data
Financial News and Events/Corporate Information
Quantitative Data
Options Data
Investment Banking Data
Fixed Income Data
Deal Data
Other Databases

SAS Output Data Set
You can use the SAS DATA step to write the selected FactSet data to a SAS data set. This enables you to use
SAS software to easily analyze the data. If you specify the name of the output data set in the DATA step, the
engine supervisor creates a SAS data set that has the specified name in either the SAS Work library or, if
specified, the User library.

The contents of the SAS data set include the BY groups, the date of each observation, and the series name of
each series that is read from the FactSet data source.

The SASEXFSD interface engine sorts the IDs into keys or BY groups, so that the time series are sorted in
the resulting SAS data set by key (entity identifier such as a ticker), by date (time ID), and by variable (time
series item name).

You can use the PRINT and CONTENTS procedures to print your output data set and its contents. Alterna-
tively, you can view your SAS output observations by opening the desired output data set in a SAS Explorer
window. You can also use the SQL procedure with your SASEXFSD libref to create a custom view of your
data.
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SAS OUTXML File
The SAS XML (SML format) data that are returned from the FactSet OnDemand service are placed in a
file named by the OUTXML= option. The SAS XML data are placed in the current working directory.
The SAS data set created when the XML data are read into SAS is placed in the location specified by the
physical-name in the LIBNAME libref SASEXFSD statement, which is described in the section “Syntax:
SASEXFSD Interface Engine” on page 3898.

SAS XML Map File
The XML map that is automatically created is assigned the full path name specified by the XMLMAP=
option in your LIBNAME libref SASEXFSD statement. The XML map file is either reused (not overwritten)
if you specify AUTOMAP=REUSE or overwritten by a new map if you specify AUTOMAP=REPLACE.
The SASEXFSD interface engine invokes the XMLV2 engine to create the map and to read the data into
SAS.

Specifying Date Ranges and Frequency Codes
When you specify a range of dates for selecting your time series observations, you can specify the range
in either absolute or relative dates. The absolute start and end dates are given in 'YYYYMMDD' format and
separated by a colon (:). The frequency is given along with the date range and can be any one of the codes
shown in Table 57.20. The code frequency indicates the frequency with which you want to display data.
Relative dates are relative to the most recently updated period (0). A minus sign (as in –1) represents the
period prior to the most recently updated period. The zero date is determined by the natural frequency of
the time series data, so a 0 for monthly data represents the most recent month end. Annual data use –1 to
represent the fiscal year prior to the most recently updated fiscal year.

Table 57.20 FactSet Frequency Codes

Freq.
Code

Description

AD Displays data on an actual daily basis (that is, all days, not just trading days)
D Displays data on a daily basis
AW Displays data weekly, based on the day of the week of the start date
W Displays data weekly, based on the last day of the completed trading week (usually Friday)
WTD For a range item (such as price change), displays the week-to-date value. For other items, displays

the latest daily value. For the remainder of the time series, displays data weekly, based on the last
day of the completed trading week (usually Friday).

AM Displays data monthly, based on the start date (for example, if the start date is June 16, data are
displayed for June 16, May 16, April 16, and so on)

M Displays data monthly, based on the last trading day of the month
MTD For a range item (such as price change), displays the month-to-date value. For other items, displays

the latest daily value. For the remainder of the time series, displays data monthly, based on the last
trading day of the month.
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Table 57.20 continued

Freq.
Code

Description

QTD For a range item (such as price change), displays the calendar quarter-to-date value. For other
items, displays the latest daily value. For the remainder of the time series, displays data quarterly,
based on the last trading day of the quarter.

CQTD For a range item (such as price change), displays the calendar quarter-to-date value. For other
items, displays the latest daily value. For the remainder of the time series, displays data quarterly,
based on the last trading day of the calendar quarter.

FQTD For a range item (such as price change), displays the fiscal quarter-to-date value. For other items,
displays the latest daily value. For the remainder of the time series, displays data quarterly, based
on the last trading day of the fiscal quarter.

AQ Displays data in three-month periods, based on the start date (for example, if the start date is April
7, data are displayed for April 7, January 7, October 7, July 7, and so on)

Q Displays data quarterly, based on the last trading day of the company’s fiscal quarter
CQ Displays data quarterly, based on the last trading day of the calendar quarter (March, June,

September, or December)
FSA Displays data semiannually, based on the last trading day of the fiscal semiannual period
CSA Displays data semiannually, based on the last trading day of the calendar semiannual period
ASA Displays data in six-month periods, based on the start date (for example, if the start date is June,

data are displayed for June, January, June (prior), January (prior), and so on)
YTD For a range item (such as price change), displays the calendar year-to-date value. For other items,

displays the latest daily value. For the remainder of the time series, displays data annually, based
on the last trading day of the year.

CYTD For a range item (such as price change), displays the calendar year-to-date value. For other items,
displays the latest daily value. For the remainder of the time series, displays data annually, based
on the last trading day of the calendar year.

FYTD For a range item (such as price change), displays the fiscal year-to-date value. For other items,
displays the latest daily value. For the remainder of the time series, displays data annually, based
on the last trading day of the fiscal year.

AY Displays data annually, based on the start date (for example, if the start date is October 31, 1995,
data are displayed for October 31, 1995, October 31, 1994, October 31, 1993, and so on)

Y Displays data annually, based on the last trading day of the company’s fiscal year
CY Displays data annually, based on the last trading day of the calendar year
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Specifying Currency Codes
Currency is represented by three-character ISO (International Organization for Standardization) codes, such
as USD for US dollars or EUR for euros. For a complete list of currency codes, see Table 57.21 and
Table 57.22.
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Table 57.21 ISO Currency Codes

Currency ISO Code Currency ISO Code

Afghanistan Afghani AFN Djibouti Franc DJF
Albanian Lek ALL Dominican Rep. Peso DOP
Algerian Dinar DZD East Caribbean Dollar XCD
Angolan Kwanza AOA East German Ostmark DDM
Argentine Peso ARS Ecuador US Dollar USD
Armenia Dram AMD Egyptian Pound EGP
Aruban Guilder AWG El Salvador Colon SVC
Australian Dollar AUD Estonian Euro EUR
Austrian Schilling* ATS Ethiopian Birr ETB
Azerbaijan New Manat AZN Euro EUR
Bahamas Dollar BSD Euro Floating Rate EUX
Bahraini Dinar BHD European Currency Unit XEU
Bangladesh Taka BDT Falkland Is. Pound FKP
Barbados Dollar BBD Fiji Dollar FJD
Belarus Rouble BYR Finnish Markka* FIM
Belgian Franc* BEF French Euro EUR
Belize Dollar BZD Gambia Dalasi GMD
Bermuda Dollar BMD Georgian Lari GEL
Bhutan Ngultrum BTN German Euro EUR
Bolivian Boliviano BOB Ghana Cedi GHS
Botswana Pula BWP Gibraltar Pound GIP
Brazilian Real BRL Greek Drachma* GRD
British Pence GBX Guatemala Quetzal GTQ
British Pound GBP Guinea Franc GNF
Brunei Dollar BND Guinea-Bissau Peso XOF
Bulgarian Lev BGN Guyana Dollar GYD
Burundi Franc BIF Haiti Gourde HTG
Cambodian Riel KHR Honduras Lempira HNL
Canadian Dollar CAD Hong Kong Dollar HKD
Cape Verde Is. Escudo CVE Hungarian Forint HUF
Cayman Islands Dollar KYD Icelandic Krona ISK
CFA Franc (C. African) XAF Indian Rupee INR
CFA Franc (W. African) XOF Indonesian Rupiah IDR
CFP Franc XPF Iran Rial IRR
Chile UF CLF Iraqi Dinar IQD
Chilean Peso CLP Irish Punt* IEP
China Yuan Renminbi CNY Israeli Shekel ILS
Colombian Peso COP Italian Lira* ITL
Comoros Franc KMF Jamaican Dollar JMD
Costa Rica Colon CRC Japanese Yen JPY
Croatian Kuna HRK Jordanian Dinar JOD
Cuban Peso CUP Kazakhstan Tenge KZT
Cyprus Pound* CYP Kenya Shilling KES
Czech Koruna CZK Kuwait Dinar KWD
Danish Krone DKK Kyrgyzstan Som KGS
*The local currency and currency code are euro and EUR, respectively.
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Table 57.22 ISO Currency Codes (continued)

Currency ISO Code Currency ISO Code

Laos New Kip LAK Sao Tome and Principe Dobra STD
Latvian Lats LVL Saudi Arabian Riyal SAR
Lebanese Pound LBP Serbian Dinar RSD
Lesotho Loti LSL Seychelles Rupee SCR
Liberian Dollar LRD Sierra Leone Leone SLL
Libyan Dinar LYD Singapore Dollar SGD
Lithuanian Litas LTL Slovakia Koruna* SKK
Luxembourg Franc* LUF Slovenian Tolar* SIT
Macau Pataca MOP Solomon Is. Dollar SBD
Macedonian Denar MKD Somali Shilling SOS
Malagasy Ariary MGA South African Rand ZAR
Malawi Kwacha MWK South Korean Won KRW
Malaysian Ringgit MYR Spanish Peseta* ESP
Maldive Is. Rufiyaa MVR Sri Lanka Rupee LKR
Maltese Lira* MTL St. Helena Pound SHP
Mauritania Ouguiya MRO Sudanese Dinar SDG
Mauritian Rupee MUR Surinam Dollar SRD
Mexican Peso MXN Swaziland Lilangeni SZL
Moldovan Leu MDL Swedish Krona SEK
Mongolian Tugrik MNT Swiss Franc CHF
Moroccan Dirham MAD Syrian Pound SYP
Mozambique New Metical MZN Taiwan Dollar TWD
Myanmar (Burma) Kyat MMK Tajikistan Somoni TJS
Namibian Dollar NAD Tanzania Shilling TZS
Nepalese Rupee NPR Thailand Baht THB
Netherlands Antilles Guilder ANG Tonga Pa’anga TOP
Netherlands Guilder* NLG Trinidad and Tobago Dollar TTD
New Zealand Dollar NZD Tunisian Dinar TND
Nicaragua Cordoba Oro NIO Turkish Lira TRY
Nigerian Naira NGN Turkmenistan Manat TMT
North Korean Won KPW UAE Dirham AED
Norwegian Krone NOK Uganda Shilling UGX
Oman Rial OMR Ukraine Hryvnia UAH
Pakistan Rupee PKR Uruguay Peso UYU
Panama Balboa PAB US Dollar USD
Papua New Guinea Kina PGK Uzbekistan Sum UZS
Paraguay Guarani PYG Vanuatu Vatu VUV
Peruvian New Sol PEN Venezuelan Bolivar Fuerte VEF
Philippines Peso PHP Vietnam Dong VND
Polish Zloty PLN Western Samoa Tala WST
Portuguese Escudo* PTE Yemeni Rial YER
Qatari Rial QAR Zaire Zaire ZRN
Romanian New Leu RON Zambian Kwacha ZMK
Russian Rouble RUB Zimbabwe Dollar ZWL
Rwanda Franc RWF
*The local currency and currency code are euro and EUR, respectively.
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Examples: SASEXFSD Interface Engine

Example 57.1: Retrieving Standardized Economic Items for Multiple Countries
This example shows how to use the ExtractEconData factlet to retrieve the standardized government debt
values, reflecting debt in billions of dollars at year end for the United States and Greece and using the country
identifiers CC_US and CC_GR and the standardized FactSet economic code FDS_ECON_GDP_USD_Y.

options validvarname=any;

title 'Retrieve Standardized Economic Items for Multiple Countries (US,GR)';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractEconData
ids='CC_US,CC_GR'
items='FDS_ECON_GDP_USD_Y'
dates='-6:-1:y'
period=QTR
format=sml
outXml=fsdex06
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex06.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data econStnd; set xfsd.fsdex06; run;
proc print data=econStnd; run;

Output 57.1.1 Standardized Economic Items for Multiple Countries

Retrieve Standardized Economic Items for Multiple Countries (US,GR)

Obs FQL_Entity date fds_econ_gdp_usd_y

1 CC_US 12-31-2006 13377.20

2 CC_US 12-31-2007 14028.70

3 CC_US 12-31-2008 14291.50

4 CC_US 12-31-2009 13973.70

5 CC_US 12-31-2010 14498.90

6 CC_US 12-31-2011 15075.70

7 CC_GR 12-31-2006 261.85

8 CC_GR 12-31-2007 305.54

9 CC_GR 12-31-2008 341.24

10 CC_GR 12-31-2009 321.34

11 CC_GR 12-31-2010 294.03

12 CC_GR 12-31-2011 290.04
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Example 57.2: Retrieving Economic Items by Using the FQL Syntax for
Function Z Score

This example shows how to use the ExtractEconData factlet to retrieve the Z score for the GRLM0347861
monthly time series for Greece over the last three years by using the FQL economic download syntax. It is
not necessary to use the IDS= option, because all necessary information is contained in the ITEMS= option.
The PRINT procedure uses the LABEL option to allow the time series name to be in the column heading in
the output. Without the LABEL option, the column heading would be ’ECON_EXPR_DATA’.

options validvarname=any;

title 'Retrieve the Z Score Using ECON_EXPR_DATA for the US CFTNCLOI%ALLNQ100CMEF Series';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractEconData
items="ECON_EXPR_DATA('ZSCORE(FDS_ECON[GRLM0347861],
-5AY,step,average)',0,0/0/-3,m)"
format=sml
outXml=fsdecon8z
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdecon8z.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data FQLeconFunc; set xfsd.fsdecon8z; run;
proc print data=FQLeconFunc(firstobs=1 obs=34) label; run;
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Output 57.2.1 Z Score Using ECON_EXPR_DATA for the GRLM0347861 Monthly Series for Greece

Retrieve the Z Score Using ECON_EXPR_DATA for the US CFTNCLOI%ALLNQ100CMEF
Series

Obs FQL_Entity date ZSCORE(FDS_ECON[GRLM0347861],-5AY,step,average)

1 econ_expr_data 04-30-2010 -1.34718

2 econ_expr_data 05-28-2010 -1.33648

3 econ_expr_data 06-30-2010 -1.42249

4 econ_expr_data 07-30-2010 -1.32352

5 econ_expr_data 08-31-2010 -1.28179

6 econ_expr_data 09-30-2010 -1.21514

7 econ_expr_data 10-29-2010 -1.01707

8 econ_expr_data 11-30-2010 -0.95096

9 econ_expr_data 12-31-2010 -0.76515

10 econ_expr_data 01-31-2011 -0.70250

11 econ_expr_data 02-28-2011 -0.54235

12 econ_expr_data 03-31-2011 -0.46460

13 econ_expr_data 04-29-2011 -0.54778

14 econ_expr_data 05-31-2011 -0.38856

15 econ_expr_data 06-30-2011 -0.51014

16 econ_expr_data 07-29-2011 -0.40330

17 econ_expr_data 08-31-2011 -0.03023

18 econ_expr_data 09-30-2011 -0.20943

19 econ_expr_data 10-31-2011 -0.06770

20 econ_expr_data 11-30-2011 0.48282

21 econ_expr_data 12-30-2011 0.49980

22 econ_expr_data 01-31-2012 0.68252

23 econ_expr_data 02-29-2012 0.82152

24 econ_expr_data 03-30-2012 0.84469

25 econ_expr_data 04-30-2012 0.81819

26 econ_expr_data 05-31-2012 0.88345

27 econ_expr_data 06-29-2012 1.09286

28 econ_expr_data 07-31-2012 1.02826

29 econ_expr_data 08-31-2012 1.19474

30 econ_expr_data 09-28-2012 1.45434

31 econ_expr_data 10-31-2012 1.43013

32 econ_expr_data 11-30-2012 1.69463

33 econ_expr_data 12-31-2012 1.59840

34 econ_expr_data 01-31-2013 .
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Example 57.3: Using ECON_EXPR_DATA with the FQL Syntax for Function
Returns

This example shows how to use the ExtractEconData factlet to retrieve the Returns for the GDPEURNS
quarterly time series for Greece over the last 10 years by using the FQL economic download syntax. It is not
necessary to use the IDS= option, because the FQL downloading syntax allows ’\@@GR’ to be appended
to the series name in the ITEMS= option. The PRINT procedure uses the LABEL option to allow the time
series name to be in the column heading in the output. Without the LABEL option, the column heading
would be ’ECON_EXPR_DATA’.

options validvarname=any;

title 'Retrieve Returns Using ECON_EXPR_DATA for the GDPEURNS@GR Series';
libname _all_ clear;

debug=on
factlet=ExtractEconData
items="ECON_EXPR_DATA('RETURNS(EURO_STAT[GDPEURNS@GR],-1AQ,4)',0,0/0/-10,q)"
format=sml
outXml=fsdecon20
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdecon20.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data EUROFunc; set xfsd.fsdecon20; run;
proc print data=EUROFunc label; run;
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Output 57.3.1 Quarterly Returns of Series GDPEURNS@GR Using ECON_EXPR_DATA for Database
Source Name EURO_STAT

Retrieve Returns Using ECON_EXPR_DATA for the GDPEURNS@GR Series

Obs FQL_Entity date RETURNS(EURO_STAT[GDPEURNS@GR],-1AQ,4)

1 econ_expr_data 06-30-2003 39.9255

2 econ_expr_data 09-30-2003 24.1206

3 econ_expr_data 12-31-2003 -2.9307

4 econ_expr_data 03-31-2004 -21.9838

5 econ_expr_data 06-30-2004 44.4186

6 econ_expr_data 09-30-2004 21.6794

7 econ_expr_data 12-31-2004 -3.2521

8 econ_expr_data 03-31-2005 -28.4104

9 econ_expr_data 06-30-2005 32.7385

10 econ_expr_data 09-30-2005 31.6561

11 econ_expr_data 12-30-2005 -6.1976

12 econ_expr_data 03-31-2006 -17.0596

13 econ_expr_data 06-30-2006 40.5935

14 econ_expr_data 09-29-2006 19.2535

15 econ_expr_data 12-29-2006 -0.3652

16 econ_expr_data 03-30-2007 -21.9820

17 econ_expr_data 06-29-2007 39.1451

18 econ_expr_data 09-28-2007 23.8728

19 econ_expr_data 12-31-2007 -7.5605

20 econ_expr_data 03-31-2008 -20.5704

21 econ_expr_data 06-30-2008 37.8653

22 econ_expr_data 09-30-2008 20.0536

23 econ_expr_data 12-31-2008 -19.1250

24 econ_expr_data 03-31-2009 -38.6740

25 econ_expr_data 06-30-2009 65.9728

26 econ_expr_data 09-30-2009 11.6375

27 econ_expr_data 12-31-2009 6.0947

28 econ_expr_data 03-31-2010 -39.8820

29 econ_expr_data 06-30-2010 35.5932

30 econ_expr_data 09-30-2010 10.4348

31 econ_expr_data 12-31-2010 -22.8435

32 econ_expr_data 03-31-2011 -33.6109

33 econ_expr_data 06-30-2011 43.5848

34 econ_expr_data 09-30-2011 15.9831

35 econ_expr_data 12-30-2011 -30.2577

36 econ_expr_data 03-30-2012 -33.0359

37 econ_expr_data 06-29-2012 41.0717

38 econ_expr_data 09-28-2012 .

39 econ_expr_data 12-31-2012 .

40 econ_expr_data 03-28-2013 .



3926 F Chapter 57: The SASEXFSD Interface Engine

Example 57.4: Using SPEC_ID_DATA with the FQL Economic Download
Syntax

This example shows how to use the ExtractEconData factlet and SPEC_ID_DATA to retrieve the WTI-
FDS:FG_PRICE daily time series for the last 30 days by using the FQL economic download syntax. For
more information about real-time data and specifying identifiers for commodity spot prices, see the FactSet
Online Assistant, page ID 16992.

options validvarname=any ;

title 'Retrieve WTI-FDS:FG_PRICE Using SPEC_ID_DATA for the Last 30 Days';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractEconData
item="SPEC_ID_DATA('WTI-FDS:FG_PRICE',0,-30,d)"
format=sml
outXml=fsdecon14
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdecon14.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data WTIPrice; set xfsd.fsdecon14; run;
proc print data=WTIPrice; run;
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Output 57.4.1 Daily Series Using SPEC_ID_DATA for West Texas Intermediate Crude Oil Spot Price

Retrieve WTI-FDS:FG_PRICE Using SPEC_ID_DATA for the Last 30 Days

Obs FQL_Entity date
spec_id_data

WTI-FDS:FG_PRICE

1 spec_id_data 02-20-2013 94.4600

2 spec_id_data 02-21-2013 92.8400

3 spec_id_data 02-22-2013 93.1300

4 spec_id_data 02-25-2013 93.1100

5 spec_id_data 02-26-2013 92.6300

6 spec_id_data 02-27-2013 92.7600

7 spec_id_data 02-28-2013 92.0500

8 spec_id_data 03-01-2013 90.6800

9 spec_id_data 03-04-2013 90.1200

10 spec_id_data 03-05-2013 90.8200

11 spec_id_data 03-06-2013 90.4300

12 spec_id_data 03-07-2013 91.5600

13 spec_id_data 03-08-2013 91.9500

14 spec_id_data 03-11-2013 92.0600

15 spec_id_data 03-12-2013 92.5400

16 spec_id_data 03-13-2013 92.5200

17 spec_id_data 03-14-2013 93.0300

18 spec_id_data 03-15-2013 93.4500

19 spec_id_data 03-18-2013 93.7400

20 spec_id_data 03-19-2013 92.1600

21 spec_id_data 03-20-2013 92.9600

22 spec_id_data 03-21-2013 92.4500

23 spec_id_data 03-22-2013 93.7100

24 spec_id_data 03-25-2013 94.8100

25 spec_id_data 03-26-2013 96.3400

26 spec_id_data 03-27-2013 96.5800

27 spec_id_data 03-28-2013 97.2300

28 spec_id_data 03-29-2013 97.2300

29 spec_id_data 04-01-2013 97.0700

30 spec_id_data 04-02-2013 97.1900

31 spec_id_data 04-03-2013 94.4500
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Example 57.5: Using Multiple Database Sources with the FQL Syntax
This example shows how to use the ExtractEconData factlet and two database sources, FDS_ECON_DATA
and EURO_STAT_DATA, to retrieve two time series for the last 11 months by using the FQL economic
download syntax. The database source name is prepended to the time series name to retain the integrity of
the name of the database source (dbsource). Only the same frequency and same range of observations for
multiple series can be requested concurrently.

options validvarname=any;

title 'Retrieve Monthly Data from Two Database Sources: FDS_ECON_DATA and EURO_STAT';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractEconData
items="FDS_ECON_DATA('FRBIPSB50001',-11,-1,M,STEP,AVERAGE,1),
EURO_STAT_DATA('CONSCONFBAL@EUZ',-11,-1,M)"
format=sml
outXml=fsdecon17
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdecon17.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data TwoSources; set xfsd.fsdecon17; run;
proc print data=TwoSources; run;

Output 57.5.1 Two Monthly Series Using Two Database Sources: FDS_ECON_DATA and
EURO_STAT_DATA

Retrieve Monthly Data from Two Database Sources: FDS_ECON_DATA and
EURO_STAT

Obs FQL_ENTITY date
fds_econ_data
FRBIPSB50001

euro_stat_data
CONSCONFBAL@EUZ

1 fds_econ_data 04-30-2012 96.8572 -19.7000

2 fds_econ_data 05-31-2012 97.1042 -19.1000

3 fds_econ_data 06-29-2012 97.1322 -19.6000

4 fds_econ_data 07-31-2012 97.5571 -21.3000

5 fds_econ_data 08-31-2012 96.7850 -24.4000

6 fds_econ_data 09-28-2012 96.9549 -25.7000

7 fds_econ_data 10-31-2012 96.8281 -25.5000

8 fds_econ_data 11-30-2012 98.0201 -26.7000

9 fds_econ_data 12-31-2012 98.1594 -26.3000

10 fds_econ_data 01-31-2013 98.3042 -23.9000

11 fds_econ_data 02-28-2013 99.0446 -23.6000
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Example 57.6: Retrieving Price Data for One Company
This simple example shows how to use the ExtractFormulaHistory factlet to retrieve price data for one
company (in this case IBM).

options validvarname=any;

title 'Retrieve Price Data for IBM';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractFormulaHistory
ids='ibm'
items='p_price'
dates='20110130:20111231:m'
format=sml
outXml=fsdex01
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex01.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data recentprice; set xfsd.fsdex01; run;
proc print data=recentprice; run;

Output 57.6.1 Price Data for IBM

Retrieve Price Data for IBM

Obs FQL_Entity date p_price

1 ibm 01-31-2011 162.00

2 ibm 02-28-2011 161.88

3 ibm 03-31-2011 163.07

4 ibm 04-30-2011 170.58

5 ibm 05-31-2011 168.93

6 ibm 06-30-2011 171.55

7 ibm 07-31-2011 181.85

8 ibm 08-31-2011 171.91

9 ibm 09-30-2011 174.87

10 ibm 10-31-2011 184.63

11 ibm 11-30-2011 188.00

12 ibm 12-31-2011 183.88
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Example 57.7: Retrieving Price and Sales Data for Multiple Companies
This example shows how to use the ExtractFormulaHistory factlet to retrieve several data items for several
companies. The data items are price and sales, and the companies are IBM and FactSet (FDS).

options validvarname=any;

title 'Retrieve Price and Sales Data for IBM and FactSet(FDS)';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractFormulaHistory
ids='ibm,fds'
items='p_price,ff_sales'
dates='20110130:20110631:m'
format=sml
outXml=fsdex02
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex02.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data priceSale; set xfsd.fsdex02; run;
proc print data=priceSale; run;

Output 57.7.1 Multiple Data Items for IBM and FactSet

Retrieve Price and Sales Data for IBM and FactSet(FDS)

Obs FQL_ENTITY date p_price ff_sales

1 ibm 01-31-2011 162.000 99870.00

2 ibm 02-28-2011 161.880 99870.00

3 ibm 03-31-2011 163.070 99870.00

4 ibm 04-30-2011 170.580 99870.00

5 ibm 05-31-2011 168.930 99870.00

6 ibm 06-30-2011 171.550 99870.00

7 fds 01-31-2011 100.800 641.06

8 fds 02-28-2011 104.880 641.06

9 fds 03-31-2011 104.730 641.06

10 fds 04-30-2011 109.410 641.06

11 fds 05-31-2011 110.860 641.06

12 fds 06-30-2011 102.320 641.06
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Example 57.8: Retrieving Book Value Data for One Company by Using
Relative Dates

This example shows how to use the ExtractFormulaHistory factlet to retrieve book value data for one company
(in this case Exxon Mobil, or XOM) by using relative dates. The book value represents the proportional
common equity divided by outstanding shares at the end of the company’s fiscal year. The relative date
specifies the date as n periods ago based on the frequency (specified or implied); for example, DATES=0:-8:y
returns data for the nine years prior to the most recently updated year.

options validvarname=any;

title 'Retrieve Book Value Data for Exxon Mobil (XOM) for the Last 9 Years';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractFormulaHistory
ids='xom'
items='ff_bps'
dates='0:-8:y'
format=sml
outXml=fsdex03
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex03.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data bookRelative; set xfsd.fsdex03; run;
proc print data=bookRelative; run;

Output 57.8.1 Book Value Data for Exxon Mobil for the Last 9 Years

Retrieve Book Value Data for Exxon Mobil (XOM) for the Last 9 Years

Obs FQL_Entity date ff_bps

1 xom 12-31-2004 15.8969

2 xom 12-31-2005 18.1291

3 xom 12-31-2006 19.8715

4 xom 12-31-2007 22.6239

5 xom 12-31-2008 22.7020

6 xom 12-31-2009 23.3910

7 xom 12-31-2010 29.4917

8 xom 12-31-2011 32.6143

9 xom 12-31-2012 36.8421
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Example 57.9: Retrieving Multiple Screen Items for Multiple Companies
This example shows how to use the ExtractDataSnapshot factlet to extract multiple screen items (price and
sales) as of a single date for multiple companies (in this case IBM and Microsoft) for the quarterly estimate
period (PERIOD=QTR).

options validvarname=any;

title 'Retrieve Multiple Screen Items for Multiple Companies';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractDataSnapshot
ids='ibm,msft'
items='p_price,ff_sales'
dates='20110401'
period=QTR
format=sml
outXml=fsdex05
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex05.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data snapshot; set xfsd.fsdex05; run;
proc print data=snapshot; run;

Output 57.9.1 Multiple Screen Items for Multiple Companies

Retrieve Multiple Screen Items for Multiple Companies

Obs FQL_ENTITY date p_price ff_sales

1 ibm 04-01-2011 164.270 24607

2 msft 04-01-2011 25.480 16428
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Example 57.10: Retrieving Data by Using the ISON= and ISONPARAMS=
Options

This example shows how to use the ExtractDataSnapshot factlet to retrieve price-to-earnings (PE) data for
the quarterly estimate period by using the ISON= and ISONPARAMS= options. For brevity, only a subset of
the output (the first 10 CUSIPs) is displayed.

options validvarname=any;

title 'Retrieve Price-to-Earnings Data by Using ISON/ISONPARAMS';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractDataSnapshot
ison='sp500'
isonparams='0,1'
items='ff_pe'
dates='20110401'
period=QTR
format=sml
outXml=fsdex10
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex10.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data snapIson; set xfsd.fsdex10; run;
proc print data=snapIson(firstobs=1 obs=10); run;

Output 57.10.1 Retrieving Price-to-Earnings Data by Using the ISON= and ISONPARAMS= Options

Retrieve Price-to-Earnings Data by Using ISON/ISONPARAMS

Obs FQL_Entity date ff_pe

1 17290810 04-01-2011 18.1419

2 41308610 04-01-2011 13.2635

3 80589M10 04-01-2011 13.3007

4 50242410 04-01-2011 9.5995

5 91301710 04-01-2011 17.2053

6 97665710 04-01-2011 14.5238

7 00130H10 04-01-2011 .

8 31190010 04-01-2011 33.0765

9 20911510 04-01-2011 13.5979

10 53983010 04-01-2011 10.0212



3934 F Chapter 57: The SASEXFSD Interface Engine

Example 57.11: Retrieving Benchmark Data by Using the CUTOFF= Option
This example shows how to use the ExtractBenchmarkDetail factlet to retrieve the holdings for the Standard
& Poor’s (S&P) 500 (ID=’sp50’) and display the P_PRICE data that correspond to each holding. For brevity,
only a subset of the output (the first 10 holdings) is displayed.

options validvarname=any;

title 'Retrieve Benchmark Data for Top Ten Holdings, CUTOFF=10';
libname _all_ clear;
libname fsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractBenchmarkDetail
ids='sp50'
items='p_price,proper_name'
dates='20130320'
cutoff=10
format=sml
outXml=fsdex12
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex12.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data bench;
set fsd.fsdex12;

run;
proc print

data=bench;
run;

The CUTOFF= option limits the output to the number of holdings that are specified. This example uses
CUTOFF=10 to print the top 10 holdings. If you omit the CUTOFF= option, all 500 holdings are reported.

Output 57.11.1 Retrieving Benchmark Data for Top 10 Holdings in the S&P 500 Index

Retrieve Benchmark Data for Top Ten Holdings, CUTOFF=10

Obs FQL_ENTITY date SECURITY_ID Weight p_price proper_name

1 SP50 . 41308610 . 44.4800 Harman International Industries Inc.

2 SP50 . 80589M10 . 49.5100 SCANA Corp.

3 SP50 . 50242410 . 81.2100 L-3 Communications Holdings Inc.

4 SP50 . 91301710 . 93.4500 United Technologies Corp.

5 SP50 . 97665710 . 41.4400 Wisconsin Energy Corp.

6 SP50 . 00130H10 . 12.6800 AES Corp.

7 SP50 . 31190010 . 51.4700 Fastenal Co.

8 SP50 . 20911510 . 59.1600 Consolidated Edison Inc.

9 SP50 . 53983010 . 92.2400 Lockheed Martin Corp.

10 SP50 12-31-2000 17290810 . 43.8800 Cintas Corp.
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Example 57.12: Retrieving Benchmark Data by Using the MATCHDATE=
Option

This example shows how to use the ExtractBenchmarkDetail factlet to retrieve data from the Prices database
for the Russell 1000 constituents (R.1000).

options validvarname=any;

title 'Retrieve Benchmark Data for R.1000 with MATCHDATE=ON';
libname _all_ clear;
libname fsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractBenchmarkDetail
ids='r.1000'
items='p_price'
dates='20120118:20120113:b'
matchDate=on
format=sml
outXml=fsdex13
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex13.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data benchmatch;
set fsd.fsdex13;

run;
proc print

data=benchmatch(firstobs=1 obs=50);
run;

If the frequency argument were not set to B (indicating business days) and the MATCHDATE= option were
not turned on, the output would contain repetitive dates because of feel-back, resulting in unnecessarily
lengthy output.
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Output 57.12.1 Retrieving Benchmark Data for the Russell 1000 Index by Using the
MATCHDATE=ON Option

Retrieve Benchmark Data for R.1000 with MATCHDATE=ON

Obs FQL_ENTITY date SECURITY_ID Weight p_price

1 R.1000 01-17-2012 30231G10 3.17717 85.690

2 R.1000 01-17-2012 03783310 2.95608 424.700

3 R.1000 01-17-2012 45920010 1.64095 180.000

4 R.1000 01-17-2012 16676410 1.61489 106.720

5 R.1000 01-17-2012 59491810 1.57846 28.255

6 R.1000 01-17-2012 36960410 1.49591 18.740

7 R.1000 01-17-2012 74271810 1.39208 66.260

8 R.1000 01-17-2012 00206R10 1.34835 30.250

9 R.1000 01-17-2012 47816010 1.34355 65.120

10 R.1000 01-17-2012 71708110 1.30536 21.935

11 R.1000 01-17-2012 38259P50 1.19073 628.580

12 R.1000 01-17-2012 94974610 1.10366 29.825

13 R.1000 01-17-2012 46625H10 1.04412 34.910

14 R.1000 01-17-2012 08467070 1.02732 77.970

15 R.1000 01-17-2012 71817210 1.01597 75.900

16 R.1000 01-17-2012 19121610 1.00150 33.675

17 R.1000 01-17-2012 45814010 0.99967 25.040

18 R.1000 01-17-2012 58933Y10 0.90210 38.820

19 R.1000 01-17-2012 92343V10 0.83088 39.020

20 R.1000 01-17-2012 68389X10 0.79993 27.660

21 R.1000 01-17-2012 17275R10 0.79941 19.305

22 R.1000 01-17-2012 93114210 0.79937 59.850

23 R.1000 01-17-2012 58013510 0.78525 100.550

24 R.1000 01-17-2012 71344810 0.76915 64.650

25 R.1000 01-17-2012 74752510 0.71803 57.140

26 R.1000 01-17-2012 20825C10 0.70754 70.800

27 R.1000 01-17-2012 80685710 0.69083 67.640

28 R.1000 01-17-2012 00282410 0.65197 55.710

29 R.1000 01-17-2012 17296742 0.61791 28.215

30 R.1000 01-17-2012 67459910 0.60755 99.300

31 R.1000 01-17-2012 25468710 0.54744 38.480

32 R.1000 01-17-2012 91301710 0.53072 77.040

33 R.1000 01-17-2012 20030N10 0.52974 25.535

34 R.1000 01-17-2012 43707610 0.52612 43.740

35 R.1000 01-17-2012 14912310 0.50160 103.370

36 R.1000 01-17-2012 02313510 0.49686 181.660

37 R.1000 01-17-2012 06050510 0.49422 6.480

38 R.1000 01-17-2012 60920710 0.47423 38.130

39 R.1000 01-17-2012 02209S10 0.45520 28.900

40 R.1000 01-17-2012 88579Y10 0.45049 84.230

41 R.1000 01-17-2012 03116210 0.45029 68.070

42 R.1000 01-17-2012 91324P10 0.43685 53.570

43 R.1000 01-17-2012 12665010 0.43416 42.540

44 R.1000 01-17-2012 11012210 0.43298 33.720

45 R.1000 01-17-2012 09702310 0.41809 75.240

46 R.1000 01-17-2012 90297330 0.41721 28.770

47 R.1000 01-17-2012 91131210 0.41034 74.200
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Output 57.12.1 continued

Retrieve Benchmark Data for R.1000 with MATCHDATE=ON

Obs FQL_ENTITY date SECURITY_ID Weight p_price

48 R.1000 01-17-2012 90781810 0.40428 109.500

49 R.1000 01-17-2012 92826C83 0.40357 102.530

50 R.1000 01-17-2012 02581610 0.39715 50.220

Example 57.13: Retrieving Multiple Items for Multiple Companies from an
OFDB File

This example shows how to use the ExtractOFDBItem factlet to retrieve the uploaded share and price data for
IBM and Microsoft from an OFDB file named SASTESTING for an absolute date range, starting February
27, 2012, and ending February 28, 2012, with a monthly frequency.

options validvarname=any;

title 'Retrieve Shares and Price Data for IBM and MSFT from an OFDB File';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractOFDBItem
ofdb='SASTESTING.OFDB'
ids='ibm,msft'
items='shares,price'
dates='20120227:20120228:d'
period=QTR
format=sml
outXml=fsdex07
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex07.map"
orientation=eti
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data shareOFDB; set xfsd.fsdex07; run;
proc print data=shareOFDB; run;

Output 57.13.1 Multiple Items for Multiple Companies from an OFDB File

Retrieve Shares and Price Data for IBM and MSFT from an OFDB File

Obs FQL_ENTITY date ofdb_shares ofdb_price

1 ibm 02-27-2012 1178.60 1.000

2 ibm 02-28-2012 1178.60 197.980

3 msft 02-27-2012 8412.20 1.000

4 msft 02-28-2012 8412.20 31.870
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Example 57.14: Retrieving a List of Securities from an OFDB File
This example shows how to use the ExtractOFDBUniverse factlet to retrieve a list of securities that belong to
a single OFDB file named SASTESTING for February 27, 2012. For brevity, only a subset of the output (the
first 15 securities) is displayed.

options validvarname=any;

title 'Retrieve List of Securities Belonging to a Single OFDB File';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractOFDBUniverse
ofdb='SASTESTING.OFDB'
dates='20120227'
format=sml
outXml=fsdex08
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex08.map"
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data ofdbUniv; set xfsd.fsdex08; run;
proc print data=ofdbUniv(firstobs=1 obs=15); run;

Output 57.14.1 List of Securities from a Single OFDB File

Retrieve List of Securities Belonging to a Single OFDB File

Obs CUSIP

1 00105510

2 00120410

3 00130H10

4 00206R10

5 00282410

6 00289620

7 00507K10

8 00724F10

9 00790310

10 00817Y10

11 00846U10

12 00915810

13 00936310

14 00971T10

15 01381710
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Example 57.15: Retrieving a List of CUSIPs from a Screen File
This example shows how to use the ExtractScreenUniverse factlet to retrieve a list of CUSIPs and names that
belong to a single user-defined screen file. For brevity, only a subset of the output (the first 15 securities) is
displayed.

options validvarname=any;

title 'Retrieve List of Securities Belonging to a Single Screen File';
libname _all_ clear;
libname xfsd sasexfsd "%sysget(FACTSET)"

debug=on
factlet=ExtractScreenUniverse
screen='factset:bankruptcy'
name=y
format=sml
outXml=fsdex09
automap=replace
mapref=MyMap
xmlmap="%sysget(FACTSET)fsdex09.map"
user='XXXXXXXXXXXXXXXX'
pass='XXXXXXXXXXXXXXXX';

data screenUniv; set xfsd.fsdex09; run;
proc print data=screenUniv(firstobs=1 obs=15); run;

Output 57.15.1 List of CUSIPs and Names from a Screen File

Retrieve List of Securities Belonging to a Single Screen File

Obs Id Name

1 00081T10 ACCO BRANDS CORP

2 00258J10 ABAKAN INC

3 00439710 ACCURAY INC

4 00439T20 ACCURIDE CORP

5 00520810 ADA-ES INC

6 00752K10 ADVANCED CELL TECHNOLOGY INC

7 00847J10 AGILYSYS INC

8 02051Q10 ALON HOLDINGS BLUE SQUARE IS

9 02152V10 ALTEROLA BIOTECH INC

10 02153D10 ALTERRA POWER CORP

11 03011110 AMERICAN SUPERCONDUCTOR CP

12 03236M10 AMYRIS INC

13 03242010 ANACOR PHARMACEUTICALS INC

14 04269E10 ARQULE INC

15 04544X30 ASSISTED LIVING CONCEPTS INC
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Introduction
The Time Series Forecasting system forecasts future values of time series variables by extrapolating trends
and patterns in the past values of the series or by extrapolating the effect of other variables on the series. The
system provides convenient point-and-click windows to control the time series analysis and forecasting tools
of SAS/ETS software.

You can use the system in a fully automatic mode, or you can use the system’s diagnostic features and time
series modeling tools interactively to develop forecasting models customized to best predict your time series.
The system provides both graphical and statistical features to help you choose the best forecasting method
for each series.

The following is a brief summary of the features of the Time Series Forecasting system. You can use the
system in the following ways:

� use a wide variety of forecasting methods, including several kinds of exponential smoothing models,
Winters method, and ARIMA (Box-Jenkins) models. You can also produce forecasts by combining the
forecasts from several models.

� use predictor variables in forecasting models. Forecasting models can include time trend curves,
regressors, intervention effects (dummy variables), adjustments you specify, and dynamic regression
(transfer function) models.

� view plots of the data, predicted versus actual values, prediction errors, and forecasts with confidence
limits, as well as autocorrelations and results of white noise and stationarity tests. Any of these plots
can be zoomed and can represent raw or transformed series.

� use hold-out samples to select the best forecasting method

� compare goodness-of-fit measures for any two forecasting models side by side or list all models sorted
by a particular fit statistic
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� view the predictions and errors for each model in a spreadsheet or compare the fit of any two models in
a spreadsheet

� examine the fitted parameters of each forecasting model and their statistical significance

� control the automatic model selection process: the set of forecasting models considered, the goodness-
of-fit measure used to select the best model, and the time period used to fit and evaluate models

� customize the system by adding forecasting models for the automatic model selection process and for
point-and-click manual selection

� save your work in a project catalog

� print an audit trail of the forecasting process

� show source statements for PROC ARIMA code

� save and print system output including spreadsheets and graphs

Using the Time Series Forecasting System
Chapters starting from Chapter 59, “Getting Started with Time Series Forecasting,” through Chapter 63,
“Using Predictor Variables,” contain a series of example sessions that show the major features of the system.
Chapters from Chapter 64, “Command Reference,” through Chapter 66, “Forecasting Process Details,” serve
as reference and provide more details about how the system operates. The reference chapters contain a
complete list of system features.

To get started using the Time Series Forecasting system, it is a good idea to work through a few of the
example sessions. Start with Chapter 59, “Getting Started with Time Series Forecasting,” and use the system
to reproduce the steps shown in the examples. Continue with the other chapters when you feel comfortable
using the system.

The example sessions make use of time series data sets contained in the SASHELP library: air, citimon,
citiqtr, citiyr, citiwk, citiday, gnp, retail, usecon, and workers. You can use these data sets to work through the
example sessions or to experiment further with the system.

Once you are familiar with how the system operates, start working with your own data to build your own
forecasting models. When you have questions, consult the reference chapters mentioned above for more
information about particular features.

The Time Series Forecasting system forecasts time series, that is, variables that consist of ordered observations
taken at regular intervals over time. Since the Time Series Forecasting system is a part of the SAS software
system, time series values must be stored as variables in a SAS data set or data view, with the observations
representing the time periods. The data can also be stored in an external spreadsheet or data base if you
license SAS/ACCESS software.

The Time Series Forecasting System chapters refer to series and variables. Since time series are stored as
variables in SAS data sets or data views, these terms are used interchangeably. However, the term series is
preferred when attention is focused on the sequence of data values, and the term variable is preferred when
attention is focused on the data set.
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SAS Software Products Needed
The Time Series Forecasting system is part of SAS/ETS software. To use it, you must have a license for
SAS/ETS. To use the graphical display features of the system, you must also license SAS/GRAPH software.
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This chapter outlines the forecasting process and introduces the major windows of the system through three
example sessions.

The first example, beginning with the section “The Time Series Forecasting Window” on page 3948, shows
how to use the system for fully automated forecasting of a set of time series. This example also introduces
the system’s features for viewing data and forecasts through tables and interactive graphs. It also shows how
to save and restore forecasting work in SAS catalogs.

The second example, beginning with the section “Develop Models Window” on page 3971, introduces the
features for developing the best forecasting models for individual time series. The chapter concludes with an
example showing how to create dating variables for your data in the form expected by the system.

After working through the examples in this chapter, you should be able to do the following:

� select a data set of time series to work with and specify its periodicity and time ID variable

� use the automatic forecasting model selection feature to create forecasting models for the variables in a
data set

� produce and save forecasts of variables in a data set

� examine your data and forecasts as tables of values and through interactive graphs

� save and restore your forecasting models by using project files in a SAS catalog and edit project
information

� use some of the model development features to fit and select forecasting models for individual time
series variables

This chapter introduces these topics and helps you get started using the system. Later chapters present these
topics in greater detail and document more advanced features and options.

The Time Series Forecasting Window
There are several ways to get to the Time Series Forecasting System. If you prefer to use commands, invoke
the system by entering forecast on the command line. You can optionally specify additional information
on the command line; for more information, see Chapter 64, “Command Reference.”

If you are using the SAS windowing environment with pull-down menus, select the Solutions menu from the
menu bar, select the Analysis item, and then select Time Series Forecasting System. You can invoke
the Forecasting System from the SAS Explorer window by opening an existing forecasting project. By
default these projects are stored in the FMSPROJ catalog in the SASUSER library. Select SASUSER in the
Explorer to display its contents. Then select FMSPROJ. This catalog is created the first time you use the
Forecasting System. If you have saved projects, they appear in the Explorer with the forecasting graph icon,
as shown in Figure 59.1. Double-click one of the projects, or select it with the right mouse button and then
select Open from the pop-up menu, as shown in the figure. This opens the Forecasting System and opens the
selected project.
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Figure 59.1 Opening a Project from the Explorer

To invoke the Forecasting System in the SAS desktop environment, select the Solutions menu from the menu
bar, select Desktop, and then open the Analysis folder. You can run the Time Series Forecasting System or
the Time Series Viewer directly, or you can drag and drop. Figure 59.2 illustrates dragging a data set (known
as a table in the Desktop environment) and dropping it on the Forecasting icon. In this example, the tables
reside in a user-defined folder called Time Series Data.

Figure 59.2 Drag and Drop on the SAS Desktop

If you are using SAS/ASSIST software, click the Planning button and then select Forecasting from the
pop-up menu.

Any of these methods takes you to the Time Series Forecasting window, as shown in Figure 59.3.



3950 F Chapter 59: Getting Started with Time Series Forecasting

Figure 59.3 Time Series Forecasting Window

At the top of the window is a data selection area for specifying a project file and the input data set containing
historical data (the known past values) for the time series variables that you want to forecast. This area also
contains buttons for opening viewers to explore your input data either graphically, one series at a time, or as a
table, one data set at a time.

The Project and Description fields are used to specify a project file for saving and restoring forecasting
models created by the system. Using project files is discussed later, and these fields are ignored for now.

The lower part of the window contains six buttons:

Develop Models

opens the Develop Models window, which you use to develop and fit forecasting models
interactively for individual time series.

Fit Models Automatically

opens the Automatic Model Fitting window, which you use to search automatically for
the best forecasting model for multiple series in the input data set.

Produce Forecasts

opens the Produce Forecasts window, which you use to compute forecasts for all the
variables in the input data set for which forecasting models have been fit.

Manage Projects

opens the Manage Forecasting Project window, which lists the time series for which you
have fit forecasting models. You can drill down on a series to see the models that have
been fit. You can delete series or models from the project, re-evaluate or refit models, and
explore models and forecasts graphically or in tabular form.

Exit

exits the Forecasting System.

Help

displays information about the Forecasting System.
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Outline of the Forecasting Process
The examples shown in the following sections illustrate the basic process you use with the Forecasting
System.

Specify the Input Data Set
Suppose you have a number of time series, variables recorded over time, for which you want to forecast
future values. The past values of these time series are stored as variables in a SAS data set or data view. The
observations of this data set correspond to regular time periods, such as days, weeks, or months. The first
step in the forecasting process is to tell the system to use this data set by setting the Data Set field.

If your time series are not in a SAS data set, you must provide a way for the SAS System to access the data.
You can use SAS features to read your data into a SAS data set; see SAS Programmers Guide: Essentials.
You can use a SAS/ACCESS product to establish a view of data in a database management system; refer
to SAS/ACCESS documentation. You can use PROC SQL to create a SAS data view. You can use PROC
DATASOURCE to read data from files supplied by supported data vendors; for more information, see
Chapter 13, “The DATASOURCE Procedure.”

Provide a Valid Time ID Variable
To use the Forecasting System, your data set must be dated: the data set must contain a time ID variable that
gives the date of each observation. The time ID variable must represent the observation dates with SAS date
values or with SAS datetime values (for hourly data or other frequencies less than a day), or you can use a
simple time index.

When SAS date values are used, the ID variable contains dates within the time periods corresponding to the
observations. For example, for monthly data, the values for the time ID variable can be the date of the first
day of the month corresponding to each observation, or the time ID variable can contain the date of the last
day in the month. (Any date within the period serves as the time ID for the observation.)

If your data set already contains a valid time ID variable with SAS date or datetime values, the next step is to
specify this time ID variable in the Time ID field. If the time ID variable is named DATE, the system fills in
the Time ID field automatically.

If your data set does not contain a time ID, you must add a valid time ID variable before beginning
the forecasting process. The Forecasting System provides features that make this easy to do. For more
information, see Chapter 60, “Creating Time ID Variables.”

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Select and Fit a Forecasting Model for Each Series
If you are using the automated model selection feature, the system performs this step for you and chooses a
forecasting model for each series automatically. All you need to do is click the Fit Models Automatically
button and then select the variables to fit models for.

If you want more control over forecasting model selection, you can click the Develop Models button, select
the series you want to forecast, and use the Develop Models window to specify a forecasting model. As
part of this process, you can use the Time Series Viewer and Model Viewer graphical tools. Once you have
selected a model for the first series, you can select a different series to work with and repeat the model
development process until you have created forecasting models for all the series you want to forecast.

The system provides many features to help you choose the best forecasting model for each series. The
features of the Develop Models window and graphical viewer tools are introduced in later sections.

Produce the Forecasts
Once a forecasting model has been fit for each series, click the Produce Forecasts button and use the Produce
Forecasts window to compute forecast values and store them in a SAS data set.

Save Your Work
If you want only a single forecast, your task is now complete. But you might want to produce updated
forecasts later, as more data becomes available. In this case, you want to save the forecasting models you
have created, so that you do not need to repeat the model selection and fitting process.

To save your work, fill in the Project field with the name of a SAS catalog member in which the system will
store the model information when you exit the system. Later, you will select the same catalog member name
when you first enter the Forecasting System, and the model information will be reloaded.

Note that any number of people can work with the same project file. If you are working on a forecasting
project as part of a team, you should take care to avoid conflicting updates to the project file by different
team members.

Summary
This is the basic outline of how the Forecasting System works. The system offers many other features and
options that you might need to use (for example, the time range of the data used to fit models and how far
into the future to forecast). These options will become apparent as you work with the Forecasting System.

As an introductory example, the following sections use the Automatic Model Fitting and Produce Forecasts
windows to perform automated forecasting of the series in an example data set.



The Data Set Selection Window F 3953

The Input Data Set
As the first step, you must specify the input data set.

The Data Set field in the Time Series Forecasting window gives the name of the input data set containing the
time series to forecast. Initially, this field is blank. You can specify the input data set by typing the data set
name in this field. Alternatively, you can click the Browse button at the right of the Data Set field to select
the data set from a list, as shown in the following section.

The Data Set Selection Window
Click the Browse button to the right of the Data Set field. This opens the Data Set Selection window, as
shown in Figure 59.4.

Figure 59.4 Data Set Selection Window

The Libraries list shows the SAS librefs that are currently allocated in your SAS session. Initially, the
SASUSER library is selected, and the SAS Data Sets list shows the data sets available in your SASUSER
library.

In the Libraries list, select the row that starts with SASHELP. The Data Set Selection window now lists
the data sets in the SASHELP library, as shown in Figure 59.5.
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Figure 59.5 SASHELP Library

Use the vertical scroll bar on the SAS Data Sets list to scroll down the list until the data set CITIQTR
appears. Then select the CITIQTR row. This selects the data set SASHELP.CITIQTR as the input data set.

Figure 59.6 shows the Data Set Selection window after selection of CITIQTR from the SAS Data Sets list.

Figure 59.6 CITIQTR Data Set Selected

Note that the Time ID field is now set to DATE and the Interval field is set to QTR. These fields are explained
in the following section.

Now click the OK button to complete selection of the CITIQTR data set. This closes the Data Set Selection
window and returns you to the Time Series Forecasting window, as shown in Figure 59.7.
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Figure 59.7 Time Series Forecasting Window

Time Series Data Sets, ID Variables, and Time Intervals
Before you continue with the example, it is worthwhile to consider how the system determined the values for
the Time ID and Interval fields in the Data Set Selection window.

The Forecasting System requires that the input data set contain time series observations, with one observation
for each time period. The observations must be sorted in increasing time order, and there must be no gaps
in the sequence of observations. The time period of each observation must be identified by an ID variable,
which is shown in the Time ID field.

If the data set contains a variable named DATE, TIME, or DATETIME, the system assumes that this variable is
the SAS date or datetime valued ID variable, and the Time ID field is filled in automatically. The time ID
variable for the SASHELP.CITIQTR data set is named DATE, and therefore the system sets the Time ID field
to DATE.

If the time ID variable for a data set is not named DATE, TIME, or DATETIME, you must specify the time ID
variable name. You can specify the time ID variable either by typing the ID variable name in the Time ID
field or by clicking the Select button.

If your data set does not contain a time ID variable with SAS date values, you can add a time ID variable
using one of the windows described in Chapter 60, “Creating Time ID Variables.”

Once the time ID variable is known, the Forecasting System examines the ID values to determine the time
interval between observations. The data set SASHELP.CITIQTR contains quarterly observations. Therefore,
the system determined that the data have a quarterly interval, and set the Interval field to QTR.

If the system cannot determine the data frequency from the values of the time ID variable, you must specify
the time interval between observations. You can specify the time interval by using the Interval combo box.
In addition to the interval names provided in the pop-up list, you can type in more complex interval names to
specify an interval that is a multiple of other intervals or that has date values in the middle of the interval
(such as monthly data with time ID values falling on the 10th day of the month).
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For more information about time intervals, SAS date values, and ID variables for time series data sets, see
Chapter 4, “Working with Time Series Data,” and Chapter 5, “Date Intervals, Formats, and Functions.”

Automatic Model Fitting Window
Before you can produce forecasts, you must fit forecasting models to the time series. Click the Fit Models
Automatically button. This opens the Automatic Model Fitting window, as shown in Figure 59.8.

Figure 59.8 Automatic Model Fitting Window

The first part of the Automatic Model Fitting window confirms the project file name and the input data set
name.

The Series to Process field shows the number and lists the names of the variables in the input data set to
which the Automatic Model Fitting process will be applied. By default, all numeric variables (except the
time ID variable) are processed. However, you can specify that models be generated for only a select subset
of these variables.

Click the Select button to the right of the Series to Process field. This opens the Series to Process window, as
shown in Figure 59.9.
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Figure 59.9 Series to Process Window

Use the mouse and the CTRL key to select the personal consumption expenditures series (GC), the personal
consumption expenditures for durable goods series (GCD), and the disposable personal income series (GYD),
as shown in Figure 59.10. (Remember to hold down the CTRL key as you make the selections; otherwise,
selecting a second series will deselect the first.)

Figure 59.10 Selecting Series for Automatic Model Fitting

Now click the OK button. This returns you to the Automatic Model Fitting window. The Series to Process
field now shows the selected variables.

The Selection Criterion field shows the goodness-of-fit measure that the Forecasting System will use to select
the best fitting model for each series. By default, the selection criterion is the root mean squared error. To
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illustrate how you can control the selection criterion, this example uses the mean absolute percent error to
select the best fitting models.

Click the Select button to the right of the Selection Criterion field. This opens a list of statistics of fit, as
shown in Figure 59.11.

Figure 59.11 Choosing the Model Selection Criterion

Select Mean Absolute Percent Error and then click the OK button. The Automatic Model Fitting window
now appears as shown in Figure 59.12.

Figure 59.12 Automatic Model Fitting Window

Now that all the options are set appropriately, click the Run button.



Automatic Model Fitting Window F 3959

The Forecasting System now displays a notice, shown in Figure 59.13, confirming that models will be fit
for three series using the automatic forecasting model search feature. This prompt is displayed because it is
possible to fit models for a large number of series at once, which might take a lot of time. So the system
gives you a chance to cancel if you accidentally ask to fit models for more series than you intended. Click the
OK button.

Figure 59.13 Automatic Model Fitting Note

The system now fits several forecasting models to each of the three series you selected. While the models
are being fit, the Forecasting System displays notices indicating what it is doing so that you can observe its
progress, as shown in Figure 59.14.

Figure 59.14 “Working” Notice
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For each series, the system saves the model that produces the smallest mean absolute percent error. You can
have the system save all the models fit by selecting Automatic Fit from the Options menu.

After the Automatic Model Fitting process has completed, the results are displayed in the Automatic Model
Fitting Results window, as shown in Figure 59.15.

Figure 59.15 Automatic Model Fitting Results

This resizable window shows the list of series names and descriptive labels for the forecasting models chosen
for them, as well as the values of the model selection criterion and other statistics of fit. Click the Close
button.

This returns you to the Automatic Model Fitting window. You can now fit models for other series in this data
set or change to a different data set and fit models for series in the new data set.

Click the Close button to return to the Time Series Forecasting window.
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Produce Forecasts Window
Now that you have forecasting models for these three series, you are ready to produce forecasts. Click the
Produce Forecasts button. This opens the Produce Forecasts window, as shown in Figure 59.16.

Figure 59.16 Produce Forecasts Window

The Produce Forecasts window shows the input data set information and indicates the variables in the input
data set for which forecasting models exist. Forecasts will be produced for these series. If you want to
produce forecasts for only some of these series, use the Select button at the right of the Series field to select
the series to forecast. The Data Set field in the Forecast Output box contains the name of the SAS data
set in which the system will store the forecasts. The default output data set is WORK.FORECAST.

You can set the forecast horizon by using the controls on the line labeled Horizon. The default horizon is
12 periods. You can change it by specifying the number of periods, number of years, or the date of the last
forecast period. Position the cursor in the date field and change the forecast ending date to 1 January 1996 by
typing jan1996 and pressing the ENTER key.

The window now appears as shown in Figure 59.17.



3962 F Chapter 59: Getting Started with Time Series Forecasting

Figure 59.17 Produce Forecasts Window

Now click the Run button to produce the forecasts. The system indicates that the forecasts have been stored
in the output data set. Select OK to dismiss the notice.

The Forecast Data Set
The Forecasting System can save the forecasts to a SAS data set in three different formats. Depending on
your needs, you might find one of these output formats more convenient. The output data set format is
controlled by the Format combo box. You can select the following output formats. The simple format is the
default.

Simple The data set contains time ID variables and the forecast variables, and it contains one
observation per time period. Observations for earlier time periods contain actual values
copied from the input data set; later observations contain the forecasts.

Interleaved The data set contains time ID variables, the variable TYPE, and the forecast variables.
There are several observations per time period, with the meaning of each observation
identified by the TYPE variable.

Concatenated The data set contains the variable SERIES, time ID variables, and the variables ACTUAL,
PREDICT, ERROR, UPPER, LOWER, and STD. There is one observation per time period
per forecast series. The variable SERIES contains the name of the forecast series, and the
data set is sorted by SERIES and DATE.
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Simple Format Forecast Data Set

To see the simple format forecast data set that the system created, click the Output button. This opens a
VIEWTABLE window to display the data set, as shown in Figure 59.18.

Figure 59.18 Forecast Data Set—Simple Format

Figure 59.18 shows the default simple format. This form of the forecast data set contains time ID variables
and the variables that you forecast. The forecast variables contain actual values or predicted values, depending
on whether the date of the observation is within the range of data supplied in the input data set.

Select File and Close to close the VIEWTABLE window.

Interleaved Format Forecast Data Set

From the Produce Forecasts window, use the list to select the Interleaved format, as shown in Figure 59.19.
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Figure 59.19 Forecast Data Set Options

Now click the Run button again. The system presents a warning notice reminding you that the data set
WORK.FORECAST already exists and asking if you want to replace it. Select Replace.

The forecasts are stored in the data set WORK.FORECAST again, this time in the Interleaved format. Dismiss
the notice that the forecast was stored.

Now click the Output button again. This opens a VIEWTABLE window to display the data set, as shown in
Figure 59.20.

Figure 59.20 Forecast Data Set—Interleaved Format

In the interleaved format, there are several output observations for each input observation, identified by
the TYPE variable. The values of the forecast variables for observations with different TYPE values are as



The Forecast Data Set F 3965

follows:

ACTUAL actual values copied from the input data set

ERROR the difference between the actual and predicted values

LOWER the lower confidence limits

PREDICT the predicted values from the forecasting model These are within-sample, one-step-ahead
predictions for observations within the historical period, or multistep predictions for
observations within the forecast period

STD the estimated standard deviations of the prediction errors

UPPER the upper confidence limits

Select File and Close to close the VIEWTABLE window.

Concatenated Format Forecast Data Set

Use the list to select the Concatenated format. Create the forecast data set again, and then click the Output
button.

The VIEWTABLE window showing the concatenated format of the forecast data set appears, as shown in
Figure 59.21.

Figure 59.21 Forecast Data Set—Concatenated Format

This completes the example of how to use the Produce Forecasts window. Select File and Close to close
the VIEWTABLE window. Click the Close button to return to the Time Series Forecasting window.
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Forecasting Projects
The system collects all the forecasting models you create, together with the options you set, into a package
called a forecasting project. You can save this information in a SAS catalog entry and restore your work in
later forecasting sessions. You can store any number of forecasting projects under different catalog entry
names.

To see how this works, click the Manage Projects button. This opens the Manage Forecasting Project window,
as shown in Figure 59.22.

Figure 59.22 Manage Forecasting Project Window

The table in this window lists the series for which forecasting models have been fit, and it shows for each
series the forecasting model used to produce the forecasts. This window provides several features that allow
you to manage the information in your forecasting project.

You can select a row of the table to drill down to the list of models fit to the series. Select the GYD row of
the table, either by double-clicking with the mouse or by clicking once to highlight the table row and then
selecting List Models from the toolbar or from the Tools menu. This opens the Model List window for this
series, as shown in Figure 59.23.
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Figure 59.23 Model List Window

Because the Automatic Model Fitting process kept only the best fitting model, only one model appears in the
model list. You can fit and retain any number of models for each series, and all the models fit and kept will
appear in the series’ model list.

Select Close from the toolbar or from the File menu to return to the Manage Forecasting Project window.

Saving and Restoring Project Information
To illustrate how you can save your work between sessions, in this section you will exit and then re-enter the
Forecasting System.

From the Manage Forecasting Project window, select File and Save as. This opens the Forecasting Project
to Save window. In the Project Name field, type the name WORK.TEST.TESTPROJ. In the Description field,
type “Test of forecasting project file.” The window should now appear as shown in Figure 59.24.
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Figure 59.24 Project to Save Name and Description

Click the OK button. This returns you to the Project Management window and displays a message indicating
that the project was saved.

Select Close from the toolbar or from the File menu to return to the Time Series Forecasting window. Now
click the Exit button. The system asks if you are sure you want to exit the system; select Yes. The forecasting
application now terminates.

Open the forecasting application again. A new project name is displayed by default.

Now restore the forecasting project you saved previously. Click the Browse button to the right of the Project
field. This opens the Forecasting Project File Selection window, as shown in Figure 59.25.

Figure 59.25 Forecasting Project File Selection Window
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Select the WORK library from the Libraries list. The Catalogs list now shows all the SAS catalogs in the
WORK library.

Select the TEST catalog. The Projects list now shows the list of forecasting projects in the catalog TEST. So
far, you have created only one project file, TESTPROJ; so TESTPROJ is the only entry in the Projects list, as
shown in Figure 59.26.

Figure 59.26 Forecasting Projects List

Select TESTPROJ from the Projects list and then click the OK button. This returns you to the Time Series
Forecasting window.

The system loads the project information you saved in TESTPROJ and displays a message indicating this.
The Project field is now set to WORK.TEST.TESTPROJ, and the description is the description you previously
gave to TESTPROJ, as shown in Figure 59.27.



3970 F Chapter 59: Getting Started with Time Series Forecasting

Figure 59.27 Time Series Forecasting Window after Loading Project

If you now click the Manage Projects button, you will see the list of series and forecasting models you created
in the previous forecasting session.

Sharing Projects
If you plan to work with others on a forecasting project, you might need to consider how project information
can be shared. The series, models, and results of your project are stored in a forecasting project (FMSPROJ)
catalog entry in the location you specify, as illustrated in the previous section. You need only read access to
the catalog to work with it, but you must have write access to save the project. Multiple users cannot open a
project for update at the same time, but they can do so at different times if they all have write access to the
catalog where it is stored.

Project options settings such as the model selection criterion and number of models to keep are stored in an
SLIST catalog entry in the SASUSER or TSFSUSER library. Write access to this catalog is required. If you
have only read access to the SASUSER library, you can use the -RSASUSER option when starting SAS.
You will be prompted for a location for the TSFSUSER library, if it is not already assigned. If you want to
use TSFSUSER routinely, assign it before you start the Time Series Forecasting System. Select New from
the SAS Explorer file menu. In the New Library window, type TSFSUSER for the name. Click the Browse
button and select the directory or folder you want to use. Turn on the enable at startup option so this library
will be assigned automatically in subsequent sessions.

The SASUSER library is typically used for private settings saved by individual users. This is the default
location for project options. If a work group shares a single options catalog (SASUSER or TSFSUSER points
to the same location for all users), then only one user can use the system at a time.
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Develop Models Window
In the first forecasting example, you used the Automatic Model Fitting window to fit and select the forecasting
model for each series automatically. In addition to this automatic forecasting process, you can also work with
time series one at a time to fit forecasting models and apply your own judgment to choose the best forecasting
model for each series.

Using the Automatic Model Fitting feature, the system acts like a “black box.” This section goes inside the
black box to look at the kinds of forecasting methods that the system provides and introduces some of the
tools the system offers to help you find the best forecasting model.

Introduction
From the Time Series Forecasting window, click the Browse button to the right of the Data Set field to open
the Data Set Selection window. Select the USECON data set from the SASHELP library. This data set
contains monthly data on the U.S. economy.

Click OK to close the selection window. Now click the Develop Models button. This opens the Series
Selection window, as shown in Figure 59.28. You can enlarge this window for easier viewing of lists of data
sets and series.

Figure 59.28 Series Selection Window

Select the series CHEMICAL: Sales of Chemicals and Allied Products, and then click the OK button.

This opens the Develop Models window, as shown in Figure 59.29.
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Figure 59.29 Develop Models Window

The Data Set, Interval, and Series fields in the upper part of the Develop Models window indicate the series
with which you are currently working. You can change the settings of these fields by clicking the Browse
button.

The Data Range, Fit Range, and Evaluation Range fields show the time period over which data are available
for the current series, and what parts of that time period are used to fit forecasting models to the series and
to evaluate how well the models fit the data. You can change the settings of these fields by clicking the Set
Ranges button.

The bottom part of the Develop Models window consists of a table of forecasting models fit to the series.
Initially, the list is empty, as indicated by the message “No models.” You can fit any number of forecasting
models to each series and designate which one you want to use to produce forecasts.

Graphical tools are available for exploring time series and fitted models. The two icons below the Browse
button access the Time Series Viewer and the Model Viewer.

Select the left icon. This opens the Time Series Viewer window, as shown in Figure 59.30.
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Figure 59.30 Chemical and Allied Product Series

The Time Series Viewer displays a plot of the CHEMICAL series. The Time Series Viewer offers many
useful features, which are explored in later sections.

The Time Series Viewer appears in a separate resizable window. You can switch back and forth between
the Time Series Viewer window and other windows. For now, return to the Develop Models window. You
can close the Time Series Viewer window or leave it open. (To close the Time Series Viewer window, select
Close from the toolbar or from the File menu.)

Fitting Models
To open a menu of model fitting choices, select Edit from the menu bar and then select Fit Model, or select
Fit Models from List in the toolbar, or simply select a blank line in the table as shown in Figure 59.31.
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Figure 59.31 Menu of Model Fitting Choices

The Forecasting System provides several ways to specify forecasting models. The eight choices given by the
menu shown in Figure 59.31 are as follows:

Fit Models Automatically

performs for the current series the same automatic model selection process that the
Automatic Model Fitting window applies to a set of series.

Fit Models from List

presents a list of commonly used forecasting models for convenient point-and-click
selection.

Fit Smoothing Model

displays the Smoothing Model Specification window, which enables you to specify several
kinds of exponential smoothing and Winters method forecasting models.

Fit ARIMA Model

displays the ARIMA Model Specification window, which enables you to specify many
kinds of autoregressive integrated moving average (ARIMA) models, including sea-
sonal ARIMA models and ARIMA models with regressors, transfer functions, and other
predictors.

Fit Factored ARIMA Model

displays the Factored ARIMA Model Specification window, which enables you to spec-
ify more general ARIMA models, including subset models and models with unusual
and/or multiple seasonal cycles. It also supports regressors, transfer functions, and other
predictors.

Fit Custom Model

displays the Custom Model Specification window, which enables you to construct a
forecasting model by specifying separate options for transforming the data, modeling the
trend, modeling seasonality, modeling autocorrelation of the errors, and modeling the
effect of regressors and other independent predictors.
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Combine Forecasts

displays the Forecast Combination Model Specification window, which enables you to
specify models that produce forecasts by combining, or averaging, the forecasts from
other models. (This option is not available unless you have fit at least two models.)

Use External Forecasts

displays the External Forecast Model Specification window, which enables you to use
judgmental or externally produced forecasts that have been saved in a separate series in
the data set.

All of the forecasting models used by the system are ultimately specified through one of the four windows:
Smoothing Method Specification, ARIMA Model Specification, Factored ARIMA Model Specification, or
Custom Model Specification. You can specify the same models with either the ARIMA Model Specification
window or the Custom Model Specification window, but the Custom Model Specification window can provide
a more natural way to specify models for those who are less familiar with the Box-Jenkins style of time series
model specification.

The Automatic Model feature, the Models to Fit window, and the Forecast Combination Model Specification
window all deal with lists of forecasting models previously defined through the Smoothing Model, ARIMA
Model, or Custom Model specification windows. These windows are discussed in detail in later sections.

To get started using the Develop Models window, select the Fit Models from List item from the menu shown
in Figure 59.31. This opens the Models to Fit window, as shown in Figure 59.32.

Figure 59.32 Models to Fit Window

You can select several models to fit at once by holding down the CTRL key as you make the selections.
Select Linear Trend and Double (Brown) Exponential Smoothing, as shown in Figure 59.33, and
then click the OK button.
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Figure 59.33 Selecting Models to Fit

The system fits the two models you selected. After the models are fit, the labels of the two models and their
goodness-of-fit statistic are added to the model table, as shown in Figure 59.34.

Figure 59.34 Fitted Models List
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Model List and Statistics of Fit
In the model list, the Model Title column shows the descriptive labels for the two fitted models, in this case
Linear Trend and Double Exponential Smoothing.

The column labeled Root Mean Square Error (or labeled Mean Absolute Percent Error if you continued from
the example in the previous section) shows the goodness-of-fit criterion used to decide which model fits
better. By default, the criterion used is the root mean square error, but you can choose a different measure of
fit. The linear trend model has a root mean square error of 1203, while the double exponential smoothing
model fits better, with a RMSE of only 869.

The left column labeled Forecast Model consists of check boxes that indicate which one of the models in the
list has been selected as the model to use to produce the forecasts for the series. When new models are fit and
added to the model list, the system sets the Forecast Model flags to designate the one model with the best
fit—as measured by the selected goodness-of-fit statistic—as the forecast model. (In the case of ties, the first
model with the best fit is selected.)

Because the Double Exponential Smoothing model has the smaller RMSE of the two models in the list, its
Forecast Model check box is set. If you would rather produce forecasts by using the Linear Trend model,
choose it by selecting the corresponding check box in the Forecast Model column.

To use a different goodness-of-fit criterion, click the button with the current criterion name on it (Root Mean
Square Error or Mean Absolute Percent Error). This opens the Model Selection Criterion window, as shown
in Figure 59.35.

Figure 59.35 Model Selection Criterion Window

The system provides many measures of fit that you can use as the model selection criterion. To avoid
confusion, only the most popular of the available fit statistics are shown in this window by default. To display
the complete list, you can select the Show all option. You can control the subset of statistics listed in this
window through the Statistics of Fit item in the Options menu on the Develop Models window.

Initially, Root Mean Square Error is selected. Select R-Square and then click the OK button. This changes
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the fit statistic displayed in the model list, as shown in Figure 59.36.

Figure 59.36 Model List with R-Square Statistics

Now that you have fit some models to the series, you can use the Model Viewer button to take a closer look
at the predictions of these models.

Model Viewer
In the Develop Models window, select the row in the table containing the Linear Trend model so that this
model is highlighted. The model list should now appear as shown in Figure 59.37.



Model Viewer F 3979

Figure 59.37 Selecting a Model to View

Note that the Linear Trend model is now highlighted, but the Forecast Model column still shows the Double
Exponential Smoothing model as the model chosen to produce the final forecasts for the series. Selecting
a model in the list means that this is the model that menu items such as View Model, Delete, Edit, and
Refit will act upon. Choosing a model by selecting its check box in the Forecast Model column means that
this model will be used by the Produce Forecasts process to generate forecasts.

Now open the Model Viewer by selecting the right-hand icon under the Browse button, or by selecting Model

Predictions in the toolbar or from the View menu. The Model Viewer displays the Linear Trend model, as
shown in Figure 59.38.

Figure 59.38 Model Viewer: Actual and Predicted Values Plot
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This graph shows the linear trend line representing the model predicted values together with a plot of the
actual data values, which fluctuate about the trend line.

Prediction Error Plots
Select the second icon from the top in the vertical toolbar in the Model Viewer window. This switches the
Viewer to display a plot of the model prediction errors (actual data values minus the predicted values), as
shown in Figure 59.39.

Figure 59.39 Model Viewer: Prediction Errors Plot

If the model being viewed includes a transformation, prediction errors are defined as the difference between
the transformed series actual values and model predictions. You can choose to graph instead the difference
between the untransformed series values and untransformed model predictions, which are called model
residuals. You can also graph normalized prediction errors or normalized model residuals. Use the Residual
Plot Options submenu under the Options menu.

Autocorrelation Plots
Select the third icon from the top in the vertical toolbar. This switches the Viewer to display a plot of
autocorrelations of the model prediction errors at different lags, as shown in Figure 59.40. Autocorrelations,
partial autocorrelations, and inverse autocorrelations are displayed, with lines overlaid at plus and minus two
standard errors. You can switch the graphs so that the bars represent significance probabilities by selecting
the Correlation Probabilities item on the toolbar or from the View menu. For more information about the
meaning and use of autocorrelation plots, see Chapter 8, “The ARIMA Procedure.”
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Figure 59.40 Model Viewer: Autocorrelations Plot

White Noise and Stationarity Plots
Select the fourth icon from the top in the vertical toolbar. This switches the Viewer to display a plot of white
noise and stationarity tests on the model prediction errors, as shown in Figure 59.41.

Figure 59.41 Model Viewer: White Noise and Stationarity Plot

The white noise test bar chart shows significance probabilities of the Ljung-Box chi square statistic. Each
bar shows the probability computed on autocorrelations up to the given lag. Longer bars favor rejection of
the null hypothesis that the prediction errors represent white noise. In this example, they are all significant
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beyond the 0.001 probability level, so that you reject the null hypothesis. In other words, the high level of
significance at all lags makes it clear that the linear trend model is inadequate for this series.

The second bar chart shows significance probabilities of the augmented Dickey-Fuller test for unit roots. For
example, the bar at lag three indicates a probability of 0.0014, so that you reject the null hypothesis that the
series is nonstationary. The third bar chart is similar to the second except that it represents the seasonal lags.
Since this series has a yearly seasonal cycle, the bars represent yearly intervals.

You can select any of the bars to display an interpretation. Select the fourth bar of the middle chart. This
displays the Recommendation for Current View, as shown in Figure 59.42. This window gives an
interpretation of the test represented by the bar that was selected; it is significant, therefore a stationary series
is likely. It also gives a recommendation: You do not need to perform a simple difference to make the series
stationary.

Figure 59.42 Model Viewer: Recommendation for Current View

Parameter Estimates Table
Select the fifth icon from the top in the vertical toolbar to the right of the graph. This switches the Viewer to
display a table of parameter estimates for the fitted model, as shown in Figure 59.43.
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Figure 59.43 Model Viewer: Parameter Estimates Table

For the linear trend model, the parameters are the intercept and slope coefficients. The table shows the values
of the fitted coefficients together with standard errors and t tests for the statistical significance of the estimates.
The model residual variance is also shown.

Statistics of Fit Table
Select the sixth icon from the top in the vertical toolbar to the right of the table. This switches the Viewer to
display a table of statistics of fit computed from the model prediction errors, as shown in Figure 59.44. The
list of statistics displayed is controlled by selecting Statistics of Fit from the Options menu.

Figure 59.44 Model Viewer: Statistics of Fit Table
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Changing to a Different Model
Select the first icon in the vertical toolbar to the right of the table to return the display to the predicted and
actual values plots (Figure 59.38).

Now return to the Develop Models window, but do not close the Model Viewer window. You can use the
Next Viewer icon in the toolbar or your system’s window manager controls to switch windows. You can
resize the windows to make them both visible.

Select the Double Exponential Smoothing model so that this line of the model list is highlighted. The
Model Viewer window is now updated to display a plot of the predicted values for the Double Exponential
Smoothing model, as shown in Figure 59.45. The Model Viewer is automatically updated to display the
currently selected model, unless you specify Unlink (the third icon in the window’s horizontal toolbar).

Figure 59.45 Model Viewer Plot for Exponential Smoothing Model

Forecasts and Confidence Limits Plots
Select the seventh icon from the top in the vertical toolbar to the right of the graph. This switches the Viewer
to display a plot of forecast values and confidence limits, together with actual values and one-step-ahead
within-sample predictions, as shown in Figure 59.46.
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Figure 59.46 Model Viewer: Forecasts and Confidence Limits

Data Table
Select the last icon at the bottom of the vertical toolbar to the right of the graph. This switches the Viewer to
display the forecast data set as a table, as shown in Figure 59.47.

Figure 59.47 Model Viewer: Forecast Data Table

To view the full data set, use the vertical and horizontal scroll bars on the data table or enlarge the window.
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Closing the Model Viewer
Other features of the Model Viewer and Develop Models window are discussed later in this book. For now,
close the Model Viewer window and return to the Time Series Forecasting window.

To close the Model Viewer window, select Close from the window’s horizontal toolbar or from the File
menu.
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The Forecasting System requires that the input data set contain a time ID variable. If the data you want to
forecast are not in this form, you can use features of the Forecasting System to help you add time ID variables
to your data set. This chapter shows examples of how to use these features.

Creating a Time ID Value from a Starting Date and Frequency
As a first example of adding a time ID variable, use the SAS data set created by the following statements. (Or
use your own data set if you prefer.)

data no_id;
input y @@;

datalines;
10 15 20 25 30 35 40 45
50 55 60 65 70 75 80 85

run;

Submit these SAS statements to create the data set NO_ID. This data set contains the single variable Y.
Assume that Y is a quarterly series and starts in the first quarter of 1991.

In the Time Series Forecasting window, use the Browse button to the right of the Data set field to bring up
the Data Set Selection window. Select the WORK library, and then select the NO_ID data set.

You must create a time ID variable for the data set. Click the Create button to the right of the Time ID field.
This opens a menu of choices for creating the time ID variable, as shown in Figure 60.1.
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Figure 60.1 Time ID Creation Pop-up Menu

Select the first choice, Create from starting date and frequency. This opens the Time ID Creation
from Starting Date window shown in Figure 60.2.

Figure 60.2 Time ID Creation from Starting Date Window

Enter the starting date, 1991:1, in the Starting Date field.

Select the Interval list arrow and select QTR. The Interval value QTR means that the time interval between
successive observations is a quarter of a year; that is, the data frequency is quarterly.

Now select the OK button. The system prompts you for the name of the new data set. If you want to create a
new copy of the input data set with the DATE variable added, enter a name for the new data set. If you want
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to replace the NO_ID data set with the new copy containing DATE, just select the OK button without changing
the name.

For this example, change the New name field to WITH_ID and select the OK button. The data set WITH_ID is
created containing the series Y from NO_ID and the added ID variable DATE. The system returns to the Data
Set Selection window, which now appears as shown in Figure 60.3.

Figure 60.3 Data Set Selection Window after Creating Time ID

Select the Table button to see the new data set WITH_ID. This opens a VIEWTABLE window for the data
set WITH_ID, as shown in Figure 60.4. Select File and Close to close the VIEWTABLE window.

Figure 60.4 Viewtable Display of Data Set with Time ID Added
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Using Observation Numbers as the Time ID
Normally, the time ID variable contains date values. If you do not want to have dates associated with your
forecasts, you can also use observation numbers as time ID variables. However, you still must have an ID
variable. This can be illustrated by adding an observation index time ID variable to the data set NO_ID.

In the Data Set Selection window, select the data set NO_ID again. Select the Create button to the right of the
Time ID field. Select the fourth choice, Create from observation numbers. This opens the Time ID
Variable Creation window shown in Figure 60.5.

Figure 60.5 Create Time ID Variable Window

Select the OK button. This opens the New Data Set Name window. Enter “OBS_ID” in the New data set

name field. Enter “T” in the New ID variable name field.

Now select the OK button. The new data set OBS_ID is created, and the system returns to the Data Set
Selection window, which now appears as shown in Figure 60.6.
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Figure 60.6 Data Set Selection Window after Creating Time ID

The Interval field for OBS_ID has the value ‘1’. This means that the values of the time ID variable T
increment by one between successive observations.

Select the Table button to look at the OBS_ID data set, as shown in Figure 60.7.

Figure 60.7 VIEWTABLE of Data Set with Observation Index ID

Select File and Close to close the VIEWTABLE window. Select the OK button from the Data Set Selection
window to return to the Time Series Forecasting window.
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Creating a Time ID from Other Dating Variables
Your data set might contain ID variables that date the observations in a different way than the SAS date
valued ID variable expected by the forecasting system. For example, for monthly data, the data set might
contain the ID variables YEAR and MONTH, which together date the observations.

In these cases, you can use the Forecasting System’s Create Time ID features to compute a time ID variable
with SAS date values from the existing dating variables. As an example of this, use the SAS data set read in
by the following SAS statements:

data id_parts;
input yr qtr y;

datalines;
91 1 10
91 2 15
91 3 20
91 4 25
92 1 30
92 2 35
92 3 40
92 4 45
93 1 50
93 2 55
93 3 60
93 4 65
94 1 70
94 2 75
94 3 80
94 4 85

run;

Submit these SAS statements to create the data set ID_PARTS. This data set contains the three variables YR,
QTR, and Y. YR and QTR are ID variables that together date the observations, but each variable provides
only part of the date information. Because the forecasting system requires a single dating variable containing
SAS date values, you need to combine YR and QTR to create a single variable DATE.

Type “ID_PARTS” in the Data Set field and press the ENTER key. (You could also use the Browse button
to open the Data Set Selection window, as in the previous example, and complete this example from there.)

Select the Create button at the right of the Time ID field. This opens the menu of Create Time ID choices, as
shown in Figure 60.8.
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Figure 60.8 Adding a Time ID Variable

Select the second choice, Create from existing variables. This opens the window shown in Fig-
ure 60.9.

Figure 60.9 Creating a Time ID Variable from Date Parts

In the Variables list, select YR. In the Date Part list, select YEAR as shown in Figure 60.10.
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Figure 60.10 Specifying the ID Variable for Years

Now click the right-pointing arrow button. The variable YR and the part code YEAR are added to the
Existing Time IDs list.

Next select QTR from the Variables list, select QTR from the Date Part list, and click the arrow button.
This adds the variable QTR and the part code QTR to the Existing Time IDs list, as shown in Figure 60.11.

Figure 60.11 Creating a Time ID Variable from Date Parts

Now select the OK button. This opens the New Data Set Name window. Change the New data set name

field to NEWDATE, and then select the OK button.

The data set NEWDATE is created, and the system returns to the Time Series Forecasting window with
NEWDATE as the selected Data Set. The Time ID field is set to DATE, and the Interval field is set to QTR.
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This chapter explores the tools available through the Develop Models window for investigating the properties
of time series and for specifying and fitting models. The first section shows you how to diagnose time series
properties in order to determine the class of models appropriate for forecasting series with such properties.
Later sections show you how to specify and fit different kinds of forecasting models.

Series Diagnostics
The series diagnostics tool helps you determine the kinds of forecasting models that are appropriate for the
data series so that you can limit the search for the best forecasting model. The series diagnostics address
these three questions: Is a log transformation needed to stabilize the variance? Is a time trend present in the
data? Is there a seasonal pattern to the data?

The automatic model fitting process, which you used in the previous chapter through the Automatic Model
Fitting window, performs series diagnostics and selects trial models from a list according to the results.
You can also look at the diagnostic information and make your own decisions as to the kinds of models
appropriate for the series. The following example illustrates the series diagnostics features.

Select “Develop Models” from the Time Series Forecasting window. Select the library SASHELP, the data
set CITIMON, and the series RCARD. This series represents domestic retail sales of passenger cars. To look
at this series, select “View Series” from the Develop Models window. This opens the Time Series Viewer
window, as shown in Figure 61.1.
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Figure 61.1 Automobile Sales Series

Select “Diagnose Series” from the Tools menu. You can do this from the Develop Models window or from
the Time Series Viewer window. Figure 61.2 shows this from the Develop Models window.

Figure 61.2 Selecting Series Diagnostics

This opens the Series Diagnostics window, as shown in Figure 61.3.
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Figure 61.3 Series Diagnostics Window

Each of the three series characteristics—need for log transformation, presence of a trend, and seasonality—
has a set of options for Yes, No, and Maybe. Yes indicates that the series has the characteristic and that
forecasting models fit to the series should be able to model and predict this behavior. No indicates that you do
not need to consider forecasting models designed to predict series with this characteristic. Maybe indicates
that models with and without the characteristic should be considered. Initially, all these values are set to
Maybe.

To have the system diagnose the series characteristics, click the Automatic Series Diagnostics button. This
runs the diagnostic routines described in Chapter 66, “Forecasting Process Details,” and sets the options
according to the results. In this example, Trend and Seasonality are changed from Maybe to Yes, while
Log Transform remains set to Maybe.

These diagnostic criteria affect the models displayed when you use the Models to Fit window or the Automatic
Model Selection model-fitting options described in the following section. You can set the criteria manually,
according to your judgment, by selecting any of the options, whether you have used the Automatic Series
Diagnostics button or not. For this exercise, leave them as set by the automatic diagnostics. Click the OK
button to close the Series Diagnostics window.
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Models to Fit Window
As you saw in the previous chapter, you can select models from a list. Invoke the Models to Fit window
by clicking the middle of the table and selecting “Fit Models from List” from the menu. This can also be
selected from the toolbar or the Fit Model submenu of the Edit menu. The Models to Fit window comes up,
as shown in Figure 61.4.

Figure 61.4 Models to Fit Window

Since you have performed series diagnostics, the models shown are the subset that fits the diagnostic criteria.

Suppose you want to consider models other than those in this subset because you are undecided about
including a trend in the model. Select the Show all models option. Now the entire model selection list
is shown. Scroll through the list until you find Log Seasonal Exponential Smoothing, as shown in
Figure 61.5.
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Figure 61.5 Selecting a Model from List

This is a nontrended model, which seems a good candidate. Select this model, and then click the OK button.
The model is fit to the series and then appears in the table with the value of the selected fit criterion, as shown
in Figure 61.6.

Figure 61.6 Develop Models Window Showing Model Fit

You can edit the model list that appears in the Models to Fit window by selecting “Options” and “Model
Selection List” from the menu bar or by selecting the Edit Model List toolbar icon. You can then delete
models you are not interested in from the default list and add models using any of the model specification
methods described in this chapter. When you save your project, the edited model selection list is saved in the
project file. In this way, you can use the Select from List item and the Automatic Model Selection item to
select models from a customized search set.
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Automatic Model Selection
Automatic model selection is equivalent to choosing Select from List, as you did in the preceding section,
fitting all the models in the subset list and then deleting all except the best fitting of the models. If series
diagnostics have not yet been done, they are performed automatically to determine the model subset to fit.
If you set the series diagnostics for log, trend, or seasonal criteria manually using the radio buttons, these
choices are honored by the automatic fitting process.

Using automatic selection, the system does not pause to warn you of model fitting errors, such as failure of
the estimates to converge (you can track these using the audit trail feature).

By default, only the best fitting model is kept. However, you can control the number of automatically fit
models retained in the Develop Models list, and the following example shows how to do this.

From the menu bar, select “Options” and “Automatic Fit.” This opens the Automatic Model Selection Options
window. Click the Models to Keep list arrow, and select “All models,” as shown in Figure 61.7. Now click
OK.

Figure 61.7 Selecting Number of Automatic Fit Models to Keep

Next, select “Fit Models Automatically” by clicking the middle of the table or using the toolbar or Edit menu.
The Automatic Model Selection window appears, showing the diagnostic criteria in effect and the number of
models to be fit, as shown in Figure 61.8.
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Figure 61.8 Automatic Model Selection Window

Click the OK button. After the models have been fit, all of them appear in the table, in addition to the model
which you fit earlier, as shown in Figure 61.9.

Figure 61.9 Automatically Fit Models
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Smoothing Model Specification Window
To fit exponential smoothing and Winters models not already provided in the Models to Fit window, select
“Fit Smoothing Model” from the pop-up menu or toolbar or select “Smoothing Model” from the Fit Model
submenu of the Edit menu. This opens the Smoothing Model Specification window, as shown in Figure 61.10.

Figure 61.10 Smoothing Model Specification Window

The Smoothing Model Specification window consists of several parts. At the top is the series name and a field
for the label of the model you are specifying. The model label is filled in with an automatically generated
label as you specify options. You can type over the automatic label with your own label for the model. To
restore the automatic label, enter a blank label.

The Smoothing Methods box lists the different methods available. Below the Smoothing Methods box is
the Transformation field, which is used to apply the smoothing method to transformed series values.

The Smoothing Weights box specifies how the smoothing weights are determined. By default, the smooth-
ing weights are automatically set to optimize the fit of the model to the data. For more information about
how the smoothing weights are fit, see Chapter 66, “Forecasting Process Details.”

Under smoothing methods, select “Winters Method – Additive.” Notice the smoothing weights box to the
right. The third item, Damping, is grayed out, while the other items, Level, Trend, and Season, show the
word Optimize. This tells you that these three smoothing weights are applicable to the smoothing method
that you selected and that the system is currently set to optimize these weights for you.

Next, specify a transformation using the Transformation list. A menu of transformation choices pops up,
as shown in Figure 61.11.
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Figure 61.11 Transformation Options

You can specify a logarithmic, logistic, square root, or Box-Cox transformation. For this example, select
“Square Root” from the list. The Transformation field is now set to Square Root.

This means that the system will first take the square roots of the series values, apply the additive version
of the Winters method to the square root series, and then produce the predictions for the original series by
squaring the Winters method predictions (and multiplying by a variance factor if the Mean Prediction option
is set in the Forecast Options window). For more information about predictions from transformed models,
see Chapter 66, “Forecasting Process Details.”

The Smoothing Model Specification window should now appear as shown in Figure 61.12. Click the OK
button to fit the model. The model is added to the table of fitted models in the Develop Models window.

Figure 61.12 Winter’s Method Applied to Square Root Series
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ARIMA Model Specification Window
To fit ARIMA or Box-Jenkins models not already provided in the Models to Fit window, select the ARIMA
model item from the pop-up menu, toolbar, or Edit menu. This opens the ARIMA Model Specification
window, as shown in Figure 61.13.

Figure 61.13 ARIMA Model Specification Window

This ARIMA Model Specification window is structured according to the Box and Jenkins approach to time
series modeling. You can specify the same time series models with the Custom Model Specification window
and the ARIMA Model Specification window, but the windows are structured differently, and you may find
one more convenient than the other.

At the top of the ARIMA Model Specification window is the name and label of the series and the label of the
model you are specifying. The model label is filled in with an automatically generated label as you specify
options. You can type over the automatic label with your own label for the model. To restore the automatic
label, enter a blank label.

Using the ARIMA Model Specification window, you can specify autoregressive (p), differencing (d), and
moving average (q) orders for both simple and seasonal factors. You can specify transformations with the
Transformation list. You can also specify whether an intercept is included in the ARIMA model.

In addition to specifying seasonal and nonseasonal ARIMA processes, you can also specify predictor variables
and other terms as inputs to the model. ARIMA models with inputs are sometimes called ARIMAX models
or Box-Tiao models. Another term for this kind of model is dynamic regression.

In the lower part of the ARIMA Model Specification window is the list of predictors to the model (initially
empty). You can specify predictors by using the Add button. This opens a menu of different kinds of
independent effects, as shown in Figure 61.14.
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Figure 61.14 Add Predictors Menu

The kinds of predictor effects allowed include time trends, regressors, adjustments, dynamic regression
(transfer functions), intervention effects, and seasonal dummy variables. How to use different kinds of
predictors is explained in Chapter 63, “Using Predictor Variables.”

As an example, in the ARIMA Options box, set the order of differencing d to 1 and the moving average order
q to 2. You can either type in these values or click the arrows and select the values from pop-up lists.

These selections specify an ARIMA(0,1,2) or IMA(1,2) model. (For more information about the notation
used for ARIMA models, see Chapter 8, “The ARIMA Procedure.”) Notice that the model label at the top is
now IMA(1,2) NOINT, meaning that the data are differenced once and a second-order moving-average term
is included with no intercept.

In the Seasonal ARIMA Options box, set the seasonal moving-average order Q to 1. This adds a first-order
moving-average term at the seasonal (12 month) lag. Finally, select “Log” in the Transformation combo box.

The model label is now Log ARIMA(0,1,2)(0,0,1)s NOINT, and the window appears as shown in Fig-
ure 61.15.
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Figure 61.15 Log ARIMA(0,1,2)(0,0,1)s Specified

Click the OK button to fit the model. The model is fit and added to the Develop Models table.

Factored ARIMA Model Specification Window
To fit a factored ARIMA model, select the Factored ARIMA model item from the pop-up menu, toolbar, or
Edit menu. This brings up the Factored ARIMA Model Specification window, shown in Figure 61.16.

Figure 61.16 Factored ARIMA Model Specification Window
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The Factored ARIMA Model Specification window is similar to the ARIMA Model Specification window
and has the same features, but it uses a more general specification of the autoregressive (p), differencing
(d), and moving-average (q) terms. To specify these terms, click the corresponding Set button, as shown in
Figure 61.16. For example, to specify autoregressive terms, click the first Set button. This opens the AR
Polynomial Specification Window, shown in Figure 61.17.

Figure 61.17 AR Polynomial Specification Window

To add AR polynomial terms, click the New button. This opens the Polynomial Specification Window, shown
in Figure 61.18. Specify the first lag you want to include by using the Lag spin box, then click the Add
button. Repeat this process, adding each lag you want to include in the current list. All lags must be specified.
For example, if you add only lag 3, the model contains only lag 3, not 1 through 3.

As an example, add lags 1 and 3, then click the OK button. The AR Polynomial Specification Window now
shows (1,3) in the list of polynomials. Now select “New” again. Add lags 6 and 12 and click “OK”. Now
the AR Polynomial Specification Window shows (1,3) and (6,12) as shown in Figure 61.17. Select “OK”
to close this window. The Factored ARIMA Model Specification Window now shows the factored model
p=(1,3)(6,12). Use the same technique to specify the q terms, or moving-average part of the model. There
is no limit to the number of lags or the number of factors you can include in the model.
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Figure 61.18 Polynomial Specification Window

To specify differencing lags, click the middle Set button to open the Differencing Specification window.
Specify lags using the spin box and add them to the list with the Add button. When you click “OK” to close
the window, the differencing lags appear after d= in the Factored ARIMA Specification Window, within a
single pair of parentheses.

You can use the Factored ARIMA Model Specification Window to specify any model that you can specify
with the ARIMA Model and Custom Model windows, but the notation is more similar to that of the ARIMA
procedure (see Chapter 8, “The ARIMA Procedure”). Consider as an example the classic Airline model fit
to the International Airline Travel series, SASHELP.AIR. This is a factored model with one moving-average
term at lag one and one moving-average term at the seasonal lag, with first-order differencing at the simple
and seasonal lags. Using the ARIMA Model Specification Window, you specify the value 1 for the q and d
terms and also for the Q and D terms, which represent the seasonal lags. For monthly data, the seasonal lags
represent lag 12, since a yearly seasonal cycle is assumed.

By contrast, the Factored ARIMA Model Specification Window makes no assumptions about seasonal cycles.
The Airline model is written as IMA d=(1,12) q=(1)(12) NOINT. To specify the differencing terms, add
the values 1 and 12 in the Differencing Specification Window and click OK. Then select “New” in the MA
Polynomial Specification Window, add the value 1, and select OK. To add the factored term, select “New”
again, add the value 12, and click OK. Remember to select “No” in the Intercept radio box, since it is not
selected by default. Click OK to close the Factored ARIMA Model Specification Window and fit the model.

You can show that the results are the same as they are when you specify the model by using the ARIMA
Model Specification Window and when you select Airline Model from the default model list. If you are
familiar with the ARIMA Procedure (Chapter 8, “The ARIMA Procedure”), you might want to turn on the
Show Source Statements option before fitting the model, then examine the procedure source statements
in the log window after fitting the model.

The strength of the Factored ARIMA Specification approach lies in its ability to construct unusual ARIMA
models, such as the following:
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Subset models
These are models of order n, where fewer than n lags are specified. For example, an AR
order 3 model might include lags 1 and 3 but not lag 2.

Unusual seasonal cycles
For example, a monthly series might cycle two or four times per year instead of just once.

Multiple cycles
For example, a daily sales series might peak on a certain day each week and also once a
year at the Christmas season. Given sufficient data, you can fit a three-factor model, such
as IMA d=(1) q=(1)(7)(365).

Models with high order lags take longer to fit and often fail to converge. To save time, select the Conditional
Least Squares or Unconditional Least Squares estimation method (see Figure 61.16). Once you have narrowed
down the list of candidate models, change to the Maximum Likelihood estimation method.

Custom Model Specification Window
To fit a custom time series model not already provided in the Models to Fit window, select the Custom Model
item from the pop-up menu, toolbar, or Edit menu. This opens the Custom Model Specification window, as
shown in Figure 61.19.

Figure 61.19 Custom Model Specification Window

You can specify the same time series models with the Custom Model Specification window and the ARIMA
Model Specification window, but the windows are structured differently, and you might find one more
convenient than the other.

At the top of the Custom Model Specification window is the name and label of the series and the label of the
model you are specifying. The model label is filled in with an automatically generated label as you specify
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options. You can type over the automatic label with your own label for the model. To restore the automatic
label, enter a blank label.

The middle part of the Custom Model Specification window consists of four fields: Transformation, Trend
Model, Seasonal Model, and Error Model. These fields allow you to specify the model in four parts.
Each part specifies how a different aspect of the pattern of the time series is modeled and predicted.

The Predictors list at the bottom of the Custom Model Specification window allows you to include
different kinds of predictor variables in the forecasting model. The Predictors feature for the Custom Model
Specification window is like the Predictors feature for the ARIMA Model Specification window, except that
time trend predictors are provided through the Trend Model field and seasonal dummy variable predictors are
provided through the Seasonal Model field.

To illustrate how to use the Custom Model Specification window, the following example specifies the same
model you fit by using the ARIMA Model Specification window.

First, specify the data transformation to use. Select “Log” using the Transformation combo box.

Second, specify how to model the trend in the series. Select First Difference in the Trend Model

combo box, as shown in Figure 61.20.

Figure 61.20 Trend Model Options

Next, specify how to model the seasonal pattern in the series. Select “Seasonal ARIMA” in the Seasonal
Model combo box, as shown in Figure 61.21.
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Figure 61.21 Seasonal Model Options

This opens the Seasonal ARIMA Model Options window, as shown in Figure 61.22.

Figure 61.22 Seasonal ARIMA Model Options

Specify a first-order seasonal moving-average term by typing 1 or by selecting “1” from the Moving Average:
Q= combo box pop-up menu, and then click the OK button.

Finally, specify how to model the autocorrelation pattern in the model prediction errors. Click the Set button
to the right of the Error Model field. This opens the Error Model Options window, as shown in Figure 61.23.
This window allows you to specify an ARMA error process. Set the Moving Average order q to 2, and then
click the OK button.
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Figure 61.23 Error Model Options

The Custom Model Specification window should now appear as shown in Figure 61.24. The model label at
the top of the Custom Model Specification window should now read Log ARIMA(0,1,2)(0,0,1)s NOINT,
just as it did when you used the ARIMA Model Specification window.

Figure 61.24 Log ARIMA(0,1,2)(0,0,1)s Specified

Now that you have seen how the Custom Model Specification window works, click “Cancel” to exit the
window without fitting the model. This should return you to the Develop Models window.
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Editing the Model Selection List
Now that you know how to specify new models that are not included in the system default model selection
list, you can edit the model selection list to add models that you expect to use in the future or to delete models
that you do not expect to use. When you save the forecasting project to a SAS catalog, the edited model
selection list is saved with the project file, and the list is restored when you load the project.

There are two reasons why you would add a model to the model selection list. First, by adding the model to
the list, you can fit the model to different time series by selecting it through the Fit Models from List

action. You do not need to specify the model again every time you use it.

Second, once the model is added to the model selection list, it is available to the automatic model selection
process. The model is then considered automatically whenever you use the automatic model selection feature
for any series.

To edit the model selection list, select “Model Selection List” from the Options menu as shown in Figure 61.25,
or select the Edit Model List toolbar icon.

Figure 61.25 Model Selection List Option

This selection brings up the Model Selection List editor window, as shown in Figure 61.26. This window
consists of the model selection list and an “Auto Fit” column, which controls for each model whether the
model is included in the list of models used by the automatic model selection process.
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Figure 61.26 Model Selection List Window

To add a model to the list, select “Add Model” from the Edit menu and then select “Smoothing Model,”
“ARIMA Model,” “Factored ARIMA Model,” or “Custom Model” from the submenu. Alternatively, click the
corresponding icon on the toolbar.

As an example, select “Smoothing Model.” This brings up the Smoothing Model Specification window. Note
that the series name is “-Null-.” This means that you are not specifying a model to be fit to a particular series,
but are specifying a model to be added to the selection list for later reference.

Specify a smoothing model. For example, select “Simple Smoothing” and then select the Square Root
transformation. The window appears as shown in Figure 61.27.

Figure 61.27 Adding a Model Specification
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Click the OK button to add the model to the end of the model selection list and return you to the Model
Selection List window, as shown in Figure 61.28. You can now select the Fit Models from List model-fitting
option to use the edited selection list.

Figure 61.28 Model Added to Selection List

If you want to delete one or more models from the list, select the model labels to highlight them in the list.
Click a second time to clear a selected model. Then select “Delete” from the Edit pull-down menu, or the
corresponding toolbar icon. As an example, delete the Square Root Simple Exponential Smoothing

model that you just added.

The Model Selection List editor window gives you a lot of flexibility for managing multiple model lists, as
explained in the section “Model Selection List Editor Window” on page 4125. For example, you can create
your own model lists from scratch or modify or combine previously saved model lists and those provided
with the software, and you can save them and designate one as the default for future projects.

Now select “Close” from the File menu (or the Close icon) to close the Model Selection List editor window.
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Forecast Combination Model Specification Window
Once you have fit several forecasting models to a series, you face the question of which model to use to
produce the final forecasts. One possible answer is to combine or average the forecasts from several models.
Combining the predictions from several different forecasting methods is a popular approach to forecasting.

The way that you produce forecast combinations with the Time Series Forecasting System is to use the
Forecast Combination Model Specification window to specify a new forecasting model that performs the
averaging of forecasts from the models you want to combine. This new model is added to the list of
fitted models just like other models. You can then use the Model Viewer window features and Model Fit
Comparison window features to examine the fit of the combined model.

To specify a forecast combination model, select “Combine Forecasts” from the pop-up menu or toolbar,
or select “Edit” and “Fit Model” from the menu bar. This brings up the Forecast Combination Model
Specification window, as shown in Figure 61.29.

Figure 61.29 Forecast Combination Window

At the top of the Forecast Combination window is the name and label of the series and the label of the model
you are specifying. The model label is filled in with an automatically generated label as you specify options.
You can type over the automatic label with your own label for the model. To restore the automatic label, enter
a blank label.

The middle part of the Forecast Combination window consists of the list of models that you have fit to the
series. This table shows the label and goodness-of-fit measure for each model and the combining weight
assigned to the model.

The Weight column controls how much weight is given to each model in the combined forecasts. A missing
weight means that the model is not used. Initially, all the models have missing weight values.

You can enter the weight values you want to use in the Weight column. Alternatively, you can select models
from the Model Description column, and weight values for the models you select are set automatically. To



Forecast Combination Model Specification Window F 4017

remove a model from the combination, select it again. This resets its weight value to missing.

At the bottom of the Forecast Combination window are two buttons: Normalize Weights and Fit

Regression Weights. The Normalize Weights button adjusts the nonmissing weight values so that
they sum to one. The Fit Regression Weights button uses linear regression to compute the weight values that
produce the combination of model predictions with the best fit to the series.

If no models are selected, the Fit Regression Weights button fits weights for all the models in the list. You can
compute regression weights for only some of the models by first selecting the models you want to combine
and then selecting Fit Regression Weights. In this case, only the nonmissing Weight values are replaced with
regression weights.

As an example of how to combine forecasting models, select all the models in the list. After you have finished
selecting the models, all the models in the list should now have equal weight values, which implies a simple
average of the forecasts.

Now click the Fit Regression Weights button. The system performs a linear regression of the series on the
predictions from the models with nonmissing weight values and replaces the weight values with the estimated
regression coefficients. These are the combining weights that produce the smallest mean square prediction
error within the sample.

The Forecast Combination window should now appear as shown in Figure 61.30. (Note that some of the
regression weight values are negative.)

Figure 61.30 Combining Models

Click the OK button to fit the combined model. Now the Develop Models window shows this model to be the
best fitting according to the root mean square error, as shown in Figure 61.31.
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Figure 61.31 Develop Models Window Showing All Models Fit

Notice that the combined model has a smaller root mean square error than any one of the models included
in the combination. The confidence limits for forecast combinations are produced by taking a weighted
average of the mean square prediction errors for the component forecasts, ignoring the covariance between
the prediction errors.

Incorporating Forecasts from Other Sources
You might have forecasts from other sources that you want to include in the forecasting process. Examples
of other forecasts you might want to use are “best guess” forecasts based on personal judgments, forecasts
produced by government agencies or commercial forecasting services, planning scenarios, and reference
or “base line” projections. Because such forecasts are produced externally to the Time Series Forecasting
System, they are referred to as external forecasts.

You can include external forecasts in combination models to produce compromise forecasts that split the
difference between the external forecast and forecasting models that you fit. You can use external forecasts to
compare them to the forecasts from models that are fit by the system.

To include external forecasts in the Time Series Forecasting process, you must first supply the external
forecast as a variable in the input data set. You then specify a special kind of forecasting “model” whose
predictions are identical to the external forecast recorded in the data set.

As an example, suppose you have 12 months of sales data and five months of sales forecasts based on a
consensus opinion of the sales staff. The following statements create a SAS data set containing made-up
numbers for this situation.

data widgets;
input date monyy5. sales staff;
format date monyy5.;
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label sales = "Widget Sales"
staff = "Sales Staff Consensus Forecast";

datalines;
jun94 142.1 .
jul94 139.6 .
aug94 145.0 .
sep94 150.2 .
oct94 151.1 .
nov94 154.3 .
dec94 158.7 .
jan95 155.9 .
feb95 159.2 .
mar95 160.8 .
apr95 162.0 .
may95 163.3 .
jun95 . 166.
jul95 . 168.
aug95 . 170.
sep95 . 171.
oct95 . 177.
run;

Submit the preceding statements in the SAS Program Editor window. From the Time Series Forecasting
window, select “Develop Models.” In the Series Selection window, select the data set WORK.WIDGETS and
the variable SALES. The Develop Models window should now appear as shown in Figure 61.32.

Figure 61.32 Develop Models Window

Now select “Edit,” “Fit Model,” and “External Forecasts” from the menu bar of the Develop Models window,
as shown in Figure 61.33, or the Use External Forecasts toolbar icon.
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Figure 61.33 Adding a Model for an External Forecast Series

This selection opens the External Forecast Model Specification window. Select the STAFF variable as shown
in Figure 61.34.

Figure 61.34 External Forecast Series Selected

Select the OK button. The external forecast model is now “fit” and added to the Develop Models list, as
shown in Figure 61.35.
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Figure 61.35 Model for External Forecast

You can now use this model for comparison with the predictions from other forecasting models that you fit,
or you can include it in a forecast combination model.

Note that no fitting is actually performed for an external forecast model. The predictions of the external
forecast model are simply the values of the external forecast series read from the input data set. The
goodness-of-fit statistics for such models will depend on the values that the external forecast series contains
for observations within the period of fit. In this case, no STAFF values are given for past periods, and
therefore the fit statistics for the model are missing.
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Chapter 62

Choosing the Best Forecasting Model
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The Time Series Forecasting System provides a variety of tools for identifying potential forecasting models
and for choosing the best fitting model. It allows you to decide how much control you want to have over
the process, from a hands-on approach to one that is completely automated. This chapter begins with an
exploration of the tools available through the Series Viewer and Model Viewer. It presents an example of
identifying models graphically and exercising your knowledge of model properties. The remainder of the
chapter shows you how to compare models by using a variety of statistics and by controlling the fit and
evaluation time ranges. It concludes by showing you how to refit existing models and how to compare models
using hold-out samples.

Time Series Viewer Features
The Time Series Viewer is a graphical tool for viewing and analyzing time series. It can be used
separately from the Time Series Forecasting System by using the TSVIEW command or by selecting
Time Series Viewer from the Analysis pull-down menu under Solutions.

In this chapter you will use the Time Series Viewer to examine plots of your series before fitting models.
Begin this example by invoking the Forecasting system and clicking the View Series Graphically button,
as shown in Figure 62.1, or the View Series toolbar icon.
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Figure 62.1 Invoking the Time Series Viewer

From the Series Selection window, select SASHELP as the library, WORKERS as the data set, and MA-
SONRY as the time series, and then click the Graph button. The Time Series Viewer displays a plot of the
series, as shown in Figure 62.2.

Figure 62.2 Series Plot

Select the Zoom In icon, the first one on the window’s horizontal toolbar. Notice that the mouse pointer
changes shape and that “Note: Click on a corner of the region, then drag to the other corner” appears on
the message line. Outline an area, as shown in Figure 62.3, by clicking the mouse at the upper-left corner,
holding the button down, dragging to the lower-right corner, and releasing the button.
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Figure 62.3 Selecting an Area for Zoom

The zoomed plot should appear as shown in Figure 62.4.

Figure 62.4 Zoomed Plot

You can repeat the process to zoom in still further. To return to the previous view, select the Zoom Out icon,
the second icon on the window’s horizontal toolbar.

The third icon on the horizontal toolbar is used to link or unlink the viewer window. By default, the viewer
is linked, meaning that it is automatically updated to reflect selection of a different time series. To see this,
return to the Series Selection window by clicking on it or using the Window menu or Next Viewer toolbar
icon. Select the Electric series in the Time Series Variables list box. Notice that the Time Series Viewer
window is updated to show a plot of the ELECTRIC series. Select the Link/Unlink icon if you prefer to



4026 F Chapter 62: Choosing the Best Forecasting Model

unlink the viewer so that it is not automatically updated in this way. Successive selections toggle between the
linked and unlinked state. A note on the message line informs you of the state of the Time Series Viewer
window.

When a Time Series Viewer window is linked, selecting View Series again makes the linked Viewer
window active. When no Time Series Viewer window is linked, selecting View Series opens an additional
Time Series Viewer window. You can bring up as many Time Series Viewer windows as you want.

Having seen the plot in Figure 62.2, you might suspect that the series is nonstationary and seasonal. You can
gain further insight into this by examining the sample autocorrelation function (ACF), partial autocorrelation
function (PACF), and inverse autocorrelation function (IACF) plots. To switch the display to the autocorre-
lation plots, select the second icon from the top on the vertical toolbar at the right side of the Time Series
Viewer. The plot appears as shown in Figure 62.5.

Figure 62.5 Sample Autocorrelation Plots

Each bar represents the value of the correlation coefficient at the given lag. The overlaid lines represent
confidence limits computed at plus and minus two standard errors. You can switch the graphs to show
significance probabilities by selecting Correlation Probabilities under the Options pull-down menu,
or by selecting the Toggle ACF Probabilities toolbar icon.

The slow decline of the ACF suggests that first differencing might be warranted. To see the effect of first
differencing, select the simple difference icon, the fifth icon from the left on the window’s horizontal toolbar.
The plot now appears as shown in Figure 62.6.
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Figure 62.6 ACF Plots with First Difference Applied

Since the ACF still displays slow decline at seasonal lags, seasonal differencing is appropriate (in addition to
the first differencing already applied). Select the Seasonal Difference icon, the sixth icon from the left
on the horizontal toolbar. The plot now appears as shown in Figure 62.7.

Figure 62.7 ACF Plot with Simple and Seasonal Differencing
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Model Viewer Prediction Error Analysis
Leave the Time Series Viewer open for the remainder of this exercise. Drag it out of the way or push it to
the background so that you can return to the Time Series Forecasting window. Select Develop Models,
then click an empty part of the table to bring up the pop-up menu, and select Fit ARIMA Model. Define
the ARIMA(0,1,0)(0,1,0)s model by selecting 1 for Differencing under ARIMA Options, 1 for Differencing
under Seasonal ARIMA Options, and No for Intercept, as shown in Figure 62.8.

Figure 62.8 Specifying the ARIMA(0,1,0)(0,1,0)s Model

When you click the OK button, the model is fit and you are returned to the Develop Models window. Click
on an empty part of the table and choose Fit Models from List from the pop-up menu. Select Airline
Model from the window. (Airline Model is a common name for the ARIMA(0,1,1)(0,1,1)s model, which
is often used for seasonal data with a linear trend.) Click the OK button. Once the model has been fit, the
table shows the two models and their root mean square errors. Notice that the Airline Model provides only a
slight improvement over the differencing model, ARIMA(0,1,0)(0,1,0)s. Select the first row to highlight the
differencing model, as shown in Figure 62.9.
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Figure 62.9 Selecting a Model

Now click the View Selected Model Graphically button, below the Browse button at the right side
of the Develop Models window. The Model Viewer window appears, showing the actual data and model
predictions for the MASONRY series. (Note that predicted values are missing for the first 13 observations
due to simple and seasonal differencing.)

To examine the ACF plot for the model prediction errors, select the third icon from the top on the vertical
toolbar. For this model, the prediction error ACF is the same as the ACF of the original data with first
differencing and seasonal differencing applied. This differencing is apparent if you bring the Time Series
Viewer back into view for comparison.

Return to the Develop Models Window by clicking on it or using the window pull-down menu or the Next
Viewer toolbar icon. Select the second row of the table in the Develop Models window to highlight the
Airline Model. The Model Viewer is automatically updated to show the prediction error ACF of the newly
selected model, as shown in Figure 62.10.
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Figure 62.10 Prediction Error ACF Plot for the Airline Model

Another helpful tool available within the Model Viewer is the parameter estimates table. Select the fifth icon
from the top of the vertical toolbar. The table gives the parameter estimates for the two moving-average terms
in the Airline Model, as well as the model residual variance, as shown in Figure 62.11.

Figure 62.11 Parameter Estimates for the Airline Model

You can adjust the column widths in the table by dragging the vertical borders of the column titles with the
mouse. Notice that neither of the parameter estimates is significantly different from zero at the 0.05 level of
significance, since Prob>|t| is greater than 0.05. This suggests that the Airline Model should be discarded
in favor of the more parsimonious differencing model, which has no parameters to estimate.



The Model Selection Criterion F 4031

The Model Selection Criterion
Return to the Develop Models window (Figure 62.9) and notice the Root Mean Square Error button at the
right side of the table banner. This is the model selection criterion—the statistic used by the system to select
the best fitting model. So far in this example you have fit two models and have left the default criterion, root
mean square error (RMSE), in effect. Because the Airline Model has the smaller value of this criterion and
because smaller values of the RMSE indicate better fit, the system has chosen this model as the forecasting
model, indicated by the check box in the Forecast Model column.

The statistics available as model selection criteria are a subset of the statistics available for informational
purposes. To access the entire set, select Options from the menu bar, and then select Statistics of Fit.

The Statistics of Fit Selection window appears, as shown in Figure 62.12.

Figure 62.12 Statistics of Fit

By default, five of the more well known statistics are selected. You can select and deselect statistics by
clicking the check boxes in the left column. For this exercise, select All, and notice that all the check boxes
become checked. Click the OK button to close the window. Now if you choose Statistics of Fit in the
Model Viewer window, all of the statistics will be shown for the selected model.

To change the model selection criterion, click the Root Mean Square Error button or select Options
from the menu bar and then select Model Selection Criterion. Notice that most of the statistics of
fit are shown, but those which are not relevant to model selection, such as number of observations, are not
shown. Select Schwarz Bayesian Information Criterion and click OK. Since this statistic puts a high
penalty on models with larger numbers of parameters, the ARIMA(0,1,0)(0,1,0)s model comes out with the
better fit.

Notice that changing the selection criterion does not automatically select the model that is best according to
that criterion. You can always choose the model you want to use for forecasts by selecting its check box in
the Forecast Model column.
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Now bring up the Model Selection Criterion window again and select Akaike Information Criterion.
This statistic puts a lesser penalty on number of parameters, and the Airline Model comes out as the better
fitting model.

Sorting and Selecting Models
Select Sort Models on the Tools menu or from the toolbar. This sorts the current list of fitted models by
the current selection criterion. Although some selection criteria assign larger values to better fitting models
(for example, R-square) while others assign smaller values to better fitting models, Sort Models always
orders models with the best fitting model—in this case, the Airline Model—at the top of the list.

When you select a model in the table, its name and criterion value become highlighted, and actions that apply
to that model become available. If your system supports a right mouse button, you can click it to invoke a
pop-up menu, as shown in Figure 62.13.

Figure 62.13 Right Mouse Button Pop-up Menu

Whether or not you have a right mouse button, the same choices are available under Edit and View from
the menu bar. If the model viewer has been invoked, it is automatically updated to show the selected model,
unless you have unlinked the viewer by using the Link/Unlink toolbar button.

Select the highlighted model in the table again. Notice that it is no longer highlighted. When no models are
highlighted, the right mouse button pop-up menu changes, and items on the menu bar that apply to a selected
model become unavailable. For example, you can choose Edit from the menu bar, but you can’t choose the
Edit Model or Delete Model selections unless you have highlighted a model in the table.

When you select the check box in the Forecast Model column of the table, the model in that row becomes
the forecasting model. This is the model that will be used the next time forecasts are generated by choosing
View Forecasts or by using the Produce Forecasts window. Note that this forecasting model flag is
automatically set when you use Fit Automatic Model or when you fit an individual model that fits better,
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using the current selection criterion, than the current forecasting model.

Comparing Models
Select Tools and Compare Models from the menu bar. This displays the Model Fit Comparison table,
as shown in Figure 62.14.

Figure 62.14 Model Comparison Window

The two models you have fit are shown as Model 1 and Model 2. When there are more than two models,
you can bring any two of them into the table by selecting the up and down arrows. In this way, it is easy to do
pairwise comparisons on any number of models, looking at as many statistics of fit as you like. Since you
previously chose to display all statistics of fit, all of them are shown in the comparison table. Use the vertical
scroll bar to move through the list.

After you have examined the model comparison table, click the Close button to return to the Develop Models
window.
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Controlling the Period of Evaluation and Fit
Notice the three time ranges shown on the Develop Models window (Figure 62.9). The data range shows the
beginning and ending dates of the MASONRY time series. The period of fit shows the beginning and ending
dates of data used to fit the models. The period of evaluation shows the beginning and ending dates of data
used to compute statistics of fit. By default, the fit and evaluate ranges are the same as the data range. To
change these ranges, click the Set Ranges button, or select Options and Time Ranges from the menu bar.
This brings up the Time Ranges Specification window, as shown in Figure 62.15.

Figure 62.15 Time Ranges Specification Window

For this example, suppose the early data in the series is unreliable, and you want to use the range June 1978
to the latest available for both model fitting and model evaluation. You can either type JUN1978 in the From
column for Period of Fit and Period of Evaluation, or you can advance these dates by clicking the
right pointing arrows. The outer arrow advances the date by a large amount (in this case, by a year), and the
inner arrow advances it by a single period (in this case, by a month). Once you have changed the Period
of Fit and the Period of Evaluation to JUN1978 in the From column, click the OK button to return to
the Develop Models window. Notice that these time ranges are updated at the top of the window, but the
models already fit have not been affected. Your changes to the time ranges affect subsequently fit models.
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Refitting and Reevaluating Models
If you fit the ARIMA(0,1,0)(0,1,0)s and Airline models again in the same way as before, they will be added
to the model list, with the same names but with different values of the model selection criterion. Parameter
estimates will be different, due to the new fit range, and statistics of fit will be different, due to the new
evaluation range.

For this exercise, instead of specifying the models again, refit the existing models by selecting Edit from
the menu bar and then selecting Refit Models and All Models. After the models have been refit, you
should see the same two models listed in the table but with slightly different values for the selection criterion.
The ARIMA (0,1,0)(0,1,0)s and Airline models have now been fit to the MASONRY series by using data
from June 1978 to July 1982, since this is the period of fit you specified. The statistics of fit have been
computed for the period of evaluation, which was the same as the period of fit. If you had specified a period
of evaluation different from the period of fit, the statistics would have been computed accordingly.

In practice, another common reason for refitting models is the availability of new data. For example, when
data for a new month become available for a monthly series, you might add them to the input data set, then
invoke the forecasting system, open the project containing models fit previously, and refit the models prior to
generating new forecasts. Unless you specify the period of fit and period of evaluation in the Time Ranges

Specification window, they default to the full data range of the series found in the input data set at the
time of refitting.

If you prefer to apply previously fit models to revised data without refitting, use Reevaluate Models

instead of Refit Models. This recomputes the statistics of fit by using the current evaluation range, but
does not re-estimate the model parameters.

Using Hold-out Samples
One important application of model fitting where the period of fit is different from the period of evaluation is
the use of hold-out samples. With this technique of model evaluation, the period of fit ends at a time point
before the end of the data series, and the remainder of the data are held out as a nonoverlapping period of
evaluation. With respect to the period of fit, the hold-out sample is a period in the future, used to compare the
forecasting accuracy of models fit to past data.

For this exercise, use a hold-out sample of 12 months. Bring up the Time Ranges Specification window
again by clicking the Set Ranges button. Set Hold-out Sample to 12 using the combo box, as shown in
Figure 62.16. You can also type in a value. To specify a hold-out sample period in different units, you can
use the Periods combo box. In this case, it allows you to select years as the unit, instead of periods.
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Figure 62.16 Specifying the Hold-out Sample Size

Notice that setting the hold-out sample to 12 automatically sets the fit range to JUN1978–JUL1981 and the
evaluation range to AUG1981–JUL1982. If you had set the period of fit and period of evaluation to these
ranges, the hold-out sample would have been automatically set to 12 periods.

Click the OK button to return to the Develop Models window. Now refit the models again. Select Tools
and Compare Models to compare the models now that they have been fit to the period June 1978 through
July 1981 and evaluated for the hold-out sample period August 1981 through July 1982. Note that the fit
statistics for the hold-out sample are based on one-step-ahead forecasts. (See the section “Statistics of Fit” in
Chapter 66, “Forecasting Process Details.”)

As shown in Figure 62.17, the ARIMA (0,1,0)(0,1,0)s model now seems to provide a better fit to the data
than does the Airline model. It should be noted that the results can be quite different if you choose a different
size hold-out sample.
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Figure 62.17 Using 12 Month Hold-out Sample
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Using Predictor Variables
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Forecasting models predict the future values of a series by using two sources of information: the past values
of the series and the values of other time series variables. Other variables used to predict a series are called
predictor variables.

Predictor variables that are used to predict the dependent series can be variables in the input data set, such as
regressors and adjustment variables, or they can be special variables computed by the system as functions of
time, such as trend curves, intervention variables, and seasonal dummies.

You can specify seven different types of predictors in forecasting models by using the ARIMA Model or
Custom Model Specification windows. You cannot specify predictor variables with the Smoothing Model
Specification window.

Figure 63.1 shows the menu of options for adding predictors to an ARIMA model that is opened by clicking
the Add button. The Add menu for the Custom Model Specification menu is similar.
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Figure 63.1 Add Predictors Menu

These types of predictors are as follows:

Linear Trend adds a variable that indexes time as a predictor series. A straight line time trend is fit
to the series by regression when you specify a linear trend.

Trend Curve provides a menu of various functions of time that you can add to the model to fit
nonlinear time trends. The Linear Trend option is a special case of the Trend Curve
option for which the trend curve is a straight line.

Regressors allows you to predict the series by regressing it on other variables in the data set.

Adjustments allows you to specify other variables in the data set that supply adjustments to the
forecast.

Dynamic Regressor allows you to select a predictor variable from the input data set and specify a complex
model for the way that the predictor variable affects the dependent series.

Interventions allows you to model the effect of special events that “intervene” to change the pattern
of the dependent series. Examples of intervention effects are strikes, tax increases, and
special sales promotions.

Seasonal Dummies adds seasonal indicator or “dummy” variables as regressors to model seasonal effects.

You can add any number of predictors to a forecasting model, and you can combine predictor variables with
other model options.

The following sections explain these seven kinds of predictors in greater detail and provide examples of their
use. The examples illustrate these different kinds of predictors by using series in the SASHELP.USECON
data set.

Click the Develop Models button in the main window. Select the data set SASHELP.USECON, and select
the series PETROL. Then click the View Series Graphically button in the Develop Models window.
The plot of the example series PETROL appears as shown in Figure 63.2.
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Figure 63.2 Sales of Petroleum and Coal

Linear Trend
From the Develop Models window, select Fit ARIMA Model. In the ARIMA Model Specification window,
click Add and then select Linear Trend from the menu (shown in Figure 63.1).

A linear trend is added to the Predictors list, as shown in Figure 63.3.

Figure 63.3 Linear Trend Predictor Specified

The description for the linear trend item shown in the Predictors list has the following meaning. The first
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part of the description, Trend Curve, describes the type of predictor. The second part, _LINEAR_, gives the
variable name of the predictor series. In this case, the variable is a time index that the system computes. This
variable is included in the output forecast data set. The final part, Linear Trend, describes the predictor.

Notice that the model you have specified consists only of the time index regressor _LINEAR_ and an intercept.
Although this window is normally used to specify ARIMA models, in this case no ARIMA model options
are specified, and the model is a simple regression on time.

Click the OK button. The Linear Trend model is fit and added to the model list in the Develop Models window.

Now open the Model Viewer by using the View Model Graphically icon or the Model Predictions

item under the View pull-down menu or toolbar. This displays a plot of the model predictions and actual
series values, as shown in Figure 63.4. The predicted values lie along the least squares trend line.

Figure 63.4 Linear Trend Model
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Time Trend Curves
From the Develop Models window, select Fit ARIMA Model. In the ARIMA Model Specification window,
click Add and then select Trend Curve from the menu (shown in Figure 63.1). A menu of different kinds of
trend curves is displayed, as shown in Figure 63.5.

Figure 63.5 Time Trend Curves Menu

These trend curves work in a similar way as the Linear Trend option (which is a special case of a trend curve
and one of the choices on the menu), but with the Trend Curve menu you have a choice of various nonlinear
time trends.

Select Quadratic Trend. This adds a quadratic time trend to the Predictors list, as shown in Figure 63.6.
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Figure 63.6 Quadratic Trend Specified

Now click the OK button. The quadratic trend model is fit and added to the list of models in the Develop
Models window. The Model Viewer displays a plot of the quadratic trend model, as shown in Figure 63.7.

Figure 63.7 Quadratic Trend Model

This curve does not fit the PETROL series very well, but the View Model plot illustrates how time trend
models work. You might want to experiment with different trend models to see what the different trend
curves look like.

Some of the trend curves require transforming the dependent series. When you specify one of these
curves, a notice is displayed reminding you that a transformation is needed, and the Transformation field is
automatically filled in. Therefore, you cannot control the Transformation specification when some kinds of
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trend curves are specified.

For more information about the different trend curves, see the section “Time Trend Curves” on page 4043 in
Chapter 66, “Forecasting Process Details.”

Regressors
From the Develop Models window, select Fit ARIMA Model. In the ARIMA Model Specification window,
click Add and then select Regressors from the menu (shown in Figure 63.1). This displays the Regressors
Selection window, as shown in Figure 63.8. This window allows you to select any number of other series
in the input data set as regressors to predict the dependent series.

Figure 63.8 Regressors Selection Window

For this example, select CHEMICAL, Sales: Chemicals and Allied Products, and VEHICLES,

Sales: Motor Vehicles and Parts. (Note: You do not need to use the CTRL key when selecting
more than one regressor.) Then click the OK button. The two variables you selected are added to the Predictors
list as regressor type predictors, as shown in Figure 63.9.
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Figure 63.9 Regressors Selected

You must have forecasts of the future values of the regressor variables in order to use them as predictors.
To do this, you can specify a forecasting model for each regressor, have the system automatically select
forecasting models for the regressors, or supply predicted future values for the regressors in the input data set.

Even if you have supplied future values for a regressor variable, the system requires a forecasting model for
the regressor. Future values that you supply in the input data set take precedence over predicted values from
the regressor’s forecasting model when the system computes the forecasts for the dependent series.

Click the OK button. The system starts to fit the regression model but then stops and displays a warning that
the regressors that you selected do not have forecasting models, as shown in Figure 63.10.

Figure 63.10 Regressors Needing Models Warning
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If you want the system to create forecasting models automatically for the regressor variables by using the
automatic model selection process, click the OK button. If not, you can click the Cancel button to abort
fitting the regression model.

For this example, click the OK button. The system now performs the automatic model selection process for
CHEMICAL and VEHICLES. The selected forecasting models for CHEMICAL and VEHICLES are added
to the model lists for those series. If you switch the current time series in the Develop Models window to
CHEMICAL or VEHICLES, you will see the model that the system selected for that series.

Once forecasting models have been fit for all regressors, the system proceeds to fit the regression model for
PETROL. The fitted regression model is added to the model list displayed in the Develop Models window.

Adjustments
An adjustment predictor is a variable in the input data set that is used to adjust the forecast values produced
by the forecasting model. Unlike a regressor, an adjustment variable does not have a regression coefficient.
No model fitting is performed for adjustments. Nonmissing values of the adjustment series are simply added
to the model prediction for the corresponding period. Missing adjustment values are ignored. If you supply
adjustment values for observations within the period of fit, the adjustment values are subtracted from the
actual values, and the model is fit to these adjusted values.

To add adjustments, click Add and then select Adjustments from the pop-up menu (shown in Figure 63.1).
This displays the Adjustments Selection window. The Adjustments Selection window functions the
same as the Regressor Selection window (which is shown in Figure 63.8). You can select any number of
adjustment variables as predictors.

Unlike regressors, adjustments do not require forecasting models for the adjustment variables. If a variable
that is used as an adjustment does have a forecasting model fit to it, the adjustment variable’s forecasting
model is ignored when the variable is used as an adjustment.

You can use forecast adjustments to account for expected future events that have no precedent in the past and
so cannot be modeled by regression. For example, suppose you are trying to forecast the sales of a product,
and you know that a special promotional campaign for the product is planned during part of the period you
want to forecast. If such sales promotion programs have been frequent in the past, then you can record the
past and expected future level of promotional efforts in a variable in the data set and use that variable as a
regressor in the forecasting model.

However, if this is the first sales promotion of its kind for this product, you have no way to estimate the effect
of the promotion from past data. In this case, the best you can do is to make an educated guess at the effect
the promotion will have and add that guess to what your forecasting model would predict in the absence of
the special sales campaign.

Adjustments are also useful for making judgmental alterations to forecasts. For example, suppose you have
produced forecast sales data for the next 12 months. Your supervisor believes that the forecasts are too
optimistic near the end and asks you to prepare a forecast graph in which the numbers that you have forecast
are reduced by 1000 in the last three months. You can accomplish this task by editing the input data set so
that it contains observations for the actual data range of sales plus 12 additional observations for the forecast
period, and a new variable called, for example, ADJUSTMENT. The variable ADJUSTMENT contains
the value 1000 for the last three observations and is missing for all other observations. You fit the same
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model previously selected for forecasting by using the ARIMA Model Specification or Custom Model

Specification window, but with an adjustment added that uses the variable ADJUSTMENT. Now when
you graph the forecasts by using the Model Viewer, the last three periods of the forecast are reduced by
1000. The confidence limits are unchanged, which helps draw attention to the fact that the adjustments to the
forecast deviate from what would be expected statistically.

Dynamic Regressor
Selecting Dynamic Regressor from the Add Predictors menu (shown in Figure 63.1) allows you to
specify a complex time series model of the way that a predictor variable influences the series that you are
forecasting.

When you specify a predictor variable as a simple regressor, only the current period value of the predictor
effects the forecast for the period. By specifying the predictor with the Dynamic Regression option, you can
use past values of the predictor series, and you can model effects that take place gradually.

Dynamic regression models are an advanced feature that you are unlikely to find useful unless you have
studied the theory of statistical time series analysis. You might want to skip this section if you are not trained
in time series modeling.

The term dynamic regression was introduced by Pankratz (1991) and refers to what Box and Jenkins (1976)
named transfer function models. In dynamic regression, you have a time series model, similar to an ARIMA
model, that predicts how changes in the predictor series affect the dependent series over time.

The dynamic regression model relates the predictor variable to the expected value of the dependent series in
the same way that an ARIMA model relates the fluctuations of the dependent series about its conditional
mean to the random error term (which is also called the innovation series). For more information about
dynamic regression or transfer function, see Pankratz (1991); Box and Jenkins (1976). See also Chapter 8,
“The ARIMA Procedure.”

From the Develop Models window, select Fit ARIMA Model. In the ARIMA Model Specification window,
click Add and then select Linear Trend from the menu (shown in Figure 63.1).

Now click Add and select Dynamic Regressor. This displays the Dynamic Regressors Selection

window, as shown in Figure 63.11.
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Figure 63.11 Dynamic Regressors Selection Window

You can select only one predictor series when specifying a dynamic regression model. For this example,
select VEHICLES, Sales: Motor Vehicles and Parts. Then click the OK button.

This displays the Dynamic Regression Specification window, as shown in Figure 63.12.

Figure 63.12 Dynamic Regression Specification Window

This window consists of four parts. The Input Transformations fields enable you to transform or lag the
predictor variable. For example, you might use the lagged logarithm of the variable as the predictor series.

The Order of Differencing fields enable you to specify simple and seasonal differencing of the predictor
series. For example, you might use changes in the predictor variable instead of the variable itself as the
predictor series.
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The Numerator Factors and Denominator Factors fields enable you to specify the orders of simple
and seasonal numerator and denominator factors of the transfer function.

Simple regression is a special case of dynamic regression in which the dynamic regression model consists of
only a single regression coefficient for the current value of the predictor series. If you click the OK button
without specifying any options in the Dynamic Regression Specification window, a simple regressor will be
added to the model.

For this example, use the Simple Order combo box for Denominator Factors and set its value to 1. The
window now appears as shown in Figure 63.13.

Figure 63.13 Distributed Lag Regression Specified

This model is equivalent to regression on an exponentially weighted infinite distributed lag of VEHICLES (in
the same way an MA(1) model is equivalent to single exponential smoothing).

Click the OK button to add the dynamic regressor to the model predictors list.

In the ARIMA Model Specification window, the Predictors list should now contain two items, a linear trend
and a dynamic regressor for VEHICLES, as shown in Figure 63.14.
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Figure 63.14 Dynamic Regression Model

This model is a multiple regression of PETROL on a time trend variable and an infinite distributed lag of
VEHICLES. Click the OK button to fit the model.

As with simple regressors, if VEHICLES does not already have a forecasting model, an automatic model
selection process is performed to find a forecasting model for VEHICLES before the dynamic regression
model for PETROL is fit.

Interventions
An intervention is a special indicator variable, computed automatically by the system, that identifies time
periods affected by unusual events that influence or intervene in the normal path of the time series you are
forecasting. When you add an intervention predictor, the indicator variable of the intervention is used as a
regressor, and the impact of the intervention event is estimated by regression analysis.

To add an intervention to the Predictors list, you must use the Intervention Specification window to specify
the time or times that the intervening event took place and to specify the type of intervention. You can add
interventions either through the Interventions item of the Add action or by selecting Tools from the menu
bar and then selecting Define Interventions.

Intervention specifications are associated with the series. You can specify any number of interventions
for each series, and once you define interventions you can select them for inclusion in forecasting models.
If you select the Include Interventions option in the Options menu, any interventions that you have
previously specified for a series are automatically added as predictors to forecasting models for the series.

From the Develop Models window, invoke the series viewer by selecting the View Series Graphically

icon or Series under the View menu. This displays the Time Series Viewer, as was shown in Figure 63.2.

Note that the trend in the PETROL series shows several clear changes in direction. The upward trend in the
first part of the series reverses in 1981. There is a sharp drop in the series towards the end of 1985, after
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which the trend is again upwardly sloped. Finally, in 1991 the series takes a sharp upward excursion but
quickly returns to the trend line.

You might have no idea what events caused these changes in the trend of the series, but you can use these
patterns to illustrate the use of intervention predictors. To do this, you fit a linear trend model to the series,
but modify that trend line by adding intervention effects to model the changes in trend you observe in the
series plot.

The Intervention Specification Window
From the Develop Models window, select Fit ARIMA model. In the ARIMA Model Specification window,
click Add and then select Linear Trend from the menu (shown in Figure 63.1).

Select Add again and then select Interventions. If you have any interventions already defined for the
series, this selection displays the Interventions for Series window. However, since you have not
previously defined any interventions, this list is empty. Therefore, the system assumes that you want to add an
intervention and displays the Intervention Specification window instead, as shown in Figure 63.15.

Figure 63.15 Interventions Specification Window

The top of the Intervention Specification window shows the current series and the label for the new interven-
tion (initially blank). At the right side of the window is a scrollable table showing the values of the series.
This table helps you locate the dates of the events you want to model.

At the left of the window is an area titled Intervention Specification that contains the options for
defining the intervention predictor. The Date field specifies the time that the intervention occurs. You can
type a date value in the Date field, or you can set the Date value by selecting a row from the table of series
values at the right side of the window.

The area titled Type of Intervention controls the kind of indicator variable constructed to model the
intervention effect. You can specify the following kinds of interventions:
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Point is used to indicate an event that occurs in a single time period. An example of a point
event is a strike that shuts down production for part of a time period. The value of the
intervention’s indicator variable is zero except for the date specified.

Step is used to indicate a continuing event that changes the level of the series. An example of a
step event is a change in the law, such as a tax rate increase. The value of the intervention’s
indicator variable is zero before the date specified and 1 thereafter.

Ramp is used to indicate a continuing event that changes the trend of the series. The value of the
intervention’s indicator variable is zero before the date specified, and it increases linearly
with time thereafter.

The areas titled Effect Time Window and Effect Decay Pattern specify how to model the effect that
the intervention has on the dependent series. These options are not used for simple interventions, they will be
discussed later in this chapter.

Specifying a Trend Change Intervention
In the Time Series Viewer window position the mouse over the highest point in 1981 and select the point.
This displays the data value, 19425, and date, February 1981, of that point in the upper-right corner of the
Time Series Viewer, as shown in Figure 63.16.

Figure 63.16 Identifying the Turning Point

Now that you know the date that the trend reversal occurred, enter that date in the Date field of the Intervention
Specification window. Select Ramp as the type of intervention. The window should now appear as shown in
Figure 63.17.
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Figure 63.17 Ramp Intervention Specified

Click the OK button. This adds the intervention to the list of interventions for the PETROL series, and returns
you to the Interventions for Series window, as shown in Figure 63.18.

Figure 63.18 Interventions for Series Window

This window allows you to select interventions for inclusion in the forecasting model. Since you need to
define other interventions, click the Add button. This returns you to the Intervention Specification window
(shown in Figure 63.15).
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Specifying a Level Change Intervention
Now add an intervention to account for the drop in the series in late 1985. You can locate the date of this
event by selecting points in the Time Series Viewer plot or by scrolling through the data values table in the
Interventions Specification window. Use the latter method so that you can see how this works.

Scrolling through the table, you see that the drop was from 15262 in December 1985, to 13937 in January
1986, to 12002 in February, to 10834 in March. Since the drop took place over several periods, you could use
another ramp type intervention. However, this example represents the drop as a sudden event by using a step
intervention and uses February 1986 as the approximate time of the drop.

Select the table row for February 1986 to set the Date field. Select Step as the intervention type. The
window should now appear as shown in Figure 63.19.

Figure 63.19 Step Intervention Specified

Click the OK button to add this intervention to the list for the series.

Since the trend reverses again after the drop, add a ramp intervention for the same date as the step intervention.
Click Add from the Interventions for Series window. Enter FEB86 in the Date field, select Ramp, and then
click the OK button.
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Modeling Complex Intervention Effects
You have now defined three interventions to model the changes in trend and level. The excursion near the end
of the series remains to be dealt with.

Click Add in the Interventions for Series window. Scroll through the data values and select the date on which
the excursion began, August 1990. Leave the intervention type as Point.

The pattern of the series from August 1990 through January 1991 is more complex than a simple shift in
level or trend. For this pattern, you need a complex intervention model for an event that causes a sharp rise
followed by a rapid return to the previous trend line. To specify this model, use the Effect Time Window

and Effect Decay Rate options.

The Effect Time Window option controls the number of lags of the intervention’s indicator variable used
to model the effect of the intervention on the dependent series. For a simple intervention, the number of lags
is zero, which means that the effect of the intervention is modeled by fitting a single regression coefficient to
the intervention’s indicator variable.

When you set the number of lags greater than zero, regression coefficients are fit to lags of the indicator
variable. This allows you to model interventions whose effects take place gradually, or to model rebound
effects. For example, severe weather might reduce production during one period but cause an increase in
production in the following period as producers struggle to catch up. You could model this by using a point
intervention with an effect time window of 1 lag. This would fit two coefficients for the intervention, one for
the immediate effect and one for the delayed effect.

The Effect Decay Pattern option controls how the effect of the intervention dissipates over time. None
specifies that there is no gradual decay: for point interventions, the effect ends immediately; for step and
ramp interventions, the effect continues indefinitely. Exp specifies that the effect declines at an exponential
rate. Wave specifies that the effect declines like an exponentially damped sine wave (or as the sum of two
exponentials, depending on the fit to the data).

If you are familiar with time series analysis, these options might be clearer if you note that together the Effect
Time Window and Effect Decay Pattern options define the numerator and denominator orders of a transfer
function or dynamic regression model for the indicator variable of the intervention. For more information,
see the section “Dynamic Regressor” on page 4048.

For this example, select 2 lags as the value of the Event Time Window option, and select Exp as the Effect
Decay Pattern option. The window should now appear as shown in Figure 63.20.
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Figure 63.20 Complex Intervention Model

Click the OK button to add the intervention to the list.

Fitting the Intervention Model
The Interventions for Series window now contains definitions for four intervention predictors. Select all four
interventions, as shown in Figure 63.21.

Figure 63.21 Interventions for Series Window

Click the OK button. This returns you to the ARIMA Model Specification window, which now lists items in
the Predictors list, as shown in Figure 63.22.



4058 F Chapter 63: Using Predictor Variables

Figure 63.22 Linear Trend with Interventions Specified

Click the OK button to fit this model. After the model is fit, bring up the Model Viewer. You will see a plot of
the model predictions, as shown in Figure 63.23.

Figure 63.23 Linear Trend with Interventions Model

You can use the Zoom In feature to take a closer look at how the complex intervention effect fits the excursion
in the series starting in August 1990.
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Limitations of Intervention Predictors
Note that the model you have just fit is intended only to illustrate the specification of interventions. It is not
intended as an example of good forecasting practice.

The use of continuing (step and ramp type) interventions as predictors has some limitations that you should
consider. If you model a change in trend with a simple ramp intervention, then the trend in the data before
the date of the intervention has no influence on the forecasts. Likewise, when you use a step intervention, the
average level of the series before the intervention has no influence on the forecasts.

Only the final trend and level at the end of the series are extrapolated into the forecast period. If a linear trend
is the only pattern of interest, then instead of specifying step or ramp interventions, it would be simpler to
adjust the period of fit so that the model ignores the data before the final trend or level change.

Step and ramp interventions are valuable when there are other patterns in the data—such as seasonality,
autocorrelated errors, and error variance—that are stable across the changes in level or trend. Step and ramp
interventions enable you to fit seasonal and error autocorrelation patterns to the whole series while fitting the
trend only to the latter part of the series.

Point interventions are a useful tool for dealing with outliers in the data. A point intervention will fit the
series value at the specified date exactly, and it has the effect of removing that point from the analysis. When
you specify an effect time window, a point intervention will exactly fit as many additional points as the
number of lags specified.

Seasonal Dummies
A Seasonal Dummies predictor is a special feature that adds to the model seasonal indicator or “dummy”
variables to serve as regressors for seasonal effects.

From the Develop Models window, select Fit ARIMA Model. In the ARIMA Model Specification window,
click Add and then select Seasonal Dummies from the menu (shown in Figure 63.1).

A Seasonal Dummies input is added to the Predictors list, as shown in Figure 63.24.
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Figure 63.24 Seasonal Dummies Specified

Click the OK button. A model consisting of an intercept and 11 seasonal dummy variables is fit and added to
the model list in the Develop Models window. This is effectively a mean model with a separate mean for
each month.

Now return to the Model Viewer, which displays a plot of the model predictions and actual series values, as
shown in Figure 63.25. This is obviously a poor model for this series, but it serves to illustrate how seasonal
dummy variables work.

Figure 63.25 Seasonal Dummies Model

Now select the parameter estimates icon, the fifth from the top on the vertical toolbar. This displays the
Parameter Estimates table, as shown in Figure 63.26.
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Figure 63.26 Parameter Estimates for Seasonal Dummies Model

Since the data for this example are monthly, the Seasonal Dummies option added 11 seasonal dummy
variables. These include a dummy regressor variable that is 1.0 for January and 0 for other months, a
regressor that is 1.0 only for February, and so forth through November.

Because the model includes an intercept, no dummy variable is added for December. The December effect
is measured by the intercept, while the effect of other seasons is measured by the difference between the
intercept and the estimated regression coefficient for the season’s dummy variable.

The same principle applies for other data frequencies: the “Seasonal Dummy 1” parameter always refers
to the first period in the seasonal cycle; and, when an intercept is present in the model, there is no seasonal
dummy parameter for the last period in the seasonal cycle.
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TSVIEW Command and Macro
The TSVIEW command invokes the Time Series Viewer. This is a component of the Time Series Forecasting
System that can also be used as a standalone graphical viewer for any time series data set or view. For more
information, see the section “Time Series Viewer Window” in Chapter 65, “Window Reference.”

The TSVIEW command must be specified from the command line or an SCL program. If you need to submit
from the program editor, use the %TSVIEW macro instead. You can use the macro within a DATA step
program, but you must submit it within the SAS windowing environment.

If the TSVIEW command or %TSVIEW macro is issued without arguments, the Series Selection window
appears to enable you to select an input data set and series. This is equivalent to selecting “Time Series
Viewer” from the Analysis submenu of the Solutions menu. By specifying the DATA= and VAR= arguments,
you can bring up the Time Series Viewer window directly. The ID= and INTERVAL= arguments are useful
when the system cannot determine them automatically from the data.

Syntax
The TSVIEW command has the following form:

TSVIEW [options] ;

The %TSVIEW macro has the following form:

%TSVIEW [ (option, . . . , option)] ;

The following options can be specified for the command and the macro:
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DATA=data-set-name
specifies the name of the SAS data set containing the input data.

VAR=time-series-variable-name
specifies the series variable name. It must be a numeric variable contained in the data set.

ID=time-id-variable-name
specifies the time ID variable name for the data set. If the ID= option is not specified, the system
attempts to locate the variables named DATE, DATETIME, and TIME in the data set specified by the
DATA= option.

INTERVAL=interval-name
specifies the time ID interval between observations in the data set.

Examples

TSVIEW Command

tsview data=sashelp.air var=air
tsview data=dept.prod var=units id=period interval=qtr

%TSVIEW Macro

%tsview( data=sashelp.air, var=air);
%tsview( data=dept.prod, var=units, id=period, interval=qtr);

FORECAST Command and Macro
The FORECAST command invokes the Time Series Forecasting System. The command must be specified
from the command line or an SCL program. If you need to submit from the program editor, use the
%FORECAST macro instead. You can use the macro within a data step program, but you must submit it
within the SAS windowing environment.

If the FORECAST command or %FORECAST macro is issued without arguments, the Time Series Forecast-
ing window appears. This is equivalent to selecting “Time Series Forecasting System” from the Analysis
submenu of the Solutions menu.

Using the arguments, it is possible to do the following:

� Bring up the system with information already filled into some of the fields.

� Bring up the system starting at a different window than the default Time Series Forecasting window.

� Run the system in unattended mode so that a task such as creating a forecast data set is accomplished
without any user interaction. By submitting such commands repeatedly from a SAS/AF or SAS/EIS
application, it is possible to do “batch” processing for many data sets or BY-group processing for many
subsets of a data set. You can create a project in unattended mode and later open it for inspection
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interactively. You can also create a project interactively in order to set options, fit a model, or edit the
list of models, and then use this project later in unattended mode.

The Forecast Command Builder, a point-and-click SAS/AF application, makes it easy to specify, run,
save, and rerun forecasting jobs by using the FORECAST command. To use it, enter the following on the
command line (not the program editor):

%FCB

or

AF C=SASHELP.FORCAST.FORCCMD.FRAME.

Syntax
The FORECAST command has the following form:

FORECAST [options] ;

The %FORECAST macro has the following form:

%FORECAST [ (option, . . . , option)] ;

The following options can be specified for the command and the macro.

PROJECT=project-name
specifies the name of the SAS catalog entry in which forecasting models and other results are stored
and from which previously stored results are loaded into the forecasting system.

DATA=data-set-name
specifies the name of the SAS data set containing the input data.

VAR=time-series-variable-name
specifies the series variable name. It must be a numeric variable contained in the data set.

ID=time-id-variable-name
specifies the time ID variable name for the data set. If the ID= option is not specified, the system
attempts to locate the variables named DATE, DATETIME, and TIME in the data set specified by the
DATA= option. However, it is recommended that you specify the time ID variable whenever you are
using the ENTRY= argument.

INTERVAL=interval-name
specifies the time ID interval between observations in the data set. Commonly used intervals
are year, semiyear, qtr, month, semimonth, week, weekday, day, hour, minute, and
second. For information about more complex interval specifications, see Chapter 5, “Date Intervals,
Formats, and Functions.” If the INTERVAL= option is not specified, the system attempts to determine
the interval based on the time ID variable. However, it is recommended that you specify the interval
whenever you are using the ENTRY= argument.
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STAT=statistic
specifies the name of the goodness-of-fit statistic to be used as the model selection criterion. The
default is RMSE. You can specify the following statistics:

SSE specifies the sum of square error.

MSE specifies the mean square error.

RMSE specifies the root mean square error.

MAE specifies the mean absolute error.

MAPE specifies the mean absolute percent error.

AIC specifies Akaike’s information criterion.

SBC specifies the Schwarz Bayesian information criterion.

RSQUARE specifies the R-square.

AJDRSQ specifies the adjusted R-square.

RWRSQ specifies the random walk R-square.

ARSQ specifies Amemiya’s adjusted R-square.

APC specifies Amemiya’s prediction criterion.

CLIMIT=integer
specifies the level of the confidence limits to be computed for the forecast. This integer represents
a percentage; for example, 925 indicates 92.5% confidence limits. The default is 95—that is, 95%
confidence limits.

HORIZON=integer
specifies the number of periods into the future for which forecasts are computed. The default is 12
periods. The maximum is 9999.

ENTRY=name
specifies the name of an entry point into the system. You can specify the following names:

MAIN starts the system at the Time Series Forecasting window (default).

DEVMOD starts the system at the Develop Models window.

VIEWMOD starts the system at the Model Viewer window. Specify a project that contains a
forecasting model by using the PROJECT= option. If a project containing a model
is not specified, the message “No forecasting model to view” appears.

VIEWSER starts the system at the Time Series Viewer window.

AUTOFIT runs the system in unattended mode, fitting a forecasting model automatically and
saving it in a project. If PROJECT= is not specified, the default project name
SASUSER.FMSPROJ.PROJ is used.

FORECAST runs the system in unattended mode to generate a forecast data set. The name of this
data set is specified by the OUT= parameter. If OUT= is not specified, a window
appears to prompt for the name and label of the output data set. If PROJECT=
is not specified, the default project name SASUSER.FMSPROJ.PROJ is used. If
the project does not exist or does not contain a forecasting model for the specified
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series, automatic model fitting is performed and the forecast is computed by using
the automatically selected model. If the project exists and contains a forecasting
model for the specified series, the forecast is computed by using this model. If the
series covers a different time range than it did when the project was created, use the
REFIT or REEVAL keyword to reset the time ranges.

OUT=argument
specifies one or two-level name of a SAS data set in which forecasts are saved. Use in conjunction
with ENTRY=FORECAST. If omitted, the system prompts for the name of the forecast data set.

KEEP=argument
specifies the number of models to keep in the project when automatic model fitting is performed. This
corresponds to Models to Keep in the Automatic Model Selection Options window. A value greater
than 9 indicates that all models are kept. The default is 1.

DIAG=YES | NO
specifies which models to search with regard to series diagnostics. DIAG=YES causes the automatic
model selection process to search only over those models that are consistent with the series diagnostics.
DIAG=NO causes the automatic model selection process to search over all models in the selection
list, without regard for the series diagnostics. This corresponds to Models to Fit in the Automatic
Model Selection Options window. The default is YES.

REFIT=keyword
(for macro usage) refits a previously saved forecasting model by using the current fit range; that is,
it reestimates the model parameters. Refitting also causes the model to be reevaluated (statistics of
fit recomputed), and it causes the time ranges to be reset if the data range has changed (for example,
if new observations have been added to the series). This keyword has no effect if you do not use the
PROJECT= argument to reference an existing project containing a forecasting model. Use the REFIT
keyword if you have added new data to the input series and you want to refit the forecasting model and
update the forecast by using the new time ranges. Be sure to use the same project, data set, and series
names that you used previously.

REEVAL=keyword
(for macro usage) reevaluates a previously saved forecasting model by using the current evaluation
range; that is, it recomputes the statistics of fit. Reevaluating also causes the time ranges to be reset if
the data range has changed (for example, if new observations have been added to the series). It does
not refit the model parameters. This keyword has no effect if you also specify REFIT, or if you do not
use the PROJECT= argument to reference an existing project containing a forecasting model. Use the
REEVAL keyword if you have added new data to the input series and want to update your forecast by
using a previously fit forecasting model and the same project, data set, and series names that you used
previously.
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Examples

FORECAST Command

The following command opens the Time Series Forecasting window with the data set name and series name
filled in. The time ID variable is also filled in since the data set contains the variable DATE. The interval is
filled in because the system recognizes that the observations are monthly.

forecast data=sashelp.air var=air

The following command opens the Time Series Forecasting window with the project, data set name, series,
time ID, and interval fields filled in, assuming that the project SAMPROJ was previously saved either
interactively or by using unattended mode as depicted below. Previously fit models appear when the Develop
Models or Manage Projects window is opened.

forecast project=samproj

The following command runs the system in unattended mode, fitting a model automatically, storing it in
the project SAMPROJ in the default catalog SASUSER.FMSPROJ, and placing the forecasts in the data set
WORK.SAMPOUT:

forecast data=sashelp.workers var=electric id=date interval=month
project=samproj entry=forecast out=sampout

The following command assumes that a new month’s data have been added to the data set from the previous
example and that an updated forecast is needed that uses the previously fit model. Time ranges are auto-
matically updated to include the new data since the REEVAL keyword is included. Substitute REFIT for
REEVAL if you want the system to reestimate the model parameters.

forecast data=sashelp.workers var=electric id=date interval=month
project=samproj entry=forecast out=sampout reeval

The following command opens the model viewer with the project created in the previous example and with
99% confidence limits in the forecast graph:

forecast data=sashelp.workers var=electric id=date interval=month
project=samproj entry=viewmod climit=99

The final example illustrates using unattended mode with an existing project that has been defined interactively.
In this example, the goal is to add a model to the model selection list, to specify that all models in that list be
fit, and that all models which are fit successfully be retained.

First open the Time Series Forecasting window and specify a new project name, WORKPROJ. Then select
Develop Models, choosing SASHELP.WORKERS as the data set and MASONRY as the series. Now select
“Model Selection List” from the Options menu. In the Model Selection List window, click Actions, then
Add, and then ARIMA Model. Define the model ARIMA(0,1,0)(0,1,0)s NOINT by setting the differencing
value to 1 under both ARIMA Options and Seasonal ARIMA Options. Click OK to save the model and
OK to close the Model Selection List window. Now select “Automatic Fit” from the Options menu. In the
Automatic Model Selection Options window, select “All autofit models in selection list” in the Models to fit
radio box, select “All models” from the Models to keep combo box, and then click OK to close the window.
Select “Save Project” from the File menu, and then close the Develop Models window and the Time Series
Forecasting window. You now have a project with a new model added to the selection list, options set for
automatic model fitting, and one series selected but no models fit.
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Now enter the following command:

forecast data=sashelp.workers var=electric id=date interval=month
project=workproj entry=forecast out=workforc

The system runs in unattended mode to update the project and create the forecast data set WORKFORC.
Check the messages in the Log window to find out if the run was successful and which model was selected
for forecasting. To see the forecast data set, issue the command viewtable WORKFORC. To see the contents
of the project, open the Time Series Forecasting window, open the project WORKPROJ, and select “Manage
Projects.” You will see that the variable ELECTRIC was added to the project and has a forecasting model.
Select this row in the table and then select List Models from the Tools menu. You will see that all of
the models in the selection list which fit successfully are there, including the new model you added to the
selection list.

%FORECAST Macro

This example demonstrates the use of the %FORECAST macro to start the Time Series Forecasting System
from a SAS program submitted from the Editor window. The SQL procedure is used to create a view of a
subset of a products data set. Then the %FORECAST macro is used to produce forecasts.

proc sql;
create view selprod as
select * from products
where type eq 'A'
order by date;

run;

%forecast(data=selprod, var=amount, id=date, interval=day,
entry=forecast, out=typea, project=proda, refit= );
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Overview
This chapter provides a reference to the various windows of the Time Series Forecasting System. The
windows are presented in alphabetical order by name. Each section describes the purpose of the window, how
to open it, its controls, fields, and menus. For windows that have their own menus, there is a description of
each menu item under the heading “Menu Bar.” These windows also have a toolbar with icons that duplicate
the more commonly used menu items. Each icon has a screen tip: a brief description that appears when you
hover the mouse pointer over the icon. If you don’t see the screen tips, open the SAS Preferences window,
under the Options submenu of the Tools menu. Select the View tab and make sure the “Screen tips” check
box is checked.



Adjustments Selection Window F 4073

Adjustments Selection Window
Use the Adjustments Selection window to select input variables for use as adjustments to the forecasts and
add them to the Predictors list. Invoke this window from the pop-up menu that appears when you click the
Add button in the ARIMA Model Specification window or Custom Model Specification window. For more
information, see the “Adjustments” section in Chapter 63, “Using Predictor Variables.”

Controls and Fields

Dependent

is the name and variable label of the current series.

Adjustments

is a table that lists the names and labels in the input data set available for selection as adjustments. The
variables you select are highlighted. Selecting a highlighted row again deselects that variable.

OK

closes the Adjustments Selection window and adds the selected variables as adjustments in the model.

Cancel

closes the window without adding any adjustments.

Reset

resets all selections to their initial values upon entry to the window.
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AR/MA Polynomial Specification Window
Use these windows to specify the autoregressive and moving-average terms in a factored ARIMA model.
Access the AR Polynomial Specification window from the Set button next to the Autoregressive term in the
Factored ARIMA Model Specification window. Access the MA Polynomial Specification window from the
Set button next to the Moving Average term.

Controls and Fields

List of Polynomials

lists the polynomials that have been specified. Each polynomial is represented by a comma-delimited
list of lag values enclosed in parentheses.

New

opens the Polynomial Specification window to add a new polynomial to the model.

Edit

opens the Polynomial Specification window to edit a polynomial that has been selected. If no
polynomial is selected, this button is unavailable.

Remove

removes a selected polynomial from the list. If none are selected, this button is unavailable.

Remove All

clears the list of polynomials.

Move Up

moves a selected polynomial up one position in the list. If no polynomial is selected, or the first
one is selected, this button is unavailable.

Move Down

moves a selected polynomial down one position in the list. If no polynomial is selected, or the
last one is selected, this button is unavailable.
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OK

closes the window and returns the specified list of polynomials to the Factored ARIMA Model
Specification window.

Cancel

closes the window and discards any changes made to the list of polynomials.

ARIMA Model Specification Window
Use the ARIMA Model Specification window to specify and fit an ARIMA model with or without predictor
effects as inputs. Access it from the Develop Models menu, where it is invoked from the Fit Model item
under Edit on the menu bar, or from the pop-up menu when you click an empty area of the model table.

Controls and Fields

Series

is the name and variable label of the current series.

Model

is a descriptive label for the model that you specify. You can type a label in this field or allow the
system to provide a label. If you leave the label blank, a label is generated automatically based on the
options you specify.

ARIMA Options

specify the orders of the ARIMA model. You can either type in a value or click the arrow to select from
a list.

Autoregressive

defines the order of the autoregressive part of the model.

Differencing

defines the order of simple differencing—for example, first difference or second difference.

Moving Average

defines the order of the moving-average part of the model.



4076 F Chapter 65: Window Reference

Seasonal ARIMA Options

specifies the orders of the seasonal part of the ARIMA model. You can either type in a value or click
the arrow to select from a list.

Autoregressive

defines the order of the seasonal autoregressive part of the model.

Differencing

defines the order of seasonal differencing—for example, first difference or second difference at
the seasonal lags.

Moving Average

defines the order of the seasonal moving-average part of the model.

Transformation

defines the series transformation for the model. When a transformation is specified, the ARIMA model
is fit to the transformed series, and forecasts are produced by applying the inverse transformation to
the ARIMA model predictions. The available transformations are Log, Logistic, Square Root,

Box-Cox, and None.

Intercept

specifies whether a mean or intercept parameter is included in the ARIMA model. By default, the
Intercept option is set to No when the model includes differencing and Yes when there is no differencing.

Predictors

lists the predictor effects included as inputs in the model.

OK

closes the ARIMA Model Specification window and fits the model.

Cancel

closes the ARIMA Model Specification window without fitting the model. Any options you specified
are lost.

Reset

resets all options to their initial values upon entry to the ARIMA Model Specification window. This
might be useful when editing an existing model specification; otherwise, Reset has the same function
as Clear.

Clear

resets all options to their default values.

Add

opens a menu of types of predictors to add to the Predictors list.

Delete

deletes the selected (highlighted) entry from the Predictors list.

Edit

edits the selected (highlighted) entry in the Predictors list.
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Mouse Button Actions

You can select or deselect entries in the Predictors list by clicking them. The selected (highlighted) predictor
effect is acted on by the Delete and Edit buttons. Double-clicking on a predictor in the list invokes an
appropriate edit action for that predictor.

If you right-click an entry in the Predictors list, the system displays the following menu of actions that
encompass the features of the Add, Delete, and Edit buttons.

Add Linear Trend

adds a Linear Trend item to the Predictors list.

Add Trend Curve

opens a menu of different time trend curves and adds the curve you select to the Predictors list. Certain
trend curve specifications also set the Transformation field.

Add Regressors

opens the Regressors Selection window to enable you to select other series in the input data set as
regressors to predict the dependent series and add them to the Predictors list.

Add Adjustments

opens the Adjustments Selection window to enable you to select other series in the input data set for
use as adjustments to the forecasts and add them to the Predictors list.

Add Dynamic Regressor

opens the Dynamic Regressor Selection window to enable you to select a series in the input data set
as a predictor of the dependent series and also specify a transfer function model for the effect of the
predictor series.

Add Interventions

opens the Interventions for Series window to enable you to define and select intervention effects and
add them to the Predictors list.

Add Seasonal Dummies

adds a Seasonal Dummies predictor item to the Predictors list.

Edit Predictor

edits the selected (highlighted) entry in the Predictors list.

Delete Predictors

deletes the selected (highlighted) entry from the Predictors list.
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ARIMA Process Specification Window
Use the ARIMA Process Specification window to define ARIMA processes for simulation. Invoke this
window from the Add Series button in the Time Series Simulation window.

Controls and Fields

Series Name

is the variable name for the series to be simulated.

Series Label

is the variable label for the series to be simulated.

Series Mean

is the mean of the simulated series.

Transformation

defines the series transformation.

Simple Differencing

is the order of simple differencing for the series.

Seasonal Differencing

is the order of seasonal differencing for the series.

AR Parameters

is a table of autoregressive terms for the simulated ARIMA process. Enter a value for Factor, Lag, and
Value for each term of the AR part of the process you want to simulate. For a non-factored AR model,
make the Factor values the same for all terms. For a factored AR model, use different Factor values to
group the terms into the factors.

MA Parameters

is a table of moving-average terms for the simulated ARIMA process. Enter a value for Factor, Lag,
and Value for each term of the MA part of the process you want to simulate. For a non-factored MA
model, make the Factor values the same for all terms. For a factored MA model, use different Factor
values to group the terms into the factors.
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OK

closes the ARIMA Process Specification window and adds the specified process to the Series to
Generate list in the Time Series Simulation window.

Cancel

closes the window without adding to the Series to Generate list. Any options you specified are lost.

Reset

resets all the fields to their initial values upon entry to the window.

Clear

resets all the fields to their default values.

Automatic Model Fitting Window
Use the Automatic Model Fitting window to perform automatic model selection on all series or selected
series in an input data set. Invoke this window by using the Fit Models Automatically button in the Time
Series Forecasting window. Note that you can also perform automatic model fitting, one series at a time,
from the Develop Models window.

Controls and Fields

Project

is the name of the SAS catalog entry in which the results of the model search process are stored.

Input Data Set

is the name of the current input data set. You can type in a one-level or two-level data set name here.

Browse button
opens the Data Set Selection window for selecting an input data set.

Time ID

is the name of the ID variable for the input data set. You can type in the variable name here or use the
Select or Create button.
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time ID Select button
opens the Time ID Variable Specification window.

time ID Create button
opens a menu of choices of methods for creating a time ID variable for the input data set. Use this
feature if the input data set does not already contain a valid time ID variable.

Interval

is the time interval between observations (data frequency) in the current input data set. You can type in
an interval name or select one by using the combo box pop-up menu.

Series to Process

indicates the number and names of time series variables for which forecasting model selection will be
applied.

Series to Process Select button
opens the Series to Process window to let you select the series for which you want to fit models.

Selection Criterion

shows the goodness-of-fit statistic that will be used to determine the best fitting model for each series.

Selection Criterion Select button
opens the Model Selection Criterion window to enable you to select the goodness-of-fit statistic that
will be used to determine the best fitting model for each series.

Run button
begins the automatic model fitting process.

Models Fit button
opens the Automatic Model Fitting Results window to display the models fit during the current
invocation of the Automatic Model Fitting window. The results appear automatically when model
fitting is complete, but this button enables you to redisplay the results window.

Close button
closes the Automatic Model Fitting window.

Menu Bar

File

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can
use to import your data from an external spreadsheet or database to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Close

closes the Automatic Model Fitting window.
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View

Input Data Set

opens a Viewtable window to browse the current input data set.

Models Fit

opens Automatic Model Fitting Results window to show the forecasting models fit during the
current invocation of the Automatic Model Fitting window. This has the same function as the
Models Fit button.

Tools

Fit Models

performs the automatic model selection process for the selected series. This has the same function
as the Run button.

Options

Default Time Ranges

opens the Default Time Ranges window to enable you to control how the system sets the time
ranges for series.

Model Selection List

opens the Model Selection List editor window. Use this action to control the forecasting models
considered by the automatic model selection process and displayed in the Models to Fit window.

Model Selection Criterion

opens the Model Selection Criterion window, which presents a list of goodness-of-fit statistics
and enables you to select the fit statistic that is displayed in the table and used by the automatic
model selection process to determine the best fitting model. This has the same function as the
Selection Criterion Select button.

Statistics of Fit

opens the Statistics of Fit Selection window, which presents a list of statistics that the system can
display. Use this action to customize the list of statistics shown in the Statistics of Fit table and
available for selection from the Model Selection Criterion menu.

Forecast Options

opens the Forecast Options window, which enables you to control the widths of forecast confi-
dence limits and control the kind of predicted values computed for models that include series
transformations.

Forecast Data Set

See the section “Produce Forecasts Window” on page 4136.

Alignment of Dates

Beginning

aligns dates that the system generates to identify forecast observations in output data sets to
the beginning of the time intervals.
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Middle

aligns dates that the system generates to identify forecast observations in output data sets to
the midpoints of the time intervals.

End

aligns dates that the system generates to identify forecast observations in output data sets to
the end of the time intervals.

Automatic Fit

opens the Automatic Model Selection Options window, which enables you to control the number
of models retained by the automatic model selection process and whether the models considered
for automatic selection are subset according to the series diagnostics.

Tool Bar Type

Image Only

displays the toolbar items as icons without text.

Label Only

displays the toolbar items as text without icon images.

Both

displays the toolbar items with both text and icon images.

Include Interventions

controls whether intervention effects defined for the current series are automatically added as
predictors to the models considered by the automatic selection process. A check mark or filled
check box next to this item indicates that the option is turned on.

Print Audit Trail

prints to the SAS log information about the models fit by the system. A check mark or filled
check box next to this item indicates that the audit option is turned on.

Show Source Statements

controls whether SAS statements submitted by the forecasting system are printed in the SAS log.
When the Show Source Statements option is selected, the system sets the SAS system option
SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option.
Note that only some of the functions performed by the forecasting system are accomplished by
submitting SAS statements. A check mark or filled check box next to this item indicates that the
option is turned on.
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Automatic Model Fitting Results Window
This resizable window displays the models fit by the most recent invocation of the Automatic Model Fitting
window. It appears automatically after Automatic Model Fitting runs, and can be opened repeatedly from
that window by using the Models Fit button or by selecting Models Fit from the View menu. Once you exit
the Automatic Model Fitting window, the Automatic Model Fitting Results window cannot be opened again
until you fit additional models by using Automatic Model Fitting.

Table Contents
The results table displays the series name in the first column and the model label in the second column. If you
have chosen to retain more than one model by using the Automatic Model Selection Options window, more
than one row appears in the table for each series; that is, there is a row for each model fit. If you have already
fit models to the same series before invoking the Automatic Model Fitting window, those models do not
appear here, since the Automatic Model Fitting Results window is intended to show the results of the current
operation of Automatic Model Fitting. To see all models that have been fit, use the Manage Projects window.

The third column of the table shows the values of the current model selection criterion statistic. Additional
columns show the values of other fit statistics. The set of statistics shown are selectable by using the Statistics
of Fit Selection window.

The table can be sorted by any column other than Series Name by clicking on the column heading.

Controls and Fields

Graph

opens the Model Viewer window on the model currently selected in the table.

Stats

opens the Statistics of Fit Selection window. This controls the set of goodness-of-fit statistics displayed
in the table and in other parts of the Time Series Forecasting System.
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Compare

opens the Model Fit Comparison window for the series currently selected in the table. This button
is unavailable if the currently selected row in the table represents a series for which fewer than two
models have been fit.

Save

opens an output data set dialog box, enabling you to specify a SAS data set to which the contents of the
table are saved. Note that this operation saves what you see in the table. If you want to save the models
themselves for use in a future session, use the Manage Projects window.

Print

prints the contents of the table.

Close

closes the window and returns to the Automatic Model Fitting window.

Menu Bar

File

Save

opens an output data set dialog box, enabling you to specify a SAS data set to which the contents
of the table are saved. This has the same function as the Save button.

Print

prints the contents of the table. This has the same function as the Print button.

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can use
to import your data from an external spreadsheet or data base to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Close

closes the window and returns to the Automatic Model Fitting window.

View

Model Predictions

opens the Model Viewer to display a predicted and actual plot for the currently highlighted model.

Prediction Errors

opens the Model Viewer to display the prediction errors for the currently highlighted model.

Prediction Error Autocorrelations

opens the Model Viewer to display the prediction error autocorrelations, partial autocorrelations,
and inverse autocorrelations for the currently highlighted model.
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Prediction Error Tests

opens the Model Viewer to display graphs of white noise and stationarity tests on the prediction
errors of the currently highlighted model.

Parameter Estimates

opens the Model Viewer to display the parameter estimates table for the currently highlighted
model.

Statistics of Fit

opens the Model Viewer window to display goodness-of-fit statistics for the currently highlighted
model.

Forecast Graph

opens the Model Viewer to graph the forecasts for the currently highlighted model.

Forecast Table

opens the Model Viewer to display forecasts for the currently highlighted model in a table.

Tools

Compare Models

opens the Model Fit Comparison window to display fit statistics for selected pairs of forecasting
models. This item is unavailable until you select a series in the table for which the automatic
model fitting run selected two or more models.

Options

Statistics of Fit

opens the Statistics of Fit Selection window. This is the same as the Stats button.

Column Labels

selects long or short column labels for the table. Long column labels are used by default.

ID Columns

freezes or unfreezes the series and model columns. By default they are frozen so that they remain
visible when you scroll the table horizontally to view other columns.
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Automatic Model Selection Options Window
Use the Automatic Model Selection Options window to control the automatic selection process. This window
is available from the Automatic Fit item of the Options menu in the Develop Models window, Automatic
Model Fitting window, and Produce Forecasts window.

Controls and Fields

Models to fit

Subset by series diagnostics

when selected, causes the automatic model selection process to search only over those models
consistent with the series diagnostics.

All autofit models in selection list

when selected, causes the automatic model selection process to search over all models in the
search list, without regard for the series diagnostics.

Models to keep

specifies how many of the models tried by the automatic model selection process are retained and added
to the model list for the series. You can specify the best fitting model only, the best n models, where n
can be 1 through 9, or all models tried.

OK

closes the window and saves the automatic model selection options you specified.

Cancel

closes the window without changing the automatic model selection options.
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Custom Model Specification Window
Use the Custom Model Specification window to specify and fit an ARIMA model with or without predictor
effects as inputs. Access it from the Develop Models window, where it is invoked from the Fit Model item
under the Edit menu, or from the pop-up menu when you click an empty area of the model table.

Controls and Fields

Series

is the name and variable label of the current series.

Model

is a descriptive label for the model that you specify. You can type a label in this field or allow the
system to provide a label. If you leave the label blank, a label is generated automatically based on the
options you specify.

Transformation

defines the series transformation for the model. When a transformation is specified, the model is fit
to the transformed series, and forecasts are produced by applying the inverse transformation to the
resulting forecasts. The following transformations are available:

Log

specifies a logarithmic transformation.

Logistic

specifies a logistic transformation.

Square Root

specifies a square root transformation.

Box-Cox

specifies a Box-Cox transform and opens a window to specify the Box-Cox � parameter.

None

specifies no series transformation.
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Trend Model

controls the model options to model and forecast the series trend. Select from the following:

Linear Trend

adds a Linear Trend item to the Predictors list.

Trend Curve

brings of a menu of different time trend curves and adds the curve you select to the Predictors list.

First Difference

specifies differencing the series.

Second Difference

specifies second-order differencing of the series.

None

specifies no model for the series trend.

Seasonal Model

controls the model options to model and forecast the series seasonality. Select from the following:

Seasonal ARIMA

opens the Seasonal ARIMA Model Options window to enable you to specify an ARIMA model
for the seasonal pattern in the series.

Seasonal Difference

specifies differencing the series at the seasonal lag.

Seasonal Dummy Regressors

adds a Seasonal Dummies predictor item to the Predictors list.

None

specifies no seasonal model.

Error Model

displays the current settings of the autoregressive and moving-average terms, if any, for modeling the
prediction error autocorrelation pattern in the series.

Set button
opens the Error Model Options window to enable you to set the autoregressive and moving-average
terms for modeling the prediction error autocorrelation pattern in the series.

Intercept

specifies whether a mean or intercept parameter is included in the model. By default, the Intercept
option is set to No when the model includes differencing and set to Yes when there is no differencing.

Predictors

is a list of the predictor effects included as inputs in the model.

OK

closes the Custom Model Specification window and fits the model.

Cancel

closes the Custom Model Specification window without fitting the model. Any options you specified
are lost.
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Reset

resets all options to their initial values upon entry to the Custom Model Specification window. This
might be useful when editing an existing model specification; otherwise, Reset has the same function
as Clear.

Clear

resets all options to their default values.

Add

opens a menu of types of predictors to add to the Predictors list. Select from the following:

Linear Trend

adds a Linear Trend item to the Predictors list.

Trend Curve

opens a menu of different time trend curves and adds the curve you select to the Predictors list.

Regressors

opens the Regressors Selection window to enable you to select other series in the input data set as
regressors to predict the dependent series and add them to the Predictors list.

Adjustments

opens the Adjustments Selection window to enable you to select other series in the input data set
for use as adjustments to the forecasts and add them to the Predictors list.

Dynamic Regressor

opens the Dynamic Regressor Selection window to enable you to select a series in the input data
set as a predictor of the dependent series and also specify a transfer function model for the effect
of the predictor series.

Interventions

opens the Interventions for Series window to enable you to define and select intervention effects
and add them to the Predictors list.

Seasonal Dummies

adds a Seasonal Dummies predictor item to the Predictors list. This is unavailable if the series
interval is not one which has a seasonal cycle.

Delete

deletes the selected (highlighted) entry from the Predictors list.

Edit

edits the selected (highlighted) entry in the Predictors list.

Mouse Button Actions

You can select or deselect entries in the Predictors list by clicking them. The selected (highlighted) predictor
effect is acted on by the Delete and Edit buttons. Double-clicking on a predictor in the list invokes an
appropriate edit action for that predictor.

If you right-click an entry in the Predictors list and press the right mouse button, the system displays a menu
of actions that encompass the features of the Add, Delete, and Edit buttons.
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Data Set Selection Window
Use this resizable window to select a data set to process by specifying a library and a SAS data set or view.
These selections can be made by typing, by selecting from lists, or by a combination of the two. In addition,
you can control the time ID variable and time interval, and you can browse the data set.

Access this window by using the Browse button to the right of the Data Set field in the Time Series
Forecasting, Automatic Model Fitting, and Produce Forecasts windows. It functions in the same way as the
Series Selection window, except that it does not allow you to select or view a time series variable.

Controls and Fields

Library

is a SAS libname assigned within the current SAS session. If you know the libname associated with the
data set of interest, you can type it in this field. If it is a valid choice, it will appear in the libraries list
and will be highlighted. The SAS Data Sets list will be populated with data sets associated with that
libname. See also Libraries under Selection Lists.

Data Set

is the name of a SAS data set (data file or data view) that resides under the selected libname. If you
know the name, you can type it in and press Return. If it is a valid choice, it will appear in the SAS
Data Sets list and will be highlighted.

Time ID

is the name of the ID variable for the selected input data set. To specify the ID variable, you can type
the ID variable name in this field or select the control arrows to the right of the field.

Time ID Select button
opens the Time ID Variable Specification window.

Time ID Create button
opens a menu of methods for creating a time ID variable for the input data set. Use this feature if the
data set does not already contain a valid time ID variable.

Interval

is the time interval between observations (data frequency) in the selected data set. If the interval is
not automatically identified by the system, you can type in the interval name or select it from a list by
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clicking the combo box arrow. For more information about intervals, see Chapter 5, “Date Intervals,
Formats, and Functions,” in this book.

OK

closes the Data Set Selection window and makes the selected data set the current input data set.

Cancel

closes the window without applying any selections made.

Table

opens a Viewtable window for browsing the selected data set.

Reset

resets the fields to their initial values upon entry to the window.

Refresh

updates all fields and lists in the window. If you assign a new libname without exiting the Data Set
Selection window, use the refresh action to update the Libraries list so that it will include the newly
assigned libname.

Selection Lists

Libraries

displays a list of currently assigned libnames. You can select a libname by clicking it with the left
mouse button, which is equivalent to typing its name in the Library field.

If you cannot locate the library or directory you are interested in, go to the SAS Explorer window, select
“New” from the File menu, then select “Library” and “OK.” This opens the New Library window. You
also assign a libname by submitting a libname statement from the Editor window. Click the Refresh
button to make the new libname available in the libraries list.

SAS Data Sets

displays a list of the SAS data sets (data files or data views) contained in the selected library. You can
select one of these by clicking with the left mouse button, which is equivalent to typing its name in the
Data set field. You can double-click a data set name to select it and exit the window.
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Default Time Ranges Window
Use the Default Time Ranges window to control how the period of fit and evaluation and the forecasting
horizon are determined for each series when you do not explicitly set these ranges for a particular series.
Invoke this window from the Options menu of the Develop Models, Automatic Model Fitting, Produce Fore-
casts, and Manage Forecasting Project windows. The settings you make in this window affect subsequently
selected series; they do not alter the time ranges of series you have already selected.

Controls and Fields

Forecast Horizon

specifies the forecast horizon as either a number of periods or years from the last nonmissing data
value or as a fixed date. You can type a number or date value in this field. Date value must be entered
in a form recognized by a SAS date informat. (For information about SAS date informats, see SAS
Programmers Guide: Essentials.)

Forecast Horizon Units

indicates whether the value in the forecast horizon field represents periods or years or a date. Click the
arrow and select one from the pop-up list.

Hold-out Sample Size

specifies that a number of observations, number of years, or percent of the data at the end of the data
range be used for the period of evaluation with the remainder of data used as the period of fit.

Hold-out Sample Size Units

indicates whether the hold-out sample size represents periods or years or percent of data range.

Period of Fit

specifies how much of the data range for a series is to be used as the period of fit for models fit to the
series. ALL indicates that all the available data is used. You can specify a number of periods, number
of years, or a fixed date, depending on the value of the units field to the right. When you specify a date,
the start of the period of fit is the specified date or the first nonmissing series value, whichever is more
recent. Date value must be entered in a form recognized by a SAS date informat. (For information
about SAS date informats, see SAS Programmers Guide: Essentials.) When you specify the number of
periods or years, the start of the period of fit is computed as the date that number of periods or years
from the end of the data.

Period of Fit Units

indicates whether the period-of-fit value represents periods or years or a date.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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OK

closes the window and stores the specified changes.

Cancel

closes the window without saving changes. Any options you specified are lost.

Defaults

resets all options to their default values.

Reset

resets the options to their initial values upon entry to the window.

Develop Models Window
This resizable window provides access to all of the Forecasting System’s interactive model fitting and
graphical tools. Use it to fit forecasting models to an individual time series and choose the best model to use
to produce the final forecasts of the series. Invoke this window by using the Develop Models button in the
Time Series Forecasting window.

Controls and Fields

Data Set

is the name of the current input data set.

Interval

is the time interval (data frequency) for the input data set.

Series

is the variable name and label of the current time series.

Browse button
opens the Series Selection window to enable you to change the current input data set or series.
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Data Range

is the date of the first and last nonmissing data values available for the current series in the input data
set.

Fit Range

is the current period of fit setting. This is the range of data that will be used to fit models to the series.

Evaluation Range

is the current period of evaluation setting. This is the range of data that will be used to calculate the
goodness-of-fit statistics for models fit to the series.

Set Ranges button
opens the Time Ranges Specification window to enable you to change the fit range or evaluation range.
Note: A new fit range is applied when new models are fit or when existing models are refit. A new
evaluation range is applied when new models are fit or when existing models are refit or reevaluated.
Changing the ranges does not automatically refit or reevaluate any models in the table: Use the Refit
Models or Reevaluate Models items under the Edit menu.

View Series Graphically icon
opens the Time Series Viewer window to display plots of the current series.

View Selected Model Graphically icon
opens the Model Viewer to display graphs and tables for the currently highlighted model.

Forecast Model

is the column of the model table that contains check boxes to select which model is used to produce the
final forecasts for the current series.

Model Title

is the column of the model table that contains the descriptive labels of the forecasting models fit to the
current series.

Root Mean Square Error (or other statistic name) button
is the button above the right side of the table. It displays the name of the current model selection
criterion: a statistic that measures how well each model in the table fits the values of the current series
for observations within the evaluation range. Clicking this button opens the Model Selection Criterion
window to let you to select a different statistic. When you select a statistic, the model table the Develop
Models window is updated to show current values of that statistic.

Menu Bar

File

New Project

opens a dialog box that lets you create a new project, assign it a name and description, and make
it the active project.

Open Project

opens a dialog box that lets you select and load a previously saved project.

Save Project

saves the current state of the system (including all the models fit to a series) to the current project
catalog entry.
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Save Project as

saves the current state of the system with a prompt for the name of the catalog entry in which to
store the information.

Clear Project

clears the system, deleting all the models for all series.

Save Forecast

writes forecasts from the currently highlighted model to an output data set.

Save Forecast As

prompts for an output data set name and saves the forecasts from the currently highlighted model.

Output Forecast Data Set

opens a dialog box for specifying the default data set used when you select “Save Forecast.”

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can
use to import your data from an external spreadsheet or database to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or data base.

Print Setup

opens the Print Setup window, which enables you to access your operating system print setup.

Close

closes the Develop Models window and returns to the main window.

Edit

Fit Model

Automatic Fit

invokes the automatic model selection process.

Select From List

opens the Models to Fit window.

Smoothing Model

opens the Smoothing Model Specification window.

ARIMA Model

opens the ARIMA Model Specification window.

Custom Model

opens the Custom Model Specification window.

Combine Forecasts

opens the Forecast Combination Model Specification window.

External Forecasts

opens the External Forecast Model Specification window.
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Edit Model

enables you to modify the specification of the currently highlighted model in the table and fit the
modified model. The new model replaces the current model in the table.

Delete Model

deletes the currently highlighted model from the model table.

Refit Models

All Models

refits all models in the table by using data within the current fit range.

Selected Model

refits the currently highlighted model by using data within the current fit range.

Reevaluate Models

All Models

recomputes statistics of fit for all models in the table by using data within the current
evaluation range.

Selected Model

recomputes statistics of fit for the currently highlighted model by using data within the
current evaluation range.

View

Project

opens the Manage Forecasting Project window.

Data Set

opens a Viewtable window to display the current input data set.

Series

opens the Time Series Viewer window to display plots of the current series. This has the same
function as the View Series Graphically icon.

Model Predictions

opens the Model Viewer to display a predicted versus actual plot for the currently highlighted
model. This has the same function as the View Selected Model Graphically icon.

Prediction Errors

opens the Model Viewer to display the prediction errors for the currently highlighted model.

Prediction Error Autocorrelations

opens the Model Viewer to display the prediction error autocorrelations, partial autocorrelations,
and inverse autocorrelations for the currently highlighted model.

Prediction Error Tests

opens the Model Viewer to display graphs of white noise and stationarity tests on the prediction
errors of the currently highlighted model.
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Parameter Estimates

opens the Model Viewer to display the parameter estimates table for the currently highlighted
model.

Statistics of Fit

opens the Model Viewer window to display goodness-of-fit statistics for the currently highlighted
model.

Forecast Graph

opens the Model Viewer to graph the forecasts for the currently highlighted model.

Forecast Table

opens the Model Viewer to display forecasts for the currently highlighted model in a table.

Tools

Diagnose Series

opens the Series Diagnostics window to determine the kinds of forecasting models appropriate
for the current series.

Define Interventions

opens the Interventions for Series window to enable you to edit or add intervention effects for use
in modeling the current series.

Sort Models

sorts the models in the table by the values of the currently displayed fit statistic.

Compare Models

opens the Model Fit Comparison window to display fit statistics for selected pairs of forecasting
models. This is unavailable if there are fewer than two models in the table.

Generate Data

opens the Time Series Simulation window. This window enables you to simulate ARIMA time
series processes and is useful for educational exercises or testing the system.

Options

Time Ranges

opens the Time Ranges Specification window to enable you to change the fit and evaluation time
ranges and the forecast horizon. This has the same function as the Set Ranges button.

Default Time Ranges

opens the Default Time Ranges window to enable you to control how the system sets the time
ranges for series when you do not explicitly set time ranges with the Time Ranges Specification
window. Settings made by using this window do not affect series you are already working with;
they take effect when you select a new series.

Model Selection List

opens the Model Selection List editor window. Use this action to edit the set of forecasting
models considered by the automatic model selection process and displayed by the Models to Fit
window.
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Model Selection Criterion

opens the Model Selection Criterion window, which presents a list of goodness-of-fit statistics
and enables you to select the fit statistic that is displayed in the table and used by the automatic
model selection process to determine the best fitting model. This has the same function as the
button above the table that displays the name of the current model selection criterion.

Statistics of Fit

opens the Statistics of Fit Selection window, which presents a list of statistics that the system can
display. Use this action to customize the list of statistics shown in the Model Viewer, Automatic
Model Fitting Results, and Model Fit Comparison windows and available for selection in the
Model Selection Criterion menu.

Forecast Options

opens the Forecast Options window, which enables you to control the widths of forecast confi-
dence limits and control the kind of predicted values computed for models that include series
transformations.

Alignment of Dates

Beginning

aligns dates that the system generates to identify forecast observations in output data sets to
the beginning of the time intervals.

Middle

aligns dates that the system generates to identify forecast observations in output data sets to
the midpoints of the time intervals.

End

aligns dates that the system generates to identify forecast observations in output data sets to
the end of the time intervals.

Automatic Fit

opens the Automatic Model Selection Options window, which enables you to control the number
of models retained by the automatic model selection process and whether the models considered
for automatic selection are subset according to the series diagnostics.

Include Interventions

controls whether intervention effects defined for the current series are automatically added as
predictors to the models considered by the automatic selection process and displayed by the
Models to Fit window. When the Include Interventions option is selected, the series interventions
are also automatically added to the predictors list when you specify a model in the ARIMA
and Custom Models Specification windows. A check mark or filled check box next to this item
indicates that the option is turned on.

Print Audit Trail

prints to the SAS log information about the models fit by the system. A check mark or filled
check box next to this item indicates that the audit option is turned on.

Show Source Statements

controls whether SAS statements submitted by the forecasting system are printed in the SAS log.
When the Show Source Statements option is selected, the system sets the SAS system option
SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option.
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Note that only some of the functions performed by the forecasting system are accomplished by
submitting SAS statements. A check mark or filled check box next to this item indicates that the
option is turned on.

Left Mouse Button Actions for the Model Table

When the mouse pointer is over the description of a model in the table, the left mouse button selects
(highlights) or deselects that model. On some computer systems, you can double-click to open the Model
Viewer window for the selected model.

When the mouse pointer is over an empty part of the model table, the left mouse button opens a menu of
model fitting choices. These choices are the same as those on the Fit Model submenu of the Edit menu.

Right Mouse Button Actions for the Model Table

When a model in the table is selected, the right mouse opens a menu of actions that apply to the highlighted
model. The actions available from this menu are as follows.

View Model

opens the Model Viewer for the selected model. This has the same function as the View Model
Graphically icon.

View Parameter Estimates

opens the Model Viewer to display the parameter estimates table for the currently highlighted model.
This has the same function as the Parameter Estimates item on the View menu.

View Statistics of Fit

opens the Model Viewer to display a table of goodness-of-fit statistics for the currently highlighted
model. This has the same function as the Statistics of Fit item on the View menu.

Edit Model

enables you to modify the specification of the currently highlighted model in the table and fit the
modified model. This has the same function as the Edit Model item on the Edit menu.

Refit Model

refits the highlighted model by using data within the current fit range. This has the same function as the
Selected Model item on the Refit Models submenu of the Edit menu.

Reevaluate Model

reevaluates the highlighted model by using data within the evaluation fit range. This has the same
function as the Selected Model item on the Reevaluate Models submenu of the Edit menu.

Delete Model

deletes the currently highlighted model from the model table. This has the same function as the Delete
Model item on the Edit menu.

View Forecasts

opens the Model Viewer to display the forecasts for the currently highlighted model. This has the same
function as the Forecast Graph item on the View menu.

When the model list is empty or when no model is selected, the right mouse button opens the same menu of
model fitting actions as the left mouse button.
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Differencing Specification Window
Use the Differencing Specification window to specify the list of differencing lags d=(lag, ..., lag) in a
factored ARIMA model. To specify a first difference, add the value 1 (d=(1)). To specify a second difference
(difference twice at lag 1), add the value 1 again (d=(1,1)). For first differencing at lags 1 and 12, use the
values 1 and 12 (d=(1,12)).

Controls and Fields

Lag

specifies a lag value to add to the list. Type in a positive integer or select one by clicking the spin box
arrows. Duplicates are allowed.

Add

adds the value in the Lag spin box to the list of differencing lags.

Remove

deletes a selected lag from the list of differencing lags.

OK

closes the window and returns the specified list to the Factored ARIMA Model Specification window.

Cancel

closes the window and discards any lags added to the list.



Dynamic Regression Specification Window F 4101

Dynamic Regression Specification Window
Use the Dynamic Regression Specification window to specify a dynamic regression or transfer function
model for the effect of the predictor variable. It is invoked from the Dynamic Regressors Selection window.

Controls and Fields

Series

is the name and variable label of the current series.

Input Model

is a descriptive label for the dynamic regression model. You can type a label in this field or allow the
system to provide the label. If you leave the label blank, a label is generated automatically based on
the options you specify. When no options are specified, the label is the name and variable label of the
predictor variable.

Input Transformation

displays the transformation specified for the predictor variable. When a transformation is specified, the
transfer function model is fit to the transformed input variable.

Lagging periods

is the pure delay in the effect of the predictor, l.

Simple Order of Differencing

is the order of differencing, d. Set this field to 1 to use the changes in the predictor variable.

Seasonal Order of Differencing

is the order of seasonal differencing, D. Set this field to 1 to difference the predictor variable at the
seasonal lags—for example, to use the year-over-year or week-over-week changes in the predictor
variable.

Simple Order Numerator Factors

is the order of the numerator factor of the transfer function, p.

Seasonal Order Numerator Factors

is the order of the seasonal numerator factor of the transfer function, P.

Simple Order Denominator Factors

is the order of the denominator factor of the transfer function, q.
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Seasonal Order Denominator Factors

is the order of the seasonal denominator factor of the transfer function, Q.

OK

closes the window and adds the dynamic regression model specified to the model predictors list.

Cancel

closes the window without adding the dynamic regression model. Any options you specified are lost.

Reset

resets all options to their initial values upon entry to the window. This might be useful when editing a
predictor specification; otherwise, Reset has the same function as Clear.

Clear

resets all options to their default values.

Dynamic Regressors Selection Window
Use the Dynamic Regressors Selection window to select an input variable as a dynamic regressor. Access
this window from the pop-up menu that appears when you click the Add button in the ARIMA Model
Specification window or Custom Model Specification window.

Controls and Fields

Dependent

is the name and variable label of the current series.

Dynamic Regressors

is a table listing the variables in the input data set. Select one variable in this list as the predictor series.

OK

opens the Dynamic Regression Specification window for you to specify the form of the dynamic
regression for the selected predictor series, and then closes the Dynamic Regressors Selection window
and adds the specified dynamic regression to the model predictors list.

Cancel

closes the window without adding the dynamic regression model. Any options you specified are lost.
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Reset

resets all options to their initial values upon entry to the window.

Error Model Options Window
Use the Error Model Options window to specify the autoregressive and moving-average orders for the residual
autocorrelation part of a model defined by using the Custom Model Specification window. Access it by using
the Set button in that window.

Controls and Fields

ARIMA Options

Use these combo boxes to specify the orders of the ARIMA model. You can either type in a value or
click the combo box arrow to select from a pop-up list.

Autoregressive

defines the order of the autoregressive part of the model.

Moving Average

defines the order of the moving-average term.

OK

closes the Error Model Options window and returns to the Custom Model Specification window.

Cancel

closes the Error Model Options window and returns to the Custom Model Specification window,
discarding any changes made.

Reset

resets all options to their initial values upon entry to the window.
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External Forecast Model Specification Window
Use the External Forecast Model Specification window to add to the current project forecasts produced
externally to the Time Series Forecasting System. To add an external forecast, select a variable from the
selection list and click the OK button. The name of the selected variable will be added to the list of models
fit, and the values of this variable will be used as the forecast. For more information, see “Incorporating
Forecasts from Other Sources” in the “Specifying Forecasting Models” chapter.

Controls and Fields

OK

closes the window and adds the external forecast to the project.

Cancel

closes the window without adding an external forecast to the project.

Reset

deselects any selection made in the selection list.
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Factored ARIMA Model Specification Window
Use the ARIMA Model Specification window to specify an ARIMA model by using the notation:

p = (lag, ..., lag) ...(lag, ..., lag)

d = (lag, ..., lag)

q = (lag, ..., lag) ...(lag, ..., lag)

where p, d, and q represent autoregressive, differencing, and moving-average terms, respectively.

Access it from the Develop Models menu, where it is invoked from the Fit Model item under Edit on the
menu bar, or from the pop-up menu when you click an empty area of the model table.

The Factored ARIMA Model Specification window is identical to the ARIMA Model Specification window,
except that the p, d, and q terms are specified in a more general and less limited way. Only those controls and
fields that differ from the ARIMA Model Specification window are described here.

Controls and Fields

Model

is a descriptive label for the model. You can type a label in this field or allow the system to provide a
label. If you leave the label blank, a label is generated automatically based on the p, d, and q terms
that you specify. For example, if you specify p=(1,2,3), d=(1), q=(12) and no intercept, the
model label is ARIMA p=(1,2,3) d=(1) q=(12) NOINT. For monthly data, this is equivalent to the
model ARIMA(3,1,0)(0,0,1)s NOINT as specified in the ARIMA Model Specification window or
the Custom Model Specification window.

ARIMA Options

specifies the ARIMA model in terms of the autoregressive lags (p), differencing lags (d), and moving-
average lags (q).

Autoregressive

defines the autoregressive part of the model. Click the Set button to open the AR Polynomial Spec-
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ification window, where you can add any set of autoregressive lags grouped into any number of
factors.

Differencing

specifies differencing to be applied to the input data. Click the Set button to open the Differencing
Specification window, where you can specify any set of differencing lags.

Moving Average

defines the moving-average part of the model. Click the Set button to open the MA Polynomial
Specification window, where you can add any set of moving-average lags grouped into any number of
factors.

Estimation Method

specifies the method used to estimate the model parameters. The Conditional Least Squares and
Unconditional Least Squares methods generally require fewer computing resources and are more likely
to succeed in fitting complex models. The Maximum Likelihood method requires more resources
but provides a better fit in some cases. See also the section “Estimation Details” in Chapter 8, “The
ARIMA Procedure.”

Forecast Combination Model Specification Window
Use the Forecast Combination Model Specification window to produce forecasts by averaging the forecasts
of two or more forecasting models. The specified combination of models is added to the model list for the
series. Access this window from the Develop Models window whenever two or more models have been fit
to the current series. It is invoked by selecting Combine Forecasts from the Fit Model submenu of the Edit
menu, or from the pop-up menu which appears when you click an empty part of the model table.
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Controls and Fields

Series

is the name and variable label of the current series.

Model

is a descriptive label for the model that you specify. You can type a label in this field or allow the
system to provide a label. If you leave the label blank, a label is generated automatically based on the
options you specify.

Weight

is a column of the forecasting model table that contains the weight values for each model. The forecasts
for the combined model are computed as a weighted average of the predictions from the models in
the table that use these weights. Models with missing weight values are not included in the forecast
combination. You can type weight values in these fields or you can use other features of the window to
set the weights.

Model Description

is a column of the forecasting model table that contains the descriptive labels of the forecasting models
fit to the current series that are available for combination.

Root Mean Square Error (or other statistic name) button
is the button above the right side of the table. It displays the name of the current model selection
criterion: a statistic that measures how well each model in the table fits the values of the current series
for observations within the evaluation range. Clicking this button opens the Model Selection Criterion
window to enable you to select a different statistic.

Normalize Weights button
replaces each nonmissing value in the Weights column with the current value divided by the sum of the
weights. The resulting weights are proportional to original weights and sum to 1.

Fit Regression Weights button
computes weight values for the models in the table by regressing the series on the predictions from
the models. The values in the Weights column are replaced by the estimated coefficients produced by
this linear regression. If some weight values are nonmissing and some are missing, only models with
nonmissing weight values are included in the regression. If all weights are missing, all models are used.

OK

closes the Forecast Combination Model Specification window and fits the model.

Cancel

closes the Forecast Combination Model Specification window without fitting the model. Any options
you specified are lost.

Reset

resets all options to their initial values upon entry to the Forecast Combination Model Specification
window. This might be useful when editing an existing model specification; otherwise, Reset has the
same function as Clear.

Clear

resets all options to their default values.
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Mouse Button Actions

You can select or deselect models for inclusion in the combination model by positioning the mouse pointer
over the model description and pressing the left mouse button. When you select a model in this way, the
weights are automatically updated.

The newly selected model is given a weight equal to the average weight of the previously selected models,
and all the nonmissing weights are normalized to sum to 1. When you use the mouse to remove a model
from the combination, the weight of the deselected model is set to missing and the remaining nonmissing
weights are normalized to sum to 1.

Forecasting Project File Selection Window
Use the Forecasting Project File Selection window to locate and load a previously stored forecasting project.
Access it from the project Browse button in the Manage Forecasting Project window or the Time Series
Forecasting window or from the Open Project item on the File menu of the Develop Models window.

Selection Lists

Libraries

is a list of currently assigned libraries. When you select a library from this list, the catalogs in that
library are shown in the catalog selection list.

Catalogs

is a list of catalogs contained in the currently selected library. When you select a catalog from this list,
any forecasting project entries stored in that catalog are shown in the projects selection list.

Projects

is a list of forecasting project entries contained in the currently selected catalog.
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Controls and Fields

OK

closes the window and opens the selected project.

Cancel

closes the window without selecting a project.

Delete

deletes the selected project file.

Reset

restores selections to those which were set before the window was opened.

Forecast Options Window
Use the Forecast Options window to set options to control how forecasts and confidence limits are computed.
It is available from the Forecast Options item in the Options menu of the Develop Models window, Automatic
Model Fitting window, Produce Forecasts, and Manage Projects windows.

Controls and Fields

Confidence Limits

specifies the size of the confidence limits for the forecast values. For example, a value of 0.95 specifies
95% confidence intervals. You can type in a number or select from the pop-up list.

Predictions for transformed models

controls how forecast values are computed for models that employ a series transformation. See the
section Predictions for Transformed Models in Chapter 66, “Forecasting Process Details,” for more
information. The values are as follows.

Mean

specifies that forecast values be predictions of the conditional mean of the series.

Median

specifies that forecast values be predictions of the conditional median of the series.

OK

closes the window and saves the option settings you specified.



4110 F Chapter 65: Window Reference

Cancel

closes the window without changing the forecast options. Any options you specified are lost.

Intervention Specification Window
Use the Intervention Specification window to specify intervention effects to model the impact on the series of
unusual events. Access it from the Intervention for Series window. For more information, see the section
“Interventions” on page 4051.

Controls and Fields

Series

is the name and variable label of the current series.

Label

is a descriptive label for the intervention effect that you specify. You can type a label in this field or
allow the system to provide the label. If you leave the label blank, a label is generated automatically
based on the options you specify.

Date

is the date that the intervention occurs. You can type a date value in this field, or you can set the date by
selecting a row of the data table on the right side of the window.

Type of Intervention

Point

specifies that the intervention variable is zero except for the specified date.

Step

specifies that the intervention variable is zero before the specified date and a constant 1.0 after
the date.
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Ramp

specifies that the intervention variable is an increasing linear function of time after the date of the
intervention and zero before the intervention date.

Number of lags

specifies the numerator order for the transfer function model for the intervention effect. Select a value
from the pop-up list.

Effect Decay Pattern

specifies the denominator order for the transfer function model for the intervention effect. The value
“Exp” specifies a single lag denominator factor; the value “Wave” specifies a two-lag denominator
factor.

OK

closes the window and adds the intervention effect specified to the series interventions list.

Cancel

closes the window without adding the intervention. Any options you specified are lost.

Reset

resets all options to their initial values upon entry to the window. This might be useful when editing an
intervention specification; otherwise, Reset has the same function as Clear.

Clear

resets all options to their default values.

Interventions for Series Window
Use the Interventions for Series window to create and edit a list of intervention effects to model the impact
on the series of unusual events and to select intervention effects as predictors for forecasting models. Access
it from the Add button pop-up menu of the ARIMA Model Specification or Custom Model Specification
window, or by selecting Define Interventions from the Tools in the Develop Models window. For more
information, see the section “Interventions” on page 4051.
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Controls and Fields

Series

is the name and variable label of the current series.

OK

closes the window. If you access this window from the ARIMA Model Specification window or the
Custom Model Specification window, any interventions that are selected (highlighted) in the list are
added to the model. If you access this window from the Tools menu, all interventions in the list are
saved for the current series.

Cancel

closes the window without returning a selection or changing the interventions list. Any options you
specified are lost.

Reset

resets the list as it was on entry to the window.

Clear

deletes all interventions from the list.

Add

opens the Intervention Specification window to specify a new intervention effect and add it to the list.

Delete

deletes the currently selected (highlighted) entries from the list.

Edit

opens the Intervention Specification window to edit the currently selected (highlighted) intervention.

Mouse Button Actions

To select or deselect interventions, position the mouse pointer over the intervention’s label in the Interventions
list and press the left mouse button.

When you position the mouse pointer in the Interventions list and press the right mouse button, a menu
containing the actions Add, Delete, and Edit appears. These actions are the same as clicking the Add, Delete,
and Edit buttons.

Double-clicking on an intervention in the list invokes an Edit action for that intervention specification.
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Manage Forecasting Project Window
Use this resizable window to work with collections of series, models, and options called projects. The
window contains a project name, a description field, and a table of information about all the series for which
you have fit forecasting models. Access it by using the Manage Projects button in the Time Series Forecasting
window.

Controls and Fields

Project Name

is the name of the SAS catalog entry in which forecasting models and other results will be stored and
from which previously stored results are loaded into the forecasting system. You can specify the project
by typing a SAS catalog entry name in this field or by selecting the Browse button to the right of this
field. If you specify the name of an existing catalog entry, the information in the project file is loaded.
If you specify a one-level name, it is assumed to be the name of a project in the “fmsproj” catalog in the
“sasuser” library. For example, typing samproj is equivalent to typing sasuser.fmsproj.samproj.

project Browse button
opens the Forecasting Project File Selection window to enable you to select and load the project from a
list of previously stored project files.

Description

is a descriptive label for the forecasting project. The description you type in this field will be stored
with the catalog entry shown in the Project field if you save the project.
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Series List Table

The table of series for which forecasting models have been fit contains the following columns.

Series Name

is the name of the time series variable represented in the given row of the table.

Series Frequency

is the time interval (data frequency) for the time series.

Input Data Set Name

is the input data set that provided the data for the series.

Forecasting Model

is the descriptive label for the forecasting model selected for the series.

Statistic Name

is the statistic of fit for the forecasting model selected for the series.

Number of Models

is the total number of forecasting models fit to the series. If there is more than one model for a series,
use the Model List window to see a list of models.

Series Label

is the variable label for the series.

Time ID Variable Name

is the time ID variable for the input data set for the series.

Series Data Range

is the time range of the nonmissing values of the series.

Model Fit Range

is the period of fit used for the series.

Model Evaluation Range

is the evaluation period used for the series.

Forecast Range

is the forecast period set for the series.

Menu Bar

File

New

opens a dialog box that lets you create a new project, assign it a name and description, and make
it the active project.

Open

opens a dialog box that lets you select and load a previously saved project.

Close

closes the Manage Forecasting Project window and returns to the main window.
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Save

saves the current state of the system (including all the models fit to a series) to the current project
catalog entry.

Save As

saves the current state of the system with a prompt for the name of the catalog entry in which to
store the information.

Save to Data Set

saves the current project file information in a SAS data set. The contents of the data set are the
same as the information displayed in the series list table.

Delete

deletes the current project file.

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can
use to import your data from an external spreadsheet or database to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print

prints the current project file information.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Edit

Delete Series

deletes all models for the selected (highlighted) row of the table and removes the series from the
project.

Clear

resets the system, deleting all series and models from the project.

Reset

restores the Manage Forecasting Project window to its initial state.

View

Data Set

opens a Viewtable window to display the input data set for the selected (highlighted) series.

Series

opens the Time Series Viewer window to display plots of the selected (highlighted) series.

Model

opens the Model Viewer window to show the current forecasting model for the selected series.
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Forecast

opens the Model Viewer to display plots of the forecasts produced by the forecasting model for
the selected (highlighted) series.

Tools

Diagnose Series

opens the Series Diagnostics window to perform the automatic series diagnostic process to
determine the kinds of forecasting models appropriate for the selected (highlighted) series.

List Models

opens the Model List window for the selected (highlighted) series, which displays a list of all the
models that you fit for the series. This action is the same as double-clicking the mouse on the
table row.

Generate Data

opens the Time Series Simulation window. This window enables you to simulate ARIMA time
series processes and is useful for educational exercises or testing the system.

Refit Models

All Series

refits all the models for all the series in the project by using data within the current fit range.

Selected Series

refits all the models for the currently highlighted series by using data within the current fit
range.

Reevaluate Models

All Series

reevaluates all the models for all the series in the project by using data within the current
evaluation fit range.

Selected Series

reevaluates all the models for the currently highlighted series by using data within the
current evaluation range.

Options

Time Ranges

opens the Time Ranges Specification window to enable you to change the fit and evaluation time
ranges and the forecast horizon.

Default Time Ranges

opens the Default Time Ranges window to enable you to control how the system sets the time
ranges for series when you do not explicitly set time ranges with the Time Ranges Specification
window. Settings made by using this window do not affect series you are already working with;
they take effect when you select a new series.
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Model Selection List

opens the Model Selection List editor window. Use this to edit the set of forecasting models
considered by the automatic model selection process and displayed by the Models to Fit window.

Statistics of Fit

opens the Statistics of Fit Selection window, which controls which of the available statistics will
be displayed.

Forecast Options

opens the Forecast Options window, which enables you to control the widths of forecast confi-
dence limits and control the kind of predicted values computed for models that include series
transformations.

Column Labels

enables you to set long or short column labels. Long labels are used by default.

Include Interventions

controls whether intervention effects defined for the current series are automatically added as
predictors to the models considered by the automatic selection process and displayed by the
Model Selection List editor window. When the Include Interventions option is selected, the series
interventions are also automatically added to the predictors list when you specify a model in the
ARIMA and Custom Models Specification windows.

Print Audit Trail

prints to the SAS log information about the models fit by the system. A check mark or filled
check box next to this item indicates that the audit option is turned on.

Show Source Statements

controls whether SAS statements submitted by the forecasting system are printed in the SAS log.
When the Show Source Statements option is selected, the system sets the SAS system option
SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option.
Note that only some of the functions performed by the forecasting system are accomplished by
submitting SAS statements. A check mark or filled check box next to this item indicates that the
option is turned on.

Left Mouse Button Actions

If you select a series in the table by positioning the mouse pointer over the table row and clicking with the
left mouse button once, that row of the table is highlighted. Menu bar actions such as Delete Series will apply
to the highlighted row of the table.

If you select a series in the table by positioning the mouse pointer over the table row and double-clicking
with the left mouse button, the system opens the Model List window for that series, which displays a list of
all the models that you fit for the series. This has the same function as the List Models item under Tools on
the menu bar.
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Right Mouse Button Actions

Clicking the right mouse button invokes a pop-up menu of actions applicable to the highlighted series. The
actions in this menu are as follows:

Delete Series

deletes the highlighted series and its models from the project. This has the same function as the Delete
Series item on the Edit menu.

Refit All Models

refits all models attached to the highlighted series by using data within the current fit range. This has
the same function as the Selected Series item under Refit Models on the Tools menu.

Reevaluate All Models

reevaluates all models attached to the highlighted series by using data within the current evaluation
range. This has the same function as the Selected Series item under Reevaluate Models on the Tools
menu.

List Models

invokes the Model List window. This has the same function as List Models on the Tools menu.

View Series

opens the Time Series Viewer window to display plots of the highlighted series. This has the same
function as the Series item on the View menu.

View Forecasting Model

invokes the Model Viewer window to display the forecasting model for the highlighted series. This has
the same function as the Model item on the View menu.

View Forecast

opens the Model Viewer window to display the forecasts for the highlighted series. This has the same
function as the Forecast item on the View menu.

Refresh

updates information shown in the Manage Forecasting Project window.
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Model Fit Comparison Window
Use the Model Fit Comparison window to compare goodness-of-fit statistics for any two models fit to the
current series. Access it from the Tools menu of the Develop Models window and the Automatic Model
Fitting Results window whenever two or more models have been fit to the series.

Controls and Fields

Series

identifies the current time series variable.

Range

displays the starting and ending dates of the series data range.

Model 1

shows the model currently identified as Model 1.

Model 1 upward arrow button
enables you to change the model identified as Model 1 if it is not already the first model in the list of
models associated with the series. Click this button to cycle upward through the list of models.

Model 1 downward arrow button
enables you to change the model identified as Model 1 if it is not already the last model in the list of
models. Click this button to cycle downward through the list of models.

Model 2

shows the model currently identified as Model 2.

Model 2 upward arrow button
enables you to change the model identified as Model 2 if it is not already the first model in the list of
models associated with the series. Click this button to cycle upward through the list of models.

Model 2 downward arrow button
enables you to change the model identified as Model 2 if it is not already the last model in the list of
models. Click this button to cycle downward through the list of models.

Close

closes the Model Fit Comparison window.
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Save

opens a dialog box for specifying the name and label of a SAS data set to which the statistics will be
saved. The data set will contain all available statistics and their values for Model 1 and Model 2, as
well as a flag variable that is set to 1 for those statistics that were displayed.

Print

prints the contents of the table to the SAS Output window. If you find that the contents do not appear
immediately in the Output window, you need to set scrolling options. Select “Preferences” under the
Options submenu of the Tools menu. In the Preferences window, select the Advanced tab, then set
output scroll lines to a number greater than zero.

If you want to route the contents to a printer, go to the Output window and select “Print” from the File
menu.

Statistics

opens the Statistics of Fit Selection window for controlling which statistics are displayed.

Model List Window
This resizable window shows all of the models that have been fit to a particular series in a project. Access it
from the Manage Forecasting Project window by selecting a series in the series list table and choosing “List
Models” from the Tools menu or by double-clicking the series.

Controls and Fields

Data Set

is the name of the current input data set.

Interval

is the time interval (data frequency) for the input data set.

Series

is the variable name and label of the current time series.
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Data Range

is the date of the first and last nonmissing data values available for the current series in the input data
set.

Fit Range

is the current period of fit setting. This is the range of data that will be used to fit models to the series. It
might be different from the fit ranges shown in the table, which were in effect when the models were fit.

Evaluation Range

is the current period of evaluation setting. This is the range of data that will be used to calculate the
goodness-of-fit statistics for models fit to the series. It might be different from the evaluation ranges
shown in the table, which were in effect when the models were fit.

View Series Graphically icon
opens the Time Series Viewer window to display plots of the current series.

View Model Graphically icon
opens the Model Viewer to display graphs and tables for the currently highlighted model.

Model List Table

The table of models fit to the series contains columns that show the model label, the fit range and evaluation
range used to fit the models, and all of the currently selected fit statistics. You can change the selection of fit
statistics by using the Statistics of Fit Selection window.

Click on column headings to sort the table by a particular column. If a model is highlighted, clicking with
the right mouse button invokes a pop-up menu that provides actions applicable to the highlighted model. It
includes the following items.

View Model

opens the Model Viewer on the selected model. This has the same function as “Model Predictions” on
the View menu.

View Parameter Estimates

opens the Model Viewer to display the parameter estimates table for the currently highlighted model.
This has the same function as “Parameter Estimates” on the View menu.

View Statistics of Fit

opens the Model Viewer to display the statistics of fit table for the currently highlighted model. This
has the same function as “Statistics of Fit” on the View menu.

Edit Model

opens the appropriate model specification window for changing the attributes of the highlighted model
and fitting the modified model.

Refit Model

refits the highlighted model using the current fit range.

Reevaluate Model

reevaluates the highlighted model using the current evaluation range.

Delete Model

deletes the highlighted model from the project.
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View Forecasts

opens the Model Viewer to show the forecasts for the highlighted model. This has the same function as
“Forecast Graph” on the View menu.

Menu Bar

File

Save

opens a dialog box that lets you save the contents of the table to a specified SAS data set.

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can use
to import your data from an external spreadsheet or data base to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print

sends the contents of the table to a printer as defined through Print Setup.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Close

closes the window and returns to the Manage Forecasting Projects window.

Edit

Edit Model

enables you to modify the specification of the currently highlighted model in the table and fit the
modified model. The new model replaces the current model in the table.

Refit Model

refits the currently highlighted model using data within the current fit range.

Reevaluate Model

recomputes statistics of fit for the currently highlighted model using data within the current
evaluation range.

Delete Model

deletes the currently highlighted model from the model table.

Reset

restores the contents of the Model List window to the state initially displayed.

View
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Series

opens the Time Series Viewer window to display plots of the current series. This has the same
function as the View Series Graphically icon.

Model Predictions

opens the Model Viewer to display a predicted and actual plot for the currently highlighted model.
This has the same function as the View Model Graphically icon.

Prediction Errors

opens the Model Viewer to display the prediction errors for the currently highlighted model.

Prediction Error Autocorrelations

opens the Model Viewer to display the prediction error autocorrelations, partial autocorrelations,
and inverse autocorrelations for the currently highlighted model.

Prediction Error Tests

opens the Model Viewer to display graphs of white noise and stationarity tests on the prediction
errors of the currently highlighted model.

Parameter Estimates

opens the Model Viewer to display the parameter estimates table for the currently highlighted
model.

Statistics of Fit

opens the Model Viewer window to display goodness-of-fit statistics for the currently highlighted
model.

Forecast Graph

opens the Model Viewer to graph the forecasts for the currently highlighted model.

Forecast Table

opens the Model Viewer to display forecasts for the currently highlighted model in a table.

Options

Statistics of Fit

opens the Statistics of Fit Selection window, which presents a list of statistics that the system can
display. Use this action to customize the list of statistics shown in the Model Viewer, Automatic
Model Fitting Results, and Model Fit Comparison windows and available for selection in the
Model Selection Criterion menu.

Column Labels

enables you to set long or short column labels. Long labels are used by default.
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Model Selection Criterion Window
Use the Model Selection Criterion window to select the model selection criterion statistic used by the
automatic selection process to determine the best fitting forecasting model. Model selection criterion statistics
are a subset of those shown in the Statistics of Fit Selection window, since some statistics of fit, such as
number of observations, are not useful for model selection.

This window is available from the Model Selection Criterion item of the Options menu of the Develop
Models window, Automatic Model Fitting window, and Produce Forecasts window.

Controls and Fields

Show subset

when selected, lists only those model selection criterion statistics that are selected in the Statistics of
Fit Selection window.

Show all

when selected, lists all available model selection criterion statistics.

OK

closes the window and sets the model selection criterion to the statistic you specified.

Cancel

closes the window without changing the model selection criterion.
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Model Selection List Editor Window
Use the Model Selection List Editor window to edit the model selection list, including adding your own
custom models, and to specify which models in the list are to be used in the automatic fitting process. Access
it from the Options menu in the Develop Models, Automatic Model Fitting window, Produce Forecasts, and
Manage Projects windows.

The window initially displays the current model list for your project. You can modify this set of models in
several ways:

� Open one or more alternate model lists to replace or append to the current model list. These can be
either model lists included with the software or model lists previously saved by you or other users.

� Turn the autofit option on or off for individual models. Those that are not flagged for autofit will be
available by using the Models to Fit window but not by using automatic model fitting.

� Delete models from the list that are not needed for your project.

� Reorder the models in the list.

� Edit models in the list.

� Create a new empty list.

� Add new models to the list.

Having modified the current model list, you can save it for future use in several ways:

� Save it in a catalog so it can be opened later in the Model Selection List Editor.

� Save it as the user default to be used automatically when new projects are created.

� Select close to close the Model Selection List Editor and attach the modified model selection list to the
current project.

� Select cancel to close the Model Selection List Editor without changing the current project’s model
selection list.

Since model selection lists are not bound to specific data sources, care must be taken when including
data-specific features such as interventions and regressors. When you add an ARIMA, Factored ARIMA, or
Custom model to the list, you can add regressors by selecting from the variables in the current data set. If
there is no current data set, you will be prompted to specify a data set so you can select regressors from the
series it contains.

If you use a model list that has models with a particular regressor name on a data set that does not contain a
series of that name, model fitting will fail. However, you can make global changes to the regressor names
in the model list by using Set regressor names. For example, you might use the list of dynamic regression
models found in the sashelp.forcast catalog. It uses the regressor name “price.” If your regressor series is
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named “x,” you can specify “price” as the current regressor name and “x” as the “change to” name. The
change will be applied to all models in the list that contain the specified regressor name.

Interventions cannot be defined for models defined from the Model Selection List Editor. However, you
can define interventions by using the Intervention Specification Window and apply them to your models by
turning on the Include Interventions option.

Auto Fit

The auto fit column of check boxes enables you to eliminate some of the models from being used in the
automatic fitting process without having to delete them from the list. By default, all models are checked,
meaning that they are all used for automatic fitting.

Model

This column displays the descriptions of all models in the model selection list. You can select one or more
models by clicking them. Selected models are highlighted and become the object of the actions Edit, Move,
and Delete.

Menu Bar

File

New

creates a new empty model selection list.
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Open

opens a dialog box for selecting one or more existing model selection lists to open. If you select
multiple lists, they are all opened at once as a concatenated list. This helps you build large
specialized model lists quickly by mixing and matching various existing lists such as the various
ARIMA model lists included in SASHELP.FORCAST. By default, the lists you open replace the
current model list. Select the “append” radio button if you want to append them to the current
model list.

Open System Default

opens the default model list supplied with the product.

Cancel

exits the window without applying any changes to the current project’s model selection list.

Close

closes the window and applies any changes made to the project’s model selection list.

Save

opens a dialog box for saving the edited model selection list in a catalog of your choice.

Save as User Default

saves your edited model list as a default list for new projects. The location of this saved list is
shown on the message line. When you create new projects, the system searches for this model list
and uses it if it is found. If it is not found, the system uses the original default model list supplied
with the product.

Edit

Reset

restores the list to its initial state when the window was invoked.

Add Model

enables you to add new models to the selection list. You can use the Smoothing Model Specifica-
tion window, the ARIMA Model Specification window, the Factored ARIMA Model Specification
window, or the Custom Model Specification window.

Edit Selected

opens the appropriate model specification window for changing the attributes of the highlighted
model and adding the modified model to the selection list. The original model is not deleted.

Move Selected

enables you to reorder the models in the list. Select one or more models, then select Move
Selected from the menu or toolbar. A note appears on the message line: “Select the row after
which the selected models are to be moved.” Then select any unhighlighted row in the table. The
selected models will be moved after this row.

Delete

deletes any highlighted models from the list. This item is not available if no models are selected.

Set Regressor Names

opens a dialog box for changing all occurrences of a given regressor name in the models of the
current model selection list to a name that you specify.

Select All

selects all models in the list.
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Clear Selections

deselects all models in the list.

Select All for Autofit

checks the autofit check boxes of all models in the list.

Clear Autofit Selections

deselects the autofit check boxes of all models in the list.

Mouse Button Actions

Clicking any model description in the table selects (highlights) that model. Clicking the same model again
deselects it. Multiple selections are allowed.

Clicking the auto fit check box in any row toggles the associated model’s eligibility for use in automatic
model fitting.

Right-clicking the right mouse button opens a pop-up menu.

Model Viewer Window
This resizable window provides plots and tables of actual values, model predictions, forecasts, and related
statistics. The various plots and tables available are referred to as views. The section “View Selection Icons”
on page 4129 explains how to change the view.

You can access Model Viewer in a number of ways, including the View Model Graphically icon of the
Develop Models and Model List windows, the Graph button of the Automatic Model Fitting Results window,
and the Model item under the View menu in the Manage Forecasting Project window. In addition, you can go
directly to a selected view in the Model Viewer window by selecting Model Predictions, Prediction Errors,
Statistics of Fit, Prediction Error Autocorrelations, Prediction Error Tests, Parameter Estimates, Forecast
Graph, or Forecast Table from the View menu or corresponding toolbar icon or pop-up menu item in the
Develop Models, Model List, or Automatic Model Fitting Results windows.
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The state of the Model Viewer window is controlled by the current model and the currently selected view.
You can resize this window, and you can use other windows without closing the Model Viewer window. By
default, the Model Viewer window is automatically updated to display the new model when you switch to
working with another model (that is, when you highlight a different model). You can unlink the Model Viewer
window from the current model selection by selecting the Link/Unlink icon from the window’s horizontal
toolbar. See “Link/Unlink” in the section “Toolbar Icons” on page 4129.

For more information, see the section “Model Viewer” on page 3978.

Toolbar Icons

The Model Viewer window contains a horizontal row of icons called the Toolbar. Corresponding menu items
appear under various menus. The function of each icon is explained in the following list.

Zoom in

In the Model Predictions, Prediction Errors, and Forecast Graph views, the Zoom In action changes
the mouse pointer into cross hairs that you can use with the left mouse button to define a region of the
graph to zoom in on. In the Prediction Error Autocorrelations and Prediction Error Tests views, Zoom
In reduces the number of lags displayed.

Zoom out

reverses the previous Zoom In action.

Link/Unlink viewer

disconnects or connects the Model Viewer window to the model table (Develop Models window, Model
List window, or Automatic Model Fitting Results window). When the viewer is linked, selecting
another model in the model table causes the model viewer to be updated to show the selected model.
When the Viewer is unlinked, selecting another model does not affect the viewer. This feature is useful
for comparing two or more models graphically. You can display a model of interest in the Model
Viewer, unlink it, then select another model and open another Model Viewer window for that model.
Position the viewer windows side by side for convenient comparisons of models, or use the Next Viewer
icon or F12 function key to switch between them.

Save

saves the contents of the Model Viewer window. By default, an HTML page is created. This enables
you to display graphs and tables by using the Results Viewer or publish them on the web or your
intranet. See also “Save Graph As” and “Save Data As” under “Menu Bar” below.

Print

prints the contents of the viewer window.

Close

closes the Model Viewer window and returns to the window from which it was invoked.

View Selection Icons

At the right hand side of the Model Viewer window is a vertical toolbar to select the view—that is, the kind
of plot or table that the viewer displays. Corresponding menu items appear under View on the menu bar. The
function of each icon is explained in the following list.



4130 F Chapter 65: Window Reference

Model Predictions

displays a plot of actual series values and model predictions over time. Click individual points in the
graph to get a display of the type (actual or predicted), ID value, and data value in the upper right corner
of the window.

Prediction Errors

displays a plot of model prediction errors (residuals) over time. Click individual points in the graph to
get a display of the prediction error value in the upper right corner of the window.

Prediction Error Autocorrelations

displays horizontal bar charts of the sample autocorrelation, partial autocorrelation, and inverse
autocorrelation functions for the model prediction errors. Overlaid line plots represent confidence
limits computed at plus and minus two standard errors. Click any of the bars to display its value.

Prediction Error Tests

displays horizontal bar charts that represent results of white noise and stationarity tests on the model
prediction errors. The first bar chart shows the significance probability of the Ljung-Box chi-square
statistic computed on autocorrelations up to the given lag. Longer bars favor rejection of the null
hypothesis that the series is white noise. Click any of the bars to display an interpretation.

The second bar chart shows tests of stationarity of the model prediction errors, where longer bars
favor the conclusion that the series is stationary. Each bar displays the significance probability of the
augmented Dickey-Fuller unit root test to the given autoregressive lag. Long bars represent higher
levels of significance against the null hypothesis that the series contains a unit root. For seasonal data, a
third bar chart appears for seasonal root tests. Click on any of the bars to display an interpretation.

Parameter Estimates

displays a table showing model parameter estimates along with standard errors and t tests for the null
hypothesis that the parameter is zero.

Statistics of Fit

displays a table of statistics of fit for the selected model. The set of statistics shown can be changed by
using the Statistics of Fit item under Options on the menu bar.

Forecast Graph

displays a plot of actual and predicted values for the series data range, followed by a horizontal reference
line and forecasted values with confidence limits. Click individual points in the graph to get a display
of the type, date/time, and value of the data point in the upper right corner of the window.

Forecast Table

displays a data table with columns containing the date/time, actual, predicted, error (residual), lower
confidence limit, and upper confidence limit values, together with any predictor series.

Menu Bar

File

Save Graph

saves the plot displayed in viewer window as a SAS/GRAPH grseg catalog entry. When the
current view is a table, this menu item is not available. See also “Save” in the section “Toolbar
Icons” on page 4129. If a graphics catalog entry name has not already been specified, this action
functions like “Save Graph As.”



Model Viewer Window F 4131

Save Graph As

saves the current graph as a SAS/GRAPH grseg catalog entry in a SAS catalog that you specify
and/or as an Output Delivery System (ODS) object. By default, an HTML page is created, with
the graph embedded as a gif image.

Save Data

saves the data displayed in the viewer window in a SAS data set, where applicable.

Save Data As

saves the data in a SAS data set that you specify and/or as an Output Delivery System (ODS)
object. By default, an HTML page is created, with the data displayed as a table.

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can use
to import your data from an external spreadsheet or data base to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print Graph

prints the contents of the viewer window if the current view is a graph. This has the same function
as the Print toolbar icon. If the current view is a table, this menu item is not available.

Print Data

prints the data displayed in the viewer window, where applicable.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Print Preview

opens a preview window to show how your plots will appear when printed.

Close

closes the Model Viewer window and returns to the window from which it was invoked.

Edit

Edit Model

enables you to modify the specification of the current model and to fit the modified model, which
is then displayed in the viewer.

Refit Model

refits the current model by using data within the current fit range. This action also causes the
ranges to be reset if the data range has changed.

Reevaluate Model

reevaluates the current model by using data within the current evaluation range. This action also
causes the ranges to be reset if the data range has changed.

View

See “View Selection Icons” on page 4129. It describes each of the items available under “View,” except
“Zoom Way Out.”
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Zoom Way Out

zooms the plot out as far as it will go, undoing all prior zoom in operations.

Tools

Link Viewer

See “Link/Unlink” in the section “Toolbar Icons” on page 4129.

Options

Time Ranges

opens the Time Ranges Specification window to enable you to change the period of fit, period of
evaluation, or forecast horizon to be applied to subsequently fit models.

Statistics of Fit

opens the Statistics of Fit Selection window, which presents a list of statistics that the system can
display. Use this action to customize the list of statistics shown in the statistics of fit table and
available for selection in the Model Selection Criterion menu.

Forecast Options

opens the Forecast Options window, which enables you to control the widths of forecast confi-
dence limits and control the kind of predicted values computed for models that include series
transformations.

Residual Plot Options

provides a choice of four methods of computing prediction errors for models which include a
data transformation.

Prediction Errors

computes the difference between the transformed series actual values and model predictions.

Normalized Prediction Errors

computes prediction errors in normalized form.

Model Residuals

computes the difference between the untransformed series values and the untransformed
model predictions.

Normalized Model Residuals

computes model residuals in normalized form.

Number of Lags

opens a window to enable you to specify the number of lags shown in the Prediction Error
Autocorrelations and Prediction Error Tests views. You can also use the Zoom In and Zoom Out
actions to control the number of lags displayed.

Correlation Probabilities

controls whether the bar charts in the Prediction Error Autocorrelations view represent significance
probabilities or values of the correlation coefficient. A check mark or filled check box next to this
item indicates that significance probabilities are displayed. In each case the bar graph horizontal
axis label changes accordingly.
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Include Interventions

controls whether intervention effects defined for the current series are automatically added as
predictors to the models considered by the automatic selection process. A check mark or filled
check box next to this item indicates that the option is turned on.

Print Audit Trail

prints to the SAS log information about the models fit by the system. A check mark or filled
check box next to this item indicates that the audit option is turned on.

Show Source Statements

controls whether SAS statements submitted by the forecasting system are printed in the SAS log.
When the Show Source Statements option is selected, the system sets the SAS system option
SOURCE before submitting SAS statements; otherwise, the system uses the NOSOURCE option.
Note that only some of the functions performed by the forecasting system are accomplished by
submitting SAS statements. A check mark or filled check box next to this item indicates that the
option is turned on.

Mouse Button Actions

You can examine the data values of individual points in the Model Predictions, Model Prediction Errors, and
Forecast Graph views of the Model Viewer by clicking the point. The date/time and data values as well as
the type (actual, predicted, and so forth) are displayed in a box that appears in the upper right corner of the
Viewer window. Click the mouse elsewhere or select any action to dismiss the data box.

Similarly, you can display values in the Prediction Error Autocorrelations view by clicking any of the bars.
Clicking bars in the Prediction Error Tests view displays a Recommendation for Current View window which
explains the test represented by the bar.

When you select the Zoom In action in the Predicted Values, Model Prediction Errors, and Forecasted Values
views, you can use the mouse to define a region of the graph to zoom. Position the mouse pointer at one
corner of the region, press the left mouse button, and move the mouse pointer to the opposite corner of the
region while holding the left mouse button down. When you release the mouse button, the plot is redrawn to
show an expanded view of the data within the region you selected.



4134 F Chapter 65: Window Reference

Models to Fit Window
Use the Models to Fit window to fit models by choosing them from the current model selection list. Access it
by using “Fit Models from List” on the Fit Model submenu of the Edit menu in the Develop Models window,
or the pop-up menu that appears when you click an empty area of the model table in the Develop Models
window. If you want to alter the list of models that appears here, use the Model Selection List editor window.

To select a model to be fit, use the left mouse button. To select more than one model to fit, drag with the
mouse, or select the first model, then press the shift key while selecting the last model. For noncontiguous
selections, press the control key while selecting with the mouse. To begin fitting the models, double-click the
last selection or select the OK button.

If series diagnostics have been performed, the radio box is available. If the Subset by series diagnostics radio
button is selected, only those models in the selection list that fit the diagnostic criteria will be shown for
selection. If you want to choose models that do not fit the diagnostic criteria, click the Show all models
button.

Controls and Fields

Show all models

when selected, lists all available models, regardless of the setting of the series diagnostics options.

Subset by series diagnostics

when selected, lists only the available models that are consistent with the series diagnostics options.

OK

closes the Models to Fit window and fits the selected models.

Cancel

closes the window without fitting any models. Any selections you made are lost.
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Polynomial Specification Window
Use the Polynomial Specification window to add a polynomial to an ARIMA model. The set of lags defined
here become a polynomial factor, denoted by a list of lags in parentheses, when you click “OK.” If you
accessed this window from the AR Polynomial Specification window, then it is added to the autoregressive
part of the model. If you accessed it from the MA Polynomial Specification window, it is added to the
moving-average part of the model.

Controls and Fields

Lag

specifies a lag value to add to the list. Type in a positive integer or select one by clicking the spin box
arrows.

Add

adds the value in the Lag spin box to the list of polynomial lags. Duplicate values are not allowed.

Remove

deletes a selected lag from the list of polynomial lags.

Polynomial Lags

is a list of unique integers that represent lags to be added to the model.

OK

closes the window and returns the specified polynomial to the AR or MA polynomial specification
window.

Cancel

closes the window and discards any polynomial lags added to the list.
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Produce Forecasts Window
Use the Produce Forecasts window to produce forecasts for the series in the current input data set for
which you have fit forecasting models. Access it by using the Produce Forecasts button of the Time Series
Forecasting window.

Controls and Fields

Input Data Set

is the name of the current input data set. To specify the input data set, you can type a one-level or
two-level SAS data set name in this field or click the Browse button to the right of the field.

Input data set Browse button
opens the Data Set Selection window to enable you to select the input data set.

Time ID

is the name of the time ID variable for the input data set. To specify this variable, you can type the ID
variable name in this field or use the Select button.

Time ID Select button
opens the Time ID Variable Specification window.

Create button
opens a menu of choices of methods for creating a time ID variable for the input data set. Use this
feature if the input data set does not already contain a valid time ID variable.

Interval

is the time interval between observations (data frequency) in the current input data set. If the interval is
not automatically filled in by the system, you can type in an interval name here, or select one from the
pop-up list.

Series

indicates the number and names of time series variables for which forecasts will be produced.

Series Select button
opens the Series to Process window to let you select the series for which you want to produce forecasts.
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Forecast Output Data Set

is the name of the output data set that will contain the forecasts. Type the name of the output data set in
this field or click the Browse button.

Forecast Output Browse button
opens a dialog box to let you locate an existing data set to which to save the forecasts.

Format

enables you to select one of three formats for the forecast data set:

Simple

specifies the simple format for the output data set. The data set contains the time ID variable
and the forecast variables and contains one observation per time period. Observations for earlier
time periods contain actual values copied from the input data set; later observations contain the
forecasts.

Interleaved

specifies the interleaved format for the output data set. The data set contains the time ID variable,
the variable TYPE, and the forecast variables. There are several observations per time period,
with the meaning of each observation identified by the TYPE variable.

Concatenated

specifies the concatenated format for the output data set. The data set contains the variable
SERIES, the time ID variable, and the variables ACTUAL, PREDICT, ERROR, LOWER, and
UPPER. There is one observation per time period per forecast series. The variable SERIES
contains the name of the forecast series, and the data set is sorted by SERIES and DATE.

Horizon

is the number of periods or years to forecast beyond the end of the input data range. To specify the
forecast horizon, you can type a value in this field or select one from the pop-up list.

Horizon periods

selects the units to apply to the horizon. By default, the horizon value represents number of periods. For
example, if the interval is month, the horizon represents the number of months to forecast. Depending
on the interval, you can also select weeks or years, so that the horizon is measured in those units.

Horizon date

is the ending date of the forecast horizon. You can type in a date that uses a form recognized by a SAS
date informat, or you can increment or decrement the date shown by using the left and right arrows.
The outer arrows change the date by a larger amount than the inner arrows. The date field and the
horizon field reset each other, so you can use either one to specify the forecasting horizon.

Run button
produces forecasts for the selected series and stores the forecasts in the specified output SAS data set.

Output button
opens a Viewtable window to display the output data set. This button becomes available once the
forecasts have been written to the data set.

Close button
closes the Produce Forecasts window and returns to the Time Series Forecasting window.
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Menu Bar

File

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can
use to import your data from an external spreadsheet or database to a SAS data set for use in the
Time Series Forecasting System.

Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Close

closes the Produce Forecasts window and returns to the Time Series Forecasting window.

View

Input Data Set

opens a Viewtable window to browse the current input data set.

Output Data Set

opens a Viewtable window to browse the output data set. This has the same function as the Output
button.

Tools

Produce Forecasts

produces forecasts for the selected series and stores the forecasts in the specified output SAS data
set. This has the same function as the Run button.

Options

Default Time Ranges

opens the Default Time Ranges window to enable you to control how the system sets the time
ranges when new series are selected.

Model Selection List

opens the Model Selection List editor window. Use this to edit the set of forecasting models
considered by the automatic model selection process and displayed by the Models to Fit window.

Model Selection Criterion

opens the Model Selection Criterion window, which presents a list of goodness-of-fit statistics
and enables you to select the fit statistic that is displayed in the table and used by the automatic
model selection process to determine the best fitting model.
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Statistics of Fit

opens the Statistics of Fit Selection window, which presents a list of statistics that the system can
display. Use this action to customize the list of statistics shown in the Statistics of Fit table and
available for selection in the Model Selection Criterion window.

Forecast Options

opens the Forecast Options window, which enables you to control the widths of forecast confi-
dence limits and control the kind of predicted values computed for models that include series
transformations.

Forecast Data Set

enables you to select one of three formats for the forecast data set. See Format, which is described
previously in this section.

Alignment of Dates

Beginning

aligns dates that the system generates to identify forecast observations in output data sets to the
beginning of the time intervals.

Middle

aligns dates that the system generates to identify forecast observations in output data sets to the
midpoints of the time intervals.

End

aligns dates that the system generates to identify forecast observations in output data sets to the
end of the time intervals.

Automatic Fit

opens the Automatic Model Selection Options window, which enables you to control the number of
models retained by the automatic model selection process and whether the models considered for
automatic selection are subset according to the series diagnostics.

Set Toolbar Type

Image Only

displays the toolbar items as icons without text.

Label Only

displays the toolbar items as text without icon images.

Both

displays the toolbar items as both text and icon images.

Include Interventions

controls whether intervention effects defined for the current series are automatically added as predictors
to the models considered by the automatic selection process. A check mark or filled check box next to
this item indicates that the option is turned on.

Print Audit Trail

prints to the SAS log information about the models fit by the system. A check mark or filled check box
next to this item indicates that the audit option is turned on.



4140 F Chapter 65: Window Reference

Show Source Statements

controls whether SAS statements submitted by the forecasting system are printed in the SAS log. When
the Show Source Statements option is selected, the system sets the SAS system option SOURCE before
submitting SAS statements; otherwise, the system uses the NOSOURCE option. Note that only some
of the functions performed by the forecasting system are accomplished by submitting SAS statements.
A check mark or filled check box next to this item indicates that the option is turned on.

Regressors Selection Window
Use the Regressors Selection window to select one or more time series variables in the input data set to
include as regressors in the forecasting model to predict the dependent series. Access it from the pop-up
menu that appears when you click the Add button in the ARIMA Model Specification window or Custom
Model Specification window.

Controls and Fields

Dependent

is the name and variable label of the current series.

Regressors

is a table listing the names and labels of the variables in the input data set available for selection as
regressors. The variables that you select are highlighted. Selecting a highlighted row again deselects
that variable.

OK

closes the Regressors Selection window and adds the selected variables as regressors in the model.

Cancel

closes the window without adding any regressors. Any selections you made are lost.

Reset

resets all options to their initial values upon entry to the window.
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Save Data As
Use Save Data As from the Time Series Viewer Window or the Model Viewer Window to save data displayed
in a table to a SAS data set or external file.

Use Save Forecast As from the Develop Models Window to save forecasts and related data including the
series name, model, and interval. It supports append mode, enabling you to accumulate the forecasts of
multiple series in a single data set.

To save your data in a SAS data set, provide a library name or assign one by using the Browse button, then
provide a data set name or accept the default. Enter a descriptive label for the data set in the Label field.
Click OK to save the data set. If you specify an existing data set, it will be overwritten, except in the case of
Save Forecast As.

External file output takes advantage of the Output Delivery System (ODS) and is designed primarily for
creating HTML tables for web reporting. You can build a set of web pages quickly and use the ODS Results
window to view and organize them. To use this feature, check Save External File in the External File Output
box. To set ODS options, click Results Preferences, and then select the Results tab in the Preferences dialog
box.

If you have previously saved data of the current type, the system remembers your previous labels and titles.
To reuse them, click the arrow button to the right of each of these window fields.

Use the Customize button if you need to specify the name of a custom macro that contains ODS statements.
The default macro simply runs the PRINT procedure. A custom macro can be used to add PRINT procedure
and/or ODS statements to customize the type and organization of output files produced.
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Save Graph As
Use Save Graph As from the Time Series Viewer Window or the Model Viewer Window to save any of the
graphs in a catalog or external file.

To save your graph as a grseg catalog entry, enter a two level name for the catalog or select Browse to open an
Open dialog box. Use it to select an existing library or assign a new one and then select a catalog to contain
the graph. Click the Open button to open the catalog and close the dialog box. Then enter a graphics entry
name (eight characters or less) and a label or accept the defaults and click the OK button to save the graph.

External file output takes advantage of the Output Delivery System (ODS) and is designed primarily for
creating gif images and HTML for web reporting. You can build a set of web pages that contain graphs
and use the Results window to view and organize them. To use this feature, check Save External File in the
External File Output box. To set ODS options, click Results Preferences, and then select the Results tab in
the Preferences dialog box.

If you have previously saved graphs of the current type, the system remembers your previous labels and titles.
To reuse them, click the arrow button to the right of each of these window fields.

Use the Customize button if you need to specify the name of a custom macro that contains ODS statements.
The default macro simply runs the GREPLAY procedure. Users familiar with ODS might want to add
statements to the macro to customize the type and organization of output files produced.
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Seasonal ARIMA Model Options Window
Use the Seasonal ARIMA Model Options window to specify the autoregressive, differencing, and moving-
average orders for the seasonal part of a model defined by using the Custom Model Specification window.
Access it by selecting “Seasonal ARIMA. . . ” from the Seasonal Model combo box of that window.

Controls and Fields

ARIMA Options

Use these combo boxes to specify the orders of the ARIMA model. You can either type in a value or
click the combo box arrow to select from a pop-up list.

Autoregressive

defines the order of the seasonal autoregressive part of the model.

Differencing

defines the order of seasonal differencing.

Moving Average

defines the order of the seasonal moving-average term.

OK

closes the Seasonal ARIMA Model Options window and returns to the Custom Model Specification
window.

Cancel

closes the Seasonal ARIMA Model Options window and returns to the Custom Model Specification
window, discarding any changes made.

Reset

resets all options to their initial values upon entry to the window.
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Series Diagnostics Window
Use the Series Diagnostics window to set options to limit the kinds of forecasting models considered for the
series according to series characteristics. Access it by selecting “Diagnose Series” from the Tools menu in
the Develop Models, Manage Project, and Time Series Viewer window menu bars. You can let the system
diagnose the series characteristics automatically or you can specify series characteristics according to your
judgment by using the radio buttons.

For each of the options Log Transform, Trend, and Seasonality, the value “Yes” means that only models
appropriate for series with that characteristic should be considered. The value “No” means that only models
appropriate for series without that characteristic should be considered. The value “Maybe” means that models
should be considered without regard for that characteristic.

Controls and Fields

Series

is the name and variable label of the current series.

Series Characteristics

Log Transform

specifies whether forecasting models with or without a logarithmic series transformation are
appropriate for the series.

Trend

specifies whether forecasting models with or without a trend component are appropriate for the
series.

Seasonality

specifies whether forecasting models with or without a seasonal component are appropriate for
the series.

Automatic Series Diagnostics

performs the automatic series diagnostic process. The options Log Transform, Trend, and Seasonality
are set according to the results of statistical tests.
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OK

closes the Series Diagnostics window.

Cancel

closes the Series Diagnostics window without changing the series diagnostics options. Any options
you specified are lost.

Reset

resets all options to their initial values upon entry to the Series Diagnostics window.

Clear

resets all options to their default values.

Series Selection Window
Use this resizable window to select a time series variable by specifying a library, a SAS data set or view, and
a variable. These selections can be made by typing, by selecting from lists, or by a combination of the two.
In addition, you can control the time ID variable and time interval, and you can browse the data set or view
plots of the series from this window.

This window appears automatically when you click the View Series Graphically or Develop Models button in
the Time Series Forecasting window and no series has been selected, and when you open the Time Series
Viewer as a stand-alone tool. It is also invoked by using the Browse button in the Develop Models window.

The system requires that series names be unique for each frequency (interval) within the forecasting project.
If you select a series from the current input data set that already exists in the project with the same interval
but a different input data set name, the system warns you and gives you the option to cancel the selection,
to refit all models associated with the series by using the data from the current input data set, to delete the
models for the series, or to inherit the existing models.
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Controls and Fields

Library

is a SAS libname assigned within the current SAS session. If you know the libname associated with the
data set of interest, you can type it in this field and press Return. If it is a valid choice, it will appear
in the libraries list and will be highlighted. The SAS Data Sets list will be populated with data sets
associated with that libname.

Data Set

is the name of a SAS data set (data file or data view) that resides under the selected libname. If you
know the name, you can type it in and press Return. If it is a valid choice, it will appear in the SAS
Data Sets list and will be highlighted, and the Time Series Variables list will be populated with the
numeric variables in the data set.

Variable

is the name of a numeric variable contained in the selected data set. You can type the variable name in
this field or you can select the variable with the mouse from the Time Series Variables list.

Time ID

is the name of the ID variable for the input data set. To specify the ID variable, you can type the ID
variable name in this field or click the Select button.

Select button
opens the Time ID Variable Specification window to let you select an existing variable in the data set as
the Time ID.

Create button
opens a menu of methods for creating a time ID variable for the input data set. Use this feature if the
data set does not already contain a valid time ID variable.

Interval

is the time interval between observations (data frequency) in the selected data set. If the interval is not
automatically filled in by the system, you can type in an interval name or select one from the pop-up
list. For more information about intervals, see Chapter 5, “Date Intervals, Formats, and Functions,” in
this book.

OK

is a button that is present when you have selected “Develop Models” from the Time Series Forecasting
window. It closes the Series Selection window and makes the selected series the current series.

Close

If you have selected the View Series Graphically icon from the Time Series Forecasting window, this
button returns you to that window. If you have selected a series, it remains selected as the current series.

If you are using the Time Series Viewer as a stand-alone application, this button closes the application.

Cancel

is a button that is present when you have selected “Develop Models” from the Time Series Forecasting
window. It closes the Series Selection window without applying any selections made.

Reset

resets the fields to their initial values at entry to the window.

Table

opens a Viewtable window for browsing the selected data set. This can assist you in locating the
variable containing data you are looking for.
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Graph

opens the Time Series Viewer window to display the selected time series variable. You can switch
to a different series in the Series Selection window without closing the Time Series Viewer window.
Position the windows so they are both visible, or use the Next Viewer toolbar icon or F12 function key
to switch between windows.

Refresh

updates all fields and lists in the window. If you assign a new libname without exiting the Series
Selection window, use the refresh action to update the Libraries list so that it will include the newly
assigned libname. Also use the Refresh action to update the variables list if the input data set is changed.

Selection Lists

Libraries

displays a list of currently assigned libnames. You can select a libname by clicking it, which is
equivalent to typing its name in the Library field. If you cannot locate the library or directory you are
interested in, go to the SAS Explorer window, select “New” from the File menu, then select “Library”
and “OK.” This opens the New Library dialog box. You also assign a libname by submitting a libname
statement from the Editor window. Click the Refresh button to make the new libname available in the
libraries list.

SAS Data Sets

displays a list of the SAS data sets (data files or data views) located under the selected libname. You
can select one of these by clicking it, which is equivalent to typing its name in the Data Set field.

Time Series Variables

displays a list of numeric variables contained within the selected data set. You can select one of these
by clicking it, which is equivalent to typing its name in the Variable field. You can double-click a series
to select it and exit the window.

Series to Process Window
Use the Series to Process window to select series for model fitting or forecasting. Access it by using the
Select button in the Automatic Model Fitting and Produce Forecasts windows. Hold down the shift key or
drag with the left mouse button for multiple selections. Use the control key for noncontiguous multiple
selections. Once you make selections and click OK, the number of selected series and their names are listed
in the Series to Process field of the calling window (with ellipses if not all the names will fit).

When invoked from Automatic Model Fitting, the Series to Process window shows all the numeric variables
in the input data set except the time ID variable. These are the series which are currently available for model
fitting.

When invoked from Produce Forecasts, the Series to Process window shows all the series in the input data set
for which models have been fit. These are the series which are currently available for forecasting.
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Controls and Fields

OK

closes the window and applies the series selection(s) which have been made. At least one series must
be selected.

Cancel

closes the window, ignoring series selections which have been made, if any.

Clear

deselects all series in the selection list.

All

selects all series in the selection list.

Series Viewer Transformations Window
Use the Series Viewer Transformations window to view plots of transformations of the current series in the
Time Series Viewer window. It provides a larger set of transformations than those available from the viewer
window’s toolbar. It is invoked by using “Other Transformations” under the Tools menu of the Time Series
Viewer window. The options that you specify in this window are applied to the series displayed in the Time
Series Viewer window when you select “OK” or “Apply.”

Use the Apply button if you want to make repeated transformations to a series without having to close and
reopen the Series Viewer Transformations window each time.
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Controls and Fields

Series

is the variable name for the current time series.

Transformation

is the transformation applied to the time series displayed in the Time Series Viewer window. Select
Log, Logistic, Square Root, Box-Cox, or none from the pop-up list.

Simple Differencing

is the order of differencing applied to the time series displayed in the Time Series Viewer window.
Select a number from 0 to 5 from the pop-up list.

Seasonal Differencing

is the order of seasonal differencing applied to the time series displayed in the Time Series Viewer
window. Select a number from 0 to 3 from the pop-up list.

Percent Change

is a check box that if selected displays the series in terms of percent change from the previous period.

Additive Decomposition

is a check box that produces a display of a selected series component derived by using additive
decomposition.

Multiplicative Decomposition

is a check box that produces a display of a selected series component derived using multiplicative
decomposition.

Component

selects a series component to display when either additive or multiplicative decomposition is turned
on. You can display the seasonally adjusted component, the trend-cycle component, the seasonal
component, or the irregular component—that is, the residual that remains after removal of the other
components. The heading in the viewer window shows which component is currently displayed.



4150 F Chapter 65: Window Reference

OK

applies the transformation options you selected to the series displayed in the Time Series Viewer
window and closes the Series Viewer Transformations window.

Cancel

closes the Series Viewer Transformations window without changing the series displayed by the Time
Series Viewer window.

Apply

applies the transformation options you selected to the series displayed in the Time Series Viewer
window without closing the Series Viewer Transformations window.

Reset

resets the transformation options to their initial values upon entry to the Series Viewer Transformations
window.

Clear

resets the transformation options to their default values (no transformations).

Smoothing Model Specification Window
Use the Smoothing Model Specification window to specify and fit exponential smoothing and Winters method
models. Access it from the Develop Models window by using the Fit Model submenu of the Edit menu or
from the pop-up menu when you click an empty area of the model table.

Controls and Fields

Series

is the name and variable label of the current series.

Model

is a descriptive label for the model that you specify. You can type a label in this field or allow the
system to provide a label. If you leave the label blank, a label is generated automatically based on the
options you specify.

Smoothing Methods
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Simple Smoothing

specifies simple (single) exponential smoothing.

Double (Brown) Smoothing

specifies double exponential smoothing by using Brown’s one parameter model (single exponen-
tial smoothing applied twice).

Seasonal Smoothing

specifies seasonal exponential smoothing. (This is like Winters method with the trend term
omitted.)

Linear (Holt) Smoothing

specifies exponential smoothing of both the series level and trend (Holt’s two parameter model).

Damped-Trend Smoothing

specifies exponential smoothing of both the series level and trend with a trend damping weight.

Winters Method - Additive

specifies Winters method with additive seasonal factors.

Winters Method - Multiplicative

specifies Winters method with multiplicative seasonal factors.

Smoothing Weights

displays the values used for the smoothing weights. By default, the Smoothing Weights fields are set to
“optimize,” which means that the system will compute the weight values that best fit the data. You can
also type smoothing weight values in these fields.

Level

is the smoothing weight used for the level of the series.

Trend

is the smoothing weight used for the trend of the series.

Damping

is the smoothing weight used by the damped-trend method to damp the forecasted trend towards
zero as the forecast horizon increases.

Season

is the smoothing weight used for the seasonal factors in Winters method and seasonal exponential
smoothing.

Transformation

displays the series transformation specified for the model. When a transformation is specified, the
model is fit to the transformed series, and forecasts are produced by applying the inverse transformation
to the model predictions. Select Log, Logistic, Square Root, Box-Cox, or None from the pop-up
list.

Bounds

displays the constraints imposed on the fitted smoothing weights. Select one of the following from the
pop-up list:

Zero-One/Additive

sets the smoothing weight optimization region to the intersection of the region bounded by the
intervals from zero (0.001) to one (0.999) and the additive invertible region. This is the default.
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Zero-One Boundaries

sets the smoothing weight optimization region to the region bounded by the intervals from zero
(0.001) to one (0.999).

Additive Invertible

sets the smoothing weight optimization region to the additive invertible region.

Unrestricted

sets the smoothing weight optimization region to be unbounded.

Custom

opens the Smoothing Weights window to enable you to customize the constraints for smoothing
weights optimization.

OK

closes the Smoothing Model Specification window and fits the model you specified.

Cancel

closes the Smoothing Model Specification window without fitting the model. Any options you specified
are lost.

Reset

resets all options to their initial values upon entry to the window. This might be useful when editing an
existing model specification; otherwise, Reset has the same function as Clear.

Clear

resets all options to their default values.

Smoothing Weight Optimization Window
Use the Smoothing Weight Optimization window to specify constraints for the automatic fitting of smoothing
weights for exponential smoothing and Winters method models. Access it from the Smoothing Models
Specification window when you select “Custom” in the “Bounds” combo box.
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Controls and Fields

No restrictions

when selected, specifies unrestricted smoothing weights.

Bounded region

when selected, restricts the fitted smoothing weights to be within the bounds that you specify with the
“Smoothing Weight Bounded Region” options.

Additive invertible region

when selected, restricts the fitted smoothing weights to be within the additive invertible region of the
parameter space of the ARIMA model equivalent to the smoothing model. (For more information, see
the section “Smoothing Models” on page 4178.)

Additive invertible and bounded region

when selected, restricts the fitted smoothing weights to be both within the additive invertible region and
within bounds that you specify.

Smoothing Weight Bounded Region

is a group of numeric entry fields that enable you to specify lower and upper limits on the fitted value
of each smoothing weight. The fields that appear in this part of the window depend on the kind of
smoothing model that you specified.

OK

closes the window and sets the options that you specified.

Cancel

closes the window without changing any options. Any values you specified are lost.

Reset

resets all options to their initial values upon entry to the window.

Clear

resets all options to their default values.

Statistics of Fit Selection Window
Use the Statistics of Fit Selection window to specify which of the available goodness-of-fit statistics are
reported for models you fit and are available for selection as the model selection criterion used by the
automatic selection process. This window is available under the Options menu in the Develop Models,
Automatic Model Fitting, Produce Forecasts, and Model List windows, and from the Statistics button in the
Model Fit Comparison window and Automatic Model Fitting results windows.
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Controls and Fields

Select Statistics Table

list the available statistics. Select a row of the table to select or deselect the statistic shown in that row.

OK

closes the window and applies the selections made.

Cancel

closes the window without applying any selections.

Clear

deselects all statistics.

All

selects all statistics.

Time ID Creation – 1,2,3 Window
Use the Time ID Creation – 1,2,3 window to add a time ID variable to an input data set with observation
numbers as the ID values. The interval for the series will be 1. Use this approach if the data frequency does
not match any of the system’s date or date-time intervals, or if other methods of assigning a time ID do not
work. To access this window, select “Create from observation numbers” from the Create pop-up list in any
window where you can select a Time ID variable. For more information, see Chapter 5, “Date Intervals,
Formats, and Functions,” in this book.
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Controls and Fields

Data set name

is the name of the input data set.

New ID variable name

is the name of the time ID variable to be created. You can type any valid SAS variable name in this
field.

OK

closes the window and proceeds to the next step in the time ID creation process.

Cancel

closes the window without creating a Time ID variable. Any options you specified are lost.

Time ID Creation from Several Variables Window
Use the Time ID Creation from Several Variables window to add a SAS date valued time ID variable to an
input data set when the input data set already contains several dating variables, such as day, month, and
year. To access this window, select “Create from existing variables” from the Create pop-up list in any
window where you can select a Time ID variable. For more information, see Chapter 60, “Creating Time ID
Variables.”

Controls and Fields

Variables

is a list of variables in the input data set. Select existing ID variables from this list.

Date Part

is a list of date parts that you can specify for the selected ID variable. For each ID variable that you
select from the Variables list, select the Date Part value that describes what the values of the ID variable
represent.

arrow button
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moves the selected existing ID variable and date part specification to the “Existing Time IDs” list. Once
you have done this, you can select another ID variable from the Variables list.

New variable

is the name of the time ID variable to be created. You can type any valid SAS variable name in this
field.

New interval

is the time interval between observations in the input data set implied by the date part ID variables you
have selected.

OK

closes the window and proceeds to the next step in the time ID creation process.

Cancel

closes the window without creating a time ID. Any options you specified are lost.

Reset

resets the options to their initial values upon entry to the window.

Time ID Creation from Starting Date Window
Use the Time ID Creation from Starting Date window to add a SAS date valued time ID variable to an input
data set. This is a convenient way to add a time ID of any interval as long as you know the starting date of the
series. To access this window, select “Create from starting date and frequency” from the Create pop-up list in
any window where you can select a Time ID variable. For more information, see Chapter 60, “Creating Time
ID Variables.”

Controls and Fields

Data set name

is the name of the input data set.

Starting Date

is the starting date for the time series in the data set. Enter a date value in this field, using a form
recognizable by a SAS date informat, for example, 1998:1, feb1997, or 03mar1998.
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Interval

is the time interval between observations in the data set. Select an interval from the pop-up list.

New ID variable name

is the name of the time ID variable to be created. You can type any valid SAS variable name in this
field.

OK

closes the window and proceeds to the next step in the time ID creation process.

Cancel

closes the window without changing the input data set. Any options you specified are lost.

Time ID Creation Using Informat Window
Use the Time ID Creation using Informat window to add a SAS date valued time ID variable to an input
data set. Use this window if your data set contains a date variable that is stored as a character string. Using
the appropriate SAS date informat, the date string is read in and used to create a date or date-time variable.
To access this window, select “Create from existing variable/informat” from the Create pop-up list in any
window where you can select a Time ID variable.

Controls and Fields

Variable Name

is the name of an existing ID variable in the input data set. Click the Select button to select a variable.

Select button

opens a list of variables in the input data set for you to select from.

Informat

is a SAS date or datetime informat for reading date or datetime value from the values of the specified
existing ID variable. You can type in an informat or select one from the pop-up list.

First Obs

is the value of the variable you selected from the first observation in the data set, displayed here for
convenience.
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Date Value

is the SAS date or datetime value read from the first observation value that uses the informat that you
specified.

New ID variable name

is the name of the time ID variable to be created. You can type any valid SAS variable name in this
field.

OK

closes the window and proceeds to the next step in the time ID creation process.

Cancel

closes the window without changing the input data set. Any options you specified are lost.

Reset

resets the options to their initial values upon entry to the window.

Time ID Variable Specification Window
Use the Time ID Variable Specification window to specify a variable in the input data set that contains the
SAS date or datetime value of each observation. You do not need to use this window if your time ID variable
is named date, time, or datetime, since these are picked up automatically. Invoke the window from the
Select button to the right of the Time ID field in the Data Set Selection, Automatic Model Fitting, Produce
Forecasts, Series Selection, and Time Series Forecasting windows.

Controls and Fields

Data Set

is the name of the current input data set.

Time ID

is the name of the currently selected Time ID variable, if any.

Interval

is the time interval between observations (data frequency) in the input data set.

Select a Time ID Variable

is a selection list of variables in the input set. Select one variable to assign it as the Time ID variable.
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OK

closes the window and retains the selection made, if it is a valid time ID.

Cancel

closes the window and ignores any selection made.

Reset

restores the time ID variable to the one assigned when the window was initially opened, if any.

Time Ranges Specification Window
Use the Time Ranges Specification window to control the period of fit and evaluation and the forecasting
horizon. Invoke this window from the Options menu in the Develop Models, Manage Forecasting Project,
and Model Viewer windows or the Set Ranges button in the Develop Models window.

Controls and Fields

Data Set

is the name of the current input data set.

Interval

is the time interval (data frequency) for the input data set.

Series

is the variable name and label of the current time series.

Data Range

gives the date of the first and last nonmissing data values available for the current series in the input
data set.

Period of Fit

gives the starting and ending dates of the period of fit. This is the time range used for estimating
model parameters. By default, it is the same as the data range. You can type dates in these fields, or
you can use the arrow buttons to the left and right of the date fields to decrement or increment the
date values shown. Date values must be entered in a form recognized by a SAS date informat. (See
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SAS Programmers Guide: Essentials for information about SAS date informats.) The inner arrows
increment by periods, the outer arrows increment by larger amounts, depending on the data interval.

Period of Evaluation

gives the starting and ending dates of the period of evaluation. This is the time range used for evaluating
models in terms of statistics of fit. By default, it is the same as the data range. You can type dates in
these fields, or you can use the control arrows to the left and right of the date fields to decrement or
increment the date values shown. Date values must be entered in a form recognized by a SAS date
informat. (See SAS Programmers Guide: Essentials for information about SAS date informats.) The
inner arrows increment by periods, the outer arrows increment by larger amounts, depending on the
data interval.

Forecast Horizon

is the forecasting horizon expressed as a number of forecast periods or number of years (or number of
weeks for daily data). You can type a number or select one from the pop-up list. The ending date for
the forecast period is automatically updated when you change the number of forecasts periods.

Forecast Horizon - Units

indicates whether the Forecast Horizon value represents periods or years (or weeks for daily data).

Forecast Horizon Date Value

is the date of the last forecast observation. You can type a date in this field, or you can use the arrow
buttons to the left and right of the date field to decrement or increment the date values shown. Date
values must be entered in a form recognized by a SAS date informat. (For information about SAS date
informats, see SAS Programmers Guide: Essentials.) The Forecast Horizon is automatically updated
when you change the ending date for the forecast period.

Hold-out Sample

specifies that a number of observations or years (or weeks) of data at the end of the data range be used
for the period of evaluation with the remainder of data used as the period of fit. You can type a number
in this field or select one from the pop-up list. When the hold-out sample value is changed, the Period
of Fit and Period of Evaluation ranges are changed to reflect the hold-out sample specification.

Hold-out Sample - Units

indicates whether the hold-out sample field represents periods or years (or weeks for daily data).

OK

closes the window and stores the specified changes.

Cancel

closes the window without saving changes. Any options you specified are lost.

Reset

resets the options to their initial values upon entry to the window.

Clear

resets all options to their default values.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Time Series Forecasting Window
The Time Series Forecasting window is the main application window that appears when you invoke the Time
Series Forecasting System. It enables you to specify a project file and an input data set and provides access
to the other windows described in this chapter.

Controls and Fields

Project

is the name of the SAS catalog entry in which forecasting models and other results will be stored and
from which previously stored results are loaded into the forecasting system. You can specify the project
by typing a SAS catalog entry name in this field or by clicking the Browse button to right of this field.
If you specify the name of an existing catalog entry, the information in the project file is loaded. If you
specify a one-level name, the catalog name is assumed to be fmsproj and the library is assumed to be
sasuser. For example, samproj is equivalent to sasuser.fmsproj.samproj.

Project Browse button
opens the Forecasting Project File Selection window to enable you to select and load the project from a
list of previously stored projects.

Description

is a descriptive label for the forecasting project. The description you type in this field will be stored
with the catalog entry shown in the Project field.

Data Set

is the name of the current input data set. To specify the input data set, you can type the data set name in
this field or use the Browse button to the right of the field.

Data set Browse button
opens the Data Set Selection window to enable you to select the input data set.

Time ID

is the name of the ID variable for the input data set. To specify the ID variable, you can type the ID
variable name in this field or use the Select button. If the time ID variable is named date, time, or
datetime, it is automatically picked up by the system.
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Select button
opens the Time ID Variable Specification window.

Create button
opens a menu of choices of methods for creating a time ID variable for the input data set. Use this
feature if the input data set does not already contain a valid time ID variable.

Interval

is the time interval between observations (data frequency) in the current input data set. If the interval is
not automatically filled in, you can type an interval name or select one from the pop-up list. For more
information about intervals, see the section “Time Series Data Sets, ID Variables, and Time Intervals”
on page 3955.

View Series Graphically icon
opens the Time Series Viewer window to display plots of series in the current input data set.

View Data as a Table

opens a Viewtable window for browsing the selected input data set.

Develop Models

opens the Develop Models window to enable you to fit forecasting models to individual time series and
choose the best models to use to produce the final forecasts of each series.

Fit Models Automatically

opens the Automatic Model Fitting window for applying the automatic model selection process to all
series or to selected series in an input data set.

Produce Forecast

opens the Produce Forecasts window for producing forecasts for the series in the current input data set
for which you have fit forecasting models.

Manage Projects

opens the Manage Forecasting Project window for viewing or editing information stored in projects.

Exit

closes the Time Series Forecasting system.

Help

accesses the help system.
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Time Series Simulation Window
Use the Time Series Simulation window to create a data set of simulated series generated by ARIMA
processes. Access this window from the Tools menu in the Develop Models and Manage Forecasting Project
windows.

Controls and Fields

Output Data Set

is the name of the data set to be created. Type in a one-level or two-level SAS data set name.

Interval

is the time interval between observations (data frequency) in the simulated data set. Type in an interval
name or select one from the pop-up list.

Seed

is the seed for the random number generator used to produce the simulated time series.

N Observations

is the number of time periods to simulate.

Starting Date

is the starting date for the simulated observations. Type in a date in a form recognizable by a SAS data
informat, for example, 1998:1, feb1997, or 03mar1998.

Ending Date

is the ending date for the simulated observations. Type in a date in a form recognizable by a SAS data
informat.

Series to Generate

is the list of variable names and ARIMA processes to simulate.

Add Series

opens the ARIMA Process Specification window to enable you to add entries to the Series to Generate
list.

Delete Series

deletes selected (highlighted) entries from the Series to Generate list.
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OK

closes the Time Series Simulation window and performs the specified simulations and creates the
specified data set.

Cancel

closes the window without creating a simulated data set. Any options you specified are lost.

Time Series Viewer Window
Use the Time Series Viewer window to explore time series data using plots, transformations, statistical tests,
and tables. It is available as a stand-alone application and as part of the Time Series Forecasting System. To
use it as a stand-alone application, select it from the Analysis submenu of the Solutions menu, or use the
tsview command (see Chapter 64, “Command Reference,” in this book). To use it within the Time Series
Forecasting System, select the View Series Graphically icon in the Time Series Forecasting, Develop Models,
or Model List window, or select “Series” from the View menu of the Develop Models, Manage Project, or
Model List window.

The various plots and tables available are referred to as views. The section “View Selection Icons” on
page 4129 explains how to change the view.

The state of the Time Series Viewer window is controlled by the current series, the current series transfor-
mation specification, and the currently selected view. You can resize this window, and you can use other
windows without closing the Time Series Viewer window. You can explore a number of series conveniently
by keeping the Series Selection window open. Each time you make a selection, the viewer window is updated
to show the selected series. Keep both windows visible, or switch between them by using the Next Viewer
toolbar icon or the F12 function key.

You can open multiple Time Series Viewer windows. This enables you to “freeze”a plot so you can come
back to it later, or compare two plots side by side on your screen. To do this, unlink the viewer by using the
Link/Unlink icon on the window’s toolbar or the corresponding item in the Tools menu. While the viewer
window remains unlinked, it is not updated when other selections are made in the Series Selection window.
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Instead, when you select a series and click the Graph button, a new Time Series Viewer window is invoked.
You can continue this process to open as many viewer windows as you want. The Next Viewer icon and
corresponding F12 function key are useful for navigating between windows when they are not simultaneously
visible on your screen.

A wide range of series transformations is available. Basic transformations are available from the window’s
horizontal toolbar, and others are available by selecting “Other Transformations” from the Tools menu.

Horizontal Tool Bar

The Time Series Viewer window contains a horizontal toolbar with the following icons:

Zoom in

changes the mouse pointer into cross hairs that you can use with the left mouse button to drag out a
region of the time series plot to zoom in on. In the Autocorrelations view and the White Noise and
Stationarity Tests view, Zoom In reduces the number of lags displayed.

Zoom out

reverses the previous Zoom In action and expands the time range of the plot to show more of the series.
In the Autocorrelations view and the White Noise and Stationarity Tests view, Zoom Out increases the
number of lags displayed.

Link/Unlink viewer

disconnects or connects the Time Series Viewer window to the window in which the series was selected.
When the Viewer is linked, it always shows the current series. If you select another series, linked
Viewers are updated. Unlinking a Viewer freezes its current state, and changing the current series has
no effect on the Viewer’s display. The View Series action creates a new Series Viewer window if there
is no linked Viewer. By using the unlink feature, you can open several Time Series Viewer windows
and display several different series simultaneously.

Log Transform

applies a log transform to the current view. This can be combined with other transformations; the
current transformations are shown in the title.

Difference

applies a simple difference to the current view. This can be combined with other transformations; the
current transformations are shown in the title.

Seasonal Difference

applies a seasonal difference to the current view. For example, if the data are monthly, the seasonal
cycle is one year. Each value has subtracted from it the value from one year previous. This can be
combined with other transformations; the current transformations are shown in the title.

Close

closes the Time Series Viewer window and returns to the window from which it was invoked.
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Vertical Toolbar View Selection Icons

At the right-hand side of the Time Series Viewer window is a vertical toolbar used to select the kind of plot
or table that the Viewer displays.

Series

displays a plot of series values over time.

Autocorrelations

displays plots of the sample autocorrelations, partial autocorrelation, and inverse autocorrelation
functions for the series, with lines overlaid at plus and minus two standard errors.

White Noise and Stationarity Tests

displays horizontal bar charts that represent results of white noise and stationarity tests. The first bar
chart shows the significance probability of the Ljung-Box chi-square statistic computed on autocorre-
lations up to the given lag. Longer bars favor rejection of the null hypothesis that the series is white
noise. Click any of the bars to display an interpretation.

The second bar chart shows tests of stationarity, where longer bars favor the conclusion that the series
is stationary. Each bar displays the significance probability of the augmented Dickey-Fuller unit root
test to the given autoregressive lag. Long bars represent higher levels of significance against the null
hypothesis that the series contains a unit root. For seasonal data, a third bar chart appears for seasonal
root tests. Click any of the bars to display an interpretation.

Data Table

displays a data table containing the values in the input data set.

Menu Bar

File

Save Graph

saves the current plot as a SAS/GRAPH grseg catalog entry in a default or most recently specified
catalog. This item is unavailable in the Data Table view.

Save Graph as

saves the current graph as a SAS/GRAPH grseg catalog entry in a SAS catalog that you specify
and/or as an Output Delivery System (ODS) object. By default, an HTML page is created, with
the graph embedded as a gif image. This item is unavailable in the Data Table view.

Save Data

saves the data displayed in the viewer window to an output SAS data set. This item is unavailable
in the Series view.

Save Data as

saves the data in a SAS data set that you specify and/or as an Output Delivery System (ODS)
object. By default, an HTML page is created, with the data displayed as a table.

Import Data

is available if you license SAS/ACCESS software. It opens an Import Wizard, which you can
use to import your data from an external spreadsheet or database to a SAS data set for use in the
Time Series Forecasting System.
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Export Data

is available if you license SAS/ACCESS software. It opens an Export Wizard, which you can
use to export a SAS data set, such as a forecast data set created with the Time Series Forecasting
System, to an external spreadsheet or database.

Print Graph

prints the plot displayed in the viewer window. This item is unavailable in the Data Table view.

Print Data

prints the data displayed in the viewer window. This item is unavailable in the Series view.

Print Setup

opens the Print Setup window, which allows you to access your operating system print setup.

Print Preview

opens a preview window to show how your plots will look when printed.

Close

closes the Time Series Viewer window and returns to the window from which it was invoked.

View

Series

displays a plot of series values over time. This has the same function as the Series icon on the
vertical toolbar.

Autocorrelations

displays plots of the sample autocorrelation, partial autocorrelation, and inverse autocorrelation
functions for the series. This has the same function as the Autocorrelations icon on the vertical
toolbar.

White Noise and Stationarity Tests

displays horizontal bar charts representing results of white noise and stationarity tests. This has
the same function as the White Noise and Stationarity Tests icon on the vertical toolbar.

Data Table

displays a data table containing the values in the input data set. This has the same function as the
Data Table icon on the vertical toolbar.

Zoom In

zooms the display. This has the same function as the Zoom In icon on the window’s horizontal
toolbar.

Zoom Out

undoes the last zoom in action. This has the same function as the Zoom Out icon on the window’s
horizontal toolbar.

Zoom Way Out

reverses all previous Zoom In actions and expands the time range of the plot to show all of the
series, or shows the maximum number of lags in the Autocorrelations View or the White Noise
and Stationarity Tests view.

Tools
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Log Transform

applies a log transformation. This has the same function as the Log Transform icon on the
window’s horizontal toolbar.

Difference

applies simple differencing. This has the same function as the Difference icon on the window’s
horizontal toolbar.

Seasonal Difference

applies seasonal differencing. This has the same function as the Seasonal Difference icon on the
window’s horizontal toolbar.

Other Transformations

opens the Series Viewer Transformations window to enable you to apply a wide range of
transformations.

Diagnose Series

opens the Series Diagnostics window to determine the kinds of forecasting models appropriate
for the current series.

Define Interventions

opens the Interventions for Series window to enable you to edit or add intervention effects for use
in modeling the current series.

Link Viewer

connects or disconnects the Time Series Viewer window to the window from which series are
selected. This has the same function as the Link item on the window’s horizontal toolbar.

Options

Number of Lags

opens a window to let you specify the number of lags shown in the Autocorrelations view and the
White Noise and Stationarity Tests view. You can also use the Zoom In and Zoom Out actions to
control the number of lags displayed.

Correlation Probabilities

controls whether the bar charts in the Autocorrelations view represent significance probabilities or
values of the correlation coefficient. A check mark or filled check box next to this item indicates
that significance probabilities are displayed. In each case the bar graph horizontal axis label
changes accordingly.

Mouse Button Actions

You can examine the data value and date of individual points in the Series view by clicking them. The date
and value are displayed in a box that appears in the upper right corner of the Viewer window. Click the mouse
elsewhere or select any action to dismiss the data box.

You can examine the values of the bars and confidence limits at different lags in the Autocorrelations view by
clicking individual bars in the vertical bar charts.

You can display an interpretation of the tests in the White Noise and Stationarity Tests view by clicking the
bars.
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When you select the Zoom In action, you can use the mouse to define a region of the graph to take a closer
look at. Position the mouse pointer at one corner of the region, press the left mouse button, and move the
mouse pointer to the opposite corner of the region while holding the left mouse button down. When you
release the mouse button, the plot is redrawn to show an expanded view of the data within the region you
selected.
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This chapter provides computational details about several aspects of the Time Series Forecasting System.
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Forecasting Process Summary
This section summarizes the forecasting process.

Parameter Estimation
The parameter estimation process for ARIMA and smoothing models is described graphically in Figure 66.1.

Figure 66.1 Model Fitting Flow Diagram

The specification of smoothing and ARIMA models is described in Chapter 61, “Specifying Forecasting
Models.” Computational details about these kinds of models are provided in the sections “Smoothing Models”
on page 4178 and “ARIMA Models” on page 4189. The results of the parameter estimation process are
displayed in the Parameter Estimates table of the Model Viewer windows along with the estimate of the
model variance and the final smoothing state.
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Model Evaluation
The model evaluation process is described graphically in Figure 66.2.

Figure 66.2 Model Evaluation Flow Diagram

Model evaluation is based on the one-step-ahead prediction errors for observations within the period of
evaluation. The one-step-ahead predictions are generated from the model specification and parameter
estimates. The predictions are inverse transformed (median or mean) and adjustments are removed. The
prediction errors (the difference of the dependent series and the predictions) are used to compute the statistics
of fit, which are described in the section “Series Diagnostic Tests” on page 4196. The results generated by
the evaluation process are displayed in the Statistics of Fit table of the Model Viewer window.
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Forecasting
The forecasting generation process is described graphically in Figure 66.3.

Figure 66.3 Forecasting Flow Diagram

The forecasting process is similar to the model evaluation process described in the preceding section, except
that k-step-ahead predictions are made from the end of the data through the specified forecast horizon, and
prediction standard errors and confidence limits are calculated. The forecasts and confidence limits are
displayed in the Forecast plot or table of the Model Viewer window.
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Forecast Combination Models
This section discusses the computation of predicted values and confidence limits for forecast combination
models. For information about how to specify forecast combination models and their combining weights, see
Chapter 61, “Specifying Forecasting Models.”

Given the response time series fyt W 1 � t � ng with previously generated forecasts for the m component
models, a combined forecast is created from the component forecasts as follows:

Predictions: Oyt D
Pm
iD1wi Oyi;t

Prediction errors: Oet D yt � Oyt

where Oyi;t are the forecasts of the component models and wi are the combining weights.

The estimate of the root mean square prediction error and forecast confidence limits for the combined forecast
are computed by assuming independence of the prediction errors of the component forecasts, as follows:

Standard errors: O�t D
qPm

iD1w
2
i O�
2
i;t

Confidence limits: ˙O�tZ˛=2

where O�i;t are the estimated root mean square prediction errors for the component models, ˛ is the confidence
limit width, 1 � ˛ is the confidence level, and Z˛=2 is the ˛

2
quantile of the standard normal distribution.

Since, in practice, there might be positive correlation between the prediction errors of the component forecasts,
these confidence limits may be too narrow.

External or User-Supplied Forecasts
This section discusses the computation of predicted values and confidence limits for external forecast models.

Given a response time series yt and external forecast series Oyt , the prediction errors are computed as
Oet D yt � Oyt for those t for which both yt and Oyt are nonmissing. The mean squared error (MSE) is
computed from the prediction errors.

The variance of the k-step-ahead prediction errors is set to k times the MSE. From these variances, the
standard errors and confidence limits are computed in the usual way. If the supplied predictions contain so
many missing values within the time range of the response series that the MSE estimate cannot be computed,
the confidence limits, standard errors, and statistics of fit are set to missing.
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Adjustments
Adjustment predictors are subtracted from the response time series prior to model parameter estimation,
evaluation, and forecasting. After the predictions of the adjusted response time series are obtained from the
forecasting model, the adjustments are added back to produce the forecasts.

If yt is the response time series and Xi;t , 1 � i � m are m adjustment predictor series, then the adjusted
response series wt is

wt D yt �

mX
iD1

Xi;t

Parameter estimation for the model is performed by using the adjusted response time series wt . The forecasts
Owt of wt are adjusted to obtain the forecasts Oyt of yt .

Oyt D Owt C

mX
iD1

Xi;t

Missing values in an adjustment series are ignored in these computations.

Series Transformations
For pure ARIMA models, transforming the response time series can aid in obtaining stationary noise series.
For general ARIMA models with inputs, transforming the response time series or one or more of the input
time series can provide a better model fit. Similarly, the fit of smoothing models can improve when the
response series is transformed.

There are four transformations available, for strictly positive series only. Let yt > 0 be the original time
series, and let wt be the transformed series. The transformations are defined as follows:

Log is the logarithmic transformation,

wt D ln.yt /

Logistic is the logistic transformation,

wt D ln.cyt=.1 � cyt //

where the scaling factor c is

c D .1 � 10�6/10�ceil.log10.max.yt ///

and ceil.x/ is the smallest integer greater than or equal to x.

Square Root is the square root transformation,

wt D
p
yt
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Box-Cox is the Box-Cox transformation,

wt D

(
y�t �1

�
; �¤0

ln.yt /; � D 0

Parameter estimation is performed by using the transformed series. The transformed model predictions and
confidence limits are then obtained from the transformed time series and these parameter estimates.

The transformed model predictions Owt are used to obtain either the minimum mean absolute error (MMAE)
or minimum mean squared error (MMSE) predictions Oyt , depending on the setting of the forecast options.
The model is then evaluated based on the residuals of the original time series and these predictions. The
transformed model confidence limits are inverse-transformed to obtain the forecast confidence limits.

Predictions for Transformed Models

Since the transformations described in the previous section are monotonic, applying the inverse-transformation
to the transformed model predictions results in the median of the conditional probability density function at
each point in time. This is the minimum mean absolute error (MMAE) prediction.

If wt D F.yt / is the transform with inverse-transform yt D F�1.wt /, then

median. Oyt / D F�1.E Œwt �/ D F�1. Owt /

The minimum mean squared error (MMSE) predictions are the mean of the conditional probability density
function at each point in time. Assuming that the prediction errors are normally distributed with variance �2t ,
the MMSE predictions for each of the transformations are as follows:

Log is the conditional expectation of inverse-logarithmic transformation,

Oyt D E
�
ewt

�
D exp

�
Owt C �

2
t =2

�
Logistic is the conditional expectation of inverse-logistic transformation,

Oyt D E

�
1

c.1C exp.�wt //

�
where the scaling factor c D .1 � e�6/10�ceil.log10.max.yt ///.

Square Root is the conditional expectation of the inverse-square root transformation,

Oyt D E
�
w2t
�
D Ow2t C �

2
t

Box-Cox is the conditional expectation of the inverse Box-Cox transformation,

Oyt D

(
E
h
.�wt C 1/

1=�
i
; �¤0

E Œewt � D exp. Owt C 1
2
�2t /; � D 0

The expectations of the inverse logistic and Box-Cox ( �¤0 ) transformations do not generally have explicit
solutions and are computed by using numerical integration.
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Smoothing Models
This section details the computations performed for the exponential smoothing and Winters method forecast-
ing models.

Smoothing Model Calculations
The descriptions and properties of various smoothing methods can be found in Gardner (1985); Chat-
field (1978); Bowerman and O’Connell (1979). The following section summarizes the smoothing model
computations.

Given a time series fYt W 1 � t � ng, the underlying model assumed by the smoothing models has the
following (additive seasonal) form,

Yt D �t C ˇt t C sp.t/C �t

where

�t represents the time-varying mean term.

ˇt represents the time-varying slope.

sp.t/ represents the time-varying seasonal contribution for one of the p seasons.

�t are disturbances.

For smoothing models without trend terms, ˇt D 0; and for smoothing models without seasonal terms,
sp.t/ D 0. Each smoothing model is described in the following sections.

At each time t , the smoothing models estimate the time-varying components described above with the
smoothing state. After initialization, the smoothing state is updated for each observation using the smoothing
equations. The smoothing state at the last nonmissing observation is used for predictions.

Smoothing State and Smoothing Equations

Depending on the smoothing model, the smoothing state at time t consists of the following:

Lt is a smoothed level that estimates �t .

Tt is a smoothed trend that estimates ˇt .

St�j , j D 0; : : : ; p � 1, are seasonal factors that estimate sp.t/.

The smoothing process starts with an initial estimate of the smoothing state, which is subsequently updated
for each observation by using the smoothing equations.

The smoothing equations determine how the smoothing state changes as time progresses. Knowledge of the
smoothing state at time t � 1 and that of the time series value at time t uniquely determine the smoothing
state at time t . The smoothing weights determine the contribution of the previous smoothing state to the
current smoothing state. The smoothing equations for each smoothing model are listed in the following
sections.
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Smoothing State Initialization

Given a time series fYt W 1 � t � ng, the smoothing process first computes the smoothing state for time
t D 1. However, this computation requires an initial estimate of the smoothing state at time t D 0, even
though no data exist at or before time t D 0.

An appropriate choice for the initial smoothing state is made by backcasting from time t D n to t D 1 to
obtain a prediction at t D 0. The initialization for the backcast is obtained by regression with constant and
linear terms and seasonal dummies (additive or multiplicative) as appropriate for the smoothing model. For
models with linear or seasonal terms, the estimates obtained by the regression are used for initial smoothed
trend and seasonal factors; however, the initial smoothed level for backcasting is always set to the last
observation, Yn.

The smoothing state at time t D 0 obtained from the backcast is used to initialize the smoothing process from
time t D 1 to t D n (Chatfield and Yar 1988).

For models with seasonal terms, the smoothing state is normalized so that the seasonal factors St�j for
j D 0; : : : ; p � 1 sum to zero for models that assume additive seasonality and average to one for models
(such as Winters method models) that assume multiplicative seasonality.

Missing Values
When a missing value is encountered at time t , the smoothed values are updated using the error-correction
form of the smoothing equations with the one-step-ahead prediction error, et , set to zero. The missing value
is estimated using the one-step-ahead prediction at time t � 1—that is, OYt�1.1/ (Aldrin and Damsleth 1989).
The error-correction forms of each of the smoothing models are listed in the following sections.

Predictions and Prediction Errors
Predictions are made based on the last known smoothing state. Predictions made at time t for k steps ahead
are denoted OYt .k/ and the associated prediction errors are denoted et .k/ D YtCk � OYt .k/. The prediction
equation for each smoothing model is listed in the following sections.

The one-step-ahead predictions refer to predictions made at time t � 1 for one time unit into the future—that
is, OYt�1.1/. The one-step-ahead prediction errors are more simply denoted et D et�1.1/ D Yt � OYt�1.1/.
The one-step-ahead prediction errors are also the model residuals, and the sum of squares of the one-step-
ahead prediction errors is the objective function used in smoothing weight optimization.

The variance of the prediction errors are used to calculate the confidence limits (Sweet 1985; McKenzie
1986; Yar and Chatfield 1990; Chatfield and Yar 1991). The equations for the variance of the prediction
errors for each smoothing model are listed in the following sections.

Note: var.�t / is estimated by the mean square of the one-step-ahead prediction errors.
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Smoothing Weights
Depending on the smoothing model, the smoothing weights consist of the following:

˛ is a level smoothing weight.

 is a trend smoothing weight.

ı is a seasonal smoothing weight.

� is a trend damping weight.

Larger smoothing weights (less damping) permit the more recent data to have a greater influence on the
predictions. Smaller smoothing weights (more damping) give less weight to recent data.

Specifying the Smoothing Weights

Typically the smoothing weights are chosen to be from zero to one. (This is intuitive because the weights
associated with the past smoothing state and the value of current observation would normally sum to
one.) However, each smoothing model (except Winters method—multiplicative version) has an ARIMA
equivalent. Weights chosen to be within the ARIMA additive-invertible region will guarantee stable predic-
tions (Archibald 1990; Gardner 1985). The ARIMA equivalent and the additive-invertible region for each
smoothing model are listed in the following sections.

Optimizing the Smoothing Weights

Smoothing weights are determined so as to minimize the sum of squared, one-step-ahead prediction errors.
The optimization is initialized by choosing from a predetermined grid the initial smoothing weights that
result in the smallest sum of squared, one-step-ahead prediction errors. The optimization process is highly
dependent on this initialization. It is possible that the optimization process will fail due to the inability to
obtain stable initial values for the smoothing weights (Greene 1993; Judge et al. 1980), and it is possible for
the optimization to result in a local minima.

The optimization process can result in weights to be chosen outside both the zero-to-one range and the
ARIMA additive-invertible region. By restricting weight optimization to additive-invertible region, you
can obtain a local minimum with stable predictions. Likewise, weight optimization can be restricted to the
zero-to-one range or other ranges. It is also possible to fix certain weights to a specific value and optimize
the remaining weights.

Standard Errors
The standard errors associated with the smoothing weights are calculated from the Hessian matrix of the sum
of squared, one-step-ahead prediction errors with respect to the smoothing weights used in the optimization
process.

Weights Near Zero or One
Sometimes the optimization process results in weights near zero or one.

For simple or double (Brown) exponential smoothing, a level weight near zero implies that simple differencing
of the time series might be appropriate.
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For linear (Holt) exponential smoothing, a level weight near zero implies that the smoothed trend is constant
and that an ARIMA model with deterministic trend might be a more appropriate model.

For damped-trend linear exponential smoothing, a damping weight near one implies that linear (Holt)
exponential smoothing might be a more appropriate model.

For Winters method and seasonal exponential smoothing, a seasonal weight near one implies that a nonsea-
sonal model might be more appropriate and a seasonal weight near zero implies that deterministic seasonal
factors might be present.

Equations for the Smoothing Models

Simple Exponential Smoothing

The model equation for simple exponential smoothing is

Yt D �t C �t

The smoothing equation is

Lt D ˛Yt C .1 � ˛/Lt�1

The error-correction form of the smoothing equation is

Lt D Lt�1 C ˛et

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D Lt

The ARIMA model equivalency to simple exponential smoothing is the ARIMA(0,1,1) model

.1 � B/Yt D .1 � �B/�t

� D 1 � ˛

The moving-average form of the equation is

Yt D �t C

1X
jD1

˛�t�j

For simple exponential smoothing, the additive-invertible region is

f0 < ˛ < 2g

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

241C k�1X
jD1

˛2

35 D var.�t /.1C .k � 1/˛2/
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Double (Brown) Exponential Smoothing

The model equation for double exponential smoothing is

Yt D �t C ˇt t C �t

The smoothing equations are

Lt D ˛Yt C .1 � ˛/Lt�1

Tt D ˛.Lt � Lt�1/C .1 � ˛/Tt�1

This method can be equivalently described in terms of two successive applications of simple exponential
smoothing,

S Œ1�t D ˛Yt C .1 � ˛/S
Œ1�
t�1

S Œ2�t D ˛S
Œ1�
t C .1 � ˛/S

Œ2�
t�1

where S Œ1�t are the smoothed values of Yt , and S Œ2�t are the smoothed values of S Œ1�t . The prediction equation
then takes the following form:

OYt .k/ D .2C ˛k=.1 � ˛//S
Œ1�
t � .1C ˛k=.1 � ˛//S

Œ2�
t

The error-correction forms of the smoothing equations are

Lt D Lt�1 C Tt�1 C ˛et

Tt D Tt�1 C ˛
2et

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D Lt C ..k � 1/C 1=˛/Tt

The ARIMA model equivalency to double exponential smoothing is the ARIMA(0,2,2) model,

.1 � B/2Yt D .1 � �B/
2�t

� D 1 � ˛

The moving-average form of the equation is

Yt D �t C

1X
jD1

.2˛ C .j � 1/˛2/�t�j

For double exponential smoothing, the additive-invertible region is

f0 < ˛ < 2g

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

241C k�1X
jD1

.2˛ C .j � 1/˛2/2

35
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Linear (Holt) Exponential Smoothing

The model equation for linear exponential smoothing is

Yt D �t C ˇt t C �t

The smoothing equations are

Lt D ˛Yt C .1 � ˛/.Lt�1 C Tt�1/

Tt D .Lt � Lt�1/C .1 � /Tt�1

The error-correction form of the smoothing equations is

Lt D Lt�1 C Tt�1 C ˛et

Tt D Tt�1 C ˛et

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D Lt C kTt

The ARIMA model equivalency to linear exponential smoothing is the ARIMA(0,2,2) model,

.1 � B/2Yt D .1 � �1B � �2B
2/�t

�1 D 2 � ˛ � ˛

�2 D ˛ � 1

The moving-average form of the equation is

Yt D �t C

1X
jD1

.˛ C j˛/�t�j

For linear exponential smoothing, the additive-invertible region is

f0 < ˛ < 2g

f0 <  < 4=˛ � 2g

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

241C k�1X
jD1

.˛ C j˛/2

35
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Damped-Trend Linear Exponential Smoothing

The model equation for damped-trend linear exponential smoothing is

Yt D �t C ˇt t C �t

The smoothing equations are

Lt D ˛Yt C .1 � ˛/.Lt�1 C �Tt�1/

Tt D .Lt � Lt�1/C .1 � /�Tt�1

The error-correction form of the smoothing equations is

Lt D Lt�1 C �Tt�1 C ˛et Tt D �Tt�1 C ˛et

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D Lt C

kX
iD1

�iTt

The ARIMA model equivalency to damped-trend linear exponential smoothing is the ARIMA(1,1,2) model,

.1 � �B/.1 � B/Yt D .1 � �1B � �2B
2/�t

�1 D 1C � � ˛ � ˛�

�2 D .˛ � 1/�

The moving-average form of the equation (assuming j�j < 1) is

Yt D �t C

1X
jD1

.˛ C ˛�.�j � 1/=.� � 1//�t�j

For damped-trend linear exponential smoothing, the additive-invertible region is

f0 < ˛ < 2g

f0 < � < 4=˛ � 2g

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

241C k�1X
jD1

.˛ C ˛�.�j � 1/=.� � 1//2

35
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Seasonal Exponential Smoothing

The model equation for seasonal exponential smoothing is

Yt D �t C sp.t/C �t

The smoothing equations are

Lt D ˛.Yt � St�p/C .1 � ˛/Lt�1

St D ı.Yt � Lt /C .1 � ı/St�p

The error-correction form of the smoothing equations is

Lt D Lt�1 C ˛et

St D St�p C ı.1 � ˛/et

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D Lt C St�pCk

The ARIMA model equivalency to seasonal exponential smoothing is the ARIMA(0,1,p+1)(0,1,0)p model,

.1 � B/.1 � Bp/Yt D .1 � �1B � �2B
p
� �3B

pC1/�t

�1 D 1 � ˛

�2 D 1 � ı.1 � ˛/

�3 D .1 � ˛/.ı � 1/

The moving-average form of the equation is

Yt D �t C

1X
jD1

 j �t�j

 j D

(
˛ for j mod p¤0
˛ C ı.1 � ˛/ for j mod p D 0

For seasonal exponential smoothing, the additive-invertible region is

fmax.�p˛; 0/ < ı.1 � ˛/ < .2 � ˛/g

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

241C k�1X
jD1

 2j

35
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Multiplicative Seasonal Smoothing

In order to use the multiplicative version of seasonal smoothing, the time series and all predictions must be
strictly positive.

The model equation for the multiplicative version of seasonal smoothing is

Yt D �tsp.t/C �t

The smoothing equations are

Lt D ˛.Yt=St�p/C .1 � ˛/Lt�1

St D ı.Yt=Lt /C .1 � ı/St�p

The error-correction form of the smoothing equations is

Lt D Lt�1 C ˛et=St�p

St D St�p C ı.1 � ˛/et=Lt

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D LtSt�pCk

The multiplicative version of seasonal smoothing does not have an ARIMA equivalent; however, when
the seasonal variation is small, the ARIMA additive-invertible region of the additive version of seasonal
described in the preceding section can approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

24 1X
iD0

p�1X
jD0

. jCipStCk=StCk�j /
2

35
where  j are as described for the additive version of seasonal method, and  j D 0 for j � k.

Winters Method—Additive Version

The model equation for the additive version of the Winters method is

Yt D �t C ˇt t C sp.t/C �t

The smoothing equations are

Lt D ˛.Yt � St�p/C .1 � ˛/.Lt�1 C Tt�1/

Tt D .Lt � Lt�1/C .1 � /Tt�1

St D ı.Yt � Lt /C .1 � ı/St�p
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The error-correction form of the smoothing equations is

Lt D Lt�1 C Tt�1 C ˛et

Tt D Tt�1 C ˛et

St D St�p C ı.1 � ˛/et

(Note: For missing values, et D 0.)

The k-step prediction equation is

OYt .k/ D Lt C kTt C St�pCk

The ARIMA model equivalency to the additive version of the Winters method is the ARIMA(0,1,p+1)(0,1,0)p
model,

.1 � B/.1 � Bp/Yt D

"
1 �

pC1X
iD1

�iB
i

#
�t

�j D

8̂̂̂̂
<̂
ˆ̂̂:
1 � ˛ � ˛ j D 1

�˛ 2 � j � p � 1

1 � ˛ � ı.1 � ˛/ j D p

.1 � ˛/.ı � 1/ j D p C 1

The moving-average form of the equation is

Yt D �t C

1X
jD1

 j �t�j

 j D

(
˛ C j˛ forj mod p ¤ 0
˛ C j˛ C ı.1 � ˛/; forj mod p D 0

For the additive version of the Winters method (Archibald 1990), the additive-invertible region is

fmax.�p˛; 0/ < ı.1 � ˛/ < .2 � ˛/g
f0 < ˛ < 2 � ˛ � ı.1 � ˛/.1 � cos.#/g

where # is the smallest nonnegative solution to the equations listed in Archibald (1990).

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

241C k�1X
jD1

 2j

35
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Winters Method—Multiplicative Version

In order to use the multiplicative version of the Winters method, the time series and all predictions must be
strictly positive.

The model equation for the multiplicative version of the Winters method is

Yt D .�t C ˇt t /sp.t/C �t

The smoothing equations are

Lt D ˛.Yt=St�p/C .1 � ˛/.Lt�1 C Tt�1/

Tt D .Lt � Lt�1/C .1 � /Tt�1

St D ı.Yt=Lt /C .1 � ı/St�p

The error-correction form of the smoothing equations is

Lt D Lt�1 C Tt�1 C ˛et=St�p

Tt D Tt�1 C ˛et=St�p

St D St�p C ı.1 � ˛/et=Lt

NOTE: For missing values, et D 0.

The k-step prediction equation is

OYt .k/ D .Lt C kTt /St�pCk

The multiplicative version of the Winters method does not have an ARIMA equivalent; however, when the
seasonal variation is small, the ARIMA additive-invertible region of the additive version of the Winters
method described in the preceding section can approximate the stability region of the multiplicative version.

The variance of the prediction errors is estimated as

var.et .k// D var.�t /

24 1X
iD0

p�1X
jD0

. jCipStCk=StCk�j /
2

35
where  j are as described for the additive version of the Winters method and  j D 0 for j � k.



ARIMA Models F 4189

ARIMA Models
Autoregressive integrated moving-average (ARIMA) models predict values of a dependent time series with a
linear combination of its own past values, past errors (also called shocks or innovations), and current and past
values of other time series (predictor time series).

The Time Series Forecasting System uses the ARIMA procedure of SAS/ETS software to fit and forecast
ARIMA models. The maximum likelihood method is used for parameter estimation. For more information
about ARIMA model estimation and forecasting, see Chapter 8, “The ARIMA Procedure.”

This section summarizes the notation used for ARIMA models.

Notation for ARIMA Models
A dependent time series that is modeled as a linear combination of its own past values and past values of an
error series is known as a (pure) ARIMA model.

Nonseasonal ARIMA Model Notation

The order of an ARIMA model is usually denoted by the notation ARIMA(p,d,q), where

p is the order of the autoregressive part.

d is the order of the differencing (rarely should d > 2 be needed).

q is the order of the moving-average process.

Given a dependent time series fYt W 1 � t � ng, mathematically the ARIMA model is written as

.1 � B/dYt D �C
�.B/

�.B/
at

where

t indexes time.

� is the mean term.

B is the backshift operator; that is, BXt D Xt�1.

�.B/ is the autoregressive operator, represented as a polynomial in the backshift operator:
�.B/ D 1 � �1B � � � � � �pB

p.

�.B/ is the moving-average operator, represented as a polynomial in the backshift
operator: �.B/ D 1 � �1B � � � � � �qBq .

at is the independent disturbance, also called the random error.

For example, the mathematical form of the ARIMA(1,1,2) model is

.1 � B/Yt D �C
.1 � �1B � �2B

2/

.1 � �1B/
at
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Seasonal ARIMA Model Notation

Seasonal ARIMA models are expressed in factored form by the notation ARIMA(p,d,q)(P,D,Q)s , where

P is the order of the seasonal autoregressive part.

D is the order of the seasonal differencing (rarely should D > 1 be needed).

Q is the order of the seasonal moving-average process.

s is the length of the seasonal cycle.

Given a dependent time series fYt W 1 � t � ng, mathematically the ARIMA seasonal model is written as

.1 � B/d .1 � Bs/DYt D �C
�.B/�s.B

s/

�.B/�s.Bs/
at

where

�s.B
s/ is the seasonal autoregressive operator, represented as a polynomial in the backshift

operator: �s.Bs/ D 1 � �s;1Bs � � � � � �s;PBsP .

�s.B
s/ is the seasonal moving-average operator, represented as a polynomial in the

backshift operator: �s.Bs/ D 1 � �s;1Bs � � � � � �s;QBsQ.

For example, the mathematical form of the ARIMA(1,0,1)(1,1,2)12 model is

.1 � B12/Yt D �C
.1 � �1B/.1 � �s;1B

12 � �s;2B
24/

.1 � �1B/.1 � �s;1B12/
at

Abbreviated Notation for ARIMA Models

If the differencing order, autoregressive order, or moving-average order is zero, the notation is further
abbreviated as follows:

I(d)(D)s integrated model or ARIMA(0,d,0)(0,D,0)

AR(p)(P)s autoregressive model or ARIMA(p,0,0)(P,0,0)

IAR(p,d)(P,D)s integrated autoregressive model or ARIMA(p,d,0)(P,D,0)s
MA(q)(Q)s moving average model or ARIMA(0,0,q)(0,0,Q)s
IMA(d,q)(D,Q)s integrated moving average model or ARIMA(0,d,q)(0,D,Q)s
ARMA(p,q)(P,Q)s autoregressive moving-average model or ARIMA(p,0,q)(P,0,Q)s

Notation for Transfer Functions

A transfer function can be used to filter a predictor time series to form a dynamic regression model.

Let Yt be the dependent series, let Xt be the predictor series, and let ‰.B/ be a linear filter or transfer
function for the effect of Xt on Yt . The ARIMA model is then

.1 � B/d .1 � Bs/DYt D �C‰.B/.1 � B/
d .1 � Bs/DXt C

�.B/�s.B
s/

�.B/�s.Bs/
at

This model is called a dynamic regression of Yt on Xt .
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Nonseasonal Transfer Function Notation
Given the ith predictor time series fXi;t W 1 � t � ng, the transfer function is written as

Dif.di /Lag.ki /N.qi /=D.pi /

where

di is the simple order of the differencing for the ith predictor time series,
.1 � B/diXi;t (rarely should di > 2 be needed).

ki is the pure time delay (lag) for the effect of the ith predictor time series,
Xi;tB

ki D Xi;t�ki .

pi is the simple order of the denominator for the ith predictor time series.

qi is the simple order of the numerator for the ith predictor time series.

The mathematical notation used to describe a transfer function is

‰i .B/ D
!i .B/

ıi .B/
.1 � B/diBki

where

B is the backshift operator; that is, BXt D Xt�1.

ıi .B/ is the denominator polynomial of the transfer function for the ith predictor time
series: ıi .B/ D 1 � ıi;1B � � � � � ıi;piB

pi .

!i .B/ is the numerator polynomial of the transfer function for the ith predictor time
series: !i .B/ D 1 � !i;1B � � � � � !i;qiB

qi .

The numerator factors for a transfer function for a predictor series are like the MA part of the ARMA model
for the noise series. The denominator factors for a transfer function for a predictor series are like the AR part
of the ARMA model for the noise series. Denominator factors introduce exponentially weighted, infinite
distributed lags into the transfer function.

For example, the transfer function for the ith predictor time series with

ki D 3 time lag is 3

di D 1 simple order of differencing is one

pi D 1 simple order of the denominator is one

qi D 2 simple order of the numerator is two

would be written as [Dif(1)Lag(3)N(2)/D(1)]. The mathematical notation for the transfer function in this
example is

‰i .B/ D
.1 � !i;1B � !i;2B

2/

.1 � ıi;1B/
.1 � B/B3
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Seasonal Transfer Function Notation
The general transfer function notation for the ith predictor time series Xi;t with seasonal factors is
[Dif(di )(Di )s Lag(ki ) N(qi )(Qi )s/ D(pi )(Pi )s], where

Di is the seasonal order of the differencing for the ith predictor time series (rarely
should Di > 1 be needed).

Pi is the seasonal order of the denominator for the ith predictor time series (rarely
should Pi > 2 be needed).

Qi is the seasonal order of the numerator for the ith predictor time series, (rarely
should Qi > 2 be needed).

s is the length of the seasonal cycle.

The mathematical notation used to describe a seasonal transfer function is

‰i .B/ D
!i .B/!s;i .B

s/

ıi .B/ıs;i .Bs/
.1 � B/di .1 � Bs/DiBki

where

ıs;i .B
s/ is the denominator seasonal polynomial of the transfer function for the ith predictor

time series: ıs;i .B/ D 1 � ıs;i;1B � � � � � ıs;i;PiB
sPi .

!s;i .B
s/ is the numerator seasonal polynomial of the transfer function for the ith predictor

time series: !s;i .B/ D 1 � !s;i;1B � � � � � !s;i;QiB
sQi .

For example, the transfer function for the ith predictor time series Xi;t whose seasonal cycle s D 12 with

di D 2 simple order of differencing is two

Di D 1 seasonal order of differencing is one

qi D 2 simple order of the numerator is two

Qi D 1 seasonal order of the numerator is one

would be written as [Dif(2)(1)s N(2)(1)s]. The mathematical notation for the transfer function in this example
is

‰i .B/ D .1 � !i;1B � !i;2B
2/.1 � !s;i;1B

12/.1 � B/2.1 � B12/

Note: In this case, [Dif(2)(1)s N(2)(1)s] = [Dif(2)(1)sLag(0)N(2)(1)s/D(0)(0)s].
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Predictor Series
This section discusses time trend curves, seasonal dummies, interventions, and adjustments.

Time Trend Curves
When you specify a time trend curve as a predictor in a forecasting model, the system computes a predictor
series that is a deterministic function of time. This variable is then included in the model as a regressor, and
the trend curve is fit to the dependent series by linear regression, in addition to other predictor series.

Some kinds of nonlinear trend curves are fit by transforming the dependent series. For example, the
exponential trend curve is actually a linear time trend fit to the logarithm of the series. For these trend curve
specifications, the series transformation option is set automatically, and you cannot independently control
both the time trend curve and transformation option.

The computed time trend variable is included in the output data set in a variable named in accordance with
the trend curve type. Let t represent the observation count from the start of the period of fit for the model,
and let Xt represent the value of the time trend variable at observation t within the period of fit. The names
and definitions of these variables are as follows. (Note: These deterministic variables are reserved variable
names.)

Linear trend variable name _LINEAR_, with Xt D t � c

Quadratic trend variable name _QUAD_, with Xt D .t � c/2. Note that a quadratic trend implies
a linear trend as a special case and results in two regressors: _QUAD_ and
_LINEAR_.

Cubic trend variable name _CUBE_, with Xt D .t � c/3. Note that a cubic trend implies
a quadratic trend as a special case and results in three regressors: _CUBE_,
_QUAD_, and _LINEAR_.

Logistic trend variable name _LOGIT_, with Xt D t . The model is a linear time trend applied
to the logistic transform of the dependent series. Thus, specifying a logistic trend
is equivalent to specifying the logistic series transformation and a linear time
trend. A logistic trend predictor can be used only in conjunction with the logistic
transformation, which is set automatically when you specify logistic trend.

Logarithmic trend variable name _LOG_, with Xt D ln.t/

Exponential trend variable name _EXP_, with Xt D t . The model is a linear time trend applied to
the logarithms of the dependent series. Thus, specifying an exponential trend
is equivalent to specifying the log series transformation and a linear time trend.
An exponential trend predictor can be used only in conjunction with the log
transformation, which is set automatically when you specify exponential trend.

Hyperbolic trend variable name _HYP_, with Xt D 1=t

Power curve trend variable name _POW_, with Xt D ln.t/. The model is a logarithmic time trend
applied to the logarithms of the dependent series. Thus, specifying a power curve
is equivalent to specifying the log series transformation and a logarithmic time
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trend. A power curve predictor can be used only in conjunction with the log
transformation, which is set automatically when you specify a power curve trend.

EXP(A+B/TIME) trend variable name _ERT_, with Xt D 1=t . The model is a hyperbolic time trend ap-
plied to the logarithms of the dependent series. Thus, specifying this trend curve is
equivalent to specifying the log series transformation and a hyperbolic time trend.
This trend curve can be used only in conjunction with the log transformation,
which is set automatically when you specify this trend.

Intervention Effects
Interventions are used for modeling events that occur at specific times. That is, they are known changes that
affect the dependent series or outliers.

The ith intervention series is included in the output data set with variable name _INTVi_, which is a reserved
variable name.

Point Interventions
The point intervention is a one-time event. The ith intervention series Xi;t has a point intervention at time
tint when the series is nonzero only at time tint—that is,

Xi;t D

(
1; t D tint

0; otherwise

Step Interventions
Step interventions are continuing, and the input time series flags periods after the intervention. For a step
intervention, before time tint , the ith intervention series Xi;t is zero and then steps to a constant level
thereafter—that is,

Xi;t D

(
1; t � tint

0; otherwise

Ramp Interventions
A ramp intervention is a continuing intervention that increases linearly after the intervention time. For a ramp
intervention, before time tint , the ith intervention series Xi;t is zero and increases linearly thereafter—that is,
proportional to time.

Xi;t D

(
t � tint ; t � tint

0; otherwise

Intervention Effect
Given the ith intervention series Xi;t , you can define how the intervention takes effect by filters (transfer
functions) of the form

‰i .B/ D
1 � !i;1B � � � � � !i;qiB

qi

1 � ıi;1B � � � � � ıi;piB
pi
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where B is the backshift operator Byt D yt�1.

The denominator of the transfer function determines the decay pattern of the intervention effect, whereas the
numerator terms determine the size of the intervention effect time window.

For example, the following intervention effects are associated with the respective transfer functions:

Immediately ‰i .B/ D 1

Gradually ‰i .B/ D 1=.1 � ıi;1B/

1 lag window ‰i .B/ D 1 � !i;1B

3 lag window ‰i .B/ D 1 � !i;1B � !i;2B
2 � !i;3B

3

Intervention Notation
The notation used to describe intervention effects has the form type :tint (qi )/(pi ), where type is point, step,
or ramp; tint is the time of the intervention (for example, OCT87); qi is the transfer function numerator
order; and pi is the transfer function denominator order. If qi D 0, the part “(qi )” is omitted; if pi D 0, the
part “/(pi )” is omitted.

In the Intervention Specification window, the Number of Lags option specifies the transfer function nu-
merator order qi , and the Effect Decay Pattern option specifies the transfer function denominator order
pi . In the Effect Decay Pattern options, values and resulting pi are as follows: None, pi D 0 Exp,
pi D 1 Wave, pi D 2

For example, a step intervention with date 08MAR90 and effect pattern Exp is denoted “Step:08MAR90/(1)”
and has a transfer function filter ‰i .B/ D 1=.1 � ı1B/. A ramp intervention immediately applied on
08MAR90 is denoted “Ramp:08MAR90” and has a transfer function filter ‰i .B/ D 1.

Seasonal Dummy Inputs
For a seasonal cycle of length s, the seasonal dummy regressors include

fXi;t W 1 � i � .s � 1/; 1 � t � ng

for models that include an intercept term and

fXi;t W 1 � i � s; 1 � t � ng

for models that exclude an intercept term. Each element of a seasonal dummy regressor is either zero or one,
based on the following rule:

Xi;t D

(
1; when i D t mod s
0; otherwise

Note that if the model includes an intercept term, the number of seasonal dummy regressors is one less than s
to ensure that the linear system is full rank.

The seasonal dummy variables are included in the output data set with variable names prefixed with
“SDUMMYi” and sequentially numbered. They are reserved variable names.
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Series Diagnostic Tests
This section describes the diagnostic tests that are used to determine the kinds of forecasting models
appropriate for a series.

The series diagnostics are a set of heuristics that provide recommendations on whether or not the forecasting
model should contain a log transform, trend terms, and seasonal terms. These recommendations are used
by the automatic model selection process to restrict the model search to a subset of the model selection list.
(You can disable this behavior by using the Automatic Model Selection Options window.)

The tests that are used by the series diagnostics do not always produce the correct classification of the series.
They are intended to accelerate the process of searching for a good forecasting model for the series, but you
should not rely on them if finding the very best model is important to you.

If you have information about the appropriate kinds of forecasting models (perhaps from studying the plots
and autocorrelations shown in the Series Viewer window), you can set the series diagnostic flags in the
Series Diagnostics window. Select the YES, NO, or MAYBE values for the Log Transform, Trend, and
Seasonality options in the Series Diagnostics window as you think appropriate.

The series diagnostics tests are intended as a heuristic tool only, and no statistical validity is claimed for them.
These tests might be modified and enhanced in future releases of the Time Series Forecasting System. The
testing strategy is as follows:

1. Log transform test. The log test fits a high-order autoregressive model to the series and to the log of
the series and compares goodness-of-fit measures for the prediction errors of the two models. If this
test finds that log transforming the series is suitable, the Log Transform option is set to YES, and the
subsequent diagnostic tests are performed on the log transformed series.

2. Trend test. The resultant series is tested for presence of a trend by using an augmented Dickey-Fuller
test and a random walk with drift test. If either test finds that the series appears to have a trend, the
Trend option is set to YES, and the subsequent diagnostic tests are performed on the differenced
series.

3. Seasonality test. The resultant series is tested for seasonality. A seasonal dummy model with AR(1)
errors is fit and the joint significance of the seasonal dummy estimates is tested. If the seasonal
dummies are significant, the AIC statistic for this model is compared to the AIC for and AR(1) model
without seasonal dummies. If the AIC for the seasonal model is lower than that of the nonseasonal
model, the Seasonal option is set to YES.
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Statistics of Fit
This section explains the goodness-of-fit statistics reported to measure how well different models fit the data.
The statistics of fit for the various forecasting models can be viewed or stored in a data set by using the Model
Viewer window.

Statistics of fit are computed by using the actual and forecasted values for observations in the period of
evaluation. One-step forecasted values are used whenever possible, including the case when a hold-out
sample contains no missing values. If a one-step forecast for an observation cannot be computed due to
missing values for previous series observations, a multi-step forecast is computed, using the minimum number
of steps as the previous nonmissing values in the data range permit.

The various statistics of fit reported are as follows. In these formulas, n is the number of nonmissing
observations and k is the number of fitted parameters in the model.

Number of Nonmissing Observations
The number of nonmissing observations used to fit the model.

Number of Observations
The total number of observations used to fit the model, including both missing and nonmissing observa-
tions.

Number of Missing Actuals
The number of missing actual values.

Number of Missing Predicted Values
The number of missing predicted values.

Number of Model Parameters
The number of parameters fit to the data. For combined forecast, this is the number of forecast compo-
nents.

Total Sum of Squares (Uncorrected)
The total sum of squares for the series, SST, uncorrected for the mean:

Pn
tD1 y

2
t .

Total Sum of Squares (Corrected)
The total sum of squares for the series, SST, corrected for the mean:

Pn
tD1 .yt � y/

2, where y is the
series mean.

Sum of Square Errors
The sum of the squared prediction errors, SSE. SSE D

Pn
tD1 .yt � Oyt /

2, where Oy is the one-step
predicted value.

Mean Squared Error
The mean squared prediction error, MSE, calculated from the one-step-ahead forecasts. MSE D 1

n
SSE.

This formula enables you to evaluate small hold-out samples.

Root Mean Squared Error
The root mean square error (RMSE),

p
MSE.

Mean Absolute Percent Error
The mean absolute percent prediction error (MAPE), 100

n

Pn
tD1 j.yt � Oyt /=yt j.

The summation ignores observations where yt D 0.

Mean Absolute Error
The mean absolute prediction error, 1

n

Pn
tD1 jyt � Oyt j.
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R-Square
The R2 statistic, R2 D 1 � SSE=SST. If the model fits the series badly, the model error sum of squares,
SSE, can be larger than SST and the R2 statistic will be negative.

Adjusted R-Square
The adjusted R2 statistic, 1 � .n�1

n�k
/.1 � R2/.

Amemiya’s Adjusted R-Square
Amemiya’s adjusted R2, 1 � .nCk

n�k
/.1 � R2/.

Random Walk R-Square
The random walk R2 statistic (Harvey’s R2 statistic by using the random walk model for comparison),
1 � .n�1

n
/SSE=RWSSE, where RWSSE D

Pn
tD2 .yt � yt�1 � �/

2, and � D 1
n�1

Pn
tD2 .yt � yt�1/.

Akaike’s Information Criterion
Akaike’s information criterion (AIC), n ln.MSE/C 2k.

Schwarz Bayesian Information Criterion
Schwarz Bayesian information criterion (SBC or BIC),
n ln.MSE/C k ln.n/.

Amemiya’s Prediction Criterion
Amemiya’s prediction criterion, 1

n
SST.nCk

n�k
/.1 � R2/ D .nCk

n�k
/1
n
SSE.

Maximum Error
The largest prediction error.

Minimum Error
The smallest prediction error.

Maximum Percent Error
The largest percent prediction error, 100 max..yt � Oyt /=yt /. The summation ignores observations where
yt D 0.

Minimum Percent Error
The smallest percent prediction error, 100 min..yt � Oyt /=yt /. The summation ignores observations
where yt D 0.

Mean Error
The mean prediction error, 1

n

Pn
tD1 .yt � Oyt /.

Mean Percent Error
The mean percent prediction error, 100

n

Pn
tD1

.yt� Oyt /
yt

. The summation ignores observations where
yt D 0.

References

Akaike, H. (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic
Control AC-19:716–723.

Aldrin, M., and Damsleth, E. (1989). “Forecasting Non-seasonal Time Series with Missing Observations.”
Journal of Forecasting 8:97–116.

Anderson, T. W. (1971). The Statistical Analysis of Time Series. New York: John Wiley & Sons.



References F 4199

Ansley, C. F. (1979). “An Algorithm for the Exact Likelihood of a Mixed Autoregressive–Moving Average
Process.” Biometrika 66:59–65.

Ansley, C. F., and Newbold, P. (1980). “Finite Sample Properties of Estimators for Autoregressive Moving-
Average Models.” Journal of Econometrics 13:159–183.

Archibald, B. C. (1990). “Parameter Space of the Holt-Winters’ Model.” International Journal of Forecasting
6:199–209.

Bartolomei, S. M., and Sweet, A. L. (1989). “A Note on the Comparison of Exponential Smoothing Methods
for Forecasting Seasonal Series.” International Journal of Forecasting 5:111–116.

Bhansali, R. J. (1980). “Autoregressive and Window Estimates of the Inverse Correlation Function.”
Biometrika 67:551–566.

Bowerman, B. L., and O’Connell, R. T. (1979). Time Series and Forecasting: An Applied Approach. North
Scituate, MA: Duxbury Press.

Box, G. E. P., and Cox, D. R. (1964). “An Analysis of Transformations.” Journal of the Royal Statistical
Society, Series B 26:211–234.

Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Rev. ed. San
Francisco: Holden-Day.

Box, G. E. P., and Tiao, G. C. (1975). “Intervention Analysis with Applications to Economic and Environ-
mental Problems.” Journal of the American Statistical Association 70:70–79.

Brocklebank, J. C., and Dickey, D. A. (1986). SAS System for Forecasting Time Series. 1986 ed. Cary, NC:
SAS Institute Inc.

Brown, R. G. (1962). Smoothing, Forecasting, and Prediction of Discrete Time Series. New York: Prentice-
Hall.

Brown, R. G., and Meyer, R. F. (1961). “The Fundamental Theorem of Exponential Smoothing.” Operations
Research 9:673–685.

Chatfield, C. (1978). “The Holt-Winters Forecasting Procedure.” Journal of the Royal Statistical Society,
Series C 27:264–279.

Chatfield, C., and Prothero, D. L. (1973). “Box-Jenkins Seasonal Forecasting: Problems in a Case Study.”
Journal of the Royal Statistical Society, Series A 136:295–315.

Chatfield, C., and Yar, M. (1988). “Holt-Winters Forecasting: Some Practical Issues.” The Statistician
37:129–140.

Chatfield, C., and Yar, M. (1991). “Prediction Intervals for Multiplicative Holt-Winters.” International
Journal of Forecasting 7:31–37.

Cogger, K. O. (1974). “The Optimality of General-Order Exponential Smoothing.” Operations Research
22:858–867.

Cox, D. R. (1961). “Prediction by Exponentially Weighted Moving Averages and Related Methods.” Journal
of the Royal Statistical Society, Series B 23:414–422.



4200 F Chapter 66: Forecasting Process Details

Davidson, J. E. H. (1981). “Problems with the Estimation of Moving Average Processes.” Journal of
Econometrics 16:295–310.

Dickey, D. A., and Fuller, W. A. (1979). “Distribution of the Estimators for Autoregressive Time Series with
a Unit Root.” Journal of the American Statistical Association 74:427–431.

Dickey, D. A., Hasza, D. P., and Fuller, W. A. (1984). “Testing for Unit Roots in Seasonal Time Series.”
Journal of the American Statistical Association 79:355–367.

Fair, R. C. (1986). “Evaluating the Predictive Accuracy of Models.” In Handbook of Econometrics, vol. 3,
edited by Z. Griliches and M. D. Intriligator, 1979–1995. New York: North-Holland.

Fildes, R. (1979). “Quantitative Forecasting—the State of the Art: Extrapolative Models.” Journal of the
Operational Research Society 30:691–710.

Fuller, W. A. (1976). Introduction to Statistical Time Series. New York: John Wiley & Sons.

Gardner, E. S., Jr. (1984). “The Strange Case of the Lagging Forecasts.” Interfaces 14:47–50.

Gardner, E. S., Jr. (1985). “Exponential Smoothing: The State of the Art.” Journal of Forecasting 4:1–38.

Granger, C. W. J., and Newbold, P. (1977). Forecasting Economic Time Series. New York: Academic Press.

Greene, W. H. (1993). Econometric Analysis. 2nd ed. New York: Macmillan.

Hamilton, J. D. (1994). Time Series Analysis. Princeton, NJ: Princeton University Press.

Harvey, A. C. (1981). Time Series Models. New York: John Wiley & Sons.

Harvey, A. C. (1984). “A Unified View of Statistical Forecasting Procedures.” Journal of Forecasting
3:245–275.

Hopewood, W. S., McKeown, J. C., and Newbold, P. (1984). “Time Series Forecasting Models Involving
Power Transformations.” Journal of Forecasting 3:57–61.

Jones, R. H. (1980). “Maximum Likelihood Fitting of ARMA Models to Time Series with Missing
Observations.” Technometrics 22:389–396.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics.
New York: John Wiley & Sons.

Ledolter, J., and Abraham, B. (1984). “Some Comments on the Initialization of Exponential Smoothing.”
Journal of Forecasting 3:79–84.

Ljung, G. M., and Box, G. E. P. (1978). “On a Measure of Lack of Fit in Time Series Models.” Biometrika
65:297–303.

Makridakis, S. G., Wheelwright, S. C., and McGee, V. E. (1983). Forecasting: Methods and Applications.
2nd ed. New York: John Wiley & Sons.

McKenzie, E. (1984). “General Exponential Smoothing and the Equivalent ARMA Process.” Journal of
Forecasting 3:333–344.

McKenzie, E. (1986). “Error Analysis for Winters’ Additive Seasonal Forecasting System.” International
Journal of Forecasting 2:373–382.



References F 4201

Montgomery, D. C., and Johnson, L. A. (1976). Forecasting and Time Series Analysis. New York: McGraw-
Hill.

Morf, M., Sidhu, G. S., and Kailath, T. (1974). “Some New Algorithms for Recursive Estimation on Constant
Linear Discrete Time Systems.” IEEE Transactions on Automatic Control 19:315–323.

Nelson, C. R. (1973). Applied Time Series for Managerial Forecasting. San Francisco: Holden-Day.

Newbold, P. (1981). “Some Recent Developments in Time Series Analysis.” International Statistical Review
49:53–66.

Newton, H. J., and Pagano, M. (1983). “The Finite Memory Prediction of Covariance Stationary Time Series.”
SIAM Journal on Scientific and Statistical Computing 4:330–339.

Pankratz, A. (1983). Forecasting with Univariate Box-Jenkins Models: Concepts and Cases. New York:
John Wiley & Sons.

Pankratz, A. (1991). Forecasting with Dynamic Regression Models. New York: John Wiley & Sons.

Pankratz, A., and Dudley, U. (1987). “Forecast of Power-Transformed Series.” Journal of Forecasting
6:239–248.

Pearlman, J. G. (1980). “An Algorithm for the Exact Likelihood of a High-Order Autoregressive–Moving
Average Process.” Biometrika 67:232–233.

Priestley, M. B. (1981). Spectral Analysis and Time Series. London: Academic Press.

Roberts, S. A. (1982). “A General Class of Holt-Winters Type Forecasting Models.” Management Science
28:808–820.

Schwarz, G. (1978). “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

Sweet, A. L. (1985). “Computing the Variance of the Forecast Error for the Holt-Winters Seasonal Models.”
Journal of Forecasting 4:235–243.

Winters, P. R. (1960). “Forecasting Sales by Exponentially Weighted Moving Averages.” Management
Science 6:324–342.

Woodfield, T. J. (1987). “Time Series Intervention Analysis Using SAS Software.” In Pro-
ceedings of the Twelfth Annual SAS Users Group International Conference, 331–339. Cary, NC:
SAS Institute Inc. https://support.sas.com/resources/papers/proceedings-archive/
SUGI87/Sugi-12-57%20Woodfield.pdf.

Yar, M., and Chatfield, C. (1990). “Prediction Intervals for the Holt-Winters Forecasting Procedure.”
International Journal of Forecasting 6:127–137.

https://support.sas.com/resources/papers/proceedings-archive/SUGI87/Sugi-12-57%20Woodfield.pdf
https://support.sas.com/resources/papers/proceedings-archive/SUGI87/Sugi-12-57%20Woodfield.pdf


SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are 
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore
for additional books and resources.

Gain Greater Insight into Your  
SAS® Software with SAS Books.


	Contents
	Credits
	Documentation
	Software
	Technical Support

	Acknowledgments

	General Information
	What's New in SAS/ETS 15.3
	Overview

	Introduction
	Overview of SAS/ETS Software
	Uses of SAS/ETS Software
	Contents of SAS/ETS Software

	SAS/ETS High-Performance Procedures
	Experimental Software
	About This Book
	Chapter Organization
	Syntax Conventions
	Typographical Conventions
	Options Used in Examples

	Where to Turn for More Information
	Accessing the SAS/ETS Sample Library
	SAS Short Courses
	SAS Technical Support Services

	Major Features of SAS/ETS Software
	ARIMA (Box-Jenkins) and ARIMAX (Box-Tiao) Modeling and Forecasting
	Structural Time Series Modeling and Forecasting
	Regression with Autocorrelated and Heteroscedastic Errors
	Count Data Models
	Multinomial Discrete Choice Analysis
	Panel Data Linear Models
	Qualitative and Limited Dependent Variable Analysis
	Spatial Econometric Models
	Vector Time Series Analysis
	Simultaneous Systems Linear Regression
	Linear Systems Simulation
	Polynomial Distributed Lag Regression
	Nonlinear Systems Regression and Simulation
	State Space Modeling and Forecasting
	Spectral Analysis
	Distribution of the Severity
	Compound Distribution Models
	Similarity Analysis
	Seasonal Adjustment
	Automatic Time Series Forecasting
	Time Series Interpolation and Frequency Conversion
	Trend and Seasonal Analysis on Transaction Databases
	Endogeneity and Instrumental Variables
	Access to Financial and Economic Databases
	Access to World Weather and NOAA Severe Weather Inventory Databases
	Spreadsheet Calculations and Financial Report Generation
	Loan Analysis, Comparison, and Amortization
	Time Series Forecasting System
	ODS Graphics

	Related SAS Software
	Base SAS Software
	SAS Forecast Studio
	SAS/STAT Software
	SAS/IML Software
	SAS/OR Software
	SAS/QC Software
	MLE for User-Defined Likelihood Functions
	JMP Software
	SAS Enterprise Guide
	SAS Add-In for Microsoft Office
	SAS Enterprise Miner—Time Series node

	References

	Shared Concepts in High-Performance Computing
	Overview
	Single-Machine Mode
	Single-Machine Data Access Mode
	Output Data Sets
	Working with Formats
	PERFORMANCE Statement

	Working with Time Series Data
	Overview
	Time Series and SAS Data Sets
	Introduction
	Reading a Simple Time Series

	Dating Observations
	SAS Date, Datetime, and Time Values
	Reading Date and Datetime Values with Informats
	Formatting Date and Datetime Values
	The Variables DATE and DATETIME
	Sorting by Time

	Subsetting Data and Selecting Observations
	Subsetting SAS Data Sets
	Using the WHERE Statement with SAS Procedures
	Using SAS Data Set Options

	Storing Time Series in a SAS Data Set
	Standard Form of a Time Series Data Set
	Several Series with Different Ranges
	Missing Values and Omitted Observations
	Cross-Sectional Dimensions and BY Groups
	Interleaved Time Series
	Output Data Sets of SAS/ETS Procedures

	Time Series Periodicity and Time Intervals
	Specifying Time Intervals
	Using Intervals with SAS/ETS Procedures
	Time Intervals, the Time Series Forecasting System, and the Time Series Viewer

	Plotting Time Series
	Using the Time Series Viewer
	Using PROC SGPLOT

	Calendar and Time Functions
	Computing Dates from Calendar Variables
	Computing Calendar Variables from Dates
	Converting between Date, Datetime, and Time Values
	Computing Datetime Values
	Computing Calendar and Time Variables

	Interval Functions INTNX and INTCK
	Incrementing Dates by Intervals
	Alignment of SAS Dates
	Computing the Width of a Time Interval
	Computing the Ceiling of an Interval
	Counting Time Intervals
	Checking Data Periodicity
	Filling In Omitted Observations in a Time Series Data Set
	Using Interval Functions for Calendar Calculations

	Lags, Leads, Differences, and Summations
	The LAG and DIF Functions
	Multiperiod Lags and Higher-Order Differencing
	Percent Change Calculations
	Leading Series
	Summing Series

	Transforming Time Series
	Log Transformation
	Other Transformations
	The EXPAND Procedure and Data Transformations

	Manipulating Time Series Data Sets
	Splitting and Merging Data Sets
	Transposing Data Sets

	Time Series Interpolation
	Interpolating Missing Values
	Interpolating to a Higher or Lower Frequency
	Interpolating between Stocks and Flows, Levels and Rates

	Reading Time Series Data
	Reading a Simple List of Values
	Reading Fully Described Time Series in Transposed Form


	Date Intervals, Formats, and Functions
	Overview
	Time Intervals
	Constructing Interval Names
	Shifted Intervals
	Beginning Dates and Datetimes of Intervals
	Summary of Interval Types
	Examples of Interval Specifications

	Custom Time Intervals
	Date and Datetime Informats
	Date, Time, and Datetime Formats
	Date Formats
	Datetime and Time Formats

	Alignment of SAS Dates
	SAS Date, Time, and Datetime Functions
	References

	SAS Macros and Functions
	SAS Macros
	BOXCOXAR Macro
	DFPVALUE Macro
	DFTEST Macro
	LOGTEST Macro

	Functions
	PROBDF Function for Dickey-Fuller Tests

	References

	Nonlinear Optimization Methods
	Overview
	Options
	Details of Optimization Algorithms
	Overview
	Choosing an Optimization Algorithm
	Algorithm Descriptions

	Remote Monitoring
	ODS Table Names
	References


	Procedure Reference
	The ARIMA Procedure
	Overview: ARIMA Procedure
	Getting Started: ARIMA Procedure
	The Three Stages of ARIMA Modeling
	Identification Stage
	Estimation and Diagnostic Checking Stage
	Forecasting Stage
	Using ARIMA Procedure Statements
	General Notation for ARIMA Models
	Stationarity
	Differencing
	Subset, Seasonal, and Factored ARMA Models
	Input Variables and Regression with ARMA Errors
	Intervention Models and Interrupted Time Series
	Rational Transfer Functions and Distributed Lag Models
	Forecasting with Input Variables
	Data Requirements

	Syntax: ARIMA Procedure
	Functional Summary
	PROC ARIMA Statement
	BY Statement
	IDENTIFY Statement
	ESTIMATE Statement
	OUTLIER Statement
	FORECAST Statement

	Details: ARIMA Procedure
	The Inverse Autocorrelation Function
	The Partial Autocorrelation Function
	The Cross-Correlation Function
	The ESACF Method
	The MINIC Method
	The SCAN Method
	Stationarity Tests
	Prewhitening
	Identifying Transfer Function Models
	Missing Values and Autocorrelations
	Estimation Details
	Specifying Inputs and Transfer Functions
	Initial Values
	Stationarity and Invertibility
	Naming of Model Parameters
	Missing Values and Estimation and Forecasting
	Forecasting Details
	Forecasting Log Transformed Data
	Specifying Series Periodicity
	Detecting Outliers
	OUT= Data Set
	OUTCOV= Data Set
	OUTEST= Data Set
	OUTMODEL= SAS Data Set
	OUTSTAT= Data Set
	Printed Output
	ODS Table Names
	Statistical Graphics

	Examples: ARIMA Procedure
	Example 8.1: Simulated IMA Model
	Example 8.2: Seasonal Model for the Airline Series
	Example 8.3: Model for Series J Data from Box and Jenkins
	Example 8.4: An Intervention Model for Ozone Data
	Example 8.5: Using Diagnostics to Identify ARIMA Models
	Example 8.6: Detection of Level Changes in the Nile River Data
	Example 8.7: Iterative Outlier Detection
	Example 8.8: Test for Stationarity

	References

	The AUTOREG Procedure
	Overview: AUTOREG Procedure
	Getting Started: AUTOREG Procedure
	Regression with Autocorrelated Errors
	Forecasting Autoregressive Error Models
	Testing for Autocorrelation
	Stepwise Autoregression
	Testing for Heteroscedasticity
	Heteroscedasticity and GARCH Models

	Syntax: AUTOREG Procedure
	Functional Summary
	PROC AUTOREG Statement
	BY Statement
	CLASS Statement
	MODEL Statement
	HETERO Statement
	NLOPTIONS Statement
	OUTPUT Statement
	RESTRICT Statement
	TEST Statement

	Details: AUTOREG Procedure
	Missing Values
	Autoregressive Error Model
	Alternative Autocorrelation Correction Methods
	GARCH Models
	Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrix Estimator
	Goodness-of-Fit Measures and Information Criteria
	Testing
	Predicted Values
	OUT= Data Set
	OUTEST= Data Set
	Printed Output
	ODS Table Names
	ODS Graphics

	Examples: AUTOREG Procedure
	Example 9.1: Analysis of Real Output Series
	Example 9.2: Comparing Estimates and Models
	Example 9.3: Lack-of-Fit Study
	Example 9.4: Missing Values
	Example 9.5: Money Demand Model
	Example 9.6: Estimation of ARCH(2) Process
	Example 9.7: Estimation of GARCH-Type Models
	Example 9.8: Illustration of ODS Graphics

	References

	The COMPUTAB Procedure
	Overview: COMPUTAB Procedure
	Getting Started: COMPUTAB Procedure
	Producing a Simple Report
	Using PROC COMPUTAB
	Defining Report Layout
	Adding Computed Rows and Columns
	Enhancing the Report

	Syntax: COMPUTAB Procedure
	Functional Summary
	PROC COMPUTAB Statement
	BY Statement
	CELL Statement
	COLUMNS Statement
	INIT Statement
	ROWS Statement
	SUMBY Statement
	Programming Statements

	Details: COMPUTAB Procedure
	Program Flow Example
	Order of Calculations
	Column Selection
	Controlling Execution within Row and Column Blocks
	Program Flow
	Direct Access to Table Cells
	Reserved Words
	Missing Values
	OUT= Data Set
	NOTRANS Option

	Examples: COMPUTAB Procedure
	Example 10.1: Using Programming Statements
	Example 10.2: Enhancing a Report
	Example 10.3: Comparison of Actual and Budget
	Example 10.4: Consolidations
	Example 10.5: Creating an Output Data Set
	Example 10.6: Cash Flows


	The COPULA Procedure
	Overview: COPULA Procedure
	Getting Started: COPULA Procedure
	Syntax: COPULA Procedure
	Functional Summary
	PROC COPULA Statement
	BOUNDS Statement
	BY Statement
	DEFINE Statement
	FIT Statement
	SIMULATE Statement
	VAR Statement

	Details: COPULA Procedure
	Sklar's Theorem
	Dependence Measures
	Normal Copula
	Student's t Copula
	Archimedean Copulas
	Hierarchical Archimedean Copula (HAC)
	Canonical Maximum Likelihood Estimation (CMLE)
	Exact Maximum Likelihood Estimation (MLE)
	Calibration Estimation
	Nonlinear Optimization Options
	Displayed Output
	OUTCOPULA= Data Set
	OUTPSEUDO=, OUT=, and OUTUNIFORM= Data Sets
	ODS Table Names
	ODS Graph Names

	Examples: COPULA Procedure
	Example 11.1: Copula-Based VaR Estimation
	Example 11.2: Simulating Default Times

	References

	The COUNTREG Procedure
	Overview: COUNTREG Procedure
	Getting Started: COUNTREG Procedure
	Syntax: COUNTREG Procedure
	Functional Summary
	PROC COUNTREG Statement
	BAYES Statement
	BOUNDS Statement
	BY Statement
	CLASS Statement
	DISPMODEL Statement
	FREQ Statement
	INIT Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	PERFORMANCE Statement
	PRIOR Statement
	RESTRICT Statement
	SCORE Statement
	SHOW Statement
	SPATIALDISPEFFECTS Statement
	SPATIALEFFECTS Statement
	SPATIALID Statement
	SPATIALZEROEFFECTS Statement
	STORE Statement
	TEST Statement 
	WEIGHT Statement
	ZEROMODEL Statement

	Details: COUNTREG Procedure
	Specification of Regressors
	Missing Values
	Poisson Regression
	Conway-Maxwell-Poisson Regression
	Negative Binomial Regression
	Zero-Inflated Count Regression Overview
	Zero-Inflated Poisson Regression
	Zero-Inflated Conway-Maxwell-Poisson Regression
	Zero-Inflated Negative Binomial Regression
	Spatial Lag of X Model
	Variable Selection
	Panel Data Analysis
	BY Groups and Scoring with an Item Store
	Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements
	Computational Resources
	Nonlinear Optimization Options
	Covariance Matrix Types
	Displayed Output
	Bayesian Analysis
	Prior Distributions
	Automated MCMC
	Marginal Likelihood
	OUTPUT OUT= Data Set
	OUTEST= Data Set
	ODS Table Names
	ODS Graphics

	Examples: COUNTREG Procedure
	Example 12.1: Basic Models
	Example 12.2: ZIP and ZINB Models for Data That Exhibit Extra Zeros
	Example 12.3: Variable Selection
	Example 12.4: Spatial Effects

	References

	The DATASOURCE Procedure
	Overview: DATASOURCE Procedure
	Getting Started: DATASOURCE Procedure
	Structure of a SAS Data Set Containing Time Series Data
	Reading Data Files
	Subsetting Input Data Files
	Controlling the Frequency of Data: The INTERVAL= Option
	Selecting Time Series Variables: The KEEP and DROP Statements
	Controlling the Time Range of Data: The RANGE Statement
	Reading in Data Files Containing Cross Sections
	Obtaining Descriptive Information on Cross Sections
	Subsetting a Data File Containing Cross Sections
	Renaming Time Series Variables
	Changing the Lengths of Numeric Variables

	Syntax: DATASOURCE Procedure
	PROC DATASOURCE Statement
	ATTRIBUTE Statement
	DROP Statement
	DROPEVENT Statement
	FORMAT Statement
	KEEP Statement
	KEEPEVENT Statement
	LABEL Statement
	LENGTH Statement
	RANGE Statement
	RENAME Statement
	WHERE Statement

	Details: DATASOURCE Procedure
	Variable Lists
	OUT= Data Set
	OUTCONT= Data Set
	OUTBY= Data Set
	OUTALL= Data Set
	OUTEVENT= Data Set
	Data Elements Reference: DATASOURCE Procedure

	Examples: DATASOURCE Procedure
	Example 13.1: BEA National Income and Product Accounts
	Example 13.2: BLS Consumer Price Index Surveys
	Example 13.3: BLS State and Area Employment, Hours, and Earnings Surveys
	Example 13.4: DRI/McGraw-Hill Format CITIBASE Files
	Example 13.5: DRI Data Delivery Service Database
	Example 13.6: PC Format CITIBASE Database
	Example 13.7: Quarterly COMPUSTAT Data Files
	Example 13.8: Annual COMPUSTAT Data Files, V9.2 New Filetype CSAUC3
	Example 13.9: CRSP Daily NYSE/AMEX Combined Stocks

	References

	The ENTROPY Procedure
	Overview: ENTROPY Procedure
	Getting Started: ENTROPY Procedure
	Simple Regression Analysis
	Using Prior Information
	Pure Inverse Problems
	Analyzing Multinomial Response Data

	Syntax: ENTROPY Procedure
	Functional Summary
	PROC ENTROPY Statement
	BOUNDS Statement
	BY Statement
	ID Statement
	MODEL Statement
	PRIORS Statement
	RESTRICT Statement
	TEST Statement
	WEIGHT Statement

	Details: ENTROPY Procedure
	Generalized Maximum Entropy
	Generalized Cross Entropy
	Moment Generalized Maximum Entropy
	Maximum Entropy-Based Seemingly Unrelated Regression
	Generalized Maximum Entropy for Multinomial Discrete Choice Models
	Censored or Truncated Dependent Variables
	Information Measures
	Parameter Covariance for GCE
	Parameter Covariance for GCE-M
	Statistical Tests
	Missing Values
	Input Data Sets
	Output Data Sets
	ODS Table Names
	ODS Graphics

	Examples: ENTROPY Procedure
	Example 14.1: Nonnormal Error Estimation
	Example 14.2: Unreplicated Factorial Experiments
	Example 14.3: Censored Data Models in PROC ENTROPY
	Example 14.4: Use of the PDATA= Option
	Example 14.5: Illustration of ODS Graphics

	References

	The ESM Procedure
	Overview: ESM Procedure
	Getting Started: ESM Procedure
	Syntax: ESM Procedure
	Functional Summary
	PROC ESM Statement
	BY Statement
	FORECAST Statement
	ID Statement

	Details: ESM Procedure
	Accumulation
	Missing Value Interpretation
	Transformations
	Parameter Estimation
	Missing Value Modeling Issues
	Forecasting
	Inverse Transformations
	Statistics of Fit
	Forecast Summation
	Data Set Output
	Printed Output
	ODS Table Names
	ODS Graphics

	Examples: ESM Procedure
	Example 15.1: Forecasting of Time Series Data
	Example 15.2: Forecasting of Transactional Data
	Example 15.3: Specifying the Forecasting Model
	Example 15.4: Extending the Independent Variables for Multivariate Forecasts
	Example 15.5: Illustration of ODS Graphics


	The EXPAND Procedure
	Overview: EXPAND Procedure
	Getting Started: EXPAND Procedure
	Converting to Higher Frequency Series
	Aggregating to Lower Frequency Series
	Combining Time Series with Different Frequencies
	Interpolating Missing Values
	Requesting Different Interpolation Methods
	Using the ID Statement
	Specifying Observation Characteristics
	Converting Observation Characteristics
	Creating New Variables
	Transforming Series

	Syntax: EXPAND Procedure
	Functional Summary
	PROC EXPAND Statement
	BY Statement
	CONVERT Statement
	ID Statement

	Details: EXPAND Procedure
	Frequency Conversion
	Identifying Observations
	Range of Output Observations
	Extrapolation
	OBSERVED= Option
	Conversion Methods
	Transformation Operations
	OUT= Data Set
	OUTEST= Data Set
	ODS Graphics

	Examples: EXPAND Procedure
	Example 16.1: Combining Monthly and Quarterly Data
	Example 16.2: Illustration of ODS Graphics
	Example 16.3: Interpolating Irregular Observations
	Example 16.4: Using Transformations

	References

	The HPCDM Procedure
	Overview: HPCDM Procedure
	Getting Started: HPCDM Procedure
	Estimating a Simple Compound Distribution Model
	Analyzing the Effect of Parameter Uncertainty on the Compound Distribution
	Scenario Analysis

	Syntax: HPCDM Procedure
	Functional Summary
	PROC HPCDM Statement
	BY Statement
	DISTBY Statement
	EXTERNALCOUNTS Statement
	OUTPUT Statement
	OUTSUM Statement
	PERFORMANCE Statement
	SEVERITYMODEL Statement
	Programming Statements

	Details: HPCDM Procedure
	Specifying Scenario Data in the DATA= Data Set
	Simulation Procedure
	Simulation of Adjusted Compound Distribution Sample
	Parameter Perturbation Analysis
	Descriptive Statistics
	Input Specification
	Output Data Sets
	Displayed Output
	ODS Graphics

	Examples: HPCDM Procedure
	Example 17.1: Estimating the Probability Distribution of Insurance Payments
	Example 17.2: Using Externally Simulated Count Data
	Example 17.3: Scenario Analysis with Rich Regression Effects and BY Groups

	References

	The HPCOPULA Procedure
	Overview: HPCOPULA Procedure
	PROC HPCOPULA Features

	Getting Started: HPCOPULA Procedure
	Syntax: HPCOPULA Procedure
	Functional Summary
	PROC HPCOPULA Statement
	DEFINE Statement
	SIMULATE Statement
	PERFORMANCE Statement
	VAR Statement

	Details: HPCOPULA Procedure
	Sklar's Theorem
	Dependence Measures
	Normal Copula
	Student's t Copula
	Archimedean Copulas
	OUTUNIFORM= Data Sets

	Examples: HPCOPULA Procedure
	Example 18.1: Simulating Default Times

	References

	The HPCOUNTREG Procedure
	Overview: HPCOUNTREG Procedure
	PROC HPCOUNTREG Features

	Getting Started: HPCOUNTREG Procedure
	Syntax: HPCOUNTREG Procedure
	Functional Summary
	PROC HPCOUNTREG Statement
	BOUNDS Statement
	BY Statement
	CLASS Statement
	DISPMODEL Statement
	FREQ Statement
	INIT Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	RESTRICT Statement
	TEST Statement
	WEIGHT Statement
	ZEROMODEL Statement

	Details: HPCOUNTREG Procedure
	Missing Values
	Poisson Regression
	Conway-Maxwell-Poisson Regression
	Negative Binomial Regression
	Zero-Inflated Count Regression Overview
	Zero-Inflated Poisson Regression
	Zero-Inflated Conway-Maxwell-Poisson Regression
	Zero-Inflated Negative Binomial Regression
	Parameter Naming Conventions for the RESTRICT, TEST, BOUNDS, and INIT Statements
	Computational Resources
	Covariance Matrix Types
	Displayed Output
	OUTPUT OUT= Data Set
	OUTEST= Data Set
	ODS Table Names

	Examples: The HPCOUNTREG Procedure
	Example 19.1: High-Performance Zero-Inflated Poisson Model

	References

	The HPPANEL Procedure
	Overview: HPPANEL Procedure
	Getting Started: HPPANEL Procedure
	Syntax: HPPANEL Procedure
	Functional Summary
	PROC HPPANEL Statement
	ID Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	RESTRICT Statement
	TEST Statement

	Details: HPPANEL Procedure
	Specifying the Input Data
	Specifying the Regression Model
	Specifying the Number of Threads
	Unbalanced Data
	One-Way Fixed-Effects Model
	Two-Way Fixed-Effects Model
	Balanced Panels
	Unbalanced Panels
	One-Way Random-Effects Model
	Two-Way Random-Effects Model
	Between Estimators
	Pooled Estimator
	Linear Hypothesis Testing
	Specification Tests
	OUTPUT OUT= Data Set
	OUTEST= Data Set
	Printed Output
	ODS Table Names

	Example: HPPANEL Procedure
	Example 20.1: One-Way Random-Effects High-Performance Model

	References

	The HPQLIM Procedure
	Overview: HPQLIM Procedure
	PROC HPQLIM Features

	Getting Started: HPQLIM Procedure
	Syntax: HPQLIM Procedure
	Functional Summary
	PROC HPQLIM Statement
	BAYES Statement
	BOUNDS Statement
	BY Statement
	ENDOGENOUS Statement
	FREQ Statement
	HETERO Statement
	INIT Statement
	MODEL Statement
	OUTPUT Statement
	PERFORMANCE Statement
	PRIOR Statement
	RESTRICT Statement
	TEST Statement
	WEIGHT Statement

	Details: HPQLIM Procedure
	Ordinal Discrete Choice Modeling
	Limited Dependent Variable Models
	Stochastic Frontier Production and Cost Models
	Heteroscedasticity
	Tests on Parameters
	Bayesian Analysis
	Prior Distributions
	Output to SAS Data Set
	OUTEST= Data Set
	Naming
	ODS Table Names
	ODS Graphics

	Examples: The HPQLIM Procedure
	Example 21.1: High-Performance Model with Censoring
	Example 21.2: Bayesian High-Performance Model with Censoring

	References

	The HPSEVERITY Procedure
	Overview: HPSEVERITY Procedure
	Getting Started: HPSEVERITY Procedure
	A Simple Example of Fitting Predefined Distributions
	An Example with Left-Truncation and Right-Censoring
	An Example of Modeling Regression Effects

	Syntax: HPSEVERITY Procedure
	Functional Summary
	PROC HPSEVERITY Statement
	BY Statement
	CLASS Statement
	DIST Statement
	LOSS Statement
	NLOPTIONS Statement
	OUTPUT Statement
	OUTSCORELIB Statement
	PERFORMANCE Statement
	SCALEMODEL Statement
	WEIGHT Statement
	Programming Statements

	Details: HPSEVERITY Procedure
	Predefined Distributions
	Censoring and Truncation
	Parameter Estimation Method
	Parameter Initialization
	Estimating Regression Effects
	Levelization of Classification Variables
	Specification and Parameterization of Model Effects
	Empirical Distribution Function Estimation Methods
	Statistics of Fit
	Multithreaded Computation
	Defining a Severity Distribution Model with the FCMP Procedure
	Predefined Utility Functions
	Scoring Functions
	Custom Objective Functions
	Input Data Sets
	Output Data Sets
	Displayed Output
	ODS Graphics

	Examples: HPSEVERITY Procedure
	Example 22.1: Defining a Model for Gaussian Distribution
	Example 22.2: Defining a Model for the Gaussian Distribution with a Scale Parameter
	Example 22.3: Defining a Model for Mixed-Tail Distributions
	Example 22.4: Fitting a Scaled Tweedie Model with Regressors
	Example 22.5: Fitting Distributions to Interval-Censored Data
	Example 22.6: Benefits of Multithreaded Computing
	Example 22.7: Estimating Parameters Using the Cramér–von Mises Estimator
	Example 22.8: Defining a Finite Mixture Model That Has a Scale Parameter
	Example 22.9: Predicting Mean and Value-at-Risk by Using Scoring Functions
	Example 22.10: Scale Regression with Rich Regression Effects

	References

	The LOAN Procedure
	Overview: LOAN Procedure
	Getting Started: LOAN Procedure
	Analyzing Fixed Rate Loans
	Analyzing Balloon Payment Loans
	Analyzing Adjustable Rate Loans
	Analyzing Buydown Rate Loans
	Loan Repayment Schedule
	Loan Comparison

	Syntax: LOAN Procedure
	Functional Summary
	PROC LOAN Statement
	ARM Statement
	BALLOON Statement
	BUYDOWN Statement
	COMPARE Statement
	FIXED Statement

	Details: LOAN Procedure
	Computational Details
	Loan Comparison Details
	OUT= Data Set
	OUTCOMP= Data Set
	OUTSUM= Data Set
	Printed Output
	ODS Table Names

	Examples: LOAN Procedure
	Example 23.1: Discount Points for Lower Interest Rates
	Example 23.2: Refinancing a Loan
	Example 23.3: Prepayments on a Loan
	Example 23.4: Output Data Sets
	Example 23.5: Piggyback Loans

	References

	The MDC Procedure
	Overview: MDC Procedure
	Getting Started: MDC Procedure
	Conditional Logit: Estimation and Prediction
	Nested Logit Modeling
	Multivariate Normal Utility Function
	HEV and Multinomial Probit: Heteroscedastic Utility Function
	Parameter Heterogeneity: Mixed Logit

	Syntax: MDC Procedure
	Functional Summary
	PROC MDC Statement
	BOUNDS Statement
	BY Statement
	CLASS Statement
	ID Statement
	MDCDATA Statement
	MODEL Statement
	NEST Statement
	NLOPTIONS Statement
	OUTPUT Statement
	RESTRICT Statement
	TEST Statement
	UTILITY Statement

	Details: MDC Procedure
	Multinomial Discrete Choice Modeling
	Multinomial Logit and Conditional Logit
	Heteroscedastic Extreme-Value Model
	Mixed Logit Model
	Multinomial Probit
	Nested Logit
	Decision Tree and Nested Logit
	Model Fit and Goodness-of-Fit Statistics
	Tests on Parameters
	OUTEST= Data Set
	ODS Table Names

	Examples: MDC Procedure
	Example 24.1: Binary Data Modeling
	Example 24.2: Conditional Logit and Data Conversion
	Example 24.3: Correlated Choice Modeling
	Example 24.4: Testing for Homoscedasticity of the Utility Function
	Example 24.5: Choice of Time for Work Trips: Nested Logit Analysis
	Example 24.6: Hausman's Specification Test
	Example 24.7: Likelihood Ratio Test

	References

	The MODEL Procedure
	Overview: MODEL Procedure
	Getting Started: MODEL Procedure
	Nonlinear Regression Analysis
	Nonlinear Systems Regression
	General Form Models
	Solving Simultaneous Nonlinear Equation Systems
	Working with Model Files
	Monte Carlo Simulation

	Syntax: MODEL Procedure
	Functional Summary
	PROC MODEL Statement
	BOUNDS Statement
	BY Statement
	CONTROL Statement
	DELETEMODEL Statement
	ENDOGENOUS Statement
	EQGROUP Statement
	ERRORMODEL Statement
	ESTIMATE Statement
	EXOGENOUS Statement
	FIT Statement
	ID Statement
	INCLUDE Statement
	INSTRUMENTS Statement
	LABEL Statement
	MOMENT Statement
	OUTVARS Statement
	PARAMETERS Statement
	Programming Statements
	RANGE Statement
	RESET Statement
	RESTRICT Statement
	SOLVE Statement
	TEST Statement
	VAR Statement
	VARGROUP Statement
	WEIGHT Statement

	Details: Estimation by the MODEL Procedure
	Estimation Methods
	Properties of the Estimates
	Minimization Methods
	Convergence Criteria
	Troubleshooting Convergence Problems
	Iteration History
	Computer Resource Requirements
	Testing for Normality
	Heteroscedasticity
	Testing for Autocorrelation
	Transformation of Error Terms
	Error Covariance Structure Specification
	Ordinary Differential Equations
	Restrictions and Bounds on Parameters
	Tests on Parameters
	Hausman Specification Test
	Chow Tests
	Profile Likelihood Confidence Intervals
	Identity Equations
	Choice of Instruments
	Autoregressive Moving-Average Error Processes
	Distributed Lag Models and the %PDL Macro
	Input Data Sets
	Output Data Sets
	ODS Table Names
	ODS Graphics

	Details: Simulation by the MODEL Procedure
	Solution Modes
	Multivariate t Distribution Simulation
	Alternate Distribution Simulation
	Mixtures of Distributions—Copulas
	Solution Mode Output
	Goal Seeking: Solving for Right-Hand-Side Variables
	Numerical Solution Methods
	Numerical Integration
	Limitations
	SOLVE Data Sets

	Programming Language Overview: MODEL Procedure
	Variables in the Model Program
	Equation Translations
	Derivatives
	Mathematical Functions
	Functions across Time
	Language Differences
	Storing Programs in Model Files
	Macro Return Codes (SYSINFO)
	Diagnostics and Debugging
	Analyzing the Structure of Large Models

	Examples: MODEL Procedure
	Example 25.1: OLS Single Nonlinear Equation
	Example 25.2: A Consumer Demand Model
	Example 25.3: Vector AR(1) Estimation
	Example 25.4: MA(1) Estimation
	Example 25.5: Polynomial Distributed Lags by Using %PDL
	Example 25.6: General Form Equations
	Example 25.7: Spring and Damper Continuous System
	Example 25.8: Nonlinear FIML Estimation
	Example 25.9: Circuit Estimation
	Example 25.10: Systems of Differential Equations
	Example 25.11: Monte Carlo Simulation
	Example 25.12: Cauchy Distribution Estimation
	Example 25.13: Switching Regression Example
	Example 25.14: Simulating from a Mixture of Distributions
	Example 25.15: Simulated Method of Moments—Simple Linear Regression
	Example 25.16: Simulated Method of Moments—AR(1) Process
	Example 25.17: Simulated Method of Moments—Stochastic Volatility Model
	Example 25.18: Duration Data Model with Unobserved Heterogeneity
	Example 25.19: EMM Estimation of a Stochastic Volatility Model
	Example 25.20: Illustration of ODS Graphics
	Example 25.21: A Translog Cost Function and Derived Demands
	Example 25.22: Reducing Parameter Variance in a Tree Biomass Model

	References

	The PANEL Procedure
	Overview: PANEL Procedure
	Getting Started: PANEL Procedure
	Syntax: PANEL Procedure
	Functional Summary
	PROC PANEL Statement
	BY Statement
	CLASS Statement
	COMPARE Statement
	FLATDATA Statement
	ID Statement
	INSTRUMENTS Statement
	LAG, CLAG, SLAG, XLAG, and ZLAG Statements
	MODEL Statement
	OUTPUT Statement
	RESTRICT Statement
	TEST Statement

	Details: PANEL Procedure
	Specifying the Input Data
	Specifying the Regression Model
	Missing Values
	Unbalanced Data
	Common Notation
	Pooled Regression (POOLED Option)
	Between-Groups Regression (BTWNG and BTWNT Options)
	One-Way Fixed-Effects Model (FIXONE and FIXONETIME Options)
	Two-Way Fixed-Effects Model (FIXTWO Option)
	One-Way Fixed-Effects Model, First Differencing (FDONE and FDONETIME Options)
	Two-Way Fixed-Effects Model, First Differencing (FDTWO Option)
	One-Way Random-Effects Model (RANONE Option)
	Two-Way Random-Effects Model (RANTWO Option)
	Parks Method for Autoregressive Models (PARKS Option)
	Da Silva Method for Moving Average Models (DASILVA Option)
	Hausman-Taylor Estimation (HTAYLOR Option)
	Amemiya-MaCurdy Estimation (AMACURDY Option)
	Dynamic Panel Estimation (DYNDIFF and DYNSYS Options)
	Restricted Estimation
	Linear Hypothesis Testing
	Heteroscedasticity-Corrected Covariance Matrices
	Heteroscedasticity- and Autocorrelation-Consistent Covariance Matrices
	R-Square
	F Test for No Fixed Effects
	Tests for Random Effects
	Tests of Poolability
	Tests for Cross-Sectional Dependence
	Panel Data Unit Root Tests
	Lagrange Multiplier (LM) Test for Cross-Sectional and Time Effects
	Tests for Serial Correlation and Cross-Sectional Effects
	Troubleshooting
	Creating ODS Graphics
	OUTPUT OUT= Data Set
	OUTEST= Data Set
	OUTTRANS= Data Set
	Printed Output
	ODS Table Names

	Examples: PANEL Procedure
	Example 26.1: The Airline Cost Data: Fixed Effects
	Example 26.2: The Airline Cost Data: First Difference or Fixed Effects
	Example 26.3: Analyzing Demand for Liquid Assets: Random Effects
	Example 26.4: Panel Study of Income Dynamics (PSID): Hausman-Taylor Models
	Example 26.5: Cigarette Sales Data: Dynamic Panel Estimation
	Example 26.6: Using the FLATDATA Statement

	References

	The PDLREG Procedure
	Overview: PDLREG Procedure
	Getting Started: PDLREG Procedure
	Introductory Example

	Syntax: PDLREG Procedure
	Functional Summary
	PROC PDLREG Statement
	BY Statement
	MODEL Statement
	OUTPUT Statement
	RESTRICT Statement

	Details: PDLREG Procedure
	Missing Values
	Polynomial Distributed Lag Estimation
	Autoregressive Error Model Estimation
	OUT= Data Set
	Printed Output
	ODS Graphics

	Examples: PDLREG Procedure
	Example 27.1: Industrial Conference Board Data
	Example 27.2: Money Demand Model

	References

	The QLIM Procedure
	Overview: QLIM Procedure
	Getting Started: QLIM Procedure
	Introductory Example: Binary Probit and Logit Models

	Syntax: QLIM Procedure
	Functional Summary
	PROC QLIM Statement
	BAYES Statement
	BOUNDS Statement
	BY Statement
	CLASS Statement
	ENDOGENOUS Statement
	FREQ Statement
	HETERO Statement
	INIT Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	PRIOR Statement
	RANDOM Statement
	RESTRICT Statement
	TEST Statement
	WEIGHT Statement

	Details: QLIM Procedure
	Ordinal Discrete Choice Modeling
	Limited Dependent Variable Models
	Stochastic Frontier Production and Cost Models
	Heteroscedasticity and Box-Cox Transformation
	Bivariate Censored Dependent Variable Modeling
	Selection Models
	Multivariate Limited Dependent Models
	Variable Selection
	Tests on Parameters
	Endogeneity and Instrumental Variables
	Random-Parameters Models and Panel Data Analysis
	Bayesian Analysis
	Prior Distributions
	Hamiltonian MC: Parameter Transformation
	Automated MCMC
	Marginal Likelihood
	Standard Distributions
	Output to SAS Data Set
	OUTEST= Data Set
	Naming
	ODS Table Names
	ODS Graphics

	Examples: QLIM Procedure
	Example 28.1: Ordered Data Modeling
	Example 28.2: Tobit Analysis
	Example 28.3: Bivariate Probit Analysis
	Example 28.4: Sample Selection Model
	Example 28.5: Sample Selection Model with Truncation and Censoring
	Example 28.6: Types of Tobit Models
	Example 28.7: Stochastic Frontier Models
	Example 28.8: Bayesian Modeling

	References

	The SEVERITY Procedure
	Overview: SEVERITY Procedure
	Getting Started: SEVERITY Procedure
	A Simple Example of Fitting Predefined Distributions
	An Example with Left-Truncation and Right-Censoring
	An Example of Modeling Regression Effects

	Syntax: SEVERITY Procedure
	Functional Summary
	PROC SEVERITY Statement
	BY Statement
	CLASS Statement
	DIST Statement
	LOSS Statement
	NLOPTIONS Statement
	OUTPUT Statement
	OUTSCORELIB Statement
	SCALEMODEL Statement
	WEIGHT Statement
	Programming Statements

	Details: SEVERITY Procedure
	Predefined Distributions
	Censoring and Truncation
	Parameter Estimation Method
	Parameter Initialization
	Estimating Regression Effects
	Levelization of Classification Variables
	Specification and Parameterization of Model Effects
	Empirical Distribution Function Estimation Methods
	Statistics of Fit
	Defining a Severity Distribution Model with the FCMP Procedure
	Predefined Utility Functions
	Scoring Functions
	Custom Objective Functions
	Multithreaded Computation
	Input Data Sets
	Output Data Sets
	Displayed Output
	ODS Graphics

	Examples: SEVERITY Procedure
	Example 29.1: Defining a Model for Gaussian Distribution
	Example 29.2: Defining a Model for the Gaussian Distribution with a Scale Parameter
	Example 29.3: Defining a Model for Mixed-Tail Distributions
	Example 29.4: Estimating Parameters Using the Cramér–von Mises Estimator
	Example 29.5: Fitting a Scaled Tweedie Model with Regressors
	Example 29.6: Fitting Distributions to Interval-Censored Data
	Example 29.7: Defining a Finite Mixture Model That Has a Scale Parameter
	Example 29.8: Predicting Mean and Value-at-Risk by Using Scoring Functions
	Example 29.9: Scale Regression with Rich Regression Effects

	References

	The SIMILARITY Procedure
	Overview: SIMILARITY Procedure
	Getting Started: SIMILARITY Procedure
	Syntax: SIMILARITY Procedure
	Functional Summary
	PROC SIMILARITY Statement
	BY Statement
	FCMPOPT Statement
	ID Statement
	INPUT Statement
	TARGET Statement

	Details: SIMILARITY Procedure
	Accumulation
	Missing Value Interpretation
	Zero Value Interpretation
	Time Series Transformation
	Time Series Differencing
	Time Series Missing Value Trimming
	Time Series Descriptive Statistics
	Input and Target Sequences
	Sliding Sequences
	Time Warping
	Sequence Normalization
	Sequence Scaling
	Similarity Measures
	User-Defined Functions and Subroutines
	Output Data Sets
	OUT= Data Set
	OUTMEASURE= Data Set
	OUTPATH= Data Set
	OUTSEQUENCE= Data Set
	OUTSUM= Data Set
	_STATUS_ Variable Values
	Printed Output
	ODS Table Names
	ODS Graphics

	Examples: SIMILARITY Procedure
	Example 30.1: Accumulating Transactional Data into Time Series Data
	Example 30.2: Similarity Analysis
	Example 30.3: Sliding Similarity Analysis
	Example 30.4: Searching for Historical Analogies
	Example 30.5: Clustering Time Series

	References

	The SIMLIN Procedure
	Overview: SIMLIN Procedure
	Getting Started: SIMLIN Procedure
	Prediction and Simulation

	Syntax: SIMLIN Procedure
	Functional Summary
	PROC SIMLIN Statement
	BY Statement
	ENDOGENOUS Statement
	EXOGENOUS Statement
	ID Statement
	LAGGED Statement
	OUTPUT Statement

	Details: SIMLIN Procedure
	Defining the Structural Form
	Computing the Reduced Form
	Dynamic Multipliers
	Multipliers for Higher-Order Lags
	EST= Data Set
	DATA= Data Set
	OUTEST= Data Set
	OUT= Data Set
	Printed Output
	ODS Table Names

	Examples: SIMLIN Procedure
	Example 31.1: Simulating Klein's Model I
	Example 31.2: Multipliers for a Third-Order System

	References

	The SPATIALREG Procedure
	Overview: SPATIALREG Procedure
	Getting Started: SPATIALREG Procedure
	Syntax: SPATIALREG Procedure
	Functional Summary
	PROC SPATIALREG Statement
	BOUNDS Statement
	BY Statement
	CLASS Statement
	INIT Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	PERFORMANCE Statement
	RESTRICT Statement
	TEST Statement
	SPATIALID Statement
	SPATIALEFFECTS Statement

	Details: SPATIALREG Procedure
	Specification of Regressors
	Missing Values
	Spatial Autoregressive Models
	Spatial Durbin Models
	Spatial Error Models
	Spatial Durbin Error Models
	Spatial Moving Average Models
	Spatial Durbin Moving Average Models
	Spatial Autoregressive Moving Average Models
	Spatial Durbin Autoregressive Moving Average Models
	Spatial Autoregressive Confused Models
	Spatial Durbin Autoregressive Confused Models
	Linear Regression Models
	Spatial Lag of X Models
	Specifying the Spatial Weights Matrix
	Compact Representation of Spatial Weights Matrix
	Spatial ID Matching
	Parameter Space of Autoregressive Parameters
	Approximations to the Jacobian
	Parameter Naming Conventions for RESTRICT, TEST, BOUNDS, and INIT Statements
	Computational Resources
	Nonlinear Optimization Options
	Covariance Matrix Types
	Displayed Output
	OUTPUT OUT= Data Set
	OUTEST= Data Set
	ODS Table Names

	Examples: SPATIALREG Procedure
	Example 32.1: Columbus Crime Data
	Example 32.2: Models with Spatial ID Matching
	Example 32.3: Fitting Multiple Models
	Example 32.4: Compact Representation of a Spatial Weights Matrix
	Example 32.5: Taylor and Chebyshev Approximations

	References

	The SPECTRA Procedure
	Overview: SPECTRA Procedure
	Getting Started: SPECTRA Procedure
	Syntax: SPECTRA Procedure
	Functional Summary
	PROC SPECTRA Statement
	BY Statement
	VAR Statement
	WEIGHTS Statement

	Details: SPECTRA Procedure
	Input Data
	Missing Values
	Computational Method
	Kernels
	White Noise Test
	Transforming Frequencies
	OUT= Data Set
	Printed Output
	ODS Table Names: SPECTRA Procedure

	Examples: SPECTRA Procedure
	Example 33.1: Spectral Analysis of Sunspot Activity
	Example 33.2: Cross-Spectral Analysis

	References

	The SSM Procedure
	Overview: SSM Procedure
	Background

	Getting Started: SSM Procedure
	Syntax: SSM Procedure
	Functional Summary
	PROC SSM Statement
	BY Statement
	COMPONENT Statement
	DEPLAG Statement
	EVAL Statement
	ID Statement
	IRREGULAR Statement
	MODEL Statement
	OUTPUT Statement
	PARMS Statement
	Programming Statements
	STATE Statement
	TREND Statement

	Details
	State Space Model and Notation
	Types of Sequence Data
	Overview of Model Specification Syntax
	Building a Complex Model Specification
	Model Specification Steps
	Sparse Transition Matrix Specification
	Regression Variable Specification in Multivariate Models

	Filtering, Smoothing, Likelihood, and Structural Break Detection
	Filtering Pass
	Likelihood Computation and Model-Fitting Phase
	Forecasting Phase
	Smoothing Phase
	Delete-One Cross Validation and Structural Breaks

	Estimation of User-Specified Linear Combination of State Elements
	Contrasting PROC SSM with Other SAS Procedures 
	Predefined Trend Models
	Trend Models for Regular Data
	Trend Models for Irregular Data

	Predefined Structural Models
	Multivariate White Noise
	Multivariate Random Walk Trend
	Multivariate Local Linear Trend
	Multivariate Cycle
	Multivariate Season
	Multivariate ARMA
	Continuous-Time Cycle

	Models with Dependent Lags
	Temporal Aggregation and Temporal Distribution
	Temporal Distribution
	Temporal Aggregation

	Covariance Parameterization
	Missing Values
	Computational Issues
	A Well-Behaved Model
	Convergence Problems
	Computer Resource Requirements

	Displayed Output
	ODS Table Names
	ODS Graph Names
	OUT= Data Set

	Examples: SSM Procedure
	Example 34.1: Bivariate Basic Structural Model 
	Example 34.2: Panel Data: Random-Effects and Autoregressive Models
	Example 34.3: Backcasting, Forecasting, and Interpolation
	Example 34.4: Longitudinal Data: Smoothing of Repeated Measures
	Example 34.5: A User-Defined Trend Model
	Example 34.6: Model with Multiple ARIMA Components
	Example 34.7: A Dynamic Factor Model for the Yield Curve
	Example 34.8: Diagnostic Plots and Structural Break Analysis
	Example 34.9: Longitudinal Data: Variable Bandwidth Smoothing
	Example 34.10: A Transfer Function Model for the Gas Furnace Data
	Example 34.11: Panel Data: Dynamic Panel Model for the Cigar Data
	Example 34.12: Multivariate Modeling: Long-Term Temperature Trends
	Example 34.13: Bivariate Model: Sales of Mink and Muskrat Furs
	Example 34.14: Factor Model: Now-Casting the US Economy
	Example 34.15: Longitudinal Data: Lung Function Analysis
	Example 34.16: Temporal Distribution: Estimating Monthly GDP (Experimental)
	Example 34.17: Temporal Aggregation: Triannual Nile River Level (Experimental)
	Example 34.18: Invariance of the Marginal Likelihood under Linear Rescaling of the Diffuse Effects (Experimental)

	References

	The STATESPACE Procedure
	Overview: STATESPACE Procedure
	The State Space Model
	How PROC STATESPACE Works

	Getting Started: STATESPACE Procedure
	Automatic State Space Model Selection
	Specifying the State Space Model

	Syntax: STATESPACE Procedure
	Functional Summary
	PROC STATESPACE Statement
	BY Statement
	FORM Statement
	ID Statement
	INITIAL Statement
	RESTRICT Statement
	VAR Statement

	Details: STATESPACE Procedure
	Missing Values
	Stationarity and Differencing
	Preliminary Autoregressive Models
	Canonical Correlation Analysis
	Parameter Estimation
	Forecasting
	Relation of ARMA and State Space Forms
	OUT= Data Set
	OUTAR= Data Set
	OUTMODEL= Data Set
	Printed Output
	ODS Table Names

	Examples: STATESPACE Procedure
	Example 35.1: Series J from Box and Jenkins

	References

	The SYSLIN Procedure
	Overview: SYSLIN Procedure
	Getting Started: SYSLIN Procedure
	An Example Model
	Variables in a System of Equations
	Using PROC SYSLIN
	OLS Estimation
	Two-Stage Least Squares Estimation
	LIML, K-Class, and MELO Estimation
	SUR, 3SLS, and FIML Estimation
	Computing Reduced Form Estimates
	Restricting Parameter Estimates
	Testing Parameters
	Saving Residuals and Predicted Values
	Plotting Residuals

	Syntax: SYSLIN Procedure
	Functional Summary
	PROC SYSLIN Statement
	BY Statement
	ENDOGENOUS Statement
	IDENTITY Statement
	INSTRUMENTS Statement
	MODEL Statement
	OUTPUT Statement
	RESTRICT Statement
	SRESTRICT Statement
	STEST Statement
	TEST Statement
	VAR Statement
	WEIGHT Statement

	Details: SYSLIN Procedure
	Input Data Set
	Estimation Methods
	ANOVA Table for Instrumental Variables Methods
	The R-Square Statistics
	Computational Details
	Missing Values
	OUT= Data Set
	OUTEST= Data Set
	OUTSSCP= Data Set
	Printed Output
	ODS Table Names
	ODS Graphics

	Examples: SYSLIN Procedure
	Example 36.1: Klein's Model I Estimated with LIML and 3SLS
	Example 36.2: Grunfeld's Model Estimated with SUR
	Example 36.3: Illustration of ODS Graphics

	References

	The TIMEDATA Procedure
	Overview: TIMEDATA Procedure
	Getting Started: TIMEDATA Procedure
	Syntax: TIMEDATA Procedure
	Functional Summary
	PROC TIMEDATA Statement
	BY Statement
	FCMPOPT Statement
	ID Statement
	OUTARRAYS Statements
	OUTSCALARS Statements
	VAR Statements
	REGISTER Statement
	Program Statements

	Details: TIMEDATA Procedure
	Accumulation
	Missing Value Interpretation
	Time Series Transformation
	Time Series Differencing
	Summary Statistics
	Programming Statements
	Predefined Symbols
	Auxiliary Data Sets
	Data Set Output
	OUT= Data Set
	OUTARRAY= Data Set
	OUTPROCINFO= Data Set
	OUTSCALAR= Data Set
	OUTSUM= Data Set
	_STATUS_ Variable Values
	Printed Output
	ODS Table Names
	ODS Graphics Names

	Examples: TIMEDATA Procedure
	Example 37.1: Accumulating Transactional Data into Time Series Data
	Example 37.2: Using User-Defined Functions and Subroutines
	Example 37.3: Using Auxiliary Data Sets with PROC TIMEDATA

	References

	The TIMEID Procedure
	Overview: TIMEID Procedure
	Getting Started: TIMEID Procedure
	Syntax: TIMEID Procedure
	Functional Summary
	PROC TIMEID Statement
	BY Statement
	ID Statement

	Details: TIMEID Procedure
	Time ID Diagnostics
	Diagnostic Output Representation
	Inferring Time Intervals and Alignments
	Data Set Output
	Printed Tabular Output
	ODS Graphics

	Examples: TIMEID Procedure
	Example 38.1: Examining a Weekly Time ID Variable
	Example 38.2: Inferring a Date Interval
	Example 38.3: Examining Multiple BY Groups


	The TIMESERIES Procedure
	Overview: TIMESERIES Procedure
	Getting Started: TIMESERIES Procedure
	Syntax: TIMESERIES Procedure
	Functional Summary
	PROC TIMESERIES Statement
	BY Statement
	CORR Statement
	COUNT Statement
	CROSSCORR Statement
	DECOMP Statement
	ID Statement
	SEASON Statement
	SPECTRA Statement
	SSA Statement
	TREND Statement
	VAR and CROSSVAR Statements

	Details: TIMESERIES Procedure
	Accumulation
	Missing Value Interpretation
	Time Series Transformation
	Time Series Differencing
	Descriptive Statistics
	Seasonal Decomposition
	Correlation Analysis
	Cross-Correlation Analysis
	Spectral Density Analysis
	Singular Spectrum Analysis
	Data Set Output
	OUT= Data Set
	OUTCORR= Data Set
	OUTCROSSCORR= Data Set
	OUTDECOMP= Data Set
	OUTFREQ= Data Set
	OUTPROCINFO= Data Set
	OUTSEASON= Data Set
	OUTSPECTRA= Data Set
	OUTSSA= Data Set
	OUTSUM= Data Set
	OUTTREND= Data Set
	_STATUS_ Variable Values
	Printed Output
	ODS Table Names
	ODS Graphics Names

	Examples: TIMESERIES Procedure
	Example 39.1: Accumulating Transactional Data into Time Series Data
	Example 39.2: Trend and Seasonal Analysis
	Example 39.3: Illustration of ODS Graphics
	Example 39.4: Illustration of Spectral Analysis
	Example 39.5: Singular Spectrum Analysis

	References

	The TMODEL Procedure
	Overview: TMODEL Procedure
	Comparison of PROC TMODEL and PROC MODEL

	Getting Started: TMODEL Procedure
	Syntax: TMODEL Procedure
	PROC TMODEL Statement
	CROSSSECTION Statement
	FIT Statement
	PERFORMANCE Statement
	RANDOM Statement
	SOLVE Statement

	Details: TMODEL Procedure
	Panel Data
	Random-Effects Models
	Nonlinear Optimization
	Hessian Evaluation
	Multithreaded Calculations

	Examples: TMODEL Procedure
	Example 40.1: Thread Allocation Using the Performance Statement
	Example 40.2: Random-Effects Parameter Estimation (Experimental)

	References

	The TSCSREG Procedure
	Overview: The TSCSREG Procedure
	Getting Started: The TSCSREG Procedure
	Specifying the Input Data
	Unbalanced Data
	Specifying the Regression Model
	Estimation Techniques
	Introductory Example

	Syntax: The TSCSREG Procedure
	Functional Summary
	PROC TSCSREG Statement
	BY Statement
	ID Statement
	MODEL Statement
	TEST Statement

	Details: The TSCSREG Procedure
	ODS Table Names

	Examples: The TSCSREG Procedure
	References

	The UCM Procedure
	Overview: UCM Procedure
	Getting Started: UCM Procedure
	A Seasonal Series with Linear Trend

	Syntax: UCM Procedure
	Functional Summary
	PROC UCM Statement
	AUTOREG Statement
	BLOCKSEASON Statement
	BY Statement
	CYCLE Statement
	DEPLAG Statement
	ESTIMATE Statement
	FORECAST Statement
	ID Statement
	IRREGULAR Statement
	ARMA Specification

	LEVEL Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTLIER Statement
	PERFORMANCE Statement
	RANDOMREG Statement
	SEASON Statement
	SLOPE Statement
	SPLINEREG Statement
	SPLINESEASON Statement
	TF Statement

	Details: UCM Procedure
	An Introduction to Unobserved Component Models
	Modeling the Trend
	Modeling a Cycle
	Modeling Seasons
	Modeling an Autoregression
	Modeling Regression Effects
	Modeling the Irregular Component
	The Model Parameters
	Model Specification 

	The UCMs as State Space Models
	Locally Linear Trend Model
	Basic Structural Model
	Seasons with Blocked Seasonal Values
	Cycles and Autoregression
	Incorporating Predictors of Different Types
	ARMA Irregular Component
	Models with Dependent Lags

	Outlier Detection
	Missing Values
	Parameter Estimation
	Parameter Estimation by Profile Likelihood Optimization
	t Values

	Bootstrap Prediction Intervals
	Computational Issues
	Convergence Problems
	Computer Resource Requirements

	Displayed Output
	Statistical Graphics
	Analysis of Sunspot Data: Illustration of ODS Graphics

	ODS Table Names
	ODS Graph Names
	OUTFOR= Data Set
	OUTEST= Data Set
	Statistics of Fit

	Examples: UCM Procedure
	Example 42.1: The Airline Series Revisited
	Example 42.2: Variable Star Data
	Example 42.3: Modeling Long Seasonal Patterns
	Example 42.4: Modeling Time-Varying Regression Effects
	Example 42.5: Trend Removal Using the Hodrick-Prescott Filter
	Example 42.6: Using Splines to Incorporate Nonlinear Effects
	Example 42.7: Detection of Level Shift
	Example 42.8: ARIMA Modeling
	Example 42.9: Extracting A Business Cycle (Experimental)
	Example 42.10: A Transfer-Function Model for the Italian Traffic Accident Data (Experimental)

	References

	The VARMAX Procedure
	Overview: VARMAX Procedure
	Getting Started: VARMAX Procedure
	Vector Autoregressive Model
	Bayesian Vector Autoregressive Model
	Vector Error Correction Model
	Bayesian Vector Error Correction Model
	Vector Autoregressive Fractionally Integrated Moving Average Model
	Vector Autoregressive Model with Exogenous Variables
	Parameter Estimation and Testing on Restrictions
	Causality Testing
	Multivariate GARCH Models

	Syntax: VARMAX Procedure
	Functional Summary
	PROC VARMAX Statement
	BOUND Statement
	BY Statement
	CAUSAL Statement
	COINTEG Statement
	CONDFORE Statement
	GARCH Statement
	ID Statement
	INITIAL Statement
	MODEL Statement
	NLOPTIONS Statement
	OUTPUT Statement
	RESTRICT Statement
	TEST Statement

	Details: VARMAX Procedure
	Missing Values
	VARMAX Model
	Dynamic Simultaneous Equations Modeling
	Impulse Response Function
	Forecasting
	Tentative Order Selection
	VAR and VARX Modeling
	Seasonal Dummies and Time Trends
	Bayesian VAR and VARX Modeling
	VARMA and VARMAX Modeling
	Model Diagnostic Checks
	Cointegration
	Vector Error Correction Modeling
	I(2) Model
	Vector Error Correction Model in ARMA Form
	Multivariate GARCH Modeling
	VARFIMA and VARFIMAX Modeling
	Conditional Forecasts and Scenario Analysis
	Output Data Sets
	Printed Output
	ODS Table Names
	ODS Graphics
	Computational Issues

	Examples: VARMAX Procedure
	Example 43.1: Analysis of United States Economic Variables
	Example 43.2: Analysis of German Economic Variables
	Example 43.3: Analysis of Restricted Cointegrated Systems
	Example 43.4: Analysis of Euro Foreign Exchange Reference Rates
	Example 43.5: Conditional Forecasts and Scenario Analysis
	Example 43.6: Numerous Examples
	Example 43.7: Illustration of ODS Graphics

	References

	The X11 Procedure
	Overview: X11 Procedure
	Getting Started: X11 Procedure
	Basic Seasonal Adjustment
	X-11-ARIMA

	Syntax: X11 Procedure
	Functional Summary
	PROC X11 Statement
	ARIMA Statement
	BY Statement
	ID Statement
	MACURVES Statement
	MONTHLY Statement
	OUTPUT Statement
	PDWEIGHTS Statement
	QUARTERLY Statement
	SSPAN Statement
	TABLES Statement
	VAR Statement

	Details: X11 Procedure
	Historical Development of X-11
	Implementation of the X-11 Seasonal Adjustment Method
	Computational Details for Sliding Spans Analysis
	Data Requirements
	Missing Values
	Prior Daily Weights and Trading-Day Regression
	Adjustment for Prior Factors
	The YRAHEADOUT Option
	Effect of Backcast and Forecast Length
	Details of Model Selection
	OUT= Data Set
	The OUTSPAN= Data Set
	OUTSTB= Data Set
	OUTTDR= Data Set
	Printed Output
	ODS Table Names

	Examples: X11 Procedure
	Example 44.1: Component Estimation—Monthly Data
	Example 44.2: Components Estimation—Quarterly Data
	Example 44.3: Outlier Detection and Removal

	References

	The X12 Procedure
	Overview: X12 Procedure
	References

	The X13 Procedure
	Overview: X13 Procedure
	Getting Started: X13 Procedure
	Basic Seasonal Adjustment

	Syntax: X13 Procedure
	Functional Summary
	PROC X13 Statement
	ADJUST Statement
	ARIMA Statement
	AUTOMDL Statement
	BY Statement
	CHECK Statement
	ESTIMATE Statement
	EVENT Statement
	FORECAST Statement
	ID Statement
	IDENTIFY Statement
	INPUT Statement
	OUTLIER Statement
	OUTPUT Statement
	PICKMDL Statement
	REGRESSION Statement
	SEATSDECOMP Statement
	TABLES Statement
	TRANSFORM Statement
	USERDEFINED Statement
	VAR Statement
	X11 Statement

	Details: X13 Procedure
	Data Requirements
	Missing Values
	SAS Predefined Events
	User-Defined Regression Variables
	Combined Test for the Presence of Identifiable Seasonality
	Computations
	PICKMDL Model Selection
	SEATS Decomposition
	Displayed Output, ODS Table Names, and OUTPUT Tablename Keywords
	Final Automatic Model Selection Table
	Table D 8.B
	Using Auxiliary Variables to Subset Output Data Sets
	ODS Graphics
	OUT= Data Set
	SEATSDECOMP OUT= Data Set
	Special Data Sets

	Examples: X13 Procedure
	Example 46.1: ARIMA Model Identification
	Example 46.2: Model Estimation
	Example 46.3: Seasonal Adjustment
	Example 46.4: RegARIMA Automatic Model Selection
	Example 46.5: Automatic Outlier Detection
	Example 46.6: User-Defined Regressors
	Example 46.7: MDLINFOIN= and MDLINFOOUT= Data Sets
	Example 46.8: Setting Regression Parameters
	Example 46.9: Creating an MDLINFO= Data Set for Use with the PICKMDL Statement
	Example 46.10: Illustration of ODS Graphics
	Example 46.11: AUXDATA= Data Set

	References


	Data Access Engines
	The SASECRSP Interface Engine
	Overview: SASECRSP Interface Engine
	Introduction
	Opening a Database
	Using Your Opened Database

	Getting Started: SASECRSP Interface Engine
	Structure of a SAS Data Set That Contains Time Series Data
	Reading CRSP Data Files
	Using the SAS DATA Step
	Using SAS Procedures
	Using the SAS Windowing Environment
	Using CRSP Date Formats, Informats, and Functions

	Syntax: SASECRSP Interface Engine
	The LIBNAME libref SASECRSP Statement

	Details: SASECRSP Interface Engine
	Using the INSET= Option
	The SAS Output Data Set
	Understanding CRSP Date Formats, Informats, and Functions
	Data Elements Reference: SASECRSP Interface Engine
	Available CRSP Stock Data Sets
	Available CRSP Indices Data Sets

	Examples: SASECRSP Interface Engine
	Example 47.1: Specifying PERMNOs and Range in the LIBNAME Statement
	Example 47.2: Using the LIBNAME Statement to Access All Keys
	Example 47.3: Accessing One PERMNO without the RANGE= Option
	Example 47.4: Specifying Keys by Using the INSET= Option
	Example 47.5: Specifying Ranges for Individual Keys with the INSET= Option
	Example 47.6: Converting Dates by Using the CRSP Date Functions

	References

	The SASEFAME Interface Engine
	Overview: SASEFAME Interface Engine
	Getting Started: SASEFAME Interface Engine
	Setup for SAS and FAME
	Structure of a SAS Data Set That Contains Time Series Data
	Reading and Converting Fame Database Time Series
	Using the SAS DATA Step
	Using SAS Procedures
	Using the SAS Windowing Environment
	Remote Fame Data Access
	Creating Views of Time Series by Using SASEFAME LIBNAME Options

	Syntax: SASEFAME Interface Engine
	LIBNAME libref SASEFAME Statement

	Details: SASEFAME Interface Engine
	Opening a Local Fame Database
	Managing Fame Server Processes for Remote Access
	Using the MCADBS Show Function
	SAS Output Data Set
	Mapping Fame Frequencies to SAS Time Intervals
	Performing the Keeplist Expression Function
	Performing the Crosslist Selection Function

	Examples: SASEFAME Interface Engine
	Example 48.1: Converting an Entire Fame Database
	Example 48.2: Reading Time Series from the Fame Database
	Example 48.3: Writing Time Series to the SAS Data Set
	Example 48.4: Limiting the Time Range of Data
	Example 48.5: Creating a View Using the SQL Procedure and the SASEFAME Engine
	Example 48.6: Reading Other Fame Data Objects with the FAMEOUT= Option
	Example 48.7: Remote Fame Access by Using Fame CHLI
	Example 48.8: Selecting Time Series by Using the CROSSLIST= Option and KEEP Statement
	Example 48.9: Selecting Time Series by Using the CROSSLIST= Option and Fame Namelist
	Example 48.10: Selecting Time Series by Using the CROSSLIST= Option and WHERE=TICK
	Example 48.11: Selecting Boolean Case Series with the FAMEOUT= Option
	Example 48.12: Selecting Numeric Case Series with the FAMEOUT= Option
	Example 48.13: Selecting Date Case Series with the FAMEOUT= Option
	Example 48.14: Selecting String Case Series with the FAMEOUT= Option
	Example 48.15: Extracting Source for Formulas
	Example 48.16: Reading Time Series by Defining Fame Expression Groups in the INSET= Option with the KEEP= Clause
	Example 48.17: Optimizing Cache Sizes with the TUNEFAME= and TUNECHLI= Options
	Example 48.18: Remote Access Using the MCADBS Server

	References

	The SASEFRED Interface Engine
	Overview: SASEFRED Interface Engine
	Getting Started: SASEFRED Interface Engine
	Syntax: SASEFRED Interface Engine
	The LIBNAME libref SASEFRED Statement

	Details: SASEFRED Interface Engine
	Available Sources That Provide FRED Time Series Data
	FRED API Key
	Available Releases for Each Source That Provides FRED Time Series Data
	Available Time Series for Each Release ID
	Available Native Frequency for Each Series ID
	Vintage Dates for Each Series ID
	SAS Output Data Set
	SAS OUTXML File
	SAS XML Map File
	XFREDTPU SAS Data Set
	Reading Price Data by Using Indices

	Examples: SASEFRED Interface Engine
	Example 49.1: Retrieving Data for Multiple Time Series
	Example 49.2: Retrieving Data by Using the Vintage Date
	Example 49.3: Selecting Time Series When Native Frequency Is Less Than Requested Frequency
	Example 49.4: Selecting Time Series When Native Frequency Is Greater Than Requested Frequency
	Example 49.5: Specifying One Series ID with Multiple Vintage Dates for the OUTPUT=2 Option
	Example 49.6: Specifying Two Series IDs with Multiple Vintage Dates and Descending Sort Order
	Example 49.7: Vintage Dates for a Specific Series with the URL= Option
	Example 49.8: Series for a Specific Release with the URL= Option
	Example 49.9: Series for Specific Tags with the URL= Option
	Example 49.10: Categories for a Specific Series with the URL= Option
	Example 49.11: Categories for a Specific Source with the URL= Option
	Example 49.12: Series for a Specific Category with the URL= Option
	Example 49.13: Sources for Today's Date with the URL= Option
	Example 49.14: Releases Available for Today's Date with the URL= Option

	References

	The SASEHAVR Interface Engine
	Overview: SASEHAVR Interface Engine
	Getting Started: SASEHAVR Interface Engine
	Setting Up the Haver Analytics DLX Application Programming Interface
	Structure of a SAS Data Set That Contains Time Series Data
	Reading and Converting Haver DLX Time Series
	Using the SAS DATA Step
	Using the SAS Windowing Environment

	Syntax: SASEHAVR Interface Engine
	LIBNAME libref SASEHAVR Statement

	Details: SASEHAVR Interface Engine
	SAS Output Data Set
	Mapping Haver Frequencies to SAS Time Intervals
	Error Recovery for the SASEHAVR Interface Engine
	Data Elements Reference: Haver Analytics DLX Database Profile

	Examples: SASEHAVR Interface Engine
	Example 50.1: Examining the Contents of a Haver Database
	Example 50.2: Viewing Quarterly Time Series from a Haver Database
	Example 50.3: Viewing Monthly Time Series from a Haver Database
	Example 50.4: Viewing Weekly Time Series from a Haver Database
	Example 50.5: Viewing Daily Time Series from a Haver Database
	Example 50.6: Limiting the Range of Time Series from a Haver Database
	Example 50.7: Using the WHERE Statement to Subset Time Series from a Haver Database
	Example 50.8: Using the KEEP Option to Subset Time Series from a Haver Database
	Example 50.9: Using the SOURCE Option to Subset Time Series from a Haver Database
	Example 50.10: Using the GROUP Option to Subset Time Series from a Haver Database
	Example 50.11: Using the OUTSELECT=ON Option to View the Key Selection Variables in a Haver Database
	Example 50.12: Selecting Variables Based on Short Source Key Code
	Example 50.13: Selecting Variables Based on Geography Key Codes

	References

	The SASENOAA Interface Engine
	Overview: SASENOAA Interface Engine
	Getting Started: SASENOAA Interface Engine
	Syntax: SASENOAA Interface Engine
	The LIBNAME libref SASENOAA Statement

	Details: SASENOAA Interface Engine
	NOAA Severe Weather Data Inventory Data Sets
	NOAA NEXRAD Sites and Their ICAO Codes and Coordinates
	SAS Output Data Set
	SAS OUTXML File
	SAS XML Map File
	Virtual Globe Mapping Output and ZIP Files

	Examples: SASENOAA Interface Engine
	Example 51.1: Retrieving Severe Storm Warning Data with ID= Option for a Specific Date
	Example 51.2: Retrieving a Preliminary Local Storm Report by Using a Bounding Box
	Example 51.3: Retrieving Mesocyclone Data for a Specific Date
	Example 51.4: Retrieving Hail Data for One Weather Station
	Example 51.5: Retrieving Tornado Vortex Signature Data within a Distance Specified by a Center and a Radius
	Example 51.6: Retrieving Digital Mesocyclone Detection Algorithm Data for a Specific Date
	Example 51.7: Retrieving Tornado Vortex Signature Data Statistics by Using Tile Summary Statistics 
	Example 51.8: Retrieving Tornado Vortex Signature Data by Using Tile Coordinates
	Example 51.9: Mapping Hail Data in a Geospatial Framework (KMZ Format) for a Specific Weather Station
	Example 51.10: Mapping Hail Data in a Geospatial Framework (SHP Format) for a Specific Weather Station

	References

	The SASEOECD Interface Engine
	Overview: SASEOECD Interface Engine
	Getting Started: SASEOECD Interface Engine
	Using the OECD Graphical User Interface

	Syntax: SASEOECD Interface Engine
	The LIBNAME libref SASEOECD Statement

	Details: SASEOECD Interface Engine
	Customizing Your Selection Keys
	Exporting Your Data
	Dimensions of the OECD Data
	SAS INSET Data Sets
	Building the URL Request for OECD Data
	SAS Output Data Set
	Data Elements Reference: SASEOECD Interface Engine

	Examples: SASEOECD Interface Engine
	Example 52.1: Retrieving OECD Gross Domestic Product Data for One Region
	Example 52.2: Retrieving the Short-Term Labor Market Statistics for Australia
	Example 52.3: Retrieving Bank Profitability Statistics for USA, NMEC, and RUS
	Example 52.4: Retrieving Fisheries and Aquaculture Employment for the Czech Republic
	Example 52.5: Retrieving the Trade by Enterprise Characteristics by Ownership Statistics for the United Kingdom

	References

	The SASEQUAN Interface Engine
	Overview: SASEQUAN Interface Engine
	Getting Started: SASEQUAN Interface Engine
	Syntax: SASEQUAN Interface Engine
	The LIBNAME libref SASEQUAN Statement

	Details: SASEQUAN Interface Engine
	Quandl API Key
	Available Sources That Provide Quandl Economic Time Series Data
	Useful Lists for Easy Downloading of Quandl Time Series Data
	Available Time Series for Each Quandl Code
	SAS Output Data Set
	SAS OUTXML File
	SAS XML Map File

	Examples: SASEQUAN Interface Engine
	Example 53.1: Retrieving Historical Price Data for Oil India Limited
	Example 53.2: Retrieving Data by Using Three Quandl Codes
	Example 53.3: Retrieving Data for the NIKKEI JASDAQ Stock Average Index
	Example 53.4: Collapsing Data for the Nikkei JASDAQ Stock Average Index
	Example 53.5: Transforming Data for the Nikkei JASDAQ Stock Average Index
	Example 53.6: Reading Data from Multiple Quandl Data Sets to Merge Multiple Time Series

	References

	The SASERAIN Interface Engine
	Overview: SASERAIN Interface Engine
	Getting Started: SASERAIN Interface Engine
	Syntax: SASERAIN Interface Engine
	The LIBNAME libref SASERAIN Statement

	Details: SASERAIN Interface Engine
	World Weather Online API Key
	SAS Output Data Set
	SAS OUTXML File
	SAS XML Map File

	Examples: SASERAIN Interface Engine
	Example 54.1: Retrieving Weather Forecast Data for One Location
	Example 54.2: Retrieving the Two-Day Local Weather Forecast for One Location
	Example 54.3: Retrieving the Local Weather Forecast for One Location
	Example 54.4: Retrieving the Local Weather Forecast for Three Locations
	Example 54.5: Retrieving Current Conditions for One Location
	Example 54.6: Retrieving Historical Weather Data for Two Cities for a Date Range

	References

	The SASEWBGO Interface Engine
	Overview: SASEWBGO Interface Engine
	Getting Started: SASEWBGO Interface Engine
	Syntax: SASEWBGO Interface Engine
	The LIBNAME libref SASEWBGO Statement

	Details: SASEWBGO Interface Engine
	Available Income Levels and Regions to Aggregate WBGO Time Series Data
	Available Topics That Provide WBGO Time Series Data
	Available Sources of WBGO Time Series Data
	Available Countries for a Specified Income Level
	Available Time Series for a Specified Source ID
	Available Time Series for a Specified Topic ID
	SAS Output Data Set
	SAS OUTXML File
	SAS XML Map File
	XWBGOTPU SAS Data Set
	Available Time Series Data Reference: SASEWBGO Interface Engine

	Examples: SASEWBGO Interface Engine
	Example 55.1: Reading Gross Domestic Product Data
	Example 55.2: Retrieving Data for All Countries
	Example 55.3: Setting the Number of Observations Retrieved in One Page of Data
	Example 55.4: Sorting Time Series in Descending Order Using the Sort= Option
	Example 55.5: Retrieving a List of Indicators for a Specified Source Using the URL= Option
	Example 55.6: Retrieving a List of Indicators for a Specified Topic Using the URL= Option
	Example 55.7: Retrieving Quarterly External Debt Statistics for Multiple Countries
	Example 55.8: Retrieving Monthly Global Economic Monitor Commodities for the World
	Example 55.9: Retrieving the Full Range of Data in One Page

	References

	The SASEXCCM Interface Engine
	Overview: SASEXCCM Interface Engine
	Getting Started: SASEXCCM Interface Engine
	Syntax: SASEXCCM Interface Engine
	The LIBNAME libref SASEXCCM Statement

	Details: SASEXCCM Interface Engine
	SAS Output Data Set
	Missing Values
	Data Reference: Introduction
	CCM Data Items
	CCM Keysets
	CCM Data Groups
	Daily STK Data Items
	Daily STK Data Groups
	Monthly STK Data Items
	Monthly STK Data Groups
	IND Group Data Item Names
	Monthly IND Group Data Group Names
	Daily IND Group Data Group Names
	IND Time Series Data Item Names
	Monthly IND Time Series Data Group Names
	Daily IND Time Series Data Group Names

	Examples: SASEXCCM Interface Engine
	Example 56.1: Retrieving SALE Data for One GVKEY
	Example 56.2: Retrieving SALE Data for Multiple Companies
	Example 56.3: Retrieving Data from Different Keysets
	Example 56.4: Retrieving Items by Using Global Options
	Example 56.5: Retrieving All GVKEYs and Company Names
	Example 56.6: Retrieving Stock Time Series by PERMNO
	Example 56.7: Retrieving Stock and Indices Monthly Time Series by INDNO
	Example 56.8: Retrieving Stock and Indices Daily Time Series by INDNO
	Example 56.9: Retrieving Information for Availability of Group INDNOs
	Example 56.10: Retrieving Daily Group Time Series by the INDNO= Option
	Example 56.11: Retrieving Monthly Group Time Series by the INDNO= Option

	References

	The SASEXFSD Interface Engine
	Overview: SASEXFSD Interface Engine
	Getting Started: SASEXFSD Interface Engine
	Syntax: SASEXFSD Interface Engine
	The LIBNAME libref SASEXFSD Statement
	The ExtractEconData Factlet
	The ExtractFormulaHistory Factlet
	The ExtractDataSnapshot Factlet
	The ExtractBenchmarkDetail Factlet
	The ExtractOFDBItem Factlet
	The ExtractOFDBUniverse Factlet
	The ExtractScreenUniverse Factlet

	Details: SASEXFSD Interface Engine
	FactSet Data and FactSet Sourced Data
	SAS Output Data Set
	SAS OUTXML File
	SAS XML Map File
	Specifying Date Ranges and Frequency Codes
	Specifying Currency Codes

	Examples: SASEXFSD Interface Engine
	Example 57.1: Retrieving Standardized Economic Items for Multiple Countries
	Example 57.2: Retrieving Economic Items by Using the FQL Syntax for Function Z Score
	Example 57.3: Using ECON_EXPR_DATA with the FQL Syntax for Function Returns
	Example 57.4: Using SPEC_ID_DATA with the FQL Economic Download Syntax
	Example 57.5: Using Multiple Database Sources with the FQL Syntax
	Example 57.6: Retrieving Price Data for One Company
	Example 57.7: Retrieving Price and Sales Data for Multiple Companies
	Example 57.8: Retrieving Book Value Data for One Company by Using Relative Dates
	Example 57.9: Retrieving Multiple Screen Items for Multiple Companies
	Example 57.10: Retrieving Data by Using the ISON= and ISONPARAMS= Options
	Example 57.11: Retrieving Benchmark Data by Using the CUTOFF= Option
	Example 57.12: Retrieving Benchmark Data by Using the MATCHDATE= Option
	Example 57.13: Retrieving Multiple Items for Multiple Companies from an OFDB File
	Example 57.14: Retrieving a List of Securities from an OFDB File
	Example 57.15: Retrieving a List of CUSIPs from a Screen File

	References


	Time Series Forecasting System
	Overview of the Time Series Forecasting System
	Introduction
	Using the Time Series Forecasting System
	SAS Software Products Needed

	Getting Started with Time Series Forecasting
	The Time Series Forecasting Window
	Outline of the Forecasting Process
	Specify the Input Data Set
	Provide a Valid Time ID Variable
	Select and Fit a Forecasting Model for Each Series
	Produce the Forecasts
	Save Your Work
	Summary

	The Input Data Set
	The Data Set Selection Window
	Time Series Data Sets, ID Variables, and Time Intervals

	Automatic Model Fitting Window
	Produce Forecasts Window
	The Forecast Data Set

	Forecasting Projects
	Saving and Restoring Project Information
	Sharing Projects

	Develop Models Window
	Introduction
	Fitting Models
	Model List and Statistics of Fit

	Model Viewer
	Prediction Error Plots
	Autocorrelation Plots
	White Noise and Stationarity Plots
	Parameter Estimates Table
	Statistics of Fit Table
	Changing to a Different Model
	Forecasts and Confidence Limits Plots
	Data Table
	Closing the Model Viewer


	Creating Time ID Variables
	Creating a Time ID Value from a Starting Date and Frequency
	Using Observation Numbers as the Time ID
	Creating a Time ID from Other Dating Variables

	Specifying Forecasting Models
	Series Diagnostics
	Models to Fit Window
	Automatic Model Selection
	Smoothing Model Specification Window
	ARIMA Model Specification Window
	Factored ARIMA Model Specification Window
	Custom Model Specification Window
	Editing the Model Selection List
	Forecast Combination Model Specification Window
	Incorporating Forecasts from Other Sources

	Choosing the Best Forecasting Model
	Time Series Viewer Features
	Model Viewer Prediction Error Analysis
	The Model Selection Criterion
	Sorting and Selecting Models
	Comparing Models
	Controlling the Period of Evaluation and Fit
	Refitting and Reevaluating Models
	Using Hold-out Samples

	Using Predictor Variables
	Linear Trend
	Time Trend Curves
	Regressors
	Adjustments
	Dynamic Regressor
	Interventions
	The Intervention Specification Window
	Specifying a Trend Change Intervention
	Specifying a Level Change Intervention
	Modeling Complex Intervention Effects
	Fitting the Intervention Model
	Limitations of Intervention Predictors

	Seasonal Dummies
	References

	Command Reference
	TSVIEW Command and Macro
	Syntax
	Examples

	FORECAST Command and Macro
	Syntax
	Examples


	Window Reference
	Overview
	Adjustments Selection Window
	AR/MA Polynomial Specification Window
	ARIMA Model Specification Window
	ARIMA Process Specification Window
	Automatic Model Fitting Window
	Automatic Model Fitting Results Window
	Table Contents

	Automatic Model Selection Options Window
	Custom Model Specification Window
	Data Set Selection Window
	Default Time Ranges Window
	Develop Models Window
	Differencing Specification Window
	Dynamic Regression Specification Window
	Dynamic Regressors Selection Window
	Error Model Options Window
	External Forecast Model Specification Window
	Factored ARIMA Model Specification Window
	Forecast Combination Model Specification Window
	Forecasting Project File Selection Window
	Forecast Options Window
	Intervention Specification Window
	Interventions for Series Window
	Manage Forecasting Project Window
	Model Fit Comparison Window
	Model List Window
	Model Selection Criterion Window
	Model Selection List Editor Window
	Model Viewer Window
	Models to Fit Window
	Polynomial Specification Window
	Produce Forecasts Window
	Regressors Selection Window
	Save Data As
	Save Graph As
	Seasonal ARIMA Model Options Window
	Series Diagnostics Window
	Series Selection Window
	Series to Process Window
	Series Viewer Transformations Window
	Smoothing Model Specification Window
	Smoothing Weight Optimization Window
	Statistics of Fit Selection Window
	Time ID Creation – 1,2,3 Window
	Time ID Creation from Several Variables Window
	Time ID Creation from Starting Date Window
	Time ID Creation Using Informat Window
	Time ID Variable Specification Window
	Time Ranges Specification Window
	Time Series Forecasting Window
	Time Series Simulation Window
	Time Series Viewer Window

	Forecasting Process Details
	Forecasting Process Summary
	Parameter Estimation
	Model Evaluation
	Forecasting
	Forecast Combination Models
	External or User-Supplied Forecasts
	Adjustments
	Series Transformations

	Smoothing Models
	Smoothing Model Calculations
	Missing Values
	Predictions and Prediction Errors
	Smoothing Weights
	Equations for the Smoothing Models

	ARIMA Models
	Notation for ARIMA Models

	Predictor Series
	Time Trend Curves
	Intervention Effects
	Seasonal Dummy Inputs

	Series Diagnostic Tests
	Statistics of Fit
	References



