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Overview: FACTOR Procedure

The FACTOR procedure performs a variety of common factor and component analyses and rotations. Input
can be multivariate data, a correlation matrix, a covariance matrix, a factor pattern, or a matrix of scoring
coefficients. The procedure can factor either the correlation or covariance matrix, and you can save most
results in an output data set.

PROC FACTOR can process output from other procedures. For example, it can rotate the canonical
coefficients from multivariate analyses in the GLM procedure.

The methods for factor extraction are principal component analysis, principal factor analysis, iterated principal
factor analysis, unweighted least squares factor analysis, maximum likelihood (canonical) factor analysis,
alpha factor analysis, image component analysis, and Harris component analysis. A variety of methods for
prior communality estimation is also available.

Specific methods for orthogonal rotation are varimax, quartimax, biquartimax, equamax, parsimax, and factor
parsimax. Oblique versions of these methods are also available. In addition, quartimin, biquartimin, and
covarimin methods for (direct) oblique rotation are available. General methods for orthogonal rotation are
orthomax with user-specified gamma, Crawford-Ferguson family with user-specified weights on variable
parsimony and factor parsimony, and generalized Crawford-Ferguson family with user-specified weights.
General methods for oblique rotation are direct oblimin with user-specified tau, Crawford-Ferguson family
with user-specified weights on variable parsimony and factor parsimony, generalized Crawford-Ferguson
family with user-specified weights, promax with user-specified exponent, Harris-Kaiser case II with user-
specified exponent, and Procrustes with a user-specified target pattern.

Output includes means, standard deviations, correlations, Kaiser’s measure of sampling adequacy, eigenvalues,
a scree plot, eigenvectors, prior and final communality estimates, the unrotated factor pattern, residual and
partial correlations, the rotated primary factor pattern, the primary factor structure, interfactor correlations,
the reference structure, reference axis correlations, the variance explained by each factor both ignoring and
eliminating other factors, plots of both rotated and unrotated factors, squared multiple correlation of each
factor with the variables, standard error estimates, confidence limits, coverage displays, scoring coefficients,
and path diagrams.

The FACTOR procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS.”

Any topics that are not given explicit references are discussed in Mulaik (1972) or Harman (1976).
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Background

See Chapter 98, “The PRINCOMP Procedure,” for a discussion of principal component analysis. See
Chapter 33, “The CALIS Procedure,” for a discussion of confirmatory factor analysis.

Common factor analysis was invented by Spearman (1904). Kim and Mueller (1978a, b) provide a very
elementary discussion of the common factor model. Gorsuch (1974) presents a broad survey of factor
analysis, and Gorsuch (1974) and Cattell (1978) are useful as guides to practical research methodology.
Harman (1976) gives a lucid discussion of many of the more technical aspects of factor analysis, especially
oblique rotation. Morrison (1976) and Mardia, Kent, and Bibby (1979) provide excellent statistical treatments
of common factor analysis. Mulaik (1972) provides the most thorough and authoritative general reference on
factor analysis and is highly recommended to anyone familiar with matrix algebra. Stewart (1981) gives a
nontechnical presentation of some issues to consider when deciding whether or not a factor analysis might be
appropriate.

A frequent source of confusion in the field of factor analysis is the term factor. It sometimes refers to a
hypothetical, unobservable variable, as in the phrase common factor. In this sense, factor analysis must be
distinguished from component analysis since a component is an observable linear combination. Factor is
also used in the sense of matrix factor, in that one matrix is a factor of a second matrix if the first matrix
multiplied by its transpose equals the second matrix. In this sense, factor analysis refers to all methods of
data analysis that use matrix factors, including component analysis and common factor analysis.

A common factor is an unobservable, hypothetical variable that contributes to the variance of at least two of
the observed variables. The unqualified term “factor” often refers to a common factor. A unique factor is an
unobservable, hypothetical variable that contributes to the variance of only one of the observed variables.
The model for common factor analysis posits one unique factor for each observed variable.

The equation for the common factor model is

Yij = xilblj + x,-zsz + -+ xiqbqj + ejj

where

Yij is the value of the ith observation on the jth variable

Xik is the value of the ith observation on the kth common factor

by is the regression coefficient of the kth common factor for predicting the jth variable
ejj is the value of the ith observation on the jth unique factor

q is the number of common factors

It is assumed, for convenience, that all variables have a mean of 0. In matrix terms, these equations reduce to
Y=XB+E

In the preceding equation, X is the matrix of factor scores, and B’ is the factor pattern.

There are two critical assumptions:

e The unique factors are uncorrelated with each other.

e The unique factors are uncorrelated with the common factors.
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In principal component analysis, the residuals are generally correlated with each other. In common factor
analysis, the unique factors play the role of residuals and are defined to be uncorrelated both with each
other and with the common factors. Each common factor is assumed to contribute to at least two variables;
otherwise, it would be a unique factor.

When the factors are initially extracted, it is also assumed, for convenience, that the common factors are
uncorrelated with each other and have unit variance. In this case, the common factor model implies that the
covariance s j; between the jth and kth variables, j # k, is given by

Sik = bljblk + b2jb2k + -t bquqk
or
S =B'B + U?

where § is the covariance matrix of the observed variables, and U? is the diagonal covariance matrix of the
unique factors.

If the original variables are standardized to unit variance, the preceding formula yields correlations instead of
covariances. It is in this sense that common factors explain the correlations among the observed variables.
When considering the diagonal elements of standardized S, the variance of the jth variable is expressed as

sjj=1=0b% +b2 + -+ b2 + [U?;

where b% ;+ b% et bg f and [U?]j; are the communality and uniqueness, respectively, of the jth variable.
The communality represents the extent of the overlap with the common factors. In other words, it is the
proportion of variance accounted for by the common factors.

The difference between the correlation predicted by the common factor model and the actual correlation is
the residual correlation. A good way to assess the goodness of fit of the common factor model is to examine
the residual correlations.

The common factor model implies that the partial correlations among the variables, removing the effects of
the common factors, must all be zero. When the common factors are removed, only unique factors, which are
by definition uncorrelated, remain.

The assumptions of common factor analysis imply that the common factors are, in general, not linear
combinations of the observed variables. In fact, even if the data contain measurements on the entire
population of observations, you cannot compute the scores of the observations on the common factors.
Although the common factor scores cannot be computed directly, they can be estimated in a variety of ways.

The problem of factor score indeterminacy has led several factor analysts to propose methods yielding
components that can be considered approximations to common factors. Since these components are defined
as linear combinations, they are computable. The methods include Harris component analysis and image
component analysis. The advantage of producing determinate component scores is offset by the fact that,
even if the data fit the common factor model perfectly, component methods do not generally recover the
correct factor solution. You should not use any type of component analysis if you really want a common
factor analysis (Dziuban and Harris 1973; Lee and Comrey 1979).

After the factors are estimated, it is necessary to interpret them. Interpretation usually means assigning
to each common factor a name that reflects the salience of the factor in predicting each of the observed
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variables—that is, the coefficients in the pattern matrix corresponding to the factor. Factor interpretation is a
subjective process. It can sometimes be made less subjective by rotating the common factors—that is, by
applying a nonsingular linear transformation. A rotated pattern matrix in which all the coefficients are close
to O or £1 is easier to interpret than a pattern with many intermediate elements. Therefore, most rotation
methods attempt to optimize a simplicity function of the rotated pattern matrix that measures, in some sense,
how close the elements are to 0 or =1. Because the loading estimates are subject to sampling variability, it
is useful to obtain the standard error estimates for the loadings for assessing the uncertainty due to random
sampling. Notice that the salience of a factor loading refers to the magnitude of the loading, while statistical
significance refers to the statistical evidence against a particular hypothetical value. A loading significantly
different from O does not automatically mean it must be salient. For example, if salience is defined as a
magnitude larger than 0.4 while the entire 95% confidence interval for a loading lies between 0.1 and 0.3, the
loading is statistically significant larger than O but it is not salient. Under the maximum likelihood method,
you can obtain standard errors and confidence intervals for judging the salience of factor loadings.

After the initial factor extraction, the common factors are uncorrelated with each other. If the factors are
rotated by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated
by an oblique transformation, the rotated factors become correlated. Oblique rotations often produce more
useful patterns than do orthogonal rotations. However, a consequence of correlated factors is that there is
no single unambiguous measure of the importance of a factor in explaining a variable. Thus, for oblique
rotations, the pattern matrix does not provide all the necessary information for interpreting the factors; you
must also examine the factor structure and the reference structure.

Rotating a set of factors does not change the statistical explanatory power of the factors. You cannot say
that any rotation is better than any other rotation from a statistical point of view; all rotations, orthogonal
or oblique, are equally good statistically. Therefore, the choice among different rotations must be based on
nonstatistical grounds. For most applications, the preferred rotation is that which is most easily interpretable,
or most compatible with substantive theories.

If two rotations give rise to different interpretations, those two interpretations must not be regarded as
conflicting. Rather, they are two different ways of looking at the same thing, two different points of view in
the common-factor space. Any conclusion that depends on one and only one rotation being correct is invalid.

Outline of Use
Principal Component Analysis

One important type of analysis performed by the FACTOR procedure is principal component analysis. The
following statements result in a principal component analysis:

proc factor;
run;

The output includes all the eigenvalues and the pattern matrix for eigenvalues greater than one.

Most applications require additional output. For example, you might want to compute principal component
scores for use in subsequent analyses or obtain a graphical aid to help decide how many components to keep.
You can save the results of the analysis in a permanent SAS data library by using the OUTSTAT= option. For
more information about permanent libraries and SAS data sets, see SAS Programmers Guide: Essentials.
Assuming that your SAS data library has the libref save and that the data are in a SAS data set called raw,
you could do a principal component analysis as follows:


https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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proc factor data=raw method=principal scree mineigen=0 score
outstat=save. fact_all;
run;

The SCREE option produces a plot of the eigenvalues that is helpful in deciding how many components
to use. Alternatively, you can use the PLOTS=SCREE option to produce high-quality scree plots. The
MINEIGEN=0 option causes all components with variance greater than zero to be retained. The SCORE
option requests that scoring coefficients be computed. The OUTSTAT= option saves the results in a specially
structured SAS data set. The name of the data set, in this case fact_all, is arbitrary. To compute principal
component scores, use the SCORE procedure:

proc score data=raw score=save.fact_all out=save.scores;
run;

The SCORE procedure uses the data and the scoring coefficients that are saved in save.fact_all to compute
principal component scores. The component scores are placed in variables named Factor1, Factor2, ...,
Factorn and are saved in the data set save.scores. If you know ahead of time how many principal components
you want to use, you can obtain the scores directly from PROC FACTOR by specifying the NFACTORS=n
and OUT= options. To get scores from three principal components, specify the following:

proc factor data=raw method=principal
nfactors=3 out=save.scores;
run;

To plot the scores for the first three components, use the SGSCATTER procedure:

proc sgscatter;
matrix factorl-factor3;
run;

Principal Factor Analysis

The simplest and computationally most efficient method of common factor analysis is principal factor analysis,
which is obtained in the same way as principal component analysis except for the use of the PRIORS= option.
The usual form of the initial analysis is as follows:

proc factor data=raw method=principal scree
mineigen=0 priors=smc outstat=save.fact_all;
run;

The squared multiple correlations (SMC) of each variable with all the other variables are used as the prior
communality estimates. If your correlation matrix is singular, you should specify PRIORS=MAX instead of
PRIORS=SMC. The SCREE and MINEIGEN= options serve the same purpose as in the preceding principal
component analysis. Saving the results with the OUTSTAT= option enables you to examine the eigenvalues
and scree plot before deciding how many factors to rotate and to try several different rotations without
re-extracting the factors. The OUTSTAT= data set is automatically marked TYPE=FACTOR, so the FACTOR
procedure realizes that it contains statistics from a previous analysis instead of raw data.

After looking at the eigenvalues to estimate the number of factors, you can try some rotations. Two and three
factors can be rotated with the following statements:
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proc factor data=save.fact_all method=principal n=2
rotate=promax reorder score outstat=save.fact_2;

run;

proc factor data=save.fact_all method=principal n=3
rotate=promax reorder score outstat=save.fact_3;

run;

The output data set from the previous run is used as input for these analyses. The options N=2 and N=3
specify the number of factors to be rotated. The specification ROTATE=PROMAX requests a promax rotation,
which has the advantage of providing both orthogonal and oblique rotations with only one invocation of
PROC FACTOR. The REORDER option causes the variables to be reordered in the output so that variables
associated with the same factor appear next to each other.

You can now compute and plot factor scores for the two-factor promax-rotated solution as follows:

proc score data=raw score=save.fact_2 out=save.scores;
run;

proc sgplot;
scatter y=factor2 x=factorl;
run;

Maximum Likelihood Factor Analysis

Although principal factor analysis is perhaps the most commonly used method of common factor analysis,
most statisticians prefer maximum likelihood (ML) factor analysis (Lawley and Maxwell 1971). The ML
method of estimation has desirable asymptotic properties (Bickel and Doksum 1977) and produces better
estimates than principal factor analysis in large samples. You can test hypotheses about the number of
common factors by using the ML method. You can also obtain standard error and confidence interval
estimates for many classes of rotated or unrotated factor loadings, factor correlations, and structure loadings
under the ML theory.

The unrotated ML solution is equivalent to Rao’s canonical factor solution (Rao 1955) and Howe’s solution
maximizing the determinant of the partial correlation matrix (Morrison 1976). Thus, as a descriptive method,
ML factor analysis does not require a multivariate normal distribution. The validity of Bartlett’s y? test
for the number of factors does require approximate normality plus additional regularity conditions that are
usually satisfied in practice (Geweke and Singleton 1980). Bartlett’s test of sphericity in the context of factor
analysis is equivalent to Bartlett’s y? test for zero common factors. This test is routinely displayed in the
maximum likelihood factor analysis output.

Lawley and Maxwell (1971) derive the standard error formulas for unrotated loadings, while Archer and
Jennrich (1973) and Jennrich (1973, 1974) derive the standard error formulas for several classes of rotated
solutions. Extended formulas for computing standard errors in various situations appear in Browne et al.
(2010); Hayashi and Yung (1999); Yung and Hayashi (2001). A combination of these methods is used in
PROC FACTOR to compute standard errors in an efficient manner. Confidence intervals are computed
by using the asymptotic normality of the estimates. To ensure that the confidence intervals fall within the
admissible parameter range, transformation methods due to Browne (1982) are used. The validity of the
standard error estimates and confidence limits requires the assumptions of multivariate normality and a fixed
number of factors.

The ML method is more computationally demanding than principal factor analysis for two reasons. First, the
communalities are estimated iteratively, and each iteration takes about as much computer time as principal
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factor analysis. The number of iterations typically ranges from about five to twenty. Second, if you want
to extract different numbers of factors, as is often the case, you must run the FACTOR procedure once for
each number of factors. Therefore, an ML analysis can take 100 times as long as a principal factor analysis.
This does not include the time for computing standard error estimates, which is even more computationally
demanding. For analyses with fewer than 35 variables, the computing time for the ML method, including the
computation of standard errors, usually ranges from a few seconds to well under a minute. This seems to be a
reasonable performance.

You can use principal factor analysis to get a rough idea of the number of factors before doing an ML analysis.
If you think that there are between one and three factors, you can use the following statements for the ML
analysis:

proc factor data=raw method=ml n=1
outstat=save. factl;

run;

proc factor data=raw method=ml n=2 rotate=promax
outstat=save.fact2;

run;

proc factor data=raw method=ml n=3 rotate=promax
outstat=save. fact3;

run;

The output data sets can be used for trying different rotations, computing scoring coefficients, or restarting
the procedure in case it does not converge within the allotted number of iterations.

If you can determine how many factors should be retained before an analysis, as in the following statements,
you can get the standard errors and confidence limits to aid interpretations for the ML analysis:

proc factor data=raw method=ml n=3 rotate=quartimin se
cover=.4;
run;

In this analysis, you specify the quartimin rotation in the ROTATE= option. The SE option requests the
computation of standard error estimates. In the COVER= option, you require absolute values of 0.4 or greater
in order for loadings to be salient. In the output of coverage display, loadings that are salient would have
their entire confidence intervals spanning beyond the 0.4 mark (or the —0.4 mark in the opposite direction).
Only those salient loadings should be used for interpreting the factors. See the section “Confidence Intervals
and the Salience of Factor Loadings” on page 2819 for more details.

The ML method cannot be used with a singular correlation matrix, and it is especially prone to Heywood
cases. See the section “Heywood Cases and Other Anomalies about Communality Estimates” on page 2821
for a discussion of Heywood cases. If you have problems with ML, the best alternative is to use the
METHOD=ULS option for unweighted least squares factor analysis.

Factor Rotation

After the initial factor extraction, the factors are uncorrelated with each other. If the factors are rotated
by an orthogonal transformation, the rotated factors are also uncorrelated. If the factors are rotated by an
oblique transformation, the rotated factors become correlated. Oblique rotations often produce more useful
patterns than orthogonal rotations do. However, a consequence of correlated factors is that there is no single
unambiguous measure of the importance of a factor in explaining a variable. Thus, for oblique rotations,
the pattern matrix does not provide all the necessary information for interpreting the factors; you must also
examine the factor structure and the reference structure.
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Nowadays, most rotations are done analytically. There are many choices for orthogonal and oblique rotations.
An excellent summary of a wide class of analytic rotations is in Crawford and Ferguson (1970). The
Crawford-Ferguson family of orthogonal rotations includes the orthomax rotation as a subclass and the
popular varimax rotation as a special case. To illustrate these relationships, the following four specifications
for orthogonal rotations with different ROTATE= options will give the same results for a data set with nine
observed variables:

/* Orthogonal Crawford-Ferguson Family with
variable parsimony weight = nvar - 1 = 8, and
factor parsimony weight = 1 =/

proc factor data=raw n=3 rotate=orthcf(8,1);
run;

/* Orthomax without the GAMMA= option x*/
proc factor data=raw n=3 rotate=orthomax(1l);
run;

/* Orthomax with the GAMMA= option */
proc factor data=raw n=3 rotate=orthomax gamma=1;
run;

/* Varimax =/
proc factor data=raw n=3 rotate=varimax;
run;

You can also get the oblique versions of the varimax in two equivalent ways:

/* Oblique Crawford-Ferguson Family with
variable parsimony weight = nvar - 1 = 8, and
factor parsimony weight = 1; %/

proc factor data=raw n=3 rotate=oblicf (8,1);
run;

/* Oblique Varimax =*/
proc factor data=raw n=3 rotate=obvarimax;
run;

Jennrich (1973) proposes a generalized Crawford-Ferguson family that includes the Crawford-Ferguson
family and the (direct) oblimin family (see Harman 1976) as subclasses. The better-known quartimin rotation
is a special case of the oblimin class, and hence a special case of the generalized Crawford-Ferguson family.
For example, the following four specifications of oblique rotations are equivalent:

/* Oblique generalized Crawford-Ferguson Family
with weights 0, 1, 0, -1 %/
proc factor data=raw n=3 rotate=obligencf(0,1,0,-1);
run;

/* Oblimin family without the TAU= option x*/
proc factor data=raw n=3 rotate=oblimin (0);
run;

/* Oblimin family with the TAU= option %/
proc factor data=raw n=3 rotate=oblimin tau=0;
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run;

/* Quartimin */
proc factor data=raw n=3 rotate=quartimin;
run;

In addition to the generalized Crawford-Ferguson family, the available oblique rotation methods in PROC
FACTOR include Harris-Kaiser, promax, and Procrustes. See the section “Simplicity Functions for Rotations”
on page 2818 for details about the definitions of various rotations. See Harman (1976) and Mulaik (1972) for
further information.

Getting Started: FACTOR Procedure

The following example demonstrates how you can use the FACTOR procedure to perform common factor
analysis and factor rotation.

In this example, 103 police officers were rated by their supervisors on 14 scales (variables). You conduct a
common factor analysis on these variables to see what latent factors are operating behind these ratings. The
overall rating variable is excluded from the factor analysis.

The following DATA step creates the SAS data set jobratings:

options validvarname=any;
data jobratings;
input ('Communication Skills'n
'Problem Solving'n
'Learning Ability'n
'Judgment under Pressure'n
'Observational Skills'n
'Willingness to Confront Problems'n
'Interest in People'n
'Interpersonal Sensitivity'n
'Desire for Self-Improvement'n
'Appearance'n
'Dependability'n
'Physical Ability'n
'Integrity'n
'Overall Rating'n) (1.);
datalines;

26838853879867

74758876857667

56757863775875

67869777988997

99997798878888

89897899888799

89999889899798

87794798468886

. more lines

99899899899899
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76656399567486

4

The following statements invoke the FACTOR procedure:

proc factor data=jobratings (drop='Overall Rating'n) priors=smc
rotate=varimax;
run;

The DATA= option in PROC FACTOR specifies the SAS data set jobratings as the input data set. The DROP=
option drops the Overall Rating variable from the analysis. To conduct a common factor analysis, you need
to set the prior communality estimate to less than one for each variable. Otherwise, the factor solution
would simply be a recast of the principal components solution, in which “factors” are linear combinations of
observed variables. However, in the common factor model you always assume that observed variables are
functions of underlying factors. In this example, the PRIORS= option specifies that the squared multiple
correlations (SMC) of each variable with all the other variables are used as the prior communality estimates.
Note that squared multiple correlations are usually less than one. By default, the principal factor extraction is
used if the METHOD= option is not specified. To facilitate interpretations, the ROTATE= option specifies
the VARIMAX orthogonal factor rotation to be used.

The output from the factor analysis is displayed in Figure 44.1 through Figure 44.5.

As displayed in Figure 44.1, the prior communality estimates are set to the squared multiple correlations.
Figure 44.1 also displays the table of eigenvalues (the variances of the principal factors) of the reduced
correlation matrix. Each row of the table pertains to a single eigenvalue. Following the column of eigenvalues
are three measures of each eigenvalue’s relative size and importance. The first of these displays the difference
between the eigenvalue and its successor. The last two columns display the individual and cumulative
proportions that the corresponding factor contributes to the total variation. The last line displayed in
Figure 44.1 states that three factors are retained, as determined by the PROPORTION criterion.

Figure 44.1 Table of Eigenvalues from PROC FACTOR

The FACTOR Procedure
Initial Factor Method: Principal Factors

Prior Communality Estimates: SMC

Willingness

Judgment to
Communication Problem Learning under Observational Confront Interestin
Skills Solving Ability Pressure Skills Problems People

0.62981394 0.58657431 0.61009871 0.63766021 0.67187583 0.64779805 0.75641519

Interpersonal Desire for Physical
Sensitivity Self-improvement Appearance Dependability Ability  Integrity

0.75584891 0.57460176 0.45505304  0.63449045 0.42245324 0.68195454
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Figure 44.1 continued

Eigenvalues of the Reduced Correlation Matrix:
Total = 8.06463816 Average = 0.62035678

Eigenvalue Difference Proportion Cumulative

1 6.17760549 4.71531946 0.7660 0.7660
2 1.46228602 0.90183348 0.1813 0.9473
3 0.56045254 0.28093933 0.0695 1.0168
4 0.27951322 0.04766016 0.0347 1.0515
5 0.23185305 0.16113428 0.0287 1.0802
6 0.07071877 0.07489624 0.0088 1.0890
7 -.00417747 0.03387533 -0.0005 1.0885
8 -.03805279 0.04776534 -0.0047 1.0838
9 -.08581814 0.02438060 -0.0106 1.0731
10 -.11019874 0.01452741 -0.0137 1.0595
11 -.12472615 0.02356465 -0.0155 1.0440
12 -.14829080 0.05823605 -0.0184 1.0256
13 -.20652684 -0.0256 1.0000

3 factors will be retained by the PROPORTION criterion.

Figure 44.2 displays the initial factor pattern matrix. The factor pattern matrix represents standardized
regression coefficients for predicting the variables by using the extracted factors. Because the initial factors
are uncorrelated, the pattern matrix is also equal to the correlations between variables and the common
factors.

Figure 44.2 Factor Pattern Matrix from PROC FACTOR

Factor Pattern
Factor1 Factor2 Factor3

Communication Skills 0.75441 0.07707 -0.25551
Problem Solving 0.68590 0.08026 -0.34788
Learning Ability 0.65904 0.34808 -0.25249
Judgment under Pressure 0.73391 -0.21405 -0.23513
Observational Skills 0.69039 0.45292 0.10298
Willingness to Confront Problems 0.66458 0.47460 0.09210
Interest in People 0.70770 -0.53427 0.10979
Interpersonal Sensitivity 0.64668 -0.61284 -0.07582
Desire for Self-improvement 0.73820 0.12506 0.09062
Appearance 0.57188 0.20052 0.16367
Dependability 0.79475 -0.04516 0.16400
Physical Ability 0.51285 0.10251 0.34860
Integrity 0.74906 -0.35091 0.18656

The pattern matrix suggests that Factor1 represents general ability. All loadings for Factor1 in the Factor
Pattern are at least 0.5. Factor2 consists of high positive loadings on certain task-related skills (Willingness
to Confront Problems, Observational Skills, and Learning Ability) and high negative loadings on some
interpersonal skills (Interpersonal Sensitivity, Interest in People, and Integrity). This factor measures
individuals’ relative strength in these skills. Theoretically, individuals with high positive scores on this
factor would exhibit better task-related skills than interpersonal skills. Individuals with high negative scores
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would exhibit better interpersonal skills than task-related skills. Individuals with scores near zero would have
those skills balanced. Factor3 does not have a cluster of very high or very low factor loadings. Therefore,
interpreting this factor is difficult.

Figure 44.3 displays the proportion of variance explained by each factor and the final communality estimates,
including the total communality. The final communality estimates are the proportion of variance of the
variables accounted for by the common factors. When the factors are orthogonal, the final communalities are
calculated by taking the sum of squares of each row of the factor pattern matrix.

Figure 44.3 Variance Explained and Final Communality Estimates

Variance Explained by Each
Factor

Factor1 Factor2  Factor3
6.1776055 1.4622860 0.5604525

Final Communality Estimates: Total = 8.200344

Willingness

Judgment to
Communication Problem Learning under Observational Confront Interestin
Skills Solving Ability Pressure Skills Problems People

0.64036292 0.59791844 0.61924167 0.63972863  0.69237485 0.67538695 0.79833968

Interpersonal Desire for Physical
Sensitivity Self-Improvement Appearance Dependability Ability  Integrity
0.79951357 0.56879171 0.39403630  0.66056907 0.39504805 0.71903222

Figure 44.4 displays the results of the VARIMAX rotation of the three extracted factors and the corresponding
orthogonal transformation matrix. The rotated factor pattern matrix is calculated by postmultiplying the
original factor pattern matrix (Figure 44.4) by the transformation matrix.

Figure 44.4 Transformation Matrix and Rotated Factor Pattern

Orthogonal Transformation
Matrix

1 2 3
1 0.59125 0.59249 0.54715
2 -0.80080 0.51170 0.31125
3 0.09557 0.62219 -0.77701
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Figure 44.4 continued

Rotated Factor Pattern
Factor1 Factor2 Factor3

Communication Skills 0.35991 0.32744 0.63530
Problem Solving 0.30802 0.23102 0.67058
Learning Ability 0.08679 0.41149 0.66512
Judgment under Pressure 0.58287 0.17901 0.51764
Observational Skills 0.05533 0.70488 0.43870
Willingness to Confront Problems 0.02168 0.69391 0.43978
Interest in People 0.85677 0.21422 0.13562
Interpersonal Sensitivity 0.86587 0.02239 0.22200
Desire for Self-improvement 0.34498 0.55775 0.37242
Appearance 0.19319 0.54327 0.24814
Dependability 0.52174 0.54981 0.29337
Physical Ability 0.25445 0.57321 0.04165
Integrity 0.74172 0.38033 0.15567

The rotated factor pattern matrix is somewhat simpler to interpret. If a magnitude of at least 0.5 is required
to indicate a salient variable-factor relationship, Factor1 now represents interpersonal skills (Interpersonal
Sensitivity, Interest in People, Integrity, Judgment Under Pressure, and Dependability). Factor2 mea-
sures physical skills and job enthusiasm (Observational Skills, Willingness to Confront Problems, Physical
Ability, Desire for Self-Improvement, Dependability, and Appearance). Factor3 measures cognitive skills
(Communication Skills, Problem Solving, Learning Ability, and Judgment Under Pressure).

However, using 0.5 for determining a salient variable-factor relationship does not take sampling variability
into account. If the underlying assumptions for the maximum likelihood estimation are approximately
satisfied, you can output standard error estimates and the confidence intervals with METHOD=ML. You can
then determine the salience of the variable-factor relationship by using the coverage displays. See the section
“Confidence Intervals and the Salience of Factor Loadings” on page 2819 for more details.

Figure 44.5 displays the variance explained by each factor and the final communality estimates after the
orthogonal rotation. Even though the variances explained by the rotated factors are different from that of
the unrotated factor (compare with Figure 44.3), the cumulative variance explained by the common factors
remains the same. Note also that the final communalities for variables, as well as the total communality,
remain unchanged after rotation. Although rotating a factor solution will not increase or decrease the
statistical quality of the factor model, it can simplify the interpretations of the factors and redistribute the
variance explained by the factors.

Figure 44.5 Variance Explained and Final Communality Estimates after Rotation

Variance Explained by Each
Factor

Factor1 Factor2  Factor3
3.1024330 2.7684489 2.3294622
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Figure 44.5 continued

Final Communality Estimates: Total = 8.200344

Willingness

Judgment to
Communication Problem Learning under Observational Confront Interestin
Skills Solving Ability Pressure Skills Problems People

0.64036292 0.59791844 0.61924167 0.63972863 0.69237485 0.67538695 0.79833968

Interpersonal Desire for Physical
Sensitivity Self-improvement Appearance Dependability Ability  Integrity
0.79951357 0.56879171 0.39403630  0.66056907 0.39504805 0.71903222

Syntax: FACTOR Procedure

The following statements are available in the FACTOR procedure:

PROC FACTOR < options > ;
VAR variables ;
PRIORS communalities ;
PATHDIAGRAM < options > ;
PARTIAL variables ;
FREQ variable ;
WEIGHT variable ;
BY variables ;

Usually only the VAR statement is needed in addition to the PROC FACTOR statement. The descriptions of
the BY, FREQ, PARTIAL, PRIORS, VAR, and WEIGHT statements follow the description of the PROC

FACTOR statement in alphabetical order.

PROC FACTOR Statement
PROC FACTOR < options > ;

The PROC FACTOR statement invokes the FACTOR procedure. The options listed in Table 44.1 are available

in the PROC FACTOR statement.

Table 44.1 Options Available in the PROC FACTOR Statement

Option Description

Data Set Options

DATA= Specifies input SAS data set

OUT= Specifies output SAS data set

OUTSTAT= Specifies output data set containing statistical results
TARGET= Specifies input data set containing the target pattern for

rotation
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Table 44.1 continued

Option

Description

Factor Extraction and Communalities

HEYWOOD
METHOD=
PRIORS=

RANDOM=
ULTRAHEYWOOD

Number of Factors
MINEIGEN=
NFACTORS=

PROPORTION=

Data Analysis Options

ALPHA=
COVARIANCE
COVER=

MAP

NOINT
PARALLEL
SE

VARDEF=

WEIGHT

Sets to 1 any communality greater than 1

Specifies the estimation method

Specifies the method for computing prior communality
estimates

Specifies the seed for pseudo-random number generation
Allows communalities to exceed 1

Specifies the smallest eigenvalue for retaining a factor
Specifies the number of factors to retain or the factor
extraction criterion to use

Specifies the proportion of common variance in extracted
factors

Specifies the confidence level for interval construction
Requests factoring of the covariance matrix

Computes the confidence interval and specifies the
coverage reference point

Requests a minimum average partial (MAP) correlation
analysis

Omits the intercept from computing covariances or
correlations

Requests a parallel analysis

Requests the standard error estimates in ML estimation
Specifies the divisor used in calculating covariances or
correlations

Factors a weighted correlation or covariance matrix

Rotation Method and Properties

GAMMA=
HKPOWER=
NORM=
NOPROMAXNORM
POWER=
PREROTATE=
RCONVERGE=
RITER=

ROTATE=

TAU=

ODS Graphics
PLOTS=

Specifies the orthomax weight

Specifies the power in Harris-Kaiser rotation
Specifies the method for row normalization in rotation
Turns off row normalization in promax rotation
Specifies the power to be used in promax rotation
Specifies the prerotation method in promax rotation
Specifies the convergence criterion for rotation cycles
Specifies the maximum number of cycles for rotation
Specifies the rotation method

Specifies the oblimin weight

Specifies ODS Graphics selection
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Table 44.1 continued

Option Description

Control Display Output

ALL Displays all optional output except plots

CORR Displays the (partial) correlation matrix

EIGENVECTORS Displays the eigenvectors of the reduced correlation matrix

FLAG= Specifies the minimum absolute value to be flagged in the
correlation and loading matrices

FUZZ= Specifies the maximum absolute value to be displayed as
missing in the correlation and loading matrices

MSA Computes Kaiser’s measure of sampling adequacy and the
related partial correlations

NOPRINT Suppresses the display of all output

NPLOT= Specifies the number of factors to be plotted

PLOT Plots the rotated factor pattern

PLOTREF Plots the reference structure

PREPLOT Plots the factor pattern before rotation

PRINT Displays the input factor pattern or scoring coefficients
and related statistics

REORDER Reorders the rows (variables) of various factor matrices

RESIDUALS Displays the residual correlation matrix and the associated
partial correlation matrix

ROUND Prints correlation and loading matrices with rounded
values

SCORE Displays the factor scoring coefficients

SCREE Displays the scree plot of the eigenvalues

SIMPLE Displays means, standard deviations, and number of

Numerical Properties

CONVERGE=
MAXITER=
NTHREADS=

SINGULAR=

Miscellaneous
NOCORR

NOBS=
PARPREFIX=

PREFIX=

observations

Specifies the convergence criterion

Specifies the maximum number of iterations
Specifies the maximum number of simultaneous
computational threads available to the procedure
Specifies the singularity criterion

Excludes the correlation matrix from the OUTSTAT= data
set

Specifies the number of observations

Specifies the prefix for the residual variables in the output
data sets

Specifies the prefix for naming factors
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ALL
displays all optional output except plots. When the input data set is TYPE=CORR, TYPE=UCORR,
TYPE=COV, TYPE=UCOQYV, or TYPE=FACTOR, simple statistics, correlations, and MSA are not
displayed.

ALPHA=p
specifies the level of confidence 1 — p for interval construction. By default, p = 0.05, corresponding
to 1 — p = 95% confidence intervals. If p is greater than one, it is interpreted as a percentage and
divided by 100. With multiple confidence intervals to be constructed, the ALPHA= value is applied
to each interval construction one at a time. This will not control the coverage probability of the
intervals simultaneously. To control familywise coverage probability, you might consider supplying a
nonconventional p by using methods such as Bonferroni adjustment.

CONVERGE=p

CONV:p
specifies the convergence criterion for the METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA,
or METHOD=ML option. Iteration stops when the maximum change in the communalities is less than
the value of the CONVERGE-= option. The default value is 0.001. Negative values are not allowed.

CORR

C
displays the correlation matrix or partial correlation matrix.

COVARIANCE

cov
requests factoring of the covariance matrix instead of the correlation matrix. The COV op-
tion is effective only with the METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or
METHOD=IMAGE option. For other methods, PROC FACTOR produces the same results with or
without the COV option.

COVER <=p>

Cl<=p>
computes the confidence intervals and optionally specifies the value of factor loading for coverage
detection. By default, p = 0. The specified value is represented by an asterisk (*) in the coverage
display. This is useful for determining the salience of loadings. For example, if COVER=0.4, a display
‘0*[ I indicates that the entire confidence interval is above 0.4, implying strong evidence for the
salience of the loading. See the section “Confidence Intervals and the Salience of Factor Loadings” on
page 2819 for more details.

DATA=SAS-data-set
specifies the input data set, which can be an ordinary SAS data set or a specially structured SAS data
set as described in the section “Input Data Set” on page 2812. If the DATA= option is omitted, the
most recently created SAS data set is used.
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EIGENVECTORS

EV
displays the eigenvectors of the reduced correlation matrix, of which the diagonal elements are replaced
with the communality estimates. When METHOD=ML, the eigenvectors are for the weighted reduced
correlation matrix. PROC FACTOR chooses the solution that makes the sum of the elements of each
eigenvector nonnegative. If the sum of the elements is equal to zero, then the sign depends on how the
number is rounded off.

FLAG=p
flags absolute values larger than p with an asterisk in the correlation and loading matrices. Negative
values are not allowed for p. Values printed in the matrices are multiplied by 100 and rounded to the
nearest integer (see the ROUND option). The FLAG= option has no effect when standard errors or
confidence intervals are also printed.

FUZZ=p
prints correlations and factor loadings with absolute values less than p printed as missing. For partial
correlations, the FUZZ= value is divided by 2. For residual correlations, the FUZZ= value is divided
by 4. The exact values in any matrix can be obtained from the OUTSTAT= and ODS output data sets.
Negative values are not allowed. The FUZZ= option has no effect when standard errors or confidence
intervals are also printed.

GAMMA=p
specifies the orthomax weight used with the option ROTATE=ORTHOMAX or PRE-
ROTATE=ORTHOMAX. Alternatively, you can use ROTATE=ORTHOMAX(p) with p representing
the orthomax weight. There is no restriction on valid values for the orthomax weight, although the
most common values are between zero and the number of variables. The default GAMMA-= value
is one, resulting in the varimax rotation. See the section “Simplicity Functions for Rotations” on
page 2818 for more details.

HEYWOOD

HEY
sets to 1 any communality greater than 1, allowing iterations to proceed. See the section “Heywood
Cases and Other Anomalies about Communality Estimates” on page 2821 for a discussion of Heywood
cases.

HKPOWER=p

HKP:p
specifies the power of the square roots of the eigenvalues to use to rescale the eigenvectors for Harris-
Kaiser rotation (ROTATE=HK), assuming that the factors are extracted by the principal factor method.
If the principal factor method is not used for factor extraction, the eigenvectors are replaced by the
normalized columns of the unrotated factor matrix and the eigenvalues are replaced by the column
normalizing constants.

Values of p between 0.0 and 1.0 are reasonable; a value of 1.0 is equivalent to an orthogonal rota-
tion, with the varimax rotation as the default. You can also specify this option with an orthogonal
rotation, such as ROTATE=QUARTIMAX, ROTATE=BIQUARTIMAX, ROTATE=EQUAMAX, or
ROTATE=ORTHOMAX, and so on. Such a combination specifies a Harris-Kaiser case II orthoblique
rotation that produces an oblique factor solution in general. By default, HKPOWER=0.0, which yields
the independent cluster solution, in which each variable tends to have a large loading on only one
factor.
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MAP

requests a minimum average partial (MAP) correlation analysis that uses squared (Velicer 1976) and
fourth-powered (Velicer, Eaton, and Fava 2000) partial correlations. Although you can use MAP
analysis to suggest the number of factors, this option merely performs MAP analysis and does not
affect the number of factors that are extracted. To use the MAP criterion for determining the number
of factors, specify NFACTORS=MAP2 or NFACTORS=MAP4 in the PROC FACTOR statement.
To obtain a graphical summary of the MAP analysis, specify PLOTS=MAP, PLOTS=MAP2, or
PLOTS=MAPA4. You cannot use the MAP option if METHOD=IMAGE, PATTERN, or SCORE, or if
the number of observations is smaller than the number of variables.

MAXITER=n

specifies the maximum number of iterations for factor extraction. You can use the MAXITER= option
with the PRINIT, ULS, ALPHA, or ML method. The default is 30.

METHOD=name
M=name

specifies the method for extracting factors. The default is METHOD=PRINCIPAL unless the DATA=
data set is TYPE=FACTOR, in which case the default is METHOD=PATTERN. Valid values for name
are as follows:

ALPHA | A produces alpha factor analysis.

HARRIS | H yields Harris component analysis of S"'RS™! (Harris 1962), a noniterative approx-
imation to canonical component analysis.

IMAGE | I yields principal component analysis of the image covariance matrix, not the im-
age analysis of Kaiser (1963, 1970) or Kaiser and Rice (1974). A nonsingular
correlation matrix is required.

MLIM performs maximum likelihood factor analysis with an algorithm due, except for
minor details, to Fuller (1987). The option METHOD=ML requires a nonsingular
correlation matrix.

PATTERN reads a factor pattern from a TYPE=FACTOR, TYPE=CORR, TYPE=UCORR,
TYPE=COV, or TYPE=UCOV data set. If you create a TYPE=FACTOR
data set in a DATA step, only observations containing the factor pattern
(_TYPE_="PATTERN") and, if the factors are correlated, the interfactor corre-
lations (_ TYPE_="FCORR’) are required.

PRINCIPAL | PRIN | P yields principal component analysis if no PRIORS option or statement is
used or if you specify PRIORS=0ONE; if you specify a PRIORS statement or a
PRIORS= value other than PRIORS=0ONE, a principal factor analysis is performed.

PRINIT yields iterated principal factor analysis.

SCORE reads scoring coefficients (_TYPE_="SCORE’) from a TYPE=FACTOR,
TYPE=CORR, TYPE=UCORR, TYPE=COV, or TYPE=UCOV data set. The
data set must also contain either a correlation or a covariance matrix. Scoring
coefficients are also displayed if you specify the OUT= option.

ULSIU produces unweighted least squares factor analysis.
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MINEIGEN=p

MIN=p
specifies the smallest eigenvalue for which to retain a factor. If you specify two or more of the
MINEIGEN=, NFACTORS=n, and PROPORTION= options, the number of factors retained is the
minimum number that satisfies any of the criteria. The MINEIGEN= option cannot be used with either
the METHOD=PATTERN option or the METHOD=SCORE option. Negative values of p are not
allowed. By default, MINEIGEN=0 unless you omit both the NFACTORS=n and the PROPORTION=
options and one of the following conditions holds:

e If you specify the METHOD=ALPHA or METHOD=HARRIS option, then MINEIGEN=1.
e If you specify the METHOD=IMAGE option, then

total image variance
MINEIGEN =

number of variables
e For any other METHOD-= specification, if prior communality estimates of 1.0 are used, then

total weighted variance
MINEIGEN =

number of variables

When an unweighted correlation matrix is factored, this value is 1.

MSA
produces the partial correlations between each pair of variables controlling for all other variables (the
negative anti-image correlations) and Kaiser’s measure of sampling adequacy (Kaiser 1970; Kaiser
and Rice 1974; Cerny and Kaiser 1977). This option is ignored if METHOD=IMAGE.

NFACTORS=n | name
NFACT=n | name

N=n | name
specifies either the maximum number of factors (n) or a name that represents a specific factor extraction
criterion.

NFACTORS=n specifies the maximum number of factors to be extracted and determines the amount
of memory to be allocated for factor matrices. This is the default option, with n equal to the number
of variables. Specifying a number that is small relative to the number of variables can substantially
decrease the amount of memory required to run PROC FACTOR, especially with oblique rotations.
If you specify two or more of the NFACTORS=n, MINEIGEN=, and PROPORTION= options, the
retained number of factors is the minimum number that satisfies any of the criteria. If you specify the
option NFACTORS=0, eigenvalues are computed but no factors are extracted. If you specify the option
NFACTORS=-1, neither eigenvalues nor factors are computed. You can use the NFACTORS=n option
with the METHOD=PATTERN or METHOD=SCORE option to specify a smaller number of factors
than are present in the data set.

Alternatively, you can specify one of the following as the name for the factor extraction criterion:

MAP | MAP2 requests a minimum average partial (MAP) correlation analysis (Velicer 1976) to
determine the number of factors to extract. All other criteria for determining the
number of factors are ignored. This criterion selects the number of factors that
results in the smallest average squared partial correlations among variables. You
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MAP4

cannot use this criterion if METHOD=IMAGE, PATTERN, or SCORE, or if the
number of observations is smaller than the number of variables.

To request a minimum average partial correlation analysis without using the MAP
criterion for determining the number of extracted factors, use the MAP option in
the PROC FACTOR statement.

requests a minimum average partial (MAP) correlation analysis similar to the
NFACTORS=MAP option, but using the smallest average fourth-powered partial
correlations among variables (Velicer, Eaton, and Fava 2000). You cannot use
this criterion if METHOD=IMAGE, PATTERN, or SCORE, or if the number of
observations is smaller than the number of variables.

PARALLEL< (suboptions)> requests a parallel analysis (Glorfeld 1995; Horn 1965) to determine

NOBS=n

the number of factors to extract. All other criteria for determining the number of
factors are ignored. To request a parallel analysis without using its criterion for
determining the number of extracted factors, use the PARALLEL option in the
PROC FACTOR statement. You cannot use this criterion if METHOD=IMAGE,
PATTERN, or SCORE, or if the number of observations is smaller than the number
of variables.

This criterion selects the number of factors that corresponds to the first n consecutive
eigenvalues of the sample correlation matrix that are significantly greater than
the corresponding eigenvalues of random correlation matrices. PROC FACTOR
generates these random correlation matrices by simulation from a multivariate
standard normal distribution. A factor is accepted if an observed eigenvalue is
greater than the critical value at a specified one-sided a-level, with reference to
the corresponding simulated distribution of random eigenvalues. As soon as an
observed eigenvalue is less than or equal to the corresponding critical value, no
more factors are counted. To obtain a graphical summary of the results of the
parallel analysis, specify PLOTS=PARALLEL.

To fine-tune the parallel analysis, the NFACTORS=PARALLEL option accepts the
same suboptions as those described for the PARALLEL option.

specifies the number of observations. If the DATA= input data set is a raw data set, nobs is defined by
default to be the number of observations in the raw data set. The NOBS= option overrides this default
definition. If the DATA= input data set contains a covariance, correlation, or scalar product matrix, the
number of observations can be specified either by using the NOBS= option in the PROC FACTOR
statement or by including a _TYPE_="N" observation in the DATA= input data set.

NOCORR

prevents the correlation matrix from being transferred to the OUTSTAT= data set when you specify the
METHOD=PATTERN option. The NOCORR option greatly reduces memory requirements when there
are many variables but few factors. The NOCORR option is not effective if the correlation matrix is
required for other requested output; for example, if the scores or the residual correlations are displayed
(for example, by using the SCORE, RESIDUALS, or ALL option).
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NOINT
omits the intercept from the analysis; covariances or correlations are not corrected for the mean.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 23, “Using the Output Delivery System.”

NOPROMAXNORM

NOPMAXNORM
turns off the default row normalization of the prerotated factor pattern, which is used in computing the
promax target matrix.

NORM=COV | KAISER | NONE | RAW | WEIGHT
specifies the method for normalizing the rows of the factor pattern for rotation. If you specify the
option NORM=KAISER, Kaiser’s normalization is used () _ j pl.zj = 1). If you specify the option
NORM=WEIGHT, the rows are weighted by the Cureton-Mulaik technique (Cureton and Mulaik
1975). If you specify the option NORM=COV, the rows of the pattern matrix are rescaled to represent
covariances instead of correlations. If you specify the option NORM=NONE or NORM=RAW,
normalization is not performed. The default is NORM=KAISER.

NPLOTS=n

NPLOT=n
specifies the number of factors to be plotted. The default is to plot all factors. The smallest allowable
value is 2. If you specify the option NPLOTS=n, all pairs of the first n factors are plotted, producing a
total of n(n — 1)/2 plots.

NTHREADS=n

THREADS=n
specifies the maximum number of simultaneous computational threads available to the procedure.
By default, the procedure uses the values of the THREADS and CPUCOUNT system variables to
determine the number of computational threads. To explicitly request this default behavior, specify n <
1. To disable multithreading within PROC FACTOR, specify NTHREADS=1.

Multithreading is available only for parallel analysis and the generalized Crawford-Ferguson family of
factor rotations. For parallel analysis, multithreading is enabled by default. For generalized Crawford-
Ferguson rotations, multithreading is enabled by default only if the number of factors is 20 or greater.
You can enable multithreading for rotation (for any number of factors) by specifying n> 1.

OUT=SAS-data-set

creates a data set containing all the data from the DATA= data set plus variables called Factor1, Factor2,
and so on, containing estimated factor scores. The DATA= data set must contain multivariate data, not
correlations or covariances. You must also specify the NFACTORS=n option to determine the number
of factor score variables. If you specify partial variables in the PARTIAL statement, the OUT= data set
will also contain the residual variables that are used for factor analysis. The output data set is described
in detail in the section “Output Data Sets” on page 2814. If you want to create a SAS data set in a
permanent library, you must specify a two-level name. For more information about permanent libraries
and SAS data sets, see SAS Programmers Guide: Essentials.
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OUTSTAT=SAS-data-set
specifies an output data set containing most of the results of the analysis. The output data set is
described in detail in the section “Output Data Sets” on page 2814. If you want to create a SAS data
set in a permanent library, you must specify a two-level name. For more information about permanent
libraries and SAS data sets, see SAS Programmers Guide: Essentials.

PARALLEL < (suboptions) >

requests a parallel analysis as described by Glorfeld (1995) and Horn (1965). Although you can use
parallel analysis to suggest the number of factors, this option merely performs the parallel analysis
and does not affect the number of factors that are extracted. To use the parallel analysis criterion for
determining the number of factors, specify NFACTORS=PARALLEL in the PROC FACTOR statement.
To obtain a graphical summary of the results of the parallel analysis, specify PLOTS=PARALLEL.
You cannot use the PARALLEL option if METHOD=IMAGE, PATTERN, or SCORE, or if the number
of observations is smaller than the number of variables.

To conduct a parallel analysis, PROC FACTOR compares the eigenvalues of the sample correlation
matrix to the corresponding eigenvalues of random correlation matrices. These random correlation
matrices are simulated from a multivariate standard normal distribution. A factor is accepted if an
observed eigenvalue is greater than the critical value at a specified one-sided a-level, with reference to
the corresponding simulated distribution of random eigenvalues. As soon as an observed eigenvalue is
less than or equal to the corresponding critical value, no more factors are counted.

To fine-tune the parallel analysis, you can specify any of the following suboptions:
ALPHA=p specifies the one-sided a-level for computing the critical value at the upper-end of

the simulated distribution of eigenvalues, where p must be between 0 and 1. By
default, ALPHA=0.05.

NSIMS=n specifies the number of simulations to use to construct an empirical distribution of
eigenvalues for the parallel analysis, where n must be greater than 200. By default,
NSIMS=1000.

SEED=n specifies a positive integer as a starting value for the pseudorandom number genera-

tor that is used to simulate correlation matrices for the parallel analysis, where n
must be an integer > 1. If you do not specify the SEED= suboption, the time of
day is used to initialize the pseudorandom number sequence.

PARPREFIX=name
specifies the prefix for the residual variables in the OUT= and the OUTSTAT= data sets when partial
variables are specified in the PARTIAL statement.

PLOT
plots the factor pattern after rotation. This option produces printer plots. High-quality ODS graphical
plots for factor patterns can be requested with the PLOTS=LOADINGS or PLOTS=INITLOADINGS
option.
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PLOTREF
plots the reference structure instead of the default factor pattern after oblique rotation.

PLOTS < (global-plot-options) > = plot-request < (options) >

PLOTS < (global-plot-options) > = (plot-request < (options) > <. .. plot-request < (options)> >)
specifies one or more ODS graphical plots in PROC FACTOR. When you specify only one plot-request,
you can omit the parentheses around the plot-request. Here are some examples:

plots=all
plots (flip)=1loadings
plots=(loadings (flip) scree (unpack))

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc factor plots=all;
run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 663 in Chapter 24, “Statistical Graphics Using ODS.”

For an example containing graphical displays of factor analysis results, see Example 44.2.

The following table shows the available plot-requests and their available options:

Plot-Request Plot Description Suboptions

ALL All available plots All

INITLOADINGS Unrotated factor loadings CIRCLE=, FLIP, NPLOTS=,
PLOTREF, and VECTOR

LOADINGS Rotated factor loadings CIRCLE=, FLIP, NPLOTS=,
PLOTREF, and VECTOR

MAP MAP2 and MAP4

MAP2 Average squared partial correlations

MAP4 Average fourth-powered partial correlations

NONE No ODS graphical plots

PARALLEL Parallel analysis

PATHDIAGRAM Path diagram

PRELOADINGS Prerotated factor loadings CIRCLE=, FLIP, NPLOTS=,
PLOTREEF, and VECTOR

SCREE Scree and variance explained UNPACK

The following are the available global-plot-options or options for plots:

CIRCLE < = numbers > | CIRCLES < = numbers > draws circular reference lines in scatter plots
or vector plots of factor loadings. You can specify the locations of the circular
reference lines in the numbers list. Each number indicates the proportion or
percentage of area of the unit circle that is enclosed by the specified circle. Each of
the numbers must lie between 0 and 100, inclusively. When a number is between 0
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FLIP

and 1 (inclusively), it is interpreted as a proportion; otherwise, it is interpreted as a
percentage. The maximum number of circles is 5.

The CIRCLE option applies to the scatter or vector plots requested by the INIT-
LOADINGS, LOADINGS, and PRELOADINGS options. By default, a unit-circle,
which represents 100% of the total area, is drawn for the vector plots. However,
no circle will be drawn for scatter plots unless the CIRCLE option is specified.
Two special cases for this option are: (1) With no numbers following the CIRCLE
option, a 100% circle will be drawn. (2) With CIRCLE=0, no circle will be drawn.
This special case is primarily used to turn off the default unit-circle in vector plots.

switches the X and Y axes. It applies to the INITLOADINGS, LOADINGS, and
PRELOADINGS plot-requests.

NPLOT=n| NPLOTS=n specifies the number of factors n (n > 2) to be plotted. It applies to the

PATHDIAGRAM

INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests. Since this
option can also be specified in the PROC FACTOR statement, the final value of n is
determined by the following steps. The NPLOTS= value of the PROC FACTOR is
read first. If the NPLOTS= option is specified as a global-plot-option, the value of n
will be updated. Then, if the NPLOTS= option is again specified in an individual
plot-request, the value will be updated again for that individual plot-request. For
example, in the following statement, four factors are extracted with the N=4 option:

proc factor n=4 nplots=3 plots (nplots=4)=
(loadings preloadings (nplots=2));

Initially, plots of the first three factors are specified with the NPLOTS=3 option.
When you are producing ODS graphical plots, the global-plot-option NPLOTS=4
is used. As a result, the LOADINGS plot-request will produce plots for all pairs
of the first 4 factors. However, because the NPLOTS=2 is specified locally for the
PRELOADINGS plot-request, it will produce a prerotated factor loading plot for
the first two factors only.

The default NPLOTS= value is 5 or the total number of factors (m), whichever is
smaller. If you specify an NPLOTS= value that is greater than m, NPLOTS=m will
be used.

creates a path diagram for the last factor model. The last factor model refers to the
initial factor solution if you do not specify any rotations. It refers to the rotated
factor solution if you use the ROTATE= option. The path diagram shows the links
between factors and variables, the factor correlations, and the error variances in the
model.

The path diagram does not display all non-zero directed links between factors and
variables. It displays only those directed links that have factor loading estimates
at 0.3 or bigger in magnitude. PROC FACTOR uses this 0.3-criterion by default.
You can set your own criterion by using the FUZZ= option in the PROC FACTOR
statement.

If you use both the METHOD=ML and SE options in the PROC FACTOR state-
ment, the statistical significance of the factor loading estimate is also required for
displaying the corresponding directed link between a variable and a factor. The



PROC FACTOR Statement 4 2797

default level of significance is 0.05. You can set your own level of significance by
using the ALPHA= option in the PROC FACTOR statement.

Alternatively, you can produce path diagrams by using the PATHDIAGRAM State-
ment, which provides many options that enables you to create highly customized
path diagrams.

PLOTREF plots the reference structures rather than the factor pattern loadings. It applies to
the INITLOADINGS, LOADINGS, and PRELOADINGS plot-requests when the
factor solution is oblique. This option can also be set globally as an option in the

PROC FACTOR statement.
UNPACK plots component graphs separately. It applies to the SCREE plot-request only.
VECTOR plots loadings in vector form. It applies to the INITLOADINGS, LOADINGS, and

PRELOADINGS plot-requests when the factor solution is orthogonal. For oblique
solutions, the VECTOR option is ignored and the default scatter plots for factor
loadings or reference structures are displayed.

Be aware that the PLOT option in the PROC FACTOR statement requests only the printer plots of
factor loadings. The current option PLOTS= or PLOT=, however, is for ODS graphical plots.

You can specify options for the requested ODS graphical plots as global-plot-options or as local options.
Global-plot-options apply to all appropriate individual plot-requests specified. For example, because
the SCREE plot is not subject to axes flipping, the following two specifications are equivalent:

plots (flip)=(loadings preloadings scree)
plots=(loadings (flip) preloadings (flip) scree)

Options specified locally after each plot-request apply to that plot-request only. For example, consider
the following specification:

plots=(scree (unpack) loadings (plotref) preloadings (flip))

The FLIP option applies to the PRELOADINGS plot-request but not the LOADINGS plot-request; the
PLOTREEF option applies to the LOADINGS plot-request but not the PRELOADINGS plot-request;
and the UNPACK option applies to the SCREE plot-request only.

POWER=n
specifies the power to be used in computing the target pattern for the option ROTATE=PROMAX.
Valid values must be integers > 1. The default value is 3. You can also specify the POWER= value in
the ROTATE= option—for example, ROTATE=PROMAX(4).

PREFIX=name
specifies a prefix for naming the factors. By default, the names are Factor1, Factor2, ..., Factorn. If
you specify PREFIX=ABC, the factors are named ABC1, ABC2, ABC3, and so on. The number of
characters in the prefix plus the number of digits required to designate the variables should not exceed
the current name length defined by the VALIDVARNAME-= system option.
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PREPLOT
plots the factor pattern before rotation. This option produces printer plots. High-quality ODS graphical
plots for factor patterns can be requested with the PLOTS=PRELOADINGS option.

PREROTATE=name

PRE=name
specifies the prerotation method for the option ROTATE=PROMAX. Any rotation method other
than PROMAX or PROCRUSTES can be used. The default is PREROTATE=VARIMAX. If a
previously rotated pattern is read using the option METHOD=PATTERN, you should specify the
PREROTATE=NONE option.

PRINT
displays the input factor pattern or scoring coefficients and related statistics. In oblique cases, the
reference and factor structures are computed and displayed. The PRINT option is effective only with
the option METHOD=PATTERN or METHOD=SCORE.

PRIORS=name
specifies a method for computing prior communality estimates. You can specify numeric values for the
prior communality estimates by using the PRIORS statement. Valid values for name are as follows:

ASMC | A sets the prior communality estimates proportional to the squared multiple corre-
lations but adjusted so that their sum is equal to that of the maximum absolute
correlations (Cureton 1968).

INPUT [ I reads the prior communality estimates from the first observation with either
_TYPE_="PRIORS’ or _TYPE_="COMMUNAL’ in the DATA= data set (which
cannot be TYPE=DATA).

MAX M sets the prior communality estimate for each variable to its maximum absolute
correlation with any other variable.

ONE IO sets all prior communalities to 1.0.

RANDOM | R sets the prior communality estimates to pseudo-random numbers uniformly dis-
tributed between 0 and 1.

SMC | S sets the prior communality estimate for each variable to its squared multiple corre-
lation with all other variables.

The default prior communality estimates are as follows:
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METHOD= PRIORS=
PRINCIPAL ONE

PRINIT ONE

ALPHA SMC

ULS SMC

ML SMC

HARRIS SMC

IMAGE SMC
PATTERN (not applicable)
SCORE (not applicable)

Because the use of SMC as prior communalities is a defining feature of the HARRIS and IMAGE
methods, you cannot set any prior communalities other than SMC for these two methods. The
PRIORS= option is not applicable to the PATTERN and SCORE methods because these methods do
not use any prior communalities.

By default, the options METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, and
METHOD=ML stop iterating and set the number of factors to O if an estimated communality
exceeds 1. The options HEYWOOD and ULTRAHEYWOQD allow processing to continue.

PROPORTION=p

PERCENT=p

P:p
specifies the proportion of common variance to be accounted for by the retained factors. The pro-
portion of common variance is computed using the total prior communality estimates as the basis.
If the value is greater than one, it is interpreted as a percentage and divided by 100. The options
PROPORTION=0.75 and PERCENT=75 are equivalent. The default value is 1.0 or 100%. You cannot
specify the PROPORTION= option with the METHOD=PATTERN or METHOD=SCORE option.
If you specify two or more of the PROPORTION=, NFACTORS=n, and MINEIGEN= options, the
number of factors retained is the minimum number satisfying any of the criteria.

RANDOM=n
specifies a positive integer as a starting value for the pseudo-random number generator for use with the
option PRIORS=RANDOM. If you do not specify the RANDOM= option, the time of day is used to
initialize the pseudo-random number sequence. Valid values must be integers > 1.

RCONVERGE=p

RCONV=p
specifies the convergence criterion value p (p > 0) for rotation cycles. Rotation stops when the scaled
change of the simplicity function value is less than p. Mathematically, the convergence criterion is

| frnew — foudl/ K < p

where f,e, and f,4 are simplicity function values of the current cycle and the previous cycle,
respectively, K = max(1, | f,i4]) is a scaling factor, and p is 1E-9 by default.
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REORDER

RE

causes the rows (variables) of various factor matrices to be reordered on the output. Variables with
their highest absolute loading (reference structure loading for oblique rotations) on the first factor
are displayed first, from largest to smallest loading, followed by variables with their highest absolute
loading on the second factor, and so on. The order of the variables in the output data set is not affected.
The factors are not reordered.

RESIDUALS

RES

displays the residual correlation matrix and the associated partial correlation matrix. The diagonal
elements of the residual correlation matrix are the unique variances.

RITER=n

specifies the maximum number of cycles n for factor rotation. Except for promax and Procrustes, you
can use the RITER= option with all rotation methods. The default n is the maximum between 10 times
the number of variables and 100.

ROTATE=name
R=name

specifies the rotation method. The default is ROTATE=NONE.

Valid names for orthogonal rotations are as follows:

BIQUARTIMAX | BIQMAX specifies orthogonal biquartimax rotation. This corresponds to the speci-
fication ROTATE=ORTHOMAX(.5).

EQUAMAX | E  specifies orthogonal equamax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with GAMMA=number of factors/2.

FACTORPARSIMAX | FPA specifies orthogonal factor parsimax rotation. This corresponds to the
specification ROTATE=ORTHOMAX with GAMMA=number of variables.

NONE IN specifies that no rotation be performed, leaving the original orthogonal solution.

ORTHCF(p1,02) | ORCF(p1,p2) specifies the orthogonal Crawford-Ferguson rotation with the
weights p7 and p2 for variable parsimony and factor parsimony, respectively. See
the definitions of weights in the section “Simplicity Functions for Rotations” on
page 2818.

ORTHGENCF(p1,p2,p3,p04) | ORGENCF(p1,p2,03,04) specifies the orthogonal generalized
Crawford-Ferguson rotation with the four weights p1, p2, p3, and p4. See
the definitions of weights in the section “Simplicity Functions for Rotations” on
page 2818.

ORTHOMAX< (p) > | ORMAX< (p)> specifies the orthomax rotation with orthomax weight p. If
ROTATE=ORTHOMAX is used, the default p value is 1 unless specified otherwise
in the GAMMA-= option. Alternatively, ROTATE=ORTHOMAX(p) specifies p as
the orthomax weight or the GAMMA-= value. See the definition of the orthomax
weight in the section “Simplicity Functions for Rotations” on page 2818.
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PARSIMAX | PA specifies orthogonal parsimax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with

GAMMA — nvar X (nfact — 1)

nvar + nfact —2

where nvar is the number of variables and nfact is the number of factors.

QUARTIMAX | QMAX | Q specifies orthogonal quartimax rotation. This corresponds to the specifica-
tion ROTATE=ORTHOMAX(0).

VARIMAX | V specifies orthogonal varimax rotation. This corresponds to the specification
ROTATE=ORTHOMAX with GAMMA-=1.

Valid names for oblique rotations are as follows:

BIQUARTIMIN | BIQMIN specifies biquartimin rotation. It corresponds to the specification
ROTATE=OBLIMIN(.5) or ROTATE=OBLIMIN with TAU=0.5.

COVARIMIN | CVMIN specifies covarimin rotation. It corresponds to the specification
ROTATE=OBLIMIN(1) or ROTATE=OBLIMIN with TAU=1.

HK< (p)> | H<(p)> specifies Harris-Kaiser case II orthoblique rotation. The Harris-Kaiser rotation
makes use of the orthogonal rotation algorithm to produce factor solutions that are,
in general, oblique. When specifying this option, you can use the HKPOWER=
option to specify the power of the square roots of the eigenvalues by which the
eigenvectors are scaled, assuming that the factors are extracted by the principal
factor method. For other extraction methods, the unrotated factor pattern is column
normalized. The power is then applied to the column normalizing constants, instead
of the eigenvalues. You can also use ROTATE=HK(p), with p representing the
HKPOWER= value. The default associated orthogonal rotation with ROTATE=HK
is the varimax rotation without Kaiser normalization. You might associate the Harris-
Kaiser with other orthogonal rotations by using the ROTATE= option together with
the HKPOWER= option.

OBBIQUARTIMAX | OBIQMAX specifies oblique biquartimax rotation.
OBEQUAMAX | OE specifies oblique equamax rotation.
OBFACTORPARSIMAX | OFPA specifies oblique factor parsimax rotation.

OBLICF(p1,p2) | OBCF(p1,p2) specifies the oblique Crawford-Ferguson rotation with the weights
p1 and p2 for variable parsimony and factor parsimony, respectively. See the defini-
tions of weights in the section “Simplicity Functions for Rotations” on page 2818.

OBLIGENCF(p1,02,03,04) | OBGENCF(p1,p02,p03,p4) specifies the oblique generalized Crawford-
Ferguson rotation with the four weights p1, p2, p3, and p4. See the definitions of
weights in the section “Simplicity Functions for Rotations” on page 2818.

OBLIMIN< (p)> | OBMIN< (p)> specifies the oblimin rotation with oblimin weight p. If
ROTATE=OBLIMIN is used, the default p value is zero unless specified oth-
erwise in the TAU= option. Alternatively, ROTATE=OBLIMIN(p) specifies p as
the oblimin weight or the TAU= value. See the definition of the oblimin weight in
the section “Simplicity Functions for Rotations” on page 2818.

OBPARSIMAX | OPA specifies oblique parsimax rotation.
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OBQUARTIMAX | OQMAX specifies oblique quartimax rotation. This is the same as the QUAR-
TIMIN method.

OBVARIMAX | OV specifies oblique varimax rotation.

PROCRUSTES specifies oblique Procrustes rotation with the target pattern provided by the TAR-
GET= data set. The unrestricted least squares method is used with factors scaled to
unit variance after rotation.

PROMAX< (p) > | P<(p)> specifies oblique promax rotation. You can use the PREROTATE= option
to set the desirable prerotation method, orthogonal or oblique. When used with
ROTATE=PROMAX, the POWER= option lets you specify the power for forming
the target. You can also use ROTATE=PROMAX(p), where p represents the
POWER= value.

QUARTIMIN | QMIN specifies quartimin rotation. It is the same as the oblique quartimax
method. It also corresponds to the specification ROTATE=OBLIMIN(O) or
ROTATE=OBLIMIN with TAU=0.

ROUND
prints correlation and loading matrices with entries multiplied by 100 and rounded to the nearest integer.
The exact values can be obtained from the OUTSTAT= and ODS output data sets. The ROUND option
also flags absolute values larger than the FLAG= value with an asterisk in correlation and loading
matrices (see the FLAG= option). If the FLAG= option is not specified, the root mean square of all the
values in the matrix printed is used as the default FLAG= value. The ROUND option has no effect
when standard errors or confidence intervals are also printed.

SCORE

displays the factor scoring coefficients. The squared multiple correlation of each factor with the
variables is also displayed except in the case of unrotated principal components. The SCORE option
also outputs the factor scoring coefficients in the _TYPE_=SCORE or _TYPE_=USCORE observations
in the OUTSTAT= data set. Unless you specify the NOINT option in PROC FACTOR, the scoring
coefficients should be applied to standardized variables—variables that are centered by subtracting the
original variable means and then divided by the original variable standard deviations. With the NOINT
option, the scoring coefficients should be applied to data without centering.

SCREE
displays a scree plot of the eigenvalues (Cattell 1966, 1978; Cattell and Vogelman 1977; Horn and
Engstrom 1979). This option produces printer plots. High-quality scree plots can be requested with the
PLOTS=SCREE option.

SE

STDERR
computes standard errors for various classes of unrotated and rotated solutions under the maximum
likelihood estimation.

SIMPLE

S
displays means, standard deviations, and the number of observations.
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SINGULAR=p

SING=p
specifies the singularity criterion, where 0 < p < 1. The default value is 1E-8.

TARGET=SAS-data-set
specifies an input data set containing the target pattern for Procrustes rotation (see the description of
the ROTATE= option). The TARGET= data set must contain variables with the same names as those
being factored. Each observation in the TARGET= data set becomes one column of the target factor
pattern. Missing values are treated as zeros. The _NAME_ and _TYPE_ variables are not required and
are ignored if present.

TAU=p
specifies the oblimin weight used with the option ROTATE=OBLIMIN or PREROTATE=OBLIMIN.
Alternatively, you can use ROTATE=OBLIMIN(p) with p representing the oblimin weight. There is
no restriction on valid values for the oblimin weight, although for practical purposes a negative or
zero value is recommended. The default TAU= value is 0, resulting in the quartimin rotation. See the
section “Simplicity Functions for Rotations” on page 2818 for more details.

ULTRAHEYWOOD

ULTRA
allows communalities to exceed 1. The ULTRAHEYWOOD option can cause convergence problems
because communalities can become extremely large, and ill-conditioned Hessians might occur. See the
section “Heywood Cases and Other Anomalies about Communality Estimates™ on page 2821 for a
discussion of Heywood cases.

VARDEF=DF | N | WDF | WEIGHT | WGT
specifies the divisor used in the calculation of variances and covariances. The default value is
VARDEF=DF. The values and associated divisors are displayed in the following table where i=0 if the
NOINT option is used and i=1 otherwise, and where k is the number of partial variables specified in

the PARTIAL statement.
Value Description Divisor
DF Degrees of freedom n—k—i
N Number of observations n—=k
WDF Sum of weights DF Yiwi—k—i
WEIGHT | WGT Sum of weights Yoiwi—k
WEIGHT

factors a weighted correlation or covariance matrix. The WEIGHT option can be used only with the
METHOD=PRINCIPAL, METHOD=PRINIT, METHOD=ULS, or METHOD=IMAGE option. The
input data set must be of type CORR, UCORR, COV, UCOV, or FACTOR, and the variable weights
are obtained from an observation with _TYPE_="WEIGHT".
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BY Statement
BY variables ;

You can specify a BY statement in PROC FACTOR to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

e Sort the data by using the SORT procedure with a similar BY statement.

e Specify the NOTSORTED or DESCENDING option in the BY statement in the FACTOR procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

e Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

If you specify the TARGET= option and the TARGET= data set does not contain any of the BY variables,
then the entire TARGET= data set is used as a Procrustean target for each BY group in the DATA= data set.

If the TARGET= data set contains some but not all of the BY variables, or if some BY variables do not have
the same type or length in the TARGET= data set as in the DATA= data set, then PROC FACTOR displays an
error message and stops.

If all the BY variables appear in the TARGET= data set with the same type and length as in the DATA= data
set, then each BY group in the TARGET= data set is used as a Procrustean target for the corresponding BY
group in the DATA= data set. The BY groups in the TARGET= data set must be in the same order as in the
DATA= data set. If you specify the NOTSORTED option in the BY statement, there must be identical BY
groups in the same order in both data sets. If you do not specify the NOTSORTED option, some BY groups
can appear in one data set but not in the other.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures Guide.

FREQ Statement
FREQ variable ;

If a variable in the data set represents the frequency of occurrence for the other values in the observation,
include the variable’s name in a FREQ statement. The procedure then treats the data set as if each observation
appears n times, where n is the value of the FREQ variable for the observation. The total number of
observations is considered to be equal to the sum of the FREQ variable when the procedure determines
degrees of freedom for significance probabilities.

If the value of the FREQ variable is missing or is less than one, the observation is not used in the analysis. If
the value is not an integer, the value is truncated to an integer.


https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lrcon&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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The WEIGHT and FREQ statements have a similar effect, except in determining the number of observations
for significance tests.

PARTIAL Statement
PARTIAL variables ;

If you want the analysis to be based on a partial correlation or covariance matrix, use the PARTIAL statement
to list the variables that are used to partial out the variables in the analysis.

PATHDIAGRAM Statement
PATHDIAGRAM < options > ;

You can use the PATHDIAGRAM statement to specify and modify the layout algorithm, to control the
formatting of estimates, and to fine-tune many graphical and nongraphical features of path diagrams. You can
use multiple PATHDIAGRAM statements to produce path diagrams that have different styles and graphical
features.

Specifying a PATHDIAGRAM statement without any options has the same effect as specifying the
PLOTS=PATHDIAGRAM option in the PROC FACTOR statement. Both produce a default path dia-
gram for the last factor solution in a PROC FACTOR run. The default path diagrams show the links between
factors and variables, the factor correlations, and the error variances in the model. For more information
about the default path diagram, see the PLOTS=PATHDIAGRAM option.

The options in the PATHDIAGRAM statement can be classified into three categories, which are summarized
in Table 44.2 through Table 44.4. The following three tables summarize these options. An alphabetical listing
of these options that includes more details follows the tables.

Table 44.2 shows the options that you can use to specify the path diagram layout algorithm, to set the criteria
for displaying the directed paths between variables and factors, and to specify the size of factors relative to
the observed variables.

Table 44.2 Options for Controlling the Layout

Option Description

ALPHA= Specifies the significance level of the loading estimate that is required in order to
display the corresponding link between a variable and a factor

ARRANGE= Specifies the algorithm for laying out variables in the path diagram

COVER= Specifies the salience criterion on the loading estimate

FACTORSIZE= Specifies the size of latent factors relative to observed variables

FUZZ= Specifies the magnitude of the loading estimate that is required in order to display
the corresponding link between a variable and a factor

SCALE= Specifies the scale factor for the node size

Table 44.3 shows the options that you can use to control the display of parameter estimates in output path
diagrams.
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Table 44.3 Options for Displaying Parameter Estimates

Option Description

DECP= Specifies the number of decimal places in the estimates
NOESTIM Disables the display of all numerical estimates
NOERRVAR Disables the display of error variances

NOFACTORVAR Disables the display of factor variances
NOVARIANCE Disables the display of all variances

Table 44.4 shows the options that you can use to specify the title, the path diagram label, and the variable
labels.

Table 44.4 Options for Specifying Titles and Labels

Option Description
DESIGNHEIGHT=  Sets the height, in pixels, of the output path diagram
DESIGNWIDTH= Sets the width, in pixels, of the output path diagram
DIAGRAMLABEL= Specifies the label of the diagram in the ODS
LABEL= Specifies labels of the nodes that are shown in the path diagram
NODELABEL= Specifies whether the variable names or labels are used to label nodes
NOTITLE Suppresses the display of the title
TITLE= Specifies the title to display in the output path diagram

ALPHA=«

ALPHALOAD=«
specifies the significance level («-level) of the loading estimate that is required in order to display
the corresponding directed link (path) between a variable and a factor. If « is greater than 1, it is
interpreted as a percentage and divided by 100. If the p-value of a loading estimate is greater than «,
the loading estimate is insignificant and PROC FACTOR does not display the corresponding link in
the path diagram. By default, « = 0.05.

The ALPHA= option applies only when you specify the METHOD=ML option in the PROC FACTOR
statement and when standard errors are computed in the analysis (for example, by specifying the SE
option in the PROC FACTOR statement).

If you specify the ALPHA= option in the PROC FACTOR statement, all PATHDIAGRAM statements
use the same o value that is specified in the ALPHA= option in the PROC FACTOR statement unless
you respecify the ALPHA= option in individual PATHDIAGRAM statements.

NOTE: The p-value of a loading estimate is computed by using a reference sampling distribution that
has a specific mean value. This mean value reflects the criterion for determining the salience of loading
estimates. You can use the COVER= option or the SALIENCE= option to specify the salience criterion.
By default, COVER=0; so PROC FACTOR displays all directed links between variables and factors
that are significantly greater than 0.



PATHDIAGRAM Statement 4 2807

ARRANGE=name
ARRANGEMENT=name

METHOD=name
specifies the algorithm for laying out the variables in the path diagram. You can specify the following

names:
FLOW specifies the process-flow algorithm.
GRIP specifies the GRIP (graph drawing with intelligent placement) algorithm.

GROUPEDFLOW specifies the grouped-flow algorithm.

By default, ARRANGE=FLOW if the number of observed variables is less than 15; otherwise, the
default is ARRANGE=GRIP. The reason for switching the default layout algorithm is that when the
number of observed variables becomes large, the process-flow algorithm might run out of vertical
space for aligning all observed variables in a vertical line. In that case, the GRIP algorithm might be a
better choice because the observed variables tend to scatter around the space rather than being aligned
vertically. See Example 44.6 for the use of the ARRANGE= option. For more information and for
general uses of these layout algorithms, see the section “The Process-Flow, Grouped-Flow, and GRIP
Layout Algorithms” on page 1723 in Chapter 33, “The CALIS Procedure.”

COVER:p

SALIENCE=p
specifies the salience criterion, p, for the loading estimate. In order to display a loading estimate and its
corresponding link between a variable and a factor in the path diagram, the magnitude of the loading
estimate must be significantly greater than p. By default, p = 0 and the significance level (a-level) is
0.05. You can specify the significance level in the ALPHA= option.

The COVER= option applies only when you specify METHOD=ML in the PROC FACTOR statement
and when standard errors are computed in the analysis (for example, by specifying the SE option in the
PROC FACTOR statement).

If you specify the COVER= option in the PROC FACTOR statement, any PATHDIAGRAM statement
that does not include a COVER= option uses the value that is specified in the PROC FACTOR
statement.

DECP=/
sets the number of decimal places in the estimates that are displayed in the path diagram, where i is
between 0 and 4. The displayed estimates are at most seven digits long, including the decimal point for
the nonzero value of /. By default, DECP=2.

DESIGNHEIGHT=/

DH=i
sets the height of the path diagram, in number of pixels, where i is between 100 and 32,767. The default
heights are 800, 500, and 600 for ARRANGE=FLOW, GROUPEDFLOW, and GRIP, respectively.
Typically, you might want to set a larger design height and width when your path diagram contains
more nodes or variables.
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DESIGNWIDTH=/

DW=i
sets the width of the path diagram, in number of pixels, where i is between 100 and 32,767. The default
widths are 450, 720, and 600 for ARRANGE=FLOW, GROUPEDFLOW, and GRIP, respectively.
Typically, you might want to set a larger design width and height when your path diagram contains
more nodes or variables.

DIAGRAMLABEL=name

DLABEL=name
specifies the label of the path diagram. You can use any valid SAS name or quoted string of up to 256
characters for name. However, only up to 40 characters of the label are used by ODS. The following
statements show two example label specifications:

pathdiagram diagramlabel=MyFactorModel;
pathdiagram diagramlabel="Varimax—Rotated Factor Solution";

If you do not specify this option, PROC FACTOR uses the name that is provided in the TITLE= option.
If you specify neither the DIAGRAMLABEL= option nor the TITLE= option, PROC FACTOR uses
“Path Diagram” for the label when there is only one path diagram. When there is more than one path
diagram, a unique number is appended to the label of each path diagram. For example, ‘“Path Diagram
3” is the third path diagram in the output.

FACTORSIZE=size

FACTSIZE=size
specifies the size of latent factors relative to the size of observed variables, where size is between 0.2
and 5. By default, FACTSIZE=1.5, which means that the size ratio of factors to observed variables is
about 3 to 2.

FUZZ=p
specifies the magnitude, p > 0, of the factor loading estimate that is required in order to display the
corresponding directed link between a variable and a factor. If the magnitude of a loading estimate is
less than p, then PROC FACTOR does not display the corresponding directed link in the path diagram.
By default, FUZZ=0.3.

If you specify the FUZZ= option in the PROC FACTOR statement, any PATHDIAGRAM statement
that does not include a FUZZ= option uses the value that is specified in the PROC FACTOR statement.

If you specify METHOD=ML and standard errors are computed, PROC FACTOR displays only those
directed links (paths) between variables and factors that are statistically significant in the path diagram.
In this situation, only the criteria that are specified by the ALPHA= and COVER= options are used
and the FUZZ= option is irrelevant. When METHOD=ML is not specified or standard errors are not
computed, PROC FACTOR uses the criterion that is specified by the FUZZ= option.

LABEL= [varlabel <, varlabel ... 5] | {varlabel <, varlabel ... >}
specifies the labels of variables to be displayed in path diagrams, where each varlabel has the following
form:
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variable=label

You can use any valid SAS names or quoted strings of up to 256 characters for /labels. The labels
identify the corresponding variables or factors in output path diagrams. For example, instead of using
original variable names such as x1 and Factor1 in the path diagram, the following statement specifies
the use of more meaningful labels:

pathdiagram label=[x1="Simple Math" Factorl="Math Ability"];

This option is not the only way that you can provide labels for variables. For example, you can also
use the LABEL statement to specify labels for observed variables. PROC FACTOR uses the following
rules to determine the label for a node (variable) in the path diagram:

1. If you specify the label for a variable or a factor by using the LABEL= option in the PATHDI-
AGRAM statement, the associated node (variable) uses this label in the output path diagram.
Proceed to the next rule if the label of a node is not resolved.

2. If the NODELABEL=VARNAME option is specified, the associated node uses the original
variable name as its label in the output path diagram. Otherwise, proceed to the next rule.

3. If the label of a variable is specified in a LABEL statement, the associated node uses this label in
the output path diagram. Otherwise, proceed to the next rule.

4. The associated node uses the original variable name as its label in the output path diagram.

NODELABEL=VARNAME | VARLABEL
specifies whether the variables (nodes) in path diagrams are labeled by the original variable names
(VARNAME) or their variable labels (VARLABEL), which are provided by specifying the LABEL
statement. If you provide variable labels (applicable only to observed variables) in the LABEL
statement, PROC FACTOR uses those provided labels unless you specify this option.

This option is not the only determinant of the final labels of nodes in the path diagram. The specifica-
tions in the LABEL= option of the PATHDIAGRAM statement are also considered. For the rules that
PROC FACTOR uses to determine the node labels, see the LABEL= option.

NOERRVAR

NOERRORVARIANCE
suppresses the default display of error variances, which are represented as double-headed paths that
are attached to observed variables.

NOESTIM

NOEST
suppresses the default display of all numerical estimates in path diagrams.

NOFACTORVAR

NOFACTORVARIANCE
suppresses the default display of factor variances, which are represented as double-headed paths that
are attached to factors.



2810 4 Chapter 44: The FACTOR Procedure

NOTITLE
suppresses the display of the default title. You can use the TITLE= option to provide your own title.

NOVARIANCE
suppresses the default display of all variances. This option has the same effect as specifying both the
NOFACTORVAR and NOERRVAR options.

SCALE=n

DIAGRAMSCALE=n
specifies the scaling factor, n, for the node size relative to the dimensions of the path diagram. Valid
values of n are between 0 and 6. This option applies to the ARRANGE=GRIP layout only.

PROC FACTOR uses certain default pixel dimensions for the nodes in path diagrams that have default
design dimensions (see the DESIGNHEIGHT= and DESIGNWIDTH= options for the default design
dimensions). The ratio of this node dimension to the design dimension defines the point at which
SCALE=1. SCALE= option values greater than 1 enlarge the nodes (relative to the design dimensions).
SCALE-= option values less than 1 shrink the nodes (relative to the design dimensions). Hence, you can
accommodate more nodes (variables) in your path diagram by setting smaller SCALE= option values.

If you use the GRIP layout algorithm, PROC FACTOR automatically adjusts the SCALE= value
according to the number of nodes in the path diagram, as shown in the following table:

Number of Nodes SCALE=

14 or less 1.00
15-19 0.95
20-24 0.90
25-29 0.85
30-34 0.80
35-39 0.75
40-44 0.70
45-49 0.65
50-59 0.60
60-69 0.55
70 or more 0.50

Although these values yield reasonable relative node sizes in different situations, you can always
adjust the relative node size by setting the SCALE= option value manually. For example, if you
have 33 nodes in your path diagram and some nodes appear to be overlapping, then you can consider
setting a SCALE= option value that is less than 0.8. When you are satisfied with the SCALE= option
value, you can then improve the resolution of the path diagram by using the DESIGNHEIGHT= and
DESIGNWIDTH= options.

TITLE=name
specifies the title of the path diagram. You can use any valid SAS name or a quoted string of up to
256 characters for name. If you do not specify this option, PROC FACTOR uses “Path Diagram” for
the title when there is only one path diagram. A unique number (for example, ‘“Path Diagram 37) is
appended to the title of each path diagram when there is more than one path diagram.
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PRIORS Statement

PRIORS communalities ;

The PRIORS statement specifies numeric values between 0.0 and 1.0 for the prior communality estimates
for each variable. The first numeric value corresponds to the first variable in the VAR statement, the second
value to the second variable, and so on. The number of numeric values must equal the number of variables.
For example:

proc factor;

var X Yy z;
priors .7 .8 .9;
run;

You can specify various methods for computing prior communality estimates with the PRIORS= option in
the PROC FACTOR statement. See the description of that option for more information about the default
prior communality estimates.

VAR Statement
VAR variables ;

The VAR statement specifies the numeric variables to be analyzed. If the VAR statement is omitted, all
numeric variables not specified in other statements are analyzed.

WEIGHT Statement
WEIGHT variable ;

If you want to use relative weights for each observation in the input data set, specify a variable containing
weights in a WEIGHT statement. This is often done when the variance associated with each observation
is different and the values of the weight variable are proportional to the reciprocals of the variances. If a
variable value is negative or is missing, it is excluded from the analysis.
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Details: FACTOR Procedure

Input Data Set

The FACTOR procedure can read an ordinary SAS data set containing raw data or a special data set specified
as a TYPE=CORR, TYPE=UCORR, TYPE=SSCP, TYPE=COV, TYPE=UCOQV, or TYPE=FACTOR data set
containing previously computed statistics. A TYPE=CORR data set can be created by the CORR procedure
or various other procedures such as the PRINCOMP procedure. It contains means, standard deviations, the
sample size, the correlation matrix, and possibly other statistics if it is created by some procedure other than
PROC CORR. A TYPE=COV data set is similar to a TYPE=CORR data set but contains a covariance matrix.
A TYPE=UCORR or TYPE=UCOV data set contains a correlation or covariance matrix that is not corrected
for the mean. The default VAR variable list does not include Intercept if the DATA= data set is TYPE=SSCP.
If the Intercept variable is explicitly specified in the VAR statement with a TYPE=SSCP data set, the NOINT
option is activated. A TYPE=FACTOR data set can be created by the FACTOR procedure and is described in
the section “Output Data Sets” on page 2814.

If your data set has many observations and you plan to run FACTOR several times, you can save computer
time by first creating a TYPE=CORR data set and using it as input to PROC FACTOR, as in the following

statements:
proc corr data=raw out=correl; /* create TYPE=CORR data set =/
proc factor data=correl method=ml; /* maximum likelihood */
proc factor data=correl; /* principal components */

The data set created by the CORR procedure is automatically given the TYPE=CORR data set option, so you
do not have to specify TYPE=CORR. However, if you use a DATA step with a SET statement to modify
the correlation data set, you must use the TYPE=CORR attribute in the new data set. You can use a VAR
statement with PROC FACTOR when reading a TYPE=CORR data set to select a subset of the variables or
change the order of the variables.

Problems can arise from using the CORR procedure when there are missing data. By default, PROC CORR
computes each correlation from all observations that have values present for the pair of variables involved
(pairwise deletion). The resulting correlation matrix might have negative eigenvalues. If you specify the
NOMISS option with the CORR procedure, observations with any missing values are completely omitted
from the calculations (listwise deletion), and there is no danger of negative eigenvalues.

PROC FACTOR can also create a TYPE=FACTOR data set, which includes all the information in a
TYPE=CORR data set, and use it for repeated analyses. For a TYPE=FACTOR data set, the default
value of the METHOD= option is PATTERN. The following PROC FACTOR statements produce the same
results as the previous example:

proc factor data=raw method=ml outstat=fact; /* max. likelihood */
proc factor data=fact method=prin; /* principal components */

You can use a TYPE=FACTOR data set to try several different rotation methods on the same data without
repeatedly extracting the factors. In the following example, the second and third PROC FACTOR statements
use the data set fact created by the first PROC FACTOR statement:



Input Data Set 4 2813

proc factor data=raw outstat=fact; /* principal components */
proc factor rotate=varimax; /* varimax rotation */
proc factor rotate=quartimax; /* quartimax rotation */

You can create a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set in a DATA step for PROC
FACTOR to read as input. For example, in the following a TYPE=CORR data set is created and is read as
input data set by the subsequent PROC FACTOR statement:

data correl (type=corr);
_TYPE_='CORR';
input _NAME_ $ x y z;

datalines;
x 1.0
y .7 1.0

z .5 .41.0
;

proc factor;
run;

Be sure to specify the TYPE= option in parentheses after the data set name in the DATA statement and
include the _TYPE_ and _NAME_ variables. In a TYPE=CORR data set, only the correlation matrix
(_TYPE_="CORR’) is necessary. It can contain missing values as long as every pair of variables has at least
one nonmissing value.

You can also create a TYPE=FACTOR data set containing only a factor pattern (_ TYPE_="PATTERN’) and
use the FACTOR procedure to rotate it, as these statements show:

data pat (type=factor);
_TYPE_='PATTERN';
input _NAME_ $ x y z;
datalines;
factorl .5 .7 .3
factor2 .8 .2 .8
proc factor rotate=promax prerotate=none;
run;

If the input factors are oblique, you must also include the interfactor correlation matrix with
_TYPE_=FCORR’, as shown here:

data pat (type=factor);
input _TYPE_ $§ _NAME_ $ x y z;
datalines;

pattern factorl .5 .7 .3
pattern factor2 .8 .2 .8
fcorr factorl 1.0 .2
fcorr factor2 .2 1.0

7
proc factor rotate=promax prerotate=none;
run;

Some procedures, such as the PRINCOMP and CANDISC procedures, produce TYPE=CORR or
TYPE=UCORR data sets containing scoring coefficients (_TYPE_="SCORE’ or _TYPE_="USCORE’).
These coefficients can be input to PROC FACTOR and rotated by using the METHOD=SCORE option, as in
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the following statements:

proc princomp data=raw n=2 outstat=prin;

run;

proc factor data=prin method=score rotate=varimax;
run;

Notice that the input data set prin must contain the correlation matrix as well as the scoring coefficients.

Output Data Sets
The OUT= Data Set

The OUT= data set contains all the data in the DATA= data set plus new variables called Factor1, Factor2, and
S0 on, containing estimated factor scores. Each estimated factor score is computed as a linear combination of
the standardized values of the variables that are factored. The coefficients are always displayed if the OUT=
option is specified, and they are labeled “Standardized Scoring Coefficients.”

If partial variables are specified in the PARTIAL statement, the factor analysis is on the residuals of the
variables, which are regressed on the partial variables. In this case, the OUT= data set also contains the
(unstandardized) residuals, which are prefixed by R_ by default. For example, the residual of variable X is
named R_X in the OUT= data set. You might also assign the prefix by the PARPREFIX= option. Because
the residuals are factor-analyzed, the estimated factor scores are computed as linear combinations of the
standardized values of the residuals, but not the original variables.

The OUTSTAT= Data Set

The OUTSTAT= data set is similar to the TYPE=CORR or TYPE=UCORR data set produced by the
CORR procedure, but it is a TYPE=FACTOR data set and it contains many results in addition to those
produced by PROC CORR. The OUTSTAT= data set contains observations with _TYPE_="UCORR’ and
_TYPE_="USTD’ if you specify the NOINT option.

The output data set contains the following variables:

e the BY variables, if any
e two new character variables, TYPE_and NAME_

e the variables analyzed—those in the VAR statement, or, if there is no VAR statement, all numeric
variables not listed in any other statement. If partial variables are specified in the PARTIAL statement,
the residuals are included instead. By default, the residual variable names are prefixed by R_, unless
you specify something different in the PARPREFIX= option.

Each observation in the output data set contains some type of statistic as indicated by the _ TYPE_ variable.
The _NAME_ variable is blank except where otherwise indicated. The values of the _TYPE_ variable are as
follows:

MEAN means
STD standard deviations
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uncorrected standard deviations
sample size

correlations. The _NAME_ variable contains the name of the variable corresponding to
each row of the correlation matrix.

uncorrected correlations. The NAME __ variable contains the name of the variable corre-
sponding to each row of the uncorrected correlation matrix.

image coefficients. The _NAME_ variable contains the name of the variable corresponding
to each row of the image coefficient matrix.

image covariance matrix. The _NAME_ variable contains the name of the variable
corresponding to each row of the image covariance matrix.

final communality estimates

prior communality estimates, or estimates from the last iteration for iterative methods
variable weights

sum of the variable weights

eigenvalues

unrotated factor pattern. The _NAME_ variable contains the name of the factor.

standard error estimates for the unrotated loadings. The _NAME_ variable contains the
name of the factor.

residual correlations. The _NAME_ variable contains the name of the variable correspond-
ing to each row of the residual correlation matrix.

transformation matrix from prerotation. The _NAME_ variable contains the name of the
factor.

prerotated interfactor correlations. The _NAME_ variable contains the name of the factor.

standard error estimates for prerotated interfactor correlations. The _NAME_ variable
contains the name of the factor.

prerotated factor pattern. The _NAME__ variable contains the name of the factor.

standard error estimates for the prerotated loadings. The _NAME_ variable contains the
name of the factor.

prerotated reference axis correlations. The _NAME_ variable contains the name of the
factor.

prerotated reference structure. The _NAME_ variable contains the name of the factor.
prerotated factor structure. The _NAME__ variable contains the name of the factor.

standard error estimates for prerotated structure loadings. The _NAME_ variable contains
the name of the factor.

prerotated scoring coefficients. The _NAME_ variable contains the name of the factor.

transformation matrix from rotation. The NAME_ variable contains the name of the
factor.

interfactor correlations. The _NAME_ variable contains the name of the factor.
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SE_FCORR standard error estimates for interfactor correlations. The _NAME_ variable contains the
name of the factor.

PATTERN factor pattern. The _NAME_ variable contains the name of the factor.

SE_PAT standard error estimates for the rotated loadings. The _NAME_ variable contains the name
of the factor.

RCORR reference axis correlations. The NAME_ variable contains the name of the factor.
REFERENC reference structure. The _NAME_ variable contains the name of the factor.
STRUCTUR factor structure. The NAME_ variable contains the name of the factor.

SE_STRUC standard error estimates for structure loadings. The _NAME_ variable contains the name
of the factor.

SCORE scoring coefficients to be applied to standardized variables if the SCORE option is
specified on the PROC FACTOR statement. The _NAME_ variable contains the name of
the factor.

USCORE scoring coefficients to be applied without subtracting the mean from the raw variables if

the SCORE option is specified on the PROC FACTOR statement. The _ NAME_ variable
contains the name of the factor.

Number of Factors to Retain

PROC FACTOR provides a variety of factor extraction methods, which you can specify by using the
METHOD-= option. Typically, the maximum number of factors that can be extracted is the same as the
number of variables that are being factor-analyzed. Because factor analysis can be viewed as a data-reduction
technique, the actual number of factors that researchers want to retain after the extraction is usually much
smaller.

PROC FACTOR provides the following three options to enable you to control the number of factors to retain
in factor solutions: MINEIGEN=, NFACTORS=, and PROPORTION=. Although each of the MINEIGEN=
and PROPORTION= options specifies a criterion value to determine the number of factors, the NFACTORS=n
option specifies an explicit number n for the maximum number of factors to retain. In addition, you can use
the NFACTORS=name option to request that either the minimum average partial correlation (MAP) analysis
or parallel analysis criterion be used for determining the number of factors. The MAP and parallel analysis
criteria are explained at the end of this section.

If you do not specify any of these options, PROC FACTOR essentially sets default criterion values for the
MINEIGEN= and PROPORTION= options and retains the minimum number of factors that can satisfy either
one of these criteria. See the MINEIGEN= and PROPORTION= options for the default criterion values,
which depend on the factor extraction method that you use.

If you specify two or more options among the MINEIGEN=, NFACTORS=n, and PROPORTION= op-
tions, the number of factors retained is the minimum number that satisfies any of the criteria. However, if
you specify one of the options NFACTORS=MAP, NFACTORS=MAP2, NFACTORS=MAP4, or NFAC-
TORS=PARALLEL, the retained number of factors is determined by the specified option (MAP, MAP2,
MAP4, or PARALLEL, respectively) and all other criteria are ignored. The following explains the MAP and
parallel analysis criteria.
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A minimum average partial correlation analysis first performs a principal components analysis on the
sample correlation matrix. Next, averages of the squared (for MAP2) or fourth-powered (for MAP4) partial
correlations between the variables are computed after recursively controlling for one, two, and so on,
components (Velicer 1976). The selected number of factors is the number of the controlled components that
corresponds to the smallest average squared or fourth-powered partial correlation. If you want to conduct a
minimum average partial correlation analysis without using its criterion to determine the number of factors to
extract, use the MAP option instead of the NFACTORS= option.

As first proposed by Horn (1965), a parallel analysis selects the number of factors by comparing the
eigenvalues in the sample correlation matrix with the eigenvalues of random correlation matrices that are
generated from a multivariate standard normal distribution. PROC FACTOR simulates a large number of
random correlation matrices and constructs an empirical distribution for each positional eigenvalue: largest,
second-largest, and so on (Glorfeld 1995). A factor is suggested if an observed eigenvalue is greater than the
critical value at a specified one-sided «-level, with reference to the corresponding simulated distribution of
random eigenvalues. As soon as an observed eigenvalue is less than or equal to the corresponding critical
value, no more factors are counted. In other words, only the first n consecutive significant eigenvalues are
counted for the number of factors.

If you want to conduct a parallel analysis without using its criterion to determine the number of factors being
extracted, use the PARALLEL option instead of the NFACTORS=PARALLEL option.

Variable Weights and Variance Explained

A principal component analysis of a correlation matrix treats all variables as equally important. A principal
component analysis of a covariance matrix gives more weight to variables with larger variances. A principal
component analysis of a covariance matrix is equivalent to an analysis of a weighted correlation matrix,
where the weight of each variable is equal to its variance. Variables with large weights tend to have larger
loadings on the first component and smaller residual correlations than variables with small weights.

You might want to give weights to variables by using values other than their variances. Mulaik (1972)
explains how to obtain a maximally reliable component by means of a weighted principal component analysis.
With the FACTOR procedure, you can indirectly give arbitrary weights to the variables by using the COV
option and rescaling the variables to have variance equal to the desired weight, or you can give arbitrary
weights directly by using the WEIGHT option and including the weights in a TYPE=CORR data set.

Arbitrary variable weights can be used with the METHOD=PRINCIPAL, METHOD=PRINIT,
METHOD=ULS, or METHOD=IMAGE option. Alpha and ML factor analyses compute variable
weights based on the communalities (Harman 1976, pp. 217-218). For alpha factor analysis, the weight
of a variable is the reciprocal of its communality. In ML factor analysis, the weight is the reciprocal of
the uniqueness. Harris component analysis uses weights equal to the reciprocal of one minus the squared
multiple correlation of each variable with the other variables.

For uncorrelated factors, the variance explained by a factor can be computed with or without taking the
weights into account. The usual method for computing variance accounted for by a factor is to take the sum
of squares of the corresponding column of the factor pattern, yielding an unweighted result. If the square of
each loading is multiplied by the weight of the variable before the sum is taken, the result is the weighted
variance explained, which is equal to the corresponding eigenvalue except in image analysis. Whether the
weighted or unweighted result is more important depends on the purpose of the analysis.
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In the case of correlated factors, the variance explained by a factor can be computed with or without taking
the other factors into account. If you want to ignore the other factors, the variance explained is given by the
weighted or unweighted sum of squares of the appropriate column of the factor structure since the factor
structure contains simple correlations. If you want to subtract the variance explained by the other factors from
the amount explained by the factor in question (the Type II variance explained), you can take the weighted
or unweighted sum of squares of the appropriate column of the reference structure because the reference
structure contains semipartial correlations. There are other ways of measuring the variance explained. For
example, given a prior ordering of the factors, you can eliminate from each factor the variance explained by
previous factors and compute a Type I variance explained. Harman (1976, pp. 268-270) provides another
method, which is based on direct and joint contributions.

Simplicity Functions for Rotations

To rotate a factor pattern is to apply a nonsingular linear transformation to the unrotated factor pattern matrix.
An optimal transformation is usually defined as a minimum or maximum point of a simplicity function.
Different rotation methods are based on different simplicity functions employed.

For the promax or the Procrustes rotation, the simplicity function used is the sum of squared differences
between the rotated factor pattern and the target matrix. The optimal transformation is obtained by minimizing
this simplicity function with respect to the choices of all possible transformation.

For the class of the generalized Crawford-Ferguson family (Jennrich 1973), the simplicity function being
optimized is

f=kiZ +kyH +k3V +ks0Q

where

Z=0"3"022 H=Y () b2)?
joi i
V=X 0= T
J i J i

ki1,k>, k3, and k4 are constants, and b;; represents an element of the rotated pattern matrix. Except for
specialized research purposes, it is uncommon in practice to use this simplicity function directly for rotation.
However, this simplicity function reduces to many well-known classes of rotations. One of these is the
Crawford-Ferguson family (Crawford and Ferguson 1970), which minimizes

Jer =c1(H = Q) +c2(V - 0)

where ¢ and c; are constants, (H — Q) represents variable (row) parsimony, and (V' — Q) represents factor
(column) parsimony. Therefore, the relative importance of both the variable parsimony and of the factor
parsimony is adjusted using the constants ¢ and c¢5. The orthomax class (see Harman 1976) maximizes the
function

Jor =p0 —yV

where y is the orthomax weight and is usually between 0 and the number of variables p. The oblimin class
minimizes the function

Job=p(H - Q)—1(Z-V)
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where 7 is the oblimin weight. For practical purposes, a negative or zero value for t is recommended.

All of the preceding definitions are for rotations without row normalization. For rotations with Kaiser
normalization, the definition of b;; is replaced by b;; / h;, where h; is the communality estimate of variable i.

Confidence Intervals and the Salience of Factor Loadings

The traditional approach to determining salient loadings (loadings that are considered large in absolute values)
employs rules of thumb such as 0.3 or 0.4. However, this does not use the statistical evidence efficiently. The
asymptotic normality of the distribution of factor loadings enables you to construct confidence intervals to
gauge the salience of factor loadings. To guarantee the range-respecting properties of confidence intervals, a
transformation procedure such as in CEFA (Browne et al. 2010) is used. For example, because the orthogonal
rotated factor loading 6 must be bounded between —1 and +1, the Fisher transformation

1+6

1
Q= 5 10g(m)

is employed so that ¢ is an unbounded parameter. Assuming the asymptotic normality of ¢, a symmetric
confidence interval for ¢ is constructed. Then, a back-transformation on the confidence limits yields an
asymmetric confidence interval for 8. Applying the results of Browne (1982), a (1—«)100% confidence
interval for the orthogonal factor loading 6 is

~ al/b—1 - axb—1
6 =27 b=
a/b+1 axb+1

where
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and @ is the estimated factor loading, 6 is the standard error estimate of the factor loading, and z,/, is the
100(1 — «/2)th percentile point of a standard normal distribution.

Once the confidence limits are constructed, you can use the corresponding coverage displays for determining
the salience of the variable-factor relationship. In a coverage display, the COVER= value is represented by
an asterisk (*). The following table summarizes various displays and their interpretations.

Table 44.5 Interpretations of the Coverage Displays

Positive = Negative COVER=0 Interpretation
Estimate Estimate Specified

[O]* *[0] The estimate is not significantly different from zero,
and the CI covers a region of values that are smaller in
magnitude than the COVER= value. This is strong
statistical evidence for the nonsalience of the
variable-factor relationship.

o[ I* *[ 10 The estimate is significantly different from zero, but
the CI covers a region of values that are smaller in
magnitude than the COVER= value. This is strong
statistical evidence for the nonsalience of the
variable-factor relationship.
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Table 44.5 continued

Positive = Negative COVER=(0 Interpretation
Estimate Estimate Specified

[0*] [*0] [0] The estimate is not significantly different from zero or
the COVER= value. The population value might have
been larger or smaller in magnitude than the COVER=
value. There is no statistical evidence for the salience
of the variable-factor relationship.

0or*] [*10 The estimate is significantly different from zero but not
from the COVER= value. This is marginal statistical
evidence for the salience of the variable-factor
relationship.

0*[ ] [ 1*0 O[Jor[]0  The estimate is significantly different from zero, and
the CI covers a region of values that are larger in
magnitude than the COVER= value. This is strong
statistical evidence for the salience of the
variable-factor relationship.

See Example 44.5 for an illustration of the use of confidence intervals for interpreting factors.

Factor Scores

The FACTOR procedure can compute estimated factor scores directly if you specify the NFACTORS=n and
OUT= options, or indirectly using the SCORE procedure. The latter method is preferable if you use the
FACTOR procedure interactively to determine the number of factors, the rotation method, or various other
aspects of the analysis. To compute factor scores for each observation by using the SCORE procedure, do the
following:

e Use the SCORE option in the PROC FACTOR statement.
e Create a TYPE=FACTOR output data set with the OUTSTAT= option.

e Use the SCORE procedure with both the raw data and the TYPE=FACTOR data set.

e Do not use the TYPE= option in the PROC SCORE statement.

For example, the following statements could be used:

proc factor data=raw score outstat=fact;
run;

proc score data=raw score=fact out=scores;
run;

or
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proc corr data=raw out=correl;

run;

proc factor data=correl score outstat=fact;
run;

proc score data=raw score=fact out=scores;
run;

For a more detailed example, see Example 109.1 in Chapter 109, “The SCORE Procedure.”

A component analysis (principal, image, or Harris) produces scores with mean zero and variance one. If
you have done a common factor analysis, the true factor scores have mean zero and variance one, but the
computed factor scores are only estimates of the true factor scores. These estimates have mean zero but
variance equal to the squared multiple correlation of the factor with the variables. The estimated factor scores
might have small nonzero correlations even if the true factors are uncorrelated.

Heywood Cases and Other Anomalies about Communality Estimates

Since communalities are squared correlations, you would expect them always to lie between 0 and 1. It is
a mathematical peculiarity of the common factor model, however, that final communality estimates might
exceed 1. If a communality equals 1, the situation is referred to as a Heywood case, and if a communality
exceeds 1, it is an ultra-Heywood case. An ultra-Heywood case implies that some unique factor has negative
variance, a clear indication that something is wrong. Possible causes include the following:

bad prior communality estimates

too many common factors

e too few common factors

not enough data to provide stable estimates

the common factor model is not an appropriate model for the data

An ultra-Heywood case renders a factor solution invalid. Factor analysts disagree about whether or not a
factor solution with a Heywood case can be considered legitimate.

With METHOD=PRINIT, METHOD=ULS, METHOD=ALPHA, or METHOD=ML, the FACTOR procedure,
by default, stops iterating and sets the number of factors to O if an estimated communality exceeds 1. To
enable processing to continue with a Heywood or ultra-Heywood case, you can use the HEYWOOD or
ULTRAHEYWOOD option in the PROC FACTOR statement. The HEYWOOD option sets the upper bound
of any communality to 1, while the ULTRAHEYWOOD option allows communalities to exceed 1.

Theoretically, the communality of a variable should not exceed its reliability. Violation of this condition is
called a quasi-Heywood case and should be regarded with the same suspicion as an ultra-Heywood case.

Elements of the factor structure and reference structure matrices can exceed 1 only in the presence of an
ultra-Heywood case. On the other hand, an element of the factor pattern might exceed 1 in an oblique
rotation.
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The maximum likelihood method is especially susceptible to quasi- or ultra-Heywood cases. During
the iteration process, a variable with high communality is given a high weight; this tends to increase its
communality, which increases its weight, and so on.

It is often stated that the squared multiple correlation of a variable with the other variables is a lower bound
to its communality. This is true if the common factor model fits the data perfectly, but it is not generally
the case with real data. A final communality estimate that is less than the squared multiple correlation
can, therefore, indicate poor fit, possibly due to not enough factors. It is by no means as serious a problem
as an ultra-Heywood case. Factor methods that use the Newton-Raphson method can actually produce
communalities less than 0, a result even more disastrous than an ultra-Heywood case.

The squared multiple correlation of a factor with the variables might exceed 1, even in the absence of
ultra-Heywood cases. This situation is also cause for alarm. Alpha factor analysis seems to be especially
prone to this problem, but it does not occur with maximum likelihood. If a squared multiple correlation is
negative, there are too many factors retained.

With data that do not fit the common factor model perfectly, you can expect some of the eigenvalues to
be negative. If an iterative factor method converges properly, the sum of the eigenvalues corresponding to
rejected factors should be O; hence, some eigenvalues are positive and some negative. If a principal factor
analysis fails to yield any negative eigenvalues, the prior communality estimates are probably too large.
Negative eigenvalues cause the cumulative proportion of variance explained to exceed 1 for a sufficiently
large number of factors. The cumulative proportion of variance explained by the retained factors should be
approximately 1 for principal factor analysis and should converge to 1 for iterative methods. Occasionally,
a single factor can explain more than 100 percent of the common variance in a principal factor analysis,
indicating that the prior communality estimates are too low.

If a squared canonical correlation or a coefficient alpha is negative, there are too many factors retained.

Principal component analysis, unlike common factor analysis, has none of these problems if the covariance
or correlation matrix is computed correctly from a data set with no missing values. Various methods for
missing value correlation or severe rounding of the correlations can produce negative eigenvalues in principal
components.

Missing Values

If the DATA= data set contains data (rather than a matrix or factor pattern), then observations with missing
values for any variables in the analysis are omitted from the computations. If a correlation or covariance
matrix is read, it can contain missing values as long as every pair of variables has at least one nonmissing
entry. Missing values in a pattern or scoring coefficient matrix are treated as zeros.
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Cautions

e The amount of time that FACTOR takes is roughly proportional to the cube of the number of variables.
Factoring 100 variables, therefore, takes about 1,000 times as long as factoring 10 variables. Iterative
methods (PRINIT, ALPHA, ULS, ML) can also take 100 times as long as noniterative methods
(PRINCIPAL, IMAGE, HARRIS).

e No computer program is capable of reliably determining the optimal number of factors, since the
decision is ultimately subjective. You should not blindly accept the number of factors obtained by
default; instead, use your own judgment to make a decision.

e Singular correlation matrices cause problems with the options PRIORS=SMC and METHOD=ML..
Singularities can result from using a variable that is the sum of other variables, coding too many
dummy variables from a classification variable, or having more variables than observations.

e If you use the CORR procedure to compute the correlation matrix and there are missing data and the
NOMISS option is not specified, then the correlation matrix might have negative eigenvalues.

e If a TYPE=CORR, TYPE=UCORR, or TYPE=FACTOR data set is copied or modified using a DATA
step, the new data set does not automatically have the same TYPE as the old data set. You must specify
the TYPE= data set option in the DATA statement. If you try to analyze a data set that has lost its
TYPE=CORR attribute, PROC FACTOR displays a warning message saying that the data set contains
_NAME_ and _TYPE_ variables but analyzes the data set as an ordinary SAS data set.

e For a TYPE=FACTOR data set, the default is METHOD=PATTERN, not METHOD=PRIN.

Time Requirements

n = number of observations
v = number of variables
f = number of factors
i = number of iterations during factor extraction
r length of iterations during factor rotation
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The time required to compute. .. Is roughly proportional to
an overall factor analysis iv3

the correlation matrix nv?
PRIORS=SMC or ASMC v3
PRIORS=MAX v?

eigenvalues 3

final eigenvectors fv?
generalized Crawford-Ferguson rvf?

family of rotations,
PROMAX, or HK

ROTATE=PROCRUSTES vf?

Each iteration in the PRINIT or ALPHA method requires computation of eigenvalues and f eigenvectors.
Each iteration in the ML or ULS method requires computation of eigenvalues and v — f eigenvectors.

The amount of time that PROC FACTOR takes is roughly proportional to the cube of the number of variables.
Factoring 100 variables, therefore, takes about 1000 times as long as factoring 10 variables. Iterative methods
(PRINIT, ALPHA, ULS, ML) can also take 100 times as long as noniterative methods (PRINCIPAL, IMAGE,
HARRIS).

Displayed Output
PROC FACTOR output includes the following:

e Input data type, numbers of records read and used for raw data input, the number of observations that
is specified in the NOBS= option in the PROC FACTOR statement, and the number of observations
used in significance tests

e Mean and Std Dev (standard deviation) of each variable and the number of observations, if you specify
the SIMPLE option

e Correlations, if you specify the CORR option
e Inverse Correlation Matrix, if you specify the ALL option

e Partial Correlations Controlling all other Variables (negative anti-image correlations), if you specify
the MSA option. If the data are appropriate for the common factor model, the partial correlations
should be small.

o Kaiser’s Measure of Sampling Adequacy (Kaiser 1970; Kaiser and Rice 1974; Cerny and Kaiser 1977),
both overall and for each variable, if you specify the MSA option. The MSA is a summary of how
small the partial correlations are relative to the ordinary correlations. Values greater than 0.8 can
be considered good. Values less than 0.5 require remedial action, either by deleting the offending
variables or by including other variables related to the offenders.
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Prior Communality Estimates, unless 1.0s are used or unless you specify the METHOD=IMAGE,
METHOD=HARRIS, METHOD=PATTERN, or METHOD=SCORE option

Squared Multiple Correlations of each variable with all the other variables, if you specify the
METHOD=IMAGE or METHOD=HARRIS option

Image Coefficients, if you specify the METHOD=IMAGE option
Image Covariance Matrix, if you specify the METHOD=IMAGE option

Preliminary Eigenvalues based on the prior communalities, if you specify the METHOD=PRINIT,
METHOD=ALPHA, METHOD=ML, or METHOD=ULS option. The table produced includes the
Total and the Average of the eigenvalues, the Difference between successive eigenvalues, the Proportion
of variation represented, and the Cumulative proportion of variation.

Parallel Analysis, if you specify the PARALLEL or NFACTORS=PARALLEL option. This includes
the eigenvalues of the proper correlation matrix, the simulated critical values from the parallel analysis,
the simulated average eigenvalues from the parallel analysis, and the number of threads used to
construct the parallel analysis. (By default, the simulated average eigenvalues and the number of
threads are not printed.)

Average Partial Correlations (squared and fourth-powered) after controlling for different numbers of
principal components, if you specify the MAP, NFACTORS=MAP2, or NFACTORS=MAP4 option.

the number of factors that are retained, unless you specify the METHOD=PATTERN or
METHOD=SCORE option

the Scree Plot of Eigenvalues, if you specify the SCREE option. The preliminary eigenvalues are
used if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or METHOD=ULS
option. You can request the corresponding high-quality graphical plot by using the PLOTS= option.

the iteration history, if you specify the METHOD=PRINIT, METHOD=ALPHA, METHOD=ML, or
METHOD=ULS option. The table produced contains the iteration number (Iter); the Criterion being
optimized (Joreskog 1977); the Ridge value for the iteration if you specify the METHOD=ML or
METHOD=ULS option; the maximum Change in any communality estimate; and the Communalities.

Significance tests, if you specify the option METHOD=ML, including Bartlett’s chi-square, df, and
Prob > )(2 for Hp: No common factors and Hg: Factors retained are sufficient to explain the correlations.
The Hp test for no common factors is equivalent to Bartlett’s test of sphericity. The variables should
have an approximate multivariate normal distribution for the probability levels to be valid. Lawley and
Maxwell (1971) suggest that the number of observations should exceed the number of variables by 50
or more, although Geweke and Singleton (1980) claim that as few as 10 observations are adequate with
five variables and one common factor. Certain regularity conditions must also be satisfied for Bartlett’s
%2 test to be valid (Geweke and Singleton 1980), but in practice these conditions are usually satisfied.
The notation Prob>chi**2 means “the probability under the null hypothesis of obtaining a greater y?
statistic than that observed.” The chi-square value is displayed with and without Bartlett’s correction.

Akaike’s Information Criterion, if you specify the METHOD=ML option. Akaike’s information
criterion (AIC) (Akaike 1973, 1974, 1987) is a general criterion for estimating the best number of
parameters to include in a model when maximum likelihood estimation is used. The number of factors
that yields the smallest value of AIC is considered best. Like the chi-square test, AIC tends to include
factors that are statistically significant but inconsequential for practical purposes.
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Schwarz’s Bayesian Criterion, if you specify the METHOD=ML option. Schwarz’s Bayesian Criterion
(SBC) (Schwarz 1978) is another criterion, similar to AIC, for determining the best number of
parameters. The number of factors that yields the smallest value of SBC is considered best; SBC seems
to be less inclined to include trivial factors than either AIC or the chi-square test.

Tucker and Lewis’s reliability coefficient, if you specify the METHOD=ML option (Tucker and Lewis
1973)

Squared Canonical Correlations, if you specify the METHOD=ML option. These are the same as the
squared multiple correlations for predicting each factor from the variables.

Coefficient Alpha for Each Factor, if you specify the METHOD=ALPHA option

Eigenvectors, if you specify the EIGENVECTORS or ALL option, unless you also specify the
METHOD=PATTERN or METHOD=SCORE option

Eigenvalues of the (Weighted) (Reduced) (Image) Correlation or Covariance Matrix, unless you specify
the METHOD=PATTERN or METHOD=SCORE option. Included are the Total and the Average of the
eigenvalues, the Difference between successive eigenvalues, the Proportion of variation represented,
and the Cumulative proportion of variation.

the Factor Pattern, which is equal to both the matrix of standardized regression coefficients for
predicting variables from common factors and the matrix of correlations between variables and
common factors since the extracted factors are uncorrelated. Standard error estimates are included if
the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included
if COVER= option is specified with METHOD=ML.

Variance explained by each factor, both Weighted and Unweighted, if variable weights are used

Final Communality Estimates, including the Total communality; or Final Communality Estimates
and Variable Weights, including the Total communality, both Weighted and Unweighted, if variable
weights are used. Final communality estimates are the squared multiple correlations for predicting the
variables from the estimated factors, and they can be obtained by taking the sum of squares of each
row of the factor pattern, or a weighted sum of squares if variable weights are used.

Residual Correlations with Uniqueness on the Diagonal, if you specify the RESIDUAL or ALL option

Root Mean Square Off-Diagonal Residuals, both Over-all and for each variable, if you specify the
RESIDUAL or ALL option

Partial Correlations Controlling Factors, if you specify the RESIDUAL or ALL option

Root Mean Square Off-Diagonal Partials, both Over-all and for each variable, if you specify the
RESIDUAL or ALL option

Plots of Factor Pattern for unrotated factors, if you specify the PREPLOT option. The number of plots
is determined by the NPLOT= option. You can request the corresponding high-quality graphical plots
by using the PLOTS= option.

Variable Weights for Rotation, if you specify the NORM=WEIGHT option

Factor Weights for Rotation, if you specify the HKPOWER= option
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Orthogonal Transformation Matrix, if you request an orthogonal rotation

Rotated Factor Pattern, if you request an orthogonal rotation. Standard error estimates are included if
the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included
if COVER= option is specified with METHOD=ML.

Variance explained by each factor after rotation. If you request an orthogonal rotation and if variable
weights are used, both weighted and unweighted values are produced.

Target Matrix for Procrustean Transformation, if you specify the ROTATE=PROMAX or
ROTATE=PROCRUSTES option

the Procrustean Transformation Matrix, if you specify the ROTATE=PROMAX or ROTATE=PROCRUSTES
option

the Normalized Oblique Transformation Matrix, if you request an oblique rotation, which, for the
option ROTATE=PROMAX, is the product of the prerotation and the Procrustes rotation

Inter-factor Correlations, if you specify an oblique rotation. Standard error estimates are included if
the SE option is specified with METHOD=ML. Confidence limits and coverage displays are included
if COVER= option is specified with METHOD=ML.

Rotated Factor Pattern (Std Reg Coefs), if you specify an oblique rotation, giving standardized
regression coefficients for predicting the variables from the factors. Standard error estimates are
included if the SE option is specified with METHOD=ML. Confidence limits and coverage displays
are included if COVER= option is specified with METHOD=ML.

Reference Axis Correlations if you specify an oblique rotation. These are the partial correlations
between the primary factors when all factors other than the two being correlated are partialed out.

Reference Structure (Semipartial Correlations), if you request an oblique rotation. The reference
structure is the matrix of semipartial correlations (Kerlinger and Pedhazur 1973) between variables
and common factors, removing from each common factor the effects of other common factors. If the
common factors are uncorrelated, the reference structure is equal to the factor pattern.

Variance explained by each factor eliminating the effects of all other factors, if you specify an
oblique rotation. Both Weighted and Unweighted values are produced if variable weights are used.
These variances are equal to the (weighted) sum of the squared elements of the reference structure
corresponding to each factor.

Factor Structure (Correlations), if you request an oblique rotation. The (primary) factor structure is the
matrix of correlations between variables and common factors. If the common factors are uncorrelated,
the factor structure is equal to the factor pattern. Standard error estimates are included if the SE option
is specified with METHOD=ML. Confidence limits and coverage displays are included if COVER=
option is specified with METHOD=ML.

Variance explained by each factor ignoring the effects of all other factors, if you request an oblique
rotation. Both Weighted and Unweighted values are produced if variable weights are used. These
variances are equal to the (weighted) sum of the squared elements of the factor structure corresponding
to each factor.

Final Communality Estimates for the rotated factors if you specify the ROTATE= option. The estimates
should equal the unrotated communalities.
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option, except for unrotated principal components

Squared Multiple Correlations of the Variables with Each Factor, if you specify the SCORE or ALL

Standardized Scoring Coefficients, if you specify the SCORE or ALL option

Plots of the Factor Pattern for rotated factors, if you specify the PLOT option and you request an
orthogonal rotation. The number of plots is determined by the NPLOT= option. You can request the

corresponding high-quality graphical plots by using the PLOTS= option.

Plots of the Reference Structure for rotated factors, if you specify the PLOT option and you request
an oblique rotation. The number of plots is determined by the NPLOT= option. Included are the
Reference Axis Correlation and the Angle between the Reference Axes for each pair of factors plotted.

You can request the corresponding high-quality graphical plots by using the PLOTS= option.

PATHDIAGRAM statements.

If you specify the ROTATE=PROMAX option, the output includes results for both the prerotation and the

Procrustes rotation.

A path diagram for the final factor solution if you specify the PLOTS=PATHDIAGRAM option or the

ODS Table Names

PROC FACTOR assigns a name to each table that it creates. You can use these names to refer to the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in the Table 44.6. For more information about ODS, see Chapter 23, “Using the Output Delivery

System.”
Table 44.6 ODS Tables Produced by PROC FACTOR
ODS Table Name Description Option
AlphaCoef Coefficient alpha for each METHOD=ALPHA
factor
AveParCorrControlPC  Average partial correlations MAP or NFACTORS=MAP, MAP2, or
after controlling for principal MAP4
components
CanCorr Squared canonical correlations METHOD=ML
CondStdDev Conditional standard SIMPLE with PARTIAL
deviations
ConvergenceStatus Convergence status METHOD=PRINIT, ALPHA, ML, or ULS
Corr Correlations CORR
Eigenvalues Eigenvalues Default
Eigenvectors Eigenvectors EIGENVECTORS
FactorPattern Factor pattern Default except METHOD=PATTERN or
SCORE
FactorStructure Factor structure ROTATE-= any oblique rotation

FactorWeightRotate

Factor weights for rotation

HKPOWER=
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ODS Table Name Description Option
Final Commun Final communalities Default except METHOD=ALPHA, ML, or
HARRIS
Final CommunWgt Final communalities with METHOD=ALPHA, ML, or HARRIS;
weights METHOD=IMAGE, PRINCIPAL, PRINIT,
or ULS with WEIGHT
FitMeasures Measures of fit METHOD=ML
ImageCoef Image coefficients METHOD=IMAGE
ImageCov Image covariance matrix METHOD=IMAGE
ImageFactors Image factor matrix METHOD=IMAGE
InputFactorPattern Input factor pattern METHOD=PATTERN with PRINT or ALL
InputScoreCoef Standardized input scoring METHOD=SCORE with PRINT or ALL
coefficients
InterFactorCorr Interfactor correlations ROTATE= any oblique rotation
InvCorr Inverse correlation matrix ALL
IterHistory Iteration history METHOD=PRINIT, ALPHA, ML, or ULS
MultipleCorr Squared multiple correlations METHOD=IMAGE or HARRIS
NObs Number of records and Default
observations, input data type
NormObliqueTrans Normalized oblique ROTATE=PROCRUSTES or PROMAX
transformation matrix
ObliqueRotFactPat Rotated factor pattern ROTATE-= any oblique rotation
ObliqueTrans Oblique transformation matrix ~HKPOWER= or ROTATE= any oblique
rotation except PROCRUSTES or PROMAX
OrthRotFactPat Rotated factor pattern ROTATE= any orthogonal rotation
OrthTrans Orthogonal transformation ROTATE= any orthogonal rotation
matrix
Parallel Analysis Parallel analysis results PARALLEL or NFACTORS=PARALLEL
ParCorrControlFactor  Partial correlations after RESIDUAL
controlling for factors
ParCorrControl Var Partial correlations after MSA
controlling for other variables
PartialCorr Partial correlations MSA, CORR with PARTIAL
PriorCommunalEst Prior communality estimates PRIORS=, METHOD=ML or ALPHA
ProcrustesTarget Target matrix for Procrustean ROTATE=PROCRUSTES or PROMAX
transformation
ProcrustesTrans Procrustean transformation ROTATE=PROCRUSTES or PROMAX
matrix
RMSOffDiagPartials ~ Root mean square off-diagonal RESIDUAL
partials
RMSOffDiagResids Root mean square off-diagonal RESIDUAL
residuals
Reference AxisCorr Reference axis correlations ROTATE-= any oblique rotation
ReferenceStructure Reference structure ROTATE-= any oblique rotation
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Table 44.6 continued

ODS Table Name Description Option
ResCorrUniqueDiag Residual correlations with RESIDUAL
uniqueness on the diagonal
SamplingAdequacy Kaiser’s measure of sampling MSA
adequacy
SignifTests Significance tests METHOD=ML
SimpleStatistics Simple statistics SIMPLE
StdScoreCoef Standardized scoring SCORE
coefficients
VarExplain Variance explained Default except METHOD=ALPHA, ML, or
HARRIS
VarExplainWgt Variance explained with METHOD=ALPHA, ML, or HARRIS;
weights METHOD=IMAGE, PRINCIPAL, PRINIT,
or ULS with WEIGHT
VarFactorCorr Squared multiple correlations SCORE
of the variables with each factor
VarWeightRotate Variable weights for rotation NORM=WEIGHT, ROTATE=
ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described

in detail in Chapter 24, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 663 in Chapter 24, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 662 in Chapter 24,
“Statistical Graphics Using ODS.”

The names of the graphs that PROC FACTOR generates are listed in Table 44.7, along with the required

statements and options.

Table 44.7 Graphs Produced by PROC FACTOR

ODS Graph Name Plot Description Option

InitPatternPlot Initial factor pattern PLOTS=INITLOADINGS

InitRefStructurePlot Initial reference structures PLOTS=INITLOADINGS and
PLOTREF

MAPPIot Minimum average partial correlation analysis PLOTS=MAP, MAP2, or

MAP4
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Table 44.7 continued

ODS Graph Name Plot Description Option

ParallelPlot Parallel analysis PLOTS=PARALLEL

PathDiagram Path diagram PLOTS=PATHDIAGRAM or
PATHDIAGRAM statement

PatternPlot Rotated factor pattern PLOTS=LOADINGS

PrePatternPlot Prerotated factor pattern PLOTS=PRELOADINGS

PreRefStructurePlot  Prerotated reference structures PLOTS=PRELOADINGS and
PLOTREF

RefStructurePlot Rotated reference structures PLOTS=LOADINGS and
PLOTREF

ScreePlot Scree and variance explained plots PLOTS=SCREE

VariancePlot Plot of explained variance PLOTS=SCREE(UNPACK)

Examples: FACTOR Procedure

Example 44.1: Principal Component Analysis

This example analyzes socioeconomic data provided by Harman (1976). The five variables represent total
population (Population), median school years (School), total employment (Employment), miscellaneous
professional services (Services), and median house value (HouseValue). Each observation represents one of
twelve census tracts in the Los Angeles Standard Metropolitan Statistical Area.

You conduct a principal component analysis by using the following statements:

data SocioEconomics;
input Population School Employment Services HouseValue;

datalines;
5700 12.8 2500 270 25000
1000 10.9 600 10 10000
3400 8.8 1000 10 9000
3800 13.6 1700 140 25000
4000 12.8 1600 140 25000
8200 8.3 2600 60 12000
1200 11.4 400 10 16000
9100 11.5 3300 60 14000
9900 12.5 3400 180 18000
9600 13.7 3600 390 25000
9600 9.6 3300 80 12000

9400 11.4 4000 100 13000

’
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proc factor data=SocioEconomics simple corr;
run;

You begin with the specification of the raw data set with 12 observations. Then you use the DATA= option in
the PROC FACTOR statement to specify the data set in the analysis. You also set the SIMPLE and CORR
options for additional output results, which are shown in Output 44.1.2 and Output 44.1.3, respectively.

By default, PROC FACTOR assumes that all initial communalities are 1, which is the case for the current
principal component analysis. If you intend to find common factors instead, use the PRIORS= option or the
PRIORS statement to set initial communalities to values less than 1, which results in extracting the principal
factors rather than the principal components. See Example 44.2 for the specification of a principal factor
analysis.

For the current principal component analysis, the first output table is displayed in the Output 44.1.1.

Output 44.1.1 Principal Component Analysis: Number of Observations

Five Socioeconomic Variables
See Page 14 of Harman: Modern Factor Analysis, 3rd Ed
Principal Component Analysis

The FACTOR Procedure

Input Data Type Raw Data
Number of Records Read 12
Number of Records Used 12
N for Significance Tests 12

In Output 44.1.1, the input data type is shown to be raw data. PROC FACTOR also accepts other data type
such as correlations and covariances. See Example 44.5 for the use of correlations as input data. For the
current raw data set, PROC FACTOR reads in 12 records and all these 12 records are used. When there are
missing values in the data set, these two numbers might not match due to the dropping of the records with
missing values. The last row of the table shows that N =12 is used in the significance tests conducted in the
analysis.

The SIMPLE option specified in the PROC FACTOR statement generates the means and standard deviations
of all observed variables in the analysis, as shown in Output 44.1.2.

Output 44.1.2 Principal Component Analysis: Simple Statistics

Means and Standard Deviations
from 12 Observations

Variable Mean Std Dev
Population  6241.667 3439.9943
School 11.442 1.7865
Employment 2333.333 1241.2115
Services 120.833 114.9275

HouseValue 17000.000 6367.5313

The ranges of means and standard deviations for the analysis are quite large. Variables are measured on quite
different scales. However, this is not an issue because PROC FACTOR basically analyzes the standardized
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scales (that is, the correlations) of the variables.

The CORR option specified in the PROC FACTOR statement generates the output of the observed correlations
in Output 44.1.3.

Output 44.1.3 Principal Component Analysis: Correlations

Correlations
Population School Employment Services HouseValue
Population 1.00000 0.00975 0.97245 0.43887 0.02241

School 0.00975 1.00000 0.15428 0.69141 0.86307
Employment  0.97245 0.15428 1.00000 0.51472 0.12193
Services 0.43887 0.69141 0.51472 1.00000 0.77765

HouseValue 0.02241 0.86307 0.12193 0.77765 1.00000

The correlation matrix shown in Output 44.1.3 is analyzed by PROC FACTOR.

The first step of principal component analysis is to look at the eigenvalues of the correlation matrix. The
larger eigenvalues are extracted first. Because there are five observed variables, five eigenvalues can be
extracted, as shown in Output 44.1.4.

Output 44.1.4 Principal Component Analysis: Eigenvalues

Eigenvalues of the Correlation Matrix:
Total =5 Average =1

Eigenvalue Difference Proportion Cumulative
1 2.87331359 1.07665350 0.5747 0.5747
2 1.79666009 1.58182321 0.3593 0.9340
3 0.21483689 0.11490283 0.0430 0.9770
4 0.09993405 0.08467868 0.0200 0.9969
5 0.01525537 0.0031 1.0000

In Output 44.1.4, the two largest eigenvalues are 2.8733 and 1.7967, which together account for 93.4% of the
standardized variance. Thus, the first two principal components provide an adequate summary of the data for
most purposes. Three components, which explain 97.7% of the variation, should be sufficient for almost any
application. PROC FACTOR retains the first two components on the basis of the eigenvalues-greater-than-one
rule since the third eigenvalue is only 0.2148.

To express the observed variables as functions of the components (or factors, in general), you consult the
factor loading matrix as shown in Output 44.1.5.

Output 44.1.5 Principal Component Analysis: Factor Pattern

Factor Pattern
Factor1 Factor2
Population 0.58096 0.80642
School 0.76704 -0.54476
Employment 0.67243 0.72605
Services 0.93239 -0.10431
HouseValue 0.79116 -0.55818
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The factor pattern is often referred to as the factor loading matrix in factor analysis. The elements in the
loading matrix are called factor loadings. There are at least two ways you can interpret these factor loadings.
First, you can use this table to express the observed variables as functions of the extracted factors (or
components, as in the current analysis). Each row of the factor loadings tells you the linear combination of
the factor or component scores that would yield the expected value of the associated variable. Second, you
can interpret each loading as a correlation between an observed variable and a factor or component, provided
that the factor solution is an orthogonal one (that is, factors are uncorrelated), such as the current initial factor
solution. Hence, the factor loadings indicate how strongly the variables and the factors or components are
related.

In Output 44.1.5, the first component (labeled “Factor1”) has large positive loadings for all five variables.
Its correlation with Services (0.9324) is especially high. The second component is basically a contrast of
Population (0.8064) and Employment (0.7261) against School (-0.5448) and HouseValue (-0.5582), with a
very small loading on Services (-0.1043).

The total variance explained by the two components are shown in Output 44.1.6.

Output 44.1.6 Principal Component Analysis: Total Variance Explained by Factors

Variance Explained
by Each Factor

Factor1 Factor2
2.8733136 1.7966601

The first and second component account for 2.8733 and 1.7967, respectively, of the total variance of 5. In
the initial factor solution, the total variance explained by the factors or components are the same as the
eigenvalues extracted. (Compare the total variance with the eigenvalues shown in Output 44.1.4.) Due to the
dropping of the less important components, the sum of these two numbers is 4.6700, which is only a little bit
less than total variance 5 of the original correlation matrix.

You can also look at the variance explained by the two components for each observed variables in Out-
put 44.1.7.

Output 44.1.7 Principal Component Analysis: Final Communality Estimates

Final Communality Estimates: Total = 4.669974
Population School Employment  Services HouseValue
0.98782629 0.88510555 0.97930583 0.88023562 0.93750041

In Output 44.1.7, the final communality estimates show that all the variables are well accounted for by the two
components, with final communality estimates ranging from 0.8802 for Services to 0.9878 for Population.
The sum of the communalities is 4.6700, which is the same as the sum of the variance explained by the two
components, as shown in Output 44.1.6.
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Principal Component Analysis by PROC FACTOR and PROC PRINCOMP

The principal component analysis by PROC FACTOR emphasizes how the principal components explain the
observed variables. The factor loadings in the factor pattern as shown in Output 44.1.5 are the coefficients
for combining the factor/component scores to yield the observed variable scores when the expected error
residuals are zero. For example, the predicted standardized value of Population given the factor/component
scores for Factor1 and Factor2 is given by:

Population = 0.58096 x Factor1 4+ 0.80642 x Factor2

If you are primarily interested in getting the component scores as linear combinations of the observed
variables, the factor loading matrix table is not the right one for you. However, you might request the
standardized scoring coefficients by adding the SCORE option in the FACTOR statement:

proc factor data=SocioEconomics n=5 score;
run;

In the preceding PROC FACTOR statement, N=5 is specified for retaining all five components. This is
done for comparing the PROC FACTOR results with those of PROC PRINCOMP, which is described
later. The SCORE option requests the display of the standardized scoring coefficients, which are shown in
Output 44.1.8.

Output 44.1.8 Principal Component Analysis: Scoring Coefficients for Computing Component Scores

Standardized Scoring Coefficients

Factor1 Factor2 Factor3 Factor4 Factor5
Population 0.20219 0.44884 0.12841 0.64542 5.58240
School 0.26695 -0.30320 1.48612 -1.11846 1.41574
Employment 0.23403 0.40411 0.53496 0.07256 -5.65135
Services 0.32450 -0.05806 -1.43273 -1.58288 -0.00100
HouseValue 0.27535 -0.31068 -0.30129 2.41419 -0.66734

In Output 44.1.8, each factor/component is expressed as a linear combination of the standardized observed
variables. For example, the first principal component or Factor1 is computed as:

0.2022 xPopulation40.2670x School+0.2340x Employment+0.3245x Services+0.2753 xHouseValue

Again, when applying this formula you must use the standardized observed variables (with means 0 and
standard deviations 1), but not the raw data.

Apart from some scaling differences, the set of scoring coefficients obtained from PROC FACTOR are
equivalent to those obtained from PROC PRINCOMP, as specified by the following statement:

proc princomp data=SocioEconomics;
run;

PROC PRINCOMP displays the scoring coefficients as eigenvectors, which are shown in Output 44.1.9.
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Output 44.1.9 Principal Component Analysis by PROC PRINCOMP: Eigenvectors

Eigenvectors
Prin1 Prin2 Prin3 Prind Prin5
Population 0.342730 0.601629 0.059517 0.204033 0.689497
School 0.452507 -.406414 0.688822 -.353571 0.174861
Employment 0.396695 0.541665 0.247958 0.022937 -.698014
Services 0.550057 -.077817 -.664076 -.500386 -.000124
HouseValue 0.466738 -.416429 -.139649 0.763182 -.082425

For example, to get the first principal component score, you use the following formula:
0.3427xPopulation+0.4525xSchool+0.3967x Employment+0.5500x Services+0.4667 xHouseValue

This formula is not exactly the same as the one shown by using PROC FACTOR. All scoring coefficients
in PROC FACTOR are smaller, approximately a factor of 0.59 to those coefficients obtained from PROC
PRINCOMP. The reason for the scalar difference is that PROC FACTOR assumes all factors/components to
have variance of 1, while PROC PRINCOMP creates components that have variances equal to the eigenvalues.
You can do a simple rescaling of the standardized scoring coefficients obtained from PROC FACTOR so
that they match the associated eigenvectors from the PROC PRINCOMP. Basically, you need to rescale each
column of the standardized scoring coefficients obtained from PROC FACTOR to have the sum of squares
equaling one, which is a defining characteristic of eigenvectors. This could be accomplished by dividing
each coefficient by the square root of the corresponding column sum of squares.

For the present example, you can use PROC STDIZE to do the rescaling, as shown in the following statements:

proc factor data=SocioEconomics n=5 score;
ods output StdScoreCoef=Coef;
run;

proc stdize method=ustd mult=.44721 data=Coef out=eigenvectors;
var Factorl-Factor5;
run;

proc print data=eigenvectors;
run;

First, you create an output set Coef for the standardized scoring coefficients by the ODS OUTPUT state-
ment. Note that “StdScoreCoef” is the ODS table that contains the standardized scoring coefficients as
shown in Output 44.1.8. (See Table 44.6 for all ODS table names for PROC FACTOR.) Next, you use
METHOD=USTD in the PROC STDIZE statement to divide the output coefficients by the corresponding
uncorrected (for mean) standard deviations. The following formula shows the relationship between the
uncorrected standard deviation and the sum of squares:

uncorrected standard deviation = +/sum of squares/ N

Recall that what you intend to divide from each coefficient is its square root of the corresponding column sum
of squares. Therefore, to adjust for what PROC STDIZE does using METHOD=USTD, you have to multiply
each variable by a constant term of 1/+/N in the standardization. For the current example, this constant term
is 0.44721 (= 1/+/5) and is specified through the MULT= option in the PROC STDIZE statement. With
the OUT= option, the rescaled scoring coefficients are saved in the SAS data set eigenvectors. The printout
of the data set in Output 44.1.10 shows the rescaled standardized scoring coefficients obtained from PROC
FACTOR.
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Output 44.1.10 Rescaled Standardized Scoring Coefficients

Obs Variable Factor1 Factor2 Factor3 Factor4 Factor5
1 Population 0.34273 0.60162 0.05952 0.20403 0.68949
2 School 0.45250 -0.40641 0.68882 -0.35357 0.17486
3 Employment 0.39669 0.54166 0.24796 0.02294 -0.69801
4 Services 0.55005 -0.07782 -0.66407 -0.50038 -0.00012
5 HouseValue 0.46673 -0.41643 -0.13965 0.76318 -0.08242

As you can see, these standardized scoring coefficients are essentially the same as those obtained from PROC
PRINCOMP, as shown in Output 44.1.9. This example shows that principal component analyses by PROC
FACTOR and PROC PRINCOMP are indeed equivalent. PROC PRINCOMP emphasizes more the linear
combinations of the variables to form the components, while PROC FACTOR expresses variables as linear
combinations of the components in the output. If a principal component analysis of the data is all you need in
a particular application, there is no reason to use PROC FACTOR instead of PROC PRINCOMP. Therefore,
the following examples focus on common factor analysis for which that you can apply only PROC FACTOR,
but not PROC PRINCOMP.

Example 44.2: Principal Factor Analysis

This example uses the data presented in Example 44.1 and performs a principal factor analysis with squared
multiple correlations for the prior communality estimates. Unlike Example 44.1, which analyzes the principal
components (with default PRIORS=0ONE)), the current analysis is based on a common factor model. To
use a common factor model, you specify PRIORS=SMC in the PROC FACTOR statement, as shown in the
following:

ods graphics on;

proc factor data=SocioEconomics

priors=smc msa residual

rotate=promax reorder

outstat=fact_all

plots=(scree initloadings preloadings loadings);
run;

ods graphics off;

In the PROC FACTOR statement, you include several other options to help you analyze the results. To help
determine whether the common factor model is appropriate, you request the Kaiser’s measure of sampling
adequacy with the MSA option. You specify the RESIDUALS option to compute the residual correlations
and partial correlations.

The ROTATE= and REORDER options are specified to enhance factor interpretability.  The
ROTATE=PROMAX option produces an orthogonal varimax prerotation (default) followed by an oblique
Procrustes rotation, and the REORDER option reorders the variables according to their largest factor loadings.
An OUTSTAT= data set is created by PROC FACTOR and displayed in Output 44.2.15.

PROC FACTOR can produce high-quality graphs that are very useful for interpreting the factor solutions. To
request these graphs, ODS Graphics must be enabled. All ODS graphs in PROC FACTOR are requested
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with the PLOTS= option. In this example, you request a scree plot (SCREE) and loading plots for the factor
matrix during the following three stages: initial unrotated solution (INITLOADINGS), prerotated (varimax)
solution (PRELOADINGS), and promax-rotated solution (LOADINGS). The scree plot helps you determine
the number of factors, and the loading plots help you visualize the patterns of factor loadings during various
stages of analyses.

Principal Factor Analysis: Kaiser's MSA and Factor Extraction Results
Output 44.2.1 displays the results of the partial correlations and Kaiser’s measure of sampling adequacy.

Output 44.2.1 Principal Factor Analysis: Partial Correlations and Kaiser's MSA

Partial Correlations Controlling all other Variables
Population School Employment Services HouseValue
Population 1.00000 -0.54465 0.97083 0.09612 0.15871

School -0.54465 1.00000 0.54373 0.04996 0.64717
Employment  0.97083 0.54373 1.00000 0.06689 -0.25572
Services 0.09612 0.04996 0.06689 1.00000 0.59415
HouseValue 0.15871 0.64717 -0.25572  0.59415 1.00000

Kaiser's Measure of Sampling Adequacy:
Overall MSA = 0.57536759

Population School Employment  Services HouseValue
0.47207897 0.55158839 0.48851137 0.80664365 0.61281377

If the data are appropriate for the common factor model, the partial correlations (controlling all other variables)
should be small compared to the original correlations. For example, the partial correlation between the
variables School and HouseValue is 0.65, slightly less than the original correlation of 0.86 (see Output 44.1.3).
The partial correlation between Population and School is —0.54, which is much larger in absolute value than
the original correlation; this is an indication of trouble. Kaiser’s MSA is a summary, for each variable and for
all variables together, of how much smaller the partial correlations are than the original correlations. Values
of 0.8 or 0.9 are considered good, while MSAs below 0.5 are unacceptable. The variables Population, School,
and Employment have very poor MSAs. Only the Services variable has a good MSA. The overall MSA
of 0.58 is sufficiently poor that additional variables should be included in the analysis to better define the
common factors. A commonly used rule is that there should be at least three variables per factor. In the
following analysis, you determine that there are two common factors in these data. Therefore, more variables
are needed for a reliable analysis.

Output 44.2.2 displays the results of the principal factor extraction.

Output 44.2.2 Principal Factor Analysis: Factor Extraction

Prior Communality Estimates: SMC
Population School Employment  Services HouseValue
0.96859160 0.82228514 0.96918082 0.78572440 0.84701921
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Output 44.2.2 continued

Eigenvalues of the Reduced Correlation Matrix:
Total = 4.39280116 Average = 0.87856023

Eigenvalue Difference Proportion Cumulative

1 2.73430084 1.01823217 0.6225 0.6225
2 1.71606867 1.67650586 0.3907 1.0131
3 0.03956281 0.06408626 0.0090 1.0221
4 -.02452345 0.04808427 -0.0056 1.0165
5 -.07260772 -0.0165 1.0000

The square multiple correlations are shown as prior communality estimates in Output 44.2.2. The PRI-
ORS=SMC option basically replaces the diagonal of the original observed correlation matrix by these square
multiple correlations. Because the square multiple correlations are usually less than one, the resulting
correlation matrix for factoring is called the reduced correlation matrix. In the current example, the SMCs
are all fairly large; hence, you expect the results of the principal factor analysis to be similar to those in the
principal component analysis.

The first two largest positive eigenvalues of the reduced correlation matrix account for 101.31% of the
common variance. This is possible because the reduced correlation matrix, in general, is not necessarily
positive definite, and negative eigenvalues for the matrix are possible. A pattern like this suggests that you
might not need more than two common factors. The scree and variance explained plots of Output 44.2.3 clearly
support the conclusion that two common factors are present. Showing in the left panel of Output 44.2.3 is the
scree plot of the eigenvalues of the reduced correlation matrix. A sharp bend occurs at the third eigenvalue,
reinforcing the conclusion that two common factors are present. These cumulative proportions of common
variance explained by factors are plotted in the right panel of Output 44.2.3, which shows that the curve
essentially flattens out after the second factor.

Output 44.2.3 Scree and Variance Explained Plots
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Principal Factor Analysis: Initial Factor Solution

For the current analysis, PROC FACTOR retains two factors by certain default criteria. This decision agrees
with the conclusion drawn by inspecting the scree plot. The principal factor pattern with the two factors
is displayed in Output 44.2.4. This factor pattern is similar to the principal component pattern seen in
Output 44.1.5 of Example 44.1. For example, the variable Services has the largest loading on the first factor,
and the Population variable has the smallest. The variables Population and Employment have large positive
loadings on the second factor, and the HouseValue and School variables have large negative loadings.

Output 44.2.4 Initial Factor Pattern Matrix and Communalities

Factor Pattern
Factor1 Factor2
Services 0.87899 -0.15847
HouseValue 0.74215 -0.57806
Employment 0.71447 0.67936
School 0.71370 -0.55515
Population 0.62533 0.76621

Variance Explained
by Each Factor

Factor1 Factor2
2.7343008 1.7160687

Final Communality Estimates: Total = 4.450370
Population School Employment Services HouseValue
0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

Comparing the current factor loading matrix in Output 44.2.4 with that in Output 44.1.5 in Example 44.1,
you notice that the variables are arranged differently in the two output tables. This is due to the use of the
REORDER option in the current analysis. The advantage of using this option might not be very obvious in
Output 44.2.4, but you can see its value when looking at the rotated solutions, as shown in Output 44.2.7 and
Output 44.2.11.

The final communality estimates are all fairly close to the priors (shown in Output 44.2.2). Only the
communality for the variable HouseValue increased appreciably, from 0.847 to 0.885. Therefore, you are
sure that all the common variance is accounted for.

Output 44.2.5 shows that the residual correlations (off-diagonal elements) are low, the largest being 0.03.
The partial correlations are not quite as impressive, since the uniqueness values are also rather small. These
results indicate that the squared multiple correlations are good but not quite optimal communality estimates.

Output 44.2.5 Residual and Partial Correlations

Residual Correlations With Uniqueness on the Diagonal
Population School Employment Services HouseValue

Population 0.02189 -0.01118 0.00514 0.01063 0.00124
School -0.01118 0.18244 0.02151 -0.02390 0.01248
Employment  0.00514 0.02151 0.02800 -0.00565 -0.01561
Services 0.01063 -0.02390 -0.00565 0.20226 0.03370

HouseValue 0.00124 0.01248 -0.01561 0.03370 0.11505
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Output 44.2.5 continued

Root Mean Square Off-Diagonal Residuals:
Overall = 0.01693282

Population School Employment  Services HouseValue
0.00815307 0.01813027 0.01382764 0.02151737 0.01960158

Partial Correlations Controlling Factors
Population School Employment Services HouseValue

Population 1.00000 -0.17693 0.20752 0.15975 0.02471
School -0.17693 1.00000 0.30097 -0.12443 0.08614
Employment  0.20752 0.30097 1.00000 -0.07504 -0.27509
Services 0.15975 -0.12443 -0.07504 1.00000 0.22093

HouseValue 0.02471 0.08614 -0.27509 0.22093 1.00000

Root Mean Square Off-Diagonal Partials: Overall = 0.18550132
Population School Employment  Services HouseValue
0.15850824 0.19025867 0.23181838 0.15447043 0.18201538

As displayed in Output 44.2.6, the unrotated factor pattern reveals two tight clusters of variables, with the
variables HouseValue and School at the negative end of Factor2 axis and the variables Employment and
Population at the positive end. The Services variable is in between but closer to the HouseValue and School
variables. A good rotation would place the axes so that most variables would have zero loadings on most
factors. As a result, the axes would appear as though they are put through the variable clusters.
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Output 44.2.6 Unrotated Factor Loading Plot
Initial Factor Pattern
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oEmployment
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Factor 2 (38.56%)
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Factor 1 (61.44%)

Principal Factor Analysis: Varimax Prerotation

In Output 44.2.7, the results of the varimax prerotation are shown. To yield the varimax-rotated factor loading
(pattern), the initial factor loading matrix is postmultiplied by an orthogonal transformation matrix. This
orthogonal transformation matrix is shown in Output 44.2.7, followed by the varimax-rotated factor pattern.
This rotation or transformation leads to small loadings of Population and Employment on the first factor and
small loadings of HouseValue and School on the second factor. Services appears to have a larger loading
on the first factor than it has on the second factor, although both loadings are substantial. Hence, Services
appears to be factorially complex.

With the REORDER option in effect, you can see the variable clusters clearly in the factor pattern. The first
factor is associated more with the first three variables (first three rows of variables): HouseValue, School,
and Services. The second factor is associated more with the last two variables (last two rows of variables):
Population and Employment.

For orthogonal factor solutions such as the current varimax-rotated solution, you can also interpret the values
in the factor loading (pattern) matrix as correlations. For example, HouseValue and Factor 1 have a high
correlation at 0.94, while Population and Factor 1 have a low correlation at 0.02.
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Output 44.2.7 Varimax Rotation: Transform Matrix and Rotated Pattern

Orthogonal
Transformation Matrix
1 2
1 0.78895 0.61446

2 -0.61446 0.78895

Rotated Factor Pattern
Factor1 Factor2
HouseValue 0.94072 -0.00004
School 0.90419 0.00055
Services 0.79085 0.41509
Population 0.02255 0.98874
Employment 0.14625 0.97499

Variance Explained
by Each Factor

Factor1 Factor2
2.3498567 2.1005128

Final Communality Estimates: Total = 4.450370
Population School Employment  Services HouseValue
0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

The variance explained by the factors are more evenly distributed in the varimax-rotated solution, as compared
with that of the unrotated solution. Indeed, this is a typical fact for any kinds of factor rotation. In the
current example, before the varimax rotation the two factors explain 2.73 and 1.72, respectively, of the
common variance (see Output 44.2.4). After the varimax rotation the two rotated factors explain 2.35 and
2.10, respectively, of the common variance. However, the total variance accounted for by the factors remains
unchanged after the varimax rotation. This invariance property is also observed for the communalities of the

variables after the rotation, as evidenced by comparing the current communality estimates in Output 44.2.7
with those in Output 44.2.4.

Output 44.2.8 shows the graphical plot of the varimax-rotated factor loadings. Clearly, HouseValue and
School cluster together on the Factor 1 axis, while Population and Employment cluster together on the Factor
2 axis. Service is closer to the cluster of HouseValue and School.
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Output 44.2.8 Varimax-Rotated Factor Loadings

Prerotated Factor Pattern
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An alternative to the scatter plot of factor loadings is the so-called vector plot of loadings, which is shown in
Output 44.2.9. The vector plot is requested with the suboption VECTOR in the PLOTS= option. That is:

plots=preloadings (vector)

This generates the vector plot of loadings in Output 44.2.9.
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Output 44.2.9 Varimax-Rotated Factor Loadings: Vector Plot

Prerotated Factor Pattern

10 Population| Employment

0.8
0.6
Services

0.4

0.2

HouseValue School
0.0 i T

Factor 2 (47.2%)

-1.0 -0.8 -06 -04 -02 00 02 04 06 08 1.0
Factor 1 (52.8%)

Principal Factor Analysis: Oblique Promax Rotation

For some researchers, the varimax-rotated factor solution in the preceding section might be good enough
to provide them useful and interpretable results. For others who believe that common factors are seldom
orthogonal, an obliquely rotated factor solution might be more desirable, or at least should be attempted.

PROC FACTOR provides a very large class of oblique factor rotations. The current example shows a
particular one—namely, the promax rotation as requested by the ROTATE=PROMAX option.

The results of the promax rotation are shown in Output 44.2.10 and Output 44.2.11. The corresponding plot
of factor loadings is shown in Output 44.2.12.
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Output 44.2.10 Promax Rotation: Procrustean Target and Transformation

Target Matrix for Procrustean
Transformation

Factor1 Factor2
HouseValue 1.00000 -0.00000
School 1.00000 0.00000
Services 0.69421 0.10045
Population 0.00001 1.00000
Employment 0.00326 0.96793

Procrustean
Transformation Matrix

1 2
1 1.04117 -0.09865
2 -0.10572 0.96303

Normalized Oblique
Transformation Matrix

1 2
1 0.73803 0.54202
2 -0.70555 0.86528

Output 44.2.10 shows the Procrustean target, to which the varimax factor pattern is rotated, followed by
the display of the Procrustean transformation matrix. This is the matrix that transforms the varimax factor
pattern so that the rotated pattern is as close as possible to the Procrustean target. However, because the
variances of factors have to be fixed at 1 during the oblique transformation, a normalized version of the
Procrustean transformation matrix is the one that is actually used in the transformation. This normalized
transformation matrix is shown at the bottom of Output 44.2.10. Using this transformation matrix leads to
the promax-rotated factor solution, as shown in Output 44.2.11.

Output 44.2.11 Promax Rotation: Factor Correlations and Factor Pattern

Inter-Factor Correlations

Factor1 Factor2
Factor1 1.00000 0.20188
Factor2 0.20188 1.00000

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2
HouseValue 0.95558 -0.09792
School 0.91842 -0.09352
Services 0.76053 0.33932
Population -0.07908 1.00192
Employment 0.04799 0.97509

After the promax rotation, the factors are no longer uncorrelated. As shown in Output 44.2.11, the correlation
of the two factors is now 0.20. In the (initial) unrotated and the varimax solutions, the two factors are not
correlated.

In addition to allowing the factors to be correlated, in an oblique factor solution you seek a pattern of factor
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loadings that is more “differentiated” (referred to as the “simple structures” in the literature). The more
differentiated the loadings, the easier the interpretation of the factors.

For example, factor loadings of Services and Population on Factor 2 are 0.415 and 0.989, respectively, in
the (orthogonal) varimax-rotated factor pattern (see Output 44.2.7). With the (oblique) promax rotation
(see Output 44.2.11), these two loadings become even more differentiated with values 0.339 and 1.002,
respectively. Overall, however, the factor patterns before and after the promax rotation do not seem to
differ too much. This fact is confirmed by comparing the graphical plots of factor loadings. The plots in
Output 44.2.12 (promax-rotated factor loadings) and Output 44.2.8 (varimax-rotated factor loadings) show
very similar patterns.

Output 44.2.12 Promax Rotation: Factor Loading Plot
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Unlike the orthogonal factor solutions where you can interpret the factor loadings as correlations between
variables and factors, in oblique factor solutions such as the promax solution, you have to turn to the factor
structure matrix for examining the correlations between variables and factors. Output 44.2.13 shows the
factor structures of the promax-rotated solution.
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Output 44.2.13 Promax Rotation: Factor Structures and Final Communalities

Factor Structure (Correlations)
Factor1 Factor2
HouseValue 0.93582 0.09500
School 0.89954 0.09189
Services 0.82903 0.49286
Population 0.12319 0.98596
Employment  0.24484 0.98478

Variance Explained
by Each Factor
Ignoring Other

Factors

Factor1 Factor2
2.4473495 2.2022803

Final Communality Estimates: Total = 4.450370
Population School Employment  Services HouseValue
0.97811334 0.81756387 0.97199928 0.79774304 0.88494998

Basically, the factor structure matrix shown in Output 44.2.13 reflects a similar pattern to the factor pattern
matrix shown in Output 44.2.11. The critical difference is that you can have the correlation interpretation only
by using the factor structure matrix. For example, in the factor structure matrix shown in Output 44.2.13, the
correlation between Population and Factor 2 is 0.986. The corresponding value shown in the factor pattern
matrix in Output 44.2.11 is 1.002, which certainly cannot be interpreted as a correlation coefficient.

Common variance explained by the promax-rotated factors are 2.447 and 2.202, respectively, for the two
factors. Unlike the orthogonal factor solutions (for example, the prerotated varimax solution), variance
explained by these promax-rotated factors do not sum up to the total communality estimate 4.45. In oblique
factor solutions, variance explained by oblique factors cannot be partitioned for the factors. Variance
explained by a common factor is computed while ignoring the contributions from the other factors.

However, the communalities for the variables, as shown in the bottom of Output 44.2.13, do not change
from rotation to rotation. They are still the same set of communalities in the initial, varimax-rotated, and
promax-rotated solutions. This is a basic fact about factor rotations: they only redistribute the variance
explained by the factors; the total variance explained by the factors for any variable (that is, the communality
of the variable) remains unchanged.

In the literature of exploratory factor analysis, reference axes had been an important tool in factor rotation.
Nowadays, rotations are seldom done through the uses of the reference axes. Despite that, results about
reference axes do provide additional information for interpreting factor analysis results. For the current
example of the promax rotation, PROC FACTOR shows the relevant results about the reference axes in
Output 44.2.14.

Output 44.2.14 Promax Rotation: Reference Axis Correlations and Reference Structures

Reference Axis
Correlations

Factor1 Factor2
Factor1 1.00000 -0.20188
Factor2 -0.20188 1.00000
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Output 44.2.14 continued

Reference Structure
(Semipartial Correlations)

Factor1 Factor2
HouseValue 0.93591 -0.09590
School 0.89951 -0.09160
Services 0.74487 0.33233
Population -0.07745 0.98129
Employment 0.04700 0.95501

Variance Explained
by Each Factor
Eliminating Other
Factors

Factor1 Factor2
2.2480892 2.0030200

To explain the results in the reference-axis system, some geometric interpretations of the factor axes are
needed. Consider a single factor in a system of » common factors in an oblique factor solution. Taking away
the factor under consideration, the remaining n — 1 factors span a hyperplane in the factor space of n — 1
dimensions. The vector that is orthogonal to this hyperplane is the reference axis (reference vector) of the
factor under consideration. Using the same definition for the remaining factors, you have n reference vectors
for n factors.

A factor in an oblique factor solution can be considered as the sum of two independent components: its
associated reference vector and a component that is overlapped with all other factors. In other words, the
reference vector of a factor is a unique part of the factor that is not predictable from all other factors. Thus,
the loadings on a reference vector are the unique effects of the corresponding factor, partialling out the effects
from all other factors. The variances explained by a reference vector are the unique variances explained by
the corresponding factor, partialling out the variances explained by all other factors.

Output 44.2.14 shows the reference axis correlations. The correlation between the reference vectors is —0.20.
Next, Output 44.2.14 shows the loadings on the reference vectors in the table entitled “Reference Structure
(Semipartial Correlations).” As explained previously, loadings on a reference vector are also the unique
effects of the corresponding factor, partialling out the effects from the all other factors. For example, the
unique effect of Factor 1 on HouseValue is 0.936. Another important property of the reference vector system
is that loadings on a reference vector are also correlations between the variables and the corresponding factor,
partialling out the correlations between the variables and other factors. This means that the loading 0.936
in the reference structure table is the unique correlation between HouseValue and Factor 1, partialling out
the correlation between HouseValue with Factor 2. Hence, as suggested by the title of table, all loadings
reported in the “Reference Structure (Semipartial Correlations)” can be interpreted as semipartial correlations
between variables and factors.

The last table shown in Output 44.2.14 are the variances explained by the reference vectors. As explained
previously, these are also unique variances explained by the factors, partialling out the variances explained by
all other factors (or eliminating all other factors, as suggested by the title of the table). In the current example,
Factor 1 explains 2.248 of the variable variances, partialling out all variable variances explained by Factor 2.

Notice that factor pattern (shown in Output 44.2.11), factor structures (correlations, shown in Output 44.2.13),
and reference structures (semipartial correlations, shown in Output 44.2.14) give you different information
about the oblique factor solutions such as the promax-rotated solution. However, for orthogonal factor
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solutions such as the varimax-rotated solution, factor structures and reference structures are all the same as
the factor pattern.

Principal Factor Analysis: Factor Rotations with Factor Pattern Input

The promax rotation is one of the many rotations that PROC FACTOR provides. You can specify many
different rotation algorithms by using the ROTATE= options. In this section, you explore different rotated
factor solutions from the initial principal factor solution. Specifically, you want to examine the factor patterns
yielded by the quartimax transformation (an orthogonal transformation) and the Harris-Kaiser (an oblique
transformation), respectively.

Rather than analyzing the entire problem again with new rotations, you can simply use the OUTSTAT= data
set from the preceding factor analysis results.

First, the OUTSTAT= data set is printed using the following statements:

proc print data=fact_all;
run;

The output data set is displayed in Output 44.2.15.
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Output 44.2.15 Output Data Set
Factor Output Data Set

Obs _TYPE_ _NAME_  Population School Employment Services HouseValue
1 MEAN 6241.67 11.4417 2333.33 120.833 17000.00
2 STD 3439.99 1.7865 1241.21 114.928 6367.53
3N 12.00 12.0000 12.00 12.000 12.00
4 CORR Population 1.00 0.0098 0.97 0.439 0.02
5 CORR School 0.01 1.0000 0.15 0.691 0.86
6 CORR Employment 0.97 0.1543 1.00 0.515 0.12
7 CORR Services 0.44 0.6914 0.51 1.000 0.78
8 CORR HouseValue 0.02 0.8631 0.12 0.778 1.00
9 COMMUNAL 0.98 0.8176 0.97 0.798 0.88
10 PRIORS 0.97 0.8223 0.97 0.786 0.85
11 EIGENVAL 273 1.7161 0.04 -0.025 -0.07
12 UNROTATE Factor1 0.63 0.7137 0.71 0.879 0.74
13 UNROTATE Factor2 0.77 -0.5552 068 -0.158 -0.58
14 RESIDUAL Population 0.02 -0.0112 0.01 0.011 0.00
15 RESIDUAL School -0.01 0.1824 0.02 -0.024 0.01
16 RESIDUAL Employment 0.01 0.0215 0.03 -0.006 -0.02
17 RESIDUAL Services 0.01 -0.0239 -0.01 0.202 0.03
18 RESIDUAL HouseValue 0.00 0.0125 -0.02 0.034 0.12
19 PRETRANS Factor1 0.79 -0.6145
20 PRETRANS Factor2 0.61 0.7889 . . .
21 PREROTAT Factor1 0.02 0.9042 0.15 0.791 0.94
22 PREROTAT Factor2 0.99 0.0006 0.97 0.415 -0.00
23 TRANSFOR Factor1 0.74 -0.7055
24 TRANSFOR Factor2 0.54 0.8653
25 FCORR Factor1 1.00 0.2019
26 FCORR Factor2 0.20 1.0000 . . .
27 PATTERN Factorl -0.08 0.9184 0.05 0.761 0.96
28 PATTERN Factor2 1.00 -0.0935 0.98 0.339 -0.10
29 RCORR Factor1 1.00 -0.2019
30 RCORR Factor2 -0.20 1.0000 . . .
31 REFERENC Factor1 -0.08 0.8995 0.05 0.745 0.94
32 REFERENC Factor2 0.98 -0.0916 0.96 0.332 -0.10
33 STRUCTUR Factor1 0.12 0.8995 0.24 0.829 0.94
34 STRUCTUR Factor2 0.99 0.0919 0.98 0.493 0.09

Various results from the previous factor analysis are saved in this data set, including the initial unrotated
solution (its factor pattern is saved in observations with _ TYPE_=UNROTATE), the prerotated varimax
solution (its factor pattern is saved in observations with _ TYPE_=PREROTAT), and the oblique promax
solution (its factor pattern is saved in observations with _ TYPE_=PATTERN).

When PROC FACTOR reads in an input data set with TYPE=FACTOR, the observations with
_TYPE_=PATTERN are treated as the initial factor pattern to be rotated by PROC FACTOR. Hence, it
is important that you provide the correct initial factor pattern for PROC FACTOR to read in.

In the current example, you need to provide the unrotated solution from the preceding analysis as the
input factor pattern. The following statements create a TYPE=FACTOR data set fact2 from the preceding
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OUTSTAT= data set fact_all:

data fact2 (type=factor);
set fact_all;
if _TYPE in('PATTERN' 'FCORR') then delete;
if _TYPE ='UNROTATE' then _TYPE_='PATTERN';
run;
In these statements, you delete observations with _TYPE_=PATTERN or _TYPE_=FCORR, which are for the
promax-rotated factor solution, and change observations with _TYPE_=UNROTATE to _TYPE_=PATTERN
in the new data set fact2. In this way, the initial orthogonal factor pattern matrix is saved in the observations
with TYPE =PATTERN.

You use this new data set and rotate the initial solution to another oblique solution with the
ROTATE=QUARTIMAX option, as shown in the following statements:

proc factor data=fact2 rotate=quartimax reorder;
run;

As shown in Output 44.2.16, the new rotation uses a TYPE=FACTOR input data set.

Output 44.2.16 Quartimax Rotation With Input Factor Pattern
Quartimax Rotation From a TYPE=FACTOR Data Set

The FACTOR Procedure

Input Data Type FACTOR
N Set/Assumed in Data Set 12
N for Significance Tests 12

The quartimax-rotated factor pattern is displayed in Output 44.2.17.

Output 44.2.17 Quartimax-Rotated Factor Pattern

Orthogonal
Transformation Matrix
1 2

1 0.80138 0.59815
2 -0.59815 0.80138

Rotated Factor Pattern
Factor1 Factor2
HouseValue 0.94052 -0.01933
School 0.90401 -0.01799
Services 0.79920 0.39878
Population 0.04282 0.98807
Employment 0.16621 0.97179

Variance Explained
by Each Factor

Factor1 Factor2
2.3699941 2.0803754
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The quartimax rotation produces an orthogonal transformation matrix shown at the top of Output 44.2.17.
After the transformation, the factor pattern is shown next. Compared with the varimax-rotated factor pattern
(see Output 44.2.7), the quartimax-rotated factor pattern shows some differences. The loadings of HouseValue
and School on Factor 1 drop only slightly in the quartimax factor pattern, while the loadings of Services,
Population, and Employment on Factor 1 gain relatively larger amounts. The total variance explained by
Factor 1 in the varimax-rotated solution (see Output 44.2.7) is 2.350, while it is 2.370 after the quartimax-
rotation. In other words, more variable variances are explained by the first factor in the quartimax factor
pattern than in the varimax factor pattern. Although not very strongly demonstrated in the current example,
this illustrates a well-known property about the quartimax rotation: it tends to produce a general factor for all
variables.

Another oblique rotation is now explored. The Harris-Kaiser transformation weighted by the Cureton-
Mulaik technique is applied to the initial factor pattern. To achieve this, you use the ROTATE=HK and
NORM=WEIGHT options in the following PROC FACTOR statement:

ods graphics on;

proc factor data=fact2 rotate=hk norm=weight reorder plots=loadings;
run;

ods graphics off;

Output 44.2.18 shows the variable weights in the rotation.

Output 44.2.18 Harris-Kaiser Rotation: Weights

Variable Weights for Rotation
Population School Employment  Services HouseValue
0.95982747 0.93945424 0.99746396 0.12194766 0.94007263

While all other variables have weights at least as large as 0.93, the weight for Services is only 0.12. This
means that due to its small weight, Services is not as important as the other variables for determining the
rotation (transformation). This makes sense when you look at the initial unrotated factor pattern plot in
Output 44.2.6. In the plot, there are two main clusters of variables, and Services does not seem to fall into
either of the clusters. In order to yield a Harris-Kaiser rotation (transformation) that would gear towards to
two clusters, the Cureton-Mulaik weighting essentially downweights the contribution from Services in the
factor rotation.

The results of the Harris-Kaiser factor solution are displayed in Output 44.2.19, with a graphical plot of
rotated loadings displayed in Output 44.2.20.

Output 44.2.19 Harris-Kaiser Rotation: Factor Correlations and Factor Pattern

Inter-Factor Correlations

Factor1 Factor2
Factor1 1.00000 0.08358
Factor2 0.08358 1.00000
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Output 44.2.19 continued

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2
HouseValue 0.94048 0.00279
School 0.90391 0.00327
Services 0.75459 0.41892
Population -0.06335 0.99227
Employment 0.06152 0.97885

Because the Harris-Kaiser produces an oblique factor solution, you compare the current results with that of
the promax (see Output 44.2.11), which also produces an oblique factor solution. The correlation between
the factors in the Harris-Kaiser solution is 0.084; this value is much smaller than the same correlation in the
promax solution, which is 0.201. However, the Harris-Kaiser rotated factor pattern shown in Output 44.2.19
is more or less the same as that of the promax-rotated factor pattern shown in Output 44.2.11. Which solution
would you consider to be more reasonable or interpretable?

From the statistical point of view, the Harris-Kaiser and promax factor solutions are equivalent. They explain
the observed variable relationships equally well. From the simplicity point of view, however, you might
prefer to interpret the Harris-Kaiser solution because the factor correlation is smaller. In other words, the
factors in the Harris-Kaiser solution do not overlap that much conceptually; hence they should be more
distinctive to interpret. However, in practice simplicity in factor correlations might not the only principle to
consider. Researchers might actually expect to have some factors to be highly correlated based on theoretical
or substantive grounds.

Although the Harris-Kaiser and the promax factor patterns are very similar, the graphical plots of the
loadings from the two solutions paint slightly different pictures. The plot of the promax-rotated loadings is
shown in Output 44.2.12, while the plot of the loadings for the current Harris-Kaiser solution is shown in
Output 44.2.20.
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Output 44.2.20 Harris-Kaiser Rotation: Factor Loading Plot

Rotated Factor Pattern
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The two factor axes in the Harris-Kaiser rotated pattern (Output 44.2.20) clearly cut through the centers
of the two variable clusters, while the Factor 1 axis in the promax solution lies above a variable cluster
(Output 44.2.12). The reason for this subtle difference is that in the Harris-Kaiser rotation, the Services is
a “loner” that has been downweighted by the Cureton-Mulaik technique (see its relatively small weight in
Output 44.2.18). As a result, the rotated axes are basically determined by the two variable clusters in the
Harris-Kaiser rotation.

As far as the current discussion goes, it is not recommending one rotation method over another. Rather, it
simply illustrates how you could control certain types of characteristics of factor rotation through the many
options supported by PROC FACTOR. Should you prefer an orthogonal rotation to an oblique rotation?
Should you choose the oblique factor solution with the smallest factor correlations? Should you use a
weighting scheme that would enable you to find independent variable clusters? While PROC FACTOR
enables you to explore all these alternatives, you must consult advanced textbooks and published articles to
get satisfactory and complete answers to these questions.
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Example 44.3: Determining the Number of Factors to Retain

This example uses the data presented in Example 44.1 to demonstrate the following advanced methods that
help you determine the number of factors to retain:

e minimum average partial correlation (MAP) analysis

e parallel analysis

To use these methods, you can specify the MAP option or the PARALLEL option in the PROC FACTOR
statement. These options display the results of the requested analysis but do not use the results to determine
the number of factors to retain. To use either analysis to determine the number of factors to retain, specify
the NFACTORS=name option with the desired argument (MAP, MAP2, MAP4, or PARALLEL). If you do
not specify these advanced methods in the NFACTORS= option, the procedure determines the number of
factors by using some basic criteria, which are based on the specified or default values of the MINEIGEN=,
NFACTORS=n, and PROPORTION= options. For more information, see the section “Number of Factors to
Retain” on page 2816.

In Example 44.1, the following specification causes PROC FACTOR to retain two factors by the basic criteria:

proc factor data=Socioeconomics
simple corr;
run;

The output shows that:

2 factors will be retained by the MINEIGEN criterion.

This example repeats the analysis by specifying the MAP and parallel analysis options:
ods graphics on;

proc factor data=SocioEconomics
parallel (alpha=0.01 nsims=10000 seed=20170229) map
plots=(parallel map);

run;

ods graphics off;

It would be interesting to see whether these two advanced methods would suggest the same number of factors
as that suggested by the default use of the MINEIGEN criterion in Example 44.1.

Parallel Analysis

Parallel analysis compares each of eigenvalues of the input data correlation matrix to an empirical distribution
of eigenvalues. Each eigenvalue from the input correlation matrix that exceeds a critical value (based on a
one-sided «-level) in the corresponding empirical distribution suggests a factor to be retained. For more
information, see the PARALLEL option and the section “Number of Factors to Retain” on page 2816.

The parallel analysis results are displayed in Output 44.3.1. The output table summarizes the eigenvalues
of the input correlation matrix and compares those eigenvalues to the critical values of the parallel analysis.
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Because the first two eigenvalues of the input correlation matrix exceed their corresponding critical values,
the parallel analysis suggests that two factors be retained, in agreement with the number retained by the
MINEIGEN-= criterion in Example 44.1.

Output 44.3.1 Table of Results for the Parallel Analysis

Parallel Analysis:
NSims=10000 Seed=20170229

Observed Simulated
Eigenvalue Crit Val

1 2.8733 2.6140*
2 1.7967 1.7174*
3 0.2148 1.2144
4 0.0999 0.8840
5 0.0153 0.5776

* Retained Dimension (Obs > Crit, alpha=0.01)

You can use parallel analysis to directly determine the number of factors to retain by specifying
NFACTORS=PARALLEL as follows:

proc factor data=SocioEconomics
nfactors=parallel (alpha=0.01 nsims=10000 seed=20170229);
run;

When you request a parallel analysis (using either the PARALLEL option or the NFACTORS=PARALLEL
option in the PROC FACTOR statement), you can obtain a graphical summary of the results by also specifying
the PLOTS=PARALLEL option. As shown in Output 44.3.2, the scree plot for a parallel analysis contains
two lines. The first line is a traditional scree plot and shows the eigenvalues of the sample correlation matrix,
sorted in descending order. The second line is constructed from the critical values that are obtained from the
parallel analysis. The suggested number of factors to retain is indicated by the intersection of these two lines.
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Output 44.3.2 Graphical Summary of the Parallel Analysis
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You can manipulate some parallel analysis options to assess the numerical stability of the parallel analysis
results. That is, you can specify different values in the ALPHA=p, NSIMS=n, and SEED=n suboptions
to determine whether the suggested number of factors would change. For a complete definition of these
suboptions, see the PARALLEL option description. You can use the ALPHA=p suboption to adjust how
conservative the parallel analysis will be. As p decreases, the critical values in the parallel analysis increase,
resulting in a more conservative number of factors suggested by the parallel analysis. You can use the
NSIMS=n suboption to balance the trade-off between the accuracy of the simulated critical values and the
computational time required for the parallel analysis. For data sets that contain few observations relative
to the number of variables, you need to use a larger NSIMS= value to ensure the numerical accuracy of
the simulated critical values. Finally, you can specify the SEED= value so that the simulation result of the
parallel analysis is reproducible.
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Minimum Average Partial Correlation Analysis (MAP)

The MAP computes averages of squared and fourth-powered partial correlations of variables after recursively
controlling for the first, second, and so on, principal components. The number of partialled-out components
that corresponds to the minimum average of the squared or fourth-powered partial correlations suggests the
number of factors to be retained. For more information, see the MAP option and the section “Number of
Factors to Retain” on page 2816.

The minimum average partial correlation analysis results are displayed in Output 44.3.3. The output table
contains the average squared and fourth-powered partial correlations after controlling for the indicated
number of principal components. Because the minimum value (for both squared and fourth-powered partial
correlations) occurs when two components are partialled out, the MAP analysis suggests that two factors be
retained. This is in agreement with the number retained by the MINEIGEN= criterion in Example 44.1.

Output 44.3.3 Table of Results for the MAP

Average Partial Correlations
Controlling Principal Components

N Prin Comp Fourth-
Partialled Squared Powered

0 0.3270 0.2151

1 0.4568 0.3188

2 0.2400* 0.0962*

3 0.4474 0.3470

4 1.0000 1.0000

* MAP = MinimumValues in Columns

You can use a MAP analysis to directly determine the number of factors to retain by specifying
NFACTORS=MAP2 or NFACTORS=MAP4. For example, the following statements request that the number
of factors be determined by identifying the number of controlled principal components that results in the
minimum average of the squared partial correlations:

proc factor data=SocioEconomics
nfactors=map2;
run;

When you request a minimum average partial correlation analysis (using either the MAP option or the
NFACTORS=MAP2 or NFACTORS=MAP4 option), you can obtain a graphical summary of the results with
the PLOTS=MAP option. As shown in Output 44.3.4, the MAP plot provides a visualization of the MAP
results that are shown in Output 44.3.3.
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Output 44.3.4 Graphical Summary of the MAP
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Example 44.4: Maximum Likelihood Factor Analysis

This example uses maximum likelihood factor analyses for one, two, and three factors. It is already apparent
from the principal factor analysis that the best number of common factors is almost certainly two. The one-
and three-factor ML solutions reinforce this conclusion and illustrate some of the numerical problems that

can occur. The following statements produce Output 44.4.1 through Output 44.4.3:

title3 'Maximum Likelihood Factor Analysis with One Factor';
proc factor data=SocioEconomics method=ml heywood n=1;
run;

title3 'Maximum Likelihood Factor Analysis with Two Factors';
proc factor data=SocioEconomics method=ml heywood n=2;
run;

title3 'Maximum Likelihood Factor Analysis with Three Factors';
proc factor data=SocioEconomics method=ml heywood n=3;
run;
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Output 44.4.1 displays the results of the analysis with one factor.

Output 44.4.1 Maximum Likelihood Factor Analysis

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure

Input Data Type Raw Data
Number of Records Read 12
Number of Records Used 12
N for Significance Tests 12

Maximum Likelihood Factor Analysis with One Factor

The FACTOR Procedure
Initial Factor Method: Maximum Likelihood

Prior Communality Estimates: SMC
Population School Employment  Services HouseValue
0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues:
Total =76.1165859 Average =15.2233172

Eigenvalue Difference Proportion Cumulative
63.7010086 50.6462895 0.8369 0.8369
13.0547191 12.7270798 0.1715 1.0084
0.3276393 0.6749199 0.0043 1.0127
-0.3472805 0.2722202 -0.0046 1.0081
-0.6195007 -0.0081 1.0000

u A W N =

1 factor will be retained by the NFACTOR criterion.

lteration Criterion Ridge Change Communalities

1
2

6.5429218 0.0000 0.1033 0.93828 0.72227 1.00000 0.71940 0.74371
3.1232699 0.0000 0.7288 0.94566 0.02380 1.00000 0.26493 0.01487

Convergence criterion satisfied.

Significance Tests Based on 12 Observations

Pr >

Test DF Chi-Square ChiSq

HO: No common factors 10 54.2517 <.0001
HA: At least one common factor

HO: 1 Factor is sufficient 5 24.4656 0.0002

HA: More factors are needed

Chi-Square without Bartlett's Correction 34.355969
Akaike's Information Criterion 24.355969
Schwarz's Bayesian Criterion 21.931436
Tucker and Lewis's Reliability Coefficient 0.120231
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Output 44.4.1 continued

Squared
Canonical
Correlations

Factor1
1.0000000

Eigenvalues of the

Weighted Reduced

Correlation Matrix:
Total =0 Average =0

Eigenvalue Difference
1 Infty Infty
2 1.92716032 2.15547340
3 -22831308 0.56464322
4 -79295630 0.11293464
5 -.90589094

Factor Pattern

Factor1
Population 0.97245
School 0.15428

Employment 1.00000
Services 0.51472
HouseValue 0.12193

Variance Explained by Each
Factor

Factor Weighted Unweighted
Factor1 17.8010629 2.24926004

Final Communality Estimates and
Variable Weights

Total Communality:
Weighted = 17.801063
Unweighted = 2.249260

Variable Communality Weight
Population 0.94565561 18.4011648

School 0.02380349 1.0243839
Employment 1.00000000 Infty
Services 0.26493499 1.3604239

HouseValue 0.01486595 1.0150903

The solution on the second iteration is so close to the optimum that PROC FACTOR cannot find a better
solution; hence you receive this message:

Convergence criterion satisfied.

When this message appears, you should try rerunning PROC FACTOR with different prior communality
estimates to make sure that the solution is correct. In this case, other prior estimates lead to the same solution
or possibly to worse local optima, as indicated by the information criteria or the chi-square values.
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The variable Employment has a communality of 1.0 and, therefore, an infinite weight that is displayed next to
the final communality estimate as a missing/infinite value. The first eigenvalue is also infinite. Infinite values
are ignored in computing the total of the eigenvalues and the total final communality.

Output 44.4.2 displays the results of the analysis with two factors. The analysis converges without incident.
This time, however, the Population variable is a Heywood case.

Output 44.4.2 Maximum Likelihood Factor Analysis: Two Factors

Input Data Type Raw Data
Number of Records Read 12
Number of Records Used 12
N for Significance Tests 12

Prior Communality Estimates: SMC
Population School Employment  Services HouseValue
0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues:
Total =76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative
63.7010086 50.6462895 0.8369 0.8369
13.0547191 12.7270798 0.1715 1.0084

0.3276393 0.6749199 0.0043 1.0127
-0.3472805 0.2722202 -0.0046 1.0081
-0.6195007 -0.0081 1.0000

Uu A W N =

2 factors will be retained by the NFACTOR criterion.

lteration Criterion Ridge Change Communalities

1 0.3431221 0.0000 0.0471 1.00000 0.80672 0.95058 0.79348 0.89412
2 0.3072178 0.0000 0.0307 1.00000 0.80821 0.96023 0.81048 0.92480
3 0.3067860 0.0000 0.0063 1.00000 0.81149 0.95948 0.81677 0.92023
4 0.3067373 0.0000 0.0022 1.00000 0.80985 0.95963 0.81498 0.92241
5 0.3067321 0.0000 0.0007 1.00000 0.81019 0.95955 0.81569 0.92187

Convergence criterion satisfied.

Significance Tests Based on 12 Observations

Pr >

Test DF Chi-Square ChiSq

HO: No common factors 10 54.2517 <.0001
HA: At least one common factor

HO: 2 Factors are sufficient 1 2.1982 0.1382

HA: More factors are needed

Chi-Square without Bartlett's Correction 3.3740530
Akaike's Information Criterion 1.3740530
Schwarz's Bayesian Criterion 0.8891463
Tucker and Lewis's Reliability Coefficient 0.7292200
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Output 44.4.2 continued

Squared Canonical
Correlations

Factor1 Factor2
1.0000000 0.9518891

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 19.7853157 Average = 4.94632893

Eigenvalue Difference Proportion Cumulative
1 Infty Infty
2 19.7853143 19.2421292 1.0000 1.0000
3 0.5431851 0.5829564 0.0275 1.0275
4 -0.0397713 0.4636411 -0.0020 1.0254
5 -0.5034124 -0.0254 1.0000

Factor Pattern
Factor1 Factor2
Population 1.00000 0.00000
School 0.00975 0.90003
Employment 0.97245 0.11797
Services 0.43887 0.78930
HouseValue 0.02241 0.95989

Variance Explained by Each
Factor

Factor = Weighted Unweighted
Factor1 24.4329707 2.13886057
Factor2 19.7853143 2.36835294

Final Communality Estimates and
Variable Weights

Total Communality:
Weighted = 44.218285
Unweighted = 4.507214

Variable Communality Weight

Population 1.00000000 Infty
School 0.81014489 5.2682940
Employment 0.95957142 24.7246669
Services 0.81560348 5.4256462

HouseValue 0.92189372 12.7996793

The results of the three-factor analysis are shown in Output 44.4.3.

Output 44.4.3 Maximum Likelihood Factor Analysis: Three Factors

Input Data Type Raw Data
Number of Records Read 12
Number of Records Used 12

N for Significance Tests 12
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Output 44.4.3 continued

Prior Communality Estimates: SMC
Population School Employment  Services HouseValue
0.96859160 0.82228514 0.96918082 0.78572440 0.84701921

Preliminary Eigenvalues:
Total = 76.1165859 Average = 15.2233172

Eigenvalue Difference Proportion Cumulative
63.7010086 50.6462895 0.8369 0.8369
13.0547191 12.7270798 0.1715 1.0084
0.3276393 0.6749199 0.0043 1.0127
-0.3472805 0.2722202 -0.0046 1.0081
-0.6195007 -0.0081 1.0000

uu A W N =

3 factors will be retained by the NFACTOR criterion.

Warning: Too many factors for a unique solution.

lteration Criterion Ridge Change Communalities

1 0.1798029 0.0313 0.0501 0.96081 0.84184 1.00000 0.80175 0.89716
2 0.0016405 0.0313 0.0678 0.98081 0.88713 1.00000 0.79559 0.96500
3 0.0000041 0.0313 0.0094 0.98195 0.88603 1.00000 0.80498 0.96751
4 0.0000000 0.0313 0.0006 0.98202 0.88585 1.00000 0.80561 0.96735

ERROR: Converged, but not to a proper optimum.
Try a different 'PRIORS' statement.

Significance Tests Based on 12 Observations

Pr >
Test DF Chi-Square ChiSq
HO: No common factors 10 54.2517 <.0001
HA: At least one common factor
HO: 3 Factors are sufficient -2 0.0000

HA: More factors are needed

Chi-Square without Bartlett's Correction 0.0000003
Akaike's Information Criterion 4.0000003
Schwarz's Bayesian Criterion 4.9698136
Tucker and Lewis's Reliability Coefficient 0.0000000

Squared Canonical
Correlations

Factor1 Factor2  Factor3
1.0000000 0.9751895 0.6894465
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Output 44.4.3 continued

Eigenvalues of the Weighted Reduced Correlation
Matrix: Total = 41.5254193 Average = 10.3813548

Eigenvalue Difference Proportion Cumulative
1 Infty Infty
2 39.3054826 37.0854258 0.9465 0.9465
3 2.2200568 2.2199693 0.0535 1.0000
4 0.0000875 0.0002949 0.0000 1.0000
5 -0.0002075 -0.0000 1.0000

Factor Pattern

Factor1 Factor2 Factor3
Population 0.97245 -0.11233 -0.15409
School 0.15428 0.89108 0.26083
Employment 1.00000 0.00000 0.00000
Services 0.51472 0.72416 -0.12766
HouseValue 0.12193 0.97227 -0.08473

Variance Explained by Each
Factor

Factor Weighted Unweighted
Factor1 54.6115241 2.24926004
Factor2 39.3054826 2.27634375
Factor3 2.2200568 0.11525433

Final Communality Estimates and
Variable Weights

Total Communality:
Weighted = 96.137063
Unweighted = 4.640858

Variable Communality Weight
Population 0.98201660 55.6066901

School 0.88585165 8.7607194
Employment 1.00000000 Infty
Services 0.80564301 5.1444261

HouseValue  0.96734687 30.6251078

In the results, a warning message is displayed:
WARNING: Too many factors for a unique solution.

The number of parameters in the model exceeds the number of elements in the correlation matrix from which
they can be estimated, so an infinite number of different perfect solutions can be obtained. The criterion
approaches zero at an improper optimum, as indicated by this message:

Converged, but not to a proper optimum.

The degrees of freedom for the chi-square test are —2, so a probability level cannot be computed for three
factors. Note also that the variable Employment is a Heywood case again.
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The probability levels for the chi-square test are 0.0001 for the hypothesis of no common factors, 0.0002
for one common factor, and 0.1382 for two common factors. Therefore, the two-factor model seems to be
an adequate representation. Akaike’s information criterion and Schwarz’s Bayesian criterion attain their
minimum values at two common factors, so there is little doubt that two factors are appropriate for these data.

Example 44.5: Using Confidence Intervals to Locate Salient Factor Loadings

This example illustrates how you can use the standard errors and confidence intervals to understand the
pattern of factor loadings under the maximum likelihood estimation. There are nine tests and you want a
three-factor solution (N=3) for a correlation matrix based on 200 observations. The following statements
define the input data set and specify the desirable analysis by the FACTOR procedure:

data test (type=corr);
title 'Quartimin-Rotated Factor Solution with Standard Errors';
input _name_ $ testl-test9;

_type_ = 'corr';

datalines;
Testl 1 .561 .602 .290 .404 .328 .367 .179 -.268
Test2 .561 1 .743 .414 .526 .442 .523 .289 -.399
Test3 .602 .743 1 .286 .343 .361 .679 .456 -.532
Test4 .290 .414 .286 1 .677 .446 .412 .400 -.491
Test5 .404 .526 .343 .677 1 .584 .408 .299 -.466
Test6 .328 .442 .361 .446 .584 1 .333 .178 -.306
Test7 .367 .523 .679 .412 .408 .333 1 .711 -.760
Test8 .179 .289 .456 .400 .299 .178 .711 1 -.725

Test9 -.268 -.399 -.532 -.491 -.466 —-.306 -.760 —-.725 1

’

title2 'A nine-variable-three-factor example';

proc factor data=test method=ml reorder rotate=quartimin
nobs=200 n=3 se cover=.45 alpha=.1;

run;

In the PROC FACTOR statement, you apply quartimin rotation with (default) Kaiser normalization. You
define loadings with magnitudes greater than 0.45 to be salient (COVER=0.45) and use 90% confidence
intervals (ALPHA=0.1) to judge the salience. The REORDER option is specified so that variables that have
similar loadings with factors are clustered together.

After the quartimin rotation, the correlation matrix for factors is shown in Output 44.5.1.
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Output 44.5.1 Quartimin-Rotated Factor Correlations with Standard Errors

Inter-Factor Correlations
With 90% confidence limits
Estimate/StdErr/LowerCL/UpperCL

Factor1 Factor2 Factor3

Factor1 1.00000 0.41283 0.38304
0.00000 0.06267 0.06060

0.30475 0.27919

0.51041 0.47804

Factor2  0.41283 1.00000 0.47006
0.06267 0.00000 0.05116
0.30475 . 038177
0.51041 0.54986

Factor3  0.38304 0.47006 1.00000
0.06060 0.05116 0.00000
0.27919 0.38177
0.47804 0.54986

The factors are medium to highly correlated. The confidence intervals seem to be very wide, suggesting that
the estimation of factor correlations might not be very accurate for this sample size. For example, the 90%
confidence interval for the correlation between Factor1 and Factor2 is (0.30, 0.51), a range of 0.21. You
might need a larger sample to get a narrower interval, or you might need a better estimation.

Next, coverage displays for factor loadings are shown in Output 44.5.2.
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Output 44.5.2 Using the Rotated Factor Pattern to Interpret the Factors

Rotated Factor Pattern (Standardized Regression Coefficients)
With 90% confidence limits; Cover [*| = 0.45?
Estimate/StdErr/LowerCL/UpperCL/Coverage Display

Factor1 Factor2 Factor3

test8 0.86810 -0.05045 0.00114
0.03282 0.03185 0.03087

0.80271 -0.10265 -0.04959

0.91286 0.00204 0.05187

0l *[0] [op

test7 0.73204 0.27296 0.01098
0.04434 0.05292 0.03838

0.65040 0.18390 -0.05211

0.79697 0.35758 0.07399

0l of [op

test9 -0.79654 -0.01230 -0.17307
0.03948 0.04225 0.04420

-0.85291 -0.08163 -0.24472

-0.72180 0.05715 -0.09955

1Y *[0] *[Io

test3 0.27715 0.91156 -0.19727
0.05489 0.04877 0.02981

0.18464 0.78650 -0.24577

0.36478 0.96481 -0.14778

of* 0¥ *]0

test2 0.01063 0.71540 0.20500
0.05060 0.05148 0.05496

-0.07248 0.61982 0.11310

0.09359 0.79007 0.29342

[op 0l of

test1 -0.07356 0.63815 0.13983
0.04245 0.05380 0.05597

-0.14292 0.54114 0.04682

-0.00348 0.71839 0.23044

*[Io 0l of*

test5 0.00863 0.03234 0.91282
0.04394 0.04387 0.04509

-0.06356 -0.03986 0.80030

0.08073 0.10421 0.96323

[op [op 0l

test4 0.22357 -0.07576 0.67925
0.05956 0.03640 0.05434

0.12366 -0.13528 0.57955

0.31900 -0.01569 0.75891

of* *[Io 0l

test6 -0.04295 0.21911 0.53183
0.05114 0.07481 0.06905

-0.12656 0.09319 0.40893

0.04127 0.33813 0.63578

*[0] of o

The coverage displays in Output 44.5.2 show that Test8, Test7, and Test9 have salient relationships with
Factor1. The coverage displays are either ‘0*[ ]” or ‘[ ]*0’, indicating that the entire 90% confidence intervals
for the corresponding loadings are beyond the salience value at 0.45. On the other hand, the coverage display
for Test3 on Factor1 is ‘O[ J*’. This indicates that even though the loading estimate is significantly larger
than zero, it is not large enough to be salient. Similarly, Test3, Test2, and Test1 have salient relationships
with Factor2, while Test5 and Test4 have salient relationships with Factor3. For Test6, its relationship with
Factor3 is a little bit ambiguous; the 90% confidence interval approximately covers values between 0.40
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and 0.64. This means that the population value might have been smaller or larger than 0.45. It is marginal
evidence for a salient relationship.

For oblique factor solutions, some researchers prefer to examine the factor structure loadings, which represent
correlations, for determining salient relationships. In Output 44.5.3, the factor structure loadings and the
associated standard error estimates and coverage displays are shown.

Output 44.5.3 Using the Factor Structure to Interpret the Factors

Factor Structure (Correlations)
With 90% confidence limits; Cover [*] = 0.45?
Estimate/StdErr/LowerCL/UpperCL/Coverage Display

Factor1 Factor2 Factor3

test8 0.84771 0.30847 0.30994
0.02871 0.06593 0.06263

0.79324 0.19641 0.20363

0.88872 0.41257 0.40904

test7 0.84894 0.58033 0.41970
0.02688 0.05265 0.06060

0.79834 0.48721 0.31523

0.88764 0.66041 0.51412

0+ 0+ 0]

test9 -0.86791 -0.42248 -0.48396
0.02522 0.06187 0.05504

-0.90381 -0.51873 -0.56921

-0.81987 -0.31567 -0.38841

o [*]o [*]o

test3 0.57790 0.93325 0.33738
0.05069 0.02953 0.06779

0.48853 0.86340 0.22157

0.65528 0.96799 0.44380

test2 0.38449 0.81615 0.54535
0.06143 0.03106 0.05456

0.27914 0.75829 0.44946

0.48070 0.86126 0.62883

0] 0+ 0]

test1 0.24345 0.67351 0.41162
0.06864 0.04284 0.05995

0.12771 0.59680 0.30846

0.35264 0.73802 0.50522

of* 0+ 0]

test5 0.37163 0.46498 0.93132
0.06092 0.04979 0.03277

0.26739 0.37923 0.85159

0.46727 0.54282 0.96894

0] 0] 0+

test4 0.45248 0.33583 0.72927
0.05876 0.06289 0.04061

0.35072 0.22867 0.65527

0.54367 0.43494 0.78941

0] of* 0+

test6 0.25122 0.45137 0.61837
0.07140 0.05858 0.05051

0.13061 0.34997 0.52833

0.36450 0.54232 0.69465

of* 0] 0+

The interpretations based on the factor structure matrix do not change much from that based on the factor
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loadings except for Test3 and Test9. Test9 now has a salient correlation with Factor3. For Test3, it has salient
correlations with both Factor1 and Factor2. Fortunately, there are still tests that have salient correlations only
with either Factor1 or Factor2 (but not both). This would make interpretations of factors less problematic.

Example 44.6: Creating Path Diagrams for Factor Solutions

The section “Getting Started: FACTOR Procedure” on page 2780 analyzes a data set that contains 14 ratings
of 103 police officers to demonstrate some basic techniques in factor analysis. To illustrate the creation and
uses of path diagrams, this example analyzes this data set again by using the following statements:

ods graphics on;

proc factor data=jobratings(drop='Overall Rating'n)
priors=smc rotate=quartimin plots=pathdiagram;

label
'Judgment under Pressure'n ='Judgment'
'Communication Skills'n = 'Comm Skills'
'Interpersonal Sensitivity'n = 'Sensitivity'
'Willingness to Confront Problems'n = 'Confront Problems'
'Desire for Self-Improvement'n = 'Self-Improve'
'Observational Skills'n = 'Obs Skills'
'Dependability'n = 'Dependable';

run;

The PRIORS=SMC option specifies that the squared multiple correlations are to be used as the prior
communality estimates. As a result, the factors are extracted by the principal factor method. The
ROTATE=QUARTIMIN option requests the use of the quartimin rotation to obtain the final factor solu-
tion. The PLOTS=PATHDIAGRAM option requests a path diagram for the final solution. The LABEL
statement specifies labels for variables.

When variables do not have labels, PROC FACTOR displays the variable names in path diagrams. But when
variables have labels, PROC FACTOR displays labels, instead of variable names, in path diagrams. Because
some variables in this example have very long variables names, PROC FACTOR might truncate these long
names in the output path diagram. Therefore, to avoid truncations in the output diagram, you can either create
a data set with shorter variable names or use the LABEL statement to specify shorter labels. This example
illustrates the use of the LABEL statement.

Except for the PLOTS=PATHDIAGRAM option, previous examples have already described the FACTOR
options that are used in this example. Therefore, this example focuses only on the creation of path diagrams.

Output 44.6.1 and Output 44.6.2 show the quartimin-rotated factor correlations and factor pattern, respectively.

Output 44.6.1 Quartimin-Rotated Factor Correlations

Inter-Factor Correlations
Factor1 Factor2 Factor3
Factor1 1.00000 0.36103 0.34823
Factor2 0.36103 1.00000 0.55721
Factor3 0.34823 0.55721 1.00000
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Output 44.6.2 Quartimin-Rotated Factor Pattern

Rotated Factor Pattern (Standardized Regression Coefficients)

Factor1 Factor2 Factor3
Communication Skills Comm Skills 0.21280 0.13541 0.61091
Problem Solving 0.17222 0.01424 0.68767
Learning Ability -0.09904 0.24961 0.65430
Judgment under Pressure Judgment 0.49876 -0.02005 0.48879
Observational Skills Obs Skills -0.15748 0.67661 0.30273
Willingness to Confront Problems Confront Problems -0.19106 0.66639 0.31135
Interest in People 0.84249 0.12734 -0.00710
Interpersonal Sensitivity Sensitivity 0.87832 -0.12964 0.15116
Desire for Self-improvement Self-Improve 0.19078 0.49891 0.23297
Appearance 0.05254 0.53846 0.10857
Dependability Dependable 0.39241 0.50035 0.12032
Physical Ability 0.14404 0.63901 -0.15220
Integrity 0.68277 0.32719 -0.01887

Output 44.6.3 shows the path diagram for the quartimin-rotated factor solution. The path diagram represents
correlations among factors by double-headed links or paths. For example, Output 44.6.3 represents the
correlation between Factor1 and Factor2 by a curved doubled-headed link. The numerical value, 0.36,
is the correlation between the two factors, as can be verified from the table in Output 44.6.1. Similarly,
Output 44.6.3 shows other factor correlations by curved doubled-headed links.
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Output 44.6.3 Default Path Diagram for the Quartimin-Rotated Solution

Path Diagram 1
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The path diagram in Output 44.6.3 also represents factor variances and error variances by double-headed
links. However, each of these links points to an individual variable, rather than to a pair of variables as
the double-headed links for correlations do. The path diagram also displays the numerical values of factor
variances or error variances next to the associated links.

The directed links from factors to variables in the path diagram represent the effects of factors on the variables.
The path diagram displays the numerical values of these effects, which are the loading estimates that are
shown in Output 44.6.2. However, to aid the interpretation of the factors, the path diagram does not show all
factor loadings or their corresponding links. By default, the path diagram displays only the links that have
loadings greater than 0.3 in magnitude. For example, instead of associating Factor1 with all variables, the
path diagram in Output 44.6.3 displays only five directed links from Factor1 to the variables. The weaker
links that have loadings less than 0.3 are not shown.

The use of the 0.3 loading value (or greater in magnitude) for relating factors to variables is referred to as the
“0.3-rule” in the field of factor analysis. However, this is only a convention, and sometimes you might want
to use a different criterion to interpret the factors. For example, the path diagram in Output 44.6.3 shows
that variables Dependability, Integrity, and Observational Skills are all associated with more than one factor.
Hence, factors might not be interpreted unambiguously.

One way to tackle this interpretation problem is to set a stricter criterion for interpreting factors. You can
use the FUZZ= option to set such a criterion. For example, you specify the following PATHDIAGRAM
statement to display only the strong directed links that are associated with a 0.4 or greater magnitude in the
loading estimates:

pathdiagram fuzz=0.4 title='Directed Paths with Loadings Greater Than 0.4';

The preceding statement also uses the TITLE= option to specify a customized title for the path diagram.
Output 44.6.4 shows the resulting path diagram. In this path diagram, only one observed variable is linked to
two factors. All other observed variables link to unique factors. Therefore, compared to the path diagram
in Output 44.6.3, the path diagram in Output 44.6.4 provides a much “cleaner” picture for interpreting the
factors.
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Output 44.6.4 Path Diagram Showing Strong Links

Directed Paths with Loadings Greater Than 0.4
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The current example has 13 observed variables in the path diagram. By default, PROC FACTOR uses the
process-flow algorithm to lay out the variables. However, when the number of observed variables becomes
large, the process-flow algorithm needs a lot of vertical space to align all observed variables in a vertical
line. Displaying such a “long” path diagram in limited space (for example, in a page) might compromise the
clarity of the path diagram.

To handle this issue, PROC FACTOR switches to the GRIP algorithm when the number of variables is greater
than 14. However, you can override the layout algorithm whenever you find it useful to do so. For example,
the ARRANGE=GRIP option in the following PATHDIAGRAM statement requests that the GRIP algorithm
be used:

pathdiagram fuzz=0.4 arrange=grip scale=0.85 notitle;

The SCALE= option shrinks the nodes so that the nodes are well-separated in the path diagram. If you do not
use this option, some nodes would have been overlapped. The NOTITLE option suppresses the display of the
title. Output 44.6.5 shows the resulting path diagram, which spreads out the variables instead of aligning
them vertically, as it does when it uses the process-flow algorithm in Output 44.6.4.

Output 44.6.5 Path Diagram Showing Strong Links by Using the ARRANGE=GRIP Algorithm

0.34
09 Y 0.31
end

¥\ .
Physical | [Dependable  y” "\
¥\ 0.32

0 Confront
0820 o =

Problems

o

=

i

0.54
0.43
¥

1 0.67
1N
0.50 Self-
Improve

0.36

0.20
¥

Interest in 0.56
People

0.84

0.6
=
1
kA 0.88
0.28 0.50 @
) 1
0.6
0.

s 5
Learning
A_/

A/ .61
36 0.38

Problem

Solving
@ AN
@ 0.40

omm

kills
AN
0.36



References 4 2877

For more information about the options for customizing path diagrams, see the PATHDIAGRAM statement.
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