
Encryption in SAS® Viya® 3.5: Data
in Motion

Overview . 2
Encryption Coverage . 2
TLS Versions and Cipher Suites Supported . 2
Encryption in a SAS Viya Full Deployment on Linux . 3
Encryption in a SAS Viya Programming-Only Deployment on Linux . 4
Encryption in a SAS Viya Deployment on Windows . 4
Terminology . 4

How To . 5
Harden TLS Security for Your SAS Viya Deployment . 5
Configure and Update TLS and HTTPS . 8
Set Environment Variable to Use FIPS Cryptographic Library (Linux) 73
Configure SAS 9.4 Clients to Work with SAS Viya . 74
Disable and Enable TLS (Linux Full Deployment) . 77
Manage Truststores . 82
Manage Certificates and Generate New Certificates . 91
Renew Security Objects Using Ansible Plays (Linux Deployment) . 101
Use SAS Bootstrap Config CLI on Consul to Manage the KV Store and ACL Tokens . . 104
Secure Credentials in the CAS Server with cas.servicesbaseurl (Linux Full Deployment)

. 107
Manage Tokens, Create JWT Signing Keys, and Update the Encryption Key 109

Concepts . 115
Encryption Overview . 115
Transport Layer Security (TLS) . 116
Certificates Used by TLS and HTTPS . 119
SSH (Secure Shell) . 133
SAS Viya Security-Related Loggers . 135
Encrypting PDF Files Generated by ODS . 135

Reference . 137
SAS System Options for Encryption . 137
SAS Environment Variables for Encryption . 158

CAS TLS Environment Variables . 160
Configuration File Options for Data Transfer . 170

Examples . 174
Use OpenSSL to Create Site-Signed or Third-Party-Signed Certificates in PEM Format

. 174

Troubleshooting TLS . 181
ERROR: 1408A0C1:SSL routines:ssl3_get_client_hello:no shared cipher 181
SSL Error: Invalid subject name in partner's certificate . 182
Reset TLS Trust in the SAS Viya Deployment . 182
VAULT_CERTIFICATE_ISSUED_ERROR: <date> that is beyond the expiration of the CA

certificate . 183

Overview

Encryption Coverage
SAS Viya provides encryption in two contexts:

n Data in motion is data that is being transmitted to another location. Data is most vulnerable
while in transit. Sensitive data in transit should be encrypted. TLS is used as the mechanism to
provide encryption for data in motion. This document covers encrypting data in motion.

Note: All discussion of TLS is also applicable to the predecessor protocol, Secure Sockets Layer
(SSL).

n Data at rest is data stored in databases, file servers, endpoint devices, and various storage
networks. This data can be on-premises, virtual, or in the cloud. This data is usually protected in
conventional ways by access controls. Numerous layers of defense are needed, and encrypting
sensitive data is another layer. See Encryption in SAS Viya: Data at Rest.

TLS Versions and Cipher Suites Supported

IMPORTANT See “Managing Your Software” in SAS Viya for Linux: Deployment Guide and
“Managing Your Software” in SAS Viya for Windows: Deployment Guide for information about
how to keep your software up-to-date and your deployment secure.

SAS Viya supports TLS on the Linux and Windows operating environments. SAS Viya uses Operating
System libraries provided and installed on your operating system to provide encryption. For Linux,
SAS Viya uses the OpenSSL implementation of TLS protocols. For Windows, SAS Viya uses the
Secure Channel (Schannel) Security Service Provider (SSP) implementation of TLS protocols.

2

http://documentation.sas.com/?docsetId=calencryptrest&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0cqdodxtmthw9n16yvgilliunuj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0win&docsetVersion=3.5&docsetTarget=p61010as31914aa4aa1477100195.htm&locale=en

SAS Viya supports the protocol version provided for your operating system and the OpenSSL
libraries installed. Protocols are configurable and various ciphers are available depending on the
version being used.

For Windows, the cipher suites allowed are set in security policy settings. For Linux, the default
ciphers are set using the SSLMODE= system option.

The default minimum protocol recommended by SAS is TLS 1.2. By default, SAS Viya first tries to use
TLS 1.3 ciphers to provide the highest level of security. If your TLS libraries do not support the TLS
1.3 ciphers, SAS Viya tries to use the default TLS 1.2 ciphers.

The supported cipher suites for TLS 1.3 are as follows:

n TLS_AES_128_GCM_SHA256

n TLS_AES_256_GCM_SHA384

n TLS_AES_128_CCM_SHA256

n TLS_AES_128_CCM_8_SHA256

n TLS_CHACHA20_POLY1305_SHA256

SAS Viya first tries to use the following default ciphers for TLS 1.2. However, depending on the
operating system that you are using, SAS Viya might need to use other secure ciphers.

IMPORTANT Clients that do not support newer cipher suites can fail to connect to SAS
Viya. For more information, see “ERROR: 1408A0C1:SSL routines:ssl3_get_client_hello:no
shared cipher”.

The default cipher suites supported for TLS 1.2 are as follows:

n TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

n TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Encryption in a SAS Viya Full Deployment on Linux
In a full deployment of SAS Viya on Linux, almost all external network connections are secured by
default. SAS Viya is deployed with Transport Layer Security (TLS) to secure network connections
and is fully compliant with SAS security standards. You can harden the full Linux deployment by
blocking external connections to port 80, by adding custom certificates on all machines in the
deployment, and by upgrading the security protocol and ciphers that are enabled by default. You can
also configure TLS- encrypted connections between CAS workers and take additional steps to
secure SAS Embedded Process. See “Tasks to Harden Security for Your Linux Full Deployment” on
page 5.

3

https://ciphersuite.info/cs/TLS_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_AES_128_CCM_SHA256
https://ciphersuite.info/cs/TLS_AES_128_CCM_8_SHA256/
https://ciphersuite.info/cs/TLS_CHACHA20_POLY1305_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384/

Encryption in a SAS Viya Programming-Only
Deployment on Linux
In a SAS Viya programming-only deployment, the basic framework for security is included by default,
but is not enabled by default. However, you can harden the deployment and enable TLS by following
the tasks outlined in “Tasks to Harden Security for Your Linux Programming-Only Deployment” on
page 6.

Encryption in a SAS Viya Deployment on Windows
In a Windows deployment, the deployment provides a default level of encryption for data in motion.
You can increase the level of security for the deployment by blocking external connections to port
80, by adding custom certificates on Apache httpd, and by upgrading the security protocol and
ciphers that are enabled by default. You can upgrade to custom certificates on CAS and
SAS/CONNECT. You can also configure TLS encrypted connections between your LDAP provider
and SAS Viya. See “Tasks to Harden Security for Your Windows Deployment” on page 7.

Terminology
Various security strategies are used to maintain data usability and data confidentiality, as well as to
validate the integrity of content. Various encryption, hashing, and encoding algorithms are used by
SAS to protect your data in motion and data at rest. SAS highly recommends using TLS for
protecting data that is exchanged in a networked environment.

encoding
Encoding transforms data into another format using a scheme that is publicly available so that it
can easily be reversed. It does not require a key. The only thing required to decode it is the
algorithm that was used to encode it. PROC PWENCODE, for example, encodes passwords.

encryption
Encryption is a process of protecting data. Encryption transforms data into another format in
such a way that only specific individuals can reverse the transformation. It uses a key that is kept
secret, in conjunction with the plaintext and the algorithm, in order to perform the encryption
operation. As such, the ciphertext, algorithm, and key are all required to return to the plaintext.
Example encryption algorithms are AES and RSA. TLS is an encryption technology.

hashing
Hashes are commonly used to validate passwords without having to store or record the password
itself. Hash algorithms are one-way functions. They turn any amount of data into a fixed-length
"fingerprint" that cannot be reversed. If the input changes by even a tiny bit, the resulting hash is
completely different. When passwords are hashed, only the hash is kept. To verify a password,
you hash the password and check to see whether the password matches the stored hash.
SHA-256 is a hashing algorithm.

4

salting
Salt is data that is used as an additional input to the algorithm that encrypts data. The salt is
randomly generated and is used to increase the difficulty of brute-force decryption attacks on the
data.

How To
This section provides tasks that can be performed to strengthen (harden) the security of your SAS
Viya deployment and tasks that can be performed to use the default security that is provided by the
SAS Viya deployment. There are also tasks that help you manage truststores, generate new
certificates, manage tokens, enable and disable TLS using port families, and more.

SAS recommends that you harden the security of your SAS Viya deployment by completing the tasks
described in “Harden TLS Security for Your SAS Viya Deployment” on page 5.

Harden TLS Security for Your SAS Viya
Deployment
This section provides a roadmap of the tasks that SAS recommends being performed post-
deployment to harden security for your SAS Viya deployment. SAS Viya provides a level of security
during the deployment process that differs depending on the type of deployment (full or
programming-only) and on the platform that you are using (Windows or Linux).

You can choose to enable the default security provided by SAS Viya. However, SAS recommends
that you strengthen security by following the tasks to harden security for your deployment.

Tasks to Harden Security for Your Linux Full Deployment

The SAS Viya deployment on Linux provides default security at deployment. SAS recommends that
the following additional tasks be performed to increase the level of security and secure any points of
entry that are not secured by default.

1 Secure the Apache HTTP Server by adding certificates that conform to the policies at your
enterprise and strengthen the default cryptography.

See “Update Apache HTTP Server TLS Certificates and Cryptography ” on page 8 and “Update
the Default Ciphers and TLS Protocol on the Apache HTTP Server” on page 22.

2 Enforce HTTPS for access to SAS Viya by blocking external connections to port 80 and by
redirecting port 80 to 443 for access through the web browser.

See “Options for Port 80” on page 10.

3 Enable TLS and configure CAS TLS to use your custom certificates. End users can access CAS
from outside the Visual Interfaces, either from a third-party language like Python, Java, or Lua, or
directly starting in SAS 9.4M5. For end-user access, SAS recommends that you use sanctioned

5

certificates for the entry point to CAS and update the private key and server certificate used by
CAS.

See “Configure CAS TLS to Use Custom Certificates (Linux Full Deployment)” on page 24.

4 If you are using SAS/CONNECT to access data from older versions of SAS 9.4, enable TLS for
SAS/CONNECT.

See “Use SAS/CONNECT with TLS Enabled to Import Data” on page 55.

5 Configure and secure the connection from the SAS Viya environment to your LDAP Provider.

See “Encrypt Identity Provider Connections” on page 46.

In addition to the tasks listed above, you can take additional steps to secure SAS Embedded Process
and CAS Inter-node communication. You can enable and disable TLS based on port families using
SAS Environment Manager.

n SAS Embedded Process facilitates transfering data in parallel with a SAS data connector. SAS
Embedded Process is not secure by default. SAS Viya supports TLS encryption between the data
provider (Hadoop, Teradata) and the CAS server, and you can take steps to enable that
encryption. If you are using a SAS data connector to transfer data in parallel, the data that is
transferred between the data provider and the CAS server is not encrypted by default. The
configuration on the CAS side is complete by default.

See “Encrypt Data Transfer When Transferring Data in Parallel with a SAS Data Connector (Linux
Full Deployment)” on page 62.

n SAS CAS inter-node communication is not secured by default. There is a large performance
impact for enabling the CAS inter-node encryption. You can take additional steps to configure
CAS inter-node encryption.

See “Configure CAS Internode TLS (Linux Full Deployment)” on page 43.

n Enable and Disable TLS on a port family basis.

See “Disable and Enable TLS (Linux Full Deployment)” on page 77.

Tasks to Harden Security for Your Linux Programming-Only
Deployment

In a SAS Viya programming-only deployment, the basic framework for security is included by default,
but is not enabled by default. In particular, the SAS Viya deployment provides the following default
framework to secure data in motion.

1 Secure the Apache HTTP Server by adding certificates that conform to the policies at your
enterprise and strengthen the default cryptography. On the Apache HTTP Server (reverse proxy
server), the module called mod_ssl provides TLS support. This module relies on OpenSSL to
provide the cryptography engine.

See “Update Apache HTTP Server TLS Certificates and Cryptography ” on page 8.

2 Enforce HTTPS for access to SAS Viya by blocking external connections to port 80. See Options
for Port 80.

3 Enable TLS support for Object Spawner on page 51.

6

4 Enable TLS and configure CAS TLS to use your custom certificates. End users can access CAS
directly from a third-party language like Python, Java, or Lua, or directly starting in SAS 9.4M5.
For end-user access, SAS recommends that you use your own signed certificates for the entry
point to CAS and update the private key and server certificate used by CAS.

See “Configure CAS TLS to Use Custom Certificates (Linux Programming-Only Deployment)” on
page 30.

5 Enable TLS for SAS/CONNECT.

See “Use SAS/CONNECT with TLS Enabled to Import Data” on page 55.

Tasks to Harden Security for Your Windows Deployment

SAS recommends that you enhance the default security that is applied by the deployment script. As
a best practice, follow these steps as soon as the deployment process has completed:

1 Secure the Apache HTTP Server by adding certificates that conform to the policies at your
enterprise.

See “Update Apache HTTP Server TLS Certificates and Cryptography ” on page 8.

2 Enable TLS for the CAS server.

See “Update Certificates and Configure TLS on CAS” on page 24.

3 Enable TLS support for Object Spawner.

See “Configure SAS Object Spawner to Use TLS and Custom Certificates (Windows)” on page
54.

4 If you are using SAS/CONNECT to access data from older versions of SAS 9.4, enable TLS for
SAS/CONNECT.

See “Use SAS/CONNECT with TLS Enabled to Import Data” on page 55.

5 Enforce HTTPS for access to SAS Viya by blocking external connections to port 80. See Options
for Port 80.

6 If you are using LDAP, encrypt the connections between LDAP servers and the SAS Viya
deployment.

See “Encrypt Identity Provider Connections” on page 46.

7 Prevent administrators from altering the default permissions on subdirectories of Program Files
\SAS\Viya and ProgramData\SAS. Use your preferred network monitoring or security tool to
monitor permissions on subdirectories of Program Files\SAS\Viya and ProgramData\SAS after
the deployment has completed.

7

Configure and Update TLS and HTTPS

IMPORTANT See “Managing Your Software” in SAS Viya for Linux: Deployment Guide for
information about how to apply security hot fixes that keep your SAS Viya deployment
secure.

IMPORTANT When system-wide cryptographic policies are activated in Red Hat Enterprise
Linux 8.x, communications among critical SAS Viya components are prevented. The SAS Viya
generated keys are 2048-bit RSA keys by default. This key size is not compatible with Red Hat
Enterprise Linux 8 cryptographic policy when it is set to FUTURE. For information about how
to resolve this interaction, see “Cryptographic Policies” in SAS Viya for Linux: Deployment
Guide.

Update Apache HTTP Server TLS Certificates and
Cryptography

Overview
The Apache HTTP Server (acting as a reverse proxy server) is the main entry point for end users in a
SAS Viya deployment. Ensuring that TLS certificates are trusted by clients is critical to the SAS Viya
deployment. The TLS trust affects browsers, mobile devices, and REST API clients.

SAS Viya uses an Apache HTTP Server to act as a reverse proxy server to secure your environment.
You can have the SAS Viya deployment provide default-level security. The deployment enables TLS
on connections to the Apache HTTP Server, installs Apache httpd, and provides a self-signed
certificate for use across the deployment.

SAS highly recommends that you replace the default certificates with your own custom certificates
that comply with the security policies at your enterprise. This task can be accomplished pre-
deployment on Linux or post-deployment on Windows and Linux.

CAUTION
SAS Viya self-signed certificates prior to the July 2019 release of SAS Viya are valid for only
one year. In the July 2019 release of SAS Viya, the self-signed certificates provided by SAS Viya have a
seven-year expiration time. Prior to the July 2019 release of SAS Viya, the self-signed certificates expired
in only one year. Contact SAS Technical Support or perform the tasks to update SAS Viya default self-
signed certificate to extend the expiration date. On Linux, see “Update SAS Viya Default Self-Signed
Certificate to Extend the Expiration Date (Linux)”. On Windows, see “Update SAS Viya Default Self-Signed
Certificate to Extend the Expiration Date (Windows)”.

On Windows, the Apache HTTP Server is secured with a self-signed certificate (sas.crt) and a
private key that the SAS Viya deployment process generates. SAS recommends that you enhance

8

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0cqdodxtmthw9n16yvgilliunuj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en

the security by replacing this certificate provided by SAS with a custom certificate that is generated
according to the security standards at your enterprise. See “Replace Self-Signed Certificates with
Custom Certificates (Post-Deployment)” on page 14.

On a Linux deployment, the Ansible playbook can install Apache httpd and mod_ssl automatically.
This option uses default Apache security settings. The installation of mod_ssl creates a private key
and self-signed certificates. These settings are reasonably secure. However, SAS recommends that
you replace the default certificates with your own custom certificates that comply with the security
policies at your enterprise.

On a Linux full deployment, you can replace the certificates pre-deployment or post-deployment.
During the deployment, SAS Viya determines whether the CA certificates installed on the Apache
HTTP Server meet the SAS Security standards. For more details, see “How SAS Viya Determines If
Certificates Meet the SAS Security Standards on an Installed Linux HTTP Server” on page 124.

Whether you replace the certificates on Linux pre-deployment or post-deployment on Linux or
Windows, SAS recommends replacing the certificates before giving end users access to SAS Viya.

By default, HTTPS access to SAS Drive is enabled in a SAS Viya full deployment. The URL to access
SAS Drive after installing Apache httpd and installing SAS Viya is https://reverse-proxy-server/
SASDrive/.

Note: In a programming-only deployment, there is no SAS Drive. SAS Viya end users connect to SAS
Studio and to CAS Server Monitor using Apache HTTP Server.

n For SAS Studio (Basic): http://hostname/SASStudio

n For CAS Server Monitor: http://reverse-proxy-server/cas-shared-default-http/

The Apache HTTP Server is configured with the mod_ssl security module enabled. The mod_ssl
module relies on OpenSSL to provide strong cryptography for the Apache server using TLS
cryptographic protocols. SAS recommends strengthening the default cryptography using the sas-
ssl.conf file on Linux or the httpd-ssl.conf file on Windows. See “Update the Default Ciphers and TLS
Protocol on the Apache HTTP Server” on page 22. You can read more about mod_ssl at Apache TLS
Encryption.

You can strengthen security on the Apache HTTP Server by performing the tasks in this section.
These tasks can be performed at any time after your initial deployment. The task for replacing your
certificates pre-deployment on Linux is the exception.

Apache Httpd That Is Not Deployed by SAS
If you have an Apache server that has httpd configured prior to the SAS Viya deployment, you need
to provide the location on your system that contains the certificates and key files that will be used
for TLS. The HTTPD_CERT_PATH variable in the vars.yml file is set with the location.

To harden your deployment, you will also need to add the following directives to the httpd.conf file.

n On Red Hat Enterprise Linux and equivalent distributions, add the following directives to /etc/
httpd/conf/httpd.conf:

UseCanonicalName On
ServerName http://hostname:port/

n On SUSE Linux Enterprise Server, add the following directives to /etc/apache2/httpd.conf:

UseCanonicalName On

9

https://httpd.apache.org/docs/2.4/ssl/#mod-ssl
https://httpd.apache.org/docs/2.4/ssl/#mod-ssl

ServerName http://hostname:port/

For more details, see UseCanonicalName and ServerName.

Options for Port 80
You do not have to force secure web access or to restrict unsecure web access to port 80 to use that
port securely. Here are a few options to use port 80:

n If you want access to port 80, you do not have to block port 80 or redirect to port 443 (HTTPS).
However, this is an unsecure port.

n If you want access to port 80 using HTTP, you can redirect port 80 to port 443 (HTTPS).

n The most secure method is to block port 80 internally and externally. However, if you block port
80 internally and externally, when you try to access port 80 using HTTP, you will get a
connection refused error message in the browser.

IMPORTANT If you block Port 80 externally, you might need to unblock it before you
perform maintenance activities. For example, when you are upgrading the SAS Viya software
or rerunning the SAS Viya deployment, you need to unblock Port 80 externally.

On the Windows machine where the SAS Viya deployment is installed, SAS recommends that you
block port 80 externally and leave port 443 (HTTPS) open externally to provide the most secure
access to the SAS Viya software. After deployment, port 80 should be open internally. See the
Windows Defender Firewall with Advanced Security documents for information about how to block
and open ports in the Windows Defender Firewall.

On a Linux full deployment, in order to secure web access to your SAS Viya software, you can block
port 80 internally and externally. Port 80 is not required internally to be open for microservices
access. Port 443 (HTTPS) is used for external communications. For your version of Linux, refer to
the Product Documentation for Red Hat Enterprise Linux for information about securing networks
and controlling ports.

For information about enabling ports on Linux and Windows, see “Configure Required Ports” in SAS
Viya for Linux: Deployment Guide and “Required Ports” in SAS Viya for Windows: Deployment Guide.

Secure Consul by Default (Linux Full Deployment)
In a SAS Viya Linux full deployment, Consul is secure by default on port 8501. The HTTP port 8500
is disabled by default. Therefore, Consul communicates only over HTTPS (port 8501). The following
settings are set in the vars.yml file by default:
SECURE_CONSUL: true
DISABLE_CONSUL_HTTP_PORT: true

Note: See “Modify the vars.yml File” in SAS Viya for Linux: Deployment Guide for more details.

Replace Self-Signed Certificates with Custom Certificates (Linux Pre-
Deployment)

Note: The Windows deployment of SAS Viya does not support this pre-deployment task.

10

https://httpd.apache.org/docs/2.4/mod/core.html#usecanonicalname
https://httpd.apache.org/docs/2.4/mod/core.html#servername
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/windows-firewall-with-advanced-security
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1avwv04n69r3fn1jly7cqno71bm.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1avwv04n69r3fn1jly7cqno71bm.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0win&docsetVersion=3.5&docsetTarget=p1c7jq5igk8es3n1wvbe3atayysa.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1knvzbsifo9xqn1al0bh7wxrrkg.htm&locale=en

The SAS Viya deployment can install Apache httpd with mod_ssl and self-signed certificates. These
settings are reasonably secure, but they are not compliant with SAS security standards. SAS
recommends replacing these self-signed certificates with custom certificates that comply with the
security policies at your enterprise.

Note: SAS recommends that you install Apache httpd and replace the self-signed certificates before
you start the deployment process. When you perform this task before installing SAS Viya, the
Ansible playbook used to deploy SAS Viya distributes your custom certificates across the
deployment and adds them to the truststore. This process avoids the brief outage necessary to
replace the certificates after SAS Viya has been deployed.

For information about deploying Apache httpd and default deployment settings, see “Security
Requirements” in SAS Viya for Linux: Deployment Guide

During the deployment, the playbook inspects existing certificates and the CA chain to determine
whether they comply with SAS security requirements. See “How SAS Viya Determines If Certificates
Meet the SAS Security Standards on an Installed Linux HTTP Server” on page 124.

If you do not add compliant certificates and instead keep the default security settings and
certificates provided by Apache, end users see a standard web browser warning message. SAS
recommends replacing the default certificates before giving end users access to SAS Viya. Adding
your own certificates post-deployment requires a brief outage. See “Replace Self-Signed Certificates
with Custom Certificates (Post-Deployment)” on page 14.

To pre-configure Apache httpd, a user must first install httpd and enable the TLS packages (mod_ssl,
a2enmodssl) on the desired machines. Afterward, configure httpd to use the custom certificates.
Lastly, update vars.yml and run the full Ansible playbook as in a regular deployment.

1 Install httpd and enable TLS on the desired machines.

Note: Even though you are advised to follow the instructions in the Ansible documentation,
streamlined instructions are provided here as a convenience. Before performing these
instructions, ensure that they are appropriate for your site and that they comply with the IT
policies in your organization.

a On Red Hat Enterprise Linux and equivalent distributions, enter the following command to
install the httpd service and enable TLS with mod_ssl.

Note: These steps assume that you have sudo access to the machine where you are installing
Ansible.

sudo yum install -y httpd mod_ssl

b On SUSE Linux Enterprise Server, enter the following commands. In this code, apache2 is the
package for installing httpd, and the a2enmod ssl command enables TLS.

zypper update

zypper install apache2

a2enmod ssl

For more information about the zypper commands, see Update from the Command Line with
zypper.

11

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0xe82w9qdy6v3n1rufhrd4kkfai.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0xe82w9qdy6v3n1rufhrd4kkfai.htm&locale=en
https://www.suse.com/documentation/opensuse110/opensuse110_reference/data/sec_zypper.html
https://www.suse.com/documentation/opensuse110/opensuse110_reference/data/sec_zypper.html

c On SUSE Linux Enterprise Server, edit the apache2 file at /etc/sysconfig/apache2. Add
"SSL" as a value to the APACHE_SERVER_FLAGS line.

APACHE_SERVER_FLAGS='SSL'

For more information, see “Install Red Hat Ansible” in SAS Viya for Linux: Deployment Guide.

2 When generating new certificates, provide the following information for the certificate signing
request.

n Provide fixed host names (required by the SAS Viya environment).

n Provide fully qualified domain names (FQDN).

n Provide subject alternative names (SAN), including IP addresses.

n For multi-tenancy, ensure that the certificates contain subject alternate names for each
tenant or use a wildcard for the subdomain. For more information about multi-tenant DNS
naming, see “Additional Requirements for Multi-tenancy” in SAS Viya for Linux: Deployment
Guide. For an example of using OpenSSL to generate a new certificate where wildcards are
specified for multi-tenancy, see the certificate signing request (CSR) conf file at “Create
Certificates with SAN Extension Using OpenSSL” on page 94.

n On Linux, the default server identity certificate is named localhost.crt. It is recommended that
when using your own certificates, that you name your certificate and key files something
other than localhost. In this example, file names customer.crt and customer.key are used.

You can use OpenSSL to create your new private key or to generate a new certificate signing
request (CSR) with a new private key as follows:

openssl genrsa -out /etc/pki/tls/private/web_server_key.pem 2048

openssl req -new -key /etc/pki/tls/private/web_server_key.pem -out /etc/pki/tls/certs/
web_server_csr.pem

3 Create your certificate chain of trust file(s). SAS recommends two ways to create a certificate
chain of trust for Apache httpd. How you create these files determines how the
SSLCertificateFile directive is set in the configuration file. It is important to understand these
recommendations and the problems that can occur if there is not a complete chain of trust.

4 Copy your certificate chain file to the following directory:

n On Red Hat Enterprise Linux and equivalent distributions, place the server certificate
in /etc/pki/tls/certs.

n On SUSE Linux Enterprise Server, place your server certificate in /etc/apache2/ssl.crt.

Note: The certificate file needs to be a Base64 PEM encoded file.

5 Copy your key file to the following locations:

Note: The key file needs to be a Base64 PEM encoded file.

n On Red Hat Enterprise Linux and equivalent distributions, copy the key file to /etc/pki/tls/
private.

n On SUSE Linux Enterprise Server, place your key file in /etc/apache2/ssl.key.

12

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p1puupgtsay2r5n1h6k11n6lpl97.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0xe82w9qdy6v3n1rufhrd4kkfai.htm&docsetTargetAnchor=n0mfva3uqvw78nn14s2deu1um3m1&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0xe82w9qdy6v3n1rufhrd4kkfai.htm&docsetTargetAnchor=n0mfva3uqvw78nn14s2deu1um3m1&locale=en

6 Change the permissions on your certificate file and your chain file to 644. Change permissions on
the key file to 600. Use chmod or sudo commands to change the permissions.

Note: In the following example, the name customer is used for the customer-provided key and
certificate files. Note that you will need a certificate chain file if you are a customer providing
your own certificates. If you are using the self-signed certificates provided by SAS Viya, this file
contains only one certificate file.

chmod 600 customer.key

chmod 644 customer-chain.crt

chmod 644 customer.crt

When you list the files, you see the permissions are Read/Write only for the root account: -rw-r--
r-- for the certificate files and -rw------- for the key file.

7 Update the Apache server certificate and key file directives. Set the directives appropriate for
your version of Apache HTTP Server.

Note: In Apache HTTP Server version 2.4.8, the SSLCertificateFile directive was extended to
load intermediate CA certificates from the server certificate file. This change enables you to use
the SSLCertificateFile directive for chained certificates instead of the SSLCertificateChainFile
directive. See an explanation at SSLCertificateChainFile Directive.

Note: These directives must be specified on one line, without line breaks.

n On Red Hat Enterprise Linux and equivalent distributions, update the ssl.conf file in /etc/
httpd/conf.d to point to your certificates and key.

SSLCertificateFile /etc/pki/tls/certs/customer-chain.crt

SSLCertificateKeyFile /etc/pki/tls/private/customer.key

n On SUSE Linux Enterprise Server, update the ssl-global.conf file in /etc/apache2 to point to
your new certificates and key.

SSLCertificateFile /etc/apache2/ssl.crt/customer-chain.crt

SSLCertificateKeyFile /etc/apache2/ssl.key/customer.key

Also update the vhost-ssl.conf file in /etc/apache2/vhosts.d/. Update the server name and
new certificates and key.

SSLCertificateFile /etc/apache2/ssl.crt/customer-chain.crt

SSLCertificateKeyFile /etc/apache2/ssl.key/customer.key

8 On a Linux deployment, update the value of HTTPD_CERT_PATH in vars.yml file.

Note: Review the information in “Create a Certificate Chain of Trust for Apache HTTPD” on page
125 to ensure that the certificate file that you have provided contains a complete chain of trusted
certificates.

13

https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#SSLCertificateChainFile

a The certificate file should contain the full chain of trusted CA certificates (root and all
intermediate CA certificates) and the server identity certificate. This certificate file is the one
that you specified using the SSLCertificateFile directive.

Set the HTTPD_CERT_PATH value as follows:

HTTPD_CERT_PATH:

b Otherwise, set the HTTPD_CERT_PATH to point to the file that contains the CA certificate
chain of trust (the root CA Certificate and all intermediate CA certificates) as follows:

n On Red Hat Enterprise Linux and equivalent distributions, add the certificate that you used
in the previous step to the vars.yml file.

HTTPD_CERT_PATH: '/etc/pki/tls/certs/customer-chain.crt'

n On SUSE Linux Enterprise Server, add the certificate that you used in the previous step to
the vars.yml file.

HTTPD_CERT_PATH: '/etc/apache2/ssl.crt/customer-chain.crt'

9 On a Linux deployment, run the Ansible playbook to install the SAS Viya deployment. During
deployment, the following occurs:

n New custom certificates are distributed to all hosts in your SAS Viya environment. The
certificates are placed in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/ as file httpproxy-host definition-ca.crt. The host definition value is taken from the
inventory.ini.

n New custom certificates are added to the truststores.

n The Apache HTTP Server certificate is persisted in the SAS Configuration Server, either by
Ansible or by the httpproxy start script, to ensure that the Apache HTTP Server certificate is
added to all truststores.

Note: Because the Apache HTTP Server certificate is persisted in the SAS Configuration
Server, it must be removed when the certificate is changed.

See “Installation” in SAS Viya for Linux: Deployment Guide for details.

Replace Self-Signed Certificates with Custom Certificates (Post-
Deployment)
The SAS Viya deployment on Linux and Windows can install Apache httpd with mod_ssl and Apache
self-signed certificates. These settings are reasonably secure, but they are not compliant with SAS
security standards. SAS recommends replacing the self-signed certificates with custom certificates
that comply with the security policies at your enterprise. SAS also recommends that you upgrade the
security protocol and ciphers on the Apache HTTP Server. For more information, see “Update the
Default Ciphers and TLS Protocol on the Apache HTTP Server” on page 22.

Note: On Linux, SAS recommends that you install Apache httpd and replace the self-signed
certificates before you start the deployment process. When you perform this task before installing
SAS Viya, the Ansible playbook used to deploy SAS Viya distributes your custom certificates and
adds them to the truststore. This process avoids the brief outage necessary to replace the

14

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0phrozjmgc38hn1h9xk6w56745y.htm&locale=en

certificates after SAS Viya has been deployed. See “Replace Self-Signed Certificates with Custom
Certificates (Linux Pre-Deployment)” on page 10.

On a Linux deployment, the playbook inspects certificates and the CA chain on the installed Apache
HTTP Server to determine whether the certificates comply with SAS security requirements. If you do
not add compliant certificates and instead keep the default security settings and certificates
provided by Apache, end users see a standard web browser warning message. SAS recommends
replacing the default certificates before giving end users access to SAS Viya. See “How SAS Viya
Determines If Certificates Meet the SAS Security Standards on an Installed Linux HTTP Server” on
page 124.

On Windows, SAS installs the Apache HTTP Server and provides a SAS self-signed certificate and
key file at deployment. SAS recommends replacing the SAS self-signed certificates before giving end
users access to SAS Viya.

Configure httpd to use your custom certificates.

Note: On Linux, update vars.yml, and run the full Ansible playbook as in a regular deployment.

1 Log on to the Apache HTTP Server.

n Log on to the Linux Apache HTTP Server as a user with root or sudo privileges.

n Open a Windows PowerShell prompt as an Administrator on the Windows Apache HTTP
Server.

2 When generating new certificates, see “Use Best Practices to Create and Manage Certificates” on
page 91.

3 Download your server identity certificate files.

4 Copy your new server certificate file to the following directory:

n On Red Hat Enterprise Linux and equivalent distributions, place the server certificate
in /etc/pki/tls/certs.

n On SUSE Linux Enterprise Server, place your server certificate in /etc/apache2/ssl.crt.

n On Windows, place your server certificate in C:\ProgramData\SAS\Viya\etc
\SASSecurityCertificateFramework\tls\certs

If you are also downloading the root and intermediate certificates, you need to copy the chain file
that includes the root and the intermediate certificates to this location.

Note: The certificate file needs to be a Base64 PEM encoded file.

5 Copy your new key file to the following locations.

Note: The key file needs to be a Base64 PEM encoded file.

n On Red Hat Enterprise Linux and equivalent distributions, copy the key file to /etc/pki/tls/
private.

n On SUSE Linux Enterprise Server, copy the key file to /etc/apache2/ssl.key.

15

n On Windows, place the key file in C:\ProgramData\SAS\Viya\etc
\SASSecurityCertificateFramework\private\.

6 On Linux, change the permissions on your certificate file and your chain file to 644. Change the
permissions on the key file to 600. Use chmod or sudo commands to change the permissions.

Note: In the following example, the name customer-chain is used for the newly created
certificate file and customer for the newly created key file.

chmod 600 customer.key

chmod 644 customer-chain.crt

When you list the files, you see the permissions are Read/Write only for the root account:
-rw-r--r-- for the certificate files and -rw------- for the key file.

7 Update the Apache server certificate and key file directives. Set the directives that are
appropriate for your version of Apache HTTP Server.

Note: In Apache HTTP Server version 2.4.8, the SSLCertificateFile directive was extended to
load intermediate CA certificates from the server certificate file. This change enables you to use
the SSLCertificateFile directive for chained certificates instead of the SSLCertificateChainFile
directive. See an explanation at SSLCertificateChainFile Directive.

Note: These directives must be specified on one line, without line breaks.

n On Red Hat Enterprise Linux and equivalent distributions, update the ssl.conf file in /etc/
httpd/conf.d to point to your new certificates and key.

SSLCertificateFile /etc/pki/tls/certs/customer-chain.crt

SSLCertificateKeyFile /etc/pki/tls/private/customer.key

n On SUSE Linux Enterprise Server, update the following files to point to the updated
certificates and key.

Note: These directives must be specified on one line, without line breaks.

1 Update the ssl-global.conf file in /etc/apache2 to point to your new certificates and key.

SSLCertificateFile /etc/apache2/ssl.crt/customer-chain.crt

SSLCertificateKeyFile /etc/apache2/ssl.key/customer.key

2 Also update the vhost-ssl.conf file in /etc/apache2/vhosts.d/. Update the server name
and new certificates and key.

SSLCertificateFile /etc/apache2/ssl.crt/customer-chain.crt

SSLCertificateKeyFile /etc/apache2/ssl.key/customer.key

3 Edit the apache2 file at /etc/sysconfig. Add "SSL" as a value to the
APACHE_SERVER_FLAGS=.

APACHE_SERVER_FLAGS='SSL'

16

https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#SSLCertificateChainFile

n On Windows, update the httpd-ssl.conf file in C:\ProgramData\SAS\Viya\etc\httpd\conf
\extra to point to your new certificates and key.

Note: These directives must be specified on one line, without line breaks.

SSLCertificateFile C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\tls\certs
\customer-chain.crt

SSLCertificateKeyFile C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\private
\customer.key

8 Restart the sas-viya-httpproxy service. A restart of sas-httpproxy updates the certificates stored
in Consul. If a certificate has been removed from the chain, it is removed from Consul
automatically when restarting the SAS Viya httpproxy service.

How you run the following command depends on your operating system.

Note: On a Linux multiple-machine deployment, there is an important sequence to follow for
starting and stopping SAS Viya servers and services. See “General Servers and Services: Operate
(Linux)” in SAS Viya Administration: General Servers and Services.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-httpproxy-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-httpproxy-default restart

n On Windows, restart the SAS HTTP Proxy Server using the Services snap-in in the Microsoft
Management Console. See “Start and Stop a Specific Server or Service” in SAS Viya
Administration: General Servers and Services.

9 Restart Apache HTTP Server.

sudo apachectl restart

10 On a Linux deployment, update the value of HTTPD_CERT_PATH in the vars.yml file to point to
the new custom CA certificate chain.

Note: Review the information in “Create a Certificate Chain of Trust for Apache HTTPD” on page
125 to ensure that the certificate file that you have provided contains a complete chain of trusted
certificates.

Set the HTTPD_CERT_PATH to point to the file that contains the CA certificate chain of trust
(the root CA certificate and all intermediate CA certificates) as follows.

Note: If you have more than one CAS controller, you must update this information about each of
your CAS controllers.

n On Red Hat Enterprise Linux and equivalent distributions, add the certificate that you used in
the previous step to the vars.yml file.

HTTPD_CERT_PATH: '/etc/pki/tls/certs/customer-chain.crt'

17

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03035viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03035viyainfrsrvs00000admin&locale=en

n On SUSE Linux Enterprise Server, add the certificate that you used in the previous step to the
vars.yml file.

HTTPD_CERT_PATH: '/etc/apache2/ssl.crt/customer-chain.crt'

11 (Optional) Add your site-signed or self-signed certificates to the truststores based on your
deployment type.

Note: This step needs to be executed only when the certificates being used are site-signed or
self-signed certificates. Publicly trusted certificates (for example, certificates signed by DigiCert
or GlobalSign) are already in the trusted bundle of CA certificates.

n In a Linux full deployment, you can run the distribute-httpd-certs.yml Ansible play to
distribute the certificate to the CA Certificate directory and rebuild the truststores. On the
Ansible controller machine and for every inventory file that you maintain, run the distribute-
httpd-certs.yml play located in the /viya/sas_viya_playbook directory.

ansible-playbook -i inventory.ini utility/distribute-httpd-certs.yml

To distribute the certificates to the second CAS controller, run the distribute-httpd-certs.yml
play for the added CAS controller. In this example, the second inventory file is named
inventory_addcas.ini.

ansible-playbook -i inventory_addcas.ini utility/distribute-httpd-certs.yml -
e"@vars_addcas.yml"

This play adds your new custom certificate to /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts. The play distributes copies of the certificate
file to all machines with a name of httpproxy-inventory name-ca.crt. The play then rebuilds
the trustedcerts.pem and trustedcerts.jks files and includes the CA certificates from
customer.crt in the trustedcerts.pem and trustedcerts.jks files on every machine in the
deployment.

n In a Linux programming-only deployment, update the SAS Truststore manually on page 88.

n On Windows, add the CA root certificate and intermediate certificates to the SAS Viya
truststores (trustedcerts.pem and trustedcerts.jks). To add the certificates to the truststore,
see “Add Certificates to or Remove Certificates from the SAS Viya Truststore Manually” on
page 88.

Add the CA root certificate and all of the intermediate certificates to the Windows
certificates stores. Import the CA certificates into the Windows Trusted Root Certification
Authorities local machine store. See “Import CA Certificates into the Windows Trusted Root
Certificate Authorities Store” on page 85.

12 (Optional) Restart all services on all machines only if you have added certificates to the
truststore.

Note: On a Linux multiple-machine deployment, there is a sequence for starting and stopping
SAS Viya servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

n On Linux, stop and then start all servers using the following commands:

sudo /etc/init.d/sas-viya-all-services stop

sudo /etc/init.d/sas-viya-all-services start

18

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

n On Windows, stop and then start all services (SAS Services Manager) using the Microsoft
Management Console (MMC) Services snap-in. See “Start and Stop All Servers and Services”
in SAS Viya Administration: General Servers and Services.

Update SAS Viya Default Self-Signed Certificate to Extend the Expiration
Date (Linux)
SAS highly recommends that you replace the default certificates that were provided by SAS Viya
with your own custom certificates that comply with the security policies at your enterprise either
pre-deployment or post-deployment. A best practice is to update these certificates immediately
after deploying SAS Viya. See “Replace Self-Signed Certificates with Custom Certificates (Linux Pre-
Deployment)” on page 10 and “Replace Self-Signed Certificates with Custom Certificates (Post-
Deployment)” on page 14.

If you are upgrading your deployment from an earlier version of SAS Viya, you might need to extend
the expiration date on the self-signed certificate that is provided by SAS. Perform the following
tasks to renew this certificate before it expires.

CAUTION
SAS Viya self-signed certificates prior to the July 2019 release of SAS Viya are valid for only
one year. In the July 2019 release of SAS Viya, the self-signed certificates provided by SAS Viya have a
seven-year expiration time. Prior to the July 2019 release of SAS Viya, the self-signed certificates expired
in only one year. Use the following instructions or contact SAS Technical Support to renew the self-signed
certificates before they expire.

1 You can check the expiration date of the certificate using the following OpenSSL command:

openssl x509 -noout -in /etc/pki/tls/certs/localhost.crt -enddate

2 Update the SAS Viya provided self-signed certificate to extend the certificate expiration date to
seven years.

Execute the following command with the force option:

/opt/sas/viya/home/bin/replace_httpd_default_cert.sh --force

3 The updated certificate replaces the existing certificate named localhost. This certificate is
located as follows:

n On Red Hat Enterprise Linux and equivalent distributions, the localhost certificate is
in /etc/pki/tls/certs/localhost.crt.

n On SUSE Linux Enterprise Server, the localhost certificate is in /etc/apache2/ssl.crt/
locahost.crt.

4 Restart the sas-viya-httpproxy service. In a SAS Viya full deployment, a restart of sas-viya-
httpproxy also updates the certificates stored in Consul. If a certificate has been removed from
the certificate chain, it is removed from Consul automatically when restarting the sas-viya-
httpproxy service.

How you run the following command depends on your operating system as follows.

Note: On a Linux multiple-machine deployment, there is an important sequence to follow for
starting and stopping SAS Viya servers and services. See “General Servers and Services: Operate
(Linux)” in SAS Viya Administration: General Servers and Services.

19

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03036viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03036viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-httpproxy-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-httpproxy-default restart

5 Restart HTTPD as follows:

sudo apachectl restart

6 Add the certificates to the truststores based on your deployment type.

n In a Linux full deployment, you can run the distribute-httpd-certs.yml Ansible play to
distribute the certificate to the CA Certificate directory and rebuild the truststores. On the
Ansible controller machine and for every inventory file that you maintain, run the distribute-
httpd-certs.yml play located in the /viya/sas_viya_playbook directory.

ansible-playbook -i inventory.ini utility/distribute-httpd-certs.yml

To distribute the certificates to the second CAS controller, run the distribute-httpd-certs.yml
play for the added CAS controller. In this example, the second inventory file is named
inventory_addcas.ini.

ansible-playbook -i inventory_addcas.ini utility/distribute-httpd-certs.yml -e
"@vars_addcas.yml"

This play adds your new custom certificate to /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts. The play distributes copies of the certificate
file to all machines with a name of httpproxy-inventory name-ca.crt. The play then rebuilds
the trustedcerts.pem and trustedcerts.jks files and includes the CA certificates from
customer.crt in the trustedcerts.pem and trustedcerts.jks file on every machine in the
deployment.

n In a Linux programming-only deployment, update the SAS Truststore manually on page 88.

7 Restart all services on all machines.

Note: On a Linux multiple-machine deployment, there is a sequence for starting and stopping
SAS Viya servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

n Otherwise, stop and then start all servers using the following commands:

sudo /etc/init.d/sas-viya-all-services stop

sudo /etc/init.d/sas-viya-all-services start

8 Remove the expired locahost.crt certificate from the SAS Viya truststores.

n For a Linux full deployment, see “Remove Certificates from the Truststores (Linux Full
Deployment)” on page 83.

n On a Linux programming-only deployment, see “Add Certificates to or Remove Certificates
from the SAS Viya Truststore Manually” on page 88.

9 On any client that connects to the deployment and who performs a TLS handshake, if the expired
self-signed certificate was imported into the client truststore, remove it and import the new
certificate.

20

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

Update SAS Viya Default Self-Signed Certificate to Extend the Expiration
Date (Windows)
SAS highly recommends that you replace the default certificates that were provided by SAS Viya
with your own custom certificates that comply with the security policies at your enterprise either
pre-deployment or post-deployment. A best practice is to update these certificates immediately
after deploying SAS Viya. See “Replace Self-Signed Certificates with Custom Certificates (Linux Pre-
Deployment)” on page 10 and “Replace Self-Signed Certificates with Custom Certificates (Post-
Deployment)” on page 14.

If you are upgrading your deployment from an earlier version of SAS Viya, you might need to extend
the expiration date on the self-signed certificate that is provided by SAS. Perform the following
tasks to renew this certificate before it expires to extend the certificate expiration date to seven
years.

CAUTION
SAS Viya self-signed certificates prior to the July 2019 release of SAS Viya are valid for only
one year. In the July 2019 release of SAS Viya, the self-signed certificates provided by SAS Viya have a
seven-year expiration time. Prior to the July 2019 release of SAS Viya, the self-signed certificates expired
in only one year. Use the following instructions or contact SAS Technical Support to renew the self-signed
certificates before they expire.

1 You can check the expiration date of the certificate using the following OpenSSL command:

"C:\Program Files\SAS\Viya\httpd\bin\openssl" x509 -noout -in C:\ProgramData\SAS\Viya\etc
\SASSecurityCertificateFramework\tls\certs\localhost.crt -enddate

2 Locate the sas.key and sas_encrypted.key files.

Cd C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\private

Rename sas.key to sas.key.orig and sas_encrypted.key to sas_encrypted.orig.

3 Create a copy of certframe.ps1 and name it certframe_Copy.ps1. This file can be found in
C:\Program Files\SAS\Viya\Utilities\DeploymentTools\library\SasConfiguration
\Functions or wherever you unzipped your SAS_Viya_deployment_script.zip file.

4 Use Windows PowerShell Integrated Scripting Environment (ISE) to edit certframe_Copy.ps1. You
must use the ISE option and not one of the command-line PowerShell options.

For more information, see How to Write and Run Scripts in the Windows PowerShell ISE.

a From the Windows Powershell ISE window, click File and Open and navigate to the following
directory: C:\Program Files\SAS\Viya\Utilities\DeploymentTools\library
\SasConfiguration\Functions or wherever you unzipped your
SAS_Viya_deployment_script.zip file.

b Select the certframe_Copy.ps1 file to open it.

c Append the following lines of code to the bottom of the file.

$installDir = "C:\Program Files\SAS\Viya"
$programDataConfigDir = "C:\ProgramData\SAS\Viya"
$product = "SASSecurityCertificateFramework"
$productInstallDir = Join-Path $installDir $product
$productConfigDir = Join-Path $programDataConfigDir (Join-Path 'etc' $product)

21

https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/ise/how-to-write-and-run-scripts-in-the-windows-powershell-ise?view=powershell-7.1

$privateDir = Join-Path $productConfigDir 'private'
$cacertsDir = Join-Path $productConfigDir 'cacerts'
$tlsDir = Join-Path $productConfigDir 'tls'
$binDir = Join-Path $productInstallDir 'bin'
$sasCryptoManagement = Join-Path $binDir 'sas-crypto-management.exe'
GenCerts

d Click File and Save.

e Run the certframe_Copy.ps1 script. Click Run Script or the green right arrow to run the script.

5 Restart all services on all machines.

Stop and then start all services (SAS Services Manager) using the Microsoft Management
Console (MMC) Services snap-in. See “Start and Stop All Servers and Services” in SAS Viya
Administration: General Servers and Services.

6 Remove the expired locahost.crt certificate from the SAS Viya truststores.

See “Add Certificates to or Remove Certificates from the SAS Viya Truststore Manually” on page
88.

7 On any client that connects to the deployment and that performs a TLS handshake, if the expired
self-signed certificate was imported to the client truststore, remove it and import the new
certificate. See “Import CA Certificates into the Windows Trusted Root Certificate Authorities
Store” on page 85.

Update the Default Ciphers and TLS Protocol on the Apache HTTP Server
In the SAS Viya deployment, the Apache HTTP Server is configured with the mod_ssl security
module enabled. The mod_ssl module provides strong cryptography for the Apache server using TLS
cryptographic protocols. You can read more about what mod_ssl does at Apache SSL/TLS
Encryption.

SAS recommends that you update your Apache HTTP Server to not only use your own custom
certificates, but to also upgrade the security protocol and ciphers being used by default. See “TLS
Versions and Cipher Suites Supported”.

The ciphers and TLS version can be updated by editing the sas-ssl.conf file on Linux or the httpd-
ssl.conf file on Windows.

1 Locate the sas-ssl.conf file and the ssl.conf file on Linux.

Note: On Windows, the same changes as shown below for Linux are already populated to the
Apache HTTP Server. Therefore, there is nothing else that needs to be done. Windows customers
can still look at applying their own configuration in the httpd.conf and the httpd-ssl.conf files.

n On RHEL and equivalent distributions of Linux, the ssl.conf file is located here.

/etc/httpd/conf.d/

The sas-ssl.conf file is located here.

/opt/sas/viya/config/etc/httpd/conf.d/

n On SUSE Linux Enterprise Server 12.x, ssl.conf and sas-ssl.conf are located here.

/etc/apache2/conf.d

22

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03036viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03036viyainfrsrvs00000admin&locale=en
https://httpd.apache.org/docs/2.4/ssl/#mod-ssl
https://httpd.apache.org/docs/2.4/ssl/#mod-ssl

n On Windows, the httpd-ssl.conf file is located here.

C:\ProgramData\SAS\Viya\etc\httpd\conf\extra\

On Windows, the httpd.conf file is located here.

C:\ProgramData\SAS\Viya\etc\httpd\conf

2 On Linux, edit the sas-ssl.conf file. If you do not find the sas-ssl.conf file, create your own sas-
ssl.conf file that includes the following example code.

Note: On Windows, the same changes as shown below for Linux are already populated to the
Apache HTTP Server.

Header set Strict-Transport-Security 'max-age=31536000'
SSLProtocol TLSv1.2
SSLHonorCipherOrder On
The SSLCipherSuite variable and the cipher values must be placed
on one line and must not contain line breaks.
SSLCipherSuite ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:
ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:

3 On Linux, edit the ssl.conf file to include the sas-ssl.conf file. In the ssl.conf file,locate the
<VirtualHost_default_:443> block of code. Just before the </VirtualHost> line, add the
following line of code:

n On RHEL and equivalent distributions, edit the ssl.conf file and include the location of the
sas-ssl.conf file.

Include /opt/sas/viya/config/etc/httpd/conf.d/sas-ssl.conf

n On SUSE Linux Enterprise Server 12.x, edit the ssl.conf file and include the location of the sas-
ssl.conf file.

Include /etc/apache2/conf.d/sas-ssl.conf

On Windows, in the httpd.conf, file, you should see code that includes httpd-ssl.conf. In the
httpd-ssl.conf file, near the end of the file, locate comment "#Secure (SSL/TLS) connections".
Ensure that the following Include statement exists and is uncommented.

Include C:\ProgramData\SAS\Viya\etc\httpd\conf\extra\httpd-ssl.conf

4 Restart the Apache HTTPD server on Linux .

Note: On a Linux multiple-machine deployment, there is an important sequence to follow for
starting and stopping SAS Viya servers and services. See “General Servers and Services: Operate
(Linux)” in SAS Viya Administration: General Servers and Services.

n On Linux deployments:

sudo apachectl restart

n On Windows, restart the SAS HTTP Proxy Server using the Services snap-in in the Microsoft
Management Console. See “Start and Stop a Specific Server or Service” in SAS Viya
Administration: General Servers and Services.

23

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03035viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03035viyainfrsrvs00000admin&locale=en

Update Certificates and Configure TLS on CAS

Configure CAS TLS to Use Custom Certificates (Linux Full Deployment)

Note: The following instructions are for adding custom certificates to a SAS Viya full deployment.

By default, in a full deployment of SAS Viya, SAS Secrets Manager issues certificates and keys that
are used to secure the deployment. These certificates issued by SAS Secrets Manager are provided
for each CAS machine and are added to the Mozilla bundle of trusted CA certificates by default.

Table 1 Security Certificates and Keys Provided for CAS in a SAS Viya Full Deployment

Security
Artifact

Default
Certificate and
Key Files Location

Permissions/
User Access Description

Trusted CA
certificates

trustedcerts.pem

trustedcerts.jks

/opt/sas/viya/
config/etc/
SASSecurityCertifi
cateFramework/
cacerts

This file should
be world
readable (for
example, 644 or
-rw-r--r--.)

CA certificates issued
by SAS Secrets
Manager. The trusted
list of CA certificates
includes the Mozilla
bundle of trusted CA
certificates, the root
CA certificates issued
by SAS Secrets
Manager, the Apache
httpd certificates, and
the chain of trust
certificates.

Certificate file sas_encrypted.crt /opt/sas/viya/
config/etc/
SASSecurityCertifi
cateFramework/tls
/certs/cas/shared/
default

For multi-tenancy,
the file is located
in /opt/sas/viya/
config/etc/
SASSecurityCertifi
cateFramework/tls
/certs/cas/
<tenant-id>/default

This file should
be world
readable (for
example, 644 or
-rw-r--r--.)

The file should
be owned by the
CAS service
account. In
multi-tenant
environments
this is the tenant
admin user.

Certificates issued by
SAS Secrets Manager.
This file contains the
CAS server certificate.

Private key file sas_encrypted.ke
y

/opt/sas/viya/
config/etc/

This file should
be world

Encrypted key file
issued by SAS Secrets

24

Security
Artifact

Default
Certificate and
Key Files Location

Permissions/
User Access Description

SASSecurityCertifi
cateFramework/
private/cas/
shared/default

For multi-tenancy,
the file location
is /opt/sas/viya/
config/etc/
SASSecurityCertifi
cateFramework/
private/cas/tenant-
id/default

readable (for
example, 644 or
-rw-r--r--.)

The file should
be owned by the
CAS service
account. In
multi-tenant
environments
this is the tenant
admin user.

Manager. This key is
the CAS server
private key.

Certificate
private key
passphrase file

encryption.key
(optional)

/opt/sas/viya/
config/etc/
SASSecurityCertifi
cateFramework/
private/cas/
shared/default

For multi-tenancy,
the file location
is /opt/sas/viya/
config/etc/
SASSecurityCertifi
cateFramework/
private/cas/
<tenant-id>/default

This file has
permission 600
-rw-----.

The file needs to
be readable by
the CAS service
account user. In
multi-tenant
environments
this is the tenant
admin user.

Only service
account users
should be
allowed to read
the passphrase.

The CAS server
private key password
file. If you are
replacing the
certificate and key
files provided by SAS
Viya with your own
custom files, it is
highly recommended
that you encrypt your
key file and provide a
passphrase to protect
the file that contains
the key.

You can use your own custom certificates instead of the certificates provided by SAS. Best practices
for managing certificates and securing your private keys should be followed. See “Use Best Practices
to Create and Manage Certificates” on page 91.

The following instructions are provided to configure TLS for the CAS client with your own custom
certificates. In a full deployment of SAS Viya, because the SAS Configuration Server (Consul)
handles most configuration tasks, you need to configure Consul as well as the CAS controllers to
enable CAS client TLS.

1 Add certificates to the SAS Viya truststore. See “Add Certificates to the Truststore (Linux Full
Deployment)” on page 82.

2 To configure TLS between the CAS client and CAS controllers, perform the following steps on the
primary and secondary CAS controllers. If you are also using the same custom certificates on the
worker nodes, perform the following steps to add the certificates, encrypted key files, and the
passphrase-protected key file to the worker nodes.

25

Note: Do not name your custom certificates and key files the same names as the default
certificate and key files (sas_encrypted.crt, sas_encrypted.key, encryption.key). The default
certificates and keys are renewed every time the primary controller is restarted. Therefore, the
custom certificate and key files are overwritten if they are stored using the same names as the
defaults.

a Log on to the CAS controller machine as a user with root or sudo privileges.

b If you have a CAS session running, stop the CAS server.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise
Server 12.x:

sudo systemctl status stop sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default stop

c Place your custom certificate in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/shared/default. The certificate file
provided by SAS Viya is named sas_encrypted.crt. Do not overwrite this file. Add your
certificate to the directory with a unique name. In our example, we named the file
customer.crt.

Note: Intermediate certificates need to be added to the server identity certificate in a
certificate chain. The file needs to include the server identity certificate first, and then the
signing intermediate CA certificates in the order in which they were signed. The root CA does
not need to be included in this chain file.

Note: Ensure that your certificate files have file system permissions 644: -rw-r--r--. Also,
ensure that the file has appropriate file system ownership and permissions for the cas service
account. For more information, see “User and Group Requirements” in SAS Viya for Linux:
Deployment Guide.

d Protect your certificate private key file with a passphrase. In this example, the key file is
named customer.key. We use OpenSSL to encrypt the customer.key file and name the
encrypted version customer_encrypted.key. The default key file provided by SAS is named
encryption.key. Do not overwrite the encryption.key file.

Place your encrypted private key file in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/shared/default. For multi-tenancy, see
Table 1 on page 24.

1 Use the following OpenSSL command to password-protect the file named customer.key
file:

openssl rsa -aes128 -in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
private/cas/shared/default/customer.key -out /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/shared/default/customer_encrypted.key -
passout pass:password

26

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en

2 Ensure that your files have file system permissions 644: -rw-r--r--. Also, ensure that the
file has appropriate file system ownership and permissions for the cas service account. Use
chmod to change the permissions.

Note: For multi-tenancy, the file should be owned by the tenant admin user, not the CAS
service account.

chmod 644 customer_encrypted.key

e Create a customer-supplied certificate private key passphrase file. Place the private key
passphrase file in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
private/cas/shared/default. For multi-tenancy, see Table 1 on page 24.

Use the echo command to create the private key passphrase file. In this example, the private
key passphrase file name is customer_encrypted.encryption.key. The user needs to be the CAS
service account. See “User and Group Requirements” in SAS Viya for Linux: Deployment Guide.

sudo bash -c 'echo -n 'password' > customer_encrypted.encryption.key'

sudo chown cas:sas customer_encrypted.encryption.key

sudo chmod 0600 customer_encrypted.encryption.key

f You can remove the original customer.key file. You now have an encrypted key file
(customer_encrypted.key) and passphrase-protected key file
(customer_encrypted.encryption.key).

g Configure CAS to use the customer-supplied certificates and key.

1 On every CAS controller (the primary controller and secondary controller, as well as CAS
worker nodes if you have enabled CAS Internode TLS) in your deployment, edit the
node_usermods.lua file. The node_usermods.lua file is located by default in /opt/sas/
viya/config/etc/cas/default. For multi-tenancy, the node_usermods.lua file is located
by default in /opt/sas/<tenant-id>/config/etc/cas/default.

Note: Configuration changes that should apply only to specific CAS nodes must be set in
node_usermods.lua on that host. For information about when to use the various configuration
files, see “Configuration File Options” in SAS Viya Administration: SAS Cloud Analytic Services.

2 Change the required CAS_CLIENT_SSL environment variables. Specify the names of your
custom certificate (customer.crt), the custom encrypted certificate private key file
(customer_encrypted.key), and the customer-supplied certificate private key passphrase
file (customer_encrypted.encryption.key). As a best practice, use the same names on the
primary and secondary controllers for the certificate and key files.

For multi-tenancy, see Table 1 on page 24.

Note: Ensure that the permissions on the node_usermods.lua file are readable only by the
CAS service account (-r--------).

env.CAS_CLIENT_SSL_REQUIRED=true
env.CAS_CLIENT_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/shared/default/customer.crt'
env.CAS_CLIENT_SSL_KEY='/opt/sas/viya/config/etc/

27

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&docsetTargetAnchor=n08001viyaservers000000admin&locale=en

SASSecurityCertificateFramework/private/cas/shared/default/customer_encrypted.key'
env.CAS_CLIENT_SSL_KEYPWLOC = '/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/shared/default/
customer_encrypted.encryption.key'

When setting the CAS client environment variables, consider the following information.

Note: See “Modify the vars.yml File” in SAS Viya for Linux: Deployment Guide for more
details.

n If you are using an intermediate CA certificate, then a certificate chain file needs to be
specified for the CAS_CLIENT_SSL_CERT= environment variable. The file needs to
include the server identity certificate first, and then the signing intermediate CA
certificates in the order in which they were signed. The root CA does not need to be
included in this chain file.

n If you are using your own custom certificate and key, you should copy the changes
made to CAS_CLIENT_SSL_CERT= and CAS_CLIENT_SSL_KEY= environment variables
to the vars.yml file. This change ensures that your settings are not changed when
upgrades are made to the deployment.

n If you are setting the CAS_CLIENT_SSL_REQUIRED= environment variable to true, you
should copy the change made to this environment variable to the vars.yml file. This
change ensures that your settings are not changed when upgrades are made to the
deployment.

h Start the cascontroller service on the primary controller. How you run the following command
depends on your operating system.

For multi-tenant environments, use the following commands.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise
Server 12.x:

sudo systemctl start sas-<tenant-id>-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-<tenant-id>-cascontroller-default start

Otherwise, use the following commands.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise
Server 12.x:

sudo systemctl start sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default start

3 Add the root certificate and any intermediate certificates that might have been used to sign the
identity/server certificate to the truststore on the client. This is necessary because each CAS
client must be able to trust the server certificate. In SAS Viya deployments, the file that contains
these certificates is the trustedcerts.pem file located at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.

For the various clients, the following are considerations for clients connecting to TLS-enabled
CAS.

28

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1knvzbsifo9xqn1al0bh7wxrrkg.htm&locale=en

n In a SAS Viya full deployment, the CA certificate files that CAS is using can be found in the
vault-ca.crt file or the trustedcerts.pem file, located at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts. The vault-ca.crt file contains two certificates
issued by SAS Secrets Manager: the SAS Viya root CA certificate and the SAS Viya
intermediate CA certificate. The trustedcerts files contain the trusted CA certificates and the
intermediate certificates.

n If your Python, SWAT, and Lua clients are Linux clients, you need to export the
CAS_CLIENT_SSL_CA_LIST environment variable and point to a PEM file that contains the
root CA certificate for the deployment. This file can be the vault-ca.crt or the
trustedcerts.pem file provided by the SAS Viya deployment. In the following example, we are
using the vault-ca.crt file:

export CAS_CLIENT_SSL_CA_LIST= '/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/vault-ca.crt'

n On Linux, if the root CA is already in the OpenSSL trusted certificate store, most clients
should work without having to set the CAS_CLIENT_SSL_CA_LIST= environment variable.

n On Linux, if the root CA is not in the OpenSSL trusted certificate store, set the
CAS_CLIENT_SSL_CA_LIST= environment variable to point to the location of your certificate
chain. Root CA certificates at a minimum are needed in the certificate chain. You can use the
vault-ca.crt or the trustedcerts.pem files. For example, use the following command:

export CAS_CLIENT_SSL_CA_LIST='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.pem'

n The SAS Workspace Server and the SAS Compute Server are configured by default to use the
trusted CA certificates that SAS Viya provides in the SASASSecurityCertificateFramework
directory.

export CAS_CLIENT_SSL_CA_LIST= '/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/trustedcerts.pem'

n For SAS client-side connections on Linux, SAS should automatically find the trustedcerts.pem
file that is located in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts either through the SAS Workspace Server or SAS Compute Server EXPORT
statement or the SSLCALISTLOC= system option that is set during installation.

n On a Windows client, before you can import the certificates from the vault-ca.crt file or the
trustedcerts.pem files, you must create files that contain only one CA certificate each. The
Windows certificate store allows only one certificate at a time to be imported. Because the
vault-ca.crt file contains only two CA files, it is easier to split out the two CA certificates into
their own files.

Use a text editor to cut and paste each certificate into its own unique CA certificate file, one
file that contains the SAS Viya root CA certificate, and another file that contains the
intermediate CA certificate. Each certificate in the vault-ca.crt file is denoted with a -----
BEGIN CERTIFICATE----- and an -----END CERTIFICATE----- pair. Include the -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- header and footer in each of the two
new files.

Save these two files on your Windows machine and then add those certificate files to the
Windows CA store. You need to import the root certificate first and then the intermediate
certificate. See “Import CA Certificates into the Windows Trusted Root Certificate Authorities
Store” on page 85.

n For SAS 9.4 client-side connections, see “Configure SAS 9.4 Clients to Work with SAS Viya” on
page 74.“Configure SAS 9.4 Clients to Work with SAS Viya” on page 58.

29

Configure CAS TLS to Use Custom Certificates (Linux Programming-Only
Deployment)

Note: The following instructions are for adding custom certificates and configuring CAS to use these
in a SAS Viya programming-only deployment.

CAS supports encrypted connections between the server and clients. Use TLS to secure
communications between the server and clients. The certificates used for client server
communication need to be signed by a certificate authority (CA) that is trusted by all potential
clients.

The SAS Viya programming-only deployment provides self-signed certificates and keys at
installation that can be used to configure and secure the deployment. These SAS Viya self-signed
certificates are provided for each CAS machine in the deployment and are added to the trust store by
default in a SAS Viya programming-only deployment. These SAS Viya default certificates are listed
in Table 3 on page 36.

You can use the self-signed certificates provided by the SAS Viya deployment as described in
“Configure CAS TLS to Use SAS Viya Default Certificates (Linux Programming-Only Deployment)”
on page 36. However, SAS recommends that you provide your own custom certificates and
configure the SAS Viya deployment to use them.

Here is an overview of the types of custom certificates that you will need to provide to configure
CAS on a Linux programming-only deployment.

1 To configure SAS Cloud Analytic Services (CAS) to use custom certificates, you will need server
and intermediate CA signed certificates (to create the chain of trust) and key files for the CAS
controller. The following certificate and key files are needed.

n A private key protected with a password in Base-64 PEM encoded format. Because the
private key file needs to be accessible to anyone running a CAS session, the key file should be
protected with a password.

n A signed server certificate in Base-64 PEM encoded format. If the Certificate Authority that
signed the server certificate is an intermediary, the CA signed intermediate certificate should
be added to the server certificate to form a certificate chain. These are added to the same
certificate file.

Note: This certificate file should have the file extension of .crt.

n A private key password file. This password file contains the password of the private key in
plain text. Therefore, the password file needs to have access controls that allow only the CAS
Service account to access the file.

2 You will need the root CA certificate for this Linux programming-only deployment. The root CA
certificate will be added to the following:

n The root CA certificate needs to be added to the SAS Viya truststores. This action ensures
that all components in the SAS Viya environment can trust the server certificate presented by
SAS Cloud Analytic Services.

n The root CA certificate needs to be provided to CAS clients. Clients include SAS 9.4M5 clients
that can directly access CAS, SWAT (Java, R, Lua), Python, and REST clients.

30

Note: In the certificate, the hostname used when connecting to CAS must match the
hostname in the certificate.

Table 2 Custom Security Certificates and Keys needed for CAS in SAS Viya Programming-Only
Deployment

Security
Artifact

Customer-
Provided
Security files Location

Permissions/
User Access Description

Trusted
CA
certificate
s

trustedcerts.pem

trustedcerts.jks

/opt/sas/viya/
config/etc/
SASSecurityCer
tificateFramew
ork/cacerts

This file
should be
world readable
(for example,
644 or
-rw-r--r--).

Contains the trusted list of CA
certificates. The trusted list of CA
certificates includes the Mozilla
bundle of trusted CA certificates,
the root CA certificates issued by
SAS Viya, the Apache httpd
certificates, and the chain of trust
certificates.

Add customer-provided CA
signed certificates to trustedcerts
files.

IMPORTANT Do not remove
these files. Add CA certificates to
the trustedcerts files.

Certificat
e or
certificate
chain file

Customer-
provided server
certificate file or
chain certificate
file (for example,
customer_encrypt
ed.crt).

/opt/sas/viya/
config/etc/
SASSecurityCer
tificateFramew
ork/tls/certs

This file
should be
world readable
(for example,
644 or
-rw-r--r--).

Add the customer-provided
server certificate to this directory.

Intermediate certificates need to
be added to the server certificate
in a certificate chain file. The file
needs to include the server
certificate first, and then the
intermediate CA certificates used
to sign the server certificates.
These certificates need to be
added in the order in which they
were signed.

The root CA does not need to be
included in this chain file.

Certificat
e private
key file

Customer-
provided key file
(for example,
customer_encrypt
ed.key).

/opt/sas/viya/
config/etc/
SASSecurityCer
tificateFramew
ork/private

This file
should be
world readable
(for example,
644 or
-rw-r--r--).

Add the customer-provided
encrypted key file to this
directory.

Certificat
e private
key

Customer-
provided private
key passphrase

/opt/sas/viya/
config/etc/
SASSecurityCer

This file needs
to have
permission

When you provide customer
certificate and key files, it is
highly recommended that you

31

Security
Artifact

Customer-
Provided
Security files Location

Permissions/
User Access Description

passphras
e file

file (for example,
customer_encrypt
ion.key).
(Optional)

tificateFramew
ork/private

640 -rw-r-----
prior to
starting the
CAS server
using TLS.

This file needs
to be readable
by the CAS
service
account user
(cas:sas).

encrypt your key file and provide
a passphrase to protect the file
that contains the key.

Note: Ensure that the files have appropriate file system ownership and permissions for CAS ADMIN
user. For more information, see “User and Group Requirements” in SAS Viya for Linux: Deployment
Guide.

To configure TLS between the CAS client and server using your custom certificates, perform the
following steps on the primary and secondary CAS controllers.

Note: Do not name your custom certificates and key files the same names as the default certificate
and key files (sas_encrypted.crt, sas_encrypted.key, encryption.key).

1 Log on to the CAS controller machine as a user with root or sudo privileges.

2 If you have a CAS session running, stop the CAS server.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl status stop sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default stop

3 On the CAS Controller, place your custom certificate (signed server certificate) in /opt/sas/
viya/config/etc/SASSecurityCertificateFramework/tls/certs. The certificate file provided
by SAS Viya is named sas_encrypted.crt. Do not overwrite this file. Add your certificate to the
directory with a unique name. In our example, we named the file customer.crt.

Note: Intermediate certificates need to be added to the server certificate file to create a
certificate chain. The file needs to include the server identity certificate first, then the signing
intermediate CA certificates in the order in which they were signed. The root CA does not need to
be included in this chain file.

4 Protect your certificate private key file with a passphrase. In this example, the key file is named
customer.key. We use OpenSSL to encrypt the customer.key file and name the encrypted version

32

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en

customer_encrypted.key. The default key file provided by SAS Viya is named sas_encrypted.key.
Do not overwrite the sas_encrypted.key file.

Place your encrypted private key file in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private.

a Use the following OpenSSL command to password-protect the file named customer.key file.

openssl rsa -aes128 -in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
customer.key -out /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
customer_encrypted.key -passout pass:password

b Ensure that your encrypted key file has file system permissions 644: -rw-r--r--. Also, ensure
that the file has appropriate file system ownership and permissions for the CAS ADMIN user.
Use chmod to change the permissions:

chmod 644 customer_encrypted.key

5 Create a customer-supplied certificate private key passphrase file. Place the private key
passphrase file in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private.

Use the echo command to create the private key passphrase file. In this example, the private key
passphrase filename is customer_encrypted.encryption.key. The user needs to be the cas service
account. See “User and Group Requirements” in SAS Viya for Linux: Deployment Guide.

sudo bash -c 'echo -n 'password' > customer_encrypted.encryption.key'
sudo chown cas:sas customer_encrypted.encryption.key
sudo chmod 0640 customer_encrypted.encryption.key
sudo cat customer_encrypted.encryption.key;
echo password

6 You can remove the original customer.key file. You now have an encrypted key file
(customer_encrypted.key) and passphrase-protected key file
(customer_encrypted.encryption.key).

7 Update the trust store.

n If your CA certificate is not already included in the Mozilla bundle of CA certificates, append
the root certificate to the trustedcerts files in the /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/ directory.

Note: Add your root certificate to the trustedcerts.pem and trustedcerts.jks files on every
machine in the deployment.

o To add the root certificate to the trustedcerts.pem file, just include the root certificate at
the end of the trustedcerts.pem file.

o To add the root certificate to the trustedcerts.jks file, you need to import the file using a
keytool command.

See “Add Certificates to or Remove Certificates from the SAS Viya Truststore Manually” on
page 88 for information about adding your certificates to the truststore.

Note: Do not delete the trustedcerts files.

33

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en

8 Configure CAS to use the customer-supplied certificates and key by editing the
casconfig_usermods.lua file or the node_usermods.lua file. Configuration changes that should
apply only to specific CAS nodes must be set in node_usermods.lua on that host. For CAS REST
port (8777), edit the casconfig_usermods.lua file. For information about when to use the various
configuration files, see “Configuration File Options” in SAS Viya Administration: SAS Cloud
Analytic Services.

The node_usermods.lua file is located by default in /opt/sas/viya/config/etc/cas/default.

Change the required CAS_CLIENT_SSL environment variables. Specify the names of your custom
certificate (customer.crt), the custom encrypted certificate private key file
(customer_encrypted.key), and the customer-supplied certificate private key passphrase file
(customer_encrypted.encryption.key). As a best practice, use the same names on the primary and
secondary controllers for the certificate and key files.

The following environment variables are set for the CAS binary port 5570 in the
node_usermods.lua file. Add this information to every CAS controller (primary controller and
secondary controller, as well as CAS worker nodes if you have CAS Internode TLS enabled) in
your deployment.

env.CAS_CLIENT_SSL_REQUIRED=true
env.CAS_CLIENT_SSL_CERT='/opt/sas/viya/config/etc/SASSecurityCertificateFramework/tls/
certs/customer.crt'
env.CAS_CLIENT_SSL_KEY='/opt/sas/viya/config/etc/SASSecurityCertificateFramework
/private/customer_encrypted.key'
env.CAS_CLIENT_SSL_KEYPWLOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/
customer_encrypted.encryption.key'

The following environment variables are set for the CAS REST port 8777. Set the following
environment variables to look for the certificates in the same location on every node. Add this
information to every CAS controller (primary controller and secondary controller, as well as CAS
worker nodes if you have CAS Internode TLS enabled) in your deployment.

env.CAS_USE_HTTPS_ALL = 'true'
env.CAS_CERTLOC='/opt/sas/viya/config/etc/SASSecurityCertificateFramework/tls/certs/
customer.crt'
env.CAS_PVTKEYLOC='/opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
customer_encrypted.key'
env.CAS_PVTKEYPASSLOC='/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
private/
customer_encrypted.encryption.key'

When setting the CAS client environment variables, consider the following information.

Note: See “Modify the vars.yml File” in SAS Viya for Linux: Deployment Guide for more details.

n If you are using an intermediate CA certificate, a certificate chain file needs to be specified for
the CAS_CLIENT_SSL_CERT= environment variable. The file needs to include the server
identity certificate first, and then the signing intermediate CA certificates in the order in which
they were signed. The root CA does not need to be included in this chain file.

n If you are using your own custom certificate and key, you should copy the changes made to
CAS_CLIENT_SSL_CERT= and CAS_CLIENT_SSL_KEY= environment variables to the vars.yml
file. This change ensures that your settings are not changed when upgrades are made to the
deployment.

34

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&docsetTargetAnchor=n08001viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&docsetTargetAnchor=n08001viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1knvzbsifo9xqn1al0bh7wxrrkg.htm&locale=en

n If you are setting the CAS_CLIENT_SSL_REQUIRED= environment variable to true, you
should copy the change made to this environment variable to the vars.yml file. This change
ensures that your settings are not changed when upgrades are made to the deployment.

9 Restart the cascontroller service on the primary controller. How you run the following command
depends on your operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default restart

10 Each CAS client must be able to trust the server certificate. Therefore, the client needs to add the
root certificate and any intermediate certificates that might have been used to sign the identity/
server certificate to the truststore on the client. In SAS Viya deployments, the file that contains
these certificates is the trustedcerts.pem file located at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.

For the various clients, you also need to set the following environment variables:

n On Linux, the SAS Workspace Server and the SAS Compute Server are configured by default
to use the trusted CA certificates that SAS Viya provides in the
SASASSecurityCertificateFramework directory. In the sasenv_local file, the following
environment variable is set:

export CAS_CLIENT_SSL_CA_LIST='/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/trustedcerts.pem'

n On Linux, open programming clients using the SWAT package (Python, Lua, R) require that the
CAS_CLIENT_SSL_CA_LIST= environment variable be set. This environment variable points to
a Base-64 PEM encoded text file containing the root CA certificate. Specify a path to the
certificate that is a local path. The certificate is copied from the server.

Note: If the root CA is already in the trusted certificate store, open programming clients using
the SWAT package (Python, Lua, R) should work without having to set the
CAS_CLIENT_SSL_CA_LIST= environment variable.

n Otherwise, on Linux, set the CAS_CLIENT_SSL_CA_LIST= environment variable to point to the
location of your certificate chain. Root CA certificates at a minimum are needed in the
certificate chain.

export CAS_CLIENT_SSL_CA_LIST="/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/trustedcerts.pem"

n On Windows clients connecting to a Linux programming-only deployment, you need the root
CA certificate (at minimum) from the SAS Viya deployment. From the SAS Viya deployment,
copy the signing certificate to the Windows client machine and import that certificate into the
Windows Certificate store. See Adding certificates to the Trusted Root Certification
Authorities store for a local computer.

n For SAS 9.4 client-side connections, see “Configure SAS 9.4 Clients to Work with SAS Viya” on
page 74.

35

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754841(v=ws.11)#BKMK_managelocal
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754841(v=ws.11)#BKMK_managelocal

Configure CAS TLS to Use SAS Viya Default Certificates (Linux
Programming-Only Deployment)
Use TLS to secure communications between the CAS server and clients on Linux. The certificate
used for client and server communication needs to be signed by a certificate authority (CA) that is
trusted by all potential clients.

At installation, SAS Viya provides self-signed certificates that can be used to secure the
deployment. You can use these certificates and activate TLS security. However, SAS recommends
that you provide your own custom certificates to configure CAS client TLS. See “Configure CAS TLS
to Use Custom Certificates (Linux Programming-Only Deployment)” on page 30.

Here are the certificates that are added to the CAS machines in a SAS Viya programming-only
deployment. Before completing the task of turning on TLS using the following security artifacts,
ensure that files sas_encrypted.crt, sas_encrypted.key, and encryption.key have the proper
permissions and user access shown in Table 3 on page 36.

Table 3 Security Certificates and Keys for CAS in a Programming-Only SAS Viya Deployment

Security
Artifact

Deployment File
Name Location

Permissions/
User Access Description

Certificate
truststore

trustedcerts.pem

trustedcerts.jks

/opt/sas/viya/
config/etc/
SASSecurityCertific
ateFramework/
cacerts/

This file should
be world
readable (for
example, 644 or
-rw-r--r--).

Contains the trusted list
of CA certificates.
These include the
Mozilla bundle of
trusted CA certificates,
the SAS Viya self-
signed certificates, the
Apache httpd
certificates, and the
chain of trust
certificates.

Certificate
file

sas_encrypted.crt /opt/sas/viya/
config/etc/
SASSecurityCertific
ateFramework/tls/
certs/

This file should
be world
readable (for
example, 644 or
-rw-r--r--).

Certificates issued by
SAS Viya. Contains the
SAS Viya self-signed
certificates.

Certificate
private key
file

sas_encrypted.ke
y

/opt/sas/viya/
config/etc/
SASSecurityCertific
ateFramework/
private

This file should
be world
readable (for
example, 644 or
-rw-r--r--).

The key file issued by
SAS Viya. Contains the
private key generated
by SAS Viya.

Certificate
private key
passphras
e file

encryption.key
(optional)

/opt/sas/viya/
config/etc/
SASSecurityCertific
ateFramework/
private

This file needs
to have
permission 640
-rw-r----- set
prior to starting

Contains the encrypted
passphrase file provided
by SAS Viya.

36

Security
Artifact

Deployment File
Name Location

Permissions/
User Access Description

the CAS server
using TLS.

This file needs
to be readable
by the CAS
service account
user (cas:sas) or
the SAS account
can have group
Read
permissions
(sas:sas).

Only service
account users
should be
allowed to read
the passphrase.

Note: Ensure that the files have appropriate file system ownership and permissions for the CAS
ADMIN user. For more information, see “User and Group Requirements” in SAS Viya for Linux:
Deployment Guide.

Perform the following tasks to use the SAS Viya self-signed certificates that are provided at
installation and enable TLS between the CAS servers and CAS client.

1 Log on to the CAS controller machine as a user with root or sudo privileges.

2 If you have a CAS session running, stop the CAS server.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl status stop sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default stop

3 Add certificates to the truststore.

4 Configure CAS to use the certificates and key by editing the casconfig_usermods.lua file.
Configuration changes that should apply only to specific CAS nodes must be set in
node_usermods.lua on that host. For information about when to use the various configuration
files, see “Configuration File Options” in SAS Viya Administration: SAS Cloud Analytic Services.

On every CAS controller (the primary controller and secondary controller, as well as CAS worker
nodes if you have CAS Internode TLS enabled) in your deployment, edit the node_usermods.lua
file. The node_usermods.lua file is located by default in /opt/sas/viya/config/etc/cas/
default.

37

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&docsetTargetAnchor=n08001viyaservers000000admin&locale=en

Turn on TLS for the CAS client on port 5570. Set the CAS_CLIENT_SSL_REQUIRED= environment
variable to true. The other environment variables are already set to point to the self-signed
certificates and keys that were provided at installation.

env.CAS_CLIENT_SSL_REQUIRED = true
env.CAS_CLIENT_SSL_CERT = '/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/sas_encrypted.crt'
env.CAS_CLIENT_SSL_KEY = '/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/sas_encrypted.key'
env.CAS_CLIENT_SSL_KEYPWLOC = '/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/encryption.key'

Note: By default, SAS Viya self-signed certificates are generated using the fully qualified domain
name for the Common Name. Make sure that the CAS host name in programs submitted to CAS
match the Common Name used in the SAS Viya self-signed certificates.

Note: If you are setting the CAS_CLIENT_SSL_REQUIRED= environment variable to true, you
should copy the change made to this environment variable to the vars.yml file. This change
ensures that your settings are not changed when upgrades are made to the deployment. See
“Modify the vars.yml File” in SAS Viya for Linux: Deployment Guide for more details.

5 Set the permissions and user access for the encryption.key file before starting the CAS server
that is using TLS. The encryption.key file needs to have permission 640 -rw-r-----and be readable
by the CAS service account user (cas:sas). The SAS account with group read permissions
(sas:sas) can also be used. Only service account users should be allowed to read the passphrase.

Ensure that files sas_encrypted.crt, sas_encrypted.key, and encryption.key have the proper
permissions and user access shown in Table 3 on page 36.

6 Restart the cascontroller service on each controller and node. How you run the following
command depends on your operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default restart

7 Each CAS client must be able to trust the server certificate. Therefore, the client needs to add the
root certificate and any intermediate certificates that might have been used to sign the identity/
server certificate to the truststore on the client. In SAS Viya deployments, the file that contains
these certificates is the trustedcerts.pem file located at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.

Other considerations for configuring CAS to use the self-signed certificates provided by SAS Viya
are as follows:

n On Linux, open programming clients using the SWAT package (Python, Lua, R) require that the
CAS_CLIENT_SSL_CA_LIST= environment variable be set. This environment variable points to
a Base-64 PEM encoded text file containing the root CA certificate. Specify a path to the
certificate that is a local path. The certificate is copied from the server.

38

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1knvzbsifo9xqn1al0bh7wxrrkg.htm&locale=en

Note: If the root CA is already in the trusted certificate store, open programming clients using
the SWAT package (Python, Lua, R) should work without having to set the
CAS_CLIENT_SSL_CA_LIST= environment variable.

n In SAS Viya, the workspace server exports the trustedcerts.pem file by default.

n Otherwise on Linux, set the CAS_CLIENT_SSL_CA_LIST= environment variable to point to the
location of your certificate chain. Root CA certificates at a minimum are needed in the
certificate chain.

export CAS_CLIENT_SSL_CA_LIST='/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/trustedcerts.pem'

Note: For SAS client-side connections, SAS Viya should automatically find the
trustedcerts.pem file that is located in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts through the workspace server EXPORT
statement.

n On Windows clients connecting to a Linux programming-only deployment, you need the root
CA certificate (at minimum) from the SAS Viya deployment. From the SAS Viya deployment,
copy the signing certificate to the Windows client machine and import that certificate into the
Windows Certificate store. See Adding certificates to the Trusted Root Certification
Authorities store for a local computer.

n For SAS 9.4 client-side connections, see “Configure SAS 9.4 Clients to Work with SAS Viya” on
page 74.

Configure CAS TLS to Use SAS Viya Default Certificates (Windows)
Use TLS to secure communications between the CAS server and clients on Windows. The certificate
used for client and server communication needs to be signed by a certificate authority (CA) that is
trusted by all potential clients.

At installation, SAS Viya provides self-signed certificates that can be used to secure the
deployment. You can use these certificates and activate TLS security. However, SAS recommends
that you provide your own custom certificates to configure CAS client TLS. See “Configure CAS TLS
to Use Custom Certificates (Windows)” on page 41.

Here are the certificates that are added to the CAS machines in a SAS Viya Windows deployment.

Table 4 Security Artifacts Provided at Installation for SAS Viya Windows Deployment

Security Artifact Deployment File Name Location Description

Certificate truststore trustedcerts.pem

trustedcerts.jks

C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\cacerts
\

Contains the trusted list
of CA certificates. These
include the Mozilla
bundle of trusted CA
certificates, the SAS
Viya self-signed
certificates, the Apache
httpd certificates, and

39

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754841(v=ws.11)#BKMK_managelocal
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754841(v=ws.11)#BKMK_managelocal

Security Artifact Deployment File Name Location Description

the chain of trust
certificates.

Certificate file sas_encrypted.crt C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\tls
\certs

Contains the certificate
generated by SAS Viya.
These are self-signed
certificates.

Certificate private key
file

sas_encrypted.key C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\private

Contains the private key
generated by SAS.

Certificate private key
passphrase file

encryption.key
(optional)

C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\private

Contains the encrypted
passphrase file provided
by SAS Viya.

To use the SAS Viya self-signed certificates that are provided at installation, perform the following
tasks:

1 Open a Windows PowerShell prompt as an Administrator.

2 Change to directory C:\Program Files\SAS\Viya\SASFoundation\utilities\bin.

3 Run the Enable-CAS-TLS.ps1 PowerShell script. This script reads the certificate serial number,
the certificate thumbprint, and the certificate issuer of the sas_encrypted.crt certificate provided
by SAS. It then creates a temporary .pfx file and imports that file into the Windows Certificate
store on the Local machine.

From the PowerShell prompt, enter the following command:

.\Enable-CAS-TLS.ps1

Observe the output of the PowerShell script. Confirm that no errors are printed.

This script also turns on TLS for the CAS client on port 5570, setting the
CAS_CLIENT_SSL_REQUIRED= environment variable to true in the casconfig.lua file.

Note: By default, SAS Viya self-signed certificates are generated using the fully qualified domain
name for the Common Name. Make sure that the CAS host name in programs submitted to CAS
match the Common Name used in the SAS Viya self-signed certificates.

4 Restart CAS using the Services snap-in in the Microsoft Management Console. Restart SAS
Cloud Analytic Services. See “Operate (Windows)” in SAS Viya Administration: SAS Cloud
Analytic Services.

5 Copy the trustedcerts.pem and trustedcerts.jks from your Windows deployment to a client
machine. You need these certificates on your client machine to create a chain of trust between
client and the SAS Viya deployment on Windows.

40

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en

Client considerations when configuring CAS to use the self-signed certificates provided in SAS
Viya deployment on Windows are as follows:

n For client-side connections from Linux (Lua, Python), you need the root CA certificate from
the SAS Viya Windows deployment on the Linux client.

n For client-side connections from a Windows client, you need the root CA certificate from the
SAS Viya Windows deployment on the Windows client. From the SAS Viya Windows
deployment, copy the SAS Viya provided root CA certificate (sas_encrypted.crt) to your
client. Then import your CA certificate into your Windows certificate store. See Import your
CA certificate into the Windows Trusted Root Certification Authorities store on page 85.

Configure CAS TLS to Use Custom Certificates (Windows)
CAS supports TLS encrypted connections between the server and the clients. The certificate used
for client server communication needs to be signed by a certificate authority (CA) that is trusted by
all potential clients.

The SAS Viya deployment provides certificates and keys at installation that secure the deployment.
SAS Viya also adds self-signed certificates created for each CAS machine in the deployment to the
Mozilla bundle of trusted certificates.

You can use the default self-signed certificates provided by the SAS Viya deployment (shown in
Table 4 on page 39). However, SAS recommends that you provide and configure your own custom
certificates

The following instructions are provided to configure TLS for CAS in order for a client to access CAS
directly using their own custom certificates. These instructions show how to configure your
Windows deployment to use your own custom certificates instead of the certificates provided by
SAS Viya.

Your custom certificates need to be in a PFX file that contains the following:

n A private key is embedded in the PFX file.

n The private key within the PFX file is protected with a password.

n The PFX file contains all certificates in the certification path (the PFX file contains the
certificates that make up the CA chain).

n Your certificates need to follow best practices for creating and managing certificates on page 91.

You can generate your own custom certificates using OpenSSL and Keytool. See “Manage
Certificates and Generate New Certificates” on page 91 for some basic instructions.

To configure TLS between the CAS client and SAS Viya server, perform the following steps.

1 Log on to the SAS Viya Windows machine as an administrator.

2 On the SAS Viya Windows desktop, search for the Command Prompt app.

a In the Search Windows box, type Command Prompt .

b From the list of apps displayed, Right-click on Command Prompt Desktop App.

Select Run as administrator.

3 Set the path where the OpenSSL executable lives. If you are using an OpenSSL.conf file, set the
path to that file.

41

C:\>set PATH=%PATH%;
'C:\Program Files\SAS\Viya\SASSecurityCertificateFramework\bin'
C:\>set OPENSSL_CONF=C:\Program Files\SAS\Viya\httpd\conf\openssl.cnf

4 Verify that OpenSSL can inspect your custom certificate that is in PFX format by using the
following command. This is the file that you will import into the Windows truststore. If you
password-protected this certificate file, you will be asked to provide the password.

C:\>openssl.exe pkcs12 -info -in customerCert.pfx

Note: You set the PATH variable in an earlier step to the path where the OpenSSL executable
resides. This certificate file contains the custom certificate and the private key.

5 Extract the CA certificates from the PFX file and create a temporary PEM file. This is the file that
you will import into the Windows truststore. If you password-protected this certificate file, you
will be asked to provide the password.

C:\>openssl.exe pkcs12 -in customerCert.pfx -out customerCA.pem -cacerts -nokeys

Note: The certificate file provided by SAS Viya is named sas_encrypted.crt. Do not overwrite this
file. Add your certificate to the directory with a unique name. In our example, we named the file
customerCA.crt.

6 Extract the client certificate from the PFX file and create a temporary PEM file. If you password-
protected this certificate file, you will be asked to provide the password.

C:\>openssl.exe pkcs12 -in customerCert.pfx -out customerClient.pem -clcerts -nokeys

7 Add the CA root certificate (customerCa.pem) and intermediate certificates
(customerClient.pem) to the truststores (trustedcerts.pem and trustedcerts.jks). To add the
certificates to the truststore, see “Add Certificates to or Remove Certificates from the SAS Viya
Truststore Manually” on page 88.

8 Verify that your certificates are valid.

9 Import the client certificate into the Windows Personal local machine store. See “Import the
Client Certificate into the Windows Personal Machine Store” on page 87.

10 Grant Read permission to authenticated users who will need Read access to the client
certificate's private key. see “Grant Read Permission to Authenticated Users for the Client
Certificate's Private Key” on page 88.

11 Import the CA certificates into the Windows Trusted Root Certification Authorities local machine
store. See “Import CA Certificates into the Windows Trusted Root Certificate Authorities Store”
on page 85.

12 You need to extract information from the client certificate that can be used for environment
variables specified in the casconfig_usermods.lua file. From the client certificate, you will need
the serial number and the issuer of the certificate.

From the command prompt where you are running as an administrator, run the following
commands and note the output.

Note: For information about running as an administrator, see Step 2 on page 41.

42

a Print the serial number of the client certificate.

C:\>openssl.exe x509 -in customerClient.pem -serial -noout

Note the value of serial= in the output. Save that numerical value for use with environment
variable CAS_CLIENT_SSL_CERTSERIAL.

b Print the issuer of the client certificate.

C:\>openssl.exe x509 -in customerClient.pem -issuer -noout

Note the issuer of the certificate. For example, if issuer= /DC=com/DC=Company/CN=Company
SHA2 Issuing CA02, you will need the value of CN=, which is Company SHA2 Issuing CA02.
Save that value for use with environment variable CAS_CLIENT_SSL_CERTISS.

13 Edit casconfig_usermods.lua. This file is found in C:\ProgramData\SAS\Viya\etc\cas\default

a Use a text editor to edit casconfig_usermods.lua.

b Add the following environment variables and their values to the end of the file.

Note: The values for CAS_CLIENT_SSL_CERTSERIAL and CAS_CLIENT_SSL_CERTISS were
retrieved in were retrieved in Step 12 on page 42.

env.CAS_CLIENT_SSL_REQUIRED=true
env.CAS_CLIENT_SSL_CERTSERIAL='190000AB8122B4DEC1D0AD1A7800000000AB57'
env.CAS_CLIENT_SSL_CERTISS='Company SHA2 Issuing CA02'

14 You can now remove the temporary files that you created named customerCA.pem and
customerClient.pem.

15 Restart all of the SAS Viya services using the Services snap-in in the Microsoft Management
Console. Wait for all of the services to stop before starting all of the services again. See “Start
and Stop All Servers and Services” in SAS Viya Administration: General Servers and Services.

16 Programming clients (Python, Lua, Java, SAS) that connect directly to CAS on TCP port 5570
must now trust the CA that was used to issue the client certificate that you just configured CAS
to use.

Client considerations when configuring CAS to use the customer-provided certificates in a SAS
Viya deployment on Windows are as follows:

n For client-side connections from Linux, you need the root CA certificate from the SAS Viya
Windows deployment on the Linux client.

n For client-side connections from a Windows Client, you need the root CA certificate from the
SAS Viya Windows deployment on the Windows client. From the SAS Viya Windows
deployment, copy the signing certificate to the Windows client machine and import that
certificate into the Windows Certificate store. See Adding certificates to the Trusted Root
Certification Authorities store for a local computer.

Configure CAS Internode TLS (Linux Full Deployment)

Note: The following instructions are for configuring internode TLS in a SAS Viya full deployment.

43

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03036viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n03034viyainfrsrvs00000admin.htm&docsetTargetAnchor=n03036viyainfrsrvs00000admin&locale=en
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754841(v=ws.11)#BKMK_managelocal
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc754841(v=ws.11)#BKMK_managelocal

CAS supports TLS encrypted connections between the worker nodes. When configured, any data
sent between worker nodes is sent over a TLS connection. The CAS internode communication is not
secured by default. This is due to the large performance impact of enabling CAS internode
encryption.

Items of note when configuring CAS internode TLS are as follows:

n There is a significant performance impact to using internode encryption

n The TLS certificates and private keys are deployed by default.

n On the CAS controller node, the env.CAS_INTERNODE_DATA_SSL is set to FALSE by default.
This option is set originally in the /opt/sas/viya/config/etc/cas/default/
casconfig_deployment.lua file.

CAUTION
Encryption has performance costs. Encryption will degrade your performance and increase the
amount of CPU time that is required to complete any action. Actions that move large amounts of data are
penalized the most. Session start-up time is also impacted negatively. On tests that move large blocks of
data between nodes, elapsed times can increase by a factor of ten.

Configure CAS internode encryption using the SAS Bootstrap Config CLI on SAS Configuration
Server (Consul).

1 Turn on CAS internode TLS.

Note: The following commands should be run as a root or sudo user.

First, set the Consul access token in the CONSUL_HTTP_TOKEN environment variable. This
command needs to be performed before executing any utilities or services that might access
Consul.

. /opt/sas/viya/config/consul.conf

export CONSUL_HTTP_TOKEN=$(sudo cat /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token)

Use SAS Bootstrap Config CLI to turn on CAS Internode TLS.

Note: The SAS Bootstrap Config CLI must establish trust for the TLS handshake to proceed and
allow secure communication. To establish trust, the truststore must be specified as an
environment variable. Sourcing the consul.conf file sets the SSL_CERT_FILE environment variable
to the trusted certificates. After this trust is established, you can communicate using the SAS
Bootstrap Config CLI.

. /opt/sas/viya/config/consul.conf

/opt/sas/viya/home/bin/sas-bootstrap-config kv write --force config/cas-shared-default/
sas.security/network.casInternode.enabled true

2 Restart the cascontroller service on each controller and node. How you run the following
command depends on your operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-cascontroller-default

44

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default restart

To validate that CAS is using internode encryption, access SAS Environment Manager and verify that
the CAS_INTERNODE_SSL environment variables are set.

1 From the applications menu (), under Administration , select Manage Environment.

2 From the side menu, click .

Note: The tasks described in this section are performed from the Servers page and most can be
performed only by SAS Administrators.

3 You can view CAS server configuration values and identify how they are set. Click .

4 Make sure that the Nodes tab is selected. Click . The following CAS internode environment
variables should be set as follows if you are using the certificates provided by SAS Viya.

Environment Variable Value

CAS_INTERNODE_DATA_SSL TRUE

CAS_INTERNODE_SSL_CERT /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/
certs/cas/sharted/default/sas_encrypted.crt

CAS_INTERNODE_SSL_KEY /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/
private/cas/sharted/default/
sas_encrypted.key

CAS_INTERNODE_SSL_KEYPW *********

CAS_INTERNODE_SSL_KEYPWL
OC

/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/
private/cas/sharted/default/encryption.key

CAS_INTERNODE_SSL_CA_LIST /opt/sas/viya/config /etc/
SASSecurityCertificateFramework/cacerts/
trustedcerts.pem

5 To return to the Servers page, in the top left corner of the window, click .

Access CAS HTTP and HTTPS

CAS HTTP provides the following:

n a REST interface to the CAS Server. See CAS REST API.

45

https://developer.sas.com/apis/cas/rest/v3.2/apidoc.html

n CAS Server Monitor in a programming-only deployment.

In a full deployment, the monitoring services are provided using SAS Environment Manager. See
“Monitoring: How To (SAS Environment Manager)” in SAS Viya Administration: Monitoring.

CAS Server Monitor is available only if you are using a SAS Viya programming-only environment. For
direct URL access on Linux and Windows, open a web browser and enter the following URL in the
address field:
http://reverse-proxy-server/cas-shared-default-http

For multi-tenant access on Linux:
https://tenant.reverse-proxy-server/cas-tenant-instance-http

Log on using one of the SAS Administrator users that were established during deployment. See “Set
Up Administrative Users” in SAS Viya for Linux: Deployment Guide and “Set Up Administrative Users”
in SAS Viya for Windows: Deployment Guide.

To see how to use CAS Server Monitor, see “Monitoring: How To (CAS Server Monitor)” in SAS Viya
Administration: Monitoring.

Encrypt Identity Provider Connections

SAS Viya supports SCIM, LDAPS, and STARTLS identity providers. LDAP is the default.

Use HTTPS for SCIM Connection
For information about configuring SCIM, see “How to Configure SCIM” in SAS Viya Administration:
Identity Management.

System for Cross-domain Identity Management (SCIM) must use HTTPS. TLS encryption is used on
the connection that sends identity information. The identity management system needs to reach the
SCIM server or the SAS Viya deployment over the internet. The URL must begin with HTTPS and
have a certificate that is signed by a public certificate authority.

Configure the LDAPS (Secure LDAP) Connection
Lightweight Directory Access Protocol (LDAP) connections can be established in a TLS session so
that all data that is sent between the LDAP client and LDAP server is encrypted. LDAP over TLS is
known as LDAPS.

To securely connect to an LDAP provider, SAS Viya needs access to the CA certificate used by the
LDAP provider. To configure TLS between SAS Viya and the LDAP provider, use the following
instructions to add the CA certificates to the trustedcerts files on every machine in the deployment.
See “Use Best Practices to Create and Manage Certificates” on page 91.

Note: These instructions assume that you have basic familiarity with LDAP administration.

1 Log on to your machine as install user or administrator. On Linux, log in as a user with root, SAS
Admin, or sudo privileges.

2 If your LDAPS provider’s CA certificate is not already included in the Mozilla bundle of trusted CA
certificates, add that certificate to the SAS Viya truststore.

n On Windows, add certificates to the SAS Viya truststore. See “Add Certificates to or Remove
Certificates from the SAS Viya Truststore Manually” on page 88.

46

http://documentation.sas.com/?docsetId=calmonitoring&docsetVersion=3.5&docsetTarget=n06ra7kjbevw58n1lp0omm5jbkwc.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p0dt267jhkqh3un178jzupyyetsa.htm&docsetTargetAnchor=p1n8bgs781xqy6n1qp1zvepyvjn5&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p0dt267jhkqh3un178jzupyyetsa.htm&docsetTargetAnchor=p1n8bgs781xqy6n1qp1zvepyvjn5&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0win&docsetVersion=3.5&docsetTarget=p61010as31914aa4aa1477100160.htm&docsetTargetAnchor=p0s1140nfe4r54n1733vda4jucla&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0win&docsetVersion=3.5&docsetTarget=p61010as31914aa4aa1477100160.htm&docsetTargetAnchor=p0s1140nfe4r54n1733vda4jucla&locale=en
http://documentation.sas.com/?docsetId=calmonitoring&docsetVersion=3.5&docsetTarget=n0ppfry2y9j73gn1be2gnplf6ovw.htm&locale=en
http://documentation.sas.com/?docsetId=calmonitoring&docsetVersion=3.5&docsetTarget=n0ppfry2y9j73gn1be2gnplf6ovw.htm&locale=en
http://documentation.sas.com/?docsetId=calids&docsetVersion=3.5&docsetTarget=p17ite7oouumorn1ecsxwh7zxjea.htm&locale=en
http://documentation.sas.com/?docsetId=calids&docsetVersion=3.5&docsetTarget=p17ite7oouumorn1ecsxwh7zxjea.htm&locale=en

n On Linux, add certificates to the SAS Viya truststore. See “Add Certificates to the Truststore
(Linux Full Deployment)” on page 82 or “Add Certificates to or Remove Certificates from the
SAS Viya Truststore Manually” on page 88.

3 Use the SAS Environment Manager to set the configuration property
sas.identities.providers.ldap.connection. Specify an LDAPS port number (by default LDAPS is
636) and specify LDAPS in the url field. You can also use the port value 3269 (Global Catalog) for
LDAPS.

Note: The Configuration page is an advanced interface. You must be a member of the SAS
Administrators group and assume groups when you log on to SAS Environment Manager in order
to use the configuration page.

a If you are not already in SAS Environment Manager, select Manage Environment from the
applications menu ().

b From the side menu, click .

c Select All Services from the list, and then select the Identities service from the list of
services.

d In the sas.identities.providers.ldap.connection section, click . In the Edit
sas.identities.providers.ldap.connection Configuration window, do the following:

1 Update values for the port field, adding an LDAPS port value. Update the url field to
specify LDAPS. For the remaining fields, review the default values and make changes as
necessary. The default values are appropriate for most sites.

2 Click Save.

For information about how to configure the connection to your identity provider, see
“Configure Security” in SAS Viya for Linux: Deployment Guide. For details about the
sas.identities.providers.ldap.connection property, see “Configuration Properties: Reference
(Services)” in SAS Viya Administration: Configuration Properties.

4 Restart the SAS Logon Manager service. How you run the following command depends on your
operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-saslogon-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-saslogon-default restart

n Restart the SAS Logon Manager service by using the Services snap-in from the Microsoft
Management Console. Use the search box to search for the Services App. See “Operate
(Windows)” in SAS Viya Administration: SAS Cloud Analytic Services.

Note: It might take several minutes to restart SAS Logon Manager.

5 Restart the Identifies service. How you run the following command depends on your operating
system.

47

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p0dt267jhkqh3un178jzupyyetsa.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08000sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08000sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-identities-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-identities-default restart

n Restart the Identities service by using the Services snap-in from the Microsoft Management
Console. Use the search box to search for the Services App. See “Operate (Windows)” in SAS
Viya Administration: SAS Cloud Analytic Services.

Configure the Secure LDAP Connection Using STARTTLS
Lightweight Directory Access Protocol (LDAP) connections can be established in a TLS session so
that all data that is sent between the LDAP client and LDAP server is encrypted. SAS Viya supports
encrypting connections to LDAP using STARTTLS.

STARTTLS upgrades a connection that is not encrypted by wrapping it with TLS during the
connection process. This allows unencrypted and encrypted connections to be handled by the same
port.

To connect to a STARTTLS provider, SAS Viya needs access to the CA certificate used by the
STARTTLS provider. SAS recommends that the customer configure SAS Viya with their own CA
certificates. It is recommended that this certificate also be the same CA certificate that is used by
the STARTTLS server.

To configure TLS between SAS Viya and the STARTTLS provider, use the following instructions to
add the CA certificates to the trustedcerts files on every machine in the deployment. See “Use Best
Practices to Create and Manage Certificates” on page 91.

Note: These instructions assume that you have basic familiarity with LDAP administration.

1 Log on to your machine as a user with root, SAS Admin, or sudo privileges. On Windows, log on to
your machine as install user or administrator.

2 If your STARTTLS provider’s CA certificate is not already included in the Mozilla bundle of
trusted CA certificates, add that certificate to the SAS Viya truststore.

n On Windows, add the certificates to the SAS Viya truststore“Add Certificates to or Remove
Certificates from the SAS Viya Truststore Manually” on page 88.

n On Linux, add certificates to the SAS Viya truststore. See “Add Certificates to the Truststore
(Linux Full Deployment)” on page 82 or “Add Certificates to or Remove Certificates from the
SAS Viya Truststore Manually” on page 88.

3 Use the SAS Environment Manager to set the configuration property
sas.identities.providers.ldap.connection.

Note: The Configuration page is an advanced interface. You must be a member of the SAS
Administrators group and assume groups when you log on to SAS Environment Manager in order
to use the configuration page.

48

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en

a If you are not already in SAS Environment Manager, select Manage Environment from the
applications menu ().

b From the side menu, click

c Select All Services from the list, and then select the Identities service from the list of
services.

d In the sas.identities.providers.ldap.connection section, click . In the Edit
sas.identities.providers.ldap.connection Configuration window, do the following:

1 Update values for the port field, adding a STARTTLS port value (389 or 3268). Set
startTLS.mode to simple. Update the url field. Prefix this url with ldap. For the remaining
fields, review the default values and make changes as necessary. The default values are
appropriate for most sites.

The url field might look something like the following:

ldap://${sas.identities.providers.ldap.connection.host}:$
{sas.identities.providers.ldap.connection.port}

2 Click Save.

For information about how to configure the connection to your identity provider, see
“Configure Security” in SAS Viya for Linux: Deployment Guide. For details about the
sas.identities.providers.ldap.connection properties, see “Configuration Properties: Reference
(Services)” in SAS Viya Administration: Configuration Properties.

4 Restart the SAS Logon Manager service. How you run the following command depends on your
operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-saslogon-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-saslogon-default restart

n Restart the SAS Logon Manager service by using the Services snap-in from the Microsoft
Management Console. Use the search box to search for the Services App. See “Operate
(Windows)” in SAS Viya Administration: SAS Cloud Analytic Services.

Note: It might take several minutes to restart SAS Logon Manager.

5 Restart the Identifies service. How you run the following command depends on your operating
system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-identities-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-identities-default restart

49

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p0dt267jhkqh3un178jzupyyetsa.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08000sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08000sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en

n Restart the Identities service by using the Services snap-in from the Microsoft Management
Console. Use the search box to search for the Services App. See “Operate (Windows)” in SAS
Viya Administration: SAS Cloud Analytic Services.

Access SAS Studio via HTTPS

SAS Studio is set up for HTTP and HTTPS during initial deployment. In SAS Viya, SAS Studio is
configured to work with the Apache HTTP Server.

The version of SAS Studio that you are using depends on which type of deployment you performed.
If you deployed a full environment, then your environment contains both SAS Studio (Basic) and SAS
Studio (Enterprise).

n To access SAS Studio (Basic), open a web browser and enter the following URL in the address
field: https://reverse-proxy-server/SASStudio. By default, SAS Studio is secured.

n To access SAS Studio (Enterprise), open a web browser and enter the following URL in the
address field: https://reverse-proxy-server/SASStudioV. By default, SAS Studio is secured.

SAS Studio (Enterprise) is available in the full visual deployment. The HTML 5 interface integrates
with other SAS applications and is available as part of SAS Drive as Develop SAS Code. SAS Studio
(Enterprise) also uses microservices and has common authentication with other SAS applications.

If you deployed a programming-only environment, your environment contains SAS Studio (Basic). To
access SAS Studio in a programming-only deployment, open a web browser and enter the following
URL in the address field: http://reverse-proxy-server/SASStudio/.

Access SAS Message Broker via HTTPS Using SAS Provided
Self-Signed Certificates (Linux Full Deployment)

Note: This section is applicable only if you have a Linux SAS Viya full deployment. If you have a
Linux SAS Viya programming-only deployment, skip this section.

By default, SAS provides self-signed certificates and keys to secure the deployment. The URLs
available to access SAS Message Broker for HTTP and HTTPS post installation are as follows:

n https://RabbitMQ-IP-address:15672/#/ (Communication via this URL is encrypted.)

n http://RabbitMQ-IP-address:15672/#/ (Communication via this URL is not secured.)

If you receive a certificate error after clicking the preceding HTTPS link to access the SAS Message
Broker, import the SAS Viya root CA certificate into the Windows truststore.

Note: The SAS Viya root CA certificate can be found in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/vault-ca.crt. Because the vault-ca.crt file contains
two files, the SAS Viya root CA certificate and the SAS Viya intermediate CA certificate, you need to
create a unique file that includes the SAS Viya root CA certificate only. Use a text editor and cut and
paste as appropriate. Each certificate in the file is denoted with a -----BEGIN CERTIFICATE----- and
an -----END CERTIFICATE----- pair. Include the -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE----- header and footer for the root CA certificate in the new certificate file. Import this
root CA certificate into the Windows truststore.

50

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n03003viyaservers000000admin.htm&docsetTargetAnchor=n03059viyaservers000000admin&locale=en

1 From your browser, enter https://RabbitMQ-IP-address:15672/#/

2 Investigate the certificate error and import the SAS Viya root CA certificate into the truststore.

a In the RabbitMQ login window, click Certificate error.

b In the Untrusted Certificate window, select View Certificates.

c In the Certificate window, click the Install Certificate button.

d From the Certificate Import Wizard window, for Store Location, select Current User. Select
Next.

e For Certificate Store, select Place all certificates in the following store. Browse and select
Trusted Root Certification Authorities. Click OK.

f Click Next. Then select Finish. You should receive the following message: Import was
successful.

Configure TLS on the SAS Object Spawner

Overview
Use TLS to secure communications between the SAS Object Spawner and clients. The certificate
used for client and server communication needs to be signed by a certificate authority (CA) that is
trusted by all potential clients.

n Use Best Practices when creating certificates and keys. See “Use Best Practices to Create and
Manage Certificates” on page 91.

n You can generate your own custom certificates using OpenSSL and Keytool. See “Manage
Certificates and Generate New Certificates” on page 91 for instructions.

n Generate your own self-signed or root CA certificates. To generate self-signed or root CA
certificates, see “Generate Self-Signed Certificates” on page 99.

n If your custom root CA is not already included in the trusted CA bundle of certificates, you can
add those certificates to the trustedcerts files. See “Manage Truststores” on page 82.

Here are the security artifacts that are needed to configure TLS on the SAS Object Spawner. These
are also the recommended locations for placing the certificate and key files.

Table 5 Custom Certificates and Keys Needed for SAS Object Spawner (Linux and Windows)

Security
Artifact

Deployment File
Name Location

Permissions/
User Access Description

Certificate
truststore

trustedcerts.pem

trustedcerts.jks

Linux: /opt/sas/
viya/config/etc/
SASSecurityCertific
ateFramework/
cacerts/

This file should
be world
readable (for
example, 644 or
-rw-r--r--).

Contains the trusted list
of CA certificates.
These include the
Mozilla bundle of
trusted CA certificates,
the SAS Viya self-
signed certificates, the

51

Security
Artifact

Deployment File
Name Location

Permissions/
User Access Description

Windows:C:\Program
Data\SAS\Viya\etc
\SASSecurityCertifi
cateFramework
\cacerts\

Apache httpd
certificates, and the
chain of trust
certificates.

Add customer-provided
CA signed certificates
to trustedcerts files.

IMPORTANT Do not
remove these files. Add
CA certificates to the
trustedcerts files.

Certificate
file

Customer-
provided server
certificate file or
chain certificate
file (for example,
customer.crt).

Linux:/opt/sas/viya/
config/etc/
SASSecurityCertific
ateFramework/tls/
certs/

Windows:C:\Program
Data\SAS\Viya\etc
\SASSecurityCertifi
cateFramework\tls
\certs

This file should
be world
readable (for
example, 644 or
-rw-r--r--).

Add the customer-
provided server
certificate to this
directory.

Certificate
private key
file

Customer-
provided key file
(for example,
customer.key).

Linux /opt/sas/viya/
config/etc/
SASSecurityCertific
ateFramework/
private

Windows:C:\Program
Data\SAS\Viya\etc
\SASSecurityCertifi
cateFramework
\private

This file should
be world
readable (for
example, 644 or
-rw-r--r--).

Add the customer-
provided key file. Also,
you can encrypt the key
file.

Certificate
private key
passphras
e file

Customer-
provided private
key passphrase
file (for example,
customer_encrypti
on.key).
(Optional)

Linux: /opt/sas/
viya/config/etc/
SASSecurityCertific
ateFramework/
private

Windows:C:\Program
Data\SAS\Viya\etc
\SASSecurityCertifi
cateFramework
\private

This file needs
to have
permission 640
-rw-r-----

When you provide
customer certificate and
key files, it is highly
recommended that you
encrypt your key file
and provide a
passphrase to protect
the file that contains
the key.

52

Configure SAS Object Spawner to Use TLS and Custom Certificates (Linux)
To configure the SAS Object Spawner to use TLS in a Linux programming-only deployment or to add
customer-provided certificates to the Object Spawner in a Linux full deployment, perform the
following steps:

1 Generate the certificates that you need to be added to the SAS Viya truststore and to the SAS
Object Spawner.

2 In a Linux programming-only deployment, see “Add Certificates to or Remove Certificates from
the SAS Viya Truststore Manually” on page 88. In a Linux full deployment, see “Add Certificates
to the Truststore (Linux Full Deployment)” on page 82.

3 Log on to the SAS Object Spawner machine with root or sudo privileges.

4 To make the default certificates available and configure TLS, edit the spawner_usermods.sh file
located at /opt/sas/viya/config/etc/spawner. Add the following TLS encryption options to
the USERMODS= line in the file.

Note: The spawner_usermods.sh file needs to have global Read permissions: -rw-r--r--

CERT_HOME=${SASCONFIG}/etc/SASSecurityCertificateFramework
CERT_LOC=${CERT_HOME}/tls/certs/customer.crt
CERT_KEY=${CERT_HOME}/private/customer.key
CERT_KEY_PASS=${CERT_HOME}/private/customer_encryption.key
CALIST_LOC=${CERT_HOME}/cacerts/trustedcerts.pem
USERMODS="${JREOPTIONS} -sslpvtkeyloc ${CERT_KEY} -sslcertloc ${CERT_LOC}
-sslcalistloc ${CALIST_LOC} -sslpvtkeypass ${CERT_KEY_PASS}"

If a password or pass phrase is used with the private key, the -SSLPVTKEYPASS option must also
be added to the JREOPTIONS string.

5 Restart the SAS Object Spawner. How you run the following command depends on your operating
system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-spawner-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-spawner-default restart

6 Each client must be able to trust the server certificate. Therefore, the client needs to add the root
certificate that has been used to sign the identity/server certificate to the truststore on the
client. In SAS Viya deployments, the file that contains these certificates is the trustedcerts files
located at /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/
trustedcerts.

See Also

“SAS System Options for Encryption” on page 137

53

Configure SAS Object Spawner to Use TLS and Custom Certificates
(Windows)
To configure the SAS Object Spawner to use TLS in a Windows deployment of SAS Viya, perform the
following steps:

1 Generate the certificates that need to be added to the SAS Viya truststore and to the SAS Object
Spawner.

2 Add the CA certificates to the SAS Viya truststore.

3 Sign in with administrator privileges to the SAS Object Spawner.

4 On the SAS Viya Windows desktop, search for the Command Prompt app.

a In the Search Windows box, type Command Prompt .

b From the list of apps displayed, Right-click on Command Prompt Desktop App. Select Run as
administrator.

5 Add the root CA certificate to the Windows CA store on the local machine. This file is the
sas_encrypted.crt certificate.

6 Stop the SAS Object Spawner service. In Windows Services Manager, right-click the SAS Object
Spawner service and select the stop operation.

7 Go to configuration folder at Configuration directory\spawner\default and edit the
spawner_usermods.bat file. Add the following TLS encryption option to the USERMODS= line in
the file.

SET USERMODS=”${JREOPTIONS} -sslcertiss "issuer-of-digital-certificate"

You can instead add the following options to the USERMODS= line in the file:

SET USERMODS=”${JREOPTIONS} -sslcertserial "cert-serial-number" -sslcertsubj "cert-subject"

If a password or pass phrase is used with the private key, the -SSLPVTKEYPASS option must also
be added to the JREOPTIONS string.

8 In Windows Services Manager, right-click the SAS Object Spawner service and select the install
operation.

9 Start the SAS Object Spawner. In Windows Services Manager, right-click the SAS Object
Spawner service and select the start operation.

10 From a Windows client machine, perform the following steps:

a Add the root certificate that has been used to sign the identity/server certificate to the
truststore on the client. This is necessary because each client must be able to trust the server
certificate. In SAS Viya deployments, the file that contains these certificates is the
trustedcerts files. Copy the root certificate file on the first machine to a location on your
client machine.

b Import CA certificates into the Windows Trusted Root Certificate Authorities store.

54

See Also

“SAS System Options for Encryption” on page 137

Disable TLS on Object Spawner
In a SAS Viya 3.5 deployment, you can enable Kerberos for direct connections from SAS Enterprise
Guide 8.2 to SAS Object Spawner on SAS Viya. However, you must first disable TLS on the SAS
Object Spawner. For complete information, see “Configure Kerberos for SAS Object Spawner” in SAS
Viya Administration: Authentication.

Note: For SAS Viya 3.5 running on Windows nothing additional is required as SAS Viya Object
Spawner runs as the local system account and the SPN is registered automatically against the
compute object.

In a Linux full deployment, complete the following steps to disable TLS on the SAS Object Spawner:

1 Edit the spawner_usermods.sh file at /opt/sas/viya/config/etc/spawner/default/
spawner_usermods.sh.

2 Add the following code to the end of the file and save the changes to the spawner_usermods.sh
file.

spawner_options="${spawner_options//-ssl*/}"

3 Restart the object spawner.

n For Red Hat Enterprise Linux 6.7:

sudo service sas-viya-spawner-default restart

n For Red Hat Enterprise Linux 7.x or later and SUSE Linux:

sudo systemctl restart sas-viya-spawner-default

4 Verify your changes using the following command for the SAS Object Spawner.

ps -ef |grep objsp

The output from the command should no longer include the following TLS options:

n -sslpvtkeyloc

n -sslpvtkeypassfile

n -sslcertloc

n -sslcalistloc

Use SAS/CONNECT with TLS Enabled to Import Data

Overview
SAS programming clients in a SAS 9.4M5 environment can call procedures that are enabled in SAS
Viya and submit DATA step code, operating directly on CAS data sources. As a result,
SAS/CONNECT is no longer required as a separate product in order to transfer data from SAS 9.4M5

55

http://documentation.sas.com/?docsetId=calauthmdl&docsetVersion=3.5&docsetTarget=n1pkgyrtk8bp4zn1d0v1ln4869og.htm&docsetTargetAnchor=p0t68jpzq1am0cn1iqw86o93ha60&locale=en
http://documentation.sas.com/?docsetId=calauthmdl&docsetVersion=3.5&docsetTarget=n1pkgyrtk8bp4zn1d0v1ln4869og.htm&docsetTargetAnchor=p0t68jpzq1am0cn1iqw86o93ha60&locale=en

and later to a SAS Viya deployment. The built-in CAS integration capabilities of SAS 9.4M5 enable
the user to communicate directly from a CAS client. For more information, see “SAS 9 and SAS Viya”
in SAS Viya: Overview.

Note: SAS 9.4M6 contains all of the most current integration updates.

However, SAS/CONNECT is required to transfer data from SAS deployments prior to SAS 9.4M5 to
SAS Viya. When you use SAS/CONNECT to import data from releases prior to SAS 9.4M5 to SAS
Viya, SAS Viya acts as the SAS/CONNECT client. The SAS/CONNECT server must be running on the
SAS 9.4 machine, and the connection to SAS 9.4 must be initiated from SAS Viya. SAS/CONNECT
must be available in both environments if you intend to upload, download, and analyze data within
CAS from a SAS 9.4 client.

You can use TLS to secure the SAS/CONNECT bridge when you sign on to the SAS/CONNECT
spawner from a SAS/CONNECT client. The sign-on command starts a SAS/CONNECT server.

This section discusses the following topics:

n How to configure TLS for SAS/CONNECT on a Windows deployment.

n How to configure TLS for SAS/CONNECT on a Linux programming-only deployment.

TLS Certificates
You need to use the certificates that are provided by SAS, add custom certificates, or generate your
own certificates to use TLS to secure SAS/CONNECT.

n If you are using the certificates provided by SAS, see “Self-Signed Certificates Issued by SAS
Viya”.

n If you are using a certificate whose root CA is not already in the Mozilla Trusted CA Certificate
bundle, you need to add the root CA certificate to the truststore. See “Manage Truststores” on
page 82.

n To create site-signed or third-party-signed certificates using OpenSSL, see “Generate Site-Signed
or Third-Party-Signed Certificates in PEM Format” on page 95.

n To create a self-signed CA certificate with SANS using OpenSSL, see “Create Certificates with
SAN Extension Using OpenSSL” on page 94.

Note: If you are using custom certificates or generating your own certificates, use Best Practices on
page 91 for securing your certificates and keys.

If you are using SAS 9.4 to start a SAS/CONNECT session to a SAS Viya CAS server, the server
certificate needs subject alternative name (SAN) extension entries in the server certificate for each
name the host can be known by. The certificate needs the physical host name and DNS alias listed in
the SAN. If you need to update the default certificates that are provided by SAS to include the SANs,
contact SAS Technical Support. They can use the sas-crypto-management tool to re-create these
default certificates.

Enable and Disable TLS for SAS/CONNECT (Linux Full Deployment)
You can enable and disable TLS for SAS/CONNECT in a Linux full deployment by port family. By
default, the sasData port family is turned on. The sasData port family controls TLS for

56

http://documentation.sas.com/?docsetId=viyaov&docsetVersion=3.5&docsetTarget=p1oyouwftvfv6vn1w8fg1w2n5wq4.htm&locale=en
http://documentation.sas.com/?docsetId=viyaov&docsetVersion=3.5&docsetTarget=p1oyouwftvfv6vn1w8fg1w2n5wq4.htm&locale=en

SAS/CONNECT server and SAS/CONNECT spawner. For information about how to enable and
disable TLS by port families, see “Enable or Disable TLS Using Port Families” on page 78.

Configure SAS/CONNECT to Use TLS (Linux Programming-Only
Deployment)
To configure SAS/CONNECT in a programming-only deployment of SAS Viya, perform the following
steps:

1 Sign in with administrator privileges to the machine containing the SAS/CONNECT spawner.

2 In the connect_usermods.sh file located in /opt/sas/viya/config/etc/connect/default, set up
TLS by adding the TLS encryption options. Edit the connect_usermods.sh file, and add the
following encryption options to the USERMODS= line to encrypt the connection for the
SAS/CONNECT spawner. Note that this file needs to have global Read permissions: -rw-r--r--

In the following code example, the name of the certificate file and the private key file are example
names. These would be the names of the certificate and key files that you placed in
the /opt/sas/viya/config directories.

Note: The options are enclosed in double quotation marks.

USERMODS="-netencrypt -netencryptalgorithm ssl -sslcertloc /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/server.crt -sslpvtkeyloc /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/private.key -sslpvtkeypass 'password'"

The following provides a short description of the system options used in the code
connect_usermods.sh file. For more information see “SAS System Options for Encryption” on
page 137.

NETENCRYPT
The NETENCRYPT option specifies that encryption is required.

NETENCRYPTALGORITHM=
The NETENCRYPTALGORITHM= option specifies that the spawner is started using TLS.

SSLCERTLOC=
The SSLCERTLOC= option specifies the location of a file that contains a digital certificate for
the machine's public key. This is used by the server to send to clients for authentication.

Note: If the certificate is not self-signed, the file specified by the SSLCERTLOC= option
needs to be a certificate chain file that starts with the server identity certificate and includes
the signing intermediate CA certificates. The root CA certificate does not need to be included
in the certificate chain.

SSLPVTKEYLOC=
The SSLPVTKEYLOC= option specifies the location of the file that contains the private key
that corresponds to the digital certificate that was specified by the SSLCERTLOC= option.

SSLPVTKEYPASS=
The SSLPVTKEYLOC= option specifies the location of the file that contains the private key
that corresponds to the digital certificate that was specified by the SSLCERTLOC= option.

57

Note: SAS first looks for CA certificates in a file named trustedcerts.pem, which is located in
the /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts directory.
Therefore, the SSLCALISTLOC= system option is not required if you are storing your trusted
certificates in the default location. However, if you choose not to use the default location to store
certificates, then you need to specify the SSLCALISTLOC= option with a location for the
certificates for the SAS/CONNECT client and spawner.

For each of the preceding examples, the default location is used.

3 Start the SAS/CONNECT spawner. How you run the following command depends on your
operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl restart sas-viya-connect-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-connect-default restart

4 The SAS/CONNECT spawner runs the connectserver.sh script, which runs the
connectserver_usermods.sh script. The connectserver_usermods.sh script is located in /opt/sas/
viya/config/etc/connectserver/default. Edit the connectserver_usermods.sh file, and add
the following encryption options to the USERMODS_OPTIONS= line. Note that this file needs to
have global Read permissions: -rw-r--r--

Note: The options are enclosed in double quotation marks.

USERMODS_OPTIONS="-sslcertloc /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tls/
certs/customer.crt -sslpvtkeyloc /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
private/customer.key -sslpvtkeypass 'password'"

Note: The certificates specified in the preceding code are your server certificates.

5 After a spawner is started on a SAS/CONNECT server, a SAS/CONNECT client can connect to it.
The following example shows how to connect a client to a spawner that is running on a
SAS/CONNECT server:

options netencryptalgorithm=SSL;
%let myserver=<myHost.myDomain.com> <port>;
SIGNON myserver user=sasdemo passwd="password";

6 If you need a SAS 9.4 client to work with SAS Viya, see “Configure SAS 9.4 Clients to Work with
SAS Viya” on page 74.

See Also

n “SAS System Options for Encryption” on page 137

n SAS Viya: Overview

58

http://documentation.sas.com/?docsetId=viyaov&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

Configure SAS/CONNECT to Use TLS (Windows)
You can use the certificates that are provided by SAS, add custom certificates, or request your own
certificate from the Microsoft Certificate Authority to use TLS to secure SAS/CONNECT.

In a SAS Viya programming-only deployment or a deployment prior to SAS 9.4M5, you need to
configure TLS for SAS/CONNECT. To configure SAS/CONNECT on Windows, perform the following
steps:

1 Sign in with administrator privileges to the machine containing the SAS/CONNECT spawner.

2 After SAS Viya deployment, self-signed certificate and key files provided by SAS are located in
the following directories. These files are needed to update the Windows Truststore in order to
configure SAS/CONNECT.

Table 6 Security Artifacts Provided at Installation for SAS Viya Windows Deployment

Security Artifact
Deployment File
Name Location Description

Certificate
truststore

trustedcerts.pem

trustedcerts.jks

C:\ProgramData
\SAS\Viya\etc
\SASSecurityCert
ificateFramework
\cacerts\

Contains the
trusted list of CA
certificates. These
include the Mozilla
bundle of trusted
CA certificates,
the SAS Viya self-
signed certificates,
the Apache httpd
certificates, and
the chain of trust
certificates.

Certificate file sas_encrypted.crt C:\ProgramData
\SAS\Viya\etc
\SASSecurityCert
ificateFramework
\tls\certs

Contains the
certificate
generated by SAS
Viya. These are
self-signed
certificates.

Certificate
private key file

sas_encrypted.key C:\ProgramData
\SAS\Viya\etc
\SASSecurityCert
ificateFramework
\private

Contains the
private key
generated by SAS.

Certificate
private key
passphrase file

encryption.key
(optional)

C:\ProgramData
\SAS\Viya\etc
\SASSecurityCert
ificateFramework
\private

Contains the
encrypted
passphrase file
provided by SAS
Viya.

59

3 Update the Windows Truststores.

To use the SAS Viya self-signed certificates (shown in the preceding table) that are provided at
installation, perform the following tasks:

a Open a Windows PowerShell prompt as an Administrator.

b Change to directory C:\Program Files\SAS\Viya\SASFoundation\utilities\bin.

c Use Windows PowerShell to run the Enable-CAS-TLS.ps1 script. This script reads the
certificate serial number, the certificate thumbprint, and the certificate issuer of the
sas_encrypted.crt certificate provided by SAS. It then creates a temporary .pfx file and
imports that file into the Windows Certificate store on the Local machine.

From the PowerShell prompt, enter the following command:

.\Enable-CAS-TLS.ps1

Observe the output of the PowerShell script. Confirm that no errors are printed.

For information about how to set up and use Windows PowerShell, see How to Open
Powershell in Windows 10.

Here is a sample of the output that you should see when the Enable-CAS-TLS.ps1 script is run.
Save the results of the certificate serial number and the certificate issuer for use in setting
system options SSLCERTISS and SSLCERTSERIAL.

Sample output:
PS C:\Program Files\SAS\Viya\SASFoundation\utilities\bin> .\Enable-CAS-TLS.ps1
[INFO] Reading certificate serial number from file
C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\tls\certs\sas_encrypted.crt
[INFO] certificateSerialNumberString=4ED7DA72EBA098E7 (length 16)
[INFO] Reading certificate thumbprint from file
C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\tls\certs\sas_encrypted.crt
[INFO] certificateThumbprintString=F6:C6:CA:96:6A:78:D2:7A:A7:8E:2A:6B:
E0:32:DB:E0:12:45:E2:F8 (length 59)
[INFO] Reading certificate issuer from file
C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\tls\certs\sas_en crypted.crt
[INFO] certificateIssuerString=cntvdmml18w25w.na.sas.com (length 25)
[INFO] Creating temporary PFX file

d Verify that the certificates have been added to the Windows Truststores. Certificates appear
in the Certificates folder, Personal Certificates, and the Trusted Root Certificate
Authorities Certificates folder. Use the Windows MMC snap-in to perform this function.

1 Click the Windows command prompt, enter mmc, and click OK.

2 In the Console window, select File ð Add/Remove Snap-in.

3 Double-click Certificates from the list of available snap-ins.

4 In the window that appears, select Computer account, and click Next.

5 In the Select Computer window, select Local computer, click Finish, and then click OK.

6 In the Console window, expand Certificates (Local Computer) on the left.

7 In the Console window, expand Trusted Root Certification Authorities to make sure that
the certificates have been imported.

60

https://windowsinstructed.com/powershell-in-windows-10/
https://windowsinstructed.com/powershell-in-windows-10/

8 In the Console window, expand Personal to make sure that the certificates have been
imported.

From a Windows client machine, perform the following steps.

1 Copy certificate file sas_encrypted.crt from C:\ProgramData\SAS\Viya\etc
\SASSecurityCertificateFramework\tls\certs on the first machine to a location on your client
machine.

2 Import CA certificates into the Windows Trusted Root Certificate Authorities store.

To configure SAS/CONNECT:

1 On the machine where you are running SAS/CONNECT, navigate to C:\ProgramData\SAS\Viya
\etc\connect.

cd C:\ProgramData\SAS\Viya\etc\connect

2 Stop the SAS Connect Spawner service. In Windows Services Manager, right-click the SAS
Connect Spawner service and select the stop operation.

3 To encrypt the connection for the SAS/CONNECT spawner using TLS, edit the
connect_usermods.bat file located in C:\ProgramData\SAS\Viya\etc\connect and add the
following encryption options to the USERMODS= line in the file.

Copy the values of the Issuer and the serial number from the output shown above .

Note: The options are enclosed in double quotation marks.

USERMODS="-netencrypt-netencryptalgorithm ssl -sslcertiss "issuer-of-digital-certificate" -
sslcertserial "cert-serial-number" "

The following provides a short description of the system options used in the code
connect_usermods.bat file. For more information, see “SAS System Options for Encryption” on
page 137.

NETENCRYPT
The NETENCRYPT option specifies that encryption is required.

NETENCRYPTALGORITHM=
The NETENCRYPTALGORITHM= option specifies that the spawner is started using TLS.

SSLCERTISS=
The SSLCERTISS= option specifies the name of the issuer of the digital certificate that should
be used by TLS.

SSLCERTSERIAL=
The SSLCERTSERIAL= option specifies the serial number of the digital certificate that should
be used by TLS.

4 The SAS/CONNECT spawner runs the connectserver.bat script, which runs the
connectserver_usermods.bat script. The connectserver_usermods.bat is located in
C:\ProgramData\SAS\Viya\etc\connectserver. Edit the connectserver_usermods.bat file, and
add the following encryption options to the USERMODS_OPTIONS= line.

The certificates that are being referenced are the server certificates.

61

Note: The options are enclosed in double quotation marks.

USERMODS="-netencrypt -netencryptalgorithm ssl -sslcertiss "issuer-of-digital-certificate" -
sslcertserial "cert-serial-number"

5 In Windows Services Manager, right-click the SAS Connect Spawner service and select the
install operation.

6 Start the SAS/CONNECT spawner. In Windows Services Manager, right-click the SAS Connect
Spawner service and select the start operation.

7 After a spawner is started on a SAS/CONNECT server, a SAS/CONNECT client can connect to it.
The following example shows how to connect a client to a spawner that is running on a
SAS/CONNECT server:

options netencryptalgorithm=SSL;
%let myserver=<myHost.myDomain.com> <port>;
SIGNON myserver user=sasdemo passwd="password";

8 If you need a SAS 9.4 client to work with SAS Viya, see “Configure SAS 9.4 Clients to Work with
SAS Viya” on page 74.

See Also

n “SAS System Options for Encryption” on page 137

n SAS Viya: Overview

Encrypt Data Transfer When Transferring Data in Parallel with
a SAS Data Connector (Linux Full Deployment)

If you are using a SAS data connector to transfer data in parallel, the data that is transferred
between the data provider and the CAS server is not encrypted by default. However, SAS Viya does
support TLS encryption between the data provider and the CAS server, and you can take steps to
enable that encryption. It should be noted that performance can be affected when TLS encryption is
enabled and large amounts of data are being transferred.

Overview of Encryption with Parallel Data Transfer
When data is transferred between a data provider and CAS, the data provider acts as the client and
the CAS server acts as a server. Select data connectors can transfer data in parallel. Parallel data
transfer is facilitated by SAS Embedded Process.

62

http://documentation.sas.com/?docsetId=viyaov&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

Figure 1 Encryption for Parallel Data Transfer between a Data Source and the CAS Server

Data Provider
(acts as client)

SAS Embedded Process

dcsecurity.properties file

CA Certificate(s)

(on every node)

- DCTCPMENCRYPT YES
- DCTCPMENCRYPTALGORITHM SSL
- Option(s) that specify the location
 and/or locations of the Certificate
 Authority (CA) certificates

OpenSSL 1.0.1 or later

CAS Server
(acts as server)

Full deployment - managed by Vault
Programming-only deployment -
manually enable encryption

CA Certificate(s)

(on the controller and every worker)

OpenSSL 1.0.1 or later

SAS Data
Connect Accelerator

Data transfer

When the SAS Embedded Process is deployed on the data provider, a dcsecurity.properties file and a
certs directory are created, as well as the SAS-Embedded—Process-home/security directory. The
certs directory hold the TLS security certificates. The dcsecurity.properties file must be updated to
enable data connector encryption.

Whether TLS is enabled and configured on the CAS server (server side) automatically depends on
the type of SAS Viya deployment:

n By default, in a full deployment of SAS, TLS is enabled and configured on the CAS server. The
deployment process provides a default level of encryption for data in motion. Hashicorp Vault
issues certificates and keys that are used to secure the deployment. These certificates issued by
Vault are provided for each CAS machine and are added to the Mozilla bundle of trusted CA
certificates by default. Options are set in the vars.yml file and defined in the
casconfig_deployment.lua file to enable data connector encryption and to provide the location of
the TLS private key and password.

n In a programming-only deployment, you must set options on the CAS server in the
casconfig_usermods.lua file to enable data connector encryption and to provide the location of
the TLS private key and password.

The prerequisites and process for enabling TLS encryption on the CAS server (programming-only
deployment) and the data provider is different for each data provider.

Note: A TLS private key and certificate are required for each CAS host.

63

Prerequisites When Enabling Encryption for Parallel Data Transfer for
Teradata (on SAS Viya)
Here are the prerequisites for enabling encryption for parallel data transfer between Teradata and
SAS Viya.

n Upgrade the OpenSSL package on all Teradata nodes to 1.0.1g or later to support TLS.

The 64-bit OpenSSL library package that is most likely being used at your site is
libopenssl0_9_8-0.9.8j-0.50.1. The required version is libopenssl1_0_0-1.0.1g-0.37.1 or
later. This package update is available on the Teradata patch server. Contact Teradata Customer
Services to get this package updated. If you plan to use TLS now or in the future, it is best to
upgrade the OpenSSL package before you install the SAS In-Database Technologies for Teradata
(on SAS Viya).

Note: The old version, openssl0_, and new version, openssl1_0_0 (or later), can coexist.

n Install SAS/ACCESS Interface to Teradata (on SAS Viya) and SAS In-Database Technologies for
Teradata (on SAS Viya).

These offerings include the SAS Embedded Process, the SAS Data Connector to Teradata (on
SAS Viya), and the SAS Embedded Process support functions. SAS Embedded Process facilitates
data transfer in parallel with the Teradata data connector. For more information, see SAS Viya for
Linux: Deployment Guide.

n Obtain TLS identity certificates (site-signed, third-party-signed, or self-signed) from the CAS
controller machine. These certificates are located in the trustedcerts.pem file. Corresponding
certificate authority (CA) certificates must be installed on the Teradata nodes. If you use
externally signed identity certificates in the CAS server, the Mozilla bundle of CA certificates that
are provided by SAS can be deployed on the Teradata nodes.

For more information about the location of the trustedcerts.pem file, see “Encrypt Data Transfer
When Transferring Data in Parallel with a SAS Data Connector (Linux Full Deployment)” on page
62.

For more information about configuring CAS, see “Configure CAS TLS to Use Custom Certificates
(Linux Programming-Only Deployment)” on page 30 and “Configure CAS TLS to Use SAS Viya
Default Certificates (Linux Programming-Only Deployment)” on page 36.

Certificates, keys, and passwords produced for authenticating to the SAS Embedded Process for
Teradata might coincide with those produced for other clients of the CAS server. However, they
do not need to coincide. For information about generating certificates, see the appropriate topic
in “Manage Certificates and Generate New Certificates” on page 91.

n When you installed the SAS Embedded Process, the following file and directory were created:

For SAS Embedded Process version 16.0.0 and later, /opt/SAS/ep/home/security/
dcsecurity.properties and /opt/SAS/ep/home/security/certs were created.

For SAS Embedded Process version 15.0000 and earlier, /opt/
SAS/SASTKInDatabaseServerForTeradata/ep-version/security/dcsecurity.properties
and /opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/security/certs were
created.

o All directories and files should have the owner:group = tdatuser:tdatudf setting.

64

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

o The /opt/SAS/ep/home/security directory (version 16.0.0 and later) or /opt/
SAS/SASTKInDatabaseServerForTeradata/ep-version/security directory (version 15.0000
and earlier) should have drwxr-xr-x permissions.

o The /opt/SAS/ep/home/security/certs directory (version 16.0.0 and later) or /opt/
SAS/SASTKInDatabaseServerForTeradata/ep-version/security/certs directory (version
15.0000 and earlier) should have drwxr-xr-x permissions.

o The dcsecurity.properties file should have -rwxr-xr-x permissions.

Enable Encryption for Parallel Data Transfer between Teradata and SAS Viya
Follow these steps to encrypt parallel data transfer between Teradata and the CAS server.

Note: A user enables parallel data transfer when they set the DATATRANSFERMODE= data
connector option to "PARALLEL". Parallel data transfer with the Teradata data connector requires
installation and proper configuration of SAS Embedded Process.

1 On the CAS server, modify the casconfig_usermods.lua configuration file to enable encryption
with parallel data transfer.

Note: This step is required only for programming-only deployments. If you performed a full
deployment of SAS Viya, verify the current setting of cas.DCTCPMENCRYPT in the /opt/sas/
viya/config/etc/cas/default/casconfig.lua file.

a Enter the following command to edit the casconfig_usermods.lua file. This example uses vi,
but any text editor can be used.

sudo vi /opt/sas/viya/config/etc/cas/default/casconfig_usermods.lua

b Add this value to the casconfig_usermods.lua file to enable encryption for parallel data
transfer on the CAS side.

cas.DCTCPMENCRYPT='YES'

CAUTION
The DCTCPMENCRYPT option is set on both the CAS server and on the data provider.
How the option is set on both sides determines whether the data being transferred is
encrypted or not. For more information, see “DCTCPMENCRYPT Option Setting Interaction” on
page 72.

c Add the location of the TLS certificate(s) and private key file and password, if used, to the
casconfig_usermods.lua file. The specific options that you use depend on the type of
certificates.

Here is an example. In this example, a password is not used.

cas.DCSSLPVTKEYLOC="path-to-your-private-key"
cas.DCSSLCERTLOC="path-to-your-id-cert"

For more information about the options, see “CAS Configuration File Options for Parallel Data
Transfer with SAS Data Connectors” on page 170.

65

d Enter this command to restart the CAS controller. This restart is required to pick up the
changes in the configuration file. How you run the following command depends on your
operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise
Server 12.x:

sudo systemctl restart sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default restart

2 On Teradata, modify the dcsecurity.properties file to enable encryption with parallel data
transfer.

a Navigate to either the /opt/SAS/ep/home/security/ directory (SAS Embedded Process
version 16.0.0 or later) or the /opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/
security/ directory (SAS Embedded Process version 15.0000 or earlier).

b Change the DCTCPMENCRYPT option in the dcsecurity.properties file as follows:

-DCTCPMENCRYPT YES

CAUTION
The DCTCPMENCRYPT option is set on both the CAS server and on the data provider.
How the option is set on both sides determines whether the data being transferred is
encrypted or not. For more information, see “DCTCPMENCRYPT Option Setting Interaction” on
page 72.

c Add either the DCSSLCACERTDIR or DCSSLCALISTLOC option to the dcsecurity.properties
file to specify either the location of the trusted certificate authorities or the public
certificate(s) for trusted certificate authorities.

Here is an example if the SAS Embedded Process is version 16.0.0 or later:

-DCSSLCALISTLOC /opt/SAS/ep/home/security/certs/certs-filename.pem

Here is an example if the SAS Embedded Process is version 15.0000 or earlier:

-DCSSLCALISTLOC /opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/security/certs/
certs-filename.pem

For more information about the options, see “dcsecurity.properties File Options for Parallel
Data Transfer with Applicable SAS Data Connectors” on page 173.

3 Copy the necessary TLS CA certificates to either the /opt/SAS/ep/home/security/certs
directory (SAS Embedded Process version 16.0.0 or later) or the /opt/
SAS/SASTKInDatabaseServerForTeradata/ep-version/security/certs directory (SAS
Embedded Process version 15.0000 or earlier).

n If your CA certificates already exist on the Teradata server, copy the CA certificates to this
directory.

n If your CA certificates exist on the CAS server, use a method of your choice to copy the CA
certificates to this directory on the Teradata server.

Here is an example if the SAS Embedded Process is version 16.0.0 or later:

scp CASCA1.pem tdatuser@teramach1:/opt/SAS/ep/home/security/certs

66

Here is an example if the SAS Embedded Process is version 15.0000 or earlier:

scp CASCA1.pem tdatuser@teramach1:/opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/
security/certs

For more information about the location of the CA certificates on the CAS server, see
“(Optional) Deploy TLS Certificates” in SAS Viya for Linux: Deployment Guide.

Note:

n The CA certificates on the Teradata server must authorize the identity certificates that are
specified on the CAS server.

n All Teradata files and directories should have the owner:group = tdatuser:tdatudf setting.

n The /opt/SAS/ep/home/security (version 16.0.0 or later) or the /opt/
SAS/SASTKInDatabaseServerForTeradata/ep-version/security directory (version 15.0000
or earlier) should have drwxr-xr-x permissions.

n The /opt/SAS/ep/home/security/certs (version 16.0.0 or later) or the /opt/
SAS/SASTKInDatabaseServerForTeradata/ep-version/security/certs directory (version
15.0000 or earlier) should have drwxr-xr-x permissions.

n The dcsecurity.properties file should have -rwxr-xr-x permissions.

4 Copy the contents of either the /opt/SAS/ep/home/security/ directory (SAS Embedded Process
version 16.0.0 or later) or the /opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/
security/ directory (SAS Embedded Process version 15.0000 or earlier) to all nodes on the
Teradata cluster.

a Navigate to the /opt/SAS directory.

cd /opt/SAS/

b Create a compressed archive file of the security directory relative to the /opt/SAS directory.

For SAS Embedded Process version 16.0.0 or later:

tar cvof /tmp/sasep_security.tar ep/home/security

For SAS Embedded Process version 15.0000 or earlier:

tar cvof /tmp/sasep_security.tar SAS/SASTKInDatabaseServerForTeradata/ep-version/security

c Create a script that contains the following lines:

$ cat /tmp/sasep_extract.sh
cd /opt/SAS/
tar xvof /tmp/sasep_security.tar

d Give the script a +x permission.

$ chmod 755 /tmp/sasep_extract.sh

e Do a parallel file transfer to push the files to all nodes.

pcl -send /tmp/sasep_security.tar /tmp
pcl -send /tmp/sasep_extract.sh /tmp

f Use the parallel shell command to run the script to extract the TAR file.

psh /tmp/sasep_extract.sh

67

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p1om1vjhmolf3fn0zhsvmvi1n021.htm&locale=en

g Create a backup copy of the TAR file on a secured location.

cp /tmp/sasep_security.tar /root/sasep_security.tar

h Remove the TAR and script files from the nodes.

psh rm /tmp/sasep_security.tar
psh rm /tmp/sasep_extract.sh

5 Restart the SAS Embedded Process.

a Disable the SAS Embedded Process to stop new queries from being started.

CALL SQLJ.SERVERCONTROL ('SAS', 'disable', :A);

b Query the status of the SAS Embedded Process until the status returns this message: Hybrid
Server is disabled with no UDFs running.

CALL SQLJ.SERVERCONTROL ('SAS', 'status', :A);

c Shutdown the SAS Embedded Process.

CALL SQLJ.SERVERCONTROL ('SAS', 'shutdown', :A);

d Enable the SAS Embedded Process.

CALL SQLJ.SERVERCONTROL ('SAS', 'enable', :A);

e Test the SAS Embedded Process. The SAS Embedded Process will start when the next SAS
query that uses the SAS Embedded Process is sent to the database.

For more information about stopping and starting the SAS Embedded Process for Teradata, see
Controlling the SAS Embedded Process.

Prerequisites When Enabling Encryption for Parallel Data Transfer between
Hadoop and SAS Viya
Here are the prerequisites for enabling encryption for parallel data transfer between Hadoop and
SAS Viya.

n Upgrade the OpenSSL package on all Hadoop nodes to 1.0.1g or later to support TLS.

n Install SAS/ACCESS Interface to Hadoop (on SAS Viya) and SAS In-Database Technologies for
Hadoop (on SAS Viya).

These offerings include the SAS Embedded Process and the SAS Data Connector to Hadoop (on
SAS Viya). SAS Embedded Process facilitates parallel data transfer with the Hadoop data
connector. For more information, see SAS Viya for Linux: Deployment Guide.

n Obtain TLS identity certificates (site-signed, third-party-signed, or self-signed) from the CAS
controller machine. These certificates are located in the trustedcerts.pem file. Corresponding
certificate authority (CA) certificates must be installed on the Hadoop nodes. If you use
externally signed identity certificates in the CAS server, the Mozilla bundle of CA certificates that
are provided by SAS can be deployed on the Hadoop nodes.

For more information about the location of the trustedcerts.pem file, see “Encrypt Data Transfer
When Transferring Data in Parallel with a SAS Data Connector (Linux Full Deployment)” on page
62.

For more information about configuring CAS, see “Configure CAS TLS to Use Custom Certificates
(Linux Programming-Only Deployment)” on page 30 and “Configure CAS TLS to Use SAS Viya

68

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=indbag&docsetTarget=p0xn4gqqqwirwkn10krki20am5w9.htm

Default Certificates (Linux Programming-Only Deployment)” on page 36. Certificates, keys, and
passwords produced for authenticating to the SAS Embedded Process for Hadoop might coincide
with those produced for other clients of the CAS server, but they do not need to.

n When you installed the SAS Embedded Process, the following files and directories were created:

For SAS Embedded Process version 16.0.0 and later, /opt/sas/ep/home/security/
dcsecurity.properties and /opt/sas/ep/home/security/certs were created.

For SAS Embedded Process version 15.0000 and
earlier, /EPInstallDir/SASEPHome/security/dcsecurity.properties and EPInstallDir/
SASEPHome/security/certs were created.

o The /opt/sas/ep/home/security directory (version 16.0.0 or later) or the /EPInstallDir/
SASEPHome/security directory (version 15.0000 or earlier) should have drwxr-xr-x
permissions.

o The /opt/sas/ep/home/security/certs directory (version 16.0.0 or later) or the /
EPInstallDir/SASEPHome/security/certs directory (version 15.0000 or earlier) should have
drwxr-xr-x permissions.

o The dcsecurity.properties file should have -rwxr-xr-x permissions.

Enable Encryption for Parallel Data Transfer between Hadoop and SAS Viya
Follow these steps to encrypt data transfer between Hadoop and the CAS server when you transfer
data in parallel with the Hadoop data connector.

Note: A user enables parallel data transfer when they set the DATATRANSFERMODE= data
connector option to "PARALLEL". Parallel data transfer with the Hadoop data connector requires
installation and proper configuration of SAS Embedded Process.

1 On the CAS server, modify the casconfig_usermods.lua configuration file to enable encryption
with parallel data transfer for the Hadoop data connector.

Note: This step is required only for programming-only deployments. If you performed a full
deployment of SAS Viya, verify the current setting of cas.DCTCPMENCRYPT in the /opt/sas/
viya/config/etc/cas/default/casconfig.lua file.

a Enter the following command to edit the casconfig_usermods.lua file.

sudo vi /opt/sas/viya/config/etc/cas/default/casconfig_usermods.lua

b Add this value to the casconfig_usermods.lua file to enable encryption for parallel data
transfer on the CAS side.

cas.DCTCPMENCRYPT='YES'

CAUTION
The DCTCPMENCRYPT option is set on both the CAS server and on the data provider.
How the option is set on both sides determines whether the data being transferred is
encrypted or not. For more information, see “DCTCPMENCRYPT Option Setting Interaction” on
page 72.

69

c Add the location of the TLS certificate(s) and private key file and password, if used, to the
casconfig_usermods.lua file. The specific options that you use depend on the type of
certificates.

Here is an example. In this example, a password is not used.

cas.DCSSLPVTKEYLOC='path-to-your-private-key'
cas.DCSSLCERTLOC='path-to-id-cert'

For more information about the options, see “CAS Configuration File Options for Parallel Data
Transfer with SAS Data Connectors” on page 170.

d Enter this command to restart the CAS controller. This restart is required to pick up the
changes in the configuration file. How you run the following command depends on your
operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise
Server 12.x:

sudo systemctl restart sas-viya-cascontroller-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-cascontroller-default restart

2 On Hadoop, modify the dcsecurity.properties file to enable encryption for parallel data transfer.

a Navigate to either the /opt/sas/ep/home/security/ directory (SAS Embedded Process
version 16.0.0 or later) or the /EPInstallDir/SASEPHome/security/ directory (SAS
Embedded Process version 15.0000 or earlier).

b Change the DCTCPMENCRYPT option in the dcsecurity.properties file as follows:

-DCTCPMENCRYPT YES

CAUTION
The DCTCPMENCRYPT option is set on both the CAS server and on the data provider.
How the option is set on both sides determines whether the data being transferred is
encrypted or not. For more information, see “DCTCPMENCRYPT Option Setting Interaction” on
page 72.

c Add either the DCSSLCACERTDIR or DCSSLCALISTLOC option to the dcsecurity.properties
file to specify either the location of the trusted certificate authorities or the public
certificate(s) for trusted certificate authorities.

Here is an example if the SAS Embedded Process is version 16.0.0 or later:

-DCSSLCALISTLOC /opt/sas/ep/home/security/certs/certs-filename.pem

Here is an example if the SAS Embedded Process is version 15.0000 or earlier:

-DCSSLCALISTLOC /EPInstallDir/SASEPHome/security/certs/certs-filename.pem

For more information about the options, see “dcsecurity.properties File Options for Parallel
Data Transfer with Applicable SAS Data Connectors” on page 173.

3 Copy the necessary TLS CA certificates to either the /opt/sas/ep/home/security/certs
directory (SAS Embedded Process version 16.0.0 or later) or the /EPInstallDir/SASEPHome/
security/certs directory (SAS Embedded Process version 15.0000 or earlier).

70

n If your CA certificates already exist on the Hadoop cluster, copy the TLS CA certificates to
this directory.

n If your CA certificates exist on the CAS server, using a method of your choice, copy the CA
certificates to this directory on the Hadoop cluster.

In the following example, hdpclus1 is the name of the Hadoop cluster and the SAS Embedded
Process version is 16.0.0 or later:

scp CASCA1.pem username@hdpclus1:/opt/sas/ep/home/security/certs

In the following example, hdpclus1 is the name of the Hadoop cluster and the SAS Embedded
Process version is 15.0000 or earlier:

scp CASCA1.pem username@hdpclus1:EPInstallDir/SASEPHome/security/certs

For more information about the location of the trustedcerts.pem file, see “(Optional) Deploy
TLS Certificates” in SAS Viya for Linux: Deployment Guide.

Note:

n The CA certificates on the Hadoop cluster must authorize the identity certificates that are
specified on the CAS server.

n The /opt/sas/ep/home/security directory (version 16.0.0 or later) or the /EPInstallDir/
SASEPHome/security directory (version 15.0000 or earlier) should have drwxr-xr-x
permissions.

n The /opt/sas/ep/home/security/certs directory (version 16.0.0 or later) or the /
EPInstallDir/SASEPHome/security/certs directory (version 15.0000 or earlier) should have
drwxr-xr-x permissions.

n The dcsecurity.properties file should have -rwxr-xr-x permissions.

4 Use the sasep-admin.sh script to copy the contents of the security directory to all nodes on the
Hadoop cluster.

a Navigate to either the /opt/sas/ep/home/bin/ directory (SAS Embedded Process version
16.0.0 or later) or the /EPInstallDir/SASEPHome/bin/ directory (SAS Embedded Process
version 15.0000 or earlier).

cd /opt/sas/ep/home/bin
....or....
cd /EPInstallDir/SASEPHome/bin

b Run the sasep-admin.sh script with the -security deploy argument.

./sasep-admin.sh -security deploy

This script deploys the security settings for parallel data transfer to all nodes on the cluster.
For more information, see “SASEP-ADMIN.SH Script” in SAS Viya in Linux: Deployment Guide.

Note: You can use sasep-admin.sh —security deploy -force to overwrite the current
settings.

71

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p1om1vjhmolf3fn0zhsvmvi1n021.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p1om1vjhmolf3fn0zhsvmvi1n021.htm&locale=en

DCTCPMENCRYPT Option Setting Interaction
The DCTCPMENCRYPT option must be set for both the CAS server and the data provider. How the
option is set on both sides determines whether the data being transferred is encrypted, the data is
sent in plaintext, or the data transfer fails. The following table describes the interaction.

DCTCPMENCRYPT CAS setting - YES CAS setting - NO CAS setting - OPT

Data provider setting - YES Data transfer -
encrypted

Data transfer - fails Data transfer -
encrypted

Data provider setting - NO Data transfer - fails Data transfer -
plaintext

Data transfer -
plaintext

Data provider setting - OPT Data transfer -
encrypted

Data transfer -
plaintext

Data transfer -
encrypted

You might want to use the OPT setting on the CAS server if you have more than one cluster set up as
a client. If you want one cluster to use encrypted data transfer and one cluster to use plaintext, you
would set the DCTCPMENCRYPT option of the first cluster to YES and the DCTCPMENCRYPT
option of the second cluster to NO. You would then set the DCTCPMENCRYPT option of the CAS
server to OPT.

Note: During deployment of SAS Viya, the DCTCPMENCRYPT option is set to OPT on the CAS
server. You can change CAS server settings in the casconfig_usermods.lua file.

Updating the CAS Configuration File Options for Data Transfer

Note: This section applies only to a programming-only deployment.

You can check the current run-time data transfer encryption settings of the CAS server by using the
CAS Server Monitor. The settings are on the Runtime Environment panel of the System State page.
For more information about the CAS Server Monitor, see “Using CAS Server Monitor” in SAS Viya
Administration: SAS Cloud Analytic Services.

CAS server options are stored in a configuration file. During deployment, the
casconfig_deployment.lua is created in the /opt/sas/viya/config/etc/cas/default directory from
content provided in the vars.yml file. When the sas-viya-casconrtroller-default service is started, the
options in the Lua file are processed.

Changes to data transfer encryption options such as the DCTCPMENCRYPT option should be made
in the casconfig_usermods.lua file.

For a complete list of options, see “CAS Configuration File Options for Parallel Data Transfer with
SAS Data Connectors” on page 170.

72

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n00001servermonitor0000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n00001servermonitor0000admin.htm&locale=en

Updating the dcsecurity.properties File Options for Data Transfer
On Hadoop or Teradata, the file options for data transfer encryption are located in the
dcsecurity.properties file. The dcsecurity.properties file is located in the following directory on your
cluster:

n For Teradata, either the /opt/SAS/ep/home/security/ directory (SAS Embedded Process
version 16.0.0 or later) or the /opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/
security directory (SAS Embedded Process version 15.0000 or earlier).

n For Hadoop, either the /opt/sas/ep/home/security/ directory (SAS Embedded Process version
16.0.0 or later) or the /EPInstallDir/SASEPHome/security directory (SAS Embedded Process
version 15.0000 or earlier).

After you update the dcsecurity.properties file, copy the file to all nodes of the cluster.

n For Teradata, do a parallel file transfer to push the dcsecurity.properties file to all nodes.

n For Hadoop, use the sasep-admin.sh script to copy the contents of either the /opt/sas/ep/home/
security/ directory (SAS Embedded Process version 16.0.0 or later) or the /EPInstallDir/
SASEPHome/security directory (SAS Embedded Process version 15.0000 or earlier) to all nodes
on the Hadoop cluster. Run this command from either the /opt/sas/ep/home/bin/ directory or
the /EPInstallDir/SASEPHome/bin directory.

./sasep-admin.sh -security deploy

For a complete list of options, see “dcsecurity.properties File Options for Parallel Data Transfer with
Applicable SAS Data Connectors” on page 173.

Set Environment Variable to Use FIPS
Cryptographic Library (Linux)
If your Linux Operating System is running in FIPS mode, you must set the TKECERT_CRYPTO_LIB
environment variable. Without this variable, CAS sessions cannot be started from SAS Programming
Runtime Environment (SPRE) sessions.

In order to set this variable, follow these steps on all SAS Viya hosts where /opt/sas/spre/home/
SASFoundation/bin/sasenv_local exists. These are the machines that are specified in the
[programming] and [ComputeServer] host groups in inventory.ini. For more information, see “Edit the
Inventory File” in SAS Viya for Linux: Deployment Guide.

1 List the libcrypto modules in your /lib64 directory:

ls -l /lib64/libcrypto.so*

Here is an example of a list of libraries. Exact file names and versions might differ from those
listed here. In this example, libcrypto.so.1.0.2k is the FIPS 140-2 certified library that is being
used. This library is FIPS-certified for use with Red Hat Enterprise Linux 7 (RHEL 7).

lrwxrwxrwx. 1 root root 19 Mar 12 2023 /lib64/libcrypto.so -> libcrypto.so.1.0.2k
lrwxrwxrwx. 1 root root 19 Mar 12 2023 /lib64/libcrypto.so.10 -> libcrypto.so.1.0.2k
-rwxr-xr-x. 1 root root 2520768 Dec 4 2022 /lib64/libcrypto.so.1.0.2k

73

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p049t0kjjzyyiqn1wb3m0u1uao02.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p049t0kjjzyyiqn1wb3m0u1uao02.htm&locale=en

2 In /opt/sas/spre/home/SASFoundation/bin/sasenv_local, specify a valid cryptographic library
as shown in the following example code. You can also set the TKECERT_CRYPTO_LIB=
environment variable to a symlink on the system.

export TKECERT_CRYPTO_LIB=/lib64/libcrypto.so.1.0.2k

This version of SAS Viya supports the RHEL 7 FIPS 140-2 certified libraries. For each supported
version, Red Hat has a certificate of validation for the OpenSSL libcrypto.so and libssl.so libraries.
For more information, see FIPS 140-2 Re-certification for Red Hat Enterprise Linux 7.

IMPORTANT FIPS is not supported with SAS Viya 3.5 running on Red Hat Enterprise Linux 8
(RHEL 8).

Configure SAS 9.4 Clients to Work with SAS Viya
To configure a SAS 9.4 client to work with SAS Viya, you need, from the SAS Viya deployment, the
CA certificate that was used to sign the certificate that the CAS server is using. You also need the
CA certificate that was used to sign the certificate that the Apache HTTP Server is using in order to
interact with REST and Python.

Note: You must have SAS administrator privileges to import certificates from SAS Viya.

Perform the following tasks to locate the CA certificate that was used to sign the certificate that the
CAS server is using and add that certificate to the certificate stores and truststores of the SAS 9.4
deployment.

1 On most SAS Viya deployments, the CA certificate files that CAS is using can be found as
follows:

n In a SAS Viya full deployment on Linux, you can use the vault-ca.crt file or the
trustedcerts.pem file, located at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts. The vault-ca.crt file contains two certificates.
The first certificate is the SAS Viya root CA certificate issued by SAS Secrets Manager, and
the second certificate is the SAS Viya intermediate CA certificate issued by SAS Secrets
Manager. The trustedcerts files contain the trusted CA certificates and the intermediate
certificates.

n In a SAS Viya programming-only deployment on Linux, the trustedcerts files are located
at /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/
trustedcerts.

n In a SAS Viya Windows deployment, the trustedcerts files are located at C:\ProgramData\SAS
\Viya\etc\SASSecurityCertificateFramework\tls\cacerts\trustedcerts.

2 On a SAS 9.4 Windows client, import the SAS Viya root CA certificate and the intermediate
certificate into the Window’s certificate stores. These files have to be imported into the
Window’s certificate store one at a time. Because the vault-ca.crt file contains two files, the SAS
Viya root CA certificate and the SAS Viya intermediate CA certificate, you need to create two

74

https://www.redhat.com/en/about/press-releases/red-hat-completes-fips-140-2-re-certification-red-hat-enterprise-linux-7

unique files, one containing the root CA and the other containing the intermediate CA
certificates. Use a text editor and cut and paste as appropriate.

Each certificate in the file is denoted with a -----BEGIN CERTIFICATE----- and an -----END
CERTIFICATE----- pair. Include the -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE----- header and footer in each of the two new files.

Save these two files on your Windows machine and then add your certificates to the Windows
CA store. You need to import the root certificate first and then the intermediate certificate. See
“Import CA Certificates into the Windows Trusted Root Certificate Authorities Store” on page
85.

3 On a Linux 9.4m5 client, perform the following steps:

a Copy the SAS Viya CA certificates (vault-ca.crt or the trustedcerts.pem file) from the SAS
Viya host to a location on your SAS 9.4 deployment where you can access the certificates. The
directory structure where the SAS 9.4 trusted CA certificates (trustedcerts.pem or
trustedcerts.jks) are found is at <SASHome>/SASSecurityCertificateFramework/1.1/
cacerts.

Note: Do not overwrite the existing trustedcerts files.

b Append the contents of the SAS Viya vault-ca.crt file (or the SAS Viya trustedcerts.pem file)
to the end of the trustedcerts.pem file on the SAS 9.4 host. There are various ways to add
your certificates to the trustedcerts.pem file:

n Use the SAS Deployment Manager to add your certificates to the trusted CA bundle.

n Use a text editor to add your certificates to the trustedcert.pem file.

c If you are using the December 2017 release of SAS 9.4M5 or later, you can skip this step.

Otherwise, on the Linux server, set environment variable CAS_CLIENT_SSL_CA_LIST= to the
trust list that the client uses to connect to the server.

export CAS_CLIENT_SSL_CA_LIST='<SASHome>/SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem'

If your SAS 9.4 client is SAS Studio, you can add the EXPORT statement to the sasenv_local
file that is located at /SASHome/SASFoundation/bin.

Note:

In the December 2017 release of SAS 9.4M5, the CAS_CLIENT_SSL_CA_LIST= environment
variable does not need to be set.

Perform the following tasks to locate the CA certificate that was used to sign the certificate that the
Apache HTTP Server is using and add that certificate to the certificate stores and truststores of the
SAS 9.4 deployment.

1 From the Apache HTTP Server deployed with SAS Viya, locate the CA certificate file that you
need to copy to the SAS 9.4 deployment.

Note: The certificate file might contain a root and intermediate certificates (chain file).

75

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=secref&docsetTarget=n0n1y5gwevy312n13h5bm4yf6quy.htm

a If you have replaced the default self-signed CA certificates with your site-signed CA
certificates, you can locate these certificates in the following directories.

n On Red Hat Enterprise Linux and Equivalent Distributions, the certificate is located
in /etc/pki/tls/certs.

n On SUSE Linux Enterprise Server, the certificate is located in /etc/apache2/ssl.crt.

For information about replacing the default certificates on the Apache HTTP Server, see
“Update Apache HTTP Server TLS Certificates and Cryptography ” on page 8.

b You can also use the CA certificate file that starts with the file name httpproxy located
in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts. The certificate
files complete name is dependent on the inventory name assigned to the host. For example,
the complete name might be httpproxy-inventoryname-ca.crt.

2 On a SAS 9.4 Windows client, import the SAS Viya Apache HTTP root CA certificate and the
intermediate certificates into the Window’s certificate store. The certificate files have to be
imported into the Window’s certificate store one at a time. If you have copied a certificate chain
file, you will need to create unique files for each certificate. Use a text editor and cut and paste as
appropriate.

Each certificate in the file is denoted with a -----BEGIN CERTIFICATE----- and an -----END
CERTIFICATE----- pair. Include the -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE----- header and footer in each of the new files.

Save these files on your Windows machine and then add all of the certificates to the Windows
CA store.

3 On a SAS 9.4m5 Linux client, perform the following steps to add the SAS Viya Apache HTTP CA
certificate to the SAS 9.4 trustedcerts.pem file.

a Copy the Apache HTTP CA certificate (site-signed CA certificate or httpproxy-
inventoryname-ca.crt) from the SAS Viya host to a location on your SAS 9.4 deployment
where you can access the certificates. The directory structure where the SAS 9.4 trusted CA
certificates (trustedcerts.pem or trustedcerts.jks) are found is at <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts.

Note: Do not overwrite the existing trustedcerts files.

b Append the contents of the Apache HTTP certificate file to the end of the trustedcerts.pem
file on the SAS 9.4 host. There are various ways to add your certificates to the
trustedcert.pem file:

n Use the SAS Deployment Manager to add your certificates to the trusted CA bundle.

n Use a text editor to add your certificates to the trustedcerts.pem file.

c If you are using the December 2017 release of SAS 9.4M5 or later, you can skip this step.

Otherwise, on the Linux server, set environment variable CAS_CLIENT_SSL_CA_LIST= to the
trust list that the client uses to connect to the server.

export CAS_CLIENT_SSL_CA_LIST='<SASHome>/SASSecurityCertificateFramework/1.1/cacerts/
trustedcerts.pem'

If your SAS 9.4 client is SAS Studio, you can add the EXPORT statement to the sasenv_local
file that is located at /SASHome/SASFoundation/bin.

76

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=secref&docsetTarget=n12036intelplatform00install.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=secref&docsetTarget=n12036intelplatform00install.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=secref&docsetTarget=n0n1y5gwevy312n13h5bm4yf6quy.htm

Note:

In the December 2017 release of SAS 9.4M5, the CAS_CLIENT_SSL_CA_LIST= environment
variable does not need to be set.

Disable and Enable TLS (Linux Full Deployment)

Overview

To enable and disable TLS in a full deployment, you will at minimum need to update the vars.yml file
to change the SECURE_CONSUL setting and disable ports using port families.

In SAS Viya, categories of ports known as port families were developed to allow a minimum number
of settings to enable and disable broad categories of network traffic security using SAS Environment
Manager. Port families are groupings of ports that share network usage characteristics. For example,
for many customers, there is network and security infrastructure built around proxy servers and web
applications. Machines running web applications frequently are managed as a group. This port family
name is "web". Similarly, relational database servers are frequently grouped into similar network
topologies and managed as a collective. This port family name is "databaseTraffic". SAS servers are
frequently grouped together. That port family name is "sasData". Lastly, processes that monitor the
health of the system, report usage statistics and control the configuration of the servers is port
family "Server Control". See Table 7 on page 78.

The security of most ports is controlled by their corresponding port family configuration setting.
However, a very small subset of ports do not use the port family configuration setting. TLS on these
ports must be enabled and disabled differently.

n SAS Configuration Server ports are controlled by settings in the vars.yml file. The
SECURE_CONSUL and the DISABLE_CONSUL_HTTP_PORT settings are TRUE by default. For
more information, see “Enable or Disable TLS on the SAS Configuration Server Ports” on page
81.

n SAS Cloud Analytic Services inter-node communications are not secured by default, but can be
enabled or disabled through configuration changes. See “Configure CAS Internode TLS (Linux Full
Deployment)” on page 43.

n SAS Secrets Manager ports are always secured.

n For encryption in-motion with SAS Embedded Process, in a SAS Viya full-deployment, the
configuration on the CAS side is complete by default. However, the SAS Embedded Process
configuration, on either Hadoop or Teradata, must be updated to enable it. The
DCTCPMENCRYPT option defines if encryption is used. See “Encrypt Data Transfer When
Transferring Data in Parallel with a SAS Data Connector (Linux Full Deployment)” on page 62.

For a list of ports in SAS Viya, see “Configure Required Ports” in SAS Viya for Linux: Deployment
Guide.

77

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1avwv04n69r3fn1jly7cqno71bm.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1avwv04n69r3fn1jly7cqno71bm.htm&locale=en

Enable or Disable TLS Using Port Families

Information included in these sections describe what port families are configured by default and how
those default port family configurations can be changed.

Port Families
The port families shown in Table 7 on page 78 are secured using TLS by default. You can enable or
disable network security traffic for TLS using categories (families) of ports.

Table 7 TLS Port Families - Enabled by Default

Family Name Description Ports That Can Be Controlled

databaseTraffic Port family that needs to control
traffic to database servers that
might be located on different
network segments.

SAS Infrastructure Data Server
(PostgreSQL), EP Data
Connectors

sasData Port family that controls traffic
transporting data to SAS servers.

CAS client, SAS Compute Server,
SAS/CONNECT Server,
SAS/CONNECT Spawner, SAS
Event Stream Processing (ESP)
Server, CAS Server Monitor, SAS
Workspace Server, SAS Object
Spawner

serverControl Port family that controls traffic
sent between clustered servers
to maintain the cluster.

SAS Launcher Server

web Port family that enables and
disables internal traffic routed to
Apache where HTTP is used
instead of HTTPS. External
traffic to the HTTPS end-point is
not affected.

Apache HTTP Server, all web
apps and microservices, SAS
Cache Locator (Apache Geode),
SAS Message Broker
(RabbitMQ), CAS Rest, ESP App,
SAS Studio, CAS Server Monitor

Use Ansible to Enable or Disable TLS Port Families Pre-deployment
TLS is enabled by default. If you want to disable TLS across all ports prior to deployment, add the
following to the sitedefault.yml file. For information about sitedefault.yml, see “Bulk Loading of
Configuration Values (sitedefault.yml)” in SAS Viya Administration: Configuration Properties.

Note: Keep the indention.

config:

78

http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n05000sasconfiguration0admin.htm&docsetTargetAnchor=n05009sasconfiguration0admin&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n05000sasconfiguration0admin.htm&docsetTargetAnchor=n05009sasconfiguration0admin&locale=en

 application:
 sas.security:
 network.web.enabled: false
 network.sasData.enabled: false
 network.databaseTraffic.enabled: false
 network.serverControl.enabled: false

Customers can use SAS Environment Manager to override the default behavior by altering the
sas.security/network settings.

Use SAS Environment Manager to Enable and Disable TLS Port Families
Post-Deployment
To alter the port family settings using the SAS Environment manager, edit the sas.security network
settings.

Note: You need to turn off all four port families if you are disabling TLS across the deployment. This
example turns off just one.

1 From the applications menu (), select Manage Environment.

2 From the side menu, click .

The Configuration page is an advanced interface. It is available only to SAS Administrators.

3 The default view is Basic Services. Select Definitions from the drop-down box.

4 In the Definitions list, filter on sas.security. Select sas.security.

5 The sas.security/network.web.enabled property is for the port family for which you want to turn
off web-enabled TLS.

a Locate the network.web.enabled property. At the right corner of the Configuration window,
click and set network.web.enabled to false.

Click Save.

Note: The system takes a few minutes to recognize the new key before starting to use the
new key.

false Disables TLS for the port family.

true Enables TLS for the port family.

For a description of the properties, see “Configuration Properties: Reference (System)” in SAS
Viya Administration: Configuration Properties.

6 Restart all services on all machines

Note: On a multiple-machine deployment, there is a sequence for starting and stopping SAS Viya
servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

sudo /etc/init.d/sas-viya-all-services stop

79

http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08030sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08030sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

sudo /etc/init.d/sas-viya-all-services start

Programmatically Enable or Disable TLS Port Families
Using SAS Environment Manager to disable or enable TLS on port families is the preferred method.
However, you can enable or disable the TLS ports programmatically by using the following sas-
bootstrap-config commands. The SAS Bootstrap Config CLI must establish trust for the TLS
handshake to proceed and allow secure communication. To establish trust, the truststore must be
specified as an environment variable. Sourcing the consul.conf sets the SSL_CERT_FILE environment
variable to the trusted certificates.

1 Log on to the SAS Configuration Server (Consul) as a user with root or sudo privileges.

2 To see whether the setting for a particular port family is enabled or disabled, you can enter the
following commands. In this example, we want to see whether the TLS port family for
PostgreSQL is enabled or disabled. PostgreSQL uses the network.databaseTraffic.enabled port
family value and is set to true if TLS is enabled.

. /opt/sas/viya/config/consul.conf

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv read --recurse config
| grep network.databaseTraffic.enabled

3 Use sas-bootstrap-config commands to disable TLS on the various port families. The port
families are set to false to disable TLS.

. /opt/sas/viya/config/consul.conf

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv write --force --site-
default config/application/sas.security/network.databaseTraffic.enabled false

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv write --force --site-
default config/application/sas.security/network.sasData.enabled false

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv write --force --site-
default config/application/sas.security/network.serverControl.enabled false

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv write --force --site-
default config/application/sas.security/network.web.enabled false

Note: TLS settings for the High Availability (HA) PostgreSQL cluster can be enabled and
disabled at the global level for all clusters. Individual clusters can override the global setting by
adding a cluster specific key, as shown in the following example:

. /opt/sas/viya/config/consul.conf

/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv write --force --site-
default config/<CLUSTER_NAME>/sas.security/network.databaseTraffic.enabled false

Restart all services on all machines
sudo /etc/init.d/sas-viya-all-services start

80

Note: On a multiple-machine deployment, there is a sequence for starting and stopping SAS Viya
servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

Enable or Disable TLS on the SAS Configuration Server Ports

To disable TLS across the deployment, in addition to turning off port families, you must also disable
settings in SAS Configuration Server (Consul) . Consul ports are controlled by settings in the
vars.yml file. In the file, the setting SECURE_CONSUL must be set to FALSE to completely disable
TLS on the deployment. See “Use Ansible to Enable or Disable TLS Port Families Pre-deployment”
on page 78.

Two settings control the HTTP and HTTPS ports for Consul. The two settings are configured as
follows:

SECURE_CONSUL is set to TRUE by default. This setting enables port 8501 with
HTTPS. If you set SECURE_CONSUL to FALSE, only the
unsecured HTTP port (8500) is available.

DISABLE_CONSUL_HTTP_PORT is set to TRUE by default. This setting disables port 8500. If
you set DISABLE_CONSUL_HTTP_PORT to FALSE, both the
HTTP port (8500) and the HTTPS port (8501) are available.

The following instructions provide an example of how to disable TLS on Consul.

Note: To enable TLS on Consul, simply set SECURE_CONSUL=TRUE and continue the following
steps.

1 Edit the vars.yml file and set SECURE_CONSUL=FALSE.

2 Run the Ansible playbook in its entirety. See “Deploy the Software” in SAS Viya for Linux:
Deployment Guide.

sudo -u userid ansible-playbook -i inventory.ini site.yml

3 Stop and restart all services on all machines

Note: On a multiple-machine deployment, there is a sequence for starting and stopping SAS Viya
servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

sudo /etc/init.d/sas-viya-all-services stop

sudo /etc/init.d/sas-viya-all-services start

Note: When SAS Message Broker (RabbitMQ) is stopped, the epmd mapper process is
terminated. However, the epmd process is restarted when you issue status checks. This status
might mislead you to think that stopping RabbitMQ did not work when you stopped all of the
processes. If you issue a status check to verify that all processes have been stopped and see that
the epmd process is running, you can manually terminate it again if you think that it is necessary.
To stop the epmd process, issue the following command:

81

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p00h3lhtjqxafen1qkk9q0qc9brs.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=p00h3lhtjqxafen1qkk9q0qc9brs.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

${SASHOME}/bin/epmd -kill

Manage Truststores

Manage Truststores (Linux Full Deployment)

Add Certificates to the Truststore (Linux Full Deployment)
The preferred way to add certificates to the truststore in a SAS Viya full deployment is to use the
SAS Bootstrap Config CLI. The SAS Bootstrap Config CLI is a tool to manage the Consul key value
store. Using the SAS Bootstrap Config CLI, you can add certificates to the Key Value (KV) store that
will later be read and updated when the rebuild-truststores.yml play is run.

You can use the SAS Bootstrap Config CLI when Consul is running to add certificates to the
truststore on Linux. See “Use SAS Bootstrap Config CLI on Consul to Manage the KV Store and ACL
Tokens ” on page 104 for more information.

Note: You should not edit the SAS Viya truststore files (trustedcerts.pem and trustedcerts.jks)
manually or with a keytool command, as these files are overwritten by the automated processes. You
should use the following method if updates to these files are needed.

1 For the certificate files that need to be added to the SAS Viya truststore, ensure that the
certificates are in PEM encoded format and place those files in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts directory.

2 Set the Consul access token in the CONSUL_HTTP_TOKEN environment variable. These
commands need to be run before executing any utilities or services that might access Consul.

Note: The export command should be on one line and should not contain line breaks.

. /opt/sas/viya/config/consul.conf

export CONSUL_HTTP_TOKEN=$(sudo cat /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token)

3 Choose a unique key name for the certificate that will be added to the truststore and loaded into
consul. For this example, we will call our certificate file MyRootCA.pem and our key name is
MyRootCA.

4 Load the certificate into consul using the following SAS Bootstrap Config CLI command.

/opt/sas/viya/home/bin/sas-bootstrap-config kv write --key cacerts/MyRootCA --file /opt/sas/
viya/config/etc/SASSecurityCertificateFramework/cacerts/MyRootCA.pem

5 Validate that the certificates were loaded into Consul successfully.

/opt/sas/viya/home/bin/sas-bootstrap-config kv read cacerts/MyRootCA

82

6 Use the Ansible playbook to rebuild the truststores across all the hosts in the SAS Viya
deployment. On an Ansible controller machine, run the rebuild-trust-stores.yml play. Run the
following command from /sas_viya_playbook/ directory.

ansible-playbook -i inventory.ini ./utility/rebuild-trust-stores.yml

Note: Use the same admin user that you used during the initial SAS Viya deployment. For more
information, see “User and Group Requirements” in SAS Viya for Linux: Deployment Guide.

7 Restart all the services so that they now reference the updated truststores. Remember only new
key-value pairs are added. Existing key-value pairs are not updated.

Note: On a multiple-machine deployment, there is a sequence for starting and stopping SAS Viya
servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

sudo /etc/init.d/sas-viya-all-services start

Remove Certificates from the Truststores (Linux Full Deployment)
In a SAS Viya full deployment, you can use SAS Bootstrap Config CLI to remove CA certificates from
the truststores. For example, you might want to remove an expired CA certificate.

You can use the SAS Bootstrap Config CLI when Consul is running to add certificates to the
truststore on Linux. See “Use SAS Bootstrap Config CLI on Consul to Manage the KV Store and ACL
Tokens ” on page 104 for more information.

Note: You should not edit the SAS Viya truststore files (trustedcerts.pem and trustedcerts.jks)
manually or with a keytool command, as these files are overwritten by the automated processes. You
should use the following method if updates to these files are needed.

1 To delete certificates, you must remove the certificates and keys from Consul using sas-
bootstrap-config commands. The SAS Bootstrap Config CLI must establish trust for the TLS
handshake to proceed and allow secure communication. To establish trust, the truststore must be
specified as an environment variable. Sourcing the consul.conf sets the SSL_CERT_FILE
environment variable to the trusted certificates.

Note: The following commands should be run as a root or sudo user.

The code is shown on more lines for display purposes only. The export and KV delete commands
should be on one line and should not contain line breaks.

a For the certificate files that need to be removed from the SAS Viya truststore, remove it
from /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts directory.

b Set the Consul access token in the CONSUL_HTTP_TOKEN environment variable. These
commands need to be run before executing any utilities or services that might access Consul.

. /opt/sas/viya/config/consul.conf

export CONSUL_HTTP_TOKEN=$(sudo cat /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token)

83

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n15hhewllr5ji2n1sxf96imqvtpj.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

c To remove the internal CA certificate (MyRootCA) that you added previously, submit the
following commands:

. /opt/sas/viya/config/consul.conf

/opt/sas/viya/home/bin/sas-bootstrap-config kv delete cacerts/MyRootCA

2 Use the Ansible playbook to rebuild the truststores on each machine in the deployment. On an
Ansible controller machine, run the rebuild-trust-stores.yml Ansible play. This act incorporates
the updated CA bundle of trusted certificates (from Consul configuration) into the various
truststores (trustedcerts.pem and trustedcerts.jks) on each machine in the SAS Viya deployment.
Run the following command from /sas_viya_playbook/ directory.

ansible-playbook -i inventory.ini ./utility/rebuild-trust-stores.yml

3 Restart all the services so that they now reference the updated truststores. Remember that only
new key-value pairs are added. Existing key-value pairs are not updated.

Note: On a multiple-machine deployment, there is a sequence for starting and stopping SAS Viya
servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

sudo /etc/init.d/sas-viya-all-services start

Note: If the deployment playbook is rerun later to update the license, the correct content remains in
the truststores when you follow this process.

Replace Certificates in the Truststores (Linux Full Deployment)
In a SAS Viya full deployment, you can use the SAS Bootstrap Config CLI to replace CA certificates
in the truststore. For example, you might have a CA certificate that has been renewed.

You can use the SAS Bootstrap Config CLI when Consul is running to add certificates to the
truststore on Linux. See “Use SAS Bootstrap Config CLI on Consul to Manage the KV Store and ACL
Tokens ” on page 104 for more information.

Note: You should not edit the SAS Viya truststore files (trustedcerts.pem and trustedcerts.jks)
manually or with a keytool command, as these files are overwritten by the automated processes. You
should use the following method if updates to these files are needed.

1 Remove the certificate that you want to replace and add the certificate that you want added
in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts.

2 To update the certificates, you must first remove the certificates and keys from Consul that you
want to replace or update.

Note: The following commands should be run as a root or sudo user.

The code is shown on more lines for display purposes only. The export and KV delete commands
should be on one line and should not contain line breaks.

84

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

a Set the Consul access token in the CONSUL_HTTP_TOKEN environment variable. These
commands need to be run before executing any utilities or services that might access Consul.

. /opt/sas/viya/config/consul.conf

export CONSUL_HTTP_TOKEN=$(sudo cat /opt/sas/viya/config/etc/
SASSecurityCertificateFramework /tokens/consul/default/client.token)

b Remove the internal CA certificate (MyRootCA). Submit the following command. You are
removing the existing key-value pair from the cacerts tree in order for the new key-value pair
to be added.

Note: MyRootCA is the name that we are using for the consul key for the certificate file
named MyRootCA.pem.

. /opt/sas/viya/config/consul.conf

/opt/sas/viya/home/bin/sas-bootstrap-config kv delete cacerts/MyRootCA

3 Load the new certificate into consul using the following SAS Bootstrap Config CLI command.

/opt/sas/viya/home/bin/sas-bootstrap-config kv write --key cacerts/MyRootCA --file /opt/sas/
viya/config/etc/SASSecurityCertificateFramework/cacerts/MyNewRootCA.pem

4 Use the Ansible playbook to rebuild the truststores on each machine in the deployment. On an
Ansible controller machine, run the rebuild-trust-stores.yml Ansible play. This act incorporates
the updated CA bundle of trusted certificates (from Consul configuration) into the various
truststores (trustedcerts.pem and trustedcerts.jks) on each machine in the SAS Viya deployment.
Run the following command from /sas_viya_playbook/ directory.

ansible-playbook -i inventory.ini ./utility/rebuild-trust-stores.yml

5 Restart all the services so that they now reference the updated truststores.

Note: On a multiple-machine deployment, there is a sequence for starting and stopping SAS Viya
servers and services. See “General Servers and Services: Operate (Linux)” in SAS Viya
Administration: General Servers and Services.

sudo /etc/init.d/sas-viya-all-services start

Note: If the deployment playbook is rerun later to update the license, the correct content remains in
the truststores when you follow this process.

Manage Truststores (Windows Deployment)

Import CA Certificates into the Windows Trusted Root Certificate Authorities
Store
Import your CA certificates into the Windows Trusted Root Certificate Authorities store using the
Microsoft Management Console (MMC).

85

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&locale=en

Note: The instructions shown here may vary slightly depending on which version of Windows you
are using. See the official Microsoft Windows documentation.

1 Start the Microsoft Management Console (MMC). Right-click the Windows Start menu and select
Run.

2 In the Run window, enter MMC, and press OK.

3 From the Microsoft Management Console window, click File and Add/Remove Snap-in from the
drop-down menu.

a In the Add or Remove snap-ins window, select Certificates from the Available snap-ins list.

b Add Certificates to the Selected snap-ins list.

c Select Computer account and click Next.

d Select Local computer (the computer that this console is running on). Click Finish.

e Click OK.

4 Expand the Certificates (Local Computer) list and click Trusted Root Certification Authorities.

5 Select the Certificates node to view a list of certificates.

6 From the left pane, right-click Certificates. If you are importing CA certificates, right-click the
Certificates node within the Certificates (Local Computer), Trusted Root Certification
Authorities, Certificates hierarchy.

Select All Tasks, and then Import from the drop-down menu.

7 From the Certificate Import Wizard, confirm that Local Machine is selected for the Store
Location, and click Next.

a Select Browse to locate the file to import. Expand the list of file types and select All Files
from the drop-down menu.

b From the list of files, select the certificate that you want to import into the trust store. Click
Next.

c From the Certificate Store page of the Certificate Import Wizard, select Place all certificates
in the following store. Place the certificates in the Certificate store for the Trusted Root
Certification Authorities. Click Next.

d From the Completing the Certificate Import Wizard page of the Certificate Import Wizard,
click Finish.

e Verify that you receive the message The import was successful, and click OK.

8 Observe that the imported certificate is now listed in the Microsoft Management Console. In the
Console window, expand Trusted Root Certification Authorities to make sure that the certificate
that you imported is listed.

9 Repeat the steps for any CA intermediate certificates.

86

Import the Client Certificate into the Windows Personal Machine Store
Import the client certificates into the Windows personal store on the local machine using the
Microsoft Management Console (MMC).

1 Start the Microsoft Management Console (MMC). Right-click the Windows Start menu and select
Run.

2 In the Run window, enter MMC, and press OK.

3 From the Microsoft Management Console window, click File and Add/Remove Snap-in from the
drop-down menu.

a In the Add or Remove snap-ins window, select Certificates from the Available snap-ins list.

b Add Certificates to the Selected snap-ins list.

c Select Computer account and click Next.

d Select Local computer (the computer that this console is running on). Click Finish.

e Click OK.

4 Expand the Certificates (Local Computer) list and click Personal.

5 From the left pane, right-click and select the Certificates node within the Certificates (Local
Computer), Personal, Certificates hierarchy to view a list of certificates. Select All Tasks, and
then Import from the drop-down menu.

6 From the Certificate Import Wizard, confirm that Local Machine is selected for the Store
Location, and click Next.

a Select Browse to locate the file to import. Expand the list of file types and select All Files
from the drop-down menu.

b From the list of files, select the certificates that you want to import. In our example, we are
selecting the client certificate in PFX format that contains the certificate and private key file,
customerCert.pfx. Click Next.

c From the Private Key Protection page of the Certificate Import Wizard, enter the password
for customerCert.pfx. Select Include all extended properties. Do not select Enable strong
private key protection and do not select Mark this key as exportable. Click Next.

d From theCertificate Store page of the Certificate Import Wizard, select Place all certificates
in the following store. Place the certificates in the Personal Certificate store. Click Next.

e From the Completing the Certificate Import Wizard page, click Finish.

f Verify that you receive the message The import was successful, and click OK.

7 Observe that the imported certificates are now listed in the Microsoft Management Console.

87

Grant Read Permission to Authenticated Users for the Client Certificate's
Private Key
In order to use the client’s private key, the client certificate’s private key must be readable. Perform
the following tasks to grant Read permission to the authenticated users who will use the client
certificate's private key.

1 Start the Microsoft Management Console (MMC). Right-click the Window’s Start menu and
select Run.

2 From the Run window, type MMC, and press OK.

3 Right-click the client certificate that you recently imported. See “Import the Client Certificate
into the Windows Personal Machine Store” on page 87.

4 On the pop-up menu, select All Tasks, Manage Private Keys. A Permissions window appears.

5 From the Permissions window, within the Security tab, add Authenticated Users.

6 Ensure that authenticated users have Read permission. Select Allow Read item, deselect Allow
Full control, and deselect Allow Special permissions. Click OK.

Add Certificates to or Remove Certificates from the SAS Viya
Truststore Manually

Note: Use these instructions only for a Windows deployment or for a Linux programming-only
deployment. To manage truststores in a Linux full deployment, see “Manage Truststores (Linux Full
Deployment) ” on page 82.

SAS provides a trusted list of root CA certificates at installation. This trusted list includes the
Mozilla bundle of CA certificates, the default Apache httpd certificates, and the CA certificates
issued by SAS Viya. There are two files named trustedcerts that contain the trusted list of
certificates, trustedcerts.pem and trustedcerts.jks. These files make up the SAS truststore and are
located as follows:

n In a SAS Viya deployment on Linux, the trusted CA certificates are found at /opt/sas/viya/
config/etc/SASSecurityCertificateFramework/cacerts.

n In a SAS 9.4 deployment on Linux, the trusted CA certificates are found at <SASHome>/
SASSecurityCertificateFramework/1.1/cacerts.

n In a SAS Viya deployment on Windows, the trusted CA certificates are found at C:\ProgramData
\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts

To add your pem encoded CA root certificates, self-signed certificates, or chained certificates to the
SAS truststore (trustedcerts.pem file), perform the following steps. You can also delete the
certificates that need to be deleted.

Note: For more information, see “Create a Certificate Chain of Trust for Apache HTTPD” on page
125.

88

1 Use a text editor to add certificates to or remove certificates from the trustedcerts.pem file.
Locate the certificates that you want to delete from or add to the trustedcerts.pem file. Here is
an example template of certificates that a trustedcerts.pem file might contain.

<PEM encoded companycaroot>
-----BEGIN CERTIFICATE-----
certificate string
-----END CERTIFICATE-----
<PEM encoded companysha2rootca>
-----BEGIN CERTIFICATE-----
certificate string
-----END CERTIFICATE-----
<PEM encoded digicertrootca>
-----BEGIN CERTIFICATE-----
certificate string
-----END CERTIFICATE-----
<PEM encoded SASViyalocalhost>
-----BEGIN CERTIFICATE-----
certificate string
-----END CERTIFICATE-----
<PEM encoded customer-chain>
-----BEGIN CERTIFICATE-----
certificate string
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
certificate string
-----END CERTIFICATE-----

The content of the digital certificate in this example is represented as <PEM encoded
certificate> . The content of each digital certificate is delimited with a -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- pair. All text outside the delimiters is
ignored. Therefore, you might not want to use delimited lines for descriptive comments.

You can also concatenate the certificate authority files. For example, you can concatenate a
Server certificate (also known as server-identify certificate) file and CA certificate files into a
single PEM file. Here is an example of concatenating several certificates. For this example, the
customer-chain.crt file has three certificates in the file.

Note: When creating a customer-chain.crt that will be used in the Apache SSLCertificateFile
directive, concatenate certificates in the following order:

cat Server-identity.crt IntermediateCA.crt RootCA.crt > customer-chain.crt

On Linux, use cat to concatenate.

cat customer-chain.crt >> trustedcerts.pem

On Windows, use type to concatenate.

type customer-chain.crt >> trustedcerts.pem

2 Because the digital certificate is encoded, it is unreadable. To view the file contents, you can use
the following OpenSSL commands for your file type:

openssl x509 -in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/
trustedcerts.pem -text -noout

89

On Windows, the openssl command can be run from C:\Program Files\SAS\Viya\httpd\bin

openssl x509 -in C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts -text -
noout

3 Place the new CA certificates that you added to the SAS truststore in the cacerts directory. Also
add all of your certificates, chain certificates, and private keys to the following directories:

n On a Linux programming-only deployment:

o /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts

o /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tls/certs

o opt/sas/viya/config/etc/SASSecurityCertificateFramework/private

n On Windows:

o C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts

o C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\tls\certs

o C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\private

To add Java encoded CA root certificates, self-signed certificates, or chained certificates to the SAS
truststore (trustedcerts.jks file), perform the following steps. You can also delete the certificates
that need to be deleted. Use the keytool command to add the certificates to the Java truststore.

Note: For more information about the keytool command, see keytool - Key and Certificate
Management Tool.

1 Locate the default truststore for your Java applications. In a SAS Viya deployment on Windows,
the trusted CA certificates are found at C:\ProgramData\SAS\Viya\etc
\SASSecurityCertificateFramework\cacerts\trustedcerts.jks

2 When you import the CA certificates into the truststore, add the root certificate first. Repeat
these steps for the certificates in the chain of trust.

Note: Keytool might be in a different directory.

a On Linux, use the following commands to import a root CA certificate (customerCA.crt in our
example) into the default truststore:

$ keytool -importcert -file /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
cacerts/customerCA.crt -alias customerCA -keystore /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.jks

b On Windows, use the following keytool commands to import certificates (customerCA.crt)
certificate into the default truststore (trustedcerts.jks):

Note: Keytool might be in a different directory.

C:\Program Files\Java\Java-version\bin\keytool -importcert -file C:\ProgramData\SAS\Viya
\etc\SASSecurityCertificateFramework\cacerts\customerCA.crt -alias customerCA -keystore
C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts\trustedcerts.jks

90

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

3 Delete the CA certificates from the SAS truststore. Repeat this step for all certificates that need
to be deleted in the chain of trust. Use the following keytool commands:

Note: Keytool might be in a different directory.

C:\Program Files\Java\Java-version\bin\keytool -delete -alias customerCA -keystore
C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts\trustedcerts.jks

a On Linux, use the following commands to delete a root CA certificate (customerCA.crt in our
example) from the default truststore. Use the following commands to remove a root CA
certificate (customerCA.crt in our example) from the default truststore:

keytool -delete -alias customerCA -keystore /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.jks

b On Windows, use the following keytool commands to delete a root CA (customerCA.crt)
certificate from the default truststore (trustedcerts.jks):

Note: Keytool might be in a different directory.

C:\Program Files\Java\Java-version\bin\keytool -delete -alias customerCA -keystore
C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts\trustedcerts.jks

Note: Do not delete the trustedcerts files.

Note: Add your root certificate to the trustedcerts.pem and trustedcerts.jks files on every machine
in the deployment. Also delete your root certificate from every machine in the deployment.

For more information about how to manage your certificates and protect your keys, see “Manage
Certificates and Generate New Certificates” on page 91.

Manage Certificates and Generate New Certificates

IMPORTANT When system-wide cryptographic policies are activated in Red Hat Enterprise
Linux 8.x, communications among critical SAS Viya components are prevented. The SAS Viya
generated keys are 2048-bit RSA keys by default. This key size is not compatible with Red Hat
Enterprise Linux 8 cryptographic policy when it is set to FUTURE. For information on how to
resolve this interaction, see “Cryptographic Policies” in SAS Viya for Linux: Deployment Guide.

Use Best Practices to Create and Manage Certificates

SAS recommends following best practices when creating certificates, managing certificates, or
securing private keys. The following best practices are recommended for managing certificates with
a SAS Viya 3.5 deployment.

91

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en

n When generating new certificates, provide the following information for the certificate signing
request:

Note: For more information, see Baseline Requirements for the Issuance and Management of
Publicly-Trusted Certificates.

o Provide fixed host names (required by the SAS Viya environment). On Linux, the 'hostname -
f' command can be used to discover the host name and provide that name when generating a
certificate.

o Provide a fully qualified domain name (FQDN) that is 64 characters or fewer in length. One of
the specifications for the certificate revocation list is a 64-character limit for the common
name (CN) attribute. For more information, see RFC 5280.

o Provide at least one subject alternative name (SAN) extension. This extension must contain
at least one entry of dNSName or iPAddress type. The SAN extension can contain multiple
dNSName and iPAddress type names.

n The dNSName must be either a fully qualified domain name (FQDN) or a wildcard domain
name. A dNSName at a minimum should include the dNSName used to access the
environment.

n Include iPAddress type names in the SAN extension if you need to address a server
directly by using an IP address. SAS Viya services often need to address other SAS Viya
services by IP address. Therefore, it is recommended that IP addresses be included
(including 127.0.0.1) when generating a certificate for service-to-service communication.
For example, when the CAS CAL certificate needs to be replaced, include an IP address in
the SAN extension.

If an X.509 v.3 certificate contains an iPAddress, it must be included in the SAN extension
as an iPAddress name form (not dNSName).

IMPORTANT The iPAddreses value should not be a Reserved IP Address.

When the SAN extension contains an iPAddress, the address must be stored in the octet
string in network byte order. For IPv4, the octet string must contain exactly four octets.
For IPv6, the octet string must contain exactly sixteen octets.

For more information about SAN extensions, see RFC 5280, RFC 6125, and RFC 2818.

See “Create Certificates with SAN Extension Using OpenSSL” for an example.

o For multi-tenancy on Linux, ensure that the certificates contain a subject alternative name
(SAN) extension for each tenant or use a wildcard for the subdomain. For more information
about multi-tenant DNS, see “Additional Requirements for Multi-tenancy” in SAS Viya for
Linux: Deployment Guide. For an example where wildcards are specified for multi-tenancy, see
the certificate signing request (CSR) configuration file at “Create Certificates with SAN
Extension Using OpenSSL” on page 94.

n For Windows, if a certificate is being provided to enable TLS on the CAS binary port, the
certificate should be a PFX formatted file. The file contains the following information:

o The PFX file has a private key embedded within it.

o The private key within the PFX file is protected with a password.

92

https://cabforum.org/working-groups/server/baseline-requirements/documents/#current-version
https://cabforum.org/working-groups/server/baseline-requirements/documents/#current-version
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc5280
https://www.rfc-editor.org/rfc/rfc6125#page46
https://www.rfc-editor.org/rfc/rfc2818#section-3.1
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0xe82w9qdy6v3n1rufhrd4kkfai.htm&docsetTargetAnchor=n0mfva3uqvw78nn14s2deu1um3m1&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0xe82w9qdy6v3n1rufhrd4kkfai.htm&docsetTargetAnchor=n0mfva3uqvw78nn14s2deu1um3m1&locale=en

o The PFX file contains all certificates in the certification path (the PFX file contains the
certificates that comprise the CA chain).

n Intermediate certificates need to be added to the server identity certificate in a certificate chain.
The server identity certificate must be the first certificate in the chain. The intermediate
certificate must be second. This order is important to allow validation with the private key to be
successful.

n If the custom root certificate is site-signed or is not already included in the Mozilla bundle of
trusted CA certificates, then add the root certificate to the trustedcerts files.

On Linux, place a copy of the root certificate that is being added to the trustedcerts files in the
same directory. The root certificate should have a .crt file extension. This ensures that if the
Ansible playbook needs to be rerun to update the installation, then this root certificate is
automatically included in the regeneration of the trustedcerts files.

For information, see “Manage Truststores” on page 82.

Note: Do not delete the trustedcerts.jks and the trustedcerts.pem files.

Note: Add the root certificate to the trustedcerts.pem and trustedcerts.jks files on every
machine in the deployment.

n Encrypt the private key when possible.

n Password-protect the private key file.

n Place the password in the encrypted key file as the first line of the file. If the SAS Viya provided
certificate and key files are being used, the name of that file is the encryption.key file. .

n When providing custom certificates, do not name the custom certificates and key files the same
names as the SAS Viya provided or the Apache provided default certificate and key files
(sas_encrypted.crt, sas_encrypted.key, encryption.key, localhost.crt, localhost.key). In a SAS Viya
full-deployment on Linux, the default certificates and keys are renewed every time the primary
controller is restarted. Therefore, the custom certificate and key files are overwritten if they are
stored using the same name as the default.

Manage Certificates Using Ansible Play Utilities (Linux Full
Deployment)

When using the Ansible playbook, the following utilities can be used to manage certificates on a SAS
Viya full deployment. These utilities are run from the sas_viya_playbook directory.

rebuild-trust-stores.yml
On an Ansible controller machine, from the /viya/sas_viya_playbook/ directory, run the
rebuild-trust-stores.yml play to incorporate the customer CA bundle of trusted certificates (from
Consul configuration) into the various truststore files (trustedcerts.pem and trustedcerts.jks) on
each machine in the SAS Viya deployment. Run the following command from /
sas_viya_playbook/ directory.

ansible-playbook -i inventory.ini ./utility/rebuild-trust-stores.yml

93

distribute-httpd-certs.yml
This Ansible play adds your new custom certificate to /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts. The play distributes copies of the certificate chain
file to all machines with a name of httpproxy-inventory name-ca.crt. The play then rebuilds the
trustedcerts.pem and trustedcerts.jks files and distributes them to every machine in the
deployment.

On an Ansible controller machine, from the sas_viya_playbook directory, you can run the
distribute-httpd-certs.yml play to distribute new certificates. On the Ansible controller machine,
locate the utility file in the /viya/sas_viya_playbook/utility directory.

ansible-playbook -i inventory.ini ./utility/distribute-httpd-certs.yml

For an example of how this play is used, see “Replace Self-Signed Certificates with Custom
Certificates (Post-Deployment)” on page 14.

Create Certificates with SAN Extension Using OpenSSL

To generate certificates with subject alternative name (SAN) extensions, you can use OpenSSL to
create a new private key and a certificate that includes the extension. For more information about
the SAN extension, see “Use Best Practices to Create and Manage Certificates”.

In the following task, a self-signed CA certificate is generated, which includes a subject alternative
name extension..

1 Create a configuration file to be used by OpenSSL for the certificate signing request (CSR).
Provide the following information in the file:

n CN = common name. This should be a fully qualified domain name (FQDN). An FQDN has two
parts: a host-name and a domain name.

n subjectAltName = subject alternative name extension. Provide all names, including fully
qualified host names, short names, alternative names, IP addresses, multi-tenant names, and
wildcards for multi-tenancy.

n basicConstraints = CA:true

Here is an example configuration file to generate a self-signed CA certificate using OpenSSL. This
configuration file is named req.conf. In this file, we are requesting that the new certificate contain
fully qualified domain names, short names, subject alternative names, and multi-tenant names.

Note: For more information about creating an X509v3 configuration file, see x509v3_config

[req]
distinguished_name = req_distinguished_name
x509_extensions = v3_req
prompt = no
[req_distinguished_name]
C = US
O = Self-Signed Certificate
CN = <<enter your common name - use a fully qualified domain name>>
[v3_req]
keyUsage = keyEncipherment, dataEncipherment
extendedKeyUsage = serverAuth, clientAuth
subjectAltName = @alt_names

94

https://www.openssl.org/docs/manmaster/man5/x509v3_config.html

basicConstraints = CA:TRUE
[alt_names]
DNS.1 = <<fully qualified hostname>>
DNS.2 = <<short name>>
DNS.3 = <<alternative fully qualified hostname>>
DNS.4 = <<alternative short name>>
DNS.5 = *.<<fully qualified hostname>>
DNS.6 = *.<<alternative fully qualified hostname>>
DNS.7 = *.<<short name>>
DNS.8 = *.<<alternative short name>>
IP.2 = 0:0:0:0:0:0:0:1
IP.3 = <<IPv4 Address>>
IP.4 = <<IPv6 Address>>

Note: The DNS.5–DNS.8 alternative names are used for multi-tenancy. Ensure that the
certificates contain subject alternative names for each tenant or use a wildcard for the
subdomain.

For this example, this certificate is being used by Apache httpd. The Apache httpd proxy is shared
by all tenants, but each tenant gets a unique subdomain. If the proxy is named viya.abc.com, then
users for the tenant1 tenant will access the system at tenant1.viya.abc.com. Customers are
required to set up DNS aliases (either explicit subdomain aliases or a wildcard alias) to deploy a
multi-tenant system. The DNS subdomain must match (case insensitive) the tenant ID.

Note: Ensure that all IP addresses and all host names, including aliases, are added to the
configuration file when you generate a self-signed CA certificate.

2 Generate the private key and self-signed certificate using the OpenSSL req command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout path/customer.key -out path/
customer.crt -config req.conf -extensions 'v3_req'

3 Three files are located in the current directory:

n req.conf is the configuration file specified in the OpenSSL req command.

n customer.key is the RSA 2048-bit private key file.

n customer.crt is the self-signed TLS certificate in PEM format.

Use the following OpenSSL command to verify that the new certificate file (customer.crt)
includes the SAN information:

openssl x509 -in customer.crt -text -noout

Generate Site-Signed or Third-Party-Signed Certificates in
PEM Format

You need to create two files, a private key file and a certificate file.

private key
This private key is in RSA format and is saved in ASCII (Base64-encoded) PEM (Privacy
Enhanced Mail) format.

95

third-party-signed certificate
A certificate authority (CA) is a trusted third party. This certificate contains the CA’s public key in
X.509 certificate form and is saved in ASCII (Base64-encoded) PEM format.

SAS recommends the following best practices for managing certificates and securing your private
keys for the CAS server.

n Place your server identity certificates in the /config/etc/
SASSecurityCertificateFramework/tls/certs directory.

Intermediate certificates need to be added to the server identity certificate in a certificate chain.
The server identity certificate must be the first certificate in the chain. The intermediate
certificate must be second. This order is important to allow validation with the private key to be
successful.

n If your custom root certificate is site-signed or is not already included in the Mozilla bundle of
trusted CA certificates, add the root certificate to /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts directory and update the truststore. The root
certificate should have a .crt file extension.

Note: Do not delete the trustedcerts.jks and the trustedcerts.pem files.

n Place your private server keys in the /config/etc/SASSecurityCertificateFramework/private
directory structure and reference this directory location in the environment variables that you are
setting.

n Encrypt your private key when possible.

Note: This example is one way of possibly several to generate certificates for use with TLS. Consult
your administrator for details about what is required for your site.

Generate site-signed or third-party-signed certificates in PEM format.

1 Decide which type of CA to use at your site.

n site-signed

n third-party-signed

2 Change the directory to where your OpenSSL commands reside. For example:

cd /usr/bin

3 Use the following OpenSSL command to generate a new private key in RSA format and a CA
certificate signing request in PEM format. Store your private key in /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private.

openssl req -new -out /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tls/certs/
certreq.csr -newkey rsa:2048 -keyout /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/private.key -nodes

It is recommended that you supply an encrypted password on the key file. To do so, submit the
following request.

openssl rsa -aes128 -in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
private.key -out /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
tempprivate.key -passout pass:password

96

mv opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/tempprivate.key /opt/sas/
viya/config/etc/SASSecurityCertificateFramework/private/private.key

4 Verify your certificate signing request (CSR).

openssl req -noout -text -in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tls/
certs/certreq.csr

5 Submit your CSR file (certreq.csr) to your CA. This CA can be a CA at your site or a third party.
You should receive the following certificates from your CA.

n signed certificate (containing the CA’s public key)

n CA root certificate

n One or more CA intermediate certificates

6 Store the signed certificates from your CA in opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs.

7 Add your site-signed root CA certificates to the truststore. See “Manage Truststores” on page 82.

See Also
For an example of using OpenSSL to generate site-signed or third-party-signed certificates in PEM
format, see “Use OpenSSL to Create Site-Signed or Third-Party-Signed Certificates in PEM Format”
on page 174.

Generate Site-Signed or Third-Party-Signed Certificates in
Java Keystore Format

The following steps create site-signed or third-party-signed certificates in Java keystore (JKS)
format. Details of each step are shown after this summary.

1 Create the machine’s keystore.

2 Create a certificate signing request (CSR).

3 Submit a .csr file to a CA.

4 Receive a signed certificate, CA root certificate, and one or more CA intermediate certificates.

5 Add the server's identity certificate to the keystore.

6 Add the CA intermediate certificate to the keystore.

Note: This example is one way of possibly several to generate certificates for use with TLS. Consult
your administrator for details about what is required for your site.

The keystore contains private keys and certificates used by TLS servers to authenticate themselves
to TLS clients. By convention, such files are referred to as keystores.

SAS recommends the following best practices for managing certificates for Java.

n The signed certificate and private key are contained in one JKS format file. Add your certificates
to the /opt/sas/viya/config/etc/SASSecurityCertificateFramework/java/jks directory.

97

n Password-protect the private key.

n Password-protect the keystore. In the following example, the keystore file is named keystore.jks.

n Make the keystore file readable only by members of the appropriate group.

n Make the file where the keystore password is referenced readable only by members of the
appropriate group. For example, you might make the init_usermods.properties file (where the
password is referenced by a keystore password property) readable only by members of the
appropriate group.

You can obtain site-signed or third-party-signed certificates using the Java Keytool. In the following
scenario, we are using a certificate authority (CA) as our third party.

1 Log on to your machine as a user with root or sudo privileges.

2 Change the directory to where your keytool command resides. For example:

cd $JAVA_HOME/bin

3 Use the keytool command to create a new private key and keystore and store the information in
the keystore file named keystore.jks. In the following example, we are first generating a private
key server.key. We are also using alias server.

keytool -genkey -alias server -keyalg RSA -keystore /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/java/jks/keystore.jks -storepass password -keypass password
-validity 360 -keysize 2048

The keystore password (which protects the keystore as a whole) and the key password (which
protects the private key stored in the server entry) are set using the -storepass and -keypass
options respectively.

Change the permissions on the keystore file (keystore.jks) to be readable only by members of the
appropriate group. Use chmod or sudo to change the permissions.

chmod 600 keystore.jks

When you list the file, you see the permissions are Read/Write only (-rw-------) .

4 To query the contents of your Java keystore file, you can use the following command:

keytool -list -v -keystore /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
java/jks/keystore.jks -storepass password -keypass password

5 Use the keytool command to create a certificate signing request (CSR) for an existing keystore.
Here is an example command:

keytool -certreq -alias server -keystore /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/java/jks/keystore.jks -file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/java/jks/server.csr -storepass password -keypass password

This command generates the CSR and stores it in a file called server.csr.

6 Submit your CSR file to your CA. For our example, we have provided a name for each of the
signed certificates that we might receive: server_ca.pem, root_ca.pem, and int_ca.pem. You
should receive the following from your CA:

n signed identity certificate (server_ca.pem)

n CA root certificate (root_ca.pem)

n one or more CA intermediate certificates (int_ca.pem)

98

7 After you have submitted your CSR to the CA and received the CA's reply (containing the signed
certificate), import the reply into your keystore, located at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/java/jks, using the following keytool options.

This step imports the signed server identity certificate and one or more intermediate certificates
in PEM format into the keystore.

a Add the server identity certificate to your keystore. In this example, server_cert.pem is the
server identity certificate.

keytool -importcert -file /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
java/jks/server_ca.pem -keystore /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/java/jks/keystore.jks -storepass password -keypass
password -trustcacerts -alias server_ca

b If your server certificate is signed by an intermediate CA, import the intermediate certificate
into your keystore file. In this example, int_ca.pem is the CA intermediate certificate.

keytool -importcert -file /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
java/jks/int_ca.pem -keystore /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
java/jks/keystore.jks -storepass password -keypass password -trustcacerts -alias int_ca

c Verify that the certificates that you added to your keystore are present.

keytool -v -list –keystore /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
java/jks/keystore.jks -storepass password -keypass password

Generate Self-Signed Certificates

Self-signed certificates are signed by your own private key, rather than by an external CA. You can
generate self-signed certificates or root certificates in PEM format using RSA or HMAC encryption or
in Java keystore format.

A private key file and a self-signed certificate are needed.

private key
This private key is in RSA format and is saved in ASCII (Base64-encoded) PEM format.

self-signed certificate
This certificate contains a public key in X.509 certificate form and is saved in ASCII (Base64-
encoded) PEM format.

SAS recommends the following best practices for managing certificates and securing your private
keys. See “Use Best Practices to Create and Manage Certificates” on page 91.

Generate self-signed certificates or root certificates in PEM format using RSA encryption.

Note: This example is one of several possible ways to generate certificates for use with TLS.
Consult your administrator for details about what is required for your site.

1 Change the directory to the directory where your OpenSSL commands reside. For example:

cd /usr/bin

2 Use the following OpenSSL command to generate a self-signed certificate with new private key
using RSA encryption. In this example, a self-signed CA certificate with subject alternative names

99

is being requested. To see an example where an OpenSSL configuration file is used to specify
extensions, see “Create Certificates with SAN Extension Using OpenSSL” on page 94.

Note: In this example, the certificate request is for use on Linux and the paths specified are
Linux paths.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/customer.key -out /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/customer.csr -addext "subjectAltName=DNS:fully-
qualified-hostname" -addext "subjectAltName=IP:ip-address" -addext
"basicConstraints=CA:true"

It is recommended that you supply an encrypted password on the key file. To do so, submit the
following request:

openssl rsa -aes128 -in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
customer.key -out /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/
tempcustomer.key -passout pass:password

mv opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/tempprivate.key /opt/sas/
viya/config/etc/SASSecurityCertificateFramework/private/customer.key

3 Add certificates to the SAS Viya truststore. See “Add Certificates to the Truststore (Linux Full
Deployment)” on page 82 or “Add Certificates to or Remove Certificates from the SAS Viya
Truststore Manually” on page 88.

Generate self-signed certificates in Java keystore format.

Note: This example is one of several possible ways to generate certificates for use with TLS.
Consult your administrator for details about what is required for your site.

1 For servers based on Java, generate a self-signed certificate using keytool -genkeypair. This
command creates a public/private key pair and wraps the public key into a self-signed certificate.
For example, the following command creates a self-signed test certificate for the host and stores
it in a keystore. For this example, we are using alias javahost.

$ keytool -genkeypair -keystore /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
java/jks/javahost.jks -keyalg RSA -alias javahost -dname "CN=javahost.example.com,O=Hadoop"
-storepass password -keypass password -validity 1000

Note: By default, self-signed certificates are valid for only 90 days. To increase this period,
replace the previous command's -validity <val_days> parameter to specify the number of
days for which the certificate should be considered valid.

2 Add certificates to the SAS Viya truststore. See “Add Certificates to the Truststore (Linux Full
Deployment)” on page 82 or “Add Certificates to or Remove Certificates from the SAS Viya
Truststore Manually” on page 88.

100

Convert Digital Certificate File Formats Using OpenSSL

In OpenSSL, you can use many parameters to convert between the different digital certificate file
formats. Following are some examples of a few ways to convert files from one format to another. See
OpenSSL Commands for more commands that can be used.

Convert DER to PEM File Format
Many certificate authorities provide certificates in DER (Distinguished Encoding Rules) format. If you
have a DER formatted file, but need a PEM (Privacy Enhanced Mail) formatted file, you can convert
the DER formatted file to PEM format using OpenSSL.

Note: You must convert a DER formatted file to PEM format before you can include it in a trust list
on Linux.

Here is an example of how to convert a server digital certificate from DER input format to PEM
output format:
openssl x509 -inform DER -outform PEM -in certificate.cer -out certificate.pem

Convert a PEM Encoded Certificate to DER File Format
If you have a PEM formatted file, but need a DER formatted file, you can convert the PEM formatted
file to DER using OpenSSL.

Here is an example of how to convert a server digital certificate from PEM input format to DER
output format:
openssl x509 -outform der -in certificate.pem -out certificate.der

Convert PEM to PKCS#12 (.pfx .p12) File Format
If you are using a Java application that accepts only PKCS#12 format, you might need to convert your
PEM formatted file that includes certificates and the separate key file to one file that includes both
the certificate and the key file.

If you have a PEM formatted certificate file, but need a PKCS#12 formatted file, you can convert the
PEM format certificate to a PKCS#12 format using OpenSSL. Here is one way of converting a PEM
formatted file to a PKCS#12 formatted file for non-FIPS (Federal Information Processing Standard)
libraries.
openssl pkcs12 -export -out path/certificate.p12 -inkey path/privatekey.key -in path/
certificate.crt -certfile certs.pem

Renew Security Objects Using Ansible Plays (Linux
Deployment)
Security objects, like certificates, private keys, and tokens, might need to be renewed. SAS Viya
provides managed ways to renew security objects. Here are a few reasons why security objects
might need to be renewed:

101

https://www.openssl.org/docs/man1.1.1/man1

n Several objects have very long lifetimes. These lifetimes might breach your security standards.
For example, a SAS Secrets Manager root CA certificate lasts for seven years and might need to
be updated sooner.

n Customers might be concerned that unauthorized access to a host has compromised the security
objects.

The following objects can be renewed using the renew-security-artifacts.yml play:

n SAS Secrets Manager certificate authority certificates and private keys

n server and service certificates and private keys

n SAS Secrets Manager tokens for a single tenant and multi-tenants

The following two Ansible plays renew security artifacts. These plays are located in the /viya/
sas_viya_playbook directory.

renew-security-artifacts.yml

IMPORTANT This play should be used only in a healthy SAS Viya deployment. For
example, when certificates and keys are close to being out of date. If there are more
serious problems, see “Reset TLS Trust in the SAS Viya Deployment”.

On the Ansible controller machine, you can run the renew-security-artifacts.yml play to renew
the SAS Secrets Manager issued CA certificates, tokens, keys, and server certificates. This play
also restarts all services.

The renew-security-artifacts.yml serves two purposes.

n In a healthy deployment, it regenerates new certificates when certificates are close to
expiring.

n In a previously unhealthy deployment, the renew-security-artifacts.yml play is run after
repair-security-artifacts.yml to restore trust in a deployment.

Note: The renew-security-artifacts.yml play is very different from repair-security-artifacts.yml
on page 182. Ensure that you run the appropriate play for your situation as they are at a glance
similarly named.

update-casworker-vault-token.yml
In a multi-tenant environment, the tokens need to be updated on and distributed to the CAS
worker nodes for all tenants. Run the renew-security-artifacts.yml followed by the update-
casworker-vault-token.yml play.

To update security objects, use the Ansible plays as follows:

1 Stop all services on all machines. This action takes a while to run and results in a complete
outage.

CAUTION
Start and stop the SAS Viya servers and services in the proper order There is a proper
sequence for starting and stopping SAS Viya servers and services. You must follow the proper
sequence to avoid operational issues. See “Read This First: Start and Stop Servers and Services” in
SAS Viya Administration: General Servers and Services.

102

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&docsetTargetAnchor=n03025viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&docsetTargetAnchor=n03025viyainfrsrvs00000admin&locale=en

2 Disable the Yum repositories by running the following command on every machine in the SAS
Viya deployment.

sudo yum-config-manager --disable sas-*

3 Download the latest sas-orchestration tool.

IMPORTANT It is crucial to use the most up-to-date version of renew-security-
artifacts.yml. Therefore, the first step is to create a new playbook with the latest SAS Viya
3.5 sas-orchestration tool.

4 Generate a new Ansible playbook using the latest sas-orchestration tool and your
SAS_Viya_deployment_data.zip file.

IMPORTANT You must extract the new playbook to a location that is different from that
of your original playbook. For example, if you extracted your original playbook to /sas/
install/, you might extract the new playbook to /sas/renewsecurity/ instead.

Diff and merge the edited files from the old playbook; for example, vars.yml, inventory.ini, and
updated license files.

IMPORTANT It is crucial to use the inventory.ini and vars.yml files that were downloaded
in Step 3 when executing the renew-security-artifacts playbook. Follow the instructions in
Step 5 of “Generate a New Ansible Playbook” in SAS Viya for Linux: Deployment Guide to
ensure that the necessary configurations are merged into the new files.

5 In the newly created vars.yml file, ensure that the Ansible version that you are using matches the
Ansible version specified for the MAXIMUM_RECOMMENDED_ANSIBLE_VERSION variable.

Note: Version incompatibility can cause a problem that might not be easily debugged.

6 Run the Ansible play renew-security-artifacts.yml. This play also restarts all services.

ansible-playbook -vvv ./renew-security-artifacts.yml

IMPORTANT It is highly recommended that you use the-vvv option when running the
renew-security-artifacts play to increase the verbosity of the information that is included
in deployment.log.

7 If the playbook runs to completion with no failures, your services should be up and accessible.

If the services are not accessible, contact SAS Technical Support. The following information from
the sas_viya_playbook will be needed to investigate:

n vars.yml

n inventory.ini

n deployment.log

103

https://support.sas.com/en/documentation/install-center/viya/deployment-tools/35/command-line-interface.html
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0f5bkzrsoh6bnn1jc3x1n1b5lye.htm&docsetTargetAnchor=p18jggp0felwfnn166sh8fwojob0&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0f5bkzrsoh6bnn1jc3x1n1b5lye.htm&docsetTargetAnchor=p18jggp0felwfnn166sh8fwojob0&locale=en

n renew-security-artifacts.yml

8 Enable the Yum repositories by running the following command on every machine in the SAS Viya
deployment.

sudo yum-config-manager --enable sas-*

9 In a multi-tenant environment, run the update-casworker-vault-token.yml play to update the
Vault tokens for tenants.

ansible-playbook -i inventory.ini utility/update-casworker-vault-token.yml -e
"tenant_ids=tenant2,tenant3"

10 Update or import the changed CA certificates for clients if needed. If you did not provide your
own certificates for services like CAS, Object Spawner, or SAS/CONNECT and connect directly
to these services, then you need to update the certificates that are being used by these clients.

You can obtain the vault-ca.crt from /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/. This certificate is located on the SAS
Configuration Server (Consul) where Vault is installed. Add or import this certificate file to the
client keystores.

Use SAS Bootstrap Config CLI on Consul to
Manage the KV Store and ACL Tokens

SAS Bootstrap Config CLI Commands

SAS Bootstrap Config CLI enables you to interact with the SAS Configuration Server (Consul) from
the command line. This tool can be found at the following locations on Windows and Linux
deployments:

n On Linux, /opt/sas/viya/home/bin

n On Windows, Install-Directory\Viya\bin\sas-bootstrap-config.exe

For general server information, see “SAS Configuration Server” in SAS Viya Administration:
Infrastructure Servers.

On Linux, the general command syntax is as follows:

/opt/sas/viya/home/bin/sas-bootstrap-config command

On Windows, the general command syntax is as follows:

Install-Directory\Viya\bin\sas-bootstrap-config.exe command

The SAS Bootstrap Config CLI commands that can be used are shown in the following table. In this
document, we use the kv (key-value) and acl (access control list) commands to update the key-
value stores when managing certificates for TLS, and we use the acl command for managing ACL
tokens.

104

http://documentation.sas.com/?docsetId=calsrvinf&docsetVersion=3.5&docsetTarget=n00000sasconfigdata0000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calsrvinf&docsetVersion=3.5&docsetTarget=n00000sasconfigdata0000admin.htm&locale=en

Table 8 SAS Bootstrap Config CLI Commands

Commands Description

acl Manages access control lists (ACLs) in Consul.

agent Manages the Consul agent.

catalog Enables queries of endpoints that list known datacenters, nodes in a given datacenter,
services in a given datacenter, nodes in a given service, and services provided by a node.
The catalog endpoints register and deregister nodes, services, and checks in Consul.

help

h

Shows a list of commands or help for one command.

kv Manages key-value pairs in Consul.

network Gets network information.

node Gets the node ID.

operator Provides cluster-level tools for Consul operators.

status Gets information about the status of the Consul cluster.

Commands that enable you to interact with the key-value store are shown in Table 9 on page 105.
The following syntax is for interacting with the key-value store on Linux:

/opt/sas/viya/home/bin/sas-bootstrap-config kv command argument

The following syntax is for interacting with the key-value store on Windows:

Install-Directory\Viya\bin\sas-bootstrap-config.exe kvcommand argument

Table 9 SAS Bootstrap Config CLI Commands for Updating the Key-Value Store

Commands Description

bulkload Loads key-value pairs into Consul.

delete Deletes a given key in the Consul KV store.

exists Returns the exit code 64 if the key does not exist. Returns 0 if it exists.

help Shows a list of commands or help for one command.

read Reads a value for a key.

write Writes a key-value pair to Consul.

105

Commands that enable you to create, update, destroy, and query ACL tokens are shown in the
following table. The syntax for interacting with ACL tokens is as follows:

/opt/sas/viya/home/bin/sas-bootstrap-config aclcommand

Table 10 SAS Bootstrap Config CLI Commands for Managing ACL Tokens

Commands Description

clone Creates an ACL token by cloning an existing token.

create Creates an ACL token with a given policy.

destroy Destroys an ACL token.

info Gets information about an ACL token.

list Lists all active ACL tokens.

update Updates an ACL token.

Establish a TLS Chain of Trust to Access SAS Bootstrap Config
CLI

SAS Configuration Server in SAS Viya is secure by default and requires encryption in-motion using
TLS. SAS Bootstrap Config CLI must establish trust for the TLS handshake to proceed. To establish
trust, the truststore must be specified as an environment variable and point to a truststore that
contains the CA certificates.

On a Linux deployment, if your environment is enabled for Transport Layer Security (TLS), you must
set the SSL_CERT_FILE environment variable to the path location of the trustedcerts.pem file (if
using the SAS default truststore) or the path location of your site-signed certificate (if using an
internal truststore). For CLI users on Linux who are running the CLIs directly on the SAS machine,
you can source the consul.conf file rather than setting the SSL_CERT_FILE environment variable
manually.

Before invoking SAS Bootstrap Config CLI, source the consul.conf file.
. /opt/sas/viya/config/consul.conf

The consul.conf file contains the following environment variable settings:
BEGIN Ansible managed Consul client connection options
export CONSUL_HTTP_ADDR=https://localhost:8501
export SSL_CERT_FILE=/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/
trustedcerts.pem
export CONSUL_CACERT=$SSL_CERT_FILE
export VAULT_CACERT=$SSL_CERT_FILE
END Ansible managed Consul client connection options

If you are manually setting the SSL_CERT_FILE, before invoking the SAS Bootstrap Config CLI, set
the environment variable to the path of the trustedcerts.pem file (if using the SAS default truststore)

106

or the path of your site-signed certificate (if using an internal truststore). Here is an example
pointing to the SAS default truststore:
export SSL_CERT_FILE=/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts/
trustedcerts.pem

Here is an example pointing to the customer’s site-signed certificate.
export SSL_CERT_FILE=/path/customer.crt

For an example of removing the key-value from Consul using SAS Bootstrap Config CLI, see “Remove
Certificates from the Truststores (Linux Full Deployment)” on page 83.

Authenticate to Access SAS Bootstrap Config CLI

SAS Configuration Server has access control in place. To use SAS Bootstrap Config CLI, an access
token is required. There are two ways to set up your environment and access a token.

Note: The following code is shown on more than one line for display purposes only. The SAS
Bootstrap Config commands need to be on one line and should not contain line breaks.

Specify the following as the first option to be read from a file.
/opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/client.token kv

Note: If you specify the token file using the --token-file command shown in the previous
command, do not set the CONSUL_HTTP_TOKEN= option. It will take precedence.

Secure Credentials in the CAS Server with
cas.servicesbaseurl (Linux Full Deployment)

Note: This section is applicable only if you have a full deployment. If you have a programming-only
deployment, skip this section.

For credentials management, the cas.SERVICESBASEURL= option is set during deployment. The URL
that enables a CAS server to use SAS Viya services is set using the cas.SERVICESBASEURL= option.
For example, CAS client credentials are passed to the SASLogon service at the address specified in
the cas.SERVICESBASEURL= option in order to obtain an OAuth token.

This option is set by default in the casconfig_deployment.lua file located at /opt/sas/viya/
config/etc/cas/default/.

1 In the casconfig.lua file, ensure that the HTTPS URL is used to access the Apache HTTP Server
machine.

cas.servicesbaseurl=’https://webserver-host-name’

107

Note: The host name in the URL is the same as the Common Name used in the server identity
certificate that Apache HTTP Server is using.

Note: In a SAS Viya full deployment, the cas.SERVICESBASEURL= option defaults to port 443
for HTTPS access.

2 When you set the cas.SERVICESBASEURL= option to use HTTPS, the CAS_CALISTLOC=
environment variable needs to be set in the casconfig_usermods.lua file to point to the CA
certificates that the Apache HTTP Server is using.

env.CAS_CALISTLOC='/path-to-CA-chain-used-for-Apache-HTTP-Server-certificate'

Note: If the CA certificates are already imported in the OpenSSL truststore, setting the
env.CAS_CALISTLOC= environment variable is not necessary.

3 If you are setting the CAS_CALISTLOC= environment variable, you should copy the change made
to this environment variable to the vars.yml file. This change ensures that your settings are not
changed when upgrades are made to the deployment.

Note: See “Modify the vars.yml File” in SAS Viya for Linux: Deployment Guide.

Add the following highlighted variables and their respective values:

CAS_CONFIGURATION:
 env:
 #CAS_DISK_CACHE: /tmp
 CAS_CLIENT_SSL_REQUIRED: 'true'
 CAS_CALISTLOC: path-to-CA-chain-used-for-Apache-HTTP-Server-certificate
 cfg:
 #gcport: 5580
 #httpport: 8777
 #port: 5570
 #colocation: 'none'
 servicesbaseurl: 'https://http-proxy-host-name'

Save and close the vars.yml file.

For information about using cas.SERVICESBASEURL=, see “Configuration File Options Reference” in
SAS Viya Administration: SAS Cloud Analytic Services.

108

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n1knvzbsifo9xqn1al0bh7wxrrkg.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&docsetTargetAnchor=n08003viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&docsetTargetAnchor=n08003viyaservers000000admin&locale=en

Manage Tokens, Create JWT Signing Keys, and
Update the Encryption Key

Generate Signing Keys for JSON Web Tokens

Overview
A JSON web token (JWT) is a JSON object that is defined in RFC 7519 as a safe way to pass a set of
information between two parties. Access tokens issued by SAS Logon Manager are also OpenID
Connect ID tokens, which are JWTs.

The token consists of three parts: a header, claims, and a signature. All of these parts are base64
encoded. Here is what an example token might look like. Each part is separated by a period to create
header.claims.signature.

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.
TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

In a new SAS Viya deployment, SAS Logon Manager generates RSA keys and CAS gets the public key
that it needs from SAS Logon Manager automatically if the cas.SERVICESBASEURL= property is set.
You can configure your own signing keys, overriding the SAS Logon Manager behavior.

To configure your JWT keys, the sas.logon.jwt property needs to be set for CAS and SAS Logon
Manager. The sas.logon.jwt property is used to secure JSON web tokens with RSA digital signatures.
For a description of the properties, see “Configuration Properties: Reference (Applications)” in SAS
Viya Administration: Configuration Properties.

Generate a JWT Signing Key
The following example uses OpenSSL to generate an RSA signing key.

Note: This example is one way of many to generate RSA signing keys. Consult your administrator for
details about what is required for your site.

1 Change the working directory to the directory where SAS stores keys. SAS stores keys in
the /opt/sas/viya/config/etc/SASSecurityCertificateFramework directory structure. For
example:

cd /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private

2 Use the following OpenSSL command to generate a new RSA private key. The following OpenSSL
command generates the RSA private key in PKCS#1 format:

openssl genrsa -out /opt/sas/viya/config/etc/SASSecurityCertificateFramework/private/jwt-
privatekey.pem 2048

3 You can derive the public key from the private key using the following command:

109

https://tools.ietf.org/html/rfc7519
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08025sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08025sasconfiguration0admin.htm&locale=en

openssl rsa -in jwt-privatekey.pem -out public.pem -pubout

4 Copy the private key to the signingKey property using SAS Environment Manager. See “Configure
the SAS Logon Manager with a New JWT Signing Key” on page 110.

Configure the SAS Logon Manager with a New JWT Signing Key
Use the SAS Environment Manager to set configuration properties that are used by the SAS Logon
Manager. If you created a new JWT signing key, paste the key into the signingKey property.

1 From the side menu (), select Manage Environment.

2 In the navigation bar, click .

The Configuration page is an advanced interface. It is available to only SAS Administrators.

3 The default view is Basic Services. Select Definitions from the drop-down box.

4 In the Definitions list, select sas.logon.jwt.

5 If no properties are configured for definition, complete the following:

a In the top right corner of the window, click New Configuration.

b In the New sas.logon.jwt Configuration dialog box, paste the PEM-encoded JWT private key
into the value for the signingKey property.

For a description of the properties, see “Configuration Properties: Reference (Applications)” in
SAS Viya Administration: Configuration Properties.

c Click Save.

Note: The system takes a few minutes to recognize the new key before starting to use the
new key.

Replace Tokens and Update the Encryption Key for SAS
Configuration Server (Linux Full Deployment)

Overview
At installation, tokens are generated and placed in the /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default directory. Client, encryption, and
management tokens are provided. The owner and group of these files is SAS.

client.token
is the ACL client token that is used by all services to access values in the key-value store.

management.token
is the ACL management token (acl_master_token) that is used to administer the ACLs.

110

http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08025sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08025sasconfiguration0admin.htm&locale=en

encryption.token
specifies the secret key that is used for encryption of Consul network traffic. It is used for Gossip
communication.

You must use the value of an ACL token that is of type management to administer Consul ACLs. The
value of this management token is created by the Ansible playbook and stored in the
management.token file at /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
tokens/consul/default.

Replace ACL Tokens
You must use the value of an ACL token that is of type management to administer Consul ACLs. In
the following example, the /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
tokens/consul/default/management.token file contains the ID of a management ACL that we want
to change.

We are using the SAS Bootstrap Config CLI to replace ACL tokens.

Note: You can also use the Consul ACL HTTP CLI to manage ACL tokens. For more information, see
ACL HTTP Endpoint.

1 Source the /etc/profile.d/lang.sh to set the LANG environment variable. It will be set to a value
such as en_US.UTF-8

source /etc/profile.d/lang.sh

2 The /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/
default/management.token file contains the ID of a management ACL that we want to change.

sudo cat /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default/
management.token 0329addc-bb72-489c-9f0a-5421890dd2fb

3 Create a backup copy of the original management.token.

sudo cp /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default/
management.token /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/
default/management.token.OLD

4 List the ACLs using the SAS Bootstrap Config CLI. The SAS Bootstrap Config CLI must establish
trust for the TLS handshake to proceed and allow secure communication. To establish trust, the
truststore must be specified as an environment variable. Sourcing the consul.conf sets the
SSL_CERT_FILE environment variable to the trusted certificates. After this trust is established,
you can communicate using the SAS Bootstrap Config CLI and list the ACLs.

. /opt/sas/viya/config/consul.conf

sudo /opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/management.token acl list

These are the ACLs listed.

 {
 "CreateIndex": 4,
 "ModifyIndex": 4,
 "ID": "0329addc-bb72-489c-9f0a-5421890dd2fb",
 "Name": "Master Token",
 "Type": "management",
 "Rules": ""

111

https://www.consul.io/docs/agent/http/acl.html

 },
 {
 "CreateIndex": 3,
 "ModifyIndex": 64718,
 "ID": "anonymous",
 "Name": "Anonymous Token",
 "Type": "client",
 "Rules": "{\"service\":{\"\":{\"Policy\":\"read\"}}}"
 },
 {
 "CreateIndex": 19,
 "ModifyIndex": 64702,
 "ID": "eaa6de8a-3824-4c8f-a73a-dbd835c5cc97",
 "Name": "client",
 "Type": "client",
 "Rules": "{\"key\":{\"\":{\"Policy\":\"write\"}},\"service\":
 {\"\":{\"Policy\":\"write\"}},\"event\":{\"\":{\"Policy\":\"write\"}},
 \"query\":{\"\":{\"Policy\":\"write\"}}}"
 }

5 Clone the management token using the following command. The c43b7d1a-ccee-3792-
a1d8-9576a9dbe7d2 ID is returned by the execution of the following code. This ID is the new
value that is inserted into the management.token file at /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default.

sudo /opt/sas/viya/home/bin/sas-bootstrap-config --token-file
/opt/sas/viya/config/etc/SASSecurityCertificateFramework/
tokens/consul/default/management.token acl clone --acl-id
$(sudo cat /opt/sas/viya/config/etc/SASSecurityCertificateFramework/
tokens/consul/default/management.token)
{
 "ID": "c43b7d1a-ccee-3792-a1d8-9576a9dbe7d2"
}

6 List the ACLs again to verify that the new management ACL has been created.

sudo /opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/management.token acl list

Here are the ACLs listed now.

{
 "CreateIndex": 4,
 "ModifyIndex": 4,
 "ID": "0329addc-bb72-489c-9f0a-5421890dd2fb",
 "Name": "Master Token",
 "Type": "management",
 "Rules": ""
 },
 {
 "CreateIndex": 3,
 "ModifyIndex": 64899,
 "ID": "anonymous",
 "Name": "Anonymous Token",
 "Type": "client",
 "Rules": "{\"service\":{\"\":{\"Policy\":\"read\"}}}"
 },
 {
 "CreateIndex": 64927,

112

 "ModifyIndex": 64927,
 "ID": "c43b7d1a-ccee-3792-a1d8-9576a9dbe7d2",
 "Name": "Master Token",
 "Type": "management",
 "Rules": ""
 },
 {
 "CreateIndex": 19,
 "ModifyIndex": 64897,
 "ID": "eaa6de8a-3824-4c8f-a73a-dbd835c5cc97",
 "Name": "client",
 "Type": "client",
 "Rules": "{\"key\":{\"\":{\"Policy\":\"write\"}},
 \"service\":{\"\":{\"Policy\":\"write\"}},\"event\":
 {\"\":{\"Policy\":\"write\"}},\"query\":{\"\":{\"Policy\":\"write\"}}}"
 }

7 Replace the value in the management.token file with the value that was returned from the clone
command.

sudo bash -c 'echo c43b7d1a-ccee-3792-a1d8-9576a9dbe7d2 > /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tokens/consul/default/management.token'

8 Destroy the old management ACL.

sudo /opt/sas/viya/home/bin/sas-bootstrap-config --token-file /opt/sas/viya/config/etc/
SASecurityCertificateFramework/tokens/consul/default/management.token acl destroy --acl-id $
(sudo cat /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default/
management.token.OLD)

9 After the new ACLs have been created in Consul and the management.token and client.token
files have been updated with the new values, copies of the original .token files can be deleted.

Replace ACL Tokens Using the sas-crypto-management Tool
You can use the sas-crypto-management application located at /opt/sas/viya/home/
SASSecurityCertificateFramework/bin/ to generate a value that can be used as the ID for an ACL.
The sas-crypto-management tool must establish trust for the TLS handshake to proceed and allow
secure communication. To establish trust, the truststore must be specified as an environment
variable. Sourcing the consul.conf sets the SSL_CERT_FILE environment variable to the trusted
certificates. After this trust is established, you can communicate using the sas-crypto-management
tool.
. /opt/sas/viya/config/consul.conf
sudo /opt/sas/viya/home/bin/SASSecurityCertificateFramework/bin/sas-crypto-management uuid --
out-file /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default/
client.token

You can then use the value of the ACL ID that was generated using the sas-crypto-management tool
(instead of the value that Consul generates using its clone command as shown in “Replace ACL
Tokens” on page 111). Then, use the create command to specify the ID that should be used.

Replace an Encryption Key on Consul
SAS Configuration Server (Consul) uses two network communication protocols:

n Gossip protocol is used for communication between servers and agents. Encryption is enabled for
Gossip communication by default in a SAS Viya deployment.

113

n RPC protocol is used for communication between agents and servers.

SAS Viya services interact with the Consul server agents (for example, communication of REST calls
over HTTPS).

Note: In a SAS Viya full deployment, HTTP end-point is disabled by default.

All Consul agents that are running as servers or clients need to have an encryption key. The Consul
agent supports encrypting all of its network traffic. The SASSecurityCertificateFramework provides
the encryption key that is used for Gossip communication. Enabling Gossip encryption requires only
that you set an encryption key when starting the Consul agent.

The Consul RPM start script generates a file named config-gossip.json in /opt/sas/viya/
config/etc/consul.d. The consul RPM uses the value obtained from the gossip.token file
in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/tokens/consul/default. You
can see the type of information contained in the file by submitting the following command:
sudo cat /opt/sas/viya/config/etc/consul.d/config-gossip.json

The generated file contains encryption information that looks like the following. The encryption key
is 16 bytes and Base64 encoded.

{ "encrypt": "y/k+KRpeZZVmzHCVrvbR6A==" }

The encrypt option specifies the secret key to use for encryption of Consul network traffic. This key
must be 16 bytes that are Base64 encoded. All nodes within a cluster must share the same
encryption key to communicate. The provided key is automatically persisted to the data directory
and loaded automatically whenever the agent is restarted. More information about this option can be
found at Consul Configuration Command-line Options.

There are situations when the encryption key might need to be replaced.

1 Sign on to the machine that runs the SAS Configuration Server (Consul) as the SAS install user
(sas) or with sudo privileges.

2 On the host running the SAS Configuration Server, use the keygen command to generate a new
key on all hosts.

/opt/sas/viya/home/bin/consul keygen

3 Copy the value that is generated (for example, X4SYOinf2pTAcAHRhpj7dA==) into the config-
gossip.json on all hosts. This file is located at /opt/sas/viya/config/etc/consul.d/.

Use the copied string as the value for the encrypt parameter:

"encrypt": "X4SYOinf2pTAcAHRhpj7dA=="

4 Stop Consul. How you run the following command depends on your operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl stop sas-viya-consul-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-consul-default stop

5 Delete the local.keyring and remote.keyring files in /opt/sas/viya/config/data/consul/serf.

All nodes within a cluster must share the same encryption key to communicate. The provided key
is automatically persisted to the data directory and loaded automatically whenever the agent is

114

https://www.consul.io/docs/agent/options.html

restarted. This option is provided on each agent's initial start-up sequence. The value of this
secret key is persisted to the /opt/sas/viya/config/data/consul/serf directory to files
local.keyring and remote.keyring.

Note: If a key is provided after Consul has been initialized with an encryption key, then the
provided key is ignored and a warning is displayed.

6 Start SAS Configuration Server (Consul). How you run the following command depends on your
operating system.

n Red Hat Enterprise Linux 7.x (or an equivalent distribution) and SUSE Linux Enterprise Server
12.x:

sudo systemctl start sas-viya-consul-default

n Red Hat Enterprise Linux 6.x (or an equivalent distribution):

sudo service sas-viya-consul-default start

When Consul is started, the Consul RPM start script regenerates the config-gossip.json file and
Consul reads this value and re-creates the local.keyring and remote.keyring files.

You can read about how this is done for Consul at Encryption for Consul.

Concepts

Encryption Overview
TLS is used in SAS Viya 3.5 to secure your data in motion. Encryption capabilities affect
communications among servers and between servers, desktop clients, and web applications.

IMPORTANT See “Managing Your Software” in SAS Viya for Linux: Deployment Guide and
“Managing Your Software” in SAS Viya for Windows: Deployment Guide for information about
how to keep your software up-to-date and your deployment secure.

115

https://www.consul.io/docs/agent/encryption.html
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0cqdodxtmthw9n16yvgilliunuj.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0win&docsetVersion=3.5&docsetTarget=p61010as31914aa4aa1477100195.htm&locale=en

Transport Layer Security (TLS)

Transport Layer Security (TLS) Overview

Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) are cryptographic
protocols that are designed to provide communication security. TLS protocols provide network data
privacy, data integrity, and authentication.

Note: All discussion of TLS is also applicable to the predecessor protocol, Secure Sockets Layer
(SSL).

TLS uses X.509 certificates and hence asymmetric cryptography to assure the party with whom they
are communicating and to exchange a symmetric key. As a consequence of choosing X.509
certificates, certificate authorities and a public key infrastructure are necessary to verify the
relationship between a certificate and its owner, as well as to generate, sign, and administer the
validity of certificates. For information about certificates, see “Certificates Used by TLS and HTTPS”
on page 119.

In addition to providing encryption services, TLS performs client and server authentication, and it
uses message authentication codes to ensure data integrity. The client requests a certificate from
the server, which it validates against the public certificate of the certificate authority used to sign
the server certificate. The client then verifies the identity of the server and negotiates with the
server to select a cipher (encryption method). The cipher that is selected is the first match between
the ciphers that are supported on both the client and the server. All subsequent data transfers for
the current request are then encrypted with the selected encryption method.

TLS System Requirements

SAS Viya supports TLS on the Linux and Windows operating environments. SAS Viya uses Operating
System libraries that are provided and installed on your operating system to provide encryption.

n For Windows, SAS Viya uses the Secure Channel (Schannel) Security Service Provider (SSP)
implementation of TLS protocols.

n For Linux, SAS Viya uses the OpenSSL implementation of TLS protocols. SAS Viya supports the
version provided for your operating system and the OpenSSL libraries installed. Protocols are
configurable and various ciphers are available depending on the version being used.

Note: Refer to your operating system vendor documentation when using the vendor’s OpenSSL
libraries. There might be additional procedures that need to be followed to make the libraries
work properly in your environment.

On Linux, SAS Viya supports TLS version 1.2 and TLS 1.3. The default minimum protocol for OpenSSL
is TLS 1.2.

116

On Windows, the Schannel SSP implements versions of the TLS protocols. Different Windows
versions support different protocol versions.

A cipher suite is a set of cryptographic algorithms. Cipher suites can be negotiated only for TLS
versions that support them. The highest supported TLS version is preferred in the TLS handshake.
The handshake begins when a client connects to a TLS-enabled server requesting a secure
connection and presents a list of supported cipher suites (ciphers and hash functions). From this list,
the server chooses a cipher and hash function that it also supports and notifies the client of the
decision.

In a SAS Viya 3.5 deployment, TLS 1.2 and TLS 1.3 cipher suites are supported as the default cipher
suites. See “TLS Versions and Cipher Suites Supported”.

There are additional ways to set the ciphers that are used in a SAS Viya deployment. Each third-
party product has different ways to set ciphers. See “Update the Default Ciphers and TLS Protocol
on the Apache HTTP Server” on page 22 and “SSLMODE= System Option” on page 152.

Note: If you are using a cipher suite that uses RSA asymmetric encryption (instead of elliptical
curve), then the recommended bit length is 4096.

For more information, see TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois
Counter Mode (GCM). Refer to Cipher Suites in TLS/SSL (Schannel SSP) for details about supported
ciphers for your Windows Operating System.

TLS Configuration

n On Linux, SAS Viya supports TLS using the operating system's OpenSSL libraries.

o In a full deployment of SAS Viya, almost all external network connections are secured by
default. SAS Viya is deployed with Transport Layer Security (TLS) to secure network
connections and is fully compliant with SAS security standards.

o In a programming-only deployment, SAS Viya supplies security artifacts that can be used to
configure and secure your deployment.

n On Windows, SAS Viya uses Schannel libraries that are provided by Windows. SAS Viya supplies
security artifacts that can be used to configure and secure your deployment.

See “How To” on page 5 for information about configuring your deployment to provide a higher level
of security.

TLS Terminology

The following concepts are fundamental to understanding TLS:

certificate authorities (CAs)
Cryptography products provide security services by using digital certificates, public-key
cryptography, private-key cryptography, and digital signatures. Certificate authorities (CAs)
create and maintain digital certificates, which also help preserve confidentiality.

Various commercial CAs, such as VeriSign and Thawte, provide competitive services for the e-
commerce market. You can also develop your own CA by using products from companies such as
RSA Security and Microsoft or from the Open-Source Toolkit OpenSSL.

117

https://tools.ietf.org/html/rfc5289
https://tools.ietf.org/html/rfc5289
https://docs.microsoft.com/en-us/windows/win32/secauthn/cipher-suites-in-schannel

digital signatures
A digital signature affixed to an electronic document or to a network data packet is like a
personal signature that concludes a hand-written letter or that validates a credit card
transaction. Digital signatures are a safeguard against fraud. A unique digital signature results
from using a private key to encrypt a message digest. A document that contains a digital
signature enables the receiver of the document to verify the source of the document. Electronic
documents are said to be verified if the receiver knows where the document came from, who sent
it, and when it was sent.

Another form of verification comes from message authentication codes (MAC), which ensure that
a signed document has not been changed. A MAC is attached to a document to indicate the
document's authenticity. A document that contains a MAC enables the receiver of the document
(who also has the secret key) to know that the document is authentic.

digital certificates
Digital certificates are electronic documents that ensure the binding of a public key to an
individual or an organization. Digital certificates provide protection from fraud.

Usually, a digital certificate contains a public key, a user's name, and an expiration date. It also
contains the name of the certificate authority (CA) that issued the digital certificate and a digital
signature that is generated by the CA. The CA's validation of an individual or an organization
allows that individual or organization to be accepted at sites that trust the CA.

public and private keys
Public-key cryptography uses a public and a private key pair. The public key can be known by
anyone, so anyone can send a confidential message. The private key is confidential and known
only to the owner of the key pair, so only the owner can read the encrypted message. The public
key is used primarily for encryption, but it can also be used to verify digital signatures. The
private key is used primarily for decryption, but it can also be used to generate a digital signature.

symmetric key
In symmetric key encryption, the same key is used to encrypt and decrypt the message. If two
parties want to exchange encrypted messages securely, they must both have a copy of the same
symmetric key. Symmetric key cryptography is often used for encrypting large amounts of data
because it is computationally faster than asymmetric cryptography. Typical algorithms include
DES, TripleDES, RC2, RC4, and AES.

asymmetric key
Asymmetric or public key encryption uses a pair of keys that have been derived together through
a complex mathematical process. One of the keys is made public, typically by asking a CA to
publish the public key in a certificate for the certificate-holder (also called the subject). The
private key is kept secret by the subject and never revealed to anyone. The keys work together
where one is used to perform the inverse operation of the other: If the public key is used to
encrypt data, only the private key of the pair can decrypt it. If the private key is used to encrypt,
the public key must be used to decrypt. This relationship allows a public key encryption scheme
where anyone can obtain the public key for a subject and use it to encrypt data that only the user
with the private key can decrypt. This scheme also specifies that when a subject encrypts data
using its private key, anyone can decrypt the data by using the corresponding public key. This
scheme is the foundation for digital signatures.

118

Certificates Used by TLS and HTTPS

Overview of Certificates

Certificates are required for configuring TLS and HTTPS. TLS is used as the mechanism to provide
encryption in-motion. Digital certificates are used in a network security system to guarantee that the
two parties exchanging information are really who they claim to be. Certificates are used to
authenticate a server process or a human user. Digital certificates are issued and signed by a
certificate authority (CA).

Configuring a server process to use TLS and HTTPS requires both a private key and a signed X.509
certificate. The signed server certificate also contains the public key.

A TLS server that is configured correctly should present to the client both the server certificate and
any intermediate certificates. This means that the TLS client requires access only to the Root
Certificate Authority certificate in order to establish trust of the server certificate.

In a SAS Viya deployment, certificates and security artifacts (certificate and key files, tokens) are
provided at deployment. In a full deployment of SAS Viya, these certificate artifacts are used to
provide security by default when the software is deployed. In a programming-only deployment of
SAS Viya, security artifacts are provided to be used to configure and secure the software post-
deployment.

When customers order a certificate through a commercial third party, they are submitting a
certificate signing request (CSR). This CSR is a request to the certificate authority to sign the
certificate and return that signed certificate to the customer for use.

A CA is an organization that verifies the information or the identity of computers on a network and
issues digital certificates of authenticity and public keys. As part of a public key infrastructure (PKI),
a CA checks with a registration authority to verify information provided by the requestor of a digital
certificate. If the registration authority verifies the requestor's information, the CA can then issue a
certificate.

There are three types of certificates that can be used to authenticate entities:

n third-party-signed

You go to a commercial third-party certificate authority (VeriSign, GeoTrust, Thawte, DigiCert,
Comodo, and so on), or a company can create its own CA and then use it to generate server and
client certificates.

n site-signed

You go to the IT department at your site to obtain a certificate.

n self-signed

You serve as your own certificate authority.

119

Figure 2 Types of Certificates and Who Acts as the CA for Each Certificate

The CA signs the certificate that has been requested and does the following:

1 Ensures that the signing process is compatible with the private key type (either RSA or ECC). If
you intend to use ECC certificates, the signing process also ensures that the certificates are
generated correctly.

2 Provides the set of public X.509 certificates to establish the trust chain. The chain of trust must
be established so that end-users will not see warnings in their browsers.

Multiple X.509 certificates are required for the chain of trust when there are site-signed or third-
party-signed certificates. There should be the Root Certificate Authority X.509 certificate and a
number of Intermediate Certificate Authority X.509 certificates.

120

A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the
subsequent certificate. The purpose of a certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the peer certificate when it
signs it. If the CA is one that you trust (a copy of the CA certificate is in your root certificate
directory), you can trust the signed peer certificate as well.

Server certificates are used to secure servers (most common are web servers) when you connect to
sites that support HTTPS. A CA-signed server certificate is the type of certificate you would need to
deploy if you do not want web browsers to display a warning when users attempt to connect to your
secure server.

CA certificates are the certificates in your browser. Before any major web browser such as Chrome or
Firefox connects to your server using HTTPS, it already has in its possession a set of certificates that
can be used to verify the digital signature that will be found on your server certificate. These
certificates are called CA (Certificate Authority) certificates. On these certificates is a copy of the
public key of the CA that might issue (sign) your server certificate.

SAS Truststores

A SAS Viya deployment provides the SAS Security Certificate Framework that includes two
truststores (two files), one in Base64 PEM encoded format (trustedcerts.pem) and one in a Java
keystore format (trustedcerts.jks). The trustedcerts files are located on every machine in a SAS Viya
deployment. These two files have the same content and are located in the following directories:

n On Linux and equivalent distributions: /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts

n On Windows: C:\ProgramData\SAS\Viya\etc\SASSecurityCertificateFramework\cacerts

These two trustedcerts files contain the Mozilla bundle of trusted certificate authority (CA)
certificates and other certificates added as part of the deployment process. Other certificates are
shown in Table 11 on page 121.

Table 11 Certificates That Can Be Included in the Truststore

Type of Certificate Description

Mozilla trusted certificate authority
(CA) certificate bundle

Certificates from Mozilla that are provided by SAS Viya. These
certificates are included in the trustedcerts.pem and the
trustedcerts.jks files.

CA certificates issued by SAS Secrets
Manager

Certificates generated using the SAS Secrets Manager. These
are the Vault Root CA and intermediate certificates that are
generated on the machines where the SAS Secrets Manager is
deployed. These CA certificates are included in the file named
vault-ca.crt.

Note: The SAS Secrets Manager is deployed only in a full
Linux Deployment.

Certificates generated by SAS Certificates generated by SAS Viya. These certificates are
usually named sas_encrypted.crt or sas.crt.

121

Type of Certificate Description

Any certificate chain. On a Linux
deployment, on the Apache Server,
this chain certificate is pointed to by
HTTPD_CERT_PATH in the vars.yml
file.

Certificates that are provided by SAS Viya or customer-
provided certificates added to the Apache server pre-
deployment or post-deployment.

Custom certificates Certificates that are provided by the customer.

Your web browser inherently trusts all certificates that have been signed by any root that has been
embedded in the browser itself or in an operating system on which it relies.

In a Linux full deployment, during the Ansible deployment process, SAS Viya automatically obtains
the HTTPS certificate from the Apache HTTP Server and adds this to the SAS Configuration Server
under the key-value store named cacerts. Ansible uses the value of HTTPD_CERT_PATH to create
an additional file in the SAS Security Certificate Framework under the cacerts directory. The
deployment process then builds the trustedcerts files using the Mozilla bundle and these items. The
trustedcerts files are distributed across all the hosts in the Ansible inventory.

Ensuring that the truststores are updated with any additional certificates is critical to a correctly
operating environment. For information about managing the truststores, see “Manage Truststores”
on page 82.

Apache HTTPD Certificates

Using Default Self-Signed Certificates Provided with SAS Viya Deployment
An Apache HTTP Server is used as a reverse proxy server to secure your environment. The
deployment process automatically installs Apache httpd on the machines that you designate as
targets for the HTTP proxy installation unless it has already been installed. Apache httpd with the
mod_ssl module is required in order to create the Apache HTTP Server, which provides security to
the SAS Viya components.

The default Apache HTTP security settings use self-signed certificates provided by Apache. These
settings are reasonably secure, but they are not compliant with SAS security standards. In a Linux
full deployment of SAS Viya, the playbook inspects existing certificates and the CA chain to
determine whether they comply with SAS security requirements. See “How SAS Viya Determines If
Certificates Meet the SAS Security Standards on an Installed Linux HTTP Server” on page 124.

If certificates compliant with the SAS security standards are found, they are used without changes. If
only the default mod_ssl certificates are found, the playbook generates SAS Viya self-signed
certificates and configures mod_ssl to use them.

If you keep the self-signed certificates provided by SAS, end users see a standard web browser
warning message.

CAUTION
SAS Viya self-signed certificates prior to the July 2019 release of SAS Viya are valid for only
one year. In the July 2019 release of SAS Viya, the self-signed certificates provided by SAS Viya have a
seven-year expiration time. Prior to the July 2019 release of SAS Viya, the self-signed certificates expired

122

in only one year. Contact SAS Technical Support or perform the tasks to update SAS Viya default self-
signed certificate to extend the expiration date. On Linux, see “Update SAS Viya Default Self-Signed
Certificate to Extend the Expiration Date (Linux)”. On Windows, see “Update SAS Viya Default Self-Signed
Certificate to Extend the Expiration Date (Windows)”.

SAS recommends replacing the certificates before giving end users access to the software. SAS
recommends that you install Apache httpd and configure the Apache HTTP Server to use certificates
that comply with the security policies at your enterprise before you start the deployment process on
a Linux deployment. In a SAS Viya full deployment on Linux, when you replace certificates before
deployment of SAS Viya, the playbook automatically configures the certificates to secure the
servers. See “Replace Self-Signed Certificates with Custom Certificates (Linux Pre-Deployment)” on
page 10.

Replacing the certificates can also be performed post-deployment on Linux. On Windows
deployments, the Apache httpd certificates can be replaced only post-deployment. See “Replace
Self-Signed Certificates with Custom Certificates (Post-Deployment)” on page 14.

The certificates and key files that the Apache HTTP Server uses are specified in the ssl.conf file or in
the ssl-global-conf file on Linux or the httpd-ssl.conf file on Windows. The locations of these files
are as follows:

n on RHEL and equivalent distributions, the ssl.conf file in /etc/httpd/conf.d/

n on SUSE Linux Enterprise Server 12.x, the ssl-global.conf file in /etc/apache2/ and the vhost-
ssl.conf file in /etc/apache2/vhosts.d/

n on Windows, the httpd-ssl.conf in C:\ProgramData\SAS\Viya\etc\httpd\conf\extra

The certificate and key files are specified using the directives in these configuration files. On Linux,
the default certificate and key files provided by Apache are named localhost.crt and locahost.key.
The certificate and key files provided by SAS Viya for Linux and Windows are named
sas_encrypted.crt and sas_encrypted.key.

n The certificate file name is specified using directive SSLCertificateFile.

Note: In Apache HTTP Server version 2.4.8, the SSLCertificateFile directive was extended to
load intermediate CA certificates from the server certificate file. This change enables you to use
the SSLCertificateFile directive instead of the SSLCertificateChainFile directive. See an
explanation at SSLCertificateChainFile Directive.

o On a Red Hat Enterprise Linux and equivalent distributions, specify
SSLCertificateFile /etc/pki/tls/certs/.

o On SUSE Linux Enterprise Server, specify SSLCertificateFile /etc/apache2/ssl.crt/.

o On Windows, specify SSLCertificateFile C:\ProgramData\SAS\Viya\etc
\SASSecurityCertificateFramework\tls\certs\.

n The certificate key file and path are specified using directive SSLCertificateKey.

o The default RSA private key associated with certificates is named localhost.key.

n On Red Hat Enterprise Linux and equivalent distributions, the certificate file name is set as
SSLCertificateKeyFile /etc/pki/tls/private/localhost.key.

n On SUSE Linux Enterprise Server, the certificate file name is set as
SSLCertificateKeyFile /etc/apache2/ssl.crt/localhost.key.

123

https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#SSLCertificateChainFile

n On Windows, the certificate file name is set as SSLCertificateKeyFile C:\ProgramData
\SAS\Viya\etc\SASSecurityCertificateFramework\private\sas.key

How SAS Viya Determines If Certificates Meet the SAS Security Standards
on an Installed Linux HTTP Server

Note: This information applies to a Linux Apache HTTP Server that is not initially set up by SAS.
This section does not apply to a Windows deployment of SAS Viya.

During the deployment of SAS Viya on an existing Apache HTTP Server, the server identity
certificates and the CA chain of certificates are investigated to determine whether they comply with
SAS security requirements.

n Certificates that meet SAS security standards are those provided by the customer and signed by
a trusted commercial CA or your own internal CA. In a certificate, the Basic Constraints extension
cannot have the CA field set to false (CA:FALSE) to meet the SAS security standards.

n If certificates that do not meet SAS security standards are found, a self-signed certificate signed
by SAS Viya is used, and mod_ssl is configured to use it. By default, mod_ssl issues a self-signed
certificate where the Basic Constraints extension has the CA field set to false (CA:FALSE). This
type of certificate does not meet the SAS security standards. Therefore, SAS Viya provides a
self-signed certificate where the CA extension is excluded.

If you do not add compliant certificates, end users see a standard web browser warning message.
SAS recommends replacing the non-compliant certificates before giving end users access to SAS
Viya. You can add your own certificates pre-deployment on Linux or post-deployment on Linux and
Windows. See “Replace Self-Signed Certificates with Custom Certificates (Linux Pre-Deployment)”
on page 10and “Replace Self-Signed Certificates with Custom Certificates (Post-Deployment)” on
page 14.

Note: Replacing your certificates post-deployment requires a brief outage.

Who Needs to Know about the Apache HTTPD Certificates?
The Apache httpd certificates are used by the deployment infrastructure. The following components
must know about the Apache httpd certificates.

n SAS Configuration Server (Consul)

o Each time that Consul is started, the sas-viya-httpproxy start script harvests all certificates
found in the configuration files. In the Apache ssl.conf configuration file, directive
SSLCertificateFile points to the files that contain any combination of the server, the root CA,
and the intermediate CA certificates.

Note: In Apache HTTP Server version 2.4.8, the SSLCertificateFile directive was extended to
load intermediate CA certificates from the server certificate file. This change enables you to
use the SSLCertificateFile directive for chained certificates instead of the
SSLCertificateChainFile directive. See an explanation at SSLCertificateChainFile Directive.

o All of the certificates harvested when the sas-viya-httpproxy start script runs are stored in
the Consul key value store. Ansible adds these certificates in the /opt/sas/viya/

124

https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#SSLCertificateChainFile

config/etc/SASSecurityCertificateFramework/cacerts/ path. Ansible adds this
certificate chain file as the file httpproxy-host definition-ca.crt. The host definition is taken
from the inventory.ini file.

o Any restart of the sas-viya-httpproxy service updates the certificates stored in Consul. If a
certificate has been removed from the certificate chain, it is removed from Consul
automatically when the sas-viya-httpproxy service is restarted.

n the HTTPD_CERT_PATH environment variable in the vars.yml file

o The value of the environment variable is maintained by the user running the playbook.

o When creating the certificate file that the HTTPD_CERT_PATH environment variable points
to, the certificate file should be created as described in “Create a Certificate Chain of Trust for
Apache HTTPD” on page 125.

o On Red Hat Enterprise Linux and equivalent distributions, the path to the default location for
the certificate chain files is as follows:

HTTPD_CERT_PATH: '/etc/pki/tls/certs/customer.crt'

On SUSE Linux Enterprise Server, the default location for certificates is as follows:

HTTPD_CERT_PATH: '/etc/apache2/ssl.crt/customer.crt'

Note: When you add custom certificates (either pre-deployment or post-deployment), set
the environment variable to the path where the default certificates are located. Provide a file
name other than the default name "localhost". The customer-provided certificate file that
contains the certificate chain is named customer.crt for this example.

n the SAS truststores

o The certificates in Consul are added, deleted, or updated in the SAS truststore each time the
sas-viya-httpdproxy service is restarted.

o In the vars.yml file, the certificates found at the location pointed to by HTTPD_CERT_PATH
are distributed to all hosts and then added to each of the host truststores.

o When the Ansible rebuild-trust-stores.yml and the distribute-httpd-cert.yml plays are run, the
truststores are updated.

Create a Certificate Chain of Trust for Apache HTTPD
You need to create certificate chain of trust certificate files to update the certificates that Apache
httpd uses. Then you set the configuration file directive SSLCertificateFile to point to those
certificate files. This directive is set in configuration files ssl.conf file and ssl-global.conf on Linux,
and httpd-ssl.conf on Windows.

Note: In Apache HTTP Server version 2.4.8, the SSLCertificateFile directive was extended to load
intermediate CA certificates from the server certificate file. This change enables you to use the
SSLCertificateFile directive for all of your certificates, including the chained certificate if you have an
Apache HTTP Server version 2.4.8 or later. The SSLCertificateChainFile directive is then not needed.
See an explanation at SSLCertificateChainFile Directive.

Here are the types of certificates that the certificate files should contain to ensure that there are no
gaps in the certificate chain of trust:

125

https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#SSLCertificateChainFile

1 Configure the SSLCertificateFile to point to a certificate file that contains a full chain of
certificates. This chain of certificates includes the server certificate (also known as the server-
identity certificate), root CA certificate, and all intermediate CA certificates. This configuration
provides the following results:

a Apache httpd is aware of the entire chain of certificates. Because Apache httpd knows the
complete chain of certificates, the sas-viya-httpproxy service start script knows about the
complete chain of certificates. Because the sas-viya-httpproxy service knows about the entire
chain of certificates, all CA certificates in the chain are stored in Consul and also in the host
truststores.

b Because the entire CA chain of trust is in Consul, and therefore also in each of the host
truststores, the value for HTTPD_CERT_FILE in the vars.yml file can be left blank.

2 If your Apache HTTP Server version is earlier than 2.4.8, you can configure both the
SSLCertificateFile directive and the SSLCertificateChainFile directive to point to two different
certificate files that create a complete chain of trust. The SSLCertificateFile directive can point to
a certificate file that contains only the server certificate. The SSLCertificateChainFile directive
then points to a certificate file that contains the full chain of CA certificates (all intermediate CA
certificates and the root CA certificate).

This configuration is functionally equivalent to the configuration described in Step 1 on page 126.

The following certificate configurations are problematic:

1 If you configure the SSLCertificateFile directive to point to a file that contains only the server
certificate, and the SSLCertificateChainFile directive points to a file that contains a subset of the
chain of CA certificates (for example, the file might contain only the signing intermediate CA
certificate), the full chain of trust is not known. This configuration is not recommended and is
problematic for the following reasons:

a In this configuration, the SSLCertificateChainFile directive is pointing to a certificate file that
does not contain the root CA certificate and possibly does not contain other necessary
intermediate CA certificates. The SSLCertificateChainFile might also not contain other
necessary certificates.

b Because there are certificates missing, Apache httpd is not aware of the complete chain of
trust.

c Because Apache httpd is not aware of the complete chain of trusted certificates, the sas-viya-
httpproxy start script also does not know about the complete chain of trusted certificates.
This gap in the chain of trusted certificates creates a problem in Consul and in the host
truststores.

d Because a gap exists in the chain of trusted certificates, the vars.yml HTTPD_CERT_FILE
value must be set. The certificate file that HTTPD_CERT_FILE points to must contain the
remainder of the chain of trust.

e The missing certificates are needed to complete the chain of trust when building the
truststores. The HTTPD_CERT_FILE file that contains the missing certificates restores
continuity in the chain of trusted certificates.

2 If you configure the SSLCertificateFile directive to point to a file that contains only the server
certificate, and the SSLCertificateChainFile directive is not set, there is a gap in the chain of
trusted certificates. This configuration is problematic for the following reasons:

126

a This configuration is functionally equivalent to the configuration described in Step 1a on page
126.

b The file referenced by HTTPD_CERT_PATH contains only the server certificate. This
certificate chain must contain the entirety of the chain of CA certificates, including the root
CA certificate if only the SSLCertificateFile directive is used.

Certificates Issued by SAS Secrets Manager (Linux Full
Deployment)

IMPORTANT SAS Secrets Manager is not used in a Linux programming-only deployment nor
in a Windows deployment.

In a full deployment of SAS Viya, SAS Configuration Server (Consul) and SAS Secrets Manager are
designed to be accessible only from within the SAS Viya environment. Consul and SAS Secrets
Manager are not end-points that end users connect to. However, services and web applications
connect to these end-points.

SAS Secrets Manager, which is based on HashiCorp Vault, is the trusted party that generates and
signs root and intermediate TLS certificates. SAS Secrets Manager generates both a Root Certificate
Authority certificate and private key, as well as an Intermediate Certificate Authority certificate and
private key. The Intermediate Certificate Authority is used to sign the individual server certificates
(also known as the server-identity certificates).

These TLS certificates are used to secure communication between various SAS Viya processes. SAS
Secrets Manager provides a point of contact for services that require certificates needed to maintain
secured communication. These certificates are signed by a CA root and CA intermediate certificate
created by SAS Secrets Manager. See Table 12 on page 128.

Note: SAS recommends installing a full deployment, which includes the product visual interfaces
and microservices.

When SAS Secrets Manager is running, a SAS Viya service is deployed with an authentication token
that allows it to contact SAS Secrets Manager as the service needs to. When this service is started,
it uses its token to request a new certificate from SAS Secrets Manager and then secures its own
internal port with that certificate. This process happens every time the service is started, as well as
at the time of the deployment. Services can generate new certificates on any given start. The service
handles all communication and interaction with SAS Secrets Manager programmatically. The service
secures its end-points with the certificate provided by SAS Secrets Manager.

Certificates issued and key files are placed on the CAS controller, SAS/CONNECT server, SAS
Configuration Server (Consul), SAS launcher server, SAS Message Broker (RabbitMQ), and SAS
Infrastructure Data Server (PostgreSQL). For more information about servers in a deployment, see
“Infrastructure Servers: Overview ” in SAS Viya Administration: Infrastructure Servers.

Note: All the microservices have signed certificates that are stored in SAS Secrets Manager.

127

http://documentation.sas.com/?docsetId=calsrvinf&docsetVersion=3.5&docsetTarget=n01000viyainfrsrvs00000admin.htm&locale=en

IMPORTANT When system-wide cryptographic policies are activated in Red Hat Enterprise
Linux 8.x, communications among critical SAS Viya components are prevented. The SAS Viya
generated keys are 2048-bit RSA keys by default. This key size is not compatible with Red Hat
Enterprise Linux 8 cryptographic policy when it is set to FUTURE. For information about how
to resolve this interaction, see “Cryptographic Policies” in SAS Viya for Linux: Deployment
Guide.

Table 12 Certificate and Key Artifacts Provided by SAS Secrets Manager for a SAS Viya Full
Deployment

Security Artifact Deployment File Name Location Description

Certificate truststore trustedcerts.pem

trustedcerts.jks

/opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/cacerts

Contains the trusted list
of CA certificates. These
include the Mozilla
bundle of trusted CA
certificates, the SAS
Secrets Manager site-
signed certificates, the
Apache HTTP server
certificates, any custom
certificates, and the
chain of trust
certificates.

Certificate file vault-ca.crt /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/cacerts

Contains the CA
certificates. It contains
two certificates: the CA
root certificate and the
CA intermediate
certificate.

Certificate file sas_encrypted.crt /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/tls/
certs

Contains the root CA
certificate issued by
SAS Secrets Manager. It
is sometimes referred to
as the machine
certificate. Each
machine in a
deployment has its own
root CA certificate. This
file is placed on all other
machines in the
deployment to allow
those machines to trust
this machine when they
connect to it. This
certificate file has a
plaintext private key

128

http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en

Security Artifact Deployment File Name Location Description

contained in file
sas_encrypted.key.

Certificate private key
file

sas_encrypted.key /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/private

Contains the RSA
private key associated
with the public key. This
RSA private key is
encrypted. Its
decryption key is the
contents of the file
encryption.key.

Certificate private key
passphrase file

encryption.key
(optional)

/opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/private

This is the passphrase
(or key) used to encrypt
and decrypt the RSA
private key in the file
sas_encrypted.key.

Security certificates are generated by SAS Secrets Manager (Vault) for use by High Availability (HA)
PostgreSQL and PGPool. The certificates are generated during the deployment for each node within
the cluster. They are stored individually by cluster and by node. Certificates and keys are refreshed
when starting every cluster if Vault is configured for the environment and is running. These
certificates and keys are shown in the following table.

Table 13 Certificate and Key Artifacts Provided by SAS Secrets Manager for Postgres and PGPool

Security Artifact Deployment File Name Location Description

Certificate file sascert.pem /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/tls/
certs/sasdatasvrc/
postgres/pgpool0

Contains the root CA
certificate issued by
SAS Secrets Manager. It
is sometimes referred to
as the machine
certificate. Each
machine in a
deployment has its own
root CA certificate. This
file is placed on all other
machines in the
deployment to allow
those machines to trust
this machine when they
connect to it. This
certificate file has a
plaintext private key
contained in file
saskey.pem.

129

Security Artifact Deployment File Name Location Description

Certificate private key
file

saskey.pem /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/private/
sasdatasvrc/
postgres/pgpool0

Contains the RSA
private key associated
with the public key. This
RSA private key is
encrypted. Its
decryption key is the
contents of the file
encryption.key.

For more information, see “SAS Infrastructure Data Server” in SAS Viya Administration: Infrastructure
Servers.

In SAS Environment Manager, the interface for managing certificates is SAS Secrets Manager. SAS
Secrets Manager is based on HashiCorp Vault 0.7.5. SAS Secrets Manager uses, stores, and
generates secrets such as Transport Layer Security (TLS) certificates. For more information, see
“SAS Secrets Manager (Linux)” in SAS Viya Administration: Infrastructure Servers.

Note: SAS Secrets Manager is installed on the same machines where SAS Configuration Server
resides. SAS Configuration Server must be running in order for SAS Secrets Manager to be
operational.

For information about the configuration properties that SAS Secrets Manager uses, see
“Configuration Properties: Reference (Services)” in SAS Viya Administration: Configuration
Properties.

Self-Signed Certificates Issued by SAS Viya

In a Linux programming-only or a Windows deployment of SAS Viya, self-signed certificates are
provided to configure TLS for the deployment. One exception is on the SAS Object Spawner.

Note: To configure the SAS Object Spawner to use TLS, the customer administrator needs to
generate their own certificates and configure those certificates. See “Configure TLS on the SAS
Object Spawner” on page 51.

The following SAS self-signed certificates and key files are provided for the various machines in the
deployment.

IMPORTANT When system-wide cryptographic policies are activated in Red Hat Enterprise
Linux 8.x, communications among critical SAS Viya components are prevented. The SAS Viya
generated keys are 2048-bit RSA keys by default. This key size is not compatible with Red Hat
Enterprise Linux 8 cryptographic policy when it is set to FUTURE. For information about how
to resolve this interaction, see “Cryptographic Policies” in SAS Viya for Linux: Deployment
Guide.

130

http://documentation.sas.com/?docsetId=calsrvinf&docsetVersion=3.5&docsetTarget=n00000sasinfrdatasrv000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calsrvinf&docsetVersion=3.5&docsetTarget=n00000sasinfrdatasrv000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calsrvinf&docsetVersion=3.5&docsetTarget=n00002viyainfrsrvs00000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08000sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=calconfig&docsetVersion=3.5&docsetTarget=n08000sasconfiguration0admin.htm&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en
http://documentation.sas.com/?docsetId=dplyml0phy0lax&docsetVersion=3.5&docsetTarget=n0zjykknqs5ln6n1292uvye8ucrb.htm&docsetTargetAnchor=p1xy9wb7t7e7ucn10t21i8xlqz9m&locale=en

Table 14 Certificate and Key Artifacts Provided at Installation for SAS Viya Deployments

Security Artifact Deployment File Name Location Description

Certificate truststore trustedcerts.pem

trustedcerts.jks

Linux: /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/cacerts

Windows:
C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\cacerts
\

Contains the trusted list
of CA certificates. These
include the Mozilla
bundle of trusted CA
certificates, the SAS
Viya self-signed
certificates, the Apache
httpd certificates, and
the chain of trust
certificates.

Certificate file sas_encrypted.crt /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/tls/
certs

C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\tls
\certs

Contains the server
identity certificate
generated by SAS Viya.
These are self-signed
certificates that are
encrypted.

Certificate private key
file

sas_encrypted.key /opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/private

C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\private

Contains the private key
generated by SAS Viya.

Certificate private key
passphrase file

encryption.key
(optional)

/opt/sas/viya/
config/etc/
SASSecurityCertifica
teFramework/private

C:\ProgramData\SAS
\Viya\etc
\SASSecurityCertific
ateFramework\private

Contains the encrypted
passphrase file provided
by SAS Viya.

On Apache, SAS determines which certificates and keys to use during the deployment process. SAS
determines whether to use the default Apache certificates, your own custom certificates, or the self-
signed certificates provided by SAS. See “Apache HTTPD Certificates” on page 122.

131

Certificate File Formats

There are many file formats used to structure certificates. Here are some of them:

n encodings (also used as extensions)

PEM
Privacy Enhanced Email (.pem) is a container format (Base64-encoded x.509). The .pem
extension is used for different types of X.509v3 files, which contain ASCII (Base64) armored
data prefixed with a -----BEGIN----- line.

Examples are CA certificate files or an entire certificate chain. This file can contain an issued
public certificate, a public key, a private key, and intermediate and root certificates.

The PEM file format is preferred by open-source software. It can have a variety of extensions
(.pem, .key, .cer, .cert, and so on). For information about converting between file formats, see
“Convert Digital Certificate File Formats Using OpenSSL” on page 101.

DER
Distinguished Encoding Rules (.der) is used for binary DER encoded certificates. A PEM file is
just a Base64-encoded DER file. OpenSSL can convert these to PEM. DER supports storage of
a single certificate. These files can also bear the .cer extension or the .crt extension. For
information about converting between file formats, see “Convert Digital Certificate File
Formats Using OpenSSL” on page 101.

JKS
JKS is a file format that is specific to Java. It is the Java keystore implementation. A keystore
is a storage facility for cryptographic keys and certificates. Keytool is a key and certificate
management utility that uses JKS as the file format of the key and certificate databases
(keystore and truststores).

PKCS#12 .P12
Public-Key Cryptography Standards (.pkcs12) is a file format that has both public and private
keys in the file and all certificates in a certification path. This container file is fully encrypted
with a password-based symmetric key. PFX is a predecessor to PKCS#12.

Note: The PKCS#12 format is the only file format that can be used to export a certificate and
its private key.

For information about converting between file formats, see “Convert Digital Certificate File
Formats Using OpenSSL” on page 101.

n common extensions

CRT
The CRT extension is used for certificates. It supports storage of a single certificate. The
certificates can be encoded as binary DER or as ASCII PEM. The CER and CRT extensions are
nearly synonymous.

Note: The only time CRT and CER can safely be interchanged is when the encoding type can
be identical. For example, PEM-encoded CRT is the same as PEM-encoded CER.

132

CSR
This is a certificate signing request. Some applications can generate these for submission to
certificate authorities. It includes some of the key details of the requested certificate, such as
subject, organization, and state, as well as the public key of the certificate that will be signed.
These are signed by the CA and a certificate is returned. The returned certificate is the public
certificate. Note that this public certificate can be in a couple of formats.

KEY
The KEY extension is used both for public and private keys. The keys can be encoded as
binary DER or as ASCII PEM.

SSH (Secure Shell)

SSH (Secure Shell) Overview

SSH is an abbreviation for Secure Shell. SSH is a protocol that enables users to access a remote
computer via a secure connection. SSH is available through various commercial products and as
freeware. OpenSSH is a free version of the SSH protocol suite of network connectivity tools.

Although SAS software does not directly support SSH functionality, you can use the tunneling
feature of SSH to enable data to flow between a SAS client and a SAS server. Port forwarding is
another term for tunneling. The SSH client and SSH server act as agents between the SAS client and
the SAS server, tunneling information via the SAS client's port to the SAS server's port.

Linux operating systems can access an OpenSSH server on another Linux system. To access an
OpenSSH server, Linux systems require OpenSSH software.

Windows systems require PuTTY software.

Currently, SAS supports the OpenSSH client and server that supports protocol level SSH-2 in Linux
environments. Other third-party applications that support the SSH-2 protocol currently are
untested. Therefore, SAS does not support these applications.

To understand the configuration options that are required for the OpenSSH and PuTTY clients and
the OpenSSH server, it is recommended that you have a copy of the book SSH, the Secure Shell: The
Definitive Guide by Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes. This book is an
invaluable resource when you are configuring the SSH applications, and it describes in detail topics
that include public key authentication, SSH agents, and SSHD host keys.

SSH System Requirements

SAS supports SSH in these operating environments:

n Linux

n UNIX

n Windows

n z/OS

133

SSH Software Availability

OpenSSH supports SSH protocol versions 1.3, 1.5, and 2.0.

To build the OpenSSL software, refer to the following resources:

n www.openssh.com

n www.ssh.com

n PuTTY Download Page

n Barrett, Daniel J., Richard E. Silverman, and Robert G. Byrnes. 2005. SSH, the Secure Shell: The
Definitive Guide. Sebastopol, CA: O'Reilly.

SSH Tunneling Process

An inbound request from a SAS client to a SAS server is shown as follows.

Figure 3 SSH Tunneling Process

SAS Client SAS Server

SSH Server

4321

5555

Client Computer Server Computer

SSH Tunnel

SSH Client

1 3

2

1 The SAS client passes its request to the SSH client's port 5555.

2 The SSH client forwards the SAS client's request to the SSH server via an encrypted tunnel.

3 The SSH server forwards the SAS client's request to the SAS server via port 4321.

Outbound, the SAS server's reply to the SAS client's request flows from the SAS server to the SSH
server. The SSH server forwards the reply to the SSH client, which passes it to the SAS client.

SSH Tunneling: Process for Installation and Setup

SSH software must be installed on the client and server computers. Exact details about installing
SSH software at the client and the server depend on the particular brand and version of the software
that is used. See the installation instructions for your SSH software.

The process for setting up an SSH tunnel consists of the following steps:

1 SSH tunneling software is installed on the client and server computers. Details about tunnel
configuration depend on the specific SSH product that is used. On Linux, you use OpenSSH
software to access your Linux OpenSSH server.

2 The SSH client is started as an agent between the SAS client and the SAS server.

134

http://www.openssh.com
http://www.ssh.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

3 The components of the tunnel are set up. The components are a listen port, a destination
computer, and a destination port. The SAS client accesses the listen port, which is forwarded to
the destination port on the destination computer. SSH establishes an encrypted tunnel that
indirectly connects the SAS client to the SAS server.

SAS Viya Security-Related Loggers
Security-related events are logged as part of the system-wide logging facility. The following table
lists security-related loggers.

Table 15 Selected Security-Related Loggers

Logger TLS Information

App.tk.eam Logs security information.

App.tk.eam.ssl Logs TLS encryption information including the OpenSSL
protocol and cipher suites being used.

App.tk.eam.rsaopensslLinuxVersion Logs encryption information for the Linux OpenSSL module
loaded.

App.tk.eam.rsa.bcrypt Logs basic cryptographic information for Windows BCrypt

App.tk.eam.rsa.pbe Enables or disables the password-based encryption
processing that creates a key.

App.tk.eam.rsa.capi Logs RC2, RC4, DES, and DES3 encryption information for
Windows C API.

App.tk.eam.rsa.cc Logs RC2, RC4, DES, DES3, and AES encryption information
for RSA BSAFE® Crypto-C.

See Also
For information, see “Logging: Overview” in SAS Viya Administration: Logging

Encrypting PDF Files Generated by ODS
You can use ODS to generate PDF output. When these PDF files are not password protected, any
user can use Acrobat to view and edit the PDF files. You can encrypt and password-protect your PDF
output files by specifying the PDFSECURITY= system option. Valid security levels for the
PDFSECURITY= option are NONE or HIGH. SAS encrypts PDF documents using a 128-bit encryption

135

http://documentation.sas.com/?docsetId=callogging&docsetVersion=3.5&docsetTarget=n08aazgc8rkudun1ry91p712qkz2.htm&locale=en

algorithm. With PDFSECURITY=HIGH, at least one password must be set using the
PDFPASSWORD= system option. A password is required to open a PDF file that has been generated
with ODS.

Table 16 PDF System Options

Task System Option

Specifies whether text and graphics from
PDF documents can be edited.

PDFACCESS | NOPDFACCESS

Controls whether PDF documents can be
assembled.

PDFASSEMBLY | NOPDFASSEMBLY

Controls whether PDF document
comments can be modified.

PDFCOMMENT | NOPDFCOMMENT

Controls whether the contents of a PDF
document can be changed.

PDFCONTENT | NOPDFCONTENT

Controls whether text and graphics from
a PDF document can be copied.

PDFCOPY | NOPDFCOPY

Controls whether PDF forms can be filled
in.

PDFFILLIN | NOPDFFILLIN

Specifies the page layout for PDF
documents.

PDFPAGELAYOUT=

Specifies the page viewing mode for PDF
documents.

PDFPAGEVIEW=

Specifies the password to use to open a
PDF document and the password used by
a PDF document owner.

PDFPASSWORD=

Controls the resolution used to print the
PDF document.

PDFPRINT=

Controls the printing permissions for PDF
documents.

PDFSECURITY=

136

Reference

SAS System Options for Encryption
This section contains the SAS system options that can be used to configure encryption. These
options can be specified in a number of different ways: in configuration files (connect_usermods.sh
file, connectserver_usermods.sh file, connect_usermods.bat file, connectserver_usermods.bat,), in
properties files, in SAS programs in the OPTIONS statement, on the SAS/CONNECT spawner
command line, and in the SAS System Options window in SAS 9.

These system options are used for SAS/CONNECT, SAS Workspace server, and SAS object spawner.
These system options are used in a SAS Viya programming-only deployment on Linux and on
Windows deployments. In a SAS Viya full deployment, TLS is configured and enabled by default.
Disable TLS on Port Families and Across the Deployment.

NETENCRYPT System Option

Specifies whether encryption is required for the connection.

NETENCRYPT | NONETENCRYPT

NETENCRYPT
specifies that encryption is required.

NONETENCRYPT
specifies that encryption is not required, but is optional.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS GROUP= Communications

Default NONETENCRYPT

Linux specifics Linux

See “NETENCRYPTALGORITHM= System Option” on page 138

The default for this option specifies that encryption is used if the NETENCRYPTALGORITHM=
option is set and if both the client and the server are capable of encryption. If encryption algorithms

137

are specified, but either the client or the server is incapable of encryption, then encryption is not
performed.

Encryption might not be supported at the client or at the server in these situations:

n You are using a release of SAS (prior to SAS 8) that does not support encryption.

n Your site (the client or the server) does not have a security software product installed.

n You specified encryption algorithms that are incompatible in SAS sessions on the client and the
server.

NETENCRYPTALGORITHM= System Option

Specifies the algorithm or algorithms to be used for encrypted client/server data transfers.

NETENCRYPTALGORITHM=algorithm | (“algorithm-1”... “algorithm-n”)

algorithm | (“algorithm-1”... “algorithm-n”)
specifies the algorithm or algorithms that can be used for encrypting data that is transferred
between a client and a server across a network. These algorithms are specified on the server.

When you specify two or more encryption algorithms, use a space or a comma to separate them,
and enclose the algorithms in parentheses.

The following algorithms can be used.

Note: The value specified for the TLS algorithm for this system option is SSL.

n AES

n DES

n RC2

n RC4

n TripleDES

n SASProprietary

n SSL

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Alias NETENCRALG=

138

Default No algorithim is defined

Linux specifics Linux

See “NETENCRYPT System Option” on page 137

Example options netencryptalgorithm=(ssl);

Use the NETENCRYPTALGORITHM= option to specify one or more encryption algorithms that you
want to use to protect the data that is transferred across the network. If more than one algorithm is
specified, the client session negotiates the first specified algorithm with the server session. If the
client session does not support that algorithm, the second algorithm is negotiated, and so on.

For SAS/CONNECT, the following guidelines apply when setting the NETENCRYPTALGORITHM=
system option:

n If the SAS/CONNECT client specifies an algorithm(s), then the first one in its list is negotiated for
use if the SAS/CONNECT spawner or server supports it. If that protocol or algorithm is not
supported, the next one in the SAS/CONNECT client list is negotiated. If there are no compatible
encryption types, the connection fails.

n If there are no SAS/CONNECT client encryption values specified, the encryption protocol or
encryption algorithm used is determined by what is set on the SAS/CONNECT spawner. If there
is a list of values specified, the SAS/CONNECT spawner uses the first value specified in the list .
If that protocol or algorithm is not supported, the next one in the SAS/CONNECT spawner list is
negotiated. If there are no compatible encryption types, the connection fails.

n If neither the SAS/CONNECT client nor the SAS/CONNECT spawner/server specify an algorithm,
the default encryption type is used.

If either the client session or the server session specifies the NETENCRYPT option (which makes
encryption mandatory) but a common encryption algorithm cannot be negotiated, the client cannot
connect to the server.

If the NETENCRYPTALGORITHM= option is specified in the server session only, then the server's
values are used to negotiate the algorithm selection. If the client session supports only one of
multiple algorithms that are specified in the server session, the client can connect to the server.

Table 17shows the interactions of NETENCRYPT or NONETENCRYPT and the
NETENCRYPTALGORITHM= option.

Note: The values for the NETENCRALG= option can be either encryption algorithms or the SSL
protocol. In this table alg is used for both.

Table 17 Client/server Connection Outcomes

Server Settings Client Settings Connection Outcome

NONETENCRYPT

NETENCRALG=alg

No settings If the client is capable of
encryption, the client/server
connection is encrypted.
Otherwise, the connection is not
encrypted.

139

Server Settings Client Settings Connection Outcome

NETENCRYPT

NETENCRALG=alg

No settings If the client is capable of
encryption, the client/server
connection is encrypted.
Otherwise, the client/server
connection fails.

No settings NONETENCRYPT

NETENCRALG=alg

A client/server connection is not
encrypted.

No settings NETENCRYPT

NETENCRALG=alg

A client/server connection fails.

NETENCRYPT or NONETENCRYPT

NETENCRALG=alg-1

NETENCRALG=alg-2 Regardless of whether
NETENCRYPT or
NONETENCRYPT is specified, a
client/server connection fails.

NETENCRYPTKEYLEN= System Option

Specifies the key length that is used by the encryption algorithm for encrypted client/server data
transfers.

NETENCRYPTKEYLEN= 0 | 40 | 128

0
specifies that the maximum key length that is supported at both the client and the server is
used.

40
specifies a key length of 40 bits for the RC2 and RC4 algorithms.

128
specifies a key length of 128 bits for the RC2 and RC4 algorithms. If either the client or the
server does not support 128-bit encryption, the client cannot connect to the server.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS GROUP= Communications

Alias NETENCRKEY=

140

Default 0

Linux specifics Linux

The NETENCRYPTKEYLEN= option supports only the RC2 and RC4 algorithms. The SAS
Proprietary, DES, TripleDES, TLS, and AES algorithms are not supported.

By default, if you try to connect a computer that is capable of only a 40-bit key length to a computer
that is capable of both a 40-bit and a 128-bit key length, the connection is made using the lesser key
length. If both computers are capable of 128-bit key lengths, a 128-bit key length is used.

Using longer keys consumes more CPU cycles. If you do not need a high level of encryption, set
NETENCRYPTKEYLEN=40 to decrease CPU usage.

SSLCACERTDIR= System Option

Specifies the location of the trusted certificate authorities (CA) found in OpenSSL format.

SSLCACERTDIR=“file-path”

“file-path”
specifies the location where the public certificates for all of the trusted certificate authorities
(CA) in the trust chain are filed. There is one file for each CA. Each CA certificate file must be
PEM-encoded (base64). For more information, see “Certificate File Formats” on page 132.

The names of the files are the value of a hash that OpenSSL generates.

Note: OpenSSL generates different hash values for each OpenSSL version. For example,
OpenSSL 0.9.8 generates different hash values than does OpenSSL 1.0.2.

OpenSSL looks up the CA certificate based on the x509 hash value of the certificate.
SSLCACERTDIR= requires that the certificates are located in the specified directory where
the certificate names are the value of a hash that OpenSSL generates.

If you are upgrading from a version of OpenSSL that is older than 1.0.0, you need to update
your certificate directory links. Starting with code base 1.0.0, SHA hashing is used instead of
MD5. You can use the OpenSSL C_REHASH utility to re-create symbolic links to files named
by the hash values.

You can discover the hash value for a CA and then create a link to the file named after the
certificate’s hash value. Note that you must add ".0" to the hash value.

ln -s cacert1.pem 'openssl x509 -noout -hash -in
/u/myuser/sslcerts/cacert1.pem'.0

If you list the CA file, you see the link between the file named after the certificate’s hash value
and the CA file.

lrwxrwxrwx 1 myuser rnd 10 Apr 7 14:42 6730c6a9.0 -> cacert1.pem

To verify the path of the server certificate file (cacert1.pem for this example), use the
following OpenSSL command:

openssl verify -CApath /u/myuser/sslcerts cacert1.pem

Client Optional

141

Server Optional

Valid in Configuration file, SAS invocation, SAS/CONNECT spawner start-up,
connectserver_usermods.sh script

Categories Communications: Networking and Encryption

System Administration: Security

Default The default file and location for certificates is /opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.pem. You can point
to a different file and location using the SSLCALISTLOC= system option or the
SSLCACERTDIR= system option. There is one trusted certificate file pointed to by
the SSLCALISTLOC= system option. By contrast, the SSLCACERTDIR= system
option allows the customer to specify a location where multiple certificate files
reside. See “SSLCALISTLOC= System Option” on page 143.

Linux
specifics

Linux

Examples The SSLCACERTDIR= system option points to the directory where the CA
certificate is located. Export the environment variable on Linux hosts for the
Bourne Shell:
export SSLCACERTDIR=/u/myuser/sslcerts/

Set the environment variable on Linux hosts for the C Shell directory where the CA
certificates are located:
SETENV SSLCACERTDIR /u/myuser/sslcerts/

Set the environment variable at SAS invocation for Linux hosts:
-set "SSLCACERTDIR=/u/myuser/sslcerts/"

For Foundation servers such as workspace servers and stored process servers, if certificates are
used, SAS searches for certificates in the following order:

1 SAS looks for SAS system option SSLCALISTLOC= to find the file trustedcerts.pem.

2 SAS looks for the SSLCALISTLOC= environment variable to find the file trustedcerts.pem.

3 If the SSLCALISTLOC= system option or environment variable is not used, the trustedcerts.pem
file located in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts is used as the
default.

4 If trustedcerts.pem exists, and the SSL_CERT_DIR and SSLCACERTDIR environment variables are
set, SAS checks trustedcerts.pem first before it searches the directory.

5 If trustedcerts.pem does not exist, but the certificates are in the directory defined by
SSL_CERT_DIR or SSLCACERTDIR, then SAS ignores SSLCALISTLOC=.

6 If trustedcerts.pem does not exist, and the SSL_CERT_DIR and SSLCACERTDIR environment
variables are not set, SAS reports an error.

Note: A trusted CA certificate is required at the client in order to validate a server's digital
certificate. The trusted CA certificate must be from the CA that signed the server certificate.

142

SSLCALISTLOC= System Option

Specifies the location of the public certificate(s) for trusted certificate authorities (CA).

SSLCALISTLOC=“file–path”

“file-path”
specifies the location of a single file that contains the public certificate(s) for all of the
trusted certificate authorities (CA) in the trust chain.

Note: Specify this option on the client. Optionally, specify this option on the server.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in SAS 9, SAS
invocation, SAS/CONNECT spawner command line, connectserver_usermods.sh

Category Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

Communications

Linux
specifics

Linux

Notes If the SSLCALISTLOC= system option is not specified, SAS defaults to a file named
trustedcerts.pem located in

/opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts

The trustedcerts.pem file contains the list of trusted CA certificates provided by
SAS at installation.

If you use this option, it must be specified on the client, but does not have to also be
specified on the server.

The SSLCALISTLOC= system option specifies the location of a single file that contains the public
certificate(s) for all of the trusted certificate authorities (CA) in the trust list. The CA file must be
PEM-encoded (base64).

The location of the trusted certificate file specified by the SSLCALISTLOC= system option or
SSLCACERTDIR= system option or the trustedcerts.pem file is needed on the spawner to verify the
certificate from the SAS/CONNECT server.

The default path set for the SSLCALISTLOC= system option on the workspace server is /opt/sas/
viya/config/etc/SASSecurityCertificateFramework/cacerts/trustedcerts.pem. By default,
the trustedcerts.pem file contains a managed set of trusted root certificates (Mozilla bundle of
certificates and others) provided at SAS installation.

143

Note: The SSLCACERTDIR= system option can be used instead of using the SSLCALISTLOC=
system option. SSLCACERTDIR= points to a directory that contains all of the public certificate file(s)
of all CA(s) in the trust list. One file exists for each CA in the trust list. For more information, see
“SSLCACERTDIR= System Option” on page 141.

For Foundation servers such as workspace servers and stored process servers, if certificates are
used, SAS searches for certificates in the following order:

1 SAS looks for SAS system option SSLCALISTLOC= to find the file trustedcerts.pem.

2 SAS looks for the SSLCALISTLOC= environment variable to find the file trustedcerts.pem.

3 If the SSLCALISTLOC= system option or environment variable is not used, the trustedcerts.pem
file located in /opt/sas/viya/config/etc/SASSecurityCertificateFramework/cacerts is used as the
default.

4 If trustedcerts.pem exists, and the SSL_CERT_DIR and SSLCACERTDIR environment variables are
set, SAS checks trustedcerts.pem first before it searches the directory.

5 If trustedcerts.pem does not exist, but the certificates are in the directory defined by
SSL_CERT_DIR or SSLCACERTDIR, then SAS ignores SSLCALISTLOC=.

6 If trustedcerts.pem does not exist, and the SSL_CERT_DIR and SSLCACERTDIR environment
variables are not set, SAS reports an error.

Note: A trusted CA certificate is required at the client in order to validate a server's digital
certificate. The trusted CA certificate must be from the CA that signed the server certificate. The
SSLCALISTLOC= option is required at the server only if the SSLCLIENTAUTH option is also specified
at the server.

Note: Unless the SSLCACERTDIR= system option is set or the default trustedcerts.pem file is used,
the SSLCALISTLOC= system option is needed on the spawner to verify the certificate from the
SAS/CONNECT server.

SSLCACERTDATA= System Option

Specifies the name of the issuer of the digital certificate that TLS should use.

SSLCACERTDATA=“encoded-string”

“encoded-string”
specifies the base64-encoded x509 text that represents a single certificate authority (CA)
certificate. This string is in PEM format. The text string starts with the line "-----BEGIN
CERTIFICATE-----" and ends with the line "-----END CERTIFICATE-----".

This option provides a way to programmatically specify a CA certificate rather than having to point
to a file that contains the certificate information. The certificate must be PEM-encoded (base64)
format.

Here is an example of how you might use the SSLCACERTDATA= system option to specify a
certificate.

data _null_;

144

 length certInfo $3200.;
 input txt $67.;
 retain certInfo;

 if _N_ = 1 then
 certInfo=txt;
 else
 certInfo=catx('0a'x,certInfo,txt);
 call symput('certInfo',trim(left(certInfo)));
 datalines;
-----BEGIN CERTIFICATE-----
MIICbzCCAfagAwIBAgIJAP7q5/tk7+laMAoGCCqGSM49BAMCMHYxCzAJBgNVBAYT
AlVTMQswCQYDVQQIDAJOQzENMAsGA1UEBwwEQ2FyeTEWMBQGA1UECgwNU0FTIElu
c3RpdHV0ZTEMMAoGA1UECwwDSURCMSUwIwYDVQQDDBxkZW1vUm9vdENBLUVDRFNB
LVAzODQtU0hBMjU2MB4XDTE2MTEwNDE4MDMzMVoXDTI2MTEwMjE4MDMzMVowdjEL
MAkGA1UEBhMCVVMxCzAJBgNVBAgMAk5DMQ0wCwYDVQQHDARDYXJ5MRYwFAYDVQQK
DA1TQVMgSW5zdGl0dXRlMQwwCgYDVQQLDANJREIxJTAjBgNVBAMMHGRlbW9Sb290
Q0EtRUNEU0EtUDM4NC1TSEEyNTYwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAAQghfjE
5iiiPQtb/Ors/GeNuLRXWnUhqnPWw4X0veIQT5rXFWZmiwReIjaYt9KChhmFkPno
cQ1m3HpdVnP86cPLPpLSvcAG/dO6o2W2SakiOWa1cA1UKsRhy/kUMnTSGJSjUDBO
MB0GA1UdDgQWBBSXhRRVQTNHpe1A9NsdUa+Y/IxhTTAfBgNVHSMEGDAWgBSXhRRV
QTNHpe1A9NsdUa+Y/IxhTTAMBgNVHRMEBTADAQH/MAoGCCqGSM49BAMCA2cAMGQC
MFJf5/2+eRSwCxrOyVjgyI4Teiofggrji5StKyQzHhDnXPljdYRss0WxxhbdBcxo
8wIwDjX8Yx61lY52U/h0q8ZkuNJWu0gJ8ZmrOVttkUBYUU0D1Cer6pdl4gQd6mUz
oXrB
-----END CERTIFICATE-----
 ;
run;

options SSLCACERTDATA="&certInfo";

SSLCERTISS= System Option

Specifies the name of the issuer of the digital certificate that TLS should use.

SSLCERTISS=“issuer-of-digital-certificate”

“issuer-of-digital-certificate”
specifies the name of the issuer of the digital certificate that should be used by TLS.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connect_usermods.sh file, connectserver_usermods.sh file,
connect_usermods.bat file, connectserver_usermods.bat file

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Windows specifics Windows

145

SSLCERTLOC= System Option

Specifies the location of the digital certificate for the machine's public key. This is used for
authentication.

SSLCERTLOC=“file-path”

“file-path”
specifies the location of a file that contains a digital certificate for the machine's public key.
The certificate must be PEM-encoded (base64). This is used by servers to send to clients for
authentication.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Note If you use this option, it must be specified on the server, but does not have
to also be specified on the client.

The SSLCERTLOC= option is required for a server. It is required at the client only if the
SSLCLIENTAUTH option is specified at the server. In order for a TLS connection to succeed, the
SAS/CONNECT server needs to be started with the SSLCERTLOC= and SSLPVTKEYLOC= system
options set in the SAS/CONNECT spawner. Alternatively, the SSLPKCS12LOC= system option can
be used.

In SAS Viya, set the TLS options on the spawner and the server in the connectserver_usermods.sh
file (/opt/sas/viya/config/etc/connectserver/default) and in the connect_usermods.sh file
(/opt/sas/viya/config/etc/connect/default). For configuration information, see “Use
SAS/CONNECT with TLS Enabled to Import Data” on page 55.

SSLCERTSERIAL= System Option

Specifies the serial number of the digital certificate that TLS should use.

SSLCERTSERIAL=“serial-number”

“serial-number”
specifies the serial number of the digital certificate that should be used by TLS.

The SSLCERTSERIAL= option is used with the SSLCERTISS= option to uniquely identify a
digital certificate from the Microsoft Certificate Store. You can also use the SSLCERTSUBJ=

146

option to identify a digital certificate instead of using the SSLCERTISS= and
SSLCERTSERIAL= options.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connect_usermods.sh file, connectserver_usermods.sh file,
connect_usermods.bat file, connectserver_usermods.bat file

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Windows specifics Windows

SSLCERTSUBJ= System Option

Specifies the subject name of the digital certificate that TLS should use.

SSLCERTSUBJ=“subject-name”

“subject-name”
specifies the subject name of the digital certificate that TLS should use.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connect_usermods.sh file, connectserver_usermods.sh file,
connect_usermods.bat file, connectserver_usermods.bat file

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Windows specifics Windows

SSLCIPHERLIST= System Option

Specifies the TLS ciphers that can be used on Linux for OpenSSL.

IMPORTANT This system option can be used to change only ciphers supported by TLS 1.2
and older ciphers. This option does not work for TLS 1.3 ciphers.

147

SSLCIPHERLIST=openssl_cipher_list
The SSLCIPHERLIST= system option specifies the ciphers that can be used on Linux for
OpenSSL. This system option can be used to specify only TLS 1.2 and earlier ciphers. By default,
SAS Viya tries to use the highest supported TLS version ciphers.

The handshake begins when a client connects to a TLS-enabled server requesting a secure
connection and presents a list of supported cipher suites (ciphers and hash functions). From this
list, the server chooses a cipher and hash function that it also supports and notifies the client of
the decision.

openssl-cipher-list
Refer to the OpenSSL Ciphers document to see how to format the openssl-cipher-list. The
OpenSSL Ciphers information can be found at Ciphers.

In a SAS Viya 3.5 deployment, the following ciphers are the defaults for TLS 1.2.

n TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

n TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Note: For Windows, you can configure the TLS cipher suite order by setting the group policy
setting “Configuring TLS Cipher Suite Order”. Search the https://msdn.microsoft.com/en-US/
website for information about how to set the TLS Cipher Suite Order.

Note: If you set a minimum protocol that does not allow some ciphers, you might get an error.

Client Optional

Server Optional

Valid in Configuration file, command line

Categories Communications: Networking and Encryption

System Administration: Security

Restriction If the SSLMODE= option is set, this option is ignored.

Linux specifics Linux

Notes This option can also be specified as an environment variable.

This system option must be set before TLS is loaded. It cannot be changed after
TLS is loaded. You must set the environment variable before the SAS/CONNECT
spawner is started and before SAS is started on the client.

Example Specify the system option:
-SSLCIPHERLISTS= HIGH

148

https://www.openssl.org/docs/man1.1.1/man1/ciphers.html
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384/
https://docs.microsoft.com/en-us/windows-server/security/tls/manage-tls

SSLCLIENTAUTH System Option

Specifies whether a server should perform client authentication.

SSLCLIENTAUTH | NOSSLCLIENTAUTH

SSLCLIENTAUTH
specifies that the server should perform client authentication. Server authentication is always
performed, but the SSLCLIENTAUTH option enables a user to control client authentication.
This option is valid only when used on a server.

TIP If you enable client authentication, a certificate for each client is needed.

NOSSLCLIENTAUTH
specifies that the server should not perform client authentication.

Default NOSSLCLIENTAUTH is the default.

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Note If you use this option, it is specified on the server.

SSLCRLCHECK System Option

Specifies whether a Certificate Revocation List (CRL) is checked when a digital certificate is
validated.

SSLCRLCHECK | NOSSLCRLCHECK

SSLCRLCHECK
specifies that CRLs are checked when digital certificates are validated.

NOSSLCRLCHECK
specifies that CRLs are not checked when digital certificates are validated.

Client Optional

Server Optional

149

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Note If you use this option, it can be specified on the client and server.

See “SSLCRLLOC= System Option” on page 150

A certificate revocation list (CRL) is published by a certificate authority (CA) and contains a list of
revoked digital certificates. The list contains only the revoked digital certificates that were issued by
a specific CA.

The SSLCRLCHECK option is required at the server only if the SSLCLIENTAUTH option is also
specified at the server. Because clients check server digital certificates, this option is relevant for the
client.

SSLCRLLOC= System Option

Specifies the location of a certificate revocation list (CRL).

SSLCRLLOC=“file-path”

“file-path”
specifies the location of a file that contains a certificate revocation list (CRL).

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS system options window in SAS
9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Notes If you use this option, it can be specified on the client and server.

The SSLCRLLOC= option is required only when the SSLCRLCHECK option is
specified.

See “SSLCRLCHECK System Option” on page 149

150

SSLMINPROTOCOL= System Option

Specifies the minimum TLS protocol that can be negotiated when using OpenSSL.

SSLMINPROTOCOL=protocol

protocol
specifies the minimum TLS protocol version that is negotiated between Linux servers when
using OpenSSL. SAS Viya supports specifying TLS1.2, TLSv1.2, TLS1.3, and TLSv1.3 values.
The following other values can be specified, but are less secure: SSL3, SSLV3, TLS, TLS1,
TLSV1, TLS1.0, TLSV1.0, TLS1.1, and TLSV1.1.

CAUTION
TLS versions 1.0 and 1.1 are unsecure. It is highly recommended that you use TLS 1.2
and above as your default minimum protocols.

Note: A message is written to the SAS log when an invalid value is specified.

During the first TLS handshake attempt, the highest supported protocol version is offered. For
SAS Viya, the protocol version supported for many services is TLS 1.3. If this handshake fails,
earlier protocol versions are offered instead. TLS 1.2 is the default minimum protocol. You can
specify an earlier fallback value, but it is not recommended.

Client Optional

Server Optional

Valid in Configuration file, command line, SAS/CONNECT spawner start-up if this option
is used as an environment variable

Categories Communications: Networking and Encryption

System Administration: Security

Default TLS 1.2.

Restriction If the SSLMODE= option is set, this option is ignored.

Linux specifics Linux

Notes This option can also be specified as an environment variable.

This environment variable must be set before OpenSSL is loaded. You must set
the environment variable before the SAS/CONNECT spawner is started and
before SAS or SAS Viya is started on the client.

Example Specify the system option as follows:
-SSMINPROTOCOL="TLS1.2"

151

SSLMODE= System Option

Sets the allowed cipher suites to be used for the TLS version that you are using.

SSLMODE=

ssl-mode

ssl-mode
sets the allowed TLS version and the cipher suites to be used for TLS. Valid ssl-modes are as
follows:

SSLMODESP800131A
is the DEFAULT configuration mode for TLS communication. The SSLMODESP800131A mode
uses the secure cipher-suites for TLS 1.2 and TLS 1.3. For more information, see NIST Special
Publication 800-52 Revision 2.

The following TLS 1.3 ciphers are supported when the SSLMODESP800131A mode is set:

n TLS_AES_256_GCM_SHA384

n TLS_AES_128_GCM_SHA256

n TLS_AES_128_CCM_SHA256

n TLS_AES_128_CCM_8_SHA256

n TLS_CHACHA20_POLY1305_SHA256

The following TLS 1.2 ciphers are supported when the SSLMODESP800131A mode is set:

n TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

n TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

SSLMODESUITEB128
is the mode of operation that uses the cipher suites that are specified in the NIST Suite B
Cryptography using 128 AES encryption.

The following TLS 1.3 ciphers are supported when the SSLMODESUITEB128 mode is set:

n TLS_AES_128_GCM_SHA256

n TLS_AES_256_GCM_SHA384

n TLS_AES_128_CCM_SHA256

n TLS_AES_128_CCM_8_SHA256

n TLS_CHACHA20_POLY1305_SHA256

The following TLS 1.2 ciphers are supported when the SSLMODESUITEB128 mode is set:

n TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

152

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://ciphersuite.info/cs/TLS_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_AES_128_CCM_SHA256
https://ciphersuite.info/cs/TLS_AES_128_CCM_8_SHA256/
https://ciphersuite.info/cs/TLS_CHACHA20_POLY1305_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_AES_128_CCM_SHA256
https://ciphersuite.info/cs/TLS_AES_128_CCM_8_SHA256/
https://ciphersuite.info/cs/TLS_CHACHA20_POLY1305_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384/

SSLMODESUITEB192
is the mode of operation that uses the cipher suites that are specified in the NIST Suite B
Cryptography using 192 AES encryption.

The following TLS 1.3 ciphers are supported when the SSLMODESUITEB192 mode is set:

n TLS_AES_256_GCM_SHA384

n TLS_AES_128_GCM_SHA256

n TLS_AES_128_CCM_SHA256

n TLS_AES_128_CCM_8_SHA256

n TLS_CHACHA20_POLY1305_SHA256

The TLS 1.2 cipher that is supported when the SSLMODESUITEB192 mode is set is
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.

SSLMODEDEPRECATED
allows for older cipher suites. Cipher suites that comprise AES and other NIST-approved
algorithms are acceptable to use, although they are not necessarily equal in terms of security.

IMPORTANT Cipher suites that do not meet NIST standards should not be used. For
more information, see NIST Special Publication 800-52 Revision 2.

IMPORTANT An error message might occur when clients that are supporting ciphers
that are less secure fail to connect to a SAS Viya 3.5 server. Refer to “ERROR:
1408A0C1:SSL routines:ssl3_get_client_hello:no shared cipher”.

The following TLS 1.3 ciphers are supported when the SSLMODEDEPRECATED mode is set:

n TLS_AES_128_GCM_SHA256

n TLS_AES_256_GCM_SHA384

n TLS_AES_128_CCM_SHA256

n TLS_AES_128_CCM_8_SHA256

n TLS_CHACHA20_POLY1305_SHA256

The following TLS 1.2 ciphers are supported when the SSLMODEDEPRECATED mode is set:

n TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

n TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

n TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

n TLS_ECDHE_ECDSA_WITH_AES_128_SHA256

n TLS_ECDHE_ECDSA_WITH_AES_256_SHA384

n TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

n TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

n TLS_RSA_WITH_AES_128_GCM_SHA256

153

https://ciphersuite.info/cs/TLS_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_AES_128_CCM_SHA256
https://ciphersuite.info/cs/TLS_AES_128_CCM_8_SHA256/
https://ciphersuite.info/cs/TLS_CHACHA20_POLY1305_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://ciphersuite.info/cs/TLS_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_AES_128_CCM_SHA256
https://ciphersuite.info/cs/TLS_AES_128_CCM_8_SHA256/
https://ciphersuite.info/cs/TLS_CHACHA20_POLY1305_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256/
https://ciphersuite.info/cs/TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384/
https://ciphersuite.info/cs/TLS_RSA_WITH_AES_128_GCM_SHA256/

n TLS_RSA_WITH_AES_256_GCM_SHA384

n TLS_RSA_WITH_AES_128_CBC_SHA256

n TLS_RSA_WITH_AES_256_CBC_SHA256

n TLS_DHE_RSA_WITH_AES_128_CBC_SHA

n TLS_DHE_RSA_WITH_AES_256_CBC_SHA

n TLS_RSA_WITH_AES_128_CBC_SHA

n TLS_RSA_WITH_AES_256_CBC_SHA

Client Optional

Server Optional

Valid in Configuration file, command line, SAS/CONNECT spawner start-up if this option
is used as an environment variable, connectserver_usermods.sh script

Categories Communications: Networking and Encryption

System Administration: Security

Default SSLMODESP800131A

Restrictions If the SSLMODE= option is set, the SSLCIPHERLIST= system option is ignored.

When system option SSLMODE= is set, system option SSLMINPROTOCOL= is
ignored.

Linux specifics Linux

Example Specify the system option as follows:
-sslmode SSLMODESP800131A

SAS uses the National Institute of Standards and Technology (NIST) Special Publication 800-131A
(SP800-131A) as the minimum compliance standard for TLS and to extend the FIPS standards. For
details of SP800-131A, see NIST Special Publication 800-131A, Revision 2.

Suite B cryptography allows TLS client and server applications to specify a profile compliant with
Suite B cryptography as defined in RFC 5430: Suite B Profile for Transport Layer Security (TLS).
Suite B cryptography specifies the cryptographic algorithms that can be used in a "Suite B
Compliant" TLS V1.2 session. Suite B requires the key establishment and authentication algorithms
that are used in TLS V1.2 sessions to be based on Elliptic Curve Cryptography, and the encryption
algorithm to be AES.

SSLPKCS12LOC= System Option

Specifies the location of the PKCS#12 encoding package file.

SSLPKCS12LOC=“file-path”

“file-path”
specifies the location of the PKCS#12 DER encoding package file that contains the certificate
and the private key.

154

https://ciphersuite.info/cs/TLS_RSA_WITH_AES_256_GCM_SHA384/
https://ciphersuite.info/cs/TLS_RSA_WITH_AES_128_CBC_SHA256/
https://ciphersuite.info/cs/TLS_RSA_WITH_AES_256_CBC_SHA256/
https://ciphersuite.info/cs/TLS_DHE_RSA_WITH_AES_128_CBC_SHA/
https://ciphersuite.info/cs/TLS_DHE_RSA_WITH_AES_256_CBC_SHA/
https://ciphersuite.info/cs/TLS_RSA_WITH_AES_128_CBC_SHA/
https://ciphersuite.info/cs/TLS_RSA_WITH_AES_256_CBC_SHA/
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
https://tools.ietf.org/html/rfc5430

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in SAS
9, SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Notes If you use this option, it can be specified on the client and server.

You must specify both the SSLPKCS12LOC= option and the
SSLPKCS12PASS= option together.

See “SSLPKCS12PASS= System Option” on page 155

If the SSLPKCS12LOC= option is specified, the PKCS#12 DER encoding package must contain both
the certificate and private key. The SSLCERTLOC= and SSLPVTKEYLOC= options are ignored.

You must specify both the SSLPKCS12LOC= option and the SSLPKCS12PASS= option in order for the
SAS/CONNECT server to access the appropriate server scripts. In SAS Viya, set the TLS options on
the spawner and the server in the connectserver_usermods.sh file (/opt/sas/viya/config/etc/
connectserver/default) and in the connect_usermods.sh file (/opt/sas/viya/config/etc/
connect/default). For configuration information, see “Use SAS/CONNECT with TLS Enabled to
Import Data” on page 55.

SSLPKCS12PASS= System Option

Specifies the password that TLS requires to decrypt the PKCS12 file.

SSLPKCS12PASS=password

password
specifies the password that TLS requires in order to decrypt the PKCS#12 DER encoding
package file. The PKCS#12 DER encoding package is stored in the file that is specified by
using the SSLPKCS12LOC= option.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in
SAS 9, SAS invocation, SAS/CONNECT spawner command line

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

155

Linux specifics Linux

Notes If you use this option, it can be specified on the client and server.

You must specify both the SSLPKCS12LOC= option and the
SSLPKCS12PASS= option together.

See “SSLPKCS12LOC= System Option” on page 154

The SSLPKCS12PASS= option is required only when the PKCS#12 DER encoding package is
encrypted.

You must specify both the SSLPKCS12LOC= option and the SSLPKCS12PASS= option in order for the
SAS/CONNECT server to access the appropriate server scripts. In SAS Viya, set the TLS options on
the spawner and the server in the connectserver_usermods.sh file (/opt/sas/viya/config/etc/
connectserver/default) and in the connect_usermods.sh file (/opt/sas/viya/config/etc/
connect/default). For configuration information, see “Use SAS/CONNECT with TLS Enabled to
Import Data” on page 55.

SSLPVTKEYLOC= System Option

Specifies the location of the private key that corresponds to the digital certificate.

SSLPVTKEYLOC=“file-path”

“file-path”
specifies the location of the file that contains the private key that corresponds to the digital
certificate that was specified by using the SSLCERTLOC= option.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in SAS 9,
SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Notes If you use this option, it can be specified on the client and server.

You must specify the SSLCERTLOC= option if you specify the
SSLPVTKEYLOC= option. SSLPVTKEYPASS= is required only when the private
key is encrypted.

See “SSLCERTLOC= System Option” on page 146 and “SSLPVTKEYPASS= System
Option” on page 157.

The SSLPVTKEYLOC= option is required at the server only if the SSLCERTLOC= option is also
specified at the server.

156

The key must be PEM-encoded (base64). For more information, see “Certificate File Formats” on
page 132.

You must specify both the SSLCERTLOC= option and the SSLPVTKEYLOC= option in order for the
SAS/CONNECT server to access the appropriate server scripts. In SAS Viya, set the TLS options on
the spawner and the server in the connectserver_usermods.sh file (/opt/sas/viya/config/etc/
connectserver/default) and in the connect_usermods.sh file (/opt/sas/viya/config/etc/
connect/default). For configuration information, see “Use SAS/CONNECT with TLS Enabled to
Import Data” on page 55.

SSLPVTKEYPASS= System Option

Specifies the password that TLS requires for decrypting the private key.

SSLPVTKEYPASS=“password”

“password”
specifies the password that TLS requires in order to decrypt the private key. The private key is
stored in the file that is specified by using the SSLPVTKEYLOC= option.

Client Optional

Server Optional

Valid in Configuration file, OPTIONS statement, SAS System Options window in SAS 9,
SAS invocation, SAS/CONNECT spawner command line,
connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Linux specifics Linux

Notes If you use this option, it can be specified on the client and server.

You must specify the SSLCERTLOC= option if you specify the
SSLPVTKEYLOC= option. SSLPVTKEYPASS= is required only when the
private key is encrypted.

See “SSLCERTLOC= System Option” on page 146and “SSLPVTKEYPASS= System
Option” on page 157.

The SSLPVTKEYPASS= option is required only when the private key is encrypted. OpenSSL
performs key encryption.

Note: No SAS system option is available to encrypt private keys.

157

SSLSNIHOSTNAME= System Option

Enables the client to specify the Server Name Indication (SNI) in the TLS handshake that identifies
the server name that it is trying to connect to.

SSLSNIHOSTNAME= “hostname”

“hostname”
specifies the host name that is used for the Server Name Indication (SNI) TLS extension. If it
is not specified, the target host name is used. The client uses SNI in the first message of the
TLS handshake (connection setup) to identify the server name that it is trying to connect to.

When making a TLS connection, the client requests a digital certificate from the web server. After
the server sends the certificate, the client examines it and compares the name that it was trying
to connect to with the name or names included in the certificate. If a match is found, the
connection proceeds as normal.

Client Optional

Server Optional

Valid in Configuration file, SAS invocation, SAS/CONNECT spawner start-up if this
option is used as an environment variable, connectserver_usermods.sh script

Category Communications: Networking and Encryption

PROC OPTIONS
GROUP=

Communications

Default The default is the name of the host being contacted.

Linux specifics Linux

Notes This option can also be specified as an environment variable.

The TLS SNI extension is always sent to the web server.

Example Specify the system option as follows:
-SSLSNIHOSTNAME="www.example.org"

SAS Environment Variables for Encryption

Overview of Environment Variables

Linux environment variables are variables that apply to both the current shell and to any subshells
that it creates. The way in which you define an environment variable depends on the shell that you
are running. For more information, see Defining Environment Variables in UNIX Environments.

158

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hostunx&docsetTarget=n09yufm73q93yzn12nz78mpitlps.htm

SSLREQCERT= Environment Variable

Specifies what checks to perform on server certificates in a TLS session.

SSLREQCERT="ALLOW | DEMAND | NEVER | TRY"

ALLOW
specifies that the client requests a server certificate, but the session proceeds normally even if
no certificate is provided or an invalid certificate is provided.

CAUTION
TLS connections are not validated with SSLREQCERT="ALLOW" TLS connections are
validated by the SAS session when this option is set when invoking your SAS session. For security
purposes, DEMAND is the setting that should be specified.

DEMAND
specifies that a server certificate is requested, and if no valid certificate is provided, the session
terminates. DEMAND is the default setting.

NEVER
specifies that the Authentication Server does not ask for a certificate.

CAUTION
TLS connections are not validated with SSLREQCERT="NEVER" TLS connections are not
validated by the SAS session when this option is set when invoking your SAS session. For security
purposes, DEMAND is the setting that should be specified.

TRY
specifies that the client requests a server certificate, and if no certificate is provided, the session
proceeds normally. If an invalid certificate is provided, the session terminates.

CAUTION
When SSLREQCERT="TRY", the session continues, but might be insecure TLS connections
are validated by the SAS session when this option is set when invoking your SAS session. For security
purposes, DEMAND is the setting that should be specified.

If you do not add the SSLREQCERT= option to your configuration file, then the default value is
DEMAND. If you specify SSLREQCERT=, then the value of SSLREQCERT= applies to all of your
authentication providers.

Note: TLS environment variables and system options can be applied locally using the PROC HTTP
SSLPARMS statement. For more information, see “SSLPARMS Statement” in Base SAS Procedures
Guide. For an example, see “Specify Local Options for Two-Way Encryption in Windows” in Base SAS
Procedures Guide.

159

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n154smey890g2xn1l6wljfyjcemh.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n154smey890g2xn1l6wljfyjcemh.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p16n6rig76ssn6n1xqywbwbol6hc.htm&docsetTargetAnchor=p16n6rig76ssn6n1xqywbwbol6hc&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p16n6rig76ssn6n1xqywbwbol6hc.htm&docsetTargetAnchor=p16n6rig76ssn6n1xqywbwbol6hc&locale=en

SSL_USE_SNI Environment Variable

Disables the use of Server Name Indication (SNI) in the TLS handshake for the client.

SSL_USE_SNI
Linux clients and servers support TLS Server Name Indication (SNI). The client uses SNI in the
first message of the TLS handshake (connection setup) to identify the server name that it is
trying to connect to.

When making a TLS connection, the client requests a digital certificate from the web server. After
the server sends the certificate, the client examines it and compares the name that it was trying
to connect to with the name or names included in the certificate. If a match is found, the
connection proceeds as normal.

Client Optional

Server Optional

Valid in SAS invocation, configuration file

Categories Communications: Networking and Encryption

System Administration: Security

Default By default, the TLS SNI extension is sent as part of the TLS handshake.

Restriction System option SSLSNIHOSTNAME= is used to specify the Server Name Indication
(SNI) that identifies the server name that it is trying to connect to. This
environment variable is now used to turn off SNI. SNI is sent by default.

Linux specifics Linux

Examples Export the environment variable on Linux hosts for the Bourne Shell:
export SSL_USE_SNI=1

Set the environment variable at SAS invocation for Linux hosts:
SETENV SSL_USE_SNI

CAS TLS Environment Variables
CAS server options are stored in configuration files. For information about the CAS configuration
files and when they are used, see “SAS Cloud Analytic Services: Reference” in SAS Viya
Administration: SAS Cloud Analytic Services.

These are the configuration options that can be used for configuring TLS on CAS servers and clients.

env.CAS_CALISTLOC=<'path/CA-list-file'>
Specifies the location of a single file that contains the public certificate(s) for all of the trusted
certificate authorities (CA) in the trust list. This is the CA list location when CAS is acting as a
client.

160

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n08000viyaservers000000admin.htm&locale=en

Client Optional

Valid in Server configuration file, cas.settings file, cas configuration files, and operating
system command line

Used by CAS Server

Category Security

Requirement The certificate files and the key files being referenced by these environment
variables must be PEM-encoded (Base64 ASCII).

Example env.CAS_CALISTLOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.pem'

env.CAS_CERTLOC=<'path/certificate-file'>
Specifies the path and filename of the file that contains the PEM-formatted certificate to be used
for TLS communications.

This environment variable can also point to a certificate chain that starts with the server identity
certificate and includes one or more intermediate CA certificates in the order in which they were
signed.

Valid in Server configuration file, cas.settings file, cas configuration files, and operating
system command line

Used by CAS REST API

Category Security

Requirement Use with env.CAS_PVTKEYLOC and env.CAS_PVTKEYPASS.

Example env.CAS_CERTLOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/shared/
default/sas_encrypted.crt'

env.CAS_CLIENT_SSL_CA_LIST=<'path/certificates-file'>
Specifies the path and filename of the file that contains the list of trusted certificate authorities
(CAs). This environment variable can be used by the CAS server or by the client connecting to the
CAS server. For the server, this environment variable points to the trust list used to accept
connections to the server. For the client, this environment variable points to the trust list that the
client uses to connect to the server.

This environment variable might also need to be specified if you have a Linux 9.4m5 client
connecting to a SAS Viya CAS server that is TLS enabled. If you have the December 2017 release
of SAS 9.4M5, the CAS_CLIENT_SSL_CA_LIST= environment variable no longer needs to be set.
For more information, see “Configure SAS 9.4 Clients to Work with SAS Viya” on page 74.

Client Optional

Server Optional

Valid in CAS Lua configuration files, and operating system command line

Used by CAS client, Lua client, Python client, CAS server, SAS 9.4 client

161

Category Security

Example export CAS_CLIENT_SSL_CA_LIST='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/cacerts/trustedcerts.pem'

export CAS_CLIENT_SSL_CA_LIST='/opt/sas/viya/
config/etc/SASSecurityCertificateFramework/cacerts/vault-ca.crt

export <SASHome>/SASSecurityCertificateFramework/1.1/
cacerts/trustedcerts.pem

env.CAS_CLIENT_SSL_CERT=<'path/certificate-file'>
Specifies the path and filename of the file that contains the certificate that the client uses to
connect to the server for TLS communications. This environment variable is used when accepting
connections to the CAS server.

This environment variable can also point to a certificate chain that starts with the server identity
certificate and includes one or more intermediate CA certificates in the order in which they are
signed.

Server Optional

Valid in Operating system command line

Used by CAS server

Category Security

Notes Environment variables CAS_CLIENT_SSL_KEY=, CAS_CLIENT_SSL_KEYPWLOC=, and
CAS_CLIENT_SSL_CERT= are specified together.

The contents of this file are not confidential.

Example env.CAS_CLIENT_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/sas_encyrpted.crt'

env.CAS_CLIENT_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/default/sas_encrypted.crt'

env.CAS_CLIENT_SSL_CLIENT_CERT=<'path/certificate-file'>
Specifies the path and filename of the file that contains the certificate that the client uses to
connect to the server for TLS communications.

This environment variable is specified when the client presents a certificate to the server. In most
configurations, only the server presents a certificate to the client.

This environment variable can also point to a certificate chain that starts with the server identity
certificate and includes one or more intermediate CA certificates in the order in which they are
signed.

Client Optional

Valid in Operating system command line

Used by CAS client

Category Security

Notes The contents of this file are not confidential.

162

Environment variables CAS_CLIENT_SSL_CLIENT_KEY=,
CAS_CLIENT_SSL_CLIENT_KEYPW=, and CAS_CLIENT_SSL_CLIENT_CERT= are
specified together.

Example env.CAS_CLIENT_SSL_CLIENT_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/CASClient.crt'

env.CAS_CLIENT_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/default/CASClient.crt'

env.CAS_CLIENT_SSL_CLIENT_KEY=<'path/key-file'>
Specifies the path and filename of the file that contains the private key for the client to use to
connect to the server for TLS communications.

This environment variable is specified when the client presents a certificate to the server. In most
configurations, only the server presents a certificate to the client.

Client Optional

Valid in Operating system command line

Used by CAS client

Category Security

Note Environment variables CAS_CLIENT_SSL_CLIENT_KEY=,
CAS_CLIENT_SSL_CLIENT_KEYPW=, and CAS_CLIENT_SSL_CLIENT_CERT= are
specified together.

Tip The contents of this file should be kept confidential.

Example env.CAS_CLIENT_SSL_CLIENT_KEY='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/CASClient.key'

env.CAS_CLIENT_SSL_CLIENT_KEY='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/default/CASClient.key'

env.CAS_CLIENT_SSL_CLIENT_KEYPW=<'password'>
Specifies the password for the client’s private key. The password in this variable should match the
password used to generate the private key file specified by the CAS_CLIENT_SSL_CLIENT_KEY=
environment variable.

Note: This password is not encoded.

This password should be set in a Lua configuration file that is readable only by the CAS service
account.

Client Optional

Valid in Operating system command line

Used by CAS client

Category Security

163

Note Environment variables CAS_CLIENT_SSL_CLIENT_KEY=,
CAS_CLIENT_SSL_CLIENT_KEYPW=, and CAS_CLIENT_SSL_CLIENT_CERT= are
specified together.

Example env.CAS_CLIENT_SSL_CLIENT_KEYPW='encryptedpassword'

env.CAS_CLIENT_SSL_KEY=<path/key-file>
Specifies the path and filename of the file that contains the private key for the client to be used
for TLS communications. This key is used when accepting connections to the server.

Server Optional

Valid in Operating system command line

Used by CAS server

Category Security

Note Environment variables CAS_CLIENT_SSL_KEY=, CAS_CLIENT_SSL_KEYPWLOC=, and
CAS_CLIENT_SSL_CERT= are specified together.

Tip The contents of this file should be kept confidential.

Example env.CAS_CLIENT_SSL_KEY='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/sas_encrypted.key'

env.CAS_CLIENT_SSL_KEY='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/default/sas_encrypted.key'

env.CAS_CLIENT_SSL_KEYPWLOC==<'path/certificate-file'>
Specifies the location of the password file for the server’s private key. The password in this
variable should match the password used to generate the private key file specified by the
CAS_CLIENT_SSL_KEY= environment variable.

Server Optional

Valid in Operating system command line

Used by CAS server

Category Security

Note Environment variables CAS_CLIENT_SSL_KEY= and CAS_CLIENT_SSL_CERT= are
specified together.

Example env.CAS_CLIENT_SSL_KEYPWLOC='/opt/sas/viya/
SASSecurityCertificateFramework/private/cas/default/encryption.key'

env.CAS_CLIENT_SSL_KEYPWLOC='/opt/sas/viya/
SASSecurityCertificateFramework/private/encryption.key'

env.CAS_CLIENT_SSL_REQUIRED=<'true' | 'false' >
Determines whether encryption is used between the client and the server.

Valid in Operating system command line

Used by CAS server

164

Category Security

Example env.CAS_CLIENT_SSL_REQUIRED='true'

env.CAS_CLIENT_SSL_CERTISS=<"issuer-name">
Specifies the certificate issuer. issuer-name is the common name of the issuer of the server
certificate to be used.

You can print the issuer of the client certificate using the following OpenSSL command.

C:\>openssl.exe x509 -in customerClient.pem -issuer -noout

Note the issuer of the certificate. For example, if issuer= /DC=com/DC=Company/CN=Company
SHA2 Issuing CA02, you will need the value of CN=, which is Company SHA2 Issuing CA02. Save
that value.

Valid in Server configuration file, cas.settings file, cas configuration files files and
operating system command line

Category Security

Windows
specifics

Windows

Example set env.CAS_CLIENT_SSL_CERTISS="Company SHA2 Issuing CA02"

env.CAS_CLIENT_SSL_CERTSERIAL=<"serial-number">
Specifies the certificate serial number. serial-number is a hexadecimal number.

You can use the following OpenSSL command to print the serial number of the client certificate.

C:\>openssl.exe x509 -in customerClient.pem -serial -noout

Note the value of serial= in the output. Save that numerical value. For example, if the output of
the OpenSSL command is serial="190000AB8122B4DEC1D0AD1A7800000000AB57". Save the
numeric string to set the environment variable.

Valid in Server configuration file, cas.settings file, cas configuration files, and operating
system command line

Category Security

Windows specifics Windows

Example

env.CAS_INTERNODE_DATA_SSL=<true | false>
Enables encryption for the analytics cluster when set to true. This value must be the same on
every node in the cluster.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_INTERNODE_DATA_SSL=true

165

env.CAS_INTERNODE_SSL_CA_LIST=<'path/keystore'>
Specifies the path and filename of the file that contains the list of trusted certificate authorities
(CAs). This setting is likely to be the same for all nodes in the grid.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_INTERNODE_SSL_CA_LIST='/opt/sas/viya/config
/etc/SASSecurityCertificateFramework/cacerts/trustedcerts.pem'

env.CAS_INTERNODE_SSL_CERT=<'path/certificate-file'>
Specifies the path and filename of the file that contains the certificate to be used for TLS
communications for the certificate specific to the node being configured.

This environment variable can point to a certificate chain that starts with the server identity
certificate and includes the intermediate CA certificates in the order in which they are signed.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_INTERNODE_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/sas_encrypted.crt'

env.CAS_INTERNODE_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/default/sas_encrypted.crt'

env.CAS_INTERNODE_SSL_KEY=<'path/key-file'>
Specifies the path and filename of the file that contains the private key used to sign the
certificate specific to the CAS node being configured. This setting is likely to be different on
every machine.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Tip The contents of this file should be kept confidential.

Example env.CAS_INTERNODE_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/default/sas_encrypted.key'

env.CAS_INTERNODE_SSL_CERT='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/sas_encrypted.key'

env.CAS_INTERNODE_SSL_KEYPW=<'password'>
Specifies the password for the private key.

The setting is the password for the encrypted private key used to sign the certificate specific to
the node being configured.

Note: This password is not encoded.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

166

Example env.CAS_INTERNODE_SSL_KEYPW='encryptedpassword'

env.CAS_INTERNODE_SSL_KEYPWLOC =<'path/certificate-file'>
Specifies the location of the password/key file for the encrypted private key used to sign the
certificate specific to the node being configured.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_INTERNODE_SSL_KEYPWLOC='opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/default/encryption.key'

env.CAS_INTERNODE_SSL_KEYPWLOC='opt/sas/viya/config/
SASSecurityCertificateFramework/private/encryption.key'

env.CAS_PKCS12LOC=<'path/certificate-file'>
Specifies the path and filename of the PKCS#12 (DER formatted binary) file that contains the
certificate and private key.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_PKCS12LOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/sas_encrypted.p12'

env.CAS_PKCS12LOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/tls/certs/cas/default/sas_encrypted.p12'

env.CAS_PKCS12PASS=<'path/password-file'>
Specifies the password for the private key specified by env.CAS_PKCS12LOC=.

Note: This password is not encoded.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_PKCS12PASS='password'

env.CAS_PVTKEYLOC=<'path/key-file'>
Specifies the path and filename of the file that contains the private key that corresponds to the
digital certificate.

Valid in Server configuration file, cas.settings file, and operating system command line

Used by CAS REST API

Category Security

Tip The contents of this file should be kept confidential.

Example env.CAS_PVTKEYLOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/sas_encrypted.key'

env.CAS_PVTKEYLOC='/opt/sas/viya/config/etc/

167

SASSecurityCertificateFramework/private/cas/default/sas_encrypted.key'

env.CAS_PVTKEYPASS=<'password'>
Specifies the password for the private key specified by env.CAS_PVTKEYLOC=.

Note: This password is not encoded.

Valid in Server configuration file, cas.settings file, and operating system command line

Used by CAS REST API

Category Security

Example env.CAS_PVTKEYPASS='password'

env.CAS_PVTKEYPASSLOC=<'path/key-file'>
Specifies the path and filename of the file that contains the private key that corresponds to the
digital certificate.

Valid in Server configuration file, cas.settings file, and operating system command line

Used by CAS REST API

Category Security

Tip The contents of this file should be kept confidential.

Example env.CAS_PVTKEYLOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/encryption.key'

env.CAS_PVTKEYLOC='/opt/sas/viya/config/etc/
SASSecurityCertificateFramework/private/cas/default/encryption.key'

env.CAS_SSLCLIENTAUTH=<true>
When set to any value, causes client certificates to be validated when TLS connections are
initiated.

Valid in Server configuration file, cas.settings file, and operating system command line

Category Security

Example env.CAS_SSLCLIENTAUTH=true

env.CAS_SSLCRLCHECK=<false>
When set to any value, causes the certificate revocation list (CRL) to be checked when TLS
connections are initiated.

Valid in Server configuration file, cas.settings file, and operating system command line

Used by CAS REST

Category Security

Example env.CAS_SSLCRLCHECK='false'

168

env.CAS_SSLNAMECHECK=<true>
When set to any value, causes the name of the server to be checked against the host name
specified in the server identity certificate pointed to by env.CAS_CERTLOC to validate the
server’s identity.

Valid in Server configuration file, cas.settings file, and operating system command line

Used by CAS REST API

Category Security

Example env.CAS_SSLNAMECHECK=true

env.CAS_SSLREQCERT=<'NEVER | ALLOW | TRY | DEMAND'>
Specifies what the client should do with the information sent by the server.

The variable env.CAS_SSLREQCERT= must specify one of the following values:

n DEMAND

The client asks for a server certificate. For the connection to continue, the server must
provide a certificate, and the certificate must pass validation.

CAUTION
For security purposes, DEMAND is the setting that should be specified.

n NEVER

The client never asks the CAS server for a certificate.

n ALLOW

The client asks the server for a certificate. If the server does not provide a certificate, or if the
certificate does not pass validation, the TLS connection continues.

n TRY

The client asks the server for a certificate. If the server does not provide a certificate, the TLS
connection continues. However, if the certificate does not pass validation, the TLS connection
fails.

Valid in Server configuration file, cas.settings file, and operating system command line

Used by CAS REST API

Category Security

Example env.CAS_SSLREQCERT='DEMAND'

env.CAS_USE_HTTPS_ALL=<'TRUE' | 'FALSE'>
When set to TRUE, causes connections using the CAS REST API to use HTTPS.

Valid in Server configuration file, cas.settings file, CAS Lua config files, and operating system
command line

Used by CAS REST API

Category Security

169

Default FALSE

Example env.CAS_USE_HTTPS='FALSE'

Configuration File Options for Data Transfer

CAS Configuration File Options for Parallel Data Transfer with
SAS Data Connectors

Note: The following configuration file options are supported only on Linux.

CAS server options are stored in a configuration file. During deployment, this configuration file,
casconfig_deployment.lua, is created in the /opt/sas/viya/config/etc/cas/default directory.
When you start the server with the sas-viya-cascontroller-default start command, the options
are read.

For more information about the CAS server configuration files, see “Understanding Configuration
Files and Start-up Files” in SAS Viya Administration: SAS Cloud Analytic Services.

These are the configuration options that can be used for data transfer encryption when you use a
data connector to transfer data in parallel. For a complete list of CAS configuration file options, see
SAS Viya Administration: SAS Cloud Analytic Services.

cas.DCSSLCERTLOC='pathname'
Specifies the location of a file that contains the digital certificate for the machine's public key
also known as the identity certificate. This is used by servers to send to clients for
authentication.

Requirement The certificate file must be PEM-encoded (base64).

Linux specifics Linux

See “Certificate File Formats” on page 132

cas.DCSSLPKCS12LOC='pathname'
Specifies the location of the PKCS#12 DER encoding package file that contains the identity
certificate and the private key.

Requirement If the cas.DCSSLPKCS12LOC= option is specified, the PKCS#12 DER encoding
package must contain both the certificate and private key. The
cas.DCSSLCERTLOC= and cas.DCSSLPVTKEYLOC= options are ignored.

Linux specifics Linux

See “Certificate File Formats” on page 132

cas.DCSSLPKCS12PASS on page 171

170

http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n05000viyaservers000000admin.htm&docsetTargetAnchor=n05023viyaservers000000admin&locale=en
http://documentation.sas.com/?docsetId=calserverscas&docsetVersion=3.5&docsetTarget=n05000viyaservers000000admin.htm&docsetTargetAnchor=n05023viyaservers000000admin&locale=en

cas.DCSSLPKCS12PASS=password
Specifies the password that TLS requires in order to decrypt the PKCS#12 DER encoding package
file.

Interaction The PKCS#12 DER encoding package is stored in the file that is specified by using
the cas.DCSSLPKCS12LOC= option.

Linux specifics Linux

Note The cas.DCSSLPKCS12PASS= option is required only when the PKCS#12 DER
encoding package is encrypted.

See cas.DCSSLPKCS12LOC on page 170

cas.DCSSLPVTKEYLOC='pathname'
Specifies the location of the file that contains the private key that corresponds to the digital
certificate that was specified by using the cas.DCSSLCERTLOC= option.

Requirement The key must be PEM-encoded (base64).

Linux specifics Linux

Note The cas.DCSSLPVTKEYLOC= option is required at the server only if the
cas.DCSSLCERTLOC= option is also specified at the server.

See “Certificate File Formats” on page 132

cas.DCSSLCERTLOC on page 170

cas.DCSSLPVTKEYPASS on page 171

cas.DCSSLPVTKEYPASS=password
Specifies the password that TLS requires in order to decrypt the private key.

Interaction The private key is stored in the file that is specified by using the
cas.DCSSLPVTKEYLOC= option.

Linux specifics Linux

Note The cas.DCSSLPVTKEYPASS= option is required only when the private key is
encrypted. OpenSSL performs key encryption.

See cas.DCSSLPVTKEYLOC on page 171

cas.DCSSLPVTKEYPASSLOC='pathname'
Specifies the location of the file that contains the password that TLS requires in order to decrypt
the private key.

Interactions The private key is stored in the file that is specified by using the
cas.DCSSLPVTKEYLOC= option.

If the cas.DCSSLPVTKEYPASS= option is specified, it is used. Otherwise, the
cas.DCSSLPVTKEYPASSLOC= option is used.

Linux specifics Linux

171

See cas.DCSSLPVTKEYPASS on page 171

cas.DCTCPMENCRYPT='YES' | 'NO' | 'OPT'
Specifies whether encryption is required for the connection.

'YES' means that data encryption is required.

'NO' means that data will be sent as plaintext.

'OPT' means that data encryption is preferred but not required.

Aliases 'REQ' or 'REQUIRED' for 'YES'

'OPTIONAL' for 'OPT'

Default No value. However, if you specify cas.DCTCPMENCRYPTALGORITHM='SSL' and
cas.DCTCPMENCRYPT= is not specified, cas.DCTCPMENCRYPT= defaults to
'YES'.

Requirement The option values must be uppercase.

Interactions Encryption is determined by the setting of this option on both the client (data
provider) and server (CAS) side. For more information, see “DCTCPMENCRYPT
Option Setting Interaction” on page 72.

If you specify cas.DCTCPMENCRYPTALGORITHM='SSL' and
cas.DCTCPMENCRYPT is not specified, cas.DCTCPMENCRYPT defaults to 'YES'.

Linux specifics Linux

Note If you have multiple clusters and you set the DCTCPMENCRYPT= option on the
client (data provider) side to YES for one cluster and NO for another cluster, you
might want to set the server (CAS) side cas.DCTCPMENCRYPT= option to 'OPT'.

cas.DCTCPMENCRYPTALGORITHM='SSL'
Specifies the algorithm to be used for encrypted data transfers when you transfer data in parallel
with a SAS data connector.

Default SSL

Requirement The option value, SSL, must be uppercase.

Interaction If you specify cas.DCTCPMENCRYPTALGORITHM='SSL' and
cas.DCTCPMENCRYPT= is not specified, cas.DCTCPMENCRYPT= defaults to
'YES'.

Linux specifics Linux

Note TLS (option value is SSL) is the only algorithm available at this time for encrypted
data transfers.

172

dcsecurity.properties File Options for Parallel Data Transfer
with Applicable SAS Data Connectors

You can set the following options in the dcsecurity.properties file. The dcsecurity.properties file is
located in the following directory on your cluster.

n For Teradata, /opt/SAS/SASTKInDatabaseServerForTeradata/ep-version/security

n For Hadoop, EPInstallDir/sasexe/SASEPHOME/security

The syntax for setting the properties is as follows:

-option-name
option-setting

Here is an example.

-DCTCPMENCRYPTALGORITHM SSL

These are the options that you can set in the dcsecurity.properties file for data transfer encryption
when you transfer data in parallel with a SAS data connector. Use a data connector to transfer data
between your data source and CAS.

DCSSLCACERTDIR 'pathname'
Specifies the directory where the public certificates for all of the trusted certificate authorities
(CA) in the trust list are filed.

Requirement Each CA certificate file must be PEM-encoded (base64).

Interaction The DCSSLCALISTLOC= option can be used instead of or in conjunction with the
DCSSLCACERTDIR= option.

Note Different versions of OpenSSL generate different hash values. For example,
OpenSSL 0.9.8 generates different hash values from those generated by OpenSSL
1.x.

See “Certificate File Formats” on page 132

DCSSLCALISTLOC 'pathname'
Specifies the location of a single file that contains the public certificate(s) for all of the trusted
certificate authorities (CA) in the trust list.

Requirement The CA file must be PEM-encoded (base64).

Interaction The DCSSLCACERTDIR= option can be used instead of or in conjunction with the
DCSSLCALISTLOC= option.

See “Certificate File Formats” on page 132

DCTCPMENCRYPT YES | NO | OPT
Specifies whether encryption is required for the connection.

YES means that data encryption is required.

NO means that data will be sent as plaintext.

OPT means that data encryption is preferred but not required.

173

Aliases REQ or REQUIRED for YES

OPTIONAL for OPT

Default NO. However, if you specify the DCTCPMENCRYPTALGORITHM option and
DCTCPMENCRYPT is not specified, DCTCPMENCRYPT defaults to YES.

Requirement The option values must be uppercase.

Interaction Encryption is determined by the setting of this option on both the client (data
provider) and server (CAS). For more information, see “DCTCPMENCRYPT Option
Setting Interaction” on page 72.

DCTCPMENCRYPTALGORITHM SSL
Specifies the algorithm to be used for encrypted data transfers when you transfer data in parallel
with a SAS Data Connector.

Default SSL

Requirement The option value, SSL, must be uppercase.

Note TLS is the only algorithm available at this time for encrypted data transfers when
you transfer data in parallel with a SAS data connector.

Examples

Use OpenSSL to Create Site-Signed or Third-Party-
Signed Certificates in PEM Format

Generate a Private Key in RSA Format and a Certificate Signing
Request

The tasks that you perform to request a digital certificate for the CA, the server, and the client are
similar. However, the values that you specify are different.

In this example, Proton, Inc. is the organization that is applying to become a CA. A certificate request
is sent to a certificate authority to get it signed, thereby becoming a CA. After Proton, Inc. becomes a
CA, it can serve as a CA for issuing other digital certificates to clients and servers on its network.
The certificates generated by the Proton, Inc. CA are considered site-signed certificates.

Note: You can also sign the certificate yourself if you have your own certificate authority or create a
self-signed certificate.

174

To create a site-signed certificate using OpenSSL, first you need to generate a private key in RSA
format. This file is not protected with a passphrase and is saved in the ASCII (Base64-encoded) PEM
format.

1 Edit your existing openssl.cnf file or create an openssl.cnf file. OpenSSL by default looks for a
configuration file in /usr/lib/ssl/openssl.cnf. It is good practice to add -config ./
openssl.cnf to the commands OpenSSL CA or OpenSSL REQ to ensure that OpenSSL is reading
the correct file.

Note: You can find where the openssl.cnf file is located by submitting the following OpenSSL
command:

openssl version -d

.

Here is an example of some of the information that can be specified in the openssl.cnf file. You
need to specify where OpenSSL should look for information. Here is a partial file example. Much
more information about certificates can be specified.

Figure 4 Example of an OpenSSL.cnf File

2 Select the apps subdirectory of the directory where OpenSSL was built.

3 Initialize OpenSSL.

175

$ openssl

4 Issue the appropriate command to request a digital certificate. In the following example, an RSA
private key and a certificate signing request are being generated all at once.

Table 18 OpenSSL Commands for Requesting a Private Key

Recipient of
Certificate Request OpenSSL Command

CA req -config ./openssl.cnf -new -out ca.csr -
newkey rsa:2048 -keyout cakey.pem -sha256

Server req -config ./openssl.cnf -new -out server.csr -
newkey rsa:2048 -keyout serverkey.pem -sha256

Client req -config ./openssl.cnf -new -out client.csr -
newkey rsa:2048 -keyout clientkey.pem -sha256

Table 19 Arguments and Values Used in OpenSSL Commands

OpenSSL Arguments and
Values Functions

req Requests a certificate.

-config ./openssl.cnf Specifies the storage location for the
configuration details for the OpenSSL program.

-new Identifies the request as new.

-out ca.csr Specifies the storage location for the certificate
request.

-newkey rsa:2048 Generates a new private key along with the
certificate request that is 2048 bits in length
using the RSA algorithm.

-keyout cakey.pem Specifies the storage location for the private key.

-nodes Prevents the private key from being encrypted.
This option is not recommended. For best
practice, encrypt the private key.

-sha256 Specifies that the SHA-256 hash algorithm be
used. Without this option, the default is SHA-1.

176

5 Informational messages are displayed and prompts for additional information appear according to
the specific request.

To accept a default value, press the Enter key. To change a default value, type the appropriate
information and press the Enter key.

Note: Unless the -NODES option is used in the OpenSSL command when creating a digital
certificate request, OpenSSL prompts you for a password before allowing access to the private
key.

Here is an example of a request for a digital certificate:

Note: Starting in September of 2022, the Organizational Unit Name (OU) field is deprecated for
publicly trusted certificates. All new or re-issued publicly trusted TLS certificates will no longer
contain OU information. Existing certificates are not affected.

OpenSSL> req -config ./openssl.cnf -new -out ca.req -newkey rsa:2048
-keyout privkey.pem -nodes
Using configuration from ./openssl.cnf
Generating a 2048 bit RSA private key
............................++++++
..++++++
writing new private key to 'cakey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [North Carolina]:
Locality Name (city) [Cary]:
Organization Name (company) [Proton Inc.]:
Organizational Unit Name (department):
Common Name (YOUR name) []: proton.com
Email Address []:Joe.Bass@proton.com

Please enter the following 'extra' attributes to be sent with
your certificate request
A challenge password []:
An optional company name []:
OpenSSL>

The request for a digital certificate is complete.

Note: For the server, the Common Name must be the name of the computer that the server runs on.
In the following examples, proton.com is used as the computer name.

177

Generate a Public Certificate

1 Issue the appropriate command to generate a public certificate from the certificate signing
request.

Table 20 OpenSSL Commands for Generating Digital Certificates

Recipient of Generated
Certificate OpenSSL Command

CA x509 -req -in ca.csr -signkey cakey.pem -out
cacert.pem -sha256

Note: This command generates a self-signed
certificate.

Server ca -config ./openssl.cnf -in server.csr -out
server.pem -md sha256

Note: This command creates certificates signed by
the CA. These are defined in the openssl.cnf file.

Client ca -config ./openssl.cnf -in client.csr -out
client.pem -md sha256

Note: This command creates certificates signed by
the CA. These are defined in the openssl.cnf file.

Table 21 Arguments and Values Used in OpenSSL Commands to Generate a Certificate

OpenSSL Arguments and Values Functions

x509 Identifies the certificate display and
signing utility. Typically used to
generate a self-signed certificate.

-req Specifies that a certificate be
generated from the request.

ca Identifies the Certificate Authority
utility.

-config ./openssl.cnf Specifies the storage location for the
configuration details for the OpenSSL
utility.

-in filename.csr Specifies the storage location for the
input for the certificate request.

178

OpenSSL Arguments and Values Functions

-out filename.pem Specifies the storage location for the
certificate.

-signkey cakey.pem Specifies the private key that is used to
sign the certificate that is generated by
the certificate request.

-md sha256 Specifies that the SHA-256 hash
algorithm be used. Without this option,
the default is SHA-1.

2 Informational messages are displayed and prompts for additional information appear according to
the specific request.

To accept a default value, press the Enter key. To change a default value, type the appropriate
information, and press the Enter key.

Here is a sample of the messaging from a CSR for a server digital certificate:

Note: The password is for the CA's private key.

Using configuration from ./openssl.cnf
Enter PEM pass phrase: password
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'US'
stateOrProvinceName :PRINTABLE:'NC'
localityName :PRINTABLE:'Cary'
organizationName :PRINTABLE:'Proton, Inc.'
commonName :PRINTABLE:'proton.com'
Certificate is to be certified until April 16 17:48:27 2022 GMT (365 days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries Data Base Updated

The subject's Distinguished Name is obtained from the digital certificate request.

The generation of a digital certificate is complete.

Check Your Digital Certificate Using OpenSSL

To check a digital certificate, issue the following command:

openssl> x509 -text -in filename.pem

A digital certificate contains data that was collected to generate the digital certificate timestamps, a
digital signature, and other information. However, because the generated digital certificate is
encoded (usually in PEM format), it is unreadable.

179

Create a Certificate Chain Using OpenSSL

After generating a digital certificate for the CA, the server, and the client (optional), you must
identify for the client application one or more CAs that are to be trusted. This list is called a chain of
trust. This chain includes a set of certificates in which each one has been signed by the one that
comes after it.

On the client, if there is only one CA to trust, specify in the client application the name of the file
that contains the CA digital certificate. If multiple CAs are to be trusted, you can copy and paste into
a new file the contents of all the digital certificates of CAs to be trusted by the client application.
These CAs can be primary, intermediate, or root certificates. Add the root CAs to the client’s
truststore. For the server, do not include the root CA in the server's certificate chain.

Generally, .pem files are returned by default when you use OpenSSL to generate certificates. Most
CAs return .crt files (Microsoft returns .cer files). SAS Viya provides Base64 encoded certificate files
with the .crt extension. You can add these files together (regardless of your file extension) by
manually cutting and pasting the files together or you can concatenate the certificate files together.
For example, you can take an intermediate authority certificate file, a root authority certificate file,
and a primary certificate file and concatenate them into a single file.

Here is an example of concatenating certificates into one file. To manually create a certificate chain
of trust, use the following template.

(Your Server Certificate - ssl.crt)

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

(Your Intermediate CA Certificate(s))

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

(Your Root CA Certificate)

-----BEGIN CERTIFICATE-----

<PEM encoded certificate>

-----END CERTIFICATE-----

The content of the digital certificate in this example is represented as <PEM encoded certificate> .
The content of each digital certificate is delimited with a -----BEGIN CERTIFICATE----- and -----
END CERTIFICATE----- pair. All text outside the delimiters is ignored. Therefore, you might not want
to use delimited lines for descriptive comments.

cat server.crt > certchain.pem
cat intermediateCA.crt >> certchain.pem
cat rootCA.pem >> certchain.pem

180

Because the digital certificate is encoded, it is unreadable. You will see a string of hexadecimal
characters. To view the file contents, you can use the following OpenSSL commands to view the
contents of your file by type:

openssl x509 -in cert.pem -text -noout
openssl x509 -in cert.cer -text -noout
openssl x509 -in cert.crt -text -noout

Use the following OpenSSL command to view a DER-encoded certificate:

openssl x509 -in certificate.der -inform der -text -noout

Note: If you are including a digital certificate that is stored in DER format into your certificate chain,
you must first convert it to PEM format. For more information, see “Convert DER to PEM File
Format” on page 101.

Verify Certificates in the Trust Chain Using OpenSSL

Clients and servers exchange and validate each other’s digital certificates. All of the CA certificates
that are needed to validate a server certificate compose a trust chain. All CA certificates in a trust
chain have to be available for server certificate validation.

You can use the following OpenSSL command to verify that certificates are signed by a recognized
certificate authority (CA):

openssl verify -verbose -CAfile <your-CA_file>.pem <your-server-cert>.pem

If your local OpenSSL installation recognizes the certificate or its signing authority and everything
checks out (dates, signing chain, and so on), you get a simple OK message.

Troubleshooting TLS

ERROR: 1408A0C1:SSL
routines:ssl3_get_client_hello:no shared cipher
This message might occur when clients that are supporting ciphers that are less secure are failing to
connect to a SAS Viya 3.5 server. The most secure option for resolving this problem is to upgrade
client systems so that they support the latest encryption cipher suites. If this action cannot be
performed, refer to problem note 68586 for a solution.

For a list of recommended ciphers supported in SAS Viya, see “TLS Versions and Cipher Suites
Supported”.

181

https://support.sas.com/kb/68/586.html

SSL Error: Invalid subject name in partner's
certificate
This message is generated when trying to sign on to a SAS/CONNECT spawner. SAS 9.4 was unable
to start a SAS/CONNECT session to the SAS Viya 3.5 CAS server. The server certificate needs
server alternative name (SAN) extension entries in the server certificate for each name the host can
be known by. The certificate needs the physical host name and DNS alias listed in the SAN.

NOTE: Remote signon to MYSERV commencing (SAS Release 9.04.01M4P110916).
ERROR: A communication subsystem partner link setup request failure
has occurred.
ERROR: Network request failed (rc 0x00000001105AB1B0) -
SSL Error: Invalid subject name in partner's certificate.
Subject name must match machine name.
ERROR: Remote signon to MYSERV canceled.

In this case, the sas-crypto-management tool needs to be used to generate a new default certificate
that includes the SAN information. Contact SAS Technical Support for assistance.

Reset TLS Trust in the SAS Viya Deployment

IMPORTANT The repair-security-artifacts.yml play should be run only at the explicit
direction of SAS Technical Support for advanced troubleshooting scenarios. Contact SAS
Technical Support before running repair-security-artifacts.yml.

If the state of TLS trust in a deployment has been misconfigured beyond repair, there is a path
forward. The repair-security-artifacts.yml play exists to hard reset trust between consul and vault so
that new certificates and keys can be regenerated for all services. This play exists as a last resort in
troubleshooting TLS issues. Running the repair-security-artifacts.yml play followed by the renew-
security-artifacts.yml results in downtime.

The repair-security-artifacts.yml play creates a new SAS Viya root CA, regenerates each node's
truststore, and then generates new Vault and Consul certificates signed by the root CA. This action
temporarily restores enough trust in the deployment such that the renew-security-artifacts.yml play
can be run to redeploy SAS Viya with all new security artifacts, restoring a misconfigured
deployment to a healthy state.

It is important to distinguish between repair-security-artifacts.yml and renew-security-artifacts.yml.
They are similarly named security playbooks, yet serve very different purposes.

n The purpose of the repair-security-artifacts.yml play is to temporarily hard reset trust between
Consul and Vault so that renew-security-artifacts.yml can be run to restore TLS trust in the
deployment. These actions result in a redeploy with all new security objects.

n The renew-security-artifacts.yml serves two purposes:

182

o In a healthy deployment, it regenerates new certificates when certificates are close to
expiring. See “Renew Security Objects Using Ansible Plays (Linux Deployment)”.

o In a previously unhealthy deployment, the renew-security-artifacts.yml play is run after
repair-security-artifacts.yml to restore trust in a deployment.

Running repair-security-artifacts.yml might make sense if any of the following use cases apply:

n The SAS Viya root and intermediate certificate authorities do not match amongst truststores.

n Consul and Vault's certificates are signed by different certificate authorities.

n SAS Viya service's certificates are signed by different certificate authorities.

Here are the steps to repair the TLS trust in the deployment.

Note: The renew-security-artifacts.yml play is very different from repair-security-artifacts.yml.
Ensure that you run the appropriate play for your situation as they are at a glance similarly named.

1 Stop all services on all machines.

CAUTION
Start and stop the SAS Viya servers and services in the proper order There is a proper
sequence for starting and stopping SAS Viya servers and services. You must follow the proper
sequence to avoid operational issues. See “Read This First: Start and Stop Servers and Services” in
SAS Viya Administration: General Servers and Services.

2 Run the repair security artifacts playbook. The repair-security-artifacts.yml play should be run
only at the explicit direction of SAS Technical Support.

ansible-playbook -vvv repair-security-artifacts.yml

IMPORTANT It is highly recommended that you use the-vvv option when running the
repair-security-artifacts play to increase the verbosity of the information that is included
in deployment.log.

3 Follow the instructions in “Renew Security Objects Using Ansible Plays (Linux Deployment)” to
properly run the renew-security-artifacts.yml play.

VAULT_CERTIFICATE_ISSUED_ERROR: <date>
that is beyond the expiration of the CA certificate
When SAS Viya services start, a new TLS certificate issued by the SAS Viya intermediate CA is
provided by SAS Secrets Manager (Vault). The default expiration is seven years for the intermediate
CA. If a service asks for a certificate that has an end validity that exceeds the date that the CA
certificate expires, the service will produce an error and most likely fail to start. For example, if the
intermediate CA certificate expires on January 1, 2025, and a service asks for a certificate that is

183

http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&docsetTargetAnchor=n03025viyainfrsrvs00000admin&locale=en
http://documentation.sas.com/?docsetId=calchkadm&docsetVersion=3.5&docsetTarget=n00003ongoingtasks00000admin.htm&docsetTargetAnchor=n03025viyainfrsrvs00000admin&locale=en

valid until January 2, 2025, an error will occur during the startup of that service that most likely will
prevent the service from starting properly.

To resolve this error, follow the instructions in “Renew Security Objects Using Ansible Plays (Linux
Deployment)” to generate new SAS Viya root and intermediate CA certificates.

Here is an example message that might be generated when a service asks for a certificate that has an
end validity that exceeds the date that the CA certificate expires.

2024-01-12 08:36:16.716 INFO 8973 --- [main] c.s.c.rest.boot.vault.CertificateUtil: service
[VAULT_CERTIFICATE_REQUEST] Requesting SSL certificate from Vault PKI back end for: server.example.com
2024-01-12 08:36:16.807 INFO 8973 --- [main] o.s.v.a.LifecycleAwareSessionManager: service
Scheduling Token renewal
2024-01-12 08:36:16.832 WARN 8973 --- [main] c.s.c.rest.boot.vault.CertificateUtil: service
[VAULT_CERTIFICATE_ISSUED_ERROR] Encountered exception issuing certificate from Vault.
org.springframework.vault.VaultException: Status 400 Bad Request: cannot satisfy request,
as TTL would result in notAfter 2025-01-11T08:36:16.823791526-05:00 that is beyond the
expiration of the CA certificate at 2025-01-01T22:11:50Z;
nested exception is org.springframework.web.client.HttpClientErrorException$BadRequest:
400 Bad Request: "{"errors":["cannot satisfy request, as TTL would result in
notAfter 2025-01-11T08:36:16.823791526-05:00
that is beyond the expiration of the CA certificate at 2025-01-01T22:11:50Z"]}"<EOL>
Caused by: org.springframework.web.client.HttpClientErrorException$BadRequest:
400 Bad Request: "{"errors":["cannot satisfy request, as TTL would result in
notAfter 2025-01-11T08:36:16.823791526-05:00 that is beyond the expiration of the
CA certificate at 2025-01-01T22:11:50Z"]}<EOL>

Eventually, the service shuts down with messages indicating that the keystore has been tampered
with or that the password is incorrect. Here are examples of messages that might be generated. The
services will probably be unavailable and return an http 503 message.

184

Error starting ApplicationContext. To display the conditions report, re-run your application with
'debug' enabled.
2024-01-12 08:37:54.846 ERROR 8973 --- [main] o.s.boot.SpringApplication : service Application run
failed
org.springframework.context.ApplicationContextException: Failed to start bean 'webServerStartStop';
nested exception is org.springframework.boot.web.server.WebServerException: Unable to start embedded
Tomcat server
...
Caused by: org.apache.catalina.LifecycleException: Protocol handler start failed
 at org.apache.catalina.connector.Connector.startInternal(Connector.java:1039)
 at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:183)
 at org.apache.catalina.core.StandardService.addConnector(StandardService.java:232)
 ... 26 common frames omitted
Caused by: java.lang.IllegalArgumentException: Keystore was tampered with, or password was incorrect
 at
org.apache.tomcat.util.net.AbstractJsseEndpoint.createSSLContext(AbstractJsseEndpoint.java:107)
 at org.apache.tomcat.util.net.AbstractJsseEndpoint.initialiseSsl(AbstractJsseEndpoint.java:71)
 at org.apache.tomcat.util.net.NioEndpoint.bind(NioEndpoint.java:236)
 at org.apache.tomcat.util.net.AbstractEndpoint.bindWithCleanup(AbstractEndpoint.java:1302)
 at org.apache.tomcat.util.net.AbstractEndpoint.start(AbstractEndpoint.java:1388)
 at org.apache.coyote.AbstractProtocol.start(AbstractProtocol.java:663)
 at org.apache.catalina.connector.Connector.startInternal(Connector.java:1037)
 ... 28 common frames omitted
Caused by: java.io.IOException: Keystore was tampered with, or password was incorrect
 at sun.security.provider.JavaKeyStore.engineLoad(JavaKeyStore.java:780)
 at sun.security.provider.JavaKeyStore$JKS.engineLoad(JavaKeyStore.java:56)
 at sun.security.provider.KeyStoreDelegator.engineLoad(KeyStoreDelegator.java:224)
 at sun.security.provider.JavaKeyStore$DualFormatJKS.engineLoad(JavaKeyStore.java:70)
 at java.security.KeyStore.load(KeyStore.java:1445)
 at org.apache.tomcat.util.security.KeyStoreUtil.load(KeyStoreUtil.java:69)
 at org.apache.tomcat.util.net.SSLUtilBase.getStore(SSLUtilBase.java:218)
 at
org.apache.tomcat.util.net.SSLHostConfigCertificate.getCertificateKeystore(SSLHostConfigCertificate.jav
a:207)
 at org.apache.tomcat.util.net.SSLUtilBase.getKeyManagers(SSLUtilBase.java:282)
 at org.apache.tomcat.util.net.SSLUtilBase.createSSLContext(SSLUtilBase.java:246)
 at
org.apache.tomcat.util.net.AbstractJsseEndpoint.createSSLContext(AbstractJsseEndpoint.java:105)
 ... 34 common frames omitted
Caused by: java.security.UnrecoverableKeyException: Password verification failed
 at sun.security.provider.JavaKeyStore.engineLoad(JavaKeyStore.java:778)
 ... 44 common frames omitted

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other
brand and product names are trademarks of their respective companies. Copyright © 2019, SAS
Institute Inc., Cary, NC, USA. All Rights Reserved. June 2024 3.5-P1:calencryptmotion

185

186

	Encryption in SAS Viya
	Overview
	Encryption Coverage
	TLS Versions and Cipher Suites Supported
	Encryption in a SAS Viya Full Deployment on Linux
	Encryption in a SAS Viya Programming-Only Deployment on Linux
	Encryption in a SAS Viya Deployment on Windows
	Terminology

	How To
	Harden TLS Security for Your SAS Viya Deployment
	Tasks to Harden Security for Your Linux Full Deployment
	Tasks to Harden Security for Your Linux Programming-Only Deployment
	Tasks to Harden Security for Your Windows Deployment

	Configure and Update TLS and HTTPS
	Update Apache HTTP Server TLS Certificates and Cryptography
	Overview
	Apache Httpd That Is Not Deployed by SAS
	Options for Port 80
	Secure Consul by Default (Linux Full Deployment)
	Replace Self-Signed Certificates with Custom Certificates (Linux
Pre-Deployment)
	Replace Self-Signed Certificates with Custom Certificates (Post-Deployment)
	Update SAS Viya Default Self-Signed Certificate to Extend the
Expiration Date (Linux)
	Update SAS Viya Default Self-Signed Certificate to Extend the
Expiration Date (Windows)
	Update the Default Ciphers and TLS Protocol on the Apache HTTP
Server

	Update Certificates and Configure TLS on CAS
	Configure CAS TLS to Use Custom Certificates (Linux Full Deployment)
	Configure CAS TLS to Use Custom Certificates (Linux Programming-Only
Deployment)
	Configure CAS TLS to Use SAS Viya Default Certificates (Linux
Programming-Only Deployment)
	Configure CAS TLS to Use SAS Viya Default Certificates (Windows)
	Configure CAS TLS to Use Custom Certificates (Windows)
	Configure CAS Internode TLS (Linux Full Deployment)

	 Access CAS HTTP and HTTPS
	Encrypt Identity Provider Connections
	Use HTTPS for SCIM Connection
	Configure the LDAPS (Secure LDAP) Connection
	Configure the Secure LDAP Connection Using STARTTLS

	Access SAS Studio via HTTPS
	Access SAS Message Broker via HTTPS Using SAS Provided Self-Signed
Certificates (Linux Full Deployment)
	Configure TLS on the SAS Object Spawner
	Overview
	Configure SAS Object Spawner to Use TLS and Custom Certificates
(Linux)
	Configure SAS Object Spawner to Use TLS and Custom Certificates
(Windows)
	Disable TLS on Object Spawner

	Use SAS/CONNECT with TLS Enabled to Import Data
	Overview
	TLS Certificates
	Enable and Disable TLS for SAS/CONNECT (Linux Full Deployment)
	Configure SAS/CONNECT to Use TLS (Linux Programming-Only Deployment)
	Configure SAS/CONNECT to Use TLS (Windows)

	Encrypt Data Transfer When Transferring Data in Parallel with
a SAS Data Connector (Linux Full Deployment)
	Overview of Encryption with Parallel Data Transfer
	Prerequisites When Enabling Encryption for Parallel Data Transfer
for Teradata (on SAS Viya)
	Enable Encryption for Parallel Data Transfer between Teradata
and SAS Viya
	Prerequisites When Enabling Encryption for Parallel Data Transfer
between Hadoop and SAS Viya
	Enable Encryption for Parallel Data Transfer between Hadoop
and SAS Viya
	DCTCPMENCRYPT Option Setting Interaction
	Updating the CAS Configuration File Options for Data Transfer
	Updating the dcsecurity.properties File Options for Data Transfer

	Set Environment Variable to Use FIPS Cryptographic Library (Linux)
	Configure SAS 9.4 Clients to Work with SAS Viya
	Disable and Enable TLS (Linux Full Deployment)
	Overview
	Enable or Disable TLS Using Port Families
	Port Families
	Use Ansible to Enable or Disable TLS Port Families Pre-deployment
	Use SAS Environment Manager to Enable and Disable TLS Port
Families Post-Deployment
	Programmatically Enable or Disable TLS Port Families

	Enable or Disable TLS on the SAS Configuration Server Ports

	Manage Truststores
	Manage Truststores (Linux Full Deployment)
	Add Certificates to the Truststore (Linux Full Deployment)
	Remove Certificates from the Truststores (Linux Full Deployment)
	Replace Certificates in the Truststores (Linux Full Deployment)

	Manage Truststores (Windows Deployment)
	Import CA Certificates into the Windows Trusted Root Certificate
Authorities Store
	Import the Client Certificate into the Windows Personal Machine
Store
	Grant Read Permission to Authenticated Users for the Client
Certificate's Private Key

	Add Certificates to or Remove Certificates from the SAS Viya
Truststore Manually

	Manage Certificates and Generate New Certificates
	Use Best Practices to Create and Manage Certificates
	Manage Certificates Using Ansible Play Utilities (Linux Full
Deployment)
	Create Certificates with SAN Extension Using OpenSSL
	Generate Site-Signed or Third-Party-Signed Certificates in
PEM Format
	Generate Site-Signed or Third-Party-Signed Certificates in
Java Keystore Format
	Generate Self-Signed Certificates
	Convert Digital Certificate File Formats Using OpenSSL
	Convert DER to PEM File Format
	Convert a PEM Encoded Certificate to DER File Format
	Convert PEM to PKCS#12 (.pfx .p12) File Format

	Renew Security Objects Using Ansible Plays (Linux Deployment)
	Use SAS Bootstrap Config CLI on Consul to Manage the KV Store
and ACL Tokens
	SAS Bootstrap Config CLI Commands
	Establish a TLS Chain of Trust to Access SAS Bootstrap Config
CLI
	Authenticate to Access SAS Bootstrap Config CLI

	Secure Credentials in the CAS Server with cas.servicesbaseurl
(Linux Full Deployment)
	Manage Tokens, Create JWT Signing Keys, and Update the Encryption
Key
	Generate Signing Keys for JSON Web Tokens
	Overview
	Generate a JWT Signing Key
	Configure the SAS Logon Manager with a New JWT Signing Key

	Replace Tokens and Update the Encryption Key for SAS Configuration
Server (Linux Full Deployment)
	Overview
	Replace ACL Tokens
	Replace ACL Tokens Using the sas-crypto-management Tool
	Replace an Encryption Key on Consul

	Concepts
	Encryption Overview
	Transport Layer Security (TLS)
	Transport Layer Security (TLS) Overview
	TLS System Requirements
	TLS Configuration
	TLS Terminology

	Certificates Used by TLS and HTTPS
	Overview of Certificates
	SAS Truststores
	Apache HTTPD Certificates
	Using Default Self-Signed Certificates Provided with SAS Viya
Deployment
	How SAS Viya Determines If Certificates Meet the SAS Security
Standards on an Installed Linux HTTP Server
	Who Needs to Know about the Apache HTTPD Certificates?
	Create a Certificate Chain of Trust for Apache HTTPD

	Certificates Issued by SAS Secrets Manager (Linux Full Deployment)
	Self-Signed Certificates Issued by SAS Viya
	Certificate File Formats

	SSH (Secure Shell)
	SSH (Secure Shell) Overview
	SSH System Requirements
	SSH Software Availability
	SSH Tunneling Process
	SSH Tunneling: Process for Installation and Setup

	SAS Viya Security-Related Loggers
	Encrypting PDF Files Generated by ODS

	Reference
	SAS System Options for Encryption
	NETENCRYPT System Option
	NETENCRYPTALGORITHM= System Option
	NETENCRYPTKEYLEN= System Option
	SSLCACERTDIR= System Option
	SSLCALISTLOC= System Option
	SSLCACERTDATA= System Option
	SSLCERTISS= System Option
	SSLCERTLOC= System Option
	SSLCERTSERIAL= System Option
	SSLCERTSUBJ= System Option
	SSLCIPHERLIST= System Option
	SSLCLIENTAUTH System Option
	SSLCRLCHECK System Option
	SSLCRLLOC= System Option
	SSLMINPROTOCOL= System Option
	SSLMODE= System Option
	SSLPKCS12LOC= System Option
	SSLPKCS12PASS= System Option
	SSLPVTKEYLOC= System Option
	SSLPVTKEYPASS= System Option
	SSLSNIHOSTNAME= System Option

	SAS Environment Variables for Encryption
	Overview of Environment Variables
	SSLREQCERT= Environment Variable
	SSL_USE_SNI Environment Variable

	CAS TLS Environment Variables
	Configuration File Options for Data Transfer
	CAS Configuration File Options for Parallel Data Transfer with
SAS Data Connectors
	dcsecurity.properties File Options for Parallel Data Transfer
with Applicable SAS Data Connectors

	Examples
	Use OpenSSL to Create Site-Signed or Third-Party-Signed Certificates
in PEM Format
	Generate a Private Key in RSA Format and a Certificate Signing
Request
	Generate a Public Certificate
	Check Your Digital Certificate Using OpenSSL
	Create a Certificate Chain Using OpenSSL
	Verify Certificates in the Trust Chain Using OpenSSL

	Troubleshooting TLS
	ERROR: 1408A0C1:SSL routines:ssl3_get_client_hello:no shared
cipher
	SSL Error: Invalid subject name in partner's certificate
	Reset TLS Trust in the SAS Viya Deployment
	VAULT_CERTIFICATE_ISSUED_ERROR: <date> that is beyond the expiration of
 the CA certificate

