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Overview: TTEST Procedure
The TTEST procedure performs t tests and computes confidence limits for one sample, paired observations,
two independent samples, and the AB/BA crossover design. Two-sided, TOST (two one-sided test) equiva-
lence, and upper and lower one-sided hypotheses are supported for means, mean differences, and mean ratios
for either normal or lognormal data. PROC TTEST also computes bootstrap standard error, bias estimates,
and confidence limits.

Table 128.1 summarizes the designs, analysis criteria, hypotheses, and distributional assumptions supported
in the TTEST procedure, along with the syntax that you use to specify them.

Table 128.1 Features Supported in the TTEST Procedure

Feature Syntax

Design
One-sample VAR statement
Paired PAIRED statement
Two-independent-sample CLASS statement, VAR statement
AB/BA crossover VAR / CROSSOVER=

Analysis Criterion
Mean difference PROC TTEST TEST=DIFF
Mean ratio PROC TTEST TEST=RATIO

Hypothesis
Two-sided PROC TTEST SIDES=2
Equivalence PROC TTEST TOST ( < lower , > upper )
Lower one-sided PROC TTEST SIDES=L
Upper one-sided PROC TTEST SIDES=U

Distribution
Normal PROC TTEST DIST=NORMAL
Lognormal PROC TTEST DIST=LOGNORMAL
Empirical, resampled with replacement BOOTSTRAP statement

FREQ and WEIGHT statements are available. Data can be input in the form of observations or, in certain cases,
summary statistics. Output includes summary statistics; confidence limits for means, standard deviations, and
coefficients of variation; hypothesis tests; bootstrap analyses; and a variety of graphical displays for both the
input data set and bootstrap samples, including histograms, densities, box plots, confidence intervals, Q-Q
plots, profiles, agreement plots, and correlation plots.

PROC TTEST uses ODS Graphics to create graphs as part of its output. For general information about ODS
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Graphics, see Chapter 24, “Statistical Graphics Using ODS.” For specific information about the statistical
graphics available with the TTEST procedure, see the PLOTS option in the PROC TTEST statement and the
section “ODS Graphics” on page 10823.

Getting Started: TTEST Procedure

One-Sample t Test
(View the complete code for this example at https://github.com/sassoftware/doc-
supplement-statug/tree/main/Examples/r-z/ttegs1.sas.)

A one-sample t test can be used to compare a sample mean to a given value. This example, taken from
Huntsberger and Billingsley (1989, p. 290), tests whether the mean length of a certain type of court case is
more than 80 days by using 20 randomly chosen cases. The data are read by the following DATA step:

data time;
input time @@;
datalines;

43 90 84 87 116 95 86 99 93 92
121 71 66 98 79 102 60 112 105 98
;

The only variable in the data set, time, is assumed to be normally distributed. The trailing at signs (@@)
indicate that there is more than one observation on a line. The following statements invoke PROC TTEST for
a one-sample t test:

ods graphics on;

proc ttest h0=80 plots(showh0) sides=u alpha=0.1;
var time;

run;

ods graphics off;

The VAR statement indicates that the time variable is being studied, while the H0= option specifies that
the mean of the time variable should be compared to the null value 80 rather than the default of 0. The
PLOTS(SHOWH0) option requests that this null value be displayed on all relevant graphs. The SIDES=U
option reflects the focus of the research question, namely whether the mean court case length is greater than
80 days, rather than different than 80 days (in which case you would use the default SIDES=2 option). The
ALPHA=0.1 option requests 90% confidence intervals rather than the default 95% confidence intervals. The
output is displayed in Figure 128.1.

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/ttegs1.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/ttegs1.sas


10776 F Chapter 128: The TTEST Procedure

Figure 128.1 One-Sample t Test Results

The TTEST Procedure

Variable: time

N Mean Std Dev Std Err Minimum Maximum

20 89.8500 19.1456 4.2811 43.0000 121.0

Mean
90%

CL Mean Std Dev
90%

CL Std Dev

89.8500 84.1659 Infty 19.1456 15.2002 26.2374

DF t Value Pr > t

19 2.30 0.0164

Summary statistics appear at the top of the output. The sample size (N), mean, standard deviation, and
standard error are displayed with the minimum and maximum values of the time variable. The 90% confidence
limits for the mean and standard deviation are shown next. Due to the SIDES=U option, the interval for the
mean is an upper one-sided interval with a finite lower bound (84.1659 days). The limits for the standard
deviation are the equal-tailed variety, per the default CI=EQUAL option in the PROC TTEST statement. At
the bottom of the output are the degrees of freedom, t statistic value, and p-value for the t test. At the 10% ˛

level, this test indicates that the mean length of the court cases is significantly greater than from 80 days (t =
2.30, p = 0.0164).

The summary panel in Figure 128.2 shows a histogram with overlaid normal and kernel densities, a box plot,
the 90% confidence interval for the mean, and the null value of 80 days.
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Figure 128.2 Summary Panel

The confidence interval excludes the null value, consistent with the rejection of the null hypothesis at ˛ = 0.1.

The Q-Q plot in Figure 128.3 assesses the normality assumption.



10778 F Chapter 128: The TTEST Procedure

Figure 128.3 Q-Q Plot

The curvilinear shape of the Q-Q plot suggests a possible slight deviation from normality. You could use the
UNIVARIATE procedure with the NORMAL option to numerically check the normality assumptions.

Comparing Group Means
(View the complete code for this example at https://github.com/sassoftware/doc-
supplement-statug/tree/main/Examples/r-z/ttegs2.sas.)

If you want to compare values obtained from two different groups, and if the groups are independent of each
other and the data are normally or lognormally distributed in each group, then a group t test can be used.
Examples of such group comparisons include the following:

� test scores for two third-grade classes, where one of the classes receives tutoring

� fuel efficiency readings of two automobile nameplates, where each nameplate uses the same fuel

� sunburn scores for two sunblock lotions, each applied to a different group of people

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/ttegs2.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/ttegs2.sas


Comparing Group Means F 10779

� political attitude scores of males and females

In the following example, the golf scores for males and females in a physical education class are compared.
The sample sizes from each population are equal, but this is not required for further analysis. The scores
are thought to be approximately normally distributed within gender. The data are read by the following
statements:

data scores;
input Gender $ Score @@;
datalines;

f 75 f 76 f 80 f 77 f 80 f 77 f 73
m 82 m 80 m 85 m 85 m 78 m 87 m 82
;

The dollar sign ($) following Gender in the INPUT statement indicates that Gender is a character variable.
The trailing at signs (@@) enable the procedure to read more than one observation per line.

You can use a group t test to determine whether the mean golf score for the men in the class differs significantly
from the mean score for the women. If you also suspect that the distributions of the golf scores of males
and females have unequal variances, then you might want to specify the COCHRAN option in order to use
the Cochran approximation (in addition to the Satterthwaite approximation, which is included by default).
The following statements invoke PROC TTEST for the case of unequal variances, along with both types of
confidence limits for the pooled standard deviation.

ods graphics on;

proc ttest cochran ci=equal umpu;
class Gender;
var Score;

run;

ods graphics off;

The CLASS statement contains the variable that distinguishes the groups being compared, and the VAR
statement specifies the response variable to be used in calculations. The COCHRAN option produces p-values
for the unequal variance situation by using the Cochran and Cox (1950) approximation. Equal-tailed and
uniformly most powerful unbiased (UMPU) confidence intervals for � are requested by the CI= option.
Output from these statements is displayed in Figure 128.4 through Figure 128.7.

Figure 128.4 Simple Statistics

The TTEST Procedure

Variable: Score

Gender Method N Mean Std Dev Std Err Minimum Maximum

f 7 76.8571 2.5448 0.9619 73.0000 80.0000

m 7 82.7143 3.1472 1.1895 78.0000 87.0000

Diff (1-2) Pooled -5.8571 2.8619 1.5298

Diff (1-2) Satterthwaite -5.8571 1.5298

Simple statistics for the two populations being compared, as well as for the difference of the means between
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the populations, are displayed in Figure 128.4. The Gender column indicates the population that corresponds
to the statistics in that row, and the Method column indicates the method for estimating the standard
deviation, either pooled (assuming equal variances for males and females) or Satterthwaite (assuming unequal
variances). The sample size (N), mean, standard deviation, standard error, and minimum and maximum
values are displayed.

Confidence limits for means and standard deviations are shown in Figure 128.5.

Figure 128.5 Confidence Limits

Gender Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

95%
UMPU CL Std

Dev

f 76.8571 74.5036 79.2107 2.5448 1.6399 5.6039 1.5634 5.2219

m 82.7143 79.8036 85.6249 3.1472 2.0280 6.9303 1.9335 6.4579

Diff (1-2) Pooled -5.8571 -9.1902 -2.5241 2.8619 2.0522 4.7242 2.0019 4.5727

Diff (1-2) Satterthwaite -5.8571 -9.2064 -2.5078

For the mean difference, both pooled and Satterthwaite 95% intervals are shown. Equal-tailed and UMPU
confidence limits are shown for the standard deviation under the assumption of equal variances.

The test statistics, associated degrees of freedom, and p-values are displayed in Figure 128.6.

Figure 128.6 t Tests

Method Variances DF t Value Pr > |t|

Pooled Equal 12 -3.83 0.0024

Satterthwaite Unequal 11.496 -3.83 0.0026

Cochran Unequal 6 -3.83 0.0087

The Method column denotes which t test is being used for that row, and the Variances column indicates
what assumption about variances is being made. The pooled test assumes that the two populations have
equal variances and uses degrees of freedom n1 C n2 � 2, where n1 and n2 are the sample sizes for the
two populations. The remaining two tests do not assume that the populations have equal variances. The
Satterthwaite test uses the Satterthwaite approximation for degrees of freedom, while the Cochran test uses
the Cochran and Cox approximation for the p-value. All three tests result in highly significant p-values,
supporting the conclusion of a significant difference between males’ and females’ golf scores.

The “Equality of Variances” test in Figure 128.7 reveals insufficient evidence of unequal variances (the
Folded F statistic F 0 = 1.53, with p = 0.6189).

Figure 128.7 Tests of Equality of Variances

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 6 6 1.53 0.6189

The summary panel in Figure 128.8 shows comparative histograms, normal and kernel densities, and box
plots, comparing the distribution of golf scores between genders.
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Figure 128.8 Summary Panel

The Q-Q plots in Figure 128.9 assess the normality assumption for each gender.
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Figure 128.9 Q-Q Plot

The plots for both males and females show no obvious deviations from normality. You can check the
assumption of normality more rigorously by using PROC UNIVARIATE with the NORMAL option; if the
assumption of normality is not reasonable, you should analyze the data with the nonparametric Wilcoxon
rank sum test by using PROC NPAR1WAY.

Syntax: TTEST Procedure
The following statements are available in the TTEST procedure:

PROC TTEST < options > ;
BOOTSTRAP < / options > ;
CLASS variable ;
PAIRED variables ;
BY variables ;
VAR variables < / options > ;
FREQ variable ;
WEIGHT variable ;

No statement can be used more than once. There is no restriction on the order of the statements after the
PROC TTEST statement. The following sections describe the PROC TTEST statement and then describe the
other statements in alphabetical order.
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PROC TTEST Statement
PROC TTEST < options > ;

The PROC TTEST statement invokes the TTEST procedure. Table 128.2 summarizes the options available
in the PROC TTEST statement. The options are then described fully in alphabetical order.

Table 128.2 PROC TTEST Statement Options

Option Description

Basic Options
DATA= Specifies input data set
ORDER= Determines sort order of CLASS variable or CROSSOVER=

treatment variables

Analysis Options
ALPHA= Specifies 1 – confidence level
DIST= Specifies distributional assumption (normal or lognormal)
H0= Specifies null value
SIDES= Specifies number of sides and direction
TEST= Specifies test criterion (difference or ratio)
TOST Requests equivalence test and specifies bounds

Displayed Output
CI= Requests confidence interval for standard deviation or coefficient

of variation
COCHRAN Requests Cochran t test
PLOTS Produces ODS statistical graphics

Output Ordering
BYVAR Groups results by variables that are specified in the PAIRED or

VAR statement
NOBYVAR Groups results by tables

You can specify the following options:

ALPHA=p
specifies that confidence intervals (except test-based mean confidence intervals when you specify the
TOST option) are to be 100(1 – p)% confidence intervals, where 0 < p < 1. When you specify the
TOST option, the test-based mean confidence intervals are 100(1 – 2p)% confidence intervals. For
the PLOTS=BOOTSTRAP(CORRELATION) option, the ALPHA= option specifies that the elliptical
prediction region is to be a 100(1 – p)% prediction region. If p is 0 or less, or 1 or more, an error
message is printed. By default, ALPHA=0.05.
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BYVAR
groups the results by the variables that are specified in the PAIRED or VAR statement. The BYVAR
option is enabled by default. Note that this represents a change from previous releases for how the
results are grouped with respect to variables and tables. Prior to SAS 9.2, multiple variables were
included in each table, similar to the new NOBYVAR option.

CI=EQUAL | UMPU | NONE

CL=EQUAL | UMPU | NONE
specifies whether a confidence interval is displayed for � and, if so, what kind. You can specify one or
more of the following values:

EQUAL specifies an equal-tailed confidence interval.

UMPU specifies an interval based on the uniformly most powerful unbiased test ofH0W � D
�0.

NONE requests that no confidence interval be displayed for � .

The values EQUAL and UMPU together request that both types of confidence intervals be displayed.
If the value NONE is specified with one or both of the values EQUAL and UMPU, NONE takes
precedence. For more information, see the section “Two-Independent-Sample Design” on page 10803.
By default, CI=EQUAL.

COCHRAN
requests the Cochran and Cox (1950) approximation of the probability level for the unequal variances
situation. For more information, see the section “Two-Independent-Sample Design” on page 10803.

DATA=SAS-data-set
names the SAS data set for the procedure to use. By default, PROC TTEST uses the most recently
created SAS data set. The input data set can contain summary statistics of the observations instead
of the observations themselves. The number, mean, and standard deviation of the observations are
required for each BY group (one sample and paired differences) or for each class within each BY
group (two samples). For more information about the DATA= option, see the section “Input Data Set
of Statistics” on page 10797.

DIST=LOGNORMAL | NORMAL
specifies the underlying distribution assumed for the data. You can specify the following values:

LOGNORMAL specifies that the underlying distribution is lognormal.

NORMAL specifies that the underlying distribution is normal.

By default, DIST=NORMAL, unless TEST=RATIO is specified, in which case the default is
DIST=LOGNORMAL.

H0=m
requests tests against a null value of m, unless the TOST option is used, in which case m is merely
used to derive the lower and upper equivalence bounds. For the crossover design, the value m applies
for both treatment and period tests. By default, H0=0 when TEST=DIFF (or DIST=NORMAL for
a one-sample design) and H0=1 when TEST=RATIO (or DIST=LOGNORMAL for a one-sample
design).
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NOBYVAR
includes all variables that are specified in the PAIRED or VAR statement together in each output table.
If the NOBYVAR option is not specified, then the BYVAR option is enabled, grouping the results by
the PAIRED and VAR variables.

ORDER=DATA | FORMATTED | FREQ | INTERNAL | MIXED
specifies the order in which to sort the levels of the classification variables (which are specified in the
CLASS statement) and treatment variables (which are specified in the CROSSOVER= option in the
VAR statement).

This option applies to the levels for all classification or treatment variables, except when you use the
ORDER=FORMATTED option with numeric classification or treatment variables that have no explicit
format. With this option, the levels of such variables are ordered by their internal value.

You can specify the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set.

FORMATTED External formatted value, except for numeric variables
that have no explicit format, which are sorted by their
unformatted (internal) value. The sort order is machine-
dependent.

FREQ Descending frequency count; levels that have the greatest
number of observations come first in the order. In the event
of a tie, ORDER=MIXED is used.

INTERNAL Unformatted value. The sort order is machine-dependent.
MIXED Same as ORDER=FORMATTED if the unformatted vari-

able is character-valued; same as ORDER=INTERNAL
otherwise (the unformatted variable is numeric-valued).

For FORMATTED and INTERNAL, the sort order is machine-dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in the “Grouping Data” section of SAS
Programmers Guide: Essentials.

By default, ORDER=MIXED, which corresponds to the ordering in releases previous to SAS 9.2.

PLOTS < (global-plot-options) > < = plot-request< (options) > >
PLOTS < (global-plot-options) > < = (plot-request< (options) > < . . . plot-request< (options) > >) >

controls the plots produced through ODS Graphics. When you specify only one plot-request , you can
omit the parentheses around the plot-request . Here are some examples:

plots=none
plots=(histogram boxplot interval qq profiles agreement)
plots(unpack)=summary
plots(showh0)=interval(type=pergroup)
plots=(summary(unpack) interval(type=period))

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc ttest plots=all;
var oxygen;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 687 in Chapter 24, “Statistical Graphics Using ODS.”

If ODS Graphics is enabled but you do not specify the PLOTS option, then PROC TTEST produces
a default set of plots. (NOTE: The graphical results are unavailable if your input data set contains
summary statistics rather than observation values.)

For a one-sample design, the default plots are the following:

� summary plot (histogram with overlaid normal and kernel densities, box plot, and confidence
interval band) for the input data set

� Q-Q plot for the input data set

� summary plot of bootstrap statistics, if you specify the BOOTSTRAP statement

� Q-Q plot of bootstrap statistics, if you specify the BOOTSTRAP statement

� correlation plot of bootstrap statistics, if you specify the BOOTSTRAP statement

For a two-independent-sample design, the default plots are the following:

� summary plot (comparative histograms with overlaid densities and box plots) for the input data
set

� Q-Q plot for the input data set

� summary plot of bootstrap statistics, if you specify the BOOTSTRAP statement

� Q-Q plot of bootstrap statistics, if you specify the BOOTSTRAP statement

� correlation plot of bootstrap statistics, if you specify the BOOTSTRAP statement

For a paired design, the default plots are the following:

� summary plot (histogram, densities, box plot, and confidence interval) of the difference or ratio
for the input data set

� Q-Q plot of the difference or ratio for the input data set

� profiles plot for the input data set

� agreement plot for the input data set

� summary plot of bootstrap statistics, if you specify the BOOTSTRAP statement

� Q-Q plot of bootstrap statistics, if you specify the BOOTSTRAP statement

� correlation plot of bootstrap statistics, if you specify the BOOTSTRAP statement
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For a crossover design, the default plots are the following:

� comparative histograms with overlaid densities by treatment and period for the input data set

� comparative box plots by treatment and period for the input data set

� Q-Q plots by treatment and period for the input data set

� profiles over treatment plot for the input data set

� agreement of treatments plot for the input data set

For more detailed descriptions of plots, see the section “Interpreting Graphs” on page 10827.

You can specify the following global-plot-options:

ONLY
suppresses the default plots. Only plots that you specifically request are displayed.

SHOWH0

SHOWNULL
shows the null value (as specified by the H0= option in the PROC TTEST statement) in all relevant
plots. For one-sample and paired designs, the null value can appear when you also specify the
SUMMARY, BOOTSTRAP(SUMMARY), BOOTSTRAP(BOX), BOOTSTRAP(INTERVAL),
BOX, or INTERVAL plot-request . For two-independent-sample designs and crossover designs,
the null value can appear when you specify the BOOTSTRAP(INTERVAL) or INTERVAL plot-
request . For crossover designs, the null value can appear only when you specify the INTERVAL
plot-request .

UNPACKPANEL

UNPACK
suppresses paneling. By default, multiple plots can appear in some output panels. Specify this
option to get each plot in a separate panel. You can specify PLOTS(UNPACKPANEL) to unpack
the default plots.

You can specify the following plot-requests:

ALL
produces all appropriate plots. You can specify other plot-requests with ALL; for example, to
request all plots and specify that intervals should be for the period difference in a crossover
design, specify PLOTS=(ALL INTERVAL(TYPE=PERIOD)).

AGREEMENT < TYPE=type >

AGREEMENTPLOT < TYPE=type >
produces an agreement plot for the input data set. This plot is produced by default for paired and
crossover designs, the only designs for which this option is valid.

For paired designs, the second response in each pair is plotted against the first response. For more
information, see the section “Agreement Plots for Paired Designs” on page 10827.

For crossover designs, you can specify the following options:
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TYPE=PERIOD
plots the response in the second period against the response in the first period. For more
information, see the section “Period Agreement Plots for Crossover Designs” on page 10827.

TYPE=TREATMENT
plots the response associated with the second treatment against the response associated with
the first treatment. For more information, see the section “Treatment Agreement Plots for
Crossover Designs” on page 10827.

By default, TYPE=TREATMENT for crossover designs.

BOOTSTRAP < (bootstrap-plot-requests) >

BOOT < (bootstrap-plot-requests) >
controls the bootstrap-related plots that are produced through ODS Graphics.

You can specify the following bootstrap-plot-requests:

BOX

BOXPLOT
produces box plots of bootstrap mean and standard deviation.

A bootstrap confidence interval is shown as a band in the background if the specified value
of the BOOTCI= option in the BOOTSTRAP statement is capable of producing confidence
intervals for the bootstrap statistic.

For more information, see the section “Box Plots” on page 10828.

CORRELATION

CORR
produces a scatter plot of bootstrap standard deviation versus mean statistics with an overlaid
elliptical prediction region.

This correlation plot is produced by default for one-sample, two-sample, and paired designs
if you specify the BOOTSTRAP statement.

For more information, see the section “Bootstrap Correlation Plots” on page 10829.

HISTOGRAM

HIST

HISTDENS
produces histograms along with overlaid normal and kernel densities for bootstrap mean and
standard deviation.

For more information, see the section “Histograms” on page 10828.

INTERVAL

INTERVALPLOT
produces plots of bootstrap confidence intervals for the mean and standard deviation.

For more information, see the section “Confidence Intervals” on page 10828.
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QQ

QQPLOT
produces normal quantile-quantile (Q-Q) plots of the bootstrap mean and standard deviation.
These plots are produced by default for one-sample, two-sample, and paired designs if you
specify the BOOTSTRAP statement.

For more information, see the section “Q-Q Plots” on page 10829.

SUMMARY < UNPACK >

SUMMARYPLOT < UNPACK >
produces bootstrap histogram and box plots together in a single panel, where the plots
share common X axes. These plots are produced by default for one-sample, paired, and
two-independent-sample designs if you specify the BOOTSTRAP statement. For more
information, see the documentation for BOX and HISTOGRAM bootstrap-plot-requests.
You can specify the following option:

UNPACK
plots bootstrap histograms along with overlaid densities in one panel and bootstrap box
plots (along with confidence interval bands, if applicable) in another panel. Note that
specifying PLOTS(ONLY)=BOOTSTRAP(SUMMARY(UNPACK)) is exactly the same
as specifying PLOTS(ONLY)=BOOTSTRAP(BOX HISTOGRAM).

By default, if you specify the BOOTSTRAP statement, then the SUMMARY, QQ, and CORRE-
LATION bootstrap-plot-requests are included unless you exclude them by specifying the ONLY
global-plot-option.

The BOOTSTRAP plot-request is ignored if you omit the BOOTSTRAP statement.

BOX

BOXPLOT
produces a box plot or comparative box plots for the input data set. A box plot is produced by
default for crossover designs. For other designs, a box plot appears by default if you specify the
SUMMARY or ALL plot-request .

For one-sample and paired designs, a confidence interval for the mean is shown as a band in the
background, along with the equivalence bounds if the TOST option is used in the PROC TTEST
statement.

For a two-independent-sample design, comparative box plots (one for each class) are shown. For
a crossover design, comparative box plots for all four combinations of the two treatments and
two periods are shown.

For more information, see the section “Box Plots” on page 10828.

HISTOGRAM

HIST

HISTDENS
produces a histogram or comparative histograms along with overlaid normal and kernel densities
for the input data set. A histogram is produced by default for crossover designs. For other designs,
it appears by default if you specify the SUMMARY or ALL plot-request .
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For one-sample and paired designs, the histogram and densities are based on the test criterion
(which is the mean difference or ratio for a paired design). For a two-independent-sample design,
comparative histograms (one for each class) are shown. For a crossover design, histograms for
all four combinations of the two treatments and two periods are shown.

For more information, see the section “Histograms” on page 10828.

INTERVAL < TYPE=type >

INTERVALPLOT < TYPE=type >
produces plots of confidence interval for means of the input data set.

For a two-independent-sample design, you can specify one of the following options:

TYPE=PERGROUP
shows two separate two-sided confidence intervals, one for each class. You cannot use this
option along with the SHOWH0 global-plot-option.

TYPE=TEST
shows pooled and Satterthwaite confidence intervals.

By default, TYPE=TEST for two-independent-sample designs.

For a crossover design, you can specify the following options:

TYPE=PERGROUP
shows four separate two-sided intervals, one for each treatment-by-period combination. You
cannot use this option along with the SHOWH0 global-plot-option.

TYPE=PERIOD
shows pooled and Satterthwaite confidence intervals for the period difference or ratio. This
option is invalid if you specify the IGNOREPERIOD option in the VAR statement.

TYPE=TREATMENT
shows pooled and Satterthwaite confidence intervals for the treatment difference or ratio.

By default, TYPE=TREATMENT for crossover designs.

For more information, see the section “Confidence Intervals” on page 10828.

NONE
suppresses all plots.

PROFILES < TYPE=type >

PROFILESPLOT < TYPE=type >
produces a profiles plot for the input data set. This plot is produced by default for paired and
crossover designs, the only designs for which this option is valid.

For paired designs, a line is drawn for each observation from left to right connecting the first
response to the second response. For more information, see the section “Profiles for Paired
Designs” on page 10828.

For crossover designs, you can specify one of the following options:
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TYPE=PERIOD
shows response profiles over period, connecting the first period on the left to the second
period on the right for each subject. For more information, see the section “Profiles over
Period for Crossover Designs” on page 10828.

TYPE=TREATMENT
shows response profiles over treatment values, connecting the first treatment on the left to
the second treatment on the right for each observation. For more information, see the section
“Profiles over Treatment for Crossover Designs” on page 10829.

By default, TYPE=TREATMENT for crossover designs.

QQ
QQPLOT

produces a normal quantile-quantile (Q-Q) plot for the input data set. This plot is produced by
default for all designs.

For two-sample designs, separate plots are shown for each class in a single panel. For crossover
design, separate plots are shown for each treatment-by-period combination in a single panel.

For more information, see the section “Q-Q Plots” on page 10829.

SUMMARY < UNPACK >
SUMMARYPLOT < UNPACK >

produces histogram and box plots for the input data set together in a single panel, where the
plots share common X axes. These plots are produced by default for one-sample, paired, and
two-independent-sample designs, the only designs for which this option is valid. For more
information, see the documentation for the BOX and HISTOGRAM plot-requests. You can
specify the following option:

UNPACK
plots histograms along with overlaid densities in one panel and box plots (along with
confidence interval bands, for one-sample and paired designs) in another panel. Note
that specifying PLOTS(ONLY)=SUMMARY(UNPACK) is exactly the same as specifying
PLOTS(ONLY)=(BOX HISTOGRAM).

SIDES=2 | L | U
SIDED=2 | L | U
SIDE=2 | L | U

specifies the number of sides (or tails) and direction of the statistical tests and test-based confidence
intervals. The values are interpreted as follows:

2 specifies two-sided tests and confidence intervals.

L specifies lower one-sided tests (in which the alternative hypothesis indicates a parameter
value less than the null value) and lower one-sided confidence intervals between minus
infinity and the upper confidence limit.

U specifies upper one-sided tests (in which the alternative hypothesis indicates a parameter
value greater than the null value) and upper one-sided confidence intervals between the
lower confidence limit and infinity.

By default, SIDES=2.
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TEST=DIFF | RATIO
specifies the test criterion. This option is ignored for one-sample designs. You can specify the following
values:

DIFF tests the difference of means.

RATIO tests the ratio of means.

By default, TEST=DIFF, unless you specify DIST=LOGNORMAL, in which case the default is
TEST=RATIO.

TOST ( < lower , > upper )
performs Schuirmann’s TOST equivalence test. The upper equivalence bound must be specified. If
TEST=DIFF, then the default value for the lower equivalence bound is 2m�upper , where m is the
value of the H0= option. If TEST=RATIO, then the default value for lower is m / upper .

BOOTSTRAP Statement
BOOTSTRAP < / options > ;

The BOOTSTRAP statement requests bootstrap standard error, bias estimates, and confidence intervals.

These bootstrap statistics are currently available only for one-sample, paired, and two-sample designs and
only for analyses that assume normal data—although the bootstrap methods themselves do not necessarily
assume normality.

Bootstrap results are unavailable if you specify the TEST=RATIO, DIST=LOGNORMAL, or TOST option
in the PROC TTEST statement; if you specify the CROSSOVER= option in the VAR statement; or if you
specify the WEIGHT statement. They are also unavailable if your input data set contains summary statistics
rather than raw observed values.

The sample statistics for which bootstrap standard error, bias estimates, and confidence intervals are provided
are as follows:

� For a one-sample design: mean and standard deviation of the observations

� For a paired design: mean and standard deviation of the paired difference—that is, the difference
between the first and second members of an observation pair

� For a two-sample design: mean, pooled standard deviation, and unpooled standard deviation of the
class difference—that is, the difference between an observation from the first class and an observation
from the second class

For more information about how these statistics are computed, see the section “Statistics That Are Resampled”
on page 10814.

You can specify the BOOTSTRAP plot-request option in the PROC TTEST statement to request plots that
are based on bootstrap samples.



BOOTSTRAP Statement F 10793

Summary of Options

Table 128.4 summarizes the options available in the BOOTSTRAP statement.

Table 128.4 Summary of Options in BOOTSTRAP Statement

Option Description

BOOTCI= Produces bootstrap confidence intervals for the mean and variability parameter estimates
BOOTDATA= Specifies the bootstrap output data set
NSAMPLES= Specifies the number of bootstrap sample data sets (replicates)
SEED= Provides the seed that initializes the random number stream

Dictionary of Options

BOOTCI < = < BC | BOOTT | EXPANDEDPERC | NORMAL | PERCENTILE | TBOOTSE > >
produces bootstrap-based confidence intervals. You can request the following types of bootstrap
confidence interval:

BC produces bias-corrected percentile intervals.

BOOTT produces bootstrap t intervals, which use a traditional standard error estimate and
quantiles of the bootstrap distribution of the t statistic.

EXPANDEDPERC produces percentile-based confidence intervals that include a narrowness bias
adjustment.

NORMAL produces normal-based confidence intervals that use the bootstrap standard error
estimate.

PERCENTILE produces percentile-based confidence intervals.

TBOOTSE produces t-based confidence intervals that use the bootstrap standard error estimate.

The default option is BOOTCI=BC.

Table 128.5 shows which analysis parameters are supported for each type of bootstrap confidence
interval. A bullet enclosed in parentheses indicates that the confidence limits are the same as for the
other method for the same parameter.

Table 128.5 Parameters That Are Supported for Each Type of
Bootstrap Confidence Interval in the BOOTSTRAP
Statement

BOOTCI Type

Design Parameter Method BC BOOTT EXPERC NORMAL PERC TBOOTSE
One-sample Mean � � � � � �

Std Dev � �

Paired Mean (1–2) � � � � � �

Std Dev (1–2) � �

Two-sample Mean (1–2) Pooled � � � � � �
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Table 128.5 continued

BOOTCI Type

Design Parameter Method BC BOOTT EXPERC NORMAL PERC TBOOTSE
Mean (1–2) Satterthwaite (�) � � (�) (�) �

Std Dev (1–2) Pooled � �

Std Dev (1–2) Satterthwaite � �

All six types include confidence intervals for the mean parameter estimate on which the usual hypothesis
test is based, for example, the mean for a one-sample design or the mean difference for a paired or
two-sample design. For BOOTCI=BC and BOOTCI=PERCENTILE, confidence intervals based on the
variability parameter estimate are also produced; these are based on the variability parameter estimate
that is used to compute the standard error of the usual hypothesis test for the mean parameter, for
example, the standard deviation for a one-sample design or the standard deviation of the difference for
a paired or two-sample design.

The ALPHA= and SIDES= options in the PROC TTEST statement set the direction and level of
significance that is used in constructing the bootstrap confidence intervals.

For more information about the bootstrap confidence intervals supported by PROC TTEST, see the
section “Bootstrap Confidence Intervals” on page 10816.

BOOTDATA=SAS-data-set
specifies the SAS data set that contains the bootstrap sample data when you use a BOOTSTRAP
statement. This data set has the number of observations that you specify in the NSAMPLES= option
and contains the mean and standard deviation estimates that are calculated for each bootstrap sample.

NSAMPLES=n
specifies the number of bootstrap sample data sets (replicates). The value must be greater than 1. By
default, NSAMPLES=10000.

SEED=n
provides the seed that initializes the random number stream for generating the bootstrap sample data
sets (replicates). If you do not specify the SEED= value, or if you specify a value less than or equal to
0, the seed is generated from reading the time of day from the computer’s clock.

BY Statement
BY variables ;

You can specify a BY statement in PROC TTEST to obtain separate analyses of observations in groups that
are defined by the BY variables. When a BY statement appears, the procedure expects the input data set to be
sorted in order of the BY variables. If you specify more than one BY statement, only the last one specified is
used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.
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� Specify the NOTSORTED or DESCENDING option in the BY statement in the TTEST procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the “Grouping Data” section of SAS Programmers
Guide: Essentials. For more information about the DATASETS procedure, see the discussion in the Base
SAS Procedures Guide.

CLASS Statement
CLASS variable ;

A CLASS statement giving the name of the classification (or grouping) variable must accompany the PROC
TTEST statement in the two-independent-sample case. It should be omitted for the one-sample, paired, and
AB/BA crossover designs. If it is used without the VAR statement, all numeric variables in the input data set
(except those that appear in the CLASS, BY, FREQ, or WEIGHT statement) are included in the analysis.

The classification variable must have two, and only two, levels. PROC TTEST divides the observations into
the two groups for the t test by using the levels of this variable. You can use either a numeric or a character
variable in the CLASS statement.

Classification levels are determined from the formatted values of the CLASS variable. Thus, you can use
formats to define group levels. For more information, see the discussions of the FORMAT procedure, the
FORMAT statement, formats, and informats in SAS Formats and Informats: Reference.

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a variable that contains the frequency of occurrence of each
observation. PROC TTEST treats each observation as if it appears n times, where n is the value of the FREQ
variable for the observation. If the value is not an integer, only the integer portion is used. If the frequency
value is less than 1 or is missing, the observation is not used in the analysis. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. The FREQ statement cannot be used if the DATA=
data set contains statistics instead of the original observations.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=leforinforref&docsetTarget=titlepage.htm
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PAIRED Statement
PAIRED pair-lists ;

The pair-lists in the PAIRED statement identifies the variables to be compared in paired comparisons. You
can use one or more pair-lists. Variables or lists of variables are separated by an asterisk (*) or a colon (:).
The asterisk requests that each variable on the left be compared with each variable on the right. The colon
requests that the first variable on the left be compared with the first on the right, the second on the left with
the second on the right, and so on. The number of variables on the left must equal the number on the right
when the colon is used. The differences are calculated by taking the variable on the left minus the variable on
the right for both the asterisk and colon. A pair that is formed by a variable with itself is ignored. Use the
PAIRED statement only for paired comparisons. The CLASS and VAR statements cannot be used with the
PAIRED statement.

Examples of the use of the asterisk and the colon are shown in Table 128.6.

Table 128.6 PAIRED Statement in the TTEST Procedure

These PAIRED Statements Yield These Comparisons

PAIRED A*B; A-B

PAIRED A*B C*D; A-B and C-D

PAIRED (A B)*(C D); A-C, A-D, B-C, and B-D

PAIRED (A B)*(C B); A-C, A-B, and B-C

PAIRED (A1-A2)*(B1-B2); A1-B1, A1-B2, A2-B1, and A2-B2

PAIRED (A1-A2):(B1-B2); A1-B1 and A2-B2

VAR Statement
VAR variables < / options > ;

The VAR statement names the variables to be used in the analyses. One-sample comparisons are conducted
when the VAR statement is used without the CROSSOVER= option or CLASS statement. Two-independent-
sample comparisons are conducted when the VAR statement is used with a CLASS statement.

An AB/BA crossover analysis is conducted when the CROSSOVER= option is used in the VAR statement. In
this case, you must specify an even number of variables. Each set of two variables represents the responses in
the first and second periods of the AB/BA crossover design. For example, if you use the CROSSOVER=
option and specify VAR x1 x2 x3 x4, then you will get two analyses. One analysis will have x1 as the
period 1 response and x2 as the period 2 response. The other analysis will have x3 as the period 1 response
and x4 as the period 2 response.

The VAR statement cannot be used with the PAIRED statement. If the VAR statement is omitted, all numeric
variables in the input data set (except a numeric variable that appears in the BY, CLASS, FREQ, or WEIGHT
statement) are included in the analysis.

You can specify the following options after a slash (/):



WEIGHT Statement F 10797

CROSSOVER= ( variable1 variable2 )
specifies the variables that represent the treatment applied in each of the two periods in an AB/BA
crossover design. The treatment variables must have two, and only two, levels. For any particular
observation, the levels for the two variables must be different, due to the restrictions of the AB/BA
crossover design. You can use either numeric or character variables.

Treatment levels are determined from the formatted values of the variables. Thus, you can use formats
to define the treatment levels. For more information, see the discussions of the FORMAT procedure,
the FORMAT statement, formats, and informats in SAS Formats and Informats: Reference.

IGNOREPERIOD
ignores the period effect—that is, the period effect is assumed to be equal to 0 (if TEST=DIFF) or
1 (if TEST=RATIO). This assumption increases the degrees of freedom for the test of the treatment
difference by 1 and is usually more powerful, but it risks incorrect results if there is actually a period
effect.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement weights each observation in the input data set by the value of the variable. The
values of the variable can be nonintegral, and they are not truncated. Observations that have negative, zero,
or missing values for the variable are not used in the analyses. Each observation is assigned a weight of 1
when the WEIGHT statement is not used. The WEIGHT statement cannot be used with an input data set of
summary statistics.

Details: TTEST Procedure

Input Data Set of Statistics
PROC TTEST accepts data containing either observation values or summary statistics. Observation values
are supported for all analyses, whereas summary statistics are supported only for a subset of analyses. If the
analysis involves the paired design, the AB/BA crossover design, or the lognormal distributional assumption
(DIST=LOGNORMAL), then observation values must be used. The graphical results are unavailable if your
input data set contains summary statistics rather than raw observed values.

PROC TTEST assumes that the DATA= data set contains statistics if it contains a character variable with
name _TYPE_ or _STAT_. The TTEST procedure expects this character variable to contain the names of
statistics. If both _TYPE_ and _STAT_ variables exist and are of type character, PROC TTEST expects
_TYPE_ to contain the names of statistics including ‘N’, ‘MEAN’, and ‘STD’ for each BY group (or for
each class within each BY group for two-sample t tests). If no ‘N’, ‘MEAN’, or ‘STD’ statistics exist, an
error message is printed.

FREQ, WEIGHT, and PAIRED statements cannot be used with input data sets of statistics. BY, CLASS,
and VAR statements are the same regardless of data set type. For paired comparisons, see the _DIF_ values

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=leforinforref&docsetTarget=titlepage.htm
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for the _TYPE_=T observations in output produced by the OUTSTATS= option in the PROC COMPARE
statement (see the Base SAS Procedures Guide).

Missing Values
An observation is omitted from the calculations if it has a missing value for either the CLASS variable, a
CROSSOVER= variable, a PAIRED variable, the variable to be tested (in a one-sample or two-independent-
sample design), or either of the two response variables (in a crossover design). If more than one variable or
pair of variables is listed in the VAR statement, a missing value in one variable or pair does not eliminate the
observation from the analysis of other nonmissing variables or variable pairs.

Computational Methods
This section describes the computational formulas for the estimates, confidence limits, and tests for each
analysis in the TTEST procedure. The first subsection defines some common notation. The second subsection
discusses the distinction between arithmetic and geometric means. The third subsection explains the concept
of the coefficient of variation. The next four subsections address the four supported designs (one-sample,
paired, two-independent-sample, and AB/BA crossover). The content in each of those subsections is divided
into separate discussions according to different values of the DIST= and TEST= options in the PROC TTEST
statement. The next-to-last subsection describes TOST equivalence analyses. The last subsection discusses
bootstrap methods.

Common Notation

Table 128.7 displays notation for some of the commonly used symbols.

Table 128.7 Common Notation

Symbol Description

� Population value of (arithmetic) mean

�0 Null value of test (value of H0= option in PROC TTEST statement)

�2 Population variance

� Population value of standard deviation

 Population value of geometric mean

CV Population value of coefficient of variation (ratio of population
standard deviation and population arithmetic mean)

˛ Value of ALPHA= option in PROC TTEST statement

tp;� pth percentile of t distribution with � degrees of freedom (df )

Fp;�1;�2 pth percentile of F distribution with �1 numerator df and �2 de-
nominator df

�2p;� pth percentile of chi-square distribution with � df

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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Arithmetic and Geometric Means

The arithmetic mean (more commonly called simply the mean) of the distribution of a random variable X is
its expected value, E.X/. The arithmetic mean is the natural parameter of interest for a normal distribution
because the distribution of the difference of normal random variables has a known normal distribution, and
the arithmetic mean of a normal difference is equal to the difference of the individual arithmetic means. (No
such convenient property holds for geometric means with normal data, with either differences or ratios.)

The usual estimate of an arithmetic mean is the sum of the values divided by the number of values:

arithmetic mean D
1

n

nX
iD1

yi

The geometric mean of the distribution of a random variable X is exp.E.log.X//, the exponentiation of
the mean of the natural logarithm. The geometric mean is the natural parameter of interest for a lognormal
distribution because the distribution of a ratio of lognormal random variables has a known lognormal
distribution, and the geometric mean of a lognormal ratio is equal to the ratio of the individual geometric
means. (No such convenient property holds for arithmetic means with lognormal data, with either differences
or ratios.)

The usual estimate of a geometric mean is the product of the values raised to the power 1=n, where n is the
number of values:

geometric mean D

 
nY
iD1

yi

! 1
n

Coefficient of Variation

The coefficient of variation (abbreviated “CV”) of the distribution of a random variable X is the ratio of
the standard deviation to the (arithmetic) mean, or

p
Var.X/=E.X/. Conceptually, it is a measure of the

variability of X expressed in units corresponding to the mean of X.

For lognormal data, the CV is the natural measure of variability (rather than the standard deviation) because
the CV is invariant to multiplication of a lognormal variable by a constant. For a two-independent-sample
design, the assumption of equal CVs on a lognormal scale is analogous to the assumption of equal variances
on the normal scale. When the CVs of two independent samples of lognormal data are assumed equal, the
pooled estimate of variability is used.

One-Sample Design

Define the following notation:

n? D number of observations in data set

yi D value of i th observation, i 2 f1; : : : ; n?g

fi D frequency of i th observation, i 2 f1; : : : ; n?g

wi D weight of i th observation, i 2 f1; : : : ; n?g

n D sample size D
n?X
i

fi
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Normal Data (DIST=NORMAL)
The mean estimate Ny, standard deviation estimate s, and standard error SE are computed as follows:

Ny D

Pn?

i fiwiyiPn?

i fiwi

s D

 Pn?

i fiwi .yi � Ny/
2

n � 1

! 1
2

SE D
s�Pn?

i fiwi

� 1
2

The 100(1 – ˛)% confidence interval for the mean � is�
Ny � t1�˛

2
;n�1SE ; Ny C t1�˛

2
;n�1SE

�
; SIDES=2�

�1 ; Ny C t1�˛;n�1SE
�
; SIDES=L�

Ny � t1�˛;n�1SE ; 1
�
; SIDES=U

The t value for the test is computed as

t D
Ny � �0

SE
The p-value of the test is computed as

p-value D

8<:
P
�
t2 > F1�˛;1;n�1

�
; two-sided

P
�
t < t˛;n�1

�
; lower one-sided

P
�
t > t1�˛;n�1

�
; upper one-sided

The equal-tailed confidence interval for the standard deviation (CI=EQUAL) is based on the acceptance
region of the test of H0W � D �0 that places an equal amount of area (˛

2
) in each tail of the chi-square

distribution:(
�2˛
2
;n�1
�
.n � 1/s2

�20
� �21�˛

2
;n�1

)
The acceptance region can be algebraically manipulated to give the following 100(1 – ˛)% confidence
interval for �2:0@ .n � 1/s2

�2
1�˛

2
;n�1

;
.n � 1/s2

�2˛
2
;n�1

1A
Taking the square root of each side yields the 100(1 – ˛)% CI=EQUAL confidence interval for � :0B@

0@ .n � 1/s2
�2
1�˛

2
;n�1

1A 1
2

;

0@.n � 1/s2
�2˛
2
;n�1

1A 1
2

1CA
The other confidence interval for the standard deviation (CI=UMPU) is derived from the uniformly most
powerful unbiased test of H0W � D �0 (Lehmann 1986). This test has acceptance region(

c1 �
.n � 1/s2

�20
� c2

)
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where the critical values c1 and c2 satisfyZ c2

c1

fn�1.y/dy D 1 � ˛

and Z c2

c1

yfn�1.y/dy D .n � 1/.1 � ˛/

where f�.y/ is the PDF of the chi-square distribution with � degrees of freedom. This acceptance region can
be algebraically manipulated to arrive at

P

�
.n � 1/s2

c2
� �2 �

.n � 1/s2

c1

�
D 1 � ˛

where c1 and c2 solve the preceding two integrals. To find the area in each tail of the chi-square distribution
to which these two critical values correspond, solve c1 D �21�˛2;n�1 and c2 D �2˛1;n�1 for ˛1 and ˛2; the
resulting ˛1 and ˛2 sum to ˛. Hence, a 100(1 – ˛)% confidence interval for �2 is given by 

.n � 1/s2

�21�˛2;n�1
;
.n � 1/s2

�2˛1;n�1

!
Taking the square root of each side yields the 100(1 – ˛)% CI=UMPU confidence interval for � :0@ .n � 1/s2

�21�˛2;n�1

! 1
2

;

 
.n � 1/s2

�2˛1;n�1

! 1
2

1A

Lognormal Data (DIST=LOGNORMAL)
The DIST=LOGNORMAL analysis is handled by log-transforming the data and null value, performing a
DIST=NORMAL analysis, and then transforming the results back to the original scale. This simple technique
is based on the properties of the lognormal distribution as discussed in Johnson, Kotz, and Balakrishnan
(1994, Chapter 14).

Taking the natural logarithms of the observation values and the null value, define

zi D log.yi / ; i 2 f1; : : : ; n?g
0 D log.�0/

First, a DIST=NORMAL analysis is performed on fzig with the null value 0, producing the mean estimate
Nz, the standard deviation estimate sz , a t value, and a p-value. The geometric mean estimate O and the CV
estimate bCV of the original lognormal data are computed as follows:

O D exp. Nz/

bCV D �exp.s2z / � 1� 12
The t value and p-value remain the same. The confidence limits for the geometric mean and CV on the
original lognormal scale are computed from the confidence limits for the arithmetic mean and standard
deviation in the DIST=NORMAL analysis on the log-transformed data, in the same way that O is derived
from Nz and bCV is derived from sz .
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Paired Design

Define the following notation:

n? D number of observations in data set

y1i D value of i th observation for first PAIRED variable, i 2 f1; : : : ; n?g

y2i D value of i th observation for second PAIRED variable, i 2 f1; : : : ; n?g

fi D frequency of i th observation, i 2 f1; : : : ; n?g

wi D weight of i th observation, i 2 f1; : : : ; n?g

n D sample size D
n?X
i

fi

Normal Difference (DIST=NORMAL TEST=DIFF)
The analysis is the same as the analysis for the one-sample design in the section “Normal Data
(DIST=NORMAL)” on page 10800 based on the differences

di D y1i � y2i ; i 2 f1; : : : ; n
?
g

Lognormal Ratio (DIST=LOGNORMAL TEST=RATIO)
The analysis is the same as the analysis for the one-sample design in the section “Lognormal Data
(DIST=LOGNORMAL)” on page 10801 based on the ratios

ri D y1i=y2i ; i 2 f1; : : : ; n
?
g

Normal Ratio (DIST=NORMAL TEST=RATIO)
The hypothesis H0W�1=�2 D �0, where �1 and �2 are the means of the first and second PAIRED variables,
respectively, can be rewritten as H0W�1 ��0�2 D 0. The t value and p-value are computed in the same way
as in the one-sample design in the section “Normal Data (DIST=NORMAL)” on page 10800 based on the
transformed values

zi D y1i � �0y2i ; i 2 f1; : : : ; n
?
g

Estimates and confidence limits are not computed for this situation.
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Two-Independent-Sample Design

Define the following notation:

n?1 D number of observations at first class level

n?2 D number of observations at second class level

y1i D value of i th observation at first class level, i 2 f1; : : : ; n?1g

y2i D value of i th observation at second class level, i 2 f1; : : : ; n?2g

f1i D frequency of i th observation at first class level, i 2 f1; : : : ; n?1g

f2i D frequency of i th observation at second class level, i 2 f1; : : : ; n?2g

w1i D weight of i th observation at first class level, i 2 f1; : : : ; n?1g

w2i D weight of i th observation at second class level, i 2 f1; : : : ; n?2g

n1 D sample size for first class level D
n?1X
i

f1i

n2 D sample size for second class level D
n?2X
i

f2i

Normal Difference (DIST=NORMAL TEST=DIFF)
Observations at the first class level are assumed to be distributed as N.�1; �21 /, and observations at the second
class level are assumed to be distributed as N.�2; �22 /, where �1, �2, �1, and �2 are unknown.

The within-class-level mean estimates ( Ny1 and Ny2), standard deviation estimates (s1 and s2), standard errors
(SE1 and SE2), and confidence limits for means and standard deviations are computed in the same way as for
the one-sample design in the section “Normal Data (DIST=NORMAL)” on page 10800.

The mean difference �1 � �2 D �d is estimated by

Nyd D Ny1 � Ny2

Under the assumption of equal variances (�21 D �
2
2 ), the pooled estimate of the common standard deviation

is

sp D

 
.n1 � 1/s

2
1 C .n2 � 1/s

2
2

n1 C n2 � 2

! 1
2

The pooled standard error (the estimated standard deviation of Nyd assuming equal variances) is

SEp D sp

0@ 1Pn?1
iD1 f1iw1i

C
1Pn?2

iD1 f2iw2i

1A 1
2

The pooled 100(1 – ˛)% confidence interval for the mean difference �d is�
Nyd � t1�˛

2
;n1Cn2�2SEp ; Nyd C t1�˛

2
;n1Cn2�2SEp

�
; SIDES=2�

�1 ; Nyd C t1�˛;n1Cn2�2SEp
�
; SIDES=L�

Nyd � t1�˛;n1Cn2�2SEp ; 1
�
; SIDES=U
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The t value for the pooled test is computed as

tp D
Nyd � �0

SEp

The p-value of the test is computed as

p-value D

8<:
P
�
t2p > F1�˛;1;n1Cn2�2

�
; two-sided

P
�
tp < t˛;n1Cn2�2

�
; lower one-sided

P
�
tp > t1�˛;n1Cn2�2

�
; upper one-sided

Under the assumption of unequal variances (the Behrens-Fisher problem), the unpooled standard error is
computed as

SEu D

0@ s21Pn?1
iD1 f1iw1i

C
s22Pn?2

iD1 f2iw2i

1A 1
2

Satterthwaite’s (1946) approximation for the degrees of freedom, extended to accommodate weights, is
computed as

dfu D
SE4u

s41

.n1�1/

�Pn?
1
iD1

f1iw1i

�2 C s42

.n2�1/

�Pn?
2
iD1

f2iw2i

�2
The unpooled Satterthwaite 100(1 – ˛)% confidence interval for the mean difference �d is�

Nyd � t1�˛
2
;dfuSEu ; Nyd C t1�˛

2
;dfuSEu

�
; SIDES=2�

�1 ; Nyd C t1�˛;dfuSEu
�
; SIDES=L�

Nyd � t1�˛;dfuSEu ; 1
�
; SIDES=U

The t value for the unpooled Satterthwaite test is computed as

tu D
Nyd � �0

SEu

The p-value of the unpooled Satterthwaite test is computed as

p-value D

8<:
P
�
t2u > F1�˛;1;dfu

�
; two-sided

P
�
tu < t˛;dfu

�
; lower one-sided

P
�
tu > t1�˛;dfu

�
; upper one-sided

When the COCHRAN option is specified in the PROC TTEST statement, the Cochran and Cox (1950)
approximation of the p-value of the tu statistic is the value of p such that

tu D

 
s21Pn?

1
iD1

f1iw1i

!
t1 C

 
s22Pn?

2
iD1

f2iw2i

!
t2 

s21Pn?
1
iD1

f1iw1i

!
C

 
s22Pn?

2
iD1

f2iw2i

!
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where t1 and t2 are the critical values of the t distribution corresponding to a significance level of p and
sample sizes of n1 and n2, respectively. The number of degrees of freedom is undefined when n1 ¤ n2. In
general, the Cochran and Cox test tends to be conservative (Lee and Gurland 1975).

The 100(1 – ˛)% CI=EQUAL and CI=UMPU confidence intervals for the common population standard devi-
ation � assuming equal variances are computed as discussed in the section “Normal Data (DIST=NORMAL)”
on page 10800 for the one-sample design, except replacing s2 by s2p and .n � 1/ by .n1 C n2 � 1/.

The folded form of the F statistic, F 0, tests the hypothesis that the variances are equal (Steel and Torrie 1980),
where

F 0 D
max.s21 ; s

2
2/

min.s21 ; s
2
2/

A test of F 0 is a two-tailed F test because you do not specify which variance you expect to be larger. The
p-value (Steel and Torrie 1980) is equal-tailed and is computed as

p-value D 2P
�
F 0 > F1�˛;dfa;dfb

�
D

�
P
�
s21=s

2
2 > F1�˛;df1;df2

�
C P

�
s22=s

2
1 � F1�˛;df2;df1

�
; s21=s

2
2 � 1

P
�
s21=s

2
2 � F1�˛;df1;df2

�
C P

�
s22=s

2
1 > F1�˛;df2;df1

�
; s21=s

2
2 < 1

where df1, df2, dfa, and dfb are the degrees of freedom that correspond to s21 , s21 , max.s21 ; s
2
2/, and

min.s21 ; s
2
2/, respectively.

Note that the p-value is similar to the probability p? of a greater F 0 value under the null hypothesis that
�21 D �

2
2 ,

p? D

�
P
�
s21=s

2
2 > F1�˛;df1;df2

�
C P

�
s22=s

2
1 � F1�˛;df1;df2

�
; s21=s

2
2 � 1

P
�
s21=s

2
2 � F1�˛;df1;df2

�
C P

�
s22=s

2
1 > F1�˛;df1;df2

�
; s21=s

2
2 < 1

The F 0 test is not very robust to violations of the assumption that the data are normally distributed, and thus
it is not recommended without confidence in the normality assumption.

Lognormal Ratio (DIST=LOGNORMAL TEST=RATIO)
The DIST=LOGNORMAL analysis is handled by log-transforming the data and null value, perform-
ing a DIST=NORMAL analysis, and then transforming the results back to the original scale. See the
section “Normal Data (DIST=NORMAL)” on page 10800 for the one-sample design for details on
how the DIST=NORMAL computations for means and standard deviations are transformed into the
DIST=LOGNORMAL results for geometric means and CVs. As mentioned in the section “Coefficient of
Variation” on page 10799, the assumption of equal CVs on the lognormal scale is analogous to the assumption
of equal variances on the normal scale.

Normal Ratio (DIST=NORMAL TEST=RATIO)
The distributional assumptions, equality of variances test, and within-class-level mean estimates ( Ny1 and Ny2),
standard deviation estimates (s1 and s2), standard errors (SE1 and SE2), and confidence limits for means and
standard deviations are the same as in the section “Normal Difference (DIST=NORMAL TEST=DIFF)” on
page 10803 for the two-independent-sample design.

The mean ratio �1=�2 D �r is estimated by

O�r D Ny1= Ny2
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No estimates or confidence intervals for the ratio of standard deviations are computed.

Under the assumption of equal variances (�21 D �
2
2 ), the pooled confidence interval for the mean ratio is the

Fieller (1954) confidence interval, extended to accommodate weights. Let

ap D
s2pt

2
1�˛

2
;n1Cn2�2Pn?2

iD1 f2iw2i

� Ny22

bp D Ny1 Ny2

cp D
s2pt

2
1�˛

2
;n1Cn2�2Pn?1

iD1 f1iw1i

� Ny21

where sp is the pooled standard deviation defined in the section “Normal Difference (DIST=NORMAL
TEST=DIFF)” on page 10803 for the two-independent-sample design. If ap � 0 (which occurs when Ny2 is
too close to zero), then the pooled two-sided 100(1 – ˛)% Fieller confidence interval for �r does not exist. If
a < 0, then the interval is0@�bp

ap
C

�
b2p � apcp

� 1
2

ap
;�
bp

ap
�

�
b2p � apcp

� 1
2

ap

1A
For the one-sided intervals, let

a?p D
s2pt

2
1�˛;n1Cn2�2Pn?2
iD1 f2iw2i

� Ny22

c?p D
s2pt

2
1�˛;n1Cn2�2Pn?1
iD1 f1iw1i

� Ny21

which differ from ap and cp only in the use of ˛ in place of ˛=2. If a?p � 0, then the pooled one-sided 100(1
– ˛)% Fieller confidence intervals for �r do not exist. If a?p < 0, then the intervals are0@�1 ;�

bp

a?p
�

�
b2p � a

?
pc
?
p

� 1
2

a?p

1A; SIDES=L

0@�bp
a?p
C

�
b2p � a

?
pc
?
p

� 1
2

a?p
; 1

1A; SIDES=U

The pooled t test assuming equal variances is the Sasabuchi (1988a, b) test. The hypothesis H0W�r D �0 is
rewritten as H0W�1 � �0�2 D 0, and the pooled t test in the section “Normal Difference (DIST=NORMAL
TEST=DIFF)” on page 10803 for the two-independent-sample design is conducted on the original y1i values
(i 2 f1; : : : ; n?1g) and transformed values of y2i

y?2i D �0y2i ; i 2 f1; : : : ; n
?
2g

with a null difference of 0. The t value for the Sasabuchi pooled test is computed as

tp D
Ny1 � �0 Ny2

sp

 
1Pn?

1
iD1

f1iw1i

C
�20Pn?

2
iD1

f2iw2i

! 1
2
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The p-value of the test is computed as

p-value D

8<:
P
�
t2p > F1�˛;1;n1Cn2�2

�
; two-sided

P
�
tp < t˛;n1Cn2�2

�
; lower one-sided

P
�
tp > t1�˛;n1Cn2�2

�
; upper one-sided

Under the assumption of unequal variances, the unpooled Satterthwaite-based confidence interval for the
mean ratio �r is computed according to the method in Dilba, Schaarschmidt, and Hothorn (2007, the section
“Two-sample Problem” on page 20), extended to accommodate weights. The degrees of freedom for the
confidence interval are based on the same approximation as in Tamhane and Logan (2004) for the unpooled t
test but with the null mean ratio �0 replaced by the maximum likelihood estimate O�r D Ny1= Ny2:

dfu D

 
s21Pn?

1
iD1

f1iw1i

C
O�2r s

2
2Pn?

2
iD1

f2iw2i

!2
s41

.n1�1/

�Pn?
1
iD1

f1iw1i

�2 C O�4r s
4
2

.n2�1/

�Pn?
2
iD1

f2iw2i

�2
Let

au D
s22 t

2
1�˛

2
;dfuPn?2

iD1 f2iw2i

� Ny22

bu D Ny1 Ny2

cu D
s21 t

2
1�˛

2
;dfuPn?1

iD1 f1iw1i

� Ny21

where s1 and s2 are the within-class-level standard deviations defined in the section “Normal Difference
(DIST=NORMAL TEST=DIFF)” on page 10803 for the two-independent-sample design. If au � 0 (which
occurs when Ny2 is too close to zero), then the unpooled Satterthwaite-based two-sided 100(1 – ˛)% confidence
interval for �r does not exist. If au < 0, then the interval is0@�bu

au
C

�
b2u � aucu

� 1
2

au
;�
bu

au
�

�
b2u � aucu

� 1
2

au

1A
The t test assuming unequal variances is the test derived in Tamhane and Logan (2004). The hypothesis
H0W�r D �0 is rewritten as H0W�1 � �0�2 D 0, and the Satterthwaite t test in the section “Normal
Difference (DIST=NORMAL TEST=DIFF)” on page 10803 for the two-independent-sample design is
conducted on the original y1i values (i 2 f1; : : : ; n?1g) and transformed values of y2i

y?2i D �0y2i ; i 2 f1; : : : ; n
?
2g

with a null difference of 0. The degrees of freedom are computed as

dfu D

 
s21Pn?

1
iD1

f1iw1i

C
�20s

2
2Pn?

2
iD1

f2iw2i

!2
s41

.n1�1/

�Pn?
1
iD1

f1iw1i

�2 C �40s
4
2

.n2�1/

�Pn?
2
iD1

f2iw2i

�2
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The t value for the Satterthwaite-based unpooled test is computed as

tu D
Ny1 � �0 Ny2 

s21Pn?
1
iD1

f1iw1i

C
�20s

2
2Pn?

2
iD1

f2iw2i

! 1
2

The p-value of the test is computed as

p-value D

8̂̂̂<̂
ˆ̂:
P
�
t2u > F1�˛;1;df?u

�
; two-sided

P
�
tu < t˛;df?u

�
; lower one-sided

P
�
tu > t1�˛;df?u

�
; upper one-sided

AB/BA Crossover Design

Let “A” and “B” denote the two treatment values. Define the following notation:

n?1 D number of observations with treatment sequence AB

n?2 D number of observations with treatment sequence BA

y11i D response value of i th observation in sequence AB during period 1, i 2 f1; : : : ; n?1g

y12i D response value of i th observation in sequence AB during period 2, i 2 f1; : : : ; n?1g

y21i D response value of i th observation in sequence BA during period 1, i 2 f1; : : : ; n?2g

y22i D response value of i th observation in sequence BA during period 2, i 2 f1; : : : ; n?2g

So fy11i ; : : : ; y11n?1 g and fy22i ; : : : ; y22n?2 g are all observed at treatment level A, and fy12i ; : : : ; y12n?2 g and
fy21i ; : : : ; y21n?1

g are all observed at treatment level B.

Define the period difference for an observation as the difference between period 1 and period 2 response
values:

pdkji D yk1i � yk2i

for k 2 f1; 2g and i 2 f1; : : : ; n?
k
g . Similarly, the period ratio is the ratio between period 1 and period 2

response values:

prkji D yk1i=yk2i

The crossover difference for an observation is the difference between treatment A and treatment B response
values:

cdkji D
�
yk1i � yk2i ; k D 1

yk2i � yk1i ; k D 2

Similarly, the crossover ratio is the ratio between treatment A and treatment B response values:

crkji D
�
yk1i=yk2i ; k D 1

yk2i=yk1i ; k D 2

In the absence of the IGNOREPERIOD option in the PROC TTEST statement, the data are split into
two groups according to treatment sequence and analyzed as a two-independent-sample design. If
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DIST=NORMAL, then the analysis of the treatment effect is based on the half period differences fpdkji=2g,
and the analysis for the period effect is based on the half crossover differences fcdkji=2g. The computations
for the normal difference analysis are the same as in the section “Normal Difference (DIST=NORMAL
TEST=DIFF)” on page 10803 for the two-independent-sample design. The normal ratio analysis without the
IGNOREPERIOD option is not supported for the AB/BA crossover design. If DIST=LOGNORMAL, then
the analysis of the treatment effect is based on the square root of the period ratios fpprkjig, and the analysis
for the period effect is based on the square root of the crossover ratios fpcrkjig. The computations are the
same as in the section “Lognormal Ratio (DIST=LOGNORMAL TEST=RATIO)” on page 10805 for the
two-independent-sample design.

If the IGNOREPERIOD option is specified, then the treatment effect is analyzed as a paired analysis on the
(treatment A, treatment B) response value pairs, regardless of treatment sequence. So the set of pairs is taken
to be the concatenation of f.y111; y121/; : : : ; .y11n?1 ; y12n?1 /g and f.y221; y211/; : : : ; .y22n?2 ; y22n?2 /g. The
computations are the same as in the section “Paired Design” on page 10802.

See Senn (2002, Chapter 3) for a more detailed discussion of the AB/BA crossover design.

TOST Equivalence Test

The hypotheses for an equivalence test are

H0W� < �L or � > �U

H1W�L � � � �U

where �L and �U are the lower and upper bounds specified in the TOST option in the PROC TTEST
statement, and � is the analysis criterion (mean, mean ratio, or mean difference, depending on the analysis).
Following the two one-sided tests (TOST) procedure of Schuirmann (1987), the equivalence test is conducted
by performing two separate tests:

Ha0W� < �L

Ha1W� � �L

and

Hb0W� > �U

Hb1W� � �U

The overall p-value is the larger of the two p-values of those tests.

Rejection of H0 in favor of H1 at significance level ˛ occurs if and only if the 100(1 – 2 ˛)% confidence
interval for � is contained completely within .�L; �U /. So, the 100(1 – 2 ˛)% confidence interval for � is
displayed in addition to the usual 100(1 – ˛)% interval.

For further discussion of equivalence testing for the designs supported in the TTEST procedure, see Phillips
(1990); Diletti, Hauschke, and Steinijans (1991); Hauschke et al. (1999).
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Bootstrap Methods

Overview of the Bootstrap
The bootstrap is based on the plug-in principle and is an extension of the practice of replacing unknown
parameters with estimates (for example, substituting a sample mean for a population mean). The extension
goes all the way to the entire population F from which the data being analyzed are a sample.

The most popular variety of bootstrap is the nonparametric bootstrap, which relies on random sampling
with replacement from the data to estimate the distribution of a sample estimate (or the joint distribution of
multiple sample estimates).

The bootstrap methods in PROC TTEST are all based on the nonparametric bootstrap. The other two main
varieties are the parametric bootstrap (sampling from a model that has estimated parameters) and smoothed
bootstrap (sampling from a continuous distribution estimate).

The heuristic for the nonparametric bootstrap is as follows:

1. Draw n observations with replacement from the original n data points to create a “bootstrap sample.”

2. Calculate a statistic of interest, � , from the bootstrap sample and denote its computed value as O� .

3. Repeat for a total of r samples.

The statistics of primary interest in PROC TTEST are the sample mean and sample standard deviation.

Purpose of the Bootstrap
The main purpose of bootstrapping is to assess the accuracy and precision of one or more sample estimates in
terms of bias, standard error, and confidence intervals.

In typical situations, the bootstrap is not useful for estimating a population parameter or the CDF or quantiles
of sample estimates. This is because the bootstrap distribution is centered around the observed statistic, not
the population parameter. For example, the bootstrap cannot improve on a sample mean estimate.

Bootstrapping can also be a useful tool for inference in various situations, such as the following:

� Parametric assumptions are violated. For example, �2 intervals for a variance and F-based intervals for
the ratio of variances are not robust to deviations from normality, and their coverage does not improve
even with increasing sample size.

� It is too difficult to derive formulas.

� The data are stored in a way that makes calculating formulas impractical.

Useful Applications and Notable Shortcomings
Popular and useful applications of bootstrapping include the following:

� Better standard error estimates

� Bias estimates

� Percentile intervals, optionally with corrections for median bias or narrowness bias (or both)
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� t-based intervals, which are traditional t-based confidence intervals either with the bootstrap standard
error in place of the traditional standard error or with bootstrap quantiles of the t statistic in place of t
distribution quantiles

The two most notable shortcomings of the bootstrap are as follows:

� It tends to perform poorly for small samples.

� Bootstrap bias-corrected estimates are usually worse than estimates that are based on the original
sample. Even though they tend to be more accurate, they also tend to have much higher variance.

Educational Value
Hesterberg (2015) points out several educational benefits of the bootstrap:

� Because the bootstrap works the same way with a wide variety of statistics, students can focus on ideas
rather than formulas. They can also focus on statistics that are appropriate rather than “well-behaved.”

� Plots of the bootstrap distribution can help make the abstract concrete for concepts such as sampling
distributions, standard errors, bias, the central limit theorem, and confidence intervals.

� The action of drawing bootstrap samples reinforces the role that random sampling plays in statistics.

� The relationship between the bootstrap distribution and the original sample is fundamentally the
same as the relationship between the original sample and the population. Patterns that are observed
in bootstrap samples (for example, excessive narrowness) usually imply similar patterns in random
sampling from the population (for example, the same narrowness that is corrected for with the n=.n�1/
factor in the traditional sample standard deviation estimate).

Politis (2016) explains how bootstrapping can help ease students into understanding the notion of resampling
from an empirical distribution, instilling confidence in mean and variance estimates without relying on
the (often unjustifiable) assumption of normality. He suggests a three-stage approach for guiding students
through this transition:

1. Introduce Monte Carlo simulation as an alternative to distribution theory.

2. Demonstrate the parametric bootstrap as an alternative to critical value tables.

3. Abandon the parametric paradigm altogether by generating quantiles and percentile intervals from the
resampling distribution. Show when the bootstrap works better or worse than the parametric approach.

Weights and Frequencies
The TTEST procedure does not support the use of the WEIGHT statement with the bootstrap because there
is no consensus on weighted bootstrap methods.

The FREQ statement is supported with the bootstrap.
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Review of Common Notation and Formulas
Most notation and formulas involved in the descriptions of bootstrap methods in subsequent sections have
already been discussed in previous sections, but they are presented here for easier reference. Estimates that
involve the empirical distribution derived from the data are newly presented in this section and are denoted as
“ZE,” sometimes with a subscript to distinguish among alternative assumptions.

Table 128.8 summarizes the basic notation for each design that is supported in bootstrap methods in PROC
TTEST.

Table 128.8 Common Notation

Symbol Description

One-Sample Design
n Number of observations
� Population mean
�2 Population variance
˛ Value of ALPHA= option in PROC TTEST statement, such that the confidence level for all

bootstrap confidence intervals is 100(1 – ˛)%
yi Value of ith observation, i 2 f1; : : : ; ng

Two-Sample Design
n1 Number of observations at the first class level
n2 Number of observations at the second class level
y1i Value of ith observation at the first class level, i 2 f1; : : : ; n1g
y2i Value of ith observation at the second class level, i 2 f1; : : : ; n2g

General
zp 100p percentile of standard normal distribution
tp;� 100p percentile of t distribution with � degrees of freedom

The standard error of O� is the standard deviation of its sampling distribution. The degrees of freedom
discussed in this section reflect the values that would be used for t tests for the corresponding designs in
PROC TTEST.

One-sample estimates for mean ( Ny), standard deviation (s), standard error of mean (SE), and degrees of
freedom (df) are as follows:

Ny D
1

n

nX
iD1

yi

s D

 
1

n � 1

nX
iD1

.yi � Ny/
2

! 1
2

SE D s=
p
n

df D n � 1

Two-sample estimates for within-group means ( Ny1 and Ny2), mean difference ( Nyd ), and within-group standard
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deviations (s1 and s2) are as follows:

Ny1 D
1

n1

n1X
iD1

y1i

Ny2 D
1

n2

n2X
iD1

y2i

Nyd D Ny1 � Ny2

s1 D

 
1

n1 � 1

n1X
iD1

.y1i � Ny1/
2

! 1
2

s2 D

 
1

n2 � 1

n2X
iD1

.y2i � Ny2/
2

! 1
2

Two-sample pooled estimates for standard deviation that is assumed to be common within groups (sp),
standard error of mean difference (SEp), and degrees of freedom (dfp) are as follows:

sp D

 
.n1 � 1/s

2
1 C .n2 � 1/s

2
2

n1 C n2 � 2

! 1
2

SEp D sp
�
1

n1
C

1

n2

� 1
2

dfp D n1 C n2 � 2

Note that s2, s21 , s22 , and s2p are all unbiased estimators of their respective variances.

The two-sample unpooled standard error estimate of the mean difference (SEu) and degrees of freedom
estimate for unpooled (Satterthwaite) t statistic (dfu) are as follows:

SEu D

 
s21
n1
C
s22
n2

! 1
2

dfu D
SE4u

s41
.n1�1/n

2
1

C
s42

.n2�1/n
2
2

The one-sample variance of the empirical distribution ( O�2) and the standard error of the empirical distribution
of the mean (ZE) are as follows:

O�2 D

�
n � 1

n

�
s2

ZE D O�=
p
n
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The two-sample pooled variance of the empirical distribution ( O�2p) and the pooled standard error estimate of
the empirical distribution of mean difference (ZEp) are as follows:

O�2p D
.n1 � 1/s

2
1 C .n2 � 1/s

2
2

n1 C n2

ZEp D O�p
�
1

n1
C

1

n2

� 1
2

The two-sample unpooled standard error of the empirical distribution of mean difference is defined as

ZEu D

 
.n1 � 1/s

2
1

n21
C
.n2 � 1/s

2
2

n22

! 1
2

Resampling
For the nonparametric bootstrap for a one-sample design, a bootstrap sample is a random draw of n
observations with replacement from the original data set, where O� is the statistic that is calculated from a
sample of n iid observations (for example, Ny or s), r is the number of independent bootstrap samples, and O�?i
is the value of O� for the ith bootstrap sample from the original data, where i 2 f1; : : : ; rg.

The bootstrap for a paired design is identical to the bootstrap for a one-sample design if yi is defined as the
difference between the first and second members of the ith pair.

In a bootstrap for a two-sample design, random draws of size n1 and n2 are taken with replacement from the
first and second groups, respectively, and combined to produce a single bootstrap sample.

Statistics That Are Resampled
The sample estimates O� for statistics � that are supported in bootstrap analyses are computed as follows.

For a one-sample design, the mean � is estimated by

Ny D
1

n

nX
iD1

yi

and the standard deviation � is estimated by

s D

 
1

n � 1

nX
iD1

.yi � Ny/
2

! 1
2

For a paired design, the mean of the paired difference di D y1i � y2i is estimated by

Nd D
1

n

nX
iD1

di

and the standard deviation of the paired difference is estimated by

sd D

 
1

n � 1

nX
iD1

.di � Nd/
2

! 1
2
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For a two-sample design, the mean �d of the class difference dij D y1i � y2j is estimated by

Nyd D Ny1 � Ny2 D
1

n1

n1X
iD1

y1i �
1

n2

n2X
jD1

y2j

Under the assumption of equal variances (�21 D �22 ), the pooled estimate of the standard deviation of the
class difference is

spd D
p
2sp D

p
2

 
.n1 � 1/s

2
1 C .n2 � 1/s

2
2

n1 C n2 � 2

! 1
2

Under the assumption of unequal variances, the Satterthwaite estimate of the standard deviation of the class
difference is

sud D

q
s21 C s

2
2

Bootstrap Standard Error, Bias Estimate, and Quantiles
The bootstrap standard error is the sample standard deviation of the bootstrap distribution:

sb D

 
1

r � 1

rX
iD1

. O�?i �
N
O
?
�/2

! 1
2

The bootstrap bias estimate is

Obiasb D

 
1

r

rX
iD1

O�?i

!
� O�

Several confidence intervals in the next section are based on quantiles of bootstrap samples. Following the
convention in Efron and Tibshirani (1993, section 12.5), the quantile for an ambiguous case is chosen as the
nearest sample value in the direction toward the center of the bootstrap distribution. This choice ensures that
confidence intervals that are constructed from the quantiles satisfy the desired coverage. In particular, the pth
quantile (100p percentile) qp of the bootstrap distribution of O�?i (or some function of O�?i ) is computed as
follows:

� If rp is an integer, then qp is the rpth largest value.

� Otherwise, if p � 0:5 and L D floor..r C 1/p/ � 1, then qp is the Lth largest value.

� Otherwise, if p > 0:5 and U D ceil..r C 1/p/ � r , then qp is the Uth largest value.

� Otherwise (either p � 0:5 and L D floor..r C 1/p/ < 1, or p > 0:5 and U D ceil..r C 1/p/ > r),
then qp is undefined and the bootstrap sample must be larger to yield a valid quantile-based confidence
interval.
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Bootstrap Confidence Intervals
The bootstrap confidence intervals that PROC TTEST implements are based primarily on recommendations
from Hesterberg (2015). The recommendations are based on a combination of educational value and good
performance in practice.

See Table 128.5 for a summary of which parameters are supported for each type of confidence interval.

For the following sections, let OS denote the estimate of the standard error based on unbiased variance
estimates—that is, SE for a one-sample or paired design, SEp for a pooled analysis for a two-sample design,
or SEu for an unpooled analysis for a two-sample design. Similarly, let OZ denote the estimate of the standard
error based on the variances of the empirical distribution—that is, ZE, ZEp , or ZEu. Finally, let Odf denote
the degrees of freedom that would be used for t tests for the corresponding designs—that is, df, dfp , or dfu.

Normal Interval with Bootstrap Standard Error
Perhaps the most crude confidence interval based on the bootstrap is the normal interval with bootstrap
standard error, which is simply the normal-based confidence interval with the usual standard error replaced
by the bootstrap standard error:8̂̂̂<̂

ˆ̂:
�
O� � z1�˛=2sb; O� C z1�˛=2sb

�
; two-sided�

�1; O� C z1�˛sb

�
; lower one-sided�

O� � z1�˛sb;1
�
; upper one-sided

In PROC TTEST, the normal interval with bootstrap standard error is computed only for the mean or mean
difference. Standard confidence intervals for standard deviations are based on the chi-square distribution
rather than on the normal distribution and thus do not have a bootstrap analog of this type.

Bootstrap Percentile Interval
The bootstrap percentile interval is recommended by Hesterberg (2015) as one of two “quick and dirty”
intervals to begin with when introducing students to the bootstrap. Depending on the sidedness, it is the
middle, lower, or upper 100(1 – ˛)% of the bootstrap distribution:8̂<̂

:
�
q˛
2
; q1�˛

2

�
; two-sided

.�1; q1�˛/ ; lower one-sided

.q˛;1/ ; upper one-sided

where q are quantiles of O�?.

This interval is usually the most intuitive one for students. It is robust to skewness in the data, but it performs
poorly for small sample sizes. It tends to be too narrow, and it is only “first-order accurate.” For a one-sample
design, first-order accuracy means that the one-sided coverage probability differs from the nominal value by
O.n�

1
2 /.

t Interval with Bootstrap Standard Error
The other “quick and dirty interval” is the t interval with bootstrap standard error, which is the traditional
t-based confidence interval with the usual standard error replaced by the bootstrap standard error:8̂̂̂<̂

ˆ̂:
�
O� � t

1�˛=2; Odfsb;
O� C t

1�˛=2; Odfsb

�
; two-sided�

�1; O� C t
1�˛; Odfsb

�
; lower one-sided�

O� � t
1�˛; Odfsb;1

�
; upper one-sided
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This interval is also the same as the normal interval with bootstrap standard error where normal quantiles are
replaced by t quantiles.

In PROC TTEST, the t interval with bootstrap standard error is computed only for the mean or mean
difference. Standard confidence intervals for standard deviations are based on the chi-square distribution
rather than on the t distribution and thus do not have a bootstrap analog of this type.

The t interval with bootstrap standard error can help students learn formula methods. It performs relatively
well for small n but is not robust to skewness in the data.

Students can compare percentile and t intervals: if they are similar, then they are both probably acceptable.

Bootstrap Expanded Percentile Interval
Whereas the usual bootstrap percentile interval has coverage properties similar to the normal interval with
bootstrap standard error (robustness to skewness notwithstanding), the expanded bootstrap percentile interval
alleviates the narrowness bias by “upgrading” the coverage properties to be more like the t interval with
bootstrap standard error. The expanded bootstrap percentile is produced by replacing the ˛ in the bootstrap
percentile interval with the value ˛0 that solves the equation hz.˛0/ = ht .˛/, where hz.p/ is the half-width
of the normal-based 100.1 � p/% confidence interval that uses the variance of the empirical distribution
and ht .p/ is the half-width of the t-based 100.1 � p/% confidence interval that uses the unbiased variance
estimate. The half-width of a two-sided interval is the length of the interval divided by two, and the half-width
of a one-sided interval is the absolute difference between the point estimate and the finite limit.

The general solution of hz.˛0/ = ht .˛/ is

˛0 D dˆ

 
OS

OZ
t
˛=d; Odf

!
where d is the number of sides.

The solutions for different designs are as follows:

˛0 D

8̂̂̂<̂
ˆ̂:
dˆ

�q
n
n�1

t˛=d;n�1

�
; one-sample or paired analysis

dˆ
�q

n1Cn2
n1Cn2�2

t˛=d;n1Cn2�2

�
; two-sample pooled analysis

dˆ
�

SEu
ZEu

t˛=d;dfu

�
; two-sample unpooled analysis

The resulting expanded percentile interval for each case is8̂<̂
:
�
q˛0
2

; q
1�˛

0

2

�
; two-sided

.�1; q1�˛0/ ; lower one-sided

.q˛0 ;1/ ; upper one-sided

where q are quantiles of O�?.

In PROC TTEST, the bootstrap expanded percentile interval is computed only for the mean or mean difference.
Standard confidence intervals for standard deviations are based on the chi-square distribution rather than on
the normal or t distributions and thus do not have a bootstrap analog of this type.

The expanded interval is better than the bootstrap percentile interval and the t interval with bootstrap standard
error but not as good as the bootstrap t interval, which is described in the following section.
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Bootstrap t Interval
The bootstrap t interval eschews the assumption of the t statistic having a t distribution and instead uses
quantiles of its bootstrap distribution, along with traditional standard error estimates,8̂̂̂<̂

ˆ̂:
�
O� � q1�˛

2

OS; O� � q˛
2

OS
�
; two-sided�

�1; O� � q˛ OS
�
; lower one-sided�

O� � q1�˛ OS;1
�
; upper one-sided

where q are quantiles of
�
O�? � O�

�
= OS? and OS is the (non-bootstrap) standard error estimate of O� based on

unbiased variance estimates.

In PROC TTEST, the bootstrap t interval is computed only for the mean or mean difference. There is no
reasonable general formula for the standard error of the sample standard deviation.

The bootstrap t interval allows for asymmetry and is “second-order accurate,” satisfying the following
properties for a one-sample design:

� O.n�1/ difference in one-sided coverage probability from nominal value

� robust to bias

� robust to skewness

� transformation-invariant—that is, intervals for some function of � can be obtained by applying the
same transformation to the endpoints

Bootstrap Bias-Corrected Percentile Interval
The bootstrap bias-corrected percentile interval (BC) is8<:

.q˛1 ; q˛2/ ; two-sided

.�1; q˛3/ ; lower one-sided

.q˛4 ;1/ ; upper one-sided

where

˛1 D ˆ
�
2z0 C z˛=2

�
˛2 D ˆ

�
2z0 C z1�˛=2

�
˛3 D ˆ.2z0 C z1�˛/

˛4 D ˆ.2z0 C z˛/

z0 D ˆ
�1
�
#f O�?i < O�g=r

�
and q are quantiles of O�?.

The BC interval is the default bootstrap confidence interval in PROC TTEST (and also in the NLIN and
CAUSALTRT procedures). It corrects for median bias, which occurs when the median of the sampling
distribution differs from � . The two-sided version is given in Efron and Tibshirani (1993, equation 14.10),
and the one-sided version is given in Carpenter and Bithell (2000, equation 9).
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Displayed Output
For an AB/BA crossover design, the CrossoverVarInfo table shows the variables that are specified for the
response and treatment values in each period of the design.

The summary statistics in the Statistics table and confidence limits in the ConfLimits table are displayed
for certain variables and/or transformations or subgroups of the variables in the analysis, depending on the
design. For a one-sample design, results are displayed for all variables. For a paired design, results are
displayed for the paired difference if you specify the TEST=DIFF option in the PROC TTEST statement, or
for the paired ratio if you specify TEST=RATIO.

For a two-independent-sample design, most of the results are displayed for each of the two classes, for
the difference (if TEST=DIFF) or ratio of means between classes (if TEST=RATIO), and for the assumed-
common within-class standard deviation (if DIST=NORMAL) or coefficient of variation (if TEST=RATIO).
Results are not displayed for the standard deviation of the class difference or ratio or for the coefficient
of variation of the class ratio. However, the standard errors that are displayed if you specify TEST=DIFF
are the standard deviation estimates of the means of each of the two classes and the pooled and unpooled
(Satterthwaite) standard deviation estimates of the mean class difference. These standard errors are the same
ones that are used in hypothesis tests and confidence limits for means and mean differences.

For an AB/BA crossover design, statistics and confidence limits are displayed for each of the four cells in
the design (all four combinations of the two periods and two treatments). If the IGNOREPERIOD option is
specified in the VAR statement, then results are also displayed for the overall treatment difference or ratio,
the same as they are for the paired design. If the IGNOREPERIOD option is absent, then results are also
displayed for the treatment difference or ratio within each sequence and overall, and also for the period
difference or ratio, the same as they are for the two-sample design.

The Statistics table displays the following summary statistics:

� the names of the variables, displayed if the NOBYVAR option is used in the PROC TTEST statement

� the name of the classification variable (if the two-independent-sample design is used) or treatment and
period (if the AB/BA crossover design is used)

� the Method for estimating standard deviation and standard error for a two-independent-sample de-
sign, either pooled (for the equal-variance assumption) or Satterthwaite (for the unequal-variance
assumption)

� N, the number of nonmissing values

� the (arithmetic) Mean, displayed if the DIST=NORMAL option is specified in the PROC TTEST
statement

� the Geometric Mean, displayed if the DIST=LOGNORMAL option is specified in the PROC TTEST
statement

� Std Dev, the standard deviation, displayed if the DIST=NORMAL option is specified in the PROC
TTEST statement

� the Coefficient of Variation, displayed if the DIST=LOGNORMAL option is specified in the PROC
TTEST statement
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� Std Err, the standard error of the mean, displayed if the DIST=NORMAL option is specified in the
PROC TTEST statement

� the Minimum value

� the Maximum value

The ConfLimits table displays the following:

� the names of the variables, displayed if the NOBYVAR option is used in the PROC TTEST statement

� the name of the classification variable (if the two-independent-sample design is used) or treatment and
period (if the AB/BA crossover design is used)

� the method for estimating standard deviation and standard error for a two-independent-sample de-
sign, either pooled (for the equal-variance assumption) or Satterthwaite (for the unequal-variance
assumption)

� the (arithmetic) Mean, displayed if the DIST=NORMAL option is specified in the PROC TTEST
statement

� the Geometric Mean, displayed if the DIST=LOGNORMAL option is specified in the PROC TTEST
statement

� 100(1 – ˛)% CL Mean, the lower and upper confidence limits for the mean. Separate pooled and
Satterthwaite confidence limits are shown for the difference or ratio transformations in two-independent-
sample designs and AB/BA crossover designs without the IGNOREPERIOD option.

� Std Dev, the standard deviation, displayed if the DIST=NORMAL option is specified in the PROC
TTEST statement

� the Coefficient of Variation, displayed if the DIST=LOGNORMAL option is specified in the PROC
TTEST statement

� 100(1 – ˛)% CL Std Dev, the equal-tailed confidence limits for the standard deviation, displayed if the
DIST=NORMAL and CI=EQUAL options are specified in the PROC TTEST statement

� 100(1 – ˛)% UMPU CL Std Dev, the UMPU confidence limits for the standard deviation, displayed if
the DIST=NORMAL and CI=UMPU options are specified in the PROC TTEST statement

� 100(1 – ˛)% CL CV, the equal-tailed confidence limits for the coefficient of variation, displayed if the
DIST=LOGNORMAL and CI=EQUAL options are specified in the PROC TTEST statement

� 100(1 – ˛)% UMPU CL CV, the UMPU confidence limits for the coefficient of variation, displayed if
the DIST=LOGNORMAL and CI=UMPU options are specified in the PROC TTEST statement

The confidence limits in the EquivLimits table and test results in the TTests and EquivTests tables are
displayed only for the test criteria—that is, the variables or transformations being tested. For a one-sample
design, results are displayed for all variables in the analysis. For a paired design, results are displayed for
the difference if you specify the TEST=DIFF option in the PROC TTEST statement, or for the ratio if you
specify TEST=RATIO. For a two-independent-sample design, the results for the difference (if TEST=DIFF)
or ratio (if TEST=RATIO) are displayed. For an AB/BA crossover design, results are displayed for the
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treatment difference (if TEST=DIFF) or ratio (if TEST=RATIO). If the IGNOREPERIOD option is absent,
then results are also displayed for the period difference (if TEST=DIFF) or ratio (if TEST=RATIO).

The EquivLimits table, produced only if the TOST option is specified in the PROC TTEST statement, displays
the following:

� the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

� the (arithmetic) Mean, displayed if the DIST=NORMAL option is specified in the PROC TTEST
statement

� the Geometric Mean, displayed if the DIST=LOGNORMAL option is specified in the PROC TTEST
statement

� Lower Bound, the lower equivalence bound for the mean specified in the TOST option in the PROC
TTEST statement

� 100(1 – 2 ˛)% CL Mean, the lower and upper confidence limits for the mean relevant to the equivalence
test. Separate pooled and Satterthwaite confidence limits are shown for two-independent-sample
designs and AB/BA crossover designs without the IGNOREPERIOD option.

� Upper Bound, the upper equivalence bound for the mean specified in the TOST option in the PROC
TTEST statement

� Assessment, the result of the equivalence test at the significance level specified by the ALPHA= option
in the PROC TTEST statement, either “Equivalent” or “Not equivalent”

The TTests table is produced only if the TOST option is not specified in the PROC TTEST statement.
Separate results for pooled and Satterthwaite tests (and also the Cochran and Cox test, if the COCHRAN
option is specified in the PROC TTEST statement) are displayed for two-independent-sample designs and
AB/BA crossover designs without the IGNOREPERIOD option. The table includes the following results:

� the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

� t Value, the t statistic for comparing the mean to the null value as specified by the H0= option in the
PROC TTEST statement

� DF, the degrees of freedom

� the p-value, the probability of obtaining a t statistic at least as extreme as the observed t value under
the null hypothesis

The EquivTests table is produced only if the TOST option is specified in the PROC TTEST statement.
Separate results for pooled and Satterthwaite tests are displayed for two-independent-sample designs and
AB/BA crossover designs without the IGNOREPERIOD option. Each test consists of two separate one-sided
tests. The overall p-value is the larger p-value from these two tests. The table includes the following results:

� the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

� Null, the lower equivalence bound for the Upper test or the upper equivalence bound for the Lower
test, as specified by the TOST option in the PROC TTEST statement
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� t Value, the t statistic for comparing the mean to the Null value

� DF, the degrees of freedom

� the p-value, the probability of obtaining a t statistic at least as extreme as the observed t value under
the null hypothesis

The Equality table gives the results of the test of equality of variances. It is displayed for two-independent-
sample designs and AB/BA crossover designs without the IGNOREPERIOD option. The table includes the
following results:

� the name of the variable(s), displayed if the NOBYVAR option is used in the PROC TTEST statement

� Num DF and Den DF, the numerator and denominator degrees of freedom

� F Value, the F 0 (folded) statistic

� Pr > F, the probability of a greater F 0 value. This is the two-tailed p-value.

The Bootstrap table displays bootstrap standard error, bias estimates, and confidence limits. These results are
displayed for certain variables in the analysis, their transformations, or their subgroups (or any combination of
these), depending on the design and the analysis options. Results are currently displayed only for one-sample,
paired, and two-sample designs and for analyses that assume normal data and involve means and standard
deviations of either variables or differences between variables or class levels. Bootstrap standard error and
bias estimates are always displayed for these designs and analyses, and Table 128.5 shows which analysis
parameters are supported for each type of bootstrap confidence interval.

Bootstrap results are unavailable if you specify any of the TEST=RATIO, DIST=LOGNORMAL, or TOST
options in the PROC TTEST statement; if you specify the CROSSOVER= option in the VAR statement; or
if you specify the WEIGHT statement. They are also unavailable if your input data set contains summary
statistics rather than raw observed values.

For a one-sample design, results are displayed for all variables. For a paired design, results are displayed for
the paired difference.

For a two-sample design, results are displayed for the class difference—that is, the difference between an
observation from the first class and an observation from the second class. Note in particular that whereas the
limits displayed for standard deviation in the ConfLimits table are for the assumed-common within-class
standard deviation, the limits displayed for standard deviation in the Bootstrap table are for the standard
deviation of the difference. The estimated standard deviation of the difference is equal to

p
2sp under the

equal-variance assumption and is equal to
q
s21 C s

2
2 under the unequal-variance assumption.

The Bootstrap table includes the following results:

� the names of the variables, displayed if the NOBYVAR option is used in the PROC TTEST statement

� the name of the classification variable (if the two-independent-sample design is used)

� the method for estimating standard deviation for a two-independent-sample design, either pooled (for
the equal-variance assumption) or Satterthwaite (for the unequal-variance assumption); this choice of
method determines both the form of the standard deviation difference estimate on which the bootstrap
standard error and bias estimates are based and also the formulas for some of the confidence limits for
both mean and standard deviation parameters
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� the parameter, either mean or standard deviation

� the bootstrap estimate of the standard error of the statistic

� the bootstrap estimate of the bias

� 100(1 – ˛)% CL, the lower and upper bootstrap confidence limits for the relevant transformation of
each parameter, based on the choice of BOOTCI method

ODS Table Names
PROC TTEST assigns a name to each table it creates. You can use these names to reference the table when
using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed
in Table 128.9. For more information about ODS, see Chapter 23, “Using the Output Delivery System.”

Table 128.9 ODS Tables Produced by PROC TTEST

ODS Table Name Description Syntax

ConfLimits 100(1 – ˛)% confidence limits for means, standard
deviations, and/or coefficients of variation

By default

Equality Tests for equality of variance CLASS statement or
VAR / CROSSOVER=

EquivLimits 100(1 – 2 ˛)% confidence limits for means PROC TTEST TOST
EquivTests Equivalence t tests PROC TTEST TOST
Statistics Univariate summary statistics By default
TTests t tests By default
Bootstrap Bootstrap standard error and bias estimates and

100(1 – ˛)% bootstrap confidence limits
BOOTSTRAP statement

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 687 in Chapter 24, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 686 in Chapter 24,
“Statistical Graphics Using ODS.”
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ODS Graph Names

You can refer to every graph that is produced through ODS Graphics by its name. The names of the
graphs that PROC TTEST generates are listed in Table 128.10 and Table 128.11. Table 128.10, which is
alphabetized by graph name, shows required statements and options. Table 128.11 is organized by required
bootstrap-plot-request .

Table 128.10 Graphs Produced by PROC TTEST

ODS Graph Name Plot Description Statement / Option

AgreementOfPeriods Plot of period 2 against period 1
response values for an AB/BA
crossover design

VAR / CROSSOVER=
PLOTS=AGREEMENT(TYPE=PERIOD)

AgreementOfTreatments Plot of second treatment against
first treatment response values
for an AB/BA crossover design

VAR / CROSSOVER=
PLOTS=AGREEMENT

AgreementPlot Plot of second response against
first response for a paired design

PAIRED statement
PLOTS=AGREEMENT

BoxPlot Box plots, also with confidence
band for one-sample or paired
design

PLOTS=BOX
PLOTS=SUMMARY(UNPACK)

Histogram Histograms with overlaid kernel
densities, and also normal
densities if DIST=NORMAL

PLOTS=HISTOGRAM
PLOTS=SUMMARY(UNPACK)

Interval Confidence intervals for means PLOTS=INTERVAL

ProfilesOverPrd Plot of response profiles over
periods 1 and 2 for an AB/BA
crossover design

VAR / CROSSOVER=
PLOTS=PROFILES(TYPE=PERIOD)

ProfilesOverTrt Plot of response profiles over
first and second treatments for an
AB/BA crossover design

VAR / CROSSOVER=
PLOTS=PROFILES

ProfilesPlot Plot of response profiles over
first and second response values
for a paired design

PAIRED statement
PLOTS=PROFILES

QQPlot Normal quantile-quantile plots PLOTS=QQ

SummaryPanel Histograms with overlaid kernel
densities (and also normal
densities if DIST=NORMAL)
and box plots (and also with
confidence band for one-sample
or paired design)

PLOTS=SUMMARY

(various) Bootstrap plots (see
Table 128.11)

BOOTSTRAP statement
PLOTS=BOOTSTRAP(bootstrap-
plot-request)
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Table 128.11 Bootstrap Graphs Produced by PROC TTEST

ODS Graph Name Plot Description Statistic Design bootstrap-plot-request

BootstrapMeanBoxPlot Box plots and
confidence bands

Mean One-sample
Paired
Certain
two-sample
cases

BOX
SUMMARY(UNPACK)

BootMeanPooledBoxPlot Box plots and pooled
confidence bands

Mean Certain
two-sample
cases

BOX
SUMMARY(UNPACK)

BootMeanSattBoxPlot Box plots and
Satterthwaite
confidence bands

Mean Certain
two-sample
cases

BOX
SUMMARY(UNPACK)

BootstrapStdDevBoxPlot Box plots and
confidence bands

Standard
deviation

One-sample
Paired

BOX
SUMMARY(UNPACK)

BootPooledStdDevBoxPlot Box plots and
confidence bands

Pooled standard
deviation

Two-sample BOX
SUMMARY(UNPACK)

BootSattStdDevBoxPlot Box plots and
confidence bands

Satterthwaite
standard
deviation

Two-sample BOX
SUMMARY(UNPACK)

BootCorrMeanStdDevPlot Scatter plots with
overlaid elliptical
prediction regions

Mean and
standard
deviation

One-sample
Paired

CORRELATION

BootCorrMeanPoolStdDevPlot Scatter plots with
overlaid elliptical
prediction regions

Mean and
pooled standard
deviation

Two-sample CORRELATION

BootCorrMeanSattStdDevPlot Scatter plots with
overlaid elliptical
prediction regions

Mean and
Satterthwaite
standard
deviation

Two-sample CORRELATION

BootstrapMeanHistogram Histograms with
overlaid normal and
kernel densities

Mean One-sample
Paired
Two-sample

HISTOGRAM
SUMMARY(UNPACK)

BootstrapStdDevHistogram Histograms with
overlaid normal and
kernel densities

Standard
deviation

One-sample
Paired

HISTOGRAM
SUMMARY(UNPACK)

BootPooledStdDevHistogram Histograms with
overlaid normal and
kernel densities

Pooled standard
deviation

Two-sample HISTOGRAM
SUMMARY(UNPACK)

BootSattStdDevHistogram Histograms with
overlaid normal and
kernel densities

Satterthwaite
standard
deviation

Two-sample HISTOGRAM
SUMMARY(UNPACK)

BootstrapMeanIntervalPlot Bootstrap confidence
intervals

Mean One-sample
Paired
Two-sample

INTERVAL
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Table 128.11 continued

ODS Graph Name Plot Description Statistic Design bootstrap-plot-request

BootstrapStdDevIntervalPlot Bootstrap confidence
intervals

Standard
deviation
Pooled and
Satterthwaite
standard
deviations

One-sample
Paired
Two-sample

INTERVAL

BootstrapMeanQQPlot Normal
quantile-quantile
plots

Mean One-sample
Paired
Two-sample

QQ

BootstrapStdDevQQPlot Normal
quantile-quantile
plots

Standard
deviation

One-sample
Paired

QQ

BootPooledStdDevQQPlot Normal
quantile-quantile
plots

Pooled standard
deviation

Two-sample QQ

BootSattStdDevQQPlot Normal
quantile-quantile
plots

Satterthwaite
standard
deviation

Two-sample QQ

BootstrapMeanSummaryPanel Histograms with
overlaid normal and
kernel densities, box
plots, and confidence
bands

Mean One-sample
Paired
Certain
two-sample
cases

SUMMARY

BootMeanPooledSummaryPanel Histograms with
overlaid normal and
kernel densities, box
plots, and pooled
confidence bands

Mean Certain
two-sample
cases

SUMMARY

BootMeanSattSummaryPanel Histograms with
overlaid normal and
kernel densities, box
plots, and
Satterthwaite
confidence bands

Mean Certain
two-sample
cases

SUMMARY

BootstrapStdDevSummaryPanel Histograms with
overlaid normal and
kernel densities, box
plots, and confidence
bands

Standard
deviation

One-sample
Paired

SUMMARY

BootPoolStdDevSummaryPanel Histograms with
overlaid normal and
kernel densities, box
plots, and confidence
bands

Pooled standard
deviation

Two-sample SUMMARY
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Table 128.11 continued

ODS Graph Name Plot Description Statistic Design bootstrap-plot-request

BootSattStdDevSummaryPanel Histograms with
overlaid normal and
kernel densities, box
plots, and confidence
bands

Satterthwaite
standard
deviation

Two-sample SUMMARY

Interpreting Graphs

Agreement Plots for Paired Designs
For paired designs, the second response of each pair is plotted against the first response, with the mean
shown as a large bold symbol. If the WEIGHT statement is used, then the mean is the weighted mean. A
diagonal line with a slope of 1 and a y-intercept of 0 is overlaid. The location of the points with respect to the
diagonal line reveals the strength and direction of the difference or ratio. The tighter the clustering along the
same direction as the line, the stronger the positive correlation of the two measurements for each subject.
Clustering along a direction perpendicular to the line indicates negative correlation.

Period Agreement Plots for Crossover Designs
The response in the second period is plotted against the response in the first period, with plot symbols
distinguishing the two treatment sequences and the two sequence means shown larger in bold. If the
WEIGHT statement is used, then the means are weighted means. A diagonal line with a slope of 1 and a
y-intercept of 0 is overlaid.

In the absence of a strong period effect, the points from each sequence will appear as mirror images about the
diagonal line, farther apart with stronger treatment effects. Deviations from symmetry about the diagonal
line indicate a period effect. The spread of points within each treatment sequence is an indicator of between-
subject variability. The tighter the clustering along the same direction as the line (within each treatment
sequence), the stronger the positive correlation of the two measurements for each subject. Clustering along a
direction perpendicular to the line indicates negative correlation.

The period agreement plot is usually less informative than the treatment agreement plot. The exception is
when the period effect is stronger than the treatment effect.

Treatment Agreement Plots for Crossover Designs
The response associated with the second treatment is plotted against the response associated with the first
treatment, with plot symbols distinguishing the two treatment sequences and the two sequence means shown
larger in bold. If the WEIGHT statement is used, then the means are weighted means. A diagonal line with a
slope of 1 and a y-intercept of 0 is overlaid.

The location of the points with respect to the diagonal line reveals the strength and direction of the treatment
effect. Substantial location differences between the two sequences indicates a strong period effect. The
spread of points within each treatment sequence is an indicator of between-subject variability. The tighter the
clustering along the same direction as the line (within each treatment sequence), the stronger the positive
correlation of the two measurements for each subject. Clustering along a direction perpendicular to the line
indicates negative correlation.



10828 F Chapter 128: The TTEST Procedure

Box Plots
The box is drawn from the 25th percentile (lower quartile) to the 75th percentile (upper quartile). The vertical
line inside the box shows the location of the median. If DIST=NORMAL, then a diamond symbol shows the
location of the mean. The whiskers extend to the minimum and maximum observations, and circles beyond
the whiskers identify outliers.

For one-sample and paired designs, a confidence interval for the mean is shown as a band in the background.
If the analysis is an equivalence analysis (with the TOST option in the PROC TTEST statement), then the
interval is a 100(1 – 2 ˛)% confidence interval shown along with the equivalence bounds. The inclusion
of this interval completely within the bounds is indicative of a significant p-value. If the analysis is not an
equivalence analysis, then the confidence level is 100(1 – ˛)%. If the SHOWH0 global plot option is used,
then the null value for the test is shown. If the WEIGHT statement is used, then weights are incorporated in
the confidence intervals.

Histograms
The WEIGHT statement is ignored in the computation of the normal and kernel densities.

Confidence Intervals
If the analysis is an equivalence analysis (with the TOST option in the PROC TTEST statement), then unless
the TYPE=PERGROUP option is used, the interval is a 100(1 – 2 ˛)% mean confidence interval shown along
with the equivalence bounds. The inclusion of this interval completely within the bounds is indicative of a
significant p-value.

If the analysis is not an equivalence analysis, or if the TYPE=PERGROUP option is used, then the confidence
level is 100(1 – ˛)%. If the SHOWH0 global-plot-option is used, then the null value for the test is shown.

If the SIDES=L or SIDES=U option is used in the PROC TTEST statement, then the unbounded side of
the one-sided interval is represented with an arrowhead. Note that the actual location of the arrowhead is
irrelevant.

If the WEIGHT statement is used, then weights are incorporated in the confidence intervals.

Profiles for Paired Designs
For paired designs, a line is drawn for each observation from left to right connecting the first response to the
second response. The mean first response and mean second response are connected with a bold line. If the
WEIGHT statement is used, then the means are weighted means. The more extreme the slope, the stronger
the effect. A wide spread of profiles indicates high between-subject variability. Consistent positive slopes
indicate strong positive correlation. Widely varying slopes indicate lack of correlation, while consistent
negative slopes indicate strong negative correlation.

Profiles over Period for Crossover Designs
For each observation, the response for the first period is connected to the response for second period,
regardless of the treatment applied in each period. The means for each treatment sequence are shown in bold.
If the WEIGHT statement is used, then the means are weighted means.

In the absence of a strong period effect, the profiles for each sequence will appear as mirror images about
an imaginary horizontal line in the center. Deviations from symmetry about this imaginary horizontal line
indicate a period effect. A wide spread of profiles within sequence indicates high between-subject variability.

The TYPE=PERIOD plot is usually less informative than the TYPE=TREATMENT plot. The exception is
when the period effect is stronger than the treatment effect.
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Profiles over Treatment for Crossover Designs
For each observation, the response for the first treatment is connected to the response for the second treatment,
regardless of the periods in which they occur. The means for each treatment sequence are shown in bold. If
the WEIGHT statement is used, then the means are weighted means.

In general, the more extreme the slope, the stronger the treatment effect. Slope differences between the two
treatment sequences measure the period effect. A wide spread of profiles within sequence indicates high
between-subject variability.

Q-Q Plots
Q-Q plots are useful for diagnosing violations of the normality and homoscedasticity assumptions. If the
data in a Q-Q plot come from a normal distribution, the points will cluster tightly around the reference line.
You can use the UNIVARIATE procedure with the NORMAL option to numerically check the normality
assumption.

Bootstrap Correlation Plots
The bootstrap correlation plot is useful for visualizing the correlation between the bootstrap mean and
standard deviation across bootstrap samples. The elliptical prediction region is the 100(1 – p)% prediction
region that assumes a bivariate normal distribution, where p is the value of the ALPHA= option in the PROC
TTEST statement. The more elongated the shape of the ellipse, the higher the correlation.

Examples: TTEST Procedure
The examples in this chapter are available in the GitHub repository located at https://github.com/
sassoftware/doc-supplement-statug.

Example 128.1: Using Summary Statistics to Compare Group Means
(View the complete code for this example (tteex01.sas) in the example repository.)

This example, taken from Huntsberger and Billingsley (1989), compares two grazing methods using 32 steers.
Half of the steers are allowed to graze continuously while the other half are subjected to controlled grazing
time. The researchers want to know if these two grazing methods affect weight gain differently. The data are
read by the following DATA step:

data graze;
length GrazeType $ 10;
input GrazeType $ WtGain @@;
datalines;

controlled 45 controlled 62
controlled 96 controlled 128
controlled 120 controlled 99
controlled 28 controlled 50
controlled 109 controlled 115
controlled 39 controlled 96
controlled 87 controlled 100

https://github.com/sassoftware/doc-supplement-statug
https://github.com/sassoftware/doc-supplement-statug
https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/tteex01.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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controlled 76 controlled 80
continuous 94 continuous 12
continuous 26 continuous 89
continuous 88 continuous 96
continuous 85 continuous 130
continuous 75 continuous 54
continuous 112 continuous 69
continuous 104 continuous 95
continuous 53 continuous 21
;

The variable GrazeType denotes the grazing method: “controlled” is controlled grazing and “continuous” is
continuous grazing. The dollar sign ($) following GrazeType makes it a character variable, and the trailing at
signs (@@) tell the procedure that there is more than one observation per line.

If you have summary data—that is, just means and standard deviations, as computed by PROC MEANS—
then you can still use PROC TTEST to perform a simple t test analysis. This example demonstrates this
mode of input for PROC TTEST. Note, however, that graphics are unavailable when summary statistics are
used as input.

The MEANS procedure is invoked to create a data set of summary statistics with the following statements:

proc sort;
by GrazeType;

run;

proc means data=graze noprint;
var WtGain;
by GrazeType;
output out=newgraze;

run;

The NOPRINT option eliminates all printed output from the MEANS procedure. The VAR statement tells
PROC MEANS to compute summary statistics for the WtGain variable, and the BY statement requests a
separate set of summary statistics for each level of GrazeType. The OUTPUT OUT= statement tells PROC
MEANS to put the summary statistics into a data set called newgraze so that it can be used in subsequent
procedures. This new data set is displayed in Output 128.1.1 by using PROC PRINT as follows:

proc print data=newgraze;
run;

The _STAT_ variable contains the names of the statistics, and the GrazeType variable indicates which group
the statistic is from.
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Output 128.1.1 Output Data Set of Summary Statistics

Obs GrazeType _TYPE_ _FREQ_ _STAT_ WtGain

1 continuous 0 16 N 16.000

2 continuous 0 16 MIN 12.000

3 continuous 0 16 MAX 130.000

4 continuous 0 16 MEAN 75.188

5 continuous 0 16 STD 33.812

6 controlled 0 16 N 16.000

7 controlled 0 16 MIN 28.000

8 controlled 0 16 MAX 128.000

9 controlled 0 16 MEAN 83.125

10 controlled 0 16 STD 30.535

The following statements invoke PROC TTEST with the newgraze data set, as denoted by the DATA= option:

proc ttest data=newgraze;
class GrazeType;
var WtGain;

run;

The CLASS statement contains the variable that distinguishes between the groups being compared, in this case
GrazeType. The summary statistics and confidence intervals are displayed first, as shown in Output 128.1.2.

Output 128.1.2 Summary Statistics and Confidence Limits

The TTEST Procedure

Variable: WtGain

GrazeType Method N Mean Std Dev Std Err Minimum Maximum

continuous 16 75.1875 33.8117 8.4529 12.0000 130.0

controlled 16 83.1250 30.5350 7.6337 28.0000 128.0

Diff (1-2) Pooled -7.9375 32.2150 11.3897

Diff (1-2) Satterthwaite -7.9375 11.3897

GrazeType Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

continuous 75.1875 57.1705 93.2045 33.8117 24.9768 52.3300

controlled 83.1250 66.8541 99.3959 30.5350 22.5563 47.2587

Diff (1-2) Pooled -7.9375 -31.1984 15.3234 32.2150 25.7434 43.0609

Diff (1-2) Satterthwaite -7.9375 -31.2085 15.3335

In Output 128.1.2, The GrazeType column specifies the group for which the statistics are computed. For each
class, the sample size, mean, standard deviation and standard error, and maximum and minimum values are
displayed. The confidence bounds for the mean are also displayed.

Output 128.1.3 shows the results of tests for equal group means and equal variances.
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Output 128.1.3 t Tests

Method Variances DF t Value Pr > |t|

Pooled Equal 30 -0.70 0.4912

Satterthwaite Unequal 29.694 -0.70 0.4913

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 15 15 1.23 0.6981

A group test statistic for the equality of means is reported for both equal and unequal variances. Both tests
indicate a lack of evidence for a significant difference between grazing methods (t = –0.70 and p = 0.4912 for
the pooled test, t = –0.70 and p = 0.4913 for the Satterthwaite test). The equality of variances test does not
indicate a significant difference in the two variances .F 0 D 1:23; p D 0:6981/. Note that this test assumes
that the observations in both data sets are normally distributed; this assumption can be checked in PROC
UNIVARIATE by using the NORMAL option with the raw data.

Although the ability to use summary statistics as input is useful if you lack access to the original data, some
of the output that would otherwise be produced in an analysis on the original data is unavailable. There are
also limitations on the designs and distributional assumptions that can be used with summary statistics as
input. For more information, see the section “Input Data Set of Statistics” on page 10797.

Example 128.2: One-Sample Comparison with the FREQ Statement
(View the complete code for this example (tteex02.sas) in the example repository.)

This example examines children’s reading skills. The data consist of Degree of Reading Power (DRP) test
scores from 44 third-grade children and are taken from Moore (1995, p. 337). Their scores are given in the
following DATA step:

data read;
input score count @@;
datalines;

40 2 47 2 52 2 26 1 19 2
25 2 35 4 39 1 26 1 48 1
14 2 22 1 42 1 34 2 33 2
18 1 15 1 29 1 41 2 44 1
51 1 43 1 27 2 46 2 28 1
49 1 31 1 28 1 54 1 45 1
;

The following statements invoke the TTEST procedure to test if the mean test score is equal to 30.

ods graphics on;

proc ttest data=read h0=30;
var score;
freq count;

run;

ods graphics off;

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/tteex02.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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The count variable contains the frequency of occurrence of each test score; this is specified in the FREQ
statement. The output, shown in Output 128.2.1, contains the results.

Output 128.2.1 TTEST Results

The TTEST Procedure

Variable: score

Frequency: count

N Mean Std Dev Std Err Minimum Maximum

44 34.8636 11.2303 1.6930 14.0000 54.0000

Mean 95% CL Mean Std Dev
95%

CL Std Dev

34.8636 31.4493 38.2780 11.2303 9.2788 14.2291

DF t Value Pr > |t|

43 2.87 0.0063

The SAS log states that 30 observations and two variables have been read. However, the sample size given in
the TTEST output is N=44. This is due to specifying the count variable in the FREQ statement. The test is
significant (t = 2.87, p = 0.0063) at the 5% level, so you can conclude that the mean test score is different
from 30.

The summary panel in Output 128.2.2 shows a histogram with overlaid normal and kernel densities, a box
plot, and the 95% confidence interval for the mean.
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Output 128.2.2 Summary Panel

The Q-Q plot in Output 128.2.3 assesses the normality assumption.
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Output 128.2.3 Q-Q Plot

The tight clustering of the points around the diagonal line is consistent with the normality assumption.
You could use the UNIVARIATE procedure with the NORMAL option to numerically check the normality
assumption.

Example 128.3: Paired Comparisons
(View the complete code for this example (tteex03.sas) in the example repository.)

When it is not feasible to assume that two groups of data are independent, and a natural pairing of the data
exists, it is advantageous to use an analysis that takes the correlation into account. Using this correlation
results in higher power to detect existing differences between the means. The differences between paired
observations are assumed to be normally distributed. Some examples of this natural pairing are as follows:

� pre- and post-test scores for a student receiving tutoring

� fuel efficiency readings of two fuel types observed on the same automobile

� sunburn scores for two sunblock lotions, one applied to the individual’s right arm, one to the left arm

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/tteex03.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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� political attitude scores of husbands and wives

In this example, taken from the SUGI Supplemental Library User’s Guide, Version 5 Edition, a stimulus
is being examined to determine its effect on systolic blood pressure. Twelve men participate in the study.
Each man’s systolic blood pressure is measured both before and after the stimulus is applied. The following
statements input the data:

data pressure;
input SBPbefore SBPafter @@;
datalines;

120 128 124 131 130 131 118 127
140 132 128 125 140 141 135 137
126 118 130 132 126 129 127 135
;

The variables SBPbefore and SBPafter denote the systolic blood pressure before and after the stimulus,
respectively.

The statements to perform the test follow:

ods graphics on;

proc ttest;
paired SBPbefore*SBPafter;

run;

ods graphics off;

The PAIRED statement is used to test whether the mean change in systolic blood pressure is significantly
different from zero. The tabular output is displayed in Output 128.3.1.

Output 128.3.1 TTEST Results

The TTEST Procedure

Difference: SBPbefore - SBPafter

N Mean Std Dev Std Err Minimum Maximum

12 -1.8333 5.8284 1.6825 -9.0000 8.0000

Mean 95% CL Mean Std Dev
95%

CL Std Dev

-1.8333 -5.5365 1.8698 5.8284 4.1288 9.8958

DF t Value Pr > |t|

11 -1.09 0.2992

The variables SBPbefore and SBPafter are the paired variables with a sample size of 12. The summary
statistics of the difference are displayed (mean, standard deviation, and standard error) along with their
confidence limits. The minimum and maximum differences are also displayed. The t test is not significant (t
= –1.09, p = 0.2992), indicating that the stimuli did not significantly affect systolic blood pressure.

The summary panel in Output 128.3.2 shows a histogram, normal and kernel densities, box plot, and 100(1 –
˛)% = 95% confidence interval of the SBPbefore – SBPafter difference.
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Output 128.3.2 Summary Panel

The agreement plot in Output 128.3.3 reveals that only three men have higher blood pressure before the
stimulus than after.
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Output 128.3.3 Agreement of Treatments

But the differences for these men are relatively large, keeping the mean difference only slightly negative.

The profiles plot in Output 128.3.4 is a different view of the same information contained in Output 128.3.3,
plotting the blood pressure from before to after the stimulus.
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Output 128.3.4 Profiles over Treatments

The Q-Q plot in Output 128.3.5 assesses the normality assumption.
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Output 128.3.5 Q-Q Plot

The Q-Q plot shows no obvious deviations from normality. You can check the assumption of normality more
rigorously by using PROC UNIVARIATE with the NORMAL option.

Example 128.4: AB/BA Crossover Design
(View the complete code for this example (tteex04.sas) in the example repository.)

Senn (2002, Chapter 3) discusses a study comparing the effectiveness of two bronchodilators, formoterol
(“for”) and salbutamol (“sal”), in the treatment of childhood asthma. A total of 13 children are recruited for
an AB/BA crossover design. A random sample of 7 of the children are assigned to the treatment sequence
for/sal, receiving a dose of formoterol upon an initial visit (“period 1”) and then a dose of salbutamol upon a
later visit (“period 2”). The other 6 children are assigned to the sequence sal/for, receiving the treatments
in the reverse order but otherwise in a similar manner. Periods 1 and 2 are sufficiently spaced so that no
carryover effects are suspected. After a child inhales a dose of a bronchodilator, peak expiratory flow (PEF)
is measured. Higher PEF indicates greater effectiveness. The data are assumed to be approximately normally
distributed.

The data set is generated with the following statements:

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/tteex04.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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data asthma;
input Drug1 $ Drug2 $ PEF1 PEF2 @@;
datalines;

for sal 310 270 for sal 310 260 for sal 370 300
for sal 410 390 for sal 250 210 for sal 380 350
for sal 330 365
sal for 370 385 sal for 310 400 sal for 380 410
sal for 290 320 sal for 260 340 sal for 90 220
;

You can display the data by using the following statements, which produce Output 128.4.1:

proc print data=asthma;
run;

Output 128.4.1 Asthma Study Data

Obs Drug1 Drug2 PEF1 PEF2

1 for sal 310 270

2 for sal 310 260

3 for sal 370 300

4 for sal 410 390

5 for sal 250 210

6 for sal 380 350

7 for sal 330 365

8 sal for 370 385

9 sal for 310 400

10 sal for 380 410

11 sal for 290 320

12 sal for 260 340

13 sal for 90 220

The variables PEF1 and PEF2 represent the responses for the first and second periods, respectively. The
variables Drug1 and Drug2 represent the treatment in each period.

You can analyze this crossover design by using the CROSSOVER= option after a slash (/) in the VAR
statement:

ods graphics on;

proc ttest data=asthma plots=interval;
var PEF1 PEF2 / crossover= (Drug1 Drug2);

run;

ods graphics off;

With the default PROC TTEST options TEST=DIFF and DIST=NORMAL and the lack of the IGNOREPE-
RIOD option in the VAR statement, both the treatment difference and the period difference are assessed.
The PROC TTEST default options H0=0, SIDES=2, and ALPHA=0.05 specify a two-sided analysis with
95% confidence limits comparing treatment and period differences to a default difference of zero. The
default CI=EQUAL option in the PROC TTEST statement requests equal-tailed confidence intervals for
standard deviations. The PLOTS=INTERVAL option produces TYPE=TREATMENT confidence inter-
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vals, in addition to the default plots AGREEMENT(TYPE=TREATMENT), BOX, HISTOGRAM, PRO-
FILES(TYPE=TREATMENT), and QQ.

Output 128.4.2 summarizes the response and treatment variables for each period.

Output 128.4.2 Crossover Variable Information

The TTEST Procedure

Response Variables: PEF1, PEF2

Crossover Variable
Information

Period Response Treatment

1 PEF1 Drug1

2 PEF2 Drug2

Output 128.4.3 displays basic summary statistics (sample size, mean, standard deviation, standard error,
minimum, and maximum) for each of the four cells in the design, the treatment difference within each
treatment sequence, the overall treatment difference, and the overall period difference.

Output 128.4.3 Statistics

Sequence Treatment Period Method N Mean Std Dev Std Err Minimum Maximum

1 for 1 7 337.1 53.7631 20.3206 250.0 410.0

2 for 2 6 345.8 70.8814 28.9372 220.0 410.0

2 sal 1 6 283.3 105.4 43.0245 90.0000 380.0

1 sal 2 7 306.4 64.7247 24.4636 210.0 390.0

1 Diff (1-2) 7 30.7143 32.9682 12.4608 -35.0000 70.0000

2 Diff (1-2) 6 62.5000 44.6934 18.2460 15.0000 130.0

Both Diff (1-2) Pooled 46.6071 19.3702 10.7766

Both Diff (1-2) Satterthwaite 46.6071 11.0475

Both Diff (1-2) Pooled -15.8929 19.3702 10.7766

Both Diff (1-2) Satterthwaite -15.8929 11.0475

The treatment difference “Diff (1–2)” corresponds to the “for” treatment minus the “sal” treatment, because
“for” appears before “sal” in the output, according to the ORDER=MIXED default PROC TTEST option. Its
mean estimate is 46.6071, favoring formoterol over salbutamol.

The standard deviation (Std Dev) reported for a “difference” is actually the pooled standard deviation across
both treatment sequence (for/sal and sal/for), assuming equal variances. The standard error (Std Err) is the
standard deviation of the mean estimate.

The top half of the table in Output 128.4.4 shows 95% two-sided confidence limits for the means for the
same criteria addressed in the table in Output 128.4.3.
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Output 128.4.4 Confidence Limits

Sequence Treatment Period Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

1 for 1 337.1 287.4 386.9 53.7631 34.6446 118.4

2 for 2 345.8 271.4 420.2 70.8814 44.2447 173.8

2 sal 1 283.3 172.7 393.9 105.4 65.7841 258.5

1 sal 2 306.4 246.6 366.3 64.7247 41.7082 142.5

1 Diff (1-2) 30.7143 0.2238 61.2048 32.9682 21.2445 72.5982

2 Diff (1-2) 62.5000 15.5972 109.4 44.6934 27.8980 109.6

Both Diff (1-2) Pooled 46.6071 22.8881 70.3262 19.3702 13.7217 32.8882

Both Diff (1-2) Satterthwaite 46.6071 21.6585 71.5558

Both Diff (1-2) Pooled -15.8929 -39.6119 7.8262 19.3702 13.7217 32.8882

Both Diff (1-2) Satterthwaite -15.8929 -40.8415 9.0558

For the mean differences, both pooled (assuming equal variances for both treatment sequences) and Satterth-
waite (assuming unequal variances) intervals are shown. For example, the pooled confidence limits for the
overall treatment mean difference (for – sal) assuming equal variances are 22.8881 and 70.3262.

The bottom half of Output 128.4.4 shows 95% equal-tailed confidence limits for the standard deviations
within each cell and for the treatment difference within each sequence. It also shows confidence limits for the
pooled common standard deviation assuming equal variances. Note that the pooled standard deviation of
19.3702 and associated confidence limits 13.7217 and 32.8882 apply to both difference tests (treatment and
period), since each of those tests involves the same pooled standard deviation.

Output 128.4.5 shows the results of t tests of treatment and period differences.

Output 128.4.5 t Tests

Treatment Period Method Variances DF t Value Pr > |t|

Diff (1-2) Pooled Equal 11 4.32 0.0012

Diff (1-2) Satterthwaite Unequal 9.1017 4.22 0.0022

Diff (1-2) Pooled Equal 11 -1.47 0.1683

Diff (1-2) Satterthwaite Unequal 9.1017 -1.44 0.1838

Both pooled and Satterthwaite versions of the test of treatment difference are highly significant (p = 0.0012
and p = 0.0022), and both versions of the test of period difference are insignificant (p = 0.1683 and p =
0.1838).

The folded F test of equal variances in each treatment sequence is shown in Output 128.4.6.

Output 128.4.6 Equality of Variances Test

Equality of Variances

Method Num DF Den DF F Value Pr > F

Folded F 5 6 1.84 0.4797

The insignificant result (p = 0.48) implies a lack of evidence for unequal variances. However, it does not
demonstrate equal variances, and it is not very robust to deviations from normality.

Output 128.4.7 shows the distribution of the response variables PEF1 and PEF2 within each of the four cells
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(combinations of two treatments and two periods) of the AB/BA crossover design, in terms of histograms
and normal and kernel density estimates.

Output 128.4.7 Comparative Histograms

The distributions for the first treatment sequence (for/sal) appear to be somewhat symmetric, and the
distributions for the sal/for sequence appear to be skewed to the left.

Output 128.4.8 shows a similar distributional summary but in terms of box plots.
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Output 128.4.8 Comparative Box Plots

The relative locations of means and medians in each box plot corroborate the fact that the distributions for
the sal/for sequence are skewed to the left. The distributions for the for/sal sequence appear to be skewed
slightly to the right. The box plot for the salbutamol treatment in the first period shows an outlier (the circle
on the far left side of the plot).

The treatment agreement plot in Output 128.4.9 reveals that only a single observation has a higher peak
expiratory flow for salbutamol.
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Output 128.4.9 Agreement of Treatments Plot

The mean for the sal/for treatment sequence is farther from the diagonal equivalence line, revealing that
the treatment difference is more pronounced for the 6 observations in the sal/for sequence than for the 7
observations in the for/sal sequence. This fact is also seen numerically in Output 128.4.3 and Output 128.4.4,
which show within-sequence treatment differences of 30.7 for for/sal and 62.5 for sal/for.

The profiles over treatment plot in Output 128.4.10 is a different view of the same information contained
in Output 128.4.9, plotting the profiles from formoterol to salbutamol treatments. The lone observation for
which the peak expiratory flow is higher for salbutamol appears as the only line with negative slope.
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Output 128.4.10 Profiles over Treatment

The Q-Q plots in Output 128.4.11 assess normality assumption within each of the four cells of the design.
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Output 128.4.11 Q-Q Plots

The two Q-Q plots for the sal/for sequence (lower left and upper right) suggest some possible normality
violations in the tails, but the sample size is too small to make any strong conclusions. You could use the
UNIVARIATE procedure with the NORMAL option to numerically check the normality assumptions.

Finally, Output 128.4.12 shows both pooled and Satterthwaite two-sided 95% confidence intervals for the
treatment difference.
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Output 128.4.12 Confidence Intervals for Treatment Difference

The pooled interval is slightly smaller than the Satterthwaite interval. (This is not always the case.)

Example 128.5: Equivalence Testing with Lognormal Data
(View the complete code for this example (tteex05.sas) in the example repository.)

Wellek (2003, p. 212) discusses an average bioequivalence study comparing the AUC (area under serum-
concentration curve) measurements for two different drugs, denoted “Test” and “Reference,” over a period of
20 hours. This example looks at a portion of Wellek’s data, conducting an equivalence analysis with a paired
design that uses AUC values on the original scale (assumed to be lognormally distributed). Each subject in
the study received the Test drug upon one visit and then the Reference drug upon a later visit, sufficiently
spaced so that no carryover effects would occur.

The goal is to test whether the geometric mean AUC ratio between Test and Reference is between 0.8 and
1.25, corresponding to the traditional FDA (80%, 125%) equivalence criterion. See the section “Arithmetic
and Geometric Means” on page 10799 for a discussion of the use of geometric means for lognormal data.

The following SAS statements generate the data set:

data auc;
input TestAUC RefAUC @@;
datalines;

103.4 90.11 59.92 77.71 68.17 77.71 94.54 97.51
69.48 58.21 72.17 101.3 74.37 79.84 84.44 96.06
96.74 89.30 94.26 97.22 48.52 61.62 95.68 85.80
;

You can display the data by using the following statements, which produce Output 128.5.1:

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/tteex05.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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proc print data=auc;
run;

Output 128.5.1 AUC Data for Test and Reference Drugs

Obs TestAUC RefAUC

1 103.40 90.11

2 59.92 77.71

3 68.17 77.71

4 94.54 97.51

5 69.48 58.21

6 72.17 101.30

7 74.37 79.84

8 84.44 96.06

9 96.74 89.30

10 94.26 97.22

11 48.52 61.62

12 95.68 85.80

The TestAUC and RefAUC variables represent the AUC measurements for each subject under the Test and
Reference drugs, respectively. Use the following SAS statements to perform the equivalence analysis:

ods graphics on;

proc ttest data=auc dist=lognormal tost(0.8, 1.25);
paired TestAUC*RefAUC;

run;

ods graphics off;

The DIST=LOGNORMAL option specifies the lognormal distributional assumption and requests an analysis
in terms of geometric mean and coefficient of variation. The TOST option specifies the equivalence bounds
0.8 and 1.25.

Output 128.5.2 shows basic summary statistics for the ratio of TestAUC to RefAUC.

Output 128.5.2 Summary Statistics

The TTEST Procedure

Ratio: TestAUC / RefAUC

N
Geometric

Mean
Coefficient
of Variation Minimum Maximum

12 0.9412 0.1676 0.7124 1.1936

The geometric mean ratio of 0.9412 is the sample mean of the log-transformed data exponentiated to bring it
back to the original scale. So the plasma concentration over the 20-hour period is slightly lower for the Test
drug than for the Reference drug. The CV of 0.1676 is the ratio of the standard deviation to the (arithmetic)
mean.

Output 128.5.3 shows the 100(1 – ˛)% = 95% confidence limits for the geometric mean ratio (0.8467 and
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1.0462) and CV (0.1183 and 0.2884).

Output 128.5.3 Confidence Limits

Geometric
Mean 95% CL Mean

Coefficient
of Variation 95% CL CV

0.9412 0.8467 1.0462 0.1676 0.1183 0.2884

Output 128.5.4 shows the 100(1 – 2 ˛)% = 90% confidence limits for the geometric mean ratio, 0.8634 and
1.0260.

Output 128.5.4 Equivalence Limits

Geometric
Mean

Lower
Bound 90% CL Mean

Upper
Bound Assessment

0.9412 0.8 < 0.8634 1.0260 < 1.25 Equivalent

The assessment of “Equivalent” reflects the fact that these limits are contained within the equivalence bounds
0.8 and 1.25. This result occurs if and only if the p-value of the test is less than the ˛ value specified in the
ALPHA= option in the PROC TTEST statement, and it is the reason that 100(1 – 2 ˛)% confidence limits are
shown in addition to the usual 100(1 – ˛)% limits.

Output 128.5.5 shows the p-values for the two one-sided tests against the upper and lower equivalence
bounds.

Output 128.5.5 TOST Equivalence Test

Test Null DF t Value P-Value

Upper 0.8 11 3.38 0.0031

Lower 1.25 11 -5.90 <.0001

Overall 0.0031

The overall p-value of 0.0031, the larger of the two one-sided p-values, indicates significant evidence of
equivalence between the Test and Reference drugs.

The summary panel in Output 128.5.6 shows a histogram, kernel density, box plot, and 100(1 – 2 ˛)% = 90%
confidence interval of the Test-to-Reference ratio of AUC, along with the equivalence bounds.
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Output 128.5.6 Summary Panel

The confidence interval is closer to the lower equivalence bound than the upper bound and contained entirely
within the bounds.

The agreement plot in Output 128.5.7 reveals that the only four subjects with higher AUC for the Test drug
are at the far lower or far upper end of the AUC distribution. This might merit further investigation.



Example 128.5: Equivalence Testing with Lognormal Data F 10853

Output 128.5.7 Agreement Plot

The profiles plot in Output 128.5.8 is a different view of the same information contained in Output 128.5.7,
plotting the AUC from Test to Reference drug.
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Output 128.5.8 Profiles Plot

Example 128.6: Bootstrap with Two-Sample Design
(View the complete code for this example (tteex06.sas) in the example repository.)

As discussed in the section “Bootstrap Methods” on page 10810, the bootstrap is a useful technique for
producing improved estimates of standard error and bias and improved confidence intervals that adjust for
narrowness bias and median bias. The following example illustrates the use of the bootstrap for the same
golf score data as are analyzed in the Getting Started example in the section “Comparing Group Means” on
page 10778.

The golf scores for males and females in a physical education class are contained in the scores data set,
which is created by the following SAS statements:

data scores;
input Gender $ Score @@;
datalines;

f 75 f 76 f 80 f 77 f 80 f 77 f 73
m 82 m 80 m 85 m 85 m 78 m 87 m 82
;

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/r-z/tteex06.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/


Example 128.6: Bootstrap with Two-Sample Design F 10855

The addition of the BOOTSTRAP statement to the SAS statements specified in the section “Comparing
Group Means” on page 10778 requests bootstrap results for the comparison of female and male golf scores,
as follows:

ods graphics on;

proc ttest ci=equal umpu plots=bootstrap(interval);
class Gender;
var Score;
bootstrap / seed=837;

run;

The SEED= option in the BOOTSTRAP statement is specified to enable reproducibility of the results.
Because the NSAMPLES= option is not included, PROC TTEST uses 10,000 bootstrap samples by default.
Because the BOOTCI= option is not specified, PROC TTEST uses bootstrap bias-corrected percentile
intervals by default.

The PLOTS=BOOTSTRAP(INTERVAL) option produces bootstrap interval plots in addition to the default
summary panel, Q-Q, and correlation plots.

Output 128.6.1 shows simple statistics for the female and male golf scores being compared, as well as for the
difference of the female and male means. The Gender column indicates the population that corresponds to the
statistics in that row, and the Method column indicates the method for estimating the standard deviation, either
pooled (assuming equal variances for females and males) or Satterthwaite (assuming unequal variances).

Output 128.6.1 Simple Statistics

The TTEST Procedure

Variable: Score

Gender Method N Mean Std Dev Std Err Minimum Maximum

f 7 76.8571 2.5448 0.9619 73.0000 80.0000

m 7 82.7143 3.1472 1.1895 78.0000 87.0000

Diff (1-2) Pooled -5.8571 2.8619 1.5298

Diff (1-2) Satterthwaite -5.8571 1.5298

Let yf and ym denote the random variables for female and male scores, respectively. The mean of –5.8571
in Output 128.6.1 is computed as Nyf � Nym, the estimated mean of the difference yf � ym. The standard
deviation of 2.8619 is the pooled estimate of the standard deviation of either yf or ym, which are assumed in
the pooled method to have equal variances. The standard error of 1.5298 is the estimated standard deviation
of Nyf � Nym. This standard error is identical for both pooled and Satterthwaite methods because the group
sample sizes are equal (nf D nm).

Output 128.6.2 displays both pooled and Satterthwaite 95% intervals for the mean of the difference yf � ym.
It also shows equal-tailed and uniformly most powerful unbiased confidence limits for the assumed-common
standard deviation of yf and ym under the assumption of equal variances.



10856 F Chapter 128: The TTEST Procedure

Output 128.6.2 Confidence Limits

Gender Method Mean 95% CL Mean Std Dev
95%

CL Std Dev

95%
UMPU CL Std

Dev

f 76.8571 74.5036 79.2107 2.5448 1.6399 5.6039 1.5634 5.2219

m 82.7143 79.8036 85.6249 3.1472 2.0280 6.9303 1.9335 6.4579

Diff (1-2) Pooled -5.8571 -9.1902 -2.5241 2.8619 2.0522 4.7242 2.0019 4.5727

Diff (1-2) Satterthwaite -5.8571 -9.2064 -2.5078

Output 128.6.3 shows the bootstrap results for the golf score data.

Output 128.6.3 Bootstrap Analysis with Bias-Corrected Percentile Intervals

Bootstrap Statistics and Confidence Limits

Gender Method Parameter
Std

Error Bias 95% CL

Diff (1-2) Mean 1.4184 0.00440 -8.8571 -3.2857

Diff (1-2) Pooled Std Dev 0.5776 -0.3472 3.2071 5.2372

Diff (1-2) Satterthwaite Std Dev 0.5776 -0.3472 3.2071 5.2372

Each of the 10,000 bootstrap samples in the bootstrap analysis consists of a collection of nf D 7 random
draws with replacement from the female scores and nm D 7 random draws with replacement from the male
scores. For each of these samples, three statistics are computed:

� the sample mean estimate of the difference yf � ym

� the pooled standard deviation estimate of yf � ym, assuming equal variances

� the Satterthwaite standard deviation estimate of yf � ym, assuming unequal variances

It is these three statistics that correspond to the three rows in Output 128.6.3, identified by the Method and
Parameter columns.

The bootstrap estimate of the standard error of the mean difference, 1.4184, is slightly lower than the estimate
of 1.5298 from the original sample. The bootstrap estimate of the bias of Ny1 � Ny2 is 0.0044, very small
compared to either estimate of the standard error.

There is only one row for the mean difference parameter in Output 128.6.3 because the bias-corrected
percentile interval is invariant to the choice between pooled and Satterthwaite methods for estimating
the standard deviation. The 95% bootstrap bias-corrected confidence interval for the mean difference is
substantially narrower than either of the t-based confidence intervals shown in Output 128.6.2. This is not too
surprising because the bootstrap bias-corrected interval corrects only for median bias—that is, a difference
between the parameter � and the median of its distribution—and not for narrowness bias. Narrowness bias
in this context is the tendency of uncorrected bootstrap percentile intervals to be too narrow, especially for
small sample sizes such as in this case (nf D nm D 7).

The second and third rows in Output 128.6.3 show bootstrap results for the pooled and Satterthwaite estimates,
respectively, of the standard deviation of yf � ym. These estimates are identical to each other—both in the
original sample and in the bootstrap results—because the group sample sizes are equal. The bootstrap standard
error estimate, 0.5776, has no straightforward basis for comparison among the estimates that are computed
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directly from the original sample in Output 128.6.1 and Output 128.6.2 because there is no reasonable
closed-form estimate for the standard deviation of a standard deviation estimate. This demonstrates one of
the advantages of the bootstrap—that it can produce standard error estimates for any statistical estimator.

The estimated bias of the standard deviation of the difference is relatively large compared to the standard
error and implies that the standard deviation of yf � ym is being underestimated in the original sample.

The bootstrap bias-corrected percentile interval for the standard deviation of yf � ym, (3.2071, 5.2372),
cannot be directly compared with the estimate and confidence limits of the pooled standard deviation that
are computed from the original sample in Output 128.6.2. However, you can transform the statistics for
the pooled standard deviation into statistics for the standard deviation of yf � ym simply by multiplying
them by

p
2, because the pooled estimate of Var.yf � ym/ is 2s2p. The resulting point estimate from the

original sample is 2.8619 �
p
2 = 4.0473. The transformed equal-tail and UMPU confidence intervals are,

respectively, (2.9022, 6.6810) and (2.8311, 6.4668).

The bootstrap summary panels in Output 128.6.4 through Output 128.6.6 show histograms, normal and
kernel densities, box plots, and 100(1 – ˛)% = 95% bootstrap bias-corrected percentile intervals for the mean,
pooled standard deviation, and Satterthwaite standard deviation of the difference between female and male
scores.

Output 128.6.4 Summary Panel of Bootstrap Mean



10858 F Chapter 128: The TTEST Procedure

Output 128.6.5 Summary Panel of Bootstrap Pooled Standard Deviation
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Output 128.6.6 Summary Panel of Bootstrap Satterthwaite Standard Deviation

The bootstrap Q-Q plots in Output 128.6.7 through Output 128.6.9 assess the normality of the distributions of
the bootstrap mean, pooled standard deviation, and Satterthwaite standard deviation of the difference between
female and male scores. The deviations from normality in the upper tail of the standard deviations are not
surprising, because they have approximate chi-square distributions for normal data.
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Output 128.6.7 Q-Q Plot of Bootstrap Mean
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Output 128.6.8 Q-Q Plot of Bootstrap Pooled Standard Deviation
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Output 128.6.9 Q-Q Plot of Bootstrap Satterthwaite Standard Deviation

The bootstrap correlation plots in Output 128.6.10 and Output 128.6.11 show the relationship between the
bootstrap mean and the bootstrap pooled and Satterthwaite standard deviations of the difference between
female and male scores. The approximately circular (as opposed to elongated elliptical) shapes of the
prediction regions suggest unusually low correlations between the mean and standard deviation.
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Output 128.6.10 Correlation Plot of Bootstrap Mean and Pooled Standard Deviation
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Output 128.6.11 Correlation Plot of Bootstrap Mean and Satterthwaite Standard Deviation

The bootstrap interval plots in Output 128.6.12 and Output 128.6.13 show 100(1 – ˛)% = 95% bootstrap bias-
corrected percentile intervals of the mean, pooled standard deviation, and Satterthwaite standard deviation of
the difference between female and male scores. The distance and direction between the sample and bootstrap
means that are marked on the interval for each statistic reflect the size and sign of the bootstrap-estimated
bias of the sample mean of the statistic.
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Output 128.6.12 Bootstrap Bias-Corrected Percentile Interval Plot of Mean

Output 128.6.13 Bootstrap Bias-Corrected Percentile Interval Plot of Pooled and Satterthwaite Standard
Deviations

For the purpose of illustration, it is informative to compare the bootstrap bias-corrected percentile intervals
to both unadjusted and expanded percentile intervals. The following SAS statements request unadjusted
bootstrap percentile intervals:

proc ttest plots(only)=bootstrap(interval);
class Gender;
var Score;
bootstrap / seed=810 bootci=percentile;
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run;

Output 128.6.14 through Output 128.6.16 show very similar confidence limits for the mean difference but
substantially lower limits for the standard deviation of the difference, compared to the bootstrap bias-corrected
confidence limits in Output 128.6.3, Output 128.6.12, and Output 128.6.13. This is consistent with both the
magnitudes and directions of the bootstrap bias estimates. The minor differences in the bootstrap standard
error and bias estimates between Output 128.6.3 and Output 128.6.14 are due only to random variation in the
bootstrap resampling.

Output 128.6.14 Bootstrap Analysis with Percentile Intervals

The TTEST Procedure

Variable: Score

Bootstrap Statistics and Confidence Limits

Gender Method Parameter
Std

Error Bias 95% CL

Diff (1-2) Mean 1.4046 -0.00934 -8.5714 -3.1429

Diff (1-2) Pooled Std Dev 0.5757 -0.3373 2.5355 4.7809

Diff (1-2) Satterthwaite Std Dev 0.5757 -0.3373 2.5355 4.7809

Output 128.6.15 Bootstrap Percentile Interval Plot of Mean
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Output 128.6.16 Bootstrap Percentile Interval Plot of Pooled and Satterthwaite Standard Deviations

The following SAS statements request bootstrap expanded percentile intervals:

proc ttest plots(only)=bootstrap(interval);
class Gender;
var Score;
bootstrap / seed=249 bootci=expandedperc;

run;

ods graphics off;

Output 128.6.17 and Output 128.6.18 show a substantially wider confidence interval for the mean difference
when compared to Output 128.6.14 through Output 128.6.16. This makes sense because the expanded
percentile interval, unlike the bias-corrected confidence interval, corrects for narrowness bias, which is
especially problematic for small sample sizes.

Output 128.6.17 Bootstrap Analysis with Expanded Percentile Intervals

The TTEST Procedure

Variable: Score

Bootstrap Statistics and Confidence Limits

Gender Method Parameter
Std

Error Bias 95% CL

Diff (1-2) Pooled Mean 1.4024 -0.0265 -9.0000 -2.5714

Diff (1-2) Satterthwaite Mean 1.4024 -0.0265 -9.1429 -2.5714

Diff (1-2) Pooled Std Dev 0.5817 -0.3515

Diff (1-2) Satterthwaite Std Dev 0.5817 -0.3515
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Output 128.6.18 Bootstrap Expanded Percentile Interval Plot of Mean

There are distinct pooled and Satterthwaite versions of the expanded percentile intervals for the mean in
Output 128.6.17 and Output 128.6.18, because the two methods compute degrees of freedom differently and
the degrees of freedom are involved in the “expanded” adjustment.

Expanded percentile intervals are not computed for the standard deviation parameters because the method that
is specified in the BOOTCI=EXPANDEDPERC option is based on the assumption of approximate normality
of the bootstrapped statistic O� . However, both the pooled and Satterthwaite standard deviation estimates have
approximate chi-square distributions under normality. Because they are not sample mean estimates, they are
not subject to the central limit theorem.
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