
SAS® Viya® 3.4: FedSQL
Programming for SAS® Cloud
Analytic Services

SAS® Documentation
July 29, 2019

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2018. SAS® Viya® 3.4: FedSQL Programming for SAS® Cloud
Analytic Services. Cary, NC: SAS Institute Inc.

SAS® Viya® 3.4: FedSQL Programming for SAS® Cloud Analytic Services

Copyright © 2018, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this
publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private
expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software by the
United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR
227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR
52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be
affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

August 2019

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

3.4-P4:casfedsql

Contents

What’s New in FedSQL Programming for SAS Cloud Analytic Services vii

PART 1 Concepts 1

Chapter 1 • Introduction to SAS FedSQL for CAS . 3
Introduction to the SAS FedSQL Language in CAS . 3
Running FedSQL Programs in CAS . 4
Supported Statements . 5
Supported Data Sources . 5
FedSQL Implicit Pass-Through Facility in CAS . 5
FedSQL Explicit Pass-Through Facility . 7
How FedSQL Runs in CAS . 8
FedSQL Query Walk-Through . 10
Executing a FedSQL Request against Multiple Data Sources in CAS 12
Optimizing FedSQL Joins . 13
Managing FedSQL Output Tables . 13
Intended Audience . 13
Syntax Conventions for the FedSQL Language . 13

Chapter 2 • Fundamental Concepts . 15
Locale . 15
Data Types . 15
Identifiers . 17
Formats . 19
Handling of Nonexistent Data . 19
FedSQL Reserved Words . 21
Getting Information About CAS Libraries and Tables . 25

Chapter 3 • Joining Data with FedSQL . 27
Overview of Joins . 27
Example: Typical Two-Table Join . 29
Example: Typical Three-Table Join . 29
Example: Simple Join Including All Columns . 30
Example: Equijoin Including All Columns . 31
Example: Simple Cross Join . 32
Example: Cross Join with Specified Columns and a WHERE Clause 33
Example: Qualified Join with an ON Clause . 34
Example: Qualified Join with a USING Clause . 36
Example: Qualified Join with an ON Clause and a WHERE Clause 37
Example: Natural Join . 37
Example: Natural Join with a WHERE Clause . 38
Understanding Inner and Outer Join Types . 39
Example: Inner Join . 39
Example: Left Outer Qualified Join . 40
Example: Left Outer Natural Join . 41
Example: Right Outer Qualified Join . 41
Example: Right Outer Natural Join . 42

Example: Full Outer Qualified Join . 43
Example: Full Outer Natural Join . 44

Chapter 4 • FedSQL Expressions and Subqueries . 45
Overview of FedSQL Expressions and Subqueries . 45
FedSQL Value Expressions . 45
Subqueries . 46
Subquery Examples . 47

PART 2 FedSQL Reference 51

Chapter 5 • FedSQL Expressions and Predicates . 53
Overview of Expressions and Predicates . 53
Dictionary . 53

Chapter 6 • FedSQL Formats . 77
Overview of Formats . 77
How to Format Output with the PUT Function . 77
Validation of FedSQL Formats . 78
FedSQL Format Examples . 78
Using a User-Defined Format . 78
NLS Formats Supported by FedSQL . 79
Formats Reference . 82

Chapter 7 • FedSQL Functions . 83
Overview of FedSQL Functions in CAS . 83
Integration with DS2 . 84
Specifying Function Arguments in FedSql.execDirect . 84
Understanding Function Output . 85
Functions Reference . 86

Chapter 8 • FedSQL Statements . 87
Dictionary . 87

Chapter 9 • FedSQL Table Options . 103
Overview of Statement Table Options . 103
How to Specify FedSQL Statement Table Options . 103
Dictionary . 104

PART 3 Appendixes 109

Appendix 1 • Tables Used in Examples . 111
Overview of Sample Tables . 111
AfewWords . 112
Customers . 112
CustonLine . 113
Densities . 114
Employees . 115
Products . 116
Sales . 117
WorldCityCoords . 118

iv Contents

WorldTemps . 119

Appendix 2 • ICU License Agreement . 121

Recommended Reading . 123
Index . 125

Contents v

vi Contents

What’s New in FedSQL
Programming for SAS Cloud
Analytic Services

Overview

August 2019: Support has been added for Google BigQuery and Snowflake as data
sources on the CAS server, with implicit SQL pass-through.

May 2019: The documentation has been enhanced.

November 2018: The documentation has been enhanced.

Beginning with SAS Viya 3.4, FedSQL processing in CAS has been enhanced to support
explicit SQL pass-through and to support databases that are compliant with JDBC and
Apache Spark.

SAS Viya 3.4

SAS Viya 3.4 adds the following features:

• Support for explicit SQL pass-through through a CONNECTION TO caslib (native-
syntax) argument in the SELECT statement FROM clause. The CONNECTION TO
argument enables you to specify data from a DBMS catalog in the SELECT
statement by using SQL syntax that the DBMS understands, even if that syntax is not
valid in FedSQL. For more information, see “FedSQL Explicit Pass-Through
Facility” on page 7.

• Support for databases that are compliant with JDBC and Apache Spark as data
sources. When appropriate SAS Data Connector software is installed and a CAS
library is assigned, you can manipulate and query databases that are compliant with
JDBC and Apache Spark with the FedSQL functionality that is available on the CAS
server.

• August 2019: Support for Google BigQuery and Snowflake as data sources. When
appropriate SAS Data Connector software is installed and a CAS library is assigned,
you can manipulate and query a Google BigQuery Cloud Project and Snowflake
database with the FedSQL functionality that is available on the CAS server.

vii

Documentation Updates for SAS Viya 3.4

August 2019: The documentation notes availability of FedSQL implicit pass-through for
Google BigQuery and Snowflake.

May 2019: The documentation for the DROP TABLE statement and the REPLACE=
table option was modified to describe their current behavior in CAS.

November 2018: A new topic, “Optimizing FedSQL Joins”, provides guidelines for
improving FedSQL performance in CAS.

Viya 3.4: Appendix 1, “Tables Used in Examples,” has been updated to include code
fragments that can be used to create the tables used in documentation examples.

viii What’s New in FedSQL Programming for SAS Cloud Analytic Services

Part 1

Concepts

Chapter 1
Introduction to SAS FedSQL for CAS . 3

Chapter 2
Fundamental Concepts . 15

Chapter 3
Joining Data with FedSQL . 27

Chapter 4
FedSQL Expressions and Subqueries . 45

1

2

Chapter 1

Introduction to SAS FedSQL
for CAS

Introduction to the SAS FedSQL Language in CAS . 3

Running FedSQL Programs in CAS . 4

Supported Statements . 5

Supported Data Sources . 5

FedSQL Implicit Pass-Through Facility in CAS . 5
Overview . 5
How to Use the FedSQL Implicit Pass-Through Facility . 6
Conditions for Single-Source Pass-Through . 6

FedSQL Explicit Pass-Through Facility . 7
Overview . 7
How to Use the FedSQL Explicit Pass-Through Facility . 7
Conditions for Explicit Pass-Through . 7

How FedSQL Runs in CAS . 8
Overview . 8
Modifying the Query Plan . 8
Viewing the Query Plan . 10

FedSQL Query Walk-Through . 10

Executing a FedSQL Request against Multiple Data Sources in CAS 12

Optimizing FedSQL Joins . 13

Managing FedSQL Output Tables . 13

Intended Audience . 13

Syntax Conventions for the FedSQL Language . 13
Typographical Conventions . 13
Syntax Conventions . 14

Introduction to the SAS FedSQL Language in
CAS

SAS FedSQL is a SAS proprietary implementation of the ANSI SQL:1999 core
standard. It provides support for industry-standard data types and other ANSI 1999 core
compliance features and proprietary extensions.

3

In SAS Cloud Analytic Services (CAS), FedSQL provides a scalable, threaded, high-
performance way to query data and create new CAS tables from existing tables. FedSQL
enables you to join data using industry-standard query expressions and SQL expressions.
FedSQL can be used to join relational data from multiple data sources in a single
request.

For applications, FedSQL provides a common SQL syntax across all data sources. That
is, FedSQL is a vendor-neutral SQL dialect that accesses data from various data sources
without having to submit queries in the SQL dialect that is specific to the data source. In
addition, a single FedSQL query can target data in several data sources and return a
single result set.

You can submit FedSQL statements to the CAS server from a SAS or SAS Viya session
by using the FEDSQL procedure. For more information about the FEDSQL procedure,
see Base SAS Procedures Guide. You can also submit FedSQL statements to the CAS
server in SAS Viya by using the fedSql.execDirect action. For more information about
the fedSql.execDirect action, see SAS Viya: System Programming Guide.

When FedSQL statements are executed by the CAS server, the FedSQL result set is
always an in-memory CAS table. You can use other CAS actions to persist the result set
on the CAS server or to save the result set to an external data source.

Running FedSQL Programs in CAS
You can submit FedSQL statements to a CAS server in several ways:

• Using the FEDSQL procedure. The FEDSQL procedure can execute FedSQL
statements in SAS libraries as well as on the CAS server. FedSQL supports a more
expanded syntax for SAS libraries than it does for CAS libraries. You must use the
FedSQL syntax described in this book for requests submitted to the CAS server. For
more information about the FedSQL procedure, see “FEDSQL Procedure” in Base
SAS Procedures Guide.

• Using the fedSql.execDirect action. The fedSql.execDirect action can be called from
a SAS Viya CASL program or from a SAS Viya Python, Lua, or R program. In
CASL, the fedSql.execDirect action is used with the CAS procedure. For more
information about the CAS procedure, see SAS Cloud Analytic Services: CASL
Reference. For information about using fedSql.execDirect in the other programming
environments, see Getting Started with SAS Viya for Lua, Getting Started with SAS
Viya for Python, and Getting Started with SAS Viya for R. For more information
about the fedSql.execDirect action, see SAS Viya: System Programming Guide.

When you are using the fedSql.execDirect action, FedSQL statements are submitted to
the CAS server in a quoted string. A benefit of using PROC FEDSQL to submit FedSQL
statements to the CAS server is that your FedSQL statements do not need to be quoted.

A benefit of using the fedSql.execDirect action is that it enables you to take advantage of
the functionality of the host language when creating your programs. For example, you
might use the host language to build your query string before you call the execDirect
action, and then call the action repeatedly in a loop, changing a parameter or part of the
query string each time through the loop. Or, you might use the host language to post-
process CAS result tables on the client. See “Use the Native Language to Operate on a
FedSQL Result Set” in SAS Viya: System Programming Guide for a simple example of
using host language elements with the fedSql.execDirect action.

4 Chapter 1 • Introduction to SAS FedSQL for CAS

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0ahxz9t4dkcucn1uiqa42nbazbh.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0ahxz9t4dkcucn1uiqa42nbazbh.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg3lua&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg3&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg3&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg3r&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=n1axuxzfo9nw8wn1696shl6dkib8.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=n1axuxzfo9nw8wn1696shl6dkib8.htm&locale=en

Supported Statements
The following FedSQL statements are supported in CAS:

• CREATE TABLE, with the AS query expression

• DROP TABLE

• SELECT

For more information about statement functionality, see Chapter 8, “FedSQL
Statements,” on page 87.

Supported Data Sources
FedSQL statements are executed in CAS by the fedSql.execDirect action. The
execDirect action uses SAS Data Connector software to access SAS data and data from
third-party data sources with CAS. For a listing of available SAS data connectors, see
“Quick Reference for Data Connector Syntax” in SAS Cloud Analytic Services: User’s
Guide. Also see “Working with SAS Data Connectors” in SAS Cloud Analytic Services:
User’s Guide and “Working with Caslibs” in SAS Viya: System Programming Guide.

Data access is serial by default. Parallel data access is available for Teradata and Hadoop
when SAS Data Connect Accelerator software is installed.

The data connectors provide single-pass, load-on-demand access to specified tables in
CAS when a table name is referenced with a caslib in a FedSQL statement. Data can also
be loaded explicitly into a CAS session before processing with an execDirect action.

FedSQL Implicit Pass-Through Facility in CAS

Overview
Implicit pass-through (IP) is the process of translating SQL query code into equivalent
data-source-specific SQL code so that it can be passed directly to the data source for
processing. IP improves query response time and enhances security.

IP provides two categories of performance benefits: those that result from reducing data
transfer volume and those that result from taking advantage of data-source-specific
capabilities. Benefits from the first category come from performing the query on the data
source. The number of rows that are transferred from the data source to FedSQL can be
significantly reduced, thereby decreasing the overall query processing time. Benefits
from the second category, resulting from data-source-specific capabilities such as
massively parallel processing, advanced join techniques, data partitioning, table
statistics, and column statistics, depend on the data source. These capabilities often allow
the data source to perform the SQL query more quickly than FedSQL.

The security benefit of IP is that every part of an IP query that can be processed is
processed on the data-source side. This eliminates the need to transmit its associated
tables, which might contain sensitive information, over to the FedSQL side for query
processing.

FedSQL Implicit Pass-Through Facility in CAS 5

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=n0wxsz0rzamws5n1ldbepubijenk.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=n0wxsz0rzamws5n1ldbepubijenk.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=p1ez56aqp5uvukn1f96jscujvplm.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=p1ez56aqp5uvukn1f96jscujvplm.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=p1xt9526uq5etwn1vmnk8koh0k6y.htm&docsetTargetAnchor=n01igqcf6nok0un16532vr9a5mvu&locale=en

FedSQL in CAS provides single-source, full-query implicit pass-through. When a
request is accessing a single data source, an attempt is made to implicitly pass the full
query down to the data source. If the full query cannot be passed to the data source, the
request is processed locally on the CAS server.

FedSQL supports implicit SQL pass-through for the following data sources through SAS
data connectors:

• Amazon Redshift

• Apache Spark

• DB2 (UNIX)

• Google BigQuery

• Hadoop (Hive)

• Impala

• databases that are compliant with JDBC (new in SAS Viya 3.4)

• databases that are compliant with ODBC

• Oracle

• PostgreSQL

• SAP Hana

• Snowflake

• Teradata (UNIX)

How to Use the FedSQL Implicit Pass-Through Facility
FedSQL IP is performed automatically. You are not required to specify any options to
use IP.

Conditions for Single-Source Pass-Through
Here are the requirements for single-source implicit pass-through:

• The data source must be an SQL data source.

• The tables cannot already have been loaded into the CAS session.

• All tables that are specified in the FedSQL request must exist in the same caslib.
Merges and joins of unloaded tables that exist in different caslibs are automatically
loaded into CAS for processing.

• The query cannot contain an ORDER BY clause.

• None of the tables in the SQL query can have CAS row-level or column-level
security where the number of columns returned for the table is less than the number
of columns that actually exist in the table.

FedSQL can pass queries implicitly only when the SQL syntax is ANSI-compliant. The
following limitations might prevent IP:

• functions that are FedSQL-specific, such as PUT.

• certain aggregate statistics such as SKEWNESS, STUDENTS_T, NMISS,
KURTOSIS, CSS, USS, and PROBT.

• mathematical functions such as SIN, COS, ATAN, and TAN.

6 Chapter 1 • Introduction to SAS FedSQL for CAS

• ANSI-compliant FedSQL syntax might prevent IP if the data source is not ANSI-
compliant in that area.

FedSQL Explicit Pass-Through Facility

Overview
Beginning with SAS Viya 3.4, the FedSQL explicit pass-through facility enables you to
connect to a data source and send SQL statements directly to that data source for
execution. This facility also enables you to use the syntax of your data source, regardless
of whether it meets ANSI standards for SQL.

FedSQL in CAS supports explicit SQL pass-through through the use of a
CONNECTION TO component in the SELECT statement’s FROM clause. The
CONNECTION TO component enables you to submit native SQL requests that produce
a result set.

How to Use the FedSQL Explicit Pass-Through Facility
The CONNECTION TO component of the SELECT statement FROM clause has the
following syntax:

FROM CONNECTION TO caslib (native-syntax) [[AS] alias]

caslib
specifies the name of a caslib in the existing CAS session.

native-syntax
specifies a SELECT-type query (not DDL) to be run on the caslib's driver.

alias
provides a name for the result set that is produced by the native query.

Example:

select oo.i, oo.rank, ff.onoff
 from connection to caslib1
 (select i, rank() over (order by j) rank from table_a) oo,
 connection to caslib2
(select distinct i, iif(k > 0.5, 1, 0) as onoff from table_a) ff
 where oo.i = ff.i order by 1;

For more information, see “SELECT Statement” on page 90.

Conditions for Explicit Pass-Through
The native syntax must be valid for the data source. The statements that you use must
produce a result set.

FedSQL Explicit Pass-Through Facility 7

How FedSQL Runs in CAS

Overview
FedSQL statements that are submitted to the CAS server are processed by the
fedSql.execDirect action. The execDirect action uses the FedSQL query optimizer and
FedSQL pass-through capabilities to plan and execute queries. It uses CAS to partition
and order the data.

A FedSQL query plan is divided into stages. Each stage requires a stand-alone SQL
query. The following FedSQL plan nodes are turned into execution stages:

• SeqScan (when it is the root of the plan)

• HashJoin

• MergeJoin

• NestLoop

• Sort

• Group

• Aggregate

• Unique

• Limit

• Result

Each node represents an internal algorithm for processing requests. The following plan
nodes currently support threaded execution:

• SeqScan

• MergeJoin

• HashJoin

• NestLoop

In summary, Reads and Joins are processed in parallel, except FULL OUTER joins
where the join condition is something other than a simple equality condition on columns.

The following operations are currently processed by a single CAS worker:

• SELECT DISTINCT (UNIQUE execution stage)

• LIMIT and OFFSET (LIMIT execution stage)

• GROUP BY aggregations where one or more group expressions are not simple
column references.

Modifying the Query Plan
Beginning with SAS Viya 3.3, FedSQL supports a Cntl option that enables you to
control aspects of the query plan. The Cntl option enables you to specify the following
instructions:

8 Chapter 1 • Introduction to SAS FedSQL for CAS

disablePassThrough=true | false
The execDirect action attempts to use implicit SQL pass-through for all data sources
that support it by default (disablePassThrough=false). Specifying
disablePassThrough=true disables implicit pass-through. The data connector loads
the target tables into CAS for processing.

preserveJoinOrder=true | false
The FedSQL query optimizer rewrites queries to optimize join processing by default
(preserveJoinOrder=false). When preserveJoinOrder=true is specified, FedSQL joins
tables in the specified order instead of an order that is chosen by the FedSQL query
optimizer. For example, when preserveJoinOrder=true, FedSQL processes the
following request as follows:

select * from a, b, c, d where...;

• Stage 1 — join tables A and B.

• Stage 2 — join rows from Stage 1 with table C.

• Stage 3 — join rows from Stage 2 with table D.

Note: preserveJoinOrder has no effect on queries that are passed down to the
external data source.

requireFullPassThrough=true | false
The execDirect action loads external data into CAS for processing when implicit
pass-through cannot be achieved (requireFullPassThrough=false). When
requireFullPassThrough=true is specified, FedSQL stops processing the request
when implicit pass-through of the full query cannot be achieved. No data is loaded
into CAS and no output table or result set is produced.

Note: This instruction requests the opposite behavior of disablePassThrough=yes.

In PROC FEDSQL, Cntl is specified as a procedure option. Instructions are specified
within parenthesis. The value true is implied by the mention of an instruction. Here is
an example of how the instructions are specified in the FEDSQL procedure:

proc fedsql sessref=mysess cntl=(requireFullPassThrough);
...FedSQL statements...;
quit;

Multiple instructions are separated by a space.

proc fedsql sessref=mysess cntl=(preserveJoinOrder disablePassThrough);
...FedSQL statements...;
quit;

In the fedSql.execDirect action, Cntl is specified as an action parameter. Instructions are
specified within braces as name=value pairs. Here is an example:

proc cas;
 fedsql.execdirect
 cntl={requireFullPassThrough=true}
 query="...FedSQL statements...";
quit;

In the action, multiple instructions can be separated by a space or a comma.

proc cas;
 fedsql.execdirect
 cntl={preserverJoinOrder=true, disablePassThrough=true}
 query="...FedSQL statements...";
quit;

How FedSQL Runs in CAS 9

Viewing the Query Plan
To see the query plan for a given FedSQL request, set the Method option. The Method
option generates a text description of the nodes and stages in the query plan for a given
request and writes the output to the SAS log.

In PROC FEDSQL, Method is specified as a procedure option. The keyword is preceded
by an underscore. Here is an example:

proc fedsql sessref=mysess _method;
 ...FedSQL statements...;
quit;

In the fedSql.execDirect action, Method is specified as an action parameter. Here is an
example:

proc cas;
 fedsql.execdirect
 method=true
 query="...FedSQL statements...";
quit;

Note: The execDirect syntax shown above is specific to CASL. See SAS Viya: System
Programming Guide for examples that use Python, Lua, and R syntax.

You can also get information about query plan nodes without executing the FedSQL
request.

• In PROC FEDSQL, specify the NOEXEC option with the _Method option to get the
query plan without executing the query.

• In the fedSql.execDirect action, specify the ValidateOnly option with the Method
option to get the query plan without executing the query.

FedSQL Query Walk-Through
Here is an example of a FedSQL query and its query plan.

The FedSQL query:

select
C.*, T.AvgHigh as AvgHighCity, AvgHighNation
from worldcitycoords C,
worldtemps T,
(select Country, avg(AvgHigh) as AvgHighNation from worldtemps
group by Country) AHN
where T.City = C.City and
T.Country = AHN.Country
order by C.Country, C.City;

The query plan:

10 Chapter 1 • Introduction to SAS FedSQL for CAS

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

Methods for full query plan 1

 Number of Sorts Performed is : 1
 Number of Joins Performed is : 2
 Sort
 MergeJoin (INNER)
 SubqueryScan
 Agg
 Sort
 SeqScan from castera.WORLDTEMPS
 Sort
 HashJoin (INNER)
 SeqScan from castera.WORLDCITYCOORDS
 SeqScan from castera.WORLDTEMPS

 Methods for stage 1 2

 Agg
 SeqScan with _pushed_ order by from castera.WORLDTEMPS

 Stage query: create table "castera"."__fedsql_1__"
{options replace=true replication=0 tableID=2} as select "T1"."COUNTRY",
 AVG ("T1"."AVGHIGH") as "AVGHIGHNATION" from "castera"."WORLDTEMPS"
{options tableID=1} T1 group by "T1"."COUNTRY"

 Number of SQL I/O threads: 32 min, 56 max

 Methods for stage 3 3

 HashJoin (INNER)
 SeqScan from castera.WORLDCITYCOORDS
 SeqScan from castera.WORLDTEMPS

 Stage query: create table "castera"."__fedsql_3__"
{options replace=true replication=0 tableID=3} as select "T2"."AVGHIGH",
 "T2"."COUNTRY", "T1"."CITY", "T1"."COUNTRY" as "COUNTRY_2", "T1"."LATITUDE",
"T1"."LONGITUDE" from "castera"."WORLDCITYCOORDS"
 {options tableID=1} T1 _hash_ inner join "castera"."WORLDTEMPS"
{options REPL=YES tableID=2} T2 on ("T1"."CITY"="T2"."CITY")

 Number of SQL I/O threads: 32 min, 56 max

 Methods for stage 4 4

 HashJoin (INNER)
 SeqScan from castera.__fedsql_3__
 SeqScan from castera.__fedsql_1__

 Stage query: create table "castera"."__fedsql_4__"
{options replace=true replication=0 tableID=3} as select "T2"."CITY",
 "T2"."COUNTRY_2" as "COUNTRY", "T2"."LATITUDE", "T2"."LONGITUDE",
"T2"."AVGHIGH"
as "AVGHIGHCITY", "T1"."AVGHIGHNATION" from "castera"."__fedsql_3__"
{options tableID=2} T2 _hash_ inner join "castera"."__fedsql_1__"
{options REPL=YES tableID=1} T1 on ("T1"."COUNTRY"="T2"."COUNTRY")

 Number of SQL I/O threads: 32 min, 56 max

 Methods for stage 5 5

 Sort
 SeqScan from castera.__fedsql_4__

 Stage query: select "T1"."CITY", "T1"."COUNTRY", "T1"."LATITUDE",
"T1"."LONGITUDE", "T1"."AVGHIGHCITY",
 "T1"."AVGHIGHNATION" from "castera"."__fedsql_4__" {options REPEAT=YES }
T1 order by 2 collate linguistic (locale=en_US), 1 collate
 linguistic (locale=en_US)

 Number of SQL I/O threads: 1

FedSQL Query Walk-Through 11

This FedSQL query specifies to join select columns from two CAS tables named
WorldCityCoords and WorldTemp (described in Appendix 1, “Tables Used in
Examples,” on page 111) and adds a calculated column named AvgHighNation to each
row of the merged result set. It uses a subquery to create the new column. The tables
exist in a Teradata database and are referenced by the caslib CASTERA

1. The query plan begins with a summary of the plan nodes that are used to process the
request in the order in which they are executed. It then describes each stage of the
plan.

2. This query plan processes the subquery in table WorldTemps first. In Stage 1,
FedSQL performs an aggregate sort on column AVGHIGH using the values in
column COUNTRY to create a new column named AVG_HIGH_NATION.
Temporary table _fedsql_1__ is created to hold the results of the subquery.

3. The query plan then continues to the other columns in the SELECT clause. This step
requires no processing. Thus, Stage 2 is omitted from the plan. In Stage 3, the plan
selects and joins other specified columns from the WorldTemps and
WorldCityCoords tables. It creates a temporary table __fedsql_3__ to hold the
results.

4. In Stage 4, the plan joins temporary tables __fedsql_3__ and __fedsql_1__ to create
temporary table _fedsql_4_.

5. Finally, stage 5 performs a sort and sequential scan to display the contents of
temporary table _fedsql_4_.

The number of threads per worker that is used to process each stage is shown at the end
of each stage.

Here is an example of the output from the same request when the ValidateOnly option is
specified along with the Method option.

 Methods for full query plan

 Number of Sorts Performed is : 1
 Number of Joins Performed is : 2
 Sort
 MergeJoin (INNER)
 SubqueryScan
 Agg
 Sort
 SeqScan from castera.WORLDTEMPS
 Sort
 HashJoin (INNER)
 SeqScan from castera.WORLDCITYCOORDS
 SeqScan from castera.WORLDTEMPS

Executing a FedSQL Request against Multiple
Data Sources in CAS

You can execute a FedSQL request against multiple data sources in CAS by identifying
tables using a two-part table name in the form caslib.table-name. The tables from the
specified caslibs are then loaded into CAS for processing.

12 Chapter 1 • Introduction to SAS FedSQL for CAS

Optimizing FedSQL Joins
When possible, write queries to avoid operations that force all work to a single worker.
Follow these guidelines to optimize FedSQL processing in CAS:

• join columns on simple column references

• join on columns of the same data type

• join on columns that use the same SAS format

For more information, see “How FedSQL Runs in CAS”.

Managing FedSQL Output Tables
In CAS, the FedSQL CREATE TABLE statement creates in-memory CAS output tables.
The output tables exist for the length of the CAS session only. To persist a table in CAS
between sessions, use the table.promote action. To save a table, use the table.save action.
The table.save action saves a table to a caslib’s data source. For more information, see
“Promote table” in SAS Viya: System Programming Guide and “Save table” in SAS Viya:
System Programming Guide.

Intended Audience
The information in this document is intended for the following users who perform these
roles:

• Application developers who write the client applications that manipulate tables and
query data.

• Database administrators who design and implement the client/server environment.
They administer the data by designing the databases and setting up the data source
metadata. That is, database administrators build the data model.

• SAS, Python, Lua, and R programmers who want to take advantage of the features of
the FedSQL language.

Syntax Conventions for the FedSQL Language

Typographical Conventions
Type styles have special meanings when used in the documentation of the FedSQL
language syntax.

UPPERCASE BOLD
identifies FedSQL keywords such the names of statements and functions (for
example, PUT).

Syntax Conventions for the FedSQL Language 13

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-table-promote.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-table-save.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-table-save.htm&locale=en

UPPERCASE ROMAN
identifies arguments and values that are literals (for example, FROM).

italic
identifies arguments or values that you supply. Items in italic represent user-supplied
values that are nonliteral arguments (for example, AVG=expression).

monospace
identifies examples of SAS code.

Syntax Conventions
SAS Viya: FedSQL Programming for SAS Cloud Analytic Services uses the Backus-Naur
Form (BNF), specifically the same syntax notation used by Jim Melton in SQL:1999
Understanding Relational Language Components.

The main difference between traditional SAS syntax and the syntax that is used in the
FedSQL language reference documentation is in how optional syntax arguments are
displayed. In traditional SAS syntax, angle brackets (< >) are used to denote optional
syntax. In FedSQL language syntax, square brackets ([]) are used to denote optional
syntax and angle brackets are used to denote non-terminal components.

The following symbols are used in the FedSQL language syntax.

::=
This symbol can be interpreted as “consists of” or “is defined as”.

<>
Angle brackets identify a non-terminal component (that is, a syntax component that
can be further resolved into lower level syntax grammar).

[]
Square brackets identify optional arguments. Any argument that is not enclosed in
square brackets is a required argument. Do not enter square brackets unless they are
preceded by a backward slash (\), which denotes that they are literal.

{ }
Braces distinguish required multi-word arguments. Do not enter braces unless they
are preceded by a backward slash (\), which denotes that they are literal.

|
A vertical bar indicates that you can choose one value from a group. Values that are
separated by bars are mutually exclusive.

…
An ellipsis indicates that the argument or group of arguments that follow the ellipsis
can be repeated any number of times. If the ellipsis and the following arguments are
enclosed in square brackets, they are optional.

\
A backward slash indicates that the next character is a literal.

14 Chapter 1 • Introduction to SAS FedSQL for CAS

Chapter 2

Fundamental Concepts

Locale . 15

Data Types . 15

Identifiers . 17
Overview of Identifiers . 17
Regular Identifiers . 18
Delimited Identifiers . 18
Support for Non-Latin Characters . 19

Formats . 19

Handling of Nonexistent Data . 19

FedSQL Reserved Words . 21

Getting Information About CAS Libraries and Tables . 25

Locale
The locale identifies the language and possibly a regional dialect to use for the user
interface. The fedSql.execDirect action honors the locale set in the LOCALE= CAS
session option for sorting and formatting. The default session locale is en_US. Sort
ordering for the execDirect action honors the collating sequence indicated in the
COLLATE= CAS session option. The default value, COLLATE="UCA", requests a
locale-appropriate collating sequence. COLLATE= also supports an MVA option, which
requests SAS client collating. When COLLATE="MVA", execDirect performs binary
sort ordering. Sort ordering cannot be changed in the SELECT statement.

Data Types
A data type is an attribute of every column in a table that specifies the type of data the
column stores. For example, the data type is the characteristic of a piece of data that says
it is a character string, an integer, a floating-point number, or a date or time. The data
type also determines how much memory to allocate for the column’s value.

15

The following table lists the data types that FedSQL supports for CAS. Beginning with
SAS Viya 3.3, CAS tables support INT64 and INT32 data types in addition to CHAR,
DOUBLE, and VARCHAR.

Table 2.1 FedSQL Data Type Translation for CAS Tables

FedSQL Data Type CAS Data Type Description

BIGINT INT64 stores a large signed, exact
whole number, with a
precision of 19 digits. The
range of integers is
-9,223,372,036,854,775,808
to
9,223,372,036,854,775,807.
Integer data types do not store
decimal values; fractional
portions are discarded.

When FedSQL encounters a
value that corresponds to the
most negative possible INT64
value, it treats it as a null or
nonexistent value.

CHAR(n) CHAR(n) Stores a fixed-length
character string, where n is
the maximum number of
characters to store. The
maximum is required to store
each value regardless of the
actual size of the value. If
char(10) is specified and
the character string is only
five characters long, the value
is right-padded with spaces.

DOUBLE DOUBLE Stores a signed, approximate,
double-precision, floating-
point number. Allows
numbers of large magnitude
and permits computations that
require many digits of
precision to the right of the
decimal point. For SAS
Cloud Analytic Services, this
is a 64-bit double precision,
floating-point number.

16 Chapter 2 • Fundamental Concepts

FedSQL Data Type CAS Data Type Description

INTEGER INT32 stores a regular size signed,
exact whole number, with a
precision of 10 digits. The
range of integers is
-2,147,483,648 to
2,147,483,647. Integer data
types do not store decimal
values; fractional portions are
discarded.

When FedSQL encounters a
value that corresponds to the
most negative possible INT32
value, it treats it as a null or
nonexistent value.

VARCHAR(n) VARCHAR(n) Stores a varying-length
character string, where n is
the maximum number of
characters to store. Each
character uses 1 byte of
storage. The maximum
number of characters is not
required to store each value.
If varchar(10) is
specified and the character
string is only five characters
long, only five characters are
stored in the column.

When SAS Viya Data Connectors read DATE, TIME, and TIMESTAMP columns from
an ANSI-compliant data source, they convert the columns to data type DOUBLE, with a
SAS format applied. The TIME8. SAS format is applied to time values. The DATE9.
SAS format is applied to date values. The DATETIME25.6 SAS format is applied to
timestamp values.

CAS tables use the UTF-8 character set.

Identifiers

Overview of Identifiers
When displaying column information and creating new tables from existing tables in
CAS, FedSQL preserves the identifiers in the input tables. FedSQL preserves the casing
of the identifiers, but it is not case-sensitive. That is, the output of the SELECT
statement might display the stored column names as uppercase, lowercase, or mixed
case, depending on how the column names are stored. However, when column names are
compared for a join, the comparison is case-insensitive. The resulting join output column
matches the casing of the column from the first table that is specified in the join.

For referencing columns in FedSQL statements and for defining column aliases,
FedSQL supports ANSI SQL:1999 regular and delimited identifiers. By supporting

Identifiers 17

ANSI SQL:1999 identifiers, FedSQL is compatible with data sources that also support
the ANSI SQL:1999 identifiers.

Regular Identifiers
Regular identifiers are the type of identifiers that you see in most programming
languages. They are not case-sensitive. Only certain characters are allowed in regular
identifiers.

When you name regular identifiers, use these rules:

• The length of a regular identifier can be 1 to 256 characters.

• The first character of a regular identifier must be a letter.

• Subsequent characters can be letters, digits, or underscores.

• Regular identifiers are case-insensitive.

The following regular identifiers are valid:

 firstName
 lastName
 phone_num1
 phone_num2

Letters in regular identifiers are stored internally as uppercase letters, which allows
letters to be written in any case. For example, phone_num1 is the same as Phone_Num1
and PHONE_NUM1.

Delimited Identifiers
Delimited identifiers are case-sensitive, allow any character, and must be enclosed in
double quotation marks.

When you name delimited identifiers, follow these rules:

• The length of a delimited identifier can be 1 to 256 characters.

• Begin and end delimited identifiers with double quotation marks.

• Delimited identifiers consist of any sequence of characters, including spaces and
special characters, between the beginning and ending double quotation marks.

• Delimited identifiers are case-sensitive.

A string of characters enclosed in double quotation marks is interpreted as an identifier
and not as a character constant. Character constants can be enclosed only in single
quotation marks.

Here is a list of valid delimited identifiers:

" x y z"
 "Ü1"
 "phone_num"
 "a & B"

Letters in delimited identifiers are case-sensitive and their case is preserved when they
are stored in FedSQL. When they are stored, the double quotation marks are removed.
The identifier “phone_num” is not equivalent to “Phone_Num” or “PHONE_NUM”.
The delimited identifier “PHONE_NUM” is equivalent to the regular identifier
“phone_num”.

18 Chapter 2 • Fundamental Concepts

You can use delimited identifiers for terms that might otherwise be a reserved word. For
example, to use the term “char” other than for a character declaration, you would use it
as the delimited identifier “char”. For more information, see “FedSQL Reserved Words”
on page 21.

Support for Non-Latin Characters
FedSQL supports non-Latin characters only in delimited identifiers. Only Latin
characters can be used in nondelimited identifiers.

Formats
A format is an instruction that SAS languages such as the DATA step, DS2, and FedSQL
use to write data values. SAS programs use formats to control the written appearance of
data values, or, in some cases, to group data values together for analysis. For example,
the DOLLARw.d format, which converts numeric values to a decimal monetary value,
writes the numeric value 4503945867 as $4,503,945,867.00.

FedSQL preserves formats that exist on CAS input tables in CAS output tables that it
creates. It also enables you to specify temporary formats on columns in the SELECT
statement with the PUT function. For more information, see Chapter 6, “FedSQL
Formats,” on page 77.

Handling of Nonexistent Data
FedSQL for CAS treats null values in CHAR, DOUBLE, and VARCHAR columns as
SAS missing values. That is, when FedSQL reads a null value in a column of type
CHAR from a ANSI-compliant data source using the CAS server, it converts the ANSI
null value to a SAS character missing value (blank-filled character string). FedSQL
converts ANSI null values in columns of type VARCHAR to a SAS character missing
value (empty character string). FedSQL converts ANSI null values in columns of type
DOUBLE to a SAS numeric missing value (a dot or period).

FedSQL treats null values in INT64 and INT32 columns, and in DOUBLE columns that
were converted from DATE, TIME, and TIMESTAMP data types as ANSI null values.

Processing SAS missing values is different from ANSI handling of null values. In ANSI
SQL, nulls and nonexistent data have no data value. That is, nulls are treated as
unknown values. In SAS mode, they are treated as known values. The use of missing
values has implications for query processing, particularly in a WHERE clause, HAVING
clause, or an outer join ON clause.

Attribute or Behavior ANSI Null Vales SAS Missing Values

internal representation metadata floating point or character

Handling of Nonexistent Data 19

Attribute or Behavior ANSI Null Vales SAS Missing Values

evaluation by logical
operators

is an unknown value that is
compared by using three-
valued logic, whose resolved
values are True, False, and
Unknown. For example,

 WHERE col1 = null

returns UNKNOWN.

is a known value that, when
compared, resolves to a
Boolean result

collating sequence order appears as the smallest value appears as the smallest value

As an illustration, consider this example, which creates table NullTest in CAS that
contains a column of each CAS data type and stores a null value in it. The example then
submits two FedSQL requests with WHERE clauses to find null values. The first
WHERE clause is an equality test. It searches for values “equal to” null in each column.
The second clause looks for the existence of a null value in each column. To avoid
duplication, only the log outputs of the FedSQL queries are shown.

proc ds2 sessref=mysess;
data nulltest;
dcl bigint bigCol;
dcl int intCol;
dcl double doubleCol;
dcl varchar vcCol;
dcl char charCol;
dcl date dateCol;
dcl time timeCol;
dcl timestamp tsCol;
method init();
 bigCol=NULL;
 intCol=NULL;
 doubleCol=NULL;
 vcCol=NULL;
 charCol=NULL;
 dateCol=NULL;
 timeCol=NULL;
 tsCol=NULL;
end; enddata; run; quit;

20 Chapter 2 • Fundamental Concepts

Log 2.1 Log from the Equality Tests

1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 72
 73 proc fedsql sessref=mysess;
 74 select * from nulltest WHERE bigCol = NULL;
 NOTE: No rows returned.
 75 select * from nulltest WHERE intCol = NULL;
 NOTE: No rows returned.
 76 select * from nulltest WHERE doubleCol = NULL;
 77 select * from nulltest WHERE vcCol = NULL;

 78 select * from nulltest WHERE charCol = NULL;
 79 select * from nulltest WHERE dateCol = NULL;
 NOTE: No rows returned.
 80 select * from nulltest WHERE timeCol = NULL;
 NOTE: No rows returned.
 81 select * from nulltest WHERE tsCol = NULL;
 NOTE: No rows returned.
 82 quit;

Log 2.2 Log from the Existence Tests

1 OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 72
 73 proc fedsql sessref=mysess;
 74 select * from nulltest WHERE bigCol IS NULL;
 75 select * from nulltest WHERE intCol IS NULL;
 76 select * from nulltest WHERE doubleCol IS NULL;
 77 select * from nulltest WHERE vcCol IS NULL;
 78 select * from nulltest WHERE charCol IS NULL;
 79 select * from nulltest WHERE dateCol IS NULL;
 80 select * from nulltest WHERE timeCol IS NULL;
 81 select * from nulltest WHERE tsCol IS NULL;
 82 quit;

The equality tests fail to return rows for columns of type BIGINT, INTEGER, DATE,
TIME, and TIMESTAMP. The null values for these data types are not “known” to the
CAS server. The existence tests were successful.

Null values in all numeric columns are represented in SELECT output by a dot (period):

FedSQL Reserved Words
The following words are reserved as FedSQL language keywords and cannot be used as
variable names or in any other way.

Note: You can use delimited identifiers for terms that might otherwise be a reserved
word. For example, to use the term “char” other than for a character declaration, you

FedSQL Reserved Words 21

would use it as the delimited identifier “char”. For more information, see “Delimited
Identifiers” on page 18.

Table 2.2 FedSQL Reserved Words A - D

A

ABORT

ABSOLUTE

ACCESS

ACTION

ADD

AFTER

AGGREGATE

ALL

ALLOCATE

ALTER

ANALYSE

ANALYZE

AND

ANY

ARE

ARRAY

AS

ASC

ASENSITIVE

ASSERTION

ASSIGNMENT

ASYMMETRIC

AT

ATOMIC

AUTORIZATION

B

BACKWARD

BEFORE

BEGIN

BETWEEN

BIGINT

BINARY

BIT

BLOB

BOOLEAN

BOTH

BY

C

CACHE

CALL

CALLED

CARDINALITY

CASCADE

CASCADED

CASE

CAST

CHAIN

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_LENGTH

CHARACTERISTICS

CHECK

CHECKPOINT

CLASS

CLOB

CLOSE

CLUSTER

COALESCE

COLLATE

COLLECT

COLUMN

COMMENT

COMMIT

COMMITTED

CONDITION

CONNECT

CONSTRAINT

CONSTRAINTS

CONVERSION

CONVERT

COPY

CORR

CORRESPONDING

COVAR_POP

COVAR_SAMP

CREATE

CREATEDB

CREATEUSER

CROSS

CUBE

CUME_DIST

CURRENT

CURRENT_DATE

CURRENT_DEFAULT_TR
ANSFORM_GROUP

CURRENT_PATH

CURRENT_ROLE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_TRANSFORM
_GROUP_FOR_TYPE

CURRENT_USER

CURSOR

CYCLE

D

DATABASE

DAY

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DEFAULTS

DEFERRABLE

DEFERRED

DEFINER

DELETE

DELIMITER

DELIMITERS

DENSE_RANK

DEREF

DESC

DESCRIBE

DETERMINISTIC

DISCONNECT

DISTINCT

DO

DOMAIN

DOUBLE

DROP

DYNAMIC

22 Chapter 2 • Fundamental Concepts

Table 2.3 FedSQL Reserved Words E - O

E

EACH

ELEMENT

ELSE

ENCODING

ENCRYPTED

END

END-EXEC

ESCAPE

EVERY

EXCEPT

EXCLUDING

EXCLUSIVE

EXEC

EXECUTE

EXISTS

EXPLAIN

EXTERNAL

EXTRACT

F

FALSE

FETCH

FILTER

FIRST

FLOAT

FOR

FORCE

FOREIGN

FORWARD

FREE

FREEZE

FROM

FULL

FUNCTION

FUSION

G

GET

GLOBAL

GRANT

GROUP

GROUPING

H

HANDLER

HAVING

HOLD

I

ILIKE

IMMEDIATE

IMMUTABLE

IMPLICIT

IN

INCLUDING

INCREMENT

INDEX

INDICATOR

INHERITS

INITIALLY

INNER

INOUT

INPUT

INSENSITIVE

INSERT

INSTEAD

INT

INTEGER

INTERSECT

INTERSECTION

INTERVAL

INTO

INVOKER

IS

ISNULL

ISOLATION

J

JOIN

K

KEY

L

LANCOMPILER

LANGUAGE

LARGE

LAST

LATERAL

LEADING

LEFT

LEVEL

LIKE

LIMIT

LISTEN

LOAD

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOCATION

LOCK

M

MATCH

MAXVALUE

MEMBER

MERGE

METHOD

MINUTE

MINVALUE

MODE

MODIFIES

MODULE

MONTH

MOVE

MULTISET

N

NAMES

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NEXT

NO

NOCREATEDB

NOCREATEUSER

NONE

NORMALIZE

NOT

NOTHING

NOTIFY

NOTNULL

NULL

NULLIF

NUMERIC

O

OF

OFF

OFFSET

OIDS

OLD

ON

ONLY

OPEN

OPERATOR

OPTION

OR

ORDER

OUT

OUTER

OVER

OVERLAPS

OVERLAY

OWNER

FedSQL Reserved Words 23

Table 2.4 FedSQL Reserved Words P - Z

P

PARAMETER

PARTIAL

PARTITION

PASSWORD

PATH

PENDANT

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DESC

PLACING

POSITION

PRECISION

PREPARE

PRESERVE

PRIMARY

PRIOR

PRIVILEGES

PROCEDURAL

PROCEDURE

R

RANK

READ

READS

REAL

RECHECK

RECURSIVE

REF

REFERENCES

REFERENCING

REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

REINDEX

RELATIVE

RENAME

REPLACE

RESET

RESTART

RESTRICT

RESULT

RETURN

RETURNS

REVOKE

RIGHT

ROLLBACK

ROLLUP

ROW

ROWS

ROW_NUMBER

RULE

S

SCHEMA

SCOPE

SCROLL

SEARCH

SECOND

SECURITY

SELECT

SENSITIVE

SPECIFIC

SPECIFICTYPE

SEQUENCE

SERIALIZABLE

SESSION

SESSION_USER

SET

SETOF

SHARE

SHOW

SIMILAR

SIMPLE

SMALLINT

SOME

SQLEXCEPTION

SQLSTATE

SQLWARNING

STABLE

START

STATEMENT

STATIC

STATISTICS

STDDEV_POP

STDDEV_SAMP

STDIN

STDOUT

STORAGE

STRICT

SUBMULTISET

SUBSTRING

SYMMETRIC

SYSID

SYSTEM

SYSTEM_USER

T

TABLE

TABLESAMPLE

TEMP

TEMPLATE

TEMPORARY

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TOAST

TRAILING

TRANSACTION

TRANSLATE

TRANSLATION

TREAT

TRIGGER

TRIM

TRUE

TRUNCATE

TRUSTED

TYPE

U

UESCAPE

UNENCRYPTED

UNION

UNIQUE

UNKNOWN

UNLISTEN

UNNEST

UNTIL

UPDATE

USAGE

USER

USING

V

VACUUM

VALID

VALIDATOR

VALUE

VALUES

VARCHAR

VARYING

VAR_POP

VAR_SAMP

VERBOSE

VERSION

VIEW

VOLATILE

W

WHEN

WHENEVER

WHERE

WIDTH_BUCKET

WINDOW

WITH

WITHIN

WITHOUT

WORK

WRITE

Y

YEAR

Z

ZONE

24 Chapter 2 • Fundamental Concepts

Getting Information About CAS Libraries and
Tables

The FedSQL language does not support dictionary queries in CAS. You can obtain
information for writing queries in the following ways.

caslibs identify the data sources that are available to a CAS session. They are used to
reference libraries in CAS. This is similar to the way librefs identify SAS libraries in
SAS. To show available data sources:

• From SAS, use the CASLIB statement with the _ALL_ and LIST options. See
“CASLIB Statement” in SAS Cloud Analytic Services: User’s Guide.

• When programming with actions, use the table.caslibInfo action. See “Tables Action
Set” in SAS Viya: System Programming Guide.

caslibs also organize in-memory tables. Typically, in-memory tables are loaded from the
caslib's data source. To list tables that are available in memory:

• From SAS, use either of the following:

• PROC CASUTIL with the LIST TABLES statement. See “LIST Statement” in
SAS Cloud Analytic Services: User’s Guide.

• PROC DATASETS with a CAS LIBNAME engine libref.

• With action programming, use the table.tableInfo action.

To list information about the columns of in-memory tables:

• From SAS, use either of the following:

• PROC CASUTIL with the CONTENTS statement. See “CONTENTS Statement”
in SAS Cloud Analytic Services: User’s Guide.

• PROC CONTENTS with a CAS LIBNAME engine libref.

• With action programming, use the table.columnInfo action.

Getting Information About CAS Libraries and Tables 25

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=n0lgusu0v43zxwn1kc5m6cvtnzey.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-table-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-table-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=p1i7u2vczdh25en11efvdr7rk0of.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=p1i7u2vczdh25en11efvdr7rk0of.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=p0e32z0e8q5ge6n1fk1u8cuhzj4g.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.4&docsetTarget=p0e32z0e8q5ge6n1fk1u8cuhzj4g.htm&locale=en

26 Chapter 2 • Fundamental Concepts

Chapter 3

Joining Data with FedSQL

Overview of Joins . 27

Example: Typical Two-Table Join . 29

Example: Typical Three-Table Join . 29

Example: Simple Join Including All Columns . 30

Example: Equijoin Including All Columns . 31

Example: Simple Cross Join . 32

Example: Cross Join with Specified Columns and a WHERE Clause 33

Example: Qualified Join with an ON Clause . 34

Example: Qualified Join with a USING Clause . 36

Example: Qualified Join with an ON Clause and a WHERE Clause 37

Example: Natural Join . 37

Example: Natural Join with a WHERE Clause . 38

Understanding Inner and Outer Join Types . 39

Example: Inner Join . 39

Example: Left Outer Qualified Join . 40

Example: Left Outer Natural Join . 41

Example: Right Outer Qualified Join . 41

Example: Right Outer Natural Join . 42

Example: Full Outer Qualified Join . 43

Example: Full Outer Natural Join . 44

Overview of Joins
A join operation is a query that combines data from two or more tables based usually on
relationships among the data in those tables. When multiple table specifications are
listed in the FROM clause of a SELECT statement, they are processed to form one result
set. The result set contains data from each contributing table and can be saved as a table
or used as-is.

27

Most join operations contain at least one join condition, which is either in the FROM
clause or in a WHERE clause. For example, you can join the data of two tables based on
the values of a column that exists in both tables.

Most joins are of two tables. However, you can join more than two tables. When a join
operation is requested on three or more tables, FedSQL first joins two tables based on
the join condition. Then FedSQL joins the results to another table based on the join
condition. This process continues until all tables are joined into the result set.

FedSQL supports simple joins, equijoins, cross joins, qualified joins, and natural joins.
Appropriate syntax determines the type of join operation. In addition, the qualified and
natural join operations can be affected by specifying the join type, which can be an inner
join or an outer join.

simple join
multiple tables, separated by commas, are listed in the FROM clause of a SELECT
statement. The join can include all or specified columns from the input tables. There
is no join condition.

equijoin
a simple join that is subset with a WHERE clause. The join condition is an equality
comparison.

cross join
a join of two tables requested by inserting the keywords CROSS JOIN between the
table names in the FROM clause. A cross join obtains similar results as a simple join,
except that it can be subset with a WHERE clause. You cannot use an ON clause. A
CROSS JOIN is as referred to as a relational join. You can also specify a WHERE
clause.

qualified join
a join of two tables requested by inserting the keyword JOIN between the table
names in the FROM clause. The returned rows are filtered based on the column
specified in an ON clause or USING clause. You can use a WHERE clause to further
subset the query results.

natural join
a join of two tables requested by inserting the keywords NATURAL JOIN between
the table names in the FROM clause. The natural join selects rows from two tables
that have equal values in columns that share the same name and data type. You can
specify a subset of the columns from the input tables.

inner join
a join of two tables requested by inserting the keywords INNER JOIN between the
table names in the FROM clause. An inner join returns a result set that includes all
rows from the first table that match rows from the second table. Inner joins return
only those rows that satisfy the join condition. Unmatched rows from both tables are
discarded.

outer join
a join of two tables requested by inserting the keywords OUTER JOIN between the
table names in the FROM clause. An outer join returns a result set that includes all
rows that satisfy the join condition as well as unmatched rows from one or both
tables. An outer join can be a left, right, or full outer join.

• A left outer join is requested with the syntax LEFT [OUTER]. A left outer join
returns a result set that includes all rows that satisfy the join condition and rows
from the left (first) table that do not match the join condition.

28 Chapter 3 • Joining Data with FedSQL

• A right outer join is requested with the syntax RIGHT [OUTER]. A right outer
join returns a result set that includes all rows that satisfy the join condition and
rows from the right (second) table that do not match the join condition.

• A full outer join is requested with the syntax FULL [OUTER]. A full outer join
returns all matching and unmatching rows from the left and right table.

Example: Typical Two-Table Join
This example joins a column from two tables to produce a single result set.

Program
select products.product, sales.totals
 from products, sales
 where products.prodid=sales.prodid;

Here is the output from the SELECT statement:

Output 3.1 Result Set from Join of Tables Products and Sales

Key Ideas
• Most join operations contain at least one join condition, which is either in the FROM

clause or in a WHERE clause. This example specifies a WHERE clause.

• The query selects a column from each input table (Product from table “Products” on
page 116 and Totals from table “Sales” on page 117) and merges the content based
on the value of a third column that is common to both tables, Prodid.

• The table columns are identified by using a two-part name in the form table-
name.column-name.

• Because the input tables are specified in a comma-separated list, this query is
considered a simple join.

Example: Typical Three-Table Join
This example joins a column from three tables to produce a single result set.

Example: Typical Three-Table Join 29

Program
select products.product, sales.totals, customers.city
 from products, sales, customers
 where products.prodid=sales.prodid and sales.custid=customers.custid;

Here is the output from the SELECT statement:

Output 3.2 Result Set from Join of Tables Products, Sales, and Customers

Key Ideas
• This FedSQL SELECT statement specifies a column from each of three tables:

Product from table “Products” on page 116, Totals from table “Sales” on page 117,
and City from table “Customers” on page 112 to form the result set.

• To perform a join operation of three or more tables, FedSQL first joins two tables
based on the join condition. Then FedSQL joins the results to another table based on
the join condition. This process continues until all tables are joined into the result set.
This query first merges the content of the Products and Sales tables based on the
values in a common column ProdId. The content of the result set is then merged with
table Customers based on the value in a CustId column that the Sales and Customers
tables have in common.

• Because of the syntax (comma-separated list of input tables), this query is also
considered to be a simple join.

Example: Simple Join Including All Columns
This example joins all columns from the Products table with all columns from the Sales
table into a single result set.

Program
select * from products, sales;

Here is the output from the SELECT statement:

30 Chapter 3 • Joining Data with FedSQL

Output 3.3 Simple Join of Tables Products and Sales

Key Ideas
• This is the simplest form of the simple join. The FedSQL SELECT statement

specifies to merge all of the columns from two tables, “Products” on page 116 and
“Sales” on page 117, and display the results as if they were a single table. The
asterisk specifies that all columns should be included.

• Joining tables in this way produces a result set where each row from the first table is
combined with each row of the second table, and so on. This is referred to as a
Cartesian join. The result is a large, basically meaningless result set. Typically, you
want to filter the results with a WHERE clause or JOIN expression.

Example: Equijoin Including All Columns
This example joins all columns from tables Products and Sales into a single result set
based on an equality condition.

Example: Equijoin Including All Columns 31

Program
select * from products, sales
 where products.prodid=sales.prodid;

Here is the output from the SELECT statement:

Output 3.4 Equijoin of All Columns

Key Ideas
• An equijoin produces a more meaningful result than just a simple join, because only

rows meeting the equality test are returned. Multiple match criteria can be specified
by using the AND operator. When multiple match criteria are specified, only rows
that meet all of the equality tests are returned.

• This equijoin example selects all columns from the tables “Products” on page 116
and “Sales” on page 117 where the values match for the column Prodid, which exists
in both tables. Because all columns are selected with the * notation, the Prodid
column is duplicated in the result set. If you were to specify the columns Prodid,
Product, and Totals in the SELECT statement, the column Prodid is not duplicated,
even though it exists in both the Products and Sales tables.

Example: Simple Cross Join
This example uses cross join syntax to merge all columns from tables Products and Sales
into a single result set.

Program
select * from products cross join sales;

Here is the output from the SELECT statement:

32 Chapter 3 • Joining Data with FedSQL

Output 3.5 Cross Join of Two Tables

Key Ideas
• A cross join is requested with the syntax CROSS JOIN. A cross join is a relational

join that results in a Cartesian product of two tables.

• This cross join example selects all columns and all rows from the tables Products and
Sales, and it produces the same results as a simple join of all columns of the two
tables.

Example: Cross Join with Specified Columns and
a WHERE Clause

This example uses cross join syntax and a WHERE clause to merge specified columns
from tables Products and Sales into a single result set. The result set is filtered with a
WHERE clause.

Example: Cross Join with Specified Columns and a WHERE Clause 33

Program
select products.prodid, products.product, sales.totals
 from products cross join sales
 where products.prodid=sales.prodid;

Here is the output from the SELECT statement:

Output 3.6 Result Set from Cross Join with a WHERE Clause

Key Ideas
• A cross join can be subset with a WHERE clause, but you cannot use an ON clause.

• This cross join example selects the columns Prodid and Product from the tables
“Products” on page 116 and column Totals from “Sales” on page 117. The result set
includes the data where the values match for the column Prodid. The results are the
same as an equijoin of two tables.

Example: Qualified Join with an ON Clause
This example uses join syntax with the ON clause to merge all columns from tables
Products and Sales into a single result set.

Program
select * from products join sales
 on (sales.country='United States');

Here is the output from the SELECT statement:

34 Chapter 3 • Joining Data with FedSQL

Output 3.7 Results of Qualified Join with an ON Clause

Key Ideas
• A qualified join requests a join of two tables by inserting the keyword JOIN between

the table names in the FROM clause. The returned rows are filtered based on the
column specified in an ON clause or USING clause. A qualified join provides an
easy way to control which rows appear in the result set. You can use any columns to
match rows from one table against those from another table.

• This example uses an ON clause to specify a join condition to filter the data. The ON
clause accepts search conditions such as conditional expressions like the WHERE
clause. The ON clause joins tables where the column names do not match in both
tables. For columns that exist in both tables, the ON clause preserves the columns
from each joined table separately in the result set.

• This qualified join example selects all columns from the tables “Products” on page
116 and “Sales” on page 117. The returned rows are filtered based on the column
Country in the Sales table, where the value in Country equals United States. The
column Prodid exists in both tables and is duplicated in the result set. The filter
column name and value are enclosed within parentheses.

• A qualified join can be an inner join or an outer join. These joins are requested with
the syntax INNER or OUTER. If the join type specification is omitted, then an inner
join is implied.

Related Information
• “Understanding Inner and Outer Join Types” on page 39

• “Example: Left Outer Qualified Join” on page 40

• “Example: Right Outer Qualified Join” on page 41

• “Example: Full Outer Qualified Join” on page 43

Example: Qualified Join with an ON Clause 35

Example: Qualified Join with a USING Clause
This example uses join syntax with the USING clause to merge all columns from tables
Products and Sales into a single result set.

Program
select * from products join sales
 using (prodid);

Here is the output from the SELECT statement:

Output 3.8 Result Set of Qualified Join with a USING Clause

Key Ideas
• A qualified join with a USING clause specifies columns to test for equality. The

columns listed in the USING clause must be present in both tables. The USING
clause is like a shorthand way of defining join conditions without having to specify a
qualifier. The USING clause is equivalent to a join condition where each column
from the left table is compared to a column with the same name in the right table.
For columns that exist in both tables, the USING clause merges the columns from
the joined tables into a single column.

• This qualified join example selects all columns from the tables “Products” on page
116 and “Sales” on page 117. The returned rows are filtered by selecting the values
that match for the column Prodid, which exists in both tables. The column Prodid is
enclosed within parentheses.

Note that unlike an equijoin and a cross join, the column Prodid is not duplicated in
the result set.

• A qualified join can be an inner join or an outer join, which is requested with the
syntax INNER or OUTER. If the join type specification is omitted, then an inner join
is implied.

Related Information
• “Understanding Inner and Outer Join Types” on page 39

36 Chapter 3 • Joining Data with FedSQL

Example: Qualified Join with an ON Clause and a
WHERE Clause

This example uses join syntax and an ON clause to join specified columns from tables
Products and Sales into a single result set. The result set is filtered with a WHERE
clause.

Program
select products.prodid, products.product, sales.totals
 from products join sales
 on (sales.country='United States')
 where products.product='Rice';

Here is the output from the SELECT statement.

Output 3.9 Result Set from Qualified Join with an ON Clause and WHERE Clause

Key Ideas
This qualified join example selects columns Prodid and Product from table “Products”
on page 116 and column Totals from table “Sales” on page 117. The returned rows are
filtered based on the column Country from table Sales where the value equals United
States. The returned rows are further subset where the value for Product equals Rice.

Related Information
• “Understanding Inner and Outer Join Types” on page 39

Example: Natural Join
This example uses natural join syntax to merge the content in tables Products and Sales
into a single result set.

Program
select * from products natural join sales;

Here is the output from the SELECT statement:

Example: Natural Join 37

Output 3.10 Result Set of Natural Join of All Columns in Tables Products and Sales

Key Ideas
• A natural join selects rows from two tables that have equal values in columns that

share the same name and the same type. A natural join is requested with the syntax
NATURAL JOIN. If like columns are not found, then a cross join is performed.

• Do not use an ON clause with a natural join. When using a natural join, an ON
clause is implied, matching all like columns. You can use a WHERE clause to subset
the query results. A natural join functions the same as a qualified join with the
USING clause. A natural join is a shorthand of USING. Like USING, like columns
appear only once in the result set.

• A natural join can be an inner join or an outer join, which is requested with the
syntax INNER or OUTER. If the join type specification is omitted, then an inner join
is implied.

• This natural join example selects all columns from the tables “Products” on page 116
and “Sales” on page 117. The result set includes the data where the values match for
the column Prodid, which exists in both tables. Unlike a cross join and a simple join
of two tables, the natural join result set does not include duplicate Prodid columns.

Related Information
• “Understanding Inner and Outer Join Types” on page 39

Example: Natural Join with a WHERE Clause
This example uses natural join syntax to merge specified columns from the Customers
and Sales tables. The result set is filtered with a WHERE clause.

Program
select customers.city, sales.totals
 from sales natural join customers
 where customers.country='United States';

Here is the output from the SELECT statement:

38 Chapter 3 • Joining Data with FedSQL

Output 3.11 Result Set of Natural Join with a WHERE Clause

Key Ideas
This natural join example selects columns City and Totals from the tables “Sales” on
page 117 and “Customers” on page 112. The result set includes the data where the
values match for the columns Custid and Country, which exist in both tables. The
returned rows are subset where the value for Country equals United States.

Related Information
• “Understanding Inner and Outer Join Types” on page 39

Understanding Inner and Outer Join Types
The result set from a qualified join and a natural join can be affected by specifying the
join type, which can be an inner join or an outer join. By default, qualified joins and
natural joins function as inner joins.

An outer join returns a result set that includes all rows that satisfy the join condition as
well as unmatched rows from one or both tables. An outer join can be a left, right, or full
outer join. An inner join discards any rows where the join condition is not met, but an
outer joins maintains some or all of the unmatched rows. For an outer join, a specified
WHERE clause is applied after the join is performed and eliminates all rows that do not
satisfy the WHERE clause. Applying a WHERE clause to an outer join can sometimes
defeat the purpose, because the WHERE clause deletes the very rows that the outer join
retains.

Example: Inner Join
This example uses inner join syntax to merge columns from tables Customers and Sales
into a single result set.

Program
select * from products inner join sales
 on (sales.country='United States');

select customers.city, sales.totals
 from sales natural inner join customers
 where country='United States';

Example: Inner Join 39

Key Ideas
• An inner join returns a result set that includes all rows from the first table that

matches rows from the second table.

• Inner joins return only those rows that satisfy the join condition. Unmatched rows
from both tables are discarded.

• By default, qualified joins and natural joins function as inner joins. Including the
syntax INNER has no additional effects on the result set.

Example: Left Outer Qualified Join
This example uses left outer join syntax to merge specified columns from tables
Customers and Sales into a single result set.

Program
select customers.city, sales.totals
 from customers left outer join sales
 on (customers.country='United States');

Here is the output from the SELECT statement:

Output 3.12 Result Set of Left Outer Qualified Join with an ON Clause

Key Ideas
• A left outer join is requested with the syntax LEFT [OUTER].

• A left outer join returns a result set that includes all rows that satisfy the join
condition and rows from the left table that do not match the join condition.

40 Chapter 3 • Joining Data with FedSQL

Therefore, a left outer join returns all rows from the left table, and only the matching
rows from the right table.

• This qualified join example filters rows based on the column Country where the
value equals United States. The result set also includes rows from the Customers
table that do not match the join condition. As a left outer join, all rows from the
Customers table are returned.

Example: Left Outer Natural Join
This example uses natural left outer join syntax to merge tables Products and Sales into a
single result set.

Program
select * from sales natural left outer join products;

Here is the output from the SELECT statement:

Output 3.13 Result Set of a Left Outer Natural Join

Key Ideas
• A left outer join returns a result set that includes all rows that satisfy the join

condition and rows from the left table that do not match the join condition.

• This natural join example returns a result set that includes all rows from both tables
that satisfy the join condition, which includes the data where the values match for the
column Prodid. The result set also includes a row from the Sales table that does not
match the join condition. As a left outer join, all rows from the Sales table are
returned.

Example: Right Outer Qualified Join
This example uses right outer join syntax to merge tables Products and Sales into a
single result set.

Program
select * from products right outer join sales

Example: Right Outer Qualified Join 41

 on (sales.country='United States');

Here is the output from the SELECT statement:

Output 3.14 Result Set from Right Outer Qualified Join

Key Ideas
• A right outer join is requested with the syntax RIGHT [OUTER].

• A right outer join returns a result set that includes all rows that satisfy the join
condition and rows from the right table that do not match the join condition.
Therefore, a right outer join returns all rows from the right table, and only the
matching rows from the left table.

• This qualified join example returns a result set that includes all rows from both tables
that satisfy the join condition. The join condition filters rows based on the column
Country where the value equals United States. The result set also includes rows from
the Sales table that do not match the join condition. As a right outer join, all rows
from the Sales table are returned.

Example: Right Outer Natural Join
This example uses natural right outer join syntax to merge tables Products and Sales into
a single result set.

Program
select * from products natural right outer join sales;

Here is the output from the SELECT statement:

42 Chapter 3 • Joining Data with FedSQL

Output 3.15 Result Set from Right Outer Natural Join

Key Ideas
• A right outer join returns a result set that includes all rows that satisfy the join

condition and rows from the right table that do not match the join condition.

• This natural join example returns a result set that includes all rows from both tables
that satisfy the join condition, which includes the data where the values match for the
column Prodid. The result set also includes a row from the Sales table that does not
match the join condition. As a right outer join, all rows from the Sales table are
returned.

Example: Full Outer Qualified Join
This example uses full outer join syntax to merge tables Products and Sales into a single
result set.

Program
select * from products full outer join sales
 on (products.product='Rice');

Here is the output from the SELECT statement:

Output 3.16 Result Set from a Full Outer Qualified Join

Example: Full Outer Qualified Join 43

Key Ideas
• A full outer join is requested with the syntax FULL [OUTER]. A full outer join

preserves unmatched rows from both tables. That is, a full outer join returns all
matching and unmatching rows from the left and right table.

• This qualified join example returns a result set that includes all rows from both tables
that satisfy the join condition. The join condition filters rows based on the column
Product containing the value Rice. The result set also includes all rows from both
tables that do not match the join condition. As a full outer join, all rows from both
tables are returned.

Example: Full Outer Natural Join
This example uses natural full outer join syntax to merge tables Products and Sales into a
single result set.

Program
select * from products natural full outer join sales;

Here is the output from the SELECT statement:

Output 3.17 Result Set from Full Outer Natural Join

Key Ideas
• A full outer join preserves unmatched rows from both tables. That is, a full outer join

returns all matching and unmatching rows from the left and right table.

• This natural join example returns a result set that includes all rows from both tables
that satisfy the join condition, which includes the data where the values match for the
column Prodid. The result set also includes a row from the Sales table and a row
from the Products table that does not match the join condition. As a full outer join,
all rows from both tables are returned.

44 Chapter 3 • Joining Data with FedSQL

Chapter 4

FedSQL Expressions and
Subqueries

Overview of FedSQL Expressions and Subqueries . 45

FedSQL Value Expressions . 45
Numeric Value Expressions . 45
Row Value Expressions . 46

Subqueries . 46

Subquery Examples . 47
General Example of a Scalar Subquery in the WHERE Clause 47
General Example of a Non-Correlated Subquery in the FROM Clause 47
Specific Example of a Non-Correlated Subquery in the FROM Clause 48

Overview of FedSQL Expressions and Subqueries
FedSQL for CAS supports value expressions and subqueries in the SELECT statements.

FedSQL Value Expressions

Numeric Value Expressions
Numeric value expressions enable you to compute numeric values by using addition (+),
subtraction (–), multiplication (*), and division (/) operators. Numeric values can be
numeric literals. These values can also be column names, variables, or subqueries as
long as the column names, variables, or subqueries evaluate to a numeric value.

The data type of the result of a numeric value expression is based on the data type of the
operands. Here are examples of numeric value expressions.

• -6

• salary * 1.07

• cost + (exp - discount)

45

Row Value Expressions
A row value expression, or row value constructor, is one or more value expressions
enclosed in parentheses. Multiple value expressions are separated by commas.

A row value constructor can contain the following values.

• value-expression

• NULL

• DEFAULT

• ARRAY[]

• ROW (row-value-constructor1, row-value-constructor2, row-value-
constructor2...row-value-constructorN)

• row-subquery

NULL makes the value for the corresponding column in the table null. DEFAULT makes
the value for the corresponding column the default value. ARRAY[] is valid only if the
destination is an array and creates an empty array. The row constructor values other than
NULL, DEFAULT, and ARRAY[] can be simple values or value expressions.

A row value constructor operates on a list of values or columns rather than a single value
or column. You can operate on an entire row at a time or a subset of a row. This example
illustrates the use of the ROW keyword with a row value constructor:

select * from WorldTemps where ROW (city, country) = ROW ('Madrid', 'Spain')

Subqueries
A subquery is a query expression that is nested as part of another query expression. It is
specified within parenthesis and has the purpose of returning a value. A subquery can
return atomic values (one column with one row in it – also known as a scalar query),
row values (one row for one or many columns), or table values (one or many rows for
one or many columns).

FedSQL for CAS supports non-correlated subqueries. A non-correlated subquery
calculates a value from a joined table that is independent of the outer query and uses the
value somewhere in the outer query. A non-correlated subquery does not interact much
with the data being accumulated in the rest of the query. The non-correlated subquery is
evaluated just once and the result used repeatedly in the evaluation of an outer query.
Most importantly, the result of the subquery does not change if the data processed by the
outer query changes.

The non-correlated subqueries can appear in various places within the SELECT
statement. Here are examples:

• SELECT Statement

• WHERE Clause

• HAVING Clause

• FROM Clause

46 Chapter 4 • FedSQL Expressions and Subqueries

Scalar subqueries can be specified anywhere a scalar value can be used. Subqueries that
return row values are typically specified in the WHERE clause. Subqueries that return
table values are specified in the FROM clause.

FedSQL for CAS does not support use of non-correlated subqueries with the IN, ANY,
and ALL predicates. For example, the following non-correlated subquery is not
supported:

select * from table1 where x in (select x from table2);

Subqueries can be nested. If more than one subquery is used in a query expression, then
the innermost query is evaluated first, followed by the next innermost query, and so on,
moving outward.

Subquery Examples

General Example of a Scalar Subquery in the WHERE Clause

Program
Probably the most common use of a non-correlated subquery is a scalar subquery in a
WHERE or HAVING clause to filter rows coming out of the outer query.

select something from table1 where table1.x >
 (select avg(something-else) from table2)

Key Ideas
• Something is a “<sql-expression>” that selects at least one column from table1.

• A WHERE clause is specified to filter the rows that are returned. The WHERE
clause specifies a different column from table1.

• The WHERE clause includes an operator (>) between the inner query and the outer
query that serves as a filter.

• The subquery selects a single value from at least one column in table2 (using a
“<sql-expression>”) that is used as input to the operator.

General Example of a Non-Correlated Subquery in the FROM Clause

Program
Subqueries in the FROM clause are used to package and name an intermediate result set
for use in the outer query. The outer query can join, aggregate, sort, or otherwise
manipulate the intermediate result. A very common case would be to put a join inside
the FROM clause subquery, with calculated values in the SELECT list of that join, and
use the outer query to group by the calculated values. Here is an example of such a
query. The subquery specifies the SUBSTRING function to create the intermediate result
set.

 select A, max(B)
 from
 (select substring(table1.x from 1 for 2) ||
 substring(table2.y from 3 for 2) as A,

Subquery Examples 47

 table1.B
 from table1, table2
 where table1.z=table2.z) T
 group by A

Key Ideas
• The outer SELECT statement specifies two variables: A and max(B).

• The subquery does several things:

• it uses the SUBSTRING function to select a column value from column X in
table1 and column Y in table2 and creates an intermediate result set, which is
assigned the alias A.

• it selects column table1.B, which will later have the MAX function applied.

• it specifies to join table1 and table2 based on values that they have in common in
a column that exists in both tables, X. The join is assigned the alias T.

• The outer query specifies to group the results in T by the value in A.

Specific Example of a Non-Correlated Subquery in the FROM Clause

Program
This example queries tables WORLDTEMPS and WORLDCITYCOORDS by
specifying a subquery in the FROM clause. This example uses the subquery to annotate
each output row with the sum of the average high for the matching nation.

select
 C.*, T.AvgHigh as AvgHighCity, AvgHighNation
 from worldcitycoords C,
 worldtemps T,
 (select Country, avg(AvgHigh) as AvgHighNation from worldtemps
 group by Country) AHN
 where T.City = C.City and
 T.Country = AHN.Country
 order by C.Country, C.City

Here is the output from the SELECT statement:

48 Chapter 4 • FedSQL Expressions and Subqueries

Output 4.1 Results of Query on Tables WorldCityCoords and WorldTemps

Key Ideas
• The outer query selects all columns from table WorldCityCoords. the AvgHigh

column from table WorldTemps (and names it AvgHighCity), and specifies a new
column named AvgHighNation.

• The subquery invokes the AVG function on column AvgHigh from WorldTemps to
create column AvgHighNation and specifies to group the results by Country. The
output from the subquery is assigned the variable AHN.

• The outer query specifies to join tables WorldCityCoords and WorldTemps based on
the values of the column City, which they have in common, as well as the Country
values that table WorldTemps and output variable AHN have in common.

• The outer query orders the results of the equijoin by City and Country.

Subquery Examples 49

50 Chapter 4 • FedSQL Expressions and Subqueries

Part 2

FedSQL Reference

Chapter 5
FedSQL Expressions and Predicates . 53

Chapter 6
FedSQL Formats . 77

Chapter 7
FedSQL Functions . 83

Chapter 8
FedSQL Statements . 87

Chapter 9
FedSQL Table Options . 103

51

52

Chapter 5

FedSQL Expressions and
Predicates

Overview of Expressions and Predicates . 53

Dictionary . 53
BETWEEN Predicate . 53
CASE Expression . 54
COALESCE Expression . 58
DISTINCT Predicate . 59
EXISTS Predicate . 60
IN Predicate . 61
IS FALSE Predicate . 62
IS MISSING Predicate . 64
IS NULL Predicate . 65
IS TRUE Predicate . 66
IS UNKNOWN Predicate . 67
LIKE Predicate . 68
NULLIF Expression . 70
<sql-expression> . 71

Overview of Expressions and Predicates
Expressions are combinations of symbols and operators that FedSQL evaluates and then
returns a single value. Expressions can be as simple as a single constant or column or as
complex as multiple expressions joined by an operator.

Predicates specify conditions that evaluate to either true, false, or unknown. They are
used most often in WHERE and HAVING clauses and in the FROM clause in join
conditions.

Dictionary

BETWEEN Predicate
Selects rows where column values are within a range of values.

Valid in: CAS

53

Syntax
expression [NOT] BETWEEN expression AND expression

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

Details
The BETWEEN predicate specifies a range of column values to select using these
criteria:

• The SQL expressions must be of compatible data types.

• Because a BETWEEN condition evaluates the boundary values as a range, it is not
necessary to specify the smaller quantity first.

• You can use the NOT logical operator to exclude a range of numbers. For example,
you can use NOT to eliminate customer numbers between 1 and 15 (inclusive) so
that you can retrieve data on customer numbers beyond 15.

Example
select * from invtry
 where invtry.name
 between 'A' and 'Mzzz';

See Also

Expressions:

• “<sql-expression>” on page 71

CASE Expression
Selects result values that satisfy search conditions and value comparisons.

Valid in: CAS

Syntax
CASE [case-expression]

WHEN when-expression THEN result-expression
…
[WHEN when-expression THEN result-expression]
[ELSE result-expression]
END

54 Chapter 5 • FedSQL Expressions and Predicates

Arguments
case-expression

specifies any valid SQL expression that evaluates to a table column whose values are
compared to when-expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

when-expression
specifies any valid SQL search condition expression or a value expression.

• When case-expression is not specified, when-expression is a search condition
expression that evaluates to true or false.

• When case-expression is specified, when-expression is an SQL value expression
that is compared to case-expression and that evaluates to true or false.

See “<sql-expression>” on page 71

result-expression
specifies an SQL expression that evaluates to a value.

See “<sql-expression>” on page 71

Details
The CASE expression selects values if certain conditions are met. The case-expression
argument returns a single value that is conditionally evaluated for each row of a table.
Use the WHEN-THEN clauses to execute a CASE expression for some, but not all, of
the rows in the table that is being queried or created. The optional ELSE expression
gives an alternative action if no THEN expression is executed.

When you omit case-expression, when-expression is evaluated as a Boolean (true or
false) value. If when-expression returns a nonzero, non-null result, then the WHEN
clause is true. If case-expression is specified, then it is compared with when-expression
for equality. If case-expression equals when-expression, then the WHEN clause is true.

If the when-expression is true for the row that is being executed, then the result-
expression that follows THEN is executed. If when-expression is false, then FedSQL
evaluates the next when-expression until they are all evaluated. If every when-expression
is false, then FedSQL executes the ELSE expression, and its result becomes the CASE
expression's result. If no ELSE expression is present and every when-expression is false,
then the result of the CASE expression is null.

You can use a CASE expression as an item in the SELECT clause and as either operand
in an SQL expression.

Comparisons
The COALESCE expression and the NULLIF expression are variations of the CASE
expression.

The following CASE expression and COALESCE expression are equivalent:

case
 when value1 is not null
 then value1
 when value2 is not null

CASE Expression 55

 then value2
 else value3
end

coalesce(value1, value2, value3)

The following CASE expression and NULLIF expression are equivalent:

case
 when value1 = -1 then null
 else value1
end

nullif(value1, -1);

Examples

Example 1: The CASE Expression Using a Search Condition
Table: WORLDTEMPS on page 119

select AvgLow,
 case
 when AvgLow < 32 then AvgLow + 2
 when ((AvgLow < 60) and (AvgLow > 32)) then AvgLow + 5
 when AvgLow > 60 then AvgLow + 10
 else AvgLow
 end
 as Adjusted from worldtemps;

SAS creates the follow table:

56 Chapter 5 • FedSQL Expressions and Predicates

Output 5.1 CASE Using a Search Condition

Example 2: The CASE Expression Using a Value
Table: WORLDTEMPS on page 119

select Country,
 case Country
 when 'Algeria' then 'Africa'
 when 'Nigeria' then 'Africa'
 when 'Netherlands' then 'Europe'
 when 'Spain' then 'Europe'
 when 'Switzerland' then 'Europe'
 when 'China' then 'Asia'
 when 'India' then 'Asia'
 when 'Venezuela' then 'South America'
 else 'Unknown'
 end
as Continent from worldtemps;

SAS creates the following table:

CASE Expression 57

Output 5.2 CASE Using a Value

See Also

Expressions:

• “COALESCE Expression” on page 58

• “NULLIF Expression” on page 70

• <search-condition> in “SELECT Statement” on page 90

COALESCE Expression
Returns the first non-null value from a list of columns.

Valid in: CAS

Restriction: CAS tables process null values as a blank string.

Syntax
COALESCE(expression [, …expression])

58 Chapter 5 • FedSQL Expressions and Predicates

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

Details
COALESCE accepts one or more SQL expressions of the same data type. The
COALESCE expression checks the value of each SQL expression in the order in which
it is listed and returns the first non-null value. If only one SQL expression is listed, the
COALESCE expression returns the value of that SQL expression. If all the values of all
arguments are null, the COALESCE expression returns a null value.

In some SQL DBMSs, the COALESCE expression is called the IFNULL expression.

Note: If your query contains a large number of COALESCE expressions, it might be
more efficient to use a natural join instead. For more information, see “Example:
Natural Join” on page 37 and “Example: Natural Join with a WHERE Clause” on
page 38.

Comparisons
The COALESCE expression is a variation of the CASE expression. For example, these
two sets of code are equivalent:

coalesce(value1, value2, value3)

case
 when value1 is not null
 then value1
 when value2 is not null
 then value2
 else value3
end;

See Also

Expressions:

• “CASE Expression” on page 54

DISTINCT Predicate
Specifies that only unique rows can appear in the result table.

Valid in: CAS

Syntax
Form 1: function DISTINCT (expression);

DISTINCT Predicate 59

Form 2: SELECT DISTINCT <select-list> FROM <table-expression>;

Arguments
function

can be any aggregate function.

expression
specifies any valid SQL expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

SELECT <select-list> FROM <table-expression>
is a query that retrieves rows from a table.

See For more information about using the DISTINCT predicate in the SELECT
statement, see “SELECT Clause” on page 92.

Details
You can use the DISTINCT predicate to see whether two values or two row values are
equal to one another. The DISTINCT predicate evaluates to true only if all rows that its
subquery returns are distinct.

Note: Two null values are not considered distinct.

Example
• select count(distinct avghigh) from worldtemps;

• select distinct c1.employee, firstname, salary
 from company as c1;

See Also

Statements:

• “SELECT Statement” on page 90

EXISTS Predicate
Tests whether a subquery returns one or more rows.

Valid in: CAS

Syntax
[NOT] EXISTS (select-statement)

Arguments
select-statement

specifies a subquery with the SELECT statement.

60 Chapter 5 • FedSQL Expressions and Predicates

See “SELECT Statement” on page 90

Details
The EXISTS predicate is an operator whose right operand is a subquery. The result of an
EXISTS predicate is true if the subquery resolves to at least one row. The result of a
NOT EXISTS predicate is true if the subquery evaluates to zero rows.

Example
The following query subsets PAYROLL based on the criteria in the subquery. If the
value for STAFF.IDNUM is on the same row as the value CT in STAFF, then the
matching IDNUM in PAYROLL is included in the output. Thus, the query returns all the
employees from PAYROLL who live in CT.

select *
 from payroll p
 where exists (select * from staff s
 where p.idnumber=s.idnum and state='CT');

See Also

Statements:

• “SELECT Statement” on page 90

IN Predicate
Tests set membership.

Valid in: CAS

Syntax
expression [NOT] IN (constant [, …constant])

Arguments
expression

specifies any valid SQL expression.

Restriction The IN predicate does not support subqueries.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

constant
specifies a number or a quoted character string (or other special notation) that
indicates a fixed value. Constants are also called literals.

IN Predicate 61

Details
The IN predicate tests whether the column value that is returned by the SQL expression
on the left is a member of the set (of constants or values returned by the query
expression) on the right. The IN condition is true if the value of the operand on the left is
in the set of values that are defined by the operand on the right.

The NOT IN predicate negates the returned value.

Example
Table: WORLDTEMPS on page 119

select city, country
 from worldtemps
 where avghigh in (90, 97);

SAS creates the following table:

Output 5.3 IN Predicate Example Output Table

IS FALSE Predicate
Tests for a false value.

Valid in: CAS

Syntax
(expression) IS [NOT] FALSE

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

62 Chapter 5 • FedSQL Expressions and Predicates

Details
IS FALSE is a predicate that tests for a false value. IS FALSE is used in the WHERE,
ON, and HAVING clauses. The IS FALSE predicate resolves to true if the result of the
SQL expression is false and resolves to false if it is true.

Comparisons
The IS TRUE predicate tests for true values.

Example
Table: WORLDCITYCOORDS on page 118

select city
 from worldcitycoords
 where (latitude = 40) is false;

SAS creates the following table:

Output 5.4 IS FALSE Example Output Table

See Also

Predicates:

• “IS TRUE Predicate” on page 66

• “IS UNKNOWN Predicate” on page 67

• <search-condition> in the “SELECT Statement” on page 90

IS FALSE Predicate 63

IS MISSING Predicate
Tests for a SAS missing value in a SAS native data store.

Valid in: CAS

Syntax
expression IS [NOT] MISSING

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

Details
IS MISSING is a predicate that tests for a SAS missing value. IS MISSING is used in
the WHERE, ON, and HAVING clauses. The IS MISSING predicate resolves to true if
the result of the SQL expression is a SAS missing value and resolves to false if it is not a
SAS missing value.

The IS MISSING predicate is valid only in use with SAS native data stores. Only
DOUBLE and CHAR data types support missing values.

Comparisons
The IS NULL predicate tests for null values.

Example
Table: WORLDCITYCOORDS on page 118

select *
 from worldcitycoords
 where city is missing;

SAS creates the following table:

Output 5.5 IS MISSING Example Output Table

64 Chapter 5 • FedSQL Expressions and Predicates

See Also

Predicates:

• “IS NULL Predicate” on page 65

• <search-condition> in the “SELECT Statement” on page 90

IS NULL Predicate
Tests for a null value.

Valid in: CAS

Syntax
expression IS [NOT] NULL

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

Details
IS NULL is a predicate that tests for a null value. IS NULL is used in the WHERE, ON,
and HAVING clauses. The IS NULL predicate resolves to true if the result of the SQL
expression is null and resolves to false if it is not null.

Comparisons
The IS MISSING predicate tests for SAS missing values in SAS native data stores.

Example
Table: WORLDCITYCOORDS on page 118

select city
 from worldcitycoords
 where latitude is not null;

SAS creates the following table:

IS NULL Predicate 65

Output 5.6 IS NULL Example Output Table

See Also

Predicates:

• “IS MISSING Predicate” on page 64

• <search-condition> in the “SELECT Statement” on page 90

IS TRUE Predicate
Tests for a true value.

Valid in: CAS

Syntax
(expression) IS [NOT] TRUE

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

66 Chapter 5 • FedSQL Expressions and Predicates

“Overview of FedSQL Expressions and Subqueries” on page 45

Details
IS TRUE is a predicate that tests for a true value. IS TRUE is used in the WHERE, ON,
and HAVING clauses. The IS TRUE predicate resolves to true if the result of the SQL
expression is true and resolves to false if it is false.

Comparisons
The IS FALSE predicate tests for false values.

Example
Table: WORLDCITYCOORDS on page 118

select city
 from worldcitycoords
 where (latitude = 40) is true;

SAS creates the following table:

Output 5.7 IS TRUE Example Output

See Also

Predicates:

• “IS FALSE Predicate” on page 62

• “IS UNKNOWN Predicate” on page 67

IS UNKNOWN Predicate
Tests for an unknown value.

Valid in: CAS

Syntax
expression IS [NOT] UNKNOWN

IS UNKNOWN Predicate 67

Arguments
expression

specifies any valid SQL expression.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

Details
IS UNKNOWN is a predicate that tests for an unknown value. IS UNKNOWN is used in
the WHERE, ON, and HAVING clauses. The IS UNKNOWN predicate resolves to true
if the result of the SQL expression is unknown and resolves to false if it is a valid value.

See Also

Predicates:

• “IS FALSE Predicate” on page 62

• “IS TRUE Predicate” on page 66

• <search-condition> in the “SELECT Statement” on page 90

LIKE Predicate
Tests for a matching pattern.

Valid in: CAS

Syntax
expression [NOT] LIKE expression

Arguments
expression

specifies any valid SQL expression that is either a character string type or a binary
string type.

Tip The SQL expression on the right side of the syntax (that is, the pattern) is most
likely to be a literal.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

Details

Overview of the LIKE Predicate
The LIKE predicate selects rows by comparing character strings with a pattern-matching
specification. It resolves to true and displays the matched string or strings if the left
operand matches the pattern that is specified by the right operand.

68 Chapter 5 • FedSQL Expressions and Predicates

Escape characters are not supported.

Note: If no rows are returned, the result is a null value.

Patterns for Searching
Patterns include three classes of characters:

underscore (_)
matches any single character.

percent sign (%)
matches any sequence of zero or more characters.

any other character
matches that character.

These patterns can appear before, after, or on both sides of characters that you want to
match. The LIKE condition is case-sensitive.

The following list uses these values: Smith, Smooth, Smothers, Smart, and
Smuggle.

'Sm%'
matches Smith, Smooth, Smothers, Smart, Smuggle.

'%th'
matches Smith, Smooth.

'S__gg%'
matches Smuggle.

'S_o'
matches a three-letter word, so it has no matches here.

'S_o%'
matches Smooth, Smothers.

'S%th'
matches Smith, Smooth.

'M'
matches the single, uppercase character m only, so it has no matches here.

Searching for Mixed-Case Strings
To search for mixed-case strings, use the UPPER function to make all the names
uppercase before entering the LIKE condition:

 upper(name) like 'SM%';

Note: When you are using the % character, be aware of the effect of trailing blanks. You
might have to use the TRIM function to remove trailing blanks in order to match
values. For information about the TRIM function, see SAS FedSQL Language
Reference.

Example
Table: DENSITIES on page 114

select name, population
 from densities
 where name like 'Al%';

LIKE Predicate 69

NULLIF Expression
Returns a null value if the two specified expressions are equal; otherwise, returns the first expression.

Valid in: CAS

Restriction: The CAS file format processes a null value as a DOUBLE value in some situations
and as a blank string in other situations. For more information, see “Handling of
Nonexistent Data” on page 19.

Syntax
NULLIF(expression-1, expression-2)

Arguments
expression

specifies any valid SQL expression.

Data type All data types are valid.

See “<sql-expression>” on page 71

“Overview of FedSQL Expressions and Subqueries” on page 45

Details
The NULLIF expression compares two SQL expressions and, if they are equal, returns a
null value. The NULLIF expression enables you to replace a missing or inapplicable
value with a null value and to use SQL's behavior for null values.

Comparisons
The NULLIF expression is a shorthand syntax for a special CASE expression. For
example, if a student misses a test, a -1 is entered in the GRADES table. To replace this
-1 with a null value, you could use the following CASE code.

update grades
 set testscore =
 CASE
 when testscore = '-1' then null
 ELSE testscore
 END;

The following code uses the shorter NULLIF expression.

update grades
 set testscore = NULLIF(testscore, '-1');

The IFNULL function compares two SQL expressions and returns the second SQL
expression if the first SQL expression is a null value. The NULLIF expression compares
two SQL expressions and returns a null value if the two SQL expressions are equal.

70 Chapter 5 • FedSQL Expressions and Predicates

Example
Table: WORLDCITYCOORDS on page 118

missingLong= '.L';
update worldcitycoords
set longitude = nullif(missingLong, '.');
select city
 from worldcitycoords
 where Longitude='.L';

See Also

Expressions:

• “CASE Expression” on page 54

• “COALESCE Expression” on page 58

<sql-expression>
Produces a single value from a combination of symbols and operators or predicates.

Valid in: CAS

Syntax
<sql-expression>::=

constant
| [alias] column
| function
| (scalar-subquery)
| (<sql-expression>)
| <sql-expression> {operator | predicate} <sql-expression>

Arguments
constant

is a number, a quoted character string, or a datetime value that represents a single,
specific data value.

alias
is the alias that is assigned to a table by using the AS keyword in the FROM clause
of a SELECT statement.

column
is the name of a column.

function
is a SAS or aggregate function.

See Chapter 7, “FedSQL Functions,” on page 83

scalar-subquery
is a subquery that returns a single value.

<sql-expression> 71

operator
is a symbol that specifies an action that is performed on one or more expressions.
The following table shows valid operators. An expression can also contain the CASE
or COALESCE expressions For more information, see “CASE Expression” on page
54 or “COALESCE Expression” on page 58.

Table 5.1 Valid Operators

Operator Description

+ adds

– subtracts

* multiplies

/ divides

= equals

<> does not equal

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

** raises to a power

unary – indicates a negative number

|| concatenates

predicate
is an expression that returns true, false, or unknown.

The following predicates are valid.

• “BETWEEN Predicate” on page 53

• “DISTINCT Predicate” on page 59

• “EXISTS Predicate” on page 60

• “IN Predicate” on page 61

• “IS FALSE Predicate” on page 62.

• “IS MISSING Predicate” on page 64

• “IS NULL Predicate” on page 65

• “IS TRUE Predicate” on page 66

• “IS UNKNOWN Predicate” on page 67

72 Chapter 5 • FedSQL Expressions and Predicates

• “LIKE Predicate” on page 68

Details

Overview of <sql-expression>
Simple expressions can be a single constant, column name, or function. Complex
expressions are two or more simple expressions that are joined by an operator or
predicate.

Functions in Expressions
An expression can contain a SAS function or an aggregate function. SAS functions
perform a computation or system manipulation on one or more arguments and return a
value. Aggregate functions produce a statistical summary of data in the entire table that
is listed in the FROM clause or for each group that is specified in a GROUP BY clause.
If GROUP BY is omitted, then all the rows in the table are considered to be a single
group. Aggregate functions reduce all the values in each row or column in a table to one
summarizing or aggregate value. For example, the sum (one value) of a column results
from the addition of all the values in the column.

Subqueries in Expressions
FedSQL allows a scalar subquery (enclosed in parentheses) at any point in an expression
where a simple column value or constant can be used. In this case, a subquery must
return a single value (that is, one row with only one column). In the initial FedSQL
release for CAS, subqueries are not supported in the IN predicate.

Order of Evaluation
The operators and predicates that are shown in the following table are listed in the order
in which they are evaluated.

Table 5.2 Expressions, Operators, and Predicates and Order of Evaluation

Group
Expressions, Operators,
and Predicates Description

0 () forces the expression enclosed to be evaluated first

1 CASE expression See “CASE Expression” on page 54

2 ** raises to a power

unary +, unary − indicates a positive or negative number

3 * multiplies

/ divides

4 + adds

− subtracts

5 || concatenates

<sql-expression> 73

Group
Expressions, Operators,
and Predicates Description

6 [NOT] BETWEEN
predicate

See “BETWEEN Predicate” on page 53.

DISTINCT predicate See “DISTINCT Predicate” on page 59

[NOT] EXISTS predicate See “EXISTS Predicate” on page 60

[NOT] IN predicate See “IN Predicate” on page 61

IS [NOT] TRUE predicate See “IS TRUE Predicate” on page 66

IS [NOT] FALSE predicate See “IS FALSE Predicate” on page 62

IS [NOT] MISSING
predicate

See “IS MISSING Predicate” on page 64

IS [NOT] NULL predicate See “IS NULL Predicate” on page 65

IS [NOT] UNKNOWN
predicate

See “IS UNKNOWN Predicate” on page 67

LIKE predicate See “LIKE Predicate” on page 68

7 = equals

^=, <> does not equal

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

8 AND indicates logical AND

9 OR indicates logical OR

10 NOT indicates logical NOT

SAS missing values and null values always appear as the smallest value in the collating
sequence.

You can use parentheses to group values or to nest mathematical expressions.
Parentheses make expressions easier to read and can also be used to change the order of
evaluation of the operators. Evaluating expressions with parentheses begins at the
deepest level of parentheses and moves outward. For example, SAS evaluates A+B*C as
A+(B*C), although you can add parentheses to make it evaluate as (A+B)*C for a
different result.

74 Chapter 5 • FedSQL Expressions and Predicates

See Also

Statements:

• “SELECT Statement” on page 90

• “Overview of FedSQL Expressions and Subqueries” on page 45

<sql-expression> 75

76 Chapter 5 • FedSQL Expressions and Predicates

Chapter 6

FedSQL Formats

Overview of Formats . 77

How to Format Output with the PUT Function . 77

Validation of FedSQL Formats . 78

FedSQL Format Examples . 78

Using a User-Defined Format . 78

NLS Formats Supported by FedSQL . 79

Formats Reference . 82

Overview of Formats
A format is an instruction that FedSQL uses to write data values. You use formats to
control the written appearance of data values. For example, the DOLLARw.d format,
which converts numeric values to a decimal monetary value, writes the numeric value
4503945867 as $4,503,945,867.00.

FedSQL preserves formats that exist on CAS input tables in CAS output tables that it
creates. It also enables you to specify temporary formats on columns in the SELECT
statement. Formats are specified with the PUT function.

How to Format Output with the PUT Function
FedSQL supports formats that are specified with the PUT function as follows:

• The format can be applied to a string or a table column.

• You can apply both user-defined formats and formats that are provided by SAS.

• The PUT function supports a subset of the formats that are available for Base SAS
when the FedSQL language is executed outside a Base SAS session.

• FedSQL supports the same formats with the PUT function on the CAS server that it
supports for third-party data sources in SAS 9.4. For a listing of formats, see Formats
Supported with the PUT Function, by Category.

77

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=n0joh2wy0jexean1rz1suw6zhudh.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=n0joh2wy0jexean1rz1suw6zhudh.htm

• Formats can be associated with any of the data types that are supported by FedSQL.
However, the data types are converted. Any value that is passed to the PUT function
with a numeric format is converted to VARCHAR. The type conversions are carried
out based on the format name. Any value that is passed with a character format to the
PUT function is converted to VARCHAR.

• The format that is specified in PUT is transient. The PUT function does not affect the
stored data.

See: “PUT Function” in SAS FedSQL Language Reference.

Validation of FedSQL Formats

The PUT function validates the specified format upon use.

FedSQL Format Examples
select put (totals, dollar10.) as totals from mylib.sales;

select put(13500, comma6.);

select put(x, best8.);

Using a User-Defined Format
You can use the SAS FORMAT procedure to define custom formats that replace raw
data values with formatted character values. For example, the following PROC
FORMAT code creates a custom numeric format called DEPTNO. that maps department
codes to their corresponding department name. Use the CASFMTLIB= option to specify
the location of your format library. Specify your CAS session name with the SESSREF=
option.

cas mysess;

proc format casfmtlib='myFormats' sessref=mysess;
 value deptno
 10 = 'Sales'
 20 = 'Research'
 30 = 'Accounting'
 40 = 'Operations';
run;

The resulting user-defined format can be applied to a CAS table as follows. The
following code uses the PUT function and DEPTNO. format to change the numeric
department codes in the DEPT column of the EMPLOYEES table to their corresponding
character-based department name.

select emp_name, hire_date, put(dept, deptno.) as dept
from employees limit 4;
quit;

78 Chapter 6 • FedSQL Formats

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p07mnor5ecngjin1cdcpdpo2803q.htm&locale=en

The content of the source Employees table is shown in Figure 6.1 on page 79. The
output of the PUT function is shown in Figure 6.2 on page 79.

Figure 6.1 Content of the Source EMPLOYEES Table

Figure 6.2 Content of the Employees Table After the PUT Function Is Applied

For more information about how to create your own format in SAS, see PROC
FORMAT in Base SAS Procedures Guide.

NLS Formats Supported by FedSQL
National Language Support (NLS) is a set of features that enable a software product to
function properly in every global market for which the product is targeted. The NLS
features in SAS ensure that SAS applications can be written so that they conform to local
language conventions. Typically, software that is written in the English language works
well for users who use both the English language and also data that is formatted using
the conventions that are observed in the United States. However, without NLS, these
products might not work well for users in other regions of the world. NLS in SAS
enables regions such as Asia and Europe to process data successfully in their native
languages and environments. The FedSQL language supports the following NLS
formats. For more information, see SAS National Language Support (NLS): Reference
Guide.

NLS Formats Supported by FedSQL 79

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Category Language Element Description

Date and Time NLDATEw. Converts a SAS date value to the date value of the
specified locale, and then writes the date value as a
date.

NLDATEMDw. Converts the SAS date value to the date value of the
specified locale, and then writes the value as the
name of the month and the day of the month.

NLDATEMNw. Converts a SAS date value to the date value of the
specified locale, and then writes the value as the
name of the month.

NLDATEWw. Converts a SAS date value to the date value of the
specified locale, and then writes the value as the
date and the day of the week.

NLDATEWNw. Converts the SAS date value to the date value of the
specified locale, and then writes the date value as
the day of the week.

NLDATEYMw. Converts the SAS date value to the date value of the
specified locale, and then writes the date value as
the year and the name of the month.

NLDATEYQw. Converts the SAS date value to the date value of the
specified locale, and then writes the date value as
the year and the quarter.

NLDATEYRw. Converts the SAS date value to the date value of the
specified locale, and then writes the date value as
the year.

NLDATEYWw. Converts the SAS date value to the date value of the
specified locale, and then writes the date value as
the year and the week.

NLDATMAPw. Converts a SAS datetime value to the datetime
value of the specified locale, and then writes the
value as a datetime with a.m. or p.m.

NLDATMDTw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the name of the month, day of the month,
and year.

NLDATMMDw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the name of the month and the day of the
month.

NLDATMMNw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the name of the month.

80 Chapter 6 • FedSQL Formats

Category Language Element Description

NLDATMTMw. Converts the time portion of a SAS datetime value
to the time-of-day value of the specified locale, and
then writes the value as a time of day.

NLDATMw. Converts a SAS datetime value to the datetime
value of the specified locale, and then writes the
value as a datetime.

NLDATMWw. Converts a SAS datetime value to the day of the
week, date, and time of the specified locale.

NLDATMWNw. Converts a SAS datetime value to the day of the
week of the specified locale.

NLDATMYMw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the year and the name of the month.

NLDATMYQw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the year and the quarter of the year.

NLDATMYRw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the year.

NLDATMYWw. Converts the SAS datetime value to the datetime
value of the specified locale, and then writes the
value as the year and the name of the week.

NLTIMAPw. Converts a SAS time value to the time value of a
specified locale, and then writes the value as a time
value with a.m. or p.m. NLTIMAP also converts
SAS date-time values.

NLTIMEw. Converts a SAS time value to the time value of the
specified locale, and then writes the value as a time
value. NLTIME also converts SAS date-time
values.

Numeric NLBESTw. Writes the best numerical notation based on the
locale.

NLMNYw.d Writes the monetary format of the local expression
in the specified locale using local currency.

NLMNYIw.d Writes the monetary format of the international
expression in the specified locale.

NLNUMw.d Writes the numeric format of the local expression in
the specified locale.

NLS Formats Supported by FedSQL 81

Category Language Element Description

NLNUMIw.d Writes the numeric format of the international
expression in the specified locale.

NLPCTw.d Writes percentage data of the local expression in
the specified locale.

NLPCTIw.d Writes percentage data of the international
expression in the specified locale.

NLPCTNw.d Produces percentages, using a minus sign for
negative values.

NLPCTPw.d Writes locale-specific numeric values as
percentages. Writes locale-specific numeric values
as percentages.

NLPVALUEw.d Writes p-values of the local expression in the
specified locale.

NLSTRMONw.d Writes the month name in the specified locale.

NLSTRQTRw.d Writes a numeric value as the quarter-of-the-year in
the specified locale.

NLSTRWKw.d Writes a numeric value as the day-of-the-week in
the specified locale.

Formats Reference
FedSQL for CAS supports the same formats as FedSQL for SAS 9.4. See reference
information about the formats supported with FedSQL in Formats Supported with the
PUT Function, by Category in SAS FedSQL Language Reference.

82 Chapter 6 • FedSQL Formats

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=n0joh2wy0jexean1rz1suw6zhudh.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=n0joh2wy0jexean1rz1suw6zhudh.htm

Chapter 7

FedSQL Functions

Overview of FedSQL Functions in CAS . 83

Integration with DS2 . 84

Specifying Function Arguments in FedSql.execDirect . 84
FedSQL Date, Time, and Datetime Constants . 84
Other FedSQL Constants and Character Values . 85

Understanding Function Output . 85
FedSQL Date and Time Functions . 85
The Output Delivery System and FedSQL . 86

Functions Reference . 86

Overview of FedSQL Functions in CAS
A FedSQL function performs a computation on FedSQL expressions and returns either a
single value or a set of values if the FedSQL function is an aggregate function. In other
SQL environments, aggregate functions are also known as set functions. Most other
functions use arguments supplied by the user, but a few obtain their arguments from the
operating environment.

FedSQL for CAS supports the same functions that are provided for FedSQL in SAS 9.4,
with the following exceptions:

• The CAST function is not supported in CAS.

• FedSQL for CAS does not support use of DS2 packages in expressions.

When using FedSQL functions, note these points:

• Within the functions, the FedSQL expressions in function arguments are limited to
the SQL expressions that are supported in CAS. For more information, see “<sql-
expression>” on page 71.

• The FedSQL language supports more data types than are used in CAS tables. When
the data types of the arguments in the function expression are not supported in a CAS
table, FedSQL performs a type conversion on the arguments so that the arguments
have the appropriate data type. For CAS, columns of all FedSQL numeric types are
converted to DOUBLE. The functions operate on CHAR and VARCHAR columns as
documented.

For information about FedSQL functions, see FedSQL Functions by Category.

83

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=p18jy8gfa8tblwn1kkeo9b5pgedb.htm

Integration with DS2
Currently, FedSQL functions can be used only in the SET statement of a DS2 program
that runs in CAS.

Specifying Function Arguments in
FedSql.execDirect

FedSQL Date, Time, and Datetime Constants
FedSQL supports industry standard conventions for dates, times, and datetimes using the
DATE, TIME, and TIMESTAMP data types. Although CAS tables do not support these
data types, FedSQL functions require that you specify date and time input values using
the conventions for these data types. You write FedSQL date, time, or timestamp
constants using the following syntax:

DATE'yyyy-mm-dd'
TIME 'hh:mm:ss[.fraction]'
TIMESTAMP 'yyyy-mm-dd hh:mm:ss[.fraction]'

where

• yyyy is a four-digit year

• mm is a two-digit month, 01–12

• dd is a two-digit day, 01–31

• hh is a two-digit military hour, 00–23

• ss is a two-digit second, 00–61

• fraction can be one to ten digits, 0–9, is optional, and represents a fraction of a
second

The string portion of the value after the DATE, TIME, or TIMESTAMP keyword must
be enclosed in single quotation marks.

In the date constant, the hyphens are required and the length of the date string must be at
least 8. When months or dates are single values, the 0 (zero) is not required.

In the time constant, the colons are required. If the fraction of a second is not present, the
time string must be eight characters long, and it can include or exclude the period. If the
fraction of second is present, the fraction can be up to nine digits long. The time constant
can be between 8 and 18 characters long.

In the time constant, the colons are required. If the fraction of a second is not present, the
time string must be eight characters long, and it can include or exclude the period. If the
fraction of second is present, the fraction can be up to nine digits long. The time constant
can be between 8 and 18 characters long.

Here are examples of FedSQL date, time, and timestamp constants:

date'2008-01-31'
date'2000-1-1'
time'20:44:59'

84 Chapter 7 • FedSQL Functions

timestamp'2007-02-02 07:00:00.7569'

Other FedSQL Constants and Character Values
When used in a function, FedSQL constants and character strings must be specified
within quotation marks.

The INTNX function is an example of a function that takes FedSQL constants. In the
following example, the INTNX function specifies the constants YEAR and SAME and a
date value.

select put(intnx('year', date'2011-03-15', 5, 'same'), date9.);

The SCAN function is an example of a function that takes character strings:

select compress('abc','a');
select scan('This is a string',2);

The fedSql.execDirect action accepts FedSQL statements and functions in a quoted
string in the Query parameter. When you use the action, the quotation marks used to
submit function values must be different from the quotation marks surrounding the input
string. Double single quotation marks are recommended for function values. Here are
examples of how FedSQL constant values should be specified in the fedSql.execDirect
action:

proc cas;
 fedsql.execdirect query='select put(intnx(''year'', date''2011-03-15'',
 5, ''same''), date9.)';
quit;

proc cas;
 fedsql.execdirect query='select scan(''This is a string'',2)';
run;

Understanding Function Output

FedSQL Date and Time Functions
FedSQL Date and Time functions return SAS date and time values. A SAS date value is
the number of days from January 1, 1960, to a specified date. A SAS time value is the
number of seconds from January 1, 1960, to a specified date. The output of these
functions is meaningless unless you use the PUT function to apply a SAS format to the
value. The following example shows how to format the output of the TODAY() function
so that the result has meaning:

proc cas;
 fedsql.execdirect query='select put(today(),date.)';
 run;

The PUT function applies the SAS DATEw. format to the function request. For
information about this format, see “DATEw. Format” in SAS FedSQL Language
Reference.

Understanding Function Output 85

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p02jvt0pv91n6mn1quajiikn5uup.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p02jvt0pv91n6mn1quajiikn5uup.htm&locale=en

For information about the PUT function, see “PUT Function” in SAS FedSQL Language
Reference.

The Output Delivery System and FedSQL
The interface that you use to submit a FedSQL request can affect the length of numeric
values displayed for a FedSQL function. For example, PROC FEDSQL displays 8
characters for numeric functions, but the fedSql.execDirect action displays 12 characters
for numeric functions. To display numeric output with the full precision of which
FedSQL is capable, use the PUT function with the BEST16. format with the FedSQL
functions. The following example shows how to format a FedSQL BETA function
request with the PUT function:

select PUT (beta(5,3), best16.) as Beta;

This statement returns the output 0.00952380952381. For more information about the
format, see “BESTw. Format” in SAS FedSQL Language Reference.

Functions Reference
FedSQL for CAS supports the same functions that are provided for FedSQL in SAS 9.4.
See reference information for FedSQL functions in FedSQL Functions by Category in
SAS FedSQL Language Reference.

86 Chapter 7 • FedSQL Functions

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p07mnor5ecngjin1cdcpdpo2803q.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p07mnor5ecngjin1cdcpdpo2803q.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p05xlt30uzvaj0n1amddnkzs9qpe.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=fedsqlref&docsetTarget=p18jy8gfa8tblwn1kkeo9b5pgedb.htm

Chapter 8

FedSQL Statements

Dictionary . 87
CREATE TABLE Statement . 87
DROP TABLE Statement . 89
SELECT Statement . 90

Dictionary

CREATE TABLE Statement
Creates a new table from one or more existing tables.

Valid in: CAS

Restriction: You cannot overwrite an existing table with FedSQL. You must first drop the existing
table by using the DROP TABLE statement or some other CAS action that drops
tables and then re-create the table with the CREATE TABLE statement. Or you can
specify the REPLACE= table option in the CREATE TABLE statement. The
REPLACE= table option performs an internal DROP TABLE operation before
beginning the CREATE TABLE operation. See “REPLACE= Table Option” on page
106.

Note: Braces in the syntax convention indicate a syntax grouping. The escape character
(\) before a brace indicates that the brace is required in the syntax. Table options
must be contained by braces ({ }).

Syntax
CREATE TABLE table
[\{OPTIONS SAS-table-option=value
[…SAS-table-option=value] \}]

AS query-expression
;

Arguments
table

specifies the name of a table to create.

87

{OPTIONS SAS-table-option=value [… SAS-table-option=value]}
specifies one or more table options and their respective values to apply to the table.

Requirement The OPTION argument and all table options must be enclosed in
braces ({ }).

See Chapter 9, “FedSQL Table Options,” on page 103

AS query-expression
specifies to create a new table from one or more existing tables by selecting rows
from the existing tables using a query expression. The column attributes, such as
formats and labels, are copied from the existing table to the new table.

query-expression
specifies the SELECT statement that retrieves information from an existing table
to use in creating a new table.

See “Creating and Populating Tables from a Query Expression” on page 88

“Overview of FedSQL Expressions and Subqueries” on page 45

“SELECT Statement” on page 90

Details

Overview of the CREATE TABLE Statement for CAS
The CREATE TABLE statement for CAS enables you to create a table by selecting
columns from one or more existing tables using a query expression. The FedSQL
language supports the creation of CAS output tables from CAS input tables and DBMS
input tables. The new tables are session tables. You must use another action to save or
promote the tables.

Creating and Populating Tables from a Query Expression
When you create a table using a query expression, you add rows to the table as the table
is created. You use a SELECT statement to retrieve data from an existing table to create
the new table. The number of columns in the CREATE TABLE statement equal the
number of columns that are returned by the SELECT statement. If no column names are
specified in the CREATE TABLE statement, the columns and default values that are
returned by the SELECT statement are used in the new table.

This CREATE TABLE statement creates a new table that is based on only three columns
from the CorpData table:

create table spainEmails
as select name, emailid, lastPurchaseDate from corpdata where country='Spain';

The following CREATE TABLE statement selects all columns from the CorpData table:

create table spain
as select * from corpdata where country='Spain';

The output table preserves any formats that were defined on the input tables. FedSQL
does not preserve table labels from input tables. Use the LABEL= table option to assign
a label to an output table.

88 Chapter 8 • FedSQL Statements

See Also

Statements

• “DROP TABLE Statement” on page 89

Table Options

• “LABEL= Table Option” on page 104

• “REPLACE= Table Option” on page 106

DROP TABLE Statement
Removes an in-memory table from the CAS session.

Valid in: CAS

Category: Data Definition

Syntax
DROP TABLE table [FORCE];

Arguments
table

specifies the name of the table to be removed. If the table exists in the active caslib,
use a one-part table name to identify the table. For tables that exist outside the active
caslib, use a two-part name in the form caslib.table-name.

FORCE
specifies that the table is dropped without error processing. Use the FORCE keyword
only when you are certain that dropping the table without error processing is what
you want to do.

Details
By default, FedSQL will not overwrite an existing in-memory table of the same name.
However, you might want to drop a table from your CAS session in order to remove a
table that is no longer useful, to create a replacement table of the same name, or to
reclaim memory.

The DROP TABLE statement removes an in-memory table from the CAS server.
Currently, FedSQL considers global tables when enforcing name uniqueness rules and
will drop a table that was previously promoted. Before using the DROP TABLE
statement, issue the table.tableInfo action to determine if the named table exists and
verify that it is not a global table. The word Yes appears in the Promoted Table column
of the tableInfo action output if the named table is a global table. Do not drop a global
table. Instead, choose a different name for your session table.

The DROP TABLE statement cannot be used to remove a CAS table that is saved to
disk.

CAS output tables that are created with FedSQL exist for the duration of the CAS
session, unless you save or promote the tables with another action.

DROP TABLE Statement 89

See Also

Statements:

• “CREATE TABLE Statement” on page 87

SELECT Statement
Retrieves columns and rows of data from tables.

Valid in: CAS

Categories: Data Definition
Data Manipulation

Syntax
The main clauses of the SELECT statement can be summarized as follows.

SELECT <select-list>
FROM <table-specification>
[WHERE <search-condition>]
[GROUP BY <grouping-column>]
[HAVING <search-condition>]
[ORDER BY <sort-specification>]
[LIMIT {count | ALL}]
[OFFSET number]

;

The detailed syntax of the SELECT statement is as follows.

<query-expression>
[ORDER BY <sort-specification> [, …<sort-specification>]];

<query-expression>::=
{<query-specification> | <query-expression>}

<query-specification>::=
SELECT [ALL | DISTINCT] <select-list> <table-expression>

<select-list>::=
*
| column [AS column-alias]
| expression [AS column-alias]
| table.*
| table-alias.*

<table-expression>::=
FROM <table-specification> [, …<table-specification>]
[WHERE <search-condition>]
[GROUP BY <grouping-column> [, …<grouping-column>]]
[HAVING <search-condition>]

90 Chapter 8 • FedSQL Statements

<table-specification>::=
table [[AS] alias]
| CONNECTION TO catalog (<native-syntax>) [[AS] alias]
| (<query-specification>) [[AS] alias]
| <joined-table>

<joined-table>::=
<cross-join>
| <qualified-join>
| <natural-join>
<cross-join>::=

<table-specification> CROSS JOIN <table-specification>
<qualified-join>::=

<table-specification> [<join-type>] JOIN <table-specification> <join-
specification>

<natural-join>::=
<table-specification> NATURAL [<join-type>] JOIN <table-specification>

<join-type>::=
INNER
| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

<join-specification>::=
ON <search-condition>
| USING (column [, …column])

<search-condition>::=
{

[NOT] {<sql-expression> | (<search-condition>)}
[{AND | OR} [NOT] {<sql-expression> | (<search-condition>)}]

}
[,... {[NOT] {<sql-expression> | (<search-condition>)}

[{AND | OR} [NOT] {<sql-expression> | (<search-condition>)}]}]

<sql-expression>::=
expression {operator | predicate} expression

<sort-specification>::=
{order-by-expression [ASC | DESC]} [, …order-by-expression [ASC | DESC]]

<grouping-column>::=
column [, …column]
| column-position-number
| <sql-expression>

Arguments
See the following sections for syntax argument descriptions.

• “SELECT Clause” on page 92

• “FROM Clause” on page 94

SELECT Statement 91

• “WHERE Clause” on page 96

• “GROUP BY Clause” on page 97

• “HAVING Clause” on page 98

• “ORDER BY Clause” on page 99

• “LIMIT Clause” on page 100

• “OFFSET Clause” on page 100

Details

Overview
The SELECT statement can be used in two ways.

• The single row SELECT statement, which can be executed by itself, returns only one
row. For example:

select 42;
select 42 as x;

The first code fragment returns a single column that contains the value 42. The
column is named “column”. The second code fragment returns a similar column.
However, the column is named “x”.

• A query specification begins with the SELECT keyword (called a SELECT clause)
and cannot be used by itself. It reads column values from one or more tables and
enables you to define conditions for the data that will be returned from the tables. It
must be used as a part of another SQL statement and can return more than one row.
A query specification creates a virtual table. Here is an example:

select column(s)
from table(s)
where condition(s);

The order of clauses in the SELECT statement is important. The optional clauses can be
omitted but, when used, they must appear in the appropriate order. A SELECT statement
can be specified within a SELECT statement (called a subquery). The ORDER BY,
OFFSET, and LIMIT clauses can be used only on the outermost SELECT of a SELECT
statement.

Note: There is no limit on the number of tables that you can reference in a FedSQL
query. However, queries with a large number of table references can cause
performance issues.

SELECT Clause

Description
Lists the columns that will appear in a virtual result table.

Syntax
SELECT [ALL | DISTINCT] <select-list>
<select-list>::=

*
| column [AS column-alias]
| <sql-expression> [AS column-alias]
| table.*

92 Chapter 8 • FedSQL Statements

| table-alias.*
| <query-specification>

Arguments

ALL
includes all rows, including duplicate rows in the result table.

DISTINCT
eliminates duplicate rows in the result table.

<select-list>
specifies the columns to be selected for the result table.

*
selects all columns in the table that is listed in the FROM clause.

column-alias
assigns a temporary, alternate name to the column.

column [AS column-alias]
selects a single column. When [AS column-alias] is specified, assigns the column
alias to the column.

<query-specification>
specifies an embedded SELECT subquery.

See “Subqueries” on page 46

<sql-expression> [AS column-alias]
derives a column name from an expression.

See “<sql-expression>” on page 71

table.*
selects all columns in the table.

table-alias.*
selects all columns in the table.

See “Table Aliases” on page 96

Asterisk (*) Notation
The asterisk (*) represents all columns of the table or tables that are listed in the FROM
clause. When an asterisk is not prefixed with a table name, all the columns from all
tables in the FROM clause are included; when it is prefixed (for example, table.* or
table-alias.*), all the columns from only that table are included.

Column Aliases
A column alias is a temporary, alternate name for a column. Aliases are specified in the
SELECT clause to name or rename columns in the result table in order to be clearer or
easier to read. Aliases are often used to name a column that is the result of an arithmetic
expression or summary function.

An alias is usually one word. Multiple words and reserved words can be used if they are
quoted. You must use double quotation marks. See “Delimited Identifiers” on page 18.
Here is an example:

select x as "two words" from table1;

The keyword AS is required to distinguish a column alias from other column names.

SELECT Statement 93

Column aliases are optional, and each column name in the SELECT clause can have an
alias. After you assign an alias to a column, you can use the alias to refer to that column
in other clauses.

FROM Clause

Description
(Optional) Specifies source tables.

Syntax
FROM <table-specification> [, …<table-specification>]
<table-specification>::=

table [[AS] table-alias]
| CONNECTION TO catalog (<native-syntax>) [[AS] alias]
| (<query-specification>) [[AS] alias]
| <joined-table>

<joined-table>::=
<cross-join>
| <qualified-join>
| <natural-join>
<cross-join>::=

<table-specification> CROSS JOIN <table-specification>
<qualified-join>::=

<table-specification> [<join-type>] JOIN <table-specification> <join-
specification>

<natural-join>::=
<table-specification> NATURAL [<join-type>] JOIN <table-specification>

<join-type>::=
INNER
| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

<join-specification>::=
ON <search-condition>
| USING (column [, …column])

Arguments

CONNECTION TO catalog (<native-syntax>) [[AS] alias]
specifies data from a DBMS catalog by using the SQL pass-through facility. You can
use SQL syntax that the DBMS understands, even if that syntax is not valid in
FedSQL.

CROSS JOIN
defines a join that is the Cartesian product of two tables.

See “Example: Simple Cross Join” on page 32, “Example: Cross Join with
Specified Columns and a WHERE Clause” on page 33

94 Chapter 8 • FedSQL Statements

JOIN
defines a join that enables you to filter the data by using a search condition or by
using specific columns.

See “Example: Qualified Join with an ON Clause” on page 34, “Example:
Qualified Join with a USING Clause” on page 36, “Example: Qualified Join
with an ON Clause and a WHERE Clause” on page 37

NATURAL JOIN
defines a join that selects rows from two tables that have equal values in columns
that share the same name and the same type.

See “Example: Natural Join” on page 37, “Example: Natural Join with a WHERE
Clause” on page 38

(<query-specification>) [AS] alias
specifies an embedded SELECT subquery that functions as an in-line view. alias
defines a temporary name for the in-line view and is required. An in-line view saves
you a programming step. Rather than creating a view and referring to it in another
query, you can specify the view in-line in the FROM clause.

See “Subqueries” on page 46

table
specifies the name of a table. The name can be in the following forms:

• table-name

• caslib.table-name

table-name
the name of an in-memory table in the current CAS session.

caslib.table-name
the name of a table that is persisted on the CAS server or exists in an external
data source. The caslib points to a library definition for a data source connector.
The definition contains data source connection details, such as host, user name,
password, and data access specifics, such as path or database, catalog, and
schema.

FedSQL requires a standard SQL name to access a data source. It supports two-
part names in the form catalog.table-name or schema.table-name and three-part
names in the form catalog.schema.table-name. The caslib generates a one- or
two-part qualifier for the table name to create a SQL name that is appropriate for
the data source and sends it to FedSQL. For more information about caslibs, see
“Caslibs” in An Introduction to SAS Viya Programming.

table-alias
specifies a temporary, alternate name for table. The AS keyword is optional.

INNER
specifies that only the subset of rows from the first table that matches rows from the
second table are returned. Unmatched rows from both tables are discarded.

LEFT [OUTER]
specifies that matching rows and rows from the first table that do not match any row
in the second table are returned.

RIGHT [OUTER]
specifies that matching rows and rows from the second table that do not match any
row in the first table are returned.

SELECT Statement 95

http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en

FULL [OUTER]
species that all matching and unmatching rows from the first and second table are
returned.

column
specifies the name of a column.

ON <search-condition>
specifies a condition join used to match rows from one table to another. If the search
condition is satisfied, the matching rows are added to the result table.

See “<search-condition>” on page 101

USING (column [,...column])
specifies which columns to use in an inner or outer join.

See “Understanding Inner and Outer Join Types” on page 39

Overview
The FROM clause enables you to specify source tables. You can reference tables by
specifying their table name, by specifying an embedded SELECT subquery, or by
specifying a join.

Table Aliases
A table alias is a temporary, alternate name for a table. Table aliases are used in joins to
distinguish the columns of one table from those in the other table or tables and can make
a query easier to read by abbreviating the table names. A table name or alias must be
prefixed to a column name when you are joining tables that have matching column
names. Column names in reflexive joins (joining a table with itself) must be prefixed
with a table alias in order to distinguish which copy of the table the column comes from.
A table alias cannot be given an alias.

Joined Tables
When multiple table specifications are listed in the FROM clause, they are processed to
form one table. The result table contains data from each contributing table. These queries
are referred to as joins. Joins do not alter the original table.

Conceptually, when two tables are specified, each row of table A is matched with all the
rows of table B to produce an internal or intermediate table. The number of rows in the
intermediate table (Cartesian) is equal to the product of the number of rows in each of
the source tables. The intermediate table becomes the input to the rest of the query in
which some of its rows can be eliminated by the WHERE, ON, or USING clause or
summarized by a function.

For an overview of FedSQL join operations, see “Overview of Joins” on page 27.

WHERE Clause

Description
Subsets the result table based on the specified search conditions.

Syntax
WHERE <search-condition>

Arguments

<search-condition>
specifies the conditions for the rows returned by the WHERE clause.

96 Chapter 8 • FedSQL Statements

See “<search-condition>” on page 101

Details
The WHERE clause requires a search condition (one or more expressions separated by
an operand or predicate) that specifies which rows are chosen for inclusion in the result
table. When a condition is met (that is, the condition resolves to true), those rows are
displayed in the result table. Otherwise, no rows are displayed.

Note: You cannot use aggregate functions that specify only one column. For example,
you cannot use the following code.

where max(inventory1)>10000;

However, you can use this WHERE clause.

where max(inventory1, inventory2)>10000;

Note: If a column contains REAL or DOUBLE values, avoid using a WHERE clause
with the = and the <> operators. REAL and DOUBLE values are approximate
numeric data types and can give inaccurate results when used in a WHERE clause
with the = and the <> operators. You should limit REAL and DOUBLE columns to
comparisons with the > or < operator.

GROUP BY Clause

Description
Specifies how to group the data for summarizing.

Syntax
GROUP BY <grouping-column> [, …<grouping-column>]
<grouping-column>::=

column [, …column]
| column-position-number
| <sql-expression>

Arguments

column
specifies the name of a column or a column alias.

column-position-number
specifies a nonnegative integer that equates to a column position.

<sql-expression>
specifies a valid SQL expression.

See “<sql-expression>” on page 71

Details
The GROUP BY clause groups data by a specified column or columns.

If the column or columns on which you are grouping contain missing or null values in
some rows, SAS collects all the rows with missing or null values in the grouping
columns into a single group.

You can specify more than one grouping column to get more detailed reports. If more
than one grouping column is specified, then the first one determines the major grouping.

SELECT Statement 97

Integers can be substituted for column names in the GROUP BY clause. For example, if
the grouping column is 2, then the results are grouped by values in the second column.
Note that if you use a floating-point value (for example, 2.3) instead of an integer, then
FedSQL ignores the decimal portion.

You can group the output by the values that are returned by an expression. For example,
if X is a numeric variable, then the output of the following is grouped by the values of X.

select x, sum(y)
 from table1
 group by x;

Similarly, if Y is a character variable, then the output of the following is grouped by the
values of Y.

select sum(x), y
 from table1
 group by y;

When you use a GROUP BY clause, you can also use an aggregate function in the
SELECT clause or in a HAVING clause to instruct SAS in how to summarize the data
for each group. When you use a GROUP BY clause without an aggregate function, SAS
treats the GROUP BY clause as if it were an ORDER BY clause.

You can use the ORDER BY clause to specify the order in which rows are displayed in
the result table. If you do not specify the ORDER BY clause, groups returned by the
GROUP BY clause are not in any particular order.

Note: FedSQL does not support remerging of summary statistics.

HAVING Clause

Description
Subsets grouped data based on specified search conditions.

Syntax
HAVING <search-condition>

Arguments

<search-condition>
specifies the conditions for the rows returned by the HAVING clause.

See “<search-condition>” on page 101

Details
The HAVING clause requires a search condition (one or more expressions separated by
an operand or predicate) that specifies which rows are chosen for inclusion in the result
table. A HAVING clause evaluates as either true or false for each group in a query. You
can use a HAVING clause with a GROUP BY clause to filter grouped data. The
HAVING clause affects groups in a way that is similar to how a WHERE clause affects
individual rows.

Queries that contain a HAVING clause usually also contain a GROUP BY clause, an
aggregate function, or both. When you use a HAVING clause without a GROUP BY
clause, SAS treats the HAVING clause as if it were a WHERE clause.

98 Chapter 8 • FedSQL Statements

Table 8.1 Differences between the HAVING Clause and WHERE Clause

HAVING clause attributes WHERE clause attributes

typically used to specify conditions for
including or excluding groups of rows from a
table

used to specify conditions for including or
excluding individual rows from a table

must follow the GROUP BY clause in a
query, if used with a GROUP BY clause

must precede the GROUP BY clause in a
query, if used with a GROUP BY clause

affected by a GROUP BY clause; when there
is no GROUP BY clause, the HAVING clause
is treated like a WHERE clause

not affected by a GROUP BY clause

processed after the GROUP BY clause and
any aggregate functions

processed before a GROUP BY clause, if
there is one, and before any aggregate
functions

ORDER BY Clause

Description
Specifies the order in which rows are returned in a result table.

Syntax
ORDER BY <sort-specification> [, …<sort-specification>];
<sort-specification>::=

{order-by-expression [ASC | DESC]} [, …order-by-expression [ASC | DESC]]

Arguments

order-by-expression
specifies a column on which to sort. The sort column can be one of the following.

column
specifies the name of a column or a column alias.

column-position-number
specifies a nonnegative integer that equates to a column position.

<sql-expression>
specifies any valid SQL expression.

See “<sql-expression>” on page 71

ASC
orders the data in ascending order. This is the default order.

DESC
orders the data in descending order.

Details
The ORDER BY clause sorts the result of a query expression according to the order
specified in that query. When this clause is used, the default ordering sequence is
ascending, from the lowest value to the highest.

SELECT Statement 99

If an ORDER BY clause is omitted, then a particular order to the output rows, such as
the order in which the rows are encountered in the queried table, cannot be guaranteed.
Without an ORDER BY clause, the order of the output rows is determined by the
internal processing of FedSQL, the default collating sequence of SAS, and your
operating environment. Therefore, if you want your result table to appear in a particular
order, then use the ORDER BY clause.

If more than one order-by-expression is specified (separated by commas), then the first
one determines the major sort order.

Integers can be substituted for column names in the ORDER BY clause. For example, if
the order-by-expression is 2, then the results are ordered by values in the second column.
Note that if you use a floating-point value (for example, 2.3) instead of an integer, then
FedSQL issues an error message.

In the ORDER BY clause, you can specify any column of a table that is specified in the
FROM clause of a query expression, regardless of whether that column has been
included in the query's SELECT clause. However, if SELECT DISTINCT is specified,
or if the SELECT statement contains a UNION operator, the sort column must appear in
the query's SELECT clause.

Note: SAS missing values or null values are treated as the lowest possible values.

LIMIT Clause

Description
Specifies the number of rows that the SELECT statement returns.

Syntax
LIMIT {count | ALL}

Arguments

count
specifies the number of rows that the SELECT statement returns.

Tip count can be an integer or any simple expression that resolves to an integer
value.

ALL
specifies that all rows are returned.

Details
The LIMIT clause can be used alone or in conjunction with the OFFSET clause. The
OFFSET clause specifies the number of rows to skip before the SELECT statement
starts to return rows.

Note: When you use the LIMIT clause, it is recommended that you use an ORDER BY
clause to create an ordered sequence. Otherwise, you can get an unpredictable subset
of a query's rows.

OFFSET Clause

Description
Specifies the number of rows to skip before the SELECT statement starts to return rows.

Syntax
OFFSET number

100 Chapter 8 • FedSQL Statements

Arguments

number
specifies the number of rows to skip.

Tip number can be an integer or any simple expression that resolves to an integer
value.

Details
The OFFSET clause can be used alone or in conjunction with the LIMIT clause. The
OFFSET clause specifies the number of rows to skip before the SELECT statement
starts to return rows.

Note: When you use the OFFSET clause, it is recommended that you use an ORDER
BY clause to create an ordered sequence. Otherwise, you get an unpredictable subset
of a query's rows.

<search-condition>

Description
Is a combination of one or more operators and predicates that specifies which rows are
chosen for inclusion in the result table.

Syntax
<search-condition>::=

{
[NOT] {<sql-expression> | (<search-condition>)}

[{AND | OR} [NOT] {<sql-expression> | (<search-condition>)}]
}

[, …{[NOT] {<sql-expression> | (<search-condition>)}
[{AND | OR} [NOT] {<sql-expression> | (<search-condition>)}]}]

<sql-expression>::=
expression {operator | predicate} expression

Arguments

NOT
negates a Boolean condition. This table outlines the outcomes when you compare
true and false values using the NOT operator.

Table 8.2 Truth Table for the NOT Operator

NOT Result

True False

False True

Unknown Unknown

AND
combines two conditions by finding observations that satisfy both conditions. This
table outlines the outcomes when you compare TRUE and FALSE values using the
AND operator.

SELECT Statement 101

Table 8.3 Truth Table for the AND Operator

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

OR
combines two conditions by finding observations that satisfy either condition or
both. This table outlines the outcomes when you compare TRUE and FALSE values
using the OR operator.

Table 8.4 Truth Table for the OR Operator

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

<sql-expression>
specifies any valid SQL expression.

See “<sql-expression>” on page 71

Details
The search condition specifies which rows are returned in a result table for a SELECT
statement. Within the SELECT statement, the search condition is used in the WHERE
clause, the HAVING clause, and the ON clause with joins.

The order of precedence for the logical operators is NOT, AND, and then OR, but you
can override the order by using parentheses. Everything within the parentheses is
evaluated first to yield a single value before that value can be used by any operator
outside the parentheses.

102 Chapter 8 • FedSQL Statements

Chapter 9

FedSQL Table Options

Overview of Statement Table Options . 103
About FedSQL Statement Table Options . 103
Restrictions . 103

How to Specify FedSQL Statement Table Options . 103

Dictionary . 104
COMPRESS= Table Option . 104
LABEL= Table Option . 104
REPLACE= Table Option . 106
REPLICATION= Table Option . 106

Overview of Statement Table Options

About FedSQL Statement Table Options
FedSQL statement table options specify actions that affect the processing of a table.
They apply only to the table with which they appear.

Restrictions
The availability and behavior of FedSQL statement table options are data-source
specific. Table options that FedSQL supports for a Base SAS data set or Oracle table are
not supported for a CAS table.

How to Specify FedSQL Statement Table Options
Specify a FedSQL statement table option immediately after the table name, within
braces (that is, { }) and including the keyword OPTIONS. To specify several table
options, separate them with spaces or commas. For example:

create table newtable {options replace=true copies=3} as select * from casdblib.table;

CAUTION:
You cannot have a space between the left brace { and the OPTIONS keyword. A
space results in a syntax error.

103

Dictionary

COMPRESS= Table Option
Specifies whether rows are compressed in a new output CAS table.

Valid in: CAS

Category: Table Control

Default: FALSE

Syntax
COMPRESS=[TRUE | FALSE]

Optional Arguments
TRUE

specifies that the rows in the newly created CAS table are compressed.

FALSE
specifies that the rows in the newly created table are not compressed.

Details
Compressing a table is a process that reduces the number of bytes required to represent
each row. Advantages of compressing a table include reduced storage requirements for
the table and fewer I/O operations necessary to read or write to the data during
processing. However, more CPU resources are required to read a compressed table
(because of the overhead of uncompressing each row). Also, there are situations where
the resulting file size might increase rather than decrease.

After a table is compressed, the setting is a permanent attribute of the table. To change
the setting, you must re-create the table.

LABEL= Table Option
Specifies a label for an output table.

Valid in: CAS

Category: Table Control

Syntax
LABEL=[' | "]string[' | "]

104 Chapter 9 • FedSQL Table Options

Arguments
' string'

specifies a quoted text string of up to 256 characters. The string can be enclosed in
single or double quotation marks.

Requirements When used in the fedSql.execDirect action, the LABEL= string
must use a different quotation style than the QUERY= string.
Single-quotation marks ('), double-quotation marks ("), and double
single (' ') quotation marks are all supported for the LABEL= string.
Any internal quotation marks must use yet a different quotation
style.

In PROC FEDSQL, any internal quotations must use a different
quotation style than the outer string. Single-quotation marks ('),
double-quotation marks ("), and double single (' ') quotation marks
are all supported for the internal quotation.

Details
The labels specified with the LABEL= table option are stored as part of the table’s
metadata; however, the information is not used in the FedSQL environment. That is,
once stored, the label cannot be displayed with FedSQL. In SAS Viya, the label can be
viewed by using the CASUTIL procedure with the CONTENTS statement, or by using
the CAS procedure with the Tables.tableInfo action. The Tables.tableInfo action is used
in Python and Lua.

A label specified for an output table remains a part of the in-memory table for the
duration of the CAS session. If the in-memory table is saved or promoted, the label is
preserved.

You cannot modify a CAS table with FedSQL. To remove a label from an in-memory
table, you must create a new copy of the table with the Label= attribute removed.

Example
These examples assign labels to a FedSQL output table using SAS Viya. They assume
that table DemoTable is already loaded into CAS.

/* Add a label with PROC CAS */
proc cas;
 fedsql.execdirect result=r status=s query="create table mycars
 {option replace=true
 label='Label test'} as
 select * from demotable";
quit;

/* Add a label with an internal quotation with PROC CAS */
proc cas;
 fedsql.execdirect result=r status=s query='create table mycars
 {option replace=true
 label="Label test with ''internal quotation'' "} as
 select * from demotable';
quit;

/* Add a label with an internal quotation with PROC FEDSQL */
proc fedsql sessref=mysess;

LABEL= Table Option 105

 create table mycars {option replace=true
 label="Label test with 'internal quotation' "} as
 select * from demotable;
quit;

REPLACE= Table Option
Specifies to internally delete an existing table of the same name and create a replacement output table.

Valid in: CAS

Category: Table Control

Default: FALSE

Syntax
REPLACE=[TRUE | FALSE]

Arguments
TRUE

specifies to delete an existing table of the same name and create a replacement
output table.

FALSE
specifies to fail the CREATE TABLE operation if a table of the same name already
exists. To create a replacement table, you must first use the DROP TABLE statement
(or other CAS action that drops tables) to delete the existing table. Then, use
CREATE TABLE to create the replacement table.

Details
By default, FedSQL will not overwrite an existing in-memory table of the same name.
The REPLACE= table option will delete and then re-create an existing in-memory table
of the same name when set to TRUE. If the output table exists and the REPLACE= table
option is set to FALSE (the default value), an error will occur because the existing table
will not be deleted.

Currently, FedSQL considers global tables when enforcing name uniqueness rules and
will replace a previously promoted table. Before including the REPLACE= table option
in your CREATE TABLE requests, issue the table.tableInfo action to determine if the
named table exists and verify that it is not a global table. The word Yes appears in the
Promoted Table column of the tableInfo action output if the named table is a global
table. Do not replace a global table. Instead, choose a different name for your session
table.

REPLICATION= Table Option
specifies the number of copies of the table to make for fault tolerance.

Valid in: CAS

Category: Table Control

Alias: COPIES=

106 Chapter 9 • FedSQL Table Options

Default: 1

Syntax
REPLICATION= number

Arguments
number

specifies the number of copies of the table to make for fault tolerance. Larger values
result in slower performance and use more memory, but provide high availability for
data in the event of a node failure. The minimum value is 0.

REPLICATION= Table Option 107

108 Chapter 9 • FedSQL Table Options

Part 3

Appendixes

Appendix 1
Tables Used in Examples . 111

Appendix 2
ICU License Agreement . 121

109

110

Appendix 1

Tables Used in Examples

Overview of Sample Tables . 111

AfewWords . 112
Code . 112
Content . 112

Customers . 112
Code . 112
Content . 113

CustonLine . 113
Code . 113
Content . 114

Densities . 114
Code . 114
Content . 115

Employees . 115
Code . 115
Content . 116

Products . 116
Code . 116
Content . 117

Sales . 117
Code . 117
Content . 117

WorldCityCoords . 118
Code . 118
Content . 118

WorldTemps . 119
Code . 119
Content . 119

Overview of Sample Tables
This section includes output listings of the tables that are used in the examples in this
documentation and in the documentation for the fedSql.execDirect action. It also

111

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-fedsql-execdirect.htm&locale=en

includes the code that is necessary to create the tables in CAS. The FedSQL language
INSERT statement is currently not supported in CAS; therefore, SAS DS2 language
code is provided to create the tables. You can submit the DS2 code by establishing a
session on your CAS server and then using the DS2 procedure or the ds2.runDS2 action
to submit the code. In PROC DS2, be sure to specify the SESSREF= procedure option to
direct the request to the CAS server. The code creates in-memory CAS tables. You can
use the table.save action to save the tables to the CAS server. If you have licensed SAS
Data Connector software, you can save the tables to a database.

AfewWords

Code
The following DS2 statements can be used to create table AfewWords in CAS. Submit
the DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF=
option.

data afewwords;
 dcl char(10) Word1;
 dcl char(10) Word2;
 method run();
 Word1='*some/'; Word2='WHERE'; output;
 Word1='*every*'; Word2='THING'; output;
 Word1='*no*'; Word2='BODY'; output;
 end;
enddata;
run;

Content

Customers

Code
The following DS2 statements can be used to create table Customers in CAS. Submit the
DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF= option.

data customers;
 dcl int Custid;
 dcl varchar(16) Name;
 dcl varchar(64) Address;

112 Appendix 1 • Tables Used in Examples

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-ds2-runds2.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=cas-table-save.htm&locale=en

 dcl varchar(16) City;
 dcl char(2) State;
 dcl varchar(16) Country;
 dcl char(16) Phone;
 dcl date InitOrder;
 method run();
 Custid=1; Name='Peter Frank'; Address='300 Rock Lane'; City='Boulder';
State='CO'; Country='United States'; Phone='3039564321';
InitOrder=date '2012-01-14';
output;
 Custid=2; Name='Jim Stewart'; Address='1500 Lapis Lane'; City='Little Rock';
State='AR'; Country='United States'; Phone='8705553978'; InitOrder=date '2012-03-20';
output;
 Custid=3; Name='Janet Chien'; Address='75 Jujitsu'; City='Nagasaki';
State=' '; Country='Japan'; Phone='01181956879932'; InitOrder=date '2012-06-07';
output;
 Custid=4; Name='Qing Ziao'; Address='10111 Karaje'; City='Tokyo';
State=' '; Country='Japan'; Phone='0118136774351'; InitOrder=date '2012-10-12';
output;
 Custid=5; Name='Humberto Sertu'; Address='876 Avenida Blanca'; City='Buenos Aires';
State=' '; Country='Argentina'; Phone='01154118435029'; InitOrder=date '2012-12-15';
output;
 end;
enddata;
run;

Content

CustonLine

Code
The following DS2 statements can be used to create table CustonLine in CAS. Submit
the DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF=
option.

data custonline;
 dcl varchar(15) custnum having label 'Customer Number';
 dcl timestamp begintime having label 'Begin Time';
 dcl timestamp endtime having label 'End Time';
 method run();
 custnum='US-C-37533944'; begintime=timestamp'2013-09-01 10:00:00';
endtime=timestamp'2013-09-01 10:05:01.253'; output;
 custnum='GB-W-33944332'; begintime=timestamp'2013-10-02 22:15:33';

CustonLine 113

endtime=timestamp'2013-10-02 22:21:09.421'; output;
 custnum='SP-M-29443992'; begintime=timestamp'2013-10-15 18:44:25';
endtime=timestamp'2013-10-15 19:04:55.746'; output;
 custnum='US-A-37144324'; begintime=timestamp'2013-11-01 12:03:59';
endtime=timestamp'2013-11-01 12:25:09.398'; output;
 custnum='FR-P-98384488'; begintime=timestamp'2013-12-01 12:15:34';
endtime=timestamp'2013-12-01 12:47:45.221'; output;
 custnum='GB-L-24995559'; begintime=timestamp'2013-01-02 15:43:24';
endtime=timestamp'2013-01-02 16:06:15.766'; output;
 custnum='FR-L-42339887'; begintime=timestamp'2013-01-16 14:55:00';
endtime=timestamp'2013-01-16 15:05:56.288'; output;
 custnum='GB-P-87559899'; begintime=timestamp'2013-02-01 11:02:44';
endtime=timestamp'2013-02-01 11:15:33.955'; output;
 custnum='SP-N-44333958'; begintime=timestamp'2013-03-01 10:14:33';
endtime=timestamp'2013-03-01 10:35:27.908'; output;
 custnum='GB-R-24994990'; begintime=timestamp'2013-03-15 09:06:00';
endtime=timestamp'2013-03-15 09:06:20.475'; output;
 end;
enddata;
run;

Content

Densities

Code
The following DS2 statements can be used to create table Densities in CAS. Submit the
DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF= option.

data densities;
 dcl char(20) Name;
 dcl double Population having format comma12.;
 dcl double SquareMiles having format comma10.;
 dcl double Density;
method run();

114 Appendix 1 • Tables Used in Examples

 Name='Afghanistan'; Population=17070323; SquareMiles=251825; Density=67.79; output;
 Name='Albania'; Population=3407400; SquareMiles=11100; Density=306.97; output;
 Name='Algeria'; Population=28171132; SquareMiles=919595; Density=30.63; output;
 Name='Andorra'; Population=64634; SquareMiles=200; Density=323.17; output;
 Name='Angola'; Population=9901050; SquareMiles=481300; Density=20.57; output;
 Name='Antigua and Bar'; Population=65644; SquareMiles=171; Density=383.88; output;
 Name='Argentina'; Population=34248705; SquareMiles=1073518; Density=31.90; output;
 Name='Armenia'; Population=3556864; SquareMiles=11500; Density=309.29; output;
 Name='Australia'; Population=18255944; SquareMiles=2966200; Density=6.15; output;
 Name='Austria'; Population=8033746; SquareMiles=32400; Density=247.96; output;
 end;
enddata;
run;

Content

Employees

Code
The following DS2 statements can be used to create table Employees in CAS. Submit
the DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF=
option.

data employees;
 dcl int EmpId;
 dcl int Dept;
 dcl varchar(30) Emp_Name;
 dcl varchar(50) Pos;
 dcl date Hire_Date;
 method run();
 EmpId=1; Dept=10; Emp_Name='Jim Barnes'; Pos='Manager';
Hire_Date=date '2000-11-26'; output;
 EmpId=2; Dept=20; Emp_Name='Clifford James'; Pos='Manager';
Hire_Date=date '2000-11-26'; output;
 EmpId=3; Dept=30; Emp_Name='Barbara Sandman'; Pos='Manager';

Employees 115

Hire_Date=date '2000-11-26'; output;
 EmpId=4; Dept=40; Emp_Name='William Baylor'; Pos='Manager';
Hire_Date=date '2000-11-26'; output;
 EmpId=5; Dept=20; Emp_Name='Greg Welty'; Pos='Developer';
Hire_Date=date '2004-11-26'; output;
 EmpId=6; Dept=20; Emp_Name='Penny Jackson'; Pos='Developer';
Hire_Date=date '2004-11-26'; output;
 EmpId=7; Dept=10; Emp_Name='Edward Murray'; Pos='Sales Associate';
Hire_Date=date '2004-11-26'; output;
 EmpId=8; Dept=10; Emp_Name='Ronald Thomas'; Pos='Sales Associate';
Hire_Date=date '2004-11-26'; output;
 EmpId=9; Dept=30; Emp_Name='Elsie Marks'; Pos='Executive Assistant';
Hire_Date=date '2005-02-11'; output;
 EmpId=10; Dept=40; Emp_Name='Bruno Kramer'; Pos='Grounds support technician';
Hire_Date=date '2005-11-02'; output;
 end;
 enddata;
run;

Content

Products

Code
The following DS2 statements can be used to create table Products in CAS. Submit the
DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF= option.

data products;
 dcl int ProdId;
 dcl char(10) Product;
 method run();
 ProdId=3234; Product='Rice'; output;
 ProdId=1424; Product='Corn'; output;
 ProdId=3421; Product='Wheat'; output;
 ProdId=3422; Product='Oat'; output;

116 Appendix 1 • Tables Used in Examples

 ProdId=3975; Product='Barley'; output;
 end;
 enddata;
run;

Content

Sales

Code
The following DS2 statements can be used to create table Sales in CAS. Submit the DS2
statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF= option.

data sales;
 dcl int ProdId;
 dcl int CustId;
 dcl bigint Totals;
 dcl varchar(32) Country;
 method run();
 ProdId=3234; CustId=1; Totals=189400; Country='United States'; output;
 ProdId=1424; CustId=3; Totals=555789; Country='Japan'; output;
 ProdId=3421; CustId=4; Totals=781183; Country='Japan'; output;
 ProdId=3421; CustId=2; Totals=2789654; Country='United States'; output;
 ProdId=3975; CustId=5; Totals=899453; Country='Argentina'; output;
 end;
 enddata;
run;

Content

Sales 117

WorldCityCoords

Code
The following DS2 statements can be used to create table WorldCityCoords in CAS.
Submit the DS2 statements in the ds2.runDS2 action or in PROC DS2 with the
SESSREF= option.

data worldcitycoords;
 dcl varchar(16) City;
 dcl varchar(16) Country;
 dcl double Latitude;
 dcl double Longitude;
 method run();
 City='Algiers'; Country='Algeria'; Latitude=37; Longitude=3; output;
 City='Amsterdam'; Country='Netherlands'; Latitude=52; Longitude=5; output;
 City='Beijing'; Country='China'; Latitude=40; Longitude=116; output;
 City='Bombay'; Country='India'; Latitude=19; Longitude=73; output;
 City='Calcutta'; Country='India'; Latitude=22; Longitude=88; output;
 City='Caracas'; Country='Venezuela'; Latitude=10; Longitude=-67; output;
 City='Geneva'; Country='Switzerland'; Latitude=46; Longitude=6; output;
 City='Hong Kong'; Country='China'; Latitude=22; Longitude=114; output;
 City='Lagos'; Country='Nigeria'; Latitude=6; Longitude=3; output;
 City='Madrid'; Country='Spain'; Latitude=40; Longitude=-3; output;
 City='Shanghai'; Country='China'; Latitude=31; Longitude=121; output;
 City='Zurich'; Country='Switzerland'; Latitude=47; Longitude=8; output;
 end;
 enddata;
run;

Content

118 Appendix 1 • Tables Used in Examples

WorldTemps

Code
The following DS2 statements can be used to create table WorldTemps in CAS. Submit
the DS2 statements in the ds2.runDS2 action or in PROC DS2 with the SESSREF=
option.

data worldtemps;
 dcl varchar(16) City;
 dcl varchar(16) Country;
 dcl double AvgHigh;
 dcl double AvgLow;
 method run();
 City='Algiers'; Country='Algeria'; AvgHigh=90; AvgLow=45; output;
 City='Amsterdam'; Country='Netherlands'; AvgHigh=79; AvgLow=33; output;
 City='Beijing'; Country='China'; AvgHigh=86; AvgLow=17; output;
 City='Bombay'; Country='India'; AvgHigh=90; AvgLow=68; output;
 City='Calcutta'; Country='India'; AvgHigh=97; AvgLow=56; output;
 City='Caracas'; Country='Venezuela'; AvgHigh=83; AvgLow=57; output;
 City='Geneva'; Country='Switzerland'; AvgHigh=76; AvgLow=28; output;
 City='Hong Kong'; Country='China'; AvgHigh=89; AvgLow=51; output;
 City='Lagos'; Country='Nigeria'; AvgHigh=90; AvgLow=75; output;
 City='Madrid'; Country='Spain'; AvgHigh=89; AvgLow=36; output;
 City='Shanghai'; Country='China'; AvgHigh=.; AvgLow=33; output;
 City='Zurich'; Country='Switzerland'; AvgHigh=78; AvgLow=25; output;
 end;
 enddata;
run;

Content

WorldTemps 119

120 Appendix 1 • Tables Used in Examples

Appendix 2

ICU License Agreement

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2005 International Business Machines Corporation and others All
rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above copyright
notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

--

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

121

122 Appendix 2 • ICU License Agreement

Recommended Reading

• SAS Cloud Analytic Services: Fundamentals

• SAS Cloud Analytic Services: CASL Reference

• Getting Started with SAS Viya for Python

• SAS Viya: System Programming Guide

• SAS Viya Administration: Cloud Analytic Services Authorization

• Base SAS Procedures Guide

For a complete list of SAS publications, go to sas.com/store/books. If you have
questions about which titles you need, please contact a SAS Representative:

SAS Books
SAS Campus Drive
Cary, NC 27513-2414
Phone: 1-800-727-0025
Fax: 1-919-677-4444
Email: sasbook@sas.com
Web address: sas.com/store/books

123

http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg3&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.4&docsetId=calauthzcas&docsetTarget=titlepage.htm
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://www.sas.com/store/books
mailto:sasbook@sas.com
http://sas.com/store/books

124 Recommended Reading

Index

A
aggregate functions 83

B
BETWEEN predicate 53

C
CASE expression 54
COALESCE expression 58
COMPRESS= table option 104
COPIES= table option 106
CREATE TABLE statement 87

D
DISTINCT predicate 59
DROP TABLE statement 89

E
EXISTS predicate 60
expressions 53, 71

complex 73
functions in 73
order of evaluation 73
simple 73
subqueries 73

F
formats 77

examples 78
validation of 78

functions
aggregate 83
in expressions 73
set functions 83

I
IN predicate 61
IS FALSE predicate 62

IS MISSING predicate 64
IS NULL predicate 65
IS TRUE predicate 66
IS UNKNOWN predicate 67

L
LABEL= table option 104
LIKE predicate 68

N
NULLIF expression 70

O
operators 71

order of evaluation 73
order of evaluation 73

P
predicates 53

order of evaluation 73

Q
queries

subqueries 73

R
REPLACE= table option 106
REPLICATION= table option 106

S
SELECT statement 90
set functions 83
sql-expression 71
subqueries

in expressions 73

125

V
validation of formats 78

126 Index

	Contents
	What’s New in FedSQL Programming for SAS Cloud Analytic
Services
	Overview
	SAS Viya 3.4
	Documentation Updates for SAS Viya 3.4

	Concepts
	Introduction to SAS FedSQL for CAS
	Introduction to the SAS FedSQL Language in CAS
	Running FedSQL Programs in CAS
	Supported Statements
	Supported Data Sources
	FedSQL Implicit Pass-Through Facility in CAS
	Overview
	How to Use the FedSQL Implicit Pass-Through Facility
	Conditions for Single-Source Pass-Through

	FedSQL Explicit Pass-Through Facility
	Overview
	How to Use the FedSQL Explicit Pass-Through Facility
	Conditions for Explicit Pass-Through

	How FedSQL Runs in CAS
	Overview
	Modifying the Query Plan
	Viewing the Query Plan

	FedSQL Query Walk-Through
	Executing a FedSQL Request against Multiple Data Sources in
CAS
	Optimizing FedSQL Joins
	Managing FedSQL Output Tables
	Intended Audience
	Syntax Conventions for the FedSQL Language
	Typographical Conventions
	Syntax Conventions

	Fundamental Concepts
	Locale
	Data Types
	Identifiers
	Overview of Identifiers
	Regular Identifiers
	Delimited Identifiers
	Support for Non-Latin Characters

	Formats
	Handling of Nonexistent Data
	FedSQL Reserved Words
	Getting Information About CAS Libraries and Tables

	Joining Data with FedSQL
	Overview of Joins
	Example: Typical Two-Table Join
	Program
	Key Ideas

	Example: Typical Three-Table Join
	Program
	Key Ideas

	Example: Simple Join Including All Columns
	Program
	Key Ideas

	Example: Equijoin Including All Columns
	Program
	Key Ideas

	Example: Simple Cross Join
	Program
	Key Ideas

	Example: Cross Join with Specified Columns and a WHERE Clause
	Program
	Key Ideas

	Example: Qualified Join with an ON Clause
	Program
	Key Ideas
	Related Information

	Example: Qualified Join with a USING Clause
	Program
	Key Ideas
	Related Information

	Example: Qualified Join with an ON Clause and a WHERE Clause
	Program
	Key Ideas
	Related Information

	Example: Natural Join
	Program
	Key Ideas
	Related Information

	Example: Natural Join with a WHERE Clause
	Program
	Key Ideas
	Related Information

	Understanding Inner and Outer Join Types
	Example: Inner Join
	Program
	Key Ideas

	Example: Left Outer Qualified Join
	Program
	Key Ideas

	Example: Left Outer Natural Join
	Program
	Key Ideas

	Example: Right Outer Qualified Join
	Program
	Key Ideas

	Example: Right Outer Natural Join
	Program
	Key Ideas

	Example: Full Outer Qualified Join
	Program
	Key Ideas

	Example: Full Outer Natural Join
	Program
	Key Ideas

	FedSQL Expressions and Subqueries
	Overview of FedSQL Expressions and Subqueries
	FedSQL Value Expressions
	Numeric Value Expressions
	Row Value Expressions

	Subqueries
	Subquery Examples
	General Example of a Scalar Subquery in the WHERE Clause
	General Example of a Non-Correlated Subquery in the FROM Clause
	Specific Example of a Non-Correlated Subquery in the FROM Clause

	FedSQL Reference
	FedSQL Expressions and Predicates
	Overview of Expressions and Predicates
	Dictionary
	BETWEEN Predicate
	CASE Expression
	COALESCE Expression
	DISTINCT Predicate
	EXISTS Predicate
	IN Predicate
	IS FALSE Predicate
	IS MISSING Predicate
	IS NULL Predicate
	IS TRUE Predicate
	IS UNKNOWN Predicate
	LIKE Predicate
	NULLIF Expression
	<sql-expression>

	FedSQL Formats
	Overview of Formats
	How to Format Output with the PUT Function
	Validation of FedSQL Formats
	FedSQL Format Examples
	Using a User-Defined Format
	NLS Formats Supported by FedSQL
	Formats Reference

	FedSQL Functions
	Overview of FedSQL Functions in CAS
	Integration with DS2
	Specifying Function Arguments in FedSql.execDirect
	FedSQL Date, Time, and Datetime Constants
	Other FedSQL Constants and Character Values

	Understanding Function Output
	FedSQL Date and Time Functions
	The Output Delivery System and FedSQL

	Functions Reference

	FedSQL Statements
	Dictionary
	CREATE TABLE Statement
	DROP TABLE Statement
	SELECT Statement

	FedSQL Table Options
	Overview of Statement Table Options
	About FedSQL Statement Table Options
	Restrictions

	How to Specify FedSQL Statement Table Options
	Dictionary
	COMPRESS= Table Option
	LABEL= Table Option
	REPLACE= Table Option
	REPLICATION= Table Option

	Appendixes
	Tables Used in Examples
	Overview of Sample Tables
	AfewWords
	Code
	Content

	Customers
	Code
	Content

	CustonLine
	Code
	Content

	Densities
	Code
	Content

	Employees
	Code
	Content

	Products
	Code
	Content

	Sales
	Code
	Content

	WorldCityCoords
	Code
	Content

	WorldTemps
	Code
	Content

	ICU License Agreement

	Recommended Reading
	Index

