THE POWER TO K NOW,

SAS" Cloud Analytic
Services: CASL
Programmer’s Guide

2020.1 - 2021.1.5*

* This document might apply to additional versions of the software. Open this document in SAS Help Center and click
on the version in the banner to see all available versions.

SAS® Documentation
September 17, 2021

http://documentation.sas.com/?docsetId=caslpg&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2020. SAS® Cloud Analytic Services: CASL Programmer’s
Guide. Cary, NC: SAS Institute Inc.

SAS® Cloud Analytic Services: CASL Programmer’s Guide
Copyright © 2020, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
September 2021

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

v_001-P1:caslpg

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction to CASL Programming
About the CAS Language
Running CASL Programs

CASL Data Types
What Are Data Types?
Array
Boolean
Character
Dictionary
Numeric
Result Table

CASL Variables
Overview
Basic Syntax
Variable Scope
See Also

CASL Expressions
Definitions for CASL Expressions
Examples of Expressions
Operators in Expressions
Order of Precedence
Type Conversions
Casting Data Types
See Also

CASL Functions
Overview
Functions Supplied by SAS
User-Defined Functions
Key ldeas
See Also

Using the DESCRIBE Statement
Overview
Basic Syntax
Examples
See Also

CASL Arrays
Overview
Operators
Basic Syntax
Numeric Arrays
Character Arrays
Examples

N 2 =

OO NOOILOTLWW

iv Contents

Chapter 8 / CASL Dictionaries
Overview
Basic Syntax
Examples

Chapter 9 / Loading Data with CASL
Overview
Terminology
Examples
Key Ideas
See Also

Chapter 10 / Running Actions with CASL
Overview
Basic Syntax
Action Parameters
Examples
Severity and Reason Codes
Key ldeas
See Also

Chapter 11 / CASL Result Tables
Overview
Operators
Result Table Properties
Accessing Result Tables
Selecting Rows
Selecting Columns
Combining Row and Column Selection
Iterating over Rows and Columns
User-Defined Result Tables
See Also

Chapter 12 / CASL Missing Values
Definition
Numeric Missing Values
Character Missing Values

Chapter 13 / Writing User-Defined Actions
Overview of User-Defined Actions
Basic Workflow for User-Defined Actions
User-Defined Action Example
See Also

53
53
53
54

57
57
57
58
63
63

65
65
66
68
71
80
82
83

85
86
87
87
89
89
91
94
96
98
99

101
101
101
102

105
105
106
106
109

Introduction to CASL
Programming

About the CAS Language 1
Running CASL Programs 2

About the CAS Language

CASL is a language specification used by the SAS client and other clients to interact
with SAS Cloud Analytic Services (CAS).

Here are characteristics of the CAS language (CASL):
CASL is a statement-based language.
The language is case insensitive.
CASL is a scripting language with the following strengths:
running actions
working with results
developing analytic pipelines
running code in CAS with user-defined actions
Statements can include keywords such as the names of actions and functions.
Statements can include expressions.
Statements are terminated with a semicolon (;).
A single PROC CAS step can contain several CASL programs.
Here are some uses for CASL:

develop analytic pipelines

2 Chapter 1 / Introduction to CASL Programming

use actions to submit requests to the CAS server to do work and then return the
results

evaluate and manipulate the results returned by an action
create the arguments to an action

create user-defined actions and functions

Running CASL Programs

To use the CASL language with SAS, you need the following:

A CAS session. The CAS statement connects to an existing session on the
server or starts a new session on the server. For more information about
sessions, see “Sessions” in SAS Cloud Analytic Services: Fundamentals.

TIP If you are not submitting CAS actions, then you do not need a CAS
session.

The CAS procedure. PROC CAS enables SAS to interpret the CASL
programming statements that interact with the server.

You can submit CASL programs in the following ways:

Through the SAS Windowing environment or SAS Studio using the CAS
procedure.

On the CAS server using server-side processing with user-defined actions. This
enables you to run CASL programs from SAS, Python, Lua, or R. For more
information about server-side processing, see Chapter 13, “Writing User-Defined
Actions,” on page 105.

http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=p1wwz16igttqevn1sdej28ekf0f4.htm&locale=en

CASL Data Types

What Are Data Types?
Array

Boolean
Overview
Examples

Character
Overview
Examples

Dictionary

Numeric
Overview
Examples

Result Table

-

What Are Data Types?

A data type is an attribute of every CASL variable. The data type is the
characteristic that identifies a variable's value as a character string, an integer, and
SO on.

The following table lists the set of data types that are supported by CASL.
Table 2.1 Frequently Used Data Types

Data Type Description

ARRAY a list of values that are accessed by position.

BOOLEAN a data type that permits only two values, True and False.

©O OO0 N OO oo g W

4 Chapter 2 / CASL Data Types

Data Type

Description

DICTIONARY a list of key-value pairs that are accessed by key name.

DOUBLE

INT32

INT64

STRING

TABLE

VARCHAR

stores a signed, approximate, 64-bit double-precision, floating-point
number. The DOUBLE data type stores numbers of large magnitude
and permits computations that require many digits of precision to the
right of the decimal point.

a 32-bit signed, exact whole number, with a precision of 10 digits. The
range of an INT32 is -2,147,483,648 to 2,147,483,647. Integer data
types do not store decimal values. Fractional portions are discarded.

a 64-bit signed, exact whole number, with a precision of 19 digits. The
range of an INT64 is -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. Integer data types do not store decimal
values. Fractional portions are discarded.

a UTF-8 encoded sequence of characters.

a result table. This is a two-dimensional composite data type with
rows and columns.

a varying-length UTF-8 encoded sequence of characters.

The following data types can be used by actions that run on the server, but are
rarely used with CASL programming. There is no additional information in this
document related to these data types.

Table 2.2 Rarely Used Data Types

Data Type

BINARY

DATE

DATETIME

TIME

VARBINARY

Description

a fixed-length binary opaque data type used with in-memory tables in
CAS. A SAS item store is also a binary. A SAS item store is used by
SAS software to organize binary data.

a calendar date.
a data type that combines a calendar date with a time of day.
a data type that represents the time of day.

a varying-length binary opaque data type used with in-memory tables
in CAS. This data type is used to store image data, audio, documents,
and other unstructured data.

Boolean 5

Array

A CASL array is one of the two list data types. Arrays are most useful with CASL
programming for grouping a series of strings or numbers in a variable and then
using the variable as a parameter to a CAS action.

A CASL array can store any data type and multi-dimensional arrays are supported.
This document focuses on simple single-dimensional arrays with a single data type
for working with CAS actions.

Example Code 2.1 Simple Array Assignment
colNames = {"make", "model", "type"};
percentiles = {5, 25, 50, 75, 95};

name = colNames[2];

do v over colNames;
print v;
end;

The PRINT statement shows the following in the SAS log:

make
model

type

Boolean

Overview

The Boolean data type is used to represent the values True or False.

Examples

Example Code 2.2 Assign a Boolean Value to a Variable
x = TRUE;
Example Code 2.3 Assign a Value Based on a Logical Comparison

one = 1;

6 Chapter 2 / CASL Data Types

= one == 1;

= one > 2;
print "T is: " t;
print "F is: " £;

run;

The PRINT statement shows the following in the SAS log:

T is: TRUE
F is: FALSE

Character

Overview

CASL has two character data types:
STRING

a UTF-8 encoded sequence of characters. Character values that you assign to

CASL variables in a program use this data type.
VARCHAR

a varying-length UTF-8 encoded sequence of characters. This data type is used
with CAS for in-memory tables on the server. This data type is used very rarely

for CASL variables.

TIP The VARCHAR data type is used in in-memory tables on the CAS
server very frequently. However, when data is read from an in-memory table
into a CASL variable, such as the result of an action, the STRING data type
is assigned.

IMPORTANT For VARBINARY data types, CASL truncates data to 64
characters for display only. However, CAS table data is not truncated.

Examples

Example Code 2.4 Assign a String to a Variable

name = 'Joe’'; /* 1 %/

translate = 'BfRT S ; /* 2 %/

Dictionary 7
describe name translate; /* 3 */
run;

1 The character value, Joe, is assigned to the variable that is named Name.

2 The character value for the word translate in the Japanese language is assigned
to the variable that is named Translate.

3 The DESCRIBE statement is used to print the data types for the two variables to
the SAS log.

The PRINT statement shows the following in the SAS log:

string;
string;

Example Code 2.5 Replacing a String Variable

three = "Three"; /* 1 %/

print "Variable three has a length of: " length(three);
run;

three = "Thirteen"; /* 2 %/

print "After assigning a new value, the length is: " length(three);
run;

1 A string value is assigned to the variable that is named Three.

2 When a different value is assigned to Three, CASL replaces the variable rather
than allocating additional space for the increased length.

The PRINT statement shows the following in the SAS log:

Variable three has a length of: 5

After assigning a new value, the length is: 8

Dictionary

A CASL dictionary is one of the two list data types. A dictionary is an unordered list
that is accessed by key.

A simple example of a CASL dictionary follows. The variable is named Tbl and has
two keys, Name and Caslib.

Example Code 2.6 Simple CASL Dictionary with Two Keys, Long Form
tbl.name = "iris";

tbl.caslib = "casuser";

describe tbl;
run;

8 Chapter 2 / CASL Data Types

The following code is equivalent to the code above.
Example Code 2.7 Simple CASL Dictionary with Two Keys, Short Form

tbl={name="iris", caslib:"casuser“};

describe tbl;

The DESCRIBE statement shows the following in the SAS log:

dictionary (2 entries, 2 used);
[name] string;
[caslib] string;

Dictionaries are useful for organizing complex, nested parameters for a CAS
action in a single variable. Then, you can use the variable with the CAS action to
supply the nested parameters.

The results of an action are a dictionary. Dictionaries contain values. The most
common value in the dictionary is the result table. It is important to understand
how to identify and specify dictionary keys in order work with CAS action results.

A CASL dictionary can store any data type. This document focuses on simple
uses that can help you simplify your CASL programming.

Numeric

Overview

CASL supports three numeric data types:

INT32
signed 32-bit integer
INT64
signed 64-bit integer
DOUBLE
signed double-precision floating point number
When a numeric operation uses a double, the result is a double.

The INT32 data type can be assigned to a column in a result table. When whole
numbers are assigned to a CASL variable, INT64 is used.

A missing numeric value is smaller than any other numeric value, and missing
numeric values have their own sort order. Missing values are covered in another
part of this document.

Numeric 9

Examples
Example Code 2.8 Assign a 64-Bit Integer Value to a Variable
ten = 10; /* 1 %/
ten = 10L;
tenhex = 0Ax; /* 2 */
twobin = 10b; /* 3 */
eightK = 8k; /* 4 %/

mega = 1m; /* 1024%%2 */

giga = 1g; /* 1024%*3 */

1 By default, the INT64 data type is used for whole numbers. In the second line,
the L suffix is used to set the INT64 data type explicitly.

2 Xis a supported suffix for hexadecimal radix.
3 B is a supported suffix for binary radix.

4 Kiis a supported suffix for kilobytes. The specified value is multiplied by 1024. M
and G are also supported suffixes.

Example Code 2.9 Assign a Double-Precision Value to a Variable

d = 10.0; /* 1 */
kilo = 1.0k; /* 2 %/
mega = 1.0m;
giga = 1.0g;
half =1 / 2;

1 Include a decimal point to ensure that a whole number is assigned a DOUBLE
data type.

2 Kis a supported suffix for DOUBLE. The value is multiplied by 1024. M and G
are similar and multiply the value by 10242 and 10243 respectively.

Arithmetic operations with at least one variable that is a DOUBLE result in a
DOUBLE for the result.

Example Code 2.10 Assign a Value Based on a Numeric Operation

ten = 10;
fivePointFive = 5.5;
diff = ten - fivePointFive;

10 Chapter 2 / CASL Data Types

Result Table

A result table is a two-dimensional data representation. It is a common data type
that is created as a result of an action.

Each column has a name, a data type, an optional label, and an optional format.
A result table can have attributes to describe the contents of the table.

A result table is represented as a two dimensional array. The first dimension
references the row number. The second dimension is the column number or
column name.

When CASL is used with SAS, SAS Studio, SAS Enterprise Guide, and so on,
the output delivery service is used to display result tables.

11

CASL Variables

Overview 1"
Basic Syntax 12
Variable Scope 12
See Also 13

Overview

A CASL variable has a name, a scope, and a data type.

Variable names can start with alphabetic character, _ (underscore), or $. The
name can contain numbers, $, or _ (underscore).

Variables can have either a global or local scope.
The data type of a variable is determined by the type of value assigned to it.

If the data type is ARRAY, DICTIONARY, STRING, TABLE, VARBINARY, or
VARCHAR, the value is passed by reference to the memory location
containing the actual data. This data is separate (or outside) the function.
This is advantageous because the data does not need to be copied.

If the data type is BOOLEAN, INT32, INT64, DATE, DATETIME, or TIME, the
size of the data is small, and the value’s scope is contained within the
function. Instead of passing a reference to the value, the value itself is
passed to a function.

You can use CASL variables in these ways:
as arguments to an action.

in an expression. The return value can be a value, an array, or a dictionary.
Values that are STRING, TABLE, ITEMS, or VARBINARY, are passed by a
reference.

as an alias to a function. You can assign a function to a variable.

12 Chapter 3 / CASL Variables

Basic Syntax

Use an assignment statement to evaluate an expression and store the result in a
variable. The basic syntax for creating a variable is the following:

variable = expression

This assignment statement defines the target variable as a varchar variable with the
value “Jane Smith”.

Name = 'Jane Smith';

This assignment statement defines the target variable as an integer with the value of
“88”.

XxX.y = 88;
This target statement assigns the result of the MIN function to the variable z.
z = min(y, 70);

If a variable already exists, the new assignment replaces the variable and the old
value is overwritten. Use the DESCRIBE statement to show a variable’s internal
structure. For more information, see Chapter 6, “Using the DESCRIBE Statement,”
on page 35.

Variable Scope

Variables have local or global scope. Local variables exist only within the function
where they were created. Global variables can be accessed and used anywhere
within a CASL program. You can use the LOCAL statement to explicitly create a
variable that is local to a function, and the GLOBAL statement to explicitly create a
global variable.

CAUTION

If you do not use the LOCAL statement to create a local variable in a function,
the variable is implicitly global. If a global variable of the same name exists,
the global variable is referenced. It is a best practice to use the LOCAL statement
when creating variables inside a function.

Global variables can be accessed and used anywhere within a CASL program.
To explicitly create a global variable, use the GLOBAL statement.
A variable is implicitly global if it is created outside of a function.

A variable is implicitly global if it is created inside of a function, but is not a
control loop variable or created by the LOCAL statement

This program creates a global variable called Rental.

See Also 13

proc cas;
function myFunction(y);
global x; 1
print "NOTE: When myFunction begins execution, x=" x " and y=" y;
X=y;
end func;
run;
x=5; 2

print "NOTE: Before myFunction execution, x=" x;
myFunction(2) ;
print "NOTE: After myFunction execution, x=" x;
run;
quit;

1 The GLOBAL statement creates a variable named x that has global scope.
2 The x variable created outside of the function is also global.

Starting with SAS Viya 2021.1.5, you can use the LOCAL statement to explicitly
create a variable that is local to the function where it is created. Variables
created using the LOCAL statement exist only within that function.

Starting with SAS Viya 2021.1.5, loop iteration variables used within a function
implicitly have local scope and exist only within that function.

Local variables persist until the function returns.
This program creates a local variable:

proc cas;
function myFunction(y);
local x; 1
print "NOTE: When myFunction begins execution, x=" x " and y=" y;
X=Yi
print "NOTE: After the myFunction assignment statement, x=" x "
and y=" y;
end func;
run;
x=5; 2
print "NOTE: Before myFunction execution, x=" Xx;
myFunction(2) ;
print "NOTE: After myFunction execution, x=" X;
run;
quit;

1 The LOCAL statement creates a variable named x that has local scope.
2 The x variable created outside of the function is global.

Starting with SAS Viya 2021.1.5, loop iteration variables used within a function
implicitly have local scope and exist only within that function.

See Also

“Assignment Statement” in SAS Cloud Analytic Services: CASL Reference

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0aai22ozfw5ban1ft65w7xff4f8.htm&locale=en

14 Chapter 3 / CASL Variables

= “GLOBAL Statement” in SAS Cloud Analytic Services: CASL Reference

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1ws9zgvgn9yf1n13d5itgr0l7vn.htm&locale=en

15

CASL Expressions

Definitions for CASL Expressions 15
Examples of Expressions 16
Operators in Expressions 16
Overview 16
Arithmetic Operators 17
Comparison Operators 17
Boolean (Logical) Operators 19
Other Operators 20
Order of Precedence 21
Type Conversions 22
Overview 22
Numeric Type Conversion 22
Comparison Type Conversion 23
Casting Data Types 23
Basic Syntax 23
See Also 24

Definitions for CASL Expressions

The following definitions apply to CASL expressions:

expression
is a sequence of operands and operators that form a set of instructions that are
performed to produce a resulting value. You use expressions in CASL program
statements to create variables, assign values, calculate new values, transform
variables, and perform conditional processing. Expressions can produce a value
that has any data type.

operands
are constants or variables that can be numeric or character. The result of an
expression can be an operand.

16 Chapter 4 / CASL Expressions

operators
Operators are the symbols that represent a calculation, comparison, or
concatenation of operands.

Examples of Expressions

Here are some examples of CASL expressions:
5
x+1
years*12
min(y, 70)
nmissVar + col.Column
(trim(row. VARNAME) != targetVar)

exp(lgamma(days+1l) - lgamma (days-number+l) - number*log(days))

Operators in Expressions

Overview

A CASL operator is a symbol that represents a comparison, arithmetic calculation,
or logical operator. Expressions are evaluated to produce a value by using
operators.

The following data types have their own operators or override the operators in this
section.

Result Table Operators on page 87
Array Operators on page 42
Dictionaries on page 53

The operation that an operator performs depends on the data type of the operands.
Having the operation of an operator change based on the data types of the
operands is called overloading. Overloading simplifies the syntax for common
operations and provides more intuitive programming. Here are some examples:

The plus sign arithmetically adds two numeric operands while the plus sign
unions two array operands.

The minus sign arithmetically subtracts two numeric operands while the minus
sign also computes the intersection of two lists.

Operators in Expressions 17

Multiplying a table and a list changes the labels in the table to the list.

Arithmetic Operators

Arithmetic operators indicate that an arithmetic calculation is being performed. The
following table shows the precedence used to determine the order in which
arithmetic expressions for the addition, subtraction, multiplication, and division
operators are evaluated. 1 is the highest precedence and 4 is the lowest.

Table 4.1 Arithmetic Operators

Precedence Symbol Definition Example
1 + (unary) Ind|c?tes a pobs,ltwe or The following express
- (unary) negative humber. resolves to -5:
X = -5;
2 * Power X**2
3 / Division var/2
* Multiplication 6.5*salary
4 + Addition num+4
- Subtraction sale-discount

Note: The asterisk (*) is always necessary to indicate multiplication; 2Y and 2(Y)
are not valid expressions.

Comparison Operators

Comparison operators set up a comparison, operation, or calculation with two
variables: constants, or expressions. Comparison operators can be expressed as
symbols or they can be expressed with their mnemonic equivalents, which are
shown in the following table:

Table 4.2 Comparison Operators

Mnemonic
Symbol Equivalent Definition Example
> GT Greater than rate > 10

< LT Less than rate <40

18 Chapter 4 / CASL Expressions

Mnemonic

Symbol Equivalent Definition Example

= EQ Equal to rate = 15

== EQ Equal to rate == 15

I= NE Not equal to rate 1= 25

>= GE Greater than or equal to rate>=10

<= LE Less than or equal to rate<=40

>: GTC Truncated greater than rate>:10
conditional

< LTC Truncated less than conditional rate<:40

= EQC Truncated equal to conditional "abc" =: "abcdef";

>= GEC Truncated greater than "abc" >=: "abcdef";
conditional

<= LEC Truncated less than conditional "abc" <=: "abcdef";

The precedence of comparison operators is less than arithmetic operators.

Character operands are compared character by character from left to right.
Character order depends on the collating sequence, usually ASCII or EBCDIC,
used by your computer. For example, in the EBCDIC and ASCII collating
sequences, R is greater than G. Therefore, this expression is True:

'Raymond' > 'Gibson'

Two-character values of unequal length are compared as if blanks were attached
to the end of the shorter value before the comparison is made. A blank, or
missing character value, is smaller than any other printable character value. For
example, because . is less than h, this expression is true:

'C.Mills' < 'Charles Mills'

Since trailing blanks are ignored in comparison, 'dog ' is equivalent to 'dog’.
However, because blanks at the beginning and in the middle of a character value
are significant to SAS, ' dog' is not equivalent to 'dog".

You can compare only a specified prefix of a character expression by using a
colon (:) after the comparison operator. In the following example, the colon
modifier after the equal sign tells SAS to look at only the first character of values
of the variable LastName and to select the observations with names beginning
with the letter F:

if lastname=:'F';

The printable characters are greater than blanks. Both of the following
statements select observations with values of LastName that are greater than or
equal to the letter F:

if lastname>='F';

if lastname>=:'F';

Boolean (Logical) Operators

Operators in Expressions 19

Boolean operators, also called logical operators, are used to connect and define the
relationship between expressions to link sequences of comparisons together. The
logical operators and their precedence are shown in the following table. 1 is the
highest precedence and 5 is the lowest.

Table 4.3 Boolean Operators

Precedenc

e Symbol
1 none

1 none

1 IN

1 LIKE

Mnemonic
Equivalent

BETWEEN

CONTAINS

LIKE

Definition

Selects
observations by
searching for a
specified value
within the values of
a character
variable

Selects
observations by
searching for a
specified set of
characters within
the values of a
character variable

IN

The LIKE operator
selects
observations by
comparing the
values of a
character variable
to a specified
pattern, which is
referred to as
pattern matching.
The LIKE operator
is case sensitive.
There are two
special characters
available for
specifying a
pattern:

Example

10 BETWEEN 1 AND 100

If company is "SF Bay
Trading", then the following
is TRUE:

company CONTAINS
llBale

x=5;
y = x in (1:10);
print y;

If lastName is "Malik", then

the following are TRUE:
lastName LIKE "Ma_ik"
lastName LIKE "M%"

20 Chapter 4 / CASL Expressions

Precedenc Mnemonic
e Symbol Equivalent Definition Example
percent sign (%)
underscore (_)
2 >< MIN Returns the lower Invoice><MSRP
of the values
2 <> MAX Returns the higher Invoice<>MSRP
of the values
3 ! NOT Logical NOT l(gradesA>gradesB)
NE
A
4 & AND Logical AND (gradesA>gradesB&grades
C>gradesD)
5 OR Logical OR (gradesA>gradesB|
gradesC>gradesD)

Note: If you compare a zero-length character value with any other character value
in either an IN: comparison or an EQ: comparison, the two-character values are not
considered equal. The result always evaluates to 0, or false.

Other Operators

Table 4.4 Other Operators

Symbol Definition Example

(Start a sub expression (trim(row._VARNAME_) != targetVar)
) End a sub expression (trim(row._VARNAME_) != targetVar)
expr ? <true-expr> : <false-expr>; Selects a value x=(5>3)74:8

depending on whether

- If the value of (5>3) is true, then the value
the expression is true.

is 4, otherwise, the value is 8. This
example evaluates to 4.

Il Concatenates 'JOHN '||'SMITH";

character values. The expression evaluates to JOHN

SMITH.

Order of Precedence 21

Order of Precedence

The following table shows all of the operators and their order of precedence. The
highest order of precedence is 1 and the lowest order of precedence is 13.

Table 4.5 Operators and Their Order of Precedence in CASL Expressions

Precedence Operator

1 (
)

2 + (unary)
— (unary)

3 *%

6 > GT
< LT
=, EQ
==, EQ
I=, NE
>=, GE
<=, LE
>, GTC
<, LTC
=, EQC
>=:, GEC
<=, EC

7 LIKE
IN
BETWEEN
CONTAINS, ?

22 Chapter 4 / CASL Expressions

8 ><, MIN
<>, MAX
9 NOT (~, !, NE, #)
10 &, AND
11 [, OR
12 ?:

expression ? <true-expression> : <false-expressions;

13 ||

Type Conversions

Overview

Operands in an expression must be of the same general data type (numeric,
character, binary, or date/time) in order for CASL to evaluate the expression. When
it is necessary, CASL converts an operand's data type to another data type,
depending on the operands and operators in the expression. This process is called
type conversion.

Numeric Type Conversion

In an arithmetic expression, the DOUBLE data type has a higher precedence
than INT64. In the addition of a DOUBLE and an INT64, the expression
evaluates to a DOUBLE. For example, in the following code, the expression
evaluates to a DOUBLE:

proc cas;
y=5.0 + 5;
describe y;
run;

The addition operator (+) operates on numeric data types. If an integer is in a
numeric operation with a STRING, the STRING is converted to a value and then
that value determines the resulting type. For example, in the addition of the
character string ‘5’ and the numeric integer 5, the STRING data type for the
operand ‘5’ is converted to an INT64 data type before the evaluation takes place.

proc cas;

Casting Data Types 23

Y=ll5|l + 5;
describe y;
run;

The log shows the following message: .

NOTE: Character value '5' has been converted to numeric
int64 t;

Comparison Type Conversion

Boolean operators (AND, OR, NOT) operate on TRUE or FALSE values. When the
type of a Boolean operator's operand is not Boolean, the value is converted to
Boolean (TRUE or FALSE). For example:

When the type is numeric nonzero, values are converted to TRUE and zero is
converted to FALSE.

When the type is a character value, the character value is converted to a
numeric value, then the rules for numeric conversion are followed.

Casting Data Types

Basic Syntax

The (cast) operator is used to convert a value explicitly from one data type to
another data type.

(data-type) variable-or-expression

For example, the data type of the value 1 is INT64. You can explicitly change the
data type to STRING. In the following example, the expression that is highlighted
evaluates to a string.

proc cas;
x = "Product #" || (string)l;
print x;

run;

The PRINT statement shows the following in the SAS log:

Product #1

The following are valid casting types:
(INT64)
(DOUBLE)
(STRING)

24 Chapter 4 / CASL Expressions

(BOOLEAN)

Casting is permitted anywhere expressions are permitted.

See Also

Chapter 2, “CASL Data Types,” on page 3
Chapter 5, “CASL Functions,” on page 25
Chapter 7, “CASL Arrays,” on page 41
Chapter 8, “CASL Dictionaries,” on page 53

25

CASL Functions

Overview 25
Functions Supplied by SAS 26
Overview 26
Examples 26
User-Defined Functions 28
Overview 28
Basic Syntax 29
CASLstore 29
Examples 29
Key Ideas 33
See Also 34

Overview

A function is a component of the CASL programming language that can accept
arguments, perform a computation or other operation, and return a value. The value
that is returned can be used in an assignment statement or elsewhere in
expressions. The CASL language provides built-in functions that provide
functionality that is unique to CASL, and functions that provide functionality found
throughout SAS software. You can also create your own user-defined functions.
Here are some examples of CASL functions:

Function type Example
built-in readpath ("/u/sasdemo/ds/samplecode.sas");
common datetime() ;

user-defined SharedBday (365,n) ;

26 Chapter 5 / CASL Functions

Functions Supplied by SAS

Overview

SAS provides two types of supplied functions, built-in functions and common
functions.

Built-in functions have functionality that is unique to CASL. These functions enable
you to perform operations on your result tables, arrays, and dictionaries, and
provide run-time support for your CASL programs. These CASL functions cannot be
replaced with user-defined functions. For a list of built-in functions, see “CASL Built-
In Functions” in SAS Cloud Analytic Services: CASL Reference.

Common functions provide functionality that is common to other SAS functions.
When used in a CASL program, SAS functions take a CASL value and a CASL
value is returned. You can replace these functions with user-defined functions. For a
list of common functions that can be used in CASL programs, see “Common
Functions” in SAS Cloud Analytic Services: CASL Reference.

Examples

Read in Code Saved Externally

The following example uses the READPATH function to read in a file that contains a
DATA step program and store the code in a CASL variable. You can then use the
variable that contains the code as input to an action. Before you run this example,
you must load the Cars data set into CAS as an in-memory table. See “Load a
Client-Side File ” on page 58.

Save the following DATA step code in a file named carsCode.sas. This is the
program that is read into CAS and stored as a variable.

data bigCars;
set cars; by make type;
keep make type weight;
if weight < 5000 then delete;
run;

The runCode action runs DATA step code in CAS. You can store your DATA step
code in a CASL variable, and then use the CASL variable as input to the code
parameter.

proc cas;
carsCode = readpath ("file-path/carsCode.sas"); /* 1%/
datastep.runCode / /* 2%/

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n04cgm5s8rx4zun1eb0vyd07npbr.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n04cgm5s8rx4zun1eb0vyd07npbr.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n16syfxkihjoasn1hs0fosjtul3n.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n16syfxkihjoasn1hs0fosjtul3n.htm&locale=en

Functions Supplied by SAS 27

code = carsCode; /*3 %/

run;

table.fetch / to = 5

/*ax/
table = "bigCars"
sortby = {

{name = "weight", order = "descending"}
}i

run;

1 The READPATH function reads in the contents of the file carsCode.sas as a text

string. The string is stored in the variable carsCode.
2 The runCode action runs the DATA step in CAS.

3 The code parameter specifies the variable that contains the DATA step code.

4 The fetch action displays the results table. The sortBy parameter sorts the

values for Weight in descending order.

Output 5.1 Results: Fetched Rows from the BigCars Table

Selected Rows from Table BIGCARS

Index | Make Type = Weight
1| Ford SuUv 7190
2 | Hummer | SUV 6400
3 GMC sSUv 6133
4 | Lincoln | SUV 5959
5 | Cadillac | Truck 5879

List Functions

You can use the FUNCTIONLIST statement to print a list all of the built-in functions

to the SAS log.

proc cas;

functionlist;

run;

Output 5.2 Partial Listing of Built-in Functions Available in CASL

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:
NOTE:

CASL Built-In functions

actionstatus
add_table_attr
addbygroup
addrow
addunique
cancelaction
cancelactions
clear
codetostatus
combine tables

dictionary
dim

: Return TRUE if the session is active with an action

: Add attributes to a result table

: Creates a new result table from a BY-group table

: Add a row to a result table

: Add a value to a list if the value does not exist in a list

: Cancels the action running on the given session

: Cancel the actions on the given sessions

: Clear the given value

: Convert the action exit status into a dictionary

: Create a new result table that has the name of the first table,

and contains all rows from all tables

: Search for a value in a dictionary given the key
: Retrieve the dimensions of a variable

28 Chapter 5 / CASL Functions

Use the FNC statement to list the common functions.

proc cas;
fnc;
run;

Output 5.3 Partial Listing of Common Functions Available in CASL

NOTE: abs (math) Returns the absolute value of a numeric value.

NOTE: airy (math) The AIRY function returns the value of the airy function
NOTE: (Abramowitz and Stegun 1964; Amos, Daniel and Weston 1977)
NOTE: (See References). It is the solution of the differential equation.
NOTE: anyalnum (char) Searches a character string for an alphanumeric character,
NOTE: and returns the first position at which the character is found.
NOTE: anyalpha (char) Searches a character string for an alphabetic character,
NOTE: and returns the first position at which the character is
NOTE: found

NOTE: anycntrl (char) Searches a character string for a control character, and
NOTE: returns the first position at which that character is found.
NOTE: anydigit (char) Searches a character string for a digit, and returns the
NOTE: first position at which the digit is found.

NOTE: anyfirst (char) Searches a character string for a character that is valid
NOTE: as the first character in a SAS variable name

NOTE: anygraph (char) Searches a character string for a graphical character, and
NOTE: returns the first position at which that character is

NOTE: found.

NOTE: anylower (char) Searches a character string for a lowercase letter, and
NOTE: returns the first position at which the letter is found.
NOTE: anyname (char) Searches a character string for a character that is valid
NOTE : in a SAS variable name under VALIDVARNAME=V7, and returns
NOTE: the first position at which that character is found.

NOTE: anyprint (char) Searches a character string for a printable character, and
NOTE: returns the first position at which that character is

NOTE: found.

User-Defined Functions

Overview

You can use the FUNCTION statement to define your own CASL functions.
User-defined functions persist only during the current PROC CAS step.

Variables created during the execution of a user-defined function are local and
are dropped when the function returns.

The CASL GLOBAL statement can be used to create a global variable from
within a function.

You do not specify the parameter’s data type.
The parameters take the type of the value sent to the function.

Multiple RETURN statements can be used to return a value at any time.

User-Defined Functions 29

User-defined functions can be used in place of any of the common functions
found in the section “Common Functions” in SAS Cloud Analytic Services: CASL

Reference.

Basic Syntax

The basic syntax for the FUNCTION statement is the following:

FUNCTION function- name (<parameter-1, parameter-2>);
...<CASL-statements>...;
RETURN (expression);

END;

CASLstore

CASLstore is a collection of built-in CASL functions that enable you to store CASL
functions and snippets on the server. The CASLstore facility consists of three
functions: CASLSTORE Function, DEFAULT_CASLSTORE Function,
UPLOAD_CASLSTORE Function. CASLstore works by saving your CASL functions
to a CAS table on the server. Once the table is saved to the server, you must specify
that table, or a list of tables, for CAS to search for functions. After specifying the
location of the table using the CASLstore functions, CAS will dynamically download,
compile, and execute your user-defined functions as needed by your CASL
program.

Examples

Create User-Defined Functions

The following example creates a function that converts temperatures from
Fahrenheit to Celsius, and then calls the function to convert a list of temperatures.
Variables created during the execution of this function are local, and they disappear
when the function returns. The GLOBAL statement can be used to create a global
variable from within a function.

Example Code 5.1 Create a Function to Convert Fahrenheit to Celsius

proc cas;
function FtoC (temp) ; /*¥1%*/
Celsius = (5/9* (temp-32)); /* 2%/
return(Celsius) ; /*3 %/

end func;

tempF = {30 35 31 29};
do n over tempF; [*4a*/

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n16syfxkihjoasn1hs0fosjtul3n.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n16syfxkihjoasn1hs0fosjtul3n.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1vehqlfyqafgjn184kznbkdpe78.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1bax7tot16p1qn16yq7gqum2ull.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p14a8p7p5orln0n1igjtzl45spa3.htm&locale=en

30 Chapter 5 / CASL Functions

Celsius = FtoC(n); /*5%/
print put(Celsius, best6.2); /*6*/
end;
run;

1 The FUNCTION statement creates a new function. In this example, the function
is named FtoC and has one argument named temp.

2 The assignment statement creates a variable named Celsius that holds the
converted temperature.

3 The RETURN statement returns a value from the current function.
4 |terate over the list of values and call the FtoC function for the value of N.
5 Call the FtoC function and store the result in the variable Celsius.

6 The PRINT statement prints the result to the SAS log. The PUT function assigns
the BEST6.2 format to the values.

Example Code 5.1 Values Returned by the Function FtoC

-1.111
1.6667
-0.556
-1.667

The following example creates a function to determine the probability for two people
in a room to have their birthday on the same day. The program accepts as
parameters the number of people and the number of birthdays in a year.

Example Code 5.2 Create a Function to Calculate Probability

proc cas;
function SharedBday (days,
number) ; /*1 %/
p = exp(lgamma(days+l) - lgamma (days-number+l) -
number*log (days)) ; [*2*/
return (1-
p); /*3 %/
end func;

do n over {3 10 22 23 50

75}; /*ax*/

p =
SharedBday (365,n) ; /*
5%/

print "Chance at least 2 out of " put(n,best3.) "
share the same birthday = "
put (p,best6.2) ; /*6*/
end;
run;

1 The FUNCTION statement creates a new function. In this example, the function
is named SharedBday and it has two arguments, Days and Number.

2 Specify the calculation for determining the probability of shared birthdays. The
Assignment statement creates the local variable P that contains the value of the
calculation.

3 The RETURN statement returns a value from the current function.

4 The DO OVER statement iterates over the array.

User-Defined Functions 31

5 Call the SharedBday function and store the result in the variable P.

6 The PRINT statement prints the result to the SAS log. The PUT function assigns
the BEST6.2 format to the values.

Output 5.4 Values Returned by the SharedBday Function

Chance at least 2 out of 3 share the same birthday = 0.0082
Chance at least 2 out of 10 share the same birthday = 0.1169
Chance at least 2 out of 22 share the same birthday = 0.4757
Chance at least 2 out of 23 share the same birthday = 0.5073
Chance at least 2 out of 50 share the same birthday = 0.9704
Chance at least 2 out of 75 share the same birthday = 0.9997

List User-Defined Functions

You can use the FUNCTIONLIST statement to print a list of user-defined functions
to the SAS log. The following example creates three user-defined functions, and
then prints a list of them to the SAS log.

proc cas;
function FtoC(temp);
Celsius = (5/9* (temp-32));
return(Celsius) ;
end func;

function SharedBday (days, number);
p = exp(lgamma(days+l) - lgamma (days-number+l) -
number*log(days)) ;
return (1-p);
end func;

function factorial (x);
if (x < 1.0) then return(x);
else do;
return exp(lgamma (x+1));
end;
end func;

functionlist user;
run;

Output 5.5 Results of the FLIST Statement

NOTE: User defined functions
NOTE: factorial(Xx);

NOTE: FtoC(temp) ;

NOTE: SharedBday(days, number);

32 Chapter 5 / CASL Functions

Upload and Execute Stored User-Defined
Functions Using CASLstore

The following example uses the CASLstore functions to save CASL functions to a
CAS table. You can then execute the functions in a CASL program.

proc cas;
source
funcs;
/*1%/
function factorial (x);
if (x < 1.0) then return(x);
else do;
return exp(lgamma (x+1));
end;
end func;

function SharedBday (feature,number) ;
p = exp(lgamma (feature+l) - lgamma (feature-number+l) -
number*log (feature)) ;
return (1-p);
end func;

function FtoC(temp);
Celsius = (5/9* (temp-32));
return (Celsius) ;
end func;
endsource;

upload caslstore ({caslib="casuser",
/*2*/

name="storel", replace:true}, funcs) ;

run;
proc cas;

cs = caslstore({caslib:"casuser",
name="storel"}); /*3 %/

x = factorial(10);
print "10! = " x;
run;

bday = SharedBday (365, 23);

print "Chance for 23 people to share the
same birthday = " put(x,best7.4);

run;

tempF = {30 35 31 29};
do n over tempF;
Celsius = FtoC(n);

Key Ideas 33

print put (Celsius, best6.2);
end;
run;

1 Use a source statement to define the Factorial, SharedBday, and FtoC functions.

2 Save the functions to the store1 CAS table in the caslib CASUSER using the
UPLOAD_CASLSTORE function.

3 Specify the location of the CAS table containing your functions using the
CASLSTORE function.

Output 5.6 Values Returned by the Factorial, SharedBday, and FtoC Functions

x = factorial(10);
print "10! = " x;
run;

10! = 3628800

bday = SharedBday (365, 23);
print "Chance for 23 people to have the same birthday = " put(bday,best7.4);
run;

Chance for 23 people to have the same birthday = 0.5073

tempF = {30 35 31 29};
do n over tempF;
Celsius = FtoC(n);
print put (Celsius, best6.2);
end;
run;
=1L, 3Ll
1.6667
-0.556
-1.667

Key ldeas

The argument types are unspecified, and take the type of the argument passed
to the function. Values that have a data type of varbinary, dictionary, or array are
specified by address. All other data types are specified by value. The return
value can be any data type.

A function can be defined with any number of parameters. However, if you try to
pass more values to the function than are supported, the additional values are
not accessible.

You can use the FNC statement to list the functions available to CAS by name
and category. Use the FUNCTIONLIST statement for a list of user-defined
functions or built-in functions.

User-defined functions persist only during the current PROC CAS step. You can
store your user-defined functions in a text file and use the global SAS statement
%INCLUDE to include the file within a PROC CAS step.

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p09yr5y7jtntnqn1nxs5ma6txyia.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p1r5kztjknq3acn1fxrc9tk0p30c.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_001&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en

34 Chapter 5 / CASL Functions

Variables created during the execution of a function are local and are dropped
when the function returns. The CASL GLOBAL statement can be used to create
a global variable from within a function.

You can assign a function to a variable. The variable then becomes an alias for
the function.

See Also

“Assignment Statement” in SAS Cloud Analytic Services: CASL Reference
Chapter 6, “Using the DESCRIBE Statement,” on page 35

‘DO OVER Statement” in SAS Cloud Analytic Services: CASL Reference
“FUNCTION Statement” in SAS Cloud Analytic Services: CASL Reference
“GLOBAL Statement” in SAS Cloud Analytic Services: CASL Reference
“PRINT Statement” in SAS Cloud Analytic Services: CASL Reference
“PUT Function” in SAS Cloud Analytic Services: CASL Reference
“‘RETURN Statement” in SAS Cloud Analytic Services: CASL Reference

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1ws9zgvgn9yf1n13d5itgr0l7vn.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0aai22ozfw5ban1ft65w7xff4f8.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1enf8paum6q19n1cascbj8z5kpc.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0b36rhlbv3mnmn1j5rqeduwnbso.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1ws9zgvgn9yf1n13d5itgr0l7vn.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1aqfgyttlq72xn1e5p9a6ors1sw.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n163klpah53x4xn1pbebkjfyw7vu.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n14ex139al6rp6n1y0z3oci87mbm.htm&locale=en

35

6
Using the DESCRIBE Statement

Overview 35
Basic Syntax 35
Examples 36
Select a Result Table for Printing 36
View the Data Structure and Values of a Variable 38
See Also 40

Overview

The DESCRIBE statement enables you to view the structure and data type of CASL
variables and expressions. When action results are saved to a variable, the
DESCRIBE statement writes a description of the variable to the SAS log. The
description shows the expanded arrays and dictionaries in order to view the
structure of the variable.

When you use CASL with PROC CAS client side, the DESCRIBE statement writes
to the SAS log. When you submit server-side CASL, the output is written to the
journal for the language that you are using. For information about using server-side
CASL, see Chapter 13, “Writing User-Defined Actions,” on page 105.

Basic Syntax

DESCRIBE variable-or-expression;

The following table shows the information displayed for different data types.

36 Chapter 6 / Using the DESCRIBE Statement

Information Displayed by DESCRIBE
Data Type statement

dictionary data type
number of entries in the dictionary

number of entries used

array data type
number of entries in the dictionary

number of entries used

result table data type
column formats
column names
column types
number of columns

number of rows

table name
character data type
Boolean data type
dates and time data type
numeric data type
varbinary data type
item data type

Examples

Select a Result Table for Printing

The following example generates a matrix of Pearson product-moment correlation
coefficients for the data in table Iris. The Correlation action creates two result tables,
CorrSimple and Correlation. The PRINT statement selects the CorrSimple table to
be printed to the output destination.

Examples 37

Note: Before you can work with an in-memory table in CAS, you must download the
file Iris.csv and load it into CAS. For the complete code for accessing the Iris data
set, see “Save and Drop an In-Memory Table ” on page 61.

proc cas;
simple.correlation result=corrRes /

inputs={"Sepal Length", "Sepal Width"}
pairWithInput={"Petal Length", "Petal Width"}

table={name="iris",
where="Species eq 'setosa'"
}i

run;

describe corrRes;
run;

print corrRes.CorrSimple;
run;
quit;

[*2%/

[*3%/

1 The Correlation action computes Pearson product-moment correlations.

2 The DESCRIBE statement prints the structure of the variable corrRes to the SAS
log. You can use this information to select one of the tables for printing.

3 The PRINT statement selects the table CorrSimple and displays it to the open

ODS output destination.

The following output shows that the corrRes variable is a dictionary that contains
two tables. The table names are CorrSimple and Correlation. You can use the
PRINT statement to select one of the tables to be printed.

Output 6.1 Data Structure of the CorrRes Variable

dictionary (2 entries, 2 used);

[CorrSimple] Table ([4] Rows [7] columns

Column Names:
[1] Variable [Analysis Variable] (char)
[2] N [N] (double)
[3] Mean [Mean] (double)
[4] Sum [Sum] (double)
[5] StdDev [Std Dev] (double)
[6] Minimum [Min] (double)
[7] Maximum [Max] (double)
[Correlation] Table ([2] Rows [3] columns

Column Names:
[1] Variable [] (char)
[2] Sepal Length [] (double)
[3] Sepal width [] (double)

1021 describe corrRes;

[BEST10.]
[D8.4]
[BEST10.]
[D8.4]
[D8.4]
[D8.4]

[D8.4]
[D8.4]

38 Chapter 6 / Using the DESCRIBE Statement

Output 6.2 Results: Printed Contents of the CorrSimple Table

CorrSimple: Results from simple.correlation

Summary Statistics in Correlation Analysis for IRIS

Analysis Variable N | Mean Sum | 5td Dev Min | Max

Petal Length 180 3.7587 563.8 | 1.7644 1.0000 6.3000
Petal Width 150 1 1.1987 179.8 | 0.7632 0.1000 2.5000
Sepal Length 150 58433 876.5) 0.8281 4.3000 7.3000
Sepal Width 150 3.0540 4581 0.4336 2.0000 4.4000

View the Data Structure and Values of a Variable

The following example uses the Summary action to group summary statistics in the
table Cars by Type. The summary is performed on Mpg_City and Mpg_Highway.

Note: Before you can work with an in-memory table in CAS, you must download the
file Cars.csv and load it into CAS. For the complete code for accessing the Cars
data set, see “Load a Client-Side File ” on page 58.

Example Code 6.1 Create the Summary Results

proc cas;
simple.summary
result=bygrps / /*1%*/
inputs={"mpg city" "mpg highway"}
subset={"min", "max", "sum", "mean", "nmiss"}

table={name="cars",
groupBy={ {name="Type"}}};

describe

bygrps; [*2*/
run;
print

bygrps; /* 3%/
run;

1 The summary action computes the statistics for Mpg_City and Mpg_Highway by
type in table cars and assign the results to the variable Bygrps.

2 The DESCRIBE statement prints the structure of the variable Bygrps to the SAS
log.

3 The PRINT statement prints the variable Bygrps. Because Bygrps is a result
table, it is printed to the open ODS output destination.

The following output shows information about the first three group-by tables.

Examples 39

Output 6.3 Data Structure of the Bygrps Variable

dictionary (7 entries, 7 used);
[ByGroupInfo] Table ([6] Rows [3] columns
Column Names:

[1] Type [1 (varchar)

[2] Type f [] (char)

[3] _key_ [] (varchar)

[ByGroupl.Summary] Table[Summary] ([2] Rows [6] columns
Column Names:

[1] Column [Analysis Variable] (char)

[2] Min [Minimum] (double) [D8.4]

[3] Max [Maximum] (double) [D8.4]

[4] NMiss [N Miss 1 (double) [BEST10.]

[5] Mean [Mean] (double) [D8.4]

[6] Sum [Sum] (double) [BEST10.]

[ByGroup2.Summary] Table[Summary] ([2] Rows [6] columns
Column Names:

[1] Column [Analysis Variable] (char)

[2] Min [Minimum] (double) [D8.4]

[3] Max [Maximum] (double) [D8.4]

[4] NMiss [N Miss] (double) [BEST10.]

[5] Mean [Mean] (double) [D8.4]

[6] Sum [Sum] (double) [BEST10.]

[ByGroup3.Summary] Table[Summary] ([2] Rows [6] columns
Column Names:

[1] Column [Analysis Variable] (char)

[2] Min [Minimum] (double) [D8.4]

[3] Max [Maximum] (double) [D8.4]

[4] NMiss [N Miss] (double) [BEST10.]

[5] Mean [Mean] (double) [D8.4]

[6] Sum [Sum] (double) [BEST10.]

The following output shows the first two group-by tables.

Output 6.4 Results: Printed Bygrps Tables

bygrps: Results from simple.summary

Type=Hybrid

Descriptive Statistics for CARS

N
Column Minimum | Maximum | Sum Mean @ Miss
MPG_City 460000 &0.0000 165 55.0000 0

MPG_Highway 51.0000 66.0000 168 56.0000 0

bygrps: Results from simple.summary
Type=5edan

Descriptive Statistics for CARS

N
Column Minimum | Maximum | Sum Mean @ Miss
MPG_City 12.0000 38.0000 @ 5524 21.0840 0

MPG_Highway 17.0000 46.0000 7501 | 28.6293 0

40 Chapter 6 / Using the DESCRIBE Statement

Example Code 6.2 Create a List of Car Types with Mileage Greater Than Twenty

Mileage= {}; /*1x/
do i = 2 to dim(bygrps) ;
if (bygrps[i] [1,"Mean"] >20) then
Mileage = Mileage + bygrps[i] .attrs.ByGroup;
end;

describe Mileage; [*2%*/
run;

print Mileage; /
* 3%/
run;

1 The Assignment statement creates the variable Mileage. Use conditional
processing to create a list of BY groups that contains types of cars where Mean
values are greater than 20. The variable Mileage contains the results. Bygrps is
the variable that holds the results of the Summary action.

2 The DESCRIBE statement prints the structure of the variable Mileage to the SAS
log.

3 The PRINT statement prints the values of the variable Mileage. Because Mileage
is an array, it is printed to the SAS log.

Output 6.5 Data Structure of the Mileage Variable

array (3 entries, 3 used);
[1] string;
[2] string;
[3] string;

Output 6.6 Value of Mileage Variable

{Type=Hybrid, Type=Sedan, Type=Wagon}

See Also

“‘DESCRIBE Statement” in SAS Cloud Analytic Services: CASL Reference
“PRINT Statement” in SAS Cloud Analytic Services: CASL Reference

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p0ogfmq148qrwfn1cs3o0i3i6ace.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1aqfgyttlq72xn1e5p9a6ors1sw.htm&locale=en

CASL Arrays

Overview
Operators
Basic Syntax
Numeric Arrays

Character Arrays
Common Use
Variable Mode
Literal Mode
Combining Literal Mode and Variable Mode
Character Array Ranges

Examples
Determine the Array Length
Append Arrays
Subset Arrays
Merge Arrays and Return Unique Values
Check Whether an Array Contains a Value
Extract an Array from a Result Table
Creating Multidimensional Arrays

Overview

CASL arrays have the following qualities:
An array is an ordered list of data.

An array is accessed by position.

41

LY
42
43
43

44
44
44
45
45
46

46
46
47
48
49
50
51
52

A field in an array can store simple data types such as DOUBLE, INT64, and so

on.

A field in an array can store another CASL array. This effects a second
dimension to the data structure. Multiple dimensions are supported.

42 Chapter 7 / CASL Arrays

A field in an array can store other complex data types such as a dictionary or a
result table.

An array can store heterogeneous data types. However, most use cases store a

single data type.

Operators

An array has any number of fields. Each field in an array stores a value. The fields

are accessed by position. The fields begin numbering at 1.

Operator

{array-members}

${literal-mode}

{field-positions}

Definition

The { and } characters are
used to begin and end an
array definition.

The ${ operator is used to
begin an array using literal
mode. The values are
accepted as-is, CASL does
not attempt to evaluate char-
value as a variable name.
The } operator ends the array
definition.

Appends one array to the
end of another array.

Excludes the members of
one array from another array.

Note: The — operator can be
used as the character range
operator on page 46.

Combines two arrays and
returns a new array with the
unique values.

Selects the values that two
arrays have in common and
returns a new array.

The range operator can be
used to create a numeric
array of 64-bit integers.

Syntax

array-name = { value-1 <, value-2,
>

TIP The comma as a field
separator is optional.

array-name = ${char-value-1 <,
char-value-2 , ...>};

new-array = array-1 + array-2;

new-array = array-1 — array-2;

new-array = array-1[!{field-
positions}];

new-array = array-1 / array-2;

common-values = array-1 &
array-2;

new-array = lower-bound:upper-
bound,

Numeric Arrays 43

Operator Definition Syntax

Note: Do not enclose the range in
braces.

== The equality operator boolean = array-1 == array-2
compares two arrays and
returns TRUE when both
arrays contain the same
values in the same positions.
Otherwise, FALSE is
returned.

field-positions = array == value

When an array is compared
with a single value and the
value occurs in the array, an
array of indexes of the value
are returned. If the value
does not occur, then nothing
is returned. See “Check
Whether an Array Contains a
Value” on page 50.

array-namelfield-positions] Subsets an array by selecting subset-array = array[lower-
fields. This can also be used bound:upper-bound];

with exclusion and for subset-array = array[{field-
assignment. positions}]

Basic Syntax

The basic syntax for creating an array is the following:

array-name = {value-1 <, value-2 ...>};
array-name[position] = value;

Numeric Arrays

Example Code 7.1 Assign Numeric Values by Position

all]l = 1;
al2] 2;

44 Chapter 7 / CASL Arrays

al3] =1+ 2;

The array positions are not required to be contiguous. However, the practical uses
for arrays are either extraction of values from the results of an action or supplying an
array of values to an action. As a result, contiguous positions are shown in most
examples.

Example Code 7.2 Assign Numeric Values with Braces
b = {1, 2, 3};
Example Code 7.3 Assign Numeric Values with the Range Operator

five = 1:5;
print five;

The PRINT statement shows the following in the SAS log:

{1,2,3,4,5}

Character Arrays

Common Use

Variable

Specifying column names is a common use for character arrays.
Example Code 7.4 Assign Character Values with Braces

colNames = {"make", "model", "drivetrain"};
Like numeric arrays, you can assign values by position:
Example Code 7.5 Assign Character Values by Position

colNames [1] = "make";
colNames [2] = "mode";
colNames [3]

"drivetrain";

Mode

As shown in the preceding section, you can specify a series of strings, enclosed in
quotation marks. When a string is enclosed in quotation marks, CASL does not
attempt to evaluate the string as a CASL variable name.

By default, CASL uses variable mode for arrays. The next example shows the
following:

Any string that is not enclosed in quotation marks is treated as a CASL variable.

Character Arrays 45

Because X is not enclosed in quotation marks, CASL treats it as a variable
name. In this case, the variable is evaluated and colNames becomes an array
with three string values: Make, Model, and Drivetrain.

Example Code 7.6 Variable-Mode Array

X = "model";
colNames = {"make", x, "drivetrain"};

Literal Mode

Literal mode provides a convenient shortcut if you need to specify many strings and
want to avoid enclosing each string in quotation marks. The next example shows the
following:

The ${ } operator is used to enter literal mode.

In literal mode, strings are used as-is. CASL does not attempt to evaluate the
strings Make, Model, and Drivetrain as CASL variable names. When using literal
mode, it is as if the strings are enclosed in quotation marks.

Example Code 7.7 Literal-Mode Array

colNames = ${make, model, drivetrain};

Combining Literal Mode and Variable Mode

If you need to combine variable mode and literal mode, you can escape from literal
mode with the $(variable-name) operator. The next example shows the following:

The ${ } operator is used to enter literal mode. The strings Make and Drivetrain
are used as-is. CASL does not attempt to evaluate them as CASL variable
names.

The $() operator is used to escape literal mode. The variable X is evaluated and
the string Model is substituted in its position in the array.

Example Code 7.8 Escaping Literal Mode

X = "model";
colNames = ${make, $(x), drivetrain};

Beware of accidentally nesting arrays when escaping literal mode. In cases like the
following, appending arrays provides the expected outcome.

X = "model"; /* 1 %/
drive origin = {"drivetrain", "origin"}; /* 2 %/
bad = ${make, $(x), $(drive origin)}; /* 3 */
mmdo = ${make, $(x)} + drive origin; /* 4 */
print "Bad: " bad;
print "Mmdo: " mmdo;

1 The variable X is assigned the string value Model.

2 Drive_origin is a character array with two values.

46 Chapter 7 / CASL Arrays

3 The Bad array shows an example of accidental nesting. The following statement
avoids accidental nesting.

4 The Mmdo array is created by appending two arrays. Instead of including
Drive_Origin inside the first set of braces, the + operator is used to append the
array to the first array.

In the example below, the highlighted braces show the accidental nesting. The
PRINT statement shows the following in the SAS log:

Bad: {make,model,{drivetrain,origin}}
Mmdo: {make,model,drivetrain,origin}

Character Array Ranges

In some cases, columns are renamed to more uniform names. Within literal mode,
you can specify a prefix and use the range operator, —, to create a range of
character strings.

The rules for creating a character array with a range of values are as follows:
Prefixes must match.
Prefixes must end in a number.
The first number must be less than the second number.

Example Code 7.9 Specify a Range of Strings

intervalCols = ${xl—x10 name5—name10};
print intervalCols;

The PRINT statement shows the following in the SAS log:

{xl,x2,x3,x4,x5,x6,x7,x8,x9,x10,names,name6,name7,name8,name9,name10}

Examples

Determine the Array Length

The DIM function is used to determine the length of an array.

ten = 1:10; /[* 1 %/
print dim(ten); /* 2 *x/

1 The range operator (:) is used to assign the values 1 to 10 to an array that is
named Ten.

Examples 47

2 The DIM function returns the length of the array.

The PRINT statement shows the following in the SAS log:

10

Append Arrays

Example Code 7.10 Append Numeric Arrays

first five = 1:5; /* 1 %/
one_to_seven = first_five + {6, 7}; /* 2 %/
print one to seven;

1 The range operator () is used to assign the values 1 to 5 to an array that is
named First_five.

2 The concatenation operator (+) is used to append a second array to First_five.
The new array is assigned to the variable that is named One_to_seven.

The PRINT statement shows the following in the SAS log:
{1,2,3,4,5,6,7}

Example Code 7.11 Append a Single Value to an Array

one to_eight = one to seven + 8; /[* 1 %/
print one to_eight;

1 When a single value (8) is appended to an array, a new array is created. The
new array combines the original array and the additional value.

The PRINT statement shows the following in the SAS log:

{1,2,3,4,5,6,7,8}

CASL also enables you to append character arrays. The + and || operators are used
to append arrays.

Example Code 7.12 Append Character Arrays

make model = {"make", "model"}; /* 1 %/
drive origin = ${drivetrain, origin}; /* 2 %/

four columns = make model + drive origin; /* 3 */

print four columns;

1 An array of two string values is assigned to the variable Make_model. The { }
operators are used to specify variable mode. As a result, string values must be
enclosed in quotation marks to prevent CASL from evaluating them as CASL
variable names.

48 Chapter 7 / CASL Arrays

2 Another array of two string values is assigned to the variable Drive_origin. The $
{'} operators are used to specify literal mode. In literal mode, you do not need to
enclose strings in quotation marks.

3 The append operator (+) is used to create a new array that appends the values
of the Drive_origin array to the values of the Make_model array. The new array
is assigned to the CASL variable that is named Four_columns.

The PRINT statement shows the following in the SAS log:
{make,model,drivetrain,origin}
TIP Those are four column names from the Cars table and can be used

with the fetchVars parameter: table.fetch / table="cars"
fetchvars=four columns;.

Subset Arrays

You can subset the values in one array with the values from another array:

Example Code 7.13 Subset Numeric Arrays

first five = 1:5; /* 1 %/
odds = {1, 3, 5}; /* 2 */
evens = first five - odds; /* 3 */

print evens;

1 The range operator () is used to assign the values 1 to 5 to an array that is
named First_five.

2 An array that is named Odds is defined with the odd numbers 1, 3, and 5.

3 The subset operator (=) is used to create a new array. The new array is the
result of removing the values of the Odds array that are present in the First_five
array.

The PRINT statement shows the following in the SAS log:
{2,4}

Example Code 7.14 Subset Character Arrays

mmdo = ${make, model, drivetrain, origin}; /* 1 */
three columns = mmdo - {"origin"}; /* 2 %/
print three columns;

1 The Mmdo array is created using the literal-mode operator, ${ }. The array
contains four string values.

2 The subset operator (-) is used to create a new array. The new array is the
result of removing one value, Origin, from the values that are present in the
Mmdo array.

Examples 49

TIP The second argument is an array with a single value. In this case, the
braces are optional.

The PRINT statement shows the following in the SAS log:

{make,model,drivetrain}

Example Code 7.15 Subset Arrays by Position

mmdo = ${make, model, drivetrain, origin}; /* 1 */
model drivetrain = mmdo[{2,3}]; /* 2 */
print model drivetrain;

1 The Mmdo array is created using the literal-mode operator, ${ }. The array
contains four string values.

2 The bracket operators ([]) are used to access the Mmdo array by position. A
numeric array ({2,3}) is the expression that specifies the positions to access. A
new array with the two values is returned and assigned to Model_drivetrain.

The PRINT statement shows the following in the SAS log:

{model,drivetrain}

Merge Arrays and Return Unique Values

four = 1:4; /* 1 %/
more = {6, 3, 5, 5}; /* 2 */
unig = four / more; /* 3 */

print unig;

1 The range operator (:) is used to assign the values 1 to 4 to an array that is
named Four.

2 The braces operators are used to assign four values to the array that is named
More. The value that is in the second position, 3, is common with the values in
the first array. The values in positions 3 and 4 are duplicates.

3 The / operator is used to create a new array from the values of Four and More.
The new array contains the unique values. The new array is assigned to the
variable that is named Uniq.

The PRINT statement shows the following in the SAS log:

{1,2,3,4,6,5}

50 Chapter 7 / CASL Arrays

Check Whether an Array Contains a Value

When the equality operator is used to compare a single value with an array, CASL
returns the positions of the value in the array. You can use this behavior to
determine whether an array contains a value.

Example Code 7.16 Check for a Value in an Array
a={2,2,5 2, 9};
if (a == 2) then do; /* 1 %/

print "The array contains 2.";
print "The value occurs at the following positions:";

do pos over (a == 2); /* 2 */
print pos;
end;
end;
if (a != 3) then print "The array does not contain 3.";
run;

1 The equality operator returns the positions of the number in the array. The IF
statement evaluates any value as TRUE and executes the statements inside the
IF block.

2 A DO OVER loop iterates over the positions of the number in the array and
assigns the position to the variable Pos. The position is then printed.

The array contains 2.

The value occurs at the following positions:
1

2

4

The array does not contain 3.

The equality operator also applies to arrays with character values.

Example Code 7.17 Check for a Value in a Character Array

caslibNames = {"Formats", "ModelPerformanceData", "Models", "Public",
"Samples"};
if (caslibNames == "Public") then do;

print "The Public caslib is in the list.";
print "The value occurs at the following position:";

do pos over (caslibNames == "Public");
print pos;
end;
end;
if (caslibNames != "Custom") then print "The array does not contain
Custom.";

run;

Examples 51

Common caslib names are stored in an array. To get the caslib names from a server
and store them in an array, see the next example.

The Public caslib is in the list.

The value occurs at the following positions:
4

The array does not contain Custom.

Extract an Array from a Result Table

You can extract values from a single column of a result table as an array.
Example Code 7.18 Assign Values from a Result Table

table.caslibInfo result=r; /* 1 %/
caslibNames = r.caslibinfo[, 'Name'] ; /* 2 */

print caslibNames;

do name over caslibNames; /* 3 */
table.tableInfo / caslib=name; /* 4 *x/

end;

run;

1 The table.caslibinfo action is run. The action identifies the caslibs that are
available to the session and stores the results in the variable that is named R.

2 The data type for the R variable is a dictionary. The result table that is returned
from the table.caslibinfo action is accessed from the dictionary with the dot
operator. When the bracket operator is used with a result table to select a single
column, the resulting data type is an array. In this instance, it is an array of
strings that identify the caslib names.

3 A DO OVER loop iterates over the array of strings. During each iteration, the
string value—the caslib name—is assigned to a temporary variable that is
named Name.

4 For each iteration of the DO OVER loop, the table.tablelnfo action is run to list all
the in-memory tables in the specified caslib. The caslib is identified during each
iteration by the value of the Name variable.

Output 7.1 Values of the caslibNames Variable

{CASUSER (sasdemo) , Formats,Models, Public, Samples}

52 Chapter 7 / CASL Arrays

Creating Multidimensional Arrays

The following example creates a two- and three-dimensional array using the CAS
language.

proc cas;

/* a 2-dimensional, 3x3 array */
x={ {1,2,3}, {4,5,6}, {7.8,9} };

/* these are the same element */
print x[1][1];
print x[1,1];

/* these are the same element */
print x[3][3];

print x[3,3];

run;

/* a 3-dimensional, 3x3x3 array */
x={ { {01,02,03}, {04,05,06}, {07,08,09} },
{ {10,11,12}, {13,14,15}, {16,17,18} },
{ {19,20,21}, {22,23,24}, {25,26,27} } };

/* these are all the same element */
print x[1,1,1];

print x[1][1][1];

print x[1,1][1];

print x[1][1,1];

run;

/* these are all the same element */
print xI[3,3,3];

print x[3] [3][3];

print x[3,3][3];

print x[3]1[3,3];

run;

quit;

53

CASL Dictionaries

Overview 53
Basic Syntax 53
Examples 54
View the Data Structure of a Dictionary 54
Print Keys and Values 55
Iterate Over Key-Value Pairs in a Dictionary 55
Access One Value from a Dictionary 55
Delete a Dictionary Key 56

Overview

CASL dictionaries have the following qualities:
A dictionary is an unordered list of key-value pairs.

A dictionary is accessed by key. Dictionary keys are strings. The keys are case-
insensitive.

Dictionary values can be any data type, including a result table, array, or another
dictionary.

Most actions use a dictionary to return results from the server to the client. To work
with the results of an action, it is important to understand CASL dictionaries.

Basic Syntax

Dictionaries use either brackets ([and]) or the dot operator (.). The basic syntax for
creating a dictionary is the following:

dictionary-name["key"] = value;

54 Chapter 8 / CASL Dictionaries

dictionary-name.key = value;

The next code sample accomplishes the following:
A variable that is named HmeqgTable becomes a dictionary with two keys.
One key is Name, and the other key is Copies.

The value that is paired with Name is a variable of data type STRING with the
value Hmegq.

The value that is paired with the Copies is a variable of data type INT64 with a
value of 2.

Example Code 8.1 Using Brackets to Specify Dictionary Keys

hmegTable ["name"] = "hmeqg";
hmeqTable ["copies"] = 2;

TIP When assigning or retrieving values with the bracket operators, enclose
the key in quotation marks so that CASL does not attempt to interpret the key
as a CASL variable name. As an alternative, you can specify a CASL variable
that has the string data type.

The following code sample has the same outcome as the preceding sample. The
difference is that the dot operator is used to specify the dictionary keys.

Example Code 8.2 Using the Dot Operator to Specify Dictionary Keys

hmegTable.name = "hmeqg";
hmeqgTable.copies = 2;

Examples

View the Data Structure of a Dictionary

The data structure of the HmeqTable dictionary can be viewed with the DESCRIBE
statement:

hmeqTable.name = "hmeq";
hmegTable.copies = 2;
describe hmeqTable;

run;
The PRINT statement shows the following in the SAS log:
dictionary (2 entries, 2 used);

[name] string;
[copies] int64 t;

Examples 55

For more examples, see “View the Data Structure and Values of a Variable” on page
38.

Print Keys and Values

To view the keys and values, you can use the PRINT statement alone:
hmegTable.name = "hmeqg";
hmegTable.copies = 2;
print hmeqTable;

run;

The PRINT statement shows the following in the SAS log:

{name=hmeq, copies=2}

Note: The information can become difficult to read under two conditions: the
number of keys increases or the values are arrays or other dictionaries.

Iterate Over Key-Value Pairs in a Dictionary

You can also use the DO OVER statement to iterate over the keys and values:

do k,v over hmeqgTable;
print "Key: " put(k, $10.) " Value: " v;
end;
run;

The PRINT statement shows the following in the SAS log:

Key: name Value: hmegq
Key: copies Value: 2

Access One Value from a Dictionary

You can use the brackets or dot operator to access a value:

table name = hmeqTable["name"];

table name = hmegTable.name;

56 Chapter 8 / CASL Dictionaries

Delete a Dictionary Key

You can use the DELETE statement to remove the value that is associated with a

key:
hmegTable.name = "hmeq"; /[* 1 %/
hmeqTable.caslib = "casuser"; /* 2 %/
print hmeqTable;
run;
delete hmeqgTable.caslib; /* 3 %/
print hmeqTable;
run;

1 Adictionary key, Name, is paired with the value Hmegq.

2 A second key is added to the dictionary. The key is named Caslib and is paired
with the value Casuser.

3 The DELETE statement removes the value that is associated with the Caslib
key.

The PRINT statement shows the following in the SAS log:

{name=hmeq, caslib=casuser}
{name=hmeq}

57

Loading Data with CASL

Overview 57
Terminology 57
Examples 58
Load a Client-Side File 58
Add a Caslib and Load a Server-Side File 60
Save and Drop an In-Memory Table 61
Key Ideas 63
See Also 63

Overview

You can use PROC CAS to access and load your data locally or remotely, to the
CAS server. Loading data from a client-side file with the UPLOAD statement is
appropriate for small data sets and when you are learning to program with actions.
When the data sets become larger, it is more efficient to use a server-side load with
the loadTable action to access data. To load data, you must associate a caslib with a
data source.

Once you have loaded your data into CAS as an in-memory table, you can save the
table to a data source as a file.

Terminology

The following terms are used throughout this section:

client-side load
data that is transferred from SAS to the CAS server.

58 Chapter 9 / Loading Data with CASL

data source
a table, view, directory, or file from which information is extracted. For example,
the data source can be a directory or the host, port, and other connection
information for an Oracle database.

server-side load
data that is read from a caslib’s data source by the CAS server. Common data
sources are file system directories that are accessible to the CAS controller.
Other data sources are accessed through SAS Data Connectors.

caslib
an in-memory space to hold tables, access control lists, and data source
information. All data is available to CAS through caslibs and all operations in
CAS that use data are performed with a caslib in place.

Casuser
a personal caslib that is always available and has global scope. When you start
a CAS session without specifying a caslib, Casuser becomes the active caslib
for that session. The host CAS user location is ~/casuser/ where the ~
represents the user’s home directory. When data is loaded in the Casuser caslib,
only sessions started by you can access the in-memory tables.

in-memory table
data that has been loaded into memory. CAS actions operate on in-memory
tables only.

Examples

Load a Client-Side File

The following example uses the HTTP procedure to download the Cars data set
locally into a temporary file. It then uses the PROC CAS UPLOAD statement to load
the file into CAS. The file received by CAS is stored as temporary until the file is
loaded to an in-memory table. Once it is loaded, the file is removed.

This example uses the caslib Casuser. Casuser is one of the personal caslibs that is
available when a CAS session is started.

filename cars
temp; /[*1*/
proc
http /
* 9 */

url='http://support.sas.com/documentation/onlinedoc/viya/
exampledatasets/cars.csv'

out=cars;
run;

proc cas;

Examples 59

upload
/*3%*/
path=%sysfunc (quote (¥sysfunc (pathname (cars))))
casOut={caslib="casuser", name="cars"}
importOptions="csv";
run;

table.tableInfo /
/*ax*/
caslib="casuser",
table="cars";
quit;

filename cars
clear; /*[E*/

1 The FILENAME statement creates the fileref Cars to the SAS temporary folder
for the cars.csv file.

2 The HTTP procedure creates a GET request for the cars.csv file. For information
about the HTTP procedure, see “HTTP Procedure” in Base SAS Procedures
Guide.

3 The UPLOAD statement uploads the file cars.csv to CAS as the in-memory table
Cars. The PATH= option uses the %SYSFUNC function to specify the path to the
input file. The CASOUT= option specifies that the in-memory table name is Cars,
and it is stored in the Casuser caslib. The IMPORTOPTIONS= option specifies
the file type of the input file. For information about the UPLOAD statement, see
“UPLOAD Statement” in SAS Cloud Analytic Services: CASL Reference.

4 The tablelnfo action displays information about the in-memory table Cars. For
information about the tablelnfo action, see “Table information” in SAS Viya:
System Programming Guide.

5 The FILENAME statement clears the Cars fileref.

Output 9.1 SAS Log

NOTE: Cloud Analytic Services made the uploaded file available as table CARS in
caslib CASUSER (sasdemo) .

NOTE: The table CARS has been created in caslib CASUSER (sasdemo) from binary data
uploaded to Cloud Analytic Services.

{cas1ib=CASUSER (sasdemo) , tableName=CARS}

Output 9.2 Results of the table.tablelnfo Action

Table Informaticn for Caslib CASUSER(sasdemo)

Number Number MNumber | NLS Promoted | Duplicated
Table Name | of Rows | of Columns | of Indexed Columns | encoding | Created Last Modified Table Rows | View Compressed

CARS 428 15 0 uffi-g 2019-03-15T13:20:51-04:00 | 2019-03-15T13:20:51-04:00 Mo MNo MNo MNo

http://documentation.sas.com/?docsetId=proc&docsetVersion=v_001&docsetTarget=n0bdg5vmrpyi7jn1pbgbje2atoov.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=v_001&docsetTarget=n0bdg5vmrpyi7jn1pbgbje2atoov.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p0snxsdr4lq4ngn19lhlxwrxobh8.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-tableinfo.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-tableinfo.htm&locale=en

60 Chapter 9 / Loading Data with CASL

Add a Caslib and Load a Server-Side File

The following example uses the loadTable action to perform a server-side load of
the file hmeg.csv, and then displays information about the in-memory table that is
created. The file is loaded into the caslib Sampledata as the in-memory table Hmeq,
For more information, see “Working with Tables and Files” in SAS Viya: System
Programming Guide.

First, download the hmeq.csv file from SAS Viya Example Data Sets and save itin a
data source that CAS can access.

proc cas;
table.addCaslib / /*1%/
name="sampledata"
dataSource={srcType="path"}
path="file-system-directory-path";

table.loadTable / /* 2%/
caslib="sampledata"
path="hmeq.csv"
casout={name="hmeq"};

run;
table.columninfo / table="hmeq"; /*3 %/
table.tableDetails / table="hmeq"; /*ax/
table.dropCaslib / caslib="sampledata"; /*5 %/
quit;

1 The table.addCaslib action adds a caslib that has access to your data. The input
data must be located in a directory that is accessible to the CAS server. For
information about the addCaslib action, see “Add caslib” in SAS Viya: System
Programming Guide.

2 The table.loadTable action loads the input data set hmeq.csv into CAS. An in-
memory table named Hmegq is created in the caslib Sampledata. For information
about the loadTable action, see “Load table” in SAS Viya: System Programming
Guide.

3 The table.columinfo action displays column information such as type, length, and
width. For information about the columninfo action, see “Column information” in
SAS Viya: System Programming Guide.

4 The table.tableDetails action displays details of table Hmeq. For information
about the tableDetails action, see “Table details” in SAS Viya: System
Programming Guide.

5 The table.dropCaslib action drops the caslib Sampledata.

Output 9.3 SAS Log

NOTE: Active Session now casauto.
NOTE: 'sampledata' is now the active caslib.
NOTE: Cloud Analytic Services added the caslib 'sampledata'.
NOTE: Cloud Analytic Services made the file hmeq.csv available as table HMEQ in
caslib sampledata.
{caslib=sampledata, tableName=HMEQ}

http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=p1xt9526uq5etwn1vmnk8koh0k6y.htm&docsetTargetAnchor=n1bingiiz39hstn10guor01pawlm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=p1xt9526uq5etwn1vmnk8koh0k6y.htm&docsetTargetAnchor=n1bingiiz39hstn10guor01pawlm&locale=en
http://support.sas.com/documentation/onlinedoc/viya/examples.htm
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-addcaslib.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-addcaslib.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-loadtable.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-loadtable.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-columninfo.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-columninfo.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-tabledetails.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-tabledetails.htm&locale=en

Output 9.4 Results of the table.addCaslib Action

Library Type | Path

sampledata | PATH

Column Id
BAD 1
LOAN 2
MORTDUE = 3
VALUE 4
REASON 5
JOB 6
YOJ 7
DEROG 3
DELING 9
CLAGE 10
NINQ 1
CLNO 12
DEBTINC | 13

CAS Library Information

Output 9.6 Results of the table.tableDetails Action

Number
of | Active Fixed Variable

Examples 61

Active
Yes

Index = Compressed = Compression

Sub-directories = Session

included local

frdstore/data/sampledatal Mo Yes

Output 9.5 Results of the table.columninfo Action
Column Information for HMEQ in Caslib sampledata
Formatted | Format | Format
Type Length Length = Width Decimal
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
varchar 7 0 0
varchar 7 0 0
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
double 8 12 0 0
Detail Infermation for hmeq in Caslib sampledata.
Blocks | Memory Blocks | Memory | Blocks | Memory
| | Mapped | Ur 1| Ur 1 | Allocated | Allocated | Size

Node | Blocks | Blocks | Rows Datasize Datasize M

ALL 280 140 | 5960 785334 T0134

PP

140

PP

810424

PP

140

PP

810424

0

Save and Drop an In-Memory Table

0

0

Size Ratio
0 0

The following example loads the Iris data set into CAS, and then saves it to a data
source. The active caslib is Casuser. The file is uploaded to Casuser as an in-
memory table, and then saved in Casuser as a SASHDAT file. Once the table is
saved as a SASHDAT file, you can drop the in-memory table. For more information
about saving tables, see “Saving Tables” in SAS Viya: System Programming Guide.

filename iris
temp;
proc
http
2/

/*1%/

url="'http://support.sas.com/documentation/onlinedoc/viya/

exampledatasets/iris.csv'

out=iris;

http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=p1xt9526uq5etwn1vmnk8koh0k6y.htm&docsetTargetAnchor=n0xt64i4cjzlb4n1nem6e7p31ing&locale=en

62 Chapter 9 / Loading Data with CASL

run;
proc cas;
upload path=
$sysfunc (quote ($sysfunc (pathname (iris)))) /*3%/
casOut={caslib="casuser", name="iris"}
importOptions="csv";
run;

table.save /
/*ax/
table={caslib="casuser", name="iris"}
name="iris.sashdat";
run;

table.fileInfo /
/*5%/
caslib="casuser"
path="iris.sashdat";
run;

table.dropTable /
/*6%*/
caslib="casuser"
name="iris";
run;
filename iris
clear; [* 7%/

1 The FILENAME statement creates the fileref Iris to the SAS temporary folder for
the iris.csv file.

2 The HTTP procedure creates a GET request for the iris.csv file.

3 The UPLOAD statement uploads the file iris.csv to CAS as the in-memory table
Iris. The PATH= option uses the %SYSFUNC function to specify the path to the
input file. The CASOUT= option specifies that the in-memory table name is Iris,
and it is stored in the Casuser caslib. The IMPORTOPTIONS= option specifies
the file type of the input file.

4 The save action saves the table Iris to the data source as the file iris.sashdat.
The table parameter specifies the caslib and name of the in-memory table. The
name parameter specifies the new file name. For information about the save
action, see “Save table” in SAS Viya: System Programming Guide.

5 The fileInfo action displays information about the file iris.sashdat.

6 The dropTable action drops the table Iris that is in the caslib Casuser. For
information about the dropTable action, see “Drop table” in SAS Viya: System
Programming Guide.

7 The FILENAME statement clears the Iris fileref.

http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-save.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-droptable.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-droptable.htm&locale=en

See Also 63
Output 9.7 SAS Log: Table Saved

NOTE: Cloud Analytic Services saved the file iris.sashdat in caslib
CASUSER (sasdemo) .
{caslib=CASUSER (sasdemo) ,name=iris.sashdat}

Output 9.8 Results of the table.fileInfo Action

File Information for iris.sashdat in caslib sampledata.
Permission | Owner Group | Name Size of File in Bytes = Time
-TWIXT-XT-X sasdemo | users | iris.sashdat 413936 | 2019-03-15T11:41:56-04:00

Output 9.9 SAS Log: Table Dropped

NOTE: Active Session now CASAUTO.
NOTE: Cloud Analytic Services dropped table iris from caslib CASUSER (sasdemo) .

Key ldeas

CAS actions operate on in-memory tables only. In-memory tables are available
by using caslibs.

All data is available to CAS through caslibs and all operations in CAS that use
data are performed with a caslib in place. The caslib that is active when you first
start a session is Casuser.

Loading data from a client-side file with the UPLOAD statement is appropriate for
small data sets. For large data, using a server-side load with the loadTable
action is more efficient.

The Tables action set contains actions that enable you to load, save, drop, and
manage your in-memory tables.

See Also

“Server-Side Data Access” in SAS Cloud Analytic Services: Fundamentals
“Client-Side Data Access” in SAS Cloud Analytic Services: Fundamentals
“Caslibs” in SAS Cloud Analytic Services: Fundamentals

“UPLOAD Statement” in SAS Cloud Analytic Services: CASL Reference
“Table Action Set” in SAS Viya: System Programming Guide

“HTTP Procedure” in Base SAS Procedures Guide

http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=p1neoqmn9f1mr0n0zj7vfrp89z6h&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n1i11h5hggxv65n1m5i4nw9s5cli.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p0snxsdr4lq4ngn19lhlxwrxobh8.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-loadtable.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=p0tlipei203bx7n1vqdd3hacelvx&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=n0ggf00wkl9eyqn1coflc6rd3j47&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n1i11h5hggxv65n1m5i4nw9s5cli.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p0snxsdr4lq4ngn19lhlxwrxobh8.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-table-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=v_001&docsetTarget=n0bdg5vmrpyi7jn1pbgbje2atoov.htm&locale=en

64 Chapter 9 / Loading Data with CASL

B “Caslibs” in SAS Cloud Analytic Services: Fundamentals

= “ Syntax for Selected Functions Used with the %SYSFUNC and %QSYSFUNC
Functions” in SAS Macro Language: Reference

m “Data Life Cycle” in SAS Cloud Analytic Services: Fundamentals

http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n1i11h5hggxv65n1m5i4nw9s5cli.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=n1t4y4l0pye5fvn19bho9qc77cyu.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=v_001&docsetTarget=n1t4y4l0pye5fvn19bho9qc77cyu.htm&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=v_001&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=n1rdajpahvwz6mn15o3fl6vw99rr&locale=en

65

10
Running Actions with CASL

Overview 65
Basic Syntax 66
Action Parameters 68
Overview 68
Use Arrays to Condense Long Lists 69
Use Dictionaries as Parameter Values 69
Combine Arrays and Dictionaries as Parameter Values 70
Parameter List Shortcuts 70
Examples 71
Create a List of Tables and Dynamically Load the Tables into Memory 71
Store Action Results in a Variable 73
Work with the Results of an Action 75
Severity and Reason Codes 80
Severity Codes 80
Reason Codes 81
Program with Action Status Codes 81
Key Ideas 82
See Also 83

Overview

CAS actions are executable routines that the CAS server makes available to client
programs. They are the smallest unit of work for the CAS server. There are actions
for each of the many analytic algorithms, for data management, for administration,
and for simple housekeeping. Actions are organized into groups called action sets.
For example, the Table action set contains actions for loading tables, deleting
tables, managing table attributes, and so on.

You can use actions to perform system tasks such as managing CAS sessions,
loading tables, and performing administrative tasks. The majority of actions return

66 Chapter 10 / Running Actions with CASL

results. The results that an action returns can be one of the following types of
information:

result objects
messages

return status
performance statistics

Once your results are returned, you can use CASL language functionality to extract
and manipulate information from the results. You can then use that information as
input to another action, or simply view the results.

Basic Syntax

Use the ACTION statement in PROC CAS to specify an action. The basic syntax for
the ACTION statement is the following:

<ACTION> <action-set-name.>action-name <RESULT= <variable>
<STATUS = <rc> </ parameters>;

This form of the action execution enables you to specify where the results are
placed. If a result is not specified, the results are printed to the default ODS
destination. The status of the action is placed either in the status variable supplied
or in the _status variable. For complete documentation for the ACTION statement,
see “ACTION Statement” in SAS Cloud Analytic Services: CASL Reference. For a
complete list of actions and action sets, see SAS Viya Actions and Action Sets by
Name and Product.

Although a typical CASL program might use many actions, the following is a simple
example of a CASL program that invokes just two actions.

Note: Before you can work with an in-memory table in CAS, you must download the
table Hmeq.csv and load it into CAS. For the complete code for accessing the Hmeq
data set, see “Add a Caslib and Load a Server-Side File” on page 60.

table.columninfo / table="hmeq"; /*1x/
run;

table.fetch / to=5 table="hmeq"; /* 2%/
run;
quit;

1 The columninfo action displays column information for table Hmeq.

2 The table.Fetch action displays the results.

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0w3x61bw2s5a3n1i2oywybloafc.htm&locale=en
http://documentation.sas.com/?docsetId=allprodsactions&docsetVersion=v_012&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=allprodsactions&docsetVersion=v_012&docsetTarget=titlepage.htm&locale=en

Output 10.2 Results: Fetch Action for the Hmeq Table

Index BAD
1 1

o M
-

Output 10.1 Results: Columninfo Action for the Hmeq Table

Column Information for HMEQ in Caslib CASUSER(sasdemo)

Column Id
BAD 1
LOAN 2
MORTDUE 3
VALUE 4
REASON 5
JOB 6
YOuJ T
DEROG B
DELINQ 9
CLAGE 10
NINQ 1"
CLNO 12
DEBTINC 13

LOAN | MORTDUE

1100
1300
1500
1500
1700

25860
70053
13500

§7800

VALUE
39025
658400
16700

112000

Results from table.columninfo

Type

Length

double

double

double

double

varchar

varchar

double

double

double

double

double

double

double

oo 0o 0o 0o | o G0 00 =~ = o | Co oo 00

Formatted Format

Results from table.fetch

Length
12
12
12
12

-

7
12
12
12
12
12
12
12

Selected Rows from Table HMEQ

REASON
Homelmp
Homelmp

Homelmp

Homelmp

JOB

Other
Other
Other

Office

YOJ | DEROG | DELINQ

10.5
7
4

0
0
0

0
2
0

Width
0

[T e Y e S e Y e T o o T e Y o S o A e T s

Basic Syntax

Format
Decimal

0

[T e Y v Y e Y e T o o T s Y o Y Y e T s

67

CLAGE | NINQ | CLNO | DEBTINC

94 366666667
121.83333333
148.46666667

93.333333333

1
0
1

9
14
10

14

68 Chapter 10 / Running Actions with CASL

Action Parameters

Overview

Each action can accept zero or more parameters. Each parameter has a name and
a data type. Data types on page 3 can be arrays, dictionaries, strings, or any
combination. The following svmTrain action has a variety of data types as input
values.

Example Code 10.1 Specifying Parameter Values: Expanded Form

action
svm.svmTrain / /
1/
table={name="'hmeq",
caslib="'casuser', /* 2%/
importOptions={fileType="csv", allowTruncation=false,
guessRows=50}

b

inputs={'loan', 'mortdue', 'value', 'yoj', 'clage', 'clno',

'debtinc', /*3 %/
'reason', 'job', 'derog', 'deling', 'ning'},

nominals={'bad', 'reason', 'job', 'derog', 'deling',
'ning'}, /* 4%/
target="'bad'

/*5%/
run;

Svm.svmTrain specifies SVM as the action set name and svmTrain is the action.

The table parameter specifies information about the input table. The parameter
value list {name="'hmeq', caslib='casuser"',
importOptions={fileType="csv", allowTruncation=false,
guessRows=50}} is a multidimensional dictionary of strings with a nested
dictionary.

The inputs parameter specifies the variables to use for analysis. The parameter
value {'loan', ..., 'ning'} is an expanded form of specifying an array.

The nominals parameter specifies the variables to use as nominals. The
parameter value {'bad', ..., 'ning'} is an expanded form of specifying an
array.

The target parameter specifies the target variable to use for analysis. The
parameter value ‘bad’ is a string.

Action Parameters 69

Use Arrays to Condense Long Lists

You can also condense an array of parameter values by assigning the array to a
variable. In the following example, the variable cols contains the input column
names. The nomVals variable contains the nominal value names.

cols={'loan', 'mortdue', 'value', 'yoj', 'clage', 'clno',
'debtinc', 'reason', 'job', 'derog', 'deling', 'ning'};
nomVals={'bad', 'reason', 'job', 'derog', 'deling', 'ning'};

Here is the example from the section above. However, in the following example, the
variables are used as values to the input and nominals parameters.

action
svm.svmTrain /
table={name="'hmeq",
caslib='casuser',
importOptions={fileType="csv", allowTruncation=false,
guessRows=50}

inputs=cols,

nominals=nomVals,
target="'bad'

run;

Use Dictionaries as Parameter Values

Frequently, parameter values are specified as dictionaries and contain nested
dictionaries. You can assign dictionary values to a variable and then use the
variable as input to parameters. For example, the svmTrain action has a parameter
named table that specifies the nested parameters name, caslib, and importOptions.

action svm.svmTrain / table={name='hmeq',

caslib="'casuser',

importOptions={fileType="csv", allowtruncation=false,
guessrows=50}

J

The following Assignment statement creates a variable named hmeqTable that
contains the values for the parameters name, caslib, and importOptions.

hmeqTable.name="hmeq.csv';

hmegTable.caslib="'casuser';
hmeqTable.importOptions={fileType="csv", allowTruncation=false,
guessRows=50};

70 Chapter 10 / Running Actions with CASL

The following statement then specifies the variable hmeqTable as the value of the
table parameter.

action svm.svmTrain / table=hmeqTable;

Combine Arrays and Dictionaries as Parameter
Values

Column names have been shown in simple arrays of strings. When a column is
specified by name only, the default format is applied. To specify a format, you can
combine the convenience of arrays with a dictionary.

cols = {"bad", "reason", {name="loan", format="dollar."}};
table.fetch / table=hmeqTable fetchVars=cols;

Cols is an array with three fields. The first two fields use the STRING data type. The
third field is a dictionary with the keys Name and Format.

Parameter List Shortcuts

Many parameters are defined as parameter lists. One example of a parameter list is
the table parameter, which specifies an in-memory table that is used for input to the
action. This parameter supports coercion. You can recognize a parameter list when
you see several parameters enclosed in a set of single braces, as in the following
table= parameter:

table={
caslib="string",
computedOnDemand= TRUE | FALSE,

name="table-name",

}

Parameter lists each have a designated parameter. If it is the only parameter that
you want to specify, you can drop the name of the parameter, along with the
enclosing braces. For the example, the name parameter is the only required
parameter and it is common programming practice to specify the table name only.

For example, the following two code samples are equivalent:
Example Code 10.2 Long Form

proc cas;
session casauto;
simple.summary /
table={name="iris"};
run;

TIP Use the long form if you want to specify non-default values for other
parameters in the table parameter.

Examples 71

Example Code 10.3 Shortcut Form

proc cas;
session casauto;
simple.summary /
table="iris";

run;

TIP Use the shortcut form if you want to specify only the required parameter
and use default values for the others.

The second example is functionally equivalent to the first example because the
name parameter is the only required parameter. The server coerces the only value
that is provided for the list, "iris," into the parameter that accepts coercion. The
parameters that accept coercion are identified in the action reference documentation
with short examples of the long form and shortcut form.

Examples

Create a List of Tables and Dynamically Load the
Tables into Memory

Frequently, CASL programs create result tables. CASL provides functions that work
specifically with results tables. The following example uses the built-in function
FINDTABLE and the common function SCAN. The example does the following:

lists all the files available in the active caslib and stores the results.
searches the variable for result tables.

loops through the list and loads each source file into memory.

proc cas;
table.fileinfo result = fileresult / caslib = "casuser"; /* 1%/
print fileresult; /* 2%/
filelist = findtable(fileresult) ; /*3 %/
do cvalue over filelist; /*4*/
table.loadtable / /* 5%/
caslib = "casuser"
path = cvalue.name
casout = {name = scan(cvalue.name,1,".")};
end;
quit;

1 The fileInfo action lists all of the files available in the caslib Casuser and stores
the result table in the variable Fileresult.

2 The PRINT statement prints the result table. The result table shows that there
are four tables in the Casuser caslib.

72 Chapter 10 / Running Actions with CASL

3

The built-in function FINDTABLE returns the table from the results and stores it
in the variable Filelist. The FINDTABLE function assumes that the argument is
an array and iterates over the array to find the first result table. A copy of that
table is returned.

The DO OVER statement iterates over the variable Filelist and returns a list of
the names of the source files.

The loadTable action loads the tables into memory. The variable Cvalue.name
contains the list of table names, and is used as the input for the path parameter.
The name parameter specifies the name to associate with the table. The in-
memory table name is created from the source file name using the SCAN
function to remove the file extension.

Output 10.3 Results: File Information for the Casuser Caslib

fileresult: Results from table.filelnfo

File Information for root of caslib CASUSER(sasdemo).

Size of File
Permission | Owner Group Name in Bytes | Time
W —— sasdemo | Domain Users | cars.csv 42177 | 2018-02-19T16:21:44-04:00
-TWX——- sasdemo Domain Users heart.csv 465447 | 2018-03-20T14:41:51-04:00
) S— sasdemo | Domain Users | humid.cav 10532 | 2018-03-20T14:41:54-04:00
) S— sasdemo | Domain Users | junkmail csv 707912 | 2018-03-20T14:41:57-04:00

The result in the log shows that all the tables in the source path of the caslib were
dynamically loaded into memory with the same name as the source file.

Output 10.4 Listing of Files Loaded info CAS

NOTE: Active Session now MYCAS.
cars.csv
NOTE: Cloud Analytic Services made the file cars.csv available as table CARS in
caslib CASUSER (sasdemo) .
{caslib=CASUSER (sasdemo) , tableName=CARS}
heart.csv
NOTE: Cloud Analytic Services made the file heart.csv available as table HEART in
caslib CASUSER (sasdemo) .
{cas1ib=CASUSER (sasdemo) , tableName=HEART}
humid.csv
NOTE: Cloud Analytic Services made the file humid.csv available as table HUMID in
caslib CASUSER (sasdemo) .
{caslib=CASUSER (sasdemo) , tableName=HUMID}
junkmail.csv
NOTE: Cloud Analytic Services made the file junkmail.csv available as table
JUNKMAIL in caslib CASUSER (sasdemo) .
{caslib:CASUSER(sasdemo),tableName:JUNKMAIL}
NOTE: PROCEDURE CAS used (Total process time):
real time 0.07 seconds

cpu time 0.04 seconds

Examples 73

Store Action Results in a Variable

You can save the results of an action to a variable and then perform operations on
the results inside the variable. You can then use the variable as input to another
action or a CASL statement. The following example stores the results of the
svmTrain action in a variable. Specific tables are selected from the variable and
printed.

Note: Before you can work with an in-memory table in CAS, you must download the
table Hmeq.csv and load it into CAS. For the complete code for accessing the Hmeq
data set, see “Add a Caslib and Load a Server-Side File” on page 60.

proc cas;
action svm.svmTrain
result=gsvmResults / /*1 %/
table={name='hmeq', caslib='casuser'},
inputs = ${1oan, mortdue, value, reason, job, yoj,
derog, deling , clage , ning, clno , debtinc}
nominals = ${bad, reason, job, derog, deling, ning}
target="bad";
run;
describe
svmResults; /*2 */
run;
print
svmResults.modelInfo /*3 */
svmResults.misclassification
svmResults.fitStatistics;
run;
quit;

1 The Assignment statement assigns the result tables created by the svmTrain
action to a variable named svmResults by using the RESULT= option

2 The DESCRIBE statement writes the data structure and data type of the
svmResults dictionary to the SAS log.

3 The PRINT statement selects the tables to be printed to the output destination.

The DESCRIBE statement writes the structure of the svmResults dictionary into the
SAS log. This output shows that there are six results tables and includes the row
and column information for each. You can use this information to select specific
tables. In this example, the Modellnfo, Misclassification, and FitStatistics tables are
selected for printing.

74 Chapter 10 / Running Actions with CASL

Output 10.5 Structure of the SvymResults Dictionary

93 describe svmResults;
94 run;
dictionary (6 entries, 6 used);
[ModelInfo] Table ([8] Rows [2] columns
Column Names:
[1] Descr [] (char)
[2] Value [] (char)

[NObs] Table ([2] Rows [2] columns
Column Names:

[1] Descr [] (char)
[2] N [] (double)
[TrainingResult] Table ([10] Rows [2] columns
Column Names:
[1] Descr [] (char)
[2] Value [] (double)
[IterHistory] Table ([22] Rows [3] columns
Column Names:
[1] Iteration [] (double)
[2] Complementarity [] (double)
[3] Feasibility [] (double)
[Misclassification] Table ([3] Rows [4] columns
Column Names:
[1] Observed [] (char)
[2] PredEvent [0] (double)
[3] PredNonEvent [1] (double)
[4] TotalTrain [Total] (double)
[FitStatistics] Table ([4] Rows [2] columns
Column Names:
[1] Statistic [] (char)
[2] Training [] (double)

Examples 75
Output 10.6 Results: SvmTrain Result Tables Printed Using the PRINT Statement

modellnfo: Results from svm.svmTrain

Model Information

Task Type C_CLAS
Optimization Technigque | Interior Point
Scale YES

Kernel Function Linear
Penalty Method C

Penalty Parameter 1

Maximum lterations 25
Tolerance 1e-06

Misclassification Matrix
Training Prediction

Observed 0 1 | Total
0 3055 | 9| 3064
1 257 | 43 300
Total 332 52 3364

Fit Statistics
Statistic Training
Accuracy 0.5209
Error 0.07TH
Sensitivity 0.9571
Specificity 0.1433

TIP You can use the DEFAULT statement to specify a default variable that
will store action’s results. For more information, see “DEFAULT Statement” in
SAS Cloud Analytic Services: CASL Reference.

Work with the Results of an Action

The following example uses three steps to perform the following tasks:

Evaluate the data in the Hmeq table and store the results in the CASL variable
cardResult.

CASL statements are used to iterate over the CASL variable cardResult, and
create two variables that contain arrays: one for the analysis variables, and one
for the nominal variables. These CASL variables are then used as input to the
inputs and nominal parameters in the svmTrain action.

The svmTrain action from the Support Vector Machine (svm) action set builds a
model for predicting home loan defaults. The action has three parameters that
require input variables. The inputs parameter specifies the variables to be used

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1d5ahu5v6sgmmn1d6fkuimrvso8.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1d5ahu5v6sgmmn1d6fkuimrvso8.htm&locale=en

76 Chapter 10 / Running Actions with CASL

for analysis. The nominals parameter specifics nominal variables to use for
analysis. The target parameter specifies the target variable to use for analysis.

Note: Before you can upload a table to CAS, you must download the table
Hmeq.csv and load it into CAS. For the complete code for accessing the Hmeq data
set, see “Add a Caslib and Load a Server-Side File” on page 60.

1 First, run the summarize action to create a cardinality data table, which contains
summary information for each variable and some additional statistics about
numeric variables. Use the fetch action to fetch the rows from the cardinality
table and store them in a variable. The variable will be used for conditional
processing of row and columns selection in the next step.

proc cas;
cardinality.summarize / /*1%x/
table={name="'hmeq'},
cardinality={name='Card' replace=true},
options={nLevels=20};

table.fetch result=cardResult / table="Card" to=99999; /* 2%/

describe
cardResult ; /*3 %/
run;
print cardResult ; [*ax/
run;

1 The summarize action evaluates the data cardinality and creates an in-
memory table named Card.

2 The fetch action displays the rows in the table Card. The RESULT= option
specifies that the result table is stored the variable cardResult.

3 The DESCRIBE statement writes the data types and structure of the variable
cardResult to the SAS log.

4 The PRINT statement displays the contents of the results table that is stored
in the variable cardResult. Because the results are result tables, they are
printed to the ODS destination.

The DESCRIBE statement prints the structure of the variable to the SAS log.
The variable cardResult is a dictionary that contains the table named Fetch.
Table Fetch contains the rows and columns from the Hmeq table.

Examples

Output 10.7 Structure of the CardResult Variable

dictionary (1 entries, 1 used);

[Fetch] Table ([13] Rows [27] columns
Column Names:

[1] _Index_ [1 (int32)

[2] _VARNAME [Variable name] (char)

[3] _FMTWIDTH_ [Width of the variable formatted value] (double)

[4] TYPE [Type of the raw values] (char)

[5] _RLEVEL_ [Recommended level for analytics] (char)

[6] _ORDER_ [Variable sort order] (char)

[7] _MORE_ [Have more unreported levels] (char)

[8] _CARDINALITY [Number of levels] (double)

[9] _NOBS_ [Number of observations] (double)

[10] _SUMFREQS [Total summation of frequencies] (double)

[11] _NMISS [Number of missing values] (double)

[12] _MISSFMT_ [Format of the missing value] (char)

[13] _VISIBLE [Percentage of the visible part of the report] (double)

[14] MIN [Minimum numeric value] (double)

[15] _MAX [Maximum numeric value] (double)

[16] _MEAN [Mean 1 (double)

[17] _STDDEV_ [Standard deviation] (double)

[18] _SKEWNESS [Skewness] (double)

[19] KURTOSIS [Kurtosis 1 (double)

[20] _MFREQ [Maximum frequency] (double)

[21] _MFREQFOUNDLEVEL [Found maximum frequency in the visible part of the
report] (char)

[22] _MFREQNUM [Numeric level with the maximum frequency] (double)

[23] _MFREQCHR_ [Character level with the maximum frequency] (char)

[24] _MFREQCFMT [Formatted level with the maximum frequency] (char)

[25] _LASTNUM [Last raw numeric value (cutoff)] (double)

[26] _LASTCHR_ [Last raw character value (cutoff)] (char)

[27] _LASTCFMT [Last formatted value (cutoff)] (char)

1007 describe card;

The following partial results table shows the rows that were fetched from the
Hmeq table and stored as the fetch action results table. In the next step, the
columns Variable name (_VARNAME_) and Recommended level for analytics
(_RLEVEL_) are used for selecting rows and columns to build an array of
nominal variable names and an array of analysis variable names.

78 Chapter 10 / Running Actions with CASL

Output 10.8 Partial Results: Fetched Rows from the Hmeq Table

cardResult: Results from table.fetch

Width of the

variable | Type of Recommended | Variable Ha

Variable formatted | the raw | level for sort unr

Index | name value wvalues | analytics order lew
1| BAD 12 ' N CLASS ASC N
2 | LOAN 12 ' N INTERVAL ASC hd
3 | MORTDUE 12 ' N INTERVAL ASC hd
4 | VALUE 12 ' N INTERVAL ASC hd
5 | REASON C CLASS ASC N
6 | JOB 7T|C CLASS ASC N
T Yol 12 ' N INTERVAL ASC hd
& | DEROG 12 ' N CLASS ASC N
9 | DELINGQ 12 ' N CLASS ASC N
10 | CLAGE 12 ' N INTERVAL ASC hd
11 | NINQ 12 ' N CLASS ASC N
12 | CLNO 12 ' N INTERVAL ASC hd
13 | DEBTINC 12 ' N INTERVAL ASC hd

2 You can now create variables to hold the column names that will be used as
nominal and analysis variable names. You can conditionally select rows and
columns with the CASL .WHERE() operator and the [] selection syntax. For more
information about row and column select, as well as the WHERE() operator, see
Chapter 11, “CASL Result Tables,” on page 85.

targetVar =

"BAD"; [*ax/
inputCols =

{}: /*2%/
nominals =

{}: /*3%/

nominals = cardResult.Fetch.where (trim(_ RLEVEL)
= 'CLASS')
[,' VARNAME ']; [*ax*/

inputCols = cardResult.Fetch.where(trim(VARNAME)
I= targetVar)
[,' VARNAME ']; /%5 %/

print
nominals; /*6*/
run;
print inputCols;
run;

1 The Assignment statement creates the variable targetVar, which contains the
target variable Bad. The target variable will be specified by the target
parameter in the symTrain action.

Examples 79

The Assignment statement creates the variable inputCols, which will contain
the column names to use as analysis variables. InputCols will be specified by
the inputs parameter in the svmTrain action set. The braces indicate an array.

The Assignment statement creates the CASL variable Nominals, which will
contain the column names to use as nominal variables. InputCols will be
specified by the inputs parameter in the svmTrain action set. The braces
indicate an array.

Build the array of column names for the Nominal variable by using row and
column selection. Row selection is done using the .WHERE() operator to
subset the rows in the result table. The expression returns column names
where the _RLEVEL_ value is CLASS. Column selection is done using the []
syntax. The code [,' VARNAME '] specifies that the column _VARNAME_ is
selected.

Build the array of column names for the inputCols variable by using row and
column selection. Row selection is done using the .WHERE() operator to
subset the rows in the result table. The expression returns column names
where the _VARNAME _ value is not the target variable. Column selection is
done using the [] syntax. The code [,' VARNAME '] specifies that the
column _VARNAME_ is selected.

The PRINT statement displays the contents of the Nominals and inputCols
variables. Because the variables are arrays, they are written to the SAS log.

TIP When arrays of strings are printed, they are displayed in the SAS
log without quotation marks. You do not need to enclose the values in
quotation marks when you supply the array to an action because CASL
knows the beginning and ending of each string.

Output 10.9 Listing of the Values in the Variables Nominal and InputCols

print nominals;
run;

{BAD ,REASON , JOB ,DEROG ,DELINQ ,NINQ }
print inputCols;
run;
{LOAN ,MORTDUE, VALUE ,REASON ,JOB , YOJ ,DEROG ,DELINQ ,

CLAGE ,NINQ , CLNO ,DEBTINC}

3 Run the svmTrain action to build the model. Use the variable InputCols as input

for

the inputs parameter. Use the Nominals variables as input to the nominals

parameter. The RESULT= option specifies that the table is stored in the variable
Svmresults. Now that the nominal and analysis column names are stored in the
appropriate variable, you can use the variables as input to the inputs. You can
use the nominals parameters in the svmTrain action.

action svm.svmTrain /
table="hmeq',
inputs=inputCols,
nominals=nominals,
target=targetVar;
run;

quit;

80 Chapter 10 / Running Actions with CASL
Output 10.10 Results: svmTrain Action

Results from svm.svmTrain

Model Information

Task Type C CLAS
Optimization Technique | Interior Point
Scale YES

Kernel Function Linear
Penalty Method c

Penalty Parameter 1

Maximum lterations 25
Tolerance 1e-06

Number of Observations Read | 5960
Number of Observations Used | 3364

Training Results

Inner Product of Weights 19.8000318
Bias 1.53729256
Total Slack (Constraint Violations) 53292345
Norm of Longest Vector 272195233
Number of Support Vectors 33581
Number of Support Vectors on Margin 267
Maximum F 2.59999425
Minimum F -1.0000874
Number of Effects 12
Columns in Data Matrix 49

Severity and Reason Codes

Severity Codes

A severity code indicates whether an action succeeded or failed. The following table
lists the possible values and the meaning of each.

Table 10.1 Severity Codes

Severity Severity Level
Code Indicated Description

0 Normal Indicates that the action completed successfully.

Severity and Reason Codes 81

Severity Severity Level

Code Indicated Description

1 Warning Indicates a minor issue that did not prevent the
action from completing successfully. The reason
code might provide additional information.

2 Error Indicates an error that prevented the action from

completing successfully. The reason code provides
additional information.

Reason Codes

A reason code provides general information about the status code. The following
table lists the possible values and the meaning of each.

Table 10.2 Reason Codes

Reason

Code Reason Category Description

0 Success Indicates that the action completed successfully.

1 Authorization Indicates a permission problem.

2 Network Indicates a network problem during connection
or a network connection failure.

3 Memory Indicates an insufficient memory condition.

4 Authentication Indicates an authentication error.

5 Exception Indicates an unexpected error condition that
prevented the action from completing
successfully.

6 Termination Indicates a severe error condition that cause the

action to terminate.

Program with Action Status Codes

The following example demonstrates how to work with the status that is returned by
an action.

82 Chapter 10 / Running Actions with CASL

proc cas;
session casauto;

table.loadTable result=r status=sc / /* 1 */
path="foo.csv" /* 2 %/
casout={name="foo"};

run;

print "Severity code: " sc.severity; /* 3 %/

print "Reason: " sc.reason;

print "Status: " sc.status;

run;

if (0 == sc.severity) then do;
table.columnInfo / table="foo";

end;

run;

quit;

1 The action status is saved in a variable that is named Sc.

2 Trigger an error, by using the table.loadTable action to access a file that does not
exist.

3 The PRINT statement writes the value for each of the keys in the status to the

SAS log.

Severity: 2

Reason: 0

Status: The action was not successful.

Key ldeas

Actions are the building blocks of CASL programs. Actions are organized into
groups of similar functionality called action sets.

The action set name is optional, but an action name might not be unique among
all action sets. It is best to include both the action set name and the action name
to avoid ambiguity.

Each action is a self-contained request. After creating a session, client programs
makes a series of requests to invoke actions on that session. The actions of a
particular session execute one at a time.

Most actions return a dictionary that contains a result table. The result tables can
then be manipulated, printed, or graphed.

You can use the status codes returned by action for error checking.

Use the DESCRIBE statement to view the structure of your results. Use the
PRINT statement to print output the current open output destination. For more
information, see Chapter 6, “Using the DESCRIBE Statement,” on page 35.

See Also 83

See Also

= Cloud Analytic Services Actions: A Holistic View
“ACTION Statement” in SAS Cloud Analytic Services: CASL Reference
m SAS Viya: System Programming Guide

m SAS Visual Analytics: Programming Guide
m SAS Visual Statistics: Programming Guide
m SAS Visual Data Mining and Machine Learning: Programming Guide

m SAS Visual Data Mining and Machine Learning: Deep Learning Programming
Guide

m SAS Visual Text Analytics: Programming Guide

m SAS Optimization: Mathematical Optimization Programming Guide
m SAS Econometrics: Programming Guide

m SAS Visual Forecasting: Programming Guide

B SAS Data Quality: CAS Action Programming Guide

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/1981-2018.pdf
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0w3x61bw2s5a3n1i2oywybloafc.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casanpg&docsetVersion=v_012&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casactstat&docsetVersion=v_009&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casactml&docsetVersion=v_011&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdlpg&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdlpg&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casvtapg&docsetVersion=v_012&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casactmopt&docsetVersion=v_007&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casactecon&docsetVersion=v_009&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casactforecast&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casactdq&docsetVersion=v_010&docsetTarget=titlepage.htm&locale=en

84 Chapter 10 / Running Actions with CASL

85

11

CASL Result Tables

OVEIVIBW 86
Operators 87
Result Table Properties 87
Accessing Result Tables 89
Selecting Rows 89
Example Result Table from the Simple.Freq Action 89
Selecta Single Row 90
SelectaRange of Rows 90
Select the First, Third, and Fifth Rows 90
Select the Third and First Rows 91
Selecting Columns 91
Example Result Table from the Simple.Summary Action 91
Selecta Single Column 91
Select the First Three Columns by Position 92
Select Three Columns by Name 92
Select Four Columns by Positionand Name 93
Combining Row and Column Selection 94
Example Result Table from the Simple.CrossTab Action 94
Select Two Columns from the First Five Rows 94
Filter Rows with the Where Operator 95
Filter Rows and Subset the Columns by Position 95
Subset Rows by Position and Add a Computed Column 96
Iterating over Rows and Columns 96
Example Result Table from the Simple.Distinct Action 96
lterate over ROWS 97
Access Rows as Key-Value Pairs 97
User-Defined Result Tables 98

See AlSO . . 929

86 Chapter 11 / CASL Result Tables

Overview

Result tables are typically summarizations of data or information.

Summary result table Informational result table
An example of a summarization is the

simple.summary action. When you run the
simple.summary action, the action returns
descriptive statistics for numeric variables

An example of an informational result table is the
information that is returned by the decisionTree.dtreeTrain
action. Informational result tables are common with actions
that perform modeling.

such as the number of observations,
number of missing values, mean value, and
so on.

Results from simple.summary

Descriptive Statistics for IRIS

Results from decisionTree.dtreeTrain

Decision Tree for IRIS

N Number of Tree Nodes 35.000000

=l N| Mean | Miss | ' pMax Number of Branches 2.000000
Eenan eyl 150 | 584333 0 | Number of Levels 6.000000
Number of Leaves 18.000000

Number of Bins 20.000000

Minimum Size of Leaves 5.000000

Maximum Size of Leaves 20.000000

Number of Variables 2.000000

Alpha for Cost-Complexity Pruning 0

Number of Observations Used 150.000000

Maximum STD of Leaves 8.404761

Minimum STD of Leaves 0330719

Mean Squared Error 9701768

Operators

Operator

.where()

.compute()

[{row-selection},
{column-selection}]

Definition

Subsets the rows in a result table
according to the expression. This
operator returns a new result table.

Adds a temporary computed column to
a result table. The values are computed
according to an expression. This
operator returns a new result table.

Selects rows and columns from a result
table.

Row selection is performed by
position. You can specify a single row
or an array of row positions.

Column selection is performed by
position or by name. You can
determine column names with the
DESCRIBE statement.

Depending on what you select, this
operator can return a new result table, a
dictionary, or an array. For more
information, see “Selecting Rows” on
page 89 and “Selecting Columns” on
page 91.

Result Table Properties

Result Table Properties 87

Syntax

result-table.where(filter-expression)

result-table.compute(<{'variable-
name', 'label', 'format'} >
expression)

result-table[{row-1, row-2, ...}]

result-table[row-lower-bound:row-
upper-bound)]

result-table[,column-positions]

result-table[row-positions,
{column-1, column-2, ...}]

result-table[,{"column-name-1",
"column-name-2", ...}]

A dictionary is associated with a result table to provide additional information about
the table. The dictionary entries are identified in the following table:

Table 11.1 Result Table Properties

Property Description

nrows

This property contains the
number of rows in the table.

Syntax

result-table.nrows;

88 Chapter 11 / CASL Result Tables

Property Description Syntax

ncols This property contains the result-table.ncols;
number of columns in the table.

attrs This property contains action- result-table.attrs;
specific attributes for the table.
This property is not added by all
actions.

name This property contains the name result-table.name;
of the table. In most cases, it is
the same as the dictionary key
that is used to access the table
from the results.

title This property contains the title of result-table.title;
the table.

To experiment with the sample commands, you can run the following code to load a
SAS data set, run the decisionTree.dtreeTrain action, and work with the result
tables.

Example Code 11.1 Display Result Table Properties

proc cas;
decisionTree.dtreeTrain result=dt /
table="irisg"
inputs={"sepallength", "sepalwidth"}
target="petallength";
run;

/* Begin by printing the results. */
print dt;

/* Assign the ModelInfo result table to a variable. */
tbl = dt.ModellInfo;

run;

/* At this point, you can run the sample commands. */

print "Result table name: " tbl.name;
print "Result table title: " tbl.title;
print "Number of rows: " tbl.nrows;
print "Number of columns: " tbl.ncols;
print "Result attributes: " tbl.attrs;
run;

Example Code 11.1 Result Table Properties

Result table name: ModelInfo

Result table title: Decision Tree for IRIS

Number of rows: 13

Number of columns: 2

Result attributes: {Action:dtreeTrain,Actionset:decisionTree,CreateTime:xxxxx}

Selecting Rows

Accessing Result Tables

When an action returns a result, the data type for the result is most often a
dictionary with one or more result tables stored as values.

proc cas;
simple.freq result=r / table="cars" inputs={"origin"};
describe r;

run;

The following output is written to the SAS log and indicates the following:
The data type for the variable that is named r is a dictionary.
The dictionary has one key-value pair.

The key is Frequency. The value is a result table.

dictionary (1 entries, 1 used);

[Frequency] Table ([3] Rows [5] columns
Column Names:
[1] Column [Analysis Variable] (varchar)
[2] CharVar [Character Value] (varchar)
[3] FmtVar [Formatted Value (varchar)
[4] (int64) [BEST12.]
1 (

1
Level [Level]
1

Frequency [Frequency double) [BEST12.

89

The result table can be accessed from the result by specifying the dictionary name

and the key: r.Frequency. This notation is used throughout this section.

TIP An alternative syntax to access the result table is r[“Frequency”]. This
alternative syntax is necessary when a result table name includes a period or
a space character.

Selecting Rows

Example Result Table from the Simple.Freq Action

Run the following statements in order to perform the row selection samples in this
section.

proc cas;
simple.freq result=r / table="cars" input="make";
run;

90 Chapter 11 / CASL Result Tables

Select a Single Row

Example Code 11.2 Select the First Row

print r.Frequency[1];
run;

The PRINT statement shows the following in the SAS log:

{Ccolumn=Make, CharVar=Acura, FmtVar=Acura ,Level=1,Frequency=7}
Example Code 11.3 Select the Last Row

print r.Frequency[r.Frequency.nrows] ;
run;

TIP See table properties on page 87 for information about nrows.

The PRINT statement shows the following in the SAS log:

{Ccolumn=Make, CharVar=Volvo, FmtVar=Volvo ,Level=38, Frequency=12}

Select a Range of Rows

print r.Frequency[1:3];
run;

This example shows the range operator (:).

Analysis | Character

Variable | Value Formatted Value Level Frequency
Make Acura Acura 1 7
Make Audi Audi 2 19
Make BMW BMW 3 20

Select the First, Third, and Fifth Rows

print r.Frequency[{1, 3, 5}];
run;

Selecting Columns 91

Analysis

Variable | Character Value Formatted Value | Level Frequency
Make Acura Acura 1 7
Make BMW BMWY 3 20
Make Cadillac Cadillac 5 8

Select the Third and First Rows

print r.Frequency[{3, 1}];
run;

Analysis | Character

Variable | Value Formatted Value Level Frequency
Make BMW BMW 3 20
Make Acura Acura 1 7

Selecting Columns

Example Result Table from the Simple.Summary
Action

Run the following statements in order to perform the column selection samples in
this section.

proc cas;
simple.summary result=r / table="cars";
run;

Select a Single Column

Note: When you select a single column, the result is an array. Each field in the
array stores a row value from the selected column.

Example Code 11.4 Select the First Column

print r.Summaryl[,1];
run;

92 Chapter 11 / CASL Result Tables

The PRINT statement shows the following in the SAS log:

{MsrP , Invoice ,EngineSize ,Cylinders ,Horsepower ,MPG City
MPG_Highway,Weight ,Wheelbase ,Length }

Select the First Three Columns by Position

print r.Summary[,1:3];
run;

Analysis Variable Minimum Maximum

MSRP 10280 192465
Inwoice 9875.00 173560
EngineSize 1.3000 &.3000
Cylinders 3.0000 12.0000
Horsepower 73.0000 500.00
MPG_City 10.0000 60.0000
MPG_Highway 12.0000 66.0000
Weight 1850.00 7190.00
Wheelbase 39.0000 144.00
Length 143.00 238.00

Select Three Columns by Name

Note: When you print a table, the column label is printed instead of the column
name. You can determine the column names with the DESCRIBE statement.

print r.Summary[, {"min", "max", "n"}];
run;

Minimum Maximum

10280
9875.00
1.3000
3.0000
73.0000
10.0000
12.0000
1850.00
89.0000
143.00

192465
173560
6.3000
12.0000
500.00
60.0000
66.0000
7190.00
144.00
238.00

428
428
428
426
428
428
428
428
428
428

Selecting Columns 93

Select Four Columns by Position and Name

print r.Summary[, {1, "min", "max", "mean"}];

run;

Analysis Variable Minimum Maximum

MSRP

Invoice
EngineSize
Cylinders
Horsepower
MPG_City
MPG_Highway
Weight
VWheelbase
Length

10280
9575.00
1.3000
3.0000
73.0000
10.0000
12.0000
1850.00
89.0000
143.00

192465
173560
6.3000
12.0000
500.00
60.0000
66.0000
7190.00
144.00
238.00

Mean
32775
30015
3.1967
5.8075
215.89
20.0607
26.8435
3577.95
108.15
186.36

94 Chapter 11 / CASL Result Tables

Combining Row and Column Selection

Example Result Table from the Simple.CrossTab
Action

Row and column selection can be combined. You can also use brackets and
the .where() function.

Run the following statements in order to perform the row and column selection
samples in this section.

proc cas;
simple.crossTab result=r / table="cars" row="make" col="drivetrain";
run;

print r.CrossTab[1:3];
run;

describe r.CrossTab;
run;

The print statement prints the first three rows from the result table. The result table
is named CrossTab.

Make | All | Front | Rear
Acura | 1 5 1
Audi | 12 7 0
BMW | 5 0 15
The DESCRIBE statement prints the following information to the SAS log. Notice

how the column names in the result table (Col1, Col2, Col3) correspond to the
distinct values of the Drivetrain column.

[Crosstab] Table ([38] Rows [4] columns

Column Names:

[1] Make [] (varchar)
[2] Col1l [All] (double)
[3] Col2 [Front] (double)
[4] Col3 [Rear] (double)

Select Two Columns from the First Five Rows

print r.CrossTab[1:5,{"make", "coll"}];

Combining Row and Column Selection 95

run;
Make | All
Acura 1
Audi 12
BMW 5
Buick 1
Cadillac = 1

Filter Rows with the Where Operator

print r.CrossTab.where (coll > 5);

run;
Make All | Front Rear
Audi 12 T 0

Mercedes-Benz | & 0 20
Subaru 11 0 0

Filter Rows and Subset the Columns by Position

print r.CrossTab.where(coll > 5)[,{1,3,4}];
run;

Note: You can filter rows by values of a column that are not included in the results.
The rows are filtered on the number of all-wheel drive vehicles. However, that
column is not selected with the bracket operator.

Make Front Rear
Audi 7 0
Mercedes-Benz 0 20
Subaru 0 0

96 Chapter 11 / CASL Result Tables

Subset Rows by Position and Add a Computed
Column

print r.CrossTab.compute ({"total", "Total"}, coll + col2 + col3)
151K
run;

Make All | Front | Rear Total
Acura 1 5 1 T

Audi 12 7 0 19
BMW b 0 15 20
Buick 1 8 0 9
Cadillac | 1 5 2 8

Iterating over Rows and Columns

Example Result Table from the Simple.Distinct
Action

Run the following statements in order to perform the iteration samples in this
section.

proc cas;
simple.distinct result=r / table="cars";
run;
describe r.Distinct;
run;
print r.Distinct([1:5];
run;

The DESCRIBE statement shows the data structure of the result table. The
information is shown in the SAS log.

[Distinct] Table ([15] Rows [4] columns

Column Names:

[1] Column [Analysis Variable] (string)

[2] NDistinct [Number of Distinct Values] (double) [BEST12.]

[3] NMiss [Number of Missing Values] (double) [BEST12.]
]

[4] Trunc [Truncated] (double) [BEST3.]

Iterating over Rows and Columns 97

Distinct Counts for CARS

Number of Distinct Number of Missing

Analysis Variable Values Values Truncated
Make 38 0 0
Maodel 425 0 0
Type 6 0 0
Origin 3 0 0
DriveTrain 3 0 0

lterate over Rows

When you iterate over a result table, you iterate over the first dimension, the
rows.

When you access an individual row, the row is represented as a dictionary.

do row over r.Distinct;
print (row.Column || " " || row.NDistinct);
end;
run;

Because the PRINT statement is run iteratively on a dictionary, the output is written
to the SAS log.

Make 38
Model 425
Type 6
Origin 3
DriveTrain 3
MSRP 410
Invoice 425
EngineSize 43
Cylinders 8
Horsepower 110
MPG_City 28
MPG_Highway 33
Weight 348
Wheelbase 40
Length 67

Access Rows as Key-Value Pairs

The first DO loop is identical to the preceding example. This loop accesses each
row as a dictionary.

The inner DO loop iterates over the dictionary. Each column name is a key and
enables you to access the column value.

do row over r.Distinct([1:5];

98 Chapter 11 / CASL Result Tables

do k,v over row;
if k in {'Column', 'NDistinct'} then do;
print ('K=" || k || " v=" || v);
end;
end;
end;
run;

The PRINT statement shows the following in the SAS log:

K=Column V=Make
K=NDistinct V=38
K=Column V=Model
K=NDistinct V=425
K=Column V=Type
K=NDistinct V=6
K=Column V=Origin
K=NDistinct V=3
K=Column V=DriveTrain
K=NDistinct V=3

User-Defined Result Tables

You can define your own result table to combine results, status information, and so
on, from several actions. Your result table can then be displayed on the Results tab
in SAS. Other clients can also display result tables in client-specific ways.

The following code sample shows the two important functions for defining a result
table.

The NEWTABLE function enables you to create an empty result table.

The ADDROW function enables you to use an array to append a row to the
result table. Each field in the array corresponds to a column in the result table.

proc cas;
columns = {"x", "y", "z"};
coltypes={"integer", "double", "string"};
table = newtable ("X greater than A, Y greater than B", columns,
coltypes) ;

do i =1 to 5;
z = (string)i;
do j =1tob5;
x = (string)j;
row = {i, 2.6 * j, "abc" || x || z};
addrow (table, row) ;
end;
end;
run;

See Also 99

z = table.where ((x>a)&&(y>b)) .compute ({"pct", "Percent", best4.2},x/

y)i
print z;
run;

The PRINT statement shows the following in the SAS log:

z: Results

X y z Percent
4 7.8 abc34 0.51
4 10.4 abc44 0.38
4 13 abc54 0.31
5 7.8 abc35s 0.64
5 10.4 abc45 0.48
5 13 abc55 0.38

See Also

See CASL function categories table for the functions that work with result tables.
“NEWTABLE Function” in SAS Cloud Analytic Services: CASL Reference
“ADDROW Function” in SAS Cloud Analytic Services: CASL Reference

“DO OVER Statement” in SAS Cloud Analytic Services: CASL Reference
“Simple Analytics Action Set” in SAS Visual Analytics: Programming Guide

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0z88f4eod8tdyn1pun2pg7kfi0q.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=p1blcgh1ewf9qcn14iac0xwi0tzo.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n05g0245fviomnn149y62390h422.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n1enf8paum6q19n1cascbj8z5kpc.htm&locale=en
http://documentation.sas.com/?docsetId=casanpg&docsetVersion=v_012&docsetTarget=cas-simple-TblOfActions.htm&locale=en

100 Chapter 11 / CASL Result Tables

101

12
CASL Missing Values

Definition 101
Numeric Missing Values 101
Character Missing Values 102

Definition

In CASL, if you reference an uninitialized variable the result is a missing value. By
default, missing value is displayed as a single period (.), and a missing character
value as a blank space.

missing value
is a value that indicates that no data value is stored for the variable in the current
observation.

By default, SAS prints a missing numeric value as a single period (.) and a missing
character value as a blank space.

Numeric Missing Values

A missing numeric value is smaller than all numbers. If you sort your data set by
numeric values, observations with missing values for a numeric variable appear first
in the sorted data set. For numeric variables, you can compare special missing
values with numbers and with each other. CASL supports 28 missing values.
Missing values sort as the smallest values where ._is the smallest and .Z is the
largest. Missing values are supported only by numeric data with a DOUBLE data

type.
The following table shows the sorting order of numeric values:

102 Chapter 12 / CASL Missing Values

Table 12.1 Numeric Value Sort Order

Sort

Order Symbol Description

smallest ._ underscore
period

largest A-Z positive numbers

Any operation with a missing value results in a missing value. The following
example demonstrates evaluating an expression with a missing value.

Example Code 12.1 Evaluating Numeric Missing Values

proc cas;
x=15%.+8;
print "x= "x;
run;

Example Code 12.1 SAS Log

Character Missing Values

Character missing values are smaller than any printable character value. When you
sort a data set by a character variable, observations with missing (blank) values for
the BY variable appear before observations in which values for the BY variable
contain only printable characters. Some usually unprintable characters have values
less than the blank. Therefore, when your data includes unprintable characters,
missing values might not appear first in a sorted data set.

The following example demonstrates sorting a list with character missing values.
The example contains an unprintable character (~), and other printable characters
such as regular character values including blank space, .Z, and $.

Example Code 12.2 Sorting Character Missing Values

proc cas;
Students:{"Sylvester", "Angela", "Nikita", "~", "S", "Sumon",
n Kevinll , n n , n . Z" } ,.

ClassAStudents=sort (Students) ;
print "ClassAStudents= " ClassAStudents;
run;

The unprintable character (~) is not displayed first the list as it cannot be sorted.
Therefore, it appears last.

Character Missing Values 103

Example Code 12.2 SAS Log

ClassAStudents= { ,$,.Z,Angela,Kevin,Nikita, Sumon, Sylvester, ~}

104 Chapter 12 / CASL Missing Values

105

13
Writing User-Defined Actions

Overview of User-Defined Actions 105
Basic Workflow for User-Defined Actions 106
User-Defined Action Example 106
Write the Routine 106
Modify the Code to Become a User-Defined Action 107
Persist the Action Set 108
Restore the Action Set from a Table 109
See Also 109

Overview of User-Defined Actions

CASL server-side processing involves writing a CASL program that is stored on the
CAS server. The stored CASL program is defined as a user-defined action set.

Because the action set is stored where the server can access it, the CASL
statements can be written once and run by many users. This can reduce the need to
exchange files between users that store common code.

The following list identifies some of the differences with server-side processing,
compared to the conventional client/server programming that has been shown in
this document:

When your user-defined action runs a CAS action supplied by SAS, it is
important to perform error checking.

You need to use CASL functions such as SEND_RESPONSE that are used with
server-side programming exclusively.

Establish interface rules at your site. For example, you might adopt the rule that
if an action experiences an error, only the status is returned. Similarly, if an
action typically returns a result table, adopt the rule that the action always
returns a result table—even if it has no rows due to filtering.

106 Chapter 13 / Writing User-Defined Actions

Note: You cannot add, remove, or modify a single user-defined action. You must
redefine the entire action set.

Basic Workflow for User-Defined Actions

The workflow for server-side programming with CASL is as follows:

1 Most developers write a series of routines and functions that run successfully
when submitted from the client.

2 The initially written code requires some modification to use CASL functions that
are specific to server-side processing.

3 The builtins.defineActionSet action is used to add the code as your own action
set and actions.

4 Store the user-defined action set as an in-memory table with the
builtins.actionSetToTable action. Then, save the table with the table.save action.

5 Others who need to run the code use the builtins.actionSetFromTable action to
make the user-defined action set available from their sessions.

User-Defined Action Example

Write the Routine

This code sample shows the following:
A user-defined function that lists the file in a caslib with the table.fileInfo action.

The result table is filtered by a user ID—the file system owner associated with
the file.

The core functionality of this user-defined action—run the table.fileInfo action and
filter the results—can be leveraged when writing a user-defined action.

Example Code 13.1 List a User’s Files: User-Defined Function

function list files(caslib , owner);
table.fileInfo result=r / caslib=caslib ;
ownedFiles = r.FileInfo.where (owner eq owner);
return ownedFiles;

end function;

print list files("public", "sasdemo");

User-Defined Action Example 107

Modify the Code to Become a User-Defined Action

This code sample shows the following:
The core functionality of the user-defined function is preserved.
User-defined actions are grouped into action sets to organize functionality.

The arguments to the user-defined function are modified to become parameters
to the user-defined action. Type-checking for parameters is automatically
performed by the server when the action is run.

The SEND_RESPONSE function is the key piece that transfers the objects
created on the server back to the client.

Example Code 13.2 List a User’s Files: User-Defined Action

proc cas;
builtins.defineActionSet /

name="demo" /* 1 %/

actions={
{ /* 2 */
name="listFileg" /* 3%/
desc="Return a list of all files owned by a user in a caslib"
parms={ /* a4 *x/
{name="caslib" type="string" required=TRUE}
{name="owner" type="string" required=TRUE}

}

definition=" /* 5 %/
table.fileInfo result=r status=s / caslib=caslib;
if 0 != s.severity then do; /* 6 */

send_response (s) ;

end;
searchFor = owner; /* 1 *x/
myTables = r.FileInfo.where (owner eq searchFor) ;
resp.ListFiles = myTables; /* 8 */
send_response (resp) ;

n

}
}
run;

demo.listFiles result=1f / caslib="public" owner="sasdemo";
print 1f.ListFiles; /* 8 */
run;

1 The name parameter is used to specify the entire action set name. Demo is used
to reinforce this demonstration example.

2 The definition for each action is enclosed in braces. You can define several
actions in a single call to the builtins.defineActionSet action.

3 The action name is set to ListFiles.

4 The parms parameter is used to specify the input parameters for the action. Two
parameters, Caslib and Owner, are defined as required parameters with the

108 Chapter 13 / Writing User-Defined Actions

STRING data type. See For reference information about parameter data types,
default values, and so on, see the builtins.defineActionSet action.

5 The definition parameter is a long body of code. These are the actions, CASL
variables, CASL statements, and CASL functions that implement the user-
defined action.

6 The status of the table.fileInfo action is stored in the dictionary that is named S.
When the severity value is not 0, the action encountered an error. In the error
condition, exit early and return the S dictionary with the EXIT function.

7 The searchFor variable stores the value of the Owner parameter. This enables
the EQ operator to compare the Owner in the results with the Owner to use as a
filter.

8 After filtering the result table from the table.filelnfo action, the dictionary variable
Resp is created with a single key, ListFiles. The filtered result table is assigned
to the key. The SEND_RESPONSE function returns the variable from the user-
defined action to the client session.

9 The user-defined action, demo.listFiles is run and stores the results in a variable
named Lf. Because the action stores the result table in the ListFiles key, the
result table is accessed on the client from the Lf.ListFiles variable.

The PRINT statement shows the following in the SAS log:

NOTE: Added action set 'demo'.
{actionset=demo}

Note: Output for the demo.listFiles action is not shown because the information is
site-dependent.

Persist the Action Set

After the builtins.defineActionSet action is run, the user-defined action set exists
in the current CAS session only.

You must persist the action set to a SASHDAT file to make it reloadable, or you
need to run the program with the builtins.defineActionSet code again.

SASHDAT files can be saved to path-based caslibs only such as Path, DNFS,
and S3.

The following code sample uses the active caslib. Use a caslib with access
controls that meets your needs. A personal caslib such as Casuser is limited to
access by you only. A caslib such as Public is typically configured to provide
access to all users.

builtins.actionSetToTable / /* 1 %/
actionSet="demo"
casOut={name="demo" replace=True};

table.save /
table="demo"
name="demoActionSet.sashdat" /* 2%/

http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-builtins-defineactionset.htm&locale=en

See Also 109

replace=True;
run;

1 The builtins.ActionSetToTable action makes an in-memory table from the user-
defined action set in the active caslib.

2 The table.save action is used to persist the in-memory table to a SASHDAT file.
You must use a path-based caslib type such as Path, DNFS, or S3.

The PRINT statement shows the following in the SAS log:

NOTE: Cloud Analytic Services saved the file demoActionSet.sashdat in caslib
CASUSER (sasdemo) .
{caslib=CASUSER (sasdemo) ,name=demoActionSet .sashdat}

Restore the Action Set from a Table

The action set can be reconstructed in a session from the SASHDAT file that is
used to persist it.

Access controls can be applied to the SASHDAT file in the caslib to protect
access to the code.

builtins.actionSetFromTable /
table="demoActionSet.sashdat" /* 1 %/
name="demo";

demo.listFiles / caslib="public" owner="sasdemo";
run;

1 The action reads from an in-memory table. As an alternative to running
table.loadTable first, you can specify the SASHDAT file name. The server
temporarily loads the table as a transient-scope table, the action runs to restore
the action set, and then the table is dropped automatically.

The PRINT statement shows the following in the SAS log:

NOTE: Added action set 'demo'.
{actionset=demo}

Note: Output for the demo.listFiles action is not shown because the information is
site-dependent.

See Also

For reference information about parameter data types, default values, and so on,
see the builtins.defineActionSet action.

http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=cas-builtins-defineactionset.htm&locale=en

110 Chapter 13 / Writing User-Defined Actions

For information about SEND RESPONSE and related functions, see the server-
side functions listed in the function categories table.

For additional conceptual information related to server-side processing, see the
details section of the CAS Server Action Set.

http://documentation.sas.com/?docsetId=proccas&docsetVersion=v_001&docsetTarget=n0z88f4eod8tdyn1pun2pg7kfi0q.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=v_013&docsetTarget=n1c3www2ar5w3jn11pch3fnhb7ak.htm&docsetTargetAnchor=n1c3www2ar5w3jn11pch3fnhb7ak&locale=en

	Contents
	Introduction to CASL Programming
	About the CAS Language
	Running CASL Programs

	CASL Data Types
	What Are Data Types?
	Array
	Boolean
	Overview
	Examples

	Character
	Overview
	Examples

	Dictionary
	Numeric
	Overview
	Examples

	Result Table

	CASL Variables
	Overview
	Basic Syntax
	Variable Scope
	See Also

	CASL Expressions
	Definitions for CASL Expressions
	Examples of Expressions
	Operators in Expressions
	Overview
	Arithmetic Operators
	Comparison Operators
	Boolean (Logical) Operators
	Other Operators

	Order of Precedence
	Type Conversions
	Overview
	Numeric Type Conversion
	Comparison Type Conversion

	Casting Data Types
	Basic Syntax

	See Also

	CASL Functions
	Overview
	Functions Supplied by SAS
	Overview
	Examples
	Read in Code Saved Externally
	List Functions

	User-Defined Functions
	Overview
	Basic Syntax
	CASLstore
	Examples
	Create User-Defined Functions
	List User-Defined Functions
	Upload and Execute Stored User-Defined Functions Using CASLstore

	Key Ideas
	See Also

	Using the DESCRIBE Statement
	Overview
	Basic Syntax
	Examples
	Select a Result Table for Printing
	View the Data Structure and Values of a Variable

	See Also

	CASL Arrays
	Overview
	Operators
	Basic Syntax
	Numeric Arrays
	Character Arrays
	Common Use
	Variable Mode
	Literal Mode
	Combining Literal Mode and Variable Mode
	Character Array Ranges

	Examples
	Determine the Array Length
	Append Arrays
	Subset Arrays
	Merge Arrays and Return Unique Values
	Check Whether an Array Contains a Value
	Extract an Array from a Result Table
	Creating Multidimensional Arrays

	CASL Dictionaries
	Overview
	Basic Syntax
	Examples
	View the Data Structure of a Dictionary
	Print Keys and Values
	Iterate Over Key-Value Pairs in a Dictionary
	Access One Value from a Dictionary
	Delete a Dictionary Key

	Loading Data with CASL
	Overview
	Terminology
	Examples
	Load a Client-Side File
	Add a Caslib and Load a Server-Side File
	Save and Drop an In-Memory Table

	Key Ideas
	See Also

	Running Actions with CASL
	Overview
	Basic Syntax
	Action Parameters
	Overview
	Use Arrays to Condense Long Lists
	Use Dictionaries as Parameter Values
	Combine Arrays and Dictionaries as Parameter Values
	Parameter List Shortcuts

	Examples
	Create a List of Tables and Dynamically Load the Tables into
Memory
	Store Action Results in a Variable
	Work with the Results of an Action

	Severity and Reason Codes
	Severity Codes
	Reason Codes
	Program with Action Status Codes

	Key Ideas
	See Also

	CASL Result Tables
	Overview
	Operators
	Result Table Properties
	Accessing Result Tables
	Selecting Rows
	Example Result Table from the Simple.Freq Action
	Select a Single Row
	Select a Range of Rows
	Select the First, Third, and Fifth Rows
	Select the Third and First Rows

	Selecting Columns
	Example Result Table from the Simple.Summary Action
	Select a Single Column
	Select the First Three Columns by Position
	Select Three Columns by Name
	Select Four Columns by Position and Name

	Combining Row and Column Selection
	Example Result Table from the Simple.CrossTab Action
	Select Two Columns from the First Five Rows
	Filter Rows with the Where Operator
	Filter Rows and Subset the Columns by Position
	Subset Rows by Position and Add a Computed Column

	Iterating over Rows and Columns
	Example Result Table from the Simple.Distinct Action
	Iterate over Rows
	Access Rows as Key-Value Pairs

	User-Defined Result Tables
	See Also

	CASL Missing Values
	Definition
	Numeric Missing Values
	Character Missing Values

	Writing User-Defined Actions
	Overview of User-Defined Actions
	Basic Workflow for User-Defined Actions
	User-Defined Action Example
	Write the Routine
	Modify the Code to Become a User-Defined Action
	Persist the Action Set
	Restore the Action Set from a Table

	See Also

