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Overview: GENMOD Procedure
The GENMOD procedure fits generalized linear models, as defined by Nelder and Wedderburn (1972).
The class of generalized linear models is an extension of traditional linear models that allows the mean
of a population to depend on a linear predictor through a nonlinear link function and allows the response
probability distribution to be any member of an exponential family of distributions. Many widely used
statistical models are generalized linear models. These include classical linear models with normal errors,
logistic and probit models for binary data, and log-linear models for multinomial data. Many other useful
statistical models can be formulated as generalized linear models by the selection of an appropriate link
function and response probability distribution.

See McCullagh and Nelder (1989) for a discussion of statistical modeling using generalized linear models.
The books by Aitkin et al. (1989) and Dobson (1990) are also excellent references with many examples of
applications of generalized linear models. Firth (1991) provides an overview of generalized linear models.
Myers, Montgomery, and Vining (2002) provide applications of generalized linear models in the engineering
and physical sciences. Collett (2003) and Hilbe (2009) provide comprehensive accounts of generalized linear
models when the responses are binary.

The analysis of correlated data arising from repeated measurements when the measurements are assumed to
be multivariate normal has been studied extensively. However, the normality assumption might not always be
reasonable; for example, different methodology must be used in the data analysis when the responses are
discrete and correlated. Generalized estimating equations (GEEs) provide a practical method with reasonable
statistical efficiency to analyze such data.

Liang and Zeger (1986) introduced GEEs as a method of dealing with correlated data when, except for the
correlation among responses, the data can be modeled as a generalized linear model. For example, correlated
binary and count data in many cases can be modeled in this way.

The GENMOD procedure can fit models to correlated responses by the GEE method. You can use PROC
GENMOD to fit models with most of the correlation structures from Liang and Zeger (1986) by using GEEs.
For more details on GEEs, see Hardin and Hilbe (2003); Diggle, Liang, and Zeger (1994); Lipsitz et al.
(1994).

Bayesian analysis of generalized linear models can be requested by using the BAYES statement in the
GENMOD procedure. In Bayesian analysis, the model parameters are treated as random variables, and
inference about parameters is based on the posterior distribution of the parameters, given the data. The
posterior distribution is obtained using Bayes’ theorem as the likelihood function of the data weighted
with a prior distribution. The prior distribution enables you to incorporate knowledge or experience of
the likely range of values of the parameters of interest into the analysis. If you have no prior knowledge
of the parameter values, you can use a noninformative prior distribution, and the results of the Bayesian
analysis will be very similar to a classical analysis based on maximum likelihood. A closed form of the
posterior distribution is often not feasible, and a Markov chain Monte Carlo method by Gibbs sampling is
used to simulate samples from the posterior distribution. See Chapter 8, “Introduction to Bayesian Analysis
Procedures,” for an introduction to the basic concepts of Bayesian statistics. Also see the section “Bayesian
Analysis: Advantages and Disadvantages” on page 154 in Chapter 8, “Introduction to Bayesian Analysis
Procedures,” for a discussion of the advantages and disadvantages of Bayesian analysis. See Ibrahim, Chen,
and Sinha (2001) for a detailed description of Bayesian analysis.

In a Bayesian analysis, a Gibbs chain of samples from the posterior distribution is generated for the
model parameters. Summary statistics (mean, standard deviation, quartiles, HPD and credible intervals,
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correlation matrix) and convergence diagnostics (autocorrelations; Gelman-Rubin, Geweke, Raftery-Lewis,
and Heidelberger and Welch tests; the effective sample size; and Monte Carlo standard errors) are computed
for each parameter, as well as the correlation matrix and the covariance matrix of the posterior sample. Trace
plots, posterior density plots, and autocorrelation function plots that are created using ODS Graphics are also
provided for each parameter.

The GENMOD procedure enables you to perform exact logistic regression, also called exact conditional
binary logistic regression, and exact Poisson regression, also called exact conditional Poisson regression, by
specifying one or more EXACT statements. You can test individual parameters or conduct a joint test for
several parameters. The procedure computes two exact tests: the exact conditional score test and the exact
conditional probability test. You can request exact estimation of specific parameters and corresponding odds
ratios where appropriate. Point estimates, standard errors, and confidence intervals are provided.

The GENMOD procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS.”

What Is a Generalized Linear Model?
A traditional linear model is of the form

yi D x0iˇ C "i

where yi is the response variable for the ith observation. The quantity xi is a column vector of covariates, or
explanatory variables, for observation i that is known from the experimental setting and is considered to be
fixed, or nonrandom. The vector of unknown coefficients ˇ is estimated by a least squares fit to the data y.
The "i are assumed to be independent, normal random variables with zero mean and constant variance. The
expected value of yi , denoted by �i , is

�i D x0iˇ

While traditional linear models are used extensively in statistical data analysis, there are types of problems
such as the following for which they are not appropriate.

� It might not be reasonable to assume that data are normally distributed. For example, the normal
distribution (which is continuous) might not be adequate for modeling counts or measured proportions
that are considered to be discrete.

� If the mean of the data is naturally restricted to a range of values, the traditional linear model might
not be appropriate, since the linear predictor x0iˇ can take on any value. For example, the mean of a
measured proportion is between 0 and 1, but the linear predictor of the mean in a traditional linear
model is not restricted to this range.

� It might not be realistic to assume that the variance of the data is constant for all observations. For
example, it is not unusual to observe data where the variance increases with the mean of the data.

A generalized linear model extends the traditional linear model and is therefore applicable to a wider range
of data analysis problems. A generalized linear model consists of the following components:

� The linear component is defined just as it is for traditional linear models:

�i D x0iˇ
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� A monotonic differentiable link function g describes how the expected value of yi is related to the
linear predictor �i :

g.�i / D x0iˇ

� The response variables yi are independent for i = 1, 2,. . . and have a probability distribution from an
exponential family. This implies that the variance of the response depends on the mean � through a
variance function V:

Var.yi / D
�V.�i /

wi

where � is a constant and wi is a known weight for each observation. The dispersion parameter � is
either known (for example, for the binomial or Poisson distribution, � D 1) or must be estimated.

See the section “Response Probability Distributions” on page 3640 for the form of a probability distribution
from the exponential family of distributions.

As in the case of traditional linear models, fitted generalized linear models can be summarized through
statistics such as parameter estimates, their standard errors, and goodness-of-fit statistics. You can also
make statistical inference about the parameters by using confidence intervals and hypothesis tests. However,
specific inference procedures are usually based on asymptotic considerations, since exact distribution theory
is not available or is not practical for all generalized linear models.

Examples of Generalized Linear Models
You construct a generalized linear model by deciding on response and explanatory variables for your data and
choosing an appropriate link function and response probability distribution. Some examples of generalized
linear models follow. Explanatory variables can be any combination of continuous variables, classification
variables, and interactions.

Traditional Linear Model

� response variable: a continuous variable

� distribution: normal

� link function: identity, g.�/ D �

Logistic Regression

� response variable: a proportion

� distribution: binomial

� link function: logit, g.�/ D log
�

�

1 � �

�
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Poisson Regression in Log-Linear Model

� response variable: a count

� distribution: Poisson

� link function: log, g.�/ D log.�/

Gamma Model with Log Link

� response variable: a positive, continuous variable

� distribution: gamma

� link function: log, g.�/ D log.�/

The GENMOD Procedure
The GENMOD procedure fits a generalized linear model to the data by maximum likelihood estimation of the
parameter vector ˇ. There is, in general, no closed form solution for the maximum likelihood estimates of the
parameters. The GENMOD procedure estimates the parameters of the model numerically through an iterative
fitting process. The dispersion parameter � is also estimated by maximum likelihood or, optionally, by the
residual deviance or by Pearson’s chi-square divided by the degrees of freedom. Covariances, standard errors,
and p-values are computed for the estimated parameters based on the asymptotic normality of maximum
likelihood estimators. A number of popular link functions and probability distributions are available in the
GENMOD procedure. The built-in link functions are as follows:

� identity: g.�/ D �

� logit: g.�/ D log.�=.1 � �//

� probit: g.�/ D ˆ�1.�/, where ˆ is the standard normal cumulative distribution function

� power: g.�/ D
�
�� if � ¤ 0
log.�/ if � D 0

� log: g.�/ D log.�/

� complementary log-log: g.�/ D log.� log.1 � �//

The available distributions and associated variance functions are as follows:

� normal: V.�/ D 1

� binomial (proportion): V.�/ D �.1 � �/

� Poisson: V.�/ D �
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� gamma: V.�/ D �2

� inverse Gaussian: V.�/ D �3

� negative binomial: V.�/ D �C k�2

� geometric: V.�/ D �C �2

� multinomial

� zero-inflated Poisson

� zero-inflated negative binomial

The negative binomial and zero-inflated negative binomial are distributions with an additional parameter k in
the variance function. PROC GENMOD estimates k by maximum likelihood, or you can optionally set it to
a constant value. For discussions of the negative binomial distribution, see McCullagh and Nelder (1989);
Hilbe (1994, 2007); Long (1997); Cameron and Trivedi (1998); Lawless (1987).

The multinomial distribution is sometimes used to model a response that can take values from a number
of categories. The binomial is a special case of the multinomial with two categories. See the section
“Multinomial Models” on page 3659 and McCullagh and Nelder (1989, Chapter 5) for a description of the
multinomial distribution.

The zero-inflated Poisson and zero-inflated negative binomial are included in PROC GENMOD even though
they are not generalized linear models. They are useful extensions of generalized linear models. See the
section “Zero-Inflated Models” on page 3660 for information about the zero-inflated distributions. Models
for data with correlated responses fit by the GEE method are not available for zero-inflated distributions.

In addition, you can easily define your own link functions or distributions through DATA step programming
statements used within the procedure.

An important aspect of generalized linear modeling is the selection of explanatory variables in the model.
Changes in goodness-of-fit statistics are often used to evaluate the contribution of subsets of explanatory
variables to a particular model. The deviance, defined to be twice the difference between the maximum
attainable log likelihood and the log likelihood of the model under consideration, is often used as a measure
of goodness of fit. The maximum attainable log likelihood is achieved with a model that has a parameter for
every observation. See the section “Goodness of Fit” on page 3647 for formulas for the deviance.

One strategy for variable selection is to fit a sequence of models, beginning with a simple model with only an
intercept term, and then to include one additional explanatory variable in each successive model. You can
measure the importance of the additional explanatory variable by the difference in deviances or fitted log
likelihoods between successive models. Asymptotic tests computed by the GENMOD procedure enable you
to assess the statistical significance of the additional term.

The GENMOD procedure enables you to fit a sequence of models, up through a maximum number of terms
specified in a MODEL statement. A table summarizes twice the difference in log likelihoods between each
successive pair of models. This is called a Type 1 analysis in the GENMOD procedure, because it is analogous
to Type I (sequential) sums of squares in the GLM procedure. As with the PROC GLM Type I sums of
squares, the results from this process depend on the order in which the model terms are fit.

The GENMOD procedure also generates a Type 3 analysis analogous to Type III sums of squares in the GLM
procedure. A Type 3 analysis does not depend on the order in which the terms for the model are specified. A
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GENMOD procedure Type 3 analysis consists of specifying a model and computing likelihood ratio statistics
for Type III contrasts for each term in the model. The contrasts are defined in the same way as they are in the
GLM procedure. The GENMOD procedure optionally computes Wald statistics for Type III contrasts. This
is computationally less expensive than likelihood ratio statistics, but it is thought to be less accurate because
the specified significance level of hypothesis tests based on the Wald statistic might not be as close to the
actual significance level as it is for likelihood ratio tests.

A Type 3 analysis generalizes the use of Type III estimable functions in linear models. Briefly, a Type III
estimable function (contrast) for an effect is a linear function of the model parameters that involves the
parameters of the effect and any interactions with that effect. A test of the hypothesis that the Type III
contrast for a main effect is equal to 0 is intended to test the significance of the main effect in the presence
of interactions. See Chapter 53, “The GLM Procedure,” and Chapter 16, “The Four Types of Estimable
Functions,” for more information about Type III estimable functions. Also see Littell, Freund, and Spector
(1991).

Additional features of the GENMOD procedure include the following:

� likelihood ratio statistics for user-defined contrasts—that is, linear functions of the parameters and
p-values based on their asymptotic chi-square distributions

� estimated values, standard errors, and confidence limits for user-defined contrasts and least squares
means

� ability to create a SAS data set corresponding to most tables displayed by the procedure (see Table 51.13
and Table 51.14)

� confidence intervals for model parameters based on either the profile likelihood function or asymptotic
normality

� syntax similar to that of PROC GLM for the specification of the response and model effects, including
interaction terms and automatic coding of classification variables

� ability to fit GEE models for clustered response data

� ability to perform Bayesian analysis by Gibbs sampling
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Getting Started: GENMOD Procedure

Poisson Regression
You can use the GENMOD procedure to fit a variety of statistical models. A typical use of PROC GENMOD
is to perform Poisson regression.

You can use the Poisson distribution to model the distribution of cell counts in a multiway contingency
table. Aitkin et al. (1989) have used this method to model insurance claims data. Suppose the following
hypothetical insurance claims data are classified by two factors: age group (with two levels) and car type
(with three levels).

data insure;
input n c car$ age;
ln = log(n);
datalines;

500 42 small 1
1200 37 medium 1
100 1 large 1
400 101 small 2
500 73 medium 2
300 14 large 2
;

In the preceding data set, the variable n represents the number of insurance policyholders and the variable c
represents the number of insurance claims. The variable car is the type of car involved (classified into three
groups) and the variable age is the age group of a policyholder (classified into two groups).

You can use PROC GENMOD to perform a Poisson regression analysis of these data with a log link function.
This type of model is sometimes called a log-linear model.

Assume that the number of claims c has a Poisson probability distribution and that its mean, �i , is related to
the factors car and age for observation i by

log.�i / D log.ni /C x0iˇ
D log.ni /C ˇ0 C

cari .1/ˇ1 C cari .2/ˇ2 C cari .3/ˇ3 C

agei .1/ˇ4 C agei .2/ˇ5

The indicator variables cari .j / and agei .j / are associated with the jth level of the variables car and age for
observation i

cari .j / D
�
1 if car D j
0 if car ¤ j

The ˇs are unknown parameters to be estimated by the procedure. The logarithm of the variable n is used as
an offset—that is, a regression variable with a constant coefficient of 1 for each observation. A log-linear
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relationship between the mean and the factors car and age is specified by the log link function. The log link
function ensures that the mean number of insurance claims for each car and age group predicted from the
fitted model is positive.

The following statements invoke the GENMOD procedure to perform this analysis:

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln;

run;

The variables car and age are specified as CLASS variables so that PROC GENMOD automatically generates
the indicator variables associated with car and age.

The MODEL statement specifies c as the response variable and car and age as explanatory variables. An
intercept term is included by default. Thus, the model matrix X (the matrix that has as its ith row the transpose
of the covariate vector for the ith observation) consists of a column of 1s representing the intercept term and
columns of 0s and 1s derived from indicator variables representing the levels of the car and age variables.

That is, the model matrix is

X D

26666664

1 1 0 0 1 0

1 0 1 0 1 0

1 0 0 1 1 0

1 1 0 0 0 1

1 0 1 0 0 1

1 0 0 1 0 1

37777775
where the first column corresponds to the intercept, the next three columns correspond to the variable car,
and the last two columns correspond to the variable age.

The response distribution is specified as Poisson, and the link function is chosen to be log. That is, the
Poisson mean parameter � is related to the linear predictor by

log.�/ D x0iˇ

The logarithm of n is specified as an offset variable, as is common in this type of analysis. In this case, the
offset variable serves to normalize the fitted cell means to a per-policyholder basis, since the total number of
claims, not individual policyholder claims, is observed. PROC GENMOD produces the following default
output from the preceding statements.

Figure 51.1 Model Information

The GENMOD Procedure

Model Information

Data Set WORK.INSURE

Distribution Poisson

Link Function Log

Dependent Variable c

Offset Variable ln
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The “Model Information” table displayed in Figure 51.1 provides information about the specified model and
the input data set.

Figure 51.2 Class Level Information

Class Level Information

Class Levels Values

car 3 large medium small

age 2 1 2

Figure 51.2 displays the “Class Level Information” table, which identifies the levels of the classification
variables that are used in the model. Note that car is a character variable, and the values are sorted in
alphabetical order. This is the default sort order, but you can select different sort orders with the ORDER=
option in the PROC GENMOD statement.

Figure 51.3 Goodness of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.8207 1.4103

Scaled Deviance 2 2.8207 1.4103

Pearson Chi-Square 2 2.8416 1.4208

Scaled Pearson X2 2 2.8416 1.4208

Log Likelihood 837.4533

Full Log Likelihood -16.4638

AIC (smaller is better) 40.9276

AICC (smaller is better) 80.9276

BIC (smaller is better) 40.0946

The “Criteria For Assessing Goodness Of Fit” table displayed in Figure 51.3 contains statistics that summarize
the fit of the specified model. These statistics are helpful in judging the adequacy of a model and in comparing
it with other models under consideration. If you compare the deviance of 2.8207 with its asymptotic chi-
square with 2 degrees of freedom distribution, you find that the p-value is 0.24. This indicates that the
specified model fits the data reasonably well.

Figure 51.4 Analysis of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.3168 0.0903 -1.4937 -1.1398 212.73 <.0001

car large 1 -1.7643 0.2724 -2.2981 -1.2304 41.96 <.0001

car medium 1 -0.6928 0.1282 -0.9441 -0.4414 29.18 <.0001

car small 0 0.0000 0.0000 0.0000 0.0000 . .

age 1 1 -1.3199 0.1359 -1.5863 -1.0536 94.34 <.0001

age 2 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.
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Figure 51.4 displays the “Analysis Of Parameter Estimates” table, which summarizes the results of the
iterative parameter estimation process. For each parameter in the model, PROC GENMOD displays columns
with the parameter name, the degrees of freedom associated with the parameter, the estimated parameter value,
the standard error of the parameter estimate, the confidence intervals, and the Wald chi-square statistic and
associated p-value for testing the significance of the parameter to the model. If a column of the model matrix
corresponding to a parameter is found to be linearly dependent, or aliased, with columns corresponding to
parameters preceding it in the model, PROC GENMOD assigns it zero degrees of freedom and displays a
value of zero for both the parameter estimate and its standard error.

This table includes a row for a scale parameter, even though there is no free scale parameter in the Poisson
distribution. See the section “Response Probability Distributions” on page 3640 for the form of the Poisson
probability distribution. PROC GENMOD allows the specification of a scale parameter to fit overdispersed
Poisson and binomial distributions. In such cases, the SCALE row indicates the value of the overdispersion
scale parameter used in adjusting output statistics. See the section “Overdispersion” on page 3650 for more
about overdispersion and the meaning of the SCALE parameter output by the GENMOD procedure. PROC
GENMOD displays a note indicating that the scale parameter is fixed—that is, not estimated by the iterative
fitting process.

It is usually of interest to assess the importance of the main effects in the model. Type 1 and Type 3 analyses
generate statistical tests for the significance of these effects. You can request these analyses with the TYPE1
and TYPE3 options in the MODEL statement, as follows:

proc genmod data=insure;
class car age;
model c = car age / dist = poisson

link = log
offset = ln
type1
type3;

run;

The results of these analyses are summarized in the figures that follow.

Figure 51.5 Type 1 Analysis

The GENMOD Procedure

LR Statistics For Type 1 Analysis

Source Deviance DF Chi-Square Pr > ChiSq

Intercept 175.1536

car 107.4620 2 67.69 <.0001

age 2.8207 1 104.64 <.0001

In the table for Type 1 analysis displayed in Figure 51.5, each entry in the deviance column represents the
deviance for the model containing the effect for that row and all effects preceding it in the table. For example,
the deviance corresponding to car in the table is the deviance of the model containing an intercept and car.
As more terms are included in the model, the deviance decreases.

Entries in the chi-square column are likelihood ratio statistics for testing the significance of the effect added
to the model containing all the preceding effects. The chi-square value of 67.69 for car represents twice the
difference in log likelihoods between fitting a model with only an intercept term and a model with an intercept
and car. Since the scale parameter is set to 1 in this analysis, this is equal to the difference in deviances.
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Since two additional parameters are involved, this statistic can be compared with a chi-square distribution
with two degrees of freedom. The resulting p-value (labeled Pr>Chi) of less than 0.0001 indicates that this
variable is highly significant. Similarly, the chi-square value of 104.64 for age represents the difference in
log likelihoods between the model with the intercept and car and the model with the intercept, car, and age.
This effect is also highly significant, as indicated by the small p-value.

Figure 51.6 Type 3 Analysis

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

car 2 72.82 <.0001

age 1 104.64 <.0001

The Type 3 analysis results in the same conclusions as the Type 1 analysis. The Type 3 chi-square value
for the car variable, for example, is twice the difference between the log likelihood for the model with the
variables Intercept, car, and age included and the log likelihood for the model with the car variable excluded.
The hypothesis tested in this case is the significance of the variable car given that the variable age is in the
model. In other words, it tests the additional contribution of car in the model.

The values of the Type 3 likelihood ratio statistics for the car and age variables indicate that both of these
factors are highly significant in determining the claims performance of the insurance policyholders.

Bayesian Analysis of a Linear Regression Model
Neter et al. (1996) describe a study of 54 patients undergoing a certain kind of liver operation in a surgical
unit. The data set Surg contains survival time and certain covariates for each patient. Observations for the
first 20 patients in the data set Surg are shown in Figure 51.7.
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Figure 51.7 Surgical Unit Data

Obs x1 x2 x3 x4 y logy Logx1

1 6.7 62 81 2.59 200 2.3010 1.90211

2 5.1 59 66 1.70 101 2.0043 1.62924

3 7.4 57 83 2.16 204 2.3096 2.00148

4 6.5 73 41 2.01 101 2.0043 1.87180

5 7.8 65 115 4.30 509 2.7067 2.05412

6 5.8 38 72 1.42 80 1.9031 1.75786

7 5.7 46 63 1.91 80 1.9031 1.74047

8 3.7 68 81 2.57 127 2.1038 1.30833

9 6.0 67 93 2.50 202 2.3054 1.79176

10 3.7 76 94 2.40 203 2.3075 1.30833

11 6.3 84 83 4.13 329 2.5172 1.84055

12 6.7 51 43 1.86 65 1.8129 1.90211

13 5.8 96 114 3.95 830 2.9191 1.75786

14 5.8 83 88 3.95 330 2.5185 1.75786

15 7.7 62 67 3.40 168 2.2253 2.04122

16 7.4 74 68 2.40 217 2.3365 2.00148

17 6.0 85 28 2.98 87 1.9395 1.79176

18 3.7 51 41 1.55 34 1.5315 1.30833

19 7.3 68 74 3.56 215 2.3324 1.98787

20 5.6 57 87 3.02 172 2.2355 1.72277

Consider the model

Y D ˇ0 C ˇ1LogX1C ˇ2X2C ˇ3X3C ˇ4X4C �

where Y is the survival time, LogX1 is log(blood-clotting score), X2 is a prognostic index, X3 is an enzyme
function test score, X4 is a liver function test score, and � is an N.0; �2/ error term.

A question of scientific interest is whether blood clotting score has a positive effect on survival time. Using
PROC GENMOD, you can obtain a maximum likelihood estimate of the coefficient and construct a null
point hypothesis to test whether ˇ1 is equal to 0. However, if you are interested in finding the probability that
the coefficient is positive, Bayesian analysis offers a convenient alternative. You can use Bayesian analysis to
directly estimate the conditional probability, Pr.ˇ1 > 0jY/, using the posterior distribution samples, which
are produced as part of the output by PROC GENMOD.

The example that follows shows how to use PROC GENMOD to carry out a Bayesian analysis of the linear
model with a normal error term. The SEED= option is specified to maintain reproducibility; no other options
are specified in the BAYES statement. By default, a uniform prior distribution is assumed on the regression
coefficients. The uniform prior is a flat prior on the real line with a distribution that reflects ignorance of the
location of the parameter, placing equal likelihood on all possible values the regression coefficient can take.
Using the uniform prior in the following example, you would expect the Bayesian estimates to resemble
the classical results of maximizing the likelihood. If you can elicit an informative prior distribution for the
regression coefficients, you should use the COEFFPRIOR= option to specify it. A default noninformative
gamma prior is used for the scale parameter � .

You should make sure that the posterior distribution samples have achieved convergence before using them
for Bayesian inference. PROC GENMOD produces three convergence diagnostics by default. If ODS
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Graphics is enabled as specified in the following SAS statements, diagnostic plots are also displayed. See
the section “Assessing Markov Chain Convergence” on page 162 in Chapter 8, “Introduction to Bayesian
Analysis Procedures,” for more information about convergence diagnostics and their interpretation.

Summary statistics of the posterior distribution samples are produced by default. However, these statistics
might not be sufficient for carrying out your Bayesian inference, and further processing of the posterior sam-
ples might be necessary. The following SAS statements request the Bayesian analysis, and the OUTPOST=
option saves the samples in the SAS data set PostSurg for further processing:

proc genmod data=Surg;
model y = Logx1 X2 X3 X4 / dist=normal;
bayes seed=1 OutPost=PostSurg;

run;

The results of this analysis are shown in the following figures. The “Model Information” table in Figure 51.8
summarizes information about the model you fit and the size of the simulation.

Figure 51.8 Model Information

The GENMOD Procedure

Bayesian Analysis

Model Information

Data Set WORK.SURG

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Sampling Algorithm Conjugate

Distribution Normal

Link Function Identity

Dependent Variable y Survival Time

The “Analysis of Maximum Likelihood Parameter Estimates” table in Figure 51.9 summarizes maximum
likelihood estimates of the model parameters.

Figure 51.9 Maximum Likelihood Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error
Wald 95%

Confidence Limits

Intercept 1 -730.559 85.4333 -898.005 -563.112

Logx1 1 171.8758 38.2250 96.9561 246.7954

x2 1 4.3019 0.5566 3.2109 5.3929

x3 1 4.0309 0.4996 3.0517 5.0100

x4 1 18.1377 12.0721 -5.5232 41.7986

Scale 1 59.8591 5.7599 49.5705 72.2832

Note: The scale parameter was estimated by maximum likelihood.

Since no prior distributions for the regression coefficients were specified, the default noninformative uniform
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distributions shown in the “Uniform Prior for Regression Coefficients” table in Figure 51.10 are used.
Noninformative priors are appropriate if you have no prior knowledge of the likely range of values of
the parameters, and if you want to make probability statements about the parameters or functions of the
parameters. See, for example, Ibrahim, Chen, and Sinha (2001) for more information about choosing prior
distributions.

Figure 51.10 Regression Coefficient Priors

The GENMOD Procedure

Bayesian Analysis

Uniform Prior for
Regression
Coefficients

Parameter Prior

Intercept Constant

Logx1 Constant

x2 Constant

x3 Constant

x4 Constant

The default noninformative improper prior distribution for the normal dispersion parameter is shown in the
“Independent Prior Distributions for Model Parameters” table in Figure 51.11.

Figure 51.11 Scale Parameter Prior

Independent Prior
Distributions for Model

Parameters

Parameter
Prior
Distribution

Dispersion Improper

By default, the maximum likelihood estimates of the regression parameters are used as the starting values for
the simulation when noninformative prior distributions are used. These are listed in the “Initial Values and
Seeds” table in Figure 51.12.

Figure 51.12 MCMC Initial Values and Seeds

Initial Values of the Chain

Chain Seed Intercept Logx1 x2 x3 x4 Dispersion

1 1 -730.559 171.8758 4.301896 4.030878 18.1377 3449.176

Summary statistics for the posterior sample are displayed in the “Fit Statistics,” “Descriptive Statistics for the
Posterior Sample,” “Interval Statistics for the Posterior Sample,” and “Posterior Correlation Matrix” tables in
Figure 51.13, Figure 51.14, Figure 51.15, and Figure 51.16, respectively.
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Figure 51.13 Fit Statistics

Fit Statistics

DIC (smaller is better) 607.796

pD (effective number of parameters) 6.062

Figure 51.14 Descriptive Statistics

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 -730.0 91.2102 -789.6 -729.6 -670.5

Logx1 10000 171.7 40.6455 144.2 171.6 198.6

x2 10000 4.2988 0.5952 3.9029 4.2919 4.6903

x3 10000 4.0308 0.5359 3.6641 4.0267 4.3921

x4 10000 18.0858 12.9123 9.4471 18.1230 26.8141

Dispersion 10000 4113.1 867.7 3497.2 3995.9 4606.4

Figure 51.15 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -908.6 -549.8 -906.9 -549.1

Logx1 0.050 91.9723 252.5 94.1279 254.0

x2 0.050 3.1091 5.4778 3.1705 5.5167

x3 0.050 2.9803 5.1031 2.9227 5.0343

x4 0.050 -7.3043 43.6387 -8.8440 41.8229

Dispersion 0.050 2741.5 6096.6 2540.1 5810.0

Figure 51.16 Posterior Sample Correlation Matrix

Posterior Correlation Matrix

Parameter Intercept Logx1 x2 x3 x4 Dispersion

Intercept 1.000 -0.857 -0.579 -0.712 0.582 0.000

Logx1 -0.857 1.000 0.286 0.491 -0.640 0.007

x2 -0.579 0.286 1.000 0.302 -0.489 -0.009

x3 -0.712 0.491 0.302 1.000 -0.618 -0.006

x4 0.582 -0.640 -0.489 -0.618 1.000 0.003

Dispersion 0.000 0.007 -0.009 -0.006 0.003 1.000

Since noninformative prior distributions were used, the posterior sample means, standard deviations, and
interval statistics shown in Figure 51.13 and Figure 51.14 are consistent with the maximum likelihood
estimates shown in Figure 51.9.



3570 F Chapter 51: The GENMOD Procedure

By default, PROC GENMOD computes three convergence diagnostics: the lag1, lag5, lag10, and lag50
autocorrelations (Figure 51.17); Geweke diagnostic statistics (Figure 51.18); and effective sample sizes
(Figure 51.19). There is no indication that the Markov chain has not converged. See the section
“Assessing Markov Chain Convergence” on page 162 in Chapter 8, “Introduction to Bayesian Analysis Pro-
cedures,” for more information about convergence diagnostics and their interpretation.

Figure 51.17 Posterior Sample Autocorrelations

The GENMOD Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept -0.0059 -0.0037 -0.0152 0.0010

Logx1 -0.0002 -0.0064 -0.0066 -0.0054

x2 -0.0120 -0.0026 -0.0267 -0.0168

x3 0.0036 0.0033 -0.0035 0.0004

x4 0.0034 -0.0064 0.0083 -0.0124

Dispersion -0.0011 0.0091 -0.0279 0.0037

Figure 51.18 Geweke Diagnostic Statistics

Geweke Diagnostics

Parameter z Pr > |z|

Intercept -1.0815 0.2795

Logx1 1.6667 0.0956

x2 0.0977 0.9222

x3 0.2506 0.8021

x4 -1.1082 0.2678

Dispersion 0.2451 0.8064

Figure 51.19 Effective Sample Sizes

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 10000.0 1.0000 1.0000

Logx1 10000.0 1.0000 1.0000

x2 10245.2 0.9761 1.0245

x3 10000.0 1.0000 1.0000

x4 10000.0 1.0000 1.0000

Dispersion 10000.0 1.0000 1.0000

Trace, autocorrelation, and density plots for the seven model parameters, shown in Figure 51.20
through Figure 51.25, are useful in diagnosing whether the Markov chain of posterior samples has
converged. These plots show no evidence that the chain has not converged. See the section
“Visual Analysis via Trace Plots” on page 163 in Chapter 8, “Introduction to Bayesian Analysis Procedures,”
for help with interpreting these diagnostic plots.
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Figure 51.20 Diagnostic Plots for Intercept
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Figure 51.21 Diagnostic Plots for logX1
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Figure 51.22 Diagnostic Plots for X2
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Figure 51.23 Diagnostic Plots for X3
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Figure 51.24 Diagnostic Plots for X4
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Figure 51.25 Diagnostic Plots for X5

Suppose, for illustration, a question of scientific interest is whether blood clotting score has a positive effect
on survival time. Since the model parameters are regarded as random quantities in a Bayesian analysis,
you can answer this question by estimating the conditional probability of ˇ1 being positive, given the data,
Pr.ˇ1 > 0jY/, from the posterior distribution samples. The following SAS statements compute the estimate
of the probability of ˇ1 being positive:

data Prob;
set PostSurg;
Indicator = (logX1 > 0);
label Indicator= 'log(Blood Clotting Score) > 0';

run;

proc Means data = Prob(keep=Indicator) n mean;
run;

As shown in Figure 51.26, there is a 1.00 probability of a positive relationship between the logarithm of a
blood clotting score and survival time, adjusted for the other covariates.
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Figure 51.26 Probability That ˇ1 > 0

The MEANS Procedure

Analysis
Variable : Indicator
log(Blood Clotting

Score) > 0

N Mean

10000 0.9999000

Generalized Estimating Equations
This section illustrates the use of the REPEATED statement to fit a GEE model, using repeated measures data
from the “Six Cities” study of the health effects of air pollution (Ware et al. 1984). The data analyzed are the
16 selected cases in Lipsitz et al. (1994). The binary response is the wheezing status of 16 children at ages
9, 10, 11, and 12 years. A value of 1 of wheezing status indicates the occurrence of wheezing. The mean
response is modeled as a logistic regression model by using the explanatory variables city of residence, age,
and maternal smoking status at the particular age. The binary responses for individual children are assumed
to be equally correlated, implying an exchangeable correlation structure.

The data set and SAS statements that fit the model by the GEE method are as follows:

data six;
input case city$ @@;
do i=1 to 4;

input age smoke wheeze @@;
output;

end;
datalines;

1 portage 9 0 1 10 0 1 11 0 1 12 0 0
2 kingston 9 1 1 10 2 1 11 2 0 12 2 0
3 kingston 9 0 1 10 0 0 11 1 0 12 1 0
4 portage 9 0 0 10 0 1 11 0 1 12 1 0
5 kingston 9 0 0 10 1 0 11 1 0 12 1 0
6 portage 9 0 0 10 1 0 11 1 0 12 1 0
7 kingston 9 1 0 10 1 0 11 0 0 12 0 0
8 portage 9 1 0 10 1 0 11 1 0 12 2 0
9 portage 9 2 1 10 2 0 11 1 0 12 1 0

10 kingston 9 0 0 10 0 0 11 0 0 12 1 0
11 kingston 9 1 1 10 0 0 11 0 1 12 0 1
12 portage 9 1 0 10 0 0 11 0 0 12 0 0
13 kingston 9 1 0 10 0 1 11 1 1 12 1 1
14 portage 9 1 0 10 2 0 11 1 0 12 2 1
15 kingston 9 1 0 10 1 0 11 1 0 12 2 1
16 portage 9 1 1 10 1 1 11 2 0 12 1 0
;

proc genmod data=six;
class case city;
model wheeze(event='1') = city age smoke / dist=bin;
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repeated subject=case / type=exch covb corrw;
run;

The CLASS statement and the MODEL statement specify the model for the mean of the wheeze variable
response as a logistic regression with city, age, and smoke as independent variables, just as for an ordinary
logistic regression. The EVENT='1' option in the MODEL statement models the probability that wheeze =
1. If the EVENT='1' option had not been specified, the probability that wheeze = 0 would be modeled by
default.

The REPEATED statement invokes the GEE method, specifies the correlation structure, and controls the
displayed output from the GEE model. The option SUBJECT=CASE specifies that individual subjects be
identified in the input data set by the variable case. The SUBJECT= variable case must be listed in the
CLASS statement. Measurements on individual subjects at ages 9, 10, 11, and 12 are in the proper order
in the data set, so the WITHINSUBJECT= option is not required. The TYPE=EXCH option specifies an
exchangeable working correlation structure, the COVB option specifies that the parameter estimate covariance
matrix be displayed, and the CORRW option specifies that the final working correlation be displayed.

Initial parameter estimates for iterative fitting of the GEE model are computed as in an ordinary generalized
linear model, as described previously. Results of the initial model fit displayed as part of the generated output
are not shown here. Statistics for the initial model fit such as parameter estimates, standard errors, deviances,
and Pearson chi-squares do not apply to the GEE model and are valid only for the initial model fit. The
following figures display information that applies to the GEE model fit.

Figure 51.27 displays general information about the GEE model fit.

Figure 51.27 GEE Model Information

The GENMOD Procedure

GEE Model Information

Correlation Structure Exchangeable

Subject Effect case (16 levels)

Number of Clusters 16

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

Figure 51.28 displays the parameter estimate covariance matrices specified by the COVB option. Both
model-based and empirical covariances are produced.

Figure 51.28 GEE Parameter Estimate Covariance Matrices

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 5.74947 -0.22257 -0.53472 0.01655

Prm2 -0.22257 0.45478 -0.002410 0.01876

Prm4 -0.53472 -0.002410 0.05300 -0.01658

Prm5 0.01655 0.01876 -0.01658 0.19104
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Figure 51.28 continued

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 9.33994 -0.85104 -0.83253 -0.16534

Prm2 -0.85104 0.47368 0.05736 0.04023

Prm4 -0.83253 0.05736 0.07778 -0.002364

Prm5 -0.16534 0.04023 -0.002364 0.13051

The exchangeable working correlation matrix specified by the CORRW option is displayed in Figure 51.29.

Figure 51.29 GEE Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.1648 0.1648 0.1648

Row2 0.1648 1.0000 0.1648 0.1648

Row3 0.1648 0.1648 1.0000 0.1648

Row4 0.1648 0.1648 0.1648 1.0000

The parameter estimates table, displayed in Figure 51.30, contains parameter estimates, standard errors,
confidence intervals, Z scores, and p-values for the parameter estimates. Empirical standard error estimates are
used in this table. A table that displays model-based standard errors can be created by using the REPEATED
statement option MODELSE.

Figure 51.30 GEE Parameter Estimates Table

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 1.2751 3.0561 -4.7148 7.2650 0.42 0.6765

city kingston 0.1223 0.6882 -1.2266 1.4713 0.18 0.8589

city portage 0.0000 0.0000 0.0000 0.0000 . .

age -0.2036 0.2789 -0.7502 0.3431 -0.73 0.4655

smoke -0.0935 0.3613 -0.8016 0.6145 -0.26 0.7957
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Syntax: GENMOD Procedure
The following statements are available in the GENMOD procedure. Items within the < > are optional.

PROC GENMOD < options > ;
ASSESS | ASSESSMENT VAR=(effect)| LINK < / options > ;
BAYES < options > ;
BY variables ;
CLASS variable < (options) > . . . < variable < (options) > > < / options > ;
CODE < options > ;
CONTRAST 'label ' contrast-specification < / options > ;
DEVIANCE variable = expression ;
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;
ESTIMATE 'label ' effect values < , . . . effect values > < / options > ;
EXACT < 'label ' > < INTERCEPT > < effects > < / options > ;
EXACTOPTIONS options ;
FREQ | FREQUENCY variable ;
FWDLINK variable = expression ;
INVLINK variable = expression ;
LSMEANS < model-effects > < / options > ;
LSMESTIMATE model-effect < 'label ' > values < divisor=n > < , . . . < 'label ' > values < divisor=n > >

< / options > ;
MODEL response = < effects > < / options > ;
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > ;
Programming statements ;
REPEATED SUBJECT=subject-effect < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL='label ' > ;
STRATA variable < (option) > . . . < variable < (option) > > < / options > ;
WEIGHT | SCWGT variable ;
VARIANCE variable = expression ;
ZEROMODEL < effects > < / options > ;

The ASSESS, BAYES, BY, CLASS, CODE, CONTRAST, DEVIANCE, ESTIMATE, FREQUENCY,
FWDLINK, INVLINK, MODEL, OUTPUT, programming statements, REPEATED, VARIANCE, WEIGHT,
and ZEROMODEL statements are described in full after the PROC GENMOD statement in alphabetical
order. The EFFECTPLOT, LSMEANS, LSMESTIMATE, SLICE, and STORE statements are common to
many procedures. Summary descriptions of functionality and syntax for these statements are also given after
the PROC GENMOD statement in alphabetical order, and full documentation about them is available in
Chapter 20, “Shared Concepts and Topics.”

The PROC GENMOD statement invokes the GENMOD procedure. All statements other than the MODEL
statement are optional. The CLASS statement, if present, must precede the MODEL statement, and the
CONTRAST and EXACT statements must come after the MODEL statement.
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PROC GENMOD Statement
PROC GENMOD < options > ;

The PROC GENMOD statement invokes the GENMOD procedure. Table 51.1 summarizes the options
available in the PROC GENMOD statement.

Table 51.1 PROC GENMOD Statement Options

Option Description

DATA= Specifies the input data set
DESCENDING Sorts response variable in the reverse of the default order
EXACTONLY Requests only the exact analyses
NAMELEN= Specifies the length of effect names
ORDER= Specifies the sort order of CLASS variable
PLOTS Controls the plots produced through ODS Graphics
RORDER= Specifies the sort order for the levels of the response variable

You can specify the following options.

DATA=SAS-data-set
specifies the SAS data set containing the data to be analyzed. If you omit the DATA= option, the
procedure uses the most recently created SAS data set.

DESCENDING

DESCEND

DESC
specifies that the levels of the response variable for the ordinal multinomial model and the binomial
model with single variable response syntax be sorted in the reverse of the default order. For example, if
RORDER=FORMATTED (the default), the DESCENDING option causes the levels to be sorted from
highest to lowest instead of from lowest to highest. If RORDER=FREQ, the DESCENDING option
causes the levels to be sorted from lowest frequency count to highest instead of from highest to lowest.

EXACTONLY
requests only the exact analyses. The asymptotic analysis that PROC GENMOD usually performs is
suppressed.

NAMELEN=n
specifies the length of effect names in tables and output data sets to be n characters long, where n is a
value between 20 and 200 characters. The default length is 20 characters.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement).

The ORDER= option can be useful when you use the CONTRAST or ESTIMATE statement because
it determines which parameters in the model correspond to each level in the data.
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This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format. In
that case, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
with no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count; levels with the most
observations come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the sort
order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in the “Grouping Data” section of SAS
Programmers Guide: Essentials.

PLOTS < (global-plot-options) > < =plot-request < (options) > >

PLOTS < (global-plot-options) > < =(plot-request < (options) > < . . . plot-request < (options) > >) >
specifies plots to be created using ODS Graphics. Many of the observational statistics in the output
data set can be plotted using this option. You are not required to create an output data set in order to
produce a plot. When you specify only one plot request, you can omit the parentheses around the plot
request. Here are some examples:

plots=all
plots=predicted
plots=(predicted reschi)
plots(unpack)=dfbeta

ODS Graphics must be enabled before plots can be requested. For example:

proc genmod plots=all;
model y = x;

run;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 687 in Chapter 24, “Statistical Graphics Using ODS.”

Any specified global-plot-options apply to all plots that are specified with plot-requests. The following
global-plot-options are available.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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CLUSTERLABEL
displays formatted levels of the SUBJECT= effect instead of plot symbols. This option applies
only to diagnostic statistics for models fit by GEEs that are plotted against cluster number, and
provides a way to identify cluster level names with corresponding ordered cluster numbers.

UNPACK
displays multiple plots individually. The default is to display related multiple plots in a panel.

See the section “OUTPUT Statement” on page 3627 for definitions of the statistics specified with the
plot-requests. The plot-requests include the following:

ALL
produces all available plots.

COOKSD

DOBS
plots the Cook’s distance statistic as a function of observation number.

DFBETA
plots the ˇ deletion statistic as a function of observation number for each regression parameter in
the model.

DFBETAS
plots the standardized ˇ deletion statistic as a function of observation number for each regression
parameter in the model.

LEVERAGE
plots the leverage as a function of observation number.

OVERDISP
plots the predicted variance as a function of the predicted mean for a zero-inflated response.

PREDICTED< (option) >
plots predicted values with confidence limits as a function of observation number. The PRE-
DICTED plot request has the following option:

CLM
includes confidence limits in the predicted value plot.

PZERO
plots the zero inflation probability for zero-inflated Poisson and negative binomial models as a
function of observation number.

RESCHI< (options) >
The RESCHI plot request has the following options:

INDEX
plots as a function of observation number.
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XBETA
plots as a function of linear predictor.

If you do not specify an option, Pearson residuals are plotted as a function of observation number.

RESDEV< (options) >
plots deviance residuals. The RESDEV plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, deviance residuals are plotted as a function of observation number.

RESLIK< (options) >
plots likelihood residuals. The RESLIK plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, likelihood residuals are plotted as a function of observation
number.

RESRAW< (options) >
plots raw residuals. The RESRAW plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, raw residuals are plotted as a function of observation number.

STDRESCHI< (options) >
plots standardized Pearson residuals. The STDRESCHI plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, standardized Pearson residuals are plotted as a function of
observation number.
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STDRESDEV< (options) >
plots standardized deviance residuals. The STDRESDEV plot request has the following options:

INDEX
plots as a function of observation number.

XBETA
plots as a function of linear predictor.

If you do not specify an option, standardized deviance residuals are plotted as a function of
observation number.

If you fit a model by using generalized estimating equations (GEEs), the following additional plot-
requests are available:

CLEVERAGE
plots the cluster leverage as a function of ordered cluster.

CLUSTERCOOKSD
DCLS

plots the cluster Cook’s distance statistic as a function of ordered cluster.

CLUSTERDFIT
MCLS

plots the studentized cluster Cook’s distance statistic as a function of ordered cluster.

DFBETAC
plots the cluster deletion statistic as a function of ordered cluster for each regression parameter in
the model.

DFBETACS
plots the standardized cluster deletion statistic as a function of ordered cluster for each regression
parameter in the model.

RORDER=keyword
specifies the sort order for the levels of the response variable. This order determines which intercept
parameter in the model corresponds to each level in the data. If RORDER=FORMATTED for numeric
variables for which you have supplied no explicit format, the levels are ordered by their internal values.
The following table displays the valid keywords and describes how PROC GENMOD interprets them.

RORDER=keyword Levels Sorted by

DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric

variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ Descending frequency count; levels with the
most observations come first in the order

INTERNAL Unformatted value

By default, RORDER=FORMATTED. For RORDER=FORMATTED and RORDER=INTERNAL,
the sort order is machine dependent. The DESCENDING option in the PROC GENMOD statement
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causes the response variable to be sorted in the reverse of the order displayed in the previous table. For
more information about sort order, see the chapter on the SORT procedure in the Base SAS Procedures
Guide.

The NOPRINT option, which suppresses displayed output in other SAS procedures, is not available
in the PROC GENMOD statement. However, you can use the Output Delivery System (ODS) to
suppress all displayed output, store all output on disk for further analysis, or create SAS data sets from
selected output. You can suppress all displayed output with the statement ODS SELECT NONE; and
turn displayed output back on with the statement ODS SELECT ALL;. See Table 51.13 and Table 51.14
for the names of output tables available from PROC GENMOD. For more information about ODS, see
Chapter 23, “Using the Output Delivery System.”

ASSESS Statement
ASSESS VAR=(effect)| LINK < / options > ;

ASSESSMENT VAR=(effect)| LINK < / options > ;

The ASSESS statement computes and plots, using ODS Graphics, model-checking statistics based on
aggregates of residuals. See the section “Assessment of Models Based on Aggregates of Residuals” on
page 3672 for details about the model assessment methods available in GENMOD.

The types of aggregates available are cumulative residuals, moving sums of residuals, and loess smoothed
residuals. If you do not specify which aggregate to use, the assessments are based on cumulative sums. PROC
GENMOD uses ODS Graphics for graphical displays. For specific information about the graphics available
in PROC GENMOD, see the section “ODS Graphics” on page 3703.

You must specify either LINK or VAR= in order to create an analysis.

LINK requests the assessment of the link function by performing the analysis with respect to the linear
predictor.

VAR=(effect) specifies that the functional form of a covariate be checked by performing the analysis with
respect to the variable identified by the effect. The effect must be specified in the MODEL statement and
must contain only continuous variables (variables not listed in a CLASS statement).

You can specify the following options after the slash (/).

CRPANEL
requests that a plot with four panels showing just a few of the paths from the default aggregate plot to
make it easier to compare simulated and observed paths. The plot in each panel contains aggregates of
the observed residuals and two simulated curves (fewer if NPATHS= is less than 8).

LOESS< (number ) >

LOWESS< (number ) >
requests model assessment based on loess smoothed residuals with optional number the fraction of data
used; number must be between zero and one. If number is not specified, the default value one-third is
used.
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NPATHS=number

NPATH=number

PATHS=number

PATH=number
specifies the number of simulated paths to plot in the default aggregate residuals plot. The default
value of number is twenty.

RESAMPLE< =number >

RESAMPLES< =number >
specifies that a p-value be computed based on 1,000 simulated paths, or number paths, if number is
specified.

SEED=number
specifies a seed for the normal random number generator used in creating simulated realizations of
aggregates of residuals for plots and estimating p-values. Specifying a seed enables you to produce
identical graphs and p-values from one run of the procedure to the next run. If a seed is not specified,
or if number is negative or zero, a random number seed is derived from the time of day.

WINDOW< (number ) >
requests assessment based on a moving sum window of width number . If number is not specified, a
value of one-half of the range of the x-coordinate is used.

BAYES Statement
BAYES < options > ;

The BAYES statement requests a Bayesian analysis of the regression model by using Gibbs sampling. The
Bayesian posterior samples (also known as the chain) for the regression parameters are not tabulated. The
Bayesian posterior samples (also known as the chain) for the regression parameters can be output to a SAS
data set. Table 51.2 summarizes the options available in the BAYES statement.

Table 51.2 BAYES Statement Options

Option Description

Monte Carlo Options
INITIAL= Specifies the initial values of the chain
INITIALMLE Specifies that maximum likelihood estimates be used as

initial values of the chain
METROPOLIS= Specifies the use of a Metropolis step in the ARMS

algorithm
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations after burn-in
SAMPLING= Specifies the algorithm used to sample the posterior

distribution
SEED= Specifies the random number generator seed
THINNING= Controls the thinning of the Markov chain
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Table 51.2 continued

Option Description

Model and Prior Options
COEFFPRIOR= Specifies the prior of the regression coefficients
DISPERSIONPRIOR= Specifies the prior of the dispersion parameter
PRECISIONPRIOR= Specifies the prior of the precision parameter
SCALEPRIOR= Specifies the prior of the scale parameter

Summary Statistics and Convergence Diagnostics
DIAGNOSTICS= Displays convergence diagnostics
PLOTS= Displays diagnostic plots
STATISTICS= Displays summary statistics of the posterior samples

Posterior Samples
OUTPOST= Names a SAS data set for the posterior samples

The following list describes these options and their suboptions.

COEFFPRIOR=JEFFREYS< (option) > | NORMAL< (options) > | UNIFORM

COEFF=JEFFREYS< (options) > | NORMAL< (options) > | UNIFORM

CPRIOR=JEFFREYS< (options) > | NORMAL< (options) > | UNIFORM
specifies the prior distribution for the regression coefficients. The default is COEFFPRIOR=UNIFORM,
which specifies the noninformative and improper prior of a constant.

Jeffreys’ prior is specified by COEFFPRIOR=JEFFREYS, which can be followed by the following
option in parentheses. Jeffreys’ prior is proportional to jI.ˇ/j

1
2 , where I.ˇ/ is the Fisher information

matrix. See the section “Jeffreys’ Prior” on page 3681 and Ibrahim and Laud (1991) for more details.

CONDITIONAL
specifies that the Jeffreys’ prior, conditional on the current Markov chain value of the generalized
linear model precision parameter � , is proportional to j�I.ˇ/j

1
2 .

The normal prior is specified by COEFFPRIOR=NORMAL, which can be followed by one of the
following options enclosed in parentheses. However, if you do not specify an option, the normal prior
N.0; 106I/, where I is the identity matrix, is used. See the section “Normal Prior” on page 3682 for
more details.

CONDITIONAL
specifies that the normal prior, conditional on the current Markov chain value of the generalized
linear model precision parameter � , is N.�; ��1†/, where � and† are the mean and covariance
of the normal prior specified by other normal options.

INPUT=SAS-data-set
specifies a SAS data set containing the mean and covariance information of the normal prior. The
data set must have a _TYPE_ variable to represent the type of each observation and a variable for
each regression coefficient. If the data set also contains a _NAME_ variable, the values of this
variable are used to identify the covariances for the _TYPE_='COV' observations; otherwise, the
_TYPE_='COV' observations are assumed to be in the same order as the explanatory variables
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in the MODEL statement. PROC GENMOD reads the mean vector from the observation with
_TYPE_='MEAN' and reads the covariance matrix from observations with _TYPE_='COV'.

For an independent normal prior, specify either variances or a covariance matrix in addition to
the means. You can specify the variances in the _TYPE_='VAR' option, or you can equivalently
specify the precisions (inverse of the variances) in the _TYPE_='PRECISION' option. Each
variable in the INPUT= data set corresponds to a parameter in the model, and the variable name
must match the parameter name. Parameter names can be found in any of the tables (such as
the “Initial Values of the Chain” table) in the Bayesian Analysis section of the results. See
Example 51.10 for an example.

RELVAR< =c >
specifies the normal prior N.0; cJ/, where J is a diagonal matrix with diagonal elements equal to
the variances of the corresponding ML estimator. By default, c D 106.

VAR< =c >
specifies the normal prior N.0; cI/, where I is the identity matrix.

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls the number of diagnostics produced. You can request all the following diagnostics by
specifying DIAGNOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOS-
TICS=NONE. If you want some but not all of the diagnostics, or if you want to change certain
settings of these diagnostics, specify a subset of the following keywords. The default is DIAGNOS-
TICS=(AUTOCORR ESS GEWEKE).

AUTOCORR < (LAGS= numeric-list) >
computes the autocorrelations of lags given by LAGS= list for each parameter. Elements in
the list are truncated to integers and repeated values are removed. If the LAGS= option is not
specified, autocorrelations of lags 1, 5, 10, and 50 are computed for each variable. See the section
“Autocorrelations” on page 174 in Chapter 8, “Introduction to Bayesian Analysis Procedures,” for
details.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter. See the section “Effective Sample Size” on page 175 in Chapter 8,
“Introduction to Bayesian Analysis Procedures,” for details.

GELMAN < (gelman-options) >
computes the Gelman and Rubin convergence diagnostics. You can specify one or more of the
following gelman-options:

NCHAIN | N=number
specifies the number of parallel chains used to compute the diagnostic, and must be 2 or
larger. The default is NCHAIN=3. If an INITIAL= data set is used, NCHAIN defaults to the
number of rows in the INITIAL= data set. If any number other than this is specified with the
NCHAIN= option, the NCHAIN= value is ignored.
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ALPHA=value
specifies the significance level for the upper bound. The default is ALPHA=0.05, resulting
in a 97.5% bound.

See the section “Gelman and Rubin Diagnostics” on page 167 in Chapter 8, “Introduction to
Bayesian Analysis Procedures,” for details.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The default is f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.

See the section “Geweke Diagnostics” on page 169 in Chapter 8, “Introduction to Bayesian
Analysis Procedures,” for details.

HEIDELBERGER < (heidel-options) >
computes the Heidelberger and Welch diagnostic for each variable, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

See the section “Heidelberger and Welch Diagnostics” on page 170 in Chapter 8, “Introduction
to Bayesian Analysis Procedures,” for details.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Caro standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate
and is calculated as the posterior standard deviation divided by the square root of the effective
sample size. See the section “Standard Error of the Mean Estimate” on page 176 in Chapter 8,
“Introduction to Bayesian Analysis Procedures,” for details.
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RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics that evaluate the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the
chain is allowed to run for a long time. A stopping criterion is when the estimated probability
OPQ D Pr.� � O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q �R �
OPQ � Q C R/ D S . The following raftery-options enable you to specify Q;R; S , and a

precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. The default is 0.005.

PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.

See the section “Raftery and Lewis Diagnostics” on page 172 in Chapter 8, “Introduction to
Bayesian Analysis Procedures,” for details.

DISPERSIONPRIOR=GAMMA< (options) > | IGAMMA< (options) > | IMPROPER

DPRIOR=GAMMA< (options) > | IGAMMA< (options) > | IMPROPER
specifies that Gibbs sampling be performed on the generalized linear model dispersion parameter and
the prior distribution for the dispersion parameter, if there is a dispersion parameter in the model. For
models that do not have a dispersion parameter (the Poisson and binomial), this option is ignored.
Note that you can specify Gibbs sampling on either the dispersion parameter �, the scale parameter
� D �

1
2 , or the precision parameter � D ��1, with the DPRIOR=, SPRIOR=, and PPRIOR= options,

respectively. These three parameters are transformations of one another, and you should specify Gibbs
sampling for only one of them.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by DISPERSION-
PRIOR=GAMMA, which can be followed by one of the following gamma-options enclosed in
parentheses. The hyperparameters a and b are the shape and inverse-scale parameters of the gamma
distribution, respectively. See the section “Gamma Prior” on page 3681 for details. The default is
G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the dispersion parameter.
With this choice of hyperparameters, the mean of the prior distribution is O� and the variance is

O�
c

.
By default, c=10�4.
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SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in a G.c; c/ prior.

ISCALE=c
when specified alone, results in a G.c; c/ prior.

An inverse gamma prior IG.a; b/ with density f .t/ D ba

�.a/
t�.aC1/e�b=t is specified by DISPER-

SIONPRIOR=IGAMMA, which can be followed by one of the following inverse gamma options
enclosed in parentheses. The hyperparameters a and b are the shape and scale parameters of the inverse
gamma distribution, respectively. See the section “Inverse Gamma Prior” on page 3681 for details.
The default is IG.2:001; 0:001/.

RELSHAPE< =c >
specifies independent IG.cC O�

O�
; c/ distribution, where O� is the MLE of the dispersion parameter.

With this choice of hyperparameters, the mean of the prior distribution is O�. By default, c=10�4.

SHAPE=a

SCALE=b
when both specified, results in a IG.a; b/ prior.

SHAPE=c
when specified alone, results in an IG.c; c/ prior.

SCALE=c
when specified alone, results in an IG.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with DISPERSION-
PRIOR=IMPROPER.

INITIAL=SAS-data-set
specifies the SAS data set that contains the initial values of the Markov chains. The INITIAL= data set
must contain all the variables of the model. You can specify multiple rows as the initial values of the
parallel chains for the Gelman-Rubin statistics, but posterior summaries, diagnostics, and plots are
computed only for the first chain. If the data set also contains the variable _SEED_, the value of the
_SEED_ variable is used as the seed of the random number generator for the corresponding chain.

INITIALMLE
specifies that maximum likelihood estimates of the model parameters be used as initial values of
the Markov chain. If this option is not specified, estimates of the mode of the posterior distribution
obtained by optimization are used as initial values.

METROPOLIS=YES | NO
specifies the use of a Metropolis step to generate Gibbs samples for posterior distributions that are not
log concave. The default value is METROPOLIS=YES.
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NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 2000.

NMC=number
specifies the number of iterations after the burn-in. The default is 10000.

OUTPOST=SAS-data-set

OUT=SAS-data-set
names the SAS data set that contains the posterior samples. See the sections “OUTPOST= Output
Data Set” on page 3683 and “Posterior Samples Output Data Set” on page 3680 for more information.
Alternatively, you can create the output data set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE=SAS-data-set

PRECISIONPRIOR=GAMMA< (options) > | IMPROPER

PPRIOR=GAMMA< (options) > | IMPROPER
specifies that Gibbs sampling be performed on the generalized linear model precision parameter and
the prior distribution for the precision parameter, if there is a precision parameter in the model. For
models that do not have a precision parameter (the Poisson and binomial), this option is ignored.
Note that you can specify Gibbs sampling on either the dispersion parameter �, the scale parameter
� D �

1
2 , or the precision parameter � D ��1, with the DPRIOR=, SPRIOR=, and PPRIOR= options,

respectively. These three parameters are transformations of one another, and you should specify Gibbs
sampling for only one of them.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by PRECISION-
PRIOR=GAMMA, which can be followed by one of the following gamma-options enclosed
in parentheses. The hyperparameters a and b are the shape and inverse-scale parameters of the gamma
distribution, respectively. See the section “Gamma Prior” on page 3681 for details. The default is
G.10�4; 10�4/.

RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the dispersion parameter.
With this choice of hyperparameters, the mean of the prior distribution is O� and the variance is O�

c
.

By default, c D 10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in an G.c; c/ prior.

ISCALE=c
when specified alone, results in an G.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with PRECISION-
PRIOR=IMPROPER.
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PLOTS< (global-plot-options) >=plot-request

PLOTS< (global-plot-options) >=(plot-request < . . . plot-request >)
controls the display of diagnostic plots. Three types of plots can be requested: trace plots, autocorrela-
tion function plots, and kernel density plots. By default, the plots are displayed in panels unless the
global-plot-option UNPACK is specified. Also, when you are specifying more than one type of plots,
the plots are displayed by parameters unless the global-plot-option GROUPBY is specified. When you
specify only one plot-request , you can omit the parentheses around the plot-request . For example:

plots=none
plots(unpack)=trace
plots=(trace autocorr)

ODS Graphics must be enabled before requesting plots. For example, the following SAS statements
enable ODS Graphics:

ods graphics on;
proc genmod;

model y=x;
bayes plots=trace;

run;
ods graphics off;

The global-plot-options are as follows:

FRINGE
creates a fringe plot on the X axis of the density plot.

GROUPBY=PARAMETER

GROUPBY=TYPE
specifies how the plots are grouped when there is more than one type of plot.

GROUPBY=TYPE
specifies that the plots be grouped by type.

GROUPBY=PARAMETER
specifies that the plots be grouped by parameter.

GROUPBY=PARAMETER is the default.

LAGS=n
specifies that autocorrelations be plotted up to lag n. If this option is not specified, autocorrelations
are plotted up to lag 50.

SMOOTH
displays a fitted penalized B-spline curve for each trace plot.
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UNPACKPANEL
UNPACK

specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed
separately.

The plot-requests include the following:

ALL
specifies all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR
displays the autocorrelation function plots for the parameters.

DENSITY
displays the kernel density plots for the parameters.

NONE
suppresses all diagnostic plots.

TRACE
displays the trace plots for the parameters. See the section “Visual Analysis via Trace Plots” on
page 163 in Chapter 8, “Introduction to Bayesian Analysis Procedures,” for details.

SAMPLING=option
specifies an algorithm used to sample the posterior distribution. The following options are available:

ARMS
GIBBS

use the ARMS algorithm.

GAMERMAN
GAM

use the Gamerman algorithm. This is the default method.

IM
use the independent Metropolis algorithm.

SCALEPRIOR=GAMMA< (options) > | IMPROPER
SPRIOR=GAMMA< (options) > | IMPROPER

specifies that Gibbs sampling be performed on the generalized linear model scale parameter and the
prior distribution for the scale parameter, if there is a scale parameter in the model. For models that do
not have a scale parameter (the Poisson and binomial), this option is ignored. Note that you can specify
Gibbs sampling on either the dispersion parameter �, the scale parameter � D �

1
2 , or the precision

parameter � D ��1, with the DPRIOR=, SPRIOR=, and PPRIOR= options, respectively. These three
parameters are transformations of one another, and you should specify Gibbs sampling for only one of
them.

A gamma prior G.a; b/ with density f .t/ D b.bt/a�1e�bt
�.a/

is specified by SCALEPRIOR=GAMMA,
which can be followed by one of the following gamma-options enclosed in parentheses. The hyperpa-
rameters a and b are the shape and inverse-scale parameters of the gamma distribution, respectively.
See the section “Gamma Prior” on page 3681 for details. The default is G.10�4; 10�4/.
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RELSHAPE< =c >
specifies independent G.c O�; c/ distribution, where O� is the MLE of the dispersion parameter.
With this choice of hyperparameters, the mean of the prior distribution is O� and the variance is O�

c
.

By default, c D 10�4.

SHAPE=a

ISCALE=b
when both specified, results in a G.a; b/ prior.

SHAPE=c
when specified alone, results in an G.c; c/ prior.

ISCALE=c
when specified alone, results in an G.c; c/ prior.

An improper prior with density f .t/ proportional to t�1 is specified with SCALEPRIOR=IMPROPER.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If the
SEED= option is not specified, or if you specify a nonpositive seed, a random seed is derived from the
time of day.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics produced. Specifying STATISTICS=ALL is equivalent to
specifying STATISTICS= (SUMMARY INTERVAL COV CORR). If you do not want any posterior
statistics, you specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY INTERVAL).
See the section “Summary Statistics” on page 175 in Chapter 8, “Introduction to Bayesian Analysis
Procedures,” for details. The global-options include the following:

ALPHA=numeric-list
controls the probabilities of the credible intervals. The ALPHA= values must be between 0 and 1.
Each ALPHA= value produces a pair of 100(1–ALPHA)% equal-tail and HPD intervals for each
parameters. The default is the value of the ALPHA= option in the MODEL statement, or 0.05 if
that option is not specified (yielding the 95% credible intervals for each parameter).

PERCENT=numeric-list
requests the percentile points of the posterior samples. The PERCENT= values must be between
0 and 100. The default is PERCENT=25, 50, 75, which yield the 25th, 50th, and 75th percentile
points, respectively, for each parameter.

The list of keywords includes the following:

CORR
produces the posterior correlation matrix.
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COV
produces the posterior covariance matrix.

SUMMARY
produces the means, standard deviations, and percentile points for the posterior samples. The
default is to produce the 25th, 50th, and 75th percentile points, but you can use the global
PERCENT= option to request specific percentile points.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the global ALPHA= option
to request intervals of any probabilities.

THINNING=number

THIN=number
controls the thinning of the Markov chain. Only one in every k samples is used when THINNING=k,
and if NBI=n0 and NMC=n, the number of samples kept is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THINNING=1.

BY Statement
BY variables ;

You can specify a BY statement in PROC GENMOD to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement in the GENMOD procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the “Grouping Data” section of SAS Programmers
Guide: Essentials. For more information about the DATASETS procedure, see the discussion in the Base
SAS Procedures Guide.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
Response variables do not need to be specified in the CLASS statement.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options
in parentheses after the variable name. You can also specify global-options for the CLASS statement by
placing them after a slash (/). Global-options are applied to all the variables that are specified in the CLASS
statement. If you specify more than one CLASS statement, the global-options that are specified in any one
CLASS statement apply to all CLASS statements. However, individual CLASS variable options override the
global-options. You can specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

DESCENDING

DESC
reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, PROC GENMOD orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values of the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so this option can be useful when you
use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC GENMOD interprets values of the ORDER= option:
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Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in the “Grouping Data” section of SAS
Programmers Guide: Essentials.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table. The default is PARAM=GLM. Design matrix columns
are created from CLASS variables according to the corresponding coding schemes.

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

ORDINAL
THERMOMETER

Cumulative parameterization for an ordinal
CLASS variable

POLYNOMIAL
POLY

Polynomial coding

REFERENCE
REF

Reference cell coding

ORTHEFFECT Orthogonalizes PARAM=EFFECT coding

ORTHORDINAL
ORTHOTHERM

Orthogonalizes PARAM=ORDINAL coding

ORTHPOLY Orthogonalizes PARAM=POLYNOMIAL coding

ORTHREF Orthogonalizes PARAM=REFERENCE coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If a PARAM= option is specified as a variable option for some variables, then any variables for which
PARAM= is not specified use either the EFFECT parameterization if the global PARAM= option is
not specified, or the full-rank parameterization indicated in the global PARAM= option if specified. If
the global PARAM=GLM option is specified and PARAM= is also specified for some variables, GLM
parameterization is used for all variables.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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If PARAM=ORTHPOLY or PARAM=POLY and the classification variable is numeric, then the
ORDER= option in the CLASS statement is ignored, and the internal unformatted values are used.
For more information, see the section “Other Parameterizations” on page 416 in Chapter 20, “Shared
Concepts and Topics.”

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords:

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

By default, REF=LAST.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. The TRUNCATE option is
available only as a global option.

Class Variable Default Parameterization

If you do not specify the PARAM= option, the default PARAM=GLM parameterization is used.

Class Variable Naming Convention

Parameter names for a CLASS predictor variable are constructed by concatenating the CLASS variable name
with the CLASS levels. However, for the POLYNOMIAL and orthogonal parameterizations, parameter
names are formed by concatenating the CLASS variable name and keywords that reflect the parameterization.
For examples and more information, see the section “Other Parameterizations” on page 416 in Chapter 20,
“Shared Concepts and Topics.”

Class Variable Parameterization with Unbalanced Designs

PROC GENMOD initially parameterizes the CLASS variables by looking at the levels of the variables across
the complete data set. If you have an unbalanced replication of levels across variables or BY groups, then
the design matrix and the parameter interpretation might be different from what you expect. For example,
suppose you have a model that has one CLASS variable A with three levels (1, 2, and 3) and another CLASS
variable B with two levels (1 and 2). If the third level of A occurs only with the first level of B, if you use the
EFFECT parameterization, and if your model contains the effect A(B) and an intercept, then the design for A
within the second level of B is not a differential effect. In particular, the design looks like the following:
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Design Matrix
A(B=1) A(B=2)

B A A1 A2 A1 A2

1 1 1 0 0 0
1 2 0 1 0 0
1 3 –1 –1 0 0
2 1 0 0 1 0
2 2 0 0 0 1

PROC GENMOD detects linear dependency among the last two design variables and sets the parameter for
A2(B=2) to zero, resulting in an interpretation of these parameters as if they were reference- or dummy-coded.
The REFERENCE or GLM parameterization might be more appropriate for such problems.

CODE Statement
CODE < options > ;

The CODE statement writes SAS DATA step code for computing predicted values of the fitted model either
to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 51.3 summarizes the options available in the CODE statement.

Table 51.3 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 424 in
Chapter 20, “Shared Concepts and Topics.”
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CONTRAST Statement
CONTRAST 'label ' contrast-specification < / options > ;

The CONTRAST statement provides a means of obtaining a test of a specified hypothesis concerning the
model parameters. This is accomplished by specifying a matrix L for testing the hypothesis L0ˇ D 0. You
must be familiar with the details of the model parameterization that PROC GENMOD uses. For more
information, see the section “Parameterization Used in PROC GENMOD” on page 3652 and the section
“CLASS Statement” on page 3598. Computed statistics are based on the asymptotic chi-square distribution
of the likelihood ratio statistic, or the generalized score statistic for GEE models, with degrees of freedom
determined by the number of linearly independent rows in the L0 matrix. You can request Wald chi-square
statistics with the Wald option in the CONTRAST statement.

There is no limit to the number of CONTRAST statements that you can specify, but they must appear after
the MODEL statement and after the ZEROMODEL statement for zero-inflated models. Statistics for multiple
CONTRAST statements are displayed in a single table.

The elements of the CONTRAST statement are as follows:

label identifies the contrast on the output. A label is required for every contrast specified. Labels can be
up to 20 characters and must be enclosed in single quotes.

contrast-specification identifies the effects and their coefficients from which the L matrix is formed. The
contrast-specification can be specified in two different ways. The first method applies to all
models except the zero-inflated (ZI) distributions (zero-inflated Poisson and zero-inflated negative
binomial), and the syntax is:

effect values < ,. . . effect values >

The second method of specifying a contrast applies only to ZI models, and the syntax is:

effect values < ,. . . effect values > @ZERO effect values < ,. . . effect values >

where

effect identifies an effect that appears in the MODEL statement. The value INTERCEPT or
intercept can be used as an effect when an intercept is included in the model. You do
not need to include all effects that are included in the MODEL statement.

values are constants that are elements of the L vector associated with the effect.

options specifies CONTRAST statement options.

Specification of sets of effect values before the @ZERO separator results in a row of the L0 matrix with
coefficients for effects in the regression part of the model set to values and with the coefficients for the
zero-inflation part of the model set to zero. Specification of sets of effect values after the @ZERO separator
results in a row of the L matrix with the coefficients for the regression part of the model set to zero and with
the coefficients of effects in the zero-inflation part of the model set to values. For example, the statements

class a;
model y=a;
contrast 'Label1' A 1 -1;

specify an L0 matrix with one row with coefficients 1 for the first level of A and –1 for the second level of A.

The statements
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class a b;
model y=a / dist=zip;
zeromodel b;
contrast 'Label2' A 1 -1 @zero B 1 -1;

specify an L0 matrix with two rows: the first row has coefficients 1 for the first level of A, –1 for the second
level of A, and zeros for all levels of B; the second row has coefficients 0 for all levels of A, 1 for the first
level of B, and –1 for the second level of B.

The rows of L0 are specified in order and are separated by commas.

If you use the default less-than-full-rank PROC GLM CLASS variable parameterization, each row of the
L0 matrix is checked for estimability. If PROC GENMOD finds a contrast to be nonestimable, it displays
missing values in corresponding rows in the results. See Searle (1971) for a discussion of estimable functions.
If the elements of L0 are not specified for an effect that contains a specified effect, then the elements of the
specified effect are distributed over the levels of the higher-order effect just as the GLM procedure does for
its CONTRAST and ESTIMATE statements. For example, suppose that the model contains effects A and B
and their interaction A*B. If you specify a CONTRAST statement involving A alone, the L0 matrix contains
nonzero terms for both A and A*B, since A*B contains A.

When you use any of the full-rank PARAM= CLASS variable options, all parameters are directly estimable,
and rows of L0 are not checked for estimability.

If an effect is not specified in the CONTRAST statement, all of its coefficients in the L0 matrix are set to 0. If
too many values are specified for an effect, the extra ones are ignored. If too few values are specified, the
remaining ones are set to 0.

PROC GENMOD handles missing level combinations of classification variables in the same manner as the
GLM and MIXED procedures. Parameters corresponding to missing level combinations are not included
in the model. This convention can affect the way in which you specify the L matrix in your CONTRAST
statement.

If you specify the WALD option, the test of hypothesis is based on a Wald chi-square statistic. If you omit
the WALD option, the test statistic computed depends on whether an ordinary generalized linear model or a
GEE-type model is specified.

For an ordinary generalized linear model, the CONTRAST statement computes the likelihood ratio statistic.
This is defined to be twice the difference between the log likelihood of the model unconstrained by the
contrast and the log likelihood with the model fitted under the constraint that the linear function of the
parameters defined by the contrast is equal to 0. A p-value is computed based on the asymptotic chi-square
distribution of the chi-square statistic.

If you specify a GEE model with the REPEATED statement, the test is based on a score statistic. The GEE
model is fit under the constraint that the linear function of the parameters defined by the contrast is equal
to 0. The score chi-square statistic is computed based on the generalized score function. See the section
“Generalized Score Statistics” on page 3671 for more information.

The degrees of freedom is the number of linearly independent constraints implied by the CONTRAST
statement—that is, the rank of L.

You can specify the following options after a slash (/).
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E
requests that the L matrix be displayed.

SINGULAR=number

EPSILON=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the absolute value of the element
of v with the largest absolute value. Let K0 be any row in the contrast matrix L. Define C to be equal
to ABS.K0/ if ABS.K0/ is greater than 0; otherwise, C equals 1. If ABS.K0 � K0T/ is greater than
C*number , then K is declared nonestimable. T is the Hermite form matrix .X0X/�.X0X/, and .X0X/�

represents a generalized inverse of the matrix X0X. The value for number must be between 0 and 1;
the default value is 1E–4. The SINGULAR= option in the MODEL statement affects the computation
of the generalized inverse of the matrix X0X. It might also be necessary to adjust this value for some
data.

WALD
requests that a Wald chi-square statistic be computed for the contrast rather than the default likelihood
ratio or score statistic. The Wald statistic for testing L0ˇ D 0 is defined by

S D .L0 Ǒ/0.L0†L/�.L0 Ǒ/

where Ǒ is the maximum likelihood estimate and † is its estimated covariance matrix. The asymptotic
distribution of S is �2r , where r is the rank of L. Computed p-values are based on this distribution.

If you specify a GEE model with the REPEATED statement, † is the empirical covariance matrix
estimate.

DEVIANCE Statement
DEVIANCE variable=expression ;

You can specify a probability distribution other than those available in PROC GENMOD by using the
DEVIANCE and VARIANCE statements. You do not need to specify the DEVIANCE or VARIANCE
statement if you use the DIST= MODEL statement option to specify a probability distribution. The variable
identifies the deviance contribution from a single observation to the procedure, and it must be a valid SAS
variable name that does not appear in the input data set. The expression can be any arithmetic expression
supported by the DATA step language, and it is used to define the functional dependence of the deviance on
the mean and the response. You use the automatic variables _MEAN_ and _RESP_ to represent the mean and
response in the expression.

Alternatively, the deviance function can be defined using programming statements (see the section “Program-
ming Statements” on page 3630) and assigned to a variable, which is then listed as the expression. This form
is convenient for using complex statements such as IF-THEN/ELSE clauses.

The DEVIANCE statement is ignored unless the VARIANCE statement is also specified.
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EFFECTPLOT Statement
EFFECTPLOT < plot-type < (plot-definition-options) > > < / options > ;

The EFFECTPLOT statement produces a display of the fitted model and provides options for changing and
enhancing the displays. Table 51.4 describes the available plot-types and their plot-definition-options.

Table 51.4 Plot-Types and Plot-Definition-Options

Plot-Type and Description Plot-Definition-Options

BOX
Displays a box plot of continuous response data at each
level of a CLASS effect, with predicted values
superimposed and connected by a line. This is an
alternative to the INTERACTION plot-type.

PLOTBY= variable or CLASS effect
X= CLASS variable or effect

CONTOUR
Displays a contour plot of predicted values against two
continuous covariates.

PLOTBY= variable or CLASS effect
X= continuous variable
Y= continuous variable

FIT
Displays a curve of predicted values versus a
continuous variable.

PLOTBY= variable or CLASS effect
X= continuous variable

INTERACTION
Displays a plot of predicted values (possibly with error
bars) versus the levels of a CLASS effect. The
predicted values are connected with lines and can be
grouped by the levels of another CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= CLASS variable or effect

MOSAIC
Displays a mosaic plot of predicted values using up to
three CLASS effects.

PLOTBY= variable or CLASS effect
X= CLASS effects

SLICEFIT
Displays a curve of predicted values versus a
continuous variable grouped by the levels of a
CLASS effect.

PLOTBY= variable or CLASS effect
SLICEBY= variable or CLASS effect
X= continuous variable

For full details about the syntax and options of the EFFECTPLOT statement, see the section
“EFFECTPLOT Statement” on page 447 in Chapter 20, “Shared Concepts and Topics.”
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ESTIMATE Statement
ESTIMATE 'label ' contrast-specification < / options > ;

The ESTIMATE statement is similar to a CONTRAST statement, except only one-row L0 matrices are
permitted.

The elements of the ESTIMATE statement are as follows:

label identifies the contrast on the output. A label is required for every contrast specified. Labels can be
up to 20 characters and must be enclosed in single quotes.

contrast-specification identifies the effects and their coefficients from which the L matrix is formed. The
contrast-specification can be specified in two different ways. The first method applies to all
models except the zero-inflated (ZI) distributions (zero-inflated Poisson and zero-inflated negative
binomial), and the syntax is:

effect values < . . . effect values >

The second method of specifying a contrast applies only to ZI models, and the syntax is:

effect values < . . . effect values > @ZERO effect values < . . . effect values >

where

effect identifies an effect that appears in the MODEL statement. The value INTERCEPT or
intercept can be used as an effect when an intercept is included in the model. You do
not need to include all effects that are included in the MODEL statement.

values are constants that are elements of the L vector associated with the effect.

options specifies options for the ESTIMATE statement.

For ZI models, sets of effects values before the @ZERO separator correspond to the regression part of
the model with regression parameters ˇ, and effects values after the @ZERO separator correspond to the
zero-inflation part of the model with regression parameters  . In the case of ZI models, a one-row L0 matrix
is created for the regression part of the model, another one-row L0 matrix is created for the zero-inflation part
of the model, and separate estimates for the two L matrices are computed and displayed.

If you use the default less-than-full-rank GLM CLASS variable parameterization, each row is checked
for estimability. If PROC GENMOD finds a contrast to be nonestimable, it displays missing values in
corresponding rows in the results. See Searle (1971) for a discussion of estimable functions.

The actual estimate, L0ˇ (and L0 for ZI models), its approximate standard error, and confidence limits are
displayed. Additionally, the corresponding estimate on the mean scale (defined as the inverse link function
applied to L0ˇ), and confidence limits are displayed. Wald chi-square tests that L0ˇ = 0 and L0 D 0 are also
displayed.

The approximate standard error of the estimate is computed as the square root of L0 O†L, where O† is the
estimated covariance matrix of the parameter estimates. If you specify a GEE model in the REPEATED
statement, O† is the empirical covariance matrix estimate.

If you specify the EXP option, then exp.L0ˇ/, its standard error, and its confidence limits are also displayed.

The construction of the L vector and the checking for estimability for an ESTIMATE statement follow the
same rules as listed under the CONTRAST statement.
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You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA=number
requests that a confidence interval be constructed with confidence level 1 – number . The value of
number must be between 0 and 1; the default value is 0.05.

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can be entered as
integer numerators. For example, you can use

estimate '1/3(A1+A2) - 2/3A3' a 1 1 -2 / divisor=3;

instead of

estimate '1/3(A1+A2) - 2/3A3' a 0.33333 0.33333 -0.66667;

E
requests that the L matrix coefficients be displayed.

EXP
requests that exp.L0ˇ/, its standard error, and its confidence limits be computed. If you specify the
EXP option, standard errors are computed using the delta method. Confidence limits are computed by
exponentiating the confidence limits for L0ˇ.

SINGULAR=number

EPSILON=number
tunes the estimability checking as described for the CONTRAST statement.

EXACT Statement
EXACT < 'label ' > < INTERCEPT > < effects > < / options > ;

The EXACT statement performs exact tests of the parameters for the specified effects and optionally estimates
the parameters and outputs the exact conditional distributions. You can specify the keyword INTERCEPT
and any effects in the MODEL statement. Inference on the parameters of the specified effects is performed
by conditioning on the sufficient statistics of all the other model parameters (possibly including the intercept).

You can specify several EXACT statements, but they must follow the MODEL statement. Each statement can
optionally include an identifying label . If several EXACT statements are specified, any statement without
a label is assigned a label of the form “Exactn,” where n indicates the nth EXACT statement. The label is
included in the headers of the displayed exact analysis tables.

If a STRATA statement is also specified, then a stratified exact logistic regression or a stratified exact Poisson
regression is performed. The model contains a different intercept for each stratum, and these intercepts are
conditioned out of the model along with any other nuisance parameters (parameters for effects specified in
the MODEL statement that are not in the EXACT statement).

The ASSESSMENT, BAYES, CONTRAST, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE,
OUTPUT, SLICE, and STORE statements are not available with an exact analysis. Exact analyses are not
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performed when you specify a WEIGHT statement, or a model other than LINK=LOGIT with DIST=BIN or
LINK=LOG with DIST=POISSON. An OFFSET= variable is not available with exact logistic regression.
Exact estimation is not available for ordinal response models.

For classification variables, use of the reference parameterization is recommended.

The following options can be specified in each EXACT statement after a slash (/):

ALPHA=number
specifies the level of significance ˛ for 100.1 � ˛/% confidence limits for the parameters or odds
ratios. The value of number must be between 0 and 1. By default, number is equal to the value of the
ALPHA= option in the MODEL statement, or 0.05 if that option is not specified.

CLTYPE=EXACT | MIDP
requests either the exact or mid-p confidence intervals for the parameter estimates. By default, the
exact intervals are produced. The confidence coefficient can be specified with the ALPHA= option.
The mid-p interval can be modified with the MIDPFACTOR= option. See the section “Exact Logistic
and Exact Poisson Regression” on page 3684 for details.

ESTIMATE < =keyword >
estimates the individual parameters (conditioned on all other parameters) for the effects specified in the
EXACT statement. For each parameter, a point estimate, a standard error, a confidence interval, and a
p-value for a two-sided test that the parameter is zero are displayed. Note that the two-sided p-value is
twice the one-sided p-value. You can optionally specify one of the following keywords:

PARM specifies that the parameters be estimated. This is the default.

ODDS specifies that the odds ratios be estimated. If you have classification variables, then you
must also specify the PARAM=REF option in the CLASS statement.

BOTH specifies that both the parameters and odds ratios be estimated.

JOINT
performs the joint test that all of the parameters are simultaneously equal to zero, performs individual
hypothesis tests for the parameter of each continuous variable, and performs joint tests for the parame-
ters of each classification variable. The joint test is indicated in the “Conditional Exact Tests” table by
the label “Joint.”

JOINTONLY
performs only the joint test of the parameters. The test is indicated in the “Conditional Exact Tests”
table by the label “Joint.” When this option is specified, individual tests for the parameters of each
continuous variable and joint tests for the parameters of the classification variables are not performed.

MIDPFACTOR=ı1 | (ı1; ı2)
sets the tie factors used to produce the mid-p hypothesis statistics and the mid-p confidence intervals.
ı1 modifies both the hypothesis tests and confidence intervals, while ı2 affects only the hypothesis tests.
By default, ı1 D 0:5 and ı2 D 1:0. See the section “Exact Logistic and Exact Poisson Regression” on
page 3684 for details.
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ONESIDED
requests one-sided confidence intervals and p-values for the individual parameter estimates and odds
ratios. The one-sided p-value is the smaller of the left- and right-tail probabilities for the observed
sufficient statistic of the parameter under the null hypothesis that the parameter is zero. The two-sided
p-values (default) are twice the one-sided p-values. See the section “Exact Logistic and Exact Poisson
Regression” on page 3684 for more details.

OUTDIST=SAS-data-set
names the SAS data set that contains the exact conditional distributions. This data set contains all of
the exact conditional distributions that are required to process the corresponding EXACT statement.
This data set contains the possible sufficient statistics for the parameters of the effects specified
in the EXACT statement, the counts, and, when hypothesis tests are performed on the parameters,
the probability of occurrence and the score value for each sufficient statistic. When you request an
OUTDIST= data set, the observed sufficient statistics are displayed in the “Sufficient Statistics” table.
See the section “OUTDIST= Output Data Set” on page 3685 for more information.

EXACT Statement Examples

In the following example, two exact tests are computed: one for x1 and the other for x2. The test for x1 is
based on the exact conditional distribution of the sufficient statistic for the x1 parameter given the observed
values of the sufficient statistics for the intercept, x2, and x3 parameters; likewise, the test for x2 is conditional
on the observed sufficient statistics for the intercept, x1, and x3.

proc genmod;
model y= x1 x2 x3/d=b;
exact x1 x2;

run;

PROC GENMOD determines, from all the specified EXACT statements, the distinct conditional distributions
that need to be evaluated. For example, there is only one exact conditional distribution for the following two
EXACT statements:

exact 'One' x1 / estimate=parm;
exact 'Two' x1 / estimate=parm onesided;

For each EXACT statement, individual tests for the parameters of the specified effects are computed unless
the JOINTONLY option is specified. Consider the following EXACT statements:

exact 'E12' x1 x2 / estimate;
exact 'E1' x1 / estimate;
exact 'E2' x2 / estimate;
exact 'J12' x1 x2 / joint;

In the E12 statement, the parameters for x1 and x2 are estimated and tested separately. Specifying the E12
statement is equivalent to specifying both the E1 and E2 statements. In the J12 statement, the joint test for
the parameters of x1 and x2 is computed in addition to the individual tests for x1 and x2.
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EXACTOPTIONS Statement
EXACTOPTIONS options ;

The EXACTOPTIONS statement specifies options that apply to every EXACT statement in the program.
The following options are available:

ABSFCONV=value
specifies the absolute function convergence criterion. Convergence requires a small change in the
log-likelihood function in subsequent iterations,

jli � li�1j < value

where li is the value of the log-likelihood function at iteration i.

By default, ABSFCONV=1E–12. You can also specify the FCONV= and XCONV= criteria; optimiza-
tions are terminated as soon as one criterion is satisfied.

ADDTOBS
adds the observed sufficient statistic to the sampled exact distribution if the statistic was not sampled.
This option has no effect unless the METHOD=NETWORKMC option is specified and the ESTIMATE
option is specified in the EXACT statement. If the observed statistic has not been sampled, then the
parameter estimate does not exist; by specifying this option, you can produce (biased) estimates.

BUILDSUBSETS
builds every distribution for sampling. By default, some exact distributions are created by taking a
subset of a previously generated exact distribution. When the METHOD=NETWORKMC option is
invoked, this subsetting behavior has the effect of using fewer than the desired n samples; see the N=
option for more details. Use the BUILDSUBSETS option to suppress this subsetting.

EPSILON=value
controls how the partial sums

Pj
iD1 yixi are compared. value must be between 0 and 1; by default,

value=1E–8.

FCONV=value
specifies the relative function convergence criterion. Convergence requires a small relative change in
the log-likelihood function in subsequent iterations,

jli � li�1j

jli�1j C 1E–6
< value

where li is the value of the log likelihood at iteration i.

By default, FCONV=1E–8. You can also specify the ABSFCONV= and XCONV= criteria; if you
specify more than one criterion, then optimizations are terminated as soon as one criterion is satisfied.

MAXTIME=seconds
specifies the maximum clock time (in seconds) that PROC GENMOD can use to calculate the exact
distributions. If the limit is exceeded, the procedure halts all computations and prints a note to the SAS
log. The default maximum clock time is seven days.
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METHOD=keyword
specifies which exact conditional algorithm to use for every EXACT statement specified. You can
specify one of the following keywords:

DIRECT invokes the multivariate shift algorithm of Hirji, Mehta, and Patel (1987). This method
directly builds the exact distribution, but it can require an excessive amount of memory in its
intermediate stages. METHOD=DIRECT is invoked by default when you are conditioning
out at most the intercept.

NETWORK invokes an algorithm described in Mehta, Patel, and Senchaudhuri (1992). This method
builds a network for each parameter that you are conditioning out, combines the networks,
then uses the multivariate shift algorithm to create the exact distribution. The NETWORK
method can be faster and require less memory than the DIRECT method. The NETWORK
method is invoked by default for most analyses.

NETWORKMC invokes the hybrid network and Monte Carlo algorithm of Mehta, Patel, and Sen-
chaudhuri (1992). This method creates a network, then samples from that network; this
method does not reject any of the samples at the cost of using a large amount of memory
to create the network. METHOD=NETWORKMC is most useful for producing parameter
estimates for problems that are too large for the DIRECT and NETWORK methods to
handle and for which asymptotic methods are invalid—for example, for sparse data on a
large grid.

N=n
specifies the number of Monte Carlo samples to take when you specify the METHOD=NETWORKMC
option. By default, n = 10,000. If PROC GENMOD cannot obtain n samples because of a lack of
memory, then a note is printed in the SAS log (the number of valid samples is also reported in the
listing) and the analysis continues.

The number of samples used to produce any particular statistic might be smaller than n. For example,
let X1 and X2 be continuous variables, denote their joint distribution by f (X1,X2), and let f (X1 | X2 =
x2) denote the marginal distribution of X1 conditioned on the observed value of X2. If you request
the JOINT test of X1 and X2, then n samples are used to generate the estimate Of (X1,X2) of f (X1,X2),
from which the test is computed. However, the parameter estimate for X1 is computed from the subset
of Of (X1,X2) that has X2 = x2, and this subset need not contain n samples. Similarly, the distribution
for each level of a classification variable is created by extracting the appropriate subset from the joint
distribution for the CLASS variable.

In some cases, the marginal sample size can be too small to admit accurate estimation of a particular
statistic; a note is printed in the SAS log when a marginal sample size is less than 100. Increasing n
increases the number of samples used in a marginal distribution; however, if you want to control the
sample size exactly, you can either specify the BUILDSUBSETS option or do both of the following:

� Remove the JOINT option from the EXACT statement.

� Create dummy variables in a DATA step to represent the levels of a CLASS variable, and specify
them as independent variables in the MODEL statement.
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NOLOGSCALE
specifies that computations for the exact conditional models be computed by using normal scaling.
Log scaling can handle numerically larger problems than normal scaling; however, computations in the
log scale are slower than computations in normal scale.

ONDISK
uses disk space instead of random access memory to build the exact conditional distribution. Use this
option to handle larger problems at the cost of slower processing.

SEED=seed
specifies the initial seed for the random number generator used to take the Monte Carlo samples when
you specify the METHOD=NETWORKMC option. The value of the SEED= option must be an integer.
If you do not specify a seed, or if you specify a value less than or equal to 0, then PROC GENMOD
uses the time of day from the computer’s clock to generate an initial seed.

STATUSN=number
prints a status line in the SAS log after every number of Monte Carlo samples when you specify
the METHOD=NETWORKMC option. The number of samples that are taken and the current exact
p-value for testing the significance of the model are displayed. You can use this status line to track the
progress of the computation of the exact conditional distributions.

STATUSTIME=seconds
specifies the time interval (in seconds) for printing a status line in the SAS log. You can use this
status line to track the progress of the computation of the exact conditional distributions. The time
interval that you specify is approximate; the actual time interval varies. By default, no status reports
are produced.

XCONV=value
specifies the relative parameter convergence criterion. Convergence requires a small relative parameter
change in subsequent iterations,

max
j
jı
.i/
j j < value

where

ı
.i/
j D

8<: ˇ
.i/
j � ˇ

.i�1/
j jˇ

.i�1/
j j < 0:01

ˇ
.i/

j
�ˇ

.i�1/

j

ˇ
.i�1/

j

otherwise

and ˇ.i/j is the estimate of the jth parameter at iteration i.

By default, XCONV=1E–4. You can also specify the ABSFCONV= and FCONV= criteria; if more
than one criterion is specified, then optimizations are terminated as soon as one criterion is satisfied.



FREQ Statement F 3613

FREQ Statement
FREQ variable ;

FREQUENCY variable ;

The variable in the FREQ statement identifies a variable in the input data set containing the frequency of
occurrence of each observation. PROC GENMOD treats each observation as if it appears n times, where n is
the value of the FREQ variable for the observation. If it is not an integer, the frequency value is truncated to
an integer. If it is less than 1 or missing, the observation is not used. In the case of models fit with generalized
estimating equations (GEEs), the frequencies apply to the subject/cluster and therefore must be the same for
all observations within each subject.

FWDLINK Statement
FWDLINK variable=expression ;

You can define a link function other than a built-in link function by using the FWDLINK statement. If you
use the MODEL statement option LINK= to specify a link function, you do not need to use the FWDLINK
statement. The variable identifies the link function to the procedure. The expression can be any arithmetic
expression supported by the DATA step language, and it is used to define the functional dependence on the
mean.

Alternatively, the link function can be defined by using programming statements (see the section “Program-
ming Statements” on page 3630) and assigned to a variable, which is then listed as the expression. The
second form is convenient for using complex statements such as IF-THEN/ELSE clauses. The GENMOD
procedure automatically computes derivatives of the link function required for iterative fitting. You must
specify the inverse of the link function in the INVLINK statement when you specify the FWDLINK statement
to define the link function. You use the automatic variable _MEAN_ to represent the mean in the preceding
expression.

INVLINK Statement
INVLINK variable=expression ;

If you define a link function in the FWDLINK statement, then you must define the inverse link function by
using the INVLINK statement. If you use the MODEL statement option LINK= to specify a link function,
you do not need to use the INVLINK statement. The variable identifies the inverse link function to the
procedure. The expression can be any arithmetic expression supported by the DATA step language, and it is
used to define the functional dependence on the linear predictor.

Alternatively, the inverse link function can be defined using programming statements (see the section
“Programming Statements” on page 3630) and assigned to a variable, which is then listed as the expression.
The second form is convenient for using complex statements such as IF-THEN/ELSE clauses. The automatic
variable _XBETA_ represents the linear predictor in the preceding expression.
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LSMEANS Statement
LSMEANS < model-effects > < / options > ;

The LSMEANS statement computes and compares least squares means (LS-means) of fixed effects. LS-means
are predicted population margins—that is, they estimate the marginal means over a balanced population. In a
sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Table 51.5 summarizes the options available in the LSMEANS statement. If you specify the BAYES
statement, the ADJUST=, STEPDOWN, and LINES options are ignored. The PLOTS= option is not available
for a maximum likelihood analysis; it is available only for a Bayesian analysis.

If you specify a zero-inflated model (that is, a model for either the zero-inflated Poisson or the zero-inflated
negative binomial distribution), then the least squares means are computed only for effects in the model for
the distribution mean, and not for effects in the zero-inflation probability part of the model.

Table 51.5 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies the covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Computes differences of LS-means
OM= Specifies the weighting scheme for LS-means computation as

determined by the input data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-Values
ADJUST= Determines the method of multiple-comparison adjustment of

LS-means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion

Statistical Output
ASC Sorts LS-means in ascending order in results that you display by

specifying the LINES option
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
LINES Uses connecting lines to indicate nonsignificantly different subsets

of LS-means
LINESTABLE Displays the results of the LINES option as a table
MEANS Prints the LS-means
PLOTS= Produces graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random

numbers
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Table 51.5 continued

Option Description

Generalized Linear Modeling
EXP Exponentiates and displays estimates of LS-means or LS-means

differences
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale
ODDSRATIO Reports (simple) differences of least squares means in terms of

odds ratios if permitted by the link function

For details about the syntax of the LSMEANS statement, see the section “LSMEANS Statement” on page 492
in Chapter 20, “Shared Concepts and Topics.”

LSMESTIMATE Statement
LSMESTIMATE model-effect < 'label ' > values < divisor=n >

< , . . . < 'label ' > values < divisor=n > >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least
squares means.

Table 51.6 summarizes the options available in the LSMESTIMATE statement.

Table 51.6 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as

determined by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-Values
ADJUST= Determines the method of multiple-comparison adjustment of

LS-means differences
ALPHA=˛ Determines the confidence level (1 � ˛)
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple-comparison p-values further in a step-down

fashion
TESTVALUE= Specifies values under the null hypothesis for tests
UPPER Performs one-sided, upper-tailed inference
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Table 51.6 continued

Option Description

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and

LS-means differences
PLOTS= Produces graphs of means and mean comparisons
SEED= Specifies the seed for computations that depend on random

numbers

Generalized Linear Modeling
CATEGORY= Specifies how to construct estimable functions for multinomial data
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means

(but not differences) on the inverse linked scale

For more information about the syntax of the LSMESTIMATE statement, see the section “LSMESTIMATE
Statement” on page 513 in Chapter 20, “Shared Concepts and Topics.”

MODEL Statement
MODEL response < (variable-options) > = < effects > < / options > ;

MODEL events/trials = < effects > < / options > ;

The MODEL statement specifies the response, or dependent variable, and the effects, or explanatory variables.
If you omit the explanatory variables, the procedure fits an intercept-only model. An intercept term is
included in the model by default. The intercept can be removed with the NOINT option.

You can specify the response in the form of a single variable or in the form of a ratio of two variables denoted
events/trials. The first form is applicable to all responses. The second form is applicable only to summarized
binomial response data. When each observation in the input data set contains the number of events (for
example, successes) and the number of trials from a set of binomial trials, use the events/trials syntax.

In the events/trials model syntax, you specify two variables that contain the event and trial counts. These two
variables are separated by a slash (/). The values of both events and (trials–events) must be nonnegative, and
the value of the trials variable must be greater than 0 for an observation to be valid. The variable events or
trials can take noninteger values.

When each observation in the input data set contains a single trial from a binomial or multinomial experiment,
use the first form of the preceding MODEL statements. The response variable can be numeric or character.
Variable options specific to the response variable can be specified in parentheses immediately after the
response variable. Identifying the event level for binomial responses and ordering of response levels for
multinomial responses is critical in these models. You can use the response variable options to do this.
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Responses for the Poisson distribution must be all nonnegative, but they can be noninteger values.

The effects in the MODEL statement consist of an explanatory variable or combination of variables. Ex-
planatory variables can be continuous or classification variables. Classification variables can be character or
numeric. Explanatory variables representing nominal, or classification, data must be declared in a CLASS
statement. Interactions between variables can also be included as effects. Columns of the design matrix are
automatically generated for classification variables and interactions. The syntax for specification of effects
is the same as for the GLM procedure. See the section “Specification of Effects” on page 3651 for more
information. Also see Chapter 53, “The GLM Procedure.”

Response Variable Options

DESCENDING | DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC GENMOD orders the response categories according to the ORDER= option and then
reverses that order. For more information, see the section “Response Level Ordering” on page 3687.

EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC GENMOD models the probability
of the event category. The EVENT= option has no effect when there are more than two response
categories. You can specify the value (formatted if a format is applied) of the event category in
quotation marks, or you can specify one of the following keywords:

FIRST
designates the first-ordered category as the event.

LAST
designates the last-ordered category as the event.

By default, EVENT=FIRST.

One of the most common sets of response levels is {0,1}, where 1 represents the event for which the
probability is to be modeled. Consider the example where Y takes the values 1 and 0 for event and
nonevent, respectively, and Exposure is the explanatory variable. To specify the value 1 as the event
category, use the following MODEL statement:

model Y(event='1') = Exposure;

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. The following table displays the available
ORDER= options.

ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted value, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) value

FREQ Descending frequency count; levels with the most
observations come first in the order

INTERNAL Unformatted value
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By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine-dependent. When ORDER=FORMATTED is in effect for numeric variables for
which you have supplied no explicit format, the levels are ordered by their internal values.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Programmers Guide: Essentials.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the binary response model. Specifying one response category as
the reference is the same as specifying the other response category as the event category. You can
specify the value (formatted if a format is applied) of the reference category in quotation marks, or you
can specify one of the following keywords:

FIRST designates the first-ordered category as the reference.

LAST designates the last-ordered category as the reference.

By default, REF=LAST.

Table 51.7 summarizes the options available in the MODEL statement.

Table 51.7 MODEL Statement Options

Option Description

AGGREGATE= Specifies the subpopulations
ALPHA= Sets the confidence coefficient
CICONV= Sets the convergence criterion for profile likelihood confidence intervals
CL Displays confidence limits for predicted values
CODING= Uses effect coding for all classification variables
CONVERGE= Sets the convergence criterion
CONVH= Sets the relative Hessian convergence criterion
CORRB Displays the parameter estimate correlation matrix
COVB Displays the parameter estimate covariance matrix
DESCENDING Reverses the order of the response categories
DIAGNOSTICS Displays case deletion diagnostic statistics
DIST= Specifies the built-in probability distribution
EVENT= Specifies the event category for the binary response model
EXACTMAX Names a variable used for performing an exact Poisson regression
EXPECTED Computes covariances and associated statistics by using the expected

Fisher information matrix
ID= Displays the values of variable in the input data set in the OBSTATS table
INITIAL= Sets initial values for parameter estimates
INTERCEPT= Initializes the intercept term
ITPRINT Displays the iteration history for all iterative processes
LINK= Specifies the link function
LOGNB Computes the maximum likelihood estimate and confidence limits of

k-based log.k/
LRCI Computes two-sided confidence intervals for the partially likelihood

function

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Table 51.7 continued

Option Description

MAXITER= Sets the maximum allowable number of iterations for all iterative
computation processes

NOINT Requests that no intercept term
NOLOGNB Computes the maximum likelihood estimate and confidence limits of k

based on k
NOSCALE Holds the scale parameter fixed
OBSTATS Displays an additional table of statistics
OFFSET= Specifies a variable in the input data set to be used as an offset
ORDER= Specifies the sort order for the levels of the response variable
PREDICTED Displays predicted values and associated statistics
REFERENCE= Specifies the reference category for the binary response model
RESIDUALS Displays residuals and standardized residuals
SCALE= Sets the value used for the scale
SCORING= Computes the Hessian matrix using the Fisher scoring method
SINGULAR= Sets the tolerance for testing singularity
TYPE1 Performs a Type 1 analysis
TYPE3 Computes statistics for Type 3 contrasts
WALD Requests Wald statistics for Type 3 contrasts
WALDCI Computes two-sided Wald confidence intervals
XVARS Includes the regression variables in the OBSTATS table

You can specify the following options in the MODEL statement after a slash (/).

AGGREGATE= (variable-list) | variable

AGGREGATE
specifies the subpopulations on which the Pearson chi-square and the deviance are calculated. This
option applies only to the multinomial distribution or the binomial distribution with binary (single
trial syntax) response. It is ignored if specified for other cases. Observations with common values
in the given list of variables are regarded as coming from the same subpopulation. This affects
the computation of the deviance and Pearson chi-square statistics. Variables in the list can be any
variables in the input data set. Specifying the AGGREGATE option is equivalent to specifying the
AGGREGATE= option with a variable list that includes all explanatory variables in the MODEL
statement. Pearson chi-square and deviance statistics are not computed for multinomial models unless
this option is specified.

ALPHA=number

ALPH=number

A=number
sets the confidence coefficient for parameter confidence intervals to 1–number . The value of number
must be between 0 and 1. The default value of number is 0.05.
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CICONV=number
sets the convergence criterion for profile likelihood confidence intervals. See the section “Confidence
Intervals for Parameters” on page 3655 for the definition of convergence. The value of number must
be between 0 and 1. By default, CICONV=1E–4.

CL
requests that confidence limits for predicted values be displayed (see the OBSTATS option).

CODING=EFFECT | FULLRANK
specifies that effect coding be used for all classification variables in the model. This is the same as
specifying PARAM=EFFECT as a CLASS statement option.

CONVERGE=number
sets the convergence criterion. The value of number must be between 0 and 1. The iterations are
considered to have converged when the maximum change in the parameter estimates between iteration
steps is less than the value specified. The change is a relative change if the parameter is greater than
0.01 in absolute value; otherwise, it is an absolute change. By default, CONVERGE=1E–4. This
convergence criterion is used in parameter estimation for a single model fit, Type 1 statistics, and
likelihood ratio statistics for Type 3 analyses and CONTRAST statements.

CONVH=number
sets the relative Hessian convergence criterion. The value of number must be between 0 and 1. After
convergence is determined with the change in parameter criterion specified with the CONVERGE=
option, the quantity tc D g0H�1g

jf j
is computed and compared to number , where g is the gradient

vector, H is the Hessian matrix for the model parameters, and f is the log-likelihood function. If tc
is greater than number , a warning that the relative Hessian convergence criterion has been exceeded
is printed. This criterion detects the occasional case where the change in parameter convergence
criterion is satisfied, but a maximum in the log-likelihood function has not been attained. By default,
CONVH=1E–4.

CORRB
requests that the parameter estimate correlation matrix be displayed.

COVB
requests that the parameter estimate covariance matrix be displayed.

DIAGNOSTICS

INFLUENCE
requests that case deletion diagnostic statistics be displayed (see the OBSTATS option).

DIST=keyword

D=keyword

ERROR=keyword

ERR=keyword
specifies the built-in probability distribution to use in the model. If you specify the DIST= option and
you omit a user-defined link function, a default link function is chosen as displayed in the following
table. If you specify no distribution and no link function, then the GENMOD procedure defaults to the
normal distribution with the identity link function. Models for data with correlated responses fit by the
GEE method are not available for the zero-inflated distributions.
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DIST= Distribution Default Link Function

BINOMIAL | BIN | B Binomial Logit
GAMMA | GAM | G Gamma Inverse ( power(–1) )
GEOMETRIC | GEOM Geometric Log
IGAUSSIAN | IG Inverse Gaussian Inverse squared ( power(–2) )
MULTINOMIAL | MULT Multinomial Cumulative logit
NEGBIN | NB Negative binomial Log
NORMAL | NOR | N Normal Identity
POISSON | POI | P Poisson Log
TWEEDIE< (Tweedie-options) > Tweedie Log
ZIP Zero-inflated Poisson Log/logit
ZINB Zero-inflated negative binomial Log/logit

You can specify the following Tweedie-options when you specify DIST=TWEEDIE.

INITIALP=starting-value
specifies a starting value for iterative estimation of the Tweedie power parameter.

P=power-parameter
specifies a fixed Tweedie power parameter.

EPSILON=tolerance
specifies the tolerance for series approximation of the Tweedie density function.

OFFSET=constant-value
specifies a constant value to be added to the response variable for evaluating the extended
quasi-likelihood. By default, OFFSET=0.5.

NTHREADS=number
specifies the number of threads to be used in computation.

EXACTMAX< =variable >
names a variable to be used for performing an exact Poisson regression. For each observation, the
integer part of the EXACTMAX value should be nonnegative and at least as large as the response
value. If the EXACTMAX option is specified without a variable, then default values are computed.
See the section “Exact Logistic and Exact Poisson Regression” on page 3684 for information about
using this option.

EXPECTED
requests that the expected Fisher information matrix be used to compute parameter estimate covariances
and the associated statistics. The default action is to use the observed Fisher information matrix. This
option does not affect the model fitting, only the way in which the covariance matrix is computed (see
the SCORING= option.)
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ID=variable
causes the values of variable in the input data set to be displayed in the OBSTATS table. If an explicit
format for variable has been defined, the formatted values are displayed. If the OBSTATS option is not
specified, this option has no effect.

INITIAL=numbers
sets initial values for parameter estimates in the model. The default initial parameter values are
weighted least squares estimates based on using the response data as the initial mean estimate. This
option can be useful in case of convergence difficulty. The intercept parameter is initialized with the
INTERCEPT= option and is not included here. The values are assigned to the variables in the MODEL
statement in the same order in which they appear in the MODEL statement. The order of levels
for CLASS variables is determined by the ORDER= option. Note that some levels of classification
variables can be aliased; that is, they correspond to linearly dependent parameters that are not estimated
by the procedure. Initial values must be assigned to all levels of classification variables, regardless
of whether they are aliased or not. The procedure ignores initial values corresponding to parameters
not being estimated. If you specify a BY statement, all classification variables must take on the same
number of levels in each BY group. Otherwise, classification variables in some of the BY groups are
assigned incorrect initial values. Types of INITIAL= specifications are illustrated in the following
table.

Type of List Specification

List separated by blanks INITIAL = 3 4 5
List separated by commas INITIAL = 3, 4, 5
x to y INITIAL = 3 to 5
x to y by z INITIAL = 3 to 5 by 1
Combination of list types INITIAL = 1, 3 to 5, 9

INTERCEPT=number | number-list
initializes the intercept term to number for parameter estimation. If you specify both the INTERCEPT=
and the NOINT options, the intercept term is not estimated, but an intercept term of number is included
in the model. If you specify a multinomial model for ordinal data, you can specify a number-list for
the multiple intercepts in the model.

ITPRINT
displays the iteration history for all iterative processes: parameter estimation, fitting constrained models
for contrasts and Type 3 analyses, and profile likelihood confidence intervals. The last evaluation of
the gradient and the negative of the Hessian (second derivative) matrix are also displayed for parameter
estimation. If you perform a Bayesian analysis by specifying the BAYES statement, the iteration
history for computing the mode of the posterior distribution is also displayed.

This option might result in a large amount of displayed output, especially if some of the optional
iterative processes are selected.

LINK=keyword
specifies the link function to use in the model. The keywords and their associated built-in link functions
are as follows.
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LINK= Link Function

CUMCLL
CCLL Cumulative complementary log-log
CUMLOGIT
CLOGIT Cumulative logit
CUMPROBIT
CPROBIT Cumulative probit
CLOGLOG
CLL Complementary log-log
IDENTITY
ID Identity
LOG Log
LOGIT Logit
PROBIT Probit
POWER(number ) | POW(number ) Power with �= number

If no LINK= option is supplied and there is a user-defined link function, the user-defined link function
is used. If you specify neither the LINK= option nor a user-defined link function, then the default
canonical link function is used if you specify the DIST= option. Otherwise, if you omit the DIST=
option, the identity link function is used.

The cumulative link functions are appropriate only for the multinomial distribution.

LOGNB
specifies that the maximum likelihood estimate and confidence limits of the negative binomial disper-
sion parameter k be computed based log.k/. This is the default method used for the negative binomial
dispersion parameter, so that specifying no option or specifying the LOGNB option have the same
effect. The GENMOD procedure computes the maximum likelihood estimate of log.k/ and computes
confidence limits based on the asymptotic normality of log.k/ rather than of k. The results are always
reported in terms of k rather than of log.k/. This method ensures that the estimate and confidence
limits for k are positive. See Meeker and Escobar (1998, p. 163) for details about this method of
computing confidence limits.

LRCI
requests that two-sided confidence intervals for all model parameters be computed based on the profile
likelihood function. This is sometimes called the partially maximized likelihood function. See the
section “Confidence Intervals for Parameters” on page 3655 for more information about the profile
likelihood function. This computation is iterative and can consume a relatively large amount of CPU
time. The confidence coefficient can be selected with the ALPHA=number option. The resulting
confidence coefficient is 1–number . The default confidence coefficient is 0.95.

MAXITER=number

MAXIT=number
sets the maximum allowable number of iterations for all iterative computation processes in PROC
GENMOD. By default, MAXITER=50.
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NOINT
requests that no intercept term be included in the model. An intercept is included unless this option is
specified.

NOLOGNB
specifies that the maximum likelihood estimate and confidence limits of the negative binomial disper-
sion parameter k be computed based on k rather than log.k/. If this option is not specified, then the
GENMOD procedure computes the maximum likelihood estimate of log.k/ and computes confidence
limits based on the asymptotic normality of log.k/ rather than of k. The results are always reported
in terms of k rather than of log.k/. This method ensures that the estimate and confidence limits for
k are positive. See Meeker and Escobar (1998, p. 163) for details about this method of computing
confidence limits.

NOSCALE
holds the scale parameter fixed. Otherwise, for the normal, inverse Gaussian, and gamma distributions,
the scale parameter is estimated by maximum likelihood. If you omit the SCALE= option, the scale
parameter is fixed at the value 1.

OBSTATS
specifies that an additional table of statistics be displayed. Formulas for the statistics are given in
the section “Predicted Values of the Mean” on page 3657, the section “Residuals” on page 3658, and
the section “Case Deletion Diagnostic Statistics” on page 3675. Residuals and fit diagnostics are not
computed for multinomial models.

For each observation, the following items are displayed:

� the value of the response variable (variables if the data are binomial), frequency, and weight
variables

� the values of the regression variables

� predicted mean, O� D g�1.�/, where � D x0i Ǒ is the linear predictor and g is the link function. If
there is an offset, it is included in x0i Ǒ, except when you have a multinomial model, for which it
is not included.

� estimate of the linear predictor x0i Ǒ. If there is an offset, it is included in x0i Ǒ.

� standard error of the linear predictor x0i Ǒ

� the value of the Hessian weight at the final iteration

� lower confidence limit of the predicted value of the mean. The confidence coefficient is specified
with the ALPHA= option. See the section “Confidence Intervals on Predicted Values” on
page 3657 for the computational method.

� upper confidence limit of the predicted value of the mean

� raw residual, defined as Y � �

� Pearson, or chi residual, defined as the square root of the contribution for the observation to the
Pearson chi-square—that is,

Y � �p
V.�/=w

where Y is the response, � is the predicted mean, w is the value of the prior weight variable
specified in a WEIGHT statement, and V(�) is the variance function evaluated at �.
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� the standardized Pearson residual

� deviance residual, defined as the square root of the deviance contribution for the observation,
with sign equal to the sign of the raw residual

� the standardized deviance residual

� the likelihood residual

� a Cook distance–type statistic for assessing the influence of individual observations on overall
model fit

� observation leverage

� DFBETA, defined as an approximation to Ǒ � OˇŒi� for each parameter estimate Ǒ, where OˇŒi� is
the parameter estimate with the ith observation deleted

� standardized DFBETA, defined as DFBETA, normalized by its standard deviation

� zero inflation probability for zero-inflated models

� the mean of a zero-inflated response

The following additional cluster deletion diagnostic statistics are created and displayed for each cluster
if a REPEATED statement is specified:

� a Cook distance–type statistic for assessing the influence of entire clusters on overall model fit

� a studentized Cook distance–type statistic for assessing influence of clusters

� cluster leverage

� cluster DFBETA for assessing the influence of entire clusters on individual parameter estimates

� cluster DFBETA normalized by its standard deviation

If you specify the multinomial distribution, only regression variable values, response values, predicted
values, confidence limits for the predicted values, and the linear predictor are displayed in the table.
Residuals and other diagnostic statistics are not available for the multinomial distribution.

The RESIDUALS, DIAGNOSTICS | INFLUENCE, PREDICTED, XVARS, and CL options cause
only subgroups of the observation statistics to be displayed. You can specify more than one of these
options to include different subgroups of statistics.

The ID=variable option causes the values of variable in the input data set to be displayed in the table.
If an explicit format for variable has been defined, the formatted values are displayed.

If a REPEATED statement is present, a table is displayed for the GEE model specified in the RE-
PEATED statement. Regression variables, response values, predicted values, confidence limits for the
predicted values, linear predictor, raw residuals, Pearson residuals for each observation in the input
data set are available. Case deletion diagnostic statistics are available for each observation and for each
cluster.

OFFSET=variable
specifies a variable in the input data set to be used as an offset variable. This variable cannot be a
CLASS variable, and it cannot be the response variable or one of the explanatory variables.

When you perform an exact Poisson regression with an OFFSET= variable but the EXACTMAX=
option is not specified, then if oi is the offset for the ith observation, floor(exp(oi )) should be greater
than or equal to the response value. See the section “Exact Logistic and Exact Poisson Regression” on
page 3684 for information about the use of the offset in the exact Poisson model.
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PREDICTED

PRED

P
requests that predicted values, the linear predictor, its standard error, and the Hessian weight be
displayed (see the OBSTATS option).

RESIDUALS

R
requests that residuals and standardized residuals be displayed. Residuals and other diagnostic statistics
are not available for the multinomial distribution (see the OBSTATS option).

SCALE=number

SCALE=PEARSON | P

PSCALE

SCALE=DEVIANCE | D

DSCALE
sets the value used for the scale parameter where the NOSCALE option is used. For the binomial and
Poisson distributions, which have no free scale parameter, this can be used to specify an overdispersed
model. In this case, the parameter covariance matrix and the likelihood function are adjusted by the
scale parameter. See the section “Dispersion Parameter” on page 3650 and the section “Overdispersion”
on page 3650 for more information. If the NOSCALE option is not specified, then number is used as
an initial estimate of the scale parameter.

Specifying SCALE=PEARSON or SCALE=P is the same as specifying the PSCALE option. This
fixes the scale parameter at the value 1 in the estimation procedure. After the parameter estimates
are determined, the exponential family dispersion parameter is assumed to be given by Pearson’s
chi-square statistic divided by the degrees of freedom, and all statistics such as standard errors and
likelihood ratio statistics are adjusted appropriately.

Specifying SCALE=DEVIANCE or SCALE=D is the same as specifying the DSCALE option. This
fixes the scale parameter at a value of 1 in the estimation procedure.

After the parameter estimates are determined, the exponential family dispersion parameter is assumed
to be given by the deviance divided by the degrees of freedom. All statistics such as standard errors
and likelihood ratio statistics are adjusted appropriately.

SCORING=number
requests that on iterations up to number , the Hessian matrix be computed using the Fisher scoring
method. For further iterations, the full Hessian matrix is computed. The default value is 1. A value of
0 causes all iterations to use the full Hessian matrix, and a value greater than or equal to the value of
the MAXITER option causes all iterations to use Fisher scoring. The value of the SCORING= option
must be 0 or a positive integer.

SINGULAR=number
sets the tolerance for testing singularity of the information matrix and the crossproducts matrix.
Roughly, the test requires that a pivot be at least this number times the original diagonal value. By
default, number is 107 times the machine epsilon. The default number is approximately 10�9 on
most machines. This value also controls the check on estimability for ESTIMATE and CONTRAST
statements.
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TYPE1
requests that a Type 1, or sequential, analysis be performed. This consists of sequentially fitting models,
beginning with the null (intercept term only) model and continuing up to the model specified in the
MODEL statement. The likelihood ratio statistic between each successive pair of models is computed
and displayed in a table.

A Type 1 analysis is not available for GEE models, since there is no associated likelihood.

TYPE3
requests that statistics for Type 3 contrasts be computed for each effect specified in the MODEL
statement. The default analysis is to compute likelihood ratio statistics for the contrasts or score
statistics for GEEs. Wald statistics are computed if the WALD option is also specified.

WALD
requests Wald statistics for Type 3 contrasts. You must also specify the TYPE3 option in order to
compute Type 3 Wald statistics.

WALDCI
requests that two-sided Wald confidence intervals for all model parameters be computed based on
the asymptotic normality of the parameter estimators. This computation is not as time-consuming
as the LRCI method, since it does not involve an iterative procedure. However, it is thought to be
less accurate, especially for small sample sizes. The confidence coefficient can be selected with the
ALPHA= option in the same way as for the LRCI option.

XVARS
requests that the regression variables be included in the OBSTATS table.

OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < keyword=name . . . keyword=name > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimated linear predictors (XBETA) and their standard error estimates, the weights for the
Hessian matrix, predicted values of the mean, confidence limits for predicted values, residuals, and case
deletion diagnostics. Residuals and diagnostic statistics are not computed for multinomial models.

You can also request these statistics with the OBSTATS, PREDICTED, RESIDUALS, DIAGNOSTICS | IN-
FLUENCE, CL, or XVARS option in the MODEL statement. You can then create a SAS data set containing
them with ODS OUTPUT commands.

You might prefer to specify the OUTPUT statement for requesting these statistics since the following are true:

� The OUTPUT statement produces no tabular output.

� The OUTPUT statement creates a SAS data set more efficiently than ODS. This can be an advantage
for large data sets.

� You can specify the individual statistics to be included in the SAS data set.
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If you use the multinomial distribution with one of the cumulative link functions for ordinal data, the data
set also contains variables named _ORDER_ and _LEVEL_ that indicate the levels of the ordinal response
variable and the values of the variable in the input data set corresponding to the sorted levels. These variables
indicate that the predicted value for a given observation is the probability that the response variable is as
large as the value of the _LEVEL_ variable. Residuals and other diagnostic statistics are not available for the
multinomial distribution.

The estimated linear predictor, its standard error estimate, and the predicted values and their confidence
intervals are computed for all observations in which the explanatory variables are all nonmissing, even if
the response is missing. By adding observations with missing response values to the input data set, you can
compute these statistics for new observations or for settings of the explanatory variables not present in the
data without affecting the model fit.

The following list explains specifications in the OUTPUT statement.

OUT=SAS-data-set
specifies the output data set. If you omit the OUT=option, the output data set is created and given a
default name that uses the DATAn convention.

keyword=name
specifies the statistics to be included in the output data set and names the new variables that contain
the statistics. Specify a keyword for each desired statistic (see the following list of keywords), an
equal sign, and the name of the new variable or variables to contain the statistic. You can list only
one variable after the equal sign for all the statistics, except for the case deletion diagnostics for
individual parameter estimates, DFBETA, DFBETAS, DFBETAC, and DFBETACS. You can list
variables enclosed in parentheses to correspond to the variables in the model, or you can specify the
keyword _all_, without parentheses, to include deletion diagnostics for all of the parameters in the
model.

Although you can use the OUTPUT statement without any keyword=name specifications, the output
data set then contains only the original variables and, possibly, the variables Level and Value (if you
use the multinomial model with ordinal data). Note that the residuals and deletion diagnostics are not
available for the multinomial model with ordinal data. Some of the case deletion diagnostic statistics
apply only to models for correlated data specified with a REPEATED statement. If you request these
statistics for ordinary generalized linear models, the values of the corresponding variables are set to
missing in the output data set. Formulas for the statistics are given in the section “Predicted Values
of the Mean” on page 3657, the section “Residuals” on page 3658, and the section “Case Deletion
Diagnostic Statistics” on page 3675.

The keywords allowed and the statistics they represent are as follows:

DFBETA | DBETA represents the effect of deleting an observation on parameter estimates. If
you specify the keyword _all_ after the equal sign, variables named DF-
BETA_ParameterName will be included in the output data set to contain the values
of the diagnostic statistic to measure the influence of deleting a single observation
on the individual parameter estimates. ParameterName is the name of the regres-
sion model parameter formed from the input variable names concatenated with the
appropriate levels, if classification variables are involved.

DFBETAS | DBETAS represents the effect of deleting an observation on standardized parameter
estimates. If you specify the keyword _all_ after the equal sign, variables named
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DFBETAS_ParameterName will be included in the output data set to contain
the values of the diagnostic statistic to measure the influence of deleting a single
observation on the individual parameter estimates. ParameterName is the name of
the regression model parameter formed from the input variable names concatenated
with the appropriate levels, if classification variables are involved.

DOBS | COOKSD represents the Cook distance–type statistic to measure the influence of deleting a
single observation on the overall model fit.

HESSWGT represents the diagonal element of the weight matrix used in computing the Hessian
matrix.

H | LEVERAGE represents the leverage of a single observation.

LOWER | L represents the lower confidence limit for the predicted value of the mean, or the
lower confidence limit for the probability that the response is less than or equal
to the value of Level or Value. The confidence coefficient is determined by the
ALPHA=number option in the MODEL statement as .1 � number/ � 100%. The
default confidence coefficient is 95%.

PREDICTED | PRED | PROB | P represents the predicted value of the mean of the response or the
predicted probability that the response variable is less than or equal to the value
of _LEVEL_ if the multinomial model for ordinal data is used (in other words,
Pr.Y � _LEVEL_/, where Y is the response variable).

PZERO represents the zero-inflation probability for zero-inflated models.

RESCHI represents the Pearson (chi) residual for identifying observations that are poorly
accounted for by the model.

RESDEV represents the deviance residual for identifying poorly fitted observations.

RESLIK represents the likelihood residual for identifying poorly fitted observations.

RESRAW represents the raw residual for identifying poorly fitted observations.

STDRESCHI represents the standardized Pearson (chi) residual for identifying observations that
are poorly accounted for by the model.

STDRESDEV represents the standardized deviance residual for identifying poorly fitted observa-
tions.

STDXBETA represents the standard error estimate of XBETA (see the XBETA keyword).

UPPER | U represents the upper confidence limit for the predicted value of the mean, or the
upper confidence limit for the probability that the response is less than or equal
to the value of Level or Value. The confidence coefficient is determined by the
ALPHA=number option in the MODEL statement as .1 � number/ � 100%. The
default confidence coefficient is 95%.

XBETA represents the estimate of the linear predictor x0iˇ for observation i, or ˛j C
x0iˇ, where j is the corresponding ordered value of the response variable for the
multinomial model with ordinal data. If there is an offset, it is included in x0iˇ.

The keywords in the following list apply only to models specified with a REPEATED statement, fit by
generalized estimating equations (GEEs).
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CLEVERAGE represents the leverage of a cluster.

CLUSTER represents the numerical cluster index, in order of sorted clusters.

DCLS | CLUSTERCOOKSD represents the Cook distance–type statistic to measure the influence of
deleting an entire cluster on the overall model fit.

DFBETAC | DBETAC represents the effect of deleting an entire cluster on parameter estimates.
If you specify the keyword _all_ after the equal sign, variables named DFBE-
TAC_ParameterName will be included in the output data set to contain the values
of the diagnostic statistic to measure the influence of deleting the cluster on the in-
dividual parameter estimates. ParameterName is the name of the regression model
parameter formed from the input variable names concatenated with the appropriate
levels, if classification variables are involved.

DFBETACS | DBETACS represents the effect of deleting an entire cluster on normalized parameter
estimates. If you specify the keyword _all_ after the equal sign, variables named
DFBETACS_ParameterName will be included in the output data set to contain the
values of the diagnostic statistic to measure the influence of deleting the cluster on
the individual parameter estimates, normalized by their standard errors. Param-
eterName is the name of the regression model parameter formed from the input
variable names concatenated with the appropriate levels, if classification variables
are involved.

MCLS | CLUSTERDFIT represents the studentized Cook distance–type statistic to measure the influ-
ence of deleting an entire cluster on the overall model fit.

Programming Statements
Although the most commonly used link and probability distributions are available as built-in functions, the
GENMOD procedure enables you to define your own link functions and response probability distributions by
using the FWDLINK, INVLINK, VARIANCE, and DEVIANCE statements. The variables assigned in these
statements can have values computed in programming statements.

These programming statements can occur anywhere between the PROC GENMOD statement and the RUN
statement. Variable names used in programming statements must be unique. Variables from the input data set
can be referenced in programming statements. The mean, linear predictor, and response are represented by
the automatic variables _MEAN_, _XBETA_, and _RESP_, respectively, which can be referenced in your
programming statements. Programming statements are used to define the functional dependencies of the
link function, the inverse link function, the variance function, and the deviance function on the mean, linear
predictor, and response variable.

The following statements illustrate the use of programming statements. Even though you usually request
the Poisson distribution by specifying DIST=POISSON as a MODEL statement option, you can define the
variance and deviance functions for the Poisson distribution by using the VARIANCE and DEVIANCE
statements. For example, the following statements perform the same analysis as the Poisson regression
example in the section “Getting Started: GENMOD Procedure” on page 3561.

The statements must be in logical order for computation, just as in a DATA step.
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proc genmod;
class car age;
a = _MEAN_;
y = _RESP_;
d = 2 * ( y * log( y / a ) - ( y - a ) );
variance var = a;
deviance dev = d;
model c = car age / link = log offset = ln;

run;

The variables var and dev are dummy variables used internally by the procedure to identify the variance and
deviance functions. Any valid SAS variable names can be used.

Similarly, the log link function and its inverse could be defined with the FWDLINK and INVLINK statements,
as follows:

fwdlink link = log(_MEAN_);
invlink ilink = exp(_XBETA_);

These statements are for illustration, and they work well for most Poisson regression problems. If, however,
in the iterative fitting process, the mean parameter becomes too close to 0, or a 0 response value occurs, an
error condition occurs when the procedure attempts to evaluate the log function. You can circumvent this
kind of problem by using IF-THEN/ELSE clauses or other conditional statements to check for possible error
conditions and appropriately define the functions for these cases.

Data set variables can be referenced in user definitions of the link function and response distributions by
using programming statements and the FWDLINK, INVLINK, DEVIANCE, and VARIANCE statements.

See the DEVIANCE, VARIANCE, FWDLINK, and INVLINK statements for more information.

The syntax of programming statements used in PROC GENMOD is identical to that used in the NLMIXED
procedure and the GLIMMIX procedure (see Chapter 89, “The NLMIXED Procedure,” and Chapter 52,
“The GLIMMIX Procedure”) and the MODEL procedure (see the SAS/ETS User’s Guide). Most of the
programming statements that can be used in the DATA step can also be used in the GENMOD procedure.
See SAS DATA Step Statements: Reference for a description of SAS programming statements. The following
are some commonly used programming statements.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=etsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lestmtsref&docsetTarget=titlepage.htm
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ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index , length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

REPEATED Statement
REPEATED SUBJECT=subject-effect < / options > ;

The REPEATED statement specifies the covariance structure of multivariate responses for GEE model fitting
in the GENMOD procedure. In addition, the REPEATED statement controls the iterative fitting algorithm
used in GEEs and specifies optional output. Other GENMOD procedure statements, such as the MODEL and
CLASS statements, are used in the same way as they are for ordinary generalized linear models to specify
the regression model for the mean of the responses.

Table 51.8 summarizes the options available in the REPEATED statement.

Table 51.8 REPEATED Statement Options

Option Description

ALPHAINIT= Specifies initial values for log odds ratio regression parameters
CONVERGE= Specifies the convergence criterion for GEE parameter estimation
CORRB Displays the estimated correlation matrix
CORRW Displays the estimated working correlation matrix
COVB Displays the estimated covariance matrix
ECORRB Displays the estimated empirical correlation matrix
ECOVB Displays the estimated empirical covariance matrix
INITIAL= Specifies initial values of the regression parameters estimation
INTERCEPT= Specifies either an initial or a fixed value of the intercept
LOGOR= Specifies the regression structure of the log odds ratio
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Table 51.8 continued

Option Description

MAXITER= Specifies the maximum number of iterations
MCORRB Displays the estimated model-based correlation matrix
MCOVB Displays the estimated model-based covariance matrix
MODELSE Displays an analysis of parameter estimates table
PRINTMLE Displays an analysis of maximum likelihood parameter estimates table
RUPDATE= Specifies the number of iterations between updates of the working

correlation matrix
SORTED Groups by subject and sorts within subject
SUBCLUSTER= Specifies a variable defining subclusters
SUBJECT= Identifies a different subject, or cluster
TYPE= Specifies the working correlation matrix structure
V6CORR Uses the SAS ‘Version 6’ method of computing normalized Pearson

chi-square
WITHIN= Specifies the order of measurements within subjects
YPAIR= Specifies the pairs of responses
ZDATA= Specifies the full z matrix
ZROW= Specifies the rows of the z matrix

SUBJECT=subject-effect
identifies subjects in the input data set. The subject-effect can be a single variable, an interaction effect,
a nested effect, or a combination. Each distinct value, or level, of the effect identifies a different subject,
or cluster. Responses from different subjects are assumed to be statistically independent, and responses
within subjects are assumed to be correlated. A subject-effect must be specified, and variables used in
defining the subject-effect must be listed in the CLASS statement. The input data set does not need to
be sorted by subject (see the SORTED option).

The options control how the model is fit and what output is produced. You can specify the following
options after a slash (/).

ALPHAINIT=numbers
specifies initial values for log odds ratio regression parameters if the LOGOR= option is specified for
binary data. If this option is not specified, an initial value of 0.01 is used for all the parameters.

CONVERGE=number
specifies the convergence criterion for GEE parameter estimation. If the maximum absolute difference
between regression parameter estimates is less than the value of number on two successive iterations,
convergence is declared. If the absolute value of a regression parameter estimate is greater than
0.08, then the absolute difference normalized by the regression parameter value is used instead of the
absolute difference. The default value of number is 0.0001.
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CORRW
displays the estimated working correlation matrix. If you specify an exchangeable working correlation
structure with the CORR=EXCH option, the CORRW option is not needed to view the estimated
correlation, since a table is printed by default that contains the single estimated correlation.

CORRB
displays the estimated regression parameter correlation matrix. Both model-based and empirical
correlations are displayed.

COVB
displays the estimated regression parameter covariance matrix. Both model-based and empirical
covariances are displayed.

ECORRB
displays the estimated regression parameter empirical correlation matrix.

ECOVB
displays the estimated regression parameter empirical covariance matrix.

INTERCEPT=number
specifies either an initial or a fixed value of the intercept regression parameter in the GEE model. If
you specify the NOINT option in the MODEL statement, then the intercept is fixed at the value of
number .

INITIAL=numbers
specifies initial values of the regression parameters estimation, other than the intercept parameter,
for GEE estimation. If this option is not specified, the estimated regression parameters assuming
independence for all responses are used for the initial values.

LOGOR=log-odds-ratio-structure-keyword
specifies the regression structure of the log odds ratio used to model the association of the responses
from subjects for binary data. The response syntax must be of the single variable type, the distribution
must be binomial, and the data must be binary. Table 51.9 displays the log odds ratio structure
keywords and the corresponding log odds ratio regression structures. See the section “Alternating
Logistic Regressions” on page 3667 for definitions of the log odds ratio types and examples of
specifying log odds ratio models. You should specify either the LOGOR= or the TYPE= option, but
not both.

Table 51.9 Log Odds Ratio Regression Structures

Keyword Log Odds Ratio Regression Structure

EXCH Exchangeable
FULLCLUST Fully parameterized clusters
LOGORVAR(variable) Indicator variable for specifying block effects
NESTK k-nested
NEST1 1-nested
ZFULL Fully specified z matrix specified in ZDATA= data set
ZREP Single cluster specification for replicated z matrix specified

in ZDATA= data set
ZREP(matrix) Single cluster specification for replicated z matrix
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MAXITER=number

MAXIT=number
specifies the maximum number of iterations allowed in the iterative GEE estimation process. The
default number is 50.

MCORRB
displays the estimated regression parameter model-based correlation matrix.

MCOVB
displays the estimated regression parameter model-based covariance matrix.

MODELSE
displays an analysis of parameter estimates table that uses model-based standard errors for inference.
By default, an “Analysis of Parameter Estimates” table based on empirical standard errors is displayed.

PRINTMLE
displays an analysis of maximum likelihood parameter estimates table. The maximum likelihood
estimates are not displayed unless this option is specified.

RUPDATE=number
specifies the number of iterations between updates of the working correlation matrix. For example,
RUPDATE=5 specifies that the working correlation is updated once for every five regression parameter
updates. The default value of number is 1; that is, the working correlation is updated every time the
regression parameters are updated.

SORTED
specifies that the input data are grouped by subject and sorted within subject. If this option is not
specified, then the procedure internally sorts by subject-effect and within subject-effect , if a within
subject-effect is specified.

SUBCLUSTER=variable

SUBCLUST=variable
specifies a variable defining subclusters for the 1-nested or k-nested log odds ratio association modeling
structures. This variable must be listed in the CLASS statement.

TYPE=correlation-structure keyword

CORR=correlation-structure keyword
specifies the structure of the working correlation matrix used to model the correlation of the responses
from subjects. Table 51.10 displays the correlation structure keywords and the corresponding cor-
relation structures. The default working correlation type is the independent (CORR=IND). See the
section “Details: GENMOD Procedure” on page 3640 for definitions of the correlation matrix types.
You should specify LOGOR= or TYPE= but not both.
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Table 51.10 Correlation Structure Types

Keyword Correlation Matrix Type

AR
AR(1) Autoregressive(1)
EXCH
CS Exchangeable
IND Independent
MDEP(number ) m-dependent with m=number
UNSTR
UN Unstructured
USER
FIXED(matrix) Fixed, user-specified correlation matrix

For example, you can specify a fixed 4 � 4 correlation matrix with the following option:

type=user( 1.0 0.9 0.8 0.6
0.9 1.0 0.9 0.8
0.8 0.9 1.0 0.9
0.6 0.8 0.9 1.0 )

V6CORR
specifies that the SAS ‘Version 6’ method of computing the normalized Pearson chi-square be used for
working correlation estimation and for model-based covariance matrix scale factor.

WITHINSUBJECT | WITHIN=within subject-effect
defines an effect specifying the order of measurements within subjects. Each distinct level of the within
subject-effect defines a different response from the same subject. If the data are in proper order within
each subject, you do not need to specify this option.

If some measurements do not appear in the data for some subjects, this option properly orders the exist-
ing measurements and treats the omitted measurements as missing values. If the WITHINSUBJECT=
option is not used in this situation, measurements might be improperly ordered and missing values
assumed for the last measurements in a cluster.

Variables used in defining the within subject-effect must be listed in the CLASS statement.

YPAIR=variable-list
specifies the variables in the ZDATA= data set corresponding to pairs of responses for log odds ratio
association modeling.

ZDATA=SAS-data-set
specifies a SAS data set containing either the full z matrix for log odds ratio association modeling or
the z matrix for a single complete cluster to be replicated for all clusters.
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ZROW=variable-list
specifies the variables in the ZDATA= data set corresponding to rows of the z matrix for log odds ratio
association modeling.

SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects.

This statement uses the same options as the LSMEANS statement, which are summarized in Table 20.24 in
Chapter 20, “Shared Concepts and Topics.” For more information about the syntax of the SLICE statement,
see the section “SLICE Statement” on page 550 in Chapter 20, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL='label ' > ;

The STORE statement saves the context and results of the statistical analysis. The resulting item store has
a binary file format that cannot be modified. The contents of the item store can be processed using the
PLM procedure. For more information about the syntax of the STORE statement, see the section “STORE
Statement” on page 554 in Chapter 20, “Shared Concepts and Topics.”

STRATA Statement
STRATA variable < (option) > . . . < variable < (option) > > < / options > ;

The STRATA statement names the variables that define strata or matched sets to use in stratified exact
logistic regression of binary response data, or a stratified exact Poisson regression of count data. An EXACT
statement must also be specified.

Observations that have the same variable values are in the same matched set. For a stratified logistic model,
you can analyze 1:1, 1:n, m:n, and general mi :ni matched sets where the number of cases and controls varies
across strata. For a stratified Poisson model, you can have any number of observations in each stratum. At
least one variable must be specified to invoke the stratified analysis, and the usual unconditional asymptotic
analysis is not performed. The stratified logistic model has the form

logit.�hi / D ˛h C x0hiˇ

where �hi is the event probability for the ith observation in stratum h with covariates xhi and where the
stratum-specific intercepts ˛h are the nuisance parameters that are to be conditioned out.

STRATA variables can also be specified in the MODEL statement as classification or continuous covariates;
however, the effects are nondegenerate only when crossed with a nonstratification variable. Specifying several
STRATA statements is the same as specifying one STRATA statement that contains all the strata variables.
The STRATA variables can be either character or numeric, and the formatted values of the STRATA variables
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determine the levels. Thus, you can also use formats to group values into levels; see the discussion of the
FORMAT procedure in the Base SAS Procedures Guide.

The “Strata Summary” table is displayed by default. For an exact logistic regression, it displays the number
of strata that have a specific number of events and non-events. For example, if you are analyzing a 1:5
matched study, this table enables you to verify that every stratum in the analysis has exactly one event and
five non-events. Strata that contain only events or only non-events are reported in this table, but such strata
are uninformative and are not used in the analysis. For an exact Poisson regression, the “Strata Summary”
table displays the number of strata that contain a specific number of observations, which enables you to check
whether every stratum in the analysis has the same number of observations.

The ASSESSMENT, BAYES, CONTRAST, EFFECTPLOT, ESTIMATE, LSMEANS, LSMESTIMATE,
OUTPUT, REPEATED, SLICE, and STORE statements are not available with a STRATA statement. Exact
analyses are not performed when you specify a WEIGHT statement, or a model other than LINK=LOGIT
with DIST=BIN or LINK=LOG with DIST=POISSON. An OFFSET= variable is not available with exact
logistic regression.

The following option can be specified for a stratification variable by enclosing the option in parentheses after
the variable name, or it can be specified globally for all STRATA variables after a slash (/).

MISSING
treats missing values (‘.’, ._, .A, . . . , .Z for numeric variables and blanks for character variables) as
valid STRATA variable values.

The following strata options are also available after the slash:

CHECKDEPENDENCY=keyword

CHECK=keyword
specifies which variables are to be tested for dependency before the analysis is performed. The available
keywords are as follows:

NONE performs no dependence checking. Typically, a message about a singular information matrix
is displayed if you have dependent variables. Dependent variables can be identified after the
analysis by noting any missing parameter estimates.

COVARIATES checks dependence between covariates and an added intercept. Dependent covariates
are removed from the analysis. However, covariates that are linear functions of the strata
variable might not be removed, which results in a singular information matrix message
being displayed in the SAS log. This is the default.

ALL checks dependence between all the strata and covariates. This option can adversely affect
performance if you have a large number of strata.

NOSUMMARY
suppresses the display of the “Strata Summary” table.

INFO
displays the “Strata Information” table, which includes the stratum number, levels of the STRATA
variables that define the stratum, and the total frequency for each stratum. Since the number of strata
can be very large, this table is displayed only by request.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm


VARIANCE Statement F 3639

VARIANCE Statement
VARIANCE variable = expression ;

You can specify a probability distribution other than the built-in distributions by using the VARIANCE and
DEVIANCE statements. The variable name variable identifies the variance function to the procedure. The
expression is used to define the functional dependence on the mean, and it can be any arithmetic expression
supported by the DATA step language. You use the automatic variable _MEAN_ to represent the mean in the
expression.

Alternatively, you can define the variance function with programming statements, as detailed in the section
“Programming Statements” on page 3630. This form is convenient for using complex statements such as
IF-THEN/ELSE clauses. Derivatives of the variance function for use during optimization are computed
automatically. The DEVIANCE statement must also appear when the VARIANCE statement is used to define
the variance function.

WEIGHT Statement
WEIGHT | SCWGT variable ;

The WEIGHT statement identifies a variable in the input data set to be used as the exponential family
dispersion parameter weight for each observation. The exponential family dispersion parameter is divided
by the WEIGHT variable value for each observation. This is true regardless of whether the parameter is
estimated by the procedure or specified in the MODEL statement with the SCALE= option. It is also true for
distributions such as the Poisson and binomial that are not usually defined to have a dispersion parameter. For
these distributions, a WEIGHT variable weights the overdispersion parameter, which has the default value of
1.

The WEIGHT variable does not have to be an integer; if it is less than or equal to 0 or if it is missing, the
corresponding observation is not used.

ZEROMODEL Statement
ZEROMODEL effects < / options > ;

The ZEROMODEL statement enables you to perform zero-inflated Poisson regression or zero-inflated
negative binomial regression when those respective distributions are specified by the DIST= option in
the MODEL statement. The effects in the ZEROMODEL statement consist of explanatory variables or
combinations of variables for the zero-inflation probability regression model in a zero-inflated model. The
same effects can be used in both the ZEROMODEL statement and the MODEL statement, or effects can
be used in one statement or the other separately. Explanatory variables can be continuous or classification
variables. Classification variables can be character or numeric. Explanatory variables representing nominal,
or classification, data must be declared in a CLASS statement. Interactions between variables can also be
included as effects. Columns of the design matrix are automatically generated for classification variables and
interactions. The syntax for specification of effects is the same as for the GLM procedure. See the section
“Specification of Effects” on page 3651 for more information. Also see Chapter 53, “The GLM Procedure.”

You can specify the following option in the ZEROMODEL statement after a slash (/).
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LINK=keyword
specifies the link function to use in the model. The keywords and their associated link functions are as
follows.

LINK= Link Function

CLOGLOG
CLL Complementary log-log
LOGIT Logit
PROBIT Probit

If no LINK= option is supplied, the LOGIT link is used. User-defined link functions are not allowed.

Details: GENMOD Procedure

Generalized Linear Models Theory
This is a brief introduction to the theory of generalized linear models.

Response Probability Distributions

In generalized linear models, the response is assumed to possess a probability distribution of the exponential
form. That is, the probability density of the response Y for continuous response variables, or the probability
function for discrete responses, can be expressed as

f .y/ D exp
�
y� � b.�/

a.�/
C c.y; �/

�
for some functions a, b, and c that determine the specific distribution. For fixed �, this is a one-parameter
exponential family of distributions. The functions a and c are such that a.�/ D �=w and c D c.y; �=w/,
where w is a known weight for each observation. A variable representing w in the input data set can be
specified in the WEIGHT statement. If no WEIGHT statement is specified, wi D 1 for all observations.

Standard theory for this type of distribution gives expressions for the mean and variance of Y:

E.Y / D b0.�/

Var.Y / D
b00.�/�

w

where the primes denote derivatives with respect to � . If � represents the mean of Y, then the variance
expressed as a function of the mean is

Var.Y / D
V.�/�

w

where V is the variance function.
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Probability distributions of the response Y in generalized linear models are usually parameterized in terms of
the mean � and dispersion parameter � instead of the natural parameter � . The probability distributions
that are available in the GENMOD procedure are shown in the following list. The zero-inflated Poisson and
zero-inflated negative binomial distributions are not generalized linear models. However, the zero-inflated
distributions are included in PROC GENMOD since they are useful extensions of generalized linear models.
See Long (1997) for a discussion of the zero-inflated Poisson and zero-inflated negative binomial distributions.
The PROC GENMOD scale parameter and the variance of Y are also shown.

� Normal:

f .y/ D
1

p
2��

exp
�
�
1

2

�y � �
�

�2�
for �1 < y <1

� D �2

scale D �

Var.Y / D �2

� Inverse Gaussian:

f .y/ D
1p

2�y3�
exp

"
�
1

2y

�
y � �

��

�2#
for 0 < y <1

� D �2

scale D �

Var.Y / D �2�3

� Gamma:

f .y/ D
1

�.�/y

�
y�

�

��
exp

�
�
y�

�

�
for 0 < y <1

� D ��1

scale D �

Var.Y / D
�2

�

� Geometric: This is a special case of the negative binomial with k = 1.

f .y/ D
.�/y

.1C �/yC1
for y D 0; 1; 2; : : :

� D 1

Var.Y / D �.1C �/
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� Negative binomial:

f .y/ D
�.y C 1=k/

�.y C 1/�.1=k/

.k�/y

.1C k�/yC1=k
for y D 0; 1; 2; : : :

� D 1

dispersion D k

Var.Y / D �C k�2

� Poisson:

f .y/ D
�ye��

yŠ
for y D 0; 1; 2; : : :

� D 1

Var.Y / D �

� Binomial:

f .y/ D

�
n

r

�
�r.1 � �/n�r for y D

r

n
; r D 0; 1; 2; : : : ; n

� D 1

Var.Y / D
�.1 � �/

n

� Multinomial:

f .y1; y2; : : : ; yk/ D
mŠ

y1Šy2Š � � �ykŠ
p
y1
1 p

y2
2 � � �p

yk
k

� D 1

� Zero-inflated Poisson:

f .y/ D

(
! C .1 � !/e�� for y D 0
.1 � !/�

ye��
yŠ

for y D 1; 2; : : :

� D 1

� D E.Y / D .1 � !/�

Var.Y / D .1 � !/�.1C !�/

D �C
!

1 � !
�2



Generalized Linear Models Theory F 3643

� Zero-inflated negative binomial:

f .y/ D

(
! C .1 � !/.1C k�/�

1
k for y D 0

.1 � !/ �.yC1=k/
�.yC1/�.1=k/

.k�/y

.1Ck�/yC1=k
for y D 1; 2; : : :

� D 1

dispersion D k

� D E.Y / D .1 � !/�

Var.Y / D .1 � !/�.1C !�C k�/

D �C

�
!

1 � !
C

k

1 � !

�
�2

� Tweedie (1 < p < 2):

f .y/ D

(
e�� for y D 0
e�y=e��

P1
nD1

�n˛

�.n˛/
yn˛�1 �

n

nŠ
for y > 0

� D
�1�p.˛/2�p

2 � p

� D E.Y / D �˛

Var.Y / D �˛2 C �˛22

The negative binomial and the zero-inflated negative binomial distributions contain a parameter k, called the
negative binomial dispersion parameter. This is not the same as the generalized linear model dispersion �,
but it is an additional distribution parameter that must be estimated or set to a fixed value.

For the binomial distribution, the response is the binomial proportion Y D events=trials . The variance
function is V.�/ D �.1 � �/, and the binomial trials parameter n is regarded as a weight w.

The density function for the Tweedie distribution when 1 < p < 2 is expressed in terms of the parameters of
the compound Poisson distribution. For more information about this representation, see the section “Tweedie
Distribution for Generalized Linear Models” on page 3661. For p > 2, the Tweedie random variable has
positive support and its density function f .y/ can be expressed in terms of stable distributions as defined in
Hougaard (1986).

If a weight variable is present, � is replaced with �=w, where w is the weight variable.

PROC GENMOD works with a scale parameter that is related to the exponential family dispersion parameter
� instead of working with � itself. The scale parameters are related to the dispersion parameter as shown
previously with the probability distribution definitions. Thus, the scale parameter output in the “Analysis of
Parameter Estimates” table is related to the exponential family dispersion parameter. If you specify a constant
scale parameter with the SCALE= option in the MODEL statement, it is also related to the exponential family
dispersion parameter in the same way.
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Link Function

For distributions other than the zero-inflated Poisson or zero-inflated negative binomial, the mean �i of the
response in the ith observation is related to a linear predictor through a monotonic differentiable link function
g.

g.�i / D x0iˇ

Here, xi is a fixed known vector of explanatory variables, and ˇ is a vector of unknown parameters.

There are two link functions and linear predictors associated with zero-inflated distributions: one for the zero
inflation probability !, and another for the mean parameter �. See the section “Zero-Inflated Models” on
page 3660 for more details about zero-inflated distributions.

Log-Likelihood Functions

Log-likelihood functions for the distributions that are available in the procedure are parameterized in terms
of the means �i and the dispersion parameter �. Zero-inflated log likelihoods are parameterized in terms two
parameters, � and !. The parameter ! is the zero-inflation probability, and � is a function of the distribution
mean. The relationship between the mean of the zero-inflated Poisson and zero-inflated negative binomial
distributions and the parameter � is defined in the section “Response Probability Distributions” on page 3640.
The term yi represents the response for the ith observation, fi represents a frequency weight that is specified
in a FREQ statement, and wi represents a known dispersion weight that is specified in a WEIGHT statement.
If no WEIGHT statement is specified, then wi D 1 for all observations. If no FREQ statement is specified,
then fi D 1 for all observations. The log-likelihood functions are of the form

L.y;�; �/ D
X
i

fi log .f .yi ; �i ; �//

where the sum is over the observations. The forms of the individual contributions

li D log .f .yi ; �i ; �//

are shown in the following list; the parameterizations are expressed in terms of the mean and dispersion
parameters.

For the discrete distributions (binomial, multinomial, negative binomial, and Poisson), the functions computed
as the sum of the li terms are not proper log-likelihood functions, since terms involving binomial coefficients
or factorials of the observed counts are dropped from the computation of the log likelihood, and a dispersion
parameter � is included in the computation. Deletion of factorial terms and inclusion of a dispersion
parameter do not affect parameter estimates or their estimated covariances for these distributions, and this
is the function used in maximum likelihood estimation. The value of � used in computing the reported
log-likelihood function is either the final estimated value, or the fixed value, if the dispersion parameter is
fixed. Even though it is not a proper log-likelihood function in all cases, the function computed as the sum
of the li terms is reported in the output as the log likelihood. The proper log-likelihood function is also
computed as the sum of the ll i terms in the following list, and it is reported as the full log likelihood in the
output.

� Normal:

ll i D li D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C log.2�/

�
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� Inverse Gaussian:

ll i D li D �
1

2

"
wi .yi � �i /

2

yi�
2
i �

C log

 
�y3i
wi

!
C log.2�/

#

� Gamma:

ll i D li D
wi

�
log

�
wiyi

��i

�
�
wiyi

��i
� log.yi / � log

�
�

�
wi

�

��
� Negative binomial:

li D yi log
�
k�i

wi

�
� .yi C wi=k/ log

�
1C

k�i

wi

�
C log

�
�.yi C wi=k/

�.wi=k/

�

ll i D yi log
�
k�i

wi

�
� .yi C wi=k/ log

�
1C

k�i

wi

�
C log

�
�.yi C wi=k/

�.yi C 1/�.wi=k/

�
� Poisson:

li D
wi

�
Œyi log.�i / � �i �

ll i D wi Œyi log.�i / � �i � log.yi Š/�

� Binomial:

li D
wi

�
Œri log.pi /C .ni � ri / log.1 � pi /�

ll i D wi Œlog
�
ni
ri

�
C ri log.pi /C .ni � ri / log.1 � pi /�

� Multinomial (k categories):

li D
wi

�

kX
jD1

yij log.�ij /

ll i D wi Œlog.mi Š/C
kX
jD1

.yij log.�ij / � log.yij Š//�

� Zero-inflated Poisson:

li D ll i D

8<:
wi logŒ!i C .1 � !i / exp.��i /� yi D 0

wi Œlog.1 � !i /C yi log.�i / � �i � log.yi Š/� yi > 0
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� Zero-inflated negative binomial:

li D ll i D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

logŒ!i C .1 � !i /.1C k
wi
�/�

wi
k � yi D 0

log.1 � !i /C yi log
�
k�
wi

�
�.yi C

wi
k
/ log

�
1C k�

wi

�
C log

�
�.yiC

wi
k
/

�.yiC1/�.
wi
k
/

�
yi > 0

� Tweedie:

li D ll i D log .f .yi ; �i ; �=!i ; p//

Maximum Likelihood Fitting

The GENMOD procedure uses a ridge-stabilized Newton-Raphson algorithm to maximize the log-likelihood
function L.y;�; �/ with respect to the regression parameters. By default, the procedure also produces
maximum likelihood estimates of the scale parameter as defined in the section “Response Probability
Distributions” on page 3640 for the normal, inverse Gaussian, negative binomial, and gamma distributions.

On the rth iteration, the algorithm updates the parameter vector ˇr with

ˇrC1 D ˇr �H�1s

where H is the Hessian (second derivative) matrix, and s is the gradient (first derivative) vector of the
log-likelihood function, both evaluated at the current value of the parameter vector. That is,

s D Œsj � D
�
@L

@ˇj

�
and

H D Œhij � D
�
@2L

@ˇi@ˇj

�

In some cases, the scale parameter is estimated by maximum likelihood. In these cases, elements correspond-
ing to the scale parameter are computed and included in s and H.

If �i D x0iˇ is the linear predictor for observation i and g is the link function, then �i D g.�i /, so that
�i D g

�1.x0iˇ/ is an estimate of the mean of the ith observation, obtained from an estimate of the parameter
vector ˇ.

The gradient vector and Hessian matrix for the regression parameters are given by

s D
X
i

fiwi .yi � �i /xi
V.�i /g0.�i /�

H D �X0WoX
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where X is the design matrix, xi is the transpose of the ith row of X, and V is the variance function. The
matrix Wo is diagonal with its ith diagonal element

woi D wei C fiwi .yi � �i /
V .�i /g

00.�i /C V
0.�i /g

0.�i /

.V .�i //2.g0.�i //3�

where

wei D
fiwi

�V.�i /.g0.�i //2

The primes denote derivatives of g and V with respect to �. The negative of H is called the observed
information matrix. The expected value of Wo is a diagonal matrix We with diagonal values wei . If you
replace Wo with We, then the negative of H is called the expected information matrix. We is the weight
matrix for the Fisher scoring method of fitting. Either Wo or We can be used in the update equation. The
GENMOD procedure uses Fisher scoring for iterations up to the number specified by the SCORING option
in the MODEL statement, and it uses the observed information matrix on additional iterations.

Covariance and Correlation Matrix

The estimated covariance matrix of the parameter estimator is given by

† D �H�1

where H is the Hessian matrix evaluated using the parameter estimates on the last iteration. Note that
the dispersion parameter, whether estimated or specified, is incorporated into H. Rows and columns
corresponding to aliased parameters are not included in †.

The correlation matrix is the normalized covariance matrix. That is, if �ij is an element of †, then the
corresponding element of the correlation matrix is �ij =�i�j , where �i D

p
�i i .

Goodness of Fit

Two statistics that are helpful in assessing the goodness of fit of a given generalized linear model are the
scaled deviance and Pearson’s chi-square statistic. For a fixed value of the dispersion parameter �, the scaled
deviance is defined to be twice the difference between the maximum achievable log likelihood and the log
likelihood at the maximum likelihood estimates of the regression parameters.

Note that these statistics are not valid for GEE models.

If l.y;�/ is the log-likelihood function expressed as a function of the predicted mean values � and the vector
y of response values, then the scaled deviance is defined by

D�.y;�/ D 2.l.y; y/ � l.y;�//

For specific distributions, this can be expressed as

D�.y;�/ D
D.y;�/
�

where D is the deviance. The following table displays the deviance for each of the probability distributions
available in PROC GENMOD. The deviance cannot be directly calculated for zero-inflated models. Twice
the negative of the log likelihood is reported instead of the proper deviance for the zero-inflated Poisson and
zero-inflated negative binomial.
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Distribution Deviance

Normal
P
i fiwi .yi � �i /

2

Poisson 2
P
i fiwi

h
yi log

�
yi
�i

�
� .yi � �i /

i
Binomial 2

P
i fiwimi

h
yi log

�
yi
�i

�
C .1 � yi / log

�
1�yi
1��i

�i
Gamma 2

P
i fiwi

h
� log

�
yi
�i

�
C

yi��i
�i

i
Inverse Gaussian

P
i
fiwi .yi��i /

2

�2
i
yi

Multinomial
P
i

P
j fiwiyij log

�
yij
pijmi

�
Negative binomial 2

P
i fi

h
y log.y=�/ � .y C wi=k/ log

�
yCwi=k
�Cwi=k

�i

Zero-inflated Poisson �2
P
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In the binomial case, yi D ri=mi , where ri is a binomial count and mi is the binomial number of trials
parameter.

In the multinomial case, yij refers to the observed number of occurrences of the jth category for the ith
subpopulation defined by the AGGREGATE= variable, mi is the total number in the ith subpopulation, and
pij is the category probability.

Pearson’s chi-square statistic is defined as

X2 D
X
i

fiwi .yi � �i /
2

V.�i /

and the scaled Pearson’s chi-square is X2=�.

In the Tweedie case, the unit deviance is based on the quasi-likelihood function. Taking the limit of the
deviance as p ! 1 and p ! 2 reduces to the deviance for the Poisson and gamma distributions, respectively.
For more information about the Tweedie distribution, see the section “Tweedie Distribution for Generalized
Linear Models” on page 3661.
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The scaled version of both of these statistics, under certain regularity conditions, has a limiting chi-square
distribution, with degrees of freedom equal to the number of observations minus the number of parameters
estimated. The scaled version can be used as an approximate guide to the goodness of fit of a given model.
Use caution before applying these statistics to ensure that all the conditions for the asymptotic distributions
hold. McCullagh and Nelder (1989) advise that differences in deviances for nested models can be better
approximated by chi-square distributions than the deviances can themselves.

In cases where the dispersion parameter is not known, an estimate can be used to obtain an approximation to
the scaled deviance and Pearson’s chi-square statistic. One strategy is to fit a model that contains a sufficient
number of parameters so that all systematic variation is removed, estimate � from this model, and then use
this estimate in computing the scaled deviance of submodels. The deviance or Pearson’s chi-square divided
by its degrees of freedom is sometimes used as an estimate of the dispersion parameter �. For example, since
the limiting chi-square distribution of the scaled deviance D� D D=� has n � p degrees of freedom, where
n is the number of observations and p is the number of parameters, equating D� to its mean and solving for
� yields O� D D=.n � p/. Similarly, an estimate of � based on Pearson’s chi-square X2 is O� D X2=.n � p/.
Alternatively, a maximum likelihood estimate of � can be computed by the procedure, if desired. See the
discussion in the section “Type 1 Analysis” on page 3653 for more about the estimation of the dispersion
parameter.

Other Fit Statistics

The Akaike information criterion (AIC) is a measure of goodness of model fit that balances model fit against
model simplicity. AIC has the form

AIC D �2LLC 2p

where p is the number of parameters estimated in the model, and LL is the log likelihood evaluated at the
value of the estimated parameters. An alternative form is the corrected AIC given by

AICC D �2LLC 2p
n

n � p � 1

where n is the total number of observations used.

The Bayesian information criterion (BIC) is a similar measure. BIC is defined by

BIC D �2LLC p log.n/

See Akaike (1981, 1979) for details of AIC and BIC. See Simonoff (2003) for a discussion of using AIC,
AICC, and BIC with generalized linear models. These criteria are useful in selecting among regression
models, with smaller values representing better model fit. PROC GENMOD uses the full log likelihoods
defined in the section “Log-Likelihood Functions” on page 3644, with all terms included, for computing all
of the criteria.
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Dispersion Parameter

There are several options available in PROC GENMOD for handling the exponential distribution dispersion
parameter. The NOSCALE and SCALE options in the MODEL statement affect the way in which the
dispersion parameter is treated. If you specify the SCALE=DEVIANCE option, the dispersion parameter is
estimated by the deviance divided by its degrees of freedom. If you specify the SCALE=PEARSON option,
the dispersion parameter is estimated by Pearson’s chi-square statistic divided by its degrees of freedom.

Otherwise, values of the SCALE and NOSCALE options and the resultant actions are displayed in the
following table.

NOSCALE SCALE=value Action

Present Present Scale fixed at value
Present Not present Scale fixed at 1
Not present Not present Scale estimated by ML
Not present Present Scale estimated by ML,

starting point at value
Present (negative binomial) Not present k fixed at 0

The meaning of the scale parameter displayed in the “Analysis Of Parameter Estimates” table is different
for the gamma distribution than for the other distributions. The relation of the scale parameter as used by
PROC GENMOD to the exponential family dispersion parameter � is displayed in the following table. For
the binomial and Poisson distributions, � is the overdispersion parameter, as defined in the “Overdispersion”
section, which follows.

Distribution Scale

Normal
p
�

Inverse Gaussian
p
�

Gamma 1=�

Binomial
p
�

Poisson
p
�

In the case of the negative binomial distribution, PROC GENMOD reports the “dispersion” parameter
estimated by maximum likelihood. This is the negative binomial parameter k defined in the section “Response
Probability Distributions” on page 3640.

Overdispersion

Overdispersion is a phenomenon that sometimes occurs in data that are modeled with the binomial or Poisson
distributions. If the estimate of dispersion after fitting, as measured by the deviance or Pearson’s chi-square,
divided by the degrees of freedom, is not near 1, then the data might be overdispersed if the dispersion
estimate is greater than 1 or underdispersed if the dispersion estimate is less than 1. A simple way to model
this situation is to allow the variance functions of these distributions to have a multiplicative overdispersion
factor �:

� Binomial: V.�/ D ��.1 � �/

� Poisson: V.�/ D ��
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An alternative method to allow for overdispersion in the Poisson distribution is to fit a negative binomial
distribution, where V.�/ D �C k�2, instead of the Poisson. The parameter k can be estimated by maximum
likelihood, thus allowing for overdispersion of a specific form. This is different from the multiplicative
overdispersion factor �, which can accommodate many forms of overdispersion.

The models are fit in the usual way, and the parameter estimates are not affected by the value of �. The
covariance matrix, however, is multiplied by �, and the scaled deviance and log likelihoods used in likelihood
ratio tests are divided by �. The profile likelihood function used in computing confidence intervals is also
divided by �. If you specify a WEIGHT statement, � is divided by the value of the WEIGHT variable for
each observation. This has the effect of multiplying the contributions of the log-likelihood function, the
gradient, and the Hessian by the value of the WEIGHT variable for each observation.

The SCALE= option in the MODEL statement enables you to specify a value of � D
p
� for the binomial

and Poisson distributions. If you specify the SCALE=DEVIANCE option in the MODEL statement, the
procedure uses the deviance divided by degrees of freedom as an estimate of �, and all statistics are adjusted
appropriately. You can use Pearson’s chi-square instead of the deviance by specifying the SCALE=PEARSON
option.

The function obtained by dividing a log-likelihood function for the binomial or Poisson distribution by a
dispersion parameter is not a legitimate log-likelihood function. It is an example of a quasi-likelihood function.
Most of the asymptotic theory for log likelihoods also applies to quasi-likelihoods, which justifies computing
standard errors and likelihood ratio statistics by using quasi-likelihoods instead of proper log likelihoods.
For details on quasi-likelihood functions, see McCullagh and Nelder (1989, Chapter 9), McCullagh (1983);
Hardin and Hilbe (2003).

Although the estimate of the dispersion parameter is often used to indicate overdispersion or underdispersion,
this estimate might also indicate other problems such as an incorrectly specified model or outliers in the data.
You should carefully assess whether this type of model is appropriate for your data.

Specification of Effects
Each term in a model is called an effect. Effects are specified in the MODEL statement. You specify effects
with a special notation that uses variable names and operators. There are two types of variables, classification
(or CLASS) variables and continuous variables. There are two primary types of operators, crossing and
nesting. A third type, the bar operator, is used to simplify effect specification. Crossing is the type of operator
most commonly used in generalized linear models.

Variables that identify classification levels are called CLASS variables in SAS and are specified in a CLASS
statement. These might also be called categorical, qualitative, discrete, or nominal variables. CLASS
variables can be either character or numeric. The values of CLASS variables are called levels. For example,
the CLASS variable Sex could have the levels ‘male’ and ‘female’.

In a model, an explanatory variable that is not declared in a CLASS statement is assumed to be continuous.
Continuous variables must be numeric. For example, the heights and weights of subjects in an experiment
are continuous variables.

The types of effects most useful in generalized linear models are shown in the following list. Assume that A,
B, and C are classification variables and that X1 and X2 are continuous variables.

� Regressor effects are specified by writing continuous variables by themselves: X1, X2.
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� Polynomial effects are specified by using asterisks to join two or more continuous variables: X1*X2.

� Main effects are specified by writing classification variables by themselves: A, B, C.

� Crossed effects (interactions) are specified by joining two or more classification variables with asterisks:
A*B, B*C, A*B*C.

� Nested effects are specified by following a main effect or crossed effect with a classification variable
or list of classification variables enclosed in parentheses: B(A), C(B A), A*B(C). In this example, B(A)
is “B nested within A.”

� Combinations of continuous and classification variables can be specified in the same way by using the
crossing and nesting operators.

The bar operator consists of two effects joined with a vertical bar (|). It is shorthand notation for including
the left-hand side, the right-hand side, and the cross between them as effects in the model. For example,
the expression A | B is equivalent to A B A*B. The effects in the bar operator can be classification variables,
continuous variables, or combinations of effects defined using operators. Multiple bars are permitted. For
example, A | B | C means A B C A*B A*C B*C A*B*C.

You can specify the maximum number of variables in any effect that results from bar evaluation by specifying
the maximum number, preceded by an @ sign. For example, A | B | C@2 results in effects that involve no
more than two variables: A B C A*B A*C B*C.

Parameterization Used in PROC GENMOD

Design Matrix

The linear predictor part of a generalized linear model is

� D Xˇ

where ˇ is an unknown parameter vector and X is a known design matrix. By default, all models automatically
contain an intercept term; that is, the first column of X contains all 1s. Additional columns of X are generated
for classification variables, regression variables, and any interaction terms included in the model. It is
important to understand the ordering of classification variable parameters when you use the ESTIMATE or
CONTRAST statement. The ordering of these parameters is displayed in the “CLASS Level Information”
table and in tables that display the parameter estimates of the fitted model.

When you specify an overparameterized model by using the PARAM=GLM option in the CLASS statement,
some columns of X can be linearly dependent on other columns. For example, when you specify a model
that consists of an intercept term and a classification variable, the column that corresponds to any one of the
levels of the classification variable is linearly dependent on the other columns of X. The columns of X0X are
checked in the order in which the model is specified for dependence on preceding columns. If a dependency
is found, the parameter that corresponds to the dependent column is set to 0 along with its standard error
to indicate that it is not estimated. The order in which the levels of a classification variable are checked for
dependencies can be set by the ORDER= option in the PROC GENMOD statement or by the ORDER=
option in the CLASS statement. For full-rank parameterizations, the columns of the X matrix are designed to
be linearly independent.

You can exclude the intercept term from the model by specifying the NOINT option in the MODEL statement.
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Missing Level Combinations

All levels of interaction terms that involve classification variables might not be represented in the data. In
that case, PROC GENMOD does not include parameters in the model for the missing levels.

Type 1 Analysis
A Type 1 analysis consists of fitting a sequence of models, beginning with a simple model with only an
intercept term, and continuing through a model of specified complexity, fitting one additional effect on each
step. Likelihood ratio statistics—that is, twice the difference of the log likelihoods—are computed between
successive models. This type of analysis is sometimes called an analysis of deviance since, if the dispersion
parameter is held fixed for all models, it is equivalent to computing differences of scaled deviances. The
asymptotic distribution of the likelihood ratio statistics, under the hypothesis that the additional parameters
included in the model are equal to 0, is a chi-square with degrees of freedom equal to the difference in the
number of parameters estimated in the successive models. Thus, these statistics can be used in a test of
hypothesis of the significance of each additional term fit.

This type of analysis is not available for GEE models, since the deviance is not computed for this type of
model.

If the dispersion parameter � is known, it can be included in the models; if it is unknown, there are two
strategies allowed by PROC GENMOD. The dispersion parameter can be estimated from a maximal model
by the deviance or Pearson’s chi-square divided by degrees of freedom, as discussed in the section “Goodness
of Fit” on page 3647, and this value can be used in all models. An alternative is to consider the dispersion to
be an additional unknown parameter for each model and estimate it by maximum likelihood on each step. By
default, PROC GENMOD estimates scale by maximum likelihood at each step.

A table of likelihood ratio statistics is produced, along with associated p-values based on the asymptotic
chi-square distributions.

If you specify either the SCALE=DEVIANCE or the SCALE=PEARSON option in the MODEL statement,
the dispersion parameter is estimated using the deviance or Pearson’s chi-square statistic, and F statistics are
computed in addition to the chi-square statistics for assessing the significance of each additional term in the
Type 1 analysis. See the section “F Statistics” on page 3656 for a definition of F statistics.

This Type 1 analysis has the general property that the results depend on the order in which the terms of the
model are fitted. The terms are fitted in the order in which they are specified in the MODEL statement.
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Type 3 Analysis
A Type 3 analysis is similar to the Type III sums of squares used in PROC GLM, except that likelihood ratios
are used instead of sums of squares. First, a Type III estimable function is defined for an effect of interest
in exactly the same way as in PROC GLM. Then maximum likelihood estimates are computed under the
constraint that the Type III function of the parameters is equal to 0, by using constrained optimization. Let
the resulting constrained parameter estimates be Q̌ and the log likelihood be l. Q̌/. Then the likelihood ratio
statistic

S D 2.l. Ǒ/ � l. Q̌//

where Ǒ is the unconstrained estimate, has an asymptotic chi-square distribution under the hypothesis that
the Type III contrast is equal to 0, with degrees of freedom equal to the number of parameters associated with
the effect.

When a Type 3 analysis is requested, PROC GENMOD produces a table that contains the likelihood ratio
statistics, degrees of freedom, and p-values based on the limiting chi-square distributions for each effect in
the model. If you specify either the DSCALE or PSCALE option in the MODEL statement, F statistics are
also computed for each effect.

Options for handling the dispersion parameter are the same as for a Type 1 analysis. The dispersion parameter
can be specified to be a known value, estimated from the deviance or Pearson’s chi-square divided by degrees
of freedom, or estimated by maximum likelihood individually for the unconstrained and constrained models.
By default, PROC GENMOD estimates scale by maximum likelihood for each model fit.

The results of this type of analysis do not depend on the order in which the terms are specified in the MODEL
statement.

A Type 3 analysis can consume considerable computation time since a constrained model is fitted for each
effect. Wald statistics for Type 3 contrasts are computed if you specify the WALD option. Wald statistics for
contrasts use less computation time than likelihood ratio statistics but might be less accurate indicators of the
significance of the effect of interest. The Wald statistic for testing L0ˇ D 0, where L is the contrast matrix, is
defined by

S D .L0 Ǒ/0.L0 O†L/�.L0 Ǒ/

where ˇ is the maximum likelihood estimate and † is its estimated covariance matrix. The asymptotic
distribution of S is chi-square with r degrees of freedom, where r is the rank of L.

For models that use less-than-full-rank parameterization (as specified by the PARAM=GLM option in the
CLASS statement), a Type 3 test of an effect of interest (main effect or interaction) is a test of the Type III
estimable functions that are defined for that effect. When the model contains no missing cells, performing
the Type 3 test of a main effect corresponds to testing the hypothesis of equal marginal means. For more
information about Type III estimable functions, see Chapter 53, “The GLM Procedure,” and Chapter 16,
“The Four Types of Estimable Functions.” Also see Littell, Freund, and Spector (1991).

For models that use full-rank parameterization, all parameters are estimable when there are no missing cells,
so it is unnecessary to define estimable functions. The standard test of an effect of interest in this case is
the joint test that the values of the parameters associated with that effect are zero. For a model that uses
effects parameterization (as specified by the PARAM=EFFECT option in the CLASS statement), performing
the joint test for a main effect is equivalent to testing the equality of marginal means. For a model that uses
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reference parameterization (as specified by the PARAM=REF option in the CLASS statement), performing
the joint test is equivalent to testing the equality of cell means at the reference level of the other model effects.
For more information about the coding scheme and the associated interpretation of results, see Muller and
Fetterman (2002, Chapter 14).

If there is no interaction term, the Type 3 test of an effect for a model that uses GLM parameterization is the
same as the joint test of the effect for the model that uses full-rank parameterization. In this situation, the
joint test is also called the Type 3 test. For a model that contains an interaction term and no missing cells,
the Type 3 test of a component main effect under GLM parameterization is the same as the joint test of the
component main effect under effect parameterization. Both test the equality of cell means. But this Type 3
test differs from the joint test under reference parameterization, which tests the equality of cell means at the
reference level of the other component main effect. If some cells are missing, you can obtain meaningful
tests only by testing a Type III estimable function, so in this case you should use GLM parameterization.

The results of a Type 3 test or a joint test do not depend on the order in which you specify the terms in the
MODEL statement.

Generalized score tests for Type III contrasts are computed for GEE models if you specify the TYPE3 option
in the MODEL statement when a REPEATED statement is also used. See the section “Generalized Score
Statistics” on page 3671 for more information about generalized score statistics. Wald tests are also available
with the Wald option in the CONTRAST statement. In this case, the robust covariance matrix estimate is
used for † in the Wald statistic.

Confidence Intervals for Parameters

Likelihood Ratio-Based Confidence Intervals

PROC GENMOD produces likelihood ratio-based confidence intervals, also known as profile likelihood
confidence intervals, for parameter estimates for generalized linear models. These are not computed for
GEE models, since there is no likelihood for this type of model. Suppose that the parameter vector is
ˇ D Œˇ0; ˇ1; : : : ; ˇp�

0 and that you want a confidence interval for ˇj . The profile likelihood function for ˇj
is defined as

l�.ˇj / D max
Q̌
l.ˇ/

where Q̌ is the vector ˇ with the jth element fixed at ˇj and l is the log-likelihood function. If l D l. Ǒ/ is the
log likelihood evaluated at the maximum likelihood estimate Ǒ, then 2.l � l�.ˇj // has a limiting chi-square
distribution with one degree of freedom if ˇj is the true parameter value. A .1� ˛/100% confidence interval
for ˇj is˚

ˇj W l
�.ˇj / � l0 D l � 0:5�

2
1�˛;1

	
where �21�˛;1 is the 100.1 � ˛/th percentile of the chi-square distribution with one degree of freedom. The
endpoints of the confidence interval can be found by solving numerically for values of ˇj that satisfy equality
in the preceding relation. PROC GENMOD solves this by starting at the maximum likelihood estimate of ˇ.
The log-likelihood function is approximated with a quadratic surface, for which an exact solution is possible.
The process is iterated until convergence to an endpoint is attained. The process is repeated for the other
endpoint.



3656 F Chapter 51: The GENMOD Procedure

Convergence is controlled by the CICONV= option in the MODEL statement. Suppose � is the number
specified in the CICONV= option. The default value of � is 10�4. Let the parameter of interest be ˇj , and
define r D uj , the unit vector with a 1 in position j and 0s elsewhere. Convergence is declared on the current
iteration if the following two conditions are satisfied:

jl�.ˇj / � l0j � �

.sC �r/0H�1.sC �r/ � �

where l�.ˇj /, s, and H are the log likelihood, the gradient, and the Hessian evaluated at the current parameter
vector and � is a constant computed by the procedure. The first condition for convergence means that the
log-likelihood function must be within � of the correct value, and the second condition means that the gradient
vector must be proportional to the restriction vector r.

When you specify the LRCI option in the MODEL statement, PROC GENMOD computes profile likelihood
confidence intervals for all parameters in the model, including the scale parameter, if there is one. The
interval endpoints are displayed in a table as well as the values of the remaining parameters at the solution.

Wald Confidence Intervals

You can request that PROC GENMOD produce Wald confidence intervals for the parameters. The (1�˛)100%
Wald confidence interval for a parameter ˇ is defined as
Ǒ ˙ z1�˛=2 O�

where zp is the 100pth percentile of the standard normal distribution, Ǒ is the parameter estimate, and O� is
the estimate of its standard error.

F Statistics
Suppose that D0 is the deviance resulting from fitting a generalized linear model and that D1 is the deviance
from fitting a submodel. Then, under appropriate regularity conditions, the asymptotic distribution of
.D1 �D0/=� is chi-square with r degrees of freedom, where r is the difference in the number of parameters
between the two models and � is the dispersion parameter. If � is unknown, and O� is an estimate of � based
on the deviance or Pearson’s chi-square divided by degrees of freedom, then, under regularity conditions,
.n�p/ O�=� has an asymptotic chi-square distribution with n�p degrees of freedom. Here, n is the number of
observations and p is the number of parameters in the model that is used to estimate �. Thus, the asymptotic
distribution of

F D
D1 �D0

r O�

is the F distribution with r and n � p degrees of freedom, assuming that .D1 �D0/=� and .n � p/ O�=� are
approximately independent.

This F statistic is computed for the Type 1 analysis, Type 3 analysis, and hypothesis tests specified in
CONTRAST statements when the dispersion parameter is estimated by either the deviance or Pearson’s
chi-square divided by degrees of freedom, as specified by the DSCALE or PSCALE option in the MODEL
statement. In the case of a Type 1 analysis, model 0 is the higher-order model obtained by including one
additional effect in model 1. For a Type 3 analysis and hypothesis tests, model 0 is the full specified model
and model 1 is the submodel obtained from constraining the Type III contrast or the user-specified contrast to
be 0.
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Lagrange Multiplier Statistics
When you select the NOINT or NOSCALE option, restrictions are placed on the intercept or scale parameters.
Lagrange multiplier, or score, statistics are computed in these cases. These statistics assess the validity of the
restrictions, and they are computed as

�2 D
s2

V

where s is the component of the score vector evaluated at the restricted maximum corresponding to the
restricted parameter and V D I11 � I12I�122 I21. The matrix I is the information matrix, 1 refers to the
restricted parameter, and 2 refers to the rest of the parameters.

Under regularity conditions, this statistic has an asymptotic chi-square distribution with one degree of
freedom, and p-values are computed based on this limiting distribution.

If you set k = 0 in a negative binomial model, s is the score statistic of Cameron and Trivedi (1998) for testing
for overdispersion in a Poisson model against alternatives of the form V.�/ D �C k�2.

See Rao (1973, p. 417) for more details.

Predicted Values of the Mean

Predicted Values

A predicted value, or fitted value, of the mean �i corresponding to the vector of covariates xi is given by

O�i D g
�1.x0i Ǒ/

where g is the link function, regardless of whether xi corresponds to an observation or not. That is, the
response variable can be missing and the predicted value is still computed for valid xi . In the case where
xi does not correspond to a valid observation, xi is not checked for estimability. You should check the
estimability of xi in this case in order to ensure the uniqueness of the predicted value of the mean. If there is
an offset, it is included in the predicted value computation.

Confidence Intervals on Predicted Values

Approximate confidence intervals for predicted values of the mean can be computed as follows. The variance
of the linear predictor �i D x0i Ǒ is estimated by

�2x D x0i†xi

where † is the estimated covariance of Ǒ. The robust estimate of the covariance is used for † in the case of
models fit with GEEs.

Approximate 100.1 � ˛/% confidence intervals are computed as

g�1
�
x0i Ǒ ˙ z1�˛=2�x

�
where zp is the 100pth percentile of the standard normal distribution and g is the link function. If either end-
point in the argument is outside the valid range of arguments for the inverse link function, the corresponding
confidence interval endpoint is set to missing.
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Residuals
The GENMOD procedure computes three kinds of residuals. Residuals are available for all generalized linear
models except multinomial models for ordinal response data, for which residuals are not available. Raw
residuals and Pearson residuals are available for models fit with generalized estimating equations (GEEs).

The raw residual is defined as

ri D yi � �i

where yi is the ith response and �i is the corresponding predicted mean. You can request raw residuals in an
output data set with the keyword RESRAW in the OUTPUT statement.

The Pearson residual is the square root of the ith contribution to the Pearson’s chi-square:

rPi D .yi � �i /

r
wi

V.�i /

You can request Pearson residuals in an output data set with the keyword RESCHI in the OUTPUT statement.

Finally, the deviance residual is defined as the square root of the contribution of the ith observation to the
deviance, with the sign of the raw residual:

rDi D
p
di .sign.yi � �i //

You can request deviance residuals in an output data set with the keyword RESDEV in the OUTPUT statement.
For more information about the deviance computations, see the section “Goodness of Fit” on page 3647.

The adjusted Pearson, deviance, and likelihood residuals are defined by Agresti (2002); Williams (1987);
Davison and Snell (1991). These residuals are useful for outlier detection and for assessing the influence of
single observations on the fitted model.

For the generalized linear model, the variance of the ith individual observation is given by

vi D
�V.�i /

wi

where � is the dispersion parameter, wi is a user-specified prior weight (if not specified, wi D 1), �i is the
mean, and V.�i / is the variance function. Let

wei D v
�1
i .g0.�i //

�2

for the ith observation, where g0.�i / is the derivative of the link function, evaluated at �i . Let We be the
diagonal matrix with wei denoting the ith diagonal element. The weight matrix We is used in computing the
expected information matrix.

Define hi as the ith diagonal element of the matrix

W
1
2
e X.X0WeX/�1X0W

1
2
e

The Pearson residuals, standardized to have unit asymptotic variance, are given by

rPi D
yi � �ip
vi .1 � hi /
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You can request standardized Pearson residuals in an output data set with the keyword STDRESCHI in the
OUTPUT statement. The deviance residuals, standardized to have unit asymptotic variance, are given by

rDi D
sign.yi � �i /

p
dip

�.1 � hi /

where di is the contribution to the total deviance from observation i, and sign.yi � �i / is 1 if yi � �i is
positive and –1 if yi � �i is negative. You can request standardized deviance residuals in an output data set
with the keyword STDRESDEV in the OUTPUT statement. The likelihood residuals are defined by

rGi D sign.yi � �i /
q
.1 � hi /r

2
Di C hir

2
P i

You can request likelihood residuals in an output data set with the keyword RESLIK in the OUTPUT
statement.

Multinomial Models
This type of model applies to cases where an observation can fall into one of k categories. Binary data
occur in the special case where k = 2. If there are mi observations in a subpopulation i, then the probability
distribution of the number falling into the k categories yi D .yi1; yi2; : : : ; yik/ can be modeled by the
multinomial distribution, defined in the section “Response Probability Distributions” on page 3640, withP
j yij D mi . The multinomial model is an ordinal model if the categories have a natural order.

Residuals are not available in the OBSTATS table or the output data set for multinomial models.

By default, and consistently with binomial models, the GENMOD procedure orders the response categories
for ordinal multinomial models from lowest to highest and models the probabilities of the lower response
levels. You can change the way PROC GENMOD orders the response levels with the RORDER= option in
the PROC GENMOD statement. The order that PROC GENMOD uses is shown in the “Response Profiles”
output table described in the section “Response Profile” on page 3689.

The GENMOD procedure supports only the ordinal multinomial model. If .pi1; pi2; : : : ; pik/ are the
category probabilities, the cumulative category probabilities are modeled with the same link functions used
for binomial data. Let Pir D

Pr
jD1 pij , r D 1; 2; : : : ; k�1, be the cumulative category probabilities (note

that Pik D 1). The ordinal model is

g.Pir/ D �r C x0ˇ for r D 1; 2; : : : ; k�1

where �1; �2; : : : ; �k�1 are intercept terms that depend only on the categories and xi is a vector of covariates
that does not include an intercept term. The logit, probit, and complementary log-log link functions g are
available. These are obtained by specifying the MODEL statement options DIST=MULTINOMIAL and
LINK=CUMLOGIT (cumulative logit), LINK=CUMPROBIT (cumulative probit), or LINK=CUMCLL
(cumulative complementary log-log). Alternatively,

Pir D F.�r C x0ˇ/ for r D 1; 2; : : : ; k�1

where F D g�1 is a cumulative distribution function for the logistic, normal, or extreme-value distribution.

PROC GENMOD estimates the intercept parameters �1; �2; : : : ; �k�1 and regression parameters ˇ by
maximum likelihood.

The subpopulations i are defined by constant values of the AGGREGATE= variable. This has no effect on the
parameter estimates, but it does affect the deviance and Pearson chi-square statistics; it also affects parameter
estimate standard errors if you specify the SCALE=DEVIANCE or SCALE=PEARSON option.
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Zero-Inflated Models
Count data that have an incidence of zeros greater than expected for the underlying probability distribution
of counts can be modeled with a zero-inflated distribution. In GENMOD, the underlying distribution can
be either Poisson or negative binomial. See Lambert (1992), Long (1997) and Cameron and Trivedi (1998)
for more information about zero-inflated models. The population is considered to consist of two types of
individuals. The first type gives Poisson or negative binomial distributed counts, which might contain zeros.
The second type always gives a zero count. Let � be the underlying distribution mean and ! be the probability
of an individual being of the second type. The parameter ! is called here the zero-inflation probability, and
is the probability of zero counts in excess of the frequency predicted by the underlying distribution. You can
request that the zero inflation probability be displayed in an output data set with the PZERO keyword. The
probability distribution of a zero-inflated Poisson random variable Y is given by

Pr.Y D y/ D

(
! C .1 � !/e�� for y D 0
.1 � !/�

ye��
yŠ

for y D 1; 2; : : :

and the probability distribution of a zero-inflated negative binomial random variable Y is given by

Pr.Y D y/ D

(
! C .1 � !/.1C k�/�

1
k for y D 0

.1 � !/ �.yC1=k/
�.yC1/�.1=k/

.k�/y

.1Ck�/yC1=k
for y D 1; 2; : : :

where k is the negative binomial dispersion parameter.

You can model the parameters ! and � in GENMOD with the regression models:

h.!i / D z0i
g.�i / D x0iˇ

where h is one of the binary link functions: logit, probit, or complementary log-log. The link function h is the
logit link by default, or the link function option specified in the ZEROMODEL statement. The link function
g is the log link function by default, or the link function specified in the MODEL statement, for both the
Poisson and the negative binomial. The covariates zi for observation i are determined by the model specified
in the ZEROMODEL statement, and the covariates xi are determined by the model specified in the MODEL
statement. The regression parameters  and ˇ are estimated by maximum likelihood.

The mean and variance of Y for the zero-inflated Poisson are given by

E.Y / D � D .1 � !/�

Var.Y / D �C
!

1 � !
�2

and for the zero-inflated negative binomial by

E.Y / D � D .1 � !/�

Var.Y / D �C

�
!

1 � !
C

k

1 � !

�
�2
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You can request that the mean of Y be displayed for each observation in an output data set with the PRED
keyword.

Tweedie Distribution for Generalized Linear Models
The Tweedie (1984) distribution has nonnegative support and can have a discrete mass at zero, making it
useful to model responses that are a mixture of zeros and positive values. The Tweedie distribution belongs to
the exponential family, so it conveniently fits in the generalized linear models framework. According to such
parameterization, the mean and variance for the Tweedie random variable are E.Y / D � and Var.Y / D ��p ,
respectively, where � is the dispersion parameter and p is an extra parameter that controls the variance of the
distribution.

The Tweedie family of distributions includes several important distributions for generalized linear models.
When p D 0, the Tweedie distribution degenerates to the normal distribution; when p D 1, it becomes a
Poisson distribution; when p D 2, it becomes a gamma distribution; when p D 3, it is an inverse Gaussian
distribution.

Except for these special cases, the probability density function for the Tweedie distribution does not have a
closed form and can at best be expressed in terms of series. Numerical approximations are needed to evaluate
the density function. Dunn and Smyth (2005) propose using a finite series and provide a formula to determine
its lower and upper indices in order to achieve a desired accuracy. Alternatively, you can apply the Fourier
transformation on the characteristic function (Dunn and Smyth 2008). These approximations tend to be
expensive when a high level of accuracy is demanded or the data volume becomes large. PROC GENMOD
uses the series method unless it becomes complicated to do so. In this case, the method that is based on the
Fourier transformation is used. The accuracy of approximation is controlled by the EPSILON= option, whose
default value is 10�5.

The Tweedie distribution is not defined when p is between 0 and 1. In practice, the most interesting range
is from 1 to 2 in which the Tweedie distribution gradually loses its mass at 0 as it shifts from a Poisson
distribution to a gamma distribution. In this case, the Tweedie random variable Y can be generated from a
compound Poisson distribution (Smyth 1996) as

Y D †TiD1Xi

T � Poisson.�/
Xi � gamma.˛; /

where Y D 0 if T D 0, T and Xi are statistically independent, and gamma.˛; / denotes a gamma random
variable that has mean ˛ and variance ˛2. These parameters are determined by the Tweedie parameters as
follows:

� D
�2�p

�.2 � p/

˛ D
2 � p

p � 1

 D �.p � 1/�p�1

Inversely, given the Tweedie distributional parameters, the parameters of the compound Poisson distribution
are determined as follows:
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� D �˛

p D
˛ C 2

˛ C 1

� D
�1�p.˛/2�p

2 � p

In terms of generalized linear models parameterizations, the canonical parameter � for the Tweedie density
can be expressed as

� D

(
�1�p

1�p
p ¤ 1

log� p D 1

and the function b.�/ is

b.�/ D

(
�2�p

2�p
p ¤ 2

log� p D 2

Because of the intractability of differentiating the gradient functions with respect to the variance parameters,
PROC GENMOD uses a quasi-Newton approach to maximize the likelihood function, where the Hessian
matrix is approximated by taking finite differences of the gradient functions. Convergence is determined by
a union of two criteria: the relative gradient convergence criterion is set to 10�9, and the relative function
convergence criterion is set to 2 � 10�9. Convergence is declared when at least one of the criteria is attained
during the quasi-Newton iteration.

Before PROC GENMOD maximizes the approximate likelihood, it first maximizes the following extended
log quasi-likelihood which is constructed according to the definition of McCullagh and Nelder (1989, Chapter
9) as

Qp.y;�; �; p/ D
X
i

q.yi ; �i ; �; p/

where the contribution from an observation is

q.yi ; �i ; �; p/ D �0:5 log.2��ypi =wi / � wi

 
y
2�p
i � .2 � p/yi�

1�p
i C .1 � p/�

2�p
i

.1 � p/.2 � p/

!
=�

and wi is the weight for the observation from the WEIGHT statement.

The range of parameter p for the quasi-likelihood is from 1 to 2. For a specified P= value outside this
range, PROC GENMOD skips optimization of the quasi-likelihood. To maintain numerical stability, PROC
GENMOD imposes a lower bound of 1.1 and a upper bound of 1.99 for computation with the quasi-likelihood.
The full-likelihood solution imposes the same lower bound but no upper bound. The estimates that are
obtained from optimizing the quasi-likelihood are usually near the full-likelihood solution so that fewer
iterations are needed for maximizing the more expensive full likelihood.
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Generalized Estimating Equations
Let yij , j D 1; : : : ; ni , i D 1; : : : ; K, represent the jth measurement on the ith subject. There are ni
measurements on subject i and

PK
iD1 fini total measurements where fi is the cluster frequency that you

specify in the FREQUENCY statement. If you do not specify a FREQUENCY statement, fi D 1 for all
observations. The frequencies must be the same for all observations within each cluster.

Correlated data are modeled using the same link function and linear predictor setup (systematic component)
as the independence case. The random component is described by the same variance functions as in the
independence case, but the covariance structure of the correlated measurements must also be modeled. In the
rest of this section, v.�/ is the variance function of the specified distribution. For the case of the negative
binomial, the variance function is fixed at v.�/ D � C k�2, where k is either the maximum likelihood
estimate of the negative binomial dispersion parameter or the value specified in the NOSCALE and SCALE=
options in the MODEL statement.

Let the vector of measurements on the ith subject be Yi D Œyi1; : : : ; yini �
0 with corresponding vector of

means �i D Œ�i1; : : : ; �ini �
0, and let Vi be the covariance matrix of Yi . Let the vector of independent, or

explanatory, variables for the jth measurement on the ith subject be

xij D Œxij1; : : : ; xijp�0

The generalized estimating equation of Liang and Zeger (1986) for estimating the p � 1 vector of regression
parameters ˇ is an extension of the independence estimating equation to correlated data and is given by

S.ˇ/ D
KX
iD1

fiD0iV
�1
i .Yi � �i .ˇ// D 0

where

Di D
@�i

@ˇ

Because

g.�ij / D xij 0ˇ

where g is the link function, the p � ni matrix of partial derivatives of the mean with respect to the regression
parameters for the ith subject is given by

D0i D
@�0i
@ˇ
D

266664
xi11

g0.�i1/
: : :

xini1

g0.�ini /
:::

:::
xi1p

g0.�i1/
: : :

xinip

g0.�ini /

377775
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Working Correlation Matrix

Let Ri .˛/ be an ni � ni “working” correlation matrix that is fully specified by the vector of parameters ˛.
The covariance matrix of Yi is modeled as

Vi D �A
1
2

i W
� 1
2

i R.˛/W
� 1
2

i A
1
2

i

where Ai is an ni �ni diagonal matrix with v.�ij / as the jth diagonal element and Wi is an ni �ni diagonal
matrix with wij as the jth diagonal, where wij is a weight specified with the WEIGHT statement. If there is
no WEIGHT statement, wij D 1 for all i and j. If Ri .˛/ is the true correlation matrix of Yi , then Vi is the
true covariance matrix of Yi .

The working correlation matrix is usually unknown and must be estimated. It is estimated in the iterative
fitting process by using the current value of the parameter vector ˇ to compute appropriate functions of the
Pearson residual

eij D
yij � �ijp
v.�ij /=wij

If you specify the working correlation as R0 D I, which is the identity matrix, the GEE reduces to the
independence estimating equation.

Following are the structures of the working correlation supported by the GENMOD procedure and the
estimators used to estimate the working correlations.

Working Correlation Structure Estimator

Fixed
Corr.Yij ; Yik/ D rjk
where rjk is the jkth element of a constant,
user-specified correlation matrix R0.

The working correlation is not estimated in
this case.

Independent

Corr.Yij ; Yik/ D
�
1 j D k

0 j ¤ k
The working correlation is not estimated in
this case.

m-dependent

Corr.Yij ; Yi;jCt / D

8<:
1 t D 0

˛t t D 1; 2; : : : ; m

0 t > m

Ǫ t D
1

.Kt�p/�

PK
iD1 fi

P
j�ni�t

eij ei;jCt

Kt D
PK
iD1 fi .ni � t /

Exchangeable

Corr.Yij ; Yik/ D
�
1 j D k

˛ j ¤ k
Ǫ D

1
.N��p/�

PK
iD1 fi

P
j<k eij eik

N � D 0:5
PK
iD1 fini .ni � 1/

Unstructured

Corr.Yij ; Yik/ D
�
1 j D k

˛jk j ¤ k
Ǫjk D

1
.K�p/�

PK
iD1 fieij eik
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Table 51.11 continued

Working Correlation Structure Estimator

Autoregressive
AR(1)

Corr.Yij ; Yi;jCt / D ˛t

for t D 0; 1; 2; : : : ; ni � j
Ǫ D

1
.K1�p/�

PK
iD1 fi

P
j�ni�1

eij ei;jC1

K1 D
PK
iD1 fi .ni � 1/

Dispersion Parameter

The dispersion parameter � is estimated by

O� D
1

N � p

KX
iD1

fi

niX
jD1

e2ij

where N D
PK
iD1 fini is the total number of measurements and p is the number of regression parameters.

The square root of O� is reported by PROC GENMOD as the scale parameter in the “Analysis of GEE
Parameter Estimates Model-Based Standard Error Estimates” output table. If a fixed scale parameter is
specified with the NOSCALE option in the MODEL statement, then the fixed value is used in estimating the
model-based covariance matrix and standard errors.

Fitting Algorithm

The following is an algorithm for fitting the specified model by using GEEs. Note that this is not in general
a likelihood-based method of estimation, so that inferences based on likelihoods are not possible for GEE
methods.

1. Compute an initial estimate of ˇ with an ordinary generalized linear model assuming independence.

2. Compute the working correlations R based on the standardized residuals, the current ˇ, and the
assumed structure of R.

3. Compute an estimate of the covariance:

Vi D �A
1
2

i W
� 1
2

i
OR.˛/W

� 1
2

i A
1
2

i

4. Update ˇ:

ˇrC1 D ˇr C

"
KX
iD1

fi
@�i

@ˇ

0

V�1i
@�i

@ˇ

#�1 "
KX
iD1

fi
@�i

@ˇ

0

V�1i .Yi � �i /

#

5. Repeat steps 2-4 until convergence.
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Missing Data

See Diggle, Liang, and Zeger (1994, Chapter 11) for a discussion of missing values in longitudinal data.
Suppose that you intend to take measurements Yi1; : : : ; Yin for the ith unit. Missing values for which Yij are
missing whenever Yik is missing for all j � k are called dropouts. Otherwise, missing values that occur
intermixed with nonmissing values are intermittent missing values. The GENMOD procedure can estimate
the working correlation from data containing both types of missing values by using the all available pairs
method, in which all nonmissing pairs of data are used in the moment estimators of the working correlation
parameters defined previously. The resulting covariances and standard errors are valid under the missing
completely at random (MCAR) assumption.

For example, for the unstructured working correlation model,

Ǫjk D
1

.K 0 � p/�

X
fieij eik

where the sum is over the units that have nonmissing measurements at times j and k, and K 0 is the number of
units with nonmissing measurements at j and k. Estimates of the parameters for other working correlation
types are computed in a similar manner, using available nonmissing pairs in the appropriate moment
estimators.

The contribution of the ith unit to the parameter update equation is computed by omitting the elements
of .Yi � �i/, the columns of D0i D

@�
@ˇ

0
, and the rows and columns of Vi corresponding to missing

measurements.

Parameter Estimate Covariances

The model-based estimator of Cov. Ǒ/ is given by

†m. Ǒ/ D I�10
where

I0 D
KX
iD1

fi
@�i

@ˇ

0

V�1i
@�i

@ˇ

This is the GEE equivalent of the inverse of the Fisher information matrix that is often used in generalized
linear models as an estimator of the covariance estimate of the maximum likelihood estimator of ˇ. It is a
consistent estimator of the covariance matrix of Ǒ if the mean model and the working correlation matrix are
correctly specified.

The estimator

†e D I�10 I1I�10
is called the empirical, or robust, estimator of the covariance matrix of Ǒ, where

I1 D
KX
iD1

fi
@�i

@ˇ

0

V�1i Cov.Yi /V�1i
@�i

@ˇ

It has the property of being a consistent estimator of the covariance matrix of Ǒ, even if the working
correlation matrix is misspecified—that is, if Cov.Yi / ¤ Vi . For further information about the robust
variance estimate, see Zeger, Liang, and Albert (1988); Royall (1986); White (1982). In computing †e, ˇ
and � are replaced by estimates, and Cov.Yi / is replaced by the estimate

.Yi � �i . Ǒ//.Yi � �i . Ǒ//0
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Multinomial GEEs

Lipsitz, Kim, and Zhao (1994) and Miller, Davis, and Landis (1993) describe how to extend GEEs to
multinomial data. Currently, only the independent working correlation is available for multinomial models in
PROC GENMOD.

Alternating Logistic Regressions

If the responses are binary (that is, they take only two values), then there is an alternative method to account
for the association among the measurements. The alternating logistic regressions (ALR) algorithm of Carey,
Zeger, and Diggle (1993) models the association between pairs of responses with log odds ratios, instead of
with correlations, as ordinary GEEs do.

For binary data, the correlation between the jth and kth response is, by definition,

Corr.Yij ; Yik/ D
Pr.Yij D 1; Yik D 1/ � �ij�ikp

�ij .1 � �ij /�ik.1 � �ik/

The joint probability in the numerator satisfies the following bounds, by elementary properties of probability,
since �ij D Pr.Yij D 1/:

max.0; �ij C �ik � 1/ � Pr.Yij D 1; Yik D 1/ � min.�ij ; �ik/

The correlation, therefore, is constrained to be within limits that depend in a complicated way on the means
of the data.

The odds ratio, defined as

OR.Yij ; Yik/ D
Pr.Yij D 1; Yik D 1/Pr.Yij D 0; Yik D 0/
Pr.Yij D 1; Yik D 0/Pr.Yij D 0; Yik D 1/

is not constrained by the means and is preferred, in some cases, to correlations for binary data.

The ALR algorithm seeks to model the logarithm of the odds ratio, ijk D log.OR.Yij ; Yik//, as

ijk D z0ijk˛

where ˛ is a q � 1 vector of regression parameters and zijk is a fixed, specified vector of coefficients.

The parameter ijk can take any value in .�1;1/ with ijk D 0 corresponding to no association.

The log odds ratio, when modeled in this way with a regression model, can take different values in subgroups
defined by zijk . For example, zijk can define subgroups within clusters, or it can define “block effects”
between clusters.

You specify a GEE model for binary data that uses log odds ratios by specifying a model for the mean, as
in ordinary GEEs, and a model for the log odds ratios. You can use any of the link functions appropriate
for binary data in the model for the mean, such as logistic, probit, or complementary log-log. The ALR
algorithm alternates between a GEE step to update the model for the mean and a logistic regression step to
update the log odds ratio model. Upon convergence, the ALR algorithm provides estimates of the regression
parameters for the mean, ˇ, the regression parameters for the log odds ratios, ˛, their standard errors, and
their covariances.
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Specifying Log Odds Ratio Models
Specifying a regression model for the log odds ratio requires you to specify rows of the z matrix zijk for
each cluster i and each unique within-cluster pair .j; k/. The GENMOD procedure provides several methods
of specifying zijk . These are controlled by the LOGOR=keyword and associated options in the REPEATED
statement. The supported keywords and the resulting log odds ratio models are described as follows.

EXCH specifies exchangeable log odds ratios. In this model, the log odds ratio is a
constant for all clusters i and pairs .j; k/. The parameter ˛ is the common log
odds ratio.

zijk D 1 for all i; j; k

FULLCLUST specifies fully parameterized clusters. Each cluster is parameterized in the same
way, and there is a parameter for each unique pair within clusters. If a complete
cluster is of size n, then there are n.n�1/

2
parameters in the vector ˛. For example,

if a full cluster is of size 4, then there are 4�3
2
D 6 parameters, and the z matrix

is of the form

Z D

26666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

37777775
The elements of ˛ correspond to log odds ratios for cluster pairs in the following
order:

Pair Parameter

(1,2) Alpha1
(1,3) Alpha2
(1,4) Alpha3
(2.3) Alpha4
(2,4) Alpha5
(3,4) Alpha6

LOGORVAR(variable) specifies log odds ratios by cluster. The argument variable is a variable name that
defines the “block effects” between clusters. The log odds ratios are constant
within clusters, but they take a different value for each different value of the
variable. For example, if Center is a variable in the input data set taking a different
value for k treatment centers, then specifying LOGOR=LOGORVAR(Center)
requests a model with different log odds ratios for each of the k centers, constant
within center.

NESTK specifies k-nested log odds ratios. You must also specify the SUB-
CLUST=variable option to define subclusters within clusters. Within each
cluster, PROC GENMOD computes a log odds ratio parameter for pairs having
the same value of variable for both members of the pair and one log odds ratio
parameter for each unique combination of different values of variable.
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NEST1 specifies 1-nested log odds ratios. You must also specify the SUB-
CLUST=variable option to define subclusters within clusters. There are
two log odds ratio parameters for this model. Pairs having the same value of
variable correspond to one parameter; pairs having different values of variable
correspond to the other parameter. For example, if clusters are hospitals and
subclusters are wards within hospitals, then patients within the same ward have
one log odds ratio parameter, and patients from different wards have the other
parameter.

ZFULL specifies the full z matrix. You must also specify a SAS data set containing
the z matrix with the ZDATA=data-set-name option. Each observation in
the data set corresponds to one row of the z matrix. You must specify the
ZDATA data set as if all clusters are complete—that is, as if all clusters are
the same size and there are no missing observations. The ZDATA data set
has KŒnmax .nmax � 1/=2� observations, where K is the number of clusters and
nmax is the maximum cluster size. If the members of cluster i are ordered as
1; 2; : : : ; n, then the rows of the z matrix must be specified for pairs in the order
.1; 2/; .1; 3/; : : : ; .1; n/; .2; 3/; : : : ; .2; n/; : : : ; .n�1; n/. The variables specified
in the REPEATED statement for the SUBJECT effect must also be present in
the ZDATA= data set to identify clusters. You must specify variables in the data
set that define the columns of the z matrix by the ZROW=variable-list option.
If there are q columns (q variables in variable-list), then there are q log odds
ratio parameters. You can optionally specify variables indicating the cluster pairs
corresponding to each row of the z matrix with the YPAIR=(variable1, variable2)
option. If you specify this option, the data from the ZDATA data set are sorted
within each cluster by variable1 and variable2. See Example 51.6 for an example
of specifying a full z matrix.

ZREP specifies a replicated z matrix. You specify z matrix data exactly as you do for the
ZFULL case, except that you specify only one complete cluster. The z matrix for
the one cluster is replicated for each cluster. The number of observations in the
ZDATA data set is nmax .nmax�1/

2
, where nmax is the size of a complete cluster (a

cluster with no missing observations).

ZREP(matrix) specifies direct input of the replicated z matrix. You specify the z matrix for
one cluster with the syntax LOGOR=ZREP ( .y1 y2/z1 z2 � � � zq; � � � ), where
y1 and y2 are numbers representing a pair of observations and the values
z1; z2; : : : ; zq make up the corresponding row of the z matrix. The number
of rows specified is nmax .nmax�1/

2
, where nmax is the size of a complete cluster

(a cluster with no missing observations). For example,

logor = zrep((1 2) 1 0,
(1 3) 1 0,
(1 4) 1 0,
(2 3) 1 1,
(2 4) 1 1,
(3 4) 1 1)

specifies the 4�3
2
D 6 rows of the z matrix for a cluster of size 4 with q = 2 log

odds ratio parameters. The log odds ratio for the pairs (1 2), (1 3), (1 4) is ˛1, and
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the log odds ratio for the pairs (2 3), (2 4), (3 4) is ˛1 C ˛2.

Quasi-likelihood Information Criterion

The quasi-likelihood information criterion (QIC) was developed by Pan (2001) as a modification of the
Akaike information criterion (AIC) to apply to models fit by GEEs.

Define the quasi-likelihood under the independence working correlation assumption, evaluated with the
parameter estimates under the working correlation of interest as

Q. Ǒ.R/; �/ D

KX
iD1

fi

niX
jD1

Q. Ǒ.R/; �I .Yij ;Xij //

where the quasi-likelihood contribution of the jth observation in the ith cluster is defined in the section
“Quasi-likelihood Functions” on page 3670 and Ǒ.R/ are the parameter estimates obtained from GEEs with
the working correlation of interest R.

QIC is defined as

QIC.R/ D �2Q. Ǒ.R/; �/C 2trace. O�I OVR/

where OVR is the robust covariance estimate and O�I is the inverse of the model-based covariance estimate
under the independent working correlation assumption, evaluated at Ǒ.R/, the parameter estimates obtained
from GEEs with the working correlation of interest R.

PROC GENMOD also computes an approximation to QIC.R/ defined by Pan (2001) as

QICu.R/ D �2Q. Ǒ.R/; �/C 2p

where p is the number of regression parameters.

Pan (2001) notes that QIC is appropriate for selecting regression models and working correlations, whereas
QICu is appropriate only for selecting regression models.

Quasi-likelihood Functions

See McCullagh and Nelder (1989) and Hardin and Hilbe (2003) for discussions of quasi-likelihood functions.
The contribution of observation j in cluster i to the quasi-likelihood function evaluated at the regression
parameters ˇ is given by Q.ˇ; �I .Yij ;Xij // D

Qij
�

, where Qij is defined in the following list. These are
used in the computation of the quasi-likelihood information criteria (QIC) for goodness of fit of models fit
with GEEs. The wij are prior weights, if any, specified with the WEIGHT or FREQ statements. Note that the
definition of the quasi-likelihood for the negative binomial differs from that given in McCullagh and Nelder
(1989). The definition used here allows the negative binomial quasi-likelihood to approach the Poisson as
k ! 0.

� Normal:

Qij D �
1

2
wij .yij � �ij /

2

� Inverse Gaussian:

Qij D
wij .�ij � :5yij /

�2ij
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� Gamma:

Qij D �wij

�
yij

�ij
C log.�ij /

�
� Negative binomial:

Qij D wij

�
log�

�
yij C

1

k

�
� log�

�
1

k

�
C yij log

�
k�ij

1C k�ij

�
C
1

k
log

�
1

1C k�ij

��
� Poisson:

Qij D wij .yij log.�ij / � �ij /

� Binomial:

Qij D wij Œrij log.pij /C .nij � rij / log.1 � pij /�

� Multinomial (s categories):

Qij D wij

sX
kD1

yijk log.�ijk/

Generalized Score Statistics

Boos (1992) and Rotnitzky and Jewell (1990) describe score tests applicable to testing L0ˇ D 0 in GEEs,
where L0 is a user-specified r � p contrast matrix or a contrast for a Type 3 test of hypothesis.

Let Q̌ be the regression parameters resulting from solving the GEE under the restricted model L0ˇ D 0, and
let S. Q̌/ be the generalized estimating equation values at Q̌.

The generalized score statistic is

T D S. Q̌/0†mL.L0†eL/�1L0†mS. Q̌/

where †m is the model-based covariance estimate and †e is the empirical covariance estimate. The p-values
for T are computed based on the chi-square distribution with r degrees of freedom.

The preceding development for score tests assumes that the rank of the empirical covariance matrix †e is
not less than the row rank of the contrast matrix L. When the rank of †e is less than the row rank of L,
estimability of the function is not sufficient to ensure that the chi-square test statistic has a unique value no
matter what kind of generalized inverse is used to compute .L0†eL/�.

Although it is extremely rare, it is possible in practice that the uniqueness condition is not satisfied. For
example, if the number of clusters is less than the number of nonsingular parameters in the model, then the
matrix of coefficients for testing the overall null does not satisfy the uniqueness condition. If this condition is
not satisfied, then the chi-square statistic for testingH WLˇ D 0 is not invariant to the choice of the g2-inverse
of L†eL0. This chi-square test is not recommended when the uniqueness condition is not satisfied. An
alternative approach would be to increase the number of clusters or to find a parsimonious model so that the
number of parameters is less than the number of clusters. When the rank of †e is less than the row rank of L
for a test, the procedure prints a note to the SAS log.
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Assessment of Models Based on Aggregates of Residuals
Lin, Wei, and Ying (2002) present graphical and numerical methods for model assessment based on the
cumulative sums of residuals over certain coordinates (such as covariates or linear predictors) or some
related aggregates of residuals. The distributions of these stochastic processes under the assumed model
can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can
be generated by simulation. Each observed residual pattern can then be compared, both graphically and
numerically, with a number of realizations from the null distribution. Such comparisons enable you to
assess objectively whether the observed residual pattern reflects anything beyond random fluctuation. These
procedures are useful in determining appropriate functional forms of covariates and link function. You use
the ASSESS|ASSESSMENT statement to perform this kind of model-checking with cumulative sums of
residuals, moving sums of residuals, or LOESS smoothed residuals. See Example 51.8 and Example 51.9 for
examples of model assessment.

Let the model for the mean be

g.�i / D x0iˇ

where �i is the mean of the response yi and xi is the vector of covariates for the ith observation. Denote the
raw residual resulting from fitting the model as

ei D yi � O�i

and let xij be the value of the jth covariate in the model for observation i. Then to check the functional form
of the jth covariate, consider the cumulative sum of residuals with respect to xij ,

Wj .x/ D
1
p
n

nX
iD1

I.xij � x/ei

where I./ is the indicator function. For any x, Wj .x/ is the sum of the residuals with values of xj less than
or equal to x.

Denote the score, or gradient vector, by

U.ˇ/ D

nX
iD1

h.x0ˇ/xi .yi � �.x0ˇ//

where �.r/ D g�1.r/, and

h.r/ D
1

g0.�.r//V .�.r//

Let J be the Fisher information matrix

J.ˇ/ D �
@U.ˇ/

@ˇ0

Define

OWj .x/ D
1
p
n

nX
iD1

ŒI.xij � x/C �
0.xI Ǒ/J�1. Ǒ/xih.x0 Ǒ/�eiZi
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where

�.xIˇ/ D �

nX
iD1

I.xij � x/
@�.x0iˇ/
@ˇ

and Zi are independent N.0; 1/ random variables. Then the conditional distribution of OWj .x/, given
.yi ; xi /; i D 1; : : : ; n, under the null hypothesis H0 that the model for the mean is correct, is the same
asymptotically as n!1 as the unconditional distribution of Wj .x/ (Lin, Wei, and Ying 2002).

You can approximate realizations from the null hypothesis distribution ofWj .x/ by repeatedly generating nor-
mal samples Zi ; i D 1; : : : ; n, while holding .yi ; xi /; i D 1; : : : ; n, at their observed values and computing
OWj .x/ for each sample.

You can assess the functional form of covariate j by plotting a few realizations of OWj .x/ on the same plot as
the observed Wj .x/ and visually comparing to see how typical the observed Wj .x/ is of the null distribution
samples.

You can supplement the graphical inspection method with a Kolmogorov-type supremum test. Let sj be the
observed value of Sj D supx jWj .x/j. The p-value PrŒSj � sj � is approximated by PrŒ OSj � sj �, where
OSj D supx j OWj .x/j. PrŒ OSj � sj � is estimated by generating realizations of OWj .:/ (1,000 is the default

number of realizations).

You can check the link function instead of the jth covariate by using values of the linear predictor x0i Ǒ in
place of values of the jth covariate xij . The graphical and numerical methods described previously are then
sensitive to inadequacies in the link function.

An alternative aggregate of residuals is the moving sum statistic

Wj .x; b/ D
1
p
n

nX
iD1

I.x � b � xij � x/ei

If you specify the keyword WINDOW(b), then the moving sum statistic with window size b is used instead
of the cumulative sum of residuals, with I.x � b � xij � x/ replacing I.xij � x/ in the earlier equation.

If you specify the keyword LOESS(f ), loess smoothed residuals are used in the preceding formulas, where f is
the fraction of the data to be used at a given point. If f is not specified, f D 1

3
is used. For data .Yi ; Xi /; i D

1; : : : ; n, define r as the nearest integer to nf and h as the rth smallest among jXi � xj; i D 1; : : : ; n. Let

Ki .x/ D K

�
Xi � x

h

�
where

K.t/ D
70

81
.1 � jt j3/3I.�1 � t � 1/

Define

wi .x/ D Ki .x/ŒS2.x/ � .Xi � x/S1.x/�
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where

S1.x/ D

nX
iD1

Ki .x/.Xi � x/

S2.x/ D

nX
iD1

Ki .x/.Xi � x/
2

Then the loess estimate of Y at x is defined by

OY .x/ D

nX
iD1

wi .x/Pn
iD1wi .x/

Yi

Loess smoothed residuals for checking the functional form of the jth covariate are defined by replacing Yi
with ei and Xi with xij . To implement the graphical and numerical assessment methods, I.xij � x/ is
replaced with wi .x/Pn

iD1wi .x/
in the formulas for Wj .x/ and OWj .x/.

You can perform the model checking described earlier for marginal models for dependent responses fit by
generalized estimating equations (GEEs). Let yik denote the kth measurement on the ith cluster, i D 1; : : : ; K,
k D 1; : : : ; ni , and let xik denote the corresponding vector of covariates. The marginal mean of the response
�ik D E.yik/ is assumed to depend on the covariate vector by

g.�ik/ D x0ikˇ

where g is the link function.

Define the vector of residuals for the ith cluster as

ei D .ei1; : : : ; eini /
0
D .yi1 � O�i1; : : : ; yini � O�ini /

0

You use the following extension of Wj .x/ defined earlier to check the functional form of the jth covariate:

Wj .x/ D
1
p
K

KX
iD1

niX
kD1

I.xikj � x/eik

where xikj is the jth component of xik .

The null distribution of Wj .x/ can be approximated by the conditional distribution of

OWj .x/ D
1
p
K

KX
iD1

(
niX
kD1

I.xikj � x/eik C �
0.x; Ǒ/I�10 OD

0
i
OV�1i ei

)
Zi

where ODi and OVi are defined as in the section “Generalized Estimating Equations” on page 3663 with the
unknown parameters replaced by their estimated values,
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�.x;ˇ/ D �

KX
iD1

niX
kD1

I.xikj � x/
@�ik

@ˇ

I0 D
KX
iD1

OD0i OV
�1
i
ODi

and Zi ; i D 1; : : : ; K, are independent N.0; 1/ random variables. You replace xikj with the linear predictor
x0
ik
Ǒ in the preceding formulas to check the link function.

Case Deletion Diagnostic Statistics
For ordinary generalized linear models, regression diagnostic statistics developed by Williams (1987) can be
requested in an output data set or in the OBSTATS table by specifying the DIAGNOSTICS | INFLUENCE
option in the MODEL statement. These diagnostics measure the influence of an individual observation on
model fit, and generalize the one-step diagnostics developed by Pregibon (1981) for the logistic regression
model for binary data.

Preisser and Qaqish (1996) further generalized regression diagnostics to apply to models for correlated data fit
by generalized estimating equations (GEEs), where the influence of entire clusters of correlated observations,
or the influence of individual observations within a cluster, is measured. These diagnostic statistics can be
requested in an output data set or in the OBSTATS table if a model for correlated data is specified with a
REPEATED statement.

The next two sections use the following notation:

Ǒ is the maximum likelihood estimate of the regression parameters ˇ, or, in the case of correlated data,
the solution of the GEEs.

Ǒ
Œi� is the corresponding estimate evaluated with the ith observation deleted, or, in the case of correlated

data, with the ith cluster deleted.

p is the dimension of the regression parameter vector ˇ.

rpi is the standardized Pearson residual yi��ip
vi .1�hi /

, where vi is the variance of the ith response and hi is
the leverage defined in the section “H | LEVERAGE” on page 3676.

vi is the variance of response i, Var.Yi / D �V.�i /, where V.�/ is the variance function and � is the
dispersion parameter.

wi is the prior weight of the ith observation specified with the WEIGHT statement. If there is no WEIGHT
statement, wi D 1 for all i.

All unknown quantities are replaced by their estimated values in the following two sections.
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Diagnostics for Ordinary Generalized Linear Models

The following statistics are available for generalized linear models.

DFBETA
The DFBETA statistic for measuring the influence of the ith observation is defined as the one-step approxima-
tion to the difference in the MLE of the regression parameter vector and the MLE of the regression parameter
vector without the ith observation. This one-step approximation assumes a Fisher scoring step, and is given
by

Ǒ � ǑŒi� � DFBETAi D .X0WX/�1X0iW
1
2

i .1 � hi /
� 1
2 rpi

where hi is the leverage defined in the section “H | LEVERAGE” on page 3676.

DFBETAS
The standardized DFBETA statistic for assessing the influence of the ith observation on the jth regression
parameter is defined as the DFBETA statistic for the jth parameter divided by its estimated standard deviation,
where the standard deviation is estimated from all the data.

DFBETASij D DFBETAij = O�.ˇj /

DOBS | COOKD | COOKSD
In normal linear regression, the influence of observation i can be measured by Cook’s distance (Cook and
Weisberg 1982). A measure of influence of observation i for generalized linear models that is equivalent to
Cook’s distance for normal linear regression is given by

DOBSi D p�1hi .1 � hi /�1r2pi

where hi is the leverage defined in the section “H | LEVERAGE” on page 3676. This measure is the one-step
approximation to 2p�1ŒL. Ǒ/ � L. ǑŒi�/�, where L.ˇ/ is the log likelihood evaluated at ˇ.

H | LEVERAGE
The Fisher scores, or expected, weight for observation i is wei D wi

�V.�i /.g 0.�i //2
. Let W be the diagonal

matrix with wei as the ith diagonal. The leverage hi of the ith observation is defined as the ith diagonal
element of the hat matrix

H DW
1
2X.X0WX/�1X0W

1
2

Diagnostics for Models Fit by Generalized Estimating Equations (GEEs)

The diagnostic statistics in this section were developed by Preisser and Qaqish (1996). See the section
“Generalized Estimating Equations” on page 3663 for further information and notation for generalized
estimating equations (GEEs). The following additional notation is used in this section.

Partition the design matrix X and response vector Y by cluster; that is, let X D .X 01; : : : ; X
0
K/
0, and

Y D .Y 01; : : : ; Y
0
K/
0 corresponding to the K clusters.
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Let ni be the number of responses for cluster i, and denote byN D
PK
iD1 ni the total number of observations.

Denote by Ai the ni � ni diagonal matrix with V.�ij / as the jth diagonal element. If there is a WEIGHT
statement, the diagonal element of Ai is V.�ij /=wij , where wij is the specified weight of the jth observation
in the ith cluster. Let B the N � N diagonal matrix with g0.�ij / as diagonal elements, i D 1; : : : ; K,
j D 1; : : : ; ni . Let Bi the ni � ni diagonal matrix corresponding to cluster i with g0.�ij / as the jth diagonal
element.

Let W be the N �N block diagonal weight matrix whose ith block, corresponding to the ith cluster, is the
ni � ni matrix

Wei D B�1i A�
1
2

i R�1i . Ǫ /A�
1
2

i B�1i

where Ri is the working correlation matrix for cluster i.

Let

Qi D Xi .X0WX/�1X0i

where Xi is the ni � p design matrix corresponding to cluster i.

Define the adjusted residual vector as

E D B.Y � O�/

and Ei D Bi .Yi � O�i /, the estimated residual for the ith cluster.

Let the subscript Œi � denote estimates evaluated without the ith cluster, Œi t � estimates evaluated using all the
data except the tth observation of the ith cluster, and let i Œt � denote matrices corresponding to the ith cluster
without the tth observation.

The following statistics are available for generalized estimating equation models.

CH | CLUSTERH | CLEVERAGE
The leverage of cluster i is contained in the matrix Hi D QiWei , and is summarized by the trace of Hi ,

ch i D tr.Hi /

The leverage hi of the tth observation in the ith cluster is the tth diagonal element of Hi .

DFBETAC
The effect of deleting cluster i on the estimated parameter vector is given by the following one-step approxi-
mation for Ǒ � ǑŒi�:

DBETACi D .X0WX/�1X0i .W
�1
ei �Qi /�1Ei

DFBETACS
The cluster deletion statistic DFBETAC can be standardized using the variances of Ǒ based on the complete
data. The standardized one-step approximation for the change in Ǒj due to deletion of cluster i is

DBETACSij D
DBETACij
O�Œ.X0WX/�1�

1
2

jj



3678 F Chapter 51: The GENMOD Procedure

DFBETA
Partition the matrices Wei and Vi as

Wei D

�
Weit WeitŒt�

WeiŒt�t WeiŒt�

�

Vi DW�1ei D
�

Vit VitŒt�
ViŒt�t ViŒt�

�

and let Eit D Bit .Yit � O�it / and EiŒt� D BiŒt�.YiŒt� � O�iŒt�/.

The effect of deleting the tth observation from the ith cluster is given by the following one-step approximation
to Ǒ � ǑŒit�:

DBETAOit D .X0WX/�1 QX0it
QEit

W �1eit �
QQit

where QXit D Xit � VitŒt�V�1iŒt�XiŒt�, QQit D QXit .X
0WX/�1 QX 0it , and QEit D Eit � VitŒt�V�1iŒt�EiŒt�. Note that

Weit , QQit , and QEit are scalars.

DFBETAS
The observation deletion statistic DFBETA can be standardized using the variances of Ǒ based on the
complete data. The standardized one-step approximation for the change in Ǒj due to deletion of observation
t in cluster i is

DBETAOSitj D
DBETAOitj
O�Œ.X0WX/�1�

1
2

jj

DCLS | CLUSTERCOOKD | CLUSTERCOOKSD
A measure of the standardized influence of the subset m of observations on the overall fit is . Ǒ �
Ǒ
Œm�/
0.X0WX/. Ǒ � ǑŒm�/=p O�. For deletion of cluster i, this is approximated by

DCLSi D E0i .W
�1
ei �Qi /�1/Qi .W�1ei �Qi /�1/Ei=p O�

DOBS | COOKD | COOKSD
The measure of overall fit in the section “DCLS | CLUSTERCOOKD | CLUSTERCOOKSD” on page 3678
for the deletion of the tth observation in the ith cluster is approximated by

DOBSit D
QE2it
QQit

p O�.W �1eit �
QQit /2

where QEit , QQit , andWeit are defined in the section “DFBETA” on page 3678. In the case of the independence
working correlation, this is equal to the measure for ordinary generalized linear models defined in the section
“DOBS | COOKD | COOKSD” on page 3676.
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MCLS | CLUSTERDFIT
A studentized distance measure of the type defined in the section “DCLS | CLUSTERCOOKD | CLUSTER-
COOKSD” on page 3678 of the influence of the ith cluster is given by

MCLSi D E0i .W
�1
ei �Qi /�1HiEi=p O�

Bayesian Analysis
In generalized linear models, the response has a probability distribution from a family of distributions of the
exponential form. That is, the probability density of the response Y for continuous response variables, or the
probability function for discrete responses, can be expressed as

f .y/ D exp
�
y� � b.�/

a.�/
C c.y; �/

�
for some functions a, b, and c that determine the specific distribution. The canonical parameters � depend
only on the means of the response �i , which are related to the regression parameters ˇ through the link
function g.�i / D x0ˇ. The additional parameter � is the dispersion parameter. The GENMOD procedure
estimates the regression parameters and the scale parameter � D �

1
2 by maximum likelihood. However, the

GENMOD procedure can also provide Bayesian estimates of the regression parameters and either the scale � ,
the dispersion �, or the precision � D ��1 by sampling from the posterior distribution. Except where noted,
the following discussion applies to either � , �, or � , although � is used to illustrate the formulas. Note that the
Poisson and binomial distributions do not have a dispersion parameter, and the dispersion is considered to be
fixed at � D 1. The ASSESS, CONTRAST, ESTIMATE, OUTPUT, and REPEATED statements, if specified,
are ignored. Also ignored are the PLOTS= option in the PROC GENMOD statement and the following options
in the MODEL statement: ALPHA=, CORRB, COVB, TYPE1, TYPE3, SCALE=DEVIANCE (DSCALE),
SCALE=PEARSON (PSCALE), OBSTATS, RESIDUALS, XVARS, PREDICTED, DIAGNOSTICS, and
SCALE= for Poisson and binomial distributions. The multinomial and zero-inflated Poisson distributions are
not available for Bayesian analysis.

See the section “Assessing Markov Chain Convergence” on page 162 in Chapter 8, “Introduction to Bayesian
Analysis Procedures,” for information about assessing the convergence of the chain of posterior samples.

Several algorithms, specified with the SAMPLING= option in the BAYES statement, are available in
GENMOD for drawing samples from the posterior distribution.

ARMS Algorithm for Gibbs Sampling

This section provides details for Bayesian analysis by Gibbs sampling in generalized linear models. See the
section “Gibbs Sampler” on page 157 in Chapter 8, “Introduction to Bayesian Analysis Procedures,” for a
general discussion of Gibbs sampling. See Gilks, Richardson, and Spiegelhalter (1996) for a discussion of
applications of Gibbs sampling to a number of different models, including generalized linear models.

Let � D .�1; : : : ; �k/
0 be the parameter vector. For generalized linear models, the �is are the regression

coefficients ˇis and the dispersion parameter �. Let L.Dj�/ be the likelihood function, where D is the
observed data. Let �.�/ be the prior distribution. The full conditional distribution of Œ�i j�j ; i ¤ j � is
proportional to the joint distribution; that is,

�.�i j�j ; i ¤ j;D/ / L.Dj�/p.�/
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For instance, the one-dimensional conditional distribution of �1 given �j D ��j ; 2 � j � k, is computed as

�.�1j�j D �
�
j ; 2 � j � k;D/ D L.Dj.� D .�1; �

�
2 ; : : : ; �

�
k /
0/p.� D .�1; �

�
2 ; : : : ; �

�
k /
0/

Suppose you have a set of arbitrary starting values f� .0/1 ; : : : ; �
.0/

k
g. Using the ARMS (adaptive rejection

Metropolis sampling) algorithm (Gilks and Wild 1992; Gilks, Best, and Tan 1995), you can do the following:

draw �
.1/
1 from Œ�1j�

.0/
2 ; : : : ; �

.0/

k
�

draw �
.1/
2 from Œ�2j�

.1/
1 ; �

.0/
3 ; : : : ; �

.0/

k
�

: : :

draw �
.1/

k
from Œ�kj�

.1/
1 ; : : : ; �

.1/

k�1
�

This completes one iteration of the Gibbs sampler. After one iteration, you have f� .1/1 ; : : : ; �
.1/

k
g. After n

iterations, you have f� .n/1 ; : : : ; �
.n/

k
g. PROC GENMOD implements the ARMS algorithm provided by Gilks

(2003) to draw a sample from a full conditional distribution. See the section “Adaptive Rejection Sampling
Algorithm” on page 158 in Chapter 8, “Introduction to Bayesian Analysis Procedures,” for more information
about the ARMS algorithm.

Gamerman Algorithm

The Gamerman algorithm, unlike a Gibbs sampling algorithm, samples parameters from their multivariate
posterior conditional distribution. The algorithm uses the structure of generalized linear models to efficiently
sample from the posterior distribution of the model parameters. For a detailed description and explanation
of the algorithm, see Gamerman (1997) and the section “Gamerman Algorithm” on page 160 in Chapter 8,
“Introduction to Bayesian Analysis Procedures.” The Gamerman algorithm is the default method used to
sample from the posterior distribution. See any of the introductory references in Chapter 8, “Introduction to
Bayesian Analysis Procedures,” for a discussion of conjugate prior distributions for a linear model with the
normal distribution.

Independence Metropolis Algorithm

The independence Metropolis algorithm is another sampling algorithm that draws multivariate samples from
the posterior distribution. See the section “Independence Sampler” on page 160 in Chapter 8, “Introduction
to Bayesian Analysis Procedures,” for more details.

Posterior Samples Output Data Set

You can output posterior samples into a SAS data set through ODS. The following SAS statement outputs the
posterior samples into the SAS data set Post:

ODS OUTPUT POSTERIORSAMPLE=Post

You can alternatively create the SAS data set Post with the OUTPOST=Post option in the BAYES statement.

The data set also includes the variables LogPost and LogLike, which represent the log of the posterior
likelihood and the log of the likelihood, respectively.
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Priors for Model Parameters

The model parameters are the regression coefficients and the dispersion parameter (or the precision or scale),
if the model has one. The priors for the dispersion parameter and the priors for the regression coefficients
are assumed to be independent, while you can have a joint multivariate normal prior for the regression
coefficients.

Dispersion, Precision, or Scale Parameter
Gamma Prior The gamma distribution G.a; b/ has a probability density function

f .u/ D
b.bu/a�1e�bu

�.a/
; u > 0

where a is the shape parameter and b is the inverse-scale parameter. The mean is a
b

and the variance is a
b2

.

Improper Prior The joint prior density is given by

p.u/ / u�1; u > 0

Inverse Gamma Prior The inverse gamma distribution IG.a; b/ has a probability density function

f .u/ D
ba

�.a/
u�.aC1/e�b=u; u > 0

where a is the shape parameter and b is the scale parameter. The mean is b
a�1

if a > 1, and the variance is
b2

.a�1/2.a�2/
if a > 2.

Regression Coefficients
Let ˇ be the regression coefficients.

Jeffreys’ Prior The joint prior density is given by

p.ˇ/ / jI.ˇ/j
1
2

where I.ˇ/ is the Fisher information matrix for the model. If the underlying model has a scale parameter (for
example, a normal linear regression model), then the Fisher information matrix is computed with the scale
parameter set to a fixed value of one.

If you specify the CONDITIONAL option, then Jeffreys’ prior, conditional on the current Markov chain
value of the generalized linear model precision parameter � , is given by

j�I.ˇ/j
1
2

where � is the model precision parameter.

See Ibrahim and Laud (1991) for a full discussion, with examples, of Jeffreys’ prior for generalized linear
models.
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Normal Prior Assume ˇ has a multivariate normal prior with mean vector ˇ0 and covariance matrix †0.
The joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0†�10 .ˇ�ˇ0/

If you specify the CONDITIONAL option, then, conditional on the current Markov chain value of the
generalized linear model precision parameter � , the joint prior density is given by

p.ˇ/ / e�
1
2
.ˇ�ˇ0/

0�†�10 .ˇ�ˇ0/

Uniform Prior The joint prior density is given by

p.ˇ/ / 1

Deviance Information Criterion

Let �i be the model parameters at iteration i of the Gibbs sampler and let LL(�i ) be the corresponding model
log likelihood. PROC GENMOD computes the following fit statistics defined by Spiegelhalter et al. (2002):

� Effective number of parameters:

pD D LL.�/ � LL. N�/

� Deviance information criterion (DIC):

DIC D LL.�/C pD

where

LL.�/ D 1
n

Pn
iD1 LL.�i /

N� D
1
n

Pn
iD1 �i

PROC GENMOD uses the full log likelihoods defined in the section “Log-Likelihood Functions” on
page 3644, with all terms included, for computing the DIC.

Posterior Distribution

Denote the observed data by D.

The posterior distribution is

�.ˇjD/ / LP .Djˇ/p.ˇ/

where LP .Djˇ/ is the likelihood function with regression coefficients ˇ as parameters.
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Starting Values of the Markov Chains

When the BAYES statement is specified, PROC GENMOD generates one Markov chain containing the
approximate posterior samples of the model parameters. Additional chains are produced when the Gelman-
Rubin diagnostics are requested. Starting values (or initial values) can be specified in the INITIAL= data set
in the BAYES statement. If INITIAL= option is not specified, PROC GENMOD picks its own initial values
for the chains.

Denote Œx� as the integral value of x. Denote Os.X/ as the estimated standard error of the estimator X.

Regression Coefficients
For the first chain that the summary statistics and regression diagnostics are based on, the default initial
values are estimates of the mode of the posterior distribution. If the INITIALMLE option is specified, the
initial values are the maximum likelihood estimates; that is,

ˇ
.0/
i D

Ǒ
i

Initial values for the rth chain (r � 2) are given by

ˇ
.0/
i D

Ǒ
i ˙

�
2C

�
r

2

��
Os. Ǒi /

with the plus sign for odd r and minus sign for even r.

Dispersion, Scale, or Precision Parameter �
Let � be the generalized linear model parameter you choose to sample, either the dispersion, scale, or
precision parameter. Note that the Poisson and binomial distributions do not have this additional parameter.

For the first chain that the summary statistics and regression diagnostics are based on, the default initial
values are estimates of the mode of the posterior distribution. If the INITIALMLE option is specified, the
initial values are the maximum likelihood estimates; that is,

�.0/ D O�

The initial values of the rth chain (r � 2) are given by

�.0/ D O�e
˙

�
Œ r
2
�C2

�
Os. O�/

with the plus sign for odd r and minus sign for even r.

OUTPOST= Output Data Set

The OUTPOST= data set contains the generated posterior samples. There are 3+n variables, where n is the
number of model parameters. The variable Iteration represents the iteration number, the variable LogLike
contains the log of the likelihood, and the variable LogPost contains the log of the posterior. The other n
variables represent the draws of the Markov chain for the model parameters.
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Exact Logistic and Exact Poisson Regression
The theory of exact logistic regression, also called exact conditional logistic regression, is described in the
section “Exact Conditional Logistic Regression” on page 6039 in Chapter 79, “The LOGISTIC Procedure.”
The following discussion of exact Poisson regression, also called exact conditional Poisson regression, uses
the notation given in that section.

Note that in exact logistic regression, the coefficients C.t/ are the number of possible response vectors y
that generate t: C.t/ D jjfy W y 0X D t 0gjj. However, when performing an exact Poisson regression, this
value is replaced by

C.t/ D
X
�

nY
iD1

N
yi
i

yi Š

where � D fyWy 0X D tg and Ni D exp.oi / is the exponential of the offset oi for observation i. If an offset
variable is not specified, then Ni D 1.

The probability density function (PDF) for T is created by summing over all candidate sequences y that
generate an observable t

Pr.T D t/ D
C.t/ exp.t 0ˇ/Qn
iD1 exp.Niex

0
i
ˇ/

However, the conditional likelihood of TI given TN D tN has the same form as that for exact logistic
regression.

For details about hypothesis testing and estimation, see the sections “Hypothesis Tests” on page 6041 and
“Inference for a Single Parameter” on page 6042 in Chapter 79, “The LOGISTIC Procedure.” See the section
“Computational Resources for Exact Logistic Regression” on page 6050 in Chapter 79, “The LOGISTIC
Procedure,” for some computational notes about exact analyses.

In exact logistic binary regression, each component yi ; i D 1; : : : ; n; of y can take a value of 0 or 1, so
there are a finite number, 2n, of candidate y vectors to be considered. Since a Poisson-distributed response
variable can take an infinite number of values, exact Poisson regression should evaluate an infinite number
of y vectors. However, by identifying the maximum value of yi to check, Si , for each observation i, the
number of candidate y vectors to check is reduced to

Qn
iD1 Si . On a practical level, as Si becomes large the

probability of the Poisson random variable achieving this value drops to zero, so Si can be thought of as the
point at which the value does not matter. You can provide these maxima by specifying either an OFFSET=
variable, oi , or an EXACTMAX= variable, ei , or you can let the algorithm choose a maximum for you. The
way these two options interact to provide a maximum is described in the following list:

1. If an EXACTMAX= variable is specified, then Si D ei .

2. If the EXACTMAX option is specified without a variable, or if neither the EXACTMAX= nor
OFFSET= options are specified, then you must also condition out the intercept or you must specify the
STRATA statement. If you are conditioning out the intercept, then every Si has an effective maximum
of
Pn
iD1 fiy0i , where y0 is the observed response and fi is the frequency of the observation; this is

the sufficient statistic for the intercept term. If you are performing a stratified analysis, these sums are
computed within each stratum.
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3. If an offset variable is specified and the EXACTMAX option is not specified, then Si D

max.ceil.exp.oi //; 1/. For example, if you have Ni rats in cage i and you are modeling the pro-
portion that acquire a disease, then you would set your offsets to oi D log.Ni / so that Si D Ni . In
this case, the offsets must also satisfy Si � yi .

OUTDIST= Output Data Set

The OUTDIST= data set contains every exact conditional distribution necessary to process the corresponding
EXACT statement. For example, the following statements create one distribution for the x1 parameter and
another for the x2 parameters, and produce the data set dist shown in Table 51.12:

data test;
input y x1 x2 count;
datalines;

0 0 0 1
1 0 0 1
0 1 1 2
1 1 1 1
1 0 2 3
1 1 2 1
1 2 0 3
1 2 1 2
1 2 2 1
;

proc genmod data=test exactonly;
class x2 / param=ref;
model y=x1 x2 / d=b;
exact x1 x2/ outdist=dist;

run;
proc print data=dist;
run;
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Table 51.12 OUTDIST= Data Set

Obs x1 x20 x21 Count Score Prob

1 . 0 0 3 5.81151 0.03333
2 . 0 1 15 1.66031 0.16667
3 . 0 2 9 3.12728 0.10000
4 . 1 0 15 1.46523 0.16667
5 . 1 1 18 0.21675 0.20000
6 . 1 2 6 4.58644 0.06667
7 . 2 0 19 1.61869 0.21111
8 . 2 1 2 3.27293 0.02222
9 . 3 0 3 6.27189 0.03333

10 2 . . 6 3.03030 0.12000
11 3 . . 12 0.75758 0.24000
12 4 . . 11 0.00000 0.22000
13 5 . . 18 0.75758 0.36000
14 6 . . 3 3.03030 0.06000

The first nine observations in the dist data set contain an exact distribution for the parameters of the x2
effect (hence the values for the x1 parameter are missing), and the remaining five observations are for the
x1 parameter. If a joint distribution was created, there would be observations with values for both the x1
and x2 parameters. For CLASS variables, the corresponding parameters in the dist data set are identified by
concatenating the variable name with the appropriate classification level.

The data set contains the possible sufficient statistics of the parameters for the effects specified in the EXACT
statement, and the Count variable contains the number of different responses that yield these statistics. In
particular, there are six possible response vectors y for which the dot product y0x1 was equal to 2, and for
which y0x20, y0x21, and y01 were equal to their actual observed values (displayed in the “Sufficient Statistics”
table).

NOTE: If you are performing an exact Poisson analysis, then the Count variable is replaced by a variable
named Weight.

When hypothesis tests are performed on the parameters, the Prob variable contains the probability of obtaining
that statistic (which is just the count divided by the total count), and the Score variable contains the score for
that statistic.

The OUTDIST= data set can contain a different exact conditional distribution for each specified EXACT
statement. For example, consider the following EXACT statements:

exact 'O1' x1 / outdist=o1;
exact 'OJ12' x1 x2 / jointonly outdist=oj12;
exact 'OA12' x1 x2 / joint outdist=oa12;
exact 'OE12' x1 x2 / estimate outdist=oe12;

The O1 statement outputs a single exact conditional distribution. The OJ12 statement outputs only the joint
distribution for x1 and x2. The OA12 statement outputs three conditional distributions: one for x1, one for x2,
and one jointly for x1 and x2. The OE12 statement outputs two conditional distributions: one for x1 and the
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other for x2. Data set oe12 contains both the x1 and x2 variables; the distribution for x1 has missing values
in the x2 column while the distribution for x2 has missing values in the x1 column.

Response Level Ordering
For binary response data, PROC GENMOD fits the following model by default:

ˆ�1
�
p � C

1 � C

�
D x0ˇ

where p is the probability of the response level identified as the first level in the “Response Profile” table in
the output and ˆ is the normal cumulative distribution function. By default, the covariate vector x contains
an intercept term. This is sometimes called Abbot’s formula.

Because of the symmetry of the normal (and logistic) distribution, the effect of reversing the order of the two
response values is to change the signs of ˇ in the preceding equation.

By default, response levels appear in ascending, sorted order (that is, the lowest level appears first, and then
the next lowest, and so on). There are a number of ways that you can control the sort order of the response
categories and, therefore, which level is assigned the first ordered level. One of the most common sets of
response levels is {0,1}, with 1 representing the event with the probability that is to be modeled.

Consider the example where Y takes the values 1 and 0 for event and nonevent, respectively, and EXPOSURE
is the explanatory variable. By default, PROC GENMOD assigns the first ordered level to response level 0,
causing the probability of the nonevent to be modeled. There are several ways to change this.

Besides recoding the variable Y, you can do the following:

� Explicitly state which response level is to be modeled by using the response variable option EVENT=
in the MODEL statement:

model Y(event='1') = Exposure;

� Specify the nonevent category for the response variable in the response variable option REF= in the
MODEL statement:

model Y(ref='0') = Exposure;

� Specify the response variable option DESCENDING in the MODEL statement to assign the lowest
ordered value to Y=1:

model Y(descending)=Exposure;

� Assign a format to Y such that the first formatted value (when the formatted values are put in sorted
order) corresponds to the event. For the following example, Y=0 could be assigned formatted value
‘nonevent’ and Y=1 could be assigned formatted value ‘event.’ Since ORDER=FORMATTED by
default, Y=1 becomes the first ordered level.
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proc format;
value disease 1='event' 0='nonevent';

run;
proc genmod;

model y=exposure / dist=bin;
format y disease.;

run;

� Arrange the input data set so that Y=1 appears first and use the ORDER=DATA option in the PROC
GENMOD statement. Because ORDER=DATA sorts levels in order of their appearance in the data set,
Y=1 becomes the first ordered level. Note that this option causes classification variables to be sorted by
their order of appearance in the data set, also.

Missing Values
For generalized linear models, PROC GENMOD ignores any observation with a missing value for any
variable involved in the model. You can score an observation in an output data set by setting only the
response value to missing. For models fit with generalized estimating equations (GEEs), observations with
missing values within a cluster are not used, and all available pairs are used in estimating the working
correlation matrix. Clusters with fewer observations than the full cluster size are treated as having missing
observations occurring at the end of the cluster. You can specify the order of missing observations with
the WITHINSUBJECT= option. See the section “Missing Data” on page 3666 for more information about
missing values in GEEs.

Displayed Output for Classical Analysis
The following output is produced by the GENMOD procedure. Note that some of the tables are optional and
appear only in conjunction with the REPEATED statement and its options or with options in the MODEL
statement. For details, see the section “ODS Table Names” on page 3699.

Model Information

The “Model Information” table displays the two-level data set name, the response distribution, the link
function, the response variable name, the offset variable name, the frequency variable name, the scale weight
variable name, the number of observations used, the number of events if events/trials format is used for
response, the number of trials if events/trials format is used for response, the sum of frequency weights,
the number of missing values in data set, and the number of invalid observations (for example, negative or
0 response values with gamma distribution or number of observations with events greater than trials with
binomial distribution).
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Class Level Information

If you use classification variables in the model, PROC GENMOD displays the levels of classification variables
specified in the CLASS statement and in the MODEL statement. The levels are displayed in the same sorted
order used to generate columns in the design matrix.

Response Profile

If you specify an ordinal model for the multinomial distribution, a table titled “Response Profile” is displayed
containing the ordered values of the response variable and the number of occurrences of the values used in
the model.

Iteration History for Parameter Estimates

If you specify the ITPRINT model option, PROC GENMOD displays a table containing the following for
each iteration in the Newton-Raphson procedure for model fitting: the iteration number, the ridge value, the
log likelihood, and values of all parameters in the model.

Criteria for Assessing Goodness of Fit

In the “Criteria for Assessing Goodness of Fit” table, PROC GENMOD displays the degrees of freedom
for deviance and Pearson’s chi-square, equal to the number of observations minus the number of regression
parameters estimated, the deviance, the deviance divided by degrees of freedom, the scaled deviance, the
scaled deviance divided by degrees of freedom, Pearson’s chi-square, Pearson’s chi-square divided by degrees
of freedom, the scaled Pearson’s chi-square, the scaled Pearson’s chi-square divided by degrees of freedom,
the log likelihood (excludes factorial terms) the full log likelihood, the Akaike information criterion, the
corrected Akaike information criterion, and the Bayesian information criterion. The information in this table
is valid only for maximum likelihood model fitting, and the table is not printed if the REPEATED statement
is specified.

Last Evaluation of the Gradient

If you specify the model option ITPRINT, the GENMOD procedure displays the last evaluation of the
gradient vector.

Last Evaluation of the Hessian

If you specify the model option ITPRINT, the GENMOD procedure displays the last evaluation of the Hessian
matrix.

Analysis of (Initial) Parameter Estimates

The “Analysis of (Initial) Parameter Estimates” table contains the results from fitting a generalized linear
model to the data. If you specify the REPEATED statement, these GLM parameter estimates are used as
initial values for the GEE solution, and are displayed only if the PRINTMLE option in the REPEATED
statement is specified. For each parameter in the model, PROC GENMOD displays the parameter name, as
follows:

� the variable name for continuous regression variables
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� the variable name and level for classification variables and interactions involving classification variables

� SCALE for the scale variable related to the dispersion parameter

In addition, PROC GENMOD displays the degrees of freedom for the parameter, the estimate value, the
standard error, the Wald chi-square value, the p-value based on the chi-square distribution, and the confidence
limits (Wald or profile likelihood) for parameters.

Lagrange Multiplier Statistics

If you specify that either the model intercept or the scale parameter is fixed, for those distributions that have
a distribution scale parameter, the GENMOD procedure displays a table of Lagrange multiplier, or score,
statistics for testing the validity of the constrained parameter that contains the test statistic, and the p-value.

Estimated Covariance Matrix

If you specify the model option COVB, the GENMOD procedure displays the estimated covariance matrix,
defined as the inverse of the information matrix at the final iteration. This is based on the expected information
matrix if the EXPECTED option is specified in the MODEL statement. Otherwise, it is based on the Hessian
matrix used at the final iteration. This is, by default, the observed Hessian unless altered by the SCORING
option in the MODEL statement.

Estimated Correlation Matrix

If you specify the CORRB model option, PROC GENMOD displays the estimated correlation matrix. This is
based on the expected information matrix if the EXPECTED option is specified in the MODEL statement.
Otherwise, it is based on the Hessian matrix used at the final iteration. This is, by default, the observed
Hessian unless altered by the SCORING option in the MODEL statement.

Iteration History for LR Confidence Intervals

If you specify the ITPRINT and LRCI model options, PROC GENMOD displays an iteration history table for
profile likelihood-based confidence intervals. For each parameter in the model, PROC GENMOD displays
the parameter identification number, the iteration number, the log-likelihood value, parameter values.

Likelihood Ratio-Based Confidence Intervals for Parameters

If you specify the LRCI and the ITPRINT options in the MODEL statement, a table is displayed that
summarizes profile likelihood-based confidence intervals for all parameters. For each parameter in the model,
the table displays the confidence coefficient, the parameter identification number, lower and upper endpoints
of confidence intervals for the parameter, and values of all other parameters at the solution.

LR Statistics for Type 1 Analysis

If you specify the TYPE1 model option, a table is displayed that contains the name of the effect, the
deviance for the model including the effect and all previous effects, the degrees of freedom for the effect,
the likelihood ratio statistic for testing the significance of the effect, and the p-value computed from the
chi-square distribution with the effect’s degrees of freedom.
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If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option in the MODEL statement,
columns are displayed that contain the name of the effect, the deviance for the model including the effect and
all previous effects, the numerator degrees of freedom, the denominator degrees of freedom, the chi-square
statistic for testing the significance of the effect, the p-value computed from the chi-square distribution with
numerator degrees of freedom, the F statistic for testing the significance of the effect, and the p-value based
on the F distribution.

Iteration History for Type 3 Contrasts

If you specify the model options ITPRINT and TYPE3, an iteration history table is displayed for fitting the
model with Type 3 contrast constraints for each effect that contains the effect name, the iteration number, the
ridge value, the log likelihood, and values of all parameters.

LR Statistics for Type 3 Analysis

If you specify the TYPE3 model option, a table is displayed that contains, for each effect in the model,
the name of the effect, the likelihood ratio statistic for testing the significance of the effect, the degrees of
freedom for the effect, and the p-value computed from the chi-square distribution.

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option in the MODEL statement,
columns are displayed that contain the name of the effect, the likelihood ratio statistic for testing the
significance of the effect, the F statistic for testing the significance of the effect, the numerator degrees
of freedom, the denominator degrees of freedom, the p-value based on the F distribution, and the p-value
computed from the chi-square distribution with the numerator’s degrees of freedom.

Wald Statistics for Type 3 Analysis

If you specify the TYPE3 and WALD model options, a table is displayed that contains the name of the
effect, the degrees of freedom of the effect, the Wald statistic for testing the significance of the effect, and the
p-value computed from the chi-square distribution.

Parameter Information

If you specify the ITPRINT, COVB, CORRB, WALDCI, or LRCI option in the MODEL statement, or if you
specify a CONTRAST statement, a table is displayed that identifies parameters with numbers, rather than
names, for use in tables and matrices where a compact identifier for parameters is helpful. For each parameter,
the table contains an index number that identifies the parameter, and the parameter name, including level
information for effects containing classification variables.

Observation Statistics

If you specify the OBSTATS option in the MODEL statement, PROC GENMOD displays a table containing
miscellaneous statistics. Residuals and case deletion diagnostic statistics are not available for the multinomial
distribution. Case deletion diagnostics are not available for zero-inflated models.

For each observation in the input data set, the following are displayed:

� the value of the response variable

� the predicted value of the mean
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� the value of the linear predictor The value of an OFFSET variable is added to the linear predictor.

� the estimated standard error of the linear predictor

� the value of the negative of the weight in the Hessian matrix at the final iteration. This is the expected
weight if the EXPECTED option is specified in the MODEL statement. Otherwise, it is the weight
used in the final iteration. That is, it is the observed weight unless the SCORING= option has been
specified.

� approximate lower and upper endpoints for a confidence interval for the predicted value of the mean

� raw residual

� Pearson residual

� deviance residual

� standardized Pearson residual

� standardized deviance residual

� likelihood residual

� leverage

� Cook’s distance statistic

� DFBETA statistic, for each parameter

� standardized DFBETA statistic, for each parameter

� zero-inflation probability for zero-inflated models

� response mean for zero-inflated models

ESTIMATE Statement Results

If you specify a REPEATED statement, the ESTIMATE statement results apply to the specified GEE model.
Otherwise, they apply to the specified generalized linear model.

For each ESTIMATE statement, the table contains the contrast label, the estimated value of the contrast, the
standard error of the estimate, the significance level ˛, .1 � ˛/ � 100% confidence intervals for contrast,
the Wald chi-square statistic for the contrast, and the p-value computed from the chi-square distribution.
The mean of the contrast, defined as the inverse link function applied to the contrast, and .1 � ˛/ � 100%
confidence intervals for the mean are also displayed.

If you specify the EXP option, an additional row is displayed with statistics for the exponentiated value of
the contrast.
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CONTRAST Coefficients

If you specify the CONTRAST or ESTIMATE statement and you specify the E option, a table titled
“Coefficients For Contrast label” is displayed, where label is the label specified in the CONTRAST statement.
The table contains the contrast label, and the rows of the contrast matrix.

Iteration History for Contrasts

If you specify the ITPRINT option, an iteration history table is displayed for fitting the model with contrast
constraints for each effect. The table contains the contrast label, the iteration number, the ridge value, the log
likelihood, and values of all parameters.

CONTRAST Statement Results

If you specify a REPEATED statement, the CONTRAST statement results apply to the specified GEE model.
Otherwise, they apply to the specified generalized linear model.

A table is displayed that contains the contrast label, the degrees of freedom for the contrast, and the likelihood
ratio, score, or Wald statistic for testing the significance of the contrast. Score statistics are used in GEE
models, likelihood ratio statistics are used in generalized linear models, and Wald statistics are used in both.
Also displayed are the p-value computed from the chi-square distribution, and the type of statistic computed
for this contrast: Wald, LR, or score.

If you specify either the SCALE=DEVIANCE or SCALE=PEARSON option for generalized linear models,
columns are displayed that contain the contrast label, the likelihood ratio statistic for testing the significance
of the contrast, the F statistic for testing the significance of the contrast, the numerator degrees of freedom,
the denominator degrees of freedom, the p-value based on the F distribution, and the p-value computed from
the chi-square distribution with numerator degrees of freedom.

LSMEANS Coefficients

If you specify the LSMEANS statement and you specify the E option, the “Coefficients for effect Least
Squares Means” table is displayed, where effect is the effect specified in the LSMEANS statement. The table
contains the effect names and the rows of least squares means coefficients.

Least Squares Means

If you specify the LSMEANS statement, the “Least Squares Means” table is displayed. The table contains
for each effect the following: the effect name, and for each level of each effect the following:

� the least squares mean estimate

� standard error

� chi-square value

� p-value computed from the chi-square distribution

If you specify the DIFF option, a table titled “Differences of Least Squares Means” is displayed containing
corresponding statistics for the differences between the least squares means for the levels of each effect.
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GEE Model Information

If you specify the REPEATED statement, the “GEE Model Information” table displays the correlation
structure of the working correlation matrix or the log odds ratio structure, the within-subject effect, the
subject effect, the number of clusters, the correlation matrix dimension, and the minimum and maximum
cluster size.

Log Odds Ratio Parameter Information

If you specify the REPEATED statement and specify a log odds ratio model for binary data with the LOGOR=
option, then the “Log Odds Ratio Parameter Information” table is displayed showing the correspondence
between data pairs and log odds ratio model parameters.

Iteration History for GEE Parameter Estimates

If you specify the REPEATED statement and the MODEL statement option ITPRINT, the “Iteration History
For GEE Parameter Estimates” table is displayed. The table contains the parameter identification number, the
iteration number, and values of all parameters.

Last Evaluation of the Generalized Gradient and Hessian

If you specify the REPEATED statement and select ITPRINT as a model option, PROC GENMOD displays
the “Last Evaluation Of The Generalized Gradient And Hessian” table.

GEE Parameter Estimate Covariance Matrices

If you specify the REPEATED statement and the COVB option, PROC GENMOD displays the “Covariance
Matrix (Model-Based)” and “Covariance Matrix (Empirical)” tables.

GEE Parameter Estimate Correlation Matrices

If you specify the REPEATED statement and the CORRB option, PROC GENMOD displays the “Correlation
Matrix (Model-Based)” and “Correlation Matrix (Empirical)” tables.

GEE Working Correlation Matrix

If you specify the REPEATED statement and the CORRW option, PROC GENMOD displays the “Working
Correlation Matrix” table.

GEE Fit Criteria

If you specify the REPEATED statement, PROC GENMOD displays the quasi-likelihood information criteria
for model fit QIC and QICu in the “GEE Fit Criteria” table.
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Analysis of GEE Parameter Estimates

If you specify the REPEATED statement, PROC GENMOD uses empirical standard error estimates to
compute and display the “Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates” table
that contains the parameter names as follows:

� the variable name for continuous regression variables

� the variable name and level for classification variables and interactions involving classification variables

� “Scale” for the scale variable related to the dispersion parameter

In addition, the parameter estimate, the empirical standard error, a 95% confidence interval, and the Z score
and p-value are displayed for each parameter.

If you specify the MODELSE option in the REPEATED statement, the “Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates” table based on model-based standard errors is also produced.

GEE Observation Statistics

If you specify the OBSTATS option in the REPEATED statement, PROC GENMOD displays a table
containing miscellaneous statistics. For each observation in the input data set, the following are displayed:

� the value of the response variable and all other variables in the model, denoted by the variable names

� the predicted value of the mean

� the value of the linear predictor

� the standard error of the linear predictor

� confidence limits for the predicted values

� raw residual

� Pearson residual

� cluster number

� leverage

� cluster leverage

� cluster Cook’s distance statistic

� studentized cluster Cook’s distance statistic

� individual observation Cook’s distance statistic

� cluster DFBETA statistic for each parameter

� cluster standardized DFBETA statistic for each parameter

� individual observation DFBETA statistic for each parameter

� individual observation standardized DFBETA statistic for each parameter
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Displayed Output for Bayesian Analysis
If a Bayesian analysis is requested with a BAYES statement, the displayed output includes the following.

Model Information

The “Model Information” table displays the two-level data set name, the number of burn-in iterations, the
number of iterations after the burn-in, the number of thinning iterations, the response distribution, the link
function, the response variable name, the offset variable name, the frequency variable name, the scale weight
variable name, the number of observations used, the number of events if events/trials format is used for
response, the number of trials if events/trials format is used for response, the sum of frequency weights,
the number of missing values in data set, and the number of invalid observations (for example, negative or
0 response values with gamma distribution or number of observations with events greater than trials with
binomial distribution).

Class Level Information

The “Class Level Information” table displays the levels of classification variables if you specify a CLASS
statement.

Maximum Likelihood Estimates

The “Analysis of Maximum Likelihood Parameter Estimates” table displays the maximum likelihood estimate
of each parameter, the estimated standard error of the parameter estimator, and confidence limits for each
parameter.

Coefficient Prior

The “Coefficient Prior” table displays the prior distribution of the regression coefficients.

Independent Prior Distributions for Model Parameters

The “Independent Prior Distributions for Model Parameters” table displays the prior distributions of additional
model parameters (scale, exponential scale, Weibull scale, Weibull shape, gamma shape).

Initial Values and Seeds

The “Initial Values and Seeds” table displays the initial values and random number generator seeds for the
Gibbs chains.

Fit Statistics

The “Fit Statistics” table displays the deviance information criterion (DIC) and the effective number of
parameters.
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Descriptive Statistics of the Posterior Samples

The “Descriptive Statistics of the Posterior Sample” table contains the size of the sample, the mean, the
standard deviation, and the quartiles for each model parameter.

Interval Estimates for Posterior Sample

The “Interval Estimates for Posterior Sample” table contains the HPD intervals and the credible intervals for
each model parameter.

Correlation Matrix of the Posterior Samples

The “Correlation Matrix of the Posterior Samples” table is produced if you include the CORR suboption in
the SUMMARY= option in the BAYES statement. This table displays the sample correlation of the posterior
samples.

Covariance Matrix of the Posterior Samples

The “Covariance Matrix of the Posterior Samples” table is produced if you include the COV suboption in the
SUMMARY= option in the BAYES statement. This table displays the sample covariance of the posterior
samples.

Autocorrelations of the Posterior Samples

The “Autocorrelations of the Posterior Samples” table displays the lag1, lag5, lag10, and lag50 autocorrela-
tions for each parameter.

Gelman and Rubin Diagnostics

The “Gelman and Rubin Diagnostics” table is produced if you include the GELMAN suboption in the
DIAGNOSTIC= option in the BAYES statement. This table displays the estimate of the potential scale
reduction factor and its 97.5% upper confidence limit for each parameter.

Geweke Diagnostics

The “Geweke Diagnostics” table displays the Geweke statistic and its p-value for each parameter.

Raftery and Lewis Diagnostics

The “Raftery Diagnostics” tables is produced if you include the RAFTERY suboption in the DIAGNOSTIC=
option in the BAYES statement. This table displays the Raftery and Lewis diagnostics for each variable.

Heidelberger and Welch Diagnostics

The “Heidelberger and Welch Diagnostics” table is displayed if you include the HEIDELBERGER suboption
in the DIAGNOSTIC= option in the BAYES statement. This table shows the results of a stationary test and a
halfwidth test for each parameter.
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Effective Sample Size

The “Effective Sample Size” table displays, for each parameter, the effective sample size, the correlation
time, and the efficiency.

Monte Carlo Standard Errors

The “Monte Carlo Standard Errors” table displays, for each parameter, the Monte Carlo standard error, the
posterior sample standard deviation, and the ratio of the two.

Displayed Output for Exact Analysis
If an exact analysis is requested with an EXACT statement, the displayed output includes the following tables.
If the METHOD=NETWORKMC option is specified, the test and estimate tables are renamed “Monte Carlo”
tables and a Monte Carlo standard error column (

p
p.1 � p/=n) is displayed.

Sufficient Statistics

Displays if you request an OUTDIST= data set in an EXACT statement. The table lists the parameters and
their observed sufficient statistics.

(Monte Carlo) Conditional Exact Tests

This table tests the hypotheses that the parameters of interest are insignificant. See the section “Exact Logistic
and Exact Poisson Regression” on page 3684 for details.

(Monte Carlo) Exact Parameter Estimates

Displays if you specify the ESTIMATE option in the EXACT statement. This table gives individual parameter
estimates for each variable (conditional on the values of all the other parameters in the model), confidence
limits, and a two-sided p-value (twice the one-sided p-value) for testing that the parameter is zero. See the
section “Exact Logistic and Exact Poisson Regression” on page 3684 for details.

(Monte Carlo) Exact Odds Ratios

Displays if you specify the ESTIMATE=ODDS or ESTIMATE=BOTH option in the EXACT statement. See
the section “Exact Logistic and Exact Poisson Regression” on page 3684 for details.

Strata Summary

Displays if a STRATA statement is also specified. Shows the pattern of the number of events and the number
of nonevents, or of the number of observations, in a stratum. See the section “STRATA Statement” on
page 3637 for more information.
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Strata Information

Displays if a STRATA statement is specified with the INFO option.

ODS Table Names
PROC GENMOD assigns a name to each table that it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed separately in Table 51.13 for a maximum likelihood analysis, in Table 51.14 for a Bayesian analysis,
and in Table 51.15 for an Exact analysis. For more information about ODS, see Chapter 23, “Using the
Output Delivery System.”

Table 51.13 ODS Tables Produced in PROC GENMOD for a
Classical Analysis

ODS Table Name Description Statements Option

AssessmentSummary Model assessment summary ASSESS Default
ClassLevels Classification variable levels CLASS Default
Contrasts Tests of contrasts CONTRAST Default
ContrastCoef Contrast coefficients CONTRAST E
ConvergenceStatus Convergence status MODEL Default
CorrB Parameter estimate

correlation matrix
MODEL CORRB

CovB Parameter estimate
covariance matrix

MODEL COVB

Estimates Estimates of contrasts ESTIMATE Default
EstimateCoef Contrast coefficients ESTIMATE E
GEEEmpPEst GEE parameter estimates

with empirical standard
errors

REPEATED Default

GEEExchCorr GEE exchangeable working
correlation value

REPEATED TYPE=EXCH

GEEFitCriteria GEE QIC fit criteria REPEATED Default
GEELogORInfo GEE log odds ratio model

information
REPEATED LOGOR=

GEEModInfo GEE model information REPEATED Default
GEEModPEst GEE parameter estimates

with model-based standard
errors

REPEATED MODELSE

GEENCorr GEE model-based
correlation matrix

REPEATED MCORRB

GEENCov GEE model-based
covariance matrix

REPEATED MCOVB

GEERCorr GEE empirical correlation
matrix

REPEATED ECORRB

GEERCov GEE empirical covariance
matrix

REPEATED ECOVB
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Table 51.13 continued

ODS Table Name Description Statements Option

GEEWCorr GEE working correlation
matrix

REPEATED CORRW

IterContrasts Iteration history for
contrasts

MODEL
CONTRAST

ITPRINT

IterLRCI Iteration history for
likelihood ratio confidence
intervals

MODEL LRCI ITPRINT

IterParms Iteration history for
parameter estimates

MODEL ITPRINT

IterParmsGEE Iteration history for GEE
parameter estimates

MODEL
REPEATED

ITPRINT

IterType3 Iteration history for Type 3
statistics

MODEL TYPE3 ITPRINT

LRCI Likelihood ratio confidence
intervals

MODEL LRCI ITPRINT

Coef Coefficients for least
squares means

LSMEANS E

Diffs Least squares means
differences

LSMEANS DIFF

LSMeans Least squares means LSMEANS Default
LagrangeStatistics Lagrange statistics MODEL NOINT | NOSCALE
LastGEEGrad Last evaluation of the

generalized gradient and
Hessian

MODEL
REPEATED

ITPRINT

LastGradHess Last evaluation of the
gradient and Hessian

MODEL ITPRINT

LinDep Linearly dependent rows of
contrasts

CONTRAST Default

ModelANOVA Type 3 tests or joint tests MODEL TYPE3 without REPEATED |
ZEROMODEL

ModelInfo Model information MODEL Default
Modelfit Goodness-of-fit statistics MODEL Default without REPEATED
NObs Number of observations

summary
Default

NonEst Nonestimable rows of
contrasts

CONTRAST Default

ObStats Observation-wise statistics MODEL OBSTATS | CL |
PREDICTED |
RESIDUALS | XVARS

ParameterEstimates Parameter estimates MODEL Default without REPEATED |
PRINTMLE with REPEATED

ParmInfo Parameter indices MODEL Default
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Table 51.13 continued

ODS Table Name Description Statements Option

ResponseProfile Frequency counts for
multinomial and binary
models

MODEL DIST=MULTINOMIAL |
DIST=BINOMIAL

Type1 Type 1 tests MODEL TYPE1
Type3 Type 3 tests or joint tests for

GEE model
MODEL
REPEATED

TYPE3

Type3Zero Type 3 tests or joint tests for
zero-inflated model

MODEL
ZEROMODEL

TYPE3

ZeroParameterEstimates Parameter estimates for
zero-inflated model

ZEROMODEL Default

Table 51.14 ODS Tables Produced in PROC GENMOD for a
Bayesian Analysis

ODS Table Name Description Statement Option

AutoCorr Autocorrelations of the
posterior samples

BAYES Default

ClassLevels Classification variable levels CLASS Default
CoeffPrior Prior distribution of the

regression coefficients
BAYES Default

ConvergenceStatus Convergence status of
maximum likelihood
estimation

MODEL Default

Corr Correlation matrix of the
posterior samples

BAYES SUMMARY=CORR

ESS Effective sample size BAYES Default
FitStatistics Fit statistics BAYES Default
Gelman Gelman and Rubin

convergence diagnostics
BAYES DIAG=GELMAN

Geweke Geweke convergence
diagnostics

BAYES Default

Heidelberger Heidelberger and Welch
convergence diagnostics

BAYES DIAG=HEIDELBERGER

InitialValues Initial values of the Markov
chains

BAYES Default

IterParms Iteration history for
parameter estimates

MODEL ITPRINT

LastGradHess Last evaluation of the
gradient and Hessian for
maximum likelihood
estimation

MODEL ITPRINT

MCSE Monte Carlo standard errors BAYES DIAG=MCSE
ModelInfo Model information PROC Default
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Table 51.14 continued

ODS Table Name Description Statement Option

NObs Number of observations Default
ParameterEstimates Maximum likelihood

estimates of model
parameters

MODEL Default

ParmInfo Parameter indices MODEL Default
ParmPrior Prior distribution for scale

and shape
BAYES Default

PostIntervals HPD and equal-tail intervals
of the posterior samples

BAYES Default

PosteriorSample Posterior samples (for ODS
output data set only)

BAYES

PostSummaries Summary statistics of the
posterior samples

BAYES Default

Raftery Raftery and Lewis
convergence diagnostics

BAYES DIAG=RAFTERY

Table 51.15 ODS Tables Produced in PROC GENMOD for an
Exact Analysis

ODS Table Name Description Statement Option

ExactParmEst Parameter estimates EXACT ESTIMATE,
ESTIMATE=PARM,
ESTIMATE=BOTH

ExactTests Conditional exact tests EXACT Default
ExpExactParmEst Exact odds ratios EXACT ESTIMATE=ODDS,

ESTIMATE=BOTH
NStrataIgnored Number of uninformative

strata
STRATA Default

StrataSummary Number of strata with
specific response
frequencies

STRATA Default

StrataInfo Event and nonevent
frequencies for each stratum

STRATA INFO

SuffStats Sufficient statistics EXACT OUTDIST=
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 687 in Chapter 24, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 686 in Chapter 24,
“Statistical Graphics Using ODS.”

Some graphs are produced by default; other graphs are produced by using statements and options. You can
reference every graph produced through ODS Graphics with a name. The names of the graphs that PROC
GENMOD generates are listed in Table 51.16, along with the required statements and options.

ODS Graph Names

PROC GENMOD assigns a name to each graph it creates using ODS. You can use these names to reference
the graphs when using ODS. The names are listed in Table 51.16.

To request these graphs, ODS Graphics must be enabled and you must specify the statement and options
indicated in Table 51.16.

Table 51.16 Graphs Produced by PROC GENMOD

ODS Graph Name Description Statement Option

ADPanel Autocorrelation function
and density panel

BAYES PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

BAYES PLOTS= AUTOCORR

AutocorrPlot Autocorrelation function
plot

BAYES PLOTS(UNPACK)=AUTOCORR

ClusterCooksDPlot Cluster Cook’s D by
cluster number

PROC PLOTS=

ClusterDFFITPlot Cluster DFFIT by cluster
number

PROC PLOTS=

ClusterLeveragePlot Cluster leverage by
cluster number

PROC PLOTS=

CooksDPlot Cook’s distance PROC PLOTS=
CumResidPanel Panel of aggregates of

residuals
ASSESS CRPANEL

CumulativeResiduals Model assessment based
on aggregates of
residuals

ASSESS Default

DevianceResidByXBeta Deviance residuals by
linear predictor

PROC PLOTS=

DevianceResidualPlot Deviance values PROC PLOTS=
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Table 51.16 continued

ODS Table Name Description Statement Option

DFBETAByCluster Cluster DFBeta by
cluster number

PROC PLOTS=

DFBETAPlot DFBeta PROC PLOTS=
DiagnosticPlot Panel of residuals,

influence, and diagnostic
statistics

PROC
MODEL
RE-
PEATED

PLOTS=

LeveragePlot Leverage PROC PLOTS=
LikeResidByXBeta Likelihood residuals by

linear predictor
PROC PLOTS=

LikeResidualPlot Likelihood residuals PROC PLOTS=
PearsonResidByXBeta Pearson residuals by

linear predictor
PROC PLOTS=

PearsonResidualPlot Pearson residuals PROC PLOTS=
PredictedByObservation Predicted values PROC PLOTS=
RawResidByXBeta Raw residuals by linear

predictor
PROC PLOTS=

RawResidualPlot Raw residuals PROC PLOTS=
StdDevianceResidByXBeta Standardized deviance

residuals by linear
predictor

PROC PLOTS=

StdDevianceResidualPlot Standardized deviance
residuals

PROC PLOTS=

StdDFBETAByCluster Standardized cluster
DFBeta by cluster
number

PROC PLOTS=

StdDFBETAPlot Standardized DFBeta PROC PLOTS=
StdPearsonResidByXBeta Standardized Pearson

residuals by linear
predictor

PROC PLOTS=

StdPearsonResidualPlot Standardized Pearson
residuals

PROC PLOTS=

TAPanel Trace and
autocorrelation function
panel

BAYES PLOTS=(TRACE AUTOCORR)

TADPanel Trace, autocorrelation,
and density function
panel

BAYES Default

TDPanel Trace and density panel BAYES PLOTS=(TRACE DENSITY)
TracePanel Trace panel BAYES PLOTS=TRACE
TracePlot Trace plot BAYES PLOTS(UNPACK)=TRACE
ZeroInflationProbPlot Zero-inflation

probabilities
PROC PLOTS=
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Examples: GENMOD Procedure
The following examples illustrate some of the capabilities of the GENMOD procedure. These are not
intended to represent definitive analyses of the data sets presented here. You should refer to the texts cited in
the references for guidance on complete analysis of data by using generalized linear models.

Example 51.1: Logistic Regression
In an experiment comparing the effects of five different drugs, each drug is tested on a number of different
subjects. The outcome of each experiment is the presence or absence of a positive response in a subject. The
following artificial data represent the number of responses r in the n subjects for the five different drugs,
labeled A through E. The response is measured for different levels of a continuous covariate x for each drug.
The drug type and the continuous covariate x are explanatory variables in this experiment. The number of
responses r is modeled as a binomial random variable for each combination of the explanatory variable values,
with the binomial number of trials parameter equal to the number of subjects n and the binomial probability
equal to the probability of a response.

The following DATA step creates the data set:

data drug;
input drug$ x r n @@;
datalines;

A .1 1 10 A .23 2 12 A .67 1 9
B .2 3 13 B .3 4 15 B .45 5 16 B .78 5 13
C .04 0 10 C .15 0 11 C .56 1 12 C .7 2 12
D .34 5 10 D .6 5 9 D .7 8 10
E .2 12 20 E .34 15 20 E .56 13 15 E .8 17 20
;

A logistic regression for these data is a generalized linear model with response equal to the binomial
proportion r/n. The probability distribution is binomial, and the link function is logit. For these data, drug and
x are explanatory variables. The probit and the complementary log-log link functions are also appropriate for
binomial data.

PROC GENMOD performs a logistic regression on the data in the following SAS statements:

proc genmod data=drug;
class drug;
model r/n = x drug / dist = bin

link = logit
lrci;

run;

Since these data are binomial, you use the events/trials syntax to specify the response in the MODEL
statement. Profile likelihood confidence intervals for the regression parameters are computed using the LRCI
option. General model and data information is produced in Output 51.1.1.
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Output 51.1.1 Model Information

The GENMOD Procedure

Model Information

Data Set WORK.DRUG

Distribution Binomial

Link Function Logit

Response Variable (Events) r

Response Variable (Trials) n

The five levels of the CLASS variable DRUG are displayed in Output 51.1.2.

Output 51.1.2 CLASS Variable Levels

Class Level Information

Class Levels Values

drug 5 A B C D E

In the “Criteria For Assessing Goodness Of Fit” table displayed in Output 51.1.3, the value of the deviance
divided by its degrees of freedom is less than 1. A p-value is not computed for the deviance; however, a
deviance that is approximately equal to its degrees of freedom is a possible indication of a good model fit.
Asymptotic distribution theory applies to binomial data as the number of binomial trials parameter n becomes
large for each combination of explanatory variables. McCullagh and Nelder (1989) caution against the use of
the deviance alone to assess model fit. The model fit for each observation should be assessed by examination
of residuals. The OBSTATS option in the MODEL statement produces a table of residuals and other useful
statistics for each observation.

Output 51.1.3 Goodness-of-Fit Criteria

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 12 5.2751 0.4396

Scaled Deviance 12 5.2751 0.4396

Pearson Chi-Square 12 4.5133 0.3761

Scaled Pearson X2 12 4.5133 0.3761

Log Likelihood -114.7732

Full Log Likelihood -23.7343

AIC (smaller is better) 59.4686

AICC (smaller is better) 67.1050

BIC (smaller is better) 64.8109

In the “Analysis Of Parameter Estimates” table displayed in Output 51.1.4, chi-square values for the
explanatory variables indicate that the parameter values other than the intercept term are all significant. The
scale parameter is set to 1 for the binomial distribution. When you perform an overdispersion analysis, the
value of the overdispersion parameter is indicated here. See the section “Overdispersion” on page 3650 for a
discussion of overdispersion.
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Output 51.1.4 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood
Ratio 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.2792 0.4196 -0.5336 1.1190 0.44 0.5057

x 1 1.9794 0.7660 0.5038 3.5206 6.68 0.0098

drug A 1 -2.8955 0.6092 -4.2280 -1.7909 22.59 <.0001

drug B 1 -2.0162 0.4052 -2.8375 -1.2435 24.76 <.0001

drug C 1 -3.7952 0.6655 -5.3111 -2.6261 32.53 <.0001

drug D 1 -0.8548 0.4838 -1.8072 0.1028 3.12 0.0773

drug E 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The preceding table contains the profile likelihood confidence intervals for the explanatory variable parameters
requested with the LRCI option. Wald confidence intervals are displayed by default. Profile likelihood
confidence intervals are considered to be more accurate than Wald intervals (see Aitkin et al. (1989)),
especially with small sample sizes. You can specify the confidence coefficient with the ALPHA= option in
the MODEL statement. The default value of 0.05, corresponding to 95% confidence limits, is used here.
See the section “Confidence Intervals for Parameters” on page 3655 for a discussion of profile likelihood
confidence intervals.

Example 51.2: Normal Regression, Log Link
Consider the following data, where x is an explanatory variable and y is the response variable. It appears that
y varies nonlinearly with x and that the variance is approximately constant. A normal distribution with a log
link function is chosen to model these data; that is, log.�i / D x0iˇ so that �i D exp.x0iˇ/.

data nor;
input x y;
datalines;

0 5
0 7
0 9
1 7
1 10
1 8
2 11
2 9
3 16
3 13
3 14
4 25
4 24
5 34
5 32
5 30
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;

The following SAS statements produce the analysis with the normal distribution and log link:

proc genmod data=nor;
model y = x / dist = normal

link = log;
output out = Residuals

pred = Pred
resraw = Resraw
reschi = Reschi
resdev = Resdev
stdreschi = Stdreschi
stdresdev = Stdresdev
reslik = Reslik;

run;

The OUTPUT statement is specified to produce a data set that contains predicted values and residuals for
each observation. This data set can be useful for further analysis, such as residual plotting.

The results from these statements are displayed in Output 51.2.1.

Output 51.2.1 Log-Linked Normal Regression

The GENMOD Procedure

Model Information

Data Set WORK.NOR

Distribution Normal

Link Function Log

Dependent Variable y

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 14 52.3000 3.7357

Scaled Deviance 14 16.0000 1.1429

Pearson Chi-Square 14 52.3000 3.7357

Scaled Pearson X2 14 16.0000 1.1429

Log Likelihood -32.1783

Full Log Likelihood -32.1783

AIC (smaller is better) 70.3566

AICC (smaller is better) 72.3566

BIC (smaller is better) 72.6743

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.7214 0.0894 1.5461 1.8966 370.76 <.0001

x 1 0.3496 0.0206 0.3091 0.3901 286.64 <.0001

Scale 1 1.8080 0.3196 1.2786 2.5566

Note: The scale parameter was estimated by maximum likelihood.
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The PROC GENMOD scale parameter, in the case of the normal distribution, is the standard deviation. By
default, the scale parameter is estimated by maximum likelihood. You can specify a fixed standard deviation
by using the NOSCALE and SCALE= options in the MODEL statement.

proc print data=Residuals;
run;

Output 51.2.2 Data Set of Predicted Values and Residuals

Obs x y Pred Reschi Resraw Resdev Stdreschi Stdresdev Reslik

1 0 5 5.5921 -0.59212 -0.59212 -0.59212 -0.34036 -0.34036 -0.34036

2 0 7 5.5921 1.40788 1.40788 1.40788 0.80928 0.80928 0.80928

3 0 9 5.5921 3.40788 3.40788 3.40788 1.95892 1.95892 1.95892

4 1 7 7.9324 -0.93243 -0.93243 -0.93243 -0.54093 -0.54093 -0.54093

5 1 10 7.9324 2.06757 2.06757 2.06757 1.19947 1.19947 1.19947

6 1 8 7.9324 0.06757 0.06757 0.06757 0.03920 0.03920 0.03920

7 2 11 11.2522 -0.25217 -0.25217 -0.25217 -0.14686 -0.14686 -0.14686

8 2 9 11.2522 -2.25217 -2.25217 -2.25217 -1.31166 -1.31166 -1.31166

9 3 16 15.9612 0.03878 0.03878 0.03878 0.02249 0.02249 0.02249

10 3 13 15.9612 -2.96122 -2.96122 -2.96122 -1.71738 -1.71738 -1.71738

11 3 14 15.9612 -1.96122 -1.96122 -1.96122 -1.13743 -1.13743 -1.13743

12 4 25 22.6410 2.35897 2.35897 2.35897 1.37252 1.37252 1.37252

13 4 24 22.6410 1.35897 1.35897 1.35897 0.79069 0.79069 0.79069

14 5 34 32.1163 1.88366 1.88366 1.88366 1.22914 1.22914 1.22914

15 5 32 32.1163 -0.11634 -0.11634 -0.11634 -0.07592 -0.07592 -0.07592

16 5 30 32.1163 -2.11634 -2.11634 -2.11634 -1.38098 -1.38098 -1.38098

The data set of predicted values and residuals (Output 51.2.2) is created by the OUTPUT statement. You can
use the PLOTS= option in the PROC GENMOD statement to create plots of predicted values and residuals.
Note that raw, Pearson, and deviance residuals are equal in this example. This is a characteristic of the normal
distribution and is not true in general for other distributions.

Example 51.3: Gamma Distribution Applied to Life Data
Life data are sometimes modeled with the gamma distribution. Although PROC GENMOD does not analyze
censored data or provide other useful lifetime distributions such as the Weibull or lognormal, it can be used
for modeling complete (uncensored) data with the gamma distribution, and it can provide a statistical test for
the exponential distribution against other gamma distribution alternatives. See Lawless (2003) or Nelson
(1982) for applications of the gamma distribution to life data.

The following data represent failure times of machine parts, some of which are manufactured by manufacturer
A and some by manufacturer B.

data A;
input lifetime @@;
mfg = 'A';
datalines;

620 470 260 89 388 242
103 100 39 460 284 1285
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218 393 106 158 152 477
403 103 69 158 818 947
399 1274 32 12 134 660
548 381 203 871 193 531
317 85 1410 250 41 1101
32 421 32 343 376 1512
1792 47 95 76 515 72
1585 253 6 860 89 1055
537 101 385 176 11 565
164 16 1267 352 160 195
1279 356 751 500 803 560
151 24 689 1119 1733 2194
763 555 14 45 776 1
;

data B;
input lifetime @@;
mfg = 'B';
datalines;

1747 945 12 1453 14 150
20 41 35 69 195 89
1090 1868 294 96 618 44
142 892 1307 310 230 30
403 860 23 406 1054 1935
561 348 130 13 230 250
317 304 79 1793 536 12
9 256 201 733 510 660
122 27 273 1231 182 289
667 761 1096 43 44 87
405 998 1409 61 278 407
113 25 940 28 848 41
646 575 219 303 304 38
195 1061 174 377 388 10
246 323 198 234 39 308
55 729 813 1216 1618 539
6 1566 459 946 764 794
35 181 147 116 141 19
380 609 546
;

data lifdat;
set A B;

run;

The following SAS statements use PROC GENMOD to compute Type 3 statistics to test for differences
between the two manufacturers in machine part life. Type 3 statistics are identical to Type 1 statistics in this
case, since there is only one effect in the model. The log link function is selected to ensure that the mean is
positive.

proc genmod data = lifdat;
class mfg;
model lifetime = mfg / dist=gamma

link=log
type3;
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run;

The output from these statements is displayed in Output 51.3.1.

Output 51.3.1 Gamma Model of Life Data

The GENMOD Procedure

Model Information

Data Set WORK.LIFDAT

Distribution Gamma

Link Function Log

Dependent Variable lifetime

Class Level
Information

Class Levels Values

mfg 2 A B

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 199 287.0591 1.4425

Scaled Deviance 199 237.5335 1.1936

Pearson Chi-Square 199 211.6870 1.0638

Scaled Pearson X2 199 175.1652 0.8802

Log Likelihood -1432.4177

Full Log Likelihood -1432.4177

AIC (smaller is better) 2870.8353

AICC (smaller is better) 2870.9572

BIC (smaller is better) 2880.7453

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 6.1302 0.1043 5.9257 6.3347 3451.61 <.0001

mfg A 1 0.0199 0.1559 -0.2857 0.3255 0.02 0.8985

mfg B 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 1 0.8275 0.0714 0.6987 0.9800

Note: The scale parameter was estimated by maximum likelihood.

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

mfg 1 0.02 0.8985

The p-value of 0.8985 for the chi-square statistic in the Type 3 table indicates that there is no significant
difference in the part life between the two manufacturers.

Using the following statements, you can refit the model without using the manufacturer as an effect. The
LRCI option in the MODEL statement is specified to compute profile likelihood confidence intervals for the
mean life and scale parameters.
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proc genmod data = lifdat;
model lifetime = / dist=gamma

link=log
lrci;

run;

Output 51.3.2 displays the results of fitting the model with the mfg effect omitted.

Output 51.3.2 Refitting of the Gamma Model: Omitting the mfg Effect

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Likelihood
Ratio 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 6.1391 0.0775 5.9904 6.2956 6268.10 <.0001

Scale 1 0.8274 0.0714 0.6959 0.9762

Note: The scale parameter was estimated by maximum likelihood.

The intercept is the estimated log mean of the fitted gamma distribution, so that the mean life of the parts is

� D exp.INTERCEPT/ D exp.6:1391/ D 463:64

The SCALE parameter used in PROC GENMOD is the inverse of the gamma dispersion parameter, and it
is sometimes called the gamma index parameter. See the section “Response Probability Distributions” on
page 3640 for the definition of the gamma probability density function. A value of 1 for the index parameter
corresponds to the exponential distribution . The estimated value of the scale parameter is 0.8274. The 95%
profile likelihood confidence interval for the scale parameter is (0.6959, 0.9762), which does not contain 1.
The hypothesis of an exponential distribution for the data is, therefore, rejected at the 0.05 level. A confidence
interval for the mean life is

.exp.5:99/; exp.6:30// D .399:57; 542:18/

Example 51.4: Ordinal Model for Multinomial Data
This example illustrates how you can use the GENMOD procedure to fit a model to data measured on an
ordinal scale. The following statements create a SAS data set called Icecream. The data set contains the
results of a hypothetical taste test of three brands of ice cream. The three brands are rated for taste on a
five-point scale from very good (vg) to very bad (vb). An analysis is performed to assess the differences in
the ratings of the three brands. The variable taste contains the ratings, and the variable brand contains the
brands tested. The variable count contains the number of testers rating each brand in each category.

The following statements create the Icecream data set:
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data Icecream;
input count brand$ taste$;
datalines;

70 ice1 vg
71 ice1 g
151 ice1 m
30 ice1 b
46 ice1 vb
20 ice2 vg
36 ice2 g
130 ice2 m
74 ice2 b
70 ice2 vb
50 ice3 vg
55 ice3 g
140 ice3 m
52 ice3 b
50 ice3 vb
;

The following statements fit a cumulative logit model to the ordinal data with the variable taste as the
response and the variable brand as a covariate. The variable count is used as a FREQ variable.

proc genmod data=Icecream rorder=data;
freq count;
class brand;
model taste = brand / dist=multinomial

link=cumlogit
aggregate=brand
type1;

estimate 'LogOR12' brand 1 -1 / exp;
estimate 'LogOR13' brand 1 0 -1 / exp;
estimate 'LogOR23' brand 0 1 -1 / exp;

run;

The AGGREGATE=BRAND option in the MODEL statement specifies the variable brand as defining
multinomial populations for computing deviances and Pearson chi-squares. The RORDER=DATA option
specifies that the taste variable levels be ordered by their order of appearance in the input data set—that is,
from very good (vg) to very bad (vb). By default, the response is sorted in increasing ASCII order. Always
check the “Response Profiles” table to verify that response levels are appropriately ordered. The TYPE1
option requests a Type 1 test for the significance of the covariate brand.

If j .x/ D Pr.taste � j / is the cumulative probability of the jth or lower taste category, then the odds ratio
comparing x1 to x2 is as follows:

j .x1/=.1 � j .x1//
j .x2/=.1 � j .x2//

D expŒ.x1 � x2/0ˇ�

See McCullagh and Nelder (1989, Chapter 5) for details on the cumulative logit model. The ESTIMATE
statements compute log odds ratios comparing each of brands. The EXP option in the ESTIMATE statements
exponentiates the log odds ratios to form odds ratio estimates. Standard errors and confidence intervals
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are also computed. Output 51.4.1 displays general information about the model and data, the levels of the
CLASS variable brand, and the total number of occurrences of the ordered levels of the response variable
taste.

Output 51.4.1 Ordinal Model Information

The GENMOD Procedure

Model Information

Data Set WORK.ICECREAM

Distribution Multinomial

Link Function Cumulative Logit

Dependent Variable taste

Frequency Weight Variable count

Class Level Information

Class Levels Values

brand 3 ice1 ice2 ice3

Response Profile

Ordered
Value taste

Total
Frequency

1 vg 140

2 g 162

3 m 421

4 b 156

5 vb 166

Output 51.4.2 displays estimates of the intercept terms and covariates and associated statistics. The inter-
cept terms correspond to the four cumulative logits defined on the taste categories in the order shown in
Output 51.4.1. That is, Intercept1 is the intercept for the first cumulative logit, log. p1

1�p1
/, Intercept2 is the

intercept for the second cumulative logit, log. p1Cp2
1�.p1Cp2/

/, and so forth.

Output 51.4.2 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept1 1 -1.8578 0.1219 -2.0967 -1.6189 232.35 <.0001

Intercept2 1 -0.8646 0.1056 -1.0716 -0.6576 67.02 <.0001

Intercept3 1 0.9231 0.1060 0.7154 1.1308 75.87 <.0001

Intercept4 1 1.8078 0.1191 1.5743 2.0413 230.32 <.0001

brand ice1 1 0.3847 0.1370 0.1162 0.6532 7.89 0.0050

brand ice2 1 -0.6457 0.1397 -0.9196 -0.3719 21.36 <.0001

brand ice3 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The Type 1 test displayed in Output 51.4.3 indicates that Brand is highly significant; that is, there are
significant differences among the brands. The log odds ratios and odds ratios in the “ESTIMATE Statement
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Results” table indicate the relative differences among the brands. For example, the odds ratio of 2.8 in the
“Exp(LogOR12)” row indicates that the odds of brand 1 being in lower taste categories is 2.8 times the
odds of brand 2 being in lower taste categories. Since, in this ordering, the lower categories represent the
more favorable taste results, this indicates that brand 1 scored significantly better than brand 2. This is also
apparent from the data in this example.

Output 51.4.3 Type 1 Tests and Odds Ratios

LR Statistics For Type 1 Analysis

Source Deviance DF Chi-Square Pr > ChiSq

Intercepts 65.9576

brand 9.8654 2 56.09 <.0001

Contrast Estimate Results

Mean L'Beta

Label
Mean

Estimate
Confidence

Limits
L'Beta

Estimate
Standard

Error Alpha
Confidence

Limits Chi-Square Pr > ChiSq

LogOR12 0.7370 0.6805 0.7867 1.0305 0.1401 0.05 0.7559 1.3050 54.11 <.0001

Exp(LogOR12) 2.8024 0.3926 0.05 2.1295 3.6878

LogOR13 0.5950 0.5290 0.6577 0.3847 0.1370 0.05 0.1162 0.6532 7.89 0.0050

Exp(LogOR13) 1.4692 0.2013 0.05 1.1233 1.9217

LogOR23 0.3439 0.2850 0.4081 -0.6457 0.1397 0.05 -0.9196 -0.3719 21.36 <.0001

Exp(LogOR23) 0.5243 0.0733 0.05 0.3987 0.6894

Example 51.5: GEE for Binary Data with Logit Link Function
Output 51.5.1 displays a partial listing of a SAS data set of clinical trial data comparing two treatments for a
respiratory disorder. See “Gee Model for Binary Data” in the SAS/STAT Sample Program Library for the
complete data set. These data are from Stokes, Davis, and Koch (2000).

Patients in each of two centers are randomly assigned to groups receiving the active treatment or a placebo.
During treatment, respiratory status, represented by the variable outcome (coded here as 0=poor, 1=good), is
determined for each of four visits. The variables center, treatment, sex, and baseline (baseline respiratory
status) are classification variables with two levels. The variable age (age at time of entry into the study) is a
continuous variable.

Explanatory variables in the model are Intercept (xij1), treatment (xij2), center (xij3), sex (xij4), age
(xij5), and baseline (xij6), so that x0 D Œxij1; xij2; : : : ; xij6� is the vector of explanatory variables. Indicator
variables for the classification explanatory variables can be automatically generated by listing them in the
CLASS statement in PROC GENMOD. To be consistent with the analysis in Stokes, Davis, and Koch (2000),
the four classification explanatory variables are coded as follows via options in the CLASS statement:

xij2 D

�
0 placebo
1 active

xij3 D

�
0 center 1
1 center 2

xij4 D

�
0 male
1 female

xij6 D

�
0 0
1 1
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Suppose yij represents the respiratory status of patient i at the jth visit, j D 1; : : : ; 4, and �ij D E.yij / repre-
sents the mean of the respiratory status. Since the response data are binary, you can use the variance function
for the binomial distribution v.�ij / D �ij .1��ij / and the logit link function g.�ij / D log.�ij =.1��ij //.
The model for the mean is g.�ij / D xij 0ˇ, where ˇ is a vector of regression parameters to be estimated.

Output 51.5.1 Respiratory Disorder Data

Obs center id treatment sex age baseline visit1 visit2 visit3 visit4 visit outcome

1 1 1 P M 46 0 0 0 0 0 1 0

2 1 1 P M 46 0 0 0 0 0 2 0

3 1 1 P M 46 0 0 0 0 0 3 0

4 1 1 P M 46 0 0 0 0 0 4 0

5 1 2 P M 28 0 0 0 0 0 1 0

6 1 2 P M 28 0 0 0 0 0 2 0

7 1 2 P M 28 0 0 0 0 0 3 0

8 1 2 P M 28 0 0 0 0 0 4 0

.

.

.

214 2 1 P F 39 0 0 0 0 0 1 0

215 2 1 P F 39 0 0 0 0 0 2 0

216 2 1 P F 39 0 0 0 0 0 3 0

217 2 1 P F 39 0 0 0 0 0 4 0

218 2 2 A M 25 0 0 1 1 1 1 0

219 2 2 A M 25 0 0 1 1 1 2 1

220 2 2 A M 25 0 0 1 1 1 3 1

221 2 2 A M 25 0 0 1 1 1 4 1

.

.

.

.

The GEE solution is requested with the REPEATED statement in the GENMOD procedure. The option
SUBJECT=ID(CENTER) specifies that the observations in any single cluster are uniquely identified by both
center and id. An equivalent specification is SUBJECT=ID*CENTER. Since the same id values are used in
each center, one of these specifications is needed. If id values were unique across all centers, SUBJECT=ID
would be specified.

The option TYPE=UNSTR specifies the unstructured working correlation structure. The MODEL statement
specifies the regression model for the mean with the binomial distribution variance function. The following
SAS statements perform the GEE model fit:

proc genmod data=resp;
class id treatment(ref="P") center(ref="1") sex(ref="M")

baseline(ref="0");
model outcome(event='1')=treatment center sex age baseline / dist=bin;
repeated subject=id(center) / corr=unstr corrw;

run;

These statements first fit the generalized linear (GLM) model specified in the MODEL statement. The
parameter estimates from the generalized linear model fit are not shown in the output, but they are used as
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initial values for the GEE solution. The EVENT='1' option in the MODEL statement models the probability
that outcome = 1. If the EVENT='1' option had not been specified, the probability that outcome = 0 would
be modeled by default.

Information about the GEE model is displayed in Output 51.5.2. The results of GEE model fitting are
displayed in Output 51.5.3. Model goodness-of-fit criteria are displayed in Output 51.5.4. If you specify
no other options, the standard errors, confidence intervals, Z scores, and p-values are based on empirical
standard error estimates. You can specify the MODELSE option in the REPEATED statement to create a
table based on model-based standard error estimates.

Output 51.5.2 Model Fitting Information

The GENMOD Procedure

GEE Model Information

Correlation Structure Unstructured

Subject Effect id(center) (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

Output 51.5.3 Results of Model Fitting

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3351 0.2140 0.2953

Row2 0.3351 1.0000 0.4429 0.3581

Row3 0.2140 0.4429 1.0000 0.3964

Row4 0.2953 0.3581 0.3964 1.0000

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.8882 0.4568 -1.7835 0.0071 -1.94 0.0519

treatment A 1.2442 0.3455 0.5669 1.9214 3.60 0.0003

treatment P 0.0000 0.0000 0.0000 0.0000 . .

center 2 0.6558 0.3512 -0.0326 1.3442 1.87 0.0619

center 1 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1128 0.4408 -0.7512 0.9768 0.26 0.7981

sex M 0.0000 0.0000 0.0000 0.0000 . .

age -0.0175 0.0129 -0.0427 0.0077 -1.36 0.1728

baseline 1 1.8981 0.3441 1.2237 2.5725 5.52 <.0001

baseline 0 0.0000 0.0000 0.0000 0.0000 . .
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Output 51.5.4 Model Fit Criteria

GEE Fit
Criteria

QIC 512.3416

QICu 499.6081

The nonsignificance of age and sex make them candidates for omission from the model.

Example 51.6: Log Odds Ratios and the ALR Algorithm
Since the respiratory data in Example 51.5 are binary, you can use the ALR algorithm to model the log odds
ratios instead of using working correlations to model associations. In this example, a “fully parameterized
cluster” model for the log odds ratio is fit. That is, there is a log odds ratio parameter for each unique pair
of responses within clusters, and all clusters are parameterized identically. The following statements fit the
same regression model for the mean as in Example 51.5 but use a regression model for the log odds ratios
instead of a working correlation. The LOGOR=FULLCLUST option specifies a fully parameterized log odds
ratio model.

proc genmod data=resp;
class id treatment(ref="P") center(ref="1") sex(ref="M")

baseline(ref="0");
model outcome(event='1')=treatment center sex age baseline / dist=bin;
repeated subject=id(center) / logor=fullclust;

run;

The results of fitting the model are displayed in Output 51.6.1 along with a table that shows the correspondence
between the log odds ratio parameters and the within-cluster pairs. Model goodness-of-fit criteria are shown
in Output 51.6.2. The QIC for the ALR model shown in Output 51.6.2 is 511.86, whereas the QIC for the
unstructured working correlation model shown in Output 51.5.4 is 512.34, indicating that the ALR model is
a slightly better fit.

Output 51.6.1 Results of Model Fitting

The GENMOD Procedure

Log Odds Ratio
Parameter
Information

Parameter Group

Alpha1 (1, 2)

Alpha2 (1, 3)

Alpha3 (1, 4)

Alpha4 (2, 3)

Alpha5 (2, 4)

Alpha6 (3, 4)
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Output 51.6.1 continued

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.9266 0.4513 -1.8111 -0.0421 -2.05 0.0400

treatment A 1.2611 0.3406 0.5934 1.9287 3.70 0.0002

treatment P 0.0000 0.0000 0.0000 0.0000 . .

center 2 0.6287 0.3486 -0.0545 1.3119 1.80 0.0713

center 1 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1024 0.4362 -0.7526 0.9575 0.23 0.8144

sex M 0.0000 0.0000 0.0000 0.0000 . .

age -0.0162 0.0125 -0.0407 0.0084 -1.29 0.1977

baseline 1 1.8980 0.3404 1.2308 2.5652 5.58 <.0001

baseline 0 0.0000 0.0000 0.0000 0.0000 . .

Alpha1 1.6109 0.4892 0.6522 2.5696 3.29 0.0010

Alpha2 1.0771 0.4834 0.1297 2.0246 2.23 0.0259

Alpha3 1.5875 0.4735 0.6594 2.5155 3.35 0.0008

Alpha4 2.1224 0.5022 1.1381 3.1068 4.23 <.0001

Alpha5 1.8818 0.4686 0.9634 2.8001 4.02 <.0001

Alpha6 2.1046 0.4949 1.1347 3.0745 4.25 <.0001

Output 51.6.2 Model Fit Criteria

GEE Fit
Criteria

QIC 511.8589

QICu 499.6516

You can fit the same model by fully specifying the z matrix. The following statements create a data set
containing the full z matrix:

data zin;
keep id center z1-z6 y1 y2;
array zin(6) z1-z6;
set resp;
by center id;
if first.id

then do;
t = 0;
do m = 1 to 4;

do n = m+1 to 4;
do j = 1 to 6;

zin(j) = 0;
end;
y1 = m;
y2 = n;
t + 1;
zin(t) = 1;
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output;
end;

end;
end;

run;

proc print data=zin (obs=12);
run;

Output 51.6.3 displays the full z matrix for the first two clusters. The z matrix is identical for all clusters in
this example.

Output 51.6.3 Full z Matrix Data Set

Obs z1 z2 z3 z4 z5 z6 center id y1 y2

1 1 0 0 0 0 0 1 1 1 2

2 0 1 0 0 0 0 1 1 1 3

3 0 0 1 0 0 0 1 1 1 4

4 0 0 0 1 0 0 1 1 2 3

5 0 0 0 0 1 0 1 1 2 4

6 0 0 0 0 0 1 1 1 3 4

7 1 0 0 0 0 0 1 2 1 2

8 0 1 0 0 0 0 1 2 1 3

9 0 0 1 0 0 0 1 2 1 4

10 0 0 0 1 0 0 1 2 2 3

11 0 0 0 0 1 0 1 2 2 4

12 0 0 0 0 0 1 1 2 3 4

The following statements fit the model for fully parameterized clusters by fully specifying the z matrix. The
results are identical to those shown previously.

proc genmod data=resp;
class id treatment(ref="P") center(ref="1") sex(ref="M")

baseline(ref="0");
model outcome(event='1')=treatment center sex age baseline / dist=bin;
repeated subject=id(center) / logor=zfull

zdata=zin
zrow =(z1-z6)
ypair=(y1 y2);

run;
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Example 51.7: Log-Linear Model for Count Data
In this example the data, from Thall and Vail (1990), concern the treatment of people suffering from epileptic
seizure episodes. These data are also analyzed in Diggle, Liang, and Zeger (1994). The data consist of
the number of epileptic seizures in an eight-week baseline period, before any treatment, and in each of
four two-week treatment periods, in which patients received either a placebo or the drug Progabide in
addition to other therapy. A portion of the data is displayed in Table 51.17. See “Gee Model for Count Data,
Exchangeable Correlation” in the SAS/STAT Sample Program Library for the complete data set.

Table 51.17 Epileptic Seizure Data

Patient ID Treatment Baseline Visit1 Visit2 Visit3 Visit4

104 Placebo 11 5 3 3 3
106 Placebo 11 3 5 3 3
107 Placebo 6 2 4 0 5

.

.

.
101 Progabide 76 11 14 9 8
102 Progabide 38 8 7 9 4
103 Progabide 19 0 4 3 0

.

.

.

Model the data as a log-linear model with V.�/ D � (the Poisson variance function) and

log.E.Yij // D ˇ0 C xi1ˇ1 C xi2ˇ2 C xi1xi2ˇ3 C log.tij /

where

Yij D number of epileptic seizures in interval j

tij D length of interval j

xi1 D

�
1 W weeks 8–16 (treatment)
0 W weeks 0–8 (baseline)

xi2 D

�
1 W progabide group
0 W placebo group

The correlations between the counts are modeled as rij D ˛, i ¤ j (exchangeable correlations). For
comparison, the correlations are also modeled as independent (identity correlation matrix). In this model, the
regression parameters have the interpretation in terms of the log seizure rate displayed in Table 51.18.
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Table 51.18 Interpretation of Regression Parameters

Treatment Visit log.E.Yij /=tij /

Placebo Baseline ˇ0
1–4 ˇ0 C ˇ1

Progabide Baseline ˇ0 C ˇ2
1–4 ˇ0 C ˇ1 C ˇ2 C ˇ3

The difference between the log seizure rates in the pretreatment (baseline) period and the treatment periods is
ˇ1 for the placebo group and ˇ1 C ˇ3 for the Progabide group. A value of ˇ3 < 0 indicates a reduction in
the seizure rate.

Output 51.7.1 lists the first 14 observations of the data, which are arranged as one visit per observation:

Output 51.7.1 Partial Listing of the Seizure Data

Obs id y visit trt bline age

1 104 5 1 0 11 31

2 104 3 2 0 11 31

3 104 3 3 0 11 31

4 104 3 4 0 11 31

5 106 3 1 0 11 30

6 106 5 2 0 11 30

7 106 3 3 0 11 30

8 106 3 4 0 11 30

9 107 2 1 0 6 25

10 107 4 2 0 6 25

11 107 0 3 0 6 25

12 107 5 4 0 6 25

13 114 4 1 0 8 36

14 114 4 2 0 8 36

Some further data manipulations create an observation for the baseline measures, a log time interval variable
for use as an offset, and an indicator variable for whether the observation is for a baseline measurement or a
visit measurement. Patient 207 is deleted as an outlier, as in the Diggle, Liang, and Zeger (1994) analysis.
The following statements prepare the data for analysis with PROC GENMOD:

data new;
set thall;
output;
if visit=1 then do;

y=bline;
visit=0;
output;

end;
run;

data new;
set new;
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if id ne 207;
if visit=0 then do;

x1=0;
ltime=log(8);

end;
else do;

x1=1;
ltime=log(2);

end;
run;

For comparison with the GEE results, an ordinary Poisson regression is first fit. The results are shown in
Output 51.7.2.

Output 51.7.2 Maximum Likelihood Estimates

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.3476 0.0341 1.2809 1.4144 1565.44 <.0001

x1 1 0.1108 0.0469 0.0189 0.2027 5.58 0.0181

trt 1 -0.1080 0.0486 -0.2034 -0.0127 4.93 0.0264

x1*trt 1 -0.3016 0.0697 -0.4383 -0.1649 18.70 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The GEE solution is requested with the REPEATED statement in the GENMOD procedure. The SUB-
JECT=ID option indicates that the variable id describes the observations for a single cluster, and the CORRW
option displays the working correlation matrix. The TYPE= option specifies the correlation structure; the
value EXCH indicates the exchangeable structure.

The following statements perform the analysis:

proc genmod data=new;
class id;
model y=x1 | trt / d=poisson offset=ltime;
repeated subject=id / corrw covb type=exch;

run;

These statements first fit a generalized linear model (GLM) to these data by maximum likelihood. The
estimates are not shown in the output, but are used as initial values for the GEE solution.

Information about the GEE model is displayed in Output 51.7.3. The results of fitting the model are displayed
in Output 51.7.4. Compare these with the model of independence displayed in Output 51.7.2. The parameter
estimates are nearly identical, but the standard errors for the independence case are underestimated. The
coefficient of the interaction term, ˇ3, is highly significant under the independence model and marginally
significant with the exchangeable correlations model.
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Output 51.7.3 GEE Model Information

The GENMOD Procedure

GEE Model Information

Correlation Structure Exchangeable

Subject Effect id (58 levels)

Number of Clusters 58

Correlation Matrix Dimension 5

Maximum Cluster Size 5

Minimum Cluster Size 5

Output 51.7.4 GEE Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 1.3476 0.1574 1.0392 1.6560 8.56 <.0001

x1 0.1108 0.1161 -0.1168 0.3383 0.95 0.3399

trt -0.1080 0.1937 -0.4876 0.2716 -0.56 0.5770

x1*trt -0.3016 0.1712 -0.6371 0.0339 -1.76 0.0781

Table 51.19 displays the regression coefficients, standard errors, and normalized coefficients that result from
fitting the model with independent and exchangeable working correlation matrices.

Table 51.19 Results of Model Fitting

Variable Correlation Structure Coef. Std. Error Coef./S.E.

Intercept Exchangeable 1.35 0.16 8.56
Independent 1.35 0.03 39.52

Visit .x1/ Exchangeable 0.11 0.12 0.95
Independent 0.11 0.05 2.36

Treat .x2/ Exchangeable –0.11 0.19 –0.56
Independent –0.11 0.05 –2.22

x1 � x2 Exchangeable –0.30 0.17 –1.76
Independent –0.30 0.07 –4.32

The fitted exchangeable correlation matrix is specified with the CORRW option and is displayed in Out-
put 51.7.5.
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Output 51.7.5 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.5941 0.5941 0.5941 0.5941

Row2 0.5941 1.0000 0.5941 0.5941 0.5941

Row3 0.5941 0.5941 1.0000 0.5941 0.5941

Row4 0.5941 0.5941 0.5941 1.0000 0.5941

Row5 0.5941 0.5941 0.5941 0.5941 1.0000

If you specify the COVB option, you produce both the model-based (naive) and the empirical (robust)
covariance matrices. Output 51.7.6 contains these estimates.

Output 51.7.6 Covariance Matrices

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm3 Prm4

Prm1 0.01223 0.001520 -0.01223 -0.001520

Prm2 0.001520 0.01519 -0.001520 -0.01519

Prm3 -0.01223 -0.001520 0.02495 0.005427

Prm4 -0.001520 -0.01519 0.005427 0.03748

Covariance Matrix (Empirical)

Prm1 Prm2 Prm3 Prm4

Prm1 0.02476 -0.001152 -0.02476 0.001152

Prm2 -0.001152 0.01348 0.001152 -0.01348

Prm3 -0.02476 0.001152 0.03751 -0.002999

Prm4 0.001152 -0.01348 -0.002999 0.02931

The two covariance estimates are similar, indicating an adequate correlation model.

Example 51.8: Model Assessment of Multiple Regression Using Aggregates
of Residuals

This example illustrates the use of cumulative residuals to assess the adequacy of a normal linear regression
model.

Neter et al. (1996, Section 8.2) describe a study of 54 patients undergoing a certain kind of liver operation in
a surgical unit. The data consist of the survival time and certain covariates. After a model selection procedure,
they arrived at the following model:

Y D ˇ0 C ˇ1X1 C ˇ2X2 C ˇ3X3 C �

where Y is the logarithm (base 10) of the survival time; X1, X2, X3 are blood-clotting score, prognostic index,
and enzyme function, respectively; and � is a normal error term. A listing of the SAS data set containing the
data is shown in Output 51.8.1. The variables Y, X1, X2, and X3 correspond to Y, X1, X2, and X3, and LogX1
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is log(X1). The PROC GENMOD fit of the model is shown in Output 51.8.2. The analysis first focuses on
the adequacy of the functional form of X1, blood-clotting score.
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Output 51.8.1 Surgical Unit Example Data

Obs Y X1 X2 X3 LogX1

1 2.3010 6.7 62 81 0.82607

2 2.0043 5.1 59 66 0.70757

3 2.3096 7.4 57 83 0.86923

4 2.0043 6.5 73 41 0.81291

5 2.7067 7.8 65 115 0.89209

6 1.9031 5.8 38 72 0.76343

7 1.9031 5.7 46 63 0.75587

8 2.1038 3.7 68 81 0.56820

9 2.3054 6.0 67 93 0.77815

10 2.3075 3.7 76 94 0.56820

11 2.5172 6.3 84 83 0.79934

12 1.8129 6.7 51 43 0.82607

13 2.9191 5.8 96 114 0.76343

14 2.5185 5.8 83 88 0.76343

15 2.2253 7.7 62 67 0.88649

16 2.3365 7.4 74 68 0.86923

17 1.9395 6.0 85 28 0.77815

18 1.5315 3.7 51 41 0.56820

19 2.3324 7.3 68 74 0.86332

20 2.2355 5.6 57 87 0.74819

21 2.0374 5.2 52 76 0.71600

22 2.1335 3.4 83 53 0.53148

23 1.8451 6.7 26 68 0.82607

24 2.3424 5.8 67 86 0.76343

25 2.4409 6.3 59 100 0.79934

26 2.1584 5.8 61 73 0.76343

27 2.2577 5.2 52 86 0.71600

28 2.7589 11.2 76 90 1.04922

29 1.8573 5.2 54 56 0.71600

30 2.2504 5.8 76 59 0.76343

31 1.8513 3.2 64 65 0.50515

32 1.7634 8.7 45 23 0.93952

33 2.0645 5.0 59 73 0.69897

34 2.4698 5.8 72 93 0.76343

35 2.0607 5.4 58 70 0.73239

36 2.2648 5.3 51 99 0.72428

37 2.0719 2.6 74 86 0.41497

38 2.0792 4.3 8 119 0.63347

39 2.1790 4.8 61 76 0.68124

40 2.1703 5.4 52 88 0.73239

41 1.9777 5.2 49 72 0.71600

42 1.8751 3.6 28 99 0.55630

43 2.6840 8.8 86 88 0.94448

44 2.1847 6.5 56 77 0.81291

45 2.2810 3.4 77 93 0.53148

46 2.0899 6.5 40 84 0.81291

47 2.4928 4.5 73 106 0.65321

48 2.5999 4.8 86 101 0.68124
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Output 51.8.1 continued

Obs Y X1 X2 X3 LogX1

49 2.1987 5.1 67 77 0.70757

50 2.4914 3.9 82 103 0.59106

51 2.0934 6.6 77 46 0.81954

52 2.0969 6.4 85 40 0.80618

53 2.2967 6.4 59 85 0.80618

54 2.4955 8.8 78 72 0.94448

In order to assess the adequacy of the fitted multiple regression model, the ASSESS statement in the following
SAS statements is used to create the plots of cumulative residuals against X1 shown in Output 51.8.3 and
Output 51.8.4 and the summary table in Output 51.8.5:

ods graphics on;

proc genmod data=Surg;
model Y = X1 X2 X3 / scale=Pearson;
assess var=(X1) / resample=10000

seed=603708000
crpanel;

run;

Output 51.8.2 Regression Model for Linear X1

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.4836 0.0426 0.4001 0.5672 128.71 <.0001

X1 1 0.0692 0.0041 0.0612 0.0772 288.17 <.0001

X2 1 0.0093 0.0004 0.0085 0.0100 590.45 <.0001

X3 1 0.0095 0.0003 0.0089 0.0101 966.07 <.0001

Scale 0 0.0469 0.0000 0.0469 0.0469

Note: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

See Lin, Wei, and Ying (2002) for details about model assessment that uses cumulative residual plots. The
RESAMPLE= keyword specifies that a p-value be computed based on a sample of 10,000 simulated residual
paths. A random number seed is specified by the SEED= keyword for reproducibility. If you do not specify
the seed, one is derived from the time of day. The keyword CRPANEL specifies that the panel of four
cumulative residual plots shown in Output 51.8.4 be created, each with two simulated paths. The single
residual plot with 20 simulated paths in Output 51.8.3 is created by default.

To request these graphs, ODS Graphics must be enabled and you must specify the ASSESS statement. For
general information about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the GENMOD procedure, see the section “ODS Graphics” on
page 3703.
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Output 51.8.3 Cumulative Residual Plot for Linear X1 Fit
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Output 51.8.4 Cumulative Residual Panel Plot for Linear X1 Fit

Output 51.8.5 Summary of Model Assessment

Assessment Summary

Assessment
Variable

Maximum
Absolute

Value Replications Seed
Pr >

MaxAbsVal

X1 0.0380 10000 603708000 0.1084

The p-value of 0.1084 reported on Output 51.8.3 and Output 51.8.5 suggests that a more adequate model
might be possible. The observed cumulative residuals in Output 51.8.3 and Output 51.8.4, represented by the
heavy lines, seem atypical of the simulated curves, represented by the light lines, reinforcing the conclusion
that a more appropriate functional form for X1 is possible.

The cumulative residual plots in Output 51.8.6 provide guidance in determining a more appropriate functional
form. The four curves were created from simple forms of model misspecification by using simulated data.
The mean models of the data and the fitted model are shown in Table 51.20.
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Output 51.8.6 Typical Cumulative Residual Patterns

Table 51.20 Model Misspecifications

Plot Data E(Y) Fitted Model E(Y)

(a) log(X) X
(b) X CX2 X
(c) X CX2 CX3 X CX2

(d) I.X > 5/ X

The observed cumulative residual pattern in Output 51.8.3 and Output 51.8.4 most resembles the behavior of
the curve in plot (a) of Output 51.8.6, indicating that log(X1) might be a more appropriate term in the model
than X1.

The following SAS statements fit a model with LogX1 in place of X1 and request a model assessment:
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proc genmod data=Surg;
model Y = LogX1 X2 X3 / scale=Pearson;
assess var=(LogX1) / resample=10000

seed=603708000;
run;

The revised model fit is shown in Output 51.8.7, the p-value from the simulation is 0.4777, and the cumulative
residuals plotted in Output 51.8.8 show no systematic trend. The log transformation for X1 is more appropriate.
Under the revised model, the p-values for testing the functional forms of X2 and X3 are 0.20 and 0.63,
respectively; and the p-value for testing the linearity of the model is 0.65. Thus, the revised model seems
reasonable.

Output 51.8.7 Multiple Regression Model with Log(X1)

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.1844 0.0504 0.0857 0.2832 13.41 0.0003

LogX1 1 0.9121 0.0491 0.8158 1.0083 345.05 <.0001

X2 1 0.0095 0.0004 0.0088 0.0102 728.62 <.0001

X3 1 0.0096 0.0003 0.0090 0.0101 1139.73 <.0001

Scale 0 0.0434 0.0000 0.0434 0.0434

Note: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.



Example 51.9: Assessment of a Marginal Model for Dependent Data F 3733

Output 51.8.8 Cumulative Residual Plot with Log(X1)

Example 51.9: Assessment of a Marginal Model for Dependent Data
This example illustrates the use of cumulative residuals to assess the adequacy of a marginal model for
dependent data fit by generalized estimating equations (GEEs). The assessment methods are applied to CD4
count data from an AIDS clinical trial reported by Fischl, Richman, and Hansen (1990) and reanalyzed by
Lin, Wei, and Ying (2002). The study randomly assigned 360 HIV patients to the drug AZT and 351 patients
to placebo. CD4 counts were measured repeatedly over the course of the study. The data used here are the
4328 measurements taken in the first 40 weeks of the study.

The analysis focuses on the time trend of the response. The first model considered is

E.yik/ D ˇ0 C ˇ1Tik C ˇ2T
2
ik C ˇ3RiTik C ˇ4RiT

2
ik

where Tik is the time (in weeks) of the kth measurement on the ith patient, yik is the CD4 count at Tik for
the ith patient, and Ri is the indicator of AZT for the ith patient. Normal errors and an independent working
correlation are assumed.
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The following statements create the SAS data set cd4:

data cd4;
input Id Y Time Time2 TrtTime TrtTime2;
Time3 = Time2 * Time;
TrtTime3 = TrtTime2 * Time;
datalines;

1 264.00024 -0.28571 0.08163 -0.28571 0.08163
1 175.00070 4.14286 17.16327 4.14286 17.16327
1 306.00150 8.14286 66.30612 8.14286 66.30612
1 331.99835 12.14286 147.44898 12.14286 147.44898
1 309.99929 16.14286 260.59184 16.14286 260.59184
1 185.00077 28.71429 824.51020 28.71429 824.51020
1 175.00070 40.14286 1611.44898 40.14286 1611.44898
2 574.99998 -0.57143 0.32653 0.00000 0.00000

... more lines ...

711 363.99859 8.14286 66.30612 8.14286 66.30612
711 488.00224 12.14286 147.44898 12.14286 147.44898
711 240.00026 18.14286 329.16327 18.14286 329.16327
;

The following SAS statements fit the preceding model, create the cumulative residual plot in Output 51.9.1,
and compute a p-value for the model.

To request these graphs, ODS Graphics must be enabled and you must specify the ASSESS statement. For
general information about ODS Graphics, see Chapter 24, “Statistical Graphics Using ODS.” For specific
information about the graphics available in the GENMOD procedure, see the section “ODS Graphics” on
page 3703.

Here, the SAS data set variables Time, Time2, TrtTime, and TrtTime2 correspond to Tik , T 2
ik

, RiTik , and
RiT

2
ik

, respectively. The variable Id identifies individual patients.

ods graphics on;

proc genmod data=cd4;
class Id;
model Y = Time Time2 TrtTime TrtTime2;
repeated sub=Id;
assess var=(Time) / resample

seed=603708000;
run;
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Output 51.9.1 Cumulative Residual Plot for Quadratic Time Fit

The cumulative residual plot in Output 51.9.1 displays cumulative residuals versus time for the model and 20
simulated realizations. The associated p-value, also shown in Output 51.9.1, is 0.18. These results indicate
that a more satisfactory model might be possible. The observed cumulative residual pattern most resembles
plot (c) in Output 51.8.6, suggesting cubic time trends.

The following SAS statements fit the model, create the plot in Output 51.9.2, and compute a p-value for a
model with the additional terms T 3

ik
and RiT 3ik:

proc genmod data=cd4;
class Id;
model Y = Time Time2 Time3 TrtTime TrtTime2 TrtTime3;
repeated sub=Id;
assess var=(Time) / resample

seed=603708000;
run;
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Output 51.9.2 Cumulative Residual Plot for Cubic Time Fit

The observed cumulative residual pattern appears more typical of the simulated realizations, and the p-value
is 0.45, indicating that the model with cubic time trends is more appropriate.

Example 51.10: Bayesian Analysis of a Poisson Regression Model
This example illustrates a Bayesian analysis of a log-linear Poisson regression model. Consider the following
data on patients from clinical trials. The data set is a subset of the data described in Ibrahim, Chen, and
Lipsitz (1999).

data Liver;
input X1-X6 Y;
datalines;

19.1358 50.0110 51.000 0 0 1 3
23.5970 18.4959 3.429 0 0 1 9
20.0474 56.7699 3.429 1 1 0 6
28.0277 59.7836 4.000 0 0 1 6
28.6851 74.1589 5.714 1 0 1 1
18.8092 31.0630 2.286 0 1 1 61
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28.7201 52.9178 37.286 1 0 1 6
21.3669 61.6603 54.143 0 1 1 6
23.7332 42.2904 0.571 1 0 1 21
20.4783 22.1260 19.000 1 0 1 6

... more lines ...

17.0993 48.8384 3.000 0 0 0 9
19.1327 65.3425 2.571 1 0 0 1
17.3010 51.4493 4.429 1 0 0 6
;

The primary interest is in prediction of the number of cancerous liver nodes when a patient enters the trials,
by using six other baseline characteristics. The number of nodes is modeled by a Poisson regression model
with the six baseline characteristics as covariates. The response and regression variables are as follows:

Y Number of Cancerous Liver Nodes
X1 Body Mass Index
X2 Age, in Years
X3 Time Since Diagnosis of Disease, in Weeks
X4 Two Biochemical Markers (each classified as normal=1 or abnormal=0)
X5 Anti Hepatitis B Antigen
X6 Associated Jaundice (yes=1, no=0)

Two analyses are performed using PROC GENMOD. The first analysis uses noninformative normal prior
distributions, and the second analysis uses an informative normal prior for one of the regression parameters.

In the following BAYES statement, COEFFPRIOR=NORMAL specifies a noninformative independent
normal prior distribution with zero mean and variance 106 for each parameter.

The initial analysis is performed using PROC GENMOD to obtain Bayesian estimates of the regression
coefficients by using the following SAS statements:

proc genmod data=Liver;
model Y = X1-X6 / dist=Poisson link=log;
bayes seed=1 coeffprior=normal;

run;

Maximum likelihood estimates of the model parameters are computed by default. These are shown in the
“Analysis of Maximum Likelihood Parameter Estimates” table in Output 51.10.1.
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Output 51.10.1 Maximum Likelihood Parameter Estimates

The GENMOD Procedure

Bayesian Analysis

Analysis Of Maximum Likelihood Parameter
Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits

Intercept 1 2.4508 0.2284 2.0032 2.8984

X1 1 -0.0044 0.0080 -0.0201 0.0114

X2 1 -0.0135 0.0024 -0.0181 -0.0088

X3 1 -0.0029 0.0022 -0.0072 0.0014

X4 1 -0.2715 0.0795 -0.4272 -0.1157

X5 1 0.3215 0.0832 0.1585 0.4845

X6 1 0.2077 0.0827 0.0456 0.3698

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Noninformative independent normal prior distributions with zero means and variances of 106 were used in
the initial analysis. These are shown in Output 51.10.2.

Output 51.10.2 Regression Coefficient Priors

The GENMOD Procedure

Bayesian Analysis

Independent Normal Prior
for Regression

Coefficients

Parameter Mean Precision

Intercept 0 1E-6

X1 0 1E-6

X2 0 1E-6

X3 0 1E-6

X4 0 1E-6

X5 0 1E-6

X6 0 1E-6

Initial values for the Markov chain are listed in the “Initial Values and Seeds” table in Output 51.10.3. The
random number seed is also listed so that you can reproduce the analysis. Since no seed was specified, the
seed shown was derived from the time of day.

Output 51.10.3 MCMC Initial Values and Seeds

Initial Values of the Chain

Chain Seed Intercept X1 X2 X3 X4 X5 X6

1 1 2.450813 -0.00435 -0.01347 -0.00291 -0.27149 0.321507 0.207713
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Summary statistics for the posterior sample are displayed in the “Fit Statistics,” “Descriptive Statistics for the
Posterior Sample,” “Interval Statistics for the Posterior Sample,” and “Posterior Correlation Matrix” tables
in Output 51.10.4, Output 51.10.5, Output 51.10.6, and Output 51.10.7, respectively. Since noninformative
prior distributions for the regression coefficients were used, the mean and standard deviations of the posterior
distributions for the model parameters are close to the maximum likelihood estimates and standard errors.

Output 51.10.4 Fit Statistics

Fit Statistics

DIC (smaller is better) 829.810

pD (effective number of parameters) 7.005

Output 51.10.5 Descriptive Statistics

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 2.4483 0.2320 2.2903 2.4493 2.6093

X1 10000 -0.00475 0.00809 -0.0101 -0.00466 0.000851

X2 10000 -0.0134 0.00237 -0.0150 -0.0134 -0.0118

X3 10000 -0.00303 0.00220 -0.00445 -0.00298 -0.00150

X4 10000 -0.2703 0.0799 -0.3241 -0.2725 -0.2190

X5 10000 0.3202 0.0828 0.2642 0.3209 0.3775

X6 10000 0.2106 0.0838 0.1533 0.2111 0.2663

Output 51.10.6 Interval Statistics

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 1.9903 2.9059 2.0289 2.9321

X1 0.050 -0.0209 0.0108 -0.0211 0.0106

X2 0.050 -0.0181 -0.00870 -0.0184 -0.00908

X3 0.050 -0.00761 0.00105 -0.00745 0.00113

X4 0.050 -0.4257 -0.1063 -0.4314 -0.1152

X5 0.050 0.1563 0.4804 0.1574 0.4811

X6 0.050 0.0450 0.3777 0.0468 0.3788
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Output 51.10.7 Posterior Sample Correlation Matrix

Posterior Correlation Matrix

Parameter Intercept X1 X2 X3 X4 X5 X6

Intercept 1.000 -0.708 -0.432 -0.046 -0.261 -0.185 -0.422

X1 -0.708 1.000 -0.202 -0.047 -0.035 0.078 0.129

X2 -0.432 -0.202 1.000 0.035 0.076 0.054 0.117

X3 -0.046 -0.047 0.035 1.000 0.027 -0.042 -0.077

X4 -0.261 -0.035 0.076 0.027 1.000 -0.024 0.127

X5 -0.185 0.078 0.054 -0.042 -0.024 1.000 -0.037

X6 -0.422 0.129 0.117 -0.077 0.127 -0.037 1.000

Posterior sample autocorrelations for each model parameter are shown in Output 51.10.8. The autocorrelation
after 10 lags is negligible for all parameters, indicating good mixing in the Markov chain.

Output 51.10.8 Posterior Sample Autocorrelations

The GENMOD Procedure

Bayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept 0.3037 0.0152 0.0095 -0.0170

X1 0.3398 0.0025 0.0003 0.0052

X2 0.3036 0.0061 0.0003 -0.0062

X3 0.3489 0.0190 -0.0064 -0.0210

X4 0.2868 0.0213 0.0157 -0.0107

X5 0.2854 0.0108 -0.0288 -0.0012

X6 0.3078 0.0230 0.0073 0.0062

The p-values for the Geweke test statistics shown in Output 51.10.9 all indicate convergence of the MCMC.
See the section “Assessing Markov Chain Convergence” on page 162 in Chapter 8, “Introduction to Bayesian
Analysis Procedures,” for more information about convergence diagnostics and their interpretation.

Output 51.10.9 Geweke Diagnostic Statistics

Geweke Diagnostics

Parameter z Pr > |z|

Intercept -0.6533 0.5135

X1 0.3418 0.7325

X2 0.3609 0.7182

X3 -0.3345 0.7380

X4 0.2851 0.7755

X5 -0.5266 0.5985

X6 1.1285 0.2591

The effective sample sizes for each parameter are shown in Output 51.10.10.



Example 51.10: Bayesian Analysis of a Poisson Regression Model F 3741

Output 51.10.10 Effective Sample Sizes

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 4880.3 2.0491 0.4880

X1 4844.2 2.0643 0.4844

X2 5139.3 1.9458 0.5139

X3 4551.2 2.1972 0.4551

X4 4953.6 2.0187 0.4954

X5 5330.5 1.8760 0.5331

X6 4988.1 2.0048 0.4988

Trace, autocorrelation, and density plots for the seven model parameters are shown in Output 51.10.11
through Output 51.10.17. All indicate satisfactory convergence of the Markov chain.

Output 51.10.11 Diagnostic Plots for Intercept
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Output 51.10.12 Diagnostic Plots for X1
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Output 51.10.13 Diagnostic Plots for X2
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Output 51.10.14 Diagnostic Plots for X3
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Output 51.10.15 Diagnostic Plots for X4
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Output 51.10.16 Diagnostic Plots for X5
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Output 51.10.17 Diagnostic Plots for X6

In order to illustrate the use of an informative prior distribution, suppose that researchers expect that a unit
increase in body mass index (X1) will be associated with an increase in the mean number of nodes of between
10% and 20%, and they want to incorporate this prior knowledge in the Bayesian analysis. For log-linear
models, the mean and linear predictor are related by log.�i / D x0iˇ. If X11 and X12 are two values of body
mass index, �1 and �2 are the two mean values, and all other covariates remain equal for the two values of
X1, then

�1

�2
D exp.ˇ.X11 � X12//

so that for a unit change in X1,

�1

�2
D exp.ˇ/

If 1:1 � �1
�2
� 1:2, then 1:1 � exp.ˇ/ � 1:2, or 0:095 � ˇ � 0:182. This gives you guidance in specifying

a prior distribution for the ˇ for body mass index. Taking the mean of the prior normal distribution to be the
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midrange of the values of ˇ, and taking �˙ 2� to be the extremes of the range, an N.0:1385; 0:0005/ is
the resulting prior distribution. The second analysis uses this informative normal prior distribution for the
coefficient of X1 and uses independent noninformative normal priors with zero means and variances equal to
106 for the remaining model regression parameters.

In the following BAYES statement, COEFFPRIOR=NORMAL(INPUT=NormalPrior) specifies the nor-
mal prior distribution for the regression coefficients with means and variances contained in the data set
NormalPrior.

An analysis is performed using PROC GENMOD to obtain Bayesian estimates of the regression coefficients
by using the following SAS statements:

data NormalPrior;
input _type_ $ Intercept X1-X6;
datalines;

Var 1e6 0.0005 1e6 1e6 1e6 1e6 1e6
Mean 0.0 0.1385 0.0 0.0 0.0 0.0 0.0
;

proc genmod data=Liver;
model Y = X1-X6 / dist=Poisson link=log;
bayes seed=1 plots=none coeffprior=normal(input=NormalPrior);

run;

The prior distributions for the regression parameters are shown in Output 51.10.18.

Output 51.10.18 Regression Coefficient Priors

The GENMOD Procedure

Bayesian Analysis

Independent Normal Prior
for Regression Coefficients

Parameter Mean Precision

Intercept 0 1E-6

X1 0.1385 2000

X2 0 1E-6

X3 0 1E-6

X4 0 1E-6

X5 0 1E-6

X6 0 1E-6

Initial values for the MCMC are shown in Output 51.10.19. The initial values of the covariates are joint
estimates of their posterior modes. The prior distribution for X1 is informative, so the initial value of X1 is
further from the MLE than the rest of the covariates. Initial values for the rest of the covariates are close to
their MLEs, since noninformative prior distributions were specified for them.

Output 51.10.19 MCMC Initial Values and Seeds

Initial Values of the Chain

Chain Seed Intercept X1 X2 X3 X4 X5 X6

1 1 2.14282 0.010595 -0.01434 -0.00301 -0.28062 0.334983 0.231213



Example 51.10: Bayesian Analysis of a Poisson Regression Model F 3749

Goodness-of-fit, summary, and interval statistics are shown in Output 51.10.20. Except for X1, the statistics
shown in Output 51.10.20 are very similar to the previous statistics for noninformative priors shown in
Output 51.10.4 through Output 51.10.7. The point estimate for X1 is now positive. This is expected because
the prior distribution on ˇ1 is quite informative. The distribution reflects the belief that the coefficient is
positive. The N.0:1385; 0:0005/ distribution places the majority of its probability density on positive values.
As a result, the posterior density of ˇ1 places more likelihood on positive values than in the noninformative
case.

Output 51.10.20 Fit Statistics

Fit Statistics

DIC (smaller is better) 833.074

pD (effective number of parameters) 6.869

The GENMOD Procedure

Bayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 2.1419 0.2157 1.9965 2.1430 2.2894

X1 10000 0.0103 0.00684 0.00573 0.0104 0.0150

X2 10000 -0.0143 0.00233 -0.0159 -0.0142 -0.0127

X3 10000 -0.00318 0.00218 -0.00467 -0.00314 -0.00170

X4 10000 -0.2806 0.0800 -0.3336 -0.2793 -0.2266

X5 10000 0.3341 0.0832 0.2788 0.3341 0.3906

X6 10000 0.2333 0.0826 0.1774 0.2325 0.2880

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 1.7225 2.5574 1.7293 2.5632

X1 0.050 -0.00344 0.0235 -0.00345 0.0234

X2 0.050 -0.0188 -0.00970 -0.0189 -0.00980

X3 0.050 -0.00757 0.00108 -0.00733 0.00121

X4 0.050 -0.4365 -0.1200 -0.4391 -0.1256

X5 0.050 0.1657 0.4966 0.1682 0.4987

X6 0.050 0.0695 0.3959 0.0725 0.3981
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Example 51.11: Exact Poisson Regression
The following data, taken from Cox and Snell (1989, pp. 10–11), consists of the number, Notready, of ingots
that are not ready for rolling, out of Total tested, for several combinations of heating time and soaking time:

data ingots;
input Heat Soak Notready Total @@;
lnTotal= log(Total);
datalines;

7 1.0 0 10 14 1.0 0 31 27 1.0 1 56 51 1.0 3 13
7 1.7 0 17 14 1.7 0 43 27 1.7 4 44 51 1.7 0 1
7 2.2 0 7 14 2.2 2 33 27 2.2 0 21 51 2.2 0 1
7 2.8 0 12 14 2.8 0 31 27 2.8 1 22 51 4.0 0 1
7 4.0 0 9 14 4.0 0 19 27 4.0 1 16
;

The following invocation of PROC GENMOD fits an asymptotic (unconditional) Poisson regression model
to the data. The variable Notready is specified as the response variable, and the continuous predictors Heat
and Soak are defined in the CLASS statement as categorical predictors that use reference coding. Specifying
the offset variable as lnTotal enables you to model the ratio Notready/Total.

proc genmod data=ingots;
class Heat Soak / param=ref;
model Notready=Heat Soak / offset=lnTotal dist=Poisson link=log;
exact Heat Soak / joint estimate;
exactoptions statustime=10;

run;

The EXACT statement is specified to additionally fit an exact conditional Poisson regression model. Spec-
ifying the lnTotal offset variable models the ratio Notready/Total; in this case, the Total variable contains
the largest possible response value for each observation. The JOINT option produces a joint test for the
significance of the covariates, along with the usual marginal tests. The ESTIMATE option produces exact
parameter estimates for the covariates. The STATUSTIME=10 option is specified in the EXACTOPTIONS
statement for monitoring the progress of the results; this example can take several minutes to complete due to
the JOINT option. If you run out of memory, see the SAS Companion for your system for information about
how to increase the available memory.

The “Criteria For Assessing Goodness Of Fit” table is displayed in Output 51.11.1. Comparing the deviance
of 10.9363 to an asymptotic chi-square distribution with 11 degrees of freedom, you find that the p-value is
0.449. This indicates that the specified model fits the data reasonably well.
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Output 51.11.1 Unconditional Goodness of Fit Criteria

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 11 10.9363 0.9942

Scaled Deviance 11 10.9363 0.9942

Pearson Chi-Square 11 9.3722 0.8520

Scaled Pearson X2 11 9.3722 0.8520

Log Likelihood -7.2408

Full Log Likelihood -12.9038

AIC (smaller is better) 41.8076

AICC (smaller is better) 56.2076

BIC (smaller is better) 49.3631

From the “Analysis Of Parameter Estimates” table in Output 51.11.2, you can see that only two of the Heat
parameters are deemed significant. Looking at the standard errors, you can see that the unconditional analysis
had convergence difficulties with the Heat=7 parameter (Standard Error=264324.6), which means you cannot
fit this unconditional Poisson regression model to this data.

Output 51.11.2 Unconditional Maximum Likelihood Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.5700 1.1657 -3.8548 0.7147 1.81 0.1780

Heat 7 1 -27.6129 264324.6 -518094 518039.0 0.00 0.9999

Heat 14 1 -3.0107 1.0025 -4.9756 -1.0458 9.02 0.0027

Heat 27 1 -1.7180 0.7691 -3.2253 -0.2106 4.99 0.0255

Soak 1 1 -0.2454 1.1455 -2.4906 1.9998 0.05 0.8304

Soak 1.7 1 0.5572 1.1217 -1.6412 2.7557 0.25 0.6193

Soak 2.2 1 0.4079 1.2260 -1.9951 2.8109 0.11 0.7394

Soak 2.8 1 -0.1301 1.4234 -2.9199 2.6597 0.01 0.9272

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Following the output from the asymptotic analysis, the exact conditional Poisson regression results are
displayed, as shown in Output 51.11.3.
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Output 51.11.3 Exact Tests

The GENMOD Procedure

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

Joint Score 18.3665 0.0137 0.0137

Probability 1.294E-6 0.0471 0.0471

Heat Score 15.8259 0.0023 0.0022

Probability 0.000175 0.0063 0.0062

Soak Score 1.4612 0.8683 0.8646

Probability 0.00735 0.8176 0.8139

The Joint test in the “Conditional Exact Tests” table in Output 51.11.3 is produced by specifying the JOINT
option in the EXACT statement. The p-values for this test indicate that the parameters for Heat and Soak are
jointly significant as explanatory effects in the model. If the Heat variable is the only explanatory variable
in your model, then the rows of this table labeled as “Heat” show the joint significance of all the Heat
effect parameters in that reduced model. In this case, a model that contains only the Heat parameters still
explains a significant amount of the variability; however, you can see that a model that contains only the
Soak parameters would not be significant.

The “Exact Parameter Estimates” table in Output 51.11.4 displays parameter estimates and tests of significance
for the levels of the CLASS variables. Again, the Heat=7 parameter has some difficulties; however, in the
exact analysis, a median unbiased estimate is computed for the parameter instead of a maximum likelihood
estimate. The confidence limits show that the Heat variable contains some explanatory power, while the
categorical Soak variable is insignificant and can be dropped from the model.

Output 51.11.4 Exact Parameter Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits p-Value

Heat 7 -2.7552 * . -Infinity -0.7864 0.0099

Heat 14 -3.0255 1.0128 -5.7450 -0.6194 0.0113

Heat 27 -1.7846 0.8065 -3.6779 0.2260 0.0844

Soak 1 -0.3231 1.1717 -2.8673 3.6754 1.0000

Soak 1.7 0.5375 1.1284 -1.8056 4.4588 1.0000

Soak 2.2 0.4035 1.2347 -2.5785 4.5054 1.0000

Soak 2.8 -0.1661 1.4214 -4.5490 4.2168 1.0000

Note: * indicates a median unbiased estimate and a one-sided p-value.

NOTE: If you want to make predictions from the exact results, you can obtain an estimate for the intercept
parameter by specifying the INTERCEPT keyword in the EXACT statement. You should also remove the
JOINT option to reduce the amount of time and memory consumed.
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Example 51.12: Tweedie Regression
The following SAS statements simulate 250 observations, which are based on an underlying Tweedie
generalized linear model (GLM) that exploits its connection with the compound Poisson distribution. A
natural logarithm link function is assumed for modeling the response variable (yTweedie), and there are five
categorical variables (C1–C5), each of which has four numerical levels and two continuous variables (D1 and
D2). By design, two of the categorical variables, C3 and C4, and one of the two continuous variables, D2,
have no effect on the response. The dispersion parameter is set to 0.5, and the power parameter is set to 1.5.

%let nObs = 250;
%let nClass = 5;
%let nLevs = 4;
%let seed = 100;

data tmp1;
array c{&nClass};

keep c1-c&nClass yTweedie d1 d2;

/* Tweedie parms */
phi=0.5;
p=1.5;

do i=1 to &nObs;

do j=1 to &nClass;
c{j} = int(ranuni(1)*&nLevs);

end;

d1 = ranuni(&seed);
d2 = ranuni(&seed);

xBeta = 0.5*((c2<2) - 2*(c1=1) + 0.5*c&nClass + 0.05*d1);
mu = exp(xBeta);

/* Poisson distributions parms */
lambda = mu**(2-p)/(phi*(2-p));
/* Gamma distribution parms */
alpha = (2-p)/(p-1);
gamma = phi*(p-1)*(mu**(p-1));

rpoi = ranpoi(&seed,lambda);
if rpoi=0 then yTweedie=0;
else do;

yTweedie=0;
do j=1 to rpoi;
yTweedie = yTweedie + rangam(&seed,alpha);
end;
yTweedie = yTweedie * gamma;

end;
output;

end;
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run;

The following SAS statements invoke PROC GENMOD to fit the Tweedie GLM with the log link using all
of the categorical and continuous variables. A Type III analysis is requested by the TYPE3 option in the
MODEL statement.

proc genmod data=tmp1;
class C1-C5;
model yTweedie = C1-C5 D1 D2 / dist=Tweedie type3;

run;

The “Criteria For Assessing Goodness Of Fit” table is displayed in Output 51.12.1. The scaled Pearson �2 is
close to 1, indicating that the specified model fits the data well.

Output 51.12.1 Tweedie Goodness of Fit Criteria

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Pearson Chi-Square 232 101.9124 0.4393

Scaled Pearson X2 232 251.5826 1.0844

Log Likelihood -297.2106

Full Log Likelihood -297.2106

AIC (smaller is better) 634.4212

AICC (smaller is better) 638.0893

BIC (smaller is better) 704.8504

The “LR Statistics For Type 3 Analysis” table is displayed in Output 51.12.2. As expected, the p-values for
C3, C4, and d2 are not statistically significant at the 5% level.

Output 51.12.2 Type III Analysis of Covariate Effects

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

c1 3 85.46 <.0001

c2 3 48.18 <.0001

c3 3 0.56 0.9050

c4 3 9.38 0.0247

c5 3 47.76 <.0001

d1 1 0.00 0.9595

d2 1 1.31 0.2518

You can fix the power parameter for fitting the Tweedie GLM by using the P= option. The following SAS
statements fit the model for C1, C2 and D1, while holding the power parameter at 1.5:

proc genmod data=tmp1;
class C1 C2;
model yTweedie = C1 C2 D1 / dist=Tweedie(p=1.5) type3;

run;

The parameter estimates are displayed in Output 51.12.3.
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Output 51.12.3 Tweedie Maximum Likelihood Parameter Estimates

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.3440 0.1347 0.0801 0.6080 6.53 0.0106

c1 0 1 -0.0722 0.1101 -0.2880 0.1436 0.43 0.5120

c1 1 1 -0.8952 0.1196 -1.1296 -0.6607 56.01 <.0001

c1 2 1 0.0770 0.1073 -0.1334 0.2873 0.51 0.4733

c1 3 0 0.0000 0.0000 0.0000 0.0000 . .

c2 0 1 0.6138 0.1161 0.3862 0.8414 27.93 <.0001

c2 1 1 0.5103 0.1150 0.2849 0.7356 19.70 <.0001

c2 2 1 0.1001 0.1215 -0.1380 0.3381 0.68 0.4099

c2 3 0 0.0000 0.0000 0.0000 0.0000 . .

d1 1 -0.0211 0.1493 -0.3136 0.2714 0.02 0.8876

Dispersion 1 0.4951 0.0398 0.4172 0.5731

Power 0 1.5000 0.0000 1.5000 1.5000

Note: The Tweedie dispersion parameter was estimated by maximum likelihood.
Note: The Tweedie power parameter was held fixed.
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