I ——
6sas

SAS’ Visual Data Mining and
Machine Learning 8.1
The NETWORK Procedure

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® Visual Data Mining and Machine
Learning 8.1: The NETWORK Procedure. Cary, NC: SAS Institute Inc.

SAS® Visual Data Mining and Machine Learning 8.1: The NETWORK Procedure
Copyright © 2016, SAS Institute Inc., Cary, NC, USA
All Rights Reserved. Produced in the United States of America.

For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute
Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time
you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is
illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic
piracy of copyrighted materials. Your support of others’ rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software
developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or
disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as
applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S.
federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision
serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The
Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
September 2016

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS software may be provided with certain third-party software, including but not limited to open-source software, which is
licensed under its applicable third-party software license agreement. For license information about third-party software distributed
with SAS software, refer to http://support.sas.com/thirdpartylicenses.

http://support.sas.com/thirdpartylicenses

Contents

Chapter 1. Introduction e e e e e s 1
Chapter 2. The NETWORK Procedure .. 5
161

Index

v

Credits

Documentation
Writing Matthew Galati, Yi Liao
Editing Anne Baxter, Ed Huddleston

Documentation Support Tim Arnold, Melanie Gratton

Technical Review Charles B. Kelly, Manoj Chari, Ed Hughes, Rob Pratt, Anatoli
Melechko, Yu-Min Lin

Software

PROC NETWORK Matthew Galati, Yi Liao, Anatoli Melechko

Support Groups

Software Testing Charles B. Kelly, Rui Kang, Yu-Min Lin

Technical Support Tonya Chapman

vi

Chapter 1
Introduction

Contents
Overview of the NETWORK Procedure
About This Book e

Chapter Organization oot

Typographical Conventions
Options Used in Examples
Where to Turn for More Information,

Online Documentation i e e e

LW W W W NN e

SAS Technical Support Services

Overview of the NETWORK Procedure

The NETWORK procedure includes a number of graph theory and network analysis algorithms that can
augment data mining and machine learning approaches. In many practical applications of data mining and
machine learning models, pairwise interaction between the entities of interest in the model often plays an
important role. For example, when you are modeling churn in a telecommunications network to support
a retention campaign, the influence of individual customers on the other customers—such as friends and
acquaintances that they regularly interact with—might contribute to the propensity of other customers to churn.
You could likewise imagine a customer being able to influence the propensity of his or her acquaintances to
acquire new products. Social networks such as Facebook and Twitter are obvious examples of networks that
represent such interactions between individuals.

Networks also appear explicitly and implicitly in many other application contexts. Networks are often con-
structed from certain natural co-occurrence types of relationships—such as relationships among researchers
who coauthor articles, actors who appear in the same movie, words or topics that occur in the same document,
items that appear together in a shopping basket, terrorism suspects who travel together or are seen in the
same location, and so on. In these types of relationship, the strength or frequency of interaction is modeled as
weights on the links of the resulting network.

About This Book

This book assumes that you are familiar with Base SAS software and with the books SAS Language Reference:
Concepts and Base SAS Procedures Guide. It also assumes that you are familiar with basic SAS System
concepts, such as using the DATA step to create SAS data sets and using Base SAS procedures (such as the
PRINT and SORT procedures) to manipulate SAS data sets.

2 4 Chapter 1: Introduction

Chapter Organization

This book is organized as follows:

Chapter 1, this chapter, provides an overview of the NETWORK procedure, describes typographical conven-
tions, and tells you where you can find more information.

Chapter 2 describes the NETWORK procedure and is organized as follows:

e The “Overview” section briefly describes the analysis provided by the procedure.

e The “Getting Started” section provides a quick introduction to the procedure through a simple example.

e The “Syntax” section describes the SAS statements and options that control the procedure.

The “Details” section discusses methodology and other topics, such as ODS tables.
The “Examples” section contains examples that use the procedure.

The “References” section contains references for the methodology.

Typographical Conventions

This book uses several type styles for presenting information. The following list explains the meaning of the
typographical conventions used in this book:

roman

UPPERCASE ROMAN

UPPERCASE BOLD

oblique

VariableName
bold

italic

monospace

is the standard type style used for most text.

is used for SAS statements, options, and other SAS language elements when they
appear in text. However, you can enter these elements in your own SAS programs
in lowercase, uppercase, or a mixture of the two.

is used in the “Syntax” sections’ initial lists of SAS statements and options.

is used in the syntax definitions and in text to represent arguments for which you
supply a value.

is used for the names of variables and data sets when they appear in text.
is used for matrices and vectors.

is used for terms that are defined in text, for emphasis, and for references to
publications.

is used for example code. In most cases, this book uses lowercase type for SAS
code.

Options Used in Examples 4 3

Options Used in Examples

The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documen-
tation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template
controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template
in an ODS destination statement as follows:

ods html style=HTMLBlue;
ods html close;
ods pdf style=Pearld;

ods pdf close;

Most of the PDF tables are produced by using the following SAS System option:

options papersize=(6.5in 9in);

If you run the examples, you might get slightly different output. This is a function of the SAS System options
that are used and the precision that your computer uses for floating-point calculations.

Where to Turn for More Information

Online Documentation

You can access the documentation by going to http://support.sas.com/documentation.

SAS Technical Support Services

The SAS Technical Support staff is available to respond to problems and answer technical questions regarding
the use of procedures in this book. Go to http://support.sas.com/techsup for more information.

http://support.sas.com/documentation
http://support.sas.com/techsup

Chapter 2

The NETWORK Procedure

Contents
Overview: NETWORK Procedure 6
Using CAS Sessions and CAS Engine Librefs 7
Loading a SAS Data Setontoa CAS Server 8
Getting Started: NETWORK Procedure 9
Road Network ShortestPath o 9
Authority in US Supreme Court Precedent 12
Syntax: NETWORK Procedure, 15
Functional Summary 16
PROC NETWORK Statement 21
BICONNECTEDCOMPONENTS Statement 24
BY Statement e 24
CENTRALITY Statement ittt ettt 24
CLIQUE Statement ittt e e e e e e e e 27
COMMUNITY Statementot i ittt e et 27
CONNECTEDCOMPONENTS Statement 30
CORE Statement oo it e e e e e 31
CYCLE Statement o v vttt ittt e e e 32
DISPLAY Statement o . i e e e e 33
DISPLAYOUT Statementttt et e 34
LINKSVAR Statementottt it e 34
NODESVAR Statement it 35
NODESSUBSETVAR Statement 35
REACH Statement ot i ittt e 36
SHORTESTPATH Statement 37
SUMMARY Statement e 38
TRANSITIVECLOSURE Statement 39
Details: NETWORK Procedure i 39
GraphInputData 39
Execution Modes and Data Movement 47
Numeric Limitations o . e e e e 49
Size Limitations 50
Common Notation and ASSUmptions v v v vt vt 50
Biconnected Components and Articulation Points 51
Centrality 55
Clique Enumeration 0 i it e e 68
Community Detection e 71

6 4 Chapter 2: The NETWORK Procedure

Connected COMpPONENts v v vttt e e e e e 80
Core Decomposition L 84
Cycle Enumeration L e 89
Reach (Ego) Network 94
Shortest Path 101
Summary Statistics L. 112
Transitive Closure o L 119
Macro Variable NETWORK 121
ODS Table Names o . i e e 123
Examples: NETWORK Procedure 124
Example 2.1: Articulation Points in a Terrorist Network 124
Example 2.2: Influence Centrality for Project Groups in a Research Department . . . 126

Example 2.3: Betweenness and Closeness Centrality for Computer Network Topology 130
Example 2.4: Betweenness and Closeness Centrality for Project Groups in a Research

Department L 133

Example 2.5: Eigenvector Centrality for Word Sense Disambiguation 136

Example 2.6: Community Detection on Zachary’s Karate ClubData 139

Example 2.7: Recursive Community Detection on Zachary’s Karate Club Data 143

Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community 145
Example 2.9: Transitive Closure for Identification of Circular Dependencies in a Bug

Tracking System o 151

Example 2.10: Connected Components for US Patent Citations 154

Example 2.11: Shortest Paths of the New York Road Network 156

References e 157

Overview: NETWORK Procedure

In order to support the myriad ways that networks appear in data mining, PROC NETWORK makes no
assumptions about the context or application from which the network arises. It provides a number of network
analysis algorithms (listed in Table 2.1) that take an abstract graph or network as input and help explain
network structure and compute important network measures. Depending on the application, this type of
network analysis can stand on its own and provide independent value, or it can support machine learning
models—for example, by providing additional features that are derived from network measures such as node
centrality.

Using CAS Sessions and CAS Engine Librefs 4 7

Table 2.1 Algorithm Classes in PROC NETWORK

Algorithm Class PROC NETWORK Statement
Biconnected components BICONNECTEDCOMPONENTS
Centrality CENTRALITY

Clique enumeration CLIQUE

Community detection COMMUNITY
Connected components CONNECTEDCOMPONENTS

Core decomposition CORE

Cycle enumeration CYCLE

Reach (ego) networks REACH

Shortest path SHORTESTPATH

Graph summary SUMMARY

Transitive closure TRANSITIVECLOSURE

The NETWORK procedure expects as input graph G = (N, A), which is defined over a set N of nodes
and a set A of arcs. A node is an abstract representation of some entity (or object), and an arc defines the
relationship (or connection) between two nodes. The terms node and vertex are interchangeable in describing
an entity. The term arc is interchangeable with the term edge or link in describing a connection.

Using CAS Sessions and CAS Engine Librefs

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud services in SAS Viya. This
section describes how to create a CAS session and set up a CAS engine libref that you can use to connect to
the CAS session. It assumes that you have a CAS server already available; contact your system administrator
if you need help starting and terminating a server. This CAS server is identified by specifying the host on
which it runs and the port on which it listens for communications. To simplify your interactions with this
CAS server, the host information and port information for the server are stored as SAS option values that are
retrieved automatically whenever this CAS server needs to be accessed. You can examine the host and port
values for the server at your site by using the following statements:

proc options option=(CASHOST CASPORT) ;
run;

In addition to starting a CAS server, your system administrator might also have created a CAS session and a
CAS engine libref for your use. You can define your own sessions and CAS engine librefs that connect to the
CAS server as shown in the following statements:

cas mysess;
libname mycas cas sessref=mysess;

The CAS statement creates the CAS session named mysess, and the LIBNAME statement creates the
mycas CAS engine libref that you use to connect to this session. It is not necessary to explicitly name the
CASHOST and CASPORT of the CAS server in the CAS statement, because these values are retrieved from
the corresponding SAS option values.

If you have created the mysess session, you can terminate it by using the TERMINATE option in the CAS
statement as follows:

8 4 Chapter 2: The NETWORK Procedure

cas mysess terminate;

For more information about the CAS statement and the LIBNAME statement, see SAS Cloud Analytic
Services: Language Reference. For general information about CAS and CAS sessions, see SAS Cloud
Analytic Services: Fundamentals.

Loading a SAS Data Set onto a CAS Server

Procedures in this book require the input data to reside on a CAS server. To work with a SAS data set, you
must first load the data set onto the CAS server. Data loaded on the CAS server are called data tables. This
section lists three methods of loading a SAS data set onto a CAS server. In this section, mycas is the name of
the caslib that is connected to the mysess CAS session.

e You can use a single DATA step to create a data table on the CAS server as follows:

data mycas.Sample;
input y x @@;
datalines;
.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7

4

Note that DATA step operations might not work as intended when you perform them on the CAS server
instead of the SAS client.

e You can create a SAS data set first, and when it contains exactly what you want, you can use another
DATA step to load it onto the CAS server as follows:

data Sample;
input y x @@;
datalines;
.46 1 .47 2 .57 3 .61 4 .62 5 .68 6 .69 7 .78 8
7
data mycas.Sample;
set Sample;
run;

e You can use the CASUTIL procedure as follows:

proc casutil sessref=mysess;
load data=Sample casout="Sample";

quit;

The CASUTIL procedure can load data onto a CAS server more efficiently than the DATA step.
For more information about the CASUTIL procedure, see SAS Cloud Analytic Services: Language
Reference.

Getting Started: NETWORK Procedure 4 9

The mycas caslib stores the Sample data table, which can be distributed across many machine nodes. You
must use a caslib reference in procedures in this book to enable the SAS client machine to communicate with
the CAS session. For example, the following NETWORK procedure statements use a data table that resides
in the mycas caslib:

proc network links = mycas.Sample;
...statements...;
run;

You can delete your data table by using the DELETE procedure as follows:

proc delete data = mycas.Sample;
run;

The Sample data table is accessible only in the mysess session. When you terminate the mysess session, the
Sample data table is no longer accessible from the CAS server. If you want your Sample data table to be
available to other CAS sessions, then you must promote your data table. For more information about data
tables, see SAS Cloud Analytic Services: Accessing and Manipulating Data.

Getting Started: NETWORK Procedure

Because graphs are abstract objects, their analyses have applications in many different fields of study,
including social sciences, linguistics, biology, transportation, marketing, and so on. This chapter demonstrates
a few potential applications through simple examples.

This section presents two introductory examples for getting started with the NETWORK procedure. For
more information about the input formats expected and the various algorithms available, see the sections
“Details: NETWORK Procedure” on page 39 and “Examples: NETWORK Procedure” on page 124.

Road Network Shortest Path

Consider the following road network between a SAS employee’s home in Raleigh, North Carolina, and
SAS headquarters nearby in Cary. In this road network (graph), the links are the roads and the nodes are
intersections of the roads. For each road, you assign a link attribute in the variable time_to_travel to describe
the number of minutes that it takes to drive from one node to another. The following data were collected
using Google Maps (Google 2011), which gives an approximate number of minutes to travel between two
nodes based on the length of the road and the typical speed during normal traffic patterns:

data mycas.LinkSetInRoadNClOam;
input start_inter $1-20 end_inter $20-40 miles miles_per_hour;
time_to_travel = miles * l/miles_per_hour * 60;

datalines;
6l4CapitalBlvd Capital/WadeAve 0.6 25
6l4CapitalBlvd Capital/UsS70wW 0.6 25
6l14CapitalBlvd Capital/Us440w 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 40
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60

10 4 Chapter 2: The NETWORK Procedure

Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25

Using PROC NETWORK, you want to find the route that yields the shortest path between home (614 Capital

Boulevard) and SAS headquarters (SAS Campus Drive). This can be done using the SHORTESTPATH
statement as follows:

proc network

links = mycas.LinkSetInRoadNCl0am;
linksVar

from = start_inter

to = end_inter

weight = time_to_travel;
shortestPath

outPaths = mycas.ShortPath

source = "6l4CapitalBlvd"

sink = "SASCampusDrive";

run;

For more information about shortest path algorithms in PROC NETWORK, see the section “Shortest Path”
on page 101. Figure 2.1 displays the output data table mycas.ShortPath, which shows the best route to take
to minimize travel time at 10:00 a.m. on a workday. This route is also shown in Google Maps in Figure 2.2.

Figure 2.1 Shortest Path for Road Network at 10:00 A.M.

order start_inter end_inter time_to_travel
1 614CapitalBivd Capital/WadeAve 1.4400
2 Capital/WadeAve WadeAve/RaleighExpy 4.5000
3 WadeAve/RaleighExpy RaleighExpy/US40W 3.0000
4 RaleighExpy/US40W US40W/HarrisonAve 1.4182
5 US40W/HarrisonAve =~ SASCampusDrive 1.2000

11.5582

Road Network Shortest Path 4+ 11

Figure 2.2 Shortest Path for Road Network at 10:00 A.M. in Google Maps

I}

L.

100 SAS/Campus Dr|

Now suppose that it is the evening rush hour (5:00-7:00 p.m.) and the time that it takes to travel this route
has changed because of traffic patterns. You want to find the route that is the shortest path for going home
from SAS headquarters under different speed assumptions because of rush-hour traffic. The following data
table lists approximate travel times and speeds for driving in the opposite direction:

data mycas.LinkSetInRoadNC5pm;
input start_inter $1-20 end_inter $20-40 miles miles_per_hour;
time_to_travel = miles * l/miles_per_hour x 60;

datalines;
6l4CapitalBlvd Capital/WadeAve 0.6 25
6l4CapitalBlvd Capital/US70W 0.6 25
614CapitalBlvd Capital/US440W 3.0 45
Capital/WadeAve WadeAve/RaleighExpy 3.0 25 /xhigh trafficx/
Capital/US70W US70W/US440W 3.2 60
US70W/US440W US440W/RaleighExpy 2.7 60
Capital/US440W US440W/RaleighExpy 6.7 60
US440W/RaleighExpy RaleighExpy/US40W 3.0 60
WadeAve/RaleighExpy RaleighExpy/US40W 3.0 60
RaleighExpy/US40W US40W/HarrisonAve 1.3 55
US40W/HarrisonAve SASCampusDrive 0.5 25

The following statements are similar to those in the first PROC NETWORK run, except that they use the data
table mycas.LinkSetlnRoadNC5pm and the SOURCE= and SINK= option values are reversed:

proc network

links = mycas.LinkSetInRoadNC5pm;
linksVar

from = start_inter

to = end_inter

weight = time_to_travel;
shortestPath

outPaths = mycas.ShortPath

12 4 Chapter 2: The NETWORK Procedure

source = "SASCampusDrive"
sink = "61l4CapitalBlvd";
run;

Now, the output data table mycas.ShortPath, shown in Figure 2.3, shows the best route for going home.
Because the traffic on Wade Avenue is usually heavy at this time of day, the route home is different from the
route to work.

Figure 2.3 Shortest Path for Road Network at 5:00 P.M.

order start_inter end_inter time_to_travel
1 SASCampusDrive US40W/HarrisonAve 1.2000

2 US40W/HarrisonAve RaleighExpy/US40W 1.4182

3 RaleighExpy/US40W US440W/RaleighExpy 3.0000

4 US440W/RaleighExpy US70W/US440W 2.7000

5 US70W/US440W Capital/lUS70W 3.2000

6 Capital/US70W 614CapitalBivd 1.4400
12.9582

This new route is shown in Google Maps in Figure 2.4.

Figure 2.4 Shortest Path for Road Network at 5:00 P.M. in Google Maps

na,
L o8

W Peace si

1 e LN I g %, \ i
& a 2 & "y, PNG Arena & : L in Y 3
5 Carter adum 5 o & S 2 c
H N & Weredith College £ ¢ L5
e NC State o Ber H g F ? 2 i
H il ough 5 o $
o5 e AL Y7 ' § Broughton High School &
A o i = 3 i 2 2 614 Capital Blvd
| b= - © z St 2 apital Biv 5
L) 2 5 : s, ke :
b a

Authority in US Supreme Court Precedent

This example looks at the use of precedents in cases before the US Supreme Court. Consider the judge’s
problem of identifying precedent court cases that are most relevant and important to the current case. This
application of network analysis was published in Fowler and Joen (2008). Because of norms inherited from
19th-century English law, judges are encouraged to follow precedents in order to take advantage of “the
accumulated experience of many judges responding to the arguments and evidence of many lawyers” (Landes
and Posner 1976). In network analysis, one way to define the importance of a previous case is to look at

Authority in US Supreme Court Precedent 4 13

the network of citations used in related cases. That is, if a particular case A cited case B to help support its
argument, then a link exists from A to B in the citation network.

Given such a citation network, you can then use a metric known as authority score to rank the importance of
these cases. This metric is explained in more detail in the section “Hub and Authority Scoring” on page 66.
Figure 2.5 shows a small representative subset of the citation network for landmark abortion decisions from
the example in Fowler and Joen (2008).

Figure 2.5 Citation Network for Some US Supreme Court Cases

29933

12061

29459

29003 29156

The data table mycas.Cases stores a mapping between the case name and the case identifier:

data mycas.Cases;

length case_id 8 case_name $80;

input case_id 1-5 case_name $ 7-80;

datalines;
12061 Jacobson v. Massachusetts, 197 U.S. 11 (1905)
25347 Roe vs. Wade, 410 U.S. 113 (1973)
27633 Akron vs. Akron Cntr for Repro-Health, 462 U.S. 416 (1983)
28354 Thornburgh vs. American College, 476 U.S. 747 (1986)
29003 Webster vs. Repro—-Health Services, 492 U.S. 490 (1989)
29153 Cruzan v. Director, MO Dept of Health, 497 U.S. 261 (1990)
29155 Georgia v. South Carolina, 497 U.S. 376 (1990)
29156 Hodgson v. Minnesota, 497 U.S. 417 (1990)
29459 Planned Parenthood of SE PA vs. Casey, 505 U.S. 833 (1992)
29663 Madsen v. Women's Health Ctr., 512 U.S. 753 (1994)
29933 Wash. v. Glucksberg, 521 U.S. 702 (1997)

’

The data table mycas.LinkSetInCourt provides the citation network between case identifiers:

14 4 Chapter 2: The NETWORK Procedure

data mycas.LinkSetInCourt;

input from case to_case @@Q;

datalines;
27633 25347 28354 25347 28354 27633 29003 25347 29003 27633
29003 28354 29459 25347 29459 27633 29459 28354 29459 29003
25347 12061 28354 12061 29459 12061 29933 25347 29933 29459
29933 12061 29933 29153 29663 25347 29663 28354 29153 12061
29153 28354 29153 29003 29153 25347 29459 29153 29156 27633
29156 28354 29156 29003 29156 25347 29459 29156

4

You can calculate the authority scores of each case by using the CENTRALITY statement with the AUTH=
option, as follows:

proc network

direction = directed
links = mycas.LinkSetInCourt
outNodes = mycas.NodeSetOut;
linksVar
from = from_case
to = to_case;
centrality
auth = unweight;
run;

The output data table mycas.NodeSetOut contains the authority score for each case (node). Then, the
following statements combine the case names and the case identifiers into a local data set called NodeSetOut
and sort them by score in descending order:

data NodeSetOut (drop=rc);
merge mycas.NodeSetOut (rename=(node=case_id)) mycas.Cases;
by case_id;

run;

proc sort data=NodeSetOut;
by descending centr_ auth unwt;

run;

As expected, Roe vs. Wade (1973) has the highest authority ranking, because it is most often cited by other
cases.

Syntax: NETWORK Procedure 4 15

Figure 2.6 Authority Ranking of Landmark US Supreme Court Cases

case_id centr_auth_unwt case_name

25347 1.00000 Roe vs. Wade, 410 U.S. 113 (1973)

28354 0.72262 Thornburgh vs. American College, 476 U.S. 747 (1986)
12061 0.61717 Jacobson v. Massachusetts, 197 U.S. 11 (1905)

27633 0.59831 Akron vs. Akron Cntr for Repro-Health, 462 U.S. 416 (1983)
29003 0.50930 Webster vs. Repro-Health Services, 492 U.S. 490 (1989)
29153 0.31742 Cruzan v. Director, MO Dept of Health, 497 U.S. 261 (1990)
29156 0.20968 Hodgson v. Minnesota, 497 U.S. 417 (1990)

29459 0.10775 Planned Parenthood of SE PA vs. Casey, 505 U.S. 833 (1992)
29663 0.00000 Madsen v. Women's Health Ctr., 512 U.S. 753 (1994)
29933 0.00000 Wash. v. Glucksberg, 521 U.S. 702 (1997)

29155 . Georgia v. South Carolina, 497 U.S. 376 (1990)

In such a small example, it is somewhat easy to see which cases have the most influence by looking at the
directed graph of citations. As discussed in Fowler and Joen (2008), the real advantage of such an analysis
can be seen in examining all the citations for all 30,288 cases available in their data.

Syntax: NETWORK Procedure

PROC NETWORK statements are divided into four main categories:
PROC statement
PROC NETWORK < options > ;
This statement invokes the procedure and sets option values that are used across multiple algorithms.
Data Input Statements:

LINKSVAR < options > ;
NODESVAR < options > ;
NODESSUBSETVAR < options > ;

These statements control the names of the variables that PROC NETWORK expects in the data input.

Algorithm Statements:

BICONNECTEDCOMPONENTS ;
CENTRALITY < options > ;

CLIQUE < options > ;

COMMUNITY < options > ;
CONNECTEDCOMPONENTS < options > ;
CORE < options > ;

CYCLE < options > ;

REACH < options > ;
SHORTESTPATH < options > ;
SUMMARY < options > ;
TRANSITIVECLOSURE < options > ;

16 4 Chapter 2: The NETWORK Procedure

These statements determine which algorithm is run and set options for each individual algorithm.

Standard Statements:

BY variables ;

DISPLAY < table-list> </ options> ;

DISPLAYOUT table-spec-list </ options > ;

These statements control BY-group processing and manage ODS tables.

The following section provides a quick summary of each statement and its options. Each statement is then
described in more detail in its own section. The PROC NETWORK statement is described first, and sections
that describe all the other statements are presented in alphabetical order (they are not ordered according to

their category).

Functional Summary

Table 2.2 summarizes the statements and options available in the NETWORK procedure.

Table 2.2 Functional Summary of Statements and Options

Description Statement Option

Input

Specifies the links data table PROC NETWORK LINKS=

Specifies the nodes data table PROC NETWORK NODES=
Specifies the nodes subset data table PROC NETWORK NODESSUBSET=
Output

Specifies the links output data table PROC NETWORK OUTLINKS=
Specifies the nodes output data table PROC NETWORK OUTNODES=
Options

Specifies the graph direction PROC NETWORK DIRECTION=
Includes self-links PROC NETWORK INCLUDESELFLINK
Specifies the index offset for identifiers PROC NETWORK INDEXOFFSET=
Specifies the desired frequency (in PROC NETWORK LOGFREQTIME=
number of seconds) between log entries

Specifies the overall log level PROC NETWORK LOGLEVEL=
Specifies the maximum number of threads PROC NETWORK NTHREADS=

to use for multithreaded processing

Specifies that the input graph data are ina PROC NETWORK STANDARDIZEDLABELS
standardized format

Specifies whether time units are in CPU ~ PROC NETWORK TIMETYPE=

time or real time

Data Input Statements

Specifies the data variable name for the LINKSVAR AUXWEIGHT=
auxiliary link weights

Specifies the data variable name for the LINKSVAR FROM=

from nodes

Table 2.2 (continued)

Functional Summary 4 17

Description Statement Option

Specifies the data variable name for the fo LINKSVAR TO=

nodes

Specifies the data variable name for the LINKSVAR WEIGHT=

link weights

Specifies the data variable name for the NODESVAR NODE=

nodes

Specifies the data variable name for node NODESVAR WEIGHT=
weights

Specifies the data variable name for the NODESSUBSETVAR NODE=

nodes

Specifies the data variable name for the NODESSUBSETVAR REACH=

reach identifier

Specifies the data variable name for the NODESSUBSETVAR SINK=

sink indicator

Specifies the data variable name for the NODESSUBSETVAR SOURCE=

source indicator

Algorithm Statements

CENTRALITY Statement

Specifies which type of authority CENTRALITY AUTH=

centrality to calculate

Specifies which type of betweenness CENTRALITY BETWEEN=
centrality to calculate

Specifies whether to normalize the CENTRALITY BETWEENNORM=
betweenness calculation

Specifies which type of closeness CENTRALITY CLOSE=
centrality to calculate

Specifies a method for accounting for the CENTRALITY CLOSENOPATH=
shortest path distance between two nodes

when a path does not exist (disconnected

nodes)

Calculates the node clustering coefficient CENTRALITY CLUSTERINGCOEF
Calculates degree centrality CENTRALITY DEGREE
Specifies which type of eigenvector CENTRALITY EIGEN=
centrality to calculate

Specifies the algorithm to use for CENTRALITY EIGENALGORITHM=
eigenvector calculation

Specifies the maximum number of CENTRALITY EIGENMAXITERS=
iterations for eigenvector calculation

Specifies which type of hub centrality to CENTRALITY HUB=

calculate

Specifies which type of influence CENTRALITY INFLUENCE=

centrality to calculate

18 4 Chapter 2: The NETWORK Procedure

Table 2.2 (continued)

Description Statement Option

CLIQUE Statement

Specifies the maximum number of cliques CLIQUE MAXCLIQUES=

to return during clique enumeration

Specifies the maximum amount of time to CLIQUE MAXTIME=

spend finding cliques

Specifies the output data table for cliques CLIQUE OUT=
COMMUNITY Statement

Specifies the community detection COMMUNITY ALGORITHM=
algorithm

Specifies the internal graph format COMMUNITY INTERNALFORMAT=
Specifies the percentage of small-weight COMMUNITY LINKREMOVALRATIO=
links to be removed

Specifies the maximum number of COMMUNITY MAXITERS=
iterations for community detection

Specifies the output data table for COMMUNITY OUTCOMMLINKS=
intercommunity links

Specifies the output data table for the COMMUNITY OUTCOMMUNITY=
community summary

Specifies the output data table for the COMMUNITY OUTLEVEL=
community level summary

Specifies the output data table for the COMMUNITY OUTOVERLAP=
community overlap

Specifies the random factor in the parallel COMMUNITY RANDOMFACTOR=
label propagation algorithm

Specifies the random seed for the parallel COMMUNITY RANDOMSEED=
label propagation algorithm

Applies the recursive option to break COMMUNITY RECURSIVE

large communities

Specifies the resolution list for COMMUNITY RESOLUTIONLIST=
community detection

Specifies the modularity tolerance value =~ COMMUNITY TOLERANCE=

for community detection

CONNECTEDCOMPONENTS Statement

Specifies the algorithm to use for CONNECTEDCOMPONENTS ALGORITHM=
connected components

Specifies the internal graph format CONNECTEDCOMPONENTS INTERNALFORMAT=
CORE Statement

Specifies the maximum amount of time to CORE MAXTIME=

spend calculating the core decomposition

CYCLE Statement

Specifies the algorithm to use for cycle CYCLE ALGORITHM=

enumeration

Functional Summary 4 19

Table 2.2 (continued)

Description Statement Option

Specifies the maximum number of cycles CYCLE MAXCYCLES=

to return during cycle enumeration

Specifies the maximum length for the CYCLE MAXLENGTH=
cycles found

Specifies the maximum link weight for CYCLE MAXLINKWEIGHT=
the cycles found

Specifies the maximum node weight for CYCLE MAXNODEWEIGHT=
the cycles found

Specifies the maximum amount of time to CYCLE MAXTIME=

spend finding cycles

Specifies the minimum length for the CYCLE MINLENGTH=

cycles found

Specifies the minimum link weight for CYCLE MINLINKWEIGHT=
the cycles found

Specifies the minimum node weight for CYCLE MINNODEWEIGHT=
the cycles found

Specifies the output data table for cycles CYCLE OUT=

REACH Statement

Calculates the directed reach counts REACH DIGRAPH

Treats each node as a source in reach REACH EACHSOURCE
calculations

Specifies the maximum number of links ~REACH MAXREACH=

in the reach calculations

Specifies the output data table for reach ~ REACH OUTCOUNTS=
counts

Specifies the output data table for reach =~ REACH OUTREACHLINKS=
links

Specifies the output data table for reach =~ REACH OUTREACHNODES=
nodes

SHORTESTPATH Statement

Specifies the maximum path weight SHORTESTPATH MAXPATHWEIGHT=
Specifies the output data table for shortest SHORTESTPATH OUTPATHS=

paths

Specifies the output data table for shortest SHORTESTPATH OUTWEIGHTS=

path summaries

Specifies the sink node for shortest paths SHORTESTPATH SINK=

calculations

Specifies the source node for shortest SHORTESTPATH SOURCE=

paths calculations

SUMMARY Statement

Calculates information about biconnected SUMMARY BICONNECTEDCOMPONENTS

components

20 4 Chapter 2: The NETWORK Procedure

Table 2.2 (continued)

Description Statement Option

Calculates information about connected =~ SUMMARY CONNECTEDCOMPONENTS
components

Calculates the approximate diameter and SUMMARY DIAMETERAPPROX=
chooses the weight type

Specifies the output data table for SUMMARY OUT=

summary results

Calculates information about shortest SUMMARY SHORTESTPATH=
paths and chooses the weight type

TRANSITIVECLOSURE Statement

Specifies the output data table for TRANSITIVECLOSURE OUT=

transitive closure results

Table 2.3 lists the supported DIRECTION= values in the PROC NETWORK statement.

Table 2.3 Supported Input Formats by Statement

DIRECTION

Statement UNDIRECTED | DIRECTED

BICONNECTEDCOMPONENTS X

CENTRALITY
AUTH=, HUB=
BETWEEN=, CLOSE=, X

CLUSTERINGCOEF,
DEGREE-=, EIGEN=,
INFLUENCE=,

CLIQUE X

COMMUNITY
ALGORITHM=
LOUVAIN, LABELPROP
PARALLELLABELPROP

ol

CONNECTEDCOMPONENTS
ALGORITHM=
DFS
PARALLEL, UNIONFIND

>~

CORE

CYCLE

REACH

SHORTESTPATH

SUMMARY

ileikeikeiiaiallale

TRANSITIVECLOSURE

ikelkaikaikalks

PROC NETWORK Statement 4 21

For each algorithm statement in the NETWORK procedure, Table 2.4 indicates which output data table options
you can specify and whether the algorithm populates the data tables that are specified in the OUTNODES=
and OUTLINKS= options in the PROC NETWORK statement.

Table 2.4 Output Options by Statement

Statement OUTNODES | OUTLINKS | Algorithm Statement Options
BICONNECTEDCOMPONENTS X X
CENTRALITY
AUTH=, CLOSE=, X
CLUSTERINGCOEF,
DEGREE=, EIGEN=, HUB=,
INFLUENCE=
BETWEEN= X X
CLIQUE OUT=
COMMUNITY X X OUTCOMMLINKS=,
OUTCOMMUNITY=,
OUTLEVEL-=,
OUTOVERLAP=
CONNECTEDCOMPONENTS X X
CORE X
CYCLE OUT=
REACH X OUTCOUNTS=,
OUTREACHLINKS=,
OUTREACHNODES=
SHORTESTPATH OUTPATHS=,
OUTWEIGHTS=
SUMMARY X X OUT=
TRANSITIVECLOSURE OUT=

PROC NETWORK Statement
PROC NETWORK < options > ;

The PROC NETWORK statement invokes the NETWORK procedure. You can specify the following options
to define the input and output data tables, the log levels, and various other processing controls:

DIRECTION=DIRECTED | UNDIRECTED
specifies whether the input graph should be considered directed or undirected. You can specify the
following values:

DIRECTED specifies the graph as directed. In a directed graph, each link (i, j) has a direction
that defines how something (for example, information) can flow over that link. In
link (i, j), the flow is from node i to node j (i — j). The node i is called the source
(tail) node, and the node j is called the sink (head) node.

22 4 Chapter 2: The NETWORK Procedure

UNDIRECTED specifies the graph as undirected. In an undirected graph, each link {i, j } has no
direction and the flow can be in either direction. That is, {i, j} = {j,i}.

By default, DIRECTION=UNDIRECTED. For more information, see the section “Graph Input Data”
on page 39.

INCLUDESELFLINK
includes self-links—for example, (i,i)—when an input graph is read. By default, when PROC
NETWORK reads the LINKS= data table, it removes all self-links.

INDEXOFFSET=number
specifies the index offset for identifiers in the log and results output data tables. For example, if
three cycles are found in cycle enumeration, they would be labeled cycles 1, 2, and 3 by default. If
INDEXOFFSET=4, they would be labeled cycles 4, 5, and 6. The value of number must be an integer
greater than or equal to 0. By default, INDEXOFFSET=1.

LINKS=CAS-libref.data-table
specifies the input data table that contains the graph link information. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the input data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

For more information about this input table, see the section “Links Input Data” on page 40.

LOGFREQTIME=number
controls the frequency, in number of seconds, for displaying iteration logs for some algorithms.
This option is useful for computationally intensive algorithms. Setting this value too low can hurt

algorithm performance. The value of number can be any integer greater than or equal to 1. By default,
LOGFREQTIME=5.

LOGLEVEL=NONE | BASIC | MODERATE | AGGRESSIVE
controls the amount of information that is displayed in the SAS log. You can specify the following

values:
NONE turns off all procedure-related messages in the SAS log.
BASIC displays a brief summary of the input, output, and algorithmic processing.

MODERATE displays a moderately detailed summary of the input, output, and algorithmic
processing.

AGGRESSIVE displays a more detailed summary of the input, output, and algorithmic processing.

By default, LOGLEVEL=BASIC.

NODES=CAS-libref.data-table
specifies the input data table that contains the graph node information. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the input data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

For more information about this input table, see the section “Nodes Input Data” on page 43.

PROC NETWORK Statement 4 23

NODESSUBSET=CAS-libref.data-table
specifies the input data table that contains the graph node subset information. CAS-libref.data-table is
a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the input data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

For more information about this input table, see the section “Nodes Subset Input Data” on page 44.

NTHREADS=number

specifies the maximum number of threads to use for multithreaded processing. Some of the algorithms
can take advantage of multicore machines and can run faster when number is greater than 1. Certain
algorithms cannot take advantage of this option and use only one thread even if number > 1. The
algorithms that can take advantage of multiple cores are listed in Table 2.6. For distributed execution,
number specifies the maximum number of threads to use on each machine. The value of number can
be any integer between 1 and 256, inclusive. The default is the number of cores on the machine that
executes the process, or the number of cores permissible based on your installation (whichever is less).
The number of simultaneously active CPUs is limited by your installation and license configuration.

OUTLINKS=CAS-libref.data-table
specifies the output data table to contain the graph link information along with any results from the
algorithms that calculate metrics on links. CAS-libref.data-table is a two-level name, where CAS-libref
refers to the caslib and session identifier, and data-table specifies the name of the output data table. For
more information about this two-level name, see the section “Using CAS Sessions and CAS Engine
Librefs” on page 7.

For examples of the content of this output data table, see the various algorithm sections.

OUTNODES=CAS-libref.data-table
specifies the output data table to contain the graph node information along with any results from the
algorithms that calculate metrics on nodes. CAS-libref.data-table is a two-level name, where CAS-libref
refers to the caslib and session identifier, and data-table specifies the name of the output data table. For
more information about this two-level name, see the section “Using CAS Sessions and CAS Engine
Librefs” on page 7.

For examples of the content of this output data table, see the various algorithm sections.
STANDARDIZEDLABELS

specifies that the input graph data are in a standardized format, as described in the section “Standardized
Labels” on page 45.

TIMETYPE=CPU | REAL
specifies whether CPU time or real time is used for each algorithm’s MAXTIME= option (where
applicable). You can specify the following values:

CPU specifies units of CPU time. The time restriction is applied per processing machine
(not across all machines).

REAL specifies units of real time.

By default, TIMETYPE=REAL.

24 4 Chapter 2: The NETWORK Procedure

BICONNECTEDCOMPONENTS Statement
BICONNECTEDCOMPONENTS ;

The BICONNECTEDCOMPONENTS statement requests that PROC NETWORK find biconnected compo-
nents and articulation points of an undirected input graph.

For more information, see the section “Biconnected Components and Articulation Points” on page 51.

BY Statement
BY variables ;

You can specify a BY statement in PROC NETWORK to obtain separate analyses of observations in groups
that are defined by the values of the BY variables. If you specify more than one BY statement, only the last
one specified is used. For more information, see the discussion of BY-group processing in SAS Language
Reference: Concepts.

The BY statement in PROC NETWORK is not supported when either a nodes or nodes subset data table is
used. The BY variable must come from the LINKS= data table. An example of this is shown in the section
“Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community” on page 145.

All parameter settings apply to each individual group independently (not to the entire process as a whole).
For example, when a stopping criterion such as the MAXTIME= option is specified for a particular algorithm,
this limit pertains to each individual group as it is processed.

CENTRALITY Statement
CENTRALITY < options > ;

The CENTRALITY statement enables you to select which centrality metrics to calculate for the specified
input graph. It also enables you to specify options for particular metrics. The resulting metrics are included
in the node output data table (specified in the OUTNODES= option) or the link output data table (specified in
the OUTLINKS= option).

For more information about centrality metrics, see the section “Centrality” on page 55.

You can specify the following options:

AUTH=WEIGHT | UNWEIGHT | BOTH
specifies which type of authority centrality to calculate. You can specify the following values:

WEIGHT calculates authority centrality based on the weighted graph.
UNWEIGHT calculates authority centrality based on the unweighted graph.
BOTH calculates authority centrality based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight). This centrality metric can be used only for directed graphs. For more

CENTRALITY Statement 4 25

information about the authority centrality metric, see the section “Hub and Authority Scoring” on
page 66.

BETWEEN=WEIGHT | UNWEIGHT | BOTH
specifies which type of betweenness centrality to calculate for node betweenness or link betweenness.
You can specify the following values:

WEIGHT calculates betweenness centrality based on the weighted graph.
UNWEIGHT calculates betweenness centrality based on the unweighted graph.
BOTH calculates betweenness centrality based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight). If the OUTNODES= option is specified in the PROC NETWORK
statement, the node betweenness metric is produced. If the OUTLINKS= option is specified, the link
betweenness metric is produced. For more information about the betweenness centrality metric, see
the section “Betweenness Centrality” on page 62.

BETWEENNORM=TRUE | FALSE
specifies whether to normalize the betweenness centrality metrics. You can specify the following

values:
TRUE normalizes the betweenness metrics.
FALSE does not normalize the betweenness metrics.

For more information about the normalization factor for betweenness centrality, see the section
“Betweenness Centrality” on page 62. By default, BETWEENNORM=TRUE.

CLOSE=WEIGHT | UNWEIGHT | BOTH
specifies which type of closeness centrality to calculate. You can specify the following values:

WEIGHT calculates closeness centrality based on the weighted graph.
UNWEIGHT calculates closeness centrality based on the unweighted graph.
BOTH calculates closeness centrality based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight). For more information about the closeness centrality metric, see the
section “Closeness Centrality” on page 59.

CLOSENOPATH=NNODES | DIAMETER | ZERO | HARMONIC
specifies a method for accounting for the shortest path distance between two nodes when a path does
not exist (disconnected nodes). You can specify the following values:

NNODES uses the number of nodes as the shortest path distance between disconnected nodes.
You cannot specify this option when CLOSE=WEIGHT or CLOSE=BOTH.
DIAMETER uses the graph diameter (plus one) as the shortest path distance between discon-

nected nodes.

ZERO uses zero as the shortest path distance between disconnected nodes.

26 4 Chapter 2: The NETWORK Procedure

HARMONIC uses the harmonic formula for calculating closeness centrality.

For each option, there is a slight variation in the formula for the closeness centrality metric. For more
information about these differences, see the section “Closeness Centrality” on page 59. By default,
CLOSENOPATH=DIAMETER.

CLUSTERINGCOEF
calculates the node clustering coefficient. For more information about the clustering coefficient, see
the section “Clustering Coefficient” on page 57.

DEGREE
calculates the degree centrality. For more information about the degree centrality metric, see the section
“Degree Centrality” on page 55.

EIGEN=WEIGHT | UNWEIGHT | BOTH
specifies which type of eigenvector centrality to calculate. You can specify the following values:

WEIGHT calculates eigenvector centrality based on the weighted graph.
UNWEIGHT calculates eigenvector centrality based on the unweighted graph.
BOTH calculates eigenvector centrality based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight). For more information about the eigenvector centrality metric, see the
section “Eigenvector Centrality” on page 64.

EIGENALGORITHM=AUTOMATIC | JACOBIDAVIDSON | POWER
specifies the algorithm to use in calculating centrality metrics that require solving eigensystems—that
is, when the EIGEN, HUB, or AUTH option (or some combination) is specified. You can specify the
following values:

AUTOMATIC automatically determines the eigensolver to use.

JACOBIDAVIDSON | JD uses a variant of the Jacobi-Davidson algorithm for solving eigensystems
(Sleijpen and van der Vorst 2000). This is used as the default for the eigenvector
metric on undirected graphs and the hub and authority metrics.

POWER uses the power method to calculate eigenvectors. This is used as the default for the
eigenvector metric on directed graphs.

By default, EIGENALGORITHM=AUTOMATIC.

EIGENMAXITERS=number
specifies the maximum number of iterations to use for eigenvector calculations in order to limit the
amount of computation time spent when convergence is slow. By default, EIGENMAXITERS=10,000.

HUB=WEIGHT | UNWEIGHT | BOTH
specifies which type of hub centrality to calculate. You can specify the following values:

WEIGHT calculates hub centrality based on the weighted graph.
UNWEIGHT calculates hub centrality based on the unweighted graph.

CLIQUE Statement 4 27

BOTH calculates hub centrality based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight). This centrality metric can be used only for directed graphs. For more
information about the hub centrality metric, see the section “Hub and Authority Scoring” on page 66.

INFLUENCE=WEIGHT | UNWEIGHT | BOTH
specifies which type of influence centrality to calculate. You can specify the following values:

WEIGHT calculates influence centrality based on the weighted graph.
UNWEIGHT calculates influence centrality based on the unweighted graph.
BOTH calculates influence centrality based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link or node weight). For more information about the influence centrality metric,
see the section “Influence Centrality” on page 56.

CLIQUE Statement
CLIQUE < options > ;

The CLIQUE statement invokes an algorithm that finds maximal cliques in the input graph. For more
information about maximal cliques, see the section “Clique Enumeration” on page 68.

You can specify the following options:

MAXCLIQUES=number | ALL
specifies the maximum number of cliques to return during clique enumeration. You can specify either
a number (which can be any 32-bit integer greater than or equal to 1) or you can specify ALL (which
represents the maximum that can be represented by a 32-bit integer). By default, MAXCLIQUES=1.

MAXTIME=number
specifies the maximum amount of time to spend finding cliques. The type of time (either CPU time or
real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement.
The value of number can be any positive number; the default value is the positive number that has the
largest absolute value that can be represented in your operating environment.

OUT=CAS-libref.data-table
specifies the output data table to contain the maximal cliques. CAS-libref.data-table is a two-level
name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of
the output data table. For more information about this two-level name, see the section “Using CAS
Sessions and CAS Engine Librefs” on page 7.

COMMUNITY Statement
COMMUNITY < options > ;

28 4 Chapter 2: The NETWORK Procedure

The COMMUNITY statement invokes an algorithm that detects communities in the input graph. For more
information about community detection, see the section “Community Detection” on page 71.

You can specify the following options:

ALGORITHM=LOUVAIN | LABELPROP | PARALLELLABELPROP
specifies the algorithm to use for community detection. You can specify the following values:

LOUVAIN uses the Louvain algorithm proposed in Blondel et al. (2008).

LABELPROP uses the label propagation algorithm proposed in Raghavan, Albert, and Kumara
(2007).

PARALLELLABELPROP uses the parallel (distributed and threaded) label propagation algorithm
developed by SAS. This algorithm is experimental in this release.

By default, ALGORITHM=LOUVAIN.

INTERNALFORMAT=FULL | THIN
specifies which internal graph format for the community detection algorithm to use. You can specify
the following values:

FULL stores the graph in standard (adjacency-list based) format.

THIN stores the graph in thin (simple list of links) format. This option can improve
performance in some cases both by reducing memory and by simplifying the
construction of the internal data structures. This option causes PROC NETWORK
to skip the removal of duplicate links when it reads in the graph.

For more information, see the section “Graph Input Data” on page 39.

By default, INTERNALFORMAT=THIN.

LINKREMOVALRATIO=number

specifies the percentage of small-weight links to be removed around each node neighborhood. A link
is usually removed if its weight is relatively smaller than the weights of the neighboring links. Suppose
that node A links to node B and to node C, link A — B has weight of 100, and link A — C has
weight of 1. When nodes are grouped into communities, link A — B is much more important than
link A — C because it contributes much more to the overall modularity value. Therefore, link A — C
can be dropped from the network if dropping it does not disconnect node C from the network. If you
specify this option, then the links that are incident to each node are examined. If the weight of any
link is less than (number/100)*max_link_weight, where max_link_weight is the maximum link weight
among all links incident to this node, the link is removed provided that its removal does not disconnect
any node from the network. This option can often dramatically improve the running time for large
graphs. The valid range is between 0 and 100. By default, LINKREMOVALRATIO=10.

MAXITERS=number
specifies the maximum number of iterations that the algorithm can run. By default, MAXITERS=20
when ALGORITHM=LOUVAIN or MAXITERS=100 when ALGORITHM=LABELPROP or ALGO-
RITHM=PARALLELLABELPROP.

COMMUNITY Statement 4 29

OUTCOMMLINKS=CAS-libref.data-table
specifies the output data table that describes the links between communities. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

OUTCOMMUNITY=CAS-libref.data-table
specifies the output data table that contains the number of nodes in each community. CAS-libref.data-
table is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table
specifies the name of the output data table. For more information about this two-level name, see the
section “Using CAS Sessions and CAS Engine Librefs” on page 7.

OUTLEVEL=CAS-libref.data-table
specifies the output data table that contains community information at different resolution levels.
CAS-libref.data-table is a two-level name, where CAS-libref refers to the caslib and session identifier,
and data-table specifies the name of the output data table. For more information about this two-level
name, see the section “Using CAS Sessions and CAS Engine Librefs” on page 7.

OUTOVERLAP=CAS-libref.data-table
specifies the output data table that describes the intensity of each node. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-fable specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

RANDOMFACTOR=number
specifies the random factor for the parallel label propagation algorithm. At each iteration, number x
100% of the nodes are randomly selected to skip the label propagation step. Specify a number between
0 and 1. The default is 0.15, which means that 15% of nodes skip the label propagation step at each
iteration.

RANDOMSEED=number
specifies the random seed for the parallel label propagation algorithm. At each iteration, some nodes
are randomly selected to skip the label propagation step, based on the value that you specify in the
RANDOMFACTOR= option. To choose a different set of random samples, specify a number in the
RANDOMSEED= option. By default, RANDOMSEED=1234.

RECURSIVE (options)
breaks down large communities into smaller ones until the specified conditions are satisfied. This
option starts with the keyword RECURSIVE followed by any combination of three suboptions enclosed
in parentheses—for example, RECURSIVE (MAXCOMMSIZE=500) or RECURSIVE (MAXCOMM-
SIZE=1000 MAXDIAMETER=3 RELATION=AND).

You can specify the following options:

MAXCOMMSIZE= specifies the maximum number of nodes to be contained in any community.
The default is the positive number that has the largest absolute value that can be
represented by a 32-bit integer.

MAXDIAMETER= specifies the maximum number of links on the shortest paths between any pair
of nodes in any community. The MAXDIAMETER= option is ignored when
you specify ALGORITHM=PARALLELLABELPROP. The default is the positive

30 4 Chapter 2: The NETWORK Procedure

number that has the largest absolute value that can be represented by a 32-bit
integer.

RELATION= the relationship between the values of MAXCOMMSIZE= and MAXDIAMETER=
options. If RELATION=AND, then recursive splitting continues until both of
the MAXCOMMSIZE and MAXDIAMETER conditions are satisfied. If RELA-
TION=OR, then recursive splitting continues until either the MAXCOMMSIZE or
the MAXDIAMETER condition is satisfied.

RESOLUTIONLIST=num_list
specifies a list of resolution values (positive numbers) that are separated by spaces (for example, 4.3
2.1 1.00.6 0.2). The NETWORK procedure interprets the RESOLUTIONLIST= option differently
depending on the value of the ALGORITHM-= option:

e When ALGORITHM=LOUVAIN, specifying multiple resolution values enables you to see how
communities are merged at various resolution levels. A larger parameter value indicates a higher
resolution. For example, resolution 4.3 produces more communities than resolution 0.2. By
default, RESOLUTIONLIST=1.0. When you also specify the RECURSIVE option, the first
value in the resolution list is used and the other values are ignored.

e When ALGORITHM=LABELPROP, PROC NETWORK ignores the RESOLUTIONLIST=
option. It uses the default value of 1.0.

e When ALGORITHM=PARALLELLABELPROP, specifying multiple resolution values requests
that PROC NETWORK perform community detection multiple times, each time with a different
resolution value. By default, RESOLUTIONLIST=0.001. In this case, the RESOLUTIONLIST=
option is fully compatible with the RECURSIVE option.

For more information about the use of the RESOLUTIONLIST= option, see the section “Large
Communities” on page 74.

TOLERANCE=number

MODULARITY=number
specifies the tolerance value for when to stop iterations. When you specify ALGORITHM=LOUVAIN,
the algorithm stops iterations when the percentage modularity gain between two consecutive
iterations is less than number. When you specify ALGORITHM=LABELPROP or ALGO-
RITHM=PARALLELLABELPROP, the algorithm stops iterations when the percentage of label
changes for all nodes in the graph is less than number. The valid range is strictly between 0 and 1. By
default, TOLERANCE=0.01.

CONNECTEDCOMPONENTS Statement
CONNECTEDCOMPONENTS < options > ;

The CONNECTEDCOMPONENTS statement invokes an algorithm that finds the connected components of
the input graph. For more information about connected components, see the section “Connected Components”
on page 80. You can specify the following options:

CORE Statement 4 31

ALGORITHM=AUTOMATIC | DFS | PARALLEL | UNIONFIND
specifies the algorithm to use for calculating connected components. You can specify the following

values:

AUTOMATIC automatically determines the algorithm for connected components.

DFS uses the depth-first search algorithm for connected components. You cannot specify
this value when you specify INTERNALFORMAT=THIN.

PARALLEL uses the distributed parallel union-find algorithm for connected components. You
can specify this value when the number of machines in your session is greater than
1. You can use this algorithm only with undirected graphs.

UNIONFIND uses the union-find algorithm for connected components. You can use this algorithm

only with undirected graphs.

By default, ALGORITHM=UNIONFIND for undirected graphs, and ALGORITHM=DFS for directed
graphs.

INTERNALFORMAT=FULL | THIN
specifies which internal graph format for the connected components algorithm to use. You can specify
the following values:

FULL stores the graph in standard (adjacency-list based) format.

THIN stores the graph in thin (simple list of links) format. This option can improve
performance in some cases both by reducing memory and by simplifying the
construction of the internal data structures. This option causes PROC NETWORK
to skip the removal of duplicate links when it reads in the graph (which has no
effect on the resulting components).

For more information, see the section “Graph Input Data” on page 39.

By default, INTERNALFORMAT=FULL when ALGORITHM=DFS or INTERNALFORMAT=THIN
for any other value of the ALGORITHM-= option.

CORE Statement
CORE < option > ;

The CORE statement invokes an algorithm that finds the core decomposition of the input graph. For more
information about core decomposition, see the section “Core Decomposition” on page 84.

You can specify the following option:

MAXTIME=number
specifies the maximum amount of time to spend calculating the core decomposition. The type of
time (either CPU time or real time) is determined by the value of the TIMETYPE= option in the
PROC NETWORK statement. The value of number can be any positive number; the default value
is the positive number that has the largest absolute value that can be represented in your operating
environment.

32 4 Chapter 2: The NETWORK Procedure

CYCLE Statement
CYCLE < options > ;

The CYCLE statement invokes an algorithm that finds the cycles (or the existence of a cycle) in the input
graph. For more information about cycles, see the section “Cycle Enumeration” on page 89.

You can specify the following options:

ALGORITHM=BACKTRACK | BUILD
specifies which algorithm to use in enumerating cycles. You can specify the following values:

BACKTRACK uses a backtracking algorithm based on Johnson (1975).
BUILD uses a building algorithm based on Liu and Wang (2000).

By default, ALGORITHM=BACKTRACK for MAXLENGTH greater than 20; otherwise, ALGO-
RITHM=BUILD.

MAXCYCLES=number | ALL
specifies the maximum number of cycles to return during cycle enumeration. You can specify either a
number (which can be any 32-bit integer greater than or equal to 1) or you can specify ALL (which
represents the maximum that can be represented by a 32-bit integer). By default, MAXCYCLES=1.

MAXLENGTH=number
specifies the maximum number of links in a cycle. Any cycle whose length is greater than number is
removed from the results. The default is the positive number that has the largest absolute value that
can be represented by a 32-bit integer, which causes no cycles to be removed from the results.

MAXLINKWEIGHT=number
specifies the maximum sum of link weights in a cycle. Any cycle whose sum of link weights is greater
than number is removed from the results. The default is the positive number that has the largest
absolute value that can be represented in your operating environment, which causes no cycles to be
removed from the results.

MAXNODEWEIGHT=number
specifies the maximum sum of node weights in a cycle. Any cycle whose sum of node weights is
greater than number is removed from the results. The default is the positive number that has the largest
absolute value that can be represented in your operating environment, which causes no cycles to be
removed from the results.

MAXTIME=number
specifies the maximum amount of time to spend finding cycles. The type of time (either CPU time or
real time) is determined by the value of the TIMETYPE= option in the PROC NETWORK statement.
The value of number can be any positive number; the default value is the positive number that has the
largest absolute value that can be represented in your operating environment.

MINLENGTH=number
specifies the minimum number of links in a cycle. Any cycle that has fewer links than number is
removed from the results. By default, MINLENGTH=1 and no cycles are removed from the results.

DISPLAY Statement 4 33

MINLINKWEIGHT=number
specifies the minimum sum of link weights in a cycle. Any cycle whose sum of link weights is less than
number is removed from the results. The default is the negative number that has the largest absolute
value that can be represented in your operating environment, which causes no cycles to be removed
from the results.

MINNODEWEIGHT=number
specifies the minimum sum of node weights in a cycle. Any cycle whose sum of node weights is
less than number is removed from the results. The default is the negative number that has the largest
absolute value that can be represented in your operating environment, which causes no cycles to be
removed from the results.

OUT=CAS-libref.data-table
specifies the output data table to contain the cycles found. CAS-libref.data-table is a two-level name,
where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the
output data table. For more information about this two-level name, see the section “Using CAS
Sessions and CAS Engine Librefs” on page 7.

DISPLAY Statement
DISPLAY < table-list> </ options> ;

The DISPLAY statement enables you to specify a list of ODS tables to display or exclude. This statement
is similar to the ODS SELECT, ODS EXCLUDE, and ODS TRACE statements. However, the DISPLAY
statement can improve performance when a large number of tables could be generated (such as in BY-group
processing). The procedure processes the DISPLAY statement on a CAS server and thus sends only a subset
of ODS tables to the SAS client. Because ODS statements are processed on a SAS client, all ODS tables
are sent to the client and then the client creates a subset. If both DISPLAY and ODS statements are used
together, the DISPLAY statement takes precedence over the ODS statements. For more information about
ODS, see SAS Output Delivery System: Procedures Guide.

You can specify the following options after a slash (/):

CASESENSITIVE
performs a case-sensitive comparison of table names in the table-fist to ODS table names when tables
are subsetted for display. To preserve case, you must enclose table names in the table-list in quotation
marks.

EXCLUDE
displays all ODS tables except those specified in the table-list.

EXCLUDEALL
suppresses display of all tables. This option takes precedence over the other options.

TRACE
displays the ODS table names, labels, and paths.

You can specify the table-list as a list of table names, paths, partial pathnames, and regular expressions.

A path is a table name that is prefixed with dot-separated grouping information. For example, a
SelectionSummary table that is produced by a procedure during a selection routine might have the path

34 4 Chapter 2: The NETWORK Procedure

Bygroup1.Summary.SelectionSummary. A partial pathname does not include all groups; for example, Selection-
Summary and Summary.SelectionSummary are partial pathnames for Bygroup1.Summary.SelectionSummary.

When you specify a table name or partial pathname, all ODS tables whose paths end in the specified name
are selected for display or exclusion. For example, both SelectionSummary and Summary.SelectionSummary
select Bygroup1.Summary.SelectionSummary .

A regular expression starts with a “/” or a “!”. For example, specifying “/tions” selects all pathnames
that contain the substring “tions”; in particular, the Bygroup1.Summary.SelectionSummary table is selected.
Specifying “!tions” selects all pathnames that do not contain the substring “tions”; in particular, the
Bygroup1.Summary.SelectionSummary table is not selected.

DISPLAYOUT Statement
DISPLAYOUT table-spec-list </ options > ;

The DISPLAYOUT statement enables you to create CAS output tables from your displayed output. This
statement is similar to the ODS OUTPUT statement. For more information about ODS, see SAS Output
Delivery System: Procedures Guide.

The table-spec-list specifies a list of CAS output tables to create. Each entry in the list has either a key or a
key=value format:

key=value specifies key as the ODS table name, path, or partial pathname, and specifies value as the
CAS output table name.

key specifies key as the ODS table name and also as the CAS output table name.

Table names and partial pathnames are discussed under the DISPLAY statement. The DISPLAYOUT
statement does not support regular expressions.

You can specify the following options after a slash (/):

NOREPLACE
does not replace an existing CAS output table of the same name.

REPEATED
replicates the CAS output tables on all nodes.

The output tables produced by the NETWORK procedure when using the DISPLAYOUT statement are
a transposed version of the displayed tables. This allows for easier post-analysis, especially when used
together with BY-group processing. An example of using the DISPLAYOUT statement is shown in the
section “Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community” on page 145.

LINKSVAR Statement
LINKSVAR < options > ;

The LINKSVAR statement enables you to explicitly specify the data variable names for PROC NETWORK
to use when it reads the data table that is specified in the LINKS= option in the PROC NETWORK statement.

NODESVAR Statement 4 35

For more information about the format of the links input data table, see the section “Links Input Data” on
page 40.

You can specify the following options:

AUXWEIGHT=column
specifies the data variable name for the auxiliary link weights. The value of the column variable must
be numeric.

FROM=column
specifies the data variable name for the from nodes. The value of the column variable can be numeric
or character.

TO=column
specifies the data variable name for the fo nodes. The value of the column variable can be numeric or
character.

WEIGHT=column
specifies the data variable name for the link weights. The value of the column variable must be numeric.

NODESVAR Statement
NODESVAR < options > ;

The NODESVAR statement enables you to explicitly specify the data variable names for PROC NETWORK
to use when it reads the data table that is specified in the NODES= option in the PROC NETWORK statement.
For more information about the format of the node input data table, see the section “Nodes Input Data” on
page 43.

You can specify the following options:
NODE=column

specifies the data variable name for the nodes. The value of the column variable can be numeric or
character.

WEIGHT=column
specifies the data variable name for the node weights. The value of the column variable must be
numeric.

NODESSUBSETVAR Statement
NODESSUBSETVAR < options > ;

The NODESSUBSETVAR statement enables you to explicitly specify the data variable names for PROC
NETWORK to use when it reads the data table that is specified in the NODESSUBSET= option in the PROC
NETWORK statement. For more information about the format of the node subset input data table, see the
section “Nodes Input Data” on page 43.

You can specify the following options:

36 4 Chapter 2: The NETWORK Procedure

NODE=column
specifies the data variable name for the nodes. The value of the column variable can be numeric or
character.

REACH=column
specifies the data variable name for the reach identifier. The value of the column variable must be
numeric.

SINK=column
specifies the data variable name for the sink indicator. The value of the column variable must be
numeric.

SOURCE=column
specifies the data variable name for the source indicator. The value of the column variable must be
numeric.

REACH Statement
REACH < options > ;
The REACH statement invokes an algorithm that calculates the reach (ego) network in an input graph.
For more information about the reach network, see the section ‘“Reach (Ego) Network™ on page 94.

You can specify the following options:

DIGRAPH
calculates the directed reach counts when computing the reach networks and includes the directed
counts in the resulting output data table, which is specified in the OUTCOUNTS= option. This option
is ignored unless MAXREACH=1.

EACHSOURCE
treats each node as a source and calculates a reach network from each one.

MAXREACH=number
specifies the maximum number of links from each source node in a reach network. By default,
MAXREACH=1.

OUTCOUNTS=CAS-libref.data-table
specifies the output data table to contain the node counts in each reach network. CAS-libref.data-table
is a two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

OUTREACHLINKS=CAS-libref.data-table
specifies the output data table to contain the links in each reach network. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

SHORTESTPATH Statement 4 37

OUTREACHNODES=CAS-libref.data-table
specifies the output data table to contain the nodes in each reach network. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

SHORTESTPATH Statement
SHORTESTPATH < options > ;

The SHORTESTPATH statement invokes an algorithm that calculates shortest paths between pairs of nodes
in the input graph. By default, PROC NETWORK finds a shortest path for each possible combination of
source and sink nodes.

For more information about the shortest path algorithm, see the section “Shortest Path” on page 101.

You can specify the following options:

MAXPATHWEIGHT=number
specifies the maximum path weight. Any shortest path whose sum of link weights is greater than
number is removed from the results. The default is the positive number that has the largest absolute
value that can be represented in your operating environment, which causes no paths to be removed
from the results.

OUTPATHS=CAS-libref.data-table

OUT=CAS-libref.data-table
specifies the output data table to contain the shortest paths. CAS-libref.data-table is a two-level name,
where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of the
output data table. For more information about this two-level name, see the section “Using CAS
Sessions and CAS Engine Librefs” on page 7.

OUTWEIGHTS=CAS-libref.data-table
specifies the output data table to contain the shortest path summaries. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

SINK=sink-node
specifies the sink node for shortest paths calculations. This setting overrides the use of the variable sink
in the data table that is specified in the NODESSUBSET= option in the PROC NETWORK statement.

SOURCE-=source-node
specifies the source node for shortest paths calculations. This setting overrides the use of the variable
source in the data table that is specified in the NODESSUBSET= option in the PROC NETWORK
statement.

38 4 Chapter 2: The NETWORK Procedure

SUMMARY Statement
SUMMARY < options > ;
The SUMMARY statement invokes an algorithm that calculates various summary metrics for an input graph.
For more information about summary metrics, see the section “Summary Statistics” on page 112.

You can specify the following options:

BICONNECTEDCOMPONENTS
calculates information about biconnected components. The graph must be undirected to use this option.

CONNECTEDCOMPONENTS
calculates information about connected components.

DIAMETERAPPROX=WEIGHT | UNWEIGHT | BOTH
calculates information about the approximate diameter and specifies which type of calculation to
perform. Use this option when calculating the exact diameter (by calculating all shortest paths) is too
expensive. You can specify the following values:

WEIGHT calculates the approximate diameter based on the weighted graph.
UNWEIGHT calculates the approximate diameter based on the unweighted graph.
BOTH calculates the approximate diameter based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight). This option works only for undirected graphs.

OUT=CAS-libref.data-table
specifies the output data table to contain the summary results. CAS-libref.data-table is a two-level
name, where CAS-libref refers to the caslib and session identifier, and data-table specifies the name of
the output data table. For more information about this two-level name, see the section “Using CAS
Sessions and CAS Engine Librefs” on page 7.

SHORTESTPATH=WEIGHT | UNWEIGHT | BOTH
calculates information about shortest paths and specifies which type of calculation to perform. You can
specify the following values:

WEIGHT calculates shortest paths based on the weighted graph.
UNWEIGHT calculates shortest paths based on the unweighted graph.
BOTH calculates shortest paths based on both weighted and unweighted graphs.

If the input graph does not contain weights, then WEIGHT and UNWEIGHT both give the same results
(using 1.0 for each link weight).

Graph Input Data 4 39

TRANSITIVECLOSURE Statement
TRANSITIVECLOSURE < option > ;

The TRANSITIVECLOSURE statement invokes an algorithm that calculates the transitive closure of an
input graph.

For more information about transitive closure, see the section “Transitive Closure” on page 119.

You can specify the following option:

OUT=CAS-libref.data-table
specifies the output data table to contain the transitive closure results. CAS-libref.data-table is a
two-level name, where CAS-libref refers to the caslib and session identifier, and data-table specifies
the name of the output data table. For more information about this two-level name, see the section
“Using CAS Sessions and CAS Engine Librefs” on page 7.

Details: NETWORK Procedure

Graph Input Data

This section describes how to input a graph for analysis by PROC NETWORK. Let G = (N, A) define a
graph that contains a set N of nodes and a set A of links. Consider the directed graph shown in Figure 2.7.

Figure 2.7 A Simple Directed Graph

Notice that each node and link has associated attributes: a node label and a link weight.

40 4 Chapter 2: The NETWORK Procedure

Links Input Data

The LINKS= option in the PROC NETWORK statement defines the data table that contains the list of links
in the graph. A link is represented as a pair of nodes, which are defined by using either numeric or character
labels. The links data table is expected to contain some combination of the following possible variables:

e auxweight: the auxiliary link weight (must be numeric)
e from: the from node (can be numeric or character)
e to: the to node (can be numeric or character)

e weight: the link weight (must be numeric)

As described for the DIRECTION= option, if the graph is undirected, the from and to labels are inter-

changeable. If the weights are not given for algorithms that call for link weights, they are all assumed to be
1.

The data variable names can have any values that you want. If you use nonstandard names, you must identify
the variables by using the LINKSVAR statement, as described in the section “LINKSVAR Statement” on
page 34.

For example, the following two data tables identify the same graph:

data mycas.LinkSetInA;
input from $ to $ weight;
datalines;

AB1

AC2

AD4

4

data mycas.LinkSetInB;
input source node $ sink_node $ value;
datalines;

AB1

AC 2

A D4

You can present these data tables to PROC NETWORK by using the following equivalent statements:
proc network
links = mycas.LinkSetInA;

run;

proc network

links = mycas.LinkSetInB;
linksVar
from = source_node
to = sink_node
weight = value;
run;

The directed graph G shown in Figure 2.7 can be represented by the following links data table, my-
cas.LinkSetlIn:

Graph Input Data 4 41

data mycas.LinkSetIn;
input from $ to $ weight Q@Q;
datalines;

AB1l AC2 AD4 BC1l BE2
BF5 CE1 DE1 ED1 EF 2
GI1 HG2 HTIS33

FG6 GHI1

4

The following statements read in this graph, declare it as a directed graph, and output the resulting links and
nodes data tables. These statements do not run any algorithms, so the resulting output contains only the input
graph.

proc network
direction = directed

links = mycas.LinkSetIn

outNodes = mycas.NodeSetOut

outLinks = mycas.LinkSetOut;
run;

The output data table mycas.NodeSetOut, shown in Figure 2.8, now contains the nodes that are read from
the input links data table. The variable node shows the label associated with each node.

Figure 2.8 Nodes Data Table of a Simple Directed Graph

3
o
Q.
o

— I O T mOoOONO®>

The output data table mycas.LinkSetOut, shown in Figure 2.9, contains the links that were read from the
input links data table. The variables from and to show the associated node labels.

42 4 Chapter 2: The NETWORK Procedure

If you define this graph as undirected, then reciprocal links (for example, D — E and D < E) are treated
as the same link, and duplicates are removed. PROC NETWORK aggregates the attributes of each duplicate
link by taking the minimum value (for each attribute). By default, DIRECTION=UNDIRECTED, so you can

Figure 2.9 Links Data Table of a Simple Directed Graph

Obs from to weight

1A B 1
2 A C 2
3A D 4
4 B C 1
5B E 2
6 B F 5
7C E 1
8D E 1
9 E D 1
10 E F 2
nF G 6
12 G H 1
13 H G 2
14 G | 1
15 H | 3

just remove this option to declare the graph as undirected.

The following statements read in this graph, declare it as an undirected graph, and output the resulting links

and nodes data tables:

proc network

links = mycas.LinkSetIn

outNodes = mycas.NodeSetOut

outLinks = mycas.LinkSetOut;
run;

The progress of the procedure is shown in Figure 2.10. The log now shows the number of links that were

declared as duplicates and aggregated.

Figure 2.10 PROC NETWORK Log: Links Data Table of a Simple Undirected Graph

NOTE: Running NETWORK.

NOTE:

WARNING: The graph contains 2 duplicate links that are ignored.

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

The
The
The
The
The

number of nodes in the input graph is 9.

number of links in the input graph is 13.

Cloud Analytic Services server processed the request in 0.367296 seconds.
data set MYCAS.NODESETOUT has 9 observations and 1 variables.

data set MYCAS.LINKSETOUT has 13 observations and 3 variables.

Graph Input Data 4 43

The output data table mycas.NodeSetOut is equivalent to the one shown in Figure 2.8. However, the new
links data table mycas.LinkSetOut, shown in Figure 2.11, contains two fewer links than before, because
duplicates are aggregated.

Figure 2.11 Links Data Table of a Simple Undirected Graph

Obs from to weight

1A B 1
2 A C 2
3A D 4
4 B C 1
5B E 2
6 B F 5
7C E 1
8D E 1
9 E F 2
10 F G 6
G H 1
12 G | 1
13 H | 3

Thin Internal Format

Certain algorithms can perform more efficiently when you specify INTERNALFORMAT=THIN in their
respective algorithmic statement. However, when you specify this option, PROC NETWORK does not
remove duplicate links. Instead, you should use appropriate DATA steps to clean your data before calling
PROC NETWORK.

Nodes Input Data

The NODES= option in the PROC NETWORK statement defines the data table that contains the list of nodes
in the graph. This data table is used to assign node attributes.

The nodes data table is expected to contain some combination of the following possible variables:

e node: the node label (can be numeric or character)

e weight: the node weight (must be numeric)

You can specify any value that you want for the data table variable name. If you use a nonstandard name, you
must identify the variable by using the NODESVAR statement, as described in the section “NODESVAR
Statement” on page 35.

The data table that is specified in the LINKS= option defines the set of nodes that are incident to some link.
If the graph contains a node that has no links (called a singleton node), then this node must be defined in the
NODES= data table. The following statements produce a graph that has three links but four nodes, including
a singleton node D:

44 4 Chapter 2: The NETWORK Procedure

data mycas.NodeSetIn;
input label $ Q@Q@;
datalines;

ABCD

4

data mycas.LinkSetInS;
input from $ to $ weight;
datalines;

AB1

AC 2

BC1

’

If you specify duplicate entries in the nodes data table, PROC NETWORK issues an error message and stops.

Nodes Subset Input Data

For some algorithms, you might want to process only a subset of the nodes that appear in the input graph.
You can accomplish this by using the NODESSUBSET= option in the PROC NETWORK statement. You
can use the nodes subset data table in conjunction with the SHORTESTPATH or REACH statement. (See
the sections “Shortest Path” on page 101 and “Reach (Ego) Network™ on page 94, respectively.) The nodes
subset data table is expected to contain some combination of the following variables:

e node: the node label (can be numeric or character)
e source: whether to process this node as a source node in shortest path algorithms (must be numeric)
e sink: whether to process this node as a sink node in shortest path algorithms (must be numeric)

e reach: for the reach algorithm, the index of the source subgraph for processing (must be numeric)

Table 2.5 shows how PROC NETWORK processes nodes for each algorithm type. The missing indicator (.)
can also be used in place of 0 to designate that a node is not to be processed.

Table 2.5 Determining How to Process a Node

Algorithm Type Variable Designations Example Shown In:

Shortest path A value of 1 for the source variable designates The section “Shortest Path” on
that the node is to be processed as a source; a page 101
value of O (or missing) represents no specifica-
tion. The same values must be used for the sink
variable to designate whether the node is to be
processed as a sink.

Graph Input Data 4 45

Table 2.5 (continued)

Algorithm Type Variable Designations Example Shown In:
Reach A value greater than O defines a marker for the The section “Reach (Ego) Network”
source subgraph to which this node belongs. on page 94
All nodes that have the same marker are pro-
cessed together as source nodes. A value of 0
(or missing) for the reach variable designates
that the node is not to be processed. The reach
identifiers must be consecutive integers starting
from 1.

The following example of a nodes subset data table might be used with the graph in Figure 2.7:

data mycas.NodeSubSetlIn;
input node $ reach source sink;
datalines;

1.

.1

1.

R
NN R

The data table mycas.NodeSubSetIn indicates that you want to process the following:
e the reach network from the subgraph defined by node A
e the reach network from the subgraph defined by nodes F and E

e the shortest paths for the source-sink pairs in {A, E'} x {F} (the crossproduct of subsets {4, F'} and
{F})

Standardized Labels

For large-scale graphs, the processing stage that reads the nodes and links into memory can be time-
consuming. Under the following assumptions, you can use the STANDARDIZEDLABELS option in the
PROC NETWORK statement to speed up this stage:

1. The links data table variables from and to are numeric.
2. The node and nodes subset data table variable node is numeric.

3. The node labels start from O and are consecutive nonnegative integers.

Consider the following links data table that uses numeric labels:

data mycas.LinkSetIn;
input from to weight;
datalines;

H Wwo
nmoRr
BN R

46 4 Chapter 2: The NETWORK Procedure

Using default settings, the following statements echo link and nodes data tables that contain three links and
four nodes, respectively:

proc network
links

mycas.LinkSetIn
outNodes mycas .NodeSetOut
outLinks = mycas.LinkSetOut;
run;

The log is shown in Figure 2.12.

Figure 2.12 PROC NETWORK Log: A Simple Undirected Graph

NOTE: ——————m o o o o o e —————————
NOTE: Running NETWORK.

NOTE: ——————mm o o oo o ——————————
NOTE: The number of nodes in the input graph is 4.

NOTE: The number of links in the input graph is 3.

NOTE: The Cloud Analytic Services server processed the request in 0.245527 seconds.

NOTE: The data set MYCAS.NODESETOUT has 4 observations and 1 variables.

NOTE: The data set MYCAS.LINKSETOUT has 3 observations and 3 variables.

The output data table mycas.NodeSetOut, shown in Figure 2.13, contains the unique numeric node labels,
{0, 1,3, 5}.

Figure 2.13 Nodes Data Table of a Simple Directed Graph

Obs node
1 0
2 1
3 3
4 5

Using standardized labels, the same input data table defines a graph that has six (not four) nodes:

proc network
standardizedLabels
mycas.LinkSetIn
outNodes mycas .NodeSetOut
outLinks = mycas.LinkSetOut;
run;

links

The log that results from using standardized labels is shown in Figure 2.14.

Execution Modes and Data Movement 4 47

Figure 2.14 PROC NETWORK Log: A Simple Undirected Graph Using Standardized Labels

NOTE: The number of nodes in the input graph is 6.

NOTE: The number of links in the input graph is 3.

NOTE: The number of singleton nodes in the input graph is 2.

NOTE: The Cloud Analytic Services server processed the request in 0.240239 seconds.
NOTE: The data set MYCAS.NODESETOUT has 6 observations and 1 variables.

NOTE: The data set MYCAS.LINKSETOUT has 3 observations and 3 variables.

The output data table mycas.NodeSetOut, shown in Figure 2.15, now contains all node labels from 0 to 5,
based on the assumptions when you use the STANDARDIZEDLABELS option.

Figure 2.15 Nodes Data Table of a Simple Directed Graph

Obs node

o U A W N
u b W N =2 O

Execution Modes and Data Movement

When you run PROC NETWORK, the algorithmic execution mode and the underlying data movement that is
implemented (required) to support that execution mode depend on the algorithm that you select.

For a single-machine CAS server, there is no data movement. The algorithm runs on the same machine where
the data are present. For a multiple-machine CAS server, the assumption is that the data reside in parts on
one or more of the machines in the server.

Certain algorithms run only in single-machine mode. In such cases, one particular machine (chosen randomly)
is given the role of the processing machine and the data from all the other machines are moved over to this
processing machine.

Some algorithms use multiple machines, but each machine requires a global view of the input data. In such
cases, each data part is repeated on all machines. Each machine processes a portion of the work across
the entire graph and merges results at the end of the processing. The resulting output tables end up being
distributed across the grid.

Some other algorithms use multiple machines and require only a portion of the data. However, because the
original data are typically randomly distributed, the first step is to shuffle data between machines such that

48 4 Chapter 2: The NETWORK Procedure

the data are appropriately aligned for the particular algorithm’s needs. When the data are aligned correctly,
each machine processes a part of the data and then iteratively merges results across the grid to obtain the final
result. Again, the resulting output tables end up being distributed across the grid.

In addition, on each machine, some of these algorithms (as well as the input phase) take advantage of
multicore chip technology by executing multiple threads simultaneously. You can use the NTHREADS=
option in the PROC NETWORK statement to specify the number of threads to use. The default is the
number of cores on the machine that executes the process, or the number of cores permissible based on your
installation (whichever is less). Setting this option to a number greater than the number of available cores
might result in reduced performance. Specifying a high number does not guarantee shorter solution time;
the actual change in solution time depends on the computing hardware and the scalability of the underlying
algorithms. In some circumstances, the NETWORK procedure might use fewer threads than the specified
number because the procedure’s internal algorithms have determined that a smaller number is preferable.

In the case of BY-group processing, the data must first be partitioned such that each observation within the
same BY group resides on the same machine. If the data are not already partitioned, PROC NETWORK
shuffles the data appropriately as a first step. When the data are partitioned, the selected algorithm runs
against the groups (on each machine) by using multiple threads (one group per thread). If the algorithm
itself is a multithreaded algorithm, then it uses multiple threads (on each group) if and only if the setting
for the NTHREADS= option exceeds the number of groups assigned to the processing machine. In this
case, the resulting output tables end up being distributed across the grid (partitioned by group). You can
prepartition your input data by using the PARTITION= option in a DATA step. Prepartitioning avoids the
need for PROC NETWORK to shuffle the data. This option is described in SAS Cloud Analytic Services:
Language Reference.

The data movement and execution modes for each algorithm are listed in Table 2.6. The table uses the
abbreviations SM (single machine), MM (multiple machines), and MT (multithreaded execution).

Table 2.6 Execution Modes and Data Movement

Statement (and Options) Data Movement Processing Mode
BICONNECTEDCOMPONENTS Moved to SM SM
CENTRALITY
BETWEEN=, CLOSE= Repeated on MM MM (MT)
CLUSTERINGCOEF Moved to SM SM (MT)
AUTH=, HUB=,

DEGREE-=, EIGEN=,

INFLUENCE= Moved to SM SM
CLIQUE Moved to SM SM
COMMUNITY ALGORITHM=

LOUVAIN, LABELPROP Moved to SM SM

PARALLELLABELPROP Shuffled across MM | MM (MT)
CONNECTEDCOMPONENTS ALGORITHM=

DFS, UNIONFIND Moved to SM SM

PARALLEL Shuffled across MM | MM
CORE Moved to SM SM
CYCLE ALGORITHM=

BACKTRACK Moved to SM SM

BUILD Moved to SM SM (MT)

Table 2.6 (continued)

Numeric Limitations 4 49

Statement (and Options) Data Movement Processing Mode
REACH Repeated on MM MM (MT)
SHORTESTPATH Repeated on MM MM (MT)
SUMMARY (other than shortest path) Moved to SM SM
SHORTESTPATH= Moved to SM SM (MT)
TRANSITIVECLOSURE Moved to SM SM

Because of communication costs, increasing the number of machines does not guarantee faster execution,
especially when you are dealing with small graphs. For all the documentation examples, unless otherwise
noted, the CAS session is configured for four worker nodes, each having 32 cores. For general information
about CAS sessions, see SAS Cloud Analytic Services: Fundamentals.

Numeric Limitations

Extremely large or extremely small numerical values might cause computational difficulties for some of the
algorithms in PROC NETWORK. For this reason, each algorithm restricts the magnitude of the data values
to a particular threshold number. If the user data values exceed this threshold, PROC NETWORK issues an
error message. The value of the threshold limit is different for each algorithm and depends on the operating
environment. The threshold limits are listed in Table 2.7, where M is defined as the largest absolute value

representable in your operating environment.

Table 2.7 Threshold Limits by Statement

Graph Links Graph Nodes

Statement (and Options) weight | auxweight weight
CENTRALITY

AUTH=, EIGEN=, HUB= 1E20

BETWEEN=, CLOSE= M M

INFLUENCE= VM VM
COMMUNITY M
CYCLE VM VM
REACH VM
SHORTESTPATH M VM
SUMMARY

DIAMETERAPPROX=, SHORTESTPATH= | M

To obtain these limits, use the SAS function constant. For example, the following DATA step assigns v M

to a variable x and prints that value to the log:

data _null_;
X = constant ('SQRTBIG') ;
put x=;

run;

50 4 Chapter 2: The NETWORK Procedure

Missing Values
For all the algorithms in PROC NETWORK, there is no valid interpretation for a missing value. If the user
data contain a missing value, PROC NETWORK issues an error message.

Negative Link Weights

For certain algorithms in PROC NETWORK, a negative link weight is not allowed. The following algorithms
issue an error message if a negative link weight is provided:

e CENTRALITY (AUTH=, BETWEEN=, CLOSE=, EIGEN=, HUB=)

e COMMUNITY

Zero Link Weights

For the community detection algorithm, a zero-valued link weight is not allowed. If a zero-valued link weight
is provided, the community detection algorithm issues an error message.

Size Limitations

PROC NETWORK can handle any graph whose numbers of nodes and links are each less than or equal
to 2,147,483,647 (the maximum that can be represented by a 32-bit integer). This maximum also applies
to 64-bit systems. For graphs that contain two billion nodes (or links), memory restrictions also become
a limiting factor. For example, see the discussion of memory requirements for the community detection
algorithm in the section “Memory Requirement” on page 73.

If the data from your problem require a graph that contains more than two billion nodes (or links), there is
typically a heuristic way to break the network into smaller networks based on problem-specific attributes.
Then, using DATA steps (or a BY statement), you can process each of the smaller networks iteratively through
repeated calls to PROC NETWORK. By using DATA steps (or a BY statement), you can also often work
around memory limitations, because the full graph never resides in memory.

Two exceptions to this limitation are the parallel union-find algorithm for finding connected components and
the parallel label propagation algorithm for community detection. Both of these algorithms are limited to
2,147,483,647 links per machine in your session configuration (rather than total links). These algorithms are
still limited to 2,147,483,647 total nodes.

Common Notation and Assumptions
This section briefly introduces some common notation and assumptions that are used throughout the chapter.

A complete graph, denoted K(NN), is a graph in which every pair of nodes in N is connected by a link. The
number of links in K(N) is described in Table 2.8.

Biconnected Components and Articulation Points 4 51

Table 2.8 Formulas for Number of Links in K(N)

Graph Direction Default INCLUDESELFLINK

Directed IN|?—|N| |N|?
Undirected |N|22_|N| |N|22+|N|

Biconnected Components and Articulation Points

A biconnected component of a graph G = (N, A) is a connected subgraph that you cannot break into
disconnected pieces by deleting any single node (and its incident links). An articulation point of a graph
is a node whose removal would cause an increase in the number of connected components. Articulation
points can be important when you analyze any graph that represents a communications network. Consider an
articulation pointi € N that, if removed, breaks the graph into two components, C! and C2. All paths in G
between some nodes in C'! and some nodes in C? must pass through node i. In this sense, articulation points
are critical to communication. Examples where articulation points are important include airline hubs, electric
circuits, network wires, protein bonds, traffic routers, and many other industrial applications.

In PROC NETWORK, you can find biconnected components and articulation points of an input graph by
using the BICONNECTEDCOMPONENTS statement. This algorithm works only with undirected graphs.

The results of the biconnected components algorithm are written to the output links data table that is specified
in the OUTLINKS= option in the PROC NETWORK statement. For each link in the links data table, the
variable biconcomp identifies its component. The component identifiers are numbered sequentially, starting
from the value of the INDEXOFFSET= option in the PROC NETWORK statement. The results of the
articulation points are written to the output nodes data table that is specified in the OUTNODES= option in
the PROC NETWORK statement. For each node in the nodes data table, the variable artpoint is either 1 (if
the node is an articulation point) or O (otherwise).

The algorithm that PROC NETWORK uses to compute biconnected components is a variant of depth-first
search (Tarjan 1972). This algorithm runs in time O(|N| + |A|) and therefore should scale to very large
graphs.

Biconnected Components of a Simple Undirected Graph

This section illustrates the use of the biconnected components algorithm on the simple undirected graph G
shown in Figure 2.16.

52 4 Chapter 2: The NETWORK Procedure

Figure 2.16 A Simple Undirected Graph G

The undirected graph G can be represented by the following links data table, mycas.LinkSetInBiCC:

data mycas.LinkSetInBiCC;
input from $ to $ Q@;
datalines;

AB AF AG BC

BE CD EF GI

HI

BD
G H
7

The following statements calculate the biconnected components and articulation points for G and output the
results in the data tables mycas.LinkSetOut and mycas.NodeSetOut:

proc network
links = mycas.LinkSetInBiCC
outLinks mycas .LinkSetOut
outNodes = mycas.NodeSetOut;
biconnectedComponents;

run;

The output data table mycas.LinkSetOut contains the biconnected components of the input graph, as shown
in Figure 2.17.

Biconnected Components and Articulation Points 4 53

Figure 2.17 Biconnected Components of a Simple Undirected Graph

from to biconcomp
F

O I OO ®mwm>» > >
O~ T T O0OmMmmT@O @
w b A A W W =22 2 N2 =

The output data table mycas.NodeSetOut contains the articulation points of the input graph, as shown in
Figure 2.18.

Figure 2.18 Articulation Points of a Simple Undirected Graph

node artpoint

O - oI mwm >
O 000 =0 =0 =

The biconnected components are shown graphically in Figure 2.19 and Figure 2.20.

54 4 Chapter 2: The NETWORK Procedure

Figure 2.19 Biconnected Components C! and C?

C! C?

Figure 2.20 Biconnected Components C3 and C*

c3 c*

For a more detailed example, see “Example 2.1: Articulation Points in a Terrorist Network™ on page 124.

Centrality 4 55

Centrality

In general terms, the centrality of a node or link in a graph gives some indication of its relative importance
within the graph. In the field of network analysis, many different types of centrality metrics are used to better
understand levels of prominence. For a good review of centrality metrics, see Newman (2010).

You can use the CENTRALITY statement in PROC NETWORK to calculate several of these metrics. The
options for this statement are described in the section “CENTRALITY Statement” on page 24.

The following sections describe each of the possible centrality metrics that you can calculate in PROC
NETWORK.

Degree Centrality

The degree of a node v in an undirected graph is the number of links that are incident to node v. The
out-degree of a node in a directed graph is the number of out-links incident to that node; the in-degree is
the number of in-links incident to that node. For an undirected graph, the terms degree and out-degree are
interchangeable. Degree centrality is simply the in- or out-degree of a node and can be interpreted as some
form of the node’s relative importance to a network. For example, in a network where nodes are people
and you are tracking the flow of a virus, the degree centrality gives some idea of the magnitude of the
risk of spreading the virus. People who have a higher out-degree can lead to faster and more widespread
transmission. In a friendship network, in-degree often indicates popularity.

Degree centrality is calculated using the value specified for the DEGREE option in the CENTRALITY
statement. The results are provided in the node output data table that is specified in the OUTNODES= option
in the PROC NETWORK statement.

The algorithm that PROC NETWORK uses to compute degree centrality is a simple lookup, runs in time
O(|N|), and therefore should scale to very large graphs.

As a simple example, consider again the directed graph in Figure 2.7 with the data table mycas.LinkSetIn,
which is defined in the section “Links Input Data” on page 40. The following statements calculate the degree
centrality for both in- and out-degrees:

proc network

direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality
degree;
run;

The nodes data table mycas.NodeSetOut now contains the degree centrality of the input graph. For a
directed graph, the data table provides the in-degree (the centr_degree_in variable), the out-degree (the
centr_degree_out variable), and the degree that is the sum of in- and out-degrees (the centr_degree variable).
This data table is shown in Figure 2.21.

56 4 Chapter 2: The NETWORK Procedure

Figure 2.21 Degree Centrality of a Simple Directed Graph

node centr_degree_in centr_degree_out centr_degree

A 0 3 3
B 1 3 4
C 2 1 3
D 2 1 3
E 3 2 5
F 2 1 3
G 2 2 4
H 1 2 3
| 2 0 2

Influence Centrality

Influence centrality is a generalization of degree centrality that considers the link and node weights of adjacent
nodes (Cp) in addition to the link weights of nodes that are adjacent to adjacent nodes (Cz). The metric C
is referred to as first-order influence centrality, and the metric C5 is referred to as second-order influence
centrality.

Let wy, define the link weight of link (u, v), and let w,, define the node weight of node u. Let §,, represent
the list of nodes connected to node u; this list is called the adjacency list. For directed graphs, the adjacency
list corresponds to the nodes in the out-links. The general formula for influence centrality is

_ E:UESuIUMU

Ch(u) B E:UENIUU

Cw) = Y Ci)
VEDy

As the name suggests, this metric indicates potential influence, performance, or ability to transfer knowledge.

Influence centrality is calculated using the value of the INFLUENCE= option in the CENTRALITY statement.
The results are provided in the node output data table that is specified in the OUTNODES= option in the
PROC NETWORK statement.

The algorithm that PROC NETWORK uses to compute influence centrality is a simple traversal, runs in time
O(]A|), and therefore should scale to very large graphs.

Consider again the directed graph in Figure 2.7. Ignore the weights and just calculate the C; and C, metrics
based on connections (that is, consider all link and node weights as 1). The following statements calculate
the unweighted influence centrality:

proc network

direction = directed

links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality

influence = unweight;
run;

Centrality 4+ 57

The nodes data table mycas.NodeSetOut now contains the unweighted influence centrality of the input graph,
including the C; variable centr_influence1_unwt and the C; variable centr_influence2_unwt. This data table
is shown in Figure 2.22.

Figure 2.22 Influence Centrality of a Simple Directed Graph

node centr_influence1_unwt centr_influence2_unwt

A 0.33333 0.55556
B 0.33333 0.44444
C 0.11111 0.22222
D 0.11111 0.22222
E 0.22222 0.22222
F 0.11111 0.22222
G 0.22222 0.22222
H 0.22222 0.22222
| 0.00000 0.00000

For a more detailed example, see “Example 2.2: Influence Centrality for Project Groups in a Research
Department” on page 126.

Clustering Coefficient

The clustering coefficient of a node is the number of links between the nodes within its neighborhood divided
by the number of links that could possibly exist between them (their induced complete graph).

Let N; represent the list of nodes that are connected to node i (excluding itself). The formula for the clustering
coefficient is
_ H(u,v) € A:u,v e N;}

| K(N;)|

C(i)

For a particular node i, the clustering coefficient determines how close the subgraph induced by its neighbor
set V; is to being a clique (complete subgraph). In social networks, a high clustering coefficient can help
predict relationships that might not be known, confirmed, or realized yet. The fact that person i knows person
Jj and person j knows person k does not guarantee that person i knows person k, but it is much more likely that
person i knows person k& than that person i knows some random person.

The clustering coefficient is calculated when you specify the CLUSTERINGCOEF option in the CENTRAL-
ITY statement. The results are provided in the node output data table that you specify in the OUTNODES=
option in the PROC NETWORK statement.

The algorithm that PROC NETWORK uses to compute the clustering coefficient runs in time O(|N|3).
Therefore, this algorithm is not expected to scale to very large graphs.

Consider the three undirected graphs on four nodes shown in Figure 2.23.

58 4 Chapter 2: The NETWORK Procedure

Figure 2.23 Three Undirected Graphs

Graph 1 Graph 2 Graph 3

Define the three links data tables as follows:

data mycas.LinkSetInCC1l;
input from $ to $ QQ@;
datalines;

AB AC AD

BC BD CD

’

data mycas.LinkSetInCC2;
input from $ to $ QQ@;
datalines;

AB AC AD

CcCD

’

data mycas.LinkSetInCC3;
input from $ to $ Q@;
datalines;

AB AC AD

4

The following statements use three calls to PROC NETWORK to calculate the clustering coefficients of each
graph:

proc network

links = mycas.LinkSetInCCl
outNodes = mycas.NodeSetOutl;
centrality
clusteringCoef;
run;

proc network

links = mycas.LinkSetInCC2
outNodes = mycas.NodeSetOut2;
centrality

clusteringCoef;

run;

Centrality 4 59

proc network

links = mycas.LinkSetInCC3
outNodes = mycas.NodeSetOut3;
centrality
clusteringCoef;
run;

The nodes data tables provide the clustering coefficients of each graph (the centr_cluster variable), as shown
in Figure 2.24 through Figure 2.26.

Figure 2.24 Clustering Coefficient of a Simple Undirected Graph 1

node centr_cluster

A 1
B 1
C 1
D 1

Figure 2.25 Clustering Coefficient of a Simple Undirected Graph 2

node centr_cluster

A 0.33333
B 0.00000
C 1.00000
D 1.00000

Figure 2.26 Clustering Coefficient of a Simple Undirected Graph 3

node centr_cluster
A 0

B 0
C 0
D 0

Closeness Centrality

Closeness centrality is the reciprocal of the average of the shortest path (geodesic) distances from a particular
node to all other nodes. Closeness can be thought of as a measure of how long it takes information to spread
from a particular node to other nodes in the network. The higher the closeness value of a particular node, the
faster the information will spread from that node to other nodes.

Define d, to be the shortest path distance from node u to node v, with link weight defined by the
AUXWEIGHT= option in the LINKSVAR statement. If the auxiliary link weight is not specified, then the link
weight defaults to 1/w, where w represents the weight assigned by the WEIGHT= option in the LINKSVAR
statement. By default, this means that a higher link weight implies a stronger relationship between its nodes
(similar to other centrality metrics).

60 4 Chapter 2: The NETWORK Procedure

Closeness Centrality for an Undirected Graph

For an undirected graph, R(u) = {v € N : dy, < oo} is the set of reachable nodes from node u. The set
of unreachable nodes from node u is N \ R(u) = {v € N : dy, = oo}. The CLOSENOPATH= option
specifies how to handle unreachable nodes.

For the special case in which all nodes are unreachable from node u, the closeness centrality is defined as 0.
Otherwise, closeness centrality is calculated as

n(u)

> duv +IN\Ru)|p
veER(u)

Ce(u) = s(u)

where p defines a penalty parameter for unreachable nodes, n(u) defines the number of nodes that are
considered in calculating the average, and s(u) is a scaling factor, as shown in Table 2.9.

Table 2.9 Formulas for CLOSENOPATH= Option for Undirected Graphs

CLOSENOPATH= p n(u) s(u)

DIAMETER max {d;j :d;jj <ooy+1 |[N|—1 1
(i,/)eA

NNODES |N| IN|—1 1

ZERO 0 [RGu)| -1 REL

Closeness Centrality for a Directed Graph

For a directed graph, R°"(u) = {v € N : dy, < 00} is the set of reachable nodes from node u, whereas
R™(u) = {v € N : dy, < oo} is the set of nodes from which there is a finite path to node u. The set of
unreachable nodes from node uis N \ R°"(u) = {v € N : dy, = oo}, whereas the set of nodes from which
there is no finite path to node uis N \ R"™(u) = {v € N : dy, = oo}.

For the special case in which all nodes are unreachable from node u, the out-closeness centrality is defined as
0. Otherwise, out-closeness centrality is calculated as

nOUt(u)
Y. duy + [N\ R™Mu)| p

VER(u)

Ccout(u) — Sout(u)

where n°"' (1) defines the number of nodes that are considered in calculating the average and s°*'(u) is a
scaling factor, as shown in Table 2.10.

For the special case in which node u is unreachable from all the other nodes, the in-closeness centrality is
defined as 0. Otherwise, in-closeness centrality is calculated as

nin(u)

> dyu+ [N\ R"u)|p
veR(y)

CMu) = 5™ (u)

where 1" (1) defines the number of nodes that are considered in calculating the average and s™ () is a scaling
factor, as shown in Table 2.10.

Centrality 4 61

Table 2.10 Formulas for CLOSENOPATH= Option for Directed Graphs

CLOSENOPATH= no‘"(u) SOUt(M) ni“(u) sin(u)
DIAMETER |N|—1 1 |N|_1 1
NNODES IN|—1 I IN|— 1 i

Rout _ . Rin _
ZERO |R"(u)| — 1 % |RI"(u)| — 1 | ‘A%QII 1

The overall closeness centrality for directed graphs is calculated as

€M) + Clw)
2

Ce(u) =

Harmonic Centrality

Harmonic centrality, as described in Rochat (2009), is a variant of closeness centrality that attempts to
simplify the treatment of unreachable nodes by calculating the average of the reciprocal of the shortest path
distances from a particular node to all the other nodes. The formula for harmonic centrality is

Z 1

veN\{u} v

Chlw) = iy

To enable the calculation of harmonic centrality, use the CLOSENOPATH=HARMONIC option.

Closeness centrality is calculated using the value of the CLOSE= option in the CENTRALITY statement.
The results are provided in the node output data table that you specify in the OUTNODES= option in the
PROC NETWORK statement. If CLOSE=WEIGHT (or BOTH), then the shortest paths are calculated with
respect to the weighted graph. Because the metric uses shortest paths to determine closeness, the weight and
the closeness metric are inversely related. In general, the lower the weight, the higher the contribution to the
closeness metric.

The algorithm that PROC NETWORK uses to compute closeness centrality relies on calculating shortest
paths for all source-sink pairs and runs in time O(|N | x (|N|log|N |+ |A])). Therefore, this algorithm is not
expected to scale to very large graphs. Because the shortest path calculations can be computed independently
(for each source node), the algorithm uses multiple threads and multiple machines (depending on your session
configuration and license).

Consider again the directed graph in Figure 2.7 with the data table mycas.LinkSetIn, which is defined in the
section “Links Input Data” on page 40. The following statements calculate the closeness centrality for both
the weighted and unweighted graphs:

proc network

direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality

close = both;

run;

62 4 Chapter 2: The NETWORK Procedure

The nodes data table mycas.NodeSetOut now contains the weighted and unweighted directed closeness
centrality of the input graph. The output data table provides the unweighted closeness (the centr_close_unwt
variable), in-closeness (the centr_close in_unwt variable), and out-closeness (the centr_close out _unwt
variable). It also provides the weighted variants centr_close_wt, centr_close_in_wt, and centr_close_out_wt.
This data table is shown in Figure 2.27.

Figure 2.27 Closeness Centrality of a Simple Directed Graph

node centr_close_wt centr_close_in_wt centr_close_out_wt centr_close_unwt centr_close_in_unwt centr_close_out_unwt

A 0.38835 0.00000 0.77670 0.22222 0.00000 0.44444
B 0.55134 0.30000 0.80268 0.33333 0.22222 0.44444
Cc 0.38260 0.34043 0.42478 0.27885 0.25000 0.30769
D 0.40113 0.41202 0.39024 0.29178 0.30769 0.27586
E 0.45962 0.43439 0.48485 0.32000 0.32000 0.32000
F 0.44357 0.50314 0.38400 0.30725 0.34783 0.26667
G 0.56402 0.79470 0.33333 0.32500 0.40000 0.25000
H 0.41663 0.48290 0.35036 0.27885 0.30769 0.25000
| 0.30227 0.60453 0.00000 0.18182 0.36364 0.00000

Betweenness Centrality

Betweenness centrality counts the number of times a particular node (or link) occurs in shortest paths between
other nodes. Betweenness can be thought of as a measure of the control that a node (or link) has over
the communication flow through the rest of the network. In this sense, the nodes (or links) that have high
betweenness are the gatekeepers of information, because of their relative location in the network.

The formula for node betweenness centrality is

Cy(u) = Z ost(u)

sF#EUFLteEN st
SFEt

where oy; is the number of shortest paths from s to # and o, (1) is the number of shortest paths from s to ¢
that pass through node u. As with closeness centrality, the shortest path is calculated with respect to the link
weight defined by the AUXWEIGHT= option in the LINKSVAR statement. If the auxiliary link weight is not
specified, then the link weight defaults to 1/w, where w represents the weight assigned by the WEIGHT=
option in the LINKSVAR statement. By default, this means that a higher link weight implies a stronger
relationship between the link’s nodes.

The formula for link betweenness centrality is

Cp(u,v) = Z M

o
s,teN st
SFEt

where ¢ (1, v) is the number of shortest paths from s to ¢ that pass through link (u, v).

By default, this metric is normalized by dividing by the number of pairs of nodes, not including «, which is
(IN| = D)(|N| — 2). You can disable this normalization by using the BETWEENNORM= option.

For directed graphs, because the paths are directed, only the out-betweenness is computed. To get the
in-betweenness, you must reverse all the directions of the graph and run the procedure again. You can
accomplish this by simply using the LINKSVAR statement to reverse the interpretation of from and fo.

Centrality 4 63

Betweenness centrality is calculated using the value of the BETWEEN= option in the CENTRALITY
statement. The node betweenness results are provided in the node output data table that is specified in the
OUTNODES= option in the PROC NETWORK statement. The link betweenness results are provided in
the link output data table that is specified in the OUTLINKS= option in the PROC NETWORK statement.
As with closeness centrality, if BETWEEN=WEIGHT (or BOTH), then the calculation of shortest paths is
performed using the weighted graph.

The algorithm that PROC NETWORK uses to compute betweenness centrality relies on calculating shortest
paths for all source-sink pairs and runs in time O(|N| x (|N|log|N|+ |A])). Therefore, it is not expected to
scale to very large graphs. As with closeness centrality, because shortest path computations can be calculated
independently (for each source node), the algorithm uses multiple threads and multiple machines (depending
on your session configuration and license). When closeness and betweenness centrality are run together,
PROC NETWORK calculates both metrics in one pass.

Consider again the directed graph in Figure 2.7 with data table mycas.LinkSetIn, which is defined in the
section “Links Input Data” on page 40. The following statements calculate the betweenness centrality for
both the weighted and unweighted graphs:

proc network

direction = directed

links = mycas.LinkSetIn
outLinks = mycas.LinkSetOut
outNodes = mycas.NodeSetOut;
centrality

between = both;
run;

The nodes data table mycas.NodeSetOut now contains the weighted (the centr_between_wt variable) and
unweighted (the centr_between_unwt variable) node betweenness centrality of the input graph. This data
table is shown in Figure 2.28.

Figure 2.28 Node Betweenness Centrality of a Simple Directed Graph

node centr_between_wt centr_between_unwt

A 0.00000 0.00000
B 0.07143 0.07738
C 0.00000 0.00595
D 0.01786 0.00595
E 0.17857 0.17857
F 0.26786 0.26786
G 0.21429 0.21429
H 0.00000 0.00000
| 0.00000 0.00000

In addition, the links data table mycas.LinkSetOut contains the weighted (the centr_between_wt variable)
and unweighted (the centr_between_unwt variable) link betweenness centrality of the input graph. This data
table is shown in Figure 2.29.

64 4 Chapter 2: The NETWORK Procedure

Figure 2.29 Link Betweenness Centrality of a Simple Directed Graph

from to weight centr_between_wt centr_between_unwt

A B 1 0.08929 0.09524
A C 2 0.01786 0.02381
A D 4 0.03571 0.02381
B C 1 0.01786 0.01786
B E 2 0.03571 0.04167
B F 5 0.14286 0.14286
C E 1 0.10714 0.11310
D E 1 0.10714 0.09524
E D 1 0.05357 0.05357
E F 2 0.21429 0.21429
F G 6 0.32143 0.32143
G H 1 0.12500 0.12500
H G 2 0.01786 0.01786
G | 1 0.12500 0.12500
H | 3 0.01786 0.01786

For more detailed examples, see “Example 2.3: Betweenness and Closeness Centrality for Computer Network
Topology” on page 130 and “Example 2.4: Betweenness and Closeness Centrality for Project Groups in a
Research Department” on page 133.

Eigenvector Centrality

Eigenvector centrality is an extension of degree centrality in which centrality points are awarded for each
neighbor. However, not all neighbors are equally important. Intuitively, a connection to an important node
should contribute more to the centrality score than a connection to a less important node. This is the basic
idea behind eigenvector centrality. The eigenvector centrality of a node is defined to be proportional to the
sum of the scores of all nodes that are connected to it. Mathematically, it is represented as

1
Xj = 7 Z Wij X j
J€8;

where x; is the eigenvector centrality of node i, A is a constant, §; is the set of nodes that connect to node i,
and wy;; is the weight of the link from node i to node j.

Eigenvector centrality can be written as an eigenvector equation in matrix form as

Ax = Ax

As the preceding equation shows, x is the eigenvector and A is the eigenvalue. Because x should be positive,
only the principal eigenvector that corresponds to the largest eigenvalue is of interest.

Eigenvector centrality is calculated using the value that you specify in the EIGEN= option in the CENTRAL-
ITY statement. The results are provided in the node output data table that you specify in the OUTNODES=
option in the PROC NETWORK statement.

The following example illustrates the use of eigenvector centrality on the undirected graph G shown in
Figure 2.30.

Figure 2.30 Eigenvector Centrality Example of a Simple Undirected Graph

The graph can be represented by the following links data table, mycas.LinkSetin:

data mycas.LinkSetIn;
input from $ to $ QQ;
datalines;

AD BC BD BE BF

BI BJ EF EG EH

4

The following statements compute the eigenvector centrality:

proc network

links = mycas.LinkSetIn
outNodes = mycas .NodeSetOut;
centrality
eigen = unweight;
run;

Centrality 4 65

The output data table mycas.NodeSetOut now contains the eigenvector centrality of each node, as shown in

Figure 2.31.

66 4 Chapter 2: The NETWORK Procedure

Figure 2.31 Eigenvector Centrality Output

node centr_eigen_unwt
1.00000
0.75919
0.61981
0.40226
0.35233
0.35233
0.35233
0.26749
0.26749
0.14173

> I O - O0ommmw

Even though nodes F and D both have the same degree of 2, node F has a higher eigenvector centrality
than node D. This is because node F links to two important nodes (B and E), whereas node D links to one
important node (B) and one unimportant node (A).

For a more detailed example, see “Example 2.5: Eigenvector Centrality for Word Sense Disambiguation” on
page 136.

Hub and Authority Scoring

Hub and authority centrality was originally developed by Kleinberg (1998) to rank the importance of web
pages. Certain web pages (called hubs) are important in the sense that they point to many important pages.
On the other hand, some web pages (called authorities) are important because they are pointed to by many
important pages. In other words, a good hub node is one that points to many good authorities, and a good
authority node is one that is pointed to by many good hub nodes. This idea can be applied to many other
types of graphs besides web pages. For example, you can apply it to a citation network for journal articles. A
review article that cites many good authority papers has a high hub score, whereas a paper that is referenced
by many other papers has a high authority score. The section “Authority in US Supreme Court Precedent” on
page 12 presents a similar example.

The authority centrality of a node is proportional to the sum of the hub centrality of nodes that point to it.
Similarly, the hub centrality of a node is proportional to the sum of the authorities of nodes that it points to.
That is,

Xi = «o Z Wijy;
JEN
i = By wjix;
JEN
where x; is the authority centrality of node i, y; is the hub centrality of node i, w;; is the weight of the link
from node i to node j, and @ and B are constants.

The definition can be written in matrix form as follows:

AATx = Ax
ATAy = Ly

Centrality 4+ 67

Thus, the authority and hub centralities are the principal eigenvectors of AT 4 and AAT, respectively. To
solve this eigenvector problem, PROC NETWORK provides two algorithms: the Jacobi-Davidson algorithm
and the power method. You use the EIGENALGORITHM-= option in the CENTRALITY statement to specify
which algorithm to use. JACOBIDAVIDSON, which is the default, specifies the Jacobi-Davidson algorithm,
a state-of-the-art package for solving large-scale eigenvalue problems (Sleijpen and van der Vorst 2000). The
power method is one of the standard algorithms for solving eigenvalue problems, but it converges slowly for
certain problems.

The following example illustrates the use of hub and authority scoring on the directed graph G shown in
Figure 2.32. Each node represents a web page. If web page i has a hyperlink that points to web page j, then
there is a directed link from i to j.

Figure 2.32 Hub and Authority Centrality Example of a Simple Directed Graph

The graph can be represented by the following links data table, mycas.LinkSetin:

data mycas.LinkSetlIn;
input from $ to $ QQ@;
datalines;

BC CB DA DB EB
ED EF FB FE GE
HE IE IB JE JB
KB KE

’

The following statements compute hub and authority centrality:

proc network

direction = directed
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality

hub = unweight

auth = unweight;

run;

68 4 Chapter 2: The NETWORK Procedure

The output data table mycas.NodeSetOut now contains the hub and authority scores of each node, as shown
in Figure 2.33.

Figure 2.33 Hub and Authority Centrality Output

node centr_hub_unwt centr_auth_unwt

B 0.00000 1.00000
C 0.54135 0.00000
D 0.59703 0.11466
A 0.00000 0.10287
E 0.66549 0.84725
F 1.00000 0.11466
G 0.45865 0.00000
H 0.45865 0.00000
| 1.00000 0.00000
J 1.00000 0.00000
K 1.00000 0.00000

The output shows that nodes B and E have high authority scores because they have many incoming links.
Nodes F, 1, J, and K have high hub scores because they all point to good authority nodes B and E.

Cligue Enumeration

A clique of a graph G = (N, A) is an induced subgraph that is a complete graph. Every node in a clique is
connected to every other node in that clique. A maximal clique is a clique that is not a subset of the nodes of
any larger clique. That is, it is a set C of nodes such that every pair of nodes in C is connected by a link and
every node not in C is missing a link to at least one node in C. The number of maximal cliques in a particular
graph can be very large and can grow exponentially with every node that is added. Finding cliques in graphs
has applications in many industries, including bioinformatics, social networks, electrical engineering, and
chemistry.

You can find the maximal cliques of an input graph by using the CLIQUE statement. The options for this
statement are described in the section “CLIQUE Statement” on page 27. The clique algorithm works only
with undirected graphs.

The results of the clique algorithm are written to the output data table that is specified in the OUT= option in
the CLIQUE statement. Each node of each clique is listed in the output data table along with the variable
clique to identify the clique to which it belongs. The clique identifiers are numbered sequentially, starting
from the value of the INDEXOFFSET= option in the PROC NETWORK statement. A node can appear
multiple times in this data table if it belongs to multiple cliques.

The algorithm that PROC NETWORK uses to compute maximal cliques is a variant of the Bron-Kerbosch
algorithm (Bron and Kerbosch 1973; Harley 2003). Enumerating all maximal cliques is NP-hard, so this
algorithm typically does not scale to very large graphs.

Clique Enumeration 4 69

Maximal Cliques of a Simple Undirected Graph

This section illustrates the use of the clique algorithm on the simple undirected graph G shown in Figure 2.34.

Figure 2.34 A Simple Undirected Graph G

The undirected graph G can be represented by the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from to Q@Q@;

datalines;
01 02 03 04 05
06 12 13 14 23
24 25 26 27 238
34 56 78 89

’

The following statements calculate the maximal cliques, output the results in the data table mycas.Cliques,
and use the SQL procedure as a convenient way to create a local data set (CliqueSizes) of clique sizes:

proc network

links = mycas.LinkSetIn;
clique
out = mycas.Cliques
maxCliques = all;
run;
proc sql;

create table CliqueSizes as
select clique, count(x) as size
from mycas.Cliques
group by clique
order by size desc;

quit;

70 4 Chapter 2: The NETWORK Procedure

The output data table mycas.Cliqgues now contains the maximal cliques of the input graph, as shown in
Figure 2.35.

Figure 2.35 Maximal Cliques of a Simple Undirected Graph

clique node
1

A A W W WNNNN-=2 2 o 4
W 00 N 0O N O L1l VN O = b WN O

In addition, the output data table mycas.CliqueSizes contains the number of nodes in each clique, as shown
in Figure 2.36.

Figure 2.36 Sizes of Maximal Cliques of a Simple Undirected Graph

clique size
1 5
2 4
3 3
4 2

The maximal cliques are shown graphically in Figure 2.37 and Figure 2.38.

Community Detection 4 71

Figure 2.37 Maximal Cliques C! and C?

C'=1{0,1,2,3,4} C2=1{0,2,5,6}

C3=12,18) C*={8,9}

Community Detection

Community detection partitions a graph into communities such that the nodes within the community subgraphs
are more densely connected than the nodes from different communities.

In PROC NETWORK, you can specify community detection by using the COMMUNITY statement. The
options for this statement are described in the section “COMMUNITY Statement” on page 27.

PROC NETWORK implements three heuristic algorithms for finding communities: the LOUVAIN algorithm
proposed in Blondel et al. (2008), the label propagation algorithm proposed in Raghavan, Albert, and Kumara
(2007), and the parallel label propagation algorithm developed by SAS.

72 4 Chapter 2: The NETWORK Procedure

When you specify ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, community
detection supports both undirected and directed graphs. When you specify ALGORITHM=LOUVAIN or
ALGORITHM=LABELPROP in the COMMUNITY statement, community detection is supported only for
undirected graphs. For directed graphs, you need to aggregate directed links into undirected links before you
call the algorithm. For example, suppose there are two directed links: a link from i to j with a link weight
of 4.3, and a link from j to i with a link weight of 3.2. One common aggregation strategy is to sum the link
weights. Using this strategy, the weight of the undirected link between i and j is 7.5.

Given a graph G = (N, A), all three algorithms run in time O(k|A|), where k is the average number of
links per node. The Louvain algorithm aims to optimize modularity, which is one of the most popular merit
functions of community detection. Modularity is a measure of the quality of a division of a graph into
communities. The modularity of a division is the fraction of the links that fall within the communities minus
the expected fraction if the links were distributed at random, assuming that you do not change the degree of
each node.

Mathematically, modularity is defined as

0 = i Z Z (wuv - %) Alcy, cv)

ueN veN
wo=) wa
(u,v)€A
Wy = Zwuv
VESy

where Q is the modularity, wy,, is the link weight between nodes u and v (or 0 if (1, v) € A), 8, is the set of
nodes that connect to node u, w,, is the sum of link weights incident to node u, w is the sum of link weights
of the graph, c,, is the community to which node u belongs, and A(cy, ¢y) is the Kronecker delta symbol,
defined as

1 lfCu = Cy

Aleu. cv) = 0 otherwise

The following is a brief description of the Louvain algorithm:

1. Initialize each node as its own community.

2. Move each node from its current community to the neighboring community that increases modularity
the most. Repeat this step until modularity cannot be improved.

3. Group the nodes in each community into a supernode. Construct a new graph based on supernodes.
Repeat these steps until modularity cannot be further improved or the maximum number of iterations
has been reached.

The more recently proposed label propagation algorithm moves a node to a community that most of its
neighbors belong to. Extensive testing by Lancichinetti and Fortunato (2009) has empirically demonstrated
that the label propagation algorithm performs as well as the Louvain method in most cases.

The following is a brief description of the label propagation algorithm:

Community Detection 4 73

1. Initialize each node as its own community.

2. Move each node from its current community to the neighboring community that has the maximum
sum of link weights to the current node; break ties randomly if necessary. Repeat this step until there
are no more movements.

The parallel label propagation algorithm is an extension of the basic label propagation algorithm. During
each iteration, rather than updating node labels sequentially, nodes update their labels simultaneously by
using the node label information from the previous iteration. In this approach, node labels can be updated
in parallel. However, simultaneous updating of this nature often leads to oscillating labels because of the
bipartite subgraph structure often present in large graphs. To address this issue, at each iteration the parallel
algorithm skips the labeling step at some randomly chosen nodes in order to break the bipartite structure.
You can control the random samples that the algorithm takes by specifying the RANDOMFACTOR= or
RANDOMSEED= option in the COMMUNITY statement.

Memory Requirement

When you specify INTERNALFORMAT=THIN in the PROC NETWORK statement and ALGO-
RITHM=LOUVAIN or ALGORITHM=LABELPROP in the COMMUNITY statement, the memory (number

of bytes) that is required for community detection can be estimated approximately as follows, given a graph
G = (N, A):

(2 x |A| + |N|) x sizeof(int) + (3 x |A| + |N|) x sizeof(double)

When you specify INTERNALFORMAT=THIN and ALGORITHM=PARALLELLABELPROP, the memory
required for community detection is approximately twice this amount (in a single-machine configuration).

Assume that your machine architecture is such that an integer is 4 bytes and a double is 8 bytes. A graph that
contains 100 million nodes and 650 million links would require approximately 21 gigabytes (GB) of memory
when you specify ALGORITHM=LOUVAIN or ALGORITHM=LABELPROP:

(2 x 650M + 100M) x 4 + (3 x 650M + 100M) x 8 = 21GB
The same graph would require approximately 42 GB if you specify ALGORITHM=PARALLELLABELPROP.

This is only an estimate of the amount of memory that is required. PROC NETWORK itself might require
more memory to maintain the input and output data structures. In addition, other running processes might
take memory away from the amount available.

PROC NETWORK uses significantly more memory if INTERNALFORMAT=FULL. It is recommended that
you use INTERNALFORMAT=THIN when you perform community detection on large graphs.

Graph Direction

If you specifty ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, community
detection supports both undirected and directed graphs. However, you should be careful in deciding whether
to model your problem as an undirected or a directed graph. For an undirected graph, the algorithm finds
communities based on the density of the subgraphs. For a directed graph, the algorithm finds communities
based on the information flow along the directed links. That is, the algorithm propagates the community
identifier along the outgoing links of a node. Therefore, nodes are likely to be in the same community if they
form cycles along the outgoing links. If the directed graph lacks this cycle structure, the nodes are likely
to continue to switch between communities during the computation. As a result, the algorithm does not
converge well and cannot find a good community structure in the graph.

74 4 Chapter 2: The NETWORK Procedure

Large Communities

It has often been observed in practice that the number of nodes contained in communities (produced by
community detection algorithms) usually follows a power law distribution. That is, a few communities
contain a very large number of nodes, whereas most communities contain a small number of nodes. This
is especially true for large graphs. PROC NETWORK provides two approaches to alleviate the imbalance
in the number of nodes across communities: one uses the RECURSIVE option, and the other uses the
RESOLUTIONLIST= option.

Recursive

You can apply the RECURSIVE option to recursively break large communities into smaller ones. At the first
step, PROC NETWORK processes data as if no RECURSIVE option were specified. At the end of this step,
it checks whether the community result satisfies the RECURSIVE option criterion. If the community result
satisfies this criterion, PROC NETWORK stops iterations and outputs results. Otherwise, it treats each large
community as an independent graph and recursively performs community detection on top of it.

In certain cases, a community is not further split even if it does not meet the recursive criterion that you
specified. One example is a star-shaped community that contains 200 nodes when MAXCOMMSIZE is
specified as 100; another example is a symmetric community whose diameter is 2 when MAXDIAMETER is
specified as 1.

Resolution List

The second way to combat the imbalance, provided that you have specified ALGORITHM=LOUVAIN in the
COMMUNITY statement, is to specify a larger value than the default value of 1 for the RESOLUTIONLIST=
option. When ALGORITHM=LOUVAIN, the value that is specified for the RESOLUTIONLIST= option
can be interpreted as follows: Suppose the resolution value is x. Two communities are merged if the sum
of the weights of intercommunity links is at least x times the expected value of the same sum if the graph
is reconfigured randomly. Therefore, a larger resolution value produces more communities, each of which
contains a smaller number of nodes. However, there is no explicit formula to detail the number of nodes
in communities with respect to the resolution value. You must use trial and error to get to the expected
community size. More information about resolution value is available in Ronhovde and Nussinov (2010).

If you specify ALGORITHM=LOUVAIN, you can supply multiple resolution values at one time. If you
supply multiple resolution values at one time, PROC NETWORK detects communities at the highest
resolution level first, then merges communities at a lower resolution, and repeats the process until it reaches
the lowest level. This process enables you to see how the communities are merged at different levels. Because
of the local nature of this optimization algorithm, two different runs do not produce the same result if the two
runs share a common resolution level. For example, the algorithm can produce different results at resolution
0.5 in two runs: one with RESOLUTIONLIST=1 0.7 0.5 and the other with RESOLUTIONLIST=1 0.5.

If you specify ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, the resolution
value can be interpreted as the minimal density of a community in an undirected and unweighted graph. The
density of a community is defined as the number of links inside the community divided by the total number
of possible links. A larger resolution value is likely to result in communities that contain fewer nodes. For
more information about resolution values for label propagation, see Traag, Van Dooren, and Nesterov (2011).

If you supply multiple resolution values at one time and you specify ALGORITHM=PARALLELLABELPROP,
the NETWORK procedure performs community detection multiple times, each time with a different resolu-

tion value. This is equivalent to calling PROC NETWORK several times, each time with a different (single)

resolution value specified for the RESOLUTIONLIST= option.

Community Detection 4 75

If you specify ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, the value that is
specified in the RESOLUTIONLIST= option has a major impact on the running time of the algorithm. When
a large resolution value is specified, the algorithm is likely to create many tiny communities, and nodes are
likely to change communities between iterations. Therefore, the algorithm might not converge properly. On
the other hand, when the resolution value is small, the algorithm might find some very large communities,
such as a community that contains more than a million nodes. In this case, if you specify the RECURSIVE
option, the algorithm spends a long time in the recursive step in order to break large communities into smaller
ones.

The recommended approach is to first experiment with a set of resolution values without using the RE-
CURSIVE option. At the end of the run, examine the resulting modularity values and the community size
distributions. Remove the resolution values that lead to small modularity values or huge communities. Then
add the RECURSIVE option to the COMMUNITY statement, if desired, and run PROC NETWORK again.
“Example 2.6: Community Detection on Zachary’s Karate Club Data” on page 139 shows the use of the
RESOLUTIONLIST= option in finding communities.

Large Graphs
When you are dealing with large graphs, the following practices are recommended:

e Use INTERNALFORMAT=THIN instead of INTERNALFORMAT=FULL. This enables PROC
NETWORK to store the data in memory compactly.

e Use the LINKREMOVALRATIO= option to remove unimportant links. This practice can often
dramatically improve the run time of large graphs.

Output Data Tables

Community detection produces up to six output data tables. In these data tables, if you specify ALGO-
RITHM=LOUVAIN in the COMMUNITY statement, resolution level numbers appear in decreasing order of
the values that are specified in the RESOLUTIONLIST= option. That is, resolution level 1 corresponds to the
largest value specified in the RESOLUTIONLIST= option, and resolution level K corresponds to the smallest
value specified in the RESOLUTIONLIST= option. For example, if RESOLUTIONLIST=2.5 3.1 0.6, then
resolution level 1 is at value 3.1, resolution level 2 is at value 2.5, and resolution level 3 is at value 0.6.

If you specify ALGORITHM=PARALLELLABELPROP in the COMMUNITY statement, resolution level
numbers appear in the same order as the values that are specified in the RESOLUTIONLIST= option. For
example, if RESOLUTIONLIST=0.001 0.005 0.01, then resolution level 1 is at value 0.001, resolution level
2 is at value 0.005, and resolution level 3 is at value 0.01.

The community identifiers are numbered sequentially, starting from the value of the INDEXOFFSET= option
in the PROC NETWORK statement.

OUTNODES-= Data Table

The OUTNODES= data table describes the community identifier of each node. If multiple resolution values
have been specified, the data table reports the community identifier of each node at each resolution level.
This data table contains the following columns:

e node: the node label

76 4 Chapter 2: The NETWORK Procedure

e community_i: community identifier at resolution level i, where i is the resolution level number as
previously described. There are K such columns if K different values are specified in the RESOLU-
TIONLIST= option.

OUTLINKS= Data Table

The OUTLINKS= data table describes the community identifier of each link. If multiple resolution values
have been specified, the data table reports the community identifier of each link at each resolution level. If a
particular link contains a from node and a to node assigned to different communities, then the community
identifier is the missing indicator (.). This data table contains the following columns:

e community_i: community identifier at resolution level i, where i is the resolution level number as
previously described. There are K such columns if K different values are specified in the RESOLU-
TIONLIST= option.

e from: the from node label

e to: the o node label

OUTLEVEL= Data Table
The OUTLEVEL= data table describes the number of communities and their corresponding modularity
values at various resolution levels. It contains the following columns:

e level: resolution level number
e resolution: resolution value
e communities: number of communities at the current resolution level

e modularity: modularity value at the current resolution level

OUTCOMMUNITY= Data Table
The OUTCOMMUNITY= data table describes the number of nodes in each community. It contains the
following columns:

e level: resolution level number
e resolution: resolution value
e community: community identifier

e nodes: number of nodes contained in the community

Community Detection 4 77

OUTOVERLAP= Data Table

The OUTOVERLAP= data table describes the intensity of each node. At the end of community detection,
a node could have links that connect to multiple communities. The intensity of a node is computed as the
sum of the link weights that connect to nodes in the specified community divided by the total link weights of
the node. This data table is computationally expensive to produce, and it requires a large amount of disk
space. Therefore, this data table is not produced if you specify ALGORITHM=PARALLELLABELPROP
together with multiple resolution values in the RESOLUTIONLIST= option. However, if you specify
ALGORITHM=LOUVALIN, the data table is produced and will contain only results corresponding to the
smallest value of the RESOLUTIONLIST= option. This data table contains the following columns:

e node: node label
e community: community identifier

e intensity: intensity of the node that belongs to the community

OUTCOMMLINKS= Data Table
The OUTCOMMLINKS= data table describes how communities are connected. It contains the following

columns:

e level: resolution level number

resolution: resolution value

from_community: community identifier of the from community

e to_community: community identifier of the fo community

link_weight: sum of link weights of all links between from_community and to_community

This data table is not produced if you specify ALGORITHM=PARALLELLABELPROP together with
multiple resolution values in the RESOLUTIONLIST= option.

Community Detection on an Undirected Simple Graph

This section illustrates the use of the community detection algorithm on the simple undirected graph G shown
in Figure 2.39.

78 4 Chapter 2: The NETWORK Procedure

Figure 2.39 A Simple Undirected Graph G

The undirected graph G can be represented by the following links data table, mycas.LinkSetlIn:

data mycas.LinkSetIn;
input from $ to $ Q@;
datalines;

AB AF AG BC

BE CD EF GI

HI

BD
G H
7

The following statements perform community detection and output the results in the specified data tables.
The Louvain algorithm is used by default because no value is specified for the ALGORITHM= option.

proc network

links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
community
resolutionList = 1.0 0.5
outLevel = mycas.CommLevelOut
outCommunity = mycas.CommOut
outOverlap = mycas.CommOverlapOut
outCommLinks = mycas.CommLinksOut;
run;

The output data table mycas.NodeSetOut contains the community identifier of each node, as shown in
Figure 2.40.

Community Detection 4 79

Figure 2.40 Community Detection on an Undirected Simple Graph: Nodes Output

node community_1 community_2
1

- I Mmoo T7TTw>
W W =" NN W = N
N N =) a2 a N = a2

The output data table mycas.CommLevelOut contains summary information at each resolution level, as
shown in Figure 2.41.

Figure 2.41 Community Detection on an Undirected Simple Graph: Level Output

level resolution communities modularity
1 1.0 3 0.39256
2 0.5 2 0.34298

The output data table mycas.CommOut contains the number of nodes in each community, as shown in
Figure 2.42.

Figure 2.42 Community Detection on an Undirected Simple Graph: Community Summary

level resolution community nodes

1 1.0 1 3
1 1.0 2 3
1 1.0 3 3
2 0.5 1 6
2 0.5 2 3

The output data table mycas.CommOverlapOut contains community overlap information, as shown in
Figure 2.43.

80 4 Chapter 2: The NETWORK Procedure

Figure 2.43 Community Detection on an Undirected Simple Graph: Community Overlap

node community intensity
1 0.66667
0.33333
1.00000
1.00000
0.33333
0.66667
1.00000
1.00000
1.00000
1.00000
1.00000

- I MoOOOOTTm> >
N N 2 2 N = = o N

The output data table mycas.CommLinksOut describes how the communities are connected, as shown in
Figure 2.44.

Figure 2.44 Community Detection on an Undirected Simple Graph: Intercommunity Links

level resolution from_community to_community link_weight
1 1.0 1 2 2
1 1.0 1 3 1
2 0.5 1 2 1

Connected Components

A connected component of a graph is a set of nodes that are all reachable from each other. That is, if two
nodes are in the same component, then there is a path between them. For a directed graph, there are two types
of components: a strongly connected component has a directed path between any two nodes, and a weakly
connected component ignores direction and requires only that a path exist between any two nodes.

In PROC NETWORK, you can invoke connected components by using the CONNECTEDCOMPONENTS
statement. The options for this statement are described in the section “CONNECTEDCOMPONENTS
Statement” on page 30.

There are three algorithms for finding connected components in an undirected graph: a depth-first search
algorithm (ALGORITHM=DEFS), a union-find algorithm (ALGORITHM=UNIONFIND), and a distributed
parallel union-find algorithm (ALGORITHM=PARALLEL). For a graph G = (N, A), each algorithm runs
in time O(|N| + |A]) and can usually scale to very large graphs. The default is the sequential union-find
algorithm (ALGORITHM=UNIONFIND). For directed graphs, only the depth-first search algorithm is
available (ALGORITHM=DES).

The results of the connected components algorithm are written to the output nodes data table that you specify
in the OUTNODES= option in the PROC NETWORK statement and the output links data table that you
specify in the OUTLINKS= option in the PROC NETWORK statement. For each node in the nodes data table
(or link in the links data table), the variable concomp identifies its component. The component identifiers are
numbered sequentially, starting from the value of the INDEXOFFSET= option in the PROC NETWORK
statement.

Connected Components 4 81

Connected Components of a Simple Undirected Graph

This section illustrates the use of the connected components algorithm on the simple undirected graph G
shown in Figure 2.45.

Figure 2.45 A Simple Undirected Graph G

el

The undirected graph G can be represented by the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from $ to $ QQ;
datalines;
AB AC BC CH DE DF DG FE GI KL
The following statements find the connected components and output the results in the data table my-
cas.NodeSetOut:

proc network
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
connectedComponents;

run;

The output data table mycas.NodeSetOut contains the connected components of the input graph, as shown in
Figure 2.46.

Figure 2.46 Connected Components of a Simple Undirected Graph

node concomp

I r X T O—-@Omoguw >
= W W N = NN DNDN=2 2

82 4 Chapter 2: The NETWORK Procedure

Notice that the graph is defined by using only the links data table. As seen in Figure 2.45, this graph also
contains a singleton node labeled J, which has no associated links. By definition, this node defines its own
component. But because the input graph was defined by using only the links data table, it did not show up in
the results data table. To define a graph by using nodes that have no associated links, you should also define
the input nodes data table. In this case, define the nodes data table mycas.NodeSetIn as follows:

data mycas.NodeSetIn;
input node $ Q@;
datalines;
A B C D E F G H I J K L

Now, when you find the connected components, you define the input graph by using both the nodes input
data table and the links input data table:

proc network
nodes = mycas.NodeSetIn
links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
connectedComponents;

run;

The resulting data table, mycas.NodeSetOut, includes the singleton node J as its own component, as shown
in Figure 2.47.

Figure 2.47 Connected Components of a Simple Undirected Graph

node concomp

r T O« mTTw—m?D>» X 0O 0

A =2 N W N =22 NN= BN =

Connected Components of a Simple Directed Graph

This section illustrates the use of the connected components algorithm on the simple directed graph G shown
in Figure 2.48.

Connected Components 4 83

Figure 2.48 A Simple Directed Graph G

The directed graph G can be represented by the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from $ to $ QQ@;
datalines;

AB BC BE B

The following statements find the connected components and output the results in the data table my-
cas.NodeSetOut:

proc network
direction = directed

links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
connectedComponents;

run;

The output data table mycas.NodeSetOut, shown in Figure 2.49, now contains the connected components of
the input graph.

84 4 Chapter 2: The NETWORK Procedure

Figure 2.49 Connected Components of a Simple Directed Graph

node concomp

O > I T mMmOO®
W = NN W = NN =

The connected components are represented graphically in Figure 2.50.

Figure 2.50 Strongly Connected Components of Graph G

\
000

»
I~

00

Core Decomposition

An alternative to community detection for detecting cohesive subgroups is a method of extracting k-cores,
known as core decomposition. Although this method is generally not as powerful as community detection for
extracting a detailed community structure, it can give a coarse approximation of cohesive structure at a very
low computational cost. Let G = (N, A) define a graph with nodes N and links A, and let Gg = (S, As)
be an induced subgraph on nodes S. The subgraph Gg is a k-core if and only if for every node v € §, the
degree of v is greater than or equal to k£ and G g is the maximum subgraph with this property. By definition,
the cores are nested. That is, if G g, is a k-core of size k, then G, | is contained in Gg, .

In PROC NETWORK, you can invoke core decomposition by using the CORE statement. The options for
this statement are described in the section “CORE Statement” on page 31.

Core Decomposition 4 85

The results of the core decomposition algorithm are given in the output nodes data table that is specified in
the OUTNODES= option in the PROC NETWORK statement. For each node in the nodes data table, the
variable core_out identifies its core number, the highest-order core that contains this node.

The algorithm that is used for core decomposition is based on the work presented in Batagelj and Zaversnik
(2003). This algorithm runs in time O(|A|) and therefore should scale to very large graphs.

Core Decomposition of a Simple Undirected Graph

This section illustrates the use of the core decomposition algorithm on the simple undirected graph G shown
in Figure 2.51.

Figure 2.51 Simple Undirected Graph

oloN©

D GO
D

O] C

The undirected graph G can be represented using the following nodes data table, mycas.NodeSetIn, and links
data table, mycas.LinkSetlIn:

86 4 Chapter 2: The NETWORK Procedure

data mycas.NodeSetIn;
input node $ QQ@;
datalines;

vl v2 v3 v4 v5

v6 v7 v8 v9 v10

vlil wv12 +v13 v14 v15

vlié v17 +v18 v19

’

data mycas.LinkSetIn;

input from $ to $ QQ@;

datalines;
vl v2 v5 vé6 ve v7 vl v8 wv10 vl1l
v2 v3 v3 v4d v2 v4d v8 v9 v9 v10
v8 v18 +v10 v12 wv13 v14 wv13 v15 v13 v1é
vl3 v17 v14 v15 v14 v16é v14 v17 v15 vleé
vl5 v17 +v16 v17 +v18 v13 +v18 v17 v18 vlé
vl2 vli4d v12 v15 v12 v1eé

The following statements calculate the core decomposition and output the results in the data table my-
cas.NodeSetOut:

proc network
nodes = mycas.NodeSetIn
links mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
core;

run;

The nodes output data table mycas.NodeSetOut contains the core number (variable core_out) for each node,
as shown in Figure 2.52.

Core Decomposition 4 87

Figure 2.52 Core Decomposition of a Simple Undirected Graph

node core_out
v19
vl
vi1l
V5
V6
\%
v10
V2
V3
v4
v8
Vo
V12
v18
V13
vi4
v15
V16
v17

A DA DA A D W WNNDNDNNN-=2 2 44 a4 a0 O

Figure 2.53 shows the graph layered by its core number.

88 4 Chapter 2: The NETWORK Procedure

Figure 2.53 Core Decomposition

Cycle Enumeration 4 89

Cycle Enumeration

A path in a graph is a sequence of nodes, each of which has a link to the next node in the sequence. An
elementary cycle is a path in which the start node and the end node are the same and no other node appears
more than once in the sequence.

In PROC NETWORK, you can find (or just count) the elementary cycles of an input graph by
specifying the CYCLE statement. The options for this statement are described in the section
“CYCLE Statement” on page 32. To find the cycles and report them in an output data table, use the OUT=
option. To simply count the cycles, do not use the OUT= option.

For undirected graphs, each link represents two directed links. For this reason, the following cycles are
filtered out: trivial cycles (A — B — A) and duplicate cycles that are found by traversing a cycle in both
directions (4 - B —-C - Aand A - C — B — A).

The results of the cycle enumeration algorithm are written to the output data table that you specify in the
OUT= option in the CYCLE statement. Each node of each cycle is listed in the OUT= data table along with
the variable cycle to identify the cycle to which it belongs. The variable order defines the order (sequence)
of the node in the cycle. The cycle identifiers are numbered sequentially, starting from the value of the
INDEXOFFSET= option in the PROC NETWORK statement.

The algorithm that PROC NETWORK uses to compute all cycles is a variant of the algorithm in Johnson
(1975). This algorithm runs in time O((|N| + |A|)(c + 1)), where c is the number of elementary cycles in
the graph. So the algorithm should scale to large graphs that contain few cycles. However, some graphs can
have a very large number of cycles, so the algorithm might not scale.

If MAXCYCLES=ALL and there are many cycles, the OUT= data table can become very large. It might
be beneficial to check the number of cycles before you try to create the OUT= data table. By default
(MAXCYCLES=1), the algorithm returns the first cycle that it finds and stops processing. This should run
relatively quickly. For large-scale graphs, the MINLINKWEIGHT= and MAXLINKWEIGHT= options
might increase the computation time. For more information about these options, see the section “CYCLE
Statement” on page 32.

Cycle Enumeration of a Simple Directed Graph

This section provides a simple example of using the cycle enumeration algorithm on the simple directed
graph G shown in Figure 2.54. For a more detailed example involving both cycle enumeration and transitive
closure, see “Example 2.9: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking
System” on page 151.

90 4 Chapter 2: The NETWORK Procedure

Figure 2.54 A Simple Directed Graph G

=

The directed graph G can be represented by the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from $ to $ QQ@;
datalines;

AB AE BC CA CD

DE DF EB EC FE

4

The following statements count the number of cycles in the graph (without storing them):

proc network

direction = directed
links = mycas.LinkSetIn;
cycle
maxCycles = all;
run;

$put & NETWORK_;

The result is written to the log of the NETWORK procedure, as shown in Figure 2.55.

Cycle Enumeration 4 91

Figure 2.55 PROC NETWORK Log: Count the Number of Cycles in a Simple Directed Graph

NOTE: The number of nodes in the input graph is 6.

NOTE: The number of links in the input graph is 10.

NOTE: Processing cycle detection.

NOTE: The algorithm found 7 cycles.

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.

NOTE: The Cloud Analytic Services server processed the request in 0.041392 seconds.

STATUS=0K PROBLEM TYPE=CYCLE SOLUTION STATUS=OK NUM CYCLES=7 CPU TIME=0.07 REAL TIME=0.04

The following statements return the first cycle found in the graph:

proc network
direction = directed

links = mycas.LinkSetIn;
cycle
out = mycas.Cycles;
run;

The output data table mycas.Cycles now contains the first cycle found in the input graph, as shown in
Figure 2.56.

Figure 2.56 First Cycle Found in a Simple Directed Graph

cycle order node

1 1A
1 2B
1 3C
1 4 A

The first cycle that is found in the input graph is shown graphically in Figure 2.57.

92 4 Chapter 2: The NETWORK Procedure

Figure257 A—- B - C —> A

=

The following statements return all the cycles in the graph:

proc network

direction = directed
links = mycas.LinkSetIn;
cycle

out = mycas.Cycles

maxCycles = all;
run;

The output data table mycas.Cycles now contains all the cycles in the input graph, as shown in Figure 2.58.
Figure 2.58 All Cycles in a Simple Directed Graph

cycle order node cycle order node
1 4

A WN=HNWN-=UURWN-= ~WN

moO®wm>»0O0MmMm>»>0©0m>»>» 0O T >
N NN NNoo oo uuuuuua
U A WIN =N WN-=OUR~WN-= U
m T OO mmOoOOmMmoom™mTToONo o

A DA DA A W W W WNDNNDNNN=2 2 4

The six additional cycles are shown graphically in Figure 2.59 through Figure 2.61.

Cycle Enumeration 4 93

Figure 2.59 Cycles

A—FE—-B—-C—= A A—->F—->C— A

Figure 2.60 Cycles

B—-C—D—-F—B B—-~C—-D—-F—F—B

94 4 Chapter 2: The NETWORK Procedure

Figure 2.61 Cycles

E—-C—-D—E E—-C—-D—-F—E

C E
oo
Reach (Ego) Network

The reach network of a graph G = (N, A) is a graph Gf = (N 5, Af) that is defined as the induced
subgraph over the set of nodes N]f that are reachable in L steps (or hops) from a set S of nodes, called the
source nodes. Reach networks are often referred to as ego networks in the context of social networks, because
they focus on the neighbors of one particular individual (or more than one).

In PROC NETWORK, reach networks can be found by using the REACH statement. The options for this
statement are described in the section “REACH Statement” on page 36.

In most cases, the set of source nodes from which to calculate reach are defined in a nodes subset data
table, as described in the section “Nodes Subset Input Data” on page 44. The nodes subset data table can be
used to define several sets of sources nodes. Each source node set is used to find the reach networks. The
reach network identifier is given in the reach column of the nodes subset data table. When you specify the
EACHSOURCE option, every node in the original graph’s node set N is used to find a reach network from
each node separately. The mapping between node and reach identifier is created in the data table specified in
the OUTNODES= option in the PROC NETWORK statement.

Output Data Tables

Depending on the options selected, the reach network algorithm produces output data tables as described in
the following sections.

OUTREACHNODES= Data Table
The OUTREACHNODES= data table describes the nodes in each reach network that are found from each set
of source nodes. This data table contains the following columns:

e reach: reach network identifier (which defines the set of source nodes that was used)

e node: node label for each node in each reach network

Reach (Ego) Network 4 95

OUTREACHLINKS= Data Table

The OUTREACHLINKS= data table describes the links in each reach network that are found from each
set of source nodes. Output of the reach network links can sometimes be more computationally expensive
compared to calculating only the nodes or counts in the reach networks. This data table contains the following
columns:

e reach: reach network identifier (which defines the set of source nodes that was used)
e from: the from node label for each link in each reach network

e to: the to node label for each link in each reach network

OUTCOUNTS= Data Table
The OUTCOUNTS= data table describes the number of nodes in each reach network for each set of source
nodes. This data table contains the following columns:

e reach: reach network identifier (which defines the set of source nodes that was used)
e node: node label for each node in the source node sets
e count: the number of nodes reachable using outgoing links from the source nodes

e count_not: the number of nodes not reachable using outgoing links from the source nodes

If the graph is directed and you specify the DIGRAPH option, then the OUTCOUNTS= data table contains
the following additional columns:

e count_in: the number of nodes reachable using incoming links from the source node

e count_out: the number of nodes reachable using outgoing links from the source node (equivalent to
count)

e count_in_or_out: the number of nodes reachable using either incoming or outgoing links (but not both)
from the source node

e count_in_and_out: the number of nodes reachable using both incoming and outgoing links from the
source node

If node weights are present, the OUTCOUNTS= data table contains the following additional columns:

e count_wt: the sum of the weights of the nodes reachable using outgoing links from the source node
e count_not_wt: the sum of the weights of the nodes not reachable from the source node
e count_in_wt: the sum of the weights of the nodes reachable using incoming links from the source node

e count_out_wt: the sum of the weights of the nodes reachable using outgoing links from the source
node

e count_in_or_out_wt: the sum of the weights of the nodes reachable using either incoming or outgoing
links (but not both) from the source node

e count_in_and_out_wt: the sum of the weights of the nodes reachable using both incoming and outgoing
links from the source node

96 4 Chapter 2: The NETWORK Procedure

Reach Network of a Simple Directed Graph

This section illustrates the use of the reach networks algorithm on the simple directed graph G shown in

Figure 2.62.

Figure 2.62 Simple Directed Graph G

The directed graph G can be represented using the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from $ to $ QQ@;
datalines;

AB AC AD BC BE

BF CE DE ED EF

FG GH GI HG HI

4

Consider two sets of source nodes, S; = {A, G} and S, = {B}. These can be defined separately in two

nodes subset data tables as follows:

data mycas.NodeSubSetInl;
input node $ reach;
datalines;

data mycas.NodeSubSetIn2;
input node $ reach;
datalines;

B1

4

For the first set of source nodes, you can use the following statements to find the reach network that is

restricted by a hop limit of 1:

proc network

direction = directed

links = mycas.LinkSetIn
nodesSubset = mycas .NodeSubSetInl;
reach

outReachNodes = mycas.ReachNodesl

outReachlLinks = mycas.ReachLinksl

outCounts
maxReach =1;
run;

mycas .ReachCountsl

Reach (Ego) Network 4 97

The output data tables mycas.ReachNodes1, mycas.ReachLinks1, and mycas.ReachCounts1 now contain
the nodes, links, and counts of the reach network, respectively, that come from S;. They are shown in

Figure 2.63.

Figure 2.63 Reach Network for S1 = {A, G} with Hop Limit of 1

ReachNodes1

reach

ReachLinks1

reach

IOIO®>»>» >

ReachCounts1

- I OO0 w>»

from to

node

B

- T 6O I O O0O0

reach node count count_not

1A
1G

The results are displayed graphically in Figure 2.64.

7
7

2
2

98 4 Chapter 2: The NETWORK Procedure

Figure 2.64 Reach Network for S; = {4, G} with Hop Limit of 1

For the second set of source nodes, you can use the following statements to find the reach network that is
restricted by a hop limit of 2:

proc network

direction = directed
links = mycas.LinkSetIn
nodesSubset = mycas.NodeSubSetIn2;
reach
outReachNodes = mycas.ReachNodes2
outReachlLinks = mycas.ReachLinks2
outCounts = mycas.ReachCounts2
maxReach = 2;

run;

The output data tables mycas.ReachNodes2, mycas.ReachLinks2, and mycas.ReachCounts2 now contain
the nodes, links, and counts of the reach network, respectively, that come from S,. They are shown in
Figure 2.65.

Figure 2.65 Reach Network for S, = {B} with Hop Limit of 2
ReachNodes2

reach node

- A A A
O M monNnw@

Reach (Ego) Network 4 99

Figure 2.65 continued
ReachLinks2

reach from to

1B C
1B E
1B F
1C E
1D E
1E D
1E F
1F G

ReachCounts2

reach node count count_not

1B

The results are displayed graphically in Figure 2.66.

3

Figure 2.66 Reach Network for S; = { B} with Hop Limit of 2

Processing Multiple Reach Networks in One Pass

Co-CD

You can process a set of reach networks from one graph in one pass by using a nodes subset data table. The
MAXREACH= option applies to all the reach networks that are requested. If the nodes subset data table
column reach is set to 0 or missing (.), then the node is not processed. If the reach column is set to a value
greater than 0, then the node is processed along with other nodes by using the same marker.

Consider again the graph shown in Figure 2.62, now with source node sets S;1 = {C} and S, = {4, H}.
These source node sets can be defined together as follows:

100 4 Chapter 2: The NETWORK Procedure

data mycas.NodeSubSetlIn;
input node $ reach;
datalines;

cma oy
N BN

4

You can use the following statements to process both one-hop-limit reach networks in one pass:

proc network

direction = directed
links = mycas.LinkSetIn
nodesSubset = mycas.NodeSubSetlIn;
reach

outReachNodes = mycas.ReachNodes

outReachLinks = mycas.ReachLinks
outCounts = mycas.ReachCounts
maxReach =1,

run;

The output data tables mycas.ReachNodes, mycas.ReachLinks, and mycas.ReachCounts now contain the
nodes, links, and counts of the reach networks, respectively, that come from S and S,. They are shown in
Figure 2.67.

Figure 2.67 Reach Networks for 1 = {C} and S» = {A, H} with Hop Limit of 1
ReachNodes

reach node

NN NNNNN=2 =
- I 6O 00O wW>mO0N

ReachLinks

reach from to
E

N NNNNNNN =
IOIO®>»>»>0N
- T 6O I O0Nw

Shortest Path 4 101

Figure 2.67 continued

ReachCounts

reach node count count_not

1C 2 7
2 A 7 2
2 H 7 2

Shortest Path

A shortest path between two nodes u and v in a graph is a path that starts at # and ends at v and has the lowest
total link weight. The starting node is called the source node, and the ending node is called the sink node.

In PROC NETWORK, you can find shortest paths by using the SHORTESTPATH statement. The options for
this statement are described in the section “SHORTESTPATH Statement” on page 37.

By default, PROC NETWORK finds shortest paths for all pairs of nodes in the input graph. That is, it finds
a shortest path for each possible combination of source nodes and sink nodes. Alternatively, you can use
the SOURCE-= option to fix a particular source node and find shortest paths from the fixed source node to
all possible sink nodes. Conversely, by using the SINK= option, you can fix a sink node and find shortest
paths from all possible source nodes to the fixed sink node. By using both options together, you can request
one particular shortest path for a specific source-sink pair. In addition, you can use the NODESSUBSET=
option to define a list of source-sink pairs to process, as described in the section “Nodes Subset Input Data”
on page 44. The following sections show examples of the use of these options.

Which algorithm PROC NETWORK uses to find shortest paths depends on the data. The algorithm and
run-time complexity for each link type are shown in Table 2.11.

Table 2.11 Algorithms for Shortest Paths

Link Type Algorithm Complexity (per Source Node)
Unweighted Breadth-first search O(IN| + |A4)])
Weighted (nonnegative) Dijkstra’s algorithm O(|N|log |N| + |A])

Weighted (positive and negative allowed) Bellman-Ford algorithm O(|N||A|)

Details for each algorithm can be found in Ahuja, Magnanti, and Orlin (1993).

For weighted graphs, the algorithm uses the weight variable that is defined in the links data table to evaluate
a path’s total weight (cost). You can also use the AUXWEIGHT= option in the LINKSVAR statement to
define an auxiliary weight. The auxiliary weight is not used in the algorithm to evaluate a path’s total weight.
It is calculated only for the sake of reporting the total auxiliary weight for each shortest path.

Output Data Tables

The shortest path algorithm produces up to two output data tables. The output data table that you specify
in the OUTPATHS= option contains the links of a shortest path for each source-sink pair. The output data
table that you specify in the OUTWEIGHTS= option contains the total weight for the shortest path for each
source-sink pair.

102 4 Chapter 2: The NETWORK Procedure

OUTPATHS= Data Table

The OUTPATHS= data table contains the links present in each shortest path. For large graphs and a large
requested number of source-sink pairs, this output data table can be extremely large. Generating the output
can sometimes take longer than computing the shortest paths. For example, using the US road network data
for the state of New York, the data contain a directed graph that has 264,346 nodes. Finding the shortest
path for all pairs from only one source node results in 140,969,120 observations, which is a data table of 11
GB. Finding shortest paths for all pairs from all nodes would produce an enormous output data table. This
output data table is a distributed table when you are running on multiple machines. The only restriction is the
total available cache disk space enabled by your configuration, as described in SAS Cloud Analytic Services:
Language Reference. An example of finding the all-pairs shortest path for this road network is shown in
“Example 2.11: Shortest Paths of the New York Road Network™ on page 156.

The OUTPATHS= data table contains the following columns:

e source: the source node label of this shortest path

e sink: the sink node label of this shortest path

e order: for this source-sink pair, the order of this link in a shortest path
e from: the from node label of this link in a shortest path

e to: the to node label of this link in a shortest path

e weight: the weight of this link in a shortest path

e column: the auxiliary weight of this link (if the AUXWEIGHT=column is defined in the LINKSVAR
statement)

OUTWEIGHTS= Data Table
The OUTWEIGHTS= data table contains the total weight (and total auxiliary weight) of each shortest path.

This data table contains the following columns:

source: the source node label of this shortest path

sink: the sink node label of this shortest path

path_weight: the total weight of the shortest path for this source-sink pair

path_auxweight: the total auxiliary weight of the shortest path for this source-sink pair (if the
AUXWEIGHT= option is defined in the LINKSVAR statement)

Shortest Paths for All Pairs

This example illustrates the use of the shortest path algorithm for all source-sink pairs on the simple undirected
graph G shown in Figure 2.68.

Shortest Path 4 103

Figure 2.68 A Simple Undirected Graph G

The undirected graph G can be represented by the following links data table, mycas.LinkSetlIn:

data mycas.LinkSetlIn;
input from $ to $ weight Q@Q;
datalines;
AB3 AC2 ADG6 AE4 BDS
BF5 CE1 DE2 DF1 EF4

4

The following statements find shortest paths for all source-sink pairs:

proc network

links = mycas.LinkSetlIn;
shortestPath
outWeights = mycas.ShortPathW
outPaths = mycas.ShortPathP;
run;

The output data table mycas.ShortPathP contains the shortest paths, as shown in Figure 2.69.

104 4 Chapter 2: The NETWORK Procedure

Figure 2.69 All-Pairs Shortest Paths

source sink order from to weight source sink order from to weight
B B F F

ooocoocoo0oocoo0oo0omMmmmMmmMmMmmMmMMMMM> >» >» > > > > > > > >
M T MO O ® W >» T T OO ®®W>»>» > T T T T mMmMmMmOUOToONn
N = =2 N = N =2 a N =2 a2 a WN =2 N 2 D WN 2SN =2 W =2 a4
moomO>O00o0commm>OMmMmOMmMmomO>»>O>»>mO>»>» >
OmmMmOoMmMm@D>» >» M OOO®>N0>0N0TO0OoMmMmOMmOOTMmMmOON
N = =2 N = W NN =2 NN =2 WD 2NN =22 NN =2 NN =2 NN =2 NN W
W W W W W W W W T T 7T T M 7T M T M T T 00000 o on
mmmmoOoOOO>mMmooOoO0o0©>»>» > > 7 mOoo0o>» > >
= W N = a2 N =2 a2 N =2 a2 W N 2 O N W =2 a4 a N =2 a2 W = W
T N> ®®>®®WWO0O T T MO™TTOMO™TOOMOOOMOU O
mTmO>00N0>»>MUOO0OO0OMUOT>0OMOTMOMT@> O M
U = N W U1 N W W NN =2 2 a2 NN= NN =2 NN =22 N2 NN =2 N =

The output data table mycas.ShortPathW contains the path weights of the shortest paths of each source-sink
pair, as shown in Figure 2.70.

Shortest Path 4 105

Figure 2.70 All-Pairs Shortest Paths Summary

source sink path_weight source sink path_weight
B A

oOooo0oo0oo0ommmMmMmmMmMmTMmMY»>» >» > > >
MmO W > T OO W>» T moOn
A 2 WU N WN= O WOWOUN W
W W W W W T T TTTOUOOUOOOO
mTmoO>MmMoOO®T> T mOAOw
U O Ul U1 W W= K Ul o = N WU u

Shortest Paths for a Subset of Source-Sink Pairs

This section illustrates the use of a nodes subset data table, the NODESSUBSET= option, and the shortest
path algorithm to find shortest paths for a subset of source-sink pairs. The data table variables source and
sink are used as indicators to specify which pairs to process. The marked source nodes define a set S, and
the marked sink nodes define a set 7. PROC NETWORK then calculates all the source-sink pairs in the
crossproduct of these two sets.

For example, the following DATA step tells PROC NETWORK to calculate the pairsin S x T = {4, C} x
{B. F}:

data mycas.NodeSubSetIn;
input node $ source sink;
datalines;

r PR OO

s w QP
coRr kK

’

The following statements find a shortest path for the four combinations of source-sink pairs:

proc network

nodesSubset = mycas.NodeSubSetlIn
links = mycas.LinkSetIn;
shortestPath
outPaths = mycas.ShortPath;
run;

The output data table mycas.ShortPath contains the shortest paths, as shown in Figure 2.71.

106 4 Chapter 2: The NETWORK Procedure

Figure 2.71 Shortest Paths for a Subset of Source-Sink Pairs

source sink order from to weight

A B 1A B 3
A F 1A C 2
A F 2C E 1
A F 3E D 2
A F 4 D F 1
C B 1C A 2
C B 2 A B 3
C F 1C E 1
C F 2 E D 2
C F 3D F 1

Shortest Paths for a Subset of Source or Sink Pairs

This section illustrates the use of the shortest path algorithm to find the shortest paths between a subset of
source (or sink) nodes and all the other sink (or source) nodes.

In this case, you designate the subset of source (or sink) nodes in the nodes subset data table by specifying
the source (or sink) variable. By specifying only one of the variables, you indicate that you want PROC
NETWORK to calculate all pairs from a subset of source nodes (or to calculate all pairs to a subset of sink
nodes).

For example, the following DATA step designates nodes B and E as source nodes:

data mycas.NodeSubSetlIn;
input node $ source;
datalines;

You can use the same PROC NETWORK call as is used in the section “Shortest Paths for a Subset of
Source-Sink Pairs” on page 105 to find all the shortest paths from nodes B and E. The output data table
mycas.ShortPath contains the shortest paths, as shown in Figure 2.72.

Shortest Path 4+ 107

Figure 2.72 Shortest Paths for a Subset of Source Pairs

source sink order from to weight
A A

M MmMMmMMMMMMIMW W ©® W O T D
T T OO W W wW>> T mmmuoOnOn
N = = a2 W N = N = = WN =2 a2 N = .
ommmMm>» OMOMB®TO>»®O>» OO
MO OO W>N>0N0T MmO > 00 >
= N N = W N =2 N = Ul = N WU N WWwW

Conversely, the following DATA step designates nodes B and E as sink nodes:

data mycas.NodeSubSetlIn;
input node $ sink;
datalines;

You can use the same PROC NETWORK call again to find all the shortest paths to nodes B and E. The output
data table mycas.ShortPath contains the shortest paths, as shown in Figure 2.73.

108 4 Chapter 2: The NETWORK Procedure

Figure 2.73 Shortest Paths for a Subset of Sink Pairs

source sink order from to weight
E A

> > > 00T T T OOO0OMmMmMMT T ®
mm @ MmM®o@mMmMmMIMmMmMmMoQMmM© ® W ® @ MmMmmMm
N = 2 a4 a N = = g N =2 WN 2 W =
O>»>» 0O0CO0OTTmO>»>0O>»0MO>»®
m O W MmMm@WMmMmOwMmMm®wW>>»wW>NOMmMmAON
= N W N U N = U1l = WN WN= =2 NW

Shortest Paths for One Source-Sink Pair

This section illustrates the use of the shortest path algorithm to find the shortest paths between one source-sink
pair by using the SOURCE= and SINK= options.

The following statements find a shortest path between node C and node F:

proc network

links = mycas.LinkSetIn;
shortestPath
source =C
sink =F
outPaths = mycas.ShortPath;
run;

The output data table mycas.ShortPath contains this shortest path, as shown in Figure 2.74.

Figure 2.74 Shortest Paths for One Source-Sink Pair

source sink order from to weight

C F 1C E 1
C F 2 E D 2
C F 3D F 1

The shortest path is shown graphically in Figure 2.75.

Shortest Path 4 109

Figure 2.75 Shortest Path between Nodes C and F

Shortest Paths with Auxiliary Weight Calculation

This section illustrates the use of the shortest path algorithm with auxiliary weights to find the shortest paths
between all source-sink pairs.

Consider a links data table in which the auxiliary weight is a counter for each link:

data mycas.LinkSetIn;
input from $ to $ weight count QQ@;
datalines;

AB31 AC21 ADG61 AEA4

BF51 CE11 DE21 DF1

4

1 BDS51
1 EF 41

The following statements find the shortest paths for all source-sink pairs:

proc network

links = mycas.LinkSetIn;
linksVar

auxWeight = count;
shortestPath

outWeights = mycas.ShortPathW;
run;

The output data table mycas.ShortPathW contains the total path weight of shortest paths in each source-sink
pair, as shown in Figure 2.76. Because the variable count in mycas.LinkSetIn has a value of 1 for all links,
the value in the output data table variable path_auxweight contains the number of links in each shortest path.

110 4 Chapter 2: The NETWORK Procedure

Figure 2.76 Shortest Paths Including Auxiliary Weights in Calculation

source sink path_weight path_auxweight source sink path_weight path_auxweight
A 2 A 5

mTm T m T > > >»>»>00000
moO ® >» T mMmOoOO 7T mow
W = h U1 OO W UL N WA= WO
N = W = B BN W= =2 W= NN =
mmmMmMmTQMmMmMQoW ® W W OO0 O O O
Mo O ®>» T MOO>» T mAOW
W N = 0O W U1 O U1 LT W = N W U
N = 2 W N = W = N 2 4 a N =2 W

The section “Road Network Shortest Path” on page 9 shows an example of using the shortest path algorithm
to minimize travel time to and from work based on traffic conditions.
Shortest Paths with Negative Link Weights

This section illustrates the use of the shortest path algorithm on a simple directed graph G with negative link
weights, shown in Figure 2.77.

Shortest Path 4+ 111

Figure 2.77 A Simple Directed Graph G with Negative Link Weights

You can represent the directed graph G by using the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from $ to $ weight Q@;
datalines;
AB-1 AC 4 BC 3 BD 2 BE 2
DB 1 DC 5 ED -3

The following statements find a shortest path between the source node E and the sink node B:

proc network

direction = directed
links = mycas.LinkSetIn;
shortestPath
source =E
sink =B
outPaths = mycas.ShortPathP;
run;

The output data table mycas.ShortPathP contains a shortest path from node E to node B, as shown in
Figure 2.78.

112 4 Chapter 2: The NETWORK Procedure

Figure 2.78 Shortest Paths with Negative Link Weights

source sink order from to weight
E B 1E D -3
E B 2D B 1

Now, consider the following adjustment to the weight of link (B, E):

data mycas.LinkSetlIn;
set mycas.LinkSetlIn;
if (from="B" and to="E") then
weight=1;
run;

In this case, there is a negative weight cycle (E — D — B — E). The Bellman-Ford algorithm catches this
and produces an error message, as shown in Figure 2.79.

Figure 2.79 PROC NETWORK Log: Negative Weight Cycle

NOTE: The number of nodes in the input graph is 5.

NOTE: The number of links in the input graph is 8.

NOTE: Processing the shortest paths problem using 32 threads on each of 4 machines.
NOTE: Processing the shortest paths problem between 1 source nodes and 1 sink nodes.
ERROR: The graph contains a negative weight cycle.

NOTE: Processing the shortest paths problem used 0.07 (cpu: 0.00) seconds.

ERROR: The action stopped due to errors.

NOTE: The Cloud Analytic Services server processed the request in 0.148603 seconds.
NOTE: The SAS System stopped processing this step because of errors.

STATUS=ERROR PROBLEM TYPE=SHORTESTPATH CPU TIME=0.11 REAL TIME=0.15

Summary Statistics

In PROC NETWORK, you can calculate various summary statistics for a graph and its nodes by using the
SUMMARY statement. The options for this statement are described in the section “SUMMARY Statement”
on page 38.

Output Data Tables

The summary statistics that are produced are broken into two categories: statistics on the entire graph and
statistics on the nodes and links of the graph. The latter statistics are appended to the output nodes and
links data tables that you specify in the OUTNODES= and OUTLINKS= option in the PROC NETWORK

Summary Statistics 4 113

statement. The former statistics are contained in the data table that you specify in the OUT= option in the
SUMMARY statement.

Let §(u) represent the list of nodes that are connected to node # in an undirected graph. In a directed graph,
3°U(u) represents the list of nodes that are connected from node u (out-links), and 6™ (u) represents the list of
nodes that are connected fo node u (in-links).

OUT= Data Table
By default, the summary output data table that you specify in the OUT= option in the SUMMARY statement
contains the following columns:

e nodes: the number of nodes in the graph (|N|)
e links: the number of links in the graph (| A4])

e avg_links_per_node: the average number of links per node

e density: the number of links in the graph divided by the number of links in a complete graph (%)
e self_links_ignored: the number of self-links that are ignored
e dup_links_ignored: the number of duplicate links that are ignored

e |eaf nodes: the number of leaf nodes

— Undirected graph: u € N such that 6(u) = 1
— Directed graph: u € N such that §°"'(x) = 0 and §™(u) > 0

e singleton_nodes: the number of singleton nodes
— Undirected graph: u € N such that §(u) = 0
— Directed graph: u € N such that §°" (1) + §"(u) = 0

You can produce statistics about the connectedness of the graph by using the CONNECTEDCOMPONENTS
and BICONNECTEDCOMPONENTS options. For more information about connected components and
biconnected components, see the sections “Connected Components” on page 80 and “Biconnected Compo-
nents and Articulation Points” on page 51, respectively. If you use the CONNECTEDCOMPONENTS or
BICONNECTEDCOMPONENTS option, the following columns might also appear in the summary output
data table for undirected graphs:

e concomp: the number of connected components in the graph

e biconcomp: the number of biconnected components in the graph

e artpoints: the number of articulation points in the graph

e isolated_pairs: the number of isolated pairs of nodes (a connected component of size 2)

e isolated_stars: the number of isolated stars (a connected component, C, of size greater than 2 with):

— one node i with §(i) = |C| — 1 and all other nodes u € C \ {i} with §(u) =1

114 4 Chapter 2: The NETWORK Procedure

The following columns appear for directed graphs:

e concomp: the number of strongly connected components in the graph
e isolated_pairs: the number of isolated pairs of nodes (a weakly connected component of size 2)

e isolated_stars_out: the number of isolated outward stars (a weakly connected component, C, of size
greater than 2 with):

— one node i with §°"'(i) = |C| — 1 and all other nodes u € C \ {i} with §™(u) = 1

e isolated_stars_in: the number of isolated inward stars (a weakly connected component, C, of size
greater than 2 with):

— one node i with §"(i) = |C| — 1 and all other nodes u € C \ {i} with §°"'(u) = 1

You can produce statistics about the shortest paths in the graph by using the SHORTESTPATH= option. The
diameter of a graph is the longest possible shortest path distance of all source-sink pairs that can occur in the
graph. For more information about shortest paths, see the section “Shortest Path” on page 101. If you use the
SHORTESTPATH= option, the following columns also appear in the summary output data table:

diameter_wt: longest weighted shortest path in the graph

diameter_unwt: longest unweighted shortest path in the graph

avg_shortpath_wt: average weighted shortest path in the graph

avg_shortpath_unwt: average unweighted shortest path in the graph

Calculating the diameter of a graph is computationally expensive, because it involves calculating shortest
paths for all pairs. For undirected graphs, an approximate method is available based on Boitmanis et al.
(2006). You can invoke the algorithm by using the DIAMETERAPPROX= option. The exact method runs
intime O(|N| x (|[N|log|N| 4+ |A])); the approximate method runs in time O(|A]| \/W) with an additive
error of O(Jm). If you use the DIAMETERAPPROX= option, the following columns also appear in the
summary output data table:

e diameter_approx_wt: approximate longest weighted shortest path in the graph

e diameter_approx_unwt: approximate longest unweighted shortest path in the graph

OUTNODES= Data Table

In addition, you can produce summary statistics about the nodes of the graph. By default, the following
columns are appended to the data table that you specify in the OUTNODES= option in the PROC NETWORK
statement:

e sum_in_and_out_wt: sum of the link weights from and to the node
e leaf _node: 1, if the node is a leaf node; otherwise, 0

e singleton_node: 1, if the node is a singleton node; otherwise, 0

Summary Statistics 4 115

e isolated_pair: the identifier, if the node is in an isolated pair; otherwise, missing (.)

e neighbor_leaf_nodes: the number of leaf nodes connected to the node

You can produce statistics about the connectedness of the graph by using the CONNECTEDCOMPONENTS
and BICONNECTEDCOMPONENTS options. If you use these options, the following column also appears
in the nodes output data table for undirected graphs:

e isolated_star: the identifier, if the node is in an isolated star; otherwise, missing (.)
The following columns also appear for directed graphs:

e isolated_star_out: the identifier, if the node is in an isolated outward star; otherwise, missing (.)

e isolated_star_in: the identifier, if the node is in an isolated inward star; otherwise, missing (.)

You can produce statistics about the shortest path distances to and from nodes in the graph by using the
SHORTESTPATH= option. The eccentricity of a node u is the longest of all possible shortest path distances
between u and any other node. If you use the SHORTESTPATH= option, the following columns also appear
in the nodes output data table for undirected graphs:

e eccentr_out_wt: the longest weighted shortest path distance from the node

e eccentr_out_unwt: the longest unweighted shortest path distance from the node
The following columns also appear for directed graphs:

e eccentr_in_wt: the longest weighted shortest path distance to the node

e eccentr_in_unwt: the longest unweighted shortest path distance to the node

OUTLINKS= Data Table

In addition, you can produce summary statistics about the connectedness of the links of the graph. If you use
the CONNECTEDCOMPONENTS or BICONNECTEDCOMPONENTS options, the following columns are
appended to the data table that you specify in the OUTLINKS= option in the PROC NETWORK statement,
for undirected graphs:

e isolated_pair: the identifier, if the link is in an isolated pair; otherwise, missing (.)

e isolated_star: the identifier, if the link is in an isolated star; otherwise, missing (.)
The following columns are appended for directed graphs:

e isolated_star_out: the identifier, if the link is in an isolated outward star; otherwise, missing (.)

e isolated_star_in: the identifier, if the link is in an isolated inward star; otherwise, missing (.)

116 4 Chapter 2: The NETWORK Procedure

Summary Statistics of a Simple Directed Graph

This section illustrates the calculation of summary statistics on the simple directed graph G shown in
Figure 2.80.

Figure 2.80 A Simple Directed Graph G

L

You can represent the directed graph G by using the following nodes data table, mycas.NodeSetIn, and links
data table, mycas.LinkSetlIn:

data mycas.NodeSetIn;
input node $ QQ;
datalines;
ABCDEFGHIJKLMNOP
’
data mycas.LinkSetIn;
input from $ to $ weight Q@;

datalines;
ABlAC2AD2BA2DE?2
DF1EF2FD2FEI1AA2
AB2IJ5KL3KM2NO1
POS5S

The following statements calculate the default summary statistics and output the results in the data table
mycas.Summary:

proc network

direction = directed
nodes = mycas.NodeSetIn
links = mycas.LinkSetIn;
summary

out = mycas.Summary;

run;

Summary Statistics 4 117

The output data table mycas.Summary contains the default summary statistics of the input graph, as shown
in Figure 2.81.

Figure 2.81 Graph Summary Statistics of a Simple Directed Graph

nodes links avg_links_per_node density self links_ignored dup_links_ignored leaf nodes singleton_nodes
16 14 0.875 0.058333 1 1 5 2

The following statements calculate the default summary statistics and produce information about the connect-
edness of the graph. They output the results in the data table mycas.Summary.

proc network

direction = directed

nodes = mycas.NodeSetIn
links = mycas.LinkSetIn;
summary

connectedComponents
out = mycas.Summary;
run;

The output data table mycas.Summary contains the summary statistics of the input graph, as shown in
Figure 2.82.

Figure 2.82 Graph Summary and Connectedness Statistics of a Simple Directed Graph

nodes links avg_links_per_node density self links_ignored dup_links_ignored leaf nodes singleton_nodes
16 14 0.875 0.058333 1 1 5 2

concomp isolated_pairs isolated_stars_out isolated_stars_in
13 1 1 1

Summary Statistics of a Simple Undirected Graph

This section illustrates the calculation of summary and shortest path statistics on the simple undirected graph
G shown in Figure 2.83.

118 4 Chapter 2: The NETWORK Procedure

Figure 2.83 A Simple Undirected Graph G

(22
6/00
G ;

You can represent the undirected graph G by using the following links data table, mycas.LinkSetIn:

data mycas.LinkSetIn;
input from $ to $ weight @Q;
datalines;
ABlAC2AD2BA2DE?2
DF1EF2FD2FEI1

The following statements calculate the default summary statistics and produce information about shortest

path distances of the graph. They output the results in the data table mycas.Summary. In addition, node
statistics are produced and output in the data table mycas.NodeSetOut.

proc network

links = mycas.LinkSetIn
outNodes = mycas .NodeSetOut;
summary
out = mycas.Summary
shortestPath = weight;
run;

The output data tables mycas.Summary and mycas.NodeSetOut now contain the summary statistics of the
input graph, as shown in Figure 2.84.

Figure 2.84 Graph Summary and Shortest Path Statistics of a Simple Undirected Graph

nodes links avg_links_per_node density self links_ignored dup_links_ignored leaf_nodes singleton_nodes diameter_wt avg_shortpath_wt
6 6 1 0.4 0 3 2 0 6 3.06667

Transitive Closure 4 119

Figure 2.84 continued

node leaf_node singleton_node neighbor_leaf nodes sum_in_and_out_wt eccentr_wt_out

A 0 0 2 5 4
B 1 0 0 1 5
Cc 1 0 0 2 6
D 0 0 0 5 4
E 0 0 0 3 6
F 0 0 0 2 5

Transitive Closure

The transitive closure of a graph G is a graph GT = (N, AT) such that for all i, j € N there is a link
(i, j) € AT if and only if there is a path from i to j in G.

The transitive closure of a graph can help efficiently answer questions about reachability. Suppose you want
to find out whether you can get from node i to node j in the original graph G. Given the transitive closure
GT of G, you can simply check for the existence of link (i, j). Transitive closure has many applications,
including speeding up the processing of structured query languages, which are often used in databases.

In PROC NETWORK, you can invoke the transitive closure algorithm by using the TRANSITIVECLOSURE
statement. The options for this statement are described in the section “TRANSITIVECLOSURE Statement”
on page 39.

The links that define the transitive closure of the input graph are written to the output data table that is
specified in the OUT= option in the TRANSITIVECLOSURE statement.

The algorithm that PROC NETWORK uses to compute transitive closure is a sparse version of the Floyd-
Warshall algorithm (Cormen, Leiserson, and Rivest 1990). This algorithm runs in time O (| N |?) and therefore
might not scale to very large graphs.

Transitive Closure of a Simple Directed Graph

This example illustrates the use of the transitive closure algorithm on the simple directed graph G shown in
Figure 2.85.

Figure 2.85 A Simple Directed Graph G

120 4 Chapter 2: The NETWORK Procedure

The directed graph G can be represented by the following links data table, mycas.LinkSetIn:

data mycas.LinkSetlIn;
input from $ to $ QQ;
datalines;

BC BD CB DA DC

The following statements calculate the transitive closure and output the results in the data table my-
cas.TransClosure:

proc network

direction = directed
links = mycas.LinkSetIn;
transitiveClosure
out = mycas.TransClosure;
run;

The output data table mycas.TransClosure contains the transitive closure of G, as shown in Figure 2.86.

Figure 2.86 Transitive Closure of a Simple Directed Graph

from to
C

N W ONOONODOTOWoOown W
> > 000N Ww>» N OU0w

The transitive closure of G is shown graphically in Figure 2.87.

Macro Variable _lNETWORK_ 4 121

Figure 2.87 Transitive Closure of G

For a more detailed example, see “Example 2.9: Transitive Closure for Identification of Circular Dependencies
in a Bug Tracking System” on page 151.

Macro Variable _NETWORK _

The NETWORK procedure defines a macro variable named _NETWORK_. This variable contains a character
string that indicates the status of PROC NETWORK upon termination and details about the selected algorithm.
The various terms of the variable are interpreted as follows:

STATUS
indicates the status of the procedure at termination. The STATUS term can take one of the following
values:
OK The procedure terminated normally.

OUT_OF_MEMORY Insufficient memory was allocated to the procedure.
INTERRUPTED The procedure was interrupted by the user.

ERROR The procedure encountered an error.

PROBLEM_TYPE
indicates the selected problem type (algorithm class). The PROBLEM_TYPE term can take one of the
following values:

BICONNECTEDCOMPONENTS Biconnected components
CENTRALITY Centrality
CLIQUE Clique enumeration

COMMUNITY Community detection

122 4 Chapter 2: The NETWORK Procedure

CONNECTEDCOMPONENTS
CORE

CYCLE

REACH

SHORTESTPATH

SUMMARY
TRANSITIVECLOSURE

SOLUTION_STATUS

Connected components
Core decomposition
Cycle enumeration
Reach (ego) networks
Shortest path

Graph summary

Transitive closure

indicates the solution status of the selected problem type (algorithm class). The SOLUTION_STATUS

term can take one of the following values:

OK The algorithm terminated normally.

ERROR The algorithm encountered an error.

INTERRUPTED The algorithm was interrupted by the user.

TIMELIMIT The algorithm reached its execution time limit.

SOLUTION_LIM The algorithm reached its limit on the number of solutions found.
CPU_TIME

indicates the total CPU time (in seconds) used by PROC NETWORK.

REAL_TIME

indicates the elapsed time (in seconds) used by PROC NETWORK.

In addition, each algorithm might report some additional details. The following section provides more

information about these details.

Macro Variable NETWORK _Details

The BICONNECTEDCOMPONENTS algorithm provides the following additional information:

NUM_COMPONENTS

indicates the number of biconnected components found by the algorithm.

NUM_ARTICULATION_POINTS

indicates the number of articulation points found by the algorithm.

The CLIQUE algorithm provides the following additional information:

NUM_CLIQUES

indicates the number of cliques found by the algorithm.

The CONNECTEDCOMPONENTS algorithm provides the following additional information:

ODS Table Names 4 123

NUM_COMPONENTS
indicates the number of connected components found by the algorithm.

The CYCLE algorithm provides the following additional information:

NUM_CYCLES
indicates the number of cycles found by the algorithm.

The SHORTESTPATH algorithm provides the following additional information:

NUM_PATHS
indicates the number of shortest paths found by the algorithm.

ODS Table Names

For general information about ODS tables, see SAS Output Delivery System: Procedures Guide. Each ODS
table that the NETWORK procedure creates has a name associated with it. You must use this name to refer
to the table when you use ODS statements. These names are listed in Table 2.12.

Table 2.12 ODS Tables Produced by PROC NETWORK

Table Name Description

ProblemSummary Summary of the graph
SolutionSummary Summary of the solution status, timing, and results

The following statements use the example in the section “Shortest Paths for All Pairs” on page 102 and find
all-pairs shortest paths for a small undirected graph. By default, this code produces the two ODS output
tables listed in Table 2.12.

data mycas.LinkSetlIn;
input from $ to $ weight Q@Q;
datalines;
AB3 AC2 ADG6 AE4 BDS
BF5 CE1 DE2 DF1l EF4

4

proc network

links = mycas.LinkSetIn;
shortestPath
outWeights = mycas.ShortPathW
outPaths = mycas.ShortPathP;
run;

The problem summary table in Figure 2.88 provides a basic summary of the graph input.

124 4 Chapter 2: The NETWORK Procedure

Figure 2.88 Problem Summary Table
The NETWORK Procedure

Problem Summary
Number of Nodes 6
Number of Links 10
Graph Direction Undirected

The solution summary table in Figure 2.89 provides a basic solution summary for the algorithm that is
processed. The information in these tables matches the information that is provided in the macro variable
NETWORK, described in the section “Macro Variable _NETWORK_” on page 121.

Figure 2.89 Solution Summary Table

Solution Summary
Problem Type Shortest Path
Solution Status OK
Number of Paths 30
CPU Time 0.01
Real Time 0.03

Examples: NETWORK Procedure

Example 2.1: Articulation Points in a Terrorist Network

This example considers the terrorist communications network from the attacks on the United States on
September 11, 2001, described in Krebs (2002). Figure 2.90 shows this network, which was constructed after
the attacks, based on collected intelligence information.

Example 2.1: Articulation Points in a Terrorist Network 4 125

Figure 2.90 Terrorist Communications Network from 9/11

Osama Awadallah

Abdussattar Shaikh

Khalid Al-Mihdhar

Bandar Alhazmi

Rayed Mohammed Abdullah

Faisal Al Salmi

Mamoun Darkazanli

Mamduh Mahmud Salim

Mahamed Atta

Jean-Marc Grandvisit

Djamal Beghal

Abu Zubeida

Mohamed Abdi
Hamza Alghamdi

Nawaf Alhazmi Ahmed Alghamdi Saced Alghamdi

Ahmed Al Haznawi

Salem Alhazmi

Majed Moged Wail Alshehri Satam Sugami

Abdul Aziz Al-Omari
Hani Hanjour
Marwan Al-Shehhi
Waleed Alshehri

Lotfi Raissi Mustafa Ahmed al-Hisawi

Ziad Jarrah
Mohamed Atta

Said Baahaji

Zakariya Essabar Mounir El Motassadeq

Agus Budiman Seitallah Ben Hassine

Ramzi Bin al-Shibh
Mohammed Belfas

Tarek Maarouti
Imad Eddin Barakat Yarkas
Abu Qatada

Essid Sami Ben Khemais

Abu Walid
Essoussi Laaroussi

Zacarias Moussaoui

Kamel Daoudi Samir Kishk

Ahmed Ressam

Ahmed Alnami

Nabil al- Marabh

Fayez Ahmed

Abdelghani Mzoudi

Mohamed Bensakhria

Mehdi Khammoun

Mohand Alshehri

Raed Hijazi

Ahmed Khalil brahim Samir Al-Ani

Lased Ben Heni

Madjid Sahoune

Fahid al Shakri

Nizar Trabelsi Jerome Courtaillier David Courtaillier Haydar Abu Doha

The full network data include 153 links. The following statements show a small subset to illustrate the use of
the BICONNECTEDCOMPONENTS statement in this context:

data mycas.LinkSetInTerror91ll;
input from & $32. to & $32.;

datalines;
Abu Zubeida
Jean-Marc Grandvisir
Nizar Trabelsi
Abu Walid
Abu Qatada
Zacarias Moussaoui
Jerome Courtaillier
Kamel Daoudi
Abu Walid
Abu Walid
Kamel Daoudi
Kamel Daoudi
Jerome Courtaillier

Djamal
Djamal
Djamal
Djamal
Djamal
Djamal
Djamal
Djamal

Beghal
Beghal
Beghal
Beghal
Beghal
Beghal
Beghal
Beghal

Kamel Daoudi

Abu Qatada

Zacarias Moussaoui

Jerome Courtaillier
Zacarias Moussaoui

126 4 Chapter 2: The NETWORK Procedure

Jerome Courtaillier David Courtaillier
Zacarias Moussaoui David Courtaillier
Zacarias Moussaoui Ahmed Ressam
Zacarias Moussaoui Abu Qatada
Zacarias Moussaoui Ramzi Bin al-Shibh
Zacarias Moussaoui Mahamed Atta

Ahmed Ressam Haydar Abu Doha
Mehdi Khammoun Haydar Abu Doha
Essid Sami Ben Khemais Haydar Abu Doha
Mehdi Khammoun Essid Sami Ben Khemais
Mehdi Khammoun Mohamed Bensakhria

Suppose that this communications network had been discovered before the attack on 9/11. If the investigators’
goal was to disrupt the flow of communication between different groups within the organization, then they
would want to focus on the people who are articulation points in the network.

To find the articulation points, use the following statements:

proc network
links = mycas.LinkSetInTerror911l
outNodes = mycas.NodeSetOut;
biconnectedComponents;

run;

data mycas.ArtPoints;
set mycas .NodeSetOut;
where artpoint=1;

run;

The output data table mycas.ArtPoints contains members of the network who are articulation points. By
focusing on cutting off these particular members, investigators could have significantly disrupted the terrorists’
ability to communicate when formulating the attack.

Output 2.1.1 Articulation Points of Terrorist Communications Network from 9/11

node artpoint
Djamal Beghal

Mamoun Darkazanli
Zacarias Moussaoui
Nawaf Alhazmi

Essid Sami Ben Khemais
Mohamed Atta

_ A 4O a4

Example 2.2: Influence Centrality for Project Groups in a Research
Department
This example looks at an undirected graph that represents a few of the project groups in a hypothetical

research department. A link between nodes A and B means that person A and person B work together or that
person A reports to person B. The graph represents the six main project groups.

Example 2.2: Influence Centrality for Project Groups in a Research Department 4 127

Department 1 (D1) consists of Snopp, Gukrishnan, Leon, and Kabutz. Snopp reports to Chapman.

Department 2 (D2) consists of Oliver, Gotti, Patrick, and Zhuo. Oliver reports to Chapman.

Department 3 (D3) consists of Gotti, Leon, and Kabutz. Gotti reports to Chapman.

Department 4 (D4) consists of the following project groups, which report to Yu. Yu reports to Chapman
on this project.

— Department 4a (D4a) consists of Polark, Chang, Weng, and Angel. Polark reports to Yu.
— Department 4b (D4b) consists of Christoph, Nardo, Gotti, and Zhuo. Christoph reports to Yu.
— Department 4c (D4c) consists of Graffe, Zhuo, and Hund. Graffe reports to Yu.

The links are shown in Figure 2.91.

Figure 2.91 Project Groups in a Research Department

The link weights measure the reporting magnitude. In general, the higher the weight, the higher the
contribution to the influence metric. Chapman is the director of the overall department, and Yu is the manager
of a subgroup. The leads for projects D1, D2, and D3 report to Chapman, and the leads for D4a, D4b, and
D4c report to Yu. Reporting links to the director, Chapman, receive a link weight of 3, and reporting links
to Yu receive a weight of 2. Links that represent people working together on a project all receive an equal
weight of 1. The node weights also represent some level of reporting: directors (4), managers (3), leads (2),
and all others (1).

The project graph can be represented in the following link and nodes data tables:

128 4 Chapter 2: The NETWORK Procedure

data mycas.LinkSetInDept;
input from $1-12 to $13-24 weight;

datalines;
Yu Chapman 3
Gotti Chapman 3
Oliver Chapman 3
Snopp Chapman 3
Gukrishnan Leon 1
Snopp Gukrishnan 1
Kabutz Gukrishnan 1
Kabutz Snopp 1
Snopp Leon 1
Kabutz Leon 1
Gotti Oliver 1
Gotti Patrick 1
Oliver Patrick 1
Zhuo Oliver 1
Zhuo Gotti 1
Zhuo Patrick 1
Kabutz Gotti 1
Leon Gotti 1
Polark Yu 2
Polark Chang 1
Chang Angel 1
Polark Angel 1
Weng Polark 1
Weng Chang 1
Weng Angel 1
Christoph Yu 2
Christoph Nardo 1
Christoph Gotti 1
Christoph Zhuo 1
Nardo Gotti 1
Nardo Zhuo 1
Graffe Yu 2
Graffe Hund 1
Graffe Zhuo 1
Zhuo Hund 1

4

data mycas.NodeSetInDept;
input node $1-12 weight;
datalines;

Chapman

Yu

Gotti

Polark

Christoph

Oliver

Snopp

Zhuo

Nardo

Weng

R P RPDNMNDMDNMDDNDD WS

Example 2.2: Influence Centrality for Project Groups in a Research Department 4 129

Chang
Hund
Graffe
Leon
Gukrishnan
Kabutz
Patrick
Angel

HHRRRRBRRRR

’

The following statements calculate influence centrality (in addition to degree centrality):

proc network

logLevel = moderate
links = mycas.LinkSetInDept
nodes = mycas.NodeSetInDept
outNodes = mycas .NodeSetOut;
centrality

degree

influence = weight;
run;
$put & NETWORK_;

The progress of the procedure is shown in Output 2.2.1.

Output 2.2.1 PROC NETWORK Log: Influence Centrality for Project Groups in a Research Department

NOTE: Reading the nodes data.

NOTE: Reading the links data.

NOTE: Data input used 0.00 (cpu: 0.00) seconds.

NOTE: Building the input (full) graph storage used 0.00 (cpu: 0.00) seconds.
NOTE: The number of nodes in the input graph is 18.

NOTE: The number of links in the input graph is 35.

NOTE: Processing centrality metrics.

NOTE: Processing degree centrality metrics.

NOTE: Processing centrality metrics used 0.0 MBs of memory.

NOTE: Processing degree centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: Processing influence centrality metrics.

NOTE: Processing centrality metrics used 0.0 MBs of memory.

NOTE: Processing influence centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: Processing centrality metrics used 0.00 (cpu: 0.00) seconds.

NOTE: The Cloud Analytic Services server processed the request in 0.344802 seconds.

NOTE: The data set MYCAS.NODESETOUT has 18 observations and 5 variables.

STATUS=OK PROBLEM TYPE=CENTRALITY SOLUTION STATUS=0K CPU TIME=0.10 REAL TIME=0.34

130 4 Chapter 2: The NETWORK Procedure

The nodes data table mycas.NodeSetOut now contains the weighted influence centrality of the department’s
graph, including C; (the centr_influence1_wt variable) and C; (the centr_influence2_wt variable). This data
table is shown in Output 2.2.2.

Output 2.2.2 Influence Centrality for Project Groups in a Research Department

node weight centr_degree_out centr_influence1l_wt centr_influence2_wt
Gotti 2 8 0.35714 1.57143
Zhuo 1 7 0.25000 1.17857
Oliver 2 4 0.21429 1.14286
Chapman 4 4 0.42857 1.10714
Christoph 2 4 0.17857 1.03571
Yu 3 4 0.32143 0.92857
Kabutz 1 4 0.14286 0.82143
Leon 1 4 0.14286 0.82143
Patrick 1 3 0.10714 0.82143
Snopp 2 4 0.21429 0.82143
Nardo 1 3 0.10714 0.78571
Graffe 1 3 0.14286 0.64286
Polark 2 4 0.17857 0.64286
Gukrishnan 1 3 0.10714 0.50000
Angel 1 3 0.10714 0.39286
Chang 1 3 0.10714 0.39286
Hund 1 2 0.07143 0.39286
Weng 1 3 0.10714 0.39286

As expected, the director, Chapman, has the highest first-order influence, because the weights of the reporting
links to him are high. The highest second-order influence is Gotti, who reports to the director but is also
involved in three different projects and therefore has a large sphere of influence. This example is revisited
with other centrality metrics in other examples.

Example 2.3: Betweenness and Closeness Centrality for Computer Network
Topology

Consider a small network of 10 computers spread out across an office. Let a node represent a computer, and
let a link represent a direct connection between the machines. For this example, consider the links as Ethernet
connections that enable data to transfer between computers. If two computers are not connected directly, then
the information must flow through other connected machines. Consider a topology as shown in Figure 2.92.
This is an example of the well-known kite network, which was popularized by David Krackhardt (1990) for
better understanding of social networks in the workplace.

Example 2.3: Betweenness and Closeness Centrality for Computer Network Topology 4 131

Figure 2.92 Office Computer Network

Define the links data table as follows:

data mycas.LinkSetInCompNet;
input from $ to $ QQ@;
datalines;

AC AD BC BD

CD CF CH DE

DG EF EG F G

HI I J

HoOWwp
R I o)

To better understand the topology of the computer network, calculate the degree, closeness, and betweenness

centrality. It is also interesting to look for articulation points in the computer network to identify places of
vulnerability.

proc network

links = mycas.LinkSetInCompNet
outLinks = mycas.LinkSetOut
outNodes = mycas.NodeSetOutCentr;
centrality
degree
close = unweight
between = unweight;
run;
proc network
links = mycas.LinkSetInCompNet
outNodes = mycas.NodeSetOutBiCC;
biconnectedComponents;
run;

data mycas.NodeSetOut;
merge mycas.NodeSetOutCentr mycas.NodeSetOutBiCC;
by node;

run;

$put & NETWORK_;

132 4 Chapter 2: The NETWORK Procedure

Output 2.3.1 shows the resulting nodes data table mycas.NodeSetOut sorted by closeness.

Output 2.3.1 Node Closeness and Betweenness Centrality, Sorted by Closeness

node centr_degree_out centr_close_unwt centr_between_unwt artpoint

C 5 0.64286 0.23148 0
F 5 0.64286 0.23148 0
D 6 0.60000 0.10185 0
H 3 0.60000 0.38889 1
E 4 0.52941 0.02315 0
B 4 0.52941 0.02315 0
A 3 0.50000 0.00000 0
G 3 0.50000 0.00000 0
| 2 0.42857 0.22222 1
J 1 0.31034 0.00000 0

Output 2.3.2 shows the resulting nodes data table (mycas.NodeSetOut) sorted by node betweenness.

Output 2.3.2 Node Closeness and Betweenness Centrality, Sorted by Betweenness

node centr_degree_out centr_close_unwt centr_between_unwt artpoint

H 3 0.60000 0.38889 1
C 5 0.64286 0.23148 0
F 5 0.64286 0.23148 0
| 2 0.42857 0.22222 1
D 6 0.60000 0.10185 0
E 4 0.52941 0.02315 0
B 4 0.52941 0.02315 0
A 3 0.50000 0.00000 0
G 3 0.50000 0.00000 0
J 1 0.31034 0.00000 0

Output 2.3.3 shows the resulting links data table (mycas.LinkSetOut) sorted by link betweenness.

Example 2.4: Betweenness and Closeness Centrality for Project Groups in a Research Department 4 133

Output 2.3.3 Link Betweenness Centrality, Sorted by Betweenness

from to centr_between_unwt

H | 0.44444
C H 0.29167
F H 0.29167
| J 0.25000
B C 0.12963
E F 0.12963
A C 0.12500
F G 0.12500
C D 0.09259
D F 0.09259
A D 0.08333
D G 0.08333
B E 0.07407
C F 0.07407
D E 0.05093
B D 0.05093
A B 0.04167
E G 0.04167

The computers that have the highest closeness centrality are C and F, because they have the average shortest
paths to all the other nodes. These computers are key to the efficient distribution of information across the
network. Assuming that the entire office has some centralized data that should be shared with all computers,
machines C and F would be the best candidates for storing the data on their local hard drives. The computer
that has the highest betweenness centrality is H. Although machine H has only three connections, it is one of
the most important machines in the office because it serves as the only way to reach computers / and J from
the other machines in the office. Notice also that machine H is an articulation point, because removing it
would disconnect the office network. In this setting, computers with high betweenness should be carefully
maintained and secured with UPS (uninterruptible power supply) systems to ensure that they are always
online.

Example 2.4: Betweenness and Closeness Centrality for Project Groups in a
Research Department

This example uses the same data as in “Example 2.2: Influence Centrality for Project Groups in a Research
Department” on page 126, which illustrates influence centrality by considering the link weights that represent
some measure of reporting magnitude. In Example 2.2, links between managers (or leads) and direct reports
have higher link weights than links between nonmanagers. This interpretation makes sense in the context
of influence centrality because weight and the metric are directly related. However, for closeness and
betweenness centrality, weight and the metric are inversely related.

This example considers the speed of the flow of information between people. In this sense, connections
between managers and direct reports have smaller values, which cost less in the shortest path calculations. As
described in the section “Closeness Centrality” on page 59, by default, PROC NETWORK uses the reciprocal
of the link weight to find the shortest paths of the closeness and betweenness centrality metrics.

134 4 Chapter 2: The NETWORK Procedure

The following statements calculate weighted (and unweighted) closeness and betweenness centrality.

proc network

logLevel = moderate
links = mycas.LinkSetInDept
outLinks = mycas.LinkSetOut
outNodes = mycas.NodeSetOut;
centrality

close = both

between = both;

run;
$put & NETWORK_;

The progress of the procedure is shown in Output 2.4.1.

Output 2.4.1 PROC NETWORK Log: Closeness and Node Betweenness Centrality for Project Groups in a

Research Department

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

The number of nodes in the input graph is 18.

The number of links in the input graph is 35.

: Processing centrality metrics.

: Processing between/close centrality metrics using 32 threads on each of 4 machines.

Real
Algorithm Nodes Complete Time
centrality 18 100% 0.24

Processing between/close centrality metrics used 0.24 seconds.

Processing centrality metrics used 0.27 (cpu: 0.02) seconds.

The Cloud Analytic Services server processed the request in 0.986986 seconds.
The data set MYCAS.LINKSETOUT has 35 observations and 5 variables.

The data set MYCAS.NODESETOUT has 18 observations and 5 variables.

STATUS=OK PROBLEM TYPE=CENTRALITY SOLUTION STATUS=0OK CPU TIME=0.18 REAL TIME=0.99

The nodes data table mycas.NodeSetOut shows the weighted and unweighted closeness and node betweenness
centrality, as shown in Output 2.4.2.

Example 2.4: Betweenness and Closeness Centrality for Project Groups in a Research Department 4 135

Output 2.4.2 Closeness and Betweenness Centrality for Project Groups in a Research Department

node centr_close_wt centr_close_unwt centr_between_wt centr_between_unwt
Chang 0.44156 0.29310 0.00000 0.00000
Angel 0.44156 0.29310 0.00000 0.00000
Christoph 0.68456 0.48571 0.05882 0.11275
Gotti 0.81600 0.51515 0.20956 0.28444
Nardo 0.51777 0.42500 0.00000 0.00000
Yu 0.87179 0.50000 0.50000 0.41262
Zhuo 0.58286 0.47222 0.06618 0.15172
Chapman 0.88696 0.50000 0.44118 0.23235
Oliver 0.73913 0.44737 0.04044 0.02230
Patrick 0.50000 0.37778 0.00000 0.00000
Graffe 0.67105 0.43590 0.08088 0.06642
Hund 0.45133 0.36957 0.00000 0.00000
Gukrishnan 0.46575 0.32692 0.00000 0.00000
Leon 0.50746 0.38636 0.00000 0.03885
Kabutz 0.50746 0.38636 0.00000 0.03885
Snopp 0.75556 0.38636 0.16176 0.08088
Polark 0.69388 0.38636 0.30882 0.30882
Weng 0.44156 0.29310 0.00000 0.00000

The links data table mycas.LinkSetOut shows the weighted and unweighted link betweenness centrality, as
shown in Output 2.4.3.

136 4 Chapter 2: The NETWORK Procedure

Output 2.4.3 Link Betweenness Centrality for Project Groups in a Research Department

from to weight centr_between_wt centr_between_unwt
Chang Angel 1 0.00735 0.00735
Polark Chang 1 0.11029 0.11029
Weng Chang 1 0.00735 0.00735
Polark Angel 1 0.11029 0.11029
Weng Angel 1 0.00735 0.00735
Christoph Gotti 1 0.02574 0.09620
Christoph Nardo 1 0.04779 0.04412
Christoph Yu 2 0.13603 0.15870
Christoph Zhuo 1 0.03309 0.05147
Nardo Gotti 1 0.05515 0.05147
Zhuo Gotti 1 0.05515 0.10184
Gotti Chapman 3 0.20221 0.09767
Gotti Oliver 1 0.00000 0.03431
Gotti Patrick 1 0.05882 0.06066
Leon Gotti 1 0.07353 0.12586
Kabutz Gotti 1 0.07353 0.12586
Nardo Zhuo 1 0.02206 0.02941
Yu Chapman 3 0.39706 0.25576
Graffe Yu 2 0.18015 0.12402
Polark Yu 2 0.41176 0.41176
Zhuo Oliver 1 0.02574 0.03885
Zhuo Patrick 1 0.02941 0.04412
Graffe Zhuo 1 0.03676 0.08578
Zhuo Hund 1 0.05515 0.07696
Oliver Chapman 3 0.14338 0.07623
Snopp Chapman 3 0.26471 0.16005
Oliver Patrick 1 0.03676 0.02022
Graffe Hund 1 0.06985 0.04804
Gukrishnan Leon 1 0.00735 0.03431
Kabutz Gukrishnan 1 0.00735 0.03431
Snopp Gukrishnan 1 0.11029 0.05637
Kabutz Leon 1 0.00735 0.00735
Snopp Leon 1 0.03676 0.03517
Kabutz Snopp 1 0.03676 0.03517
Weng Polark 1 0.11029 0.11029

Note that Chapman (the director) and Yu (a manager who reports to Chapman) both have the highest
weighted closeness centrality. However, Yu’s weighted betweenness centrality is highest because he serves as
a gatekeeper between his three groups (D4a, D4b, and D4c) and the rest of the department.

Example 2.5: Eigenvector Centrality for Word Sense Disambiguation

In many languages, numerous words are polysemous (they carry more than one meaning). A common task in
information retrieval is to assign the correct meaning to a polysemous word within a given context. Take the

Example 2.5: Eigenvector Centrality for Word Sense Disambiguation 4 137

word “bass” as an example. It can mean either a type of fish (as in the sentence “I went fishing for sea bass™)
or tones of low frequency (as in the sentence “The bass part of the song is very moving”).

The following example from Mihalcea (2005) shows how eigenvector centrality can be used to disambiguate
the word sense in the sentence “The church bells no longer ring on Sundays.” The following senses of words
can be drawn from a dictionary:

e church

1. one of the groups of Christians who have their own beliefs and forms of worship
2. aplace for public (especially Christian) worship

3. aservice conducted in a church

1. ahollow device made of metal that makes a ringing sound when struck
2. a push button at an outer door that gives a ringing or buzzing signal when pushed

3. the sound of a bell
® ring

1. make a ringing sound
2. ring or echo with sound

3. make (bells) ring, often for the purposes of musical edification
o Sunday
1. first day of the week; observed as a day of rest and worship by most Christians
Using one of the similarity metrics defined in Sinha and Mihalcea (2007), you can generate a graph in which

the nodes correspond to the preceding word senses and the weights are determined by the similarity metric.
The resulting graph is shown in Figure 2.93.

Figure 2.93 Eigenvector Centrality for Word Sense Disambiguation

138 4 Chapter 2: The NETWORK Procedure

To identify the correct senses, you run eigenvector centrality on the graph and select the highest-ranking
sense for each word:

data mycas.LinkSetIn;

input from $ to $ weight;

datalines;
bell 1 ring_ 1
bell 1 ring 2
bell 1 ring_3
bell 2 ring 1
bell_ 2 ring 2 .35
bell 2 ring_3 .80

0.85
0
1
0
0
0
bell_3 ring_ 1 0.23
0
1
0
0
0
0
0

.55
.01
.40

bell 3 ring_ 2 .19
bell 3 ring_ 3 .06
ring 3 church_1 0.30
ring_3 church_2 0.34
ring 3 church_3 0.50
church_1 sunday 1 0.31
church_2 sunday_1 0.35

4

proc network

links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
centrality

eigen = weight;

run;

data mycas.NodeSetOut;
length word $8 sense $1;
set mycas.NodeSetOut;
word = scan(node,l1,'_");
sense = scan(node,2,'_"');
run;

data NodeSetOut;
set mycas.NodeSetOut;
run;
proc sort
data
out

NodeSetOut
WordSenses;

by word descending centr_eigen_wt;
run;

data WordSenses;
set WordSenses (drop=centr_eigen_wt);
by word;
if first.word then output;

run;

The eigenvector scores and the implied word sense are shown in Output 2.5.1.

Example 2.6: Community Detection on Zachary's Karate Club Data 4 139

Output 2.5.1 Eigenvector Centrality for Word Sense Disambiguation

node centr_eigen_wt
ring_3 1.00000
bell_1 0.77997
bell_3 0.59692
bell_2 0.53889
ring_1 0.48924
ring_2 0.35207
church_3 0.24081
church_2 0.17248
church_1 0.15222
sunday_1 0.05180

word sense node
bell 1 bell_1
church 3 church_3
ring 3 ring_3
sunday 1 sunday_1

Example 2.6: Community Detection on Zachary’s Karate Club Data

This example uses Zachary’s Karate Club data (Zachary 1977), which describes social network friendships
between 34 members of a karate club at a US university in the 1970s. This is one of the standard publicly
available data tables for testing community detection algorithms. It contains 34 nodes and 78 links. The
graph is shown in Figure 2.94.

Figure 2.94 Zachary’s Karate Club Graph

140 4 Chapter 2: The NETWORK Procedure

The graph can be represented using the following links data table, mycas.LinkSetin:

data mycas.LinkSetlIn;
input from to weight @Q@;

datalines;

0O 9 1 010 1 014 1 015 1 016 1 019 1 020 1 021 1

023 1 024 1 027 1 028 1 029 1 030 1 031 1 032 1

033 1 2 1 1 31 1 3 2 1 4 1 1 4 2 1 4 3 1 5 1 1

6 1 1 7 1 1 7 5 1 7 6 1 8 1 1 8 2 1 8 3 1 8 4 1

9211 9 3 110 3 111 1 111 5 111 6 112 1 113 1 1
13 4 114 1 114 2 114 3 114 4 117 6 117 7 118 1 1
18 2 120 1 120 2 122 1 122 2 12624 12625 128 3 1
28 24 12825 129 3 13024 13027 131 2 131 9 132 1 1
3225 13226 13229 133 3 133 9 13315 13316 13319 1
3321 13323 13324 13330 13331 13332 1

The following statements use the RESOLUTIONLIST= option to represent resolution levels (1, 0.5) in

community detection on the Karate Club data. For more information about resolution levels, see the section
“Resolution List” on page 74.

proc network

links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
community
resolutionList = 1.0 0.5
outLevel = mycas.CommLevelOut
outCommunity = mycas.CommOut
outOverlap = mycas.CommOverlapOut
outCommLinks = mycas.CommLinksOut;
run;

The output data table mycas.NodeSetOut contains the community identifier of each node, as shown in
Output 2.6.1.

Example 2.6: Community Detection on Zachary'’s Karate Club Data 4 141

Output 2.6.1 Community Nodes Output

node community_1 community_2 node community_1 community_2
0 1 1 33 1 1
9 1 1 2 2 2
10 2 2 1 2 2
14 2 2 3 2 2
15 1 1 4 2 2
16 1 1 5 4 2
19 1 1 6 4 2
20 2 2 7 4 2
21 1 1 8 2 2
23 1 1 11 4 2
24 3 1 12 2 2
27 1 1 13 2 2
28 3 1 17 4 2
29 3 1 18 2 2
30 1 1 22 2 2
31 1 1 26 3 1
32 3 1 25 3 1

The column community_1 contains the community identifier of each node when the resolution value is 1.0;
the column community_2 contains the community identifier of each node when the resolution value is 0.5.
Different node colors are used to represent different communities in Figure 2.95 and Figure 2.96. As you can
see from the figures, four communities at resolution 1.0 are merged into two communities at resolution 0.5.

Figure 2.95 Karate Club Communities (Resolution = 1.0)

142 4 Chapter 2: The NETWORK Procedure

Figure 2.96 Karate Club Communities (Resolution = 0.5)

The output data table mycas.CommLevelOut contains the number of communities and the corresponding
modularity values found at each resolution level. It is shown in Output 2.6.2.

Output 2.6.2 Community Level Summary Output

level resolution communities modularity
1 1.0 4 0.41880
2 0.5 2 0.37179

The output data table mycas.CommOut contains the number of nodes in each community, as shown in
Output 2.6.3.

Output 2.6.3 Community Number of Nodes Output

level resolution community nodes
1 1.0 1 11

1 1.0 2 12
1 1.0 3 6
1 1.0 4

2 0.5 1 17
2 0.5 2 17

The output data table mycas.CommOverlapOut contains the intensity of each node that belongs to multiple
communities. It is shown in Output 2.6.4. Note that only the communities in the last resolution level
(the smallest resolution value) appear as output in this data table. In this example, Node 0 belongs to two
communities, with 82.3% of its links connecting to Community 1 and 17.6% of its links connecting to
Community 2.

Example 2.7: Recursive Community Detection on Zachary'’s Karate Club Data 4 143

Output 2.6.4 Community Overlap Output

node community intensity node community intensity
0 1 0.82353 32 1 0.83333
0 2 0.17647 32 2 0.16667
9 1 0.60000 33 1 0.91667
9 2 0.40000 33 2 0.08333
10 1 0.50000 2 1 011111
10 2 0.50000 2 2 0.88889
14 1 0.20000 1 1 0.12500
14 2 0.80000 1 2 0.87500
15 1 1.00000 3 1 0.40000
16 1 1.00000 3 2 0.60000
19 1 1.00000 4 2 1.00000
20 1 0.33333 5 2 1.00000
20 2 0.66667 6 2 1.00000
21 1 1.00000 7 2 1.00000
23 1 1.00000 8 2 1.00000
24 1 1.00000 11 2 1.00000
27 1 1.00000 12 2 1.00000
28 1 0.75000 13 2 1.00000
28 2 0.25000 17 2 1.00000
29 1 0.66667 18 2 1.00000
29 2 0.33333 22 2 1.00000
30 1 1.00000 26 1 1.00000
31 1 0.75000 25 1 1.00000
31 2 0.25000

The output data table mycas.CommLinksOut shows how the communities are interconnected. It is shown in
Output 2.6.5. In this example, when the resolution value is 1, the link weight between Communities 1 and 2
is 7, and the link weight between Communities 2 and 3 is 3.

Output 2.6.5 Community Links Output

level resolution from_community to_community link_weight

1 1.0 1 2 7
1 1.0 1 3 7
1 1.0 2 3 3
1 1.0 2 4 4
2 0.5 1 2 10

Example 2.7: Recursive Community Detection on Zachary’s Karate Club Data

This example illustrates the use of the RECURSIVE option in PROC NETWORK for community detection on
Zachary’s Karate Club data (Zachary 1977). The data table appears in “Example 2.6: Community Detection
on Zachary’s Karate Club Data” on page 139. The current example forces each community to contain no
more than five nodes and limits the number of links between any pair of nodes within any community to be
no greater than 2.

144 4 Chapter 2: The NETWORK Procedure

proc network

links = mycas.LinkSetIn
outNodes = mycas.NodeSetOut;
community
resolutionList = 1.0
recursive (maxCommSize = 5 maxDiameter = 2 relation = AND)
outCommunity = mycas.CommOut;
run;

The output data table mycas.NodeSetOut contains the community identifier of each node, as shown in
Output 2.7.1.

Output 2.7.1 Community Nodes Output

node community_1 node community_1
0 4 33 4
9 2 2 7
10 6 1 8
14 6 3 6
15 4 4 5
16 4 5 1
19 4 6 1
20 7 7 1
21 4 8 5
23 4 11 1
24 9 12 8
27 3 13 5
28 9 17 1
29 10 18 7
30 3 22 8
31 2 26 9
32 10 25 9

The output data table mycas.CommOut contains the number of nodes in each community, as shown in
Output 2.7.2.

Output 2.7.2 Community Number of Nodes Output

level resolution community nodes
1 1

- a4 a4 a4 g g a
- a4 a4 a4 o a a
O ©W o N O Ul b W N
N B W W W W N NN OU

_

Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community 4 145

The community graph is shown in Figure 2.97, with different node shapes and colors representing different
communities.

Figure 2.97 Karate Club Recursive Communities

As you can see from Output 2.7.2, Community 4, whose nodes are drawn as black ellipses in Figure 2.97,
contains seven nodes even though the maximum number of nodes in any community is set to 5. This is
because Community 4 has a symmetric shape: Nodes 0 and 33 are in the center, and they symmetrically
connect to Nodes 21, 15, 19, 16, and 23. Therefore, this community cannot be further split.

Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community

When you are trying to understand the roles of certain entities in a social network, a typical workflow is to
first divide the network into communities and then calculate centrality metrics on the induced subgraphs
defined by those communities. You can process these induced subgraphs of the original input graph with only
one call to PROC NETWORK by using the BY statement. This section presents an example of how to use the
COMMUNITY statement, followed by the CENTRALITY statement in conjunction with the BY statement.

Consider the graph depicted in Figure 2.8.1.

146 4 Chapter 2: The NETWORK Procedure

Output 2.8.1 Undirected Graph

The following statements create the data table mycas.LinkSetin:

data mycas.LinkSetIn;
input from $ to $ Q@;
datalines;

AB AC AD BC CD

CE DF FG FH FI

GH GI IJ JK JL

KL

First, call the community detection method as follows:

proc network

links = mycas.LinkSetIn
outNodes = mycas.OutNodesComms
outLinks = mycas.OutLinksComms;
community;

run;

The resulting output is a partition of the links and nodes of the original graph into communities.

The data table that contains the assignment of nodes to communities, mycas.OutNodesCommes, is shown in
Output 2.8.2.

Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community 4 147

Output 2.8.2 Nodes for the Communities of a Simple Undirected Graph

node community_1

rxX-« - IoOomTmoOw>

W W W N NDNDN= 2 o a4

The data table that contains the assignment of links to communities, mycas.OutLinksComms, is shown in
Output 2.8.3.

Output 2.8.3 Links for the Communities of a Simple Undirected Graph

from to community_1

A B 1
A C 1
A D 1
B C 1
C D 1
C E 1
D F .
F G 2
F H 2
F | 2
G H 2
G | 2
| J .
J K 3
J L 3
K L 3

The graph seems to have three distinct parts, which are connected by just a few links. The induced subgraphs
on these communities are shown in blue in Figure 2.8.4 through Figure 2.8.6.

148 4 Chapter 2: The NETWORK Procedure

Output 2.8.4 Subgraph C! = {4, B,C,D,E}

Now, using one call to PROC NETWORK, you can calculate the centrality metrics for all three induced
subgraphs by using the BY statement and the links partition defined by the community detection algorithm.
In addition, because these subgraphs are completely independent, the processing will be done in parallel
across machines and threads (depending on your server configuration).

Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community 4 149

proc network

links = mycas.OutLinksComms (where=(community 1 ne .))
outNodes = mycas .NodeSetOut;
centrality
degree
influence = unweight
close = unweight
between = unweight
eigen = unweight;
displayout
ProblemSummary = ProblemSummary

SolutionSummary = SolutionSummary;
by community_ 1;
run;
$put & NETWORK_;

Assuming that your grid has a total of at least three cores, all three subgraphs are processed simultaneously
with one call to PROC NETWORK. The progress of the procedure is shown in Output 2.8.7.

Output 2.8.7 PROC NETWORK Log: Centrality by Cluster for a Simple Undirected Graph

NOTE: —————m oo
NOTE: Running NETWORK.
NOTE: —————m oo oo
NOTE: The number of nodes in the input graph is 5.
NOTE: The number of links in the input graph is 6.
NOTE: Processing centrality metrics.
NOTE: Processing centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: The above message was for the following BY group:
community 1=1
NOTE: The number of nodes in the input graph is 4.
NOTE: The number of links in the input graph is 5.
NOTE: Processing centrality metrics.
NOTE: Processing centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: The above message was for the following BY group:
community 1=2
NOTE: The number of nodes in the input graph is 3.
NOTE: The number of links in the input graph is 3.
NOTE: Processing centrality metrics.
NOTE: Processing centrality metrics used 0.00 (cpu: 0.00) seconds.
NOTE: The above message was for the following BY group:
community 1=3
NOTE: The CAS Table 'PROBLEMSUMMARY' in caslib 'CASUSERHDFS (magala)' has 3 rows and 4 columns.
NOTE: The CAS Table 'SOLUTIONSUMMARY' in caslib 'CASUSERHDFS (magala)' has 3 rows and 5 columns.
NOTE: The Cloud Analytic Services server processed the request in 0.438229 seconds.
NOTE: The data set MYCAS.NODESETOUT has 12 observations and 8 variables.

STATUS=0K PROBLEM TYPE=CENTRALITY CPU TIME=0.28 REAL TIME=0.44

150 4 Chapter 2: The NETWORK Procedure

Notice that links that connect different partitions have been removed by using a WHERE clause on the
LINKS= option in the PROC NETWORK statement.

The output table mycas.ProblemSummary contains a summary of each induced subgraph that is processed
by PROC NETWORK.

Output 2.8.8 Problem Summary by Community

community_1 numNodes numLinks graphDirection

1 5 6 Undirected
2 4 5 Undirected
3 3 3 Undirected

The output table mycas.SolutionSummary contains a solution summary for the processing on each of the
induced subgraphs.

Output 2.8.9 Solution Summary by Community

community_1 problemType status cpuTime realTime

1 Centrality OK 0 .001883984
2 Centrality OK 0 .001708984
3 Centrality OK 0 .001863956

The centrality results (by community) are shown in Output 2.8.10.

Output 2.8.10 Centrality for All Induced Subgraphs

community_1=1

node centr_degree_out centr_eigen_unwt centr_close_unwt centr_between_unwt centr_influence1l_unwt centr_influence2_unwt

B 2 0.70711 0.66667 0.00000 0.4 1.4
C 4 1.00000 1.00000 0.58333 0.8 1.6
D 2 0.70711 0.66667 0.00000 0.4 1.4
E 1 0.37236 0.57143 0.00000 0.2 0.8
A 3 0.89897 0.80000 0.08333 0.6 1.6

community_1=2

node centr_degree_out centr_eigen_unwt centr_close_unwt centr_between_unwt centr_influence1l_unwt centr_influence2_unwt

G 3 1.00000 1.00 0.16667 0.75 1.75
H 2 0.78078 0.75 0.00000 0.50 1.50
| 2 0.78078 0.75 0.00000 0.50 1.50
F 3 1.00000 1.00 0.16667 0.75 1.75

community_1=3

node centr_degree_out centr_eigen_unwt centr_close_unwt centr_between_unwt centr_influence1l_unwt centr_influence2_unwt

K 2 1 1 0 0.66667 1.33333
L 2 1 1 0 0.66667 1.33333
J 2 1 1 0 0.66667 1.33333

Example 2.9: Transitive Closure for Identification of Circular Dependencies 4 151

Example 2.9: Transitive Closure for Identification of Circular Dependencies in
a Bug Tracking System

Most systems that track software errors, or bugs, have some notion of duplicate bugs, in which one bug is
declared to be the same as another bug. If bug A is considered a duplicate (DUP) of bug B, then a fix for B
would also fix A. You can represent the DUPs in a bug tracking system as a directed graph where you add a
link A — B if A is a DUP of B.

The bug tracking system needs to check for two situations when users declare a bug to be a DUP. The first
situation is called a circular dependency. Consider bugs A, B, C, and D in the tracking system. The first user
declares that A is a DUP of B and that C is a DUP of D. Then, a second user declares that B is a DUP of C,
and a third user declares that D is a DUP of A. You now have a circular dependency, and no primary bug is
defined that the development team should focus on. You can easily see this circular dependency in the graph
representation, because A - B — C — D — A. You can find such circular dependencies by using cycle
enumeration, which is described in the section “Cycle Enumeration” on page 89. The second situation that
needs to be checked is more general. If one user declares that A is a DUP of B and another user declares that
B is a DUP of C, this chain of duplicates is already an issue. The bug tracking system needs to provide one
primary bug to which the rest of the bugs are duplicated. The existence of these chains can be identified by
calculating the transitive closure of the directed graph that is defined by the DUP links.

Given the original directed graph G (defined by the DUP links) and its transitive closure G, any link in GT
that is not in G exists because of some chain that is present in G.

Consider the following data, which define some duplicated bugs (called defects) in a small sample of the bug
tracking system:

data mycas.DefectLinks;

input defectId $ linkedDefect $ linkType $ when datetimel6.;

format when datetimel6.;

datalines;
D0096978 S0711218 DUPTO 200CT10:00:00:00
S0152674 sS0153280 DUPTO 30MAY02:00:00:00
S0153280 S0153307 DUPTO 30MAY02:00:00:00
S0153307 sS0152674 DUPTO 30MAY02:00:00:00
S0162973 S0162978 DUPTO 29NOV10:16:13:16
S0162978 S0165405 DUPTO 29NOV10:16:13:16
S0325026 sS0575748 DUPTO 01JUN10:00:00:00
S0347945 sS0346582 DUPTO 03MAR06:00:00:00
S0350596 S0346582 DUPTO 21MAR06:00:00:00
S0539744 sS0643230 DUPTO 10MAY10:00:00:00
S0575748 sS0643230 DUPTO 15JUN10:00:00:00
S0629984 sS0643230 DUPTO 01JUN10:00:00:00

4

The following statements calculate cycles in addition to the transitive closure of the graph G that is defined
by the duplicated defects in mycas.DefectLinks. The output data table mycas.Cycles contains any circular
dependencies, and the data table mycas.TransClosure contains the transitive closure G . To identify the
chains, you can use PROC SQL to identify the links in G7 that are not in G.

152 4 Chapter 2: The NETWORK Procedure

proc network

logLevel = moderate
direction = directed
links = mycas.DefectLinks;
linksVar

from = defectId

to = linkedDefect;
cycle

out = mycas.Cycles

maxCycles = alil;

run;
$put & NETWORK_;

proc network

logLevel = moderate
direction = directed
links = mycas.DefectLinks;
linksVar

from = defectId

to = linkedDefect;
transitiveClosure

out = mycas.TransClosure;

run;
$put & NETWORK_;

proc sql;
create table Chains as
select defectId, linkedDefect
from mycas.TransClosure (where=(defectId ne linkedDefect)) except
select defectId, linkedDefect
from mycas.DefectLinks;
quit;
The progress of the procedure is shown in Output 2.9.1.

Example 2.9: Transitive Closure for Identification of Circular Dependencies 4 153

Output 2.9.1 PROC NETWORK Log: Transitive Closure for Identification of Circular Dependencies in a
Bug Tracking System

NOTE: —————m oo oo o
NOTE: —————m oo oo
NOTE: Running NETWORK.

NOTE: —————m oo oo o
NOTE: —————m oo oo
NOTE: Reading the links data.

NOTE: Data input used 0.00 (cpu: 0.00) seconds.

NOTE: Building the input (full) graph storage used 0.00 (cpu: 0.00) seconds.

NOTE: The number of nodes in the input graph is 16.

NOTE: The number of links in the input graph is 12.

NOTE: Processing cycle detection.

NOTE: Processing cycle detection using the backtrack algorithm.

NOTE: The algorithm found 1 cycles.

NOTE: Processing cycle detection used 0.00 (cpu: 0.00) seconds.

NOTE: The Cloud Analytic Services server processed the request in 0.061105 seconds.

NOTE: The data set MYCAS.CYCLES has 4 observations and 3 variables.

STATUS=0K PROBLEM TYPE=CYCLE SOLUTION STATUS=OK NUM CYCLES=1 CPU TIME=0.08 REAL TIME=0.06

NOTE: —————m oo oo o
NOTE: —————m oo oo o
NOTE: Running NETWORK.

NOTE: —————m oo oo o
NOTE: —————m oo oo o
NOTE: Reading the links data.

NOTE: Data input used 0.00 (cpu: 0.00) seconds.

NOTE: Building the input (full) graph storage used 0.00 (cpu: 0.00) seconds.

NOTE: The number of nodes in the input graph is 16.

NOTE: The number of links in the input graph is 12.

NOTE: Processing the transitive closure.

NOTE: Processing the transitive closure used 0.00 (cpu: 0.00) seconds.

NOTE: The Cloud Analytic Services server processed the request in 0.057024 seconds.

NOTE: The data set MYCAS.TRANSCLOSURE has 20 observations and 2 variables.

STATUS=0K PROBLEM TYPE=TRANSITIVECLOSURE SOLUTION STATUS=OK CPU TIME=0.09 REAL TIME=0.06
NOTE: Table WORK.CHAINS created, with 5 rows and 2 columns.

The output data table mycas.Cycles contains one case of a circular dependency in which the DUPs start and
end at S0152674.

154 4 Chapter 2: The NETWORK Procedure

Output 2.9.2 Cycle in Bug Tracking System

cycle order node
1 1 S0152674
1 2 S0153280
1 3 S0153307
1 4 S0152674

The local data set Chains contains the chains in the bug tracking system that come from the links in G that
are not in G.

Output 2.9.3 Chains in Bug Tracking System

defectld linkedDefect
S0152674 S0153307
S0153280 S0152674
S0153307 S0153280
S0162973 S0165405
S0325026 S0643230

Example 2.10: Connected Components for US Patent Citations

This example looks at the structural relationship of US patent citations by using a large data set that is
maintained by the Stanford Network Analysis Project (SNAP) (Leskovec 2014). The citation graph includes
over 16 million citations made to patents between 1975 and 1999.

The following statements construct the links data table mycas.Patents from a local copy of the raw patent
citation data:

filename in 'cit-Patents.txt';
data mycas.Patents;
infile in firstobs=5 dlm='09'X;
input from to;
run;

The following statements find the connected components of the citation graph by using a distributed union-find
algorithm. This algorithm takes advantage of all the machines in your configured session.

proc network
links = mycas.Patents
outNodes = mycas.OutNodes;
connectedComponents
algorithm = parallel;
run;
$put & NETWORK_;

The progress of the procedure is shown in Output 2.10.1.

NOTE:
NOTE:

Example 2.10: Connected Components for US Patent Citations 4 155

Output 2.10.1 PROC NETWORK Log: Connected Components for US Patent Citations

Running NETWORK.

WARNING: The graph contains 1 self links that are ignored.

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

The number of nodes in the input graph is 3774768.

The number of links in the input graph is 16518947.

The number of singleton nodes in the input graph is 1.

Processing connected components using 4 machines.

The graph has 3627 connected components.

Processing connected components used 7.59 (cpu: 5.39) seconds.

The Cloud Analytic Services server processed the request in 10.018979 seconds.

The data set MYCAS.OUTNODES has 3774768 observations and 2 variables.

STATUS=0K PROBLEM TYPE=CONNECTEDCOMPONENTS SOLUTION STATUS=0OK NUM COMPONENTS=3627
CPU TIME=47.99 REAL TIME=10.02

The following statements use PROC SQL to calculate the size of each component:

proc sql;

create table FreqCount as

select concomp, count (x) as count
from mycas.OutNodes

group by concomp

order by count descending;

quit;

The 10 biggest components are shown in Output 2.10.2. It is interesting to note that the vast majority of
patents (over 99%) are all contained in the same component. This is not too surprising, because many of the
seminal patent claims are required in order to understand subsequent inventions.

Output 2.10.2 Ten Largest Components for US Patent Citations

Obs concomp count

1 1 3764117
2 446 19
3 242 16
4 25 15
5 345 14
6 169 14
7 263 14
8 1830 14
9 239 13

-
o

158 13

156 4 Chapter 2: The NETWORK Procedure

Example 2.11: Shortest Paths of the New York Road Network

This example looks at the road networks in the state of New York (NY). The distance graph raw data are
maintained at the DIMACS challenge website (Demetrescu 2010). The NY road network includes 264,346
intersections (nodes) and 365,050 roads (links). Although the input data table is not large, the computing
power needed to find all-pairs shortest paths is enormous. In addition, the storage space that is needed to
handle the results data can easily overwhelm the capacity of a single machine. In this example, a session of
130 machines (each with 32 cores) was configured to process this graph.

The following statements construct the links data table mycas.RoadNY from a local copy of the raw distance
graph data:

filename in 'USA-road-d.NY.gr';
data mycas.RoadNY (drop=a);
infile in firstobs=8;
input a $§ from $ to $ weight;
run;

The following statements find the all-pairs shortest paths of the NY road network (that have a total path
weight of less than 20,000) by using a distributed algorithm. This algorithm takes advantage of all the
machines and cores in your configured session.

proc network

logFreqTime = 10
logLevel = aggressive
links = mycas.RoadNY;
shortestPath
maxPathWeight = 20000
outWeights = mycas.shortPathSummary
outPaths = mycas.shortPathPaths;
run;

$put & NETWORK_;

The progress of the procedure is shown in Output 2.11.1.

References 4 157

Output 2.11.1 PROC NETWORK Log: Shortest Paths of the NY Road Network

NOTE : = m oo oo

WARNING: The graph contains 368796 duplicate links that are ignored.

NOTE: The number of nodes in the input graph is 264346.

NOTE: The number of links in the input graph is 365050.

NOTE: Processing the shortest paths problem using 32 threads on each of 130 machines.

NOTE: Processing the shortest paths problem between 264346 source nodes and 264346 sink nodes.

Real
Algorithm Sources Complete Time
shortestpath 320 0% 10.63
shortestpath 41045 15% 20.19
shortestpath 82560 31% 30.05
shortestpath 124225 46% 40.25
shortestpath 163990 62% 50.01
shortestpath 202910 76% 60.05
shortestpath 241356 91% 70.06
shortestpath 264151 99% 80.74
shortestpath 264346 100% 91.96

NOTE: Processing the shortest paths problem used 93.14 (cpu: 231586.67) seconds.

NOTE: The Cloud Analytic Services server processed the request in 99.501308 seconds.
NOTE: The data set MYCAS.SHORTPATHSUMMARY has 104263396 observations and 3 variables.
NOTE: The data set MYCAS.SHORTPATHPATHS has 1419295895 observations and 6 variables.

STATUS=0K PROBLEM TYPE=SHORTESTPATH SOLUTION STATUS=0K NUM PATHS=104263396
CPU TIME=232788.78 REAL TIME=99.50

Notice that the resulting output data tables, mycas.shortPathSummary and mycas.shortPathPaths, are large
distributed data tables.

References
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.
Englewood Cliffs, NJ: Prentice-Hall.

Batagelj, V., and Zaversnik, M. (2003). “An O(m) Algorithm for Cores Decomposition of Networks.”
Computing Research Repository ¢s.DS/0310049.

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008). “Fast Unfolding of Communities in
Large Networks.” Journal of Statistical Mechanics: Theory and Experiment 10:10000—-10014.

158 4 Chapter 2: The NETWORK Procedure

Boitmanis, K., Freivalds, K., Ledins, P., and Opmanis, R. (2006). “Fast and Simple Approximation of the
Diameter and Radius of a Graph.” In Experimental Algorithms, vol. 4007, edited by C. Alvarez and M.
Serna, 98-108. Berlin: Springer-Verlag. http://dx.doi.org/10.1007/11764298_9.

Bron, C., and Kerbosch, J. (1973). “Algorithm 457: Finding All Cliques of an Undirected Graph.” Communi-
cations of the ACM 16:48-50.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms. Cambridge, MA, and
New York: MIT Press and McGraw-Hill.

Demetrescu, C. (2010). “9th DIMACS Implementation Challenge—Shortest Paths.” The data are available
athttp://www.dis.uniromal.it/challenge9/download.shtml.

Fowler, J. H., and Joen, S. (2008). “The Authority of Supreme Court Precedent.” Social Networks 30:16-30.
http://jhfowler.ucsd.edu/judicial.htm.

Google (2011). “Google Maps.” Accessed March 16, 2011. http://maps.google.com.

Harley, E. R. (2003). “Graph Algorithms for Assembling Integrated Genome Maps.” Ph.D. diss., University
of Toronto.

Johnson, D. B. (1975). “Finding All the Elementary Circuits of a Directed Graph.” SIAM Journal on
Computing 4:77-84.

Kleinberg, J. (1998). “Authoritative Sources in a Hyperlinked Environment.” In Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, 668—677. Philadelphia: STAM.

Krackhardt, D. (1990). “Assessing the Political Landscape: Structure, Cognition, and Power in Organizations.”
Administrative Science Quarterly 35:342-369.

Krebs, V. (2002). “Uncloaking Terrorist Networks.” First Monday 7. http://www.firstmonday.org/
issues/issue7_4/krebs/.

Lancichinetti, A., and Fortunato, S. (2009). “Community Detection Algorithms: A Comparative Analysis.”
Physical Review E 80:056117-056128.

Landes, W. M., and Posner, R. A. (1976). “Legal Precedent: A Theoretical and Empirical Analysis.” Journal
of Law and Economics 19:249-307.

Leskovec, J. (2014). “SNAP: Stanford Network Analysis Project.” The data are available at https:
//snap.stanford.edu/data/index.html.

Liu, H., and Wang, J. (2006). “A New Way to Enumerate Cycles in Graph.” In Proceedings of the Advanced
International Conference on Telecommunications and International Conference on Internet and Web
Applications and Services, 57-59.

Mihalcea, R. (2005). “Unsupervised Large-Vocabulary Word Sense Disambiguation with Graph-Based Algo-
rithms for Sequence Data Labeling.” In Proceedings of the Conference on Human Language Technology
and Empirical Methods in Natural Language Processing, 411-418. Vancouver.

Newman, M. E. J. (2010). Networks: An Introduction. Oxford: Oxford University Press.

Raghavan, U. N., Albert, R., and Kumara, S. (2007). “Near Linear Time Algorithm to Detect Community
Structures in Large-Scale Networks.” Physical Review E 76:36106-36117.

http://dx.doi.org/10.1007/11764298_9
http://www.dis.uniroma1.it/challenge9/download.shtml
http://jhfowler.ucsd.edu/judicial.htm
http://maps.google.com
http://www.firstmonday.org/issues/issue7_4/krebs/
http://www.firstmonday.org/issues/issue7_4/krebs/
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html

References 4 159

Rochat, Y. (2009). “Closeness Centrality Extended to Unconnected Graphs: The Harmonic Centrality
Index.” Paper presented at Sixth Applications of Social Network Analysis Conference, Zurich. http:
//infoscience.epfl.ch/record/200525/files/ [EN]JASNAOY9.pdf.

Ronhovde, P., and Nussinov, Z. (2010). “Local Resolution-Limit-Free Potts Model for Community Detection.”
Physical Review E 81:46114—46129.

Sinha, R., and Mihalcea, R. (2007). “Unsupervised Graph-Based Word Sense Disambiguation Using
Measures of Word Semantic Similarity.” In Proceedings of the IEEE International Conference on Semantic
Computing, 363-369. Los Alamitos, CA: IEEE Computer Society Press.

Sleijpen, G. L. G., and van der Vorst, H. A. (2000). “A Jacobi-Davidson Iteration Method for Linear
Eigenvalue Problems.” SIAM Review 42:267-293.

Tarjan, R. E. (1972). “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing
1:146-160.

Traag, V. A., Van Dooren, P., and Nesterov, Y. (2011). “Narrow Scope for Resolution-Limit-Free Community
Detection.” Physical Review E 84:016114 (1-9). http://dx.doi.org/10.1103/PhysRevE. 84.
0le6114.

Zachary, W. W. (1977). “An Information Flow Model for Conflict and Fission in Small Groups.” Journal of
Anthropological Research 33:452-473.

http://infoscience.epfl.ch/record/200525/files/[EN]ASNA09.pdf
http://infoscience.epfl.ch/record/200525/files/[EN]ASNA09.pdf
http://dx.doi.org/10.1103/PhysRevE.84.016114
http://dx.doi.org/10.1103/PhysRevE.84.016114

160

Index

ALGORITHM-= option
CENTRALITY statement, 32
COMMUNITY statement, 28
CONNECTEDCOMPONENTS statement, 31
AUTH= option
CENTRALITY statement, 24
AUXWEIGHT= option
LINKSVAR statement, 35

BETWEEN= option
CENTRALITY statement, 25
BETWEENNORM-= option
CENTRALITY statement, 25
BICONNECTEDCOMPONENTS option
SUMMARY statement, 38
BICONNECTEDCOMPONENTS statement
statement options, 24
BY statement
NETWORK procedure, 24

CASESENSITIVE option
DISPLAY statement (NETWORK), 33
CENTRALITY statement
statement options, 24
CLIQUE statement
statement options, 27
CLOSE-= option
CENTRALITY statement, 25
CLOSENOPATH= option
CENTRALITY statement, 25
CLUSTERINGCOEEF option
CENTRALITY statement, 26
COMMUNITY statement
statement options, 28
CONNECTEDCOMPONENTS option
SUMMARY statement, 38
CONNECTEDCOMPONENTS statement
statement options, 30
CORE statement
statement options, 31
CYCLE statement
statement options, 32

DEGREE-= option
CENTRALITY statement, 26
DIAMETERAPPROX= option
SUMMARY statement, 38
DIGRAPH option
REACH statement, 36

DIRECTION= option

PROC NETWORK statement, 21
DISPLAY statement

NETWORK procedure, 33

EACHSOURCE option

REACH statement, 36
EIGEN= option

CENTRALITY statement, 26
EIGENALGORITHM= option

CENTRALITY statement, 26
EIGENMAXITERS= option

CENTRALITY statement, 26
EXCLUDE option

DISPLAY statement NETWORK), 33
EXCLUDEALL option

DISPLAY statement (NETWORK), 33

FROM-= option
LINKSVAR statement, 35

HUB= option
CENTRALITY statement, 26

INCLUDESELFLINK option

PROC NETWORK statement, 22
INDEXOFFSET= option

PROC NETWORK statement, 22
INFLUENCE-= option

CENTRALITY statement, 27
INTERNALFORMAT= option

COMMUNITY statement, 28

CONNECTEDCOMPONENTS statement, 31

LINKREMOVALRATIO= option

COMMUNITY statement, 28
LINKS= option

PROC NETWORK statement, 22
LINKSVAR statement

statement options, 35
LOGFREQTIME= option

PROC NETWORK statement, 22
LOGLEVEL= option

PROC NETWORK statement, 22

MAXCLIQUES= option
CLIQUE statement, 27

MAXCYCLES= option
CYCLE statement, 32

162 4 Index

MAXITERS= option

COMMUNITY statement, 28
MAXLENGTH= option

CYCLE statement, 32
MAXLINKWEIGHT= option

CYCLE statement, 32
MAXNODEWEIGHT= option

CYCLE statement, 32
MAXPATHWEIGHT= option

SHORTESTPATH statement, 37
MAXREACH-= option

REACH statement, 36
MAXTIME= option

CLIQUE statement, 27

CORE statement, 31

CYCLE statement, 32
MINLENGTH= option

CYCLE statement, 32
MINLINKWEIGHT= option

CYCLE statement, 33
MINNODEWEIGHT= option

CYCLE statement, 33
MODULARITY= option

COMMUNITY statement, 30

NETWORK procedure, 15
NETWORK procedure, DISPLAY statement
CASESENSITIVE option, 33
EXCLUDE option, 33
EXCLUDEALL option, 33
TRACE option, 33
NETWORK procedure, DISPLAYOUT statement
NOREPLACE option, 34
REPEATED option, 34
NODE-= option
NODESSUBSETVAR statement, 36
NODESVAR statement, 35
NODES= option
PROC NETWORK statement, 22
NODESSUBSET= option
PROC NETWORK statement, 23
NODESSUBSETVAR statement
statement options, 35
NODESVAR statement
statement options, 35
NOREPLACE option
DISPLAYOUT statement (NETWORK), 34
NTHREADS= option
PROC NETWORK statement, 23

OUT= option
CLIQUE statement, 27
CYCLE statement, 33
SHORTESTPATH statement, 37

SUMMARY statement, 38

TRANSITIVECLOSURE statement, 39
OUTCOMMLINKS= option

COMMUNITY statement, 29
OUTCOMMUNITY= option

COMMUNITY statement, 29
OUTCOUNTS= option

REACH statement, 36
OUTLEVEL= option

COMMUNITY statement, 29
OUTLINKS= option

PROC NETWORK statement, 23
OUTNODES= option

PROC NETWORK statement, 23
OUTOVERLAP= option

COMMUNITY statement, 29
OUTPATHS= option

SHORTESTPATH statement, 37
OUTREACHLINKS= option

REACH statement, 36
OUTREACHNODES= option

REACH statement, 37
OUTWEIGHTS= option

SHORTESTPATH statement, 37

PROC NETWORK statement
statement options, 21

RANDOMFACTOR= option
COMMUNITY statement, 29
RANDOMSEED-= option
COMMUNITY statement, 29
REACH statement
statement options, 36
REACH= option
NODESSUBSETVAR statement, 36
RECURSIVE (options)
COMMUNITY statement, 29
REPEATED option
DISPLAYOUT statement (NETWORK), 34
RESOLUTIONLIST= option
COMMUNITY statement, 30

SHORTESTPATH statement
statement options, 37
SHORTESTPATH= option
SUMMARY statement, 38
SINK= option
NODESSUBSETVAR statement, 36
SHORTESTPATH statement, 37
SOURCE-= option
NODESSUBSETVAR statement, 36
SHORTESTPATH statement, 37
STANDARDIZEDLABELS option
PROC NETWORK statement, 23

SUMMARY statement
statement options, 38

TIMETYPE= option
PROC NETWORK statement, 23
TO= option
LINKSVAR statement, 35
TOLERANCE-= option
COMMUNITY statement, 30
TRACE option
DISPLAY statement (NETWORK), 33
TRANSITIVECLOSURE statement
statement options, 39

WEIGHT= option
LINKSVAR statement, 35
NODESVAR statement, 35

Index 4 163

Gain Greater Insight into Your
SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

@ support.sas.com/bookstore §Sas
(€ D)

for additional books and resources. THE POWER TO KNOW.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613

	Contents
	Documentation
	Software
	Support Groups

	Introduction
	Overview of the NETWORK Procedure
	About This Book
	Chapter Organization
	Typographical Conventions
	Options Used in Examples

	Where to Turn for More Information
	Online Documentation
	SAS Technical Support Services

	The NETWORK Procedure
	Overview: NETWORK Procedure
	Using CAS Sessions and CAS Engine Librefs
	Loading a SAS Data Set onto a CAS Server

	Getting Started: NETWORK Procedure
	Road Network Shortest Path
	Authority in US Supreme Court Precedent

	Syntax: NETWORK Procedure
	Functional Summary
	PROC NETWORK Statement
	BICONNECTEDCOMPONENTS Statement
	BY Statement
	CENTRALITY Statement
	CLIQUE Statement
	COMMUNITY Statement
	CONNECTEDCOMPONENTS Statement
	CORE Statement
	CYCLE Statement
	DISPLAY Statement
	DISPLAYOUT Statement
	LINKSVAR Statement
	NODESVAR Statement
	NODESSUBSETVAR Statement
	REACH Statement
	SHORTESTPATH Statement
	SUMMARY Statement
	TRANSITIVECLOSURE Statement

	Details: NETWORK Procedure
	Graph Input Data
	Links Input Data
	Nodes Input Data
	Nodes Subset Input Data
	Standardized Labels

	Execution Modes and Data Movement
	Numeric Limitations
	Missing Values
	Negative Link Weights
	Zero Link Weights

	Size Limitations
	Common Notation and Assumptions
	Biconnected Components and Articulation Points
	Biconnected Components of a Simple Undirected Graph

	Centrality
	Degree Centrality
	Influence Centrality
	Clustering Coefficient
	Closeness Centrality
	Betweenness Centrality
	Eigenvector Centrality
	Hub and Authority Scoring

	Clique Enumeration
	Maximal Cliques of a Simple Undirected Graph

	Community Detection
	Memory Requirement
	Graph Direction
	Large Communities
	Output Data Tables
	Community Detection on an Undirected Simple Graph

	Connected Components
	Connected Components of a Simple Undirected Graph
	Connected Components of a Simple Directed Graph

	Core Decomposition
	Core Decomposition of a Simple Undirected Graph

	Cycle Enumeration
	Cycle Enumeration of a Simple Directed Graph

	Reach (Ego) Network
	Output Data Tables
	Reach Network of a Simple Directed Graph
	Processing Multiple Reach Networks in One Pass

	Shortest Path
	Output Data Tables
	Shortest Paths for All Pairs
	Shortest Paths for a Subset of Source-Sink Pairs
	Shortest Paths for a Subset of Source or Sink Pairs
	Shortest Paths for One Source-Sink Pair
	Shortest Paths with Auxiliary Weight Calculation
	Shortest Paths with Negative Link Weights

	Summary Statistics
	Output Data Tables
	Summary Statistics of a Simple Directed Graph
	Summary Statistics of a Simple Undirected Graph

	Transitive Closure
	Transitive Closure of a Simple Directed Graph

	Macro Variable _NETWORK_
	Macro Variable _NETWORK_ Details

	ODS Table Names

	Examples: NETWORK Procedure
	Example 2.1: Articulation Points in a Terrorist Network
	Example 2.2: Influence Centrality for Project Groups in a Research Department
	Example 2.3: Betweenness and Closeness Centrality for Computer Network Topology
	Example 2.4: Betweenness and Closeness Centrality for Project Groups in a Research Department
	Example 2.5: Eigenvector Centrality for Word Sense Disambiguation
	Example 2.6: Community Detection on Zachary's Karate Club Data
	Example 2.7: Recursive Community Detection on Zachary's Karate Club Data
	Example 2.8: Centrality Metrics for a Simple Undirected Graph by Community
	Example 2.9: Transitive Closure for Identification of Circular Dependencies in a Bug Tracking System
	Example 2.10: Connected Components for US Patent Citations
	Example 2.11: Shortest Paths of the New York Road Network

	References

	Index

